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Abstract

The master thesis focuses on ensemble approaches applied to intrusion detection systems (IDSs).

The ensemble approach is a relatively new trend in artificial intelligence in which several machine

learning algorithms are combined. The main idea is to exploit the strengths of each algorithm

of the ensemble to obtain a robust classifier. Moreover, ensembles are particularly useful when a

problem can be segmented into subproblems. In this case, each module of the ensemble, which can

include one or more algorithms, is assigned to one particular subproblem. Network attacks can be

divided into four classes: denial of service, user to root, remote to local and probe. One module

of the ensemble designed in this work is itself an ensemble of decision trees and is specialized on

the detection of one class of attacks. The inner structure of each module uses bagging techniques

to increase the accuracy of the IDS. Experiments showed that IDSs obtain better results when

each class of attacks is treated as a separate problem and handled by specialized algorithms. This

work have also concluded that these algorithms need to be trained with specific subsets of fea-

tures selected according to their relevance to the class of attack being detected. The efficiency of

ensemble approaches is also highlighted. In all experiments, the ensemble was able to bring down

the number of false positives and false negatives. However, we also observed the limitations of the

KDD99 dataset. In particular, the distribution of examples of remote to local attacks between

the training set and test set made difficult the evaluation of the ensemble for this class of attack.

Keywords: ensemble approaches, intrusion detection systems, artificial intelligence, machine

learning, feature selection
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Chapter 1

Introduction

1.1 Context

The Internet has grown tremendously in recent decades. The interconnection of computers and

network devices has made the cyberspace so complex that even the best experts on the planet

do not fully understand its deepest inner workings. Personal computers get faster every year and

it is not rare for a very ordinary person to connect to the Internet through 10 Mb/s lines or

faster. To complicate the matter, there is an increase of the number and level of confidentiality of

the information found on the Internet. On-line banking and on-line payment make life easier for

average people, but make it harder for security experts and network administrators. Practically

anyone has access to the huge database of information that is the Internet. In particular, many

websites display information about software security and hacking. Others provide hacking toolkits

that even the most inexperienced users can launch without difficulty. Add to this the fact that the

Internet was not built in the interest of security because nobody could have predicted its dazzling

expansion and we have the ingredients of a monumental logic bomb.

In this big disarray, one can imagine how easily a malicious user can perform harmful actions

without being threatened or even noticed. To compensate for the lack of security measures in the

original Internet protocols, security experts have developed several tools such as anti-virus and

firewalls that are now widely used by the majority of users. These tools are designed to protect

“normal” users against malevolent ones, called black hat, who exploit vulnerabilities of the system

to break into machines containing confidential information or personal data. The motives of these

unscrupulous individuals are various: fun, glory, money, identity theft, ideological differences, etc.

Their biggest advantages on security experts: they are numerous, they have time and they can

attack from anywhere on the planet. In these conditions, passive tools such as firewalls lack the

power to counter repetitive and massive attacks of these aggressive hackers.

“Persistence and determination, combined with plenty of time, gives the attackers the

upper hand.”

Costin Raiu [61]

Intrusion detection systems (IDSs) are monitoring devices that have been added to the wall

of security in order to prevent malicious activity on a system. This work focuses on network

intrusion detection systems (NIDSs) mainly because they can detect the widest range of attacks

compared to other types of IDSs, as we will see in Section 2.1.3. Network IDSs analyse traffic to

detect on-going and incoming attacks on a network. Additionally, they must provide concise but

sound reports of attacks in order to facilitate the prevention of future intrusions and to inform

the network administrators that the system has been compromised. In the last decade, many

scientists and security firms have tried to develop robust IDSs. Unfortunately, most of the time,

1



they fall short against smart opponents who manage to either evade detection or directly attack

the IDS.

Nowadays, commercial IDSs mainly use a database of rules, called signatures, to try to detect

attacks on a network or on a host computer. This kind of detection method is currently the most

accurate but also the easiest to evade for experienced users because variants of known attacks

are considered harmless by the IDS and can pass through without warning. These variants have

similar, but slightly different signatures than the original attacks and that is why the IDS cannot

detect them. New attacks and attacks exploiting zero-day vulnerabilities can also slip through the

security net if their signature is unknown by the IDS. A zero-day vulnerability [26] is a weakness in

a software that is unknown by the developers of the vulnerable system and that could potentially

allow an attacker to compromise the it. Zero-day refers to the fact that it is the first day or day

zero that the vulnerability has been observed in the wild. Since the vulnerability is unknown to

the developers of the system, they have not been able to produce a patch preventing exploits to

take advantage of this vulnerability.

For these reasons, mechanisms allowing the IDS to learn by itself how to detect previously

unseen attacks are needed. Machine learning techniques have come to the rescue, but the challenge

is commensurable with the complexity of the problem. An IDS must be able to detect all previously

seen and unseen attacks without failure. It must never let an attack pass through unnoticed and

it must never deliver unwanted warnings when the traffic is in fact legitimate. These requirements

make the task of the machine learning algorithm extremely delicate. In comparison, other fields,

in which machine learning techniques has been applied successfully, usually do not require such a

high level of precision. This is the reason why machine learning is rarely used in commercial IDSs.

Despite this observation, machine learning experts have been very active in the field of intru-

sion detection as shown by the numerous papers available on the topic. We will try to summarize

the current state-of-the-art in machine learning applied to intrusion detection in Chapter 3, Sec-

tions 3.4 and 3.6.2. From these materials, we observe the emergence of a shared conclusion.

Machine learning classifiers trigger too many false alarms to be useful in practice. Another prob-

lem mentioned by most researchers is the lack of labelled datasets. The only labelled dataset

available is the KDD99 dataset which is an adaptation of the DARPA98 dataset created in 1998

by the Darpa Advanced Research Projects Agency (DARPA). This dataset has been severely

criticised as we will see in Chapter 4, Section 4.1.

To address these problems, new machine learning paradigms have been introduced in the field

of intrusion detection. In recent years, the machine learning community has paid more attention to

ensemble approaches. The ensemble approach is a relatively new trend in artificial intelligence in

which several machine learning algorithms are combined. The main idea is to exploit the strengths

of each algorithm of the ensemble to obtain a robust classifier. Moreover, ensembles are particularly

efficient when a problem can be segmented into subproblems. In this case, each module of the

ensemble, which include one or more algorithms cooperating together, is assigned to one particular

subproblem. Network attacks can be divided into four classes which are described in Section 2.2:

denial of service, user to root, remote to local and probe. Previously, the majority of the solutions

proposed by the research community included a single algorithm in charge of detecting all classes

of attacks. Instead, in this work, we will specialise one module of the ensemble in the detection

of attacks belonging to one particular class.

Another noticeable fact is that each class of attacks is characterized by very specific properties.

The differences of the classes can be observed in the particular values of certain variables of

their examples in the dataset. However, even though feature selection is often applied in IDSs

using machine learning techniques, often only one set of features is selected for all classes of

attacks. In this work, one set of features will be selected for each class of attacks according to

their relevance to the corresponding class. The next thing to do is to feed the corresponding

algorithm(s) with the appropriate set of features. The system can, in theory, reach a very high
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accuracy with simulataneous small cost. Moreover, the ensemble can be parallelized by using a

multicore architecture. In the best scenario, each algorithm could run on a different core of the

processor allowing the IDS to attain extremely high performance.
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Figure 5. Developed ensemble IDS model for different attack classes 

Table 5. Performance of ensemble approach using different data sets 

Class 12 variables 17 variables 41 variables 

Normal 100.00 99.64 99.71 

Probe 99.86 100.00 99.85 

DOS 99.98 100.00 99.93 

U2R 80.00 72.00 72.00 

R2L 99.47 99.29 99.47 

5. Improving the Performance (Accuracy) of Intrusion Detection Systems 

5.1. Hybrid Support Vector Machines (SVM) – Decision Trees (DT) Approach 

A SVM maps input (real-valued) feature vectors into a higher dimensional feature space through some nonlinear 

mapping. SVMs are developed on the principle of structural risk minimization (Vapnik, 1995). Structural risk 

minimization seeks to find a hypothesis h for which one can find lowest probability of error whereas the traditional 

learning techniques for pattern recognition are based on the minimization of the empirical risk, which attempt to 

optimize the performance of the learning set. Computing the hyper plane to separate the data points i.e. training a 

SVM leads to quadratic optimization problem. SVM uses a linear separating hyper plane to create a classifier but all 

the problems cannot be separated linearly in the original input space. SVM uses a feature called kernel to solve this 

problem. Kernel transforms linear algorithms into nonlinear ones via a map into feature spaces. SVMs classify data 

Figure 1.1: Ensemble developed by Abraham and Thomas [6]

Figure 1.1 displays the model developed by Abraham and Thomas [6]. A feature selection

algorithm is applied to reduce the number of features of the KDD99 dataset from 41 to 12 features

for the three classes normal, remote to local and user to root and 17 features for the classes denial of

service and probe. Although their model increases significantly the accuracy of the IDS compared

to previously obtained results, there is still much room for improvement. The classes probe and

denial of service have very similar properties that is why their features were the same. However, it

is natural to expect that there are slight differences even between these two classes. Consequently,

by selecting a different set of features for each class of attack, it should be possible to improve

these results further. We observed that, generally, 5 or 6 features among the 41 are necessary to

characterize one class of attack without losing too much accuracy. Less features means a shorter

computation time since less information must be extracted from each packet passing through the

network. We will also analyse if a significant drop in the prediction time can be observed when

feature selection is applied. In this thesis, we will try to solve the problem of intrusion detection

in several steps. The first step will involve an analysis of the most relevant features for each class

of attacks as well as an error analysis of the algorithms used with the KDD99 training set. Then,

in the second step, the results obtained in the first step will be assessed using the KDD99 test set.

1.2 Contributions

• This thesis provides a survey of the state-of-the-art in the field of ensemble approaches

applied to intrusion detection systems.

• Additionally, this work has shown that each class of attacks should be treated separately. In
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fact, at least one algorithm should be assigned to detect one class of attacks instead of using

a single algorithm to detect all classes of attacks. Furthermore, algorithms used to detect

different classes of attacks should be trained with different sets of features.

• The experiments have also concluded that ensembles fed with different sets of features for

each class of attacks can outperform more standard approaches even when the ensemble is

composed of several simple classifiers such as decision trees.

1.3 Outline of the Thesis

Chapter 2 presents the security aspects of IDSs. More specifically, the main topics of this chapter

give an overview of the different types of IDSs, the different methods of detection, the difference

between an IDS and an IPS, and the difference between an IDS and a firewall. The requirements

to build an efficient IDS as well as the measures used to assess its performance and a possible

architecture of a complete functional system are also covered. Finally, the main classes of attacks

are described together with examples of attacks in each class.

Chapter 3 focuses on the application of machine learning to IDSs. In particular, the key

factors to build an efficient IDS as well as the major challenges in applying machine learning to

the problem of intrusion detection will also be summarized. This chapter gives a general overview

of the state-of-the-art in the field machine learning applied to IDS and ensemble approaches applied

to IDS. Then, the main machine learning algorithms used in the thesis are described. Eventually,

the ensemble approach is explained as well as the motives to apply ensembles to the problem of

intrusion detection.

The results of the experiments are displayed in Chapter 4. These experiments will try to assess

the results of previous works concerning feature selection for ensembles. An ensemble of machine

learning algorithms will be fed with the most successful sets of features identified in the previous

steps. A description of the main dataset available to train IDSs is also available in this chapter.

Finally, Chapter 5 concludes the thesis and gives a list of possible hints for future work on

the topic. Huge challenges await researchers in the field of machine learning applied to intrusion

detection. This chapter tries to analyse what could be improved or explored based on the results

achieved in this thesis.

4



Chapter 2

Security

2.1 Intrusion Detection Systems

Intrusion detection systems are monitoring devices which are used to detect intrusions on a com-

puter or a network. Intrusions are unauthorized and anomalous activities which were defined by

Christopher Kruegel et al. as “ a sequence of related actions performed by a malicious adversary

that results in the compromise of a target system” [43]. An intrusion detection system is an indis-

pensable tool for network administrators because without such a device, it would be impossible

to analyse the huge amount of packets traversing current networks every second. After more than

thirty years of intensive research on intrusion detection systems, the field is still open to further

investigations especially regarding the accuracy of the detection. Moreover, variants of known

attacks as well as new attacks can often go through the system without being detected.

Attacks on a network are possible because software installed on the devices of a network

(routers, switches, computers, etc.) contain defects, bugs and flaws. Defects are defined by Gary

Mcgraw as “Both implementation vulnerabilities and design vulnerabilities are defects. A defect

is a problem that may lie dormant in software for years only to surface in a fielded system with

major consequences” [47]. Obviously, the optimal solution to the problem of intrusion would

be to have defect-free software. With no software subject to, for example, a buffer overflow at-

tack (Section 2.2.2), detecting it becomes irrelevant. Unfortunately, reality is much less charming

because it is extremely difficult to think about every possible misuse of a software when devel-

oping it. Moreover, programmers can introduce security breaches when using improperly some

programming languages such as C and C++.

Figure 2.1 shows the evolution of the number of vulnerabilities found in software by year

as reported by the National Vulnerability Database (NVD) [56] and the Computer Emergency

Response Team (CERT) Cyber Security Engineering team [15]. More than 90% of these vulner-

abilities have a risk level ranging from medium to high according to the CVSS Version 2 Metrics

[49].

The results obtained by both CERT and NVD are clear: the number of vulnerabilities has

increased dramatically in the last decade, but since 2007 the number has decreased steadily.

However, more than a thousand vulnerabilities have already been found in the first quarter of

2012 and this number is likely to exceed three thousand by the end of the year. Costin Raiu,

director of Kaspersky Lab’s Global Research & Analysis Team, summarizes in [61] the major

incidents that occurred in the IT Security world during the year 2011. His conclusion is not very

encouraging either.

“If we had to summarize the year in a single word, I think it would have to be ‘explo-

sive’.”

Costin Raiu [61]
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(a) National Vulnerability Database (b) CERT

Figure 2.1: Total vulnerabilities by year

In particular, Costin Raiu covers the rise of hacktivism that was observed in 2011, major incidents

involving worms such as Stuxnet and Duqu, the HBGaryFederal Hack, the Sony PlayStation Net-

work Hack, etc. All these events are worrying because they show that personal information such

as credit cards can be easily stolen even when entrusted to big companies like Sony or Google.

Furthermore, mobile devices and cloud computing constitute the new nightmare of security ex-

perts. Eventually, operating systems such as Mac OS X — previously considered malware-free —

are the new targets of cyber-criminals in the last few years. The malware Flashback discovered in

September 2011 was probably the first one to break the false sense of security of many Mac users.

With these numbers and incidents in mind, it is easy to understand the urge to improve current

software security in general. This thesis proposes to study intrusion detection systems which are

one of the key components in modern security along with good cryptography and firewalls. IDSs

do not replace current security mechanisms. They are rather a new brick added to the wall of

security. Although essential, it is important to remember that IDSs are software subject to bugs

and flaws and as such, they can also be targeted by attackers. However, attacks against IDSs is

outside the scope of this thesis. For more details about this topic, refer to [50] and [59].

2.1.1 Requirements

When building an IDS, a certain number of requirements must be fulfilled in order for the system

to be efficient. Before listing the requirements of an IDS, it is necessary to introduce four important

terms.

• False Positive (FP): represents the number of instances that are classified by the IDS as

being anomalous when in fact they are legitimate.

• True Positive (TP): represents the number of instances that are classified by the IDS as

being anomalous and that really are anomalous.

• False Negative (FN): represents the number of instances that are classified by the IDS as

being legitimate when in fact, they are anomalous.

• True Negative (TN): represents the number of instances that are classified by the IDS as

being legitimate and that really are legitimate.

FP and FN cause big problem for IDSs. Indeed, an FN represents an attack that was misclas-

sified by the IDS as being a legitimate action. This is the worst possible outcome because it means

6



that the IDS failed to detect a potentially harmful attack on the network that it was supposed

to protect. FP seems to be a smaller problem, but in practice an IDS with a high FP rate will

be as useless as an IDS with a high FN rate. For instance, if we consider a 10Gbit/s Ethernet

network, the number of packets per second that an IDS should be able to handle vary between

812,740 and 14,880,960 [69]. If the IDS misclassifies one packet every second (or every 14,880,960

packets) as being anomalous when it is not, this means that the network administrator will have

to deal with 86,400 false alerts at the end of the day. In this case, the IDS becomes a nuisance for

the administrator who will most probably not use it any more even though the primary objective

of the IDS was to help him.

An intrusion detection system has to fulfil the following requirements [24].

• Accuracy: Also referred as soundness, this property ensures that the IDS does not classify

legitimate instances as anomalous. As mentioned above, the problem of false positives limits

the use of IDS using anomaly detection (see Section 2.1.6.2) in real-world applications.

• Performance: An IDS must be able to classify the traffic without adding a noticeable

overload to the network. More details about training and testing times of an IDS are given

in Section 2.1.2.

• Completeness: This property is the core of the IDS. It states that an IDS should be able

to detect all intrusion attempts leading to a false negative rate equal to 0. In practice, this

property is very hard to achieve because the IDS must be able to detect known attack as

well as unseen ones.

• Fault Tolerance: An IDS must itself be resistant to attacks.

• Scalability: An IDS must be able to process the traffic of the network in real-time without

dropping any packets because of a higher bandwidth than what the IDS can handle. The

IDS must be designed in order to be robust in the worst case scenario. For example, in a 10

Gb/s Ethernet network, the largest number of packets that can go through the wire at one

moment is 14,880,960. An IDS performing on this type of network should be able to handle

that many packets per second. Furthermore, if the IDS uses an audit trail extracted from

each host of the network, it must be able to cope with an increase in the number of hosts.

In fact, these requirements are telling us that an IDS must have both a false positive rate and a

false negative rate equal to zero. This statement makes it very clear why a good IDS is extremely

difficult to build. In particular, applying machine learning to IDS is very arduous in comparison

to other applications of machine learning as we will see later in this thesis.

2.1.2 Measures

An IDS’s performance is often evaluated by computing measures from the values in the confusion

matrix shown in Table 2.1. The confusion matrix shows the distribution of instances that are

either correctly classified or wrongly classified by the classifier.

Actual class

Negative class (Normal) Positive class (Attack)

Predicted class
Negative class (Normal) True Negative (TN) False Negative (FN)

Positive class (Attack) False Positive (FP) True Positive (TP)

Table 2.1: Confusion matrix

In particular, the following measures will be used to assess the IDS’s performance:
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• Accuracy:

Accuracy =
TP + TN

TP + FP + TN + FN

• False Positive Rate (FPR) or False Alarm Rate (FAR):

FPR =
FP

TN + FP

• Precision:

P =
TP

TP + FP

• Recall or True Positive Rate or Detection Rate (DR):

R =
TP

TP + FN

• F1score:

F1 = 2
R ∗ P
R+ P

• Training time: the time needed by the algorithm to build a model of the data.

• Testing time: the time needed by the classifier (built model) to classify new examples.

The F1score is the most interesting value. It combines the precision and the recall and its

range varies from 0 to 1. If the recall or the precision is close to 0 then the F1score will have a

value close to 0 as well. In order for the F1score to be close to 1, both the recall and the precision

must be high. This ensures that a classifier which, for example, classifies all instances with the

same class does not get a high score. In particular, if the dataset is unbalanced, the values of P

and R can be misleading. For example, if the dataset contains 1000 negative instances and 500

positive instances, and the classifier always classifies an instance as positive, the recall will be

equal to 1 and the precision will be equal to 0.5 leading to a value of F1 of 2
3 . Another popular

measure is the FPR which should be as low as possible to avoid unwanted false alarms.

The training time and testing time are also important because they give a good estimate of the

performance of the IDS in terms of speed. These values obviously depend on the size of the dataset.

In particular, the testing time is highly regarded when working in a real-time environment. The

IDS must predict if a packet is anomalous or normal “fast enough” to avoid slowing down the

network. “Fast enough” means that it must be able to process a number of packets between

812,740 and 14,880,960 every second when used on a 10 Gbit/s Ethernet network [69]. Figure 2.2

taken from [69] shows the packet rate for different network bandwidths. It is also important to

note that additional time should be summed up with the testing time to take into account the

time needed to pre-process the data.

2.1.3 Types of IDSs

Intrusion detection systems can be classified into three groups according to their location: host-

based IDS, network-based IDS and application-based IDS. These three types of IDSs are briefly

described below. For more details about the different types of IDSs, refer to [43].
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Figure 2.2: Relationship between packet size and packet rate for different network transmission

capabilities (from [69])

2.1.3.1 Host-Based IDSs

As the name suggests, an host-based intrusion detection system (HIDS) is located on the host

computer. HIDSs analyses audit trail data such as user logs, system calls, etc., on the host

where it is installed. Depending on this analysis, the HIDS decides whether an attacker is trying

to break into its host or not. There are several advantages of such a type of IDS. First, since

the IDS is placed at the end of the communication line, it has access to the full payload of the

network packets even if the communication is encrypted. Most of the attacks have valid header

and malicious content in the payload of the packet. Therefore, it is very important to analyse the

payload in order to detect malicious behaviour. Second, the location of an HIDS facilitates the

retrieval of evidences of attacks. Third, it is unlikely that the IDS will miss any packet transmitted

to the host where it is installed even if a new route to the network has been found by the attacker.

Nevertheless, an HIDS has also weaknesses. The most important one is that it will be much

more difficult for an HIDS to detect a distributed attack on a part of or on the entire network,

because it has, normally, only access to content located on its host. Most of the current IDSs do

not interact with each other to exchange information on a current attack. Another problem is

the scalability. Obviously, large enterprises are the first users of IDSs because they are subject

to threats of higher level than smaller sized networks. Having an IDS installed on each system

is not the most efficient solution in this case. If the IDS has to be updated or configured, it is

much more convenient to have one or a small number of IDSs monitoring the entire network than

having one for each host.

2.1.3.2 Network-Based IDSs

Network-based intrusion detection systems (NIDSs) intercept packets passing through a network

in order to analyse them and detect possible intrusion attempts. Since networks are dynamic, an

attacker could find other routes to access the network, by-passing the IDS layer. In contrast to

HIDS, NIDS are unable to analyse encrypted packet payloads except if they have the private keys

needed to decrypt them. In this case, the IDS either has to decrypt, analyse and re-encrypt the
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packets or it has to decrypt, analyse and send the packets unencrypted to the right destination.

In the former scenario, the IDS overloads the network. The latter scenario could lead to security

problems for two reasons. First, the dangerous assumption that all hosts on the network are

trustworthy is made. Second, the exchanges and storage of the private keys must be handled

carefully to keep their secrecy. Another problem arises when network bandwidth is high. In

this case, the IDS might have some difficulties to analyse all the packets. The last problem is

related to switched networks where the traffic is sent only to the appropriate destination instead

of broadcasting it. In that case, the traffic does not necessarily pass through the line monitored

by the IDS, making the detection of intrusion rather difficult.

Despite these limitations, this thesis will focus on NIDSs because they are the most convenient

type of IDSs when monitoring large networks. In particular, none of the drawbacks described

above are insurmountable. For example, before 2001, Cisco had already found a solution to the

problem of switched network by incorporating the IDS directly in the switch [38]. Similarly,

still before 2001, ISS/Network ICE were capable of sniffing packets on network with bandwidth

exceeding the gigabyte [38]. However, it is important to keep these limitations in mind in order

to build efficient NIDSs.

2.1.3.3 Application-Based IDSs

Application-based IDSs are located at the application level on a host computer. They can detect

intrusion attempts towards a specific application. They are the least common type of IDSs because

of their limited scope, but they can be quite important especially if the application to protect is

the IDS. An example of application-based IDS is the web-application firewall which will be covered

in Section 2.1.5.

2.1.4 IDS vs. IPS

An intrusion prevention system (IPS) is an active IDS which is placed in-line instead of being

used as a network tap or a port span. This means that the IPS has the ability not only to detect

an attack, but also to prevent it. This prevention can be done by closing the current connection

between the attacker and his victim, by reconfiguring the firewall to forbid future connection from

the IP address of the attacker, etc. However, automatic reconfigurations can be dangerous. For

example, an attacker can deny access to legitimate users of the service protected by the IPS. If the

IP address source of the packets containing the attack is replaced by the address of a legitimate

user, the IPS will add a new rule to the firewall in order to prevent future connection of this IP

address. Also, since the IPS is in-line, an alternative route must be considered in case of failure.

Finally, the IPS must be able to handle the bandwidth of the network on which it is placed

otherwise the traffic will be slowed down by the IPS.

Timothy Wickham [79] claims that IDSs are dead and should be replaced by intrusion pre-

vention systems. Only producing an alert when an intrusion occurs is definitely out-dated. Nev-

ertheless, the algorithms underlying IDSs and IPSs stay the same and can always be improved.

Stating that “Intrusion Detection Is Dead.” [79] is somewhat misleading because IPSs rely on

IDSs for the detection mechanism. Finally, before starting to use automatic counter-measures, it

is important to improve drastically the performance of the IDSs in terms of accuracy and false

positive rate. IDSs are still far from living up to the requirements stated above. Clearing this

obstacle is obviously a prerequisite to the implementation of IPSs.

2.1.5 IDS vs. Firewall

Basic firewalls [32] are static defence systems that act as filters. They are not capable of recognizing

an attack. They usually block all traffic except the packets matching some rules such as packets
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destined to a certain port or coming from certain IP addresses. These rules are configured manually

by the network administrator according to the network security policy. This means that the

efficiency of a firewall depends on how skilled is the administrator. Firewalls can be seen as simple

walls that restrict access to a particular location. That is why they must be placed at strategic

locations to ensure full efficiency.

In contrast, IDSs — or more specifically NIDSs — monitor traffic in real-time. They analyse

each packet passing through the network in order to detect intrusions. They do not block the

traffic, but produce alerts when an intrusion occurs or at least when this intrusion is detected.

An IDS can check that the rules of the firewall are correct and in some cases, the IDS, called IPS,

will be able to reconfigure the firewall to stop future attacks after a detection has taken place.

The IDS should be placed behind the firewall to avoid analysing traffic that will be blocked by

the firewall anyway.

More advanced firewalls work very similarly to IDS in the sense that they are capable of detect-

ing unknown attacks. For example, web-application firewalls (WAF) [48, 75] such as ModSecurity

[10, 71] monitor traffic destined to web servers. The ModSecurity firewall uses a set of rules that

must be written by the administrator in order to be efficient in a particular network. Of course,

general rules are available out of the box. These rules focus primarily on the Layer 7 of the

open systems interconnection (OSI) model where protocols such as Hypertext Transfer Protocol

(HTTP) and Hypertext Transfer Protocol Secure (HTTPS) perform. In other words, WAFs can

be seen as specialised IDSs for web-applications. In fact, the name WAF was only chosen for

commercial purposes, as Giovanni Vigna pointed out [77]. They are placed in front of the web

server to make sure that all traffic destined to it is intercepted whereas

IDSs have to monitor the traffic on an entire network to detect all types of attacks. This is the

reason why they cannot pay as much attention as WAF to the application layer of the OSI model.

It is probably a better idea to use a specialised software such as a WAF to protect web servers

than using a single IDS which has to detect all kinds of attacks because it provides an additional

layer to the wall of defence.

2.1.6 Detection Methods

There are two main methods of detection for IDSs: misuse-based detection and anomaly-based

detection. Each method has its advantages and drawbacks and that is the reason why a new

category has been studied intensively in the last few years called hybrid detection. The major

purpose of hybrid detection is to improve the detection accuracy by combining the strengths of the

two main methods previously mentioned: the accuracy of the misuse-based detection on previously

known attacks and the generalization power of the anomaly-based detection to previously unseen

attacks.

2.1.6.1 Misuse-Based Detection

Misuse-based detection, also called knowledge-based detection, uses signatures of attacks to de-

termine if an attack which is known by the system has occurred. In this type of systems, the IDS

has access to a database of signatures which can be local or remote. A signature is a pattern or a

sequence of instructions which defines an attack. An IDS using signature-based detection tries to

match patterns defined in the list of signatures provided by the signature database and produces

an alert if the matching is successful. For example, a signature could contain part of the code of

a known virus or a port number which is likely to be used for intrusions.

Using signatures to detect intrusion is a problem for several reasons. Firstly, if the attacker

knows what pattern the IDS is looking for, he can easily modify the properties of the packet to

bypass the security layer provided by the IDS. Matthew Richard describes a very simple example

of encryption which evades the detection of the Snort IDS [63]. Secondly, this dependency on
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previously defined models of attacks makes the IDS unable to detect new attacks or variants of

known attacks which were not implemented in the signature database [43]. The following appalling

assessment reported by Cheng-Yuan Ho et al. [20] in March 2012 shows the inability for misuse-

based detection alone to prevail against smart hackers trying to break into private networks.

“Buffer overflow, SQL server attacks and worm slammer attacks count for 93% of False

Negatives even though they are aged attacks because of new variations”

Cheng-Yuan Ho et al. [20]

Basically, IDSs based on signatures are useful when the attacker exploits known vulnerabilities

and when the packets cannot be encrypted. For these attacks and only these, misuse-based

detection works well because the detection should be 100% accurate and if the signature database

is not huge, the detection can be carried out in real time. Even with these drawbacks, misuse

detection is still the most widely used detection method in commercial IDSs because it is not

prone to false positives. Hence, it is crucial to improve the accuracy of other methods to ensure

that variants of known attacks and new attacks can be detected.

2.1.6.2 Anomaly-Based Detection

As described by Abdulrahman Alharby and Hideki Imai [7], possible anomalous behaviours

that are introduced into the user sessions include, but are is not restricted to logging in from a

different source, logging in at an unusual time, executing new commands, and changing identity.

The previous list mainly describes anomalies occurring at the host level, unusual packet format

and heavy network load are examples of anomalies that can occur at the network level.

Anomaly-based detection systems use collections of data containing examples of “normal”

behaviour observed on a network or a host computer in order to build a model of normality for

the system being monitored. Any action that deviates from this model is considered anomalous,

and therefore, triggers an alert. This kind of detection mechanism allows more flexibility because

it is unnecessary to know in advance all types of attacks that can affect the system being protected.

In fact, an attack on a network or a host computer usually involves atypical actions which should

be flagged by the IDS as anomalous. As a result, anomaly-based detection should normally ensure

the detection of new types of attacks or variants of known attacks.

However, in practice, “normal” behaviour is not well-defined and varies from one system to

another. Hence, attackers can take advantage of this weakness by disguising their attacks into

apparently “normal” actions. Moreover, it is easy to see that this kind of mechanism will trigger

many false positives. Indeed, even though the algorithm is capable of generalizing from the training

set, any action which was not available in the collection of data used to train the anomaly-based

detection system could be considered anomalous. One can easily imagine the huge number of

examples that would be needed to cover all possible “normal” behaviour of a user on a system.

Obviously, obtaining such a dataset is infeasible. One domain in which anomaly-based detection

systems are often used is assembly chains. They must ensure that the product that was created

follows the requirements established by the designer. In this case, this kind of detection is very

efficient because the characteristics of the wanted object are well-defined.

Finally, for the problem of intrusion detection, it seems that the term “anomaly-based detec-

tion” is being used to describe any IDS using machine learning techniques as a detection method.

However, machine learning techniques are not limited to anomaly-based detection in which the

algorithm is only trained on “normal” examples also called negative examples. Most of the time,

machine learning algorithms are trained on datasets containing both “anomalous” (positive) and

“normal” (negative) examples.
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2.1.7 Architecture

In order to build efficient IDSs, one should think about the different components of their architec-

ture [50]. Generally, IDSs have at least two components: a data collection module and an analysis

module.

• The data collection module is in charge of collecting pieces of information used as ev-

idence of an intrusion and delivering it to the rest of the system to decide if there is an

anomaly. This module collects audit trails such as user logs, network trails, system calls,

etc. The data collection module can be seen as a network of sensors monitoring the audit

trails in real time.

• The analysis module analyses inputs received by the data collection module and decides if

there is an intrusion or not. It is the core of the IDS and can vary depending on the detection

method. Its purpose is to provide the system administrator with a clear summary of the

system’s situation. This module can be very resource exhausting. That is why it is often

combined with another module which processes the data first to lower the computational

complexity as will be seen later (Section 3.2).

More complex IDSs have additional features such as a data preprocessing module, a response

module and a signature generator module on top of the two main modules.

• The data preprocessing module is in charge of reducing the size of the data in order

to improve the computational speed of the IDS. NIDSs have to analyse the traffic in real

time without introducing too much delays in the network. For this reason, this module is

essential to make the IDS viable in a real environment. More details will be given about

feature reduction and feature selection in Section 3.2.

• The response module can be either proactive or active. Most of the current IDSs are

proactive. This means that they set an alarm when an intrusion takes place, but do not try

to counter the attack. Active IDSs (intrusion prevention systems) detect the attack and try

to stop it. Different types of reactions are possible. The IDS can close the current TCP

connection, reconfigure automatically the firewall to prevent further intrusion, etc.

• The signature generator module generates new attack signatures according to the in-

formation provided by the analysis module.

One possible architecture for a NIDS is shown in Figure 2.3. The data collection module collects

the raw data (log files, network packets, etc.) needed to decide if an intrusion has occurred. The

data are then sent to the data preprocessing module which tries to compress them by different

means (see Section 3.2) without loosing the information that they contain. The compressed data

are sent to the analysis module which is in charge of detecting an attack. The analysis can be

conducted in two steps. First, the signature-based detection module is consulted. It uses the

entries in the signature database to determine if a known attack has occurred. If that is the case,

a signal is sent together with data relevant to the current attack to the response module which

has to counter the attack.

If the signature-based detection module does not detect any attack, it hands over the data to

the anomaly-based detection module. This module usually runs a machine learning algorithm (see

Chapter 3) to determine if the system is under a new attack which is not listed in the signature

database yet. If an attack is detected, two simultaneous actions take place. First, the anomaly-

based detection module sends appropriate data to the signature generator which creates a new

signature based on the data and updates the signature database with the new entry. Second, the

anomaly-based detection module sends a signal and data relevant to the attack to the response
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module to counter the attack. Optionally, the signature database can be connected to other

signature databases throughout the network. In this case, all databases are updated with the new

entry generated by the signature generator.

Eventually, if no attack was detected the network packet can go through and reach its desti-

nation. Additionally, in case of an encrypted communication, either the data collection module or

the data preprocessing module needs a routine to decrypt the data. [28] also explore the possibility

to have a distributed architecture for the algorithm itself. In that case, each predictor is trained

on a different dataset depending on the location of the computer which hosts it. The trained

predictors are then sent to all other nodes of the system over the network and combined together.

ANALYSIS MODULE

Figure 2.3: Possible IDS architecture

The final aim is to obtain a complete distributed system able to evolve on its own to detect

current and new attacks on several networks. Unfortunately, using such a type of architecture

would introduce a heavy load in the network because each packet has to go through all modules of

the main structure (Data Collection Module, Data Preprocessing Module and Analysis Module).

For this reason, each module is generally optimized separately. The entire process described

above can be too long to be viable in a real time environment. Especially, the Analysis Module

is computationally intensive. The Data Preprocessing Module and the Anomaly-based Detection

Module will be the focus of this thesis. In particular, this work will explore the possibility to

select features in the data which are relevant to a particular type of attack and which will be fed

to a specialised algorithm in order to decrease the computational overload. Obviously, the gain in

speed is expected to go without a decrease in accuracy.

2.2 Main Categories of Attacks

A good taxonomy makes it possible to classify individual attacks into groups sharing common

properties [50]. One widely used taxonomy divides attacks into four classes: Probes, Denial of
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Service (DoS), User to Root (U2R) and Remote to Local (R2L). The class Normal that will be

used later in this work represents network traffic which is considered attack-free.

Several major concepts must be understood before starting to dig deep into the different classes

of attacks.

• Sniffing [78]: allows an attacker to take advantage of the fact that many protocols such

as FTP or HTTP send information in the clear. Without encryption, an attacker can easily

read or “sniff” the content of packets passing through the network. However, sniffing is not

always simple. If the attacker is not on the same network or if the network is switched, he

must be able to route the traffic through his computer before it reaches its destination. If

the traffic is encrypted, the attacker must either break the cipher or steal the keys to decrypt

the packets. Sniffing makes it possible for an attacker to steal personal information such as

credit card numbers or passwords.

• Spoofing: allows an attacker to impersonate another computer by sending packets with a

source address different from his computer address. Spoofing is useful to exploit authenti-

cation based on the address. In this case, an attacker can access a computer allowing the

access to a limited number of addresses.

In general, the best mitigation for all kinds of attacks is to keep a system up-to-date and

to avoid misconfiguration. Even though these two recommendations feel as common sense, in

practice, many security breaches are due to out-dated systems and misconfiguration. For a more

detailed description of each attack and the ways to detect them, refer to the Master Thesis of

Kristopher Kendall [39]. The attacks’ description can also be found on-line [40].

2.2.1 Probe

Probe attacks [39] are often the first step of all other attacks that we have seen previously. They

are used to gather information about the targeted network or a specific machine on a network.

Without network probes, an attacker would have a hard time finding the vulnerabilities present

on his target. That is the reason why it is crucial to detect this type of attacks. However, since

probing or scanning abuses a perfectly legitimate feature used by network administrators to check

on machines on a network, it is also difficult to differentiate attacks from regular actions. Many

programs have been developed to scan a network. The most famous is probably “nmap” which is

a powerful tool that can be used to look for active machines and active ports on a machine. This

information is very valuable because knowing that the port 80 is active, for instance, means that

a web server with potential vulnerabilities or misconfigurations runs on the machine. If port 80

is open, the attacker can also conclude that the machine serves its content unencrypted. “nmap”

is not limited to finding the open ports, it is also possible to discover the type and version of the

server or the type and version of the operating system. Other attacks such as “saint” and “satan”

are specialised in discovering vulnerabilities in the targeted system. These scanning tools allow

even unskilled attackers to find vulnerabilities automatically on a large number of machines. A

typical attack scenario would involve a first phase where the attacker tries to scan the network

that he intends to compromise. Thanks to the scan or probe, the attacker will have a complete

map of the machines and services running on the network. The next phase is to find vulnerabilities

in the services available with automate programs. Once one or more vulnerabilities are found, the

attacker will be able to launch another attack depending on his goals and on the vulnerability

found.

Table 2.2, which was adapted from [39], shows different types of Probe with some properties

for a particular type such as the service that the attack uses, the platforms vulnerable to this

kind of Probe, the type of vulnerability (mechanism) that the attack takes advantage of, the time

required to implement it and the effect caused by the attack.
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Name Service Vulnerable

Platforms

Mechanism Time to

Implement

Effect

Ipsweep icmp All Abuse of feature Short Find active machines

Mscan many All Abuse of feature Short Looks for known vulnerabilities

Nmap many All Abuse of feature Short Find active ports on a machine

Saint many All Abuse of feature Short Looks for known vulnerabilities

Satan many All Abuse of feature Short Looks for known vulnerabilities

Table 2.2: Probe attacks (adapted from [39])

2.2.2 User to Root (U2R)

In a User to Root attack [39], an attacker starts a session on a computer as a normal user with

restricted rights and by exploiting some vulnerability on the software installed on the system, the

user can elevate his privilege. The goal of this class of exploits is obviously to obtain administrator

rights on the attacked computer in order to have full control of it.

There are several different types of U2R attacks. Buffer overflow [22] is certainly the major

vulnerability used by hackers when trying to obtain privileged rights on a computer. This imple-

mentation bug is found mainly in software written in programming languages such as C or C++

which allow the programmer to manually allocate the memory. Memory allocation can be very

powerful when used carefully, but is subject to buffer overflow if managed by an inexperienced

programmer. The goal of a buffer overflow attack is to corrupt a program running with high

privileges (i.e. root) in order to take control of the program. If the program has root privilege,

the attacker can immediately execute a command to obtain a root shell. In that case, the attacker

has full control of the host computer which runs the vulnerable program. The attack is performed

in two steps. In the first step, the hacker must find a way to have the appropriate code to launch

a root shell in the memory of the program. To manage that, the attacker uses a buffer with

non-existent or poorly performed boundary checking. The second step is to subvert the state of

the program. The attacker must corrupt the stack pointer to make it point to his malicious code.

Several options are possible but the most common is to overwrite a function return address to

point to the first instruction of the code of the attacker. This attack is also called “stack smash-

ing attack” [57]. Other attacks such as “loadmodule” or “perl” take advantage of the way some

programs sanitize their environment. Others still (“ps”) exploit poor management of temporary

files.

Current protections against “buffer overflow” include using automatic detection programs such

as StackGuard or StackShield [21] which check for code pointer integrity, preventing buffers to

execute code and performing boundary checking. In some cases, it is possible to bypass these

protections (see Phrack magazine [12]). Another drawback is the fact that it is easier to install,

update and maintain one or several IDSs to prevent many different attacks on a entire network

than a different software for each type of attack on each computer of the network. U2R attacks

in general can be mitigated by keeping the machines of a network up-to-date and writing correct

code.

Table 2.3, which was adapted from [39], shows different types of U2R with some properties for

a particular type such as the service that the attack uses, the platforms vulnerable to this kind of

U2R, the type of vulnerability (mechanism) that the attack takes advantage of, the time required

to implement it and the effect caused by the attack.

2.2.3 Remote to Local (R2L)

In a Remote to Local attack [39], the attacker starts from a session on a computer outside of

the targeted network and exploits a vulnerability in order to gain access to a computer on the
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Name Service Vulnerable

Platforms

Mechanism Time to

Implement

Effect

Eject Any user session Solaris Buffer Overflow Medium Root Shell

Ffbconfig Any user session Solaris Buffer Overflow Medium Root Shell

Fdformat Any user session Solaris Buffer Overflow Medium Root Shell

Loadmodule Any user session SunOS Poor Environment Sanitation Short Root Shell

Perl Any user session Linux Poor Environment Sanitation Short Root Shell

Ps Any user session Solaris Poor Temp File Management Short Root Shell

Xterm Any user session Linux Buffer Overflow Short Root Shell

Table 2.3: User to Root attacks (adapted from [39])

local network. A precondition that must be fulfilled is the ability for the attacker to send network

packets to the victim host. Very often, but not always, R2L attacks are combined with U2R attacks

allowing the attacker to obtain full access of a remote machine which is part of a different network

than the network of the attacker.

Examples of remote to local attacks include “warezmaster” and “warezclient”. Those two

attacks exploit weaknesses in the file transfer protocol (FTP). The first one grants any user with

writing permission on the FTP server. An attacker could use this bug to create a hidden directory

and upload illegal files on the server. The “warezclient” attack can be seen as the second step of

the “warezmaster” attack since it involves a user downloading the uploaded files from the hidden

directory created during the “warezmaster” attack. Other remote to local attacks called “imap”,

“named” and “sendmail” exploit bugs in well-known protocols used on the Internet such as DNS

and SMTP. Attacks exploiting misconfigurations in the system include “dictionary”, “ftp-write”,

“guest” and “Xsnoop”. The main mitigation against remote to local attacks is to keep the system

up-to-date. These updates will remove from the system the most common bugs that are exploited

by R2L attacks. Avoiding misconfiguration is a simple, but equally important mitigation method

against these types of attacks.

Table 2.4, which was adapted from [39], shows different types of R2L with some properties for

a particular type such as the service that the attack uses, the platforms vulnerable to this kind of

R2L, the type of vulnerability (mechanism) that the attack takes advantage of, the time required

to implement it and the effect caused by the attack.

Name Service Vulnerable

Platforms

Mechanism Time to

Implement

Effect

Dictionary telnet, rlogin,

pop, imap, ftp

All Abuse of feature Medium User-level access

Ftp-write ftp All Misconfiguration Short User-level access

Guest telnet, rlogin All Misconfiguration Short User-level access

Imap imap Linux Bug Short Root Shell

Named dns Linux Bug Short Root Shell

Phf http All Bug Short Execute commands

as user http

Sendmail smtp Linux Bug Short Execute commands

as root

Xlock X All Misconfiguration Medium Spoof user to

obtain password

Xsnoop X All Misconfiguration Short Monitor Keystrokes

remotely

Table 2.4: Remote to Local attacks (adapted from [39])
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2.2.4 Denial of Service (DoS)

In a denial of service attack [39], an attacker makes a resource on a network either unavailable

to legitimate users or too busy or too full to process their queries. The resource can be network

bandwidth, computer memory or computing power. There are many different types of DoS attacks.

For example, “ARP poisoning” attack [33, 78] can deny access to a machine on a network.

The address resolution protocol (ARP) is a protocol used to convert network layer address (such

as the IP address) into link layer address (such as the media access control (MAC) address).

Each computer on a network has an ARP table which maps network layer addresses to link layer

addresses of the other computers or devices on the network. In an “ARP poisoning” attack, an

attacker sends unwanted ARP replies to a user on the same network or replies to an ARP query

faster than the destination of the query in order to falsify the information contained in the ARP

table of the victim. In this case, it is possible for an attacker to deny access to a resource to one

or more users on a network. For instance, depending on the network structure, it is possible for

an attacker to modify the entry corresponding to a gateway in the ARP tables of the victim on

the network. In this case, the victim might not be able to access the Internet any more. “ARP

poisoning” is not represented in the KDD99 dataset, but the concept of denial of service can

be easily understood from this attack. It can be noted that “ARP poisoning” can also be used

to perform a man-in-the-middle (MITM) attack. A MITM is a type of sniffing attack where the

attacker stands in the middle of a communication between two hosts. By poisoning the ARP table

of one of the two hosts taking part in the communication, the attacker can redirect the traffic to

his computer first and then forward it to the intended destination after having read the content

of the message.

The other major type of DoS focuses on resource exhaustion. The attacker sends a huge

amount of queries in a short amount of time to the targeted victim. If the victim is a server,

resource exhaustion occurs when the server receives more queries than it can process. In that

case, legitimate users will not be able to access this resource during the time of the attack or

even afterwards if the server crashes. An example of a DoS aiming at exhausting the resource of

a machine on a network or an entire network is the “UDP Port DoS” attack, also called “UDP

packet storm” [16, 33]. In an “UDP storm”, an attacker forges a packet with a spoofed source

address of a host running an “echo” or “chargen” process and sends it to another hosts running a

similar “echo” or “chargen” process. The receiving host replies with a echo packet to the spoofed

source which also replies with another echo packet. A loop is created between the two hosts

leading to resource exhaustion or at least, performance degradation. When targeted at a switch

or router, the performance of the entire network can be affected.

Another very popular variant of DoS that has been used extensively by hackers in the last

decade is the distributed denial of service (DDoS) [45, 17]. A “DDoS” is performed in two main

steps. In the first step, an attacker, called master, gains control over a number of computers,

called slaves or zombies, by exploiting unpatched vulnerabilities found in the target systems. The

number of slaves can vary from one “DDoS” to another but is usually huge, hundreds of thousands

of computers is a perfectly reasonable number in most cases. Once the attacker has taken control

of a sufficient number of slaves, the second step can start. The master orders all of the slaves to

query a designated machine (usually servers) at the same time. The target is flooded with the

simultaneous queries. After a short time, the memory of the server is exhausted making it unable

to handle all of the queries including the ones from legitimate users. The service proposed by the

server is denied.

The mechanism used by DoS attacks can abuse a legitimate feature of a network protocol. Some

of these attacks are “mailbomb”, “neptune”, “smurf” attack and “ARP poisoning”. “teardrop”

and “ping of death” exploit implementation bugs of the TCP/IP protocol. Finally, attacks such

as “apache2”, “back” and “syslogd” target a specific program running on the victim host.

Mitigation methods of DoS include disabling unnecessary services such as echo or unused UDP
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services, keeping the network devices up-to-date, monitoring the network for anomaly, use proxy

mechanisms, avoiding misconfiguration of the firewall and other software used on the network, etc

[16].

Table 2.5, which was adapted from [39], shows different types of DoS with some properties for

a particular type such as the service that the attack uses, the platforms vulnerable to this kind of

DoS, the type of vulnerability (mechanism) that the attack takes advantage of, the time required

to implement it and the effect caused by the attack. This list of DoS attacks is by no means

exhaustive but gives an overview of the variety found in this class of attacks.
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Table 2.5: Denial of Service attacks (adapted from [39]). (*) the bug has been fixed on most

platforms since 1998.
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Chapter 3

Machine Learning

Machine learning is a field of artificial intelligence that makes intensive use of statistics. Machine

learning algorithms enable computers to make predictions based on a dataset. The set of examples

is often symbolised by the capital letter X and represents a matrix of dimension m×n where m is

the number of examples and n is the number of variables in the dataset. Each column represents a

variable relevant to the problem being studied. The lines represent an observation or an example

of the problem. For example, in the problem of intrusion detection, a column could represent

the number of bytes sent from the source to the destination and a line would be a value for this

variable (1000 bytes, for instance). One particular instance is written x(i) where i is the index of

the line of this instance in the matrix. The entire dataset is written as follows:

X =


x
(1)
1 x

(1)
2 ... x

(1)
n

x
(2)
1 x

(2)
2 ... x

(2)
n

... ... ... ...

x
(m)
1 x

(m)
2 ... x

(m)
n


If supervised learning is used (see Section 3.1), a label is attached to each example of the

dataset indicating to which class the example belongs. The set of labels is often represented by

the capital letter Y and is a vector of dimension m× 1 where m is still the number of examples in

the dataset. One particular label can be written y(i) where i is the index of the example to which

the label is attached. The set of labels can be written as follows:

Y =


y(1)

y(2)

...

y(m)


There are two types of predictions depending on the type of values that the algorithm must

output. The output belongs to the set of all values that the labels can take. Regression analysis

is used when the output value is continuous. For example, if the algorithm is used to predict

house prices, the output price is a continuous value. The simplest algorithm is the linear regres-

sion. Linear regression is simple because it tries to fit a straight line to the data; more complex

algorithms such as artificial neural networks build non-linear models. When the predictions are

discrete values, the mechanism is called classification. In general, the output of a machine learning

algorithm used for classification, also called a classifier, belongs to a small set of discrete values.

For example, in the case of breast cancer [53], a binary classifiers classifies examples into two

classes depending on whether the cancer is malignant or benign.

Usually, the dataset is divided into a training set, used to train the algorithm and a test set,

used to assess the performance of the algorithm on new examples. Generally, a good division of
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the dataset includes 70% of the data in the training set and the last 30% in the test set [54].

Another very common division of the dataset includes 90% of the data in the training set and

10% in the test set. In any case, a “good division” depends strongly on the data. Consequently,

machine learning algorithms operate in two main steps. In the first step, the algorithm uses the

training set to build a model of the data. The model differs greatly depending on the type of

algorithm used. Several machine learning algorithms will be covered in Section 3.4. In the case

of regression, the algorithm must find the function which fits the data as well as possible. In the

case of classification, the algorithm must find decision boundaries that separate the data as well

as possible according to the number of desired classes. In both cases, a cost function is used to

evaluate how good the model fits the data. The goal of the machine learning algorithm is to find

the model that minimizes the cost function.

3.1 Supervised Learning vs. Unsupervised Learning

Machine learning algorithms can be divided into two major classes depending on their learning

technique: supervised and unsupervised. Another interesting type of learning method which lays

in-between the two main types is called semi-supervised learning because it uses techniques of

both supervised and unsupervised learning. This learning paradigm has been studied intensively

in the last few years, but not much in the field of IDS.

Supervised learning implies to obtain a training dataset in which every entry is labelled. A

label indicates which class the example belongs to. For example, each entry in the KDD99 dataset

(described in more details below, see Section 4.1) is originally labelled with the type of attacks it

belongs to or Normal when the example corresponds to a harmless packet. However, they could

also be labelled with only two different labels: “attack” or “normal”. Using only two classes allows

binary classifiers such as support vector machines (SVM) to learn from the dataset. Another option

would be to label the examples according to the class of attack they belong to: DoS, Probe, R2L

and U2R.

The idea of supervised algorithms is very similar to the process in which a child learns to

recognize objects with the help of his parents. One of the parents shows him different objects

and pointing at one of them tells the word corresponding to the object. The child keeps track of

information such as the shape of the object, its colour, etc. These properties of the object are

the variables contained in a dataset. A set of values of these properties represents an example in

a dataset. The child then associates a label (the word told by his parent) to the corresponding

example in his memory which can be seen as his personal “dataset”. The next time that the child

will see an object similar to the ones in his “dataset”, hopefully, he will be able to utter the word

corresponding to the label of the set of examples found. A supervised machine learning algorithm

works very similar to this analogy. The algorithm builds a model which should be able to separate

the examples with different labels. For example, logistic regression can find decision boundaries

to separate the data from different classes. There are many supervised learning algorithms such

as artificial neural networks (which can also be unsupervised), support vector machines, decision

tree, etc.

The most obvious disadvantage of supervised learning is the need for a labelled dataset. This

is a big problem for the IDS research community because the only available dataset with labels

is the KDD99 which was created in 1999. Since then, many new attacks have been developed

and for this reason mainly, this dataset is considered sometimes obsolete. Nevertheless, it is still

widely used because of its uniqueness and because useful information can be extracted from it. In

fact, obtaining data is cheap whereas obtaining labels for the data is very expensive both in terms

of time and money, because one or more experts must go through millions of examples and assign

them a label. Apart from this main drawback, supervised learning has also some advantages.

The first one is the ease of use and interpretation of the results. Indeed, the output of the
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classifier belongs to one of the classes defined by the labels of the dataset. The second advantage

of supervised learning is its accuracy to classify similar examples. However, this accuracy drops

significantly when the new examples are not so similar to the ones in the training set [44].

Unsupervised learning algorithms do not need the dataset to be labelled. The most popular

technique of unsupervised learning is called clustering. In this case, the algorithm exploits the

similarity of the examples in order to form clusters or groups of instances. Examples belonging

to the same cluster are assumed to share similar properties and belong to the same class. In

contrast to supervised learning, disadvantages of unsupervised learning include the manual choice

of the number of cluster that the algorithm must form, the low accuracy of the prediction and the

fact that the meaning of each cluster must be interpreted to understand the output. However,

unsupervised learning is more robust to big variations than supervised learning. This is a very

important advantage that unsupervised learning has over supervised learning for the problem of

intrusion detection because it means that unsupervised learning is able to generalize to new types

of attacks much better than supervised learning. This property could be very useful to detect

zero-day vulnerabilities.

In conclusion, the lack of proper labelled datasets and the speed at which hackers invent

new attacks could make unsupervised and semi-supervised learning good candidates for future

development of IDSs [44]. In fact, an IDS should be trained with traffic found on the network

where it will be deployed in order to take into account the particular configuration of the network.

For example, what could be an anomalous behaviour on one network is not necessarily anomalous

on another network. In this case, it is obvious that only unsupervised learning can be used to train

the IDS. Otherwise, the very expensive task of labelling examples should be performed for each

new network needing an IDS. This is evidently infeasible in practice. In this work, supervised

learning will be used for its simplicity. This will be sufficient since the point is to show that

an ensemble correctly fed with the relevant subsets of features of the dataset will have a higher

accuracy and a lower response time than more standard machine learning approaches.

3.2 Feature Selection

Feature selection is a very efficient way to reduce the dimensionality of a problem. Redundant and

irrelevant variables are removed from the data before being fed to the machine learning algorithm

used as a classifier. Feature selection is a preprocessing step which can be independent of the choice

of the learning algorithm or not. It can be used in order to improve the computational speed with

minimum reduction of accuracy. Other advantages include noise reduction and robustness against

over-fitting since it introduces bias but reduces drastically the variance. Generally, automatic

selection of features works much better than manual selection because the algorithm is able to

find correlations between the features that are not always obvious even for a human expert. For

example, as Guyon pointed out, “a variable that is completely useless by itself can provide a

significant performance improvement when taken with others” [35].

The main feature selection algorithms are minimum redundancy maximum relevance (mRMR)

and principal component analysis (PCA). The former, mRMR selects the subset of variables most

relevant to the problem. The variables are ranked according to the information that they contain.

This quantity of information is calculated by using the concept of entropy from information theory.

The latter, PCA transforms the set of variables into a new smaller set of features. In both cases,

the goal is to extract as much information as possible from as few features as possible from the

dataset. While PCA has been extensively used for the problem of intrusion detection, particularly

on the KDD99 dataset, surprisingly, mRMR seems not to have been used much or at all according

to [23]. At any rate, feature selection is an important preprocessing step of a machine learning

algorithm that should not be overlooked. In particular, it should always be applied when the

problem has a high dimensionality as is the case of intrusion detection, since there is no point in
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feeding an algorithm with irrelevant or information-less features.

In the intrusion detection problem, the variables used by an NIDS are information extracted

from the header and payload of the packets going through the network. The list of variables used

in the KDD99 dataset can be found in Appendix A. Attacks on a network can be detected by

analysing these variables. However, for each type of attack, only a few variables are relevant.

Since each type of attack has its own subset of useful variables, it is not optimal to apply a unique

feature selection algorithm. Instead, it is better to feed different algorithms with several feature

sets as will be seen in Section 3.6. In a real environment, there is a possibility to use a different

sensor for each algorithm to extract the features needed. An architecture of parallel sensors has

been proved to be a good design choice for powerful IDS [29]. More information about feature

selection can be found in [35]. Finally, a recent review describes the main techniques applied in

data preprocessing for anomaly based network intrusion [23].

3.3 Machine Learning Applied to IDS

3.3.1 Why Machine Learning?

As explained in Section 2.1.6, new attacks with unknown signatures can occur. These attacks

can exploit what is called zero-day vulnerabilities [26] referring to the fact that it is the first

day or day zero that the vulnerability is observed in the wild. Consequently, there is no patch

available to protect the vulnerable system against an attack exploiting this vulnerability. A list

of vulnerabilities that are yet to be publicly disclosed is available on the website of the Zero Day

Initiative [74].

Another problem that cannot be solved by misuse-based IDSs is the variants of known attacks.

As previously explained (see Section 2.1.6.1), misuse-based IDSs can only detect attacks which

signatures are available in their signature database. Signatures of attacks are very specific, that

is why a slight variation of the attack can be unnoticeable for misuse-based IDSs. Thus, a system

should be able to recognize autonomously malicious actions in order to defend itself against zero-

day vulnerabilities and variants of previously seen attacks. That is why learning mechanisms must

be implemented to detect and prevent these attacks without having to wait for an update of the

signature database or a patch for the vulnerable system.

As mentioned in the introduction of this chapter, machine learning enables a computer to learn

how to make predictions. In the case of intrusion detection, the algorithm should be able to predict

if an action on a network or a host is normal or malicious. Hopefully, this kind of system would be

able to detect an attack exploiting a zero-day vulnerability or even better, prevent it, update its

local database with a new signature representing the attack and distribute the signature to other

signature databases on the network. Unfortunately, machine learning has weaknesses which have

to be overcome in order to create an efficient, or at least, a useful intrusion detection system. The

next section describes these weaknesses as well as possible guidelines to overcome them.

3.3.2 Difficulty to Apply Machine Learning to Intrusion Detection

The main challenges that machine learning algorithms have to overcome in order to be useful in

the field of intrusion detection have been summarized in the excellent article written by Sommer

and Paxson [70]. A set of guidelines aiming at improving the current research is also provided by

the two authors. This paper is a must read for anyone aiming at developing a efficient intrusion

detection system.

First of all, intrusion detection is very different from the other domains in which machine

learning has been applied successfully. Indeed, spam detector or recommender systems do not

require a level of precision as high as intrusion detection systems. As explained in Section 2.1.1,
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both false positives and false negatives can have a very negative impact on the network that is

affected by the misclassification of the IDS. FPs consume time and money because an administrator

must go through all false alarms to eventually determine that nothing damaging has occurred.

FNs are even more problematic because the integrity of the system is compromised although the

IDS has not triggered any alarm. Thus, the cost of error is extremely high. Moreover, intrusion

detection is one of the only fields where machine learning is applied and in which a user can try to

evade the system or even try to control it. However, Sommer and Paxson inform that only very

skilled attackers would be able to do so and since there is a very small fraction of such users on

the Internet, this challenge should be addressed last.

Secondly, a more worrying problem is the fact that machine learning algorithms are designed

to recognize examples similar to those available in the training set used to build the model of the

data. Consequently, an IDS using machine learning would have a hard time detecting attacks

which patterns are totally different from the data previously seen. In other words, even though

machine learning is a suitable candidate to detect variants of known attacks, detecting zero-

day vulnerabilities might be out of reach for these kinds of algorithms. Furthermore, the lack

of labelled datasets is a huge problem for the research community. The only labelled datasets

publicly available are the DARPA98 dataset and the KDD99 dataset which is a variant of the first

one. Many criticisms have been expressed towards these two datasets as we will see in Chapter 4,

Section 4.1. However, they have been intensively used by the researchers in the last decade.

In fact, the confidential nature of the data which must be analysed by an IDS explains why it

is so difficult for researchers to provide datasets for the community. Some of them have tried

to anonymize the data, but even when using such a technique, critical information can still be

extracted.

Thirdly, another crucial point noticed by Sommer and Paxson is what they call the “semantic

gap”. Indeed, many researchers are only interested in the application of machine learning to the

problem of intrusion detection without trying to understand what information the IDS should

provide to a network administrator. To content oneself with a very efficient detector somehow

misses the primary purpose of the system that is being engineered. An IDS must provide relevant

information about an attack that occurred on the network or that is in progress to the adminis-

trator of the system. If this information is not clear or thorough enough, the IDS will be useless

and will probably not be activated at all. On top of that, the information must be relevant to

the particular setting of the network that the IDS is monitoring. That is to say that the security

policy of the organization that use the system must be known by the IDS to avoid unwanted false

alarms. Unfortunately, most of the time security policies are too vague to be interpreted efficiently

by current IDSs.

Finally, the diversity of the traffic is another factor that can mislead predictors built with

some rigid machine learning models. For most of the anomaly detectors, a sudden rise of traffic

volume is considered as anomalous because it diverges from the normal traffic that could have

been observed in the training set. However, in most cases, extreme variations of the number of

connections to a server does not necessarily mean that the server is under a DoS attack. For

example, this abrupt change could merely be due to the final of the World Cup in football or

any other event that condensate the number of connections to a single moment. In any case, it is

important to understand that often simpler solutions are available to solve a particular problem

and that machine learning is not the answer to every problem. Machine learning should be

employed for what it is good at and should not be forced into inappropriate problems. Therefore,

we are convinced, like Sommer and Paxson, that machine learning can improve tremendously

current IDSs, but only if applied with care and if researchers from the security field and the

machine learning field work together.
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3.4 Artificial Intelligence Applied to Intrusion Detection

Intrusion detection systems have been around since the 80s. In 1980, James Anderson introduced

the concept of HIDS [8]. Seven years later, Dorothy Denning laid the foundations of intrusion

detection system development [25]. Then, NIDS were introduced in 1990 by Todd Heberlein [37].

As Paul Innella described, “the history of intrusion detection is as confusing as Greenspan’s eco-

nomic strategies” [38]. However, the turning point arises at the beginning of the 21st century with

some exceptions in the late 90s, when researchers in artificial intelligence started to incorporate

their algorithms to improve IDSs. Most of the research involving artificial intelligence applied to

IDSs until 2007 is summarised in the excellent review paper [80]. This review starts by giving

some background information about the intrusion detection field. Afterwards, the paper goes into

a detailed state-of-the-art organised according to the different algorithms applied by most of the

researchers.

The first algorithm being reviewed is the artificial neural network (ANN) and all its variants.

An interesting variant of supervised ANN is the cerebellar model articulation controller (CMAC)

which is able to learn new attacks on the fly without being retrained. This approach was adopted

by Cannady [14]. Rhodes et al. and Sarasamma et al. concluded that different subsets of features

should be used to detect different attacks [62, 67]. They applied their finding with an unsupervised

ANN called self-organizing maps (SOM) which cluster data based on the absolute distance between

them. The last unsupervised ANN type reviewed was adaptive resonance theory (ART) which

seemed to outperform SOM for the problem of intrusion detection. In general, ANN have long

training time and retraining problems. Moreover, the number of layers as well as the number of

neurons per layer must be selected manually. In the case of unsupervised learning, the number of

clusters has to be chosen as well. Wu and Banzhaf also give indications on how to improve the

current ANN. In particular, “ensemble or hierarchical structure achieve better performance than

single layer network” [80] and “selecting good feature sets is another way to improve performance”

[80]. In this thesis, we will combine these two techniques and assess the resulting model on the

KDD99 dataset.

The second algorithm being reviewed in [80] is the fuzzy sets in case of misuse detection

and anomaly detection. Since intrusion types can be extremely varied, fuzzy logic increases the

robustness of IDSs. As we have seen in the previous chapter, for example, Probe attacks are

usually detected by the high number of packets sent with little or no content. But, what if the

attacker fills the packets with random bytes to evade detection? In this case, flexible rules such as

fuzzy sets would increase the probability of detection. An interesting application of fuzzy logic is

decision fusion which combines the results of several algorithms to produce a unique fuzzy output.

Ensemble approaches would benefit greatly from this property as we will see in more details in

the next sections.

The next set of algorithms concerns evolutionary computation (EC). EC is a range of algorithms

inspired by evolutionary behaviour that can be used successfully for the problem of intrusion

detection. However, many challenges must be overcome. For example, an appropriate termination

criterion should be determined to improve the accuracy without compromising the training time.

The long training time is also a problem that must be faced by researchers willing to apply EC

to the problem of intrusion detection. The unbalanced data distribution in the KDD99 dataset

increases the difficulty of assessing the performance of the algorithms. For example, the R2L

class is represented by only 52 examples whereas the DoS class is composed of almost four million

examples. In fact, the skewness of the data is not only a problem for EC, but it affects all types

of algorithms.

Artificial immune systems (AIS) are the next topic of the review. AIS is a type of algorithms

which tries to mimic the human immune system (HIS). Researchers observed that HIS have been

able to repel intrusions out of the human body for thousands of years with a very low level of
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failure. This assessment lead the research community to study the properties of the HIS in order

to build algorithms that could act in a similar way. Besides, it is not a surprise that researchers

try to understand and apply biological mechanisms that perform so well. In the beginning of

AI, researchers copied the processes occurring in the human brain to build an important class

of machine learning algorithms available today called ANN. Research in AIS is young but has

attracted a lot of attention in the last decade and will definitely grow in the next one. Negative

selection (NS) algorithms seem to be the more widely used in the field of intrusion detection

because they are based on a new type of anomaly detection in which model of non-self pattern

(anomalous) instead of self pattern (normal) are built. Danger theory appears to grow rapidly

and is also described in [80]. Since AIS is young, many improvements can be achieved to obtain

a better detection accuracy. First of all, most of the researchers have assessed their models on

benchmark datasets which do not always represent the real-world accurately. Furthermore, when

modelling self patterns, the change in normal behaviour from one network to another should be

taken into account. In addition, new artificial immune algorithms should be engineered to mimic

more precisely the HIS. The algorithms could be enhanced to execute a immune response turning

the IDS into an IPS. Eventually, [80] point out a number of reviews on AIS between 2006 and

2007.

Another very powerful artificial intelligence technique is swarm intelligence (SI). Wu and

Banzhaf describe the recent advances in the field focusing on the main types of SI algorithms: ant

colony optimization (ACO) and particle swarm optimization (PSO). SI techniques are bio-inspired

algorithms taking advantage of optimization mechanisms observed in nature. For example, ACO

was developed by mimicking social behaviours of colonies of ants and termites whereas PSO takes

its inspiration from the motion of flocks of birds and schools of fish. SI techniques are well-known

for their speed and accuracy. They exploit a number of agents which work in parallel in order

to search for a solution. Consequently, SI is very suitable for intrusion detection because of the

huge datasets and high dimensionality. Swarm intelligence in intrusion detection is also reviewed

in more details in [41] which extends the work of [80] to 2010. They compare the performance of

the different SI algorithms on the KDD99 test set.

Last but not least, soft computing is also reviewed by [80]. Generally speaking, soft computing

is a relatively new paradigm that is used to reduce the imprecision of individual algorithms.

Two main types of soft computing techniques are currently available depending on the degree

of coupling between the algorithms. Systems engineered with high coupling between algorithms

form the class of hybrid systems in which each algorithm cooperates with the others to increase

the accuracy of the IDS and cannot be replaced at the risk of losing the coherence of the system.

Loosely coupled systems assemble several algorithms together in a way that does not constrain

the particular type of each algorithm. Consequently, each algorithm can be replaced easily by

another more suitable one. Ensemble approaches is currently the only representative of this class

of systems. However, since ensemble approaches is a fairly new technique applied to intrusion

detection, their description in the review is somewhat limited. For this reason, a more detailed

state-of-the-art concerning ensemble approaches is done in Section 3.6.2.

The review also provides a comparative table of the performances of the different families of

algorithms. These evaluations are done on the KDD99 test set. This is important because some re-

searchers use a subset of the KDD99 training set as the test set leading to higher accuracy. Indeed,

the KDD99 test set is composed of a high number of new attacks unseen in the corresponding

training set. Assessing the performance on the KDD99 test set truly shows the generalization

power of the algorithm and in general, all algorithms perform poorly on the U2R and R2L classes.

The best results achieved until 2007 are obtained by genetic programming (GP) using Transfor-

mation functions for R2L and Probe with 80.22% and 97.29% accuracy respectively and by linear

genetic programming (LGP) for DoS and U2R with 99.7% and 76.3% accuracy respectively.

Another interesting review focuses mainly on machine learning techniques applied to intrusion
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Figure 3.1: Logistic function

detection between 2000 and 2007 [76]. In particular, Tsai et al. compare the number of papers

published concerning single classifiers, hybrid systems and ensemble approaches. They also show

which dataset was used and if feature selection was applied for each of the papers. They conclude

that comparisons of hybrid systems and ensemble classifiers is necessary, that combinations of

ensemble and hybrid approaches should be studied and that it is not currently known which

method of feature selection performs best.

Despite the important improvements that were achieved by the AI research community in the

field of intrusion detection, almost no commercial IDS uses machine learning techniques. The

main reason is the number of false positives and false negatives that is too high for a real-world

application. Companies on the IDS market include Cisco, IBM and TippingPoint. Their websites

are a mine of information on the topic which is in general up-to-date. This is a good starting

point to find out what the real-world IDSs need to improve because these companies experience

the IDS problem in their products.

3.5 Machine Learning Algorithms

3.5.1 Support Vector Machines (SVM)

Support vector machines is one of the most widely used machine learning algorithms [55]. SVM

can be seen as a more elaborated version of logistic regression. Consequently, to understand SVM,

one should start by understanding logistic regression. Although it is possible to use SVM as a

multi-class classifier, usually this algorithm outputs binary values. In this case, an hypothesis

must be formulated in order to output either 0 or 1. A natural candidate is the logistic function

(see Figure 3.1).

g(z) =
1

1 + exp(−z)
In machine learning, the notation of the logistic function is slightly modified.

hθ(x) =
1

1 + exp(−θTx)

where
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• x is a matrix of dimension m× n where m is the number of examples in the dataset and n

is the number of variables in the dataset.

• θ is a vector of parameters of dimension n × 1 where n is the number of variables in the

dataset. The goal of the training phase of the machine learning algorithm is to determine

the optimal values for this vector of parameters.

• hθ(x) is called the hypothesis and represent the value that the classifier predicts for a par-

ticular example x(i).

When using supervised learning (recall that the labels of the training set is the vector y of

dimension m× 1 where m is the number of examples in the training set), we want that

hθ(x
(i)) =

{
1 if y(i) = 1

0 if y(i) = 0

Figure 3.1 shows that hθ(x
(i)) = 1 if θTx(i) >> 0 and hθ(x

(i)) = 0 if θTx(i) << 0.

These conclusions lead to the following cost function for the logistic regression

m∑
i=1

(−y(i)log(hθ(x
(i)))− (1− y(i))log(1− hθ(x(i)))) +

λ

2

n∑
j=1

θ2j

or
m∑
i=1

(−y(i)log(
1

1 + exp(−θTx(i))
)︸ ︷︷ ︸

Cost1(x)

−(1− y(i))log(1− 1

1 + exp(−θTx(i))
)︸ ︷︷ ︸

Cost0(x)

) +
λ

2

n∑
j=1

θ2j

The last term of the equation is a regularization term that helps reducing overfitting. The

objective of the machine learning algorithm is to minimize this cost function to find the vector

of parameters θ that represents the data as well as possible. As expected, when y(i) = 1 and

hθ(x
(i)) = 1 or when y(i) = 0 and hθ(x

(i)) = 0, the cost function is equal to 0 whereas when y(i)

and hθ(x
(i)) have opposite values, the cost has a high value since log(0) = − inf. These results

can be observed more clearly on Figures 3.3 and 3.2 representing the cost function when y(i) = 0

and y(i) = 1, respectively.

These figures also show the difference between logistic regression and SVM. The cost function

for logistic regression is drawn in blue and the one for SVM is drawn in red. First, the cost function

for SVM approximates the cost function of logistic regression with several linear segments. This

makes SVM computationally more efficient than logistic regression. Second, the cost function for

SVM is equal to zero only if θTx ≥ 1 and y = 1 or if θTx ≤ −1 and y = 0. These conditions are

stricter than the ones for logistic regression where we wanted θTx ≥ 0 when y = 1 and θTx < 0

when y = 0. That is the reason why SVM is sometimes called a large margin classifier. Finally,

the SVM decision boundary can be obtained by solving the following minimization problem:

min
θ

(0 +
λ

2

n∑
j=1

θ2j )

under the constraints that

• θTx(i) ≥ 1 if y(i) = 1

• θTx(i) ≤ −1 if y(i) = 0

So far, we have seen how to find a decision boundary using the SVM algorithm when the data is

linearly separable. However, if this is not the case, the notion of kernels must be introduced. The

kernel function measures the similarity between the examples in the dataset. There are different

types of kernels: Gaussian kernel, polynomial kernel, etc. As a result, the non-linear boundary

will group examples which are similar to each other.
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Figure 3.2: Cost function when y = 1
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Figure 3.3: Cost function when y = 0

3.5.2 Linear Genetic Programming (LGP)

Genetic programming (GP) is a subclass of evolutionary algorithms [11, 42]. Similarly to other

artificial intelligence paradigms such as swarm intelligence, evolutionary computation is a bio-

inspired, population-based technique. However, as the name suggests, EC is inspired by the
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theory of evolution. The individuals in the populations are often called chromosomes and the

pieces of these chromosomes that are modified during the evolutionary process are called genes.

Every evolutionary algorithm follows the same basic scheme.

The first step is to initialize a population of solutions with random values. Then, similarly to

the evolutionary process, natural selection occurs. This selection varies from one implementation

to another, but generally a portion of the population representing the set of best current solutions is

selected. A solution is considered better than another one if its fitness function has a higher value.

The fitness function depends greatly on the problem being studied. The selected solutions are then

evolved by mimicking natural reproduction, chromosomal crossovers and genetic mutations. The

new individuals resulting from this evolution are added to the previously selected group to form

the new population. The fitness function of each individual of the new population is computed.

If the termination criterion is not met, the evolutionary process proceeds to another iteration.

Otherwise, the best individual of the current population represents the solution of the problem

which may not be optimal depending on how well the fitness function and the termination criterion

are defined. The diversity of the individuals and the recombinations provide an efficient way to

cover the search space. The selection of the fittest is supposed to allow the algorithm to converge

to an optimal solution.

The mechanisms used in GP are similar to those of evolutionary algorithms. However, the

purpose of GP is well-focused. In genetic programming, the individual solutions are executable

programs. A program is defined by a sequence of instructions. At each iteration of the algorithm,

the sequence of instructions of the best individuals are modified in the evolutionary fashion de-

scribed above. In other words, GP is a machine learning technique which enables computers to

learn how to program. Obviously, GP is not restricted to this task and can be used in other

applications such as intrusion detection since the core of the method is very general.

Finally, linear genetic programming is a variant of GP in which the instructions are part of an

imperative language such as C++ or Java [11]. Earlier versions of GP were based on instructions

belonging to functional programming languages such as Erlang or Haskell. Programs developed

with functional programming languages can be represented as a tree in which the nodes are the

functions and the leaves are the constants and the input values. It is important to understand

that the term linear in the name LGP is connected to the structure of the programs written in

imperative programming language. It has nothing to do with the model built by LGP which is

generally non-linear.

3.5.3 Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines is an adaptation of linear regression to non-linear models.

It is a flexible multivariate non-parametric regression modelling technique. The problem with

linear regression or even polynomial regression is that the developed model will only be accurate

if the underlying function, represented by the data, is linear or polynomial respectively — which

is not always the case in practice. However, linear and polynomial models have also advantages

over more complex methods. They are fast to compute, easy to interpret and do not require a

huge dataset. The following description of MARS gives only a general overview of the technique

allowing the reader to understand the basic concepts used in this algorithm. For a deep analysis

of multivariate adaptive regression splines, refer to [30].

The technique used to overcome the drawbacks of linear and polynomial regressions is piecewise

parametric fitting which determines several simple parametric functions defined over a different

subregion of the domain of the data. To determine the subregions, recursive partitioning regres-

sion is used. The procedure starts with one region which includes the entire domain. At each

iteration, the subregions are split into two subregions. A step function is defined for each subre-

gion and the criterion used to assess the new model at each iteration is the goodness-of-fit. The
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problem of recursive partitioning is that it introduces discontinuities at the intersections between

the subregions, also called knots. This problem can be solved by replacing the step function with

a continuous function called spline.

Splines are polynomial functions that are piecewise-defined and are smooth at the knots. The

algorithm MARS includes the previously mentioned improvements to build more accurate models.

The subregions are tensor products of K + 1 intervals where K represents the number of knots.

The strategy is to overfit the data with a model including a large number of knots, and then to

fuse the subregions back together in a backwards stepwise fashion until a termination criterion is

met. Thanks to the use of splines, the subregions are overlapping each other, hence avoiding zero

values predictions at the knots. In the MARS strategy, the parent function is not removed after

it has been split into two subregions. This makes the parent and the children available for more

splitting. The final model built by MARS includes a set of splines that fit non-linear data much

better than a straight line or a single polynomial function.

3.5.4 Decision Tree (DT)

Decision tree is one of the simplest and most intuitive machine learning algorithm used for classifi-

cation. Despite its simplicity, it is a powerful tool for decision making. As the name suggests, DT

builds a tree-like structure based on a set of labelled data. Each node of the tree represents one

variable of the dataset and the leaves represent the different labels of the examples. Each branch

growing down a node of the tree represents a possible value for the variable contained in the node.

If the variables have continuous values, the branches represent non overlapping intervals of values

contained in the variable space. Consequently, to make a prediction on an unseen example, one

must start from the root node of the tree and follow the branches corresponding to the values of

the variables of the example until reaching a leaf. The ending leaf gives the class of the example

for which the prediction was needed.

There are many ways to determine the order of the variables in the tree. For example, a popular

technique from the information theory is to calculate the information gain of each variable and

then to rank the variables according to these values. The variable with the highest information

gain is the root, the one with the second highest information gain is the second node, etc. For a

binary tree, the information gain can be calculated with the following equation

gain(A) = I(p, n)− E(A)

where

• E(A) is the expected information required for the tree with A as root

E(A) =

v∑
i=1

pi + ni
p+ n

I(pi, ni)

where

– p is the number of positive examples

– n is the number of negative examples

– pi is the number of positive examples for the ith branch

– ni is the number of negative examples for the ith branch

– v is the number of branches from the root A

• I(p,n) is the information required for classification

I(p, n) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n

where
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– p is the number of positive examples

– n is the number of negative examples

Unfortunately, this technique has been proven to give higher score to variables with many values

which does not necessarily mean that those variables are important. For example, a variable which

has a different value for each examples of the dataset does not give any information to classify the

example, but will have a high value for the information gain. For this reason, several variants of

this selection criterion have been developed to improve the construction of decision trees. They

are all based on information theory, but their description is out of the scope of this thesis. The

same mechanisms of the information theory can also be used to select features as we have seen in

Section 3.2. Many algorithms have been developed to build decision trees. ID3 is an example of a

family of algorithms based on decision trees, described in details in [60]. The decision trees with

the highest accuracy are often the smallest ones because they have better generalization power

than more complex trees. DT is a fast and efficient algorithm that has been applied successfully

to numerous classification tasks.

3.6 Ensemble Approaches

The ensemble approach is a relatively new trend in artificial intelligence in which several machine

learning algorithms are combined. The main idea is to exploit the strengths of each algorithm of

the ensemble to obtain a robust classifier. Ensembles are particularly useful when a problem can

be divided into subproblems. In this case, each module of the ensemble, which can include one

or more algorithms, is assigned to one particular subproblem. As we have seen in the previous

chapter, network attacks can be divided into four classes: denial of service, user to root, remote

to local and probe. One module of the ensemble designed in this work is itself an ensemble of

decision trees and is specialized on the detection of one class of attacks. In the same way that

web-application firewalls (WAF) address the problem of web-application attacks, we want IDSs

to have specific tools to defend against the major classes of attacks. Because signatures of DoS

attacks are very different from the ones of U2R attacks, it is natural to have a different set of

features and a different algorithm to detect the two classes of attacks.

“A single IDS can cover only a a limited number of different types of input data and

can identify only a limited number of attacks.”

Christopher Kruegel et al. [43]

Ensembles are also a way to build different types of approaches to solving the same problem.

This use of ensembles is analogue to the process in which a person requires a medical diagnosis.

Usually, if the person is diagnosed with some serious illness, such as a cancer, he or she will try

one or more other doctors to have a different opinion on the matter. This cross-validation step

increases the probability to obtain an accurate diagnosis. If the majority of the experts confirm

the first diagnosis, then it is more likely that the person has a cancer. Similarly, the outputs of

several algorithms used as predictor for the intrusion detection problem are combined to improve

the accuracy of the overall system. The inner structure of each module of the ensemble developed

in this work is composed of several decision trees which are trained with different sets of features

to increase the accuracy of the IDS. In this thesis, the efficiency of using different sets of features

for each class of attacks is assessed. To facilitate the evaluation, all algorithms composing the

ensemble are decision trees. However, in future work, it would be interesting to try different

algorithms to improve the accuracy even further.

The difficulty of ensemble approaches lays in the choice of the algorithms constituting the

ensemble and the decision function which combines the results of the different algorithms. Of

course, the more algorithms the better, but it is important to take into account the computational
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expense that is added by each new algorithm. The decision function is often a majority vote

which is both simple and efficient. Nevertheless, it could be interesting to analyse alternatives

to obtain an optimal combination. Another advantage of ensemble approaches is their modular

structure, unlike hybrid constructions which are engineered with algorithms that usually have

non-interchangeable positions. Consequently, the designer of an ensemble can easily replace one

or more algorithms with a more accurate one.

3.6.1 Bagging vs. Boosting

Bagging and boosting are the two main techniques used to combine the algorithms in an ensemble.

In an ensemble using the boosting technique, the algorithms are used sequentially. The first

algorithm analyses all the examples in the dataset and assigns weights to each of them. The

examples with a higher value for the weight are the ones that were classified wrongly by the

algorithm. Then, the next algorithm receives as an input the dataset as well as the weights

for all examples in the dataset. The weights allow the algorithm to focus on the examples that

were the most difficult to classify. These weights are updated according to the results of the

second algorithm and the process moves to the third algorithm. This sequence continues until the

last algorithm of the ensemble has processed the data. The advantage of this technique is that

the most difficult examples can be classified correctly without adding too much computational

overload. The use of weights, which are updated throughout the process, reduces the computation

time as the data goes down the chain of algorithms.

In an ensemble using the bagging technique all algorithm of the ensemble are used in parallel.

In this case, each algorithm builds a different model of the data and the outputs of every predictors

are combined to obtain the final output of the ensemble. In order to build different models, either

each algorithm of the ensemble, or the data fed to each algorithm, or both, can be different. In

this thesis, only the data fed to each algorithms are different, but all algorithms are decision trees

as explained above. Since all algorithms perform in parallel, each of them can be executed on a

different processor to speed up the computation. This is an important advantage on the boosting

technique because nowadays multicore processors are very common even in personal computers.

With this kind of architecture, the ensemble does not increase significantly the time of computation

compared to a single algorithm because the only additional time needed is used for the decision

function which combines the outputs of all algorithms.

3.6.2 Ensemble Approaches Applied to Intrusion Detection

Ensemble approaches were introduced for the first time in the late 80s. In 1990, Hansen and

Salamon [36] showed that the combination of several ANNs can improve drastically the accuracy

of the predictions. The same year, Schapire [68] showed theoretically that if weak learners are

combined, it is possible to obtain an arbitrary high accuracy. Weak learners are classifiers able

to classify correctly only a small fraction of the examples in a dataset. Following these two main

works on the topic, the research community actively studied ensembles during the 90s. However,

this paradigm was used for the first time for intrusion detection in 2003. The majority of the

papers written on the topics were found between 2004 and 2005. Recently, there has been a regain

of interest for ensembles in the field of intrusion detection [9, 27, 28, 31, 82].

Mukkamala et al. [52] showed that an ensemble composed of different types of ANN, SVM

with radial basis function (RBF) kernel and MARS combined with the bagging techniques outper-

forms more traditional approaches with a single algorithm. The variants of ANN were: resilient

back propagation (RP), scaled conjugate gradient algorithm (SCG) and one-step-secant algo-

rithm (OSS). The experiments were performed on a subset of the DARPA1998 dataset composed

of 11,982 examples randomly selected from the original dataset with a number of data for each

class proportional to the size of the class except for the smallest class which was included entirely.
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This dataset was then divided into a training set of 5,092 examples and a test set of 6,890 exam-

ples. Five SVM and Five MARS were used as binary classifiers to classify examples between each

class of attacks. The ensemble was compared to the results obtained by each algorithm executed

separately in order to prove their assertion. The results show that SVM used alone outperforms

the other single algorithm but is totally outperformed by the ensemble of ANN, SVM and MARS.

This ensemble surprisingly obtained a 100% accuracy on the test set for the R2L class. However,

the researchers warn that some of these results might not be statistically significant because of

the unbalanced dataset used.

Chebrolu et al. explored the combination of bayesian networks (BN) and classification and

regression trees (CART) in a ensemble using bagging techniques as well as the performance of

the two algorithms when executed alone [18, 19]. The dataset used in this work was the DARPA

1998 from which a subset was selected in the same way as in the previous work described above.

Feature selection was also applied to speed up the computation. First, BN and CART were

evaluate separately with different sizes for the set of features. The performance on the set of

41 features was compared to a set of 12 selected by BN, 17 selected by CART and 19 features

selected by another study. BN performed worse with a smaller set of features except on the

Normal class. However, when using the set of 19 features, BN and CART complemented each

other to increase the IDS accuracy for all classes. The final ensemble was composed of one CART

in charge of detecting Normal examples and trained with the set of 12 features, one CART in

charge of detecting Probe examples and trained with the set of 17 features, one CART in charge

of detecting U2R examples and trained with the set of 19 features, one ensemble of one CART and

one BN in charge of detecting R2L examples and trained with the set of 12 features and finally,

one ensemble of one CART and one BN in charge of detecting DoS examples and trained with the

set of 17 features. The approach used by Chebrolu et al. is very similar to the one used in this

thesis. However, the lack of error analysis could be deplored.

Abraham and Jain investigated different machine learning algorithms for the problem of intru-

sion detection [4, 5]. Fuzzy rule-based classifier, DT, SVM, LGP and an ensemble were evaluated

on the DARPA 1998 dataset. A subset of this dataset was selected in the same way as in the

two previous works mentioned above. Feature selection was also applied to reduce the number of

variables of the dataset to 12. Fuzzy rule-based classifier outperformed all other methods when

trained with all 41 features with the second set of rules FR2 scoring 100% accuracy for all classes

of attacks. LGP seemed more appropriate when using a smaller set of features except for the

U2R and Normal classes. Finally, the ensemble was composed of one DT in charge of the Normal

instances, one LGP for Probe and one LGP for DoS, one fuzzy set of rules FR2 for U2R and one

LGP for R2L. The results obtained with the ensemble are very encouraging with more than 99%

accuracy for all classes.

Abraham and Johnson [6] extended the work previously carried out in [18]. A hybrid model

composed of SVM and DT was added to the previous ensemble. This new model works as follows.

The data is first sent to the DT which generates a tree to fit the features and values of each

examples in the dataset. The tree generated is then sent to the SVM to produce a final output.

The information contained in the node should improve the detection of the SVM. A single DT is

in charge of detecting U2R attacks, a single SVM is in charge of detecting DoS attacks, the hybrid

model is in charge of Normal instances and the ensemble built in [18] is in charge of Probe and

R2L attacks. Given the results, the hybrid model does not seem to help very much. [58] describe

the same work as [6]. However, results of DT alone are also given in that paper.

Abraham et al. explored genetic programming and evaluated the performance of linear genetic

programming (LGP), multi-expression programming (MEP) and gene expression programming

(GEP) on the DARPA 1998 dataset [2, 3]. The dataset was again sampled in the same way as in

the previous works mentioned in this section. Their results showed that LGP obtained the highest

accuracy for the Probe and DoS classes whereas MEP obtained the highest accuracy for the other
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classes. Even though the paper does not mention any use of ensemble, the work clearly shows

the high potential of genetic programming algorithms and therefore, they should be considered as

part of an ensemble.

Zainal et al. compared the results of several machine learning algorithms [81] . In particular,

the performance of linear genetic programming (LGP), adaptive neural fuzzy inference system

(ANFIS) and random forest (RF) were analysed. The dataset used in this work was the KDD99

dataset from which a subset was extracted in the same way as in the other experiments. Different

sets of features were selected for each class of attack from the 41 features available in the datasets.

Furthermore, an ensemble was also engineered by combining the ANFIS, LGP and RF algorithms.

However, the exact configuration of this ensemble is not described in the paper. The bagging

technique was probably used to form the ensemble. Results of individual algorithms as well as the

results obtained by the ensemble were given. The ensemble outperformed the single algorithms.

Folino et al. examined the performance of a distributed system of ensembles called GEdIDS

[27, 28]. The system is composed of several genetic programming (GP) ensembles distributed

on the network based on the island model. Each ensemble is trained with a different dataset

in a number of T rounds. Once the ensemble is trained in one round, it is exchanged with the

other islands through the distributed environment called dCAGE (distributed Cellular Genetic

Programming System). The weights of the tuples are then updated and the next round takes

place. The dataset used was the KDD Cup 1999. The advantage of a distributed system pointed

out by the researchers is the increase in privacy and security in comparison to a central IDS which

has to collect audit data from different nodes on the system. The technique used to combine the

individual GP algorithms was AdaBoost which is a kind of boosting method for ensembles. The

use of an ensemble approach allowed the researchers to deal with a large dataset, to modify the

system easily and to obtain a robust classifier. The results obtained by the system are average

for the Normal class, the Probe class and the DoS class and very low for the U2R and R2L classes.

However, very few papers study distributed environment for intrusion detection even though this

might be a very good idea for the reasons mentioned above. Finally, a comparison with other

boosting methods is also provided. Folino wrote many other papers related to GP ensemble but

unrelated to the problem of intrusion detection.

Peng Zhang et al. evaluated the robustness of ensembles when confronted with noisy data

streams [82]. Noisy data streams are defined by the researchers as having examples with incorrect

labels. The solution to noisy data proposed in this work was an aggregate ensemble (AE) which

is able to tolerate imprecision and errors. AE builds several classifiers on different sets of data

using different learning algorithms. AE was then compared to Horizontal Ensemble framework in

which classifiers are built on different sets of data but with only one learning algorithm by set of

data and Vertical Ensemble framework in which several classifiers are built on the new set of data

with different learning algorithms which are then combined into an ensemble. Both synthetic and

real-world data streams were used to evaluate the models. The algorithms used in the AE were

SVM, DT and logistic regression. It seems that AE outperforms both the horizontal and vertical

Ensemble frameworks.

Bahri et al. introduced a new method based on Greedy-Boost [9]. The ensemble was again

based on the boosting technique and was an adaptation of Adaboost that makes it resistant to

noise. For one thing, the greedy-boost classifier is a linear combination of models instead of a

simple model as in AdaBoost. For another, the distribution of weights is updated according to the

initial distribution instead of the previous one. Greedy-Boost was trained on several dataset. First,

the KDD99 dataset was used to prove that the model could reduce significantly the false negative

rate (FNR). Then, it seems that Greedy-Boost was tested on three different datasets: Attack-Free

Farpa dataset, Attack-Free Gatech dataset and HTTP-Attack dataset. But, the results displayed

include only the ones for the KDD99 datasets. These results are extremely high in terms of precision

and recall. In particular, the precision of the most difficult class (R2L) is much higher than what
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is usually observed. However, the researchers do not state if they used the test set, the training

set or a modified version of one of the sets to evaluate the model.

Gonzalez et al. examined the performance of nine different ensembles on real-life datasets

when applying a mutant operator to modify slightly the packets of a Probe attack [31]. In

particular, datasets 6 and 9 are the ones on which the experiments were performed. In dataset 6,

both the time and the number of scans were modified. All examples in dataset 6 were classified

correctly by all ensembles. For dataset 9, both the amount of packets and the destination ports

were modified. MultiboostAB with REPTree as a classifier, RandomSubSpace with REPTree as

a classifier, RandomSubSpace with SImpleCart as a classifier, AttributeSelectedClassifier with

SImpleCart as a classifier and Bagging with REPTree as a classifier obtain 100% accuracy.

This section has given an overview of the research focusing on ensemble approaches over the

past decade. The list of papers is not exhaustive, but is an effort to summarise the main devel-

opments that ensemble approaches have followed in the field of intrusion detection. In particular,

papers that were covered in the reviews mentioned in Section 3.4 were not included again in this

section. The key conclusion that can be extracted from all these works is that the ensemble

approach generally outperforms traditional approaches in which only one algorithm is used. An

ensemble is a very efficient way to compensate for the low accuracy of a set of weak learners.

Moreover, feature selection should provide specific subsets to train algorithms specialised in the

detection of one particular class of attacks. Section 4.2 from the next chapter describes the model

that was designed in this thesis taking into account all recommendations from the different papers

reviewed in both state-of-the-art of machine learning and ensemble approaches applied to the

problem of intrusion detection.
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Chapter 4

Experiments

4.1 The KDD99 Dataset

The KDD cup 1999 dataset set, also abbreviated as the KDD99 dataset, was used for the first time

in the third international knowledge discovery and data mining tools competition in 1999. This

dataset is based on the DARPA98 dataset which was build by the Defence Advanced Research

Projects Agency (DARPA) in 1998 during the DARPA98 IDS evaluation program. The DARPA98

dataset includes 7 weeks of data captured in the form of tcpdump from traffic passing through

a network engineered for the purpose of the DARPA program. In other words, the traffic was

generated in a simulated and controlled environment.

The KDD cup 1999 training set contains 4,898,431 entries. Each entry is represented by 41

variables such as duration, src bytes, dst bytes, etc., and a label. From these 41 variables, 3 are

non-numerical: “protocol type”, “service” and “flag”. There are 3 protocol types (TCP, UDP and

ICMP), 70 services and 11 flags. These non-numerical variables are transformed into numerical

ones to ensure that all the machine learning algorithms will be able to process their values. For

example, each service name represented in the service variable is replaced by a number from 1 to

70. All the examples are separated into four different classes of attacks and the class Normal. The

distribution of examples over the different classes is shown in Figure 4.1 and Table 4.1 (on page

40 and 41, respectively). The training set is highly unbalanced. In particular, the classes U2R and

R2L are the least well represented with only 52 and 1,126 examples respectively, whereas the DoS

class contains 3,883,370 examples. With such a small number of examples as in the U2R and R2L

classes, it can be expected that it will be difficult for the classifier to predict the correct classes of

unseen examples.

The analysis of the test set can also reveal interesting facts. The test set is composed of

311,029 entries. The distribution of examples containing previously unseen attacks and examples

containing previously seen attacks for each class of attacks is shown in Table 4.2. The names of the

unseen attack types are listed in Table 4.3. These tables show clearly that the number of unseen

attacks added in the test set is huge, especially for the classes U2R, R2L and Probe with 44.29%,

63.34% and 42.94% respectively. Finally, Figure 4.2 shows the distribution of the examples in the

test set over the different classes. This distribution is very similar to the distribution of the training

set. However, the number of examples belonging to the class R2L is more than ten times higher

than in the training set. This means that in order to perform well on the test set, the predictor

must acquire a very high power of generalisation with 1,126 training examples. Another noticeable

fact is that the attacks “spy” and “warezclient” belonging to the class R2L are not represented in

the test set. In particular, “warezclient” attacks count for more than 90% of the R2L training set.

Finally, two errors have been observed in the test set. Entries 136,489 and 136,497 have a value

for the “service” variable equal to “icmp” which is erroneous. For this reason, they were removed
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Figure 4.1: KDD cup 99 training set: Distribution of examples over the different classes (scale:

×106)
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Figure 4.2: KDD cup 99 test set: Distribution of examples over the different classes (scale: ×105)

from the test set before the experiments. However, it seems that these errors were previously
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Probe U2R R2L DoS Normal

Attack Size Attack Size Attack Size Attack Size Attack Size

satan 15,892 buffer overflow 30 ftp write 8 back 2,203

portsweep 10,413 loadmodule 9 guess passwd 53 land 21

nmap 2,316 perl 3 imap 12 neptune 1,072,017

ipsweep 12,481 rootkit 10 multihop 7 pod 264

phf 4 smurf 2,807,886

spy 2 teardrop 979

warezclient 1020

warezmaster 20

Total 41,102 Total 52 Total 1,126 Total 3,883,370 Total 972,781

Table 4.1: KDD cup 99 training set: Types of attacks in the training set over the different

classes. Some attacks are marked in red when they count for almost all examples of the

corresponding class.

reported [73].

Class Nr of unseen attacks Nr of seen attacks Total

Probe 1,789 (42.94%) 2,377 4,166

U2R 31 (44.29%) 39 70

R2L 10,354 (63.34%) 5,993 16,347

DoS 6,555 (2.85%) 223,298 229,853

Normal 0 60,593 60,593

Total 18,729 (6.02%) 292,300 311,029

Table 4.2: KDD cup 99 test set: Distribution of unseen/seen attacks over the different classes

Class Unseen attacks types Total

Probe mscan, saint 2

U2R ps, xterm, sqlattack 3

R2L
xlock, snmpgetattack, httptunnel,

8
named, sendmail, snmpguess, worm, xsnoop

DoS udpstorm, apache2, mailbomb, processtable 4

Total 17

Table 4.3: KDD cup 99 test set: Unseen attack types

The major criticisms of the KDD99 dataset include the unbalanced distribution of the data,

the redundant records which can introduce a bias in the learning phase because of their frequency,

the fact that the dataset includes old attacks which have been mostly mitigated and the fact that

the data were captured from a controlled environment somewhat different from what is observed

in the wild. The first and second problems can be partly solved by sampling appropriate sets of

examples in each class of attacks. However, the distribution of R2L attacks in the training set

and the test set is a problem which is difficult to overcome. A solution which was not applied in

this work could be to join both the R2L training set and R2L test set, shuffle the resulting dataset

and divide this new dataset into a new training set and a new test set. This solution is not

optimal, but could be a quick fix for the time being. Obviously, an old dataset cannot cover recent

examples of attacks observed in the wild. This is a problem because new types of attacks are

frequently developed by hackers. Nevertheless, the KDD99 dataset is not as useless as it seems.

First of all, it can be argued that if an IDS using machine learning does not perform well on old
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Probe U2R R2L DoS Normal

Attack Size Attack Size Attack Size Attack Size Attack Size

satan 1,633 buffer overflow 22 ftp write 3 back 1,098

portsweep 354 loadmodule 2 guess passwd 4,367 land 9

nmap 84 perl 2 imap 1 neptune 58,001

ipsweep 306 rootkit 13 multihop 18 pod 87

mscan 1,053 ps 16 phf 2 smurf 164,091

saint 736 sqlattack 2 httptunnel 158 teardrop 12

xterm 13 warezmaster 1,602 apache2 794

named 17 mailbomb 5000

xsnoop 4 processtable 759

sendmail 17 udpstorm 2

snmpgetattack 7,741

snmpguess 2,406

worm 2

xlock 9

Total 4,166 Total 70 Total 16,347 Total 229,853 Total 60,593

Table 4.4: KDD cup 99 test set: Types of attacks in the test set over the different classes. Some

attacks are marked in red when they count for almost all examples of the corresponding class.

attacks provided that the data are well sampled, why would it on newer ones. Consequently, to

be useful, an IDS should at least perform well on known attacks. Otherwise, it is not even worth

trying to apply it to new variants and more complex attacks. Furthermore, most of the research

in the field of machine learning applied to intrusion detection uses the KDD99 dataset, making

this dataset a vector of comparison between the different approaches developed by researchers.

The final criticism related to the controlled nature of the environment in which the data were

captured is probably the most difficult to discuss. For example, the high number of attacks in

comparison to normal traffic observed in the dataset does not reflect the reality of a network in

which 99.99...% of the traffic is normal. Again, appropriate sampling is required. Also, the IDS

should be at least accurate on data produced by a simulated environment before being tested on

a real network where the traffic pattern is probably less predictable.

4.2 Final Model

Figure 4.3 (on page 44) shows the model for the ensemble used in this thesis. The network packet

being analysed is sent to four different modules: Probe module, R2L module, U2R module and

DoS module. The packet goes through a data preprocessing unit (DPU). The DPU is in charge

of extracting a number of features from the packet. The set of features varies depending on the

module. The figure displays the number of features needed in the sets selected by [50].

The features extracted are then dispatched to different decision trees which have been previ-

ously trained with these same features on a training set. Each decision tree is a binary classifier

which outputs 0 if the packet is considered normal traffic and 1 if the packet is classified as anoma-

lous. A vector of dimension n× 1 containing the output of n classifiers is then fed to the module

decision function. In the figure, n is equal to 4, but it could be any number of algorithms.

The decision function of the module combines the results of each algorithm of the corresponding

module and outputs a value describing if the packet is considered by the ensemble to be normal

traffic or anomalous traffic belonging to the class of attacks represented in the module. Finally,

a vector of dimension 4× 1 containing the output of each module is fed to the ensemble decision

function. This decision function combines the results and outputs a value describing if the packet

is considered normal or anomalous, and if anomalous from which class of attacks.

The easiest situations are obtained when the outputs of all modules are equal to Normal or
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the outputs of all modules are Normal except one. In the former case, the systems classifies the

packet as normal. In the latter, the systems classifies the packet as anomalous and is able to

identify unambiguously the class of attack concerned. If more than one module classify the packet

as anomalous, it will be more difficult for the network administrator to understand which class of

attack the anomalous packet belongs to.

The resulting model is an ensemble of ensembles with feature selection applied independently

for each module. However, in this work, we will not be concerned with the decision functions

for each module. Instead, we will evaluate the intersection of the sets of false positives and

false negatives produced by the four algorithms in each module. This will give us the optimal

performance that each module could achieve.

The most important advantages of this model is the possibility to execute the algorithms

in parallel and the modularity allowing the exchange of any algorithm of the ensemble without

any modification of the rest. Nowadays, it is not rare to find multi-core processors in personal

computers. Each algorithm could run on a different core to speed up the computation and make up

for the computational overload introduced by the number of algorithms. A multi-core architecture

would even allow the data preprocessing modules to work in parallel alleviating the time needed

to analyse each packet.

4.3 Most Relevant Features

Table 4.5 shows the most important features for each class of attacks according to [50]. The

features are selected using support vector machines (SVM), linear genetic programming (LGP)

and multivariate adaptive regression splines (MARS). Features which are selected by different

algorithms for the same class of attacks are highlighted because they should definitely be in the

subset of features used to detect that class of attack.

Surprisingly, neither “protocol type” nor “service” were selected by the three algorithms for

the DoS class of attacks. Even if their experiments were conducted on a hierarchical SOM, Kayacik

et al. [34] concluded that those features were the most significant for this class of attacks. See

Appendix A for a description of the different features in the KDD99 dataset.

4.4 Description of the Experiments

The problem of intrusion is divided into five distinct subproblems:

• detection of Probe attacks

• detection of U2R attacks

• detection of R2L attacks

• detection of DoS attacks

• detection of Normal instances

Each problem is handled by one or more algorithms of the ensemble as mentioned above. This

allows us to treat each sub-problem separately in the experiments and to join the sub-solutions

into a general solution for the problem of intrusion detection. However, no algorithm was explicitly

designed to detect Normal examples. In fact, if the number of algorithms is odd and the majority

of the algorithms classify the example as Normal, then it will be classified by the ensemble as

Normal as well. First, the dataset must be split into five files (one for each class of attacks plus

one for the class Normal). The next step was to build a dataset for each sub-problem by sampling

a number of examples in one class of attacks and the same number in the class Normal in order
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Figure 4.3: Model of the ensemble used in this thesis. Each algorithm is a binary classifier

outputting 0 if the packet is considered normal traffic and 1 if the packet is classified as

anomalous
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Class of attacks SVM features LGP features MARS features

Probes

src bytes srv diff host rate src bytes

dst host srv count rerror rate dst host srv count

count dst host diff srv rate dst host diff srv rate

protocol type logged in dst host same srv rate

srv count service srv count

User to Root

src bytes root shell dst host srv count

duration dst host srv serror rate duration

protocol type num file creations count

logged in serror rate srv count

flag dst host same src port rate dst host count

Remote to Local

srv count is guest login srv count

service num file access service

duration dst bytes dst host srv count

count num failed logins count

dst host count logged in logged in

Denial of Service

count count count

srv count num compromised srv count

dst host srv serror rate wrong fragments dst host srv diff host rate

serror rate land src bytes

dst host same src port rate logged in dst bytes

Normal

dst bytes dst bytes dst bytes

dst host count src bytes src bytes

logged in dst host rerror rate logged in

dst host same srv rate num compromised service

flag hot hot

Nr of different features 16 features 21 features 13 features

Table 4.5: Most relevant features of the KDD99 dataset for each class of attacks according to [50]

to have a balanced dataset with 50% anomalous examples and 50% normal examples. A balanced

dataset is necessary to avoid the problem of skewed classes where the accuracy of the predictor

can be made artificially high by increasing the number of instances from one of the classes. An

alternative configuration could include a much higher number of normal examples such as 90% or

even 99.99% which would be more realistic compared to what is generally observed on a computer

network. In this case, it is important to understand that the baseline would shift to 90% or

99.99%. The problem with this distribution is that the interpretation of the results is less obvious.

For example, if the predictor obtains 99.99% accuracy, it means that the predictor is just guessing.

Besides, what is the meaning of 99.999% accuracy?

For the classes of attacks with few examples such as R2L and U2R, the entire set is selected

which leads to a U2R training set of 104 examples (52 U2R and 52 Normal) and a R2L training set

of 2,252 examples (1,126 R2L and 1,126 Normal). Furthermore, the labels of the datasets for each

class of attacks are slightly modified to allow binary classifiers such as SVM to process the data.

The two labels are 0 for a Normal instance and 1 for an “anomalous” instance. It is always possible

to change this setting to allow multiple class classification. This would improve the accuracy of

the alert message delivered by the IDS to the network administrator. However, this modification

would also add a computational overhead on the learning algorithms and is not needed for the

purpose of our experiments. Finally, the equations used to measure the performance of the IDS

are described in Section 2.1.2.

The experiments performed are in the direct continuity of the work done in [50, 51, 72]. In

those papers, Srinivas Mukkamala and Andrew H. Sung identify the key features relevant to each

of the four classes of attacks. The first step of the experiments is to assess the sets of features

selected in [50]. Afterwards, another experiment will take place where an ensemble of machine

learning algorithms will be fed with those sets.
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The objectives of the experiments are multiple. In particular, the experiments have to answer

the following questions:

• Can ensemble approaches improve the accuracy and speed of the detection even when using

the simplest algorithms without fine tuning them?

• Are the results of [50], concerning the features selected by the three algorithms SVM, MARS

and LGP for each class of attack, correct?

• Is the predictor fast enough to be used in a real-world application? (see Section 2.1.2 for

more details)

• Are the false positive rate and the false negative rate close enough to zero in order for the

IDS to be efficient? (see Section 2.1.1 for more details)

4.5 Development Tools

The experiments were performed using a “Intel Core 2 Duo, 2,26 GHz processor with 4 GB

of RAM”. The comparisons made with the 10 Gb/s Ethernet network in terms of speed are

informative. It is obvious that a commercial NIDS will run on a much more competitive machine

than the one used in these experiments.

The program used to develop the experiments is Matlab R2012a. The project can be cloned

using the following command:

git clone git@git.assembla.com:ensemble-based-intrusion-detection.git

or simply followed at:

http://www.assembla.com/spaces/ensemble-based-intrusion-detection/

The main function is:

ensembleForIDS(istesting, class, trainingset, testset)

where

• istesting is a boolean value used to choose if the program should run only the training

phase with cross-validation or should assess the performance of the ensemble on the test set.

• class is a string which can take one of the values in [‘u2r’, ‘r2l’, ‘probe’, ‘dos’] and

is useful only if istesting is false. In this case, the program will perform a cross-validation

on the training set for the class mentioned in the parameter class.

• trainingset & testset are structures containing the training set and test set for each class

of attacks. For example, the training set for DoS attacks can be accessed with the following

command: trainingset.dos. Loading these two sets can take a few minutes on the machine

described above. That is why a separate Matlab file, called getData.m, is in charge of loading

them before the experiment takes place. This file should be loaded manually once at the

beginning of the experimentation to ensure that the datasets are available throughout the

experiments.

Additionally, R files are available to split the original training set and test set into five files for

each class of attacks. However, these ten files are already available on the git repository mentioned

above.

The commands used for the machine learning algorithms are:
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• SVM

– options = optimset(‘MaxIter’,max_iter); specifies the maximum number of iter-

ations allowed for the SVM.

– Training: model_svm = svmtrain(X.tr,Y.tr,‘kernel_function’,‘rbf’,‘options’,options);

∗ X.tr is a matrix of dimension m× n where m is the number of examples and n is

the number of variables in the training set.

∗ Y.tr is a vector of dimension m × 1 where m is the number of examples. Y.tr

represents the labels for each example in the training set. Y.tr(i) is the label

corresponding to the ith example of X.tr.

∗ (‘kernel_function’, ‘rbf’) specifies that the kernel function used for the SVM

is a Gaussian Radial Basis Function.

∗ (‘options’, options) specifies the options given above.

– Prediction: Ynew = svmclassify(model_svm,X.ts);

∗ model_svm represents the model built by svmtrain in the training phase.

∗ X.ts is a matrix of dimension m× n where m is the number of examples and n is

the number of variables in the test set.

• Decision Tree

– Training: ctree = ClassificationTree.fit(X.tr,Y.tr);

∗ X.tr is a matrix of dimension m× n where m is the number of examples and n is

the number of variables in the training set.

∗ Y.tr is a vector of dimension m × 1 where m is the number of examples. Y.tr

represents the labels for each examples in the training set. Y.tr(i) is the label

corresponding to the ith example of X.tr.

– Prediction: Ynew = predict(ctree,X.ts);

∗ ctree represents the model built by ClassificationTree.fit in the training

phase.

∗ X.ts is a matrix of dimension m× n where m is the number of examples and n is

the number of variables in the test set.

The svmtrain and svmclassify functions belong to the Bioinformatics Toolbox.

The ClassificationTree.fit and predict belong to the Statistic Toolbox.

4.6 Experiment 1: Feature Selection Assessment

In this experiment, several classifiers were trained with a different number of features. The algo-

rithm used as a classifier is SVM with a Gaussian radial basis function kernel (RBF) which is one

of the most powerful machine learning algorithms currently available. The maximum number of

iterations is set to 10,000 to allow the algorithm to converge. The goal of the experiment is not

concerned with finding the best algorithm possible and fine-tuning it. Instead, what matters is to

conclude on how well the algorithm performs with a smaller set of features. In this case, it is only

natural to use exactly the same setting for the algorithms and to compare the performance based

only on the sets of features. Four SVMs were trained with four different sets of features. Only the

training set was used for this experiment. The results obtained represent the performance of the

algorithms on the cross-validation set which is extracted from the training set. Experiment 2 will

assess the performance of the algorithms on the test set.
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The first SVM is trained with all the 41 features available in the dataset. The three last are

trained with five features selected in [50] by the three algorithms LGP, SVM and MARS for each

class of attacks. These features are listed in Table 4.5 (on page 45). The results obtained in

terms of accuracy were compared to those obtained in [58]. The term “problematic instances”,

used in Tables 4.8, 4.11, 4.15, 4.19 and 4.23, means that these instances were classified wrongly

by all algorithms. In short, Experiment 1 aims to assess the performance of the algorithms on the

training set for each class of attacks with different sets of features selected in [50] and discover

which examples are problematic and why.

After a few trials, some changes were made. The first one was to switch from SVM to decision

tree (DT) which is much faster. Moreover, SVM could have given an advantage to the features

selected by the SVM used as feature selection algorithm in [50]. The second change was to add

a new set of features. This set of features, that we called “combined”, is the union of the sets of

features selected by SVM, LGP and MARS from which redundant features have been removed.

The number of features in each “combined” set is 11 for Probe, 14 for U2R, 11 for R2L and 12 for

DoS. The reason for this additional sets is the fact that they help bringing down the number of

FN and FP as we will see in the results of the experiments. On top of that, there is no additional

cost from the extraction of these features from the original network packets since they have to be

extracted for the other algorithms anyway.

Finally, for the FP and FN analysis, we call ensemble best the number of examples wrongly

classified by all three algorithms trained with the sets of five features and the algorithm trained

by the “combined” set of features. This is the best result that an ensemble composed of these

four algorithms could achieve if the combination of their individual results was optimal. These

numbers are calculated by taking the intersection of the set of examples misclassified for each

algorithm. The experiment was run ten times for each class of attacks to ensure accuracy of the

results and to find the types of attack in each class that are misclassified most of the times by

the ensemble best. The values displayed in all tables, except the ones representing the number

of problematic instances for the ensemble best wrt the FP and FN for 10 runs of the algorithm,

are the average values over the 10 validation sets of the 10-fold cross-validation.

4.6.1 Probe

4.6.1.1 Experimental Settings

The number of examples selected randomly in the Probe dataset is equal to 10,000. The same

number of Normal instances are selected from the Normal dataset. In total, the training set used

to train the algorithms to detect Probe attacks contains 20,000 entries. The number 10,000 is

chosen to have a significant sample with as many different examples as possible without affecting

too much the training time. A 10-fold cross-validation is used to assess the models. With the

setting of the experiment, 2,000 (10%) entries are used as a validation set for each iteration of the

10-fold cross-validation.

4.6.1.2 Results

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.995600 0.998584 0.992613 0.995587 0.001802

SVM (5 features) 0.973250 0.967279 0.979699 0.973431 0.030060

LGP (5 features) 0.969300 0.960884 0.978470 0.969579 0.033937

MARS (5 features) 0.866650 0.872720 0.858602 0.865576 0.124212

Table 4.6: Results of Experiment 1 for the class Probe
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 37.383806 0.290233

SVM (5 features) 24.953225 0.391659

LGP (5 features) 26.408618 0.427812

MARS (5 features) 93.545649 1.480771

Table 4.7: Results of Experiment 1 for the class Probe with respect to the computational speed

Tables 4.6 and 4.7 show that the set of features selected by MARS obtains the worse results

both in terms of accuracy and speed. The other sets perform better but are still quite far from

the accuracy of the set of 41 features both in terms of speed and accuracy. With a testing time of

0.290233 seconds to classify 2,000 examples, this set of features would be able to handle only 6.891

examples/s on a machine similar to the one used for the experiment. This is way too slow for

a real-time application performing at current network bandwidth. It can be noted, in Table 4.8,

that there is a significant drop of FP and FN when looking at all algorithms. This is good news

because it means that, only by selecting appropriate subsets of features to train the algorithms,

all algorithms do not classify all instances in the same way. As expected, using several algorithms

in an ensemble can improve significantly the FPR and false negative rate (FNR). Unfortunately,

7 false positives and 9 false negatives over 20,000 examples are still too high numbers to be useful

in a real-world application. In the example of a 10Gb/s Ethernet network given in Section 2.1.1,

this result would lead to a little bit less than 5,250 FP/s and 6,750 FN/s. Furthermore, a difficult

point is to find an appropriate combination of the output of all algorithms. Based on the results, a

majority vote with weights depending on the accuracy of each algorithm might be a good solution.

In this case, since the predictors are binary classifiers, the number of algorithms taking part in

the voting process should obviously be odd to avoid ties. Eventually, another interesting fact is

that the default setting of SVM with a gaussian radial basis function obtains better results for

the Probe class than the ones obtained by [58] when using a polynomial kernel.

Nr of False Positives Nr of False Negatives

41 features 18 62

Problematic instances 7 9

Table 4.8: Experiment 1 (Probe): Sum of the number of problematic instances wrt the FP and

FN of each validation set in the 10-fold cross-validation

To ensure that the results did not give any advantage to the algorithm trained with the set

of features selected by the SVM algorithm, the experiment was carried out again with a decision

tree as a classifier. Tables 4.9, 4.10 and 4.11 show the results obtained with DT. The accuracy is

exactly the same as [58] obtained with 41 features: 99.86% accuracy on this class with the same

decision tree. As expected, the training and prediction speed are much faster than with SVM (see

Table 4.10). With the worst prediction speed of 0.015412 seconds to classify 2,000 examples, the

classifier is now able to handle 132,100 entries per second. This is a tremendous improvement even

though it is still far from the 15,000,000 entries per second that are necessary to perform on a

10 Gb/s Ethernet network. Unfortunately, the difference between the prediction time when using

all 41 features and when using only 5 features does not live up to our expectations. Although,

even if the speed of the prediction is not improved very much by the feature selection, a smaller

set of features means that less features must be extracted from the network packet. Achieving

similar accuracy with less features is still a very good improvement. A less expected result is

that the accuracy of all classifiers increases when using DT instead of SVM (see Table 4.9). In

particular, the accuracy of the algorithm trained with the set of features selected by MARS jumps
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from 0.866650 to 0.997500 which is a huge improvement. The other two algorithms trained with

sets of 5 features are also closing in on the one trained with the set of 41 features. The algorithm

fed with the five features selected by LGP performs slightly worse than the others with an F1score

of 0.993211 and could be replaced by a more accurate algorithm.

Finally, the selected sets of features seem to be a good choice when the algorithms are trained

using decision trees. Similarly to the case with SVM as a predictor, the overall numbers of

false positives and false negatives drop significantly when using more than one algorithm (see

Table 4.11). When the experiment is run ten times (see Table 4.12), the average number of FP

is 0.7 and the average number of FN is 3 over 20,000 examples for the ensemble best. All types

of attacks appear at least once as an FN, however, “satan” and “portsweep” seem to be the most

difficult attacks to detect as shown in Table 4.12. When comparing the problematic instances

of “satan”, “portsweep” and “ipsweep” with regular instances of these same types of attacks, it

seems that “src bytes” is the feature that gives the biggest trouble to the algorithm. In fact, for

probe attacks, “src bytes” should be very small if not equal to zero. Whenever an example of

these attacks has a high value for “src bytes”, it goes undetected. This is a big problem because

an attacker could easily fill the packets of the attack with random bytes to evade the IDS. We

could think that it would be a good idea to get rid of this feature, however, “src bytes” is a

very important feature to detect Probe attacks because the only algorithm that performs poorly

is the one trained with the set of features selected by LGP and this set of features does not

include “src bytes”. In case of “satan”, “logged in” and “srv diff host rate” are normally equal

to zero. The sample of regular instances for each problematic attack type as well as the sample

of problematic instances that helped drawing these conclusions can be found in Appendix B,

Section B.1.

To conclude, even if the goal of the experiment was not to show the difference of performance

between two types of algorithms, SVM and DT, it seems that the choice of SVM affects greatly

the set of features selected by MARS. On top of that, DT outperforms SVM in terms of speed

and accuracy for the sub-problem of Probe confirming the results obtained in [58]. The accuracy

obtained by the ensemble best is much better than what a single algorithm is capable of, but

not good enough for a real-world application. Eventually, since DT totally outperformed SVM,

the next experiments will be carried out using DT instead of SVM.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.998650 0.998516 0.998790 0.998652 0.001514

SVM (5 features) 0.998150 0.998400 0.997902 0.998150 0.001600

LGP (5 features) 0.993200 0.992322 0.994107 0.993211 0.007706

MARS (5 features) 0.997500 0.997782 0.997196 0.997488 0.002184

Combined 0.998950 0.999198 0.998714 0.998955 0.000799

Table 4.9: Results of Experiment 1 for the class Probe with Decision Tree. The line marked in

red highlights the set of features that obtained the worst performance for this class of attack.

4.6.2 User to Root

4.6.2.1 Experimental Settings

The results of these experiments are likely to be worse than with the Probe or R2L class because

of the scarce number of data related to the U2R class. The U2R dataset contains 52 examples

which will all be selected for this experiment. The same number of Normal instances are selected

from the normal dataset. In total, the training set used to train the algorithms to detect U2R

attacks contains 104 entries. A 10-fold cross-validation is used to assess the models. With the
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 1.008131 0.015412

SVM (5 features) 0.260827 0.014153

LGP (5 features) 0.279878 0.013080

MARS (5 features) 0.241558 0.014044

Combined 0.274144 0.012810

Table 4.10: Results of Experiment 1 for the class Probe with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 12 17

ensemble best 0 3

Problematic instances 0 3

Table 4.11: Experiment 1 (Probe - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation

Run nr FP FN

Attack names (Total nr of instances)

satan portsweep ipsweep nmap

(15,892) (10,413) (12,481) (2,316)

1 0 2 1 1 0 0

2 1 1 1 0 0 0

3 0 4 4 0 0 0

4 1 4 1 1 1 1

5 1 4 3 1 0 0

6 0 4 1 2 1 0

7 1 1 0 1 0 0

8 1 1 0 1 0 0

9 0 2 2 0 0 0

10 2 7 4 2 0 1

Average 0.7 3

Max 2 7

Table 4.12: Experiment 1 (Probe - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation for 10 runs of the

program for the ensemble best. The total number of instances for each attack is given as an

indication since only 10,000 examples are selected randomly from the entire Probe dataset.

Consequently, the number of FN observed for each attack is not exactly out of the total number

of instances.
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setting of the experiment, 10 (∼10%) entries are used as a validation set for each iteration of the

10-fold cross-validation. The values displayed in all tables represent the average values over the 10

validation sets of the 10-fold cross-validation. As mentioned in the first experiment, the algorithm

used as a classifier from now on is the decision tree.

4.6.2.2 Results

As expected, the results shown in Table 4.13 are worse than for Probe, but it is only natural since

each FP and FN have a bigger impact on the general accuracy because of the small number of

examples. These results are much better than in [58] who obtained 68.00% accuracy on this class

with the same decision tree. In particular, the algorithm trained with the set of features selected

by LGP perfoms poorly again. An interesting result is that the algorithms trained with a set of

features selected by SVM and MARS perform better than the one trained on the set of all 41

features. This is probably caused by the small number of examples. In this case, 41 features are

too many to generalize well. The training time is obviously smaller than for the other classes of

attack, but the testing time is actually higher even though there are only 10 examples to predict.

Table 4.14 shows the results linked to the running time of the algorithms. Finally, Table 4.15

displays very good results for the combination of the algorithms with smaller sets of features. No

false positives and no false negatives are found when looking at the intersection of the FP and FN

of the four algorithms. This seems like very good news; however, when running the experiment

ten times, in general either one FP or one FN appears (see Table 4.16). The FP can be explained

by the small number of examples in the dataset, only 52 Normal examples are present. The FN

is always a “rootkit” attack which is wrongly classified as normal traffic, but it is not always the

same instance. This indicates that some information is missing for the Decision Tree to classify

“rootkit” attacks correctly. Moreover, there are only 10 “rootkit” attacks in the U2R dataset.

Again, [39] does not document this kind of attack. However, McAfee and Symantec describe it

in details in [46] and [13], respectively. It appears that “rootkit” can be any kind of malware

such as worm, Trojan or virus with the ability to hide its presence and actions to the users and

processes of a computer; this is called a stealth attack. Thanks to these two reports, we are now

able to partially understand why “rootkit” attacks are so difficult to detect for our algorithms.

The diversity found in malware has probably a huge impact on the problem and the fact that

there are only 10 examples in the dataset increases the difficulty. The values taken by these 10

examples for the 14 features of the combined algorithm are shown in Appendix B, Section B.3.

Almost all of these 10 instances have very different values for the 14 features. The ensemble best

performs perfectly in most cases, but it is difficult to conclude anything with such a small dataset.

One FP or FN out of 10 instances of the cross-validation set is quite a bad score.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.930000 0.935714 0.930000 0.918772 0.078333

SVM (5 features) 0.960000 0.954762 0.980000 0.964413 0.070000

LGP (5 features) 0.900000 0.910714 0.868333 0.881269 0.078333

MARS (5 features) 0.970000 0.949048 1.000000 0.972106 0.061667

Combined 0.960000 0.945714 0.980000 0.961197 0.061667

Table 4.13: Results of Experiment 1 for the class U2R with Decision Tree. The line marked in red

highlights the set of features that obtained the worst performance for this class of attack.
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 0.062540 0.017726

SVM (5 features) 0.039750 0.016328

LGP (5 features) 0.043447 0.016070

MARS (5 features) 0.037551 0.015165

Combined 0.039882 0.015765

Table 4.14: Results of Experiment 1 for the class U2R with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 4 3

ensemble best 0 0

Problematic instances 0 0

Table 4.15: Experiment 1 (U2R - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation

Run nr FP FN Attack names

1 0 1 rootkit

2 0 0 NONE

3 0 0 NONE

4 0 0 NONE

5 0 0 NONE

6 1 1 rootkit

7 0 0 NONE

8 0 0 NONE

9 0 0 NONE

10 2 1 rootkit

Average 0.3 0.3

Max 2 1

Table 4.16: Experiment 1 (U2R - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation for 10 runs of the

program for the ensemble best
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4.6.3 Remote to Local

4.6.3.1 Experimental Settings

The R2L dataset contains 1,126 examples which will all be selected for this experiment. The same

number of Normal instances are selected from the normal dataset. In total, the training set used

to train the algorithms to detect R2L attacks contains 2,252 entries. A 10-fold cross-validation is

used to assess the models. With the setting of the experiment, 225 (∼10%) entries are used as

a validation set for each iteration of the 10-fold cross-validation. As mentioned in the previous

experiment, the algorithm used as a classifier from now on is the decision tree.

4.6.3.2 Results

The results shown in Table 4.17 are very similar to those obtained for the class Probe even though

the number of instances in the dataset is much smaller. These results are also much better than

in [58] who obtained 84.19% accuracy on this class with the same decision tree. This experiment

clarify the fact that classifying Probe attacks and R2L attacks are two very distinct problems even

if they are both intrusions and that is why they should be treated separately. Again, the selected

features seem to be a good choice even if a little drop of accuracy can be observed compared to

Probe. In particular, the algorithm trained with the set of 5 features selected by MARS has a

high rate of false positives and the one trained with the set of features selected by LGP has the

lowest accuracy but also a lower FPR which implies a higher false negative rate. The combination

of all algorithms helps to bring down the number of false positives and false negatives, but these

numbers are again too high for a real-world application. There are eight different types of R2L

attacks represented in the R2L dataset. After running the experiments ten times, only three types

of these attacks trigger false negatives for the ensemble best: “spy”, “imap” and “phf”. The

results are displayed in Table 4.20. There is not much documentation about “spy” attacks which

are not even represented in the test set. However, the signatures of “imap” and “phf” are described

in [39]. Detection of these attacks requires very specific features. In the case of a “phf” attack, the

IDS “must monitor http requests watching for invocations of the phf command with arguments

that specify commands to be run.” [40]. None of the 41 features depicted in the KDD99 dataset

gives any information about a specific command being run on the system. It would be impractical

to do so for each specific command triggering an attack. However, this could be the reason behind

the incapacity of the machine learning algorithm to detect these kind of attacks with certainty.

Without meaningful information, the algorithm is powerless in building a proper model. There

are two ways to solve this problem, either new features have to be added to the dataset or an IDS

using signatures of attacks should perform the detection for these particular types of attacks. In

the former case, the new features should not be too specific to ensure that new attacks could also

be identified. In the second case, the IDS loses its ability to detect similar attacks but its accuracy

increases. To detect an imap attack an IDS should be “programmed to monitor network traffic

for oversized Imap authentication strings” [40]. This description seems more within reach of our

IDS since “service” and “src bytes” are both represented in the dataset. Nevertheless, most of the

time, there are no FN for the R2L class, but too many FP as shown in Table 4.20. FP are more

difficult to evaluate since DT was used as a binary classifier. In this case, it is not possible to

know for which attack the normal instance was mistaken. However, it is probable that the kind of

attacks triggering FN are the same that trigger FP. An n-class classifier with n representing the

number of types of attacks in one class could help to have more insight into the problem. Since

SVM was originally chosen as the classifier and is normally used as a binary classifier, the data

was processed to accommodate this setting.
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Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.990222 0.987983 0.992174 0.990019 0.011029

SVM (5 features) 0.985778 0.983745 0.987755 0.985693 0.015705

LGP (5 features) 0.973778 0.964643 0.983134 0.973667 0.007706

MARS (5 features) 0.980444 0.976529 0.984339 0.980260 0.022462

Combined 0.989333 0.989481 0.989231 0.989232 0.010683

Table 4.17: Results of Experiment 1 for the class R2L with Decision Tree. The line marked in red

highlights the set of features that obtained the worst performance for this class of attack.

Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 0.190301 0.011375

SVM (5 features) 0.061773 0.011516

LGP (5 features) 0.049170 0.011439

MARS (5 features) 0.070769 0.011180

Combined 0.079923 0.011857

Table 4.18: Results of Experiment 1 for the class R2L with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 17 10

ensemble best 4 1

Problematic instances 2 0

Table 4.19: Experiment 1 (R2L - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation

Run nr FP FN
Attack names (Total nr of instances)

phf (4) spy (2) imap (12)

1 8 4 3 1 0

2 8 0 0 0 0

3 4 0 0 0 0

4 4 0 0 0 0

5 8 1 0 0 1

6 8 0 0 0 0

7 4 0 0 0 0

8 6 0 0 0 0

9 8 0 0 0 0

10 8 0 0 0 0

Average 6.6 0.5

Max 8 4

Table 4.20: Experiment 1 (R2L - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation for 10 runs of the

program for the ensemble best
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4.6.4 Denial of Service

4.6.4.1 Experimental Settings

The DoS dataset contains 3,883,370 examples. “neptune” and “smurf” attacks count for the major

part of the examples in the DoS training set with 1,072,017 and 2,807,886 examples respectively.

The other types of attacks have much smaller number of examples as shown in Table 4.1. For

example, the type of DoS called “land” is represented only 21 times out of almost 4 millions entries.

For this reason, a sample of 5,000 examples have be selected randomly from the “neptune” set

and another 5,000 was selected randomly from the “smurf” set. All examples of the other types

of attacks have been included leading to a DoS training set of 13,467 examples. The same number

of Normal instances was selected from the normal dataset leading to a total of 26,934 examples

to train the algorithm. A 10-fold cross-validation is used to assess the models. With the setting

of the experiment, 2,693 (∼10%) entries are used as a validation set for each iteration of the

10-fold cross-validation. The values displayed in all tables represent the average values over the 10

validation sets of the 10-fold cross-validation. As mentioned in the first experiment, the algorithm

used as a classifier is the decision tree.

4.6.4.2 Results

The accuracies of all algorithms are displayed in Table 4.21. Again, the results are better on this

class with the same decision tree than in [58] who obtained 96.83% accuracy. In this experiment,

the algorithm trained with the set of features selected by SVM obtains the worse score with

an F1score equal to 0.933876 whereas the set of features selected by MARS gets the best score

0.998621 after the set of all features and the set of combined features. This is important because

it means that there is a set of 5 features that can perform almost as well as the set of 41 features

even when the number of training example is not scarce. The improvement in term of speed can

be observed in Table 4.22. The testing time drops from 0.014081 s to 0.009620 s. This is not

a huge difference, but every bit counts when designing a real-time application. The fact that a

smaller set of features has to be extracted from the network packets and that the algorithm is

capable of a high accuracy with limited features is a important improvement in itself. Another

good result is the fact that the ensemble best achieved an average number of FP equal to zero

after running the program 10 times (see Table 4.24). Table 4.23 shows that the number of FN

is reduced as well. Three types of attacks trigger FN: “smurf”, “neptune” and “back”. The first

two types rarely appear in the list. However, the most difficult type of attack to handle seems to

be “back”. This is not a surprise, since to detect a “back” the IDS must look for a big number

of frontslashes (“/”) in the request URL [39]. There are no features in the dataset that take this

particularity into account. Consequently, the model has to rely on other features to make up

for this lack of information and this leads to an imperfect result. Nevertheless, as expected, the

ensemble best brings robustness to the accuracy of the IDS.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.999480 0.999552 0.999405 0.999478 0.000443

SVM (5 features) 0.933457 0.927760 0.940103 0.933876 0.073239

LGP (5 features) 0.986892 0.988686 0.985076 0.986872 0.011296

MARS (5 features) 0.998626 0.999104 0.998138 0.998621 0.000887

Combined 0.999257 0.999479 0.999032 0.999255 0.000518

Table 4.21: Results of Experiment 1 for the class DoS with Decision Tree. The line marked in red

highlights the set of features that obtained the worst performance for this class of attack.
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 1.283539 0.014081

SVM (5 features) 0.592327 0.011113

LGP (5 features) 0.388289 0.009812

MARS (5 features) 0.214126 0.009620

Combined 0.487517 0.012633

Table 4.22: Results of Experiment 1 for the class DoS with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 6 8

ensemble best 0 2

Problematic instances 0 2

Table 4.23: Experiment 1 (DoS - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation

Run nr FP FN

Attack names (Total nr of instances)

smurf back neptune

(5,000) (2,203) (5,000)

1 0 2 1 1 0

2 0 2 1 1 0

3 0 2 1 1 0

4 0 1 0 1 0

5 0 2 0 2 0

6 0 1 0 1 0

7 0 2 0 2 0

8 0 1 0 1 0

9 0 2 0 1 1

10 0 1 0 1 0

Average 0 1.6

Max 0 2

Table 4.24: Experiment 1 (DoS - Decision Tree): Sum of the number of problematic instances

wrt the FP and FN of each validation set in the 10-fold cross-validation for 10 runs of the

program for the ensemble best
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4.6.5 Discussion

Experiment 1 has shown that ensemble approach is indeed a very powerful paradigm that can

be used to bring down the number of FP and FN. The lower accuracy observed by individual

algorithms is countered by the union of their results. Even with sets containing only five features,

the results are very encouraging. Moreover, treating each class of attack as a different problem

solved by a specialised algorithm seems to work well when compared to strategies using one

algorithm to detect all classes of attacks. “Divide and conquer” and “Unity is strength” seem

to be opposite views, but they are actually both applied in this work with impressive results.

In general, algorithms using fewer features have slightly lower accuracy and prediction time but

much lower training time. The results obtained by [50] seem to be correct. However, the set of

features selected by LGP gives the worst result in most cases except for DoS where it is the set

of features selected by SVM which performs poorly. Consequently, the sets of features selected

by LGP should be reconsidered for all classes except DoS and the set of features selected by SVM

should be replaced in the case of DoS.

The number of different types of attacks that go undetected is very small and only few examples

of these attacks are problematic. Most of the time, the problem lays in the lack of information

contained in the dataset. Some attacks require very specific features and should probably be

handled by specialized programs or signature-based IDSs. The class Probe is a bigger problem

since most of the attacks belonging to this class exploit a legitimate feature used by network

administrators. As a result, all types of Probe attacks trigger FN at some point even though

“portsweep” and “satan” are the most problematic.

Since one of the goals of the experiment was to show that the prediction time can be lowered

greatly by using smaller sets of features, we can say that it is not the case. However, as previously

mentioned, a smaller set means that only a few features must be extracted from the network

packet in the data preprocessing phase. Since the accuracy is not lowered too much in the best

cases, this is a huge improvement that could be used in real IDSs. If these algorithms are used in

parallel, the detection speed would be greatly increased.

Moreover, the union of all algorithms using fewer features improves tremendously the accuracy.

In particular, in average over 10 runs of the program, only 0.7 FP and 3 FN are observed for the

Probe class over 20,000 examples, 6.6 FP and 0.5 FN for the R2L class over 2,252 examples, 0.3

FP and 0.3 FN for the U2R class over 104 examples and 0 FP and 1.6 FN for the DoS class over

20,000 examples. Even though these results are much better than what could be achieved with a

single algorithm, they are still quite far from being useful in a real-world application where these

numbers should be lower than 1 for almost 15 millions examples in a 10Gb/s Ethernet network.

However, we can argue that within the 15 millions examples 90% will be Normal traffic containing

no attack at all. Still, the ensemble best has to be improved further to stand a chance against

clever hackers. Moreover, the results described above are the best that an ensemble composed

of these algorithms and sets of features could achieve. In its current state, there is no point in

building an experiment to assess a real combination of the results of the individual algorithms in

the ensemble best. Further work will have to be carried out to find the best suitable algorithms

and sets of features. Nevertheless, it is interesting to see how well this ensemble best can perform

when predicting previously unseen attack types. That is the topic of the second experiment.

4.7 Experiment 2: Model Assessment of the Test Set

In this experiment, several classifiers were trained with different number of features on examples

from the training set. The algorithm used as a classifier is decision tree (DT). The goal of the

experiment is to evaluate the same model used in the previous experiment on the test set after

training it on the training set. As we have seen in Section 4.1, Table 4.2 shows that the test set is
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composed of many examples with unseen attacks (attacks that are not represented in the training

set). This experiment aims to assess if the ensemble is capable of generalizing to new types of

attacks belonging to the same classes as the ones previously seen in the training set. The values

represented in all tables represent one run of the program. The number of examples selected for

the training set in each class is the same as in the first experiment.

4.7.1 Probe

4.7.1.1 Experimental Settings

The Probe test set contains 4,166 examples which are all selected for this experiment. The same

number of Normal instances are selected from the normal test set leading to a total of 8,332

examples to test the algorithm.

4.7.1.2 Results

The accuracy of all algorithms degraded drastically in comparison to the first experiment as shown

in Table 4.25. In particular, the set of features selected by SVM obtains the worst results with

an F1score of 0.713054 whereas the set selected by LGP manages to keep a respectable accuracy

with an F1score of 0.857766. Generally speaking, the testing time only doubled even though the

number of examples to classify increased fourfold (see Table 4.26). The ensemble best still seems

to work properly on the test set, but the number of FN is very high. This observation can be

seen in Tables 4.27 and 4.27. Table 4.27 shows that the ensemble best is able to handle a part

of the new attacks, but does not recognize them as easily as the old ones. The most surprising

fact is that the attack “ipsweep” seems to go undetected almost all the time. This result is very

unusual because “ipsweep” was available in the training set and did not cause any trouble in the

previous experiment. One possible explanation is that the examples of “ipsweep” from the test

set are very different from the ones in the training set. After examining the training set carefully,

typical values for the features of an “ipsweep” attack can be observed and are shown in Table 4.29.

When compared to the values of “ipsweep” in the test set, it appears that these values are exactly

in the range described in Table 4.29 refuting our hypothesis.

To conclude, the results are not as bad as they look. First, almost all old attacks are perfectly

detected, especially “portsweep” and “satan” which triggered FN in the first experiment are now

absent from the attacks triggering FN. The new attacks are detected most of the time, but the

number of FN is still too high to be useful in a real-world application. Finally, solving the problem

of “ipsweep” would bring down tremendously the number of FN.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.930869 0.977140 0.882381 0.927346 0.020643

SVM (5 features) 0.776284 0.993991 0.555929 0.713054 0.003361

LGP (5 features) 0.874820 0.993053 0.754921 0.857766 0.005281

MARS (5 features) 0.840374 0.964309 0.706913 0.815789 0.026164

Combined 0.799688 0.762787 0.869899 0.812829 0.270523

Table 4.25: Results of Experiment 2 for the class Probe with Decision Tree. The line marked in

red highlights the set of features that obtained the worst performance for this class of attack.
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 1.008573 0.026632

SVM (5 features) 0.222444 0.035693

LGP (5 features) 0.216063 0.028129

MARS (5 features) 0.195481 0.025189

Combined 0.297489 0.026340

Table 4.26: Results of Experiment 2 for the class Probe with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 86 490

ensemble best 6 363

Problematic instances 6 286

Table 4.27: Experiment 2 (Probe - Decision Tree): number of problematic instances wrt the FP

and FN

Run nr FP FN
Attack names (Total nr of instances)

ipsweep (306) mscan (1,053) saint (736)

1 6 363 255 106 2

2 36 581 306 174 101

3 2 426 303 20 103

4 5 411 306 4 101

5 8 837 303 433 101

Average 11.4 523.6

Max 8 837

Table 4.28: Experiment 2 (Probe - Decision Tree): Sum of the number of problematic instances

for the ensemble best wrt the FP and FN for 5 runs of the program

count dst host diff srv rate service dst host srv count logged in protocol type

1 0 12 1-255 0 1

rerror rate dst host same srv rate src bytes srv diff host rate srv count

0 1 8 or 18 1-50 1 or 0

Table 4.29: Experiment 2 (Probe - Decision Tree): Typical values for “ipsweep” attack
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4.7.2 User to Root

4.7.2.1 Experimental Settings

The U2R test set contains 70 examples which are all selected for this experiment. The same number

of Normal instances are selected from the normal test set leading to a total of 140 examples to

test the algorithm. Three new attack types have been added to the test set: “ps”, “xterm” and

“sqlattack”.

4.7.2.2 Results

Table 4.30 shows results very similar to those in Experiment 1 except for the set of features selected

by SVM which performs poorly with an F1score of 0.562500. The set selected by SVM does not

seem to generalize well to new types of attacks. The best algorithm is the one trained with the

“combined” set of features outperforming even the algorithm trained with all 41 features in the

same way that was observed in Experiment 1. The ensemble best brings down the number of FP

to 1 and the number of FN to 0 with an average value of 1.6 and 1 respectively over five runs of the

program (see Tables 4.32 and 4.33). As expected, sometimes a “rootkit” attack goes undetected

as was the case in Experiment 1. Besides, “ps” appears also rarely as an FN. The most surprising

result comes from undetected “buffer overflow” even though it never happened in the previous

experiment. However, “xterm” and “sqlattack” are detected all the time which is good because it

means that the ensemble best generalizes well for the U2R class.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.900000 0.951613 0.842857 0.893939 0.042857

SVM (5 features) 0.400000 0.442623 0.771429 0.562500 0.971429

LGP (5 features) 0.835714 0.943396 0.714286 0.813008 0.042857

MARS (5 features) 0.850000 0.945455 0.742857 0.832000 0.042857

Combined 0.942857 0.942857 0.942857 0.942857 0.057143

Table 4.30: Results of Experiment 2 for the class U2R with Decision Tree. The line marked in red

highlights the set of features that obtained the worst performance for this class of attack.

Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 0.058578 0.020856

SVM (5 features) 0.050880 0.018908

LGP (5 features) 0.046631 0.019206

MARS (5 features) 0.027604 0.014730

Combined 0.029518 0.014111

Table 4.31: Results of Experiment 2 for the class U2R with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 3 11

ensemble best 1 0

Problematic instances 0 0

Table 4.32: Experiment 2 (U2R - Decision Tree): number of problematic instances wrt the FP

and FN
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Run nr FP FN
Attack names (Total nr of instances)

ps (16) rootkit (13) buffer overflow (22)

1 1 0 0 0 0

2 2 0 0 0 0

3 1 3 1 2 0

4 0 0 0 0 0

5 4 2 0 0 2

Average 1.6 1

Max 4 3

Table 4.33: Experiment 2 (U2R - Decision Tree): Sum of the number of problematic instances for

the ensemble best wrt the FP and FN for 5 runs of the program

4.7.3 Remote to Local

4.7.3.1 Experimental Settings

The R2L test set contains 16,347 examples which are all selected for this experiment. The same

number of Normal instances are selected from the normal test set leading to a total of 32,694

examples to test the algorithm. We can expect very bad results because of the poor distribution

of attacks in the R2L training set. In fact, most of the attacks are “warezclient” (1020 out of

1126 in total for the R2L training set) leaving only 106 instances of all other attack types (seven

different types) to train the algorithms. Moreover, “warezclient” is not even represented in the

test set. There is no chance that the models built by the different algorithms will perform well on

new attacks or even on old ones with this limited training set.

4.7.3.2 Results

Table 4.34 shows the already expected results. The accuracy of all algorithms is equal or close

to 50% which leaves place to a guessing game. The only set of features which stands out slightly

is the one selected by LGP, but with an FPR of 0.559919 it is not really worth mentioning. The

number of FN obviously explodes as displayed in Tables 4.36 and 4.37. Old and new types of

attacks are similarly misclassified. There is nothing really interesting to be observed from these

results. The only conclusion that can be drawn is that the R2L training set contains too little

examples of each types of attack to be of any help.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.500000 NaN 0.000000 NaN 0.000000

SVM (5 features) 0.500000 NaN 0.000000 NaN 0.000000

LGP (5 features) 0.610326 0.582303 0.780571 0.667015 0.559919

MARS (5 features) 0.500000 NaN 0.000000 NaN 0.000000

Combined 0.500000 NaN 0.000000 NaN 0.000000

Table 4.34: Results of Experiment 2 for the class R2L with Decision Tree

4.7.4 Denial of Service

4.7.4.1 Experimental Settings

The same procedure that was performed with the training set has to be applied again with the

test set. The DoS test set contains 229,853 examples. “neptune” and “smurf” attacks count for
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Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 0.279557 0.066044

SVM (5 features) 0.095524 0.040405

LGP (5 features) 0.068128 0.045206

MARS (5 features) 0.105602 0.037055

Combined 0.083530 0.035023

Table 4.35: Results of Experiment 2 for the class R2L with respect to the computational speed

(Decision Tree)

Nr of False Positives Nr of False Negatives

41 features 0 16,347

ensemble best 1 3,587

Problematic instances 1 3,587

Table 4.36: Experiment 2 (R2L - Decision Tree): number of problematic instances wrt the FP

and FN
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3 1 15,610 1 4,221 145 11 12 0 1 6 7,741 2,406 1,066 0 0

4 1 8,340 2 3,618 146 12 14 4 2 9 522 2,406 1,600 2 3

5 1 3,578 2 11 145 9 12 3 1 3 8 2,312 1,066 2 4

Average 1 7,778.6

Max 1 15,610

Table 4.37: Experiment 2 (R2L - Decision Tree): Sum of the number of problematic instances for

the ensemble best wrt the FP and FN for 5 runs of the program
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the major part of the examples in the DoS test set with 58,001 and 164,091 examples respectively.

The other types of attacks have much smaller number of examples as shown in Table 4.4. For

example, the type of DoS called “land” is represented only 9 times and “udpstorm” is represented

only twice. For this reason, a sample of 5,000 examples was selected randomly from the “neptune”

set and another 5,000 was selected randomly from the “smurf” set. All examples of the other types

of attacks have been included leading to a DoS test set of 17,761 examples. The same number of

Normal instances are selected from the normal test set leading to a total of 35,522 examples to

test the algorithm.

4.7.4.2 Results

Results, shown in Table 4.38, are much worse than in the first experiment. For instance, the

set of features selected by LGP obtain by far the worst results with an F1score of 0.695487.

Nevertheless, all other algorithms perform better than the one trained with all features. The set

selected by SVM is the best with an F1score of 0.879408. Moreover, the major part of FN can

be assigned to new attacks. The “pod” attack is the only old attack that triggers a few FN for

each run of the program (see Table 4.41). Other old attacks sometimes triggering FN include

“smurf” and “neptune”, but the number of FN for these attacks is very low. New attacks are

more problematic. In particular, Table 4.41 shows that “mailbomb”, “apache2”, “processtable”

and “udpstorm” recurrently trigger FN even if a large portion of these attacks are detected in

general. The ensemble best helps bringing down the FP from 69 to 21 and the FN from 7,268

to 459. This is quite an improvement, but again is not enough for a real-world application. In

conclusion, we can say that the ensemble best performed quite well on unseen DoS attacks, but

that its generalization power is still limited.

Feature selection algorithm Accuracy Precision Recall F1score FPR

41 features 0.793452 0.993467 0.590789 0.740953 0.003885

SVM (5 features) 0.876978 0.862369 0.897134 0.879408 0.143179

LGP (5 features) 0.761049 0.958469 0.545746 0.695487 0.023647

MARS (5 features) 0.821998 0.995495 0.646923 0.784220 0.002928

Combined 0.853612 0.995269 0.710602 0.829183 0.003378

Table 4.38: Results of Experiment 2 for the class DoS with Decision Tree. The line marked in red

highlights the set of features that obtained the worst performance for this class of attack.

Feature selection algorithm Training time (in sec) Cross-validation time (in sec)

41 features 1.516960 0.048521

SVM (5 features) 0.638737 0.039207

LGP (5 features) 0.423280 0.036156

MARS (5 features) 0.235077 0.033683

Combined 0.513214 0.037918

Table 4.39: Results of Experiment 2 for the class DoS with respect to the computational speed

(Decision Tree)

4.7.5 Discussion

The goal of this experiment was to find out if the ensemble best could generalize well on new

unseen examples of attacks. Even if in general the ensemble best helps tremendously to bring
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Nr of False Positives Nr of False Negatives

41 features 69 7,268

ensemble best 21 459

Problematic instances 21 452

Table 4.40: Experiment 2 (DoS - Decision Tree): number of problematic instances wrt the FP

and FN

Attack names (Total nr of instances)
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1 21 459 366 15 0 2 74 0 2

2 18 1,002 366 220 0 6 407 1 2

3 15 631 207 345 0 2 75 0 2

4 17 427 0 66 1 6 348 4 2

5 12 922 367 64 0 6 481 2 2

Average 16.6 688.2

Max 21 1,002

Table 4.41: Experiment 2 (DoS - Decision Tree): Sum of the number of problematic instances for

the ensemble best wrt the FP and FN for 5 runs of the program

down the number of FP and FN, it is still far from reaching the accuracy appropriate to a real-

world application. In particular, datasets which are not careful designed are proved to be useless

in building accurate models of the attacks. This is the case with the R2L training set which

contains mainly examples of the “warez client” attack which is not even represented in the test

set and very few examples of all other types of attacks. The performance of the ensemble best

was acceptable for the classes of attacks U2R and DoS. The performance on the Probe class was

also standard even though “ipsweep” attacks went undetected for unknown reasons. Overall, we

can say that the results of this second experiment were not very satisfying, but once again proved

the usefulness of the ensemble approach.

In the future, particular attention has to be paid to the features relevant to each attack. New

features carrying meaningful information about the attacks must be designed to help the machine

learning algorithms to successfully classify all types of attack. DoS and Probe classes are mostly

characterized by time-related features whereas R2L and U2R classes mostly are characterized by

content-related features extracted from the payload of the network packets. This can only be

achieved if security experts and machine learning experts work hand in hand towards this goal.
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Chapter 5

Concluding Remarks

5.1 Conclusions

The aim of this thesis was to show that ensemble approaches fed with appropriate features sets

can help tremendously in reducing both the number of false positives and false negatives. In

particular, our work showed that the sets of relevant features are different for each class of attacks

and that is why it is important to treat those classes separately. Based on several works concerning

ensemble approaches applied to intrusion detection systems, we developed our own IDS to evaluate

the relevance of the sets of features selected in [50]. The system built in this thesis was in fact

an ensemble of four ensembles of decision trees. Each of these four ensembles was in charge of

detecting one class of attacks and was composed of four decision trees trained with different sets

of features. The first three decision trees were fed with sets of five features selected by Mukkamala

et al. in [50]. The last decision tree was fed with the union of these three sets of five features from

which the redundant features were removed.

The experiments showed that these sets were appropriate in most cases. In experiment 1,

the set of features selected by linear genetic programming gave the worst results, except for the

class DoS for which the set of features selected by SVM performed poorly. Experiment 2 gave less

interesting results because of the inappropriate distribution of examples between the training set

and test set of the KDD99 dataset. In particular, the ensemble could not generalize properly on the

R2L class because the training set contains mainly the type of attacks “warez client” which is not

even represented in the test set. In both experiments, we looked at the number of instances that

were misclassified by all four algorithms in order to obtain a result from the best combination of

these algorithms. Further work would be required to develop a real decision function combining the

results of the different algorithms. However, since the accuracy obtained in this work was not good

enough for a real-world application, designing decision functions was unnecessary. Nevertheless,

we are convinced that this work was heading towards the right direction in order to overcome the

limitations of current intrusion detection systems.

Finally, a thorough analysis of the examples that were misclassified by the ensemble was also

performed. This analysis helped us understand why the algorithms were unable to classify properly

those instances. In particular, the types of attacks that were systematically misclassified by the

ensemble were highlighted, and by looking at the signature of these attacks, we were able to

find out the reason behind those errors of classification. In most cases, the attacks displayed very

specific features that were not captured by the set of variables in the dataset. These attacks should

probably be handled by a specialized system or else new variables should be developed to train the

machine learning algorithms. In all cases, we believe that security experts and machine learning

experts should work together with the aim of improving the current intrusion detection systems.

On the one hand, security experts should develop additional features needed to detect network
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attacks and should share their knowledge on attack mechanisms with machine learning experts.

On the other hand, Machine learning experts should share their knowledge about the learning

algorithms and explain, for example, why an algorithm would perform better on a particular class

of attacks. Understanding only one aspect of the problem is definitely not enough to overcome

the difficult challenges of intrusion detection systems.

The main limitation that must be overcome in order to build efficient intrusion detection

systems is the lack of labelled datasets. Since new attacks are developed constantly, it is difficult

and expensive to create an up-to-date dataset that would include all kinds of attacks on a network.

Moreover, the information displayed in the dataset must be anonymized to avoid privacy violations.

For these reasons, unsupervised learning could be a more appropriate solution to the problem of

intrusion detection. Active learning is also a candidate to solve the problem as we will discuss in

Section 5.3.

5.2 Research Contributions

• This thesis provides a survey of the state-of-the-art in the field of ensemble approaches

applied to intrusion detection systems.

• Additionally, this work has shown that each class of attacks should be treated separately. In

fact, at least one algorithm should be assigned to detect one class of attacks instead of using

a single algorithm to detect all classes of attacks. Furthermore, algorithms used to detect

different classes of attacks should be trained with different sets of features.

• The experiments have also concluded that ensembles fed with different sets of features for

each class of attacks can outperform more standard approaches even when the ensemble is

composed of several simple classifiers such as decision trees.

5.3 Future Work

Many improvements can be added to the intrusion detection system developed in this thesis. Since

the list is quite long, we have decided to focus on the most important ones which are described in

more details in this section. Further ideas for improvement can be found in the list of reference

books on the topic of IDS at [64] and in the compilation of papers on IDS at [65] and on IPS at

[66].

Ensemble approaches using bagging techniques are very modular systems as discussed through-

out this thesis. A framework should be developed for ensemble approaches applied to intrusion

detection. This would facilitate the replacement of any algorithm of the ensemble and ease the

addition of more algorithms to each class of attacks. An object oriented architecture exploiting

heritage and polymorphism could be a good candidate for this kind of framework. Different ma-

chine learning algorithms could be added as modules to the framework and be represented in the

program by an object initialized at run time. For example, all algorithms could inherit from the

class Predictor. The pseudo-code shown in Algorithm 1 summarizes the idea. The number of

algorithms as well as the type of each algorithm for each class of attacks could be determined

on a user interface in an initialization step. Additionally, the framework should exploit multicore

processors in order to increase the speed of the computation. With the help of the previously

described framework, it would be easy to experiment many combinations of algorithms for each

class of attacks in order to build the most accurate system.

The next improvement would transform our system into an IPS. In real-world applications, it

is important for the system not only to detect the intrusion, but also to react to the detection in

order to stop the attack or avoid similar attacks in the future. The IPS must be able to protect the
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Algorithm 1: Ensemble framework

Predictor predictor;

for i← 1 to nb DT do

predictor[i] ← new DT(...);

end

for j ← i to i+ nb SVM do

predictor[j] ← new SVM(...);

end

...;

for k ← 0 to predictor.size do

predictor[k].train(...);

end

system without external help of an administrator. This kind of reactive systems can be difficult

to develop in practice as we have seen in Section 2.1.4. For this reason, more research must be

carried out in order to overcome these limitations.

Another improvement would be to apply a signature-based detection system with a database

of signatures of limited size first to filter known attacks. If an attack is detected in this first step,

a response module should be triggered to stop the attack. If no attack is detected, the data would

be transferred to the ensemble described in this thesis. Finally, if an attack is detected by the

ensemble, a signature generator could be triggered to update the signature database. This kind

of system is described in more details in Section 2.1.7.

Since the lack of labelled dataset is a key problem to the evolution of intrusion detection

systems, it would be a good idea to look at machine learning mechanisms such as active learning

to overcome this challenge. Active learning is a semi-supervised machine learning technique in

which the algorithm tries to build a model of the data with limited labels. When examples lays at

the boundary of the model, the algorithm asks the help of a human expert to label those specific

examples. Consequently, since only a small portion of the dataset needs to be labelled, the cost

of this tedious task is greatly reduced. There is very little literature on active learning applied to

the problem of intrusion detection even though this technique could be a very serious candidate

to solve the dataset problem in this field.
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[24] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection

systems. Computer Networks, 31:805–822, April 1999.

[25] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Software Engi-

neering, 13(2):222–232, February 1987.

[26] Rohit Dhamankar, Mike Dausin, Marc Eisenbarth, and James King. The Top Cy-

ber Security Risks - Zero-Day Vulnerability Trends, 2009. http://www.sans.org/

top-cyber-security-risks/zero-day.php. Webpage. Last accessed date: 12th of June

2012. Last update: September, 2009.

72

http://www.cert.org/stats/
http://www.cert.org/stats/
http://www.cert.org/advisories/CA-1996-01.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-4/dos_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-4/dos_attacks.html
http://www.sans.org/top-cyber-security-risks/zero-day.php
http://www.sans.org/top-cyber-security-risks/zero-day.php


[27] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. GP Ensemble for Distributed

Intrusion Detection Systems. In Proceedings of the 3rd International Conference on Advances

in Pattern Recognition (ICAPR), pages 54–62, Bath, UK, August 2005.

[28] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. An ensemble-based evolution-

ary framework for coping with distributed intrusion detection. Genetic Programming and

Evolvable Machines, 11:131–146, June 2010.

[29] Luca Foschini, Ashish V. Thapliyal, Lorenzo Cavallaro, Christopher Kruegel, and Giovanni

Vigna. A Parallel Architecture for Stateful, High-Speed Intrusion Detection. In Proceedings of

the 4th International Conference on Information Systems Security, ICISS ’08, pages 203–220,

Hyderabad, India, December 2008. Springer-Verlag.

[30] Jerome H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,

19(1):1–67, June 1991.
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Appendix A

KDD99 dataset Features

The following tables describing the features of the KDD99 dataset were adapted from [1].

nr Feature description Type

01 duration Duration of the connection Continuous

02 protocol type Connection protocol (e.g. tcp,udp) Symbolic

03 service Destination service (e.g. telnet,ftp) Symbolic

04 flag Status flag of the connection Symbolic

05 source bytes Bytes sent from source to destination Continuous

06 destination bytes Bytes sent from destination to source Continuous

07 land 1 if connection is from/to the same host/port;

0 otherwise

Symbolic

08 wrong fragment number of wrong fragments Continuous

09 urgent number of urgent packets Continuous

Table A.1: Basic features of individual TCP Connections

nr Feature description Type

10 hot number of “hot” indicators Continuous

11 num failed logins number of failed logins Continuous

12 logged in 1 if successfully logged in; 0 otherwise Symbolic

13 num compromised number of “compromised” conditions Continuous

14 root shell 1 if root shell is obtained; 0 otherwise Symbolic

15 su attempted 1 if “su root” command attempted; 0 otherwise Symbolic

16 num root number of “root” accesses Continuous

17 num file creations number of file creation operations Continuous

18 num shells number of shell prompts Continuous

19 num access files number of operations on access control files Continuous

20 num outbound cmds number of outbound commands in a ftp session Continuous

21 is hot login 1 if the login belongs to the “hot” list; 0 otherwise Symbolic

22 is guest login 1 if the login is a “guest” login; 0 otherwise Symbolic

Table A.2: Content features within a connection suggested by domain knowledge
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nr Feature description Type

23 count number of connections to the same host as the

current connection in the past two seconds

Continuous

24 srv count number of connections to the same service as

the current connection in the past two seconds

Continuous

25 serror rate % of connections that have “SYN” errors

(same-host connections)

Continuous

26 srv serror rate % of connections that have “SYN” errors

(same-service connections)

Continuous

27 rerror rate % of connections that have “REJ” errors

(same-host connections)

Continuous

28 srv rerror rate % of connections that have “REJ” errors

(same-service connections)

Continuous

29 same srv rate % of connections to the same service Continuous

30 diff srv rate % of connections to different services Continuous

31 srv diff host rate % of connections to different hosts Continuous

32 dst host count count of connections having the same destina-

tion host

Continuous

33 dst host srv count count of connections having the same destina-

tion host and using the same service

Continuous

34 dst host same srv rate % of connections having the same destination

host and using the same service

Continuous

35 dst host diff srv rate % of different services on the current host Continuous

36 dst host same src port rate % of connections to the current host having

the same src port

Continuous

37 dst host srv diff host rate % of connections to the same service coming

from different hosts

Continuous

38 dst host serror rate % of connections to the current host that have

an S0 error

Continuous

39 dst host srv serror rate % of connections to the current host and spec-

ified service that have an S0 error

Continuous

40 dst host rerror rate % of connections to the current host that have

an RST error

Continuous

41 dst host srv rerror rate % of connections to the current host and spec-

ified service that have an RST error

Continuous

Table A.3: Traffic features computed using a two-second time window
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Appendix B

Problematic Instances

B.1 Probe

B.2 R2L

B.3 U2R
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Figure B.1: Problematic satan
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Figure B.2: Problematic portsweep
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Figure B.3: Problematic ipsweep
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Figure B.4: Problematic imap
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Figure B.5: Rootkit attacks
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