
Enhanced Similarity Matching by
Grouping of Features

Andreas Ståleson Landstad

Master of Science in Computer Science

Supervisor: Agnar Aamodt, IDI

Department of Computer and Information Science

Submission date: July 2012

Norwegian University of Science and Technology

Assignment

Instance-Based Learning is a growing machine learning paradigm. When classify-

ing a sample (or instance) in In k-Nearest-Neighbor (kNN) type of methods, the

sample is compared to previously saved samples.

Verdande Technology is a company that applies Cased Based Reasoning in the

oil drilling domain in order to improve the productivity and safety of drilling op-

erations. The target of the DrillEdge software is to avoid faults by reusing past

experience. Each input data stream can be thought of as a feature, but in order to

be effectively used to index cases in a case base these features need to be abstracted.

It is believed that some of the input-features available during oil drilling are

related locally and that abstract features that group these together therefore will

be useful for detecting different anomalies. The hypothesis is that this might lead

to improved prediction accuracy. This is a novel approach, which the company has

just started to study, and the main focus of this thesis work. The idea behind the

system in this assignment is to study the extraction of abstract features where one

abstract feature is a group that contains one or more of these input-features.

The thesis work should combine theoretical investigations with the development

of an experimental system, based on existing work in Verdande Technology. This

also includes a study of the concept of power-average. A power-average of expo-

nent n is the n-th root of the sum of the features in a group where each feature has

exponent n. When n is large, the features with the highest values dominate and

when n is small (negative), the smaller-valued features dominate. The key idea is

to group features in different groups and then calculate the power average of each

group with different exponents. A genetic algorithm should be applied to reveal

the underlying tree structure of groups that gives the lowest classification-error.

Methods for boosting the accuracy of a learning algorithm should be given par-

ticular attention. This includes weighing the different features and application of

dimensionality reduction methods such as Principal Component Analysis (PCA). It

also includes methods for how similarity between features are measured and which

classification rule that is used.

The results of this thesis work should include:

• A theoretical/experimental study of how accuracies may be boosted by use

of dimensionality reduction methods and other relevant methods.

• A discussion of how classifiers can be evaluated.

• A presentation of the system outlined above.

• Tests performed on this system, which results should be benchmarked to

results of for example k-Nearest-Neighbor classification.

Oppgavebeskrivelse

Instansbasert læring er et voksende maskinlæringsparadigme. I k-Nearest-Neighbor-

lignende metoder blir en instans som skal klassifiseres sammenlignet mot tidligere

lagrede instanser.

Verdande Technology er et selskap som bruker Case Based Reasoning i ol-

jedrillingsfeltet for å forbedre produktivitet og sikkerhet i olje-drillingssammenheng.

Målet til DrillEdge-programvaren er å unng̊a feil ved å gjenbruke tidligere er-

faringer. Hver strøm av input-data som DrillEdge-programvaren bruker kan bli

tenkt p̊a som en feature, men for å kunne indeksere caser p̊a en effektiv m̊ate, m̊a

informasjon først bli abstrahert fra disse.

Man antar at flere av disse input-featurene er relaterte til hverandre lokalt og

at abstrakte features som grupperer disse sammen vil være nyttige for å detektere

ulike anomaliteter. Hypotesen er at dette kan føre til bedre prediksjoner. Dette

er en ung metode som selskapet nylig har startet å forske p̊a og hovedfokuset i

denne oppgaven. Ideen bak systemet i denne oppgaven er å studere ekstrahering

av abstrakte features hvor en abstrakt feature er en gruppe som inneholder flere

input-features.

Oppgaven skal kombinere teoretiske undersøkelser sammen med utvikling av

et eksperimentelt system, basert p̊a jobben som er gjort i Verdande Technology.

Dette inkluderer ogs̊a en studie av konseptet power-average. En power-average med

eksponent n er n-te roten av summen av features i en gruppe hvor hver feature har

eksponent n. Nr n er høy vil features med høy verdi dominere, mens n̊ar n er

liten (negativ) vil features med lav verdi dominere. Ideen er å gruppere features

i ulike grupper og kalkulere power-averaget til de forskjellige gruppene med ulike

eksponenter. En genetisk algoritme skal bli brukt til å finne ut hvilke trestrukturer

av grupper som vil gi lavest klassifiseringsfeil.

Det bør ogs̊a spesielt vies oppmerksomhet til metoder for å forbedre prediksjon-

sevnen til en klassifikator. Dette inkluderer å vekte features og å bruke dimensjon-

alitetsreduksjonsmetoder som for eksempel Principal Component Analysis (PCA).

Andre viktige aspekter med tanke p̊a prediksjonsevnen er hvordan similaritet blir

kalkulert og hvilken klassifiseringsregel som blir brukt.

Resultatene av denne oppgaven burde inkludere:

• En teoretisk/eksperimentell studie av hvordan prediksjonsevnen til en klassi-

fikator kan blir forbedret ved bruk av dimensjonalitetsreduksjonsmetoder og

andre metoder.

• En diskusjon av hvordan klassifikatorer kan bli evaluerte.

• En presentasjon av systemet som er foresl̊att over.

• Tester gjort p̊a systemet, hvis resultater skal bli sammenlignet med for ek-

sempel resultater av k-Nearest-Neighbor-klassifisering.

Abstract

In this report we introduce a classification system named Grouping of Features

(GoF), together with a theoretical exploration of some of the important concepts

in the Instant Based Learning(IBL)-field that are related to this system.

A dataset’s original features are by the GoF-system grouped together into ab-

stract features. Each of these groups may capture inherent structures in one of the

classes in the data. A genetic algorithm is used to extract a tree of such groups

that can be used for measuring similarity between samples. As each class may

have different inherent structures, different trees of groups are found for the dif-

ferent classes. To adjust the importance of one group in regards to the classifier,

the concept of power average is used. A group’s power-average may let either the

smallest or the largest value of its group dominate, or take any value in-between.

Tests show that the GoF-system outperforms kNN at many classification tasks.

The system started as a research project by Verdande Technology, and a set of

algorithms had been fully or partially implemented before the start of this thesis

project. There existed no documentation however, so we have built an understand-

ing of the fields on which the system relies, analyzed their properties, documented

this understanding in explicit method descriptions, and tested, modified and ex-

tended the original system.

During this project we found that scaling or weighting features as a data pre-

processing step or during classification often is crucial for the performance of the

classification-algorithm. Our hypothesis then was that by letting the weights vary

between features and between groups of features, more complex structures could

be captured. This would also make the classifier less dependent on how the fea-

tures are originally scaled. We therefore implemented the Weighted Grouping of

Features, an extension of the GoF-system.

i

Notable results in this thesis include a 95.48 percent and 100.00 percent cor-

rectly classified non-scaled UCI Wine dataset using the GoF- and WGoF-system,

respectively.

ii

Preface

This report was written as my master’s thesis at the Department of Computer and

Information Science (IDI) at the Norwegian University of Science and Technology

(NTNU).

Verdande Technology is a cooperating company to the Artificial Intelligence

group at IDI, NTNU that often includes master students in their research projects.

Through Agnar Aamodt I got in touch with them regarding a new research project

led by Sigve Hovda and this research project has set the theme for this master’s

thesis.

I want to thank Verdande Technology for including me in their research project

and Sigve Hovda especially for his ideas, his support and for being a strong the-

oretical backbone to rely on throughout this project. I also want to thank Agnar

Aamodt for providing new perspectives, guidance and suggestions which have im-

proved this report at a large scale and Sigurd Fosseng for providing interesting

ideas and insights with his work.

iii

iv

Contents

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Problem Definition . 1

1.3 Our Context in this Research Project 4

1.4 Research Goals and Methodology . 4

1.5 Presentation of the Structure of this Report 5

2 Theoretical Exploration 7

2.1 Introduction . 7

2.2 K-Nearest-Neighbours Classification 8

2.2.0.1 Design Choices for kNN 10

2.2.1 Classification Rule of kNN . 11

2.2.2 Regression and kNN . 13

2.2.3 Choosing k . 13

2.2.4 Different ks for Each Class 15

2.3 Evaluating Classifiers . 18

2.3.1 The Confusion Matrix and Special Classes 18

2.3.1.1 Precision/recall-example 19

2.3.1.2 Receiver Operating Characteristic 19

2.3.1.3 Special Classes and This Report 20

2.3.2 Training-/Test-Tets and Overfitting 21

2.3.2.1 Held-out data . 22

2.3.3 Cross-Validation . 22

v

2.3.3.1 Monte Carlo Simulations and Theoretical Maximums 23

2.4 Normalization, Standardization and Scaling Data 24

2.4.1 Normalization . 24

2.4.2 Standardization . 25

2.4.3 Scaling kNN and Use of Weights 25

2.5 Dimension Reduction . 27

2.5.1 Manual Feature Selection . 28

2.5.2 Automatic Dimension Reduction 31

2.5.2.1 Principal Component Analysis 32

2.6 Distance Functions . 38

2.6.1 The Minkowski Distance Function 39

2.7 Genetic Algorithm . 42

2.7.1 Genetic Algorithm Example 44

2.7.1.1 Chromosome Description 44

2.7.1.2 Crossover . 45

2.7.1.3 Mutation . 45

2.7.1.4 Fitness-function . 45

2.8 Other Methods and What This Report Does Not Cover 45

2.8.1 Other Classifiers . 45

2.8.2 Reducing the Expense of Classifying a Sample 46

2.8.3 Other Dimensionality Reduction Techniques 46

3 GROUPING OF FEATURES 47

3.0.4 Context . 47

3.0.5 The Structure of this Chapter 48

3.1 GoF-Specific Theory . 48

3.1.1 The Classification Rule of the GoF System 48

3.1.1.1 Different Sphere Volumes and the GoF System . . . 49

3.1.1.2 The k-Mean Classification Rule 50

3.1.1.3 Using Majority Voting instead of K-Mean for Clas-

sification . 51

vi

3.1.2 Using Different Distance Functions for Different Classes . . . 52

3.1.3 The Grouping of Features System 53

3.1.3.1 Grouping of Features and Instance Based Learning

(IBL) . 54

3.1.4 The Distance Function in the GoF-system and the concept

of Power Averages . 55

3.1.4.1 Power Average . 56

3.1.4.2 The GoF-Distance Function 58

3.2 The GoF System’s Implementation 59

3.2.1 Recap of the Genetic Algorithm 61

3.2.2 Genetic Operators . 61

3.2.3 Forming a new generation . 61

3.2.4 Parameters used by the Genetic Algorithm 62

3.2.5 Chromosome . 62

3.2.6 Calculating a Distance, an Example 63

3.3 Weighted Grouping of Features . 64

3.3.1 Weighted Power Average . 65

3.3.2 Changes in Regards to the Genetic Algorithm 66

3.3.3 Effect of adding weights in regards to performance 66

4 TESTS AND ANALYSIS 69

4.1 Presentation of Tests and Datasets 70

4.1.1 Tests . 70

4.1.2 Datasets . 70

4.1.3 Test-Schemes for Different Datasets 71

4.1.4 Determining Parameters . 72

4.1.5 Structure of Presentation . 73

4.2 Tests and Analysis . 73

4.2.1 The 2f-set . 73

4.2.1.1 Dataset description 73

4.2.1.2 Results and Analysis 74

vii

4.2.2 The 3f-Set . 74

4.2.3 Results and Analysis . 75

4.2.4 The Square-in-Square-Set . 76

4.2.4.1 Dataset description 76

4.2.4.2 Results and Analysis 76

4.2.4.3 Weighted GoF-Results and Overfitting 77

4.2.5 The DigitsSmall-Set . 78

4.2.5.1 Dataset description 78

4.2.5.2 Results and Analysis 78

4.2.6 The UCI Wine-Set . 79

4.2.6.1 Dataset description 79

4.2.6.2 Results and Analysis 80

4.3 Summary of results . 82

5 CONCLUSION 83

5.1 Future work . 85

viii

List of Figures

1.1 The 2f-dataset. One class uniformly distributed in the range [0,1] in

both dimensions x, y, the other a gaussian with mean y = 1−x and

a standard deviation of 0.1. 3

2.1 Example of k-nearest neighbour classification with k = 3 (solid line)

and k = 5 (dashed line) from (Ajanki, 2007) 8

2.2 From Duda et al. (2000): Bayes error rate. 11

2.3 Square in Square. One square is uniformly distributed from 0 to 1

in two dimensions, the other from 0.25 to 0.75 in two dimensions.

Both classes contain 1000 data points. 14

2.4 Results from running kNN with k varying from 1 to 50. 15

2.5 Example of a plot of three ROC-curves in one graph from Bradley

(1997) . 20

2.6 The 3f set. One class (blue) is randomly distributed uniformly over

three dimensions, the other class (red) is randomly distributed in

one dimension (x3), but two of the dimensions are dependent as one

is equal to one minus the other (x1 = 1− x2) 26

2.7 The Square-in-square dataset with one dimension reduced. Scatter

of the same dataset as in figure 2.3 with one dimension removed.) . . 29

2.8 3f reduced. Scatter of the same dataset as figure 2.6, but with di-

mension x3 removed. 30

2.9 PCA-converted data from FrantzDale (2012) 33

ix

2.10 PCA3f reduced. Scatter of the same dataset as figure 2.6 after hav-

ing transformed the data into PCA-space. Showing the two most

dominant components. 35

2.11 The 3f-set (2.6) with x3 removed manually after having removed x3

and then transformed the data into PCA-space with two dimensions. 36

2.12 The 3f-set (2.6) with x3 removed manually transformed into PCA-

space with one dimension. 37

2.13 From Quartl (2011): The unit circle of different p’s, 1 <= p <

∞ (left) and table of results from varying the p in the Minkowski

distance function of kNN on the square-in-square dataset (right). . 41

3.1 Grouping of Features tree. An object with three features. 53

3.2 Power-average-function without geometric mean adjustment for dis-

tances d1=1, d2=10. 56

3.3 Showing the main parts of the GoF-system 60

3.4 Tree that shows each node in the tree has its own weight. 65

4.1 2f-set . 73

4.2 The 3f set. 75

x

List of Tables

2.1 Results from classifying the square-in-square-set using kNN when

using different ks for the two different classes. 17

2.2 Confusion matrix . 18

2.3 Varying weights for dimensions x, y and z. Weighing the the non-

informative z-dimension gave inferior results, none of which exceeded

90.00 percent. 27

2.4 Removing features manually . 31

2.5 Removing features automatically and manually. PCA3f is the same

dataset in PCA-space, PCA3f-m is the 3f-set where one feature is

removed manually before transforming the data into PCA-space.

Showing with zero, one and two dimensions removed. 37

2.6 From Aggarwal et al. (2001): Results of using different p’s in the

Minkowski distance-equation on high dimensional data. Lp is the

Minkowski distance-function of power p. The datasets are all datasets

from the UCI Machine Learning Repository. 40

3.1 EasySet . 52

4.1 Results on the 2f-set using kNN and GoF. k=3, one sub-group in

the GoF-system. 70

4.2 Results on the 2f-set using kNN and GoF. k=3, one sub-group in

the GoF-system. 74

xi

4.3 Results on the 3f-set from the previous chapter and the results on

the GoF-system. 75

4.4 Results on square-in-square-set classified by kNN, GoF and WGoF. . 76

4.5 Results on square-in-square-set classified by kNN and on the GoF-

system. 77

4.6 Results on the DigitsSmall-set using kNN and GoF. k=3, one sub-

group in the GoF-system. 79

4.7 Results on the UCI Wine set classified by kNN and using the GoF-

and WGoF-systems. 80

xii

1

INTRODUCTION

1.1 Motivation

Verdande Technology does R&D and develops software for monitoring oil wells and

oil drilling processes. The software analyzes time-series of data in real time and

matches patterns in the data to previously saved data. Time-series in he previously

saved data has been has been labeled if an anomaly happened as a result of this.

If a new time series matches one of these labeled saved patterns, a user can be

alerted and take action to prevent an unwanted outcome. The purpose of the

system documented in this report is enhanced use of this information in order to

better be able to predict such anomalies. The potential success of this work is a

result which can be applied to classification tasks such as the ones used during oil

drilling.

1.2 Problem Definition

This report presents a classification-system that is part of ongoing research led by

Sigve Hovda in Verdande Technology. The system is in this report called Grouping

of Features (GoF) and is based on theory from the field of Instance Based Learning

(IBL). As backbone it uses a Genetic Algorithm with k-Nearest-Neighbor (kNN)

as fitness-function in order to search for optimal solutions in a search space created

1

by custom modules.

IBL methods including kNN stores samples (instances) represented as vectors of

features together with their classification. New samples are classified by comparing

the new sample to the stored samples in order to find objects that in some sense

are similar to the new sample. The GoF-system’s goal is to improve classifica-

tion accuracies in multi-class learning problems. Multi-class learning problems are

learning problems where there exists a finite amount of classes and where a sam-

ple can be classified as belonging to precisely one of these classes (Dietterich, 1995).

Through the Grouping of Features system we suggest to building trees of fea-

tures where features are grouped together. The purpose of this is the intuition that

some features may become more meaningful to the classifier when combined than

when they are alone. An example of this can be seen in figure 1.1. The blue class

here is distributed in a gaussian along the line y = 1 − x and the green class is

uniformly distributed from 0 to 1 in both dimensions. Comparing the value of x

of a new object to the stored objects alone will not help determining the class of

the new object, as both classes are just as likely to take any value between 0 and

1 in either dimension.

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1: The 2f-dataset. One class uniformly distributed in the range [0,1] in

both dimensions x, y, the other a gaussian with mean y = 1 − x and a standard

deviation of 0.1.

If one could group these two features (that is, dimension x and dimension y)

together and have the classifier to classify an object as blue if the the sum of x and

y is close to 1.0, and green if not, the classifier would perform well. If kNN was

used to classify objects were the features were stored as the sum of x and y, all

blue samples would be close to each other.

The GoF-system aims to capture different structures such as the one above. In

addition, however, each class may have different inherent structures. Because of

this the GoF-system lets every class represent the datapoints with their own tree-

structure. The tree-structures are then used when measuring similarity between

samples. As such a tree may be thought of as a distance-function. Optimal or sub-

optimal parameters determining which features to group together, how the tree

should look and how the distance should be calculated for each group are found

using a genetic algorithm.

In order to be able to successfully create a well-performing system, it is im-

3

portant to understand key aspects within the field. Because of this, a thorough

theoretical exploration of the field has been performed. Some of the findings in

this exploration are presented in chapter 2.

1.3 Our Context in this Research Project

When we joined this research project, Verdande Technology had begun implement-

ing the Grouping of Features system. The system was already able to do classifica-

tions, but some of the components that had been programmed were not very easily

read and other components were not set up in the most intuitive fashion. As the

system was not documented at all, we spent some time understanding this system

by rewriting some of the components into more intuitive ones and writing tests for

these components. Later, while documenting the system, we also replaced most

components when we extended the system into the Weighted Grouping of Features

System.

1.4 Research Goals and Methodology

The main research-questions supporting the theoretical exploration and the build-

ing and use of the GoF-system, were the following.

• Can the Grouping of Features system produce higher classification rates than

for example basic kNN?

• Will a Genetic Algorithm be able to successfully find good parameters for

these groups?

• Can the system be modified in any way to perform even better?

• What are the grouping of features-system’s strengths and weaknesses?

• For what type of problems will this system be useful?

4

The methodological approach to find answers to these questions were guided

by the following questions:

• What defines IBR-methods and k-Nearest-Neighbor?

• How can these be customized, and when is such customization useful?

• How can this usefulness be evaluated, that is, how should one evaluate a

classifier?

• What are the key characteristics of a genetic algorithm, and how does one

use it as a search heuristic?

Our high-level structured progress plan contains the following four steps:

1. An understanding of the field was sought by doing a theoretical exploration

with supporting experiments

2. An understanding of the system was sought by documenting the system

3. The learnings from the theoretical exploration was used to try out different

modifications on the original system

4. Tests were performed along the way in order to evaluate and understand

different methods and the GoF-system.

1.5 Presentation of the Structure of this Report

The report is divided into six chapters. After this chapter, Introduction, comes the

chapter Theoretical Exploration. That chapter provides an overview over some of

the research and tests that have been performed as a theoretical base for the GoF-

system. Instead of presenting this as a list of technologies and variations together

with results from literature, a deeper understanding has been sought by performing

experiments on many of these. After the stage has been set, the GoF-system is

described in the chapter Grouping of Features. This presentation is followed by tests

and results in the chapter Tests and analysis. The report and its main discoveries

are then summed up in the Conlusion-chapter.

5

6

2

Theoretical Exploration

2.1 Introduction

In order to understand the possibilities of the Grouping of Features (GoF)-system

presented in Chapter3, and in order to improve it and extend it, it was necessary

to do a thorough theoretical exploration of the basic technologies and tools on

which it is based. As k-Nearest-Neighbor is used by the GoF-system, the examples

closely follow this method. In addition a somewhat deeper understanding of fea-

ture selection was sought, and for editing and selecting features one method was

studied in particular, namely the popular Principal Component Analysis (PCA).

In addition there is a brief presentation of the search heuristic genetic algorithm

with an example in the end of this chapter. As a genetic algorithm is also used in

the GoF-system, the search heuristic is further explained in chapter 3.

The theoretical exploration in this chapter is presented as a discussion of key

elements together with supporting practical examples. Throughout this explo-

rative process, some elements we have not found in literature have been discovered.

We have implemented the mentioned experiments such as variants of k-Nearest-

Neighbor, feature-scaling and -selection using PCA and a sample genetic algorithm

in Java and/or Matlab with help of standard packages.

7

An introduction to kNN starts off this chapter together with a discussion of how

classifiers are evaluated. This latter discussion is necessary as the other sections

all evaluate experiments using these concepts.

2.2 K-Nearest-Neighbours Classification

The k-Nearest-Neighbor (kNN)-algorithm compares distances between a test-sample

and all training-samples that have been stored on beforehand (Cover, 1967). As

kNN is a supervised algorithm, the training examples all have known labels1. The

k samples that have the shortest distance from the test sample are the k neighbors

of the test-sample and the majority class among these is chosen as its label. Figure

2.1 is showing how kNN classifies a new sample from its k = 3 or k = 5 neighbors.

Figure 2.1: Example of k-nearest neighbour classification with k = 3 (solid line)

and k = 5 (dashed line) from (Ajanki, 2007)

As there are two triangles among the three nearest neighbours, and only one

square, the class triangle is predicted as the unknown sample’s class. kNN does

reasonably well at many classification tasks and is simple and easy to implement.

One of its downsides is that all of the computational complexity is placed at exe-

cution time2. As such kNN is a lazy learning algorithm. In algorithm 1 is a high

1A label is an indicator of which class the sample belong to.
2If n is the number of training examples and m is the number of features in each training

example, the complexity for classifying one sample is O(nm) for regular kNN. For each test-

example to be evaluated one has to iterate over all training-examples and measure the distance

between all features.

8

level pseudocode for kNN that we have written.

Algorithm 1 The kNN algorithm

su is the sample which is to be classified

S is the vector of training examples

NN is vector of length k and is used to store nearest neighbors. Its initialized

with value Infinite for all members

for sample si in S do

dui is the distance between su and si

for sample sn in NN do

dun is the distance between su and sn

if dun < dui then

replace sn in NN with si and continue from 4.

end if

end for

end for

An example (or a sample) is a pair (x, y) where x is a set of features and y is a

label. Russell and Norvig (1995) argues that a supervised learning method such as

kNN formally is not a classifier per se as a classifier only is a function X =⇒ Y

(Russell and Norvig, 1995). As kNN produces a prediction by comparing the new

sample to all of the training data and no generalization is done on beforehand,

kNN is instead a higher order function (x =⇒ Y)∗ =⇒ (x =⇒ y)∗. Given a

specific set of training data and a given sample x to be predicted, the classification-

equation is (X,Y)training−data =⇒ (x =⇒ y)prediction. Nevertheless, the task

one uses kNN for is classification. As such this thesis will follow common jargon in

the classification-community and use the word classifier about supervised learning

methods.

An Instance Based Learning-method such as kNN is a multi-class learning prob-

lem if there is a finite set of labels Y can take. It is especially this kind of task

that is of interest in this report. If Y is only bound by R, it is instead a regression-

method where the label given is the average of its k nearest neighbors. There also

9

exist other supervised learning tasks besides multi-class learning which will not be

discussed. Applications for kNN include searching in databases (Seidl, 1997), fraud

detection (Ngai et al., 2011) and information retrieval(Yang and Liu, 1999).

kNN is one of the ten most influential data-mining algorithms (Wu et al., 2007)

and has one strong guarantee, namely that with infinite training data, kNN will

never perform worse than twice the Bayes error rate, and it is guaranteed to ap-

proach the Bayes error rate for some value of k (Cover, 1967)3. In the examples

used in this report the Bayes error rate is the error rate one would obtain given

optimal decision lines. In figure 2.2 the optimal decision line is at XB , that is,

this is the lowest possible error one can obtain. Moving the decision line in either

direction will increase the classification error rate. The Figure 2.2 from Duda et al.

(2000) shows how the non-optimal decision line at X∗ will yield error rates similarly

to the sum:

err =

∫
R1

p(x|ω2)p(ω2)dx+

∫
R2

p(x|ω1)p(ω1)dx (2.1)

When trying to minimize the error rate, the goal of the classifier is to get as

close to the optimal decision line as possible. The optimal decision line is at Xb,

and using this line one would reduce the error by:

reduced err =

∫ X∗

XB

p(x|ω2)p(ω2)dx−
∫ X∗

XB

p(x|ω1)p(ω1)dx (2.2)

2.2.0.1 Design Choices for kNN

For regular kNN there are four main design choices:

• Which classification rule to use.

• k, the number of neighbors to consider in the classification rule.

• Which distance function to use.

3Further refinements in regard to the Bayes error rate were formalized by Hostetler (1975).

10

Figure 2.2: From Duda et al. (2000): Bayes error rate.

• What to do when there is a tie.

The choice of distance-function will be discussed in section 2.6 and the other three

design choices are the main topics in the next section. The tie-breaker however,

will only be mentioned briefly: If one has three classes or possible labels and one

has chosen k = 3, a tie occurs when the three nearest neighbors each take different

labels. For this example a reasonable tie-breaker might be to choose the closest

one, or, if the distances are equal, choose one at random. For the case when one

has two classes, choosing k = 3 avoids the tie-issue, and it is therefore a common

choice of k. k=3 with the tie-breakers mentioned are used in this report if nothing

else is mentioned.

2.2.1 Classification Rule of kNN

In Loftsgaarden (1965), the k-Nearest-Neighbor density function was formalized.

The probability distribution for the label for an unknown sample x, is estimated

as:

F̂ (x) =
k − 1

nVdrd
(2.3)

In this formula r is the sphere in which its k nearest neighbours lie, d is the

dimensionality, n is the total number of samples in the dataset and Vd is the volume

11

of the mentioned sphere. The science-community later omitted the -1 in 2.3 without

loss of consistency, and it is this model kNN uses. The conditional probability of

sample x being in the sphere given that the label is yi, is then:

F̂ (x|Y = yi) =
ki

niVdrd
(2.4)

where ki is the number of training-samples with label yi in the sphere and and

ni is the total number samples with label yi. With the kNN majority-rule, the

prior probability of class yi is P (yi) = ni

n , where ni is the number of samples with

class yi in the dataset and n is the total number of samples in the dataset. The

posterior probability for class yi given a sample x is then given by:

P (Y = yi|x) =
F̂ (x|Y = yi)P (yi)

F̂ (x)
(2.5)

=
ki
k

(2.6)

This is the theoretical basis for the majority classification-rule used in regu-

lar kNN, which will be dwelled upon a little more in chapter 3. This rule finds

the k nearest neighbors and the majority label among these are chosen as the

test-sample’s label. Increasing the k ultimately increases the sphere Vd, effectively

reducing the effect of over-fitting as the decision lines become smoother, but also

using samples further from the sample-point. The choice of k is alas an important

choice and will be discussed in 2.2.3.

Albeit being the basis for regular kNN, the GoF-system does not generally use

the majority rule. For reasons explained in 3.1.1.2, we expect to quicker obtain

higher test results using a mean of the distances from k of the nearest neighbors

from each class and choose the class with the smallest mean distance from the

sample point. We call this the k-mean-rule.

12

2.2.2 Regression and kNN

kNN can be used as a regression-method by choosing the average of the k nearest

neighbors as label for the new sample. In order to improve predictions, a scheme

proposed by Dudani (1976) was to weigh the contribution of the different neighbors

according to their distance. A typical weighting scheme for regression is to let the

contribution of each neighbor be determined by the inverse of the distance from

the sample: 1
d , where d is the distance from the sample point. This is a general-

ization of linear interpolation (Kaur et al., 2012). Although important in regards

to kNN, this is not applicable to multi-class classification tasks such as the ones

the GoF is to solve. The GoF-system nevertheless uses a classification rule called

k-mean. This method also uses a mean of neighbors in order to determine the label

of a new sample, but should not be confused with the average-label chosen by the

mean method used for regression.The k-mean classification rule will be presented

in 3.1.1.2.

2.2.3 Choosing k

Choosing the k used by kNN is perhaps the largest design choice in the kNN-

algorithm. The optimal choice of k depends on the data, and generally a small k

will make the effect of noise larger, whereas large values of k make the decision

boundaries smoother and less distinct. As a rule of thumb one may consider using

larger k’s when there are many data points, as the probability of having points

close to the sample point increases, (Lange et al., 1995).

As an example consider the square-in-square dataset in figure 2.3:

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: Square in Square. One square is uniformly distributed from 0 to 1

in two dimensions, the other from 0.25 to 0.75 in two dimensions. Both classes

contain 1000 data points.

The larger square is an area of
∫ 1

0
1 dx = 1 and the smaller area has an area of∫ 0.75

0.25
0.75− 0.25 dx = 0.3125.

Because the blue class in the smaller square is more dense than the red, we

would optimally like all points within this square to be classified as the red class.

Outside the square we would like all the points to be classified as blue. With a

small k, almost all points outside the smaller square will be classified correctly.

This comes at a cost however, as a small k also will make the classifier classify

several points within the small square as blue. A large k on the other hand, will

make sure very few (if any) samples within the small square will be classified as

blue. The cost is that the decision-boundary will grow and samples outside the

small square that are close to the small square, are likely to be classified as red.

Cross-Validation or Monte-Carlo(MC) simulations can be used to find a good value

of k.

We implemented kNN in Java and Matlab for different test purposes. One

14

purpose was to see how the value of k changed the results when using kNN for

classification. The results of cross-validation simulations show that for the square-

in-square dataset, good values of k seem to be between ten and twenty as shown

in figure 2.4:

0 5 10 15 20 25 30 35 40 45 50
78

79

80

81

82

83

84

85

86

Figure 2.4: Results from running kNN with k varying from 1 to 50.

2.2.4 Different ks for Each Class

One thing we did not find in literature, but which seems promising, is to use a

different k for each of the classes when using different classification rules. In this

way, one can increase or decrease the probability of having the classifier select one

particular class in cases of doubt, and a different k might account for different

structures in the classes. This can also be used for enabling one to in some way

use the Receiver Operator Characteristics (ROC) curve (presented in 2.3.1.2); If

it was wanted to have the classifier select one class more often than it originally

15

did one could increase the k used for this class, and by having different k’s for

the different classes the decision boundaries might be smoothed in new ways. For

kNN the theory is that using different k’s will be especially useful when one class

has a higher density than the other in a case of doubt. In such cases the decision

boundary will be moved towards the lower-density class.

The GoF-system finds different ways of calculating the distances for the different

classes, and also varying the k would be a natural extension. This is, however,

saved for future work. What we did do, is test using different k’s for the different

classes on the square-in-square dataset. In table 2.1 are the results shown from this

experiment. We varied k from 1 to 11 for the class contained in the large square

and from 1 to 25 on the smaller square, both with increments of 2.

16

k1 k2 Result

1 1 77.18

1 3 83.94

1 5 85.98

1 7 87.00

1 9 87.62

1 11 88.38

1 13 88.30

1 15 88.75

1 17 88.42

1 19 88.85

1 21 88.90

1 23 88.06

1 25 87.07

3 1 78.28

3 3 82.17

3 5 83.54

3 7 85.53

3 9 86.17

3 11 86.30

3 13 86.63

3 15 87.11

3 17 87.52

3 19 86.95

3 21 87.43

3 23 87.49

3 25 87.77

k1 k2 Result

5 1 76.97

5 3 81.44

5 5 83.76

5 7 84.88

5 9 85.39

5 11 86.08

5 13 86.29

5 15 86.37

5 17 86.17

5 19 86.54

5 21 86.76

5 23 86.51

5 25 86.33

7 1 76.35

7 3 80.69

7 5 83.19

7 7 84.50

7 9 84.85

7 11 85.33

7 13 85.99

7 15 85.52

7 17 86.10

7 19 86.35

7 21 85.97

7 23 86.42

7 25 85.91

k1 k2 Result

9 1 75.54

9 3 80.50

9 5 82.79

9 7 84.60

9 9 84.88

9 11 85.25

9 13 85.11

9 15 85.37

9 17 85.27

9 19 86.01

9 21 85.86

9 23 85.52

9 25 86.03

11 1 75.37

11 3 80.52

11 5 82.86

11 7 83.49

11 9 84.13

11 11 84.58

11 13 85.03

11 15 85.49

11 17 85.10

11 19 85.61

11 21 85.30

11 23 85.61

11 25 85.27

Table 2.1: Results from classifying the square-in-square-set using kNN when using

different ks for the two different classes.

When classifying using regular kNN, an improvement from 84.48 percent with

k=9 to 88.90 percent was achieved when allowing the k’s to be different for the

different classes. The best results were obtained with k1 = 1 for the red class and

k2 = 21 for the blue. The results with k1 varying from 1-11 and k2 varying from

1-25 are shown above in table 2.1, both with increments of 2 for the ki’s.

17

2.3 Evaluating Classifiers

A testing-environment for a classifier is not the same as using the classifier in

the real world, and how good a classifier is might not best be evaluated by the

intuitive concept ”‘accuracy”’, that is: correctly classified samples
total number of samples . In this section

several concepts will be briefly discussed, namely:

• The confusion matrix and special classes

• Training-/test-sets and overfitting

• Cross validation

• Monte Carlo-simulations and theoretical maximums

The next sub-section is a discussion about what accuracy is and why precision

rate not always is the best way to measure accuracy.

2.3.1 The Confusion Matrix and Special Classes

Consider a dataset in which there are two possible labels for each sample: Positive

p and Negative n. All of the information in regards to measuring the accuracy or

usefulness of a classifier would then lie in the matrix in table 2.2:

Table 2.2: Confusion matrix
Reality

p n

Predicted
p tp fp

n fn tn

In this table, known as a confusion matrix, tp, fp, tn and fn are short for

True and False Positive and True and False Negative. The previous mentioned

”‘accuracy”’-measure is then simply tp+tn
tp+fp+tn+fn . Note that the denominator ag-

gregates to the total number of samples. There are, however, two other measure-

ments that are useful when evaluating some classifiers. These are ”‘precision”’,

tp
tp+fp and ”‘recall”’, tp

tp+fn . To exemplify the two an example is called for.

18

2.3.1.1 Precision/recall-example

The master-student Mary has received a bunch of data describing each student

that went to her university ten years ago together with the average of the grades

received during their time at the university. Her assignment is to create a classifier

that predicts which students that receive the 1 percent highest grades (positive).

In order to obtain a 99 percent accuracy, all her classifier has to do is to predict

all students as not being in the top 1 percent, that is, as negatives:

accuracy = 100
tp+ tn

tp+ fp+ tn+ fn
% =

0 + 99

100
% = 99% (2.7)

Although the accuracy is 99 percent, the classifier does a very poor job of finding

the students that are in the top 1 percent. If the classifier were to find most of the

students in the top 1 percent, high recall is wanted. To get a 100 percent recall,

she could make a classifier that returned only positives. This, like the classifier

only returning negatives, is not a useful classifier either. In order to be useful,

the classifier needs to have high precision in addition to high recall. Because the

set of negatives is much larger than the set of positives, the concept of accuracy is

much less meaningful than the other two measurements. An accuracy of 99 percent

might be great if combined with a high recall, but without knowing the recall, a

99 percent accuracy might just be a classifier returning only negatives.

2.3.1.2 Receiver Operating Characteristic

For binary classification tasks a balance between the two - high recall vs high

accuracy - can be found using a Receiver Operating Characteristic(ROC)-curve.

An ROC-graph is a plot of true positive rate (tp/p) versus false positive rate (fp/n).

An example of an ROC-curve is shown in figure 2.5.

19

Figure 2.5: Example of a plot of three ROC-curves in one graph from Bradley

(1997)

In order to take advantage of this however, one needs to be able to adjust the

probability model in a way that increases the probability of choosing one class over

the other. This is not something that can be trivially done with IBL-methods as

there often are no parameters that can be tweaked in order to move the probabilities

of choosing one class smoothly. A suggested method to in some sense increase the

probability of one class is presented in the section about using different k’s for

different classes(2.2.4). If one has an explicit cost of misclassifying either class

y1,y2 one can use a classification rule that minimizes the cost:

fc(x) = arg min
i

n∑
j=1

C(i|j)P (Y = yi|x) (2.8)

Here the operator C(i|j) is the cost of misclassifying a label as yi if the true

label were to be yj . P (Y = yi|x) is the conditional (posteriori) probability of the

label being yi given the sample x. This is further presented in the section 2.2.1

2.3.1.3 Special Classes and This Report

When having special classes such as the one above it is therefore natural to consider

the whole confusion matrix as all three evaluation-methods depend on all of the

20

numbers and one method alone might be meaningless. For most of the experiments

and tests in this report however, the accuracy-measure is meaningful and considered

adequate. Section 2.3.2 discusses another way in which a classifier that will perform

poorly in the real world may obtain a 100 percent accuracy when an important

step in the evaluation process are not being followed - namely splitting the data

into exclusive training and test sets.

2.3.2 Training-/Test-Tets and Overfitting

How well a classifier performs in the real world might measured by how well it pre-

dicts labels or classes on data of which it does not know the label of. If one were

to know the labels, the best classifier would just return these labels and no classi-

fication algorithm would be necessary4. In an academic- or research-environment

where one actually knows the correct labels for all samples, it would therefore be

unreasonable to test a algorithm on the same dataset that it was trained on.

As an example, imagine having a list of the heights of all students at a uni-

versity, represented by numbers from R. If all students’ heights were randomly

classified as Class A or Class B with a probability of 50 percent for each, a classi-

fier should obtain a 0.5 precision rate when trying to predict these labels. Training

and then testing on a fixed dataset of tuples of (height, label) using kNN with k=1

however, will obtain a 100 percent precision rate - a sample’s nearest neighbour

would be itself.

Abstractly what has happened, is that the classifier has been fitted to noise as

there are no structures in the training data. Fitting a classifier to the exact place-

ments of the data points rather than structures the data was based on is called

over-fitting. Because one tested on the same data as the classifier one trained the

classifier on, the model was fitted to the training points and when testing on the

same points, the accuracy was much higher than what is possible in regards to the

4This would be the same as table-lookup.

21

structure of the data.

2.3.2.1 Held-out data

In order to get results that reflect the performance the classifier will have in the

real world, it is necessary to keep some data away from all training, and use this

data for testing. By splitting the data into independent training- and testing-sets,

overfitting to the training-data will be reflected by the results obtained by the clas-

sifier on the test-data. Data used for testing is also called held out data.

Sometimes it is desired to find optimal parameters for the classifier and one

wants to perform tests to find these parameters. As using either the training data

or the test data for this purpose would result in over fitting to either of the sets, it

is necessary to split further into one training, one test and one validation set, where

the separate validation set will be used to find good parameters. As such, different

data is used for testing in chapter 4 where the GoF- and WGoF-systems are tested.

Holding out data however, has one down-side. By splitting up the data into two

sets the amount of data used for either training or testing is also reduced. This is

not an issue when one has an unlimited amount of data, but with a limited amount

of data there is a trade-off between how how much data one should use for training

and how much one should use for testing. More data for training is likely to yield a

better classifier and more data for testing may give a more accurate approximation

to how well the classifier performs. The latter is because a test-set of few samples

makes the result more dependant on each of the individual samples rather than the

structures among the samples. Cross-validation is a technique that reduces this

issue of having less training- and testing-data:

2.3.3 Cross-Validation

When having a smaller dataset, cross-validation (CV) is an intuitive and easy

way of capturing and avoiding overfitting to test-data while keeping the amount of

22

training-data high. CV randomly splits the data into k folds of approximately equal

size. Then, for all k folds, one fold is held out for testing whereas the remaining k-1

folds are used for training. The accuracy of the classifier is then measured as the

average of the k results. In this way as much training data as possible is used for

training, while reducing random fluctuation of result on the test-set. In this report,

10-fold CV is used when nothing else is mentioned. One type of cross validation

that is worth mentioning especially is Leave One Out Cross Validation (LOOCV)

as this is used by the Grouping of Features-system. As the name suggests, this is

k-fold CV where k equals the total number of samples in the dataset, that is, one

uses all of the data except one sample as training-data and tests on the remaining

sample. This is done for every sample in the database.

CV provides almost unbiased (Efron and Tibshirani, 1993) results and provides

a fair estimate of how well a classifier might do with a limited amount of data.

2.3.3.1 Monte Carlo Simulations and Theoretical Maximums

The datasets used in this chapter are all generated in Matlab manually and it is

therefore known exactly how the distributions look. Consider the square-in-square

dataset that has been used in previous experiments. Because the class contained

in the smaller square (class A) is more dense than the one in the larger, the opti-

mal decision lines follow this square precisely. When Class A is chosen whenever

a sample is inside the smaller square and vica versa, the recall of Class A is 100

percent and the recall of Class B is 75 percent. The theoretical maximum accuracy

for this dataset is therefore 100%+75%
2 = 87.75%.

In one of our experiments however, we were able to obtain an 88.9 percent ac-

curacy on this dataset when using Cross Validation. The reason for this is simply

that with the limited amount of data used for training and testing, there was a

random tendency5 in the data that was favorable for the classifier. Testing a clas-

5That is, the tendency does not stem from the distribution the data is picked from, but

rather by coincidence because of random structures in the particular samples drawn from this

23

sifier more precisely, and thus avoiding such random tendancies, is possible using

Monte Carlo Simulations.

Monte Carlo methods used for evaluating classifiers such as the ones in this re-

port samples data randomly from the probability distribution the data stems from

and splits this dataset into a training- and a test-set. The strength of this method

however, is that Monte Carlo simulations draws new training- and test-data many

times6. The results are then averaged and as the number of results grows, the

precision of the average result becomes more accurate.

2.4 Normalization, Standardization and Scaling Data

This section and the one following this section both discuss ways to pre-process

data. This section focuses on some of the simplest ways one can pre-process data

which often yields higher classification accuracu, whereas the next section focuses

on dimension-reduction techniques.

2.4.1 Normalization

Consider having a dataset with the following features representing basket players,

together with a label indicating whether or not this basket player has performed

any slam dunks the previous five games:

• Height in meters

• Weight in grams

For this example it is assumed that being tall and muscular (heavy) both are

good indicator of whether a basket player has performed any slam dunks the previ-

ous games. If one were to use the data above for kNN-classification, an increase of

10 percent in height and weight for a basket player that is 1.85m and 85000grams,

distribution.
6Rather 10.000 times than for example 10 times.

24

would result in an increase of 0.185 in one dimension and 8500 in the other, - the

change in height is drowned by the change in weight. In order to make changes

in the two dimensions equally influential to the kNN-algorithm, one can normalize

the dataset.

x =
xold − xmin

xmax − xmin
(2.9)

By doing this, all data points are scaled to take values between 0 and 1. If one

has outliers, that is data points far from all other data points, these outliers will

make the denominator much larger and the result would be that most data points

would be distributed at a smaller interval in the 0-1 range.

2.4.2 Standardization

A solution to the problem mentioned above, that is, obtaining a very large denom-

inator because of outliers, is to standardice the dataset. Standardization assumes

the data points are distributed according to a gaussian with a certain mean and

standard deviation, and after standardizing the dataset, each of the dimensions has

a mean 0 and standard deviation of 1. After finding the vector of means for each

of the dimensions µ and similarly the sigmas σ, each datapoint x is standardized

as follows:

xs =
xold − µ

σ
(2.10)

2.4.3 Scaling kNN and Use of Weights

A new set of parameters one can introduce to kNN are weights that scale each

of the features. Optimal or sub-optimal parameters can be found either by using

knowledge about the data and brute force, or by using a search heuristic such as

a genetic algorithm. An example of using a genetic algorithm to find weights for

each feature is presented in subsection 2.7.1 and this is also done in the Weighted

Grouping of Features system.

25

For some of the following experiments we have created another dataset. Because

this dataset has three features, we have simply named it the 3f dataset. The 3f-set

is shown in figure 2.6:

0.2
0.4

0.6
0.8 0.2

0.4
0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x2
x0

x1

Figure 2.6: The 3f set. One class (blue) is randomly distributed uniformly over

three dimensions, the other class (red) is randomly distributed in one dimension

(x3), but two of the dimensions are dependent as one is equal to one minus the

other (x1 = 1− x2)

Note that one dimension, dimension x3, is uncorrelated to both of the two

classes. Using a brute force technique and kNN, we did an experiment where we

adjusted the weights of the different dimensions. Each dimension was tested with

weights (0, 0.33, 0.99) and the results obtained are shown in 2.3:

26

Weight1 Weight2 Weight3 Result

0 0 0 50

0 0,33 0 49,88

0 0,66 0 49,88

0 0,99 0 49,88

0,33 0 0 49,86

0,33 0,33 0 95,89

0,33 0,66 0 94,93

0,33 0,99 0 94,03

0,66 0 0 49,86

0,66 0,33 0 94,77

0,66 0,66 0 95,89

0,66 0,99 0 95,41

0,99 0 0 49,86

0,99 0,33 0 93,94

0,99 0,66 0 95,34

0,99 0,99 0 95,89

Weight1 Weight2 Weight3 Result

0 0 0,33 50,15

0 0,33 0,33 50

0 0,66 0,33 49,96

0 0,99 0,33 50

0,33 0 0,33 50,1

0,33 0,33 0,33 86,63

0,33 0,66 0,33 87,35

0,33 0,99 0,33 86,93

0,66 0 0,33 50,13

0,66 0,33 0,33 87,49

0,66 0,66 0,33 89,28

0,66 0,99 0,33 89,88

0,99 0 0,33 50,15

0,99 0,33 0,33 87,03

0,99 0,66 0,33 89,98

0,99 0,99 0,33 90,7

Table 2.3: Varying weights for dimensions x, y and z. Weighing the the non-

informative z-dimension gave inferior results, none of which exceeded 90.00 percent.

We can observe that the results are best when each of the two dimensions

containing information are equally large and the non-informative dimension has

zero contribution. The latter has an obvious explanation 7, and if either of the

two informative dimensions were to be given a higher weight than the other, some

information from the other would be lost as one dimension alone cannot provide a

classifier. The results are therefore as expected, and introducing weights improved

the classification rate from 86.63 percent to 95.89 percent, an increase of 9.26

percent.

2.5 Dimension Reduction

This section aims to gain insight in regards to selecting features and extracting

features and how this can improve classification rates. Feature selection is simply

7A non-informative dimension can only confuse the classifier.

27

to select a subset of the original set of features, whereas feature extraction trans-

forms the original set of features into a new set of features of lower dimensionality.

As there exist a large amount of methods used to extract and select features, we

have chosen to focus on the basics and only investigate further on one particular

method: Principal Component Analysis (PCA). Some of the insights gained from

this section are used to enhance classification rates in the GoF-system.

K-Nearest-Neighbor’s first step is to store the training examples that are to be

used. This step is in itself trivial, but sometimes some of the features are plain

noise and cannot be used in order to improve classification rates. Feature selection

can then be performed in order to:

1. Reduce computational complexity

2. Improve classification rates by removing irrelevant and/or noisy features

kNN is suffering from the ”‘Curse of Dimensionality”’. This is partly because

kNN is computationally slow in high-dimensional spaces, and partly because the

performance tends to decrease drastically. The latter is because two samples from

the same class often seldom are similar for most features when the dimensionality

is high (Beyer et al., 1999). High dimensional similarity is discussed somewhat fur-

ther in subsection 2.6, but in order to understand the effects of dimensions that do

and do not contain information, two datasets are created, namely those in figures

2.3 and 2.6. Throughout this section the effects of removing features and editing

features are shown using these two sets.

2.5.1 Manual Feature Selection

This section and section 2.6 is largely based on experiments performed on the

square-in-square dataset.

28

Using regular kNN, the square-in-square dataset achieves a test-set precision

rate of 84.43 percent with k=3. Note that somewhat better results were achieved

with higher k’s when we experimented with varying k’s. The theoretical maximum

for the square in square dataset is, - as mentioned in subsubsection 2.3.3.1, - 87.75

percent. This is confirmed by monte carlo testing where decision lines are formed

around 0.25 <= xi <= 0.75. Because both dimensions in this set carry a similar

amount of information and randomness, removing one dimension means that the

theoretical limit would be reduced to 75%, a decrease of 12.75 percent. The dataset

shown in figure 2.7 is the same dataset as the one in 2.3, but with dimension re-

moved:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.7: The Square-in-square dataset with one dimension reduced. Scatter of

the same dataset as in figure 2.3 with one dimension removed.)

Classifying this dataset with kNN achieves a 72.07 percent accuracy, a decrease

of 12.36 percent. The two dimensions carry synergies: If this was not the case,

(84.4 − 50)/2 percent=17.2 percent accuracy would have been lost as this is the

accuracy each dimension then would have had to carry. This synergy means that

there exist cases where each of the one dimensions alone would have provided false

29

classifications, but where the two dimensions together correct this. This synergy

is further confirmed by the theoretical limits that confirm that the actual synergy

is of (87.75)/2 percent - 75/2 percent = 12.75 percent accuracy.

The 3f-set that was shown in figure 2.6 , showed a dataset where one dimension

introduces nothing but noise. For this dataset it is therefore expected to achieve

similar or better classification rates if the mentioned dimension is removed. The

blue class in figure 2.6 is randomly distributed over three dimensions, and the red

one is random at one dimension (x3), but two of the dimensions are dependent as

one is equal to one minus the other (x1 = 1−x2). This dataset achieves a precision

rate of 86.63 using kNN. Because one dimension contains no useful information

however, and therefore only introduces noise, removing this dimension increases

the precision rate. Figure 2.8 shows the dataset with x3 removed:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.8: 3f reduced. Scatter of the same dataset as figure 2.6, but with dimension

x3 removed.

After removing the dimension, kNN now classifies the dataset 95.93 percent

correctly. This improvement can be explained as follows:

• The removed dimension had no correlation to the classes, and could thus not

30

improve the accuracy.

• The removed dimension introduced information that was plain noise, 1
3 of

the information used by the classifier. This information could for some of the

members:

1. Increase the distance of one member of the class from all other mem-

bers.

2. Decrease the relative distance between one member from one class to

members of the other class.

In the next section the accuracy on this dataset will be improved further.

Table 2.4: Removing features manually

3f Squares

All features 87.10 86.63

With removed feature 95.93 72.07

2.5.2 Automatic Dimension Reduction

In the previous subsection(section 2.5.1), features were removed manually because

we knew something about the different dimensions. There are, however, several

ways of reducing the dimensionality of a dataset automatically. In this part three

ways of doing this will be mentioned:

1. Using a search heuristic to find which features that are best ignored.

2. Linear transformations of the data from a higher to a lower space (linear

feature extraction).

3. Non-linear transformations of the data from a higher to a lower space (non-

linear feature extraction).

31

The first listed strategy is an example of a wrapper -strategy as it uses a classi-

fier to evaluate how well one set of parameters perform. This, or a generalization

of this as discussed further in the 2.6-section, can be accomplished using a genetic

algorithm. Section 2.7.1 shows an example of how this can be done. Using a genetic

algorithm to accomplish this is also the strategy used by the Weighted Grouping of

Features system (3.3). Strategy two and three are both filter -methods as they only

use information that lies within the data. Principal Component Analysis (PCA) is

a popular variant of the second listed strategy, and the rest of this subsection will

take a glance at this method. For listed strategy number four, methods typically

use kernel methods. This means that the data is mapped to higher dimensions

before transformations similar to those of PCA are done in order to choose com-

ponents that contain as much information as possible. One popular such method

is Kernel Principal Component Analysis (Schölkopf and Smola, 1998).

2.5.2.1 Principal Component Analysis

Principal Component Analysis(PCA) was introduced in Pearson (1901). PCA maps

the data to a lower dimension using an orthogonal transformation where the first

dimension that maximizes the variance of the data. The new space is called PCA-

space and is best shown using a figure, see figure 2.9.

32

Figure 2.9: PCA-converted data from FrantzDale (2012)

33

In the figure the first principal component, pc1, is the longest vector-arrow and

we see that it covers the the largest variance in the data. The short vector-arrow,

pc2, is orthogonal to the first, and covers as much variance as possible given that it

should be orthogonal to pca1. As such PCA can be used to 1: transform the data

into a new space where the underlying structure of the data is better explained, and

2: thereafter reduce the dimensionality by removing the least informative compo-

nents. pc1 is the most informative component, pc2 is the second most informative

and so on.

The reason why using PCA often works well is that it:

1. Transforms the data (linearly) into a space where the variance is maximized

2. Effectively finds the dominating components that will preserve as much in-

formation as possible

The following steps are performed in order to do a PCA transformation:

• The original data is normalized, that is, the mean of all datapoints is sub-

tracted from each datapoint.

• The covariance matrix is found. This matrix shows covariance between dif-

ferent features.

• The eigenvalues and eigenvectors of this covariance matrix are calculated.

These are necessary to do orthagonal transformations.

• The eigenvector with the largest adjoining eigenvalue is chosen as pc1, and a

number k of principal components less or equal to the number of features in

the original data are chosen as dominant components, that is, pc1...pck.

• The normalized original data is multiplied with the transpose of of the dom-

inant components.

• The result is the original data tranformed into PCA-space.

34

Transforming the 3f-set Into PCA-space In order to perform PCA on data,

we chose to use the Jama-package (Hicklin et al., 2005) for matrix-manipulations.

Code from an example written by Gabe Johnson (Johnson, 2011) was also used.

The 3f-set proved to be an interesting dataset to show both PCA’s strengths and

weaknesses:

Because of PCA’s popularity and its guarantee of minimal information-loss, the

first results on the 3f-set were somewhat discouraging. The data which we had

hoped would neatly align the red class horizontally in two dimensions and be easy

to classify, looked like figure 2.10:

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.10: PCA3f reduced. Scatter of the same dataset as figure 2.6 after having

transformed the data into PCA-space. Showing the two most dominant compo-

nents.

As PCA is an unsupervised learning method and knows nothing about the

classes in the data, PCA did not transform the red class 8 to align with the pca1-

axis. If the 3f-data had been transformed such that the red class was parallel to the

x-axis, most of the information about the difference between the data in the x2-

and the x3-axis would have been lost. Classifying this dataset using kNN yielded a

8The class where x1=1-x2 in the 3f-set

35

result of 62.2 percent, an 87.1percent−62.2percent = 24.9percent decrease. Doing

a PCA-transformation to 3 dimension resulted in a classification rate by kNN of

78.6 percent, a decrease of 8.5 percent.

Removing the x3-Axis Before the PCA-transformation If the x3-axis was

to be removed on beforehand however, there would be a great information gain

when doing the PCA-transformation. Indeed, in 2.11 the variance of the red class

is spread along the pca1 axis and the two remaining edges of the square of the blue

class along the other (pca2) axis.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.11: The 3f-set (2.6) with x3 removed manually after having removed x3

and then transformed the data into PCA-space with two dimensions.

This yielded far better classification-results at 95.0 percent correctly classified

data points, results similar to those when the x3 class was manually removed.

However, it is first when two dimensions are removed PCA shows its real strength:

Removing whichever two dimensions on the non-PCA-transformed 3f-set yields

a maximum of 51.2 percent when classifying with kNN. The reason kNN barely

performs better than random choice, is because the data in the red class are not

36

along one dimension and thus not meaningfully close to each other in one dimension.

This is where PCA proves very useful on this dataset. PCA translates the data

into what is seen in figure 2.12 and classifies the data 100% correctly:

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.12: The 3f-set (2.6) with x3 removed manually transformed into PCA-

space with one dimension.

A table showing the results of removing features is shown below:

Table 2.5: Removing features automatically and manually. PCA3f is the same

dataset in PCA-space, PCA3f-m is the 3f-set where one feature is removed manually

before transforming the data into PCA-space. Showing with zero, one and two

dimensions removed.

of dim. removed 3f PCA3f PCA3f-m

0 87.1 78.6

1 95.9 62.2 95.0

2 51.2 57.4 1.00

All possibilities and the complete usefulness of PCA have by no means shown

by the example above. One could argue for example, that all of the work done in

order to use PCA could have been exchanged by a much simpler tool, namely using

37

the rotation-matrix with θ = −45 and then removing two features manually:

R =

(
cosθ −sinθ
sinθ cosθ

)
(2.11)

This would have been possible, but PCA can do this for all angles and will find

a optimal angle if the data is not placed exactly along a line. The possibilities

of PCA do not stop at this either, but covering PCA fully is beyond this report.

Some important aspects we could learn from the 3f-example however, were that:

• PCA guarantees minimal loss of information.

• Although PCA guarantees this minimal loss of information, PCA is not nec-

essarily optimal for classification as it is unsupervised and does not guarantee

minimal loss of information in regards to differentiating classes.

• PCA can be useful when optimizing datasets before classification.

Before diving into a discussion about distance functions (section 2.6), it should

be mentioned that there do exist successful attempts at creating supervised PCA

as well (Chen et al., 2008; Bair et al., 2004).

2.6 Distance Functions

How distances between objects (or instances/samples) are calculated, is one of

the major design choices that has to be taken when kNN is implemented. The

first implementation of the Grouping of Features-system is somewhat special in

the sense that it uses a different distance-function when comparing itself to the

different classes. This will be further discussed in chapter 3.1.4. An understanding

of what distance-functions are and especially an understanding of the Minkowski

distance function, is important in order to understand the concept of power-average,

also described in section 3.1.4. The most common distance-function d(x, y) when

x and y are vectors of real numbers, is the Euclidean distance:

dE(x, y) =

n∑
i=1

√
(xi − yi)2 (2.12)

38

One kind of distance functions are metrics. They upholds the following intuitive

criterias for distances (Cunningham, 2007).

1. d(x, y) >= 0; non-negativity

2. d(x, y) = 0 only if x = y; identity

3. d(x, y) = d(y, x); symmetry

4. d(x, z) >= d(x, y) + d(y, z); triangle inequality

As such the Euclidean distance is a metric, as is the more general Minkowski

distance.

2.6.1 The Minkowski Distance Function

A generalization of the Euclidean distance is the Minkowski distance:

dp(x, y) = 1/p
√

(x− y)p, p > 0 (2.13)

This latter equation is the basis for the similarity function used in the Grouping

of Features system. Using p=2 yields the Euclidean distance function and using

power p=1 yields Manhattan distance. For high dimensions, (Aggarwal et al.,

2001) found that using ”‘the Manhattan distance metric [was] consistently more

preferable than the Euclidean distance metric [...] for high dimensional data mining

applications. The results in table 2.6 from Aggarwal et al. (2001) show how using

fractions as p’s, that is, using 0 > p < 1 consistently obtained higher test scores

on high dimensional data.

39

Table 2.6: From Aggarwal et al. (2001): Results of using different p’s in the

Minkowski distance-equation on high dimensional data. Lp is the Minkowski

distance-function of power p. The datasets are all datasets from the UCI Machine

Learning Repository.

As none of the datasets presented in this chapter are of higher dimension, we

instead try to vary p on a lower-dimension dataset. In the table in figure 2.6.1 are

results of varying p on the square-in-square dataset. We see that the performance

is best with p a little larger than 1.

From the figure in figure 2.13, we can see that lower p’s allow one feature to

have a larger distance as long as the other are close. Close means near the cen-

ter of the figure, as distances are measured from origo in this figure. In fact, for

p < 1, the unit circle becomes an asterix, that is, the convex sides become con-

cave. The smaller the p, the further away one feature can be from the sample

point without adding to the distance as long as the other features are close. In

the square-in-square set, it makes sense that reasonably low p’s perform better:

When close to the optimal decision line a higher p would create a larger possi-

ble area on the other side of the line where a random higher concentration of of

data points could be. If the p was very small however, the information from one

dimension would be lost, requiring only one feature to be close to the sample point.

To sum up, the Minkowski-distance for low p’s produces a low resulting distance

as long as at least one feature is close to the sample point. On the other hand,

when p is large, a low distance requires all of the features to be close to the sample

point’s features.

40

Figure 2.13: From Quartl (2011): The

unit circle of different p’s, 1 <= p < ∞
(left) and table of results from varying

the p in the Minkowski distance function

of kNN on the square-in-square dataset

(right).

p Result

0.1 79.05

0.4 83.50

0.7 83.89

1.0 84.84

1.18 84.96

1.3 84.93

1.6 84.82

When p approaches infinity, the Minkowski distance function becomes the

Chebyshev-distance function: For vectors of features x and y, the Chebyshev-

distance between those are:

dC(x, y) = max
i
|xi − yi| (2.14)

In other words the feature which has the largest distance will dominate.

These properties of the Minkowski distance function are important to the con-

cept of power-average, which again is an important part of the GoF-system.

41

2.7 Genetic Algorithm

A Genetic Algorithm(GA) is a search algorithm that models natural evolution. In

natural evolution individuals with high fitness survive and reproduce. In this way

their genes are passed on and, informally, good genes are passed on to the next

generation. In the next generation the set of genes are somewhat modified either

by reproduction where the new chromosome is a mixture of genes from the two

parents, or by mutation. In nature mutation is caused by radiation, chemicals or

during cell-replication where mistakes sometimes are made when a cell copies its

DNA-sequence before the cell-division(Center, 1969)

The genetic algorithm was chosen as search heuristic because it is robust and

likely to find good parameters i large and complex search spaces (Wright and Ali

Alajmi, 2005).

The idea of using evolution as a model in order to find optimal solutions to

problems, was presented in the early 70s by John Holland (Holland, 1975) and Ingo

Rechenberg (Rechenberg, 1971) who begun two paradigms which eventually have

somewhat converged as many use blends of the two. Ingo Rechenberg introduced

Evolution Strategies and John Holland’s work introduced the Genetic Algorithm.

Some explicitly combine the two like Cordon and Herrera (1996) and others like

Wu et al. (2007) implicitly makes hybrid systems by incorporating elements from

one algorithm in the other. An in-depth analysis between the two is beyond the

scope of this report, but some differences include:

• ES selects parents at random and chooses the fittest children for the next

generation, whereas GA is more likely to select fitter parents to be used

for reproduction, that is, the parents are selected according to a probability

distribution where fitter parents are more likely to be picked.

• ES uses vectors of real values to represent chromosomes, whereas genetic

algorithms uses vectors of integers.

42

• GA mutates by flipping bits or using different parts of the cromosomes of its

parents to represent the child. ES encodes mutation-schemes in its chromo-

some.

The remainder of this report will focus on the genetic algorithm in its purest

form as this is what is used in the GoF-system 3. A genetic algorithm is a search

heuristic with optimization as its goal. The degree of optimality, or fitness, is de-

fined by some custom fitness function. In order to find better chromosomes 9, many

evolutions are performed, where new generations are formed in every evolution by

doing reproductions and mutations.

Some terminology is useful:

• Fitness-function: A custom-made function used to evaluate the fitness for

each of the individuals. If the task is classification it may for example use

the parameters from the individual on a classification task and return the

number of correctly classified samples.

• Fitness: A value used to compare optimality between individuals. This is

what the fitness-function returns.

• Individual: One set of parameters.

• Chromosome: The vector of genes that represents an individual.

• Gene: A part of a chromosome.

• Allele: A set of genes that represent one trait of an individual. Might be

thought of as a parameter in our case.

• Generation: A set of individuals that exist at the same time.

• To evolve: Using the genetic operators so that a generation n becomes gen-

eration n+ 1.

9In our case this would mean parameters that produce better classification rates

43

• Genetic operator: Operators that alters the individuals in the population,

that is, crossover and mutation.

• Crossover: ”‘Reproduction”’, a new individual is created by combining genes

from two or more from the previous generation.

• Mutation: By some probability some random change a individual is altered

by randomly altering some of the genes of the individual.

A genetic algorithm’s flow is to first set up the chromosome and default param-

eters, then run evolutions, each evolution hopefully improving the next generation

of individuals. After a certain amount of evolutions, the individual that obtained

the highest fitness is returned. This individual can then be tested against a held-

out test-set. The genetic algorithm is explained somewhat further in chapter 3, but

before that the presentation of a genetic algorithm-example in 2.7.1 aims to provide

a basic understanding of how GA’s kan be used to improve the performance of the

kNN-algorithm.

2.7.1 Genetic Algorithm Example

Using a Genetic Algorithms(GA)/Evolution Strategy(ES)-hybrid as search heuris-

tic in order to improve the kNN-algorithm in some way has been done by several,

and a straightforward method that successfully found optimal weights for each of

the features in the kNN algorithm, is done by He et al. (1999).

2.7.1.1 Chromosome Description

The chromosome used by He et al. (1999) is a vector of real values, each value

representing the weight for its adjoining feature. Offspring were created in a steady

state-manner, that is, they kept the population stable in both size and in regards to

variation by only having two individuals reproduce exactly two offsprings. The two

individuals where selected randomly, but with a higher probability for individuals

with higher fitness.

44

2.7.1.2 Crossover

With n being the number of genes in a chromosome, a number n1 was chosen at

random, and the first n1 genes were chosen from the first individual and the n−n1

from the other in order to do crossover. After these offspring were created mutation

was performed.

2.7.1.3 Mutation

The mutation was small, subtractions or additions of a value v that were performed

on each feature with a certain probability. The value v was chosen from a normal

probability distribution.

2.7.1.4 Fitness-function

As fitness function they used the inverse of the number of mis-classified examples

plus a regularization-term. The regularization-term was necessary in order to pre-

vent inflation of the weights.

This system effectively found near-optimal weights for the features and obtained

results better than the ones achieved by other approaches He et al. (1999) compared

themselves to.

2.8 Other Methods and What This Report Does

Not Cover

2.8.1 Other Classifiers

There are a very large number of classifiers and no one classifier is considered the

best one for all problems. Classifiers like Support Vector Machines (SVM), Ran-

dom Forests, classifiers using neural networks and Naive Bayes may perform better

at some tasks than kNN will10. In the GoF-system presented in the next chapter

however, none of the above could easily be used by the system as elegantly as kNN

10Note that this is not always is the case; Kuramochi (2001) for example obtained better results

using kNN than SVM on some problems.

45

could. Because of this, other classification methods are considered out of the scope

of this report.

2.8.2 Reducing the Expense of Classifying a Sample

The expense of classifying a sample is one of the main drawbacks of the kNN

algorithm. Oftentimes approximative algoritms are used and only representative

samples from the training set are used during classification. There exist many

such methods, but the only complexity-reducing method used in the GoF-system

is dimensionality reduction.

2.8.3 Other Dimensionality Reduction Techniques

A representative set of methods one can use in order to perform dimensionality re-

duction has been presented in this chapter: Removing features manually, removing

features using a genetic algorithm and extracting features using PCA. These are all

related to the GoF system. There also exist other dimensionality reduction tech-

niques that are not as closely related to the GoF-system, some of which have been

mentioned briefly in this chapter. There also exist methods that may enhance the

nature of the data from the classifiers viewpoint that does not reduce dimensions.

GoF in a way does this by itself by grouping features. Other methods include In-

dependent Component Analysis (ICA) which is a generalization of PCA. ICA does

not find uncorrelated components, but instead finds ”‘independent”’ components,

that is, components that among other things has minimal mutual information.

Doing this or using other methods to alter the data before classification using the

GoF-system would be interesting. This, however, is also outside the scope of this

report.

46

3

GROUPING OF

FEATURES

3.0.4 Context

When we started working on this thesis project, Verdande Technology through

Sigve Hovda had implemented most of the basic GoF-system and was doing re-

search in regards to the theory on which it is based. Our contribution to the

implementation of this system specifically, has been to:

• refactor and enhance code

• implement modules such as different classification rules

• write unit and integration tests

• replace units such as the chromosome and fitness-function used in the genetic

algorithm

• experiment with other extensions of the system

• prepare and test datasets on the system

In order to prevent this thesis from being too lengthy, only the most interesting

modifications and extensions are included in this report. The most mentionable

extension we created is the Weighted Grouping of Features (WGoF) system. In the

47

previous chapter it was shown that weighing the different features in a dataset could

improve classification rates significantly. The WGoF system extends the genetic

algorithm to find optimal weights for each of the features within their group. How

this was done will be described in its own section, section 3.3.

3.0.5 The Structure of this Chapter

This chapter is divided into three major parts. The first part presents the GoF-

specific theory and compares this to the theory of the previous chapter. The second

part gives a walk-through of the implementation of the GoF-system and provides

an example of how distances are calculated in this system. Lastly the third part

explains which changes that were done to the system in order to extend it to use

weights.

3.1 GoF-Specific Theory

The previous chapter provided a theoretical backbone that enables one to under-

stand how classification systems such as the GoF-system can work and how classi-

fication accuracy can be improved by using different techniques. This first section

of the current chapter presents the theory that is specific to the GoF-system, and

compares some of this to the theory presented in the previous chapter. The section

starts off with a discussion of the classification rule the GoF-system uses and how

and why the GoF-system uses class-specific distance functions when calculating

distances.

3.1.1 The Classification Rule of the GoF System

In the previous chapter we presented the following posterior probability estimate

for class yi given as sample x:

P (Y = yi|x) =
F̂ (x|Y = yi)P (yi)

F̂ (x)
(3.1)

=
ki
k

(3.2)

48

As the denominator would be equal for every class, the predicted class yi with

this probability estimate would be the one with the largest adjoining ki. The

probability estimate was derived from using the following two equations:

F̂ (x) =
k

nVdrd
(3.3)

F̂ (x|Y = yi) =
ki

niVdrd
(3.4)

The GoF system, however, uses different distance functions when calculating

distances for the different classes. As the Vd is the sphere in which the k nearest

neighbours lie, each class therefore has its own volume sphere Vdi . This will be

further explained in section 3.1.2. For now, note that with different Vdis for different

classes, the two previous equations have to be combined differently than what was

done in 3.2. The most concise formula for F̂ (x|yi) is thus found in this way:

F̂ (x|yi) = P (x|yi)P (yi) (3.5)

=
ki

niVdi
rdi

ni
n

(3.6)

=
ki

Vdi
rdi

1

n
(3.7)

=
ki

nVdi
rdi

(3.8)

Here we have used that p(x, yi) = p(x|y)p(y), and combined this with equation

3.4. Prediction is now done by choosing the class which has the highest estimated

probability:

arg max
i

ki
nVdir

d
i

(3.9)

3.1.1.1 Different Sphere Volumes and the GoF System

With different volume spheres for the different classes, the correct way to calculate

the probabilities would require one to calculate the Vdi
s and ri for each of the

classes and compare distances for each class according to the distance functions of

49

all classes. Ongoing research on how to do this efficiently is performed, but this

research is in its early stages and will not be presented in this report.

Instead another classification rule is used and we expect that a genetic algorithm

will adjust for the differences in volume spheres. The reasons for why this is

expected will be presented in the next section.

3.1.1.2 The k-Mean Classification Rule1

In the classification rule used by the GoF system, the k nearest neighbors are cho-

sen from each class according to the different classes’ own distance functions. It is

the mean distance from the k neighbors found from each of the classes that is used

for prediction. The predicted class is the class whose mean distance, according to

its own distance function, is smallest.

This might at first seem preposterous: With each class using different distance-

functions, in what way can it be reasonable to compare these distances to each

other? The answer is a combination of what is presented underneath, where the

flexibility one has by the use of the genetic algorithm is essential:

1. As the Vdi ’s in this system might be combined to be an average of several Vdi ’s

for other features further down the tree, the Vdi ’s are somewhat smoothed.

2. The classification rule we have chosen to use in the GoF-system, uses an

average of distances - which again is an average of Vds - within each class.

The Vds are in this way smoothed further.

3. Distances of the distance function are monoton increasing with increased

distances of the features.

4. A genetic algorithm optimizes the combinations from #1 and #2 and is able

to do this well because of #3.

1Not to be confused with the k-means clustering algorithm.

50

With monoton increasing distances also with the new distance-functions, the

genetic algorithm is able to search well. As the genetic algorithm searches for dis-

tance functions which makes the classifier obtain as high accuracies as possible,

the genetic algorithm will adjust the distance functions to find Vdis to this goal.

#1 and #2 (smoothing the Vds) makes this search space somewhat smaller, and

further helps the genetic algorithm in its search.

We want to again emphasize the flexibility one gains by using a genetic algo-

rithm: Although we believe the genetic algorithm is assisted by #1 and #2, we

hypotethize that the genetic algorithm will find distance functions that performed

well even if these were not present. An experiment that supports this was per-

formed:

3.1.1.3 Using Majority Voting instead of K-Mean for Classification

Even though the majority voting rule used by regular kNN would not do any

smoothing of the Vds by combining several of them, we wanted to see wether or

not the system could produce good classification results regardless.

When comparing the use of majority voting to using the k-mean rule in prelim-

inary tests on the GoF-system2 we observed the following pattern:

• More iterations (evolutions) were needed in order to converge to optimal

solutions.

• The algorithm ran slower.

• The results were similar to those of the GoF-system with the K-Mean rule.

As using the mean of distances from each class is hypothesized as an aid to the

genetic algorithm that enables it to search more efficient, we expected the number

2The GoF-system will be further in subsequent sections, the preliminary test here is included

to show the robustness obtained by using a genetic algorithm.

51

of evolutions needed to be increased. The complexity was somewhat higher in the

majority vote rule than in the k-mean rule, resulting in longer running time for

each evolution. Lastly the final results were similar, which is expected to some

extent as the search space is similar. We do, however, believe that k-mean rule

might be less prone to getting stuck in sub-optimal local optimums which are not

very good, and the majority voting rule had significantly higher running times.

For the remainder of this thesis we have therefore chosen to use the k-mean rule.

Now that we have presented the reasons and justifications for our choice of

classification rules when using different distance functions for different classes, we

will in the next section explain why we hypothesize that it might be useful to use

different distance functions for different classes.

3.1.2 Using Different Distance Functions for Different Classes

In this section we will show that one Distance Function (DF) that is useful for

predicting one class in a dataset, might be useless for predicting another. We will

also show that a predictor might be able to perform well given very simple rules if

one allows the distance functions for the different classes to be different.

Consider the following dataset ”easySet” of objects Oi = (f1, f2) where f1 and

f2 are features:

ClassA:

(f1, f2) : (3, 0)(2, 1)(1, 2).

ClassB :

(f1, f2) : (3, 0)(2, 0)(1, 0)(1, 0)(1, 0)(0, 0).

Table 3.1: EasySet

An easy way of predicting Class A would be to give the predictor the following

DF: ”find the average of the features” and the following rule. ”If 1.5, predict class

52

A.”

This seems like a reasonable rule to use for predicting class A as it would get

most samples correct3. Using an ”average of”-DF for class B however, will not help

predicting this class at all. The average of the features of the objects in class A is

not a constant. A rule that would predict class B from the data above would be to

use DF: ”find f2” and rule ”if 0, predict class B”.

Just as using class B’s DF for classifying class A did not make sense, using

class B’s DF which looks at the value of f2 will not produce good predictions for

class A. This shows that very simple rules may be used to obtained good classifi-

cation results when using simple, but different DF’s for the different classes. This

is precisely what is done withe the GoF-system: A genetic algorithm searches for

different DFs to use for the different classes.

3.1.3 The Grouping of Features System

The Grouping of Features(GoF) classification system represents objects4 as trees

where a tree is made up of of groups of features as shown in figure 3.1:

Figure 3.1: Grouping of Features tree. An object with three features.

A tree created by the GoF-system always consists of the TopGroup node. This

node may have Features 5 and Sub−Groups as children in the tree. A Sub−Group

cannot have other Sub−Groups as children. As such the tree can maximum have

3Note that the classes are not completely separable as both contain the sample (3,0), so one

erroneous prediction is expected.
4Also known as as instances/samples.
5which are leaf nodes and represents features from the dataset.

53

three levels.

Similarity between an test-sample and another sample can be chosen to be

measured at group level for the different groups, or not:

• If similarity is measured at a group’s level, the power-average of the test-

sample’s group’s children is calculated and the difference between this result

and the result of the power-average of the sample-point becomes this node’s

value.

• If similarity is not measured at the group’s level, the differences between the

group’s children of the two instances are calculated. The value(s) from this

are then aggregated and becomes this group’s value.

The resulting value at the top-node is the one that finally is used for comparison

between classes. kNN is used for this, and lower values are shorter distances.

Several optimal or sub-optimal parameters for the system are found using a

genetic algorithm. These parameters determine the structure of the trees found,

which parameters to group together and how the calculations are done. Effectively

these parameters determine the resulting distance functions used by the different

classes. More on the distance functions will be presented after a brief discussion of

how the GoF-system fits into the IBL-field.

3.1.3.1 Grouping of Features and Instance Based Learning (IBL)

As this thesis has had some focus on IBL-methods, it is natural to see how the

GoF-system fits into this context.

The GoF-system uses a genetic algorithm to find trees that in effect work as

distance functions that can be used when classifying the different classes. As such

there is quite a lot of generalization done by the GoF system, and the GoF-system

54

is as such not an IBL-method itself. The GoF-system uses an IBL-method (kNN)

as the basis of its fitness-function, and the distance-functions the GoF-system pro-

duces are to be used in IBL-methods.

As such GoF is a supporting system that may enhance IBL-methods.

The tests performed on the GoF- and the later introduced WGoF-systems, are

done by classifying the datasets using a modified version of kNN where the majority

voting rule has been replaced with the k-mean rule presented in 3.1.1.2 and where

the Euclidean distance function replaced with distance functions found using the

GoF- and WGoF-systems.

3.1.4 The Distance Function in the GoF-system and the con-

cept of Power Averages

In this section and the sub-sequent sub-sections, the distance function used by the

GoF-system will be presented from the functional side, the theoretical side and the

technical side. In the end an actual equation representing the distance function

used in the GoF system is presented.

The GoF-system allows for the following simple group-structures and mixtures

between them:

1. The groups value is the average of the features

2. The groups value is the largest of the values of the group

3. The groups value is the lowest of the values of the group

These can be thought of as:

1. mean-groups

2. or -groups

55

3. and -groups

The function chosen which enables the system to create such structures is the

power-average:

3.1.4.1 Power Average

The distance-function used in the GoF-system uses a concept called power average.

This concept is similar to the Minkowski distance function presented in section

3.1.1.2. If one were to relax the Minkowski-functions limitation of having the

exponent p > 0, the function would be:

p̂a(p) = p

√√√√ n∑
i=1

dpi (3.10)

This function has some interesting properties. Figure 3.2 shows a plot of func-

tion 3.10:

−8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

X

Y

Figure 3.2: Power-average-function without geometric mean adjustment for dis-

tances d1=1, d2=10.

56

In the plot, two example-distances, d0=1 and d1=10. As p approaches infin-

ity, p̂a(p) approaches the larger distance, d1. As p approaches minus infinity, the

function approaches the smaller distance d2. This is always the case, also when the

number of distances are larger: The larger value will dominate as the power grows

and the smaller will dominate as the power decreases.

p̂a(p) is undefined for p=0, and as we can see from the graph, when zero is ap-

proached from the negative side, p̂a(p) approaches zero and as zero is approached

from the positive side, it approaches infinity. In our case this is not wanted behav-

ior, and following norms in the science community we have chosen to define p̂a(0)

as the geometric mean as suggested by Yager (2001). The geometric mean is, for

two distances d1 and d2, calculated as follows:

pa(0) =
√
d1 × d2 (3.11)

The equation for the power-average pa(d, p) where d is a vector of distances and p

is an exponent therefore:

p̂a(d, p) = p

√√√√ n∑
i=1

dpi , pa(d, 0) = n

√√√√ n∏
i=1

di (3.12)

With two distances the square root is used, for three the cube et cetera. In this

way, for the example with distances 1 and 10, pa({0, 10}, 0) =
√

0 + 10 3.16, and

the function is monotonly increasing in the range [−∞,∞].

Another thing that can be observed in the figure, is that as the function ap-

proaches -3 and 3, it has already almost converged to either the smaller or the

largest value. The genetic algorithm is given a vector of values it can choose as

the power for the different groups. This vector of values uses a standard vector of

possible powers with values mostly in the range [-3,3].

Using power-average-groups one could classify the dataset presented in the pre-

vious section (dataset 3.1) each on their own easily: For class A an average-group

57

containing both features would work well. For class B a high-powered f2-group

and a low-powered f1-group would work well.

3.1.4.2 The GoF-Distance Function

With the concepts of groups and the power-average presented, we can show the

actual distance function used by kNN. Note that distances are measured bottom-

up in the tree and that a sub-group has the option of either measuring similarity

on group level or at feature level. If distances are measured at group level for a

sub-group, the power-average is measured here. If not, the group just aggregates

(sums) the distances calculated at feature-level. Similarly the top group can either

measure similarity at its node (using the power-average), or just sum the distances

of the sub-groups.

Given the following:

• pa(Gi, p) is the power-average of θi for the set of features in group Gi.

• Gi, i=[1..n-1] represents groups that measures similarity on group level

• Gi, i=[n..m] represents groups that measures similarity on feature level

• fj , i=[1..o] represents each of the original features

Then, in the case where similarity is not measured on group level for the top

group, the distance function looks as follows:

d(x, y)sim=false =

i=n−1∑
i=1

pax(Gi, p)− pay(Gi, p)) +

i=m∑
i=n

i=o∑
i=1

(fix − fiy) (3.13)

If similarity is measured on group-level for the top group, the distance function

becomes:

d(x, y)sim=true = pa(d(x, y)sim=false, p) (3.14)

58

where θ0 is the power-average-exponent used for the top-group.

3.2 The GoF System’s Implementation

Throughout the upcoming section the reader is provided an understanding of how

our implementation of the genetic algorithm is set up and works, and how the trees

(distance functions) of the different classes are found.

We created a simple, high level class diagram that shows the main modules used

by the GoF-system. In figure 3.3 we can see that the GoF-system, given an input

and parameters to be used by the genetic algorithm, uses the GoF-genetic algorithm

to produce an output. The GoF-genetic algorithm uses the GoF-Chromosome and

the parameters provided by the Gof-system to find optimal parameters. Based on

the chromosome, the genetic algorithm’s fitness-function builds the necessary trees

to calculate distances.

59

Figure 3.3: Showing the main parts of the GoF-system

60

3.2.1 Recap of the Genetic Algorithm

Before going into the details of the implementation, a quick recap of how a genetic

algorithm works is called for. The genetic algorithm An evolution of a genetic

algorithm is performed in the following way:

• In the beginning of an evolution, the least fit subjects are removed from the

population.

• Genetic operators are performed on a subset of those subjects. These alter

the subjects and in effect create new ones.

• When this is done, all subjects are evaluated using the fitness function chosen.

The genetic operators used, work in the following way:

3.2.2 Genetic Operators

Genetic Operator 1: Crossover

On 35 percent of the previous generation, crossover is performed. Crossover (re-

production) is performed in the following way:

• Two subjects are chosen randomly.

• The two chosen subjects are duplicated.

• Two duplicated subjects’ genes are randomly swapped between each other.

Genetic Operator 2: Mutation

1/12th of all genes in the population are altered randomly (that is, a parameter is

given a random value in the range accepted by that parameter).

3.2.3 Forming a new generation

After using the genetic operators, the fitness of each subject in the altered pop-

ulation is evaluated. In order to keep the population size constant the n fittest

subjects are chosen to become the new generation.

61

3.2.4 Parameters used by the Genetic Algorithm

In addition to the genetic operators, the following parameters are used as param-

eters for the genetic algorithm the GoF-system uses unless otherwise stated:

• Fitness-function: Leave One Out Cross Validation(LOOCV) using kNN.

• The vector of power-converts: [-Infinity, -3, -2, -1, 0, 1, 2, 3, Infinity].

• The k to be used by the classification rule: 3.

• Max number of subgroups: 1

• Population size: 200

• The number of evolutions to be performed: 200

3.2.5 Chromosome

The chromosome used by the genetic algorithm in the basic GoF-system, uses the

following structure:

• For each class in the dataset a tree is represented in the chromosome.

• Each tree in the chromosone consists of the following three parts

- Group indicators for each feature.

- Indicators whether distances are to be calculated the different groups’ level.

- Power-converts for each group used by the distance function.

The functions of the different parts of the tree are as follows:

• The first part of the tree are integers that tell the distance function which

group each of the features belong to. This vector has hence length n where

n is the total number of features.

• The second part are booleans that tell the distance function whether it should

calculate distances at group level or at feature-level. This vector is of length

m where m is the maximum number of subgroups. If there are only ones

62

in this set, this means that distances are to be calculated at feature level.

If there is a zero in this set, the features belonging to the group this one is

indicator for is considered a group and the power-average of the members is

taken.

• The third part consists provide the indices in the power-vector where the

powers of the groups are.

As an example, consider a tree that looks like this that can have maximum one

subgroup:

[0 1 1][0][0 1]

In this case there are three features. One belongs to the topgroup and two belong

to Sub − Group1. From the second part of the chromosome we can see that the

similarity for Sub−Group1 should be measured on group level. The third part of

the chromosome shows that Sub−Group1 should use the power from the 0th index

of the power-convert-vector, whereas the Top Group should use the power from the

1st index. In the next section is a walk-through of how the distance between two

samples is calculated in the GoF-system.

3.2.6 Calculating a Distance, an Example

Using the example tree from 3.2.5 ([0 1 1][0][0 1]), and the power-convert-vector

[2, 1], the distance for the class the tree belongs to will be calculated in the follow-

ing manner:

We name the three features in the first part of the chromosome [0,1,1] f1, f2 and

f3. Because f1 has a group-indicator of zero it belongs to the Top − Group. The

other two belong to Sub−Group1. Looking at the second part of the chromosome

([0]) we see that the similarity for Sub−Group1 should be calculating at group-level.

63

This means that the distance between the power-average of the training sample and

the power-average of the test-sample should be measured in the following way:

d(x, y)Sub−Group1
= | p1

√√√√(1

n1

n1∑
i=1

xi

)p1

− p1

√√√√(1

n1

n1∑
i=1

yi

)p1

| (3.15)

Here d(x, y)Sub−Group1
is the value for Sub − Group1, that is, the distance

between sample x and sample y at this node. The p1 is the power to be used for

Sub−Group1 and n1 is the size of the group, that is, the amount of children this

node has. The top-group is not to be calculated at this level. Instead the distance

found in 3.15 is aggregated with the distance between the f1 in the training- and

the test-sample. The total distance is therefore calculated as in 3.16:

dist(x, y)TopGroup = |f1x − f1y |+ d(x, y)Sub−Group1
(3.16)

p1 can be found in the power-convert-vector ([2 1]) by looking up the indexes

provided by the third part of the chromosome. We see that p1=1. The total

distance is therefore:

dist(x, y) = |f1x − f1y |+
∣∣ p1

√√√√(1

n1

n1∑
i=1

xi

)p1

− p1

√√√√(1

n1

n1∑
i=1

yi

)p1∣∣
= |f1x − f1y |+

∣∣1
2

2∑
i=1

xi −
1

2

2∑
i=1

yi
∣∣

The theoretical foundation for the Grouping of Features-system has thus been

provided and so has a presentation of how the GoF-system works using a genetic

algorithm. The next section shows one extension of the system; namely adding

weights to the power-average function.

3.3 Weighted Grouping of Features

In the theoretical exploration of chapter 2, a major finding was the importance of

the scaling of features in regards to classification rates. Scaling features could be

64

done by weighing the features, and this is part of what the WGoF-system does.

In order to make the system able to capture more complex structures, the

power-average concept was extended to one one using normalized weights for each

of the features and for each of the groups; weighted power-averages. By letting a

genetic algorithm find the optimal weights for each feature in the different groups

and the optimal contribution of each group, it was believed classification rates

would be increased. Now not only would optimal tree-structures be found, but the

contribution of each weight in each of the groups and the optimal contribution of

each group would be optimized as well.

Each node in the tree, that is, both groups and features, have weights:

Figure 3.4: Tree that shows each node in the tree has its own weight.

3.3.1 Weighted Power Average

The logical change made without regards to the genetic algorithm was to change

the power-average function used in the fitness-function,

pa(d, p) = p

√√√√ n∑
i=1

dpi , pa(d, 0) = n

√√√√ n∏
i=1

di (3.17)

with the weighted power-average function:

wpa(d, p) =
1∑n

i=1wi

p

√√√√ n∑
i=1

wid
p
i , wpa(d, 0) = n

√√√√ n∏
i=1

di,

n∑
i=1

(wi) = 1 (3.18)

65

Note that because the weights are normalized within the group, that is,
∑n

i=1 wi =

1, the value of a group can now be considered a weighted average of its members.

The scale used for each of the features are all in the range [0,1], and the sum of them

is one. The limitation that any group’s value is in the range [fmin,fmax] where

fmin is the feature with the lowest value in the group and fmax is the largest value

in the group is therefore kept.

The final value of the Top − Group is now a weighted power average of the

sub-groups and a sub-group’s value is a weighted power-average of its members.

3.3.2 Changes in Regards to the Genetic Algorithm

In order to have the genetic algorithm find the optimal weights, the following

changes were made to the system:

• In the chromosome, one new gene was added for each feature. This gene

represented the weight of a feature.

• Similarly one gene was added for each of the potential sub-groups.

On the creation of a group when a new chromosome is created, the gene

representing a feature, having a value between 0 and 1, is divided by the sum

of weight-genes for this group. The weights are in this way normalized; the

weights of the children of one group add to one.

Similarly as in the case for the feature, the group-weights are normalized

on the creation of the three, that is; a group’s weight equals the weight it is

given by the chromosome divided by the sum of the weights of the children

of its parent.

3.3.3 Effect of adding weights in regards to performance

The search space grew quite a bit with the weight-extension. Each feature and

each group now has a weight represented in the the trees representing each class

66

in the chromosome. Underneath is a comparison between the search space of the

GoF- and the WGoF-system with a given dataset.

The search space in GoF if one has a dataset with two classes, ten features and

parameter max number of sub-groups=3, would result in the following amount of

genes in each chromosome:

#ofGenes = #ofClasses×#genesPerClass (3.19)

= 2(#ofFeatures+ 2×#ofSubGroups+ 1) (3.20)

= 2(10 + 2× 3 + 1) (3.21)

= 27 (3.22)

(3.23)

In WGoF the search space is:

#ofGenes = #ofClasses×#genesPerClass (3.24)

= 2(2×#ofFeatures+ 3× (#ofSubGroups+ 1)) (3.25)

= 2(2× 10 + 3× (3 + 1)) (3.26)

= 44 (3.27)

(3.28)

In this case the search space became approximately 1.63 times larger. As the

trees found by the GoF-system also can be found by the WGoF-system 6, the

WGoF-system should in theory never perform worse than the GoF-system given a

large enough population and enough evolutions7.

6The weighted power-average is the same as the power average if all weights are equal to 1.
7Note that the WGoF-system, as the GoF-system, may get stuck in a local maximum and

therefore not find solutions that are as good as it would otherwise

67

However, because of the larger search space, more searching is needed, and when

using the WGoF-system it is expected that larger population-sizes are needed.

Complexity might therefore be a larger issue.

68

4

TESTS AND ANALYSIS

In this chapter, results from tests performed on the Grouping of Features(GoF)-

system and the Weighted Grouping of Features (WGoF) are presented. A wide

variety of tests have been performed, and only the more interesting test-results are

shown here.

This chapter first describes which tests were performed, on which datasets they

were performed, and how the tests were performed. After that results from the

different datasets are provided with adjoining analysis of the results.

Before this however, a motivational retrospect on the dataset presented in the

introduction of this report is provided. A hypothesis was made, namely that the

simple structures of the 2f-set would be captured by the GoF-system and that the

GoF-system therefore would obtain better classification rates than those of kNN.

The results from classifying this dataset with KNN and the GoF-system is pre-

sented in table 4.1:

When the project on making this report started out, the 2f-set was used in order

to get an increased understanding of the field and the possibilities and challenges

of the GoF-system. Obtaining a 2.5 percent classification improvement over kNN

on this set is therefore encouraging. The reason for why this is the case is further

69

Classifier Percent

kNN 76.33

GoF 78.93

Table 4.1: Results on the 2f-set using kNN and GoF. k=3, one sub-group in the

GoF-system.

analyzed in its own section of this chapter.

4.1 Presentation of Tests and Datasets

4.1.1 Tests

There are three setups or systems that are tested on this chapter, namely:

1. The basic GoF-system

2. The Weighted GoF-system (WGoF)

3. The GoF-system used on PCA-transformed data

4.1.2 Datasets

The datasets tested on are the following five:

1. The 2f-set: A simple two-class set in two dimensions, also used in chapter 2.

2. The square-in-square-set: Another simple two class set in two dimensions,

also used in 2.

3. The 3f-set: A quite simple two-class set in three dimensions, also used in

chapter 2.

4. The UCI Wine-set: A three-class set in 13 dimensions that can be classified

well, but usually needs some kind of transformation and scaling in order to

obtain good results.

70

5. DigitsSmall: A subset of the UCI Digits-set. A nine-class set in 64 dimensions

where each attribute (dimension) can take values in the range [1,2,..,15,16].

These datasets are all further described in their own sections.

4.1.3 Test-Schemes for Different Datasets

Because the datasets are of very different nature, different testing-schemes are used:

For the datasets for which an infinite number of data points are available (that

is: 2f, 3f and square-in-square), a special 5-fold Cross Validation (CV) is performed:

As evaluating a chromosome is much less computationally expensive than training

one is, and as several training- and test-sets can be created, five training and test-

sets are created. Each training set is then evaluated by all test sets and the mean of

all these means are shown as the result. We name this the ”mean-of-means”-result.

For the kNN-benchmark, the same scheme using mean-of-means is used.

The DigitsSmall-set showed to need multiple restarts in order to obtain good

parameters. The reason is discussed in the Digits-section 4.2.5. Because of this, a

(one) training-set was chosen and restarted 50 times. The five trees that produced

the highest fitness during these 50 runs were then tested by five test sets and the

mean of means of these are the results shown. As the top five runs are the ”top

five” in regards to performance on the training data without having seen the test

data, these are not over-fitted results. The same mean-of-means-scheme is used for

the kNN-benchmark.

The UCI Wine-dataset is quite small and is because of this it is usually evalu-

ated using Leave One Out Cross Validation (LOOCV). This is therefore done for

both the GoF-system and for the kNN-benchmark. This system was also tested by

a 70/30 splitted training-/test-dataset as an extra confirmation of the validity of

the results.

71

All tests are done by classifying the test set using kNN with the metrics pro-

duced by the GoF- and WGoF-systems.

4.1.4 Determining Parameters

As each dataset is different, the parameters chosen reflect this and are different for

each dataset. Hereby the standard parameters are the following:

• k: 3

• Number of sub-groups: 3

• Power-convert-vector: [-Infinity, -3, -2, -1, 0, 1, 2, 3, Infinity]

• Fitness function: LOOCV kNN with the kmean classification rule

The standard parameters above are chosen because of the following reasons: 1.

k = 3 prevents ties when two classes. 2. The difference between 3 and ∞ as power

is very small. 3. Even though enabling the system to use more than 3 sub-groups,

these sub groups are more likely to be over fitted to the training data and will be

difficult to understand. 4. The parameters have shown to be parameters that often

yield good results without requiring large population sizes and/or many evolutions

in preliminary tests.

There are a few more parameters, namely the population size, the number of

evolutions performed and the number of restarts done. A hypothesis is that all of

these should be increased when the complexity of the dataset grows. The hypothesis

is grounded in the following: As the complexity of the dataset grows, there are more

possible local maximas and increasing those three parameters increases the chances

of finding a better maxima as more of the search space is evaluated. The obvious

drawback of this is a possible over fitting to the training data because increasing all

of these parameters might allow the model to be fitted to a very complex structure

that is special for the training set.

72

4.1.5 Structure of Presentation

For each dataset the following structure is used to present the results:

1. Presentation of dataset

2. Results and Analysis

Onward to the actual tests:

4.2 Tests and Analysis

4.2.1 The 2f-set

4.2.1.1 Dataset description

The 2f-set (figure 4.1) consists of 2000 datapoints, 1000 belonging to each of the

classes. One class is uniformly distributed in the range [0,1] in both directions, the

other class is a gaussian of mean y = 1− x and variance 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: 2f-set

73

Classifier Percent correct

kNN 76.33

GoF 78.93

Table 4.2: Results on the 2f-set using kNN and GoF. k=3, one sub-group in the

GoF-system.

4.2.1.2 Results and Analysis

The Basic GoF-result in 4.2 resulted from the following trees:

Tree, uniform class:

TopGroup: Features [1], Power: 0, Group-similarity: False

Tree, class where y = 1− x:

TopGroup: Features []

SubGroup: Features [0,1], Power: 1, Group-similarity: True

These trees obtained the highest fitness and were therefore chosen in order to

classify the test-set. We can see that for the y = 1 − x-class, the manhattan-

distance, x + y, is the metric used as the power for this group is p = 1. This is

exactly as hypothesized as this means x and y are summed together before distances

are calculating. Because the sum adds up to 1 with a standard deviation of 1/10th,

the classification task thus becomes easy for the classifier. As for the uniform class,

the power of -1 is not well understood, and most likely this exact power is due to

over-fitting to the training set. The hypothesized best value for this parameter was

p = 0 as the class is uniformly distributed with a mean 0.5.

4.2.2 The 3f-Set

The 3f-set has two classes and three dimensions. Each class has 1000 data-points.

One of the dimensions is independent and uncorrelated to any of the classes. For

the other dimensions one class (blue) is randomly distributed uniformly over both

whereas the other class (red) has the dependance that x1 = 1− x2:

74

0.2
0.4

0.6
0.8 0.2

0.4
0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x2
x0

x1

Figure 4.2: The 3f set.

4.2.3 Results and Analysis

In chapter 2 the 3f-set was first classified using regular kNN and obtained 86.63

percent correctly classified samples. Removing features manually obtained 95.9

percent accuracy and kNN on a PCA-reduced dataset obtained 62.20 percent ac-

curacy. By removing one feature manually and then running PCA and choosing the

first principal component, a 100% accuracy was obtained. 100% was achievable,

but somewhat cumbersome. With the IBR-system 100% accuracy was obtained

right away with no modifications to the dataset.

Classifier Percent correct

kNN 86.63

kNN with removed feature 95.9

kNN on PCA transformed data (d=2) 62.20

kNN with removed feature on PCA data 100

Basic GoF 100

Table 4.3: Results on the 3f-set from the previous chapter and the results on the

GoF-system.

This result is encouraging. The GoF-system created one group of the uncorre-

75

lated dimension and in effect ignored this one. In addition a and-group was made

of the other two features and as the average of these in this set are exactly equal,

the classification task then became trivial.

4.2.4 The Square-in-Square-Set

4.2.4.1 Dataset description

The square-in-square set has 2000 data points, 1000 in each of its two classes. One

class is uniformly distributed in the range [0,1] in two dimensions, whereas the

other is uniformly distributed in the range [0.25,0.74] in two dimensions.

4.2.4.2 Results and Analysis

Classifier Percent correct

kNN 82.17

Basic GoF 84.38

WGoF 85.64

WGoF with 10 sub groups 84.21

Table 4.4: Results on square-in-square-set classified by kNN, GoF and WGoF.

The GoF-test obtained results between 83.82 and 84.64 percent with a mean of

84.38. The tree that performed the best looked as follows:

Tree, large square

Topgroup features [0,1] Power ∞, Group-similarity: True

Tree, small square:

Topgroup features [1], Power: 1, Group-similarity: True

- Subgroup 1 features [0], Power 1

The second tree varied quite a lot from each run and we could not find a pattern.

The tree representing the large square, however, always used ∞-groups. In effect

76

the largest of the features of the features is found and this is quite understandable.

Consider the following table:

-,+ avg,+ +,+

-,avg avg,avg +,avg

-,- avg,- +,-

Table 4.5: Results on square-in-square-set classified by kNN and on the GoF-

system.

Here + means large value, − a small value and avg an average value. The +,

− and avg represent the (x,y)-values a samples in the respective sub-areas have.

The optimal decision lines are around the avg, avg-sub-area.

As we can see, for the larger square-class, five of the eight sub-areas have either

its x- or its y-value as large(+. All of these sub-areas are considered the same

IBR-system as it made an infinity-group yielding only the largest value. Therefore

the boundaries around these are easy to classify correctly. The (−,−)-sub-area will

also be classified correctly given nearby sample points.

Having this correct and classifying the remaining samples as the smaller class,

the classification rate would be (5/9 + 1)/2 percent=83.34percent. Both kNN and

the GoF-system performs a little better than this.

4.2.4.3 Weighted GoF-Results and Overfitting

The WGoF-test obtained higher scores, averaging one percentage better than GoF

and kNN. As there are few structures to fit a model to, a hypothesis was that

increasing the number of sub-groups on such a dataset would decrease the classifi-

cation rate due to overfitting. Indeed, while the correctly classified on the training

set increased from 97.67 percent to 99.50 percent, the test-set performance de-

creased to 84.21 percent.

77

The WGoF-test obtained higher fitness on the training data (99.75 percent

correct), but lower results on the test-data with an average of 84.21. The difference

from the GoF-system quite small, but the reason for WGoF performing worse is

probably due to overfitting: With not very many structures to fit to and several

parameters used to fit to the data, the WGoF-system probably fitted a model that

captured

4.2.5 The DigitsSmall-Set

4.2.5.1 Dataset description

The original UCI Digits-dataset contains 44*250 data points originated from 44

people who have written 250 digits each which in turn have been converted into

digital 16-featured representations. The dataset is therefore pretty large, the whole

matrix including labels has 44*250*(16+1)=187 000. Because of the limited com-

putational efficiency of the MacBook Pro (2Ghz i7, 4gb RAM) and the size of the

dataset, for these preliminary tests, a subset of the dataset is used. We call this

subset DigitsSmall and it uses 100 data points for each of the digits (0 through 9)

in the training sets and 40 data points for each of the digits in the test sets.

4.2.5.2 Results and Analysis

With many classes and and attributes, this dataset is the most complex one. Of 35

runs, only eight runs obtained a satisfactory fitness on the training data. These runs

were done using 150 evolutions and a population of 400 individuals. It was believed

that increasing the population size would reduce the multiple restarts necessary,

but of five runs, each spending 15 hours on the MacBook Pro i7, only one of these

obtained satisfactory fitness when using a population of 1000 individuals.

The GoF-system performed well on a few of the runs, but the genetic algorithm

did not find good parameters for this dataset easily. Because of the large search

space, it is expected that a larger population would result in high classification

rates more consistently. Because of limited time and resources, extensive testing

on the WGoF system was not an option. From time-consuming runs with the same

78

Classifier Percent correct

kNN 89.36

GoF 91.25

WGoF low 60s

Table 4.6: Results on the DigitsSmall-set using kNN and GoF. k=3, one sub-group

in the GoF-system.

setup as above, the best resulting tree produced classification rates in the low 60s.

This was not prioritized to test further.

This dataset showed one important thing, namely that large datasets with many

classes 1 may require a very large population and run time in order to find fitting

trees. As soon as the trees are produced by the system however, the trees may

be used for classification in a much less computationally expensive way. Because

of this the complexity-issue may not be a large con for Verdande Technology as

we believe they do have the resources for computing the optimal trees. For future

work it may be interesting to try higher mutation rates in the genetic algorithm in

order to cover broader patches of the search space in less evolutions.

4.2.6 The UCI Wine-Set

4.2.6.1 Dataset description

The Wine-set consists of 178 data points with 59/71/48 data points in each of the

three classes. When transformations and scaling is done to the dataset, classifica-

tors can achieve good results on this set, up too 100% correctly classified. Even

kNN can perform In its original form however, only 75.71 percent samples are cor-

rectly classified using kNN. It is interesting to see how well GoF will perform on

this set, both in its original form and when PCA-transformed. The results were

obtained using a population of 100 individuals and 200 evolutions.

1Remember that the search space grows almost linearly with the number of classes

79

4.2.6.2 Results and Analysis

Classifier Percent correct

kNN 76.27 orig

kNN with PCA-transformed data 76.96

GoF 92.09

GoF with PCA-transformed data 95.48

WGoF 100.00

Table 4.7: Results on the UCI Wine set classified by kNN and using the GoF- and

WGoF-systems.

From the table we see that without altering the data in any way, GoF clearly

outperformed kNN. We believe the high improvement over kNN is mainly due to

how the GoF-system may give more and less significance to different features by

assigning different powers and in this way scale the dataset. Scaling the dataset

has shown to be essential - Aeberhard et al. (1992) obtained 96.10 percent correctly

classified on the set after transforming the dataset.

Even though the scaling of features can be assigned much of the credit for

the improvements over kNN, the GoF-system also outperforms kNN performed on

scaled data. Hence we expect that some of the improvement is derived from cap-

turing structures using groups.

As kNN is known to obtain much higher classification rates on the UCI Wine-

dataset when the dataset has been transformed , it was interesting to try to: 1.

Transform the dataset using PCA and 2. Present the dataset to the WGoF system,

as this system can scale the dataset further within groups using its weights.

In table 4.7 we can see that PCA-transforming the set to some extent improved

classification-rates for kNN (0.69 percent) and increased classification rate of the

GoF-system by 3.45 percent to 95.48 percent.

80

The increase of 0.69 percent for the kNN set may not be significant and other

transformations are known to enable kNN to classify the dataset 96.10 percent cor-

rectly (Aeberhard et al., 1992). The PCA-transformation did in other words not

seem to be a good transformation for this dataset.

As further scaling across groups is possible using the WGoF-system this was

very interesting: Our hypothesis when implementing the WGoF-system was that

this system often would even be less dependent on how the dataset is scaled on

beforehand as it scales the features within the groups itself.

Only one method before has been able to classify the set 100% correctly, namely

Aeberhard et al. (1992) when using Regularized Discriminant Analysis(RDA).

For the WGoF-system a population of 500 individuals was created, and after

between 20 and 30 iterations a 100% classification rate is obtained on the dataset.

The WGoF system thus pars the best results obtained on this algorithm (RDA,

100 percent) and beats the second and third best algorithms (Quadratic Discrim-

inant Analysis[QDA] 99.43 percent and Linear Discriminant Analysis[LDA] 98.9

percent).

It is interesting that convergence was reached so fast, using less than half of the

evolutions needed for reaching convergence using the non-weighted GoF-system.

The reason is probably a combination of having a large population size and a quite

small dataset.

After obtaining such great results, the premises were double checked. The

dataset was split into 70/30 percent in training-/test-set was made and tested on

to be sure there was no extra over fitting. This dataset obtained 98.33 percent

correctly classified (that is, only one wrongly classified) with a smaller population

81

size and 30 evolutions. As this result also is very good and is obtained using only

70 percent of the already small dataset, we are because of this confident the 100

percent classified as per the LOOCV-test are fair results.

4.3 Summary of results

There are especially three things that the tests performed in this chapter has taught

us:

1. The GoF-system does indeed perform well on many classification tasks and

is robust in regards to the scaling of the data.

2. On complex datasets with many classes where the search space becomes very

large, the GoF-system requires large computational resources in order to find

optimal trees.

3. The WGoF-system performs even better than the GoF-system and did obtain

results that par with the very best on the UCI Wine-dataset.

82

5

CONCLUSION

Throughout the theoretical exploration the methodology-questions presented in

the introduction were examined. This exploration and a study of the Grouping

of Features (GoF)-system built an understanding of what the GoF-system is and

the fields on which it grounds. This understanding enabled us to document the

GoF-system and to for example extend it to include weights.

One of the key research question was whether this system could be success-

fully implemented and perform certain classification tasks better than for example

k-Nearest-Neighbor (kNN). Chapter 4 showed that this indeed was the case: The

GoF-system outperformed kNN on most classification tasks, and when extending

the GoF-system with weights, the Weighted Grouping of Features-system improved

the accuracy from 92.09 to 100 percent on the non-transformed UCI Wine-dataset,

a dataset which kNN only classifies 76.27 percent correct on.

In the theoretical exploration it was made clear that scaling and transforma-

tions done on the dataset may be crucial for obtaining high classification rates.

By removing features and using Principal Component Analysis (PCA) for further

dimension reduction, a three-dimension set was reduced to one dimension and the

classification accuracy was increased from 87.1 percent to 100 percent correctly

83

using the GoF-system.

When studying PCA we also learned that PCA-transforming a dataset not al-

ways increased classification rates, but sometimes indeed could make the results

worse. On the 3f-set, classification rates using kNN were reduced by 8.5 percent

when PCA-transformed into the original number of dimensions, the reason being

that PCA had no knowledge of the different classes and therefore included an un-

correlated dimension when maximizing the variance of the data.

One of the GoF-system’s strengths therefore is that it seems less reliant on the

scaling of the features in the training data. Through tests performed on the UCI

Wine set, it was shown that the GoF-system could perform well on the non-scaled

dataset even though for example kNN cannot.

As both the GoF- and, even more, the WGoF-systems outperformed kNN’s

performance on scaled data as well, scaling is not all the GoF-systems do. Another

strength is that the systems capture structures in the data which for example kNN

cannot. This was shown by outperforming kNN on several datasets and especially

through testing on the 2f dataset. On this set the GoF-system grouped the mem-

bers of one class together and by this was able to make members of one class

relatively closer to each other compared to the other class. This resulted in in-

creased classification accuracy.

The largest challenge when testing the GoF- and WGoF-systems was in regards

to computational performance. As the datasets grew in complexity, and especially

when there were many classes involved as in the UCI Digits-subset, the compu-

tational resources needed to find optimal trees were substantial. The subset of

the UCI Digits dataset showed that for such datasets higher population sizes are

important and that multiple restarts may be useful for finding optimal trees.

84

Regarding the complexity-issue it should be noted that requiring large com-

putational resources for finding the optimal trees is far from making the system

useless: Optimal trees can be found using super-computers on beforehand, and

therefore companies such as Verdande Technology may do this and then, in a real-

time system, perform the much less computationally expensive task of making use

of the trees for classification.

Nevertheless the GoF and WGoF performed the best on smaller datasets with-

out a large amount of classes.

There are many existing classifiers for multi-class learning problems. The GoF-

system and its extension WGoF has in this thesis shown to outperform one of

the ten most popular classifiers in the world on most datasets, and the WGoF-

system classified the well-known UCI Wine dataset 100 percent correctly on non

pre-processed data.

5.1 Future work

As mentioned there is already ongoing research in regards to be able to compute

the Vd’s in probability-model of the GoF-system. Initial tests have given promising

results, and hopefully this will be presented in future work of Verdande Technology.

In addition to this, one might want to take measures ton dampen the complexity-

issue. Ideas include trying different types of dimension reduction techniques or

training-set simplification techniques and altering the mutation-rate of the genetic

algorithm.

There is also ongoing research in regards to using different k for different classes.

This was shown to be interesting for datasets where the densities of the different

classes varied. Testing this obtained good results in the theoretical exploration,

85

but it is believed that the improvements of doing this might be even higher in the

GoF-system.

Finally, as the GoF-system proved to be successful with its three levels of nodes

- top-group, sub-groups and features, a generalization of this system would be

interesting. A suggested generalization would be to let any group have sub-groups

so that the tree could have more than three levels. By doing this one might be able

to capture even more complex structures.

86

Bibliography

Aeberhard, S., Coomans, D., and de Vel, O. (1992). Comparison of Classifiers in

High Dimensional Settings. Tech. Rep. no. 92-02.

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the Surprising Behav-

ior of Distance Metrics in High Dimensional Space. Lecture Notes in Computer

Science, pages 420–434.

Ajanki, A. (2007). Example of k-nearest neighbour classification.

Bair, E., Hastie, T., and Paul, D. (2004). Prediction by supervised principal com-

ponents. Journal of the American Statistical Association, pages 1–35.

Beyer, K., Goldstein, J., and Ramakrishnan, R. (1999). When is Nearest Neighbors

Meaningful? In Int. Conf. on Database Theory.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation

of machine learning algorithms. Pattern Recognition, 30(7):1145–1159.

Center, G. S. L. (1969). What Causes DNA Mutations?

Chen, X., Wang, L., Smith, J. D., and Zhang, B. (2008). Supervised principal

component analysis for gene set enrichment of microarray data with continuous

or survival outcomes. Bioinformatics (Oxford, England), 24(21):2474–81.

Cordon, O. and Herrera, F. (1996). A Hybrid Genetic Algorithm-Evolution Strat-

egy Process for Learning Fuzzy Logic. Evolutionary Computation.

87

Cover, T. (1967). Nearest Neighbour Pattern Classification. Information Theory,

IEEE Transactions on.

Cunningham, P. (2007). k-Nearest neighbour classifiers. Multiple Classifier Sys-

tems, pages 1–17.

Dietterich, T. G. (1995). Solving Multiclass Learning Problems via Error-

Correcting Output Codes. Journal of Artificial Intelligence Research, 2.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd

Edition). Wiley-Interscience.

Dudani, S. A. (1976). The Distance-Weighted k-Nearest-Neighbor Rule. Man and

Cybernetics, IEEE Transactions on, pages 325–327.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap.

FrantzDale, B. (2012). PCA figure.

He, H., Graco, W., and Yao, X. (1999). Application of Genetic Algorithm and

k-Nearest. Knowledge Acquisition, pages 74–81.

Hicklin, J., Moler, C., Webb, P., Boisvert, R. F., Miller, B., Pozo, R., and Rem-

ington, K. (2005). JAMA: A Java Matrix Package.

Holland, J. H. (1975). Adapation in Natural and Artificial Systems. SIAM Review,

18(3):287–299.

Hostetler, L. D. (1975). k-Nearest-Neighbor Bayes-Risk Estimation. IEEE Trans-

actions on Information Theory, I(x).

Johnson, G. (2011). PCA example six11utils r108.

Kaur, A., Cheema, R. S., and Sandhu, P. S. (2012). Identification of Reusable

Procedure Based Modules using kNN Approach. International Conference on

Latest Computational Technologies, (Cc).

88

Kuramochi, M. (2001). Gene classification using expression profiles: A feasibility

study. 2001. Proceedings of the IEEE 2nd.

Lange, N., Bishop, C. M., and Ripley, B. D. (1995). Neural Networks for Pattern

Recognition., volume 92.

Loftsgaarden, D. (1965). A Nonparametric Estimate of a Multivariate Density

Function. The Annals of Mathematical Statistics.

Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., and Sun, X. (2011). The application

of data mining techniques in financial fraud detection: A classification framework

and an academic review of literature. Decision Support Systems, 50(3):559–569.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical, pages 559–572.

Quartl (2011). p-norms.

Rechenberg, I. (1971). No Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Stuttgart: frommann-holzbog.

Russell, S. and Norvig, P. (1995). Artificial intelligence: a modern approach.

Schölkopf, B. and Smola, A. (1998). Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural computation.

Seidl, T. (1997). Efficient User-Adaptable Similarity Search in Large Multimedia

Databases. Processing, pages 506–515.

Wright, J. and Ali Alajmi (2005). The Robustness of Genetic Algorithms in Solv-

ing Unconstrained Building Optimization Problems. International, Ninth Con-

ference, Ibpsa, pages 1361–1368.

Wu, C., Tzeng, G., Goo, Y., and Fang, W. (2007). A real-valued genetic algorithm

to optimize the parameters of support vector machine for predicting bankruptcy.

Expert Systems with Applications, 32(2):397–408.

89

Yager, R. (2001). The power average operator. Systems, Man and Cybernetics,

Part A: Systems.

Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. Pro-

ceedings of the 22nd annual international ACM SIGIR conference on Research

and development in information retrieval SIGIR 99, pages(Berkeley, CA):42–49.

90

	Title Page
	INTRODUCTION
	Motivation
	Problem Definition
	Our Context in this Research Project
	Research Goals and Methodology
	Presentation of the Structure of this Report

	Theoretical Exploration
	Introduction
	K-Nearest-Neighbours Classification
	Design Choices for kNN
	Classification Rule of kNN
	Regression and kNN
	Choosing k
	Different ks for Each Class

	Evaluating Classifiers
	The Confusion Matrix and Special Classes
	Precision/recall-example
	Receiver Operating Characteristic
	Special Classes and This Report

	Training-/Test-Tets and Overfitting
	Held-out data

	Cross-Validation
	Monte Carlo Simulations and Theoretical Maximums

	Normalization, Standardization and Scaling Data
	Normalization
	Standardization
	Scaling kNN and Use of Weights

	Dimension Reduction
	Manual Feature Selection
	Automatic Dimension Reduction
	Principal Component Analysis

	Distance Functions
	The Minkowski Distance Function

	Genetic Algorithm
	Genetic Algorithm Example
	Chromosome Description
	Crossover
	Mutation
	Fitness-function

	Other Methods and What This Report Does Not Cover
	Other Classifiers
	Reducing the Expense of Classifying a Sample
	Other Dimensionality Reduction Techniques

	GROUPING OF FEATURES
	Context
	The Structure of this Chapter

	GoF-Specific Theory
	The Classification Rule of the GoF System
	Different Sphere Volumes and the GoF System
	The k-Mean Classification RuleNot to be confused with the k-means clustering algorithm.
	Using Majority Voting instead of K-Mean for Classification

	Using Different Distance Functions for Different Classes
	The Grouping of Features System
	Grouping of Features and Instance Based Learning (IBL)

	The Distance Function in the GoF-system and the concept of Power Averages
	Power Average
	The GoF-Distance Function

	The GoF System's Implementation
	Recap of the Genetic Algorithm
	Genetic Operators
	Forming a new generation
	Parameters used by the Genetic Algorithm
	Chromosome
	Calculating a Distance, an Example

	Weighted Grouping of Features
	Weighted Power Average
	Changes in Regards to the Genetic Algorithm
	Effect of adding weights in regards to performance

	TESTS AND ANALYSIS
	Presentation of Tests and Datasets
	Tests
	Datasets
	Test-Schemes for Different Datasets
	Determining Parameters
	Structure of Presentation

	Tests and Analysis
	The 2f-set
	Dataset description
	Results and Analysis

	The 3f-Set
	Results and Analysis
	The Square-in-Square-Set
	Dataset description
	Results and Analysis
	Weighted GoF-Results and Overfitting

	The DigitsSmall-Set
	Dataset description
	Results and Analysis

	The UCI Wine-Set
	Dataset description
	Results and Analysis

	Summary of results

	CONCLUSION
	Future work

