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Abstract
As the complexity of parallel computers grows, constraints posed by the construction of

larger systems require both greater, and increasingly non-linear, parameter sets to model

their behavior realistically. These heterogeneous characteristics create a trade-off between

the complexity and accuracy of performance models, creating challenges in utilizing them

for design decisions.

In this thesis, we take a bottom-up approach to realistically model software and hardware

interactions, by composing system models from simpler, linear models, which allow parts

of the analysis to be automated. We associate empirically benchmarked platform perfor-

mance metrics with the core elements in a variant of bulk-synchronous execution, aiming

to quantify application performance, and associated potential for computation and com-

munication overlap on SMP clusters.

The original bulk-synchronous performance model is introduced, and we identify areas of

computation and communication where its abstractions impede realistic models of con-

temporary hardware. These are addressed independently, using experimental evidence to

develop a representation collecting computation kernel characteristics and pairwise com-

munications in matrices, to combine into a system model. As bulk-synchronous execution

strongly depends on periodic, global synchronization, we develop a cost model for it by

combining latency measurements with a parametric representation of signalling patterns,

and experimentally verify the resulting predictions for three common algorithms.

We describe a design to implement the BSPLib programming interface, combining threads

and message-passing parallelism to achieve overlap on commodity cluster platforms, im-

plementing its one-sided communication primitives using out-of-band control messages.

We augment and validate the cost model of one adapted synchronization algorithm with

the corresponding bandwidth requirement, completing a framework for modeling BSPLib

program performance.

Finally, we test the utility of this framework as a proof-of-concept for guiding software

performance adaptations, using two cases. First, we use the latency terms to automatically

generate synchronization operations, using model predictions to generate customized pat-

terns with respect to platform topology, showing that the resulting algorithms equal or out-

perform the system defaults. Second, the strong scaling characteristics of a 5-point stencil

code is compared for three implementations. Experiments show the performance overhead

of our implementation, but also its capability for predicting program cost, including pa-

rameter values to optimize for balanced overlapping of computation and communication.
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Chapter 1

Introduction

The main aim of this thesis is to derive performance models of complex program and plat-

form interactions which admit automated support for performance tuning. Recent gener-

ations of parallel computers are composed of subsystems with highly variable, nonlinear

performance properties, which make them challenging to model accurately. Maintaining

an illusion of a large memory with uniform access cost is already impossible in most cases,

and the communication costs of distributed memory systems are influenced by many fac-

tors. The sustainable computational rate of a processor is tied to the memory access pat-

terns of programs, making it variable even on systems composed of identical processors.

Models expressed as small sets of linear parameters do not reflect these heterogeneous

characteristics, but increasing the level of model detail detracts from both clarity and gen-

erality.

In order to maximize the efficiency of parallel programs, it is necessary to chart the sus-

tainable load of component subsystems, leading to the consideration of how far commu-

nication and computation can be overlapped. Because the cost of communication is fun-

damentally dependent on the distance between the communicating parties, balancing the

two is essential in order to permit system scale to grow without diminishing the utility of

the added computational resources.

The method described in this thesis approaches system model complexity based on the

existence of effective linear models of individual subsystems. Assuming the distribution

of a known, finite workload onto these subsystems, the composition of overall system

behavior from a heterogeneous collection of subsystems can be automated. This permits

system models to incorporate a great number of parameter values without requiring an

analyst to manually manipulate them all.
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1.1 Modeling Challenges And Scope

Ideally, a performance model should be simple, general, and provide strong predictions.

These objectives conflict with the need to capture system complexity, as it requires struc-

tural information about both system and program to be taken into account. The resulting

trade-offs make it unrealistic to search for a single, correct approach to all systems. This

section outlines the choices we make to produce a usable framework for deriving perfor-

mance models for systems with heterogeneous performance parameters.

In this thesis, we have chosen to model heterogeneous systems by extending the Bulk-

Synchronous Parallel (BSP) model [95]. Its purpose is to form a bridging model, combin-

ing aspects of parallel computation from several levels of abstraction.

Figure 1.1 illustrates how BSP unifies algorithmic, programmatic, processing and perfor-

mance models in terms of a few, global concepts. In order to adapt it to heterogeneous

systems, we adjust the processing model to permit performance models of greater detail.

BSP is chosen because it makes it possible to exchange these parts without violating the

semantics of the algorithmic and programmatic components, allowing this thesis to utilize

and complement existing programs and algorithms in the body of related work.

Our objective is to keep component models sufficiently simple, so that they can be rep-

resented in a uniform manner programmatically. Linear models of subsystems are appro-

priate for this purpose, because of the relative simplicity of manipulating large systems of

linear equations in software. Such an approach carries two significant limitations. One is

that it requires a bound on the time interval for which the model should be valid, in order to

derive the amount of work delegated to each subsystem. The other lies in the assumption

that a piecewise linear description of global behavior can be obtained from a subsystem

decomposition.

Bulk-synchronous execution inherently partitions computation into bounded intervals, re-

stricting our scope of study to synchronized or loosely synchronized algorithms. A 1996

technical report by Fox [36] estimates that this accounts for 90% of parallelized problems

in scientific computing. Assessing the accuracy of that number is beyond the scope of this

thesis, but we argue that synchronized computation is an important area of study, while

noting that our approach is poorly suited to asynchronous algorithms.

Nonlinear subsystem models are not addressed in this thesis because composing an over-

all system of nonlinear equations greatly complicates automatic manipulation, detracting

from its effectiveness for hiding model complexity. Computation rate is nonlinearly re-

lated to the data traffic caused by problem specific properties. This is approached by

treating such functions as piecewise linear, and decomposing them into a discontinuous

set of linear models. While this works in the practical cases investigated here, it increases

the amount of manual labor involved in modeling.
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Figure 1.1: Aspects of the BSP model

Algorithmic and programming models represent the abstractions presented for program
design purposes, as a set of fundamental operations and their corresponding programming
language support. The processing model shows a synchronized superstep where commu-
nication is effected by a total exchange at the end. It serves as a shared abstraction to both
software and hardware architecture. The performance model attaches cost functions to
key elements of programs and platforms. Specifically, L is the periodicity of the program,
h is the maximal amount of data communicated between a pair of parallel processes, r is
the rate of computation, g is the throughput of the communication infrastructure, and s is
the latency. L is written as a function of the program, to reflect variations in the amount of
work in a given superstep. M is not explicitly acknowledged in the original notation, but
is introduced here to acknowledge the platform-dependency of cost functions. This nota-
tion will be significantly altered with our model refinements, but is stated here to clarify
connections with related work.
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Figure 1.2: Alternative processing model

1.2 Framework Outline

Figure 1.2 illustrates our modified processing model, which retains the BSP semantics

that effects of communication are not observed until after synchronization/total exchange.

The change amounts to initiating communication as early as permissible, decoupling the

cost of communication from synchronization. This reduces the amount of communica-

tion required at synchronization time, and holds the potential for mitigating interconnect

contention, as communication may happen at the individual process’ discretion when the

message is ready.

Accounting for background communication, as well as a heterogeneous performance model,

Figure 1.3 shows an overview of our approach for modeling application behavior at the

system level. It is structured according to what Barker et al. [14] name the “fundamental

equation of modeling”, given in Equation 1.1.

Ttotal = Tcompute + Tcommunicate − Toverlap (1.1)

Selecting the computational superstep [95] as the model unit of work implies a division

of computation and communication time totals into non-maskable and maskable parts.

Equations 1.2 and 1.3 express the non-maskable time as the difference of total requirement

T and a maskable part T ′.

Tcomm−nonmaskable = Tcomm − T ′comm (1.2)

Tcomp−nonmaskable = Tcomp − T ′comp (1.3)

This allows the right hand side of Equation 1.1 to be restated as Equation 1.4, with total

time representing the superstep cost.

Ttotal =

(Tcomp − T ′comp) + (Tcomm − T ′comm) + max(T ′comp, T
′
comm) + Tsync (1.4)
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This formulation indicates that a superstep consists of some sequentially dependent work,

some which can be overlapped (bounding total time to the greatest requirement), and the

synchronization cost of a semantic fence to mark the completion of both.

The approach proceeds bottom-up, in the 3 stages shown in Figure 1.3:

1. Approximate Tcomp, Tcomm and Tsync separately

2. Combine the approximations in a linear system which describes collective behavior

3. Derive a system-level model of execution

Details concerning each of these stages are developed in subsequent chapters of this the-

sis. The underlying goal is to manage the complexity of the resulting system-level model

by selecting simplifications to facilitate automatic model manipulation. Thus, the point

of modeling system behavior as (potentially large) linear systems in Stage 2 is to admit

heterogeneous collections of subsystem performance characteristics.

An important feature to note in Figure 1.3 is that the starting point of Stage 1 is a separation

of program and platform characteristics. The purpose of initially considering these in

isolation is to consider their representation as parameters by Stage 2, so that a model of

one may be applied to several instances of the other. In particular, there is strong focus

on keeping the topology of the communication infrastructure parametric. This requires

coupling the physical locality of a process to its position in the logical layout of a program.

Locality is observed to be an important factor in determining the cost of communication,

implying that accurate modeling requires its impact to be kept under strict control.

1.3 Research Questions

The main research question of this thesis is

How can automation support the analysis of interactions between a parallel algo-
rithm and the executing platform when both show heterogeneous performance char-
acteristics?

Addressing this question breaks into more specific research questions, which pertain to the

requirements of adapting the approach in Figure 1.3 to a particular system:

RQ1 How can the computation and communication requirements of a program be coupled

to an independent profile of the executing platform?

RQ2 How can the impact of synchronization on program performance be determined?

RQ3 Which constraints govern the accuracy of performance predictions produced using

the developed framework?

RQ4 How suitable is the framework for the purposes of automatic application perfor-

mance tuning?
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Figure 1.3: Outline of the Proposed Framework
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1.4 Contributions

Several variations over models found in the body of related work are employed through-

out this thesis. Its novelty lies in coupling application modeling techniques for pairwise

communication, collective behavior, and computation rates with programming and pro-

cessing models adapted from a more theoretical approach. Strong focus on experimental

validation is maintained throughout, to ensure that the developed framework is practically

applicable. The remainder of this section gives further details of our contributions.

1.4.1 A Bulk-Synchronous Programming Tool

The BSP model is already endowed with a programming interface specification. The work

presented in this thesis constructs an implementation of this interface, modifying the pro-

cessing model to employ asynchronous communication. The corresponding experimental

work provides evidence that the combination is a simple and effective means to identify

and exploit an algorithm’s potential for computation/communication overlap, to the extent

made feasible by the target platform.

1.4.2 A Modeling Framework to Capture Overlap Using Linear Sys-
tems

The tradition of modeling homogeneous parallel systems in terms of constants or piece-

wise linear functions grows in complexity when applied to systems where performance

parameters are greater in number and range. The presented framework approaches the

composition of subsystems by expanding these into matrices containing individual or pair-

wise performance parameters, and deriving overlap as a collective property of the resulting

linear systems.

This approach retains the favorable property of aggregating system models by composition

of subsystems, without concealing all structural information. It is shows robustness in the

face of parameter values varying by several orders of magnitude.

1.4.3 Benchmarks for Commodity SMP Clusters

To validate the framework on COTS systems of multi-chip, multi-core compute nodes, it

is tested on commodity Linux clusters with variable topology and configuration. Because

the model relies on empirical data in order to characterize the performance impact of

deploying an algorithm on a given platform, these clusters are benchmarked to produce

their key parameters. The method of obtaining these benchmarks is described, as great

care must be taken in order to give the stability and accuracy necessary for validation.
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1.4.4 A Method for Automatic Barrier Adaptation

Because synchronization costs are central to the framework, a detailed cost model of bar-

rier synchronization is developed, including a general matrix representation of arbitrary

barrier communication patterns. Since our predictions are shown through experiments

to be very accurate, they can be used to produce customized barrier implementations of

superior performance to those provided by available system libraries.

1.4.5 A Method for Determining Application Overlap

A system’s ability to mask communication by simultaneous computation is of great and

growing significance to sustained, scalable performance. Its magnitude is, however, com-

posed of both algorithmic dependencies and the architectural facilities for exploiting it.

The implementation and instrumentation necessary to realize this potential and estimate

its effectiveness, can require a significant amount of application restructuring. Bulk-

synchronous execution semantics allow overlap to be automatically exploited by follow-

ing the simple programming rule of committing communication as early as possible. The

effectiveness of a model derived from our framework is illustrated by its correct identifi-

cation of parameter values for optimal overlap in a simple application.

1.5 Structure of the Thesis

The structure of this thesis follows the stages of Figure 1.3, through development, testing,

and application of a corresponding programming library and performance model. After

initial considerations of computation speed, communication model terms are approached

with a view to vertical integration. Communication cost is first estimated as a function of

topological distance, to estimate synchronization cost. Communication patterns of several

synchronization strategies are encoded as application requirements in a reduced model

without cost functions for computation and synchronization. This is developed into a

synchronization cost function which can be integrated with computation, and the imple-

mentation of a corresponding run-time library is described. Finally, the model is applied

to automatic analysis of synchronization patterns and a small application program. Results

demonstrate that the independent components can be integrated in a model which supports

program optimization.

The remaining chapters are structured as follows:

Chapter 2 surveys a spectrum of parallel platforms and programming models with respect

to heterogeneity and scale, to establish terminology and place the test system class in a

greater context.

Chapter 3 introduces the background to motivate the framework’s construction, and presents

its basic terms, with emphasis on the relationship between bulk synchronicity and the fun-

damental equation of modeling.
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Chapter 4 describes the challenges posed to stable metrics of computational rate imposed

by the memory hierarchy of contemporary platforms, and shows the assumptions and

methods applied to the test systems.

Chapter 5 describes the expression of the model’s communication startup cost components,

which provide accurate performance predictions for the cost of several synchronization

algorithms applicable to the test systems.

Chapter 6 describes the techniques employed to create an implementation of the BSPlib
programming interface which utilizes an application’s potential for overlap, and exposes

its magnitude on a given target platform. Attention is focused on a particular synchro-

nization algorithm, extending its cost function to include a minimal data payload. This

allows it to function as a special case of a total exchange collective, which establishes the

synchronization cost estimate required by the framework.

Chapter 7 demonstrates the applicability of the framework to fully automate the construc-

tion of generic synchronization algorithms, by examining the model’s prediction of their

interaction with independently captured architectural profiles.

Chapter 8 introduces a simple finite difference application, and compares performance

expectations to the results obtained by studying it with the developed model.

Chapter 9 draws conclusions, and outlines the potential for exploring the framework ap-

proach as a tool for guiding manual and automatic performance tuning.



10



Chapter 2

Scalability and Heterogeneity

Much of the complexity and diversity of parallel computing is due to how the requirements

scaling solutions to ever greater problems conflict with those of implementing such solu-

tions using a uniform set of resources. The resulting trade-offs manifest themselves both

in hardware and software design. In order to provide an appropriate context for our re-

search, this chapter presents a brief, qualitative survey of how this relationship is reflected

in a range of systems.

Section 2.1 defines the distinguishing characteristics of scalability and heterogeneity for

the purposes of this discussion. Section 2.2 applies these characteristics to classes of par-

allel hardware, while Section 2.3 addresses characteristics of programming model classes.

Finally, Section 2.4 describes the context of our work, including how other models have

contributed influential points.

2.1 Terminology

Since no commonly accepted definitions of heterogeneity and scalability exist, the scope

of both terms are defined in the following sections, where they will be related to both the

construction of parallel computer platforms, as well as programming models.

2.1.1 Architectural Scalability

According to Hennessy and Patterson[43], scalability was long considered a property

which could be built into an architectural design. Their further discussion of multiproces-

sor systems offers no succinct updated view, but it indicates that difficulties stem from in-

creased requirements to grow interprocessor communication networks. Hwang and Xu[49]

divide scalability into resource, application and technology scalability, further specified in
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terms of various properties such as machine size, software scalability and heterogeneity

scalability. They list of four design principles for scalability, which are

1. The principle of independence

2. The principle of balanced design

3. The principle of design for scalability

4. The principle of latency hiding

Parallel hardware scalability will be discussed in terms of these four principles. The princi-

ple of independence states that dependencies between system components should be min-

imized. The principle of balanced design states that any performance bottleneck should

be minimized. The principle of design for scalability states that scalability should be ac-

knowledged from the beginning of a design process, reflected in overdesign, i.e. features

which anticipate future extensions, and backward compatibility for the sake of downscal-

ing. The principle of latency hiding refers to exposing the potential for exploiting simul-

taneous execution and communication, to conceal startup cost. Patterson’s treatment of

the topic [82] states that “In the time that bandwidth doubles, latency improves by no

more than a factor of 1.2 to 1.4”, and reasons that this trend can be expected to continue.

Accordingly, future designs should invent further techniques like caching, replication and

prediction, to reduce the impact of latency at the expense of other resources.

2.1.2 Architectural Heterogeneity

Our classification of architectural heterogeneity will take the high-level view that the defin-

ing characteristics of parallel computers are the processing and communication facilities,

with the latter encompassing the effects of hierarchical memory subsystems. The sources

of heterogeneity in a parallel architecture are thus the degree of variability in the range

of their processing element designs, and in the elements which are employed to transport

data to and from them.

2.1.3 Programmatic Scalability

McCool’s survey of scalable programming models [67] focuses on the conceptual map-

ping between architectural and programming model aspects. It makes an essential point

by discriminating between processing and programming models, in order to separate is-

sues of programmability and execution efficiency. Programming models are defined as a

programmer’s abstract view of software logic, whereas processing models are the associ-

ated cost considerations by which performance trade-offs can be evaluated. He identifies

three central characteristics of a scalable programming model:

1. Simplicity

2. Expressiveness

3. Safety
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Simplicity is the property of affording common programming tasks with little program-

ming effort. Expressiveness is the property of allowing succinct statements of solutions

within a problem domain. Safety refers to facilities which protect programmers from mak-

ing common mistakes. It is interesting to note that the utility of these properties is not to

provide efficient execution, but to restrict program complexity. Our discussion of program-

matic scalability will adopt these three parameters as evaluation criteria for programming

models, leaving efficiency to be considered as an aspect of program interaction with archi-

tectural parameters.

2.1.4 Programmatic Heterogeneity

Classifying heterogeneity exclusively with respect to programming models is prone to

become a statement of subjective opinion. The term is often used either with respect

to hardware only, or when considering systems which integrate hardware and software.

This may stem from the fact that different programming models feature different concepts,

making it difficult to compare them systematically. Moreover, programmers’ mental model

of the operations at their disposal is highly subjective, e.g. it is a well known problem that

programs which are obvious to their author can be incomprehensible to another reader,

making it difficult to reach any consensus on how many levels of abstraction it involves.

Still, addressing the heterogeneity of programming has some merit, witnessed by how

heterogeneous architectures inspire programmers to develop multi-model solutions [31,

85].

Although the number of abstractions or entities identified in a programming model is not

a perfect map of every idea the model may present to a programmer, it enables structured

reasoning on how many concepts are considered independent in its specification. The

number of available abstractions is obviously not in direct relation to the number actually

utilized in any given program. However, our discussion of programmatic heterogeneity

will use it as a measure of the potential for variability in application behavior, in order to

provide an ordered relation between different models.

2.2 Architectural Map

Figure 2.1 gives an overview of several kinds of systems, related to each other by the cri-

teria identified in Sections 2.1.1 and 2.1.2. Since creating an exhaustive, fine-grained tax-

onomy of parallel systems is vulnerable to rapid technology changes, systems are grouped

into approximate categories. Section 2.2.1 discusses many-core systems. Section 2.2.2

discusses systems augmented with special-purpose accelerators, Section 2.2.3 discusses

distributed shared memory systems, Section 2.2.4 discusses distributed memory systems,

and finally, Section 2.2.5 discusses computational grids.
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Figure 2.1: Map of architectural scalability and heterogeneity

2.2.1 Multi-core and Many-core Systems

Multi-core processors of autonomous units have yet to reach the same scale as large sys-

tems, but core counts are rapidly growing. Asanovic et al. [11] introduce the term many-
core as an extension of this development, noting that the number of cores per chip can

be expected to double with each silicon generation. Accordingly, we place the multi-core
category in the low range of scalability, referring to the present generation of processors

with relatively small numbers of processing cores. The computational cores of these pro-

cessors are typically identical, but their overall performance becomes heterogeneous due

to variable access cost and contention effects observable on a chip level [72].

Beyond mass-market processors, the literature describes systems which warrant discus-

sion as many-core designs. The Niagara processor [56] provides 8 units capable of 4-way

thread execution. While the cost of numerical operations render this design less interest-

ing for scientific computing purposes, we note that its degree of heterogeneity is reflected

in the attention devoted to thread scheduling. The Larrabee architecture [88] promised

up to 48 processing units on a chip. The architectural description argues its general pro-

grammability, as cores are based on x86 designs. Brief treatment is given to applications

in physics as well as video processing, but applied benchmarks primarily address gaming

applications and graphics rendering. While the Larrabee architecture has been put aside, a

more recent Intel press release [50] indicates that processors of similar on-chip parallelism

and core design may target high-performance computing.
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These systems are designed primarily for scalability, driven by the exploitation of chip area

as replicated cores. As witnessed by the application sensitive design decisions made with

Sun’s Niagara and Intel’s Larrabee, however, the balance of these designs is obviously

biased towards restricting application dependent bottlenecks. Replicating cores mandates

a uniform interface, so core internals must be encapsulated, corresponding to the principle

of independent design. Achieving latency hiding still requires careful programming or

specialized workloads.

Towards increased heterogeneity, Kumar et al. [59] point out that system-on-chip (SoC)

designs apply increased transistor counts to make single-chip computing platforms from

a mixture of integrated devices, but that these systems mostly allocate distinct tasks for

the various subsystems. Deciding on the complexity of the replicated core in a multi-core

processor is a trade-off not only because of variable application requirements, but also

because of similar variability in the requirements between phases of a single application.

Thus, general-purpose chip multiprocessors have both power and throughput advantages

to gain from heterogeneous design. Amdahl’s historic contribution [8] calls for improve-

ments in parallel processing to be matched by a corresponding improvement in sequential

processing. Woo and Lee [101] examine this with respect to many-core computing, com-

paring constant power budget configurations of a small number of large cores, a large

number of small cores, and a large core coupled with a greater number of small ones.

Their analytical model indicates that the latter combination is more energy efficient, in-

dicating that chip-level heterogeneity may mitigate the effect of Amdahl’s law. The Cell

BE [42, 58] represents a commercially available heterogeneous on-chip multiprocessor

with general purpose processing capabilities, consisting of a modified Power4 core, and

eight synergistic processing elements, which are optimized for executing single-precision

floating point operations using 128-bit wide vector instructions.

With tightly coupled cores, the heterogeneous features of the communications subsystem

are limited in such systems. Although the heterogeneity of application-specific designs

will be dependent on the nature of the application, both the Cell and the projections of Woo

and Lee consider designs composed from at most two core designs. While the rapid growth

in number of cores per die may lead to designs of more variable on-chip components,

contemporary systems remain in the low range of architectural heterogeneity.

2.2.2 GPGPU and Special Purpose Accelerators

Improvements in scalability on the single system level invites application-specific acceler-

ator designs which leverage the potential increase in core count to integrate large numbers

of simplified cores on a chip. Such accelerators include recent generations of graphics

processors featuring in the hundreds of reduced cores [78], with improvements in gen-

eral programmability. Designs like the HC-1 [24] utilize FPGA units to let users specify

application-specific core capabilities. McCool[67] surveys programming models with a

view towards scaling into massive parallelism on chip using graphics processing units, ar-

guing that these are the consumer processors which currently feature the greatest amount

of explicit parallelism, and that general purpose processors are likely to follow their devel-

opment.
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Without assessing the accuracy of that prediction, the present generation of accelerated

systems carries the distinction that the co-processors are designed quite differently from

their host processors. While damaging to subsystem independence, this clearly caters to

the principles of balance and design for scalability. Furthermore, modern graphics pro-

cessors integrate scheduling hardware specialized to facilitate latency hiding by context

switches. The manner in which these systems achieve scalability is tightly linked to their

wider range of core designs, making them an excellent example of the trade-off between

the two aspects.

2.2.3 Distributed Shared Memory Systems

Laudon and Lenoski [63] argue that the scalability of the design they describe is chiefly

based on the modularity of its architecture. They also present latency measurements, and

descriptions of data and process migration mechanisms to maintain low communication

overheads. This work appears to address scalability by arguing that it is embedded in the

design, as it includes considerations of how this single, modular architecture can be ap-

plied across a range of system sizes, providing a tailored entry price point for dedicated

systems with known performance parameters. The first three scalability principles in Sec-

tion 2.1.1 are evidently considered, and the requirements on interconnection technology

are mentioned in a section which bounds total system size to 1024 processors. Two points

about this work deserve particular attention, to illuminate later discussion. The first is that

the mention of "ccNUMA" in the title acknowledges the significance of a heterogeneous

system property, i.e. the cost of memory access. The second is that the distributed direc-

tory scheme which implements this nonuniform communication may inherently restrict

the number of processors which can be added. In their discussion of cache coherency by

distributed directories, Hennessy and Patterson[43] state that the amount of information

required by a straightforward directory implementation is proportional to the product of

the number of memory blocks and the number of processors, and that this becomes a sig-

nificant overhead for processor counts around 200. Some suggestions are made regarding

how this limitation can be reduced by restricting the information stored in the directory,

such as tagging a memory block as relevant for a group of processors. In the general case,

this would imply a hierarchical approach, which is likely to increase the heterogeneity of

memory access costs.

Anderson et al.[9] describe the CRAY T3E, another distributed shared memory architec-

ture which makes claims to scalability. This article devotes much attention to programming

techniques, but communication facilities are also described, and the principle of latency

hiding features prominently in the discussion of how remote memory access has extensive

support for pipelining and prefetching. Large-scale installations are described as a torus

topology of up to 2048 processors. Remote memory access is facilitated through a large

number of registers which bypass local memory cache to request transfer from remote

locations in a given range of the shared address space. Latency figures for remote load

operations are given as a small range of values, indicating that global memory access is

non-uniform on this architecture as well, even though effort is made to describe how this

effect can be masked by software.
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Common to these architectures is that the operating frequency of their processors is rel-

atively low compared to contemporary units. According to Lusk and Chan, "the fastest

machines now virtually all consist of multi-core nodes connected by a high speed net-

work" [66], which shows that the significance of memory access cost has grown since the

design of these systems. The limits of distributed shared memory architecture scalability

are still of of interest, witnessed by the existence of projects like Blue Waters [34], but as

such systems are exceptional cases, and exceedingly challenging to construct, we consider

distributed shared memory platforms in the low thousands of processing units here.

Distributed shared memory systems are not commonly discussed in the context of het-

erogeneity, although considerable attention is devoted to the non-uniform cost of memory

access. Performance-wise, heterogeneity is limited to similar nonuniform access costs of

hierarchical memory as with multi-core systems, but with a greater number of stages lead-

ing to greater variability. With communication being the only source of heterogeneity, this

class is placed in the low end of the heterogeneity spectrum.

2.2.4 Distributed Memory Systems

The present generation of supercomputers is dominated by architectures featuring dis-

tributed memory and supporting the message-passing paradigm of software design. The

June 2012 top 500 supercomputer list [94] sorted by architecture share shows that compute

clusters and MPP architectures together compose the entire list.

Given the common creation of compute clusters from components-off-the-shelf (COTS),

architectural descriptions tend to be scarce. The architecture of the cluster as such is of

little academic interest beyond the description of its components. Nevertheless, some con-

structions like the PACS-CS [21] are documented, due to a measure of novelty in board-

level construction and interconnect design. This design aims to leverage the cost-efficiency

of COTS while addressing shortcomings of conventional clusters by introducing tailored

solutions to improve bisection bandwidth and sustained performance figures. The use of

COTS requires independent component designs, and consideration of the growing network

bandwidth matches the principles of balance and design for scalability, showing that this

system observes the first 3 principles. It is built to a scale of 2560 processing cores.

Although similar to clusters in the sense of supporting parallelism as the joint operation

of compute units without shared resources, MPP systems feature more integrated designs

between the computational units and the interconnection network. This caters more to the

principles of balance and design for scalability than to independence. A prime example

from this system class is the Blue Gene/L architecture [6], which features dual-processor

computational nodes in a torus topology. One processor is mainly intended to cater to

communication operations, but can also be explicitly programmed to perform computa-

tion. The processors operate at a relatively low frequency for the sake of power efficiency.

With an appropriate interconnection network, the design can scale to 65536 computational

nodes.

A more recent example is Roadrunner [13], which was the first system to achieve sustained

petaflop performance with standard benchmarks. The composition of this platform breaks
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down into 17 compute units, which are each in turn composed from 180 triblade compute
nodes, consisting of one blade of two dual-core Opteron processors and two blades of two

PowerXCell 8i processors, a version of the Cell BE with extended support for double-

precision floating point operations. The full system thus contains a mixture of processing

elements on the order of tens of thousands in number, with a variety of interconnection

technologies on the various levels of locality. Quoting Barker et al. [13], "An implication

of Roadrunner’s deep communication hierarchy [...] is that the performance of a hybrid

application is critically dependent upon the application’s ability to exploit spatial and tem-

poral locality". While the architecture’s hierarchical decomposition indicates a modular

design built for scalability, this limitation suggests an imbalance in the relative costs of

computation and communication, as well as challenges in latency hiding.

The heterogeneity of distributed memory systems spans a great range in our classifica-

tion, reflecting that it is a function both of the variability in the interconnection between

component subsystems, and the heterogeneity of their internal architecture.

At the low end of the range, a common class of cluster systems is composed from multicore

processors, or even multiple such processors interconnected on multiprocessor boards, cre-

ating the same amount of heterogeneity as distributed shared memory systems, with one

or more additional stages of interconnection. In the middle of the range we find systems

which are classified as heterogeneous cluster systems due to being composed of com-

ponent systems of variable processing capacity, as well as a nonuniform interconnection

network [77]. At the high end, we find systems which differ in the mixture of processing

elements within each component subsystem, but to a lesser extent in the variability of these

subsystems [13].

2.2.5 Grids

At the far end of the architectural scalability spectrum, we find computational grids. These

grids aim to interconnect computational resources on an abstraction level which transcends

single systems, in order to provide computation as a transparent service independent of the

site of program execution.

According to Foster and Kesselman [35], the scale of a computational grid should be

considered along with its intended application, e.g. grids for distributed supercomputing

are likely to be differently dimensioned compared to throughput-oriented grids which aim

to increase the utilization of otherwise idle computers.

Both of these categories still contain some of the world’s largest computational resources.

In the case of distributed supercomputing, the Enabling Grid for E-sciencE grid infras-

tructure provides access to a number of processors in the hundreds-of-thousands order of

magnitude [104]. The Folding@Home network is a loosely coupled system for harvesting

spare computational power from the idle time of generic desktop computers. At the time of

writing, the number of active donor processors also number in the hundreds of thousands

[60].

While the largest grid applications are massively parallel, they also bear the distinguishing
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Figure 2.2: Map of programming model scalability and heterogeneity

characteristic that they are mostly programmed using job-level parallelism, reducing the

programmatic difficulty of exploiting the available resources to a pure scheduling problem.

An exception to this can be found in the work of Allen et al. [5], which details the appli-

cation of grid-enabled communication libraries to obtain performance measurements on

a combination of one 1024-processor, one 256-processor and two 128-processor systems.

Although this configuration is restricted to a resource consumption two orders of mag-

nitude smaller than the greater challenges tackled in a grid context, it is interesting with

respect to the principles of scalability to note that the experiences collected pay meticulous

attention to the issues of load balance and masking communication cost in order to achieve

the reported performance.

As computational grids cannot be restricted to any particular category of component sub-

systems or interconnection technology, it is difficult to discuss them in terms of their ar-

chitectural properties. In light of the above examples, however, it is fitting to categorize

them as extreme cases of both scalability and heterogeneity.

2.3 Programming Model Map

Based on the criteria identified in Sections 2.1.3 and 2.1.4, a high-level taxonomy of pro-

gramming models can be identified in a manner similar to that of architectures. A division

of programming models into thread, stream, message passing and job parallelism cate-
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gories is shown in Figure 2.2, superimposed on the architectural map from Figure 2.1.

This section argues their placement, beginning with threaded models in Section 2.3.1. The

discussion then proceeds in order of scalability, covering stream parallelism in Section

2.3.2, and message passing in Section 2.3.3, before discussing the corner cases of hybrid

models and job level parallelism in Section 2.3.4.

2.3.1 Thread Parallelism

Quoting Akhter and Roberts [3], “Scalability is the challenge of making efficient use of

a larger number of threads when software is run on more-capable systems”. This defini-

tion is too thread-centric to generically capture scalability, even within high-performance

programming, but it reflects a common perception of the challenges which come with

many-core general processors. A variety of threading models are available, some are lan-

guage neutral such as POSIX threads [3] or OpenMP [100], while others are related to

specific environments such as e.g. Java or Perl. All facilitate multiple concurrent instruc-

tion streams using a shared address space, restricting threads to shared memory systems.

Explicit threading provides detailed control of fine-grained synchronization. Common

model features are either mutual exclusion primitives in the form of locks and semaphores,

or language extensions for marking critical sections. While utilizing such features makes

programming simpler than using explicit locking, this type of synchronization is still con-

tains a number of pitfalls which lead to common programming mistakes. In this sense,

explicit threading is neither simple nor safe. Expressiveness is naturally tied to the facili-

ties of the language featuring the threading model, but the management of synchronization

leads to at least some programming unrelated to the problem domain.

OpenMP provides a simple set of directives which can be applied to imperative program-

ming constructs such as loops and sequential blocks. These allow the programmer to guar-

antee that sections are free of dependencies, automating thread management and identifi-

cation of synchronization requirements. This improves simplicity and safety of threading

with little interference in expressiveness. However, hiding the cost of thread management

from the programmer conceals performance parameters which are critical to scalability.

The class of architectures supporting threaded programs spans a wide range of scales, en-

compassing installations from single-core hyperthreading processors with limited support

for concurrency, to large systems with distributed shared memory, which may execute

thousands of threads. This large footprint in the architectural landscape makes thread-

ing a convenient model for inclusion in hybrid programming approaches, such as those

described by Rabenseifner [85] and Barker et al. [13].

Thread programming is a lightweight approach to parallelism, as threads have only a small

local workspace within a shared program state. The shared program state provides implicit

communication, as any thread can read values modified by another, requiring concurrent

execution to control cases where it results in nondeterminism. Thus, thread control can be

provided by a small set of constructs, placing it low in the heterogeneity spectrum.
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The POSIX thread interface focuses on synchronization primitives, providing mutual ex-

clusion by explicit locking of memory locations, signal delivery between threads, and

waiting for thread completion. Collective operations include barrier synchronization prim-

itives and broadcast signals, but higher-order operations require explicit programming.

OpenMP also provides mutual exclusion, but at a higher level of abstraction, as critical

sections can be marked in the code without explicit locking procedures. Like POSIX

threads, OpenMP also provides signalling and barrier synchronization, and collective op-

erations are extended to include reductions. The task of spawning threads is abstracted al-

most completely, with brief mnemonics to indicate independent program sections. Finally,

some scheduling parameters can be controlled, and a high-resolution timer is provided

for profiling. This raises level of abstraction relative to POSIX thread programs, but also

complicates cost analysis, e.g. by introducing barriers which are implicit in the code.

2.3.2 Stream Parallelism

Streaming models are connected to systems which integrate accelerators and commod-

ity processors. Large computational demands are divided into independent data streams,

and the computation is expressed as a kernel, which is a small algorithm for processing a

segment at the head of a stream. This choice of program unit is similar to a thread, by rep-

resenting a light-weight invocation of a function on a small amount of data. However, ker-

nels have restricted communication and synchronization facilities. The performance gap

between memory access and computation requires a level of numerical intensity, i.e., each

element fetched must undergo a number of computational operations in order to amortize

the cost of fetching it.

Extensions of traditional paradigms require that functions can address program global

state: if the programming model does not express this, it requires automatic detection

of the data set a function acts on. Detecting this requires complex data-flow analysis [2],

and the exploitable benefit must be conservative, even when successful. Without guar-

antees on locality of reference, program translation leads to bursts of read-modify-write

sequences [67], which is bad for pipelining and numerical intensity.

Stream processing explicitly recognizes that a kernel consumes a restricted number of

data elements. This comes at the expense of some amount of programmability, leading to

streams often being embedded in conventional languages. An early example of this ap-

proach can be found in the software system of the Imagine stream processor[52], which

separates the StreamC and KernelC extensions to the C programming language to take

advantage of a dedicated processor architecture. Approaches which leverage graphics

processors for general purpose computation are presently undergoing rapid development.

Starting from a library approach using OpenGL, Adinetz [1] summarizes how its inconve-

nience for general computations led to a wealth of higher-level approaches, such as CUDA

[78], Cg and Sh [67]. Developments like the Imagine architecture have led to similar ideas

also in the embedded applications space [86]. Less GPU-centric approaches such as the

programming toolchain of the Cell Broadband Engine [58] and OpenCL [41] also exist.

The specific designs of such approaches change quickly, as seen from the 2006 press re-
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lease regarding the AMD Close-to-Metal technology [7] and its subsequent abandonment

in 2008 [97]. For the purposes our discussion, the defining characteristic of all these ap-

proaches is the emphasis on computational kernels, and that with the exception of OpenCL,

they address problems of a scale which is solvable on a small number of processing units

each featuring a high number of parallel components.

Programming models which couple existing languages with architecture-specific exten-

sions go far with respect to expressiveness, assuming their use within appropriate appli-

cation domains. Simplicity and safety are improved by the move from adapting problem

descriptions for graphics pipelines to more general tools. Still, programming these models

still requires special training even for trained programmers, indicating that performance

concerns still receive more attention than simplicity and safety so far.

The necessity of expressing statements about streams makes these models more heteroge-

neous than threading models. As an example, NVIDIAs CUDA model [78] features not

only synchronization and the stream abstraction, but also has facilities for event handling,

management of various kinds of memory corresponding to the type of processor, and dis-

tinguishes between graphics devices and host processors. Taken to an extreme, the two

languages of the Imagine system [52] separates statements regarding the computation of

a kernel and the scheduling of streams unto execution devices into two disjoint language

extensions. Although this approach is less common in other models, it provides a poignant

example of the need for varied constructs in a stream programming context.

2.3.3 Message Passing

Message passing found utility before the emergence of true concurrency in commodity

computing: computation as an exchange of messages is central to the SmallTalk and Erlang

languages, amongst others. According to Kay [53], it was motivated by a desire to "find

a better module scheme for complex systems[...]". This not only for improves simplicity

and expressiveness, but also fits the modularity principle of scalable design.

Erlang originates as a control language for distributed systems in telecommunications,

where operating a large number of devices is business critical. Armstrong summarizes

scalability as the requirement that “adding a new machine should be a simple operation that

does not require large changes to the application architecture” [10], emphasizing encapsu-

lation over performance. A different perspective is offered by Gropp, Lusk and Skjellum

in their description of MPI: “Scalability analysis is the estimation of the computation and

communication requirements of a particular problem and the mathematical study of how

these requirements change as the problem size and/or number of processes changes” [40].

The advantage of message-passing models is that they specify both the locality and size of

shared data structures, admitting execution on distributed memory platforms. This mirrors

their application on large machines, as shared memory architectures of similar scale are

difficult to construct. Distributed memory models are also suited for large-scale execution

because the cost of communication is explicitly acknowledged in code, simplifying perfor-

mance analysis on growing interconnects. However, message passing requires nontrivial

code just to orchestrate the execution of the program, adversely affecting expressiveness.
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Simplicity and safety are improved by hiding the management of both message buffer

locations and transfer from the programmer.

Message passing models are very flexible with respect to their execution platform, both in

terms of heterogeneous communication and computation facilities. This is witnessed by

the popularity of using messages as an overarching communication mechanism in hybrid

models, coupling it with either thread level parallelism [26, 85], or dedicated accelera-

tor approaches [33, 84]. This flexibility requires message passing schemes to adapt to

a wide range of parameters, as different characteristics dominate performance on differ-

ent platforms. This is reflected in MPI, which supports abstractions for point-to-point

messaging using different modes, collective operations from barriers to total exchanges,

a derived datatype system, grouping of processes and process topologies. These abstrac-

tions are defined to be implementable in terms of a few basic operations, but subsets of the

provided functionality can be customized for particular systems. Another point is that the

abstractions are independent, creating a large number of combinations available to the pro-

grammer. For these reasons, message-passing is classified as most heterogeneous among

our model categories.

2.3.4 Hybrid Models and Job-level Parallelism

The cases of hybrid programming [85] and coarse-grained parallelism in the form of job

scheduling, are difficult to classify as programming models on their own, as they consist

of coupled models and extremely restricted models, respectively.

Hybrid programming models will obviously offer the combined variety of features present

in all component models, thus increasing the level of heterogeneity. Placing all possible

combinations of the three surveyed categories of models in an order would add little to

their discussion, suffice to say that our notion of heterogeneity matches the use of hybrid

models to program hybrid (i.e. heterogeneous) architectures.

Job control languages and schedulers leveraged to exploit job-level parallelism are not

usually considered programming tools, due to the fact that their primary task is to de-

fine a mappings between sets of programs and resources. Language features, if at all

present, are mostly restricted to text substitution, as well as simple conditional and itera-

tion constructs, rendering them extremely inconvenient for applications beyond describing

resource requirements and sequencing the execution other programs.

In spite of such solutions being almost devoid of common programming model constructs,

they are mentioned in this discussion because the extremely coarse-grained abstractions

they support make them suitable for arranging parallel execution of independent tasks on

extremely large scales. This means that it is of little interest to classify the features of the

languages themselves in a programming model context, but it is necessary to classify them

with respect to scalability for the simple reason that their applications have historically

become future targets for detailed programming models. The process images which form

the executing environment for threads as well as a unit of parallel computation in mod-

ern operating systems, has its origins in the scheduling of multiprogrammed workloads

in third-generation operating systems [92]. Over a shorter time span, Bode et al. [20]
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measured job scheduling throughput on a 64-node cluster platform in 2000, while a 2008

work by Scogland et al. [87] discusses thread scheduling on multicore processors, naming

vendors with specific processor designs which will feature 64-way threading on a chip.

It is interesting to note that grid scheduling is subject to task-level scheduling [30], which

may suggest that present throughput computing tasks, such as executing masses of e.g.
XRSL [80] batch jobs (which contain no program logic), foreshadow the scale of operation

which will require programming model support in the near future.

2.4 Research Context

Effective performance modeling must provide a bridge between the programmatic and ar-

chitectural aspects of scale and heterogeneity, and the great variations in parallel systems

and programming models create a challenging trade-off between generality and accuracy.

Our study focuses on clustered, distributed memory systems of shared memory subsys-

tems. This choice is made partly to cover a reasonable range of systems while maintain-

ing portability, so that results will be comparable, and also because such clusters are in

widespread use, due to their simple and relatively inexpensive construction.

Several approaches to modeling this class of systems exist already, ranging from purely

theoretical approaches, through performance models which attach to programming con-

structs, to performance studies of particular applications.

Proposing a general theory of modeling and simulation, Zeigler et al. [103] start from

distributed systems, and classify their components as systems specified by discrete time

(DTSS) and differential equations (DESS). Their central proposal is to describe hetero-

geneous systems in terms of component subsystems which are closed under composition.

This means that a model of their composition into a greater system can be derived from the

component subsystems without alterations to the terms of the model, thereby hiding sub-

system detail. Hierarchical models derived in this manner are very robust to the integration

of further components, but the framework for model construction is driven by encapsulat-

ing subsystems using coordinator facilities which may represent substantial bottlenecks

when realized in software.

The family of PRAM models [23] provide a simple, abstract parallel machine for deriving

asymptotic complexity bounds on parallel algorithms. Although this does not provide re-

alistic models of actual machines, it does provide SPMD style programming, and admits

analysis of algorithmic aspects, serving as a starting point for efforts to add programma-

bility and realism [54].

Systems which require explicit communication primitives invite models which divide cost

into communication and computation. The Hockney [47] model partitions communication

cost into latency and message size as a benchmark of the executing platform, leaving the

application of parameter values in software implicit. The LogP model of Culler et al. [27]

discriminates between the latency of a message, its initialization cost, and the minimal

gap between successive messages in order to approach empirical validation. Alexandrov
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et al. [4] propose the LogGP model, adding a linear cost increase per transmitted byte,

increasing model emphasis on message lengths. Bosque et al. [22] further extend it to

the HLogGP model to account for heterogeneity in the parallel platform. Valiant’s BSP

model [95] unifies the measurement of platform parameters with program analysis, pro-

viding a coherent set of parameters to describe their interaction. This has been extended

both in refinements of the theoretical side [38, 93, 96] and practical efforts to realize it,

from realizing the programming primitives in library form [45, 46, 55, 102], to describ-

ing transformations of programs into other programming models [19, 90]. Bilardi et al.
[18] compare the LogP and BSP models, establishing that they can mutually simulate one

another with small overheads in asymptotic terms, and noting that BSP provides a more

convenient programming abstraction.

The convenience of reasoning about the BSP programming abstraction has invited sev-

eral proposals for model extensions. The E-BSP model [51] refines the original modeling

of communication phases as h-relations, adding considerations of instances where unbal-

anced communication is favorable. It also adds a notion of network proximity, allowing the

impact of network topologies such as linear arrays and meshes to be assessed. More recent

efforts have focused on hierarchical decomposition, which naturally captures cost varia-

tion due to locality in fat tree topologies, as well as those due to the hierarchical memory

systems internal to the multiprocessor subsystems which they are often composed from.

Thorough justifications for this are given both by Bilardi et. al. [17], and Valiant [96].

The influence of these works is visible in our approach, as its essential purpose is coupling

performance models to the constructs of an associated programming model. To this end

we adopt the BSP view of program execution with only the minor adaption of introducing

overlap to the alternating phases of computation and communication. We also replace the

classical approach of explicitly deriving performance predictions from small parameter

sets, with one of programmatically producing estimates from comparatively large sets. In

particular, pairwise performance parameter values are extended into matrices of all pairs,

which is identified by Lastovetsky et al. [61] as a straightforward method to account for

heterogeneity. As a consequence of this, processor locality within a system topology is

treated as an implicit property of the platform parameters, rather than explicitly acknowl-

edged through revising the terms with which algorithms are specified.

A common element to these approaches is the acknowledgement that structural informa-

tion about the computing platform is essential to performance. This presents a trade-off, as

the accuracy obtainable by acknowledging it in programs is detrimental to their portability,

as is noted by Bilardi et al. [16]. Although our work is restricted to observing subsystem

features as heterogeneous properties in a single context, we note that it is complementary

to a hierarchical decomposition within the granularity of its subsystems. A fully inte-

grated combination featuring a distinction between local and global subsystem behavior is

beyond the scope of this thesis, but part of the work produced a paper which demonstrates

that our approach can benefit algorithms which are constructed to be aware of hierarchical

platform structure [75]. It appears in extended form as Chapter 7 of this thesis.
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Chapter 3

Modeling Framework

The tension between scalability and heterogeneity makes it challenging to select appro-

priate abstractions which capture architecture and algorithm interactions. Attaching per-

formance metrics to programming model features must conceal details of their implemen-

tation, but accurate cost estimation depend on them. This chapter identifies architectural

and programmatic elements which combine to permit both abstract reasoning and specific

predictions about hardware/software interactions.

Section 3.1 gives an example of the modeling approach commonly associated with BSP.

Section 3.2 outlines our model revisions, and compares them to Section 3.1. Subsequent

sections relate model extensions to the terms of Equation 1.1 in order: Section 3.3 dis-

cusses computational requirements and resources, Section 3.4 addresses communication,

and Section 3.5 describes overlap.

3.1 Original BSP Performance Model

To highlight our model changes, it is useful to examine how BSP originally models the

interaction of a program and platform. As Valiant’s paper [95] states the model very gen-

erally, we will instead follow the notation of Bisseling [19], who accompanies parameter

descriptions with corresponding benchmark code.

Performance is captured by a set of 4 scalar parameters: p is the level of parallelism, h rep-

resents the communication requirement in a step, g is the throughput of the interconnect,

and l is the synchronization cost. The properties h and g are associated with h-relations,

which are stages of communication where each pair of processors exchange a message of

size at most h. This captures an upper bound on the cost of all communication committed

during a superstep, without loss of generality. Communication semantics do not require

effects to be visible until after synchronization, so a collective, total exchange always suf-

fices to transmit buffered communication between any pair of processes. The conceptual

router which models this is fully connected, but may be implemented using networks of
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Figure 3.1: Relationship between component BSP models

The figure gives a schematic illustration of how architectural performance parameters
are coupled to program requirements, producing a performance model directly related to
supersteps in the processing model.

lower connectivity. The performance model assumes that the interconnect will operate

close to its capacity during communication steps, and the processing model accordingly

gathers all communication for collective transmission.

Having values for p, h, g, and l, the cost of executing a program is expressed in Equations

3.1, 3.2 and 3.3.

h = max{hs, hr} (3.1)

Tcomm(h) = hg + l (3.2)

Tcomp(w) = w + l (3.3)

In Equation 3.1, hs and hr represent the maximum number of machine words sent and

received by any processor. In Equation 3.3, w represents the maximal amount of work

assigned to any processor in a step, measured in floating point operations (flop). The value

of l is the cost of establishing that all processors have arrived at the next stage. While this

value may be smaller for computation than for communication steps, it is considered the

same for the sake of simplicity [19].

Bisseling’s text [19] focuses on the BSPEdupack software, which it presents with full

source program listings. This makes a natural entry point for practical testing, given an im-

plementation of the BSPlib standard it employs. A suitable implementation is BSPonMPI
[91], as it can utilize distributed memory architectures by using MPI for data transport.

BSPEdupack contains the benchmark bspbench, and an example computation bspinprod
which we use as a preliminary test. The bspbench program obtains measurements of the

3 machine parameters for a given level of parallelism. It first measures computational rate

by timing a growing series of L1 BLAS DAXPY [64] computations on problem sizes of up

to 1024 elements, finding the linear regression line of least square errors, and estimating

computation rate by the gradient term. This number is stated in terms of flop
s , and relates

other values to time as flop equivalents. Router throughput and latency are found as the
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Table 3.1: BSPBench parameter values for 8-way 2x4 core cluster

P r g l

08 991.695 105.4 30575.7

16 984.713 373.6 631365.8

24 972.553 369.7 1450059.5

32 961.875 89.5 1771331.3

40 968.230 67.5 2500077.3

48 958.886 228.6 3026802.1

56 935.523 521.2 3419705.8

64 944.005 1326.5 3972859.4

gradient and intercept of a similar regression line, obtained from growing h-relations from

0 through 255. Double-precision floating point numbers are considered machine words.

The bspinprod program computes the inner product of two vectors, in two computation

steps and one communication step. Two vectors are allocated in a distributed fashion,

assigning N values to p processors for a local problem size of n = N
p . Results are reported

in strong scaling mode, using N = 108 elements while growing p. The first computation

step finds p local sums of products, for a total workload given in Equation 3.4.

comp1 =
N

p
· 2flop (3.4)

The first communication step scatters the local sum to all participating processes. With

single scalar sums, this step is a 1-relation, reducing Equation 3.2 to Equation 3.5.

comm = (1 · g + l)flop (3.5)

The second computation step accumulates local sums on all processors, yielding Equation

3.6, and the total cost in Equation 3.7.

comp2 = pflop (3.6)

Ttotal =
(N

p · 2 + l + g + l + p)[flop]

r[ flop
s ]

(3.7)

The bspinprod program was chosen because it applies the same numerical kernel as the

benchmark program. This is done to create a comparable computational rate without ex-

tensions for heterogeneity. The only modification made to the programs is that the mea-

sured cost of bspinprod is a median value of 100 repetitions, to reduce warmup effects and

background noise.

Table 3.1 and Figure 3.1 report experimentally obtained and theoretically predicted values

from experiments run on node multiples of 8 processor cores, ranging from 1 through 8

nodes. The most notable feature of Figure 3.1 is that the theoretical estimates of execution

time deviate from actual execution time by 5 orders of magnitude. A second point is
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Figure 3.2: Inner product comparison on 8-way 2x4-core cluster

The figure compares values obtained using bspedupack versions of the bspbench and
bspinprod programs, with the BSPonMPI implementation. Predictions use Equations 3.1,
3.2 and 3.3 and values from Table 3.1, in conjunction with the program requirements in
Equation 3.7. Note the logarithmic time scale.
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that the prediction contains a minimum, whereas the measured results are asymptotic, as

Amdahl’s law would predict for a strong scaling experiment. A number of reasons for

these deviations are important to identify before attempting to improve accuracy. They are

to some extent visible from the collected data already at this stage.

Table 3.1 matches a reasonable expectation that computation rate r is constant, and not

subject to changes of platform scale. It reflects how individual processor performance

is independent of their number, but conceals the assumptions that all computations are

equivalent, and that performance varies linearly with a single rate. Nonlinearities in this

parameter stem both from heterogeneous floating point capabilities among processors, and

variations in performance due to interactions with the memory hierarchy of a modern

processor. Our heterogeneous computational rate model must address both issues.

The latency parameter l spans orders of magnitude already at modest scales, reflecting

the heterogeneity of the interconnect topology. The worst case latency of a multi-layer

interconnect expressed in terms of the computation rate on a small problem creates an

unrealistic, dominant term in the cost function. Furthermore, assuming that termination

of a synchronous step costs the same as initiating communications is visibly incorrect by

orders of magnitude. Adapting the latency measure to our revised processing model, it

must be treated on a per-message basis. Doing so decouples it from the global network

diameter, and attaches it to topological distance. This difference is significant, as seen

from the contrast between numbers attained on a single node and on the entire machine.

The throughput parameter g suggests that the cost of message transmission is tied only to

the data volume committed by the application. This assumption comes from the premise

that all communication follows the same pattern at every communication step, which is

true for networks that realize an h-relation regardless of its utilization. The communica-

tion pattern of the present experiment does not highlight it, but the objective of decoupling

communication from synchronization cost requires bandwidth measurements to be associ-

ated with the locality of senders and receivers in a heterogeneous interconnect topology.

3.2 Changes to Architectural and Processing Models

The purposes of revising the architectural and processing model aspects of BSP are to

refine their detail and accuracy, and to admit derivation of the overlap term in Equation

1.1. Figure 3.2 shows an overview of how architectural and program features combine

with the processing model, to produce a performance model in a similar manner to Figure

3.1. These extensions cause a notable growth in the number of parameter values, requir-

ing details of the associated performance model equations to be omitted from the figure.

The level of abstraction conflicts with the level of detail, in a trade-off which warrants

discussion.

A significant point is that BSP refrains from exposing detailed architectural structure, as

it aims to provide a conceptual bridge between hardware and software design. As an

example, the fully connected router abstraction subsumes any interconnect topology, and

conceals idiosyncrasies in the performance parameters of the abstract mechanism. This is
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Figure 3.3: Relationship between revised models

The figure gives a schematic illustration of the correspondences between our revised mod-
els of architecture, program, processing and performance. The greatest difference is that
the processing model fuses computation and communication phases, which makes it nec-
essary to combine program requirements (R) and architectural costs (C) into a unified
cost function. Architectural parameters are extended both with respect to computation and
communication: computation rate is extended to be parametric in terms of the applied ker-

nel, while communications are modeled on a per-message basis using parameters inherent
to individual edges in a fully connected graph. Finally, synchronization is considered as a
specialized application of general communication, utilizing the same per-edge parameters
as program messages.
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a desirable property, and Figure 3.2 retains the assumption of full connectivity, although

increasing the number of parameters associated with the abstract network.

BSP semantics require that results communicated during one stage are not in use at their

destination before synchronization. Both Hill and Skillicorn [44, 45] and Bisseling [19]

compare overlapped communication and computation to the effect of postponed communi-

cation, and conclude that postponing is advantageous. Their arguments are that postponing

communication reduces total latency because messages can be packed, and that it provides

optimization possibilities for the implementation of the total exchange in communication

phases. On the other hand, Goldman et al. [37] refer to this message exchange problem,

and note that it is NP-complete for arbitrary combinations of message sizes on a uniform-

cost fully connected network. With communication time as the product of message size

and transfer capacity, the difficulty of minimizing the weighted sum of a message pattern

also applies to uniform message sizes on a heterogeneous network. The relative merits

of immediate and postponed transmission depend both on system characteristics and the

effectiveness of a heuristic for the message exchange problem. Merging computation steps

with simultaneous communication as in Figure 3.2 avoids the complexity of the optimiza-

tion problem, at the expense of introducing multiple, but potentially maskable latencies

in the cost function. Our reason for selecting the approach complementary to BSP con-

vention, is the importance of exploring the spectrum of techniques available to reduce the

growing impact of communication cost [11, 14, 43, 82].

Processing elements can be abstracted similarly to the router by acknowledging virtual
processors, i.e., decoupling the number of physical units from a program’s notion of par-

allel work. This distinction is crucial to studies of optimal simulation of BSP algorithms

[48, 93, 95, 96], which assume that committing some ideal amount of excess parallel

work (captured in a parallel slack parameter) can be scheduled to mask communication

latency, and raise the level of physical processor utilization. Applications of this princi-

ple are found in domains where exposed parallelism is abundant, and the cost of context

switching is comparatively low. Examples include throughput optimizations for threaded

server applications [62], hardware-scheduled threads available in general-purpose GPU

programming [28, 67, 78], and the task construct of OpenMP [12].

We will consider one-to-one mappings of program parallelism to physical units only, for

three reasons. First, it isolates the effect of explicit latency masking, for purposes of

validation. Second, experiments are conducted on distributed-memory architectures, to

utilize their scalability. This environment imposes severe technical obstacles and great cost

on arbitrary context switches. Finally, designing an appropriate scheduling mechanism to

work with a detailed cost model would require the model to be developed ahead of time.

Investigating such an approach is interesting, but it is beyond the scope of this thesis.

To address the accuracy concerns raised in Section 3.1, the model extensions shown in

Figure 3.2 must account for heterogeneous computation rates, communication latencies,

communication bandwidth, and synchronization cost. In the following sections, the scalar

parameters of the BSP performance model are replaced with matrices of parameters, con-

taining the ranges of parameter values applicable to various subsystems. The overlap term

is derived from this basic approach.
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3.3 Heterogeneous Computation

The performance figures of heterogeneous devices introduce the concern that the details

of individual subsystems may be most accurately captured in metrics which do not permit

straightforward combination. One example can be seen in the shortcomings of equating

time and floating point operations, as in Section 3.1. Here, the variability of communica-

tion features span different orders of magnitude from the computation rate, demanding a

potentially unattainable accuracy of it. Other synthetic benchmarking practices also show

this: the LINPACK benchmark [29] estimates operation throughput of floating point units,

while SPECINT [83] estimates integer unit performance, and their inherent differences

makes it meaningless to reduce them to a single metric of processor performance. These

show heterogeneity not only due to the processor design, but also the different locality

properties of programs which stress different units. Moreover, as they test peak perfor-

mance using specialized workloads, inferring application performance strongly depends

on the application resembling the benchmark. Combining both metrics might, however,

give an accurate model of applications which work in stages, e.g., a stage of dense matrix

operations followed by a stage of data compression.

Starting from the basic assumption that operations are only comparable in their required

execution time, the original Tcomp term expresses the running time of a program as the

sum of its operations, weighting them uniformly as one flop. Remaining with the example

of vector products, the DAXPY numerical kernel from the BLAS package [64] is similar to

the inner product benchmark, but with a widely used, more generic interface. Introducing

different weights to each operation, the kernel for n elements

f o r ( i = 0 t o n−1 )

{ y [ i ] = y [ i ] + a [ i ] * x [ i ] }

results in a cost function

n−1∑
0

C(=) +
n−1∑

0

C(∗) +
n−1∑

0

C(+) =
n−1∑

0

(C(=) + C(∗) + C(+)) =

= n(C(=) + C(∗) + C(+)) = t (3.8)

with C(op) in Equation 3.8 denoting the individual operation cost. The trivial conclusion

is a cost of n multiplications, additions, and assignments.

The heterogeneity of modern architectures already challenges the treatment of basic oper-

ations as constant terms. The performance impact of hierarchical memory can, e.g., make

the cost of the first assignment much larger than that of the second. For the moment, we

overlook this issue and write the weighted sum as the inner product of a requirement vector

and a cost vector:

�r · �c =

⎡
⎣ n

n
n

⎤
⎦ ·

⎡
⎣ C(=)

C(+)
C(∗)

⎤
⎦ = t (3.9)
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This extends naturally to an SPMD [100] parallel program which executes the same logic

on two processes, by encoding the requirements as a 2× |�c| matrix:

R · �c =
[

n n n
n n n

]
·
⎡
⎣ C(=)

C(+)
C(∗)

⎤
⎦ =

=
[

n(C(=) + C(+) + C(∗))
n(C(=) + C(+) + C(∗))

]
= �t (3.10)

Assuming homogeneous conditions for both processes, this gives equal entries in �t. Ana-

lyzing the contents of a computational superstep, this system of 2 simple equations predicts

that short of the synchronization overhead, �t captures the individual costs of both proces-

sors, as well as a measure of the heterogeneity of computational cost within the superstep.

If the program computes the DAXPY kernel on one processor, and a difference such as

f o r ( i = 0 t o n−1 )

{ y [ i ] = y [ i ] − x [ i ] }

on the other, the system works out to

R · �c =
[

n n 0 n
n 0 n 0

]
·

⎡
⎢⎢⎣

C(=)
C(+)
C(−)
C(∗)

⎤
⎥⎥⎦ =

=
[

n(C(=) + C(+) + C(∗))
n(C(=) + C(−))

]
= �t (3.11)

and the inequality of the elements in �t give a measure of computational load imbalance.

With supersteps ending in synchronization, this exposes the magnitude of any mismatch

in the computational requirements.

Heterogeneity can also stem from design differences between individual processors. As-

suming constant operation costs gives no guarantee that constants are identical for all

processors. Thus, the cost vector becomes a matrix of rows corresponding to processors,

and columns corresponding to the set of operations. Consider a system of two DAXPY

applications on two processors, one of which halves the cost of addition and multiplica-

tion due to a combined multiply-accumulate operation. Normalizing cost to the slowest

processor, we get the matrices

R =
[

n n n
n n n

]
, C =

[
C(=) C(+) C(∗)
C(=) 0.5C(+) 0.5C(∗)

]
(3.12)

The straightforward multiplication of requirement to cost implies that cost matrices com-

bine by element-wise matrix product (denoted ⊗), to produce another 2× 3 matrix, which

is a complete map of aggregate operation costs per processor. The inner product with the

vector of all ones �s =
[

1
1

]
then produces superstep time requirements per processor.
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The regular matrix product with a transposed cost matrix results in a 2 × 2 matrix with

the time requirement appearing on the diagonal, but also featuring evaluations of the cost

of mapping process 1’s requirements onto the capabilities of processor 2, and vice versa.

As our subsequent development emphasises process/processor affinity, the potential use to

make scheduling decisions will not be examined, but it is interesting to note that the cost

of various task mappings in a superstep can be analyzed by permutations of this matrix

product.

The element-wise product estimates per-process superstep time as

R⊗ C · �s =
[

nC(=) nC(+) nC(∗))
nC(=) 0.5nC(+) 0.5nC(∗)

]
·
[

1
1

]
= �t (3.13)

This is our general procedure to quantify computational heterogeneity in superstep terms.

It has the advantage of giving a unified view of the variability caused by algorithmic and

architectural concerns, while their causes are isolated in separate matrices.

To address the issue that operation costs are not constant, we must raise the abstraction

level of basic operations. While single additions, assignments, etc. can vary nondeter-

ministically, computation rate can be discussed more reliably in terms of execution rate

of kernels. Asanovic et al. [11] identify a set of dwarfs which are representative kernels

for a wide spectrum of applications, suggesting that this is a useful abstraction of com-

putational demands. The access pattern of a kernel can often be profiled as independent

of the input data, making it possible to execute them until they reach a steady processing

rate which can be measured with great determinism. We will approach computational re-

quirements with the assumption that applications apply them to large enough data sets that

these steady states are reflected in execution.

A p processor system of k kernels then becomes a p × k requirement matrix R detailing

the memory size the algorithm applies each kernel to, and a p × k cost matrix detailing

the steady-state rate at which each processor computes each kernel, in terms of seconds

per memory unit. These matrices are the model terms for computation, and the manner in

which the Tcompute term in Equation 1.1 is decomposed to admit heterogeneous compu-

tational requirements and processing elements.

3.4 Heterogeneous Communication

Similarly to the development in Section 3.3, communication facilities are modeled in terms

of linear systems. The main difference is that communication is already detached from

application semantics. Message transmission cost is less dependent on the algorithm which

requires it, so the description of rates lends itself to less application specific considerations.

We consider the communication capabilities of a p processor platform to be a fully con-

nected graph, where any pair may exchange data during a superstep. Communication

primitives are one-sided remote read/write operations, making the communication pattern

a p×p incidence matrix, indexing source processors by row and destination processors by



3.5. Overlapped Computation and Communication 37

columns. This already suffices to establish the cost of the synchronization which ends each

superstep: it can be realized using a pattern of message counts only, because synchroniza-

tion messages have negligible payload. The corresponding cost matrix is a p × p matrix

encoding pairwise latencies. In the same manner, the cost associated with data payloads

become a matrix of requirements containing the data volumes, and a cost matrix of inverse

bandwidths between processor pairs.

This description is the heterogeneous Hockney model discussed by Lastovetsky et al. [61],

and it is no more than a straightforward extension of the familiar Hockney model of com-

munication cost [47]

Tcomm = Tlatency + w · β (3.14)

to a system of p2 instances.

The terms of this model require refinements to validate with empirical measurements, but

these are left for closer scrutiny in Chapter 5, which discusses their application.

3.5 Overlapped Computation and Communication

As discussed in Section 3.2, hiding communication overhead invites approaches of com-

mitting additional computation by exposing extra parallel work, replacing communication

with duplicate computations, or by applications explicitly using delayed background com-

munication. Scheduling and background approaches are complementary to each other, but

have conflicting implications for system design. Although Bisseling [19] argues that per-

fect application overlap achieves only a speedup of 2, low scheduling overhead is tied to

reducing the complexity of the processing cores, as context switches require storing their

state. Sodan et al. [89] show that also on recent architectures, computational throughput

can benefit significantly from complex processing cores.

We address the analysis of an algorithm’s potential for overlap as displayed in the amount

of computation inserted between transmission and reception. This is similar to the asyn-

chronous put and get primitives of GASnet, which is employed as the communication

layer of partitioned global address space (PGAS) languages [15]. It is also a common use

for the non-blocking communication features of MPI [81], although the standard does not

require that their implementations exploit overlap.

To derive the overlap term, we combine communication and computation as per Equation

3.15. It is validated using superstep time vectors, as in Equation 3.16.

�tcompute + �tcommunicate =

(Rcomp ⊗ Ckernel) · �s + (Rmessages ⊗ Clatency + Rdata ⊗ Cβ) · �s (3.15)

�toverlap = �tcompute + �tcommunicate − �ttotal (3.16)
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Notice that Equation 3.16 is subject to slightly different uses for validation and prediction

purposes. The intention with respect to program analysis, is that identifying the operations

applied between final communication and synchronization gives an estimate of the overlap,

assuming complete transparency of the background communication. In an experimental

setting, the exact magnitude of the overlap is more difficult to instrument than the total

time. Thus, measurements of the right-hand side terms of Equation 3.16 yields an estimate

of the actual workload successfully carried out in the background.



Chapter 4

Computational Rate

Determining the rate at which a modern processor can compute a given function is a com-

plex issue. While the obvious relevance of the processor’s clock speed is a parameter,

multiplying an ideal rate in seconds per operation by a workload of operations falls short

of characterizing the execution of a numerical kernel. Empirical performance figures vary

with how the memory access pattern interacts with hardware memory hierarchy, the im-

pact of virtual memory, the precision of the clock used, variability in operating system

overhead, and properties of the input data in some cases.

To provide meaningful descriptions at the system level, this means that the heterogeneity

of computation rate comes not only from a mixed processor configuration, but also from

the balance of the computational load, and most parameters are affected by unpredictable

interactions beyond user program control.

This chapter demonstrates some of the difficulties with obtaining a generalized processing

speed, and suggests appropriate adaptations in order to characterize computational rate in

a practical scenario, in a manner compatible with Equation 3.15. It focuses on program re-

quirements in terms of kernel invocations, and the obtainable rate on processing elements.

Figure 4.1 highlights the relevant components in the context of a complete model.

4.1 Impact of Variations in Time

To investigate the impact of memory layout, it is necessary to have a test framework which

allows the various access patterns of computational kernels to be isolated. Arguably, our

test platforms do not fully permit this, as sources of variability include not only a general

operating system with several services on each node during run time, but also the fact that

the systems service multiple users, offering no guarantee for repeatable experiments.

With the ambition of building a model which can be applied in such settings, we attempt

to reduce the impact of these nondeterministic features, to produce a set of conditions
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Figure 4.1: Architectural and program parameters of computational rate

where the model can be expected to validate. These errors, and the error margins obtained

are as important to an applicable model as are the theoretical peak figures obtainable in

a more controlled environment. We expect that modeling efforts on platforms with more

deterministic behavior may produce more consistent results using a similar approach.

From the model point of view, we will ultimately attempt to characterize the computational

power of a heterogeneous BSP machine; this makes it natural to begin with the bspbench
program discussed in Section 3.1. Although it aims at establishing a uniform rate for an

entire platform, its basic premise would allow a heterogeneous extension as suggested

in Section 3.3 to introduce a vector �r = [r0, r1, · · · ] to capture P different rates. The

benchmark code [19] is compliant with BSPlib, so it can readily be run using any library

implementation. We would like to emulate this portable mode of benchmarking because

it provides direct comparisons between candidate implementations, but it regrettably lacks

facilities for describing application and platform interactions.

As a starting point, Figure 4.2 shows the results of bspbench on one of our test platforms,

including obtained rates for growing vector sizes in addition to the final output. It displays

two issues: although the rate appears to stabilize around 1Gflop
s for this platform, the

variations before this are not linear, meaning that the individual sample points are not de-

scriptive of sustainable computation rate. More problematically, the flop
s metric suggests

that this result should also predict the attainable rate attainable for different kernels.

To adapt these measurements in a metric for sustainable rate in a heterogeneous environ-

ment, a few considerations must be taken into account. Most importantly, the averaging

which provides the benchmark with its stability and repeatability must be made over sev-

eral runs on a single processor. While averaging over the set of processors has the ad-

vantage of collecting a single statistic for the entire set, our aim of characterizing how
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problems map to various architectures means that we must capture any skew in its distri-

bution, to obtain a more detailed picture than the central tendency provides.

Furthermore, since the objective of obtaining a rate per processor is to analyze steady

state application behavior, it is problematic to describe it using only the largest sample

distribution obtained by the benchmark. It is interesting to quantify how far this measure

reflects the expected linear dependency between time and number of kernel applications,

assuming that the problem size is large enough to reach a steady throughput.

A small benchmark program was developed for this purpose, isolating the timing and

input parameters of a particular kernel from the measurement of its performance. The

main assumption is that kernel behavior can be sufficiently isolated by controlling the

virtual memory system, and the impact of OS-induced context switches. It overlooks

the nondeterministic aspect of cache memory state, but since this is not usually under

application control, we consider its impact to be embedded in sample variability.

The general framework program allocates a generic block of memory for kernel use, ex-

cluding virtual memory paging effects by pre-faulting all allocated pages, and pinning

them in resident memory with the Linux mlockall system call. The kernel function

call and relevant parameters are declared as external to the testing program, permitting

different kernels to be isolated in object code which provides specific values for each of

them. These are the amount of memory required for a test, the number of floating point

operations in a single kernel application, pointers to functions which initialize data and

apply the kernel, and the periodicity in terms of how many repeated runs can be performed

before the data must be re-initialized.

Execution proceeds by growing iteration counts from 2 through 212, collecting 30 samples

of per-iteration timings. The mean and standard deviations of these are recorded. Each

distribution is tested for outliers, and outlier runs are collected again, until none remain.

A linear relation between time and iteration count is computed as the least square error

regression line through the distribution means. Finally, the execution rate predicted by the

result is compared to a sequence of runs from 2 iterations up to 224, and relative error of

the prediction is recorded.

The outlier filtering method warrants comment. Walpole et al. [98], give one definition of

an outlier as a data point outside of an interval obtained from the other points in the sample.

With a known distribution, the probability of extreme values can be evaluated, giving a

quantitative confidence that the mean estimator is representative. As a mean of means is

known to be normally distributed by the central limit theorem, this can restrict admitted

samples to represent common system behavior. We require all sample distributions to

have means within a 95% interval, repeating outlier runs until the criterion is satisfied.

The outlier filter of the benchmarking program approximates normal distribution of the

mean estimate using the Student-t distribution. Critical values of the interval are found by

integrating its probability density using tgamma from the standard C library, using the

trapezoid method to the nearest interval of 1 · 10−4, and approximating the critical point

by linear interpolation below this resolution.

Using the confidence interval as selection criterion instead of a hypothesis test creates
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a bias in our observations. It renders the process vulnerable to non-representative initial

samplings, as this makes the re-sampling continue until a consistent set of abnormal obser-

vations appear. Practical use amounts to calibrating experiments. Result sets that require

a relaxed confidence will be difficult to reproduce, while restrictive bounds alert when a

common effect is missed, since this makes the number of required re-runs larger than an

expectable number of extreme observations. Discarding a 5% quantile from 30 values

gives an expectation of 1.5 values to re-sample. Experiments consistently requiring 2 or

more re-runs either suggest that initial sampling has recorded an uncommon result set, or

that inherent variability in the experiment requires lowering our confidence in the accuracy

of the mean value. A 95% interval gave stable results using only the named mechanisms,

which are available to application programs in user-space. It is chosen as our balance

between a controlled benchmark environment and realistic application conditions.

Figure 4.3 shows results from applying this general benchmark to two distinct numeri-

cal kernels, one being the DAXPY kernel for 1024-element vectors, and another being

a 5-point stencil kernel applied to the interior of a 322 = 1024 element area. Problem

size is fixed at 1024 because it corresponds to the largest vector size in bspbench, and

thus permits comparison with the predictions of the rate in Figure 4.2. These predictions

are labelled "Mflops", and are computed by multiplying the number of kernel applica-

tions by the kernel’s operation count, dividing by the maximal Mflops rate obtained by

bspbench. The results in show that the benchmark predicts the behavior of the DAXPY

kernel quite similarly to the bspbench approach, verifying that averaging across iterations

produces comparable results to averaging across a homogeneous set of processors. More

interestingly, the prediction for the 5-point stencil is more accurate than the corresponding

prediction extrapolated from the bspbench rate. This verifies our expectation that the cost

of a floating point operation must be considered in the context of its application.

While it is known that accurate measurement requires performance metrics to be param-

eteric in the workload, our experiment also gives a test of our procedure for determining

processing rate in terms of kernel applications, and an estimate of how trustworthy the

resulting predictions are. Figure 4.4 shows the error of predictions for the two kernels as

a fraction of the total execution time of actual runs. While Figure 4.3 clearly displays the

linearity with time, it important to note that the time scale spans several orders of mag-

nitude. The deviations in Figure 4.4 must be seen in relation to this, as a 25% error in

cases such as the largest 5-point stencil application means an absolute deviation of several

seconds. This effect is unavoidable, as the inevitable variations over the benchmarking in-

terval amount to an uncertainty which accumulates when predictions are made for longer

runs. Note that although the results in Figures 4.3 and 4.4 remain within bounded relative

error for intervals many times longer than the benchmark runs, their absolute accuracy

inevitably depends on the admissible benchmark run length. For our further analysis, this

implies that the procedure is best applied to scalability analysis in the weak mode, as fixed

subproblem sizes per process translate directly into a workload unit.
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Figure 4.3: Rates and predictions of 2 kernels on 2x4 cluster node

D: DAXPY kernel
5P: 5-point stencil kernel
predict: predictions obtained using benchmarks described in the text.
actual: empirically measured execution rate
Mflops: predictions obtained from bspbench computation rate
Both kernels are applied to a data set of 1024 double precision numbers. Memory traffic
is kept at a minimum by reusing a small in-cache area, making the graphs reflect the
expected linear dependence between the number of operations and the time consumed. The
results show how two different access patterns produce variations in rate even in a severely
restricted setting. Predictions from benchmarks of individual kernels reflect performance
in both cases. Predictions from the bspbench computation rate remain close to the DAXPY
kernel which is the basis of the benchmark, but deviate from actual performance when
applied to the 5-point stencil. Log-log scales are used to even the distribution of data
points, note that this conceals large absolute differences in high values.
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Figure 4.4: Relative misprediction of 2 kernels on 2x4 cluster node

D: DAXPY kernel
5P: 5-point stencil kernel
The ratio of kernel-specific prediction deviation to the magnitude of timings from Figure
4.3 shows that the accumulated inaccuracy of extrapolating benchmark predictions in time
becomes large, but remains bounded. This highlights the importance of obtaining compu-
tation rate profiles on a time scale comparable to that of the desired prediction.
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4.2 Impact of Variation in Memory Footprint

The benchmarking procedure in Section 4.1 provides a method for capturing the kernel-

dependent processing rate for fixed problem sizes. Applying it repeatedly with various

problem sizes releases control over the impact of locality in hierarchical memory, which

yields an image of the impact it has on result variability.

Figures 4.5 and 4.6 show empirical results obtained by page-locking memory and collect-

ing batches of 64 consecutive runs. Median time is reported as a function of memory use,

for a selection of the level 1 BLAS routines from the automatically tuned ATLAS im-

plementation [99]. An adaptively performance tuned implementation is used because its

exploitation of the memory hierarchy is likely to be near optimal, making it probable that

performance bottlenecks have architectural explanations. The reported tests were carried

out using an ATLAS package adapted to an Athlon X2 processor, which features private

caches per core, with 64K at level 1. The advantage of using this relatively old test sys-

tem is that it has limited cache sizes which display data locality impact at small problem

sizes, permitting tests to proceed quickly. Its private resources per core means that locking

the executing program to one core effectively eliminates interference from other running

software inside the O/S scheduling period, and exclusive access to the system could be

guaranteed. The tests are not intended to illustrate ATLAS peak performance.

The selection of routines is restricted to the single precision level 1 (vector/vector) rou-

tines. This could easily be extended to include double precision, as well as matrix/vector

and matrix/matrix operations at levels 2 and 3, but the performance effect we seek to il-

lustrate is already visible. A natural problem size metric for testing BLAS kernels would

be the n parameter supplied to each kernel, but Figures 4.5 and 4.6 express the problem

size in bytes, through multiplying it by the size of the operand types, as well as a kernel-

dependent factor of 1 or 2, depending on whether the given operation is a scalar/vector or

a vector/vector operation. This clarifies the relationship between memory access pattern

and observed performance, making the parameter values for e.g. the scal and axpy kernels

comparable, even though the former causes access to half as many values as the latter.

As can be seen from Figure 4.5, time varies close to linearly with problem size for all

kernels while problem sizes are restricted to the L1 cache, where the cost of memory

access is close to uniform for regular access patterns such as the tested kernels. The value

of this illustration lies in showing how the heterogeneity in computational cost which

stems from choice of numerical kernel is significant enough to warrant that models must

account for their magnitude. Even with the most homogeneous architectural performance

components we can isolate (i.e. a private, fast memory of uniform access time), modeling

the computational rate of a processor in terms of its rate on a axpy problem is inaccurate;

in this case, it would mispredict the dot kernel performance by an approximate factor two.
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Figure 4.5: L1 BLAS performance, in-cache problem sizes on Athlon X2

Graph labels correspond to the naming scheme of L1 BLAS operations, which vector-
vector operations common to numerical software. The restriction of input sizes to fit in
private cpu cache provides practically uniform access time, resulting in a linear relation-
ship between the number of operations in a kernel and the number of elements they are
applied to.
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Figure 4.6: L1 BLAS performance, 64K-element problem sizes on Athlon X2

With an identical set of kernels as Figure 4.5, scaling the problem sizes out of cache mem-
ory shows that sustained computational rate develops nonlinearly, even when accounting
for variations in both time and operation count.
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4.3 Modeling Implications

In Sections 4.1 and 4.2, we have examined the consequences of increasing computational

demand both by adding more iterations to a given memory footprint, and by growing the

memory footprint for a fixed iteration count. The central idea of the proposed modeling

framework is to approximate the complex interactions between aspects of execution by

using linear systems. Figure 4.6 shows that the issue of varying the memory footprint of

the problem creates a nonlinearity which must be addressed with respect to this.

The issues of nonuniform memory access are straightforward to observe, and have been

pointed out countless times in the literature. Our context suggests two approaches to han-

dle it: either the cost matrix of kernels can be expressed as an array of nonlinear functions

of problem size, or it can be approximated by a set of piecewise linear functions.

The former approach is more general, but regrettably also less practical. The idea of

modeling with linear systems of performance parameters which quickly outgrow what can

be managed by pure reasoning, is that most of the work associated with evaluating large

linear systems can be automated. The derivation of an appropriate set of functions to

describe a set of sample observations is, however, rather involved. Introducing a matrix of

nonlinear functions would thus undermine the purpose of the framework.

Approximation by piecewise linear functions is more feasible, but still requires human

interaction and architectural understanding beyond what is reasonable to automate. The

repeatability these experiments attain by excluding most accidental noise through memory

locking, processor affinity, timer precision and disregarding outliers, indicates that the

deviations from linearity in the resulting graphs are likely to be far smaller than deviations

observed in a practical application scenario. Extracting linear regression lines from the

entire spectrum of samples in Figure 4.6 would result in a measure of computation rate

which would be inappropriate for the majority of cases. There are two obvious segments

to the graph, with a steeper gradient breaking away around the L1 cache size limit, so these

performance results could, in principle, be modeled by piecewise linear functions, through

developing separate regression lines on the respective intervals. In model terms, this could

be realized by adopting separate compute-rate matrix entries for a given kernel for distinct

intervals, and similarly splitting the requirement into two parameters based on input size.

Such a method certainly seems feasible for kernels which display the behavior we observe

here, but rewriting Equation 3.15 to account for arbitrary extensions would serve more to

confuse the notation than to clarify any modeling approach.

While a structured approach to a two-level memory hierarchy memory could be autom-

atized, it would require benchmarks to expect the discontinuity, and thereby specialize

them. As the tendency of later years indicates that the memory hierarchy will continue

to deepen, each level adds 2P parameters per kernel to the computational rate terms of a

performance model, and requires re-evaluation of benchmarking practices.

The implication which can be drawn from this is that the framework supports consider-

ations of scalability with respect to problem size best in the weak mode of analysis. If

subproblem size (in terms of memory footprint) is kept constant, the development in Sec-
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tion 4.1 shows that a cost profile of linear characteristics can be extracted for a processing

element, while accounting for the heterogeneity inherent to the algorithm. Upscaling the

problem size then implies that the task be divided among more processors, effectively

transferring the question of overall accuracy into the communication requirements.

This limitation is consistent with the subdivision of execution time into computational and

communication parts, as traversal of the memory hierarchy can be considered communi-

cation, albeit at a level of granularity hidden by programming abstractions. The corre-

sponding abstraction in model terms is that integrating communication cost into the cost

of computation requires that its magnitude must be measured to a controlled constant.
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Communication Latency

This chapter introduces a model which accounts for heterogeneous latency, and develops

a technique for automatic performance tuning of synchronization algorithms with respect

to the underlying architecture. This latency-driven model is extended to account for band-

width requirements, and the resulting model is shown to correspond with the empirical

performance figures obtained from the barrier construct of a BSP implementation.

The following sections develop a performance model for barrier synchronization in terms

of message counts and pairwise latencies. Figure 5.1 highlights these in complete model

context. The resulting performance model component shows predictive power on multi-

core cluster platforms, without depending on a particular communication topology.

Section 5.1 summarizes conclusions drawn from preliminary work, which guide the devel-

opment of the model. Section 5.2 describes how benchmarks of topological distances are

kept consistent throughout subsequent experimental work. Section 5.3 presents the model

from both algorithmic and performance perspectives, and demonstrates how these relate

to each other. Section 5.4 shows a brief analysis of three barrier algorithms in using big-O

notation, in contrast to a more detailed method developed in Sections 5.5 and 5.6.

5.1 The Cost Impact of Locality

Due to the need for establishing mutual exclusion, developing efficient guarantees for con-

sistent state is of immediate importance to any system which permits concurrent execution.

In a shared-memory context, the requirements of ensuring exclusive access to any resource

coincide with the requirements for ensuring that all processes have reached the same point

in execution, by considering a data structure where processes register their arrival as the

shared resource. A spinlock is a common construct provided at the operating system level,

which guarantees mutual exclusion through atomic locks and busy-waiting. Because of the

relative simplicity of this construct, studying its performance characteristics is a fruitful

starting point for the development of more elaborate models.
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Figure 5.1: Architectural and program parameters of communication latency

The empirical study of Mellor-Crummey and Scott [69] provides an example of how ex-

tensive testing of classes of algorithms can yield architectural explanations for the obtained

performance. This article successfully leveraged the conclusions drawn towards improving

algorithmic scalability on the test platforms, and was able to make successful recommen-

dations for future hardware design based on the outcome. With architectural development

in supercomputing turning towards clusters of smaller shared-memory systems during the

early phases of this work, the validity of Mellor-Crummey and Scott’s conclusions ap-

proached limits in the scope of their empirical groundwork. Although several later works

follow its standard of empirical testing and architectural justification on somewhat newer

hardware [63, 65, 76], the growing number of memory hierarchy levels, and corresponding

nonlinear memory access cost made it pertinent to revisit the topic.

Implementation and testing of Mellor-Crummey and Scott’s selection of spinlock algo-

rithms on more contemporary platforms confirms that process and lock locality is impor-

tant to performance. Indeed, its significance has grown to a point where it overshadows

the aggregate bandwidth limit emphasised in earlier studies. This leaves a simpler class

of spinlock algorithms with limited utility, as hierarchical memory gives a vast advantage

to a subset of processes in the face of lock contention. As the results which establish this

effect have already been published [72], an outline of their impact on subsequent work is

presented here in place of a detailed analysis.

Because of their definition, spinlock algorithms are tied to shared memory architectures.

As the cost of hardware designs to present cache-coherent shared addressing physically

distributed memory can become prohibitively expensive at large scales, the performance

of spinlock based synchronization is relevant insofar as it can be taken to approximate

synchronization costs for programs of limited parallelism, or for component subsystems in
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a larger installation. With respect to the barrier implementations we are interested in here,

the cost of acquiring a lock forms only a component of barrier cost, but it can be understood

as a lower bound on a barrier cost function. A performance parameter which dominates

lock acquisition time captures the best-case scenario for a barrier, in that it represents the

overhead of a single process atomically signalling its arrival. It is worthwhile to note that

this overhead remains measurably connected to the topological placement of processes

at both intra-chip, inter-chip and network scales, even for tightly coupled systems where

significant design efforts have been devoted to masking the locality effect.

In summary, the work done on spinlocks establishes two main guidelines which give di-

rection to subsequent synchronization cost modeling efforts:

1. Process locality must be controlled to reliably measure synchronization cost.

2. As bandwidth no longer dominates cost under contention, a model of synchroniza-

tion cost should focus on the relationship between topological distance and commu-

nication latency.

5.2 Processor Affinity

The guideline that subsequent developments rely on strict control of locality presents prac-

tical programming issues, as there is no portable or standardized general interface to con-

trol this aspect of program execution on multiple scales. In the following sections, all

magnitudes which rely on locality are kept under control by applying the Linux process

affinity control interface at the shared memory level, and ad-hoc adaptations to obtain

identical node sets from system scheduling software on the distributed memory level.

This is done to bring the parameter under control for experimental purposes, but it is a poor

solution in terms of developing robust software. The affinity interface does implement the

ability to specify that a process should execute only on a given core index, but it cannot

guarantee that there is a consistent relation between physical cores and core indices at the

hardware level. Consistent grouping at the distributed memory level is done using specific

IP host names of the target systems, which is not only dependent on the exact system used,

but also represents a level of control which lies outside the scope of what is conventionally

controllable from inside a given program.

Although unique identification of shared-memory systems in larger-scale interconnects

is available, and many operating systems implement some interface for shared memory

system affinity control, the lack of a standard interface for identifying locality on a system

level means that programs which utilize these mechanisms suffer degraded portability.

A portable means of finding a unique processing core identifier might help with this issue,

but might require a vendor-independent address authority, carry privacy concerns with re-

spect to consumer products, require a consistent policy on what sort of circuitry should

be identifiable by this mechanism, etc. etc. Addressing this sort of problem is more ap-

propriate for a standards committee than for research work, but because of its impact on

presented results, the method by which the issue is bypassed is described here, for the sake
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of completeness and reproducibility. All empirical tests in the following work is layered

on top of MPI and the POSIX threading library interface. For the purpose of maintain-

ing locality between independent executions, a small library function is employed, which

accepts the MPI rank of the calling process and the size of the world communicator as in-

puts. Internally, it gathers the RFC1035 host names of all nodes on the distributed memory

level, and finds their core count using the POSIX defined sysconf system call. A sorted

list of the ranks resident on a given SMP node permits each to declare affinity with the

core index corresponding to its position in the list modulus the node’s number of proces-

sors, which creates a consistent mapping between rank and core identifier. Note that while

there is no guarantee of core indexing between nodes corresponding to identical mappings,

the repeatability attained by creating the same mapping for every run on a given node is

sufficient to associate whatever measurable properties it has with the corresponding MPI

rank.

The applicability of obtained empirical results is thus restricted to programs which enforce

the same affinity scheme, but for the purposes of this thesis, it will be considered sufficient

to assume some equivalent placement scheme. Henceforth, this issue will only be briefly

revisited, in order to highlight practical implications of presented results in Section 7.5.

5.3 A Practical Cost Model on Distributed Memory

Irrespective of the relative impacts of candidate performance parameters, the first step in

establishing an effective cost model for a barrier primitive is to characterize its communi-

cation requirements. In order to clarify employed methods as they are presented, we will

introduce three different barrier algorithms for use as running examples: the linear bar-

rier, the tree barrier, and the dissemination barrier. In order to provide the reader with an

intuition for their variable communication requirements, we begin with a brief, informal

description of how each algorithm operates.

The linear barrier is the naive implementation of a simple arrival count. As each process

arrives at the barrier, it is counted by a master process, and begins waiting for an acknowl-

edgement that the barrier is complete. When the count of arrived processes equals the

expected number of participants, the master process signals each of the waiting processes

in turn, and execution proceeds.

The tree barrier, as its name suggests, creates a tree of process identifiers, with the process

at the root taking the role of master process. The operation of the algorithm resembles the

linear barrier in that each arriving process signals its master (the process one level above

it in the tree), before waiting for a signal to proceed. Different from the linear barrier,

however, the tree structure improves scalability by distribution the contention which would

otherwise affect the single master process. Furthermore, both arrival and release signals

can be propagated in parallel down the tree, relieving the process at the root from having

to signal every participant.

The dissemination barrier differs from the other two, in that it does not explicitly nominate

a master process, but relies instead on a cyclic communication pattern to guarantee that
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no process is released prematurely. For P participants, the pattern proceeds in 0 ≤ s <
logP stages, with process identifier p signalling process p + (2smodP ) at each stage, and

awaiting one signal. The resulting pattern is equivalent to a cyclic shift in each of the

logP dimensions of a hypercube: as no stage will be completed before the arrival of every

process’ neighbor along dimension s, each process can guarantee global arrival as soon as

the cycle is complete in every dimension.

These particular algorithms are chosen because they span an interesting range of design

tradeoffs. The linear barrier works in only 2 stages, but places the entire workload of

tracking state on the single master process. The dissemination barrier makes the opposite

choice, and distributes the responsibility for representing subsets of other processes evenly

among all participants. This frees it from any single process becoming a bottleneck, at the

expense of incurring a communication pattern which stresses the entire interconnect in

most stages. Finally, the tree barrier offloads this bottleneck and retains the principle that

one process is made responsible for the signalling related to those below it in the tree. This

makes it suitable for adapting to interconnects which resemble its internal tree structure,

but requires twice as many stages as the dissemination barrier.

The classification of the barrier algorithms according to the number of stages they proceed

in, warrants further comment. Arguably, the collective cost of the operation is connected

to the number and cost of the transmitted messages, as much as the number of stages of the

overall algorithm. If we consider the linear barrier, its very name implies the expectation

that its cost is in linear relationship with the number of participating processes, whereas

the two stages remain constant for any level of parallelism. Similarly, although the tree

barrier proceeds in a logarithmic number of stages, the number of processes which trans-

mit a signal in each subsequent stage is halved (or doubled), depending on the phase of

execution.

The justification for emphasising the stages of execution is that it corresponds to the gen-

eral notion of splitting algorithms into their sequentially dependent parts, to expose the

parallelism within each part. Thus, the constant number of stages in the linear barrier is

not in direct proportion to its time complexity, but rather represents a count of the number

of sequential dependencies it introduces. This approach maps easily onto the manner in

which cost functions will be developed in subsequent sections. Practical application of the

approach will also make it evident that this partitioning of algorithms has an effect on the

accuracy of model predictions.

5.4 Asymptotic Barrier Analysis

A common textbook approach to analyzing barrier scalability is to derive a cost function

for the asymptotic behavior, i.e. to explicitly attach costs to the messages in a given pat-

tern, and derive a count of the number of messages for variable process count P . For a

homogeneous communication topology with message cost c, this formula can be deduced
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as a summation of the sequentially dependent signal paths, i.e.

Tlinear(P ) = 2 ·
P−1∑
p=0

c = 2cP = O(P )

Ttree(P ) = 2c ·
�log2P�∑

s=0

c = 2c · �log2(P )� = O(log2P )

Tdiss(P ) = c ·
�log2P�∑

s=0

c = c · �log2(P )� = O(log2P )

As the assumption of uniform cost is unrealistic for most modern systems, these sums

can be split into e.g. stages requiring local and remote communication, to determine the

dominant term of the total. Doing so reveals that the even distribution of dissemination

barrier signals causes remote communication to dominate most of its stages, which causes

underutilization of local high-speed links. This in turn may explain why tree barriers are

more commonly implemented on hierarchical interconnects.

Since this type of analysis is well known, and mainly represents an exercise in arithmetic,

it will not be elaborated upon here, save to note that the results it produces are specific in

terms of both algorithm and cost functions, and seldom accurately capture cases where the

algorithm’s interaction with the topology causes exceptions to the common case behavior.

5.5 Matrix Representation of Algorithms

In order to make a model which is independent from the specific acknowledgement of each

message’s impact on asymptotic time, it is fruitful to recognize that any barrier communi-

cation pattern can be encoded as a layered dependency graph, with each layer representing

a stage. The possible signals transmitted in each stage form a directed graph with each

process represented by a vertex, and the execution of the entire barrier amounts to each

process transmitting its part of the signal pattern, and awaiting any inbound communica-

tion before proceeding to the next stage. Drawing this sort of graph by hand is a common

way to understand a communication pattern before deriving an asymptotic cost function,

but in order to capture this knowledge in the cost function itself, the dependency graph

must be manipulated computationally.

A common encoding of an arbitrary directed graph with P vertices is by using a P × P
boolean incidence matrix. As the communication pattern captured in one such matrix

represents the execution of one barrier stage, the execution of a complete barrier can be

described in a sequence of matrices S0, S1, . . . Ss, where s is the total number of barrier

stages, and each stage is a layer in the full dependency graph. The interpretation that

Sk(i, j) = 1 means that “process i signals to process j in stage k” results in a notation

which captures both the progress of a barrier in terms of sequential dependencies, and the

set of signals which can be in transmission simultaneously.
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S0 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ , S1 =

⎡
⎢⎢⎣

0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Figure 5.2: 4-process linear barrier in matrix form

S0 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ , S1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

Figure 5.3: 4-process dissemination barrier in matrix form

S0 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , S1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦

S2 = ST
1 , S3 = ST

0

Figure 5.4: 4-process binary tree barrier in matrix form
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For illustration purposes, Figs. 5.2, 5.3, and 5.4 show the incidence matrices for our 3

examples in a 4-process case: 0 is chosen as the arbitrary master/root rank for the linear

and tree barriers, and the degree of the tree barrier is chosen to be 2 (binary tree). Note

that the stages in the acknowledgement stages of the tree barrier are the transposed arrival

stages in reverse order. This is a reflection of how the algorithm successively extracts

representative processes from shrinking subsets of the total. It is a property which will

hold for any barrier of similar, hierarchical construction.

As an interesting side note, the presented view of barrier operation can be used to examine

the correctness of a candidate algorithm, as the matrix representation naturally maps the

barrier’s flow of information onto linear algebra operations. Consider a P × P integer

matrix K, where the element K(i, j) represents the number of messages process i has

received as acknowledgements of process j-s arrival. At the beginning of barrier execution,

each process has knowledge only of its own arrival, which corresponds to the P × P
identity matrix I under our interpretation. After the execution of stage 0, this is extended

by the direct implication that any process which has received a message from another, can

be confident that it has arrived. Thus, the aggregate knowledge after executing the pattern

in S0 grows to

K0 = I + S0.

In subsequent stages, the signals sent by a process i will signify not only its own presence,

but also that it has received the signals from all processes which contacted it in previous

stages. Thus, the pattern of the next stage multiplies with the knowledge already estab-

lished, to yield an update for the global count:

K1 = (I + S0) + (I + S0)× S1.

Inductively, this means that the equations

K0 = I + S0. (5.1)

Ki = Ki−1 + Ki−1 × Si|0 < i ≤ s (5.2)

establish the signal count Ks at stage s. The definition of a barrier is that no process may

leave it before all processes have arrives. A test on whether this has been achieved in state

s is equivalent to testing whether Ks contains all nonzero elements.

This simple method falls short of providing a completely automated proof of correctness,

because the computation must be reiterated for each desired value of P . Nevertheless, it is

mentioned here because it illustrates the value of representing the algorithm in an encoding

which can be examined programmatically, and because its modest computational demand

makes it a useful debugging tool for automatically generated patterns. A straightforward

empirical verification of correct synchronization is to execute the program P times on a P-

way parallel system, and purposely delaying the arrival of each process in turn, to observe

whether the expected delay is visible in the overall completion time. Testing by Equations

5.1 and 5.2 allows an incorrectly specified pattern to be simulated, identifying an exact

trace of the failure within negligible time on a regular, personal computer.
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Having introduced the relevant notation, it is appropriate at this point to remark on how the

approach taken here considers static communication patterns with respect to process iden-

tifiers. This overlooks the possibility of a run-time optimization, taken in the tournament
barrier algorithm. That algorithm is essentially identical to the tree algorithm, except that

the selection of the process which is responsible for signalling a subset of others is made at

run time. Such an optimization can easily be implemented on shared-memory systems, by

maintaining a shared vector which permutes the process identifiers into equivalent ranks

for the purposes of the barrier. As an example, the first arriving process from a subset could

detect from the shared tree structure that it is the first to arrive, and thereby nominate itself

for handling later communication, giving the possibility of masking associated setup costs

while the rest of its group arrive. Altering the effective identifier of a process in this man-

ner would also be possible in a distributed memory context, but the implementation issues

of ensuring that the permutation of identifiers is consistent creates more complicated im-

plementation issues. Furthermore, as the optimization aims to exploit the sequence and

delay in arrivals, its effectiveness is connected to parameters outside the barrier algorithm

design space. Since altering the relationship between process identifier and topological

placement at run time also complicates fulfilling the ambition to control the impact of

process locality, this type of optimization will not be subject to further discussion.

5.6 Matrix Representation of Performance Parameters

With a detailed representation of the sequencing of communication operations in place, it

is appropriate to develop a model of architectural performance parameters in a compatible

manner, so that the interaction between the two may be captured in a common cost func-

tion. The assumption which underlies the matrix representation of an algorithm, is that

collective system behavior can be captured by superposition of the individual point-to-

point interactions. Extending this assumption into the space of performance parameters, a

cost function which expresses the behavior of a barrier algorithm must express the relative

weights of the point-to-point interaction, so that the dominant term can be found from the

total.

While this general consideration captures that the overall cost function will be parametric

in matrix encodings of both the algorithm and some similar encoding of the weights of

pairwise communication facilities, the exact form of the latter is obviously quite dependent

on the implementation of the interconnection networks employed. Further discussion will

therefore sacrifice some generality for the sake of showing how the approach applies to

common ethernet connected clusters with multicore processors, with the assumption that

similar efforts will result in a similar development for other architectures, although perhaps

with a different balance between the identified parameters.

5.6.1 General Barrier Simulation

The benefit of encoding the point-to-point communication requirements of an algorithm in

matrix format is that it permits a single, general program to simulate the algorithm, with
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vo id b a r r i e r _ e x e c u t e ( b a r r i e r _ t * b a r r i e r ) {

f o r ( i n t s =0; s < b a r r i e r −>s t a g e s ; s ++ ) {

M P I _ S t a r t a l l (

( b a r r i e r −>s r c s [ s ]+ b a r r i e r −>d s t s [ s ] ) , b a r r i e r −>r e q s [ s ]

) ;

MPI_Wai ta l l (

( b a r r i e r −>s r c s [ s ]+ b a r r i e r −>d s t s [ s ] ) , b a r r i e r −>r e q s [ s ] ,

MPI_STATUSES_IGNORE

) ;

}

}

Figure 5.5: Barrier simulation function with C / MPI

its communication pattern as input. As we have divided barrier execution into synchro-

nized stages, the central part of such a simulator can be expressed quite succinctly using

MPI communication primitives, which permits it to be portably deployed on a variety of

platforms.

Figure 5.5 shows a code fragment from a testing framework in the C language with MPI,

which runs through a communication pattern specified in a barrier_t datastructure.

The significant contents of this structure are the srcs (sources) and dsts (destinations)

arrays of MPI_Request objects, which are allocated and initialized prior to calling this

function. They contain simple lists of requests which set up the transmission and reception

of a minimal signal from process i to j. The requests which correspond to the pattern from

a given stage can be trivially initialized given the matrix which encodes it. The nonblock-

ing start of all requests for a stage, paired with the blocking wait for its completion assume

that the library implementation will expose the available cost benefits of asynchronous

transmission within a stage. Regardless of the actual level of optimization, it will in any

event show the potential for asynchronous transmission exposed to an application pro-

grammer using the given library and platform. In this manner, determining the per-process

cost in a single barrier stage depends on finding the parameters which impact the cost of

asynchronously starting a set of communication requests.

5.6.2 Performance Parameters for a Barrier Stage

A common approximation for point-to-point communication time lies in the Hockney

model [47], which Lastovetsky et al. [61] write as

α + βM (5.3)

with α denoting a constant latency which is taken to stem from the software stack and

network, M is the size of the transmitted message, and β is the inverse bandwidth of the

interconnect. This model extends naturally to the heterogeneous Hockney model [61] by

recording the relevant parameters for all pairs of processes, turning α and β into P × P
matrices and requiring that they are independently determined.
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Applying this model to the suggested testing framework is, however, an oversimplifica-

tion. Analytically, it assumes that the network latency and software overhead are constant,

which fails to capture that the simultaneous initiation of a vector of signals has a different

cost (in terms of software overhead) than initiating them sequentially. In addition to this,

we have observed that the bandwidth cost of minimal-length messages is practically unob-

servable on modern architectures [72], which reduces the heterogeneous Hockney model

to applying a matrix of constant values for αij to model a barrier step. For all its conceptual

simplicity, this model is insufficient to produce empirically verifiable results in application

scenarios. This has prompted the development of a range of models which partition α in

various ways. Providing a greater survey of the work in this area is inappropriate here,

as our present focus on pure synchronization reduces most of these models to the special

case of negligible message lengths. Therefore, it is noted that the empirical emphasis in

Bosque and Pastor’s proposal of the HLogGP model [22] served as the initial inspiration

to draw elements from this interesting field, and the reader is referred to Lastovetsky et al.
[61] for a coherent summary of several other approaches.

Our approach to find the significant performance parameters of a barrier cost model is

strongly driven by the requirement of finding a method of measurement which provides

results which are both precise under repeated experiments, and permit meaningful compo-

sition. This is driven by the desire to produce a model which is first and foremost consistent

with what can be observed by an application program on a given platform. It should be

noted that this approach towards specifying a benchmark runs the risk of overlooking com-

ponents of a cost function which may appear negligible on one design, yet prove important

on another. For this reason, we underline that the development presented here is not gen-

eral in terms of every possible interconnection technology, as we only establish that the

results attainable on our target systems are general to the point of spanning heterogeneous

compositions with a uniform software layer. General consensus on an analytical model for

heterogeneous communication cost would greatly simplify the work involved in adapting

this approach to other platforms, but as that matter is an active research topic, specializing

on the most commonly available technology will serve the purpose of examining what the

more general procedure can obtain in practice.

As the objective is to decompose the cost of transmitting minimal-length messages, the

LogP model [27] provides a valuable perspective, in that it proposes a distinction between

network latency and software overhead which has proven applicable in practice [22]. Be-

cause of the form of the basic step in the general barrier algorithm is a function call which

starts a variable number of messages with negligible payload, the expectation is that cost

can be approximated as some combination of

• the overhead of invoking the function,

• a term related to the number of requests started, and

• a term related to the distance between source and destination.
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5.6.3 Benchmark Statistics

Because the time taken to execute the two function calls in the simulation is the only di-

rectly measurable quantity presented to the application programmer without further instru-

mentation, the separation of the terms must be extracted from the cost of testing various

controlled communication patterns. Even if each parameter could be precisely determined

by instrumentation at a lower level, it would be unrealistic to expect a precise prediction of

empirical behavior, given that the observed cost is subject to network load, state of proces-

sor caches, state of the operating system, and a great number of other temporal conditions

independent of the communication call. Therefore, we approach the performance param-

eters as statistics, and attempt to determine a representative magnitude for the majority of

executions.

The overhead of a pure function invocation is estimated using repeated calls of P empty

requests, which should cause no communication. Each call is timed individually for a

number of repetitions, and the median value is extracted. The obtained approximation of

overhead at processor i will be denoted Oi.

The cost related to the number of requests started requires isolating other costs related to

request transmission from the difference caused by one of them. This can be estimated by

transmitting a variable number of minimal messages; expecting a linear dependency be-

tween the number of requests for simultaneous transmission and the time taken, permitting

the added cost of one message to be approximated by the gradient of a linear regression

line found from the measurements. This approximation of the overhead of adding a signal

between processors i and j will be denoted Oij , where i �= j.

The cost of the network transmission is similarly isolated by transmitting a variable amount

of data. As larger messages emphasise the impact of the topological distance over the near-

constant setup costs, linear regression provides an approximation of the per-byte transmis-

sion cost. The distance-dependent component of a message transmission is approximated

by following this line to its interception point, which we take as the wire latency of a

zero-length message. This approximation to the latency between processes i and j will be

denoted Lij , where i �= j.

5.6.4 Benchmark Validation

Preliminary experimentation with a benchmark program suggested that the desire to main-

tain reproducible variability in the measured figures stabilized at approximately an order

of magnitude lower than the measured result, bearing witness to a strong central tendency.

This was observable for sample sizes above 25, with the growth of message sizes in the

latency benchmark going through powers of 2, from 0 through 20. While greater sample

sizes could presumably be leveraged to establish stronger results, stable repetitions were

used as the criterion for selecting a minimal benchmark size, because the cost of running

tests for O(P 2) pairs quickly grew inconvenient with increased sample sizes. One point

made evident by testing the cost of transmitting a vector, is that the distance-dependent

latency term Lij drops significantly when the destination process is known to have estab-
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lished its receiving buffer, and awaits the signal. While this phenomenon in hardly curious

in itself, the magnitude of this effect proved significant enough that it requires considera-

tion in the construction of an overall cost function which incorporates several stages.

Although the number of variables outside of experimental control makes it difficult to

establish the appropriateness of the benchmarks through analytical means, it can be appre-

ciated by considering the predictive power attained using the measurements. The role of

the experimental work in this context is not to establish metrics which can be determined

to be universal to any technology, but rather, to derive a cost function which is compatible

with the description of the algorithms for the given architecture.

5.6.5 Barrier Cost Model

With a stable benchmarking scheme in place, a model for combining the stages of the

barrier algorithm can be composed. Given that the observed time of a complete barrier

is dependent on the critical path through its graph, the cost of the entire algorithm may

be estimated by recursively tracing each path, adding the cost weights of each edge, and

recording the maximal value attained at every visit to the final stage.

The delay of each process in a stage depends on its entire signal vector, because of how

all requests are activated in a single function call. A tentative estimate of the cost process

i adds to each path through its stage s is expressed in Equation 5.4:

cost(s, i) = 2 ·
∑

Lij · Ssij + max
j

(Oij · Ssij) (5.4)

Put differently, the cost of process i-s signal vector depends on the sum of initial transmis-

sion costs of all the messages, as well as the maximal overhead of contacting any recipient.

Note the appearance of the factor 2 in the aggregate cost of contacting all the recipients in

the vector. The method described thus far approaches every act of communication from

the sender’s side, attempting to model the cost of communication as seen by the individual

processor, because the one-way transmission of signals is the basic step in the description

of the algorithm. While this is convenient in order to construct a benchmark, it disregards

the fact that at a lower level of abstraction, signal transmission requires an acknowledge-

ment, which is subject to a similar cost incurred at the receiving end. The factor 2 is used

here because our present development aims to establish a practical model for application

on an architecture which provides symmetric communication capabilities. Extending this

towards asymmetric links would be worthwhile, but would also require extensive valida-

tion efforts, which presently would be of modest relevance compared to the required labor

investment.

In addition to this, two conditions apply:

1. The minimal cost is the invocation cost Oii

2. If a process j is known to be awaiting a signal, its term Oij in the maximization can

be replaced with its invocation cost Ojj .
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Incorporating these points into Equation 5.4 would serve to obscure rather than clarify the

notation, but a function which captures all these conditions can easily be implemented in

program logic. In particular, the minimal cost is a simple matter of initializing the variable

which tracks the maximal overhead to Oii, and since the description of the entire barrier

is available to the predictor program, it is possible to detect if a signal j → i was the last

action in process j before i → j is expected, and j has been idle for one or more stages

between. The latter case makes it very probable that j has posted its receive prior to i-s
transmission.

5.6.6 Test Cases: 8x2x4 and 12x2x6 cluster configurations

The described cost function and conditions permit the model to be tested with two different

topologies, in order to quantify its predictive power and describe its behavior. For this

purpose, two clusters of multi-socket, multi-core nodes are employed: one with 8 gigabit-

ethernet connected nodes, each featuring dual 4-core Intel Xeon processors, and one with

12 gigabit-ethernet connected nodes featuring dual 6-core AMD Opteron processors.

Result material is collected from each of these configurations by simulating the dissem-
ination (D), tree (T), and linear (L) barriers for each process count admissible on both

architectures. Worst-case times were collected from 256 runs on each process count, and

the arithmetic mean of these is reported. For comparison, the benchmarks outlined in Sec-

tion 5.6.3 are independently run for all process counts, producing a set of files containing

the two P×P matrices corresponding to each configuration. In order to produce predicted

values, the combination of these and the matrix representation of the algorithms form the

input of a (sequential) predictor program, which recursively traverses each path through

the barrier and reports worst-case prediction according to Section 5.6.5.

Note that the architectural parameters of the cost function are obtained independently from

the barrier timings. Because process locality plays such an important role in this method,

consistency between the process mapping in a timing run and cost parameter determination

was enforced by programming both the benchmark and test to request the same node

set, and the process-to-core affinity was explicitly specified in both programs through the

Linux CPU affinity interface, as described in Section 5.2.

Figs. 5.6 and 5.7 report the absolute time from execution and prediction on the 8-way 2x4-

core configuration. The primary value of these figures is to permit a visual confirmation

that predicted values are approximately correct in terms of the cost function’s growth and

features, as well as absolute magnitude. Aside from this, closer scrutiny of their shape

reveals a number of observable effects which have not been explicitly considered in our

modeling effort. The presence of these artifacts which are emergent from the application

of the independently developed models builds confidence that the predictive power of the

modeling effort thus far captures some measure of those interactions which motivate its

construction.

The most obvious example of this is in the oscillating effect found in the D-barrier, for pro-

cess counts from 9 through 16. These tests correspond to tests spanning 2 compute nodes,
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Figure 5.6: Measured barrier timings on 8-way 2x4-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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Figure 5.7: Predicted barrier timings on 8-way 2x4-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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and the observed effect can be explained from the interaction of the enforced process affin-

ity with the algorithm and scheduling software which allocates processes to nodes on the

cluster in question. The scheduling software of the test cluster allocates processes to nodes

on a round-robin basis by default. Considering how the barrier in question distributes the

aggregate communication requirement evenly on all participants, the case for 2 nodes thus

maps out to processes with even and odd identifiers being located on the same node. As

the communication pattern of the barrier modulates growing powers of 2 over P to find

the communicating pairs in a given stage, stages where 2s grows beyond P introduce a

greater load on the more expensive inter-node interconnection in the odd cases than they

do in the even. This emergent property is visible in the distance between odd and even

case empirical timings, and the predictions visibly capture it. The oscillation itself can

obviously be eliminated by reconfiguring the scheduling software, or even adapting the

barrier pattern, but since our purpose presently is to construct a model which captures the

interaction between synchronization cost and topological distance, the successful predic-

tion of this effect is encouraging for the confidence in its validity. This interplay between

mapping of identifiers is also visible in the sharp dips in cost at 28 and 32 processes, which

is similarly captured by the model.

A second notable point is the generally lowered cost of the T-barrier for process counts

from 25 through 32, and 57 through 64, i.e. node counts of 4 and 8. This is another

interaction between the round-robin scheduler and the power of 2 layout of the algorithm:

the successive halving of the communication pattern in the binary tree maps the advantage

obtained by lower-cost local links better to the stages of the barrier when neighbors in the

dependency graph are located near each other.

On the other hand, it is notable that the relationship between the predicted and actual per-

formance of the L-barrier appears to deviate by some constant, and the precise relationship

between the D and T barriers is reversed in the longer, flat regions of the graph.

Figs. 5.8 and 5.9 show the deviation between the predictions and measurements in absolute

value, and relative to the magnitude of the measured value, respectively. The encouraging

aspect of the absolute deviation is that its magnitude is rather small, remaining in the tenths

of milliseconds even as overall barrier execution time grows. The worst case is the linear

barrier, which appears to display linear growth in the inaccuracy, albeit at a lower rate than

the overall execution time.

Similar performance measurements and predictions for a 12-node cluster configuration

with 2x6-core nodes is displayed in Figs. 5.10 and 5.11, with corresponding absolute and

relative error measurements in Figs. 5.12 and 5.13. Again, the deviation is strongest with

the L-barrier, and the relative error measurements here suggests that the increased scale

vs. attainable precision on this configuration may be straining the predictive power of the

model in the larger cases.

On the other hand, the absolute measurements on this platform leave no ambiguity as to

which of the D and T barriers has the superior performance in all multi-node configura-

tions, and save for an aberration in the interception point between the L and T barriers, the

growth rate of the cost function appears to be captured. The absolute error in Fig. 5.12 re-

veals that the deviation lies within tenths of milliseconds, making the case that predictions
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Figure 5.8: Absolute error of prediction/measurement on 8-way 2x4-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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Figure 5.9: Relative error of prediction/measurement on 8-way 2x4-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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Figure 5.10: Measured barrier timings on 12-way 2x6-core cluster

D: Dissemination barrier
T: Binary tree barrier
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Figure 5.11: Predicted barrier timings on 12-way 2x6-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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Figure 5.12: Absolute error of prediction/measurement on 12-way 2x6-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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Figure 5.13: Relative error of prediction/measurement on 12-way 2x6-core cluster

D: Dissemination barrier
T: Binary tree barrier
L: Linear barrier
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can be used to discriminate between barrier performances at least down to differences of

this order. Note also that there appear to be no pronounced artifacts connected to the in-

terplay between process counts which are powers of 2 on this architecture. This is quite

expected, as the relationship between local and remote links does not favor powers of 2
when nodes have 2× 6 core configurations. The value of making this remark is to support

the claim that the model is neutral to the exact topologies of the test systems: the bench-

mark and test procedures applied on both platforms are identical, save for cosmetic details

in small shell scripts to allocate nodes from the system scheduler at initialization.

Before proceeding with a practical application of this latency-centric model, it is pertinent

to comment on the magnitude of errors in its predictions. Selecting the execution of a

stage as our algorithmic step carries implications for the impact of the inaccuracy when

the cost parameters are determined statistically, as nondeterministic variations in both ini-

tialization, transmission, and pairwise synchronization contribute to the uncertainty of the

extracted statistic. In particular, we approach the cost of a step as a sum of medians from

a set of samples, which in turn are sampled from an unknown distribution corresponding

to each process pair. As each stage adds the terms for Lij for all targets j, stages with

many targets will also accumulate the error this value is subject to, contributing to over-

all mis-prediction. A similar accumulation results from adding the cost approximation by

stages. Our subdivision of the L-barrier into 2 stages exhibits the former problem, as the

master rank has P − 1 destinations in the last stage; this produces the expectation that the

estimation error would grow in proportion to the number of processes. We could imag-

ine extending the L-barrier into 2P stages with one signal per stage, a P -stage barrier in

which a single signal is transmitted in a ring configuration, or indeed, a single-stage all-

to-all barrier with the complete P -graph encoded in a single stage, which would cause the

accumulated error to grow as P 2.

Since some growth in the number of stages and/or targets per stage is unavoidable when

scaling up, some growth in the error of the prediction must be expected. Trivially, we

are also expecting the overall cost of the barrier to display some polynomial growth with

P . This makes it relevant to also consider the relationship between these, as it will de-

termine whether predictions will remain approximate to the cost with growing scale. The

relative error plot in Figure 5.9 shows that the growing inaccuracy of the predictions for

the L-barrier is offset by the overall time consumed by the barrier, leading to improved

predictions with upscaling, when considering the error as a fraction of the total cost.

The selection of the three barriers used here is influenced by the requirement of decreasing

relative error. Both the fully connected 1 stage barrier, and the 2P stage linear barrier

have been considered for inclusion here, because they represent extremities in the space of

candidate algorithms, in terms of maximizing and minimizing the amount of concurrent

communication, respectively. Preliminary experiments, show, however, that not only do

these patterns scale poorly as one might expect, but the error of predictions also grows out

of control.

The obtained results are omitted, because they display benchmark interference in the algo-

rithm/architecture relationship, rather than the relationship itself. This limitation prompts

the question of whether the approach can make justified claim to generality, or whether the
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accuracy of the predictions shown here is merely a fortunate happenstance, where the pa-

rameters of the particular test platforms admit our model for select algorithms. Addressing

this question would require demonstration that improved predictions from the benchmark

result in admission of a greater domain of algorithms, but the variability of the bench-

mark’s precision is in itself a composite matter. While some of the observed error may

be the result of inaccurate estimation of parameters, the fact remains that the variability

of observable parameter values also has an inherently nondeterministic component, which

arises from the asynchronous nature of the modeled behavior. Establishing the boundary

between inherent variability and that which may be introduced by erroneous measurement

would require a similar study to be repeated on an architecture with known limits to non-

deterministic variations. Aside from the difficulty of obtaining a platform with reliably

documented limits on this parameter, the scope of such a study unfortunately also makes

it infeasible to include in this thesis.

Thus, the validation of the methodology presented here is restricted to showing that pre-

dictions are accurate to a useful precision within the algorithm design space spanned by

our three examples, with the analysis above justifying why this space is limited. De-

scription of the customizations made for the sake of our test platforms is intended as a

compelling argument that a similar development may be carried out also for radically dif-

ferent architectures, but pending further work, evaluating the soundness of this argument

must presently be left to the discretion of the reader.
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Chapter 6

Run-time System and
Performance Model

The BSPlib programming interface [46] captures the semantics of superstep execution.

This interface is a programming model to extend general-purpose languages with a direct

mapping onto a theoretical machine which includes both algorithmic and architectural as-

pects. In the spirit of Valiant’s ideal of a bridging model, the simplicity of this interface

makes it feasible to implement using a variety of technologies. It is therefore an excellent

vessel for exploratory testing, and a most attractive alternative to defining a new program-

ming model for study purposes.

6.1 Overview of BSPlib

The names of the 20 programming primitives of BSPlib are listed in Table 6.1. Exact type

signatures and precise semantics are provided by Hill et al. [46], but functions are restated

here to permit meaningful discussion of their implementation.

The first 7 calls permit initialization, halting, timing, and related services. These are not

particularly interesting, except to note that the library expects SPMD style programming,

i.e. executing the same program file in all processes, and branching individual behavior

based on unique process identifiers. The number of processes and the individual identifier

are obtained by bsp_nprocs and bsp_pid, respectively.

The bsp_sync function is a barrier synchronization, which also enforces that all changes

to remote memory have been carried out globally before it proceeds.

The reg, put and get functions facilitate fetching and retrieving values from remote

memory, with the hpput/get varieties featuring relaxed requirements on buffering at

both ends for performance reasons. The push/pop_reg functions embody the method

by which this one-sided communication is made transparent to the distinction between
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Table 6.1: BSPlib programming primitives

Function call Operation

bsp_init Initialize a parallel program

bsp_begin Begin parallel execution

bsp_end Halt parallel execution

bsp_abort Abort execution with an error state

bsp_nprocs Find number of processes

bsp_pid Find index of this process

bsp_time Report time

bsp_sync Synchronize, finalize superstep communication

bsp_push_reg Register memory area

bsp_pop_reg Unregister memory area

bsp_put Place data in buffered remote memory

bsp_hpput Place data in remote memory

bsp_get Fetch data from buffered remote memory

bsp_hpget Fetch data from remote memory

bsp_set_tagsize Set size of message tags

bsp_send Send tagged message

bsp_qsize Report number of received tagged messages

bsp_get_tag Read the tag of first tagged message

bsp_move Fetch buffered contents of tagged message

bsp_hpmove Fetch reference to buffered tagged message
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shared and distributed memory spaces, through the requirement that memory areas which

are the targets of put and get operations are registered by each process. Thereby, pro-

grams can refer to a memory allocation by a consistent reference, and disregard differences

in the exact placement of this reference between processes.

The remaining routines provide more conventional message passing, through allowing

processes to place messages of arbitrary size in a queue maintained by each process, and

act on the contents of these through examining a fixed-length tag. The only significant

requirement placed on this messaging facility is that the tag size is determined collectively,

per superstep.

While this brief discussion of the library interface is far from complete, it should serve

to show the potential for addressing the overlap term in the extraction of a performance

model. If we presume that the communication required by the put, get and send prim-

itives can be overlapped with computation, the time required to realize them before the

next superstep commences must be bounded by the computations performed in the mean-

time. Otherwise, the semantics of the barrier require that it delays further execution until

communication is complete. Provided we can establish a strong, quantitative expecta-

tion of the cost of synchronization, deriving the extent to which communication has been

masked by computation is a matter of determining the source of any significant deviations

at synchronization time.

6.2 One-sided Communication

The implementation developed for the purposes of this study is composed from the ab-

stractions provided by the MPI and POSIX threading interfaces, coupled with a small

amount of system-dependent code which is required to control process locality.

The fundamental mechanism by which the library operates, is to separate the responsibil-

ity for executing user code from administrating communication, by spawning a separate

thread to be responsible for the logistics of communication. This requires the run-time

library to track the state of both the communication which is specified as part of the appli-

cation, as well as a set of internal control messages required to retain consistency with BSP

semantics. Specifically, it implements one-sided communications using the non-blocking

varieties of MPI point-to-point communication calls, necessitating a header message to be

transmitted for each put and get operation, containing a description of the type of opera-

tion, the initiating process identifier, the remote address, and message size. The BSPlib

requirement that remotely accessible memory areas are registered at least one superstep

prior to their use, permits remote addressing to be made relative to a reference to the

registration rather than to an absolute memory location. In order not to burden the pro-

grammer with managing the indexing of these registrations, the push_reg and pop_reg op-

erations are implemented using two queues of local pointer values and registration indices

to track registrations throughout a superstep. Their contents are committed to a hash table

at synchronization time, which is keyed on the value of the local pointer. As the C stan-

dard library lacks a sufficiently flexible hash table interface, libghthash [57] is employed.
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The user program can thus interact with the run-time library by referring to the names of

(registered) local pointers when referring to operations on remote memory, resulting in a

software-implemented distributed shared memory programming style.

In detail, a header message is a tuple of 6 integers:

• Signal type, to identify the cause of communication

• Remote process id

• Reference to buffer registration, from which local target pointer can be identified

• Offset from the registration’s base address

• Length of the following payload

• A sequence code to identify the corresponding payload message.

These control messages are the only data directly manipulated by the communication

thread, as it only initiates the nonblocking requests which indirectly influence memory

contents. Thereby, the completion of all these requests is not an issue until the computation

goes into synchronization, at which point the bsp_sync function can await the comple-

tion any outstanding messages, and act appropriately on their contents in correspondence

with the semantics of the functions. At synchronization time, the communication thread

can be blocked, so that requests and message contents can be manipulated without race

conditions. Aside from this, all necessary interactions with the MPI library are contained

within the communication thread, effectively making it appear as an independent back-

ground communication system which the main program can activate through local signals.

Its state is kept coherent with the computation thread using thread condition variables and

locks.

Library semantics demand that the effects of committed communication calls during a su-

perstep take effect in the next. With fully asynchronous transmissions, this requires that

the communication thread is made aware of the number of transmissions in progress at

synchronization time. While the reception of a header message can initialize the recep-

tion of the corresponding data transfer, any number of header messages may still be in

transit when the user program calls for synchronization. This is addressed by each pro-

cess maintaining a local table with outgoing message counts sorted by their destination,

and gathering a complete map of the communication pattern at synchronization. The total

exchange required to create this map is implemented by exchanging the message count

map as a small data payload transmitted with the signals throughout the stages of the syn-

chronizing barrier, leaving each process with the option to await any outstanding messages

before completing synchronization.

The separation of responsibilities between the user code and communication thread is also

implemented in a nonblocking manner: apart from initialization and finalization, the inter-

action between the functions which are exposed through the programming interface and

functions which manipulate internal state is carried out using a set of message queues

exclusively. Messages are atomically enqueued by the computational thread, and only

dispatched by the communication thread when it is next scheduled by the operating sys-
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tem. This is done in spite of the fact that the communication and computation thread share

an address space, suggesting that a more direct signalling mechanism might carry a lower

overhead. The reason for this choice is that MPI implementations are under no requirement

to provide thread-safe functions. As the above discussion indicates, the implementation

is required to interleave the resolution of point-to-point communications with collective

operations, which makes it impossible to provide a robust implementation without guar-

antees of either atomic manipulation of MPI-internal data structures, or the presence of

non-blocking collective operations.

6.3 Thread Scheduling Considerations

Implementing communication as a separate thread coupled with the process affinity re-

quired for predictable communication cost necessitates an acknowledgement of the impact

of the scheduling policies in the underlying operating system. Locally queueing messages

for dispatch by an independent thread holds the potential of delaying their actual trans-

mission until the communication thread is next scheduled. As the affinity of a process to

a processor effectively means that the two threads time-share the physical processor, this

creates the possibility that the compute thread can starve out the communication thread,

postponing message transmission until either the end of a time slice, or synchronization

time. Both possibilities are detrimental to our purpose, as initiating communication as

early as possible is the exact purpose of every other trade-off chosen in implementation.

This issue is resolved by relying on an assumption that the process consists of exactly these

two threads, and that they are the primary sources of contention for the processor. These

assumptions permit the POSIX sched_yield call to be used as a switching mechanism: its

function is for the calling thread to relinquish the processor, permitting another thread to

take control. The function which enqueues a remote access for transmission yields the pro-

cessor directly thereafter, while the communication thread yields control after processing

at most one outgoing and one incoming message. Aside from the consideration that such

a method would admit an unrelated, computationally intensive thread to delay execution

beyond the ordinary impact of system jitter, it also implies that outgoing communications

will be effected immediately, while reception may be delayed. The communicator thread

works by maintaining a non-blocking reception of a header message from any source at all

times, and dispatching a non-blocking reception of the corresponding data transmission as

soon as a header message is handled. The balance of how many messages to handle per

thread context switch can be easily adjusted programmatically, but in the present imple-

mentation, this is limited to one in the interest of keeping the overhead of each invocation

of the communication thread low, and from the consideration that an environment with

buffered communications reduces the performance impact of delayed reception.
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6.4 BSP Barrier Communications

The efforts to develop a cost function which relies on communication patterns presented

in chapters 5 and 7 is not restricted to barrier synchronization, but could arguably be ex-

tended to general rootless collectives. The restricted requirements of the total exchange

which our library needs to build its message map at synchronization time, means that it

will suffice to construct performance models which express the consequences of adding a

modest bandwidth requirement to the latency-centered model we have already developed.

Before exploring the addition of a performance parameter, it is important to revisit the

purpose of examining barrier synchronization in the context of our objectives. The overall

point of the performance model is not to create a general model of the communication cost

of collective operations, but to determine the time required to synchronize a computational

superstep with no outstanding background communication. Taking Bisseling’s approach

of applying all-to-all collectives to this end [19] would make a more general development

appropriate, but as we already witnessed in Figure 5.13, the accuracy which the commodity

component test systems afford is showing signs of tension between neutrality to collective

patterns and predictive power already when approaching 120 processes.

Taking into account the desire to develop a non-blocking implementation of the BSPlib

interface, it is clear that complete generality is not required to establish a baseline for bar-

rier cost. A bandwidth parameter must nevertheless be introduced, because of the need to

provide one-sided communication calls layered over MPI’s basic point-to-point communi-

cations. The reason for this is quite simply that in order to determine when synchronization

can be completed, a process which is the recipient of one-sided communication must be

able to determine that it has received all outstanding communication, including any mes-

sages which have not yet been detected. This places a minimum extra requirement on a

suitable barrier mechanism, which is that as a side-effect of synchronization, a global map

of the number of messages between participants must be established. From an asymptotic

complexity point of view, this might be taken as an argument that the difference in com-

munication schemes is of little interest, because synchronization is ultimately bounded by

all-to-all collective performance under either variety. A more detailed picture forms when

considering the magnitude of the associated bandwidth requirement, by noting that the

cost of the all-to-all collectives obtained by using it as the only means of communication

is a function of the data volume committed for communication during the superstep. The

nonblocking alternative, however, yields a bandwidth requirement which is strictly a func-

tion of the number of processes, making the synchronization cost an architectural feature

which can be obtained separately from considerations of the deployed program.

Because we layer BSP communications above MPI, it is reasonable to question the neces-

sity of the level of detail with which the point-to-point cost function has been treated. The

end result is a functional equivalent of MPI_Alltoall with a payload of P integers, and

using this would abstract the implementation details of the collective operation. The rea-

son for not leveraging already implemented collectives is more technical than a scientific:

it stems from the fact that in order to conform to specifications when using a communi-

cations layer without guarantees on the ordering of messages, our implementation must
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interleave the handling of communications initiated by a user program with the handling

of its internal control messages.

Introducing a message payload which modifies the cost of communication introduces the

requirement that a process chosen to as representative for a subset in a hierarchical pattern

not only has the responsibility for distributing acknowledgement signals, but also must

accept the payload for each of the processes it represents, partition it, and communicate

it to them. In a general context, this introduces the need to adapt the message pattern not

only to the partitioning of processes, but also to the consequence this has for the bandwidth

requirements of the associated algorithm. While such an extension is doubtlessly possible,

it represents a non-trivial programming effort.

In order to restrict the scope of this analysis, the extension of the barrier algorithm into

a fixed-size all-to-all communication will focus on the communication pattern of the dis-

semination barrier. While the studies of purely latency-bound cost functions has given ev-

idence that this barrier is not an optimal choice in terms of its cost, the pattern it employes

carries the significant advantage that it is a simple structure to facilitate all-to-all commu-

nication; indeed, its name derives from its usefulness as a method for disseminating global

information, i.e. establishing a synchronized state. Because we are after a predictable cost

function as much as an optimal one, this tradeoff between cost and complexity is made for

the sake of enabling workable test programs with reasonable effort. The substitution of an

equivalent, more efficient barrier pattern carries no further implications than an updated

cost function.

6.5 Performance Model Extensions

The outlined implementation attaches a programming interface to the performance param-

eters considered so far. This enables us to adopt the revised processing model, and relate

its application-independent parts to performance model components. While computation

kernel details by necessity depend on the application, the architectural communication pa-

rameters of pairwise latencies and inverse bandwidths relate both to synchronization cost

and general purpose communication, as highlighted in Figure 6.1.

To analyze the bandwidth requirement with respect to a dissemination barrier pattern, re-

call that the pattern corresponds to �logP � successive transmissions along the axes of a

hypercube. Each process will be required to receive a vector of integers to its neighbor

along a first axis, and correspondingly send one of twice the length to its neighbor in the

next dimension. The doubling of the payload follows from the fact that the neighbor on

the second axis is not directly connected to the one on the first, so the received information

must be transmitted along with the process’ own contribution. Proceeding in this manner

doubles the payload for each successive stage, until the last, which comes at a cost of

P − 2�logP�−1 when P is not a power of two. After these �logP � successive doublings,

each process has received a full P 2 map of integers, corresponding to the one-sided mes-

saging pattern. Receiving the vectors sequentially will permute them into an order which

depends on the relation between the local process identifier and P , but the effect of the pat-
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Figure 6.1: Relation of communication parameters to processing and performance models

tern is easily reversed given its regularity, resulting in a message map in natural order. The

progress of the stages in the pattern can be traced internally by the communication thread,

which is all that remains after computation has reached synchronization. Its completion

implies that each process has reached synchronization, which means the communication

thread can be suspended before the effects of communication are made final.

For the communication thread to correctly interleave barrier-related messages with any

regular, outstanding traffic from the preceding superstep, barrier messages are imple-

mented using the same header message structure as point-to-point communications. Both

the size of the payload, and the location of the reception buffer are independent of user pro-

gram requirements, and can be deduced from the internal state of the barrier. Therefore,

the header messages of barrier related communication can be restricted to transmission of

4 integers.

The benchmark needs some modification in order to adapt a cost model for this operation.

As described in Section 5.6.3, capturing the parameters for the latency-bound cost already

includes a pairwise bandwidth test, performed in order to find its intercept for negligible

messages. In the same test, the regression line which is produced gives an estimate of the

pairwise inverse bandwidth, i.e. the cost of communication per byte. Storing this metric

in a P × P matrix which can be weighted by the transmission cost per barrier stage is

straightforward.

The assumption of symmetry which permitted a simplification in the treatment of the la-

tency cost can no longer be used effectively, as the weight of the doubling of communi-

cation volumes between sending and reception skews the communication pattern for any

topology. In order to compute predictions for the synchronization cost of the library bar-

rier, a small program is utilized to weight the communication pattern by the bandwidth
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d o u b l e

b a r r i e r _ p r e d i c t ( b a r r i e r _ t *b , i n t r , i n t s t a g e )

{

i n t logP = c e i l ( l o g ( s i z e ) / l o g ( 2 ) ) ;

i n t s e n d _ i n t s = ( s t a g e < ( logP −1)) ?

(1< < s t a g e )* s i z e : ( s i z e −(1<<( logP −1)) )* s i z e ;

i n t r e c v _ i n t s = s e n d _ i n t s ;

d o u b l e

ex t r eme = 0 . 0 ,

o v e r h e a d = t s _ m a t r i x [ r * s i z e + r ] ,

l a t e n c y = 0 . 0 , bandwid th = 0 . 0 , h e a d t r a f f i c = 0 . 0 ;

i f ( s t a g e != logP )

{

f o r ( i n t j =0 ; j < s i z e ; j ++ )

{

i f ( PATTERN( b , s t a g e , r , j ) > 0 )

{

/ / Send c o s t : 2 messages ( head & d a t a )

o v e r h e a d = MAX( overhead , t s _ m a t r i x [ j * s i z e + r ] ) ;

l a t e n c y += 2 . 0 * t l _ m a t r i x [ r * s i z e + j ] ;

h e a d t r a f f i c += 4 * s i z e o f ( i n t ) * t b _ m a t r i x [ r * s i z e + j ] ;

bandwid th +=

4 * s e n d _ i n t s * s i z e o f ( i n t ) * t b _ m a t r i x [ r * s i z e + j ] ;

}

i f ( PATTERN( b , s t a g e , j , r ) > 0 )

{

/ / Rece ive c o s t : 2 messages ( head & d a t a )

l a t e n c y += 2 . 0 * t l _ m a t r i x [ j * s i z e + r ] ;

h e a d t r a f f i c += 4 * s i z e o f ( i n t ) * t b _ m a t r i x [ j * s i z e + r ] ;

bandwid th +=

2 * r e c v _ i n t s * s i z e o f ( i n t ) * t b _ m a t r i x [ j * s i z e + r ] ;

}

}

ex t r eme = 0 . 0 ; / / E s t i m a t e w o r s t c a s e

f o r ( i n t j =0 ; j < s i z e ; j ++ )

{

i f ( PATTERN( b , s t a g e , r , j ) > 0 | | r == j )

{

d o u b l e t e s t = b a r r i e r _ p r e d i c t ( b , j , s t a g e +1 ) ;

ex t r eme = MAX( ext reme , t e s t ) ;

}

}

}

r e t u r n ex t r eme + / / Res t o f b a r r i e r

o v e r h e a d + l a t e n c y + / / S t a r t u p t e r m s

( ( bw ) ? h e a d t r a f f i c + bandwid th : 0 . 0 ) ; / / BW term ( o p t i o n a l )

}

Figure 6.2: Recursive Critical Path Search
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requirements, and recursively traverse it in search of the critical path.

The program fragment which implements this recursive traversal is given in Figure 6.2.

Some externally declared entities are omitted for the sake of brevity, specifically, the

barrier_t structure, a boolean flag bw, and the ts, tl and tb matrices. The latter

three are P × P matrices of startup overhead, wire latency and inverse bandwidth terms,

read from a file emitted by the benchmark program used in Section 5. The barrier_t
structure is used for containing the communication pattern incidence matrices, permitting

the PATTERN macro to index them by barrier structure, process identifier, and barrier ex-

ecution stage. The bw flag is a simple command line parameter which indicates whether

or not the accumulated sum should include the communication payload terms, or only

account for overhead and latency.

A few points in Figure 6.2 warrant further comment. The primary extension of the pre-

vious cost function is the separate treatment of sending and receiving costs, where only

the send cost includes the overhead of initiating transmission. This distinction is made

because the initialization of the internal structures of the barrier state already register non-

blocking receptions necessary for all stages of a barrier execution, which means that this

cost is not incurred at the time of synchronization. A second point is that the per-stage cost

of the send transmission is twice that of the reception. This corresponds to the successive

doubling of the communication volume, discussed in the previous section. Finally, the

per-integer bandwidth cost is doubled once more as a simplification of the cost of internal

structure manipulation. This stems from the fact that the dissemination of the message map

through the pattern of the barrier requires each individual process to reorganize the map

with respect to its position at completion. Modeling this activity in detail would require

separate benchmarking of memory movement, which would complicate cost estimation.

Instead of elaborating upon this point, we make the observation that the cost is analytically

O(P 2), and can thus be expected to be proportional to the aggregate transfer cost. As we

already have a cost term bound to this magnitude, the expectation that inter-process com-

munication will be at least as expensive as the intra-process variety implies that doubling

this cost will provide a relaxed upper bound on the additional cost. This simplification is

made with the awareness that the relative magnitude of the constants involved is likely to

vary, and present a significant source of error at extreme scales. For the experiments at

hand, however, this simplified model is sufficient to obtain a satisfactory approximation to

empirically observable synchronization cost.

In order to complete the method for predicting the observable performance of the library

synchronization primitive, the existence of one final term needs to be described. While

the use of the dissemination barrier pattern completely distributes the message map, and

thereby implicitly guarantees a global state, the operation of the communication thread

must be suspended when the map is completed, in order to prevent potential race condi-

tions against the reception of any outstanding messages from the completed superstep. In

order to retain consistency with superstep semantics, any such delayed communications

must be effective before the transmissions of the next superstep are initiated, lest we leave

the possibility that a process with no outstanding communication prematurely sends data

to another process which is stuck waiting for another message. This requires a second,

internal barrier to complete the bsp_sync function, before the internal structures of the
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communication thread are reinitialized for the next superstep. As that requirement can

be fulfilled without any data transmission, and the communication thread of any process

which reaches this stage is dormant, the regular MPI_Barrier function can be used for

this purpose. In order to cost this extra work, the cost function for an additional tree barrier

is added to the prediction obtained by the function in Figure 6.2. As was seen in Chapter

5, this cost function bears a strong similarity to the observable cost of the MPI barrier

primitive.

The decision to employ the MPI barrier for this purpose instead of adding one of the pro-

filed patterns is made in order to restrict program complexity. While the implicit reliance

on the MPI barrier being implemented with a tree pattern is detrimental to portability, it

should be noted that the matter can instead be addressed by using a more accurately pro-

filed barrier algorithm. The approximation made here is motivated purely by practicality,

as the term in question neither dominates the synchronization call, nor renders the resulting

estimate unusable.

6.6 Empirical Validation

Having charted the communication requirements for a dissemination barrier as used for a

nonblocking BSPlib implementation, its accuracy can be investigated using a full, working

library implementation. Although the favorable generality of a simulated scenario might

add further enlightenment to the discussion, it would be beyond the scope of this work, as

its implementation and evaluation would require extensive implementation efforts which

are not necessary to cost synchronization overhead as experienced by the programs we

will develop using the dissemination barrier implementation.

Because the requirements we have analyzed only describe the expected cost due to com-

munication, it remains to account for the additional overhead of buffering the partial mes-

sage maps and sorting the result in natural order. As all this additional overhead will apply

to every transmitted element, we expect that this cost may be approximated by a simple

scaling of the cost function per datum, i.e. that the shape of the predicted performance

graph will differ from observations by only some small constant factor for the number of

integers transmitted.

Figures 6.3 and 6.4 show obtained performance figures and standard deviations, in com-

parison with predicted values.

In summary, we have established a statistic which can be used to provide a bound on what

delay can be expected from the pure synchronization overhead in our nonblocking BSPlib

implementation. We also have an experimentally established estimate for the magnitude of

the common degree of variability. The synchronization overhead obviously plays an im-

portant role in the establishment of performance expectations for given applications. The

degree of variability may to some extent be governed by inaccuracies in the benchmarking

procedure, but the sensitivity of synchronization to external influences suggests that there

will be an inherent variability to implementations on platforms which do not give exclusive

and complete control to user programs. Like the observations of the impact of variability
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Figure 6.3: Measured barrier timings and estimate on 8x2x4 cluster

Estimate: Prediction computed by the program in Figure 6.2, with platform benchmark
results as input
Actual, stdev: Empirical barrier timings of the augmented dissemination barrier of the
BSPlib implementation, with sample std. deviation.
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Figure 6.4: Measured barrier timings and estimate on 12x2x6 cluster

Estimate: Prediction computed by the program in Figure 6.2, with platform benchmark

results as input

Actual, stdev: Empirical barrier timings of the augmented dissemination barrier of the

BSPlib implementation, with sample std. deviation.
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in computation rate over longer stretches of time, this suggests that estimates of execution

time will deviate in proportion to the error estimates over longer stretches of time, leaving

the accuracy of predictions limited to attaining a stable or limited relative error, subject to

the extent of the sets of observations taken to be representative of application behavior.



Chapter 7

Case Study I:
Adaptive Barrier Implementation

Our stated purpose is to examine the capabilities model components provide for automat-

ing performance analysis and tuning. As Chapter 5 shows, the subset of pairwise la-

tency parameters and message counts suffice to capture the cost of various signal patterns

for synchronization. The separation of concerns between application communication and

synchronization cost thus suggests that automatically refining synchronization algorithms

makes a useful application. Figure 7.1 highlights the relevant components in their context.

The latency-centered cost function derived in Chapter 5 is of limited utility in that it only

accounts for the cost of transmitting messages of negligible length. Its ability to discrimi-

nate between the cost of equivalent patterns, as well as subject the patterns themselves to

algebraic manipulation still suggests that it may be employed to tailor barrier synchroniza-

tion for given topologies. This chapter explores that possibility, obtaining results which

indicate that the level of precision is sufficient to apply our framework to practical sce-

narios. It provides an example of how sufficiently precise performance models can extend

beyond the ability to estimate programmatic and architectural complexity, and also be

leveraged as a design tool.

The method presented in this chapter was published as part of the HCW workshop at the

IPDPS’11 conference [75], featuring early empirical results. Aside from a more detailed

discussion, the result material has been slightly extended.

7.1 Barrier Combination

The incidence matrix representation of barrier algorithms provides a finite design space

of algorithms to explore. By evaluating the cost of any given algorithm for a fixed P on

a benchmarked architecture, we can find a tentative upper bound on execution cost. This
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Figure 7.1: Model components of synchronization cost

excludes algorithms of arbitrary stage counts, because any stage in our cost model includes

a small overhead term even when no communication is required. With a finite bound on the

stage count, indicating the arrival of one process to another more than once introduces a

cost which accomplishes nothing in subsequent stages, so candidate graphs should include

at most one edge in each direction between a given pair. In principle, this bounds the space

of admissible algorithms to a bit pattern which is O(P 2). Thus, a brute-force method may

in principle examine all candidate bit patterns, and apply Equations 5.1 and 5.2 to filter the

patterns which do not encode synchronization.

Although this would require exponential time in the length of the bit pattern, the small cost

of running one such test might permit it to scale to modest problems. Our test platforms

make a different concern more prominent, because even though the barrier encoding may

have general validity, the limited domain of the cost function indicates that even optimizing

the search to generate only valid algorithms in sequence, the criterion for selecting the

better out of a pair of candidates may not match empirical results. Therefore, we will

restrict the search to candidate algorithms which can be generated by combining the three

algorithms we have evidence that the cost function is accurate for.

A method for creating combinations of the D, T and L barriers can be found by revisiting

the intentions of their construction: the L and T barriers distribute signal and acknowledge-

ment hierarchically, while the D barrier trades the cost of the acknowledgement signal for

the full participation of every process. Either algorithm can naturally be employed to guar-

antee the synchronization of a subset of processes, so by taking the hierarchical idea from

the T barrier, the responsibilities of collecting an arrival signal from a subset and broad-

casting the acknowledgement can be fulfilled by a smaller barrier with only the members

of that subset. The number of participants which makes it informative to inspect such a
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Figure 7.2: Hierarchical hybrid barrier with marked subsets

derived algorithm also makes it inconvenient to read and verify in the form of incidence

matrices. Instead, Figure 7.2 shows a dependency graph layered in stages, where a set of

16 processes are divided in subsets of 4, 4 and 8 processes, using the D, L and T barriers

respectively. The subsets are synchronized by representatives which use the L-barrier at

a higher level of the hierarchy, and the acknowledgement is propagated back along the

same paths. Creating instances from this family of patterns, it is feasible to test an ex-

tensive number of hybrid varieties in negligible time. Although this approach ignores a

great number of candidate algorithms which are not combinations from our selection, the

variety in the tested group displays enough variation to demonstrate the principle.

7.2 Determining Subset Sizes

While restricting the range of algorithms to test per subset restricts the number of candidate

algorithms to examine, selecting an appropriate partitioning of the participating processes

is another point where the number of combinations grows exponentially. We have already

developed the groundwork for a useful heuristic to restrict this, modeling cost as a function

of the topological distance between process pairs. Assuming that the exploitation of lo-

cality gives a natural way to partition the interconnect, finding suitable subsets becomes a

matter of discovering the subsets with similar signalling costs in the platform benchmarks.

Obtaining this information using minimal a priori platform knowledge creates a clustering

problem of modest extent.

To identify a suitable method, observe that the weight matrices imposed on the dependency

graphs in the cost function form a weighted, fully connected graph, where weights capture

the proximities of processes to one another. The general assumption that we have captured

costs which are somehow proportional to physical locality makes it reasonable to expect
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that these form a metric space. In terms of the model, we assume three conditions:

1. The cost of a signal i→ j is 0 if and only if i = j.

2. The combined cost of signals i→ j and j → k is at least equal to the cost of i→ k.

3. The cost of i→ j is equal to that of j → i.

Condition 1 is trivial for i �= j, insofar as the regression lines from varying message size

and signal count both have positive intercepts. While an unfortunate benchmark sample

can cause this assumption to fail, it would be inappropriate to rectify that by altering the

clustering algorithm, as it would be a symptom that the cost function is inadequate.

The case of i = j requires further examination, as the cost model implies a small expense

per stage even for a process which does not communicate anything, as nodes in the depen-

dency graph technically reflect process states rather than processes. The distances given by

the weights thus depend on time as well as space, i.e., an accurate representation separates

the moment a process sends a signal to itself from the moment when it is received as two

graph nodes. In our case, we carefully disregard this issue by noting that to a clustering

algorithm, the “before” and “after” states of a single process create node pairs far more

tightly coupled than any other pairs in the system. By paying attention to the threshold for

grouping points, a process is thus considered to have a signal cost distance to itself which

is indiscernible from 0, and thereby fulfill the requirement of condition 1.

Condition 2 captures the assumption that we cannot expect to lower the cost of a chain

of signals by introducing more steps, which holds if the captured cost function is indeed

proportional to physical distances.

Condition 3 requires some extra attention, as it is not true for asymmetric interconnects.

Considering the cost matrices of our test platforms as metric spaces presents no problem,

but applying the approach we describe to an interconnect such as a unidirectional ring

topology would require reassessment of how to partition the topological layout.

The problem of discovering platform structure from the cost function brings out two im-

portant properties of the topology graph:

• The number of clusters is not an input parameter, as it reflects platform structure.

• The space has no inherent notion of center points or origin, as all distances are

relative.

Unfortunately, these points make the popular k-means algorithm [68] and its derivatives

unsuitable for clustering graphs such as ours. This is because it relies on the choice of

a number of k cluster centroids in order to obtain its partitioning. Using such a solution

would not only require the somewhat cumbersome extra work of consistently projecting

the graph into Cartesian coordinates, but would also limit adaptivity through requiring the

number of clusters to be predetermined. In our context, this either requires assuming the

number of local areas the processes should be partitioned into, or examining the outcome

of clustering for a range of k and selecting the best fit.

Sparse Spatial Selection [25] makes a better choice, as it works by limiting the distance
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between cluster members, rather than the number of clusters. The procedure is to maintain

a set of pivot nodes, and introduce new nodes by comparing their distance from existing

pivots to the diameter1, scaled by a constant sparseness parameter. New pivots are created

when the introduced point is too far from all existing pivots to include in an existing cluster.

This iteration converges to a fixed point, and applies recursively to the obtained clusters,

dynamically obtaining a map according to how scattered points are relative to each other.

Its most significant assumption is that cluster pivots will be distributed sparsely compared

to the diameter of the clusters themselves, which fits our purpose of discriminating be-

tween localities when measurements indicate that they are remote from each other.

Choosing this algorithm is the reason for accepting the symmetry requirement of a metric

space. Requiring a constant ratio between the diameter of a cluster and the diameter of the

system creates a potential problem because it may ambiguate the classification of a point

with respect to pivots. The fact that a candidate barrier algorithm implies a directed graph

can be leveraged to resolve this problem, by adapting the clustering method according

to the direction of communication of the algorithm being evaluated. Because it does not

directly influence work on our test platforms, this will not be considered further here.

Determining the sparseness parameter requires deciding on the desired influence of relative

distances. Since the distinction between local and remote communication featured on our

test platforms spans orders of magnitude, it can be expected to appear within a liberal range

of values. Brisaboa et al. [25] suggest that values in the range [0.35, 0.4] are appropriate

for similarity based search applications. Since these applications apply to spaces which

are large enough that it is desirable to estimate diameters rather than obtain them from

comparing all pairs, the reported efficiency benefit is of no consequence to our work, but

testing with parameters in this range certainly does not introduce any overhead.

Experimental verification of the clustering with the overhead matrix O as a metric, and

using a sparseness parameter of 0.35, confirms that the approach correctly recognizes the

topology of distributed and shared memory. The distinction between on-chip and off-chip

communication at the node level is observable in the range [0.11, 0.12], but the inaccura-

cies of the benchmark procedure made it difficult to produce a consistent partitioning at

this level. This does not present any problem with respect to applying the result, so much

as it verifies that the distinction between nodes is rather more pronounced than node-local

variations on our test architectures, and as such makes a suitable target for optimization.

The process identifier clustering from the experiment with sparseness 0.35 is tabulated for

60 and 115 process cases in Tables 7.2 and 7.1. The information contained in these tables

is hardly surprising, but their value is that they are generated from statistics on network

performance, rather than knowledge of platform structure. The metric clearly captures

the shared/distributed memory distinction robustly, and the platform schedulers’ different

mapping of processes by node or round-robin allocation can be seen by their orderings of

process identifiers.

The outcome of this clustering can be reproduced by specifying the topological layout

manually, or by programmatically mapping host names and core numbering. The purpose

1i.e. the longest distance separating any two points
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Table 7.1: Output of 60-process SSS clustering on 8x2x4 node configuration

Cl.#

1 000 008 016 024 032 040 048 056

2 001 009 017 025 033 041 049 057

3 002 010 018 026 034 042 050 058

4 003 011 019 027 035 043 051 059

5 004 012 020 028 036 044 052

6 005 013 021 029 037 045 053

7 006 014 022 030 038 046 054

8 007 015 023 031 039 047 055

Table 7.2: Output of 115-process SSS clustering on 10x2x6 node configuration
Cl.#

1 000 001 002 003 004 005 006 007 008 009 010 011

2 012 013 014 015 016 017 018 019 020 021 022 023

3 024 025 026 027 028 029 030 031 032 033 034 035

4 036 037 038 039 040 041 042 043 044 045 046 047

5 048 049 050 051 052 053 054 055 056 057 058 059

6 060 061 062 063 064 065 066 067 068 069 070 071

7 072 073 074 075 076 077 078 079 080 081 082 083

8 084 085 086 087 088 089 090 091 092 093 094 095

9 096 097 098 099 100 101 102 103 104 105 106 107

10 108 109 110 111 112 113 114 115
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Figure 7.3: Greedy construction of a hierarchically clustered, customized barrier

of this elaborate topology partitioning method is twofold. Firstly, it automates experiments

so that human error or platform idiosyncrasies only affect results through reduced bench-

mark accuracy. Secondarily, it demonstrates that benchmarks contain implicit information

which permits programmatical inference of structural information about the execution en-

vironment. The significance of this latter point will be developed in the following section.

7.3 Greedy, Adaptive Barrier Construction

Restricting the candidate algorithms and defining the partitioning of the processes suggests

a small enough space of combinations to explore in greater detail, using the assumption

that combining locally optimized methods will result in improved global behavior.

This results in a greedy algorithm in two phases. An example of its operation with size-8

clusters is illustrated in Figure 7.3. It is broken into four steps:

1. Inference of optimal barrier stages

2. Combination of local barriers

3. Synthesis of the arrival stages

4. Transposition of the arrival stages, to produce the acknowledgement pattern.



98
Chapter 7. Case Study I:

Adaptive Barrier Implementation

Step 1 amounts to traversing the tree structure which is implied by the SSS clustering,

using the pivot from each cluster as the representative in higher levels of the hierarchy.

The cost of the three candidate algorithms can then be determined per cluster, and the

cluster is marked with the method of lowest predicted cost.

Step 2 requires a horizontal traversal to create a hybrid barrier from the chosen candidates

at each level in the hierarchy. Finding the optimal barrier per cluster can be executed

concurrently, but they may differ in the number of stages, both because of variable cluster

size and variable stage count of selected algorithms. It is therefore necessary to project

these onto a single set of P × P matrices, with the longest partial barrier determining the

count. The output of this step is a set of matrices which encode the parallel execution

of local barriers. Shorter barriers must be padded with a number of empty stages, and

the test implementation concatenates these at the end. This may impact the cost of the

algorithm when run in the general simulator from Figure 5.5, but the significance of this

is not explored, because the padded encoding is an intermediate representation which will

be pruned.

Step 3 is the vertical combination, which takes the hybrid patterns developed for each level

in the hierarchy, and combines them sequentially into a global arrival pattern. This can be

achieved by concatenating them so that the arrival phases from lower levels precede the

arrival patterns which connect the pivot elements at higher levels, effectively creating a

pattern which will collect arrival signals from the entire process set at the top level.

Step 4 uses that the produced arrival pattern is a hierarchical construction, so that a cor-

responding distribution acknowledgement signals can be obtained by reversing and trans-

posing the pattern. This calls attention to the D-barrier, as it does not designate a master

process. At lower levels of the hierarchy, the cluster pivot is selected as an arbitrary master

for the sake of the hierarchical composition. At the top level, no such requirement applies:

at the completion of the arrival stages of this barrier, all acknowledgements have also been

implicitly distributed. Therefore, we make an exception when the D-barrier has been se-

lected at the top level, and do not require that its transpose pattern is included as part of

broadcasting of the acknowledgements.

After the optimized matrices have been generated, the padding stages and other empty

steps can be revisited. When producing an adaptively optimized barrier algorithm, the role

of Algorithm 5.5 is to provide a common evaluation of the relative costs of alternatives.

When a communication pattern has been derived, this role is largely fulfilled, permitting

design tradeoffs to be reconsidered. Specifically, since the representation has already been

specified in terms of P and pattern, simulating all barriers in a common framework is no

longer necessary, so the choice of communication calls can be modified.

Since the dependency graph has been derived programmatically, its representation can be

used as input to a small program generator which emits a barrier function with a hard-

coded signal pattern. The output declares a set of communication requests which are

initialized to the desired signal pattern, and traverse the dependency graph, emitting non-

blocking, synchronized mode communication calls to the requests matching given edges.

The output program initially branches to differentiate between process identifiers, and con-

tains a customized sequence of transmissions and wait calls. Altering the communication
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Case Study II: Laplacian Stencil

Reviewing the framework outline in Figure 1.3, the work presented up to this point has

developed methods for the independent observations of level 1, and indicated how matrices

of weights can be derived to capture platform capabilities for level 2. In order to retain

generality, these developments have addressed the performance of generic programming

primitives, but in order to obtain the desired system-level model of execution cost at level

3, it is necessary to specify the requirements of a particular program. Having a structured

method for extracting these requirements is the most significant reason for selecting the

BSP model as our object of study. The strength of partitioning execution progress with

respect to the flexible unit of a superstep, is the implication that a model of single steps

permit an overall model to be derived by simple accumulation.

The error in any estimate of superstep execution time accumulates accordingly, a flexible

way to examine how well system behavior can be modeled is to test the framework with an

application which features a variable number of similar supersteps, such as data-parallel

loop iterations. Furthermore, algorithms which feature computational and communica-

tion requirements which can be analyzed at compile time make suitable candidates for

model validation, as the matrices representing their requirements can be derived without

accounting for variable dynamic conditions.

For these reasons, this chapter demonstrates the analysis of a reasonably simple practical

application, i.e. an approximation of the 2D Laplacian operator by a 5-point finite differ-

ence stencil and domain decomposition. This problem has several favorable properties:

its neighborhood communication pattern provides beneficial scalability characteristics, its

requirements can be relatively easily derived from static program analysis, and application

to image data acts as an edge detection filter, providing immediate visual feedback that the

computation has found a correct result. A further property which makes this an interesting

test case is that there is a certain amount of flexibility in the granularity of the computa-

tional superstep, permitting testing to vary the balance of computation and communication,

to examine how balanced execution is with respect to the executing platform.

The following experiments examine three aspects of the performance model used in con-
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method in this manner obviously affects the accuracy of the predictions from the cost

model, but assuming that the empirical values are dominated by the characteristics of the

interconnect, the relative cost measures which resulted in the selection of a given pattern

will still hold, unless the small cost of the eliminated empty steps alter the pattern’s critical

path. For the sake of argument, one might imagine that this would result from the horizon-

tal combination of a linear barrier with 2 participants and a tree barrier of 210 participants,

if the waiting cost of the former is greater than 1/10 of the maximal signalling cost per

stage in the latter. This issue could be ameliorated by refining the general simulation in

Figure 5.5 to examine the signal pattern for skipping past empty stages, and introducing

corresponding conditions on zero-cost stages in the cost function.

For the tests at hand, the cost matrices from our two test platforms reveal that the cost of

empty steps Oii are in the the 10−7-second order of magnitude, while signals to neigh-

boring processes on the same shared memory already cost on the order of 10−6 seconds.

The even clustering of subsystems on these platforms leave little concern that eliminat-

ing waiting stages will affect the tradeoffs made in pattern construction. It should still be

acknowledged that this consideration is likely to affect e.g. barrier mechanisms for pro-

gramming models with a unified notion of process across e.g. multi-core processors and

graphics devices, such as OpenCL kernels [41]. We proceed with the cost function derived

from our target systems, as refinement in this direction would lead to increases in program

complexity which are unlikely to produce measurably different results.

7.4 Empirical Validation of Hybrid Barriers

Generating barrier code from the combination of the algorithm and architecture descrip-

tion lets us not only evaluate the optimizations provided by adaptivity, but also to argue the

validity of our developed framework outside comparative studies of simulation. In particu-

lar, the ability to emit and compile hard-coded algorithms permits meaningful comparison

to implementations in production use. This section empirically compares generated barrier

performance to the barrier implementation in the systems’ default MPI library.

Both test systems provide the OpenMPI implementation of MPI, as distributed with Rocks

Linux for computational clusters. The source code of this implementation is open to public

inspection. The OpenMPI 1.4 source code shows that it employs a binary tree barrier

with blocking synchronized-mode sends. Our testbed applies nonblocking sends, but this

still establishes a strong a priori prediction that the performance of this barrier should

resemble the one obtained our compiled T-barriers, to within a constant factor. We expect

the difference of communication modes to reflect in a constant factor because the model is

expressed as a weighted sum of signal costs. A constant deviation in the overhead of one

signal will thus scale the cost of the entire pattern, but maintain the topology-dependent

shape of the graph induced by the communication pattern.

The performance measurements presented in Figures 7.4 and 7.5 verify our expectation,

suggesting that factors 0.5 and 1 are close to the mark, respectively. Thus, absolute perfor-

mance of optimized barriers should offer improvements on the larger system. Effectiveness
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Figure 7.4: Barrier performance on 8-way 2x4-core cluster

MPI: Timings of system library MPI_Barrier

T: Timings of general barrier simulation in Figure 5.5, binary tree barrier pattern as input
0.5(T): The values from T, scaled by 0.5
The scaled graph is included to show that the generic barrier simulator captures the cor-
rect shape of tree barrier characteristics. Absolute deviation can be attributed to constant
differences in operation cost, as execution of the simulator uses different point-to-point
communications from an explicitly programmed tree barrier.
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Figure 7.5: Barrier performance on 12-way 2x6-core cluster

MPI: Timings of system library MPI_Barrier

T: Timings of general barrier simulation in Figure 5.5, binary tree barrier pattern as input
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Figure 7.6: Adapted barrier performance on 8-way 2x4-core cluster

MPI: Timings of system library MPI_Barrier

Custom: Timings of explicit barrier function compiled from hybrid pattern matrices
While custom function timings are obtained empirically on actual hardware, the function
code is generated off-line, using platform benchmark matrices as input and negligible
computational resources for generation.

on the smaller depends on whether customization provides speedup greater than 2.

Figures 7.6 and 7.7 show that adapting the barrier algorithm to the topology is quite effec-

tive. It obtains comparable performance to the system library on the 8×2×4 configuration,

picking up a significant advantage from 40 to 56 processes. On a 12×2×6 configuration,

our expectation of equal or better performance is met, and the system library is outper-

formed by an approximate factor two from 60 processes.

7.5 Impediments to Production Deployment

The method for constructing topologically customized barriers presented in the preceding

sections could form a drop-in replacement for the system libraries’ barrier algorithm. Be-

ing a proof-of-concept implementation, however, a nontrivial amount of engineering work
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Figure 7.7: Adapted barrier performance on 12-way 2x6-core cluster

MPI: Timings of system library MPI_Barrier

Custom: Timings of explicit barrier function compiled from hybrid pattern matrices
While custom function timings are obtained empirically on actual hardware, the function
code is generated off-line, using platform benchmark matrices as input and negligible
computational resources for generation.
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remains before it can replace the MPI_Barrier library function. Its most immediate

shortcoming is that our approach has no attachment to communicators, meaning that it can

presently only replace calls which synchronize the world communicator. Moreover, the

process of adapting the barrier algorithm relies on benchmark data collected from the plat-

form, and precompilaton of specialized barrier varieties for each desired value of P . Since

the expensive step is the platform benchmark, and both benchmarking and precompilation

need only be done once for a given system, there is no principal problem with generating

a library of custom-case barriers for all values 1 through P the system affords. Dynamic

linking would permit these to be linked at runtime for a given case, thereby providing a

black-box extension to the system library.

The greatest weakness of our approach in a production scenario is its reliance on proces-

sor affinity and location. The manner in which the benchmarking procedure associates a

process identifier with a location in the interconnect topology is surmountable in an exper-

imental setting, as the same mapping can be enforced between benchmark and test runs

by requesting the same resources from the system scheduler. Few production programs

are at liberty to afford this, as it can not only lead to excessive waiting on a busy system,

but also strips it of any liberties to schedule with respect to load balance or throughput.

In the context of a large, expensive, shared resource, it stands to reason that maximizing

utilization must take precedence.

Because our purpose is to validate the model using physical hardware, these concerns

are immaterial to the conclusion that we attain sufficient detail to approximate locality-

dependent latency. Having attained this, no further attention will be devoted to the problem

of optimizing barriers, save to state that both the problem of mapping to less determinis-

tically allocated resources, and the prohibitive cost of benchmarking on the fly could be

resolved. Extracting a unique identifier from a processing core, and using pairs to look up

interconnect statistics from a pregenerated database would make it feasible to construct the

parameter matrices per communicator at run time: the computation of specific predictions

is of negligible cost.



Chapter 8

Case Study II: Laplacian Stencil

Reviewing the framework outline in Figure 1.3, the work presented up to this point has
developed methods for the independent observations of level 1, and indicated how matrices
of weights can be derived to capture platform capabilities for level 2. In order to retain
generality, these developments have addressed the performance of generic programming
primitives, but in order to obtain the desired system-level model of execution cost at level
3, it is necessary to specify the requirements of a particular program. Having a structured
method for extracting these requirements is the most significant reason for selecting the
BSP model as our object of study. The strength of partitioning execution progress with
respect to the flexible unit of a superstep, is the implication that a model of single steps
permit an overall model to be derived by simple accumulation.

The error in any estimate of superstep execution time accumulates accordingly, a flexible
way to examine how well system behavior can be modeled is to test the framework with an
application which features a variable number of similar supersteps, such as data-parallel
loop iterations. Furthermore, algorithms which feature computational and communica-
tion requirements which can be analyzed at compile time make suitable candidates for
model validation, as the matrices representing their requirements can be derived without
accounting for variable dynamic conditions.

For these reasons, this chapter demonstrates the analysis of a reasonably simple practical
application, i.e. an approximation of the 2D Laplacian operator by a 5-point finite differ-
ence stencil and domain decomposition. This problem has several favorable properties:
its neighborhood communication pattern provides beneficial scalability characteristics, its
requirements can be relatively easily derived from static program analysis, and application
to image data acts as an edge detection filter, providing immediate visual feedback that the
computation has found a correct result. A further property which makes this an interesting
test case is that there is a certain amount of flexibility in the granularity of the computa-
tional superstep, permitting testing to vary the balance of computation and communication,
to examine how balanced execution is with respect to the executing platform.

The following experiments examine three aspects of the performance model used in con-
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junction with the developed run-time library:

1. The magnitude of the overhead from providing a software implementation of dis-

tributed shared memory

2. The accuracy of performance predictions based on the performance model

3. The utility of the performance model with respect to automatic optimization

The chapter begins by considering the issues of comparing implementations using differ-

ent programming models, in Section 8.1. Section 8.2 provides a brief summary of the

test application, and Section 8.3 describes implementations of it using BSP, MPI and hy-

brid MPI/OpenMP programming models. Section 8.4 compares the obtained performance

of the implementations. Section 8.5 describes experiments comparing performance pre-

dictions of the BSP implementation to empirically measured values. Finally, Section 8.6

describes an experiment where the application’s opportunity for trading communication

for computation is exploited, using model predictions to find an optimal point.

8.1 Experimental Design Trade-offs

Because the ultimate purpose of the presented framework is to provide a structured ap-

proach towards investigating practical performance, the validity of the approach depends

not only on its consistency with predictions made on its own terms. In order to relate

its utility to real application performance, an ideal test would be to examine the behavior

of a full-scale application program. This is problematic, because BSP program examples

are relatively rare, and mostly developed for purposes of research or education. Assess-

ing the performance of the run-time library developed here features both the aspect of

how it compares to alternative BSPlib implementations, as well as how it compares to

implementations in more commonly applied programming models. The former suggests

experimentation with a particular source program compiled with variable underlying im-

plementations, while the latter requires a single application to be implemented using a

range of models which may or may not provide programs with a similar range of opera-

tions. While the former type of test is simpler to execute, it also presents a significant risk

of biased evaluation, because it will fail to capture model-specific limitations.

In order to address this issue, subsequent sections feature a comparison of three different

implementations of the same numerical algorithm, using a requirement of identical output

as the criterion for comparability. One of these is realized using BSPlib, which admits

testing with two implementations of the interface. The other two represent more common

choices for the target execution platforms, one being a pure MPI-based implementation,

while the other programmatically recognizes the underlying platform topology by using

OpenMP for node-level parallelism, and employing MPI for inter-node communication

requirements. This selection is by no means represents an exhaustive exploration of avail-

able alternatives: it is made to highlight particular details.

Firstly, the comparison of the two BSPlib implementations is made in order to contrast de-

sign with eager background communication to a design which postpones communication
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until synchronization, thereby dividing execution into alternating phases of computation

and communication.

Secondarily, results obtained with a pure MPI implementation are presented because both

BSPlib implementations we examine are layered over MPI, leveraging its portability and

efficiency on commodity hardware. As the run-time library assumes responsibility for a

nontrivial amount of work which would otherwise be the burden of the programmer, some

overhead is expected: the purpose of showing results obtained without the use of automatic

facilities is to show the magnitude of the corresponding performance loss.

Thirdly, the results from a hybrid MPI/OpenMP programming model are presented be-

cause the heavyweight processes used for MPI arguably can represent a poor choice for

efficient execution on tightly coupled parallel hardware, utilizing the network stack of the

operating system in order to transmit data between otherwise closely coupled processing

cores.

As the choice of programming model is a variable factor, it is important to highlight that

each model implies its own set of program design decisions which are relevant to the ob-

tained performance figures. One major shortcoming of this is that it may result in a bias

with respect to the programmer’s familiarity and experience with a given model. Because

comparison is based on the criterion that all programs perform the same computation, as

validated by identical output, all three source programs were developed to this end. To

dampen the impact of the bias due to the fact that all implementations are developed in

conjunction by the same author, neither has been subjected to extensive tuning in order

to obtain optimal performance. While an interesting goal in itself, aiming for such an

objective would increase the emphasis on the author’s variable programming ability with

various models, without otherwise adding substantially to the discussion. On the other

hand, development in order to produce programs with the most similar run-time behav-

ior obtainable would ignore the difference in approach which comes naturally from the

models’ differences in abstractions.

As an attempt at striking a middle ground between these conflicting aspects, the three im-

plementations are written with the qualitative goal of providing straightforward solutions

without extensive programming effort. In particular, the BSP implementation commits

communication as early as possible, the MPI implementation utilizes a cartesian commu-

nicator topology to simplify the communication pattern, and the hybrid implementation

exploits shared memory for the convenience of automatic loop parallelization.

8.2 Laplacian Stencil and Domain Decomposition

As a greyscale image can be treated as a function of two variables with even spacing in

both dimensions, a frequently encountered form is a five point stencil applied to 3 × 3
neighborhoods of the image, as given in Equation 8.1 [39].

zn+1
i,j ≈ 4 · zn

i,j − (zn
i−1,j + zn

i+1,j + zn
i,j−1 + zn

i,j+1) (8.1)



108 Chapter 8. Case Study II: Laplacian Stencil

Figure 8.1: Boundaries and Ghost Area in 5-point Stencil Computation

Applying this stencil iteratively gives a sequence of arrays z1 . . . zn of successively closer

approximations to the Laplacian
f(x, y) = δ2f/δx2 + δ2f/δy2.

Equation 8.1 results from differentiating Taylor polynomials in both directions and assum-

ing a uniform step size of 1; more elaborate equations feature wider neighborhoods from

increasing the order of the polynomials or using f of higher dimension, or otherwise in-

crease the number of terms in the kernel by using different step sizes per dimension. The

point here is that to finite precision, the stencil will apply to finite neighborhoods, and

thus produces a similar communication pattern when the domain is split across parallel

processes. The situation stems from finding values for the missing stencil points along

the boundaries of the locally stored subdomain. When the boundary is also a global one,

applicable conditions can be given from the problem specification, but internal boundaries

are artificial, in the sense that they arise from the partitioning. Figure 8.1 illustrates the

shape of the stencil from Equation 8.1, and the boundaries when it is applied to the 2-way

decomposition of vertically splitting a rectangular image in halves. The image point which

must be passed from P1 to P0 (and implicitly, the symmetric case from P0 to P1) can

be buffered in a ghost area, the contents of which are exchanged once for every iteration.

When the decomposition is also in 2D, this creates a communication pattern of pairwise

exchanges per iteration which resemble the stencil itself, and gives a natural decomposi-

tion of the computation into a superstep per iteration.

For the sake of simplicity, consider decompositions of m×n images into balanced, rectan-

gular sections of a× b, such that P = ab processes each receive a (m/a)× (n/b) section,

and a, b divide m,n without remainder. In this case, the communication load per iteration

for a subdomain in the interior becomes proportional to 2(m/a) + 2(n/b) points, corre-

sponding to the two horizontal and vertical boundaries of the subdomain. With periodic

boundary conditions this is global, but otherwise there is a slight imbalance at the edges

and corners; since this will be a reduction in the local requirement, we will consider com-

munication to be bounded by the processes in the interior. With a greater ghost area, the

communication of corner points also becomes an issue, but for the sake of this analysis we

will disregard them, as they represent a small expense in relation to other boundaries. The

computational requirement grows with ab, as the stencil applies to each interior point.
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8.3 Implementation Details

The BSPlib implementation described in chapter 6 suggests a major weakness in the over-

head involved with software emulation of one-sided operations. Indeed, the fact that it

manages communication using MPI primitives suggests that obtained performance will at
best be on par with a pure MPI implementation, and more likely, slower. On the other

hand, the benefits which the run-time library is intended to automate are eager use of non-

blocking communications, and deadlock freedom, which in the terminology of McCool

[67] leads to a simpler and safer programming model. In order to estimate the cost and

benefit in this trade-off, it is interesting to compare the sample application performance as

obtained by equivalent implementations using different programming models.

For this purpose, the overall execution time of implementations using BSPlib, MPI and a

hybrid MPI/OpenMP code are examined here. Given that the implementations are writ-

ten using different programming models, their respective design decisions differ slightly,

which affects the degree to which they are truly comparable. Furthermore, because the

intention is to examine the utility of our performance model, a comparison of extensively

optimized implementations would not serve to illustrate the support which it provides.

Therefore, we will accept that a program which utilizes nonblocking communication ex-

plicitly most likely would outperform all of the considered implementations, and turn to

examine the consequences of exploiting it using a run time library which affords it through

the semantics of the programming model.

Among the considered implementations, the notion of bulk synchronous execution is

unique to the BSP variety, which means that the computational superstep cannot be used

as a common unit for comparison without further comment. Instead, we will use the fact

that the application’s computation proceeds by sequentially dependent iterations which re-

quire some measure of interprocess communication, and base comparisons on this. This

does present an obvious mapping between supersteps and iterations which would provide

grounds for comparison, but as there is reasonable argument that all the implementations

might benefit from relaxing the manner in which this synchronization is effected, the im-

pact of this is also examined.

8.3.1 BSP implementation

The first priority of the BSP implementation of the application is to expose all available

overlap time to the communication library. Initialization therefore amounts to identify-

ing 17 rectangular areas of interest, as illustrated in Figure 8.2. The eight outermost of

these are the ghost areas which represents the borders of the local subdomain, as mirrored

on the neighboring processes. Inside the local domain, there are 8 similar regions which

represent the values which synchronization must replicate on the neighboring processes

before the beginning of the subsequent iteration. These 16 areas must be consistent be-

fore the computation which updates the local domain is carried out. As the regions are

not located in contiguous memory, initialization sets up communication buffers of simi-

lar extent, and registers them as targets of remote communication; after synchronization,
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Figure 8.2: 17 Regions in BSP implementation

these buffers are copied into their correct positions using loops which manage the strided

access. It should be noted that because of the shape of the 5-point star stencil, the cor-

ner areas which mirror data diagonally on the process grid is not necessary for borders of

thickness 1; their communication is nevertheless included in all implementations because

some of the experiments to follow will utilize thicker border areas. It also retains some

measure of generality by which the results obtained here could more easily be extended to

stencils of different shape and extent.

The requirement that the border areas are consistent before the local update can proceed

means that the maximal time afforded for overlapping communication with computation

is the update of the final, interior area of the local subdomain. Therefore, the update

computation is divided into subroutines which initially receive/solve for the border areas,

initiate communication, and computes the interior in the interim before synchronization.

Because the border areas vary linearly with problem size while the interior varies with

the square, we may expect various problem sizes to present different degrees of potential

overlap to exploit.

Between the completion of the update and the reception of new ghost values, the iteration

step is carried out with a block memory copy of the entire local subdomain from a buffer

of updated values into a buffer representing the current step. This update could also be

facilitated at a lower cost by switching pointers to the respective buffers, but the simplest

management of the region layout is through arrays of pointers which relate the ghost and

border buffers to the local domain. With this design decision in mind, handling double

buffering using pointer switching is certainly feasible, but as it is not trivial, it is not

implemented here in order to retain a conservative estimate of the performance attained by

an un-optimized implementation of the application.

8.3.2 MPI implementation

The MPI implementation of the application lends itself naturally to the use of MPIs carte-

sian topology feature. Through the use of a cartesian communicator and an initial call to

the MPI_Cart_shift function, the border exchange is implemented in a straightfor-

ward manner by 4 consecutive calls to MPI_Sendrecv, which is an operation provided
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Figure 8.3: 2-Stage Border Exchange in MPI Implementation

precisely for shifting data around global matrices in the manner the application requires.

Furthermore, vector types are used for strided (column) access, as they provide an oppor-

tunity for libraries to lay out an internal data structure for the sake of efficiency through

repeated use. The independence of these access patterns from an absolute origin makes

it simple to achieve the double buffering required by alternating iterations in terms of

swapping the pointers which indicate which buffer contains the present and which is the

previous iteration, which saves the time of an O(N2) memory copy operation with little

programmer effort. Finally, the border exchange phase is completed in 2 stages, initially

exchanging column vectors, and row vectors only in a second stage, as illustrated in Fig-

ure 8.3. As the column vectors in the first stage complete the ghost area of the rows

communicated in the second, this is an optimization which saves the overhead and latency

of performing 4 separate communications for corners/diagonal directions. The omitted

transmissions are shown with dotted lines in Figure 8.3. This method is used because it

amounts to a trivial extension of the vector types committed for communication, and is

quite effective on high-latency interconnects.

8.3.3 Hybrid implementation

The hybrid implementation tested is a reduced version of the MPI implementation, which

allocates one process per computational node and spawns OpenMP threads with a parallel
for directive preceding the outer loop of the doubly nested loops traversing the local do-

main. The communication requirement is reduced for corners as in the MPI solution, as

well as the pointer handling of double buffers. There is no explicit communication inter-

nal to the nodes, owing to shared memory capabilities. This has the side effect of creating

unfortunate splits for prime numbers of nodes, as they are bound to divide the domain in

p × 1 striped layouts, but no particular measure is taken to avoid this, in the interest of
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keeping implementations simple within the affordance of the programming model.

8.4 Comparisons of Strong Scalability

Throughout this section, strong scaling characteristics are measured on both systems using

one larger problem size of 40962 points, and one smaller of 10242 points, as well as one

case of 20482 points. These problem sizes are selected to show application behavior in the

case where the size of the interior of a local subdomain is sufficiently large to give bene-

fits by increasing parallelism, and the case where the computational intensity is too low,

thus making the application communication bound, providing diminishing returns for in-

creasing parallelism. Amdahl’s law predicts that a threshold where increasing parallelism

reaches diminishing returns is inevitable for fixed problem sizes, so studying sustainable

application scalability would mandate using the weak mode (fixed parallel time). As our

purpose here is to investigate the properties of a model, seeking out this threshold is useful

to examine the features of the transition.

Results from a set of 11 comparative experiments in 3 categories will be presented. These

are tabulated in Table 8.1, where configurations are categorized according to their purpose.

The A set consists of comparisons of absolute performance figures obtained from the set of

different implementations, intended to establish the performance loss due to the technical

realization of one-sided messaging in our libbsp implementation. These experiments are

discussed in Section 8.4.1. The B set consists of comparisons between performance figures

obtained from the libbsp implementation and predicted values obtained off-line from a

small simulator program which relies on captured platform parameters as input. These

experiments are discussed in Section 8.5. Finally, C1 is a single experiment which builds

on the previous sets, to utilize the manner in which the application affords adjustments

to the balance of computation and communication. The purpose of this experiment is

to demonstrate the utility of the performance model by displaying its ability to predict

suitable modifications to application behavior, in order to exploit the performance potential

of the underlying platform. This is discussed in Section 8.6.

8.4.1 Comparison of All Implementations

Results from preliminary tests of all implementations with the large problem size on both

platforms are presented in Figures 8.4, 8.5 and 8.6. Figure 8.7 shows results with the small

problem size on the larger platform.

The purpose of these tests is twofold. Primarily, they give a brief comparison of abso-

lute performance, to establish the magnitude of the expected performance advantage of

the MPI and Hybrid implementations due to their more explicit communication specifica-

tions. Secondarily, these tests double as a verification that all implementations are working

correctly, and give identical results. To the latter end, the input sets are chosen as a pregen-

erated image of a section of the Mandelbrot set, chosen because it can generate images of
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Table 8.1: Experimental Configurations

Configuration Platform Problem size Metric

A1 8x2x4 40962 T(15)

A2 12x2x6 40962 T(15)

A3 12x2x6 40962 T(500)

A4 12x2x6 10242 T(500)

B1 8x2x4 40962 T(15)

B2 8x2x4 10242 T(15)

B3 12x2x6 40962 T(15)

B4 12x2x6 10242 T(15)

B5 12x2x6 40962 T(500)

B6 12x2x6 40962 T(500)

C1 12x2x6 20482 T(1)

arbitrary sizes simply by fixing the resolution of the generator. Applied to a greyscale im-

age, the Laplacian operator works as an edge detecting image filter, which gives an instant,

visual feedback if there are issues in the more complicated parts of the computation, such

as the border exchange routines. Therefore, the modest count of 15 iterations was found

to give stable and repeatable measurements on the test platforms, while still producing a

distinct edge map of the input image, for examination and debugging purposes.

The results in Figure 8.4 show the expected performance difference between the BSP and

other implementations, with an initial performance advantage close to a factor 3.5, shrink-

ing to a factor 2 when all nodes of the cluster are employed. It should be noted that for the

sake of comparison, another implementation of the BSPlib interface was tested, by recom-

piling the same source program as used with our libbsp implementation. The BSPonMPI

implementation [91] is also a library which implements BSP using MPI as a communica-

tion layer, but instead of eagerly using nonblocking communication, it opts for delaying

communication until synchronization time, ultimately realizing it using an Alltoall oper-

ation, thus separating computation and communication into distinct, alternating phases.

Both Bisseling [19] and Hill and Skillicorn [45] argue the virtue of such an approach,

referring its reduction in overall latency by reducing the number of messages, as well as

how it exposes any attainable message combining/scheduling advantages to the system

software. Sound as this argument may be, the first effect observed at modest scale is that

the version of our laplacian solver compiled with libbsponmpi shows a sudden degrada-

tion at 64 cores, in Figure 8.4. Bearing in mind that the barrier tests on our 8x2x4 platform

showed exceptional behavior for power-of-2 cases, another set of tests with the same prob-

lem size and iteration count were performed on the 12x2x6 platform, as shown in Figure

8.5.

The unmistakable tendency visible in Figure 8.5 is that between four and six nodes (48–72

cores), this implementation strategy begins to cause an overhead which quickly outgrows

the order of magnitude of the remaining implementations, and further testing using this

implementation is abandoned. Note, however, that prior to this point, the performance of

the Alltoall approach is superior to that of our nonblocking implementation, suggesting
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Figure 8.4: A1: All Implementations

libbsp: BSP implementation compiled with our BSPlib implementation
libbsponmpi: BSP implementation compiled with BSPonMPI BSPlib implementation
Hybrid: MPI and OpenMP hybrid implementation with implicit synchronization
MPI: MPI implementation with implicit synchronization
Comparison using large input set and fixed iteration count. The fixed iteration count en-
ables the superior MPI and Hybrid codes to synchronize implicitly, as no global conver-
gence criterion is needed to halt the computation.



8.4. Comparisons of Strong Scalability 115

 0

 1

 2

 3

 4

 5

 6

 7

 0  20  40  60  80  100  120  140  160

A
p

p
li

ca
ti

o
n

 w
al

l 
ti

m
e 

[s
]

# of cores

12x2x6 Cluster, 4096^2 problem, 15 iterations

libbsp
libbsponmpi

Figure 8.5: A2: BSP Implementations Only

libbsp: BSP implementation compiled with our BSPlib implementation
libbsponmpi: BSP implementation compiled with BSPonMPI BSPlib implementation
Comparison of the two BSPlib alternatives only, showing a scalability problem with
BSPonMPI. Timings for runs greater than 60 nodes were unobtainable due to program
failure.
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that the most flexible strategy might be to provide a library capable of both methods,

as well as switching between them as conditions dictate, either by programmatic hint or

automatic detection.

Disregarding the BSPonMPI version and focusing on the more comparable set of imple-

mentations, Figure 8.6 presents the absolute execution times of 6 variations executed on

the 12x2x6 platform, using the larger input data set. The three different implementations

are examined in two varieties each, to examine the impact of the previously mentioned

possibility for relaxing synchronization. The basis of this is the observation that the com-

munication pattern of the border exchange already implies an implicit synchronization,

as each pair of neighbors exchange blocking messages before proceeding to the next it-

eration. While this may practically mean that some processes at one end of the topology

leave the exchange phase before processes at the other have entered, it still represents a

guarantee that no process will proceed to an iteration step for which it has not received

the values it requires, thus implicitly enforcing that the computation proceeds in lock step.

If the computation is to run for a fixed number of iterations, this creates a greater ro-

bustness to variability in arrival to the synchronizing function call, as well as reduces the

number of messages required to establish synchronous iterations. On the other hand, if

the termination of the computation is bound to some threshold of convergence or simi-

lar, explicit synchronization becomes a necessity in order to disseminate the information

on whether to proceed with the next iteration at all, typically in the form of a reduction

and a broadcast operation. In order to make a conservative estimate, and not impose any

application-specific assumptions on the communication pattern and data payload required

in such a scenario, the Hybrid+R and MPI+R figures emulate this behavior by a single,

explicit MPI_Barrier operation at the end of the border exchange phase. The libbsp+R
version already features explicit synchronization, so in this case, the similar emulation is

to collect a single value from each process, transmitted just after the iteration is complete.

Although difficult to divine from Figure 8.6, there is an observable, small overhead in-

volved in this operation; Table 8.2 displays the two varieties of the MPI implementation,

along with their absolute difference. A 500 iteration run will not amplify the additional

cost per iteration to a point where significant differences arise, but it is noticeable already

at this scale. Note that for extended runs, the overall impact grows in proportion to its

influence on each single iteration, which will be of importance when we turn to the per-

iteration cost as a metric of execution time.

Another interesting feature is to note that as long as the problem continues scaling for the

BSP implementation, the additional communication requirement of the reduction appears

to be well masked, while as the problem turns communication bound, an observable dif-

ference emerges as this additional message adds further delay to a computation which is

already held up at the synchronization point.

The most important feature Figure 8.6 is, however, that it identifies an area of the parameter

space where the performances of the MPI/Hybrid and BSP implementations part ways, as

the BSP implementation becomes communication bound at 72 cores.

Figure 8.7 shows that test runs with a significantly reduced problem size on the larger of

the two platforms produces communication bound behavior in all implementations, i.e.
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Figure 8.6: A3: Selected Implementations

libbsp: BSP implementation compiled with our BSPlib implementation
libbsp+R: libbsp modified with global reduction of convergence criterion every synchro-
nization Hybrid: MPI and OpenMP hybrid implementation with implicit synchronization
Hybrid+R: MPI and OpenMP hybrid implementation with global reduction of conver-
gence criterion every synchronization
MPI: MPI implementation with implicit synchronization
MPI+R: MPI implementation with global reduction of convergence criterion every syn-
chronization
Comparison shows superior scalability for Hybrid and MPI varieties for large input set
and longer, fixed iteration count. Note added overhead for the work of reducing the conver-
gence criterion. BSP performance is largely unaffected by the addition of this reduction,
as the addition to inherent synchronization overhead is small. Iteration count is fixed,
enabling the use of implicitly synchronous implementations.
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Figure 8.7: A4: Selected Implementations

libbsp: BSP implementation compiled with our BSPlib implementation
libbsp+R: libbsp modified with global reduction of convergence criterion every synchro-
nization Hybrid: MPI and OpenMP hybrid implementation with implicit synchronization
Hybrid+R: MPI and OpenMP hybrid implementation with global reduction of conver-
gence criterion every synchronization
MPI: MPI implementation with implicit synchronization
MPI+R: MPI implementation with global reduction of convergence criterion every syn-
chronization
Comparison of small input set and long, fixed iteration count shows impact of reaching
diminishing returns in strong scaling mode. Hybrid and MPI implementations do not
benefit from additional resources, while BSP is dominated by a growing synchronization
overhead.
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Table 8.2: MPI And MPI+R Wall Times

P MPI MPI+R Absolute Difference

012 1.113838e+01 1.117476e+01 0.03637

024 5.794761e+00 5.807795e+00 0.01303

036 3.945278e+00 3.939208e+00 0.00617

048 3.189016e+00 3.160863e+00 0.02815

060 2.421752e+00 2.465682e+00 0.04393

072 2.247901e+00 2.360757e+00 0.11286

084 1.875643e+00 1.881669e+00 0.00602

096 1.614748e+00 1.804870e+00 0.19012

108 1.517356e+00 1.522756e+00 0.00540

120 1.482026e+00 1.441480e+00 0.04054

132 1.220200e+00 1.257055e+00 0.03686

144 1.172386e+00 1.097181e+00 0.07521

increases in the number of nodes produces performance degradation, most notably, a par-

ticularly distinct one for the libbsp implementation. This is, in and of itself, merely a

confirmation of Amdahl’s law, in that the numerical intensity of the smaller problem size

is insufficient to justify the addition of further computational resources, and the communi-

cation requirement added by scaling the core count unmistakably becomes overhead only.

The limited impact this has on the Hybrid and MPI implementations is testament to their

efficient communication, but there is no evidence of any benefit from increasing the com-

putational power. Although the results in Figure 8.7 do not establish any novel conclusion

in themselves, using them in conjunction with the results of Figure 8.6 provides bounds on

problem size. Specifically, experiments A3 and A4 show that the crossover point where

the application gives diminishing returns will occur for some problem size between 10242

and 40962 for the fastest implementations.

8.5 Application Performance Predictions

As the precision of the individual benchmarks has been determined in isolation, it is

necessary to investigate whether the interaction between an application program and a

platform is accurately captured by their composition. Part of the reason for studying a

communication-oblivious algorithm like our present application, is that this enables us to

easily isolate the requirements of computation and communication from a static analy-

sis of the source program. Examining predicted and observed run times of this program

thus produces an empirical basis for evaluating whether the performance parameters of the

model represent a realistic choice in an applied context.
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/ / Se tup of pxp m a t r i c e s e n c o d i n g communica t ion r e q u i r e m e n t s

memset ( msgs , 0 , p*p* s i z e o f ( d ou b l e ) ) ;

f o r ( i n t r =0 ; r <p ; r ++ )

{

i n t i = r / dims [ 1 ] , j = r%dims [ 1 ] ;

/ / De te rmine n e i g h b o r p r o c e s s i d e n t i f i e r s i n 8 d i r e c t i o n s :

i n t

n = PMAP( i −1, j ) , s = PMAP( i +1 , j ) , / / North , s o u t h

w = PMAP( i , j −1) , e = PMAP( i , j +1 ) , / / Eas t , wes t

nw = PMAP( i −1, j −1) , ne = PMAP( i −1, j +1 ) ,

sw = PMAP( i +1 , j −1) , s e = PMAP( i +1 , j + 1 ) ;

/ / Communicat ion p a t t e r n : 8 n e i g h b o r s

MSGS( r , n ) = MSGS( r , s ) = MSGS( r ,w) = MSGS( r , e ) =

MSGS( r , nw ) = MSGS( r , ne ) = MSGS( r , sw ) = MSGS( r , s e ) = 1 . 0 ;

/ / Problem s i z e s p e c i f i c message s i z e s

MSGSZ( r , n ) = MSGSZ( r , s ) = l p s i z e [ 1 ] * s i z e o f ( d ou b l e ) ;

MSGSZ( r ,w) = MSGSZ( r , e ) = l p s i z e [ 0 ] * s i z e o f ( d ou b l e ) ;

MSGSZ( r , nw ) = MSGSZ( r , ne ) = MSGSZ( r , sw ) = MSGSZ( r , s e ) = s i z e o f ( dou b l e ) ;

}

Figure 8.8: Application-specific Matrix Setup

do ub le k e r n e l s = l p s i z e [ 0 ] * l p s i z e [ 1 ] ; / / Loca l problem s i z e

do ub l e predcomp = k e r n e l s / r a t e ; / / Computa t ion t ime

f o r ( i n t r =0 ; r <p ; r ++ )

{

d o u b l e l , b , o ;

b = l = o = 0 . 0 ;

/ / La tency & bandwid th

f o r ( i n t d s t =0 ; d s t <p ; d s t ++ )

{

maxoverhead = MAX( maxoverhead , MSGS( r , d s t ) * O( r , d s t ) ) ;

t imev [ r ] = MAX( t imev [ r ] , 2 . 0 *L ( r , d s t ) +

4* s i z e o f ( i n t ) * B( r , d s t ) / 2 . 0 +

MSGSZ( r , d s t ) * B( r , d s t ) / 2 . 0

) ;

}

t imev [ r ] += maxoverhead ;

/ / Max comm t i me d o m i n a t e s s u p e r s t e p

maxcomm = MAX( maxcomm , t imev [ r ] ) ;

}

p r i n t f ( "%d %e \ n " , p ,

s t e p s * (MAX( predcomp , maxcomm)+ b a r r i e r c o s t )

) ;

Figure 8.9: Predictor Program
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8.5.1 Experimental Methodology

In order to obtain performance predictions, a short program was written to estimate overall

run time from benchmark matrices. Figures 8.8 and 8.9 show the relevant fragments of the

program which generated all reported application performance predictions. Initialization

and I/O code for loading the measurement matrices is omitted for the sake of brevity.

Because of how the C language manages dynamic memory allocations, the manipulation

of matrices is written using the indexing macros PMAP, MSGS and MSGSZ, which hide

a straightforward translation from 2D indices to linear arrays. All of these index zero-

initialized matrices of integers and doubles, with PMAP being a cartesian map of process

ranks, while MSGS is a P × P map of message counts between ranks in a superstep,

and MSGSZ a corresponding map of the message sizes. The matrices L, O and B index the

P×P matrices of platform benchmark data loaded from disk, signifying latency, overhead

and inverse bandwidth, respectively. The value of the variable barriercost is obtained

from the simulations described in Chapter 6.

Note that as the program logic in Figure 8.8 only generates the communication pattern of

this particular application, the entire program could be generalized by loading it as input

data instead of hardwiring it in the code. This is a very surmountable technical task, but is

not done here because the presented program already illustrates that the prediction com-

puted in Figure 8.9 is parametric with respect to the application communication pattern.

On a similar note, the variable rate is an estimate of the participating processors’ sustain-

able number of 5-point stencil updates per second, obtained from a benchmark like those

employed in Chapter 4. On the larger test platform, this figure was measured to 24931455
for local subproblem sizes on the order of hundreds of kilobytes, and 237758547 for tens

of kilobytes; the smaller platform also produced a similar variation. To obtain the reported

predictions, these figures were provided as input to the predictor in large and small test

cases as appropriate, with the observation that they might as easily have been encoded in

a P × 2 matrix and selected programmatically. This is unnecessary in our present case,

because the local subproblem size is uniform per test, and it is the primary source of vari-

able computational rate in the examined system. As a side note, we may observe that the

processing cores of the larger system feature private 64 kilobyte level-1 data caches, and

speculate that more systematic benchmarking would be likely to reveal it as a threshold for

the order-of-magnitude performance leap. For our present purpose, however, the number

of test configurations makes it unnecessary to account for the full range of performance

properties of the employed stencil kernel, as there is a limited number of test cases which

require measured values.

8.5.2 Results And Discussion

Figures 8.10 and 8.11 plot predicted values from the predictor program alongside mea-

sured walltime figures on the small cluster, for runs of 15 iterations. We may note again

that the small problem size shows characteristics of immediately becoming communica-

tion bound. The increasing tendency of walltime measurements in Figure 8.11 shows
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Figure 8.10: B1: Prediction vs. Measurement, Large Problem

libbsp (measured): Timings of BSP implementation compiled with our BSPlib implemen-
tation
libbsp (predicted): Predicted performance using predictor programs in Figures 8.8 and
8.9 with benchmark data
Comparison examines performance for the large problem set, and small, fixed iteration
count on the smaller platform.
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Figure 8.11: B2: Prediction vs. Measurement, Small Problem

libbsp (measured): Timings of BSP implementation compiled with our BSPlib implemen-
tation
libbsp (predicted): Predicted performance using predictor programs in Figures 8.8 and
8.9 with benchmark data
Comparison examines performance for the small problem set, and small, fixed iteration
count on the smaller platform.
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Figure 8.12: B3: Prediction vs. Measurement, Large Problem

Measurement: Timings of BSP implementation compiled with our BSPlib implementation
Prediction: Predicted performance using predictor programs in Figures 8.8 and 8.9 with
benchmark data
Comparison examines performance for the large problem set, and small, fixed iteration
count on the larger platform.

significant favorable exceptions at those core counts which are powers of 2. This is pre-

dictable with the knowledge that the communication pattern of the underlying synchro-

nization primitive favors these sizes, but it is nevertheless noteworthy to find that the

automated prediction method describes the effect fairly accurately without any explicit

acknowledgement of its origin.

Figures 8.12 and 8.13 show the results obtained with the same problem parameters, using

the larger cluster. These results show similar predictive power, with general tendencies

clearly mirrored between predicted and measured results, and relative errors ranging from

the negligible to 10− 20% at worst.

At this point, we note that the results reported so far have examined runs of relatively small

iteration counts, and that predicted values are compared to a simple walltime measurement

of a single run. This is done for several reasons, most importanly, in order to stay true to the

objective of assessing the usability of the developed model in a practical scenario. It would
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Figure 8.13: B4: Prediction vs. Measurement, Small Problem

Measurement: Timings of BSP implementation compiled with our BSPlib implementation
Prediction: Predicted performance using predictor programs in Figures 8.8 and 8.9 with
benchmark data
Comparison examines performance for the small problem set, and small, fixed iteration
count on the larger platform.
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Figure 8.14: B5: Prediction vs. Measurement, Large Problem

Measurement: Timings of BSP implementation compiled with our BSPlib implementation
Prediction: Predicted performance using predictor programs in Figures 8.8 and 8.9 with
benchmark data
Comparison examines performance for the large problem set, and large, fixed iteration
count on the larger platform.

be quite feasible to improve model accuracy both by tracking the source of deviations

and specializing the benchmarks to devote more time to yield more accurate estimates

precisely where the application behavior deviates, as well as developing some statistic for

multiple runs on the measurement side. Neither of these approaches are taken, because

they impose post-fact considerations of the application/platform interaction, and therefore

would undermine the integrity of the predictive aspect of the modeling effort. Practical

use of the model would involve considering the consequences of its predictions, rather

than extensive work to retrofit a test set to its premises.

While measuring in a single sample of 15 iterations avoids the potential bias of selecting

a measure of central tendency, it also introduces the potential fallacy of obtaining a par-

ticularly favorable run by chance. In order to address this concern, the results reported

in Figures 8.14 and 8.15 report a similar experiment run for 500 iterations. These tests

are carried out on the larger test system, firstly because it avoids any potential bias intro-
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Figure 8.15: B6: Prediction vs. Measurement, Small Problem

Measurement: Timings of BSP implementation compiled with our BSPlib implementation
Prediction: Predicted performance using predictor programs in Figures 8.8 and 8.9 with
benchmark data
Comparison examines performance for the small problem set, and large, fixed iteration
count on the larger platform.
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duced by the fact that the smaller system was used as the development platform for the

benchmark programs, and secondarily, because the larger system admits tests at greater

core counts. While 500 iterations is still a small number, these experiments represent a

significantly longer interval than the previous experiments, and indicates that a similar re-

lationship between predictions and observations holds for run times which extend orders

of magnitude beyond the previous walltime observations.

One important observation here is that although the relative error of prediction retains

the same characteristics, the absolute error has naturally grown into the order of seconds,

along with the overall run time. The reason is the obvious fact that our model inaccurately

predicts the execution time of a single iteration, and accordingly, the absolute error scales

linearly with the number of supersteps executed, like the wallclock time. A simple corol-

lary to this observation is that the method will be poorly fit to provide an off-line bound

on resource requirements such as a tight bound on the wall time of a long-running appli-

cation. For our present concerns, however, it suffices to retain the result that the developed

model captures behavior which is sustainable, to justify an experiment which examines its

applicability towards balancing the application’s execution on given hardware.

8.6 Model-driven Optimization

As shown in the preceding sections, we have instantiated from the framework a model of

which is parametric both in the performance parameters of the target platforms, and the

characteristics of the application program. The benefit of this is that it enables experimen-

tation with all associated performance parameters without actual execution of the program;

in principle, this permits answering “what-if” questions regarding e.g. the impact of im-

proving a subset of the processors, halving the network latency, or similar proposals.

For practical validation purposes, the executing platforms available for this study are fixed,

which restricts our investigation to establish the impact of adapting the programmatic side

of these equations to fit a given platform. Furthermore, the application program contains

data dependencies which restrict our flexibility in the tradeoff between communication

and computation. In order to achieve optimal parallel efficiency, the communication and

computation of the program would have to be tuned to exactly balance the highly variable

facilities of the underlying platform, for a globally uniform perfect overlap. Although the

platform profile we have captured suggests that such an application might be synthesized,

its utility would be restricted to demonstrating that all components can be employed to

their capacity, within some error bound.

Examining the dependencies of the laplacian stencil code instead, we find that it does

present an adjustable trade-off between computation and communication, albeit one which

is constrained by application requirements. Specifically, the periodic exchange of neigh-

boring border points admits the possibility of exchanging borders which are b cells wide,

reducing the frequency of exchanges to once every b iterations, but requiring that the com-

putations which update the extra cells are duplicated on neighbor processes. This permits

our BSP implementation to proceed in supersteps which encompass b iterations, to adjust
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Figure 8.16: Shadow Cell Regions In A Local Subproblem

the balance of computation and communication within them. We can therefore attempt

to improve the exploitation of the potential overlap, and thereby the parallel efficiency,

without compromising the integrity of the computed result.

For the discussion of the potential and restrictions when exploiting this potential, Figure

8.16 illustrates and labels 3 regions of a local subproblem. Region 1 represents the external

border, which must be periodically copied from neighboring processes. Region 2 repre-

sents the local border, where an updated result must be updated to the value of iteration b
prior to sending its contents off for replication on a neighboring process. Finally, region 3

represents the values which are of concern only to the local process.

Our first observation will be that in order for the cells in region 1 to propagate correct

contributions inwards in the local domain, the stencil computation must also be applied

in this region for the b − 1 iterations when borders are not updated by communication.

Relative to the cost of computation per iteration this is only a linear increase, but as we are

analyzing the total amount of computation carried out in a superstep, each of these inter-

mediate iterations also adds the cost of computing the entire interior. A slight reduction in

the added computation can be obtained from the observation that each iteration propagates

the contribution of a cell by only one cell spacing, so the impact of the cell values at the

extremities on regions 2 and 3 is delayed the number of iterations given by their distance

from the interior. Since region 1 is updated by communication every b iterations, this

means that the computed area in region 1 can diminish by a border of 1 for each iteration

carried out.

The second observation is that updated values from region 2 must be transmitted in the

final iteration of a superstep. In order to maximize the potential overlap, this means that

the order of computation in regions 2 and 3 must be adapted so that region 2 is completed

and sent before computation in region 3 begins.

Third and finally, we note that although the amount of computation per superstep grows

with the square of the increase in communication volume, the amount which may be ef-



130 Chapter 8. Case Study II: Laplacian Stencil

d o u b l e ex t racomp = 0 . 0 ,

mask = pow ( l p s i z e [0]− s t e p s , 2 . 0 ) / pow ( l p s i z e [ 0 ] , 2 . 0 ) ;

f o r ( i n t i =0 ; i < s t e p s −1; i ++ )

ex t racomp += ( l p s i z e [ 0 ] + i ) * ( l p s i z e [ 1 ] + i ) ;

ex t racomp /= r a t e ;

p r i n t f ( "%d %e \ n " , p ,

( ( ex t racomp + b a r r i e r c o s t ) / s t e p s ) + / / Amor t ized

(1.0−mask )* predcomp + / / F i n a l s t e p

MAX( mask* predcomp , maxcomm )

) ;

Figure 8.17: Adapted Superstep Prediction

fectively overlapped with this communication (i.e. region 3) shrinks as a consequence of

data dependencies.

Figure 8.17 gives a modified version of how the predictor program in Figure 8.9 emits its

final value, where these concerns are taken into account. In order to permit comparisons

with runs of variable length, the metric of time is normalized to the cost per iteration, with

the variable steps representing the number of iterations per superstep. The extended

number of kernel applications is found in the variable extracomp, while the variable

mask represents the ratio of kernel invocations which can be overlapped to the number

of kernel invocations in the overall local domain; this is used to compute the amount of

overlapped computation from the same estimate of local domain computation cost as was

used in previous experiments.

In order to find a test case for applying the proposed optimization, we may start by investi-

gating the case where the balance of communication to computation is at its least favorable,

i.e. the properties of the 10242 problem on 144 cores. Extracting the barrier cost, predicted

computation and worst-case communication times from the predictor program reveals that

the model estimates these to be

Tsync ≈ 1.02 · 10−2s

Tcomp ≈ 3.03 · 10−5s

Tcomm ≈ 2.08 · 10−4s

which gives us Equation 8.2 as an approximation of the imbalance between computation

and communication.

Tcomm − Tcomp = 2.08 · 10−4s− 3.03 · 10−5s ≈ 1.78 · 10−4s (8.2)

At an observed execution rate of 237758547kernels/s, this corresponds to

1.78 · 10−4s · 237758547
kernels

s
≈ 42321kernels

which in turn suggests local subproblem sizes of
√

42321 ≈ 205 elements square. On a

12 × 12 process grid, this suggests that a global problem size of 24602 will be closer to



Chapter 9

Conclusions and Future Work

In this thesis, we have illustrated how bulk synchronous programming and processing

models can be leveraged to capture heterogeneous performance parameters of both pro-

grams and execution platforms, and partially or fully automate the analysis of their inter-

action.

We have used the notion of synchronized supersteps to create a system-wide bound on the

amount of outstanding computation and communication at a point of execution, and shown

how this permits the work of all processing elements to be captured in P -dimensional vec-

tors of communication and computation time for the present step. In order to obtain these

vectors, the computational and communication characteristics of the executing platform

can be captured in matrices which contain linear approximations of empirically measured

subsystem behavior. The construction of these matrices result in similar shapes, which

permits the program and platform characteristics to be combined by element-wise prod-

uct, and superstep execution time to be obtained by the maximum of horizontal sums. The

resulting method couples the computation and communication requirements of a program

to an independent profile of the executing platform.

We have seen that synchronization cost can be modeled as the critical path through a

weighted dependency graph, producing accurate predictions parametric in system topol-

ogy and scale. For bulk-synchronous programs, the impact of synchronization is an un-

avoidable overhead, which suggests that program scalability requires that computational

and communication intensities are of sufficient magnitude to make this overhead tolerable.

Two case studies illuminated the cost of synchronization in different ways. One showed

that the performance parameter space of software synchronization methods admits effi-

cient synchronization methods to be automatically generated. Another showed that cost of

synchronization in a stencil application can become a limiting performance factor at mod-

est scales, but that measures to improve the balance of computation and communication

per synchronization can be leveraged towards reducing this effect. This demonstrates a

technique to determine the impact of synchronization on program behavior, and validates

it by practical utilization of its predictions.
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balanced execution than the previously examined problem sizes. The assumption that the

problem size would be entirely flexible to fit the executing platform is not representative

of practical cases, nor is it necessary to examine the consequences of trading computation

for communication. As we are simply interested in a hitherto unseen test case to admit

performance tuning, we therefore proceed with the 20482 problem size in experiment C1.

Figure 8.18 displays the predictions for per-iteration time obtained by employing the

adapted predictor program in Figure 8.17 with the variable steps adjusted from 5 through

50, thus varying the number of iterations assigned to each superstep. It also displays

empirical measurements with variable iteration counts, averaged over the iterations exe-

cuted. The per-iteration figures previously obtained from runs with the MPI implemen-

tation at 144 cores are shown for comparison, with and without explicit synchronization.

The data displayed in Figure 8.18 reflect too many differing assumptions and implemen-

tation choices to be read as an unbiased performance comparison, but the key point is that

the predictions correctly identify the minimal iteration time obtainable by the BSP imple-

mentation at a border width of 31, using figures which either are, or could be automatically

computed in a straightforward manner.

The collected results were extracted from runs of 500 supersteps, which obviously implies

a differing total number of iterations across the parameter range. The reason for this is

that terminating after a fixed number of iterations would halt computation in the middle

of a superstep in cases where the border width is not a factor of the iteration count. One

alternative to this is establishing a common iteration count with all test cases as factors, but

this would require excessive run times without adding significantly to the result material,

as the objective is simply to observe system behavior in a steady, predictable state.

To explain the difference between the predicted and observed results in Figure 8.18, note

that the model representation of the test program refrains from including the overhead

associated with copying data between successive iteration buffers, instead of swapping

them in the manner of the other implementations. Adding detail to close this gap will

not be examined further, as the approximation which disregards it has already captured a

sufficient detail to predict the optimal width. The benefit obtained by the additional effort

would be the ability to pinpoint the intersection between the compared performances, but

as peak attainable performance has been disregarded from all previous experiments, such

a result would not be meaningful in our context.

The purpose of displaying the two MPI variations Figure 8.18 is to relate the benefit which

is obtained by guiding optimization by our model to the cost it carries. Observing that ad-

justing the application with respect to maximizing overlap comes close to a speedup factor

of 2, would ignore the fact that the cost introduced by the relatively elaborate run-time

library means that an un-optimized implementation of lighter overhead provides compa-

rable absolute performance. As before, we should also recall that because of the run-time

library’s reliance on MPI, an implementation which explicitly encoded a similar exploita-

tion of the potential overlap would provide superior execution times, at the expense of

increasing program complexity.
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Figure 8.18: C1: Predicted vs. Measured Iteration Time

BSP (predicted): Predicted per-iteration performance using predictor programs modified
by Figure 8.17 with benchmark data
BSP (measured): Timings of variable-border BSP implementation
MPI+R: MPI implementation with global reduction of convergence criterion every syn-
chronization
MPI: MPI implementation with implicit synchronization
Comparison uses input size predicted to improve communication/computation balance for
our largest configuration, and a large iteration count to smooth variations due to the
nonuniform periodicity of synchronization. The model is sufficient to predict the optimal
balance of maskable communication for the application and platform, obtaining superior
performance to the reducing MPI implementation, although remaining slower than MPI
with implicit synchronization.
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In this thesis, we have illustrated how bulk synchronous programming and processing
models can be leveraged to capture heterogeneous performance parameters of both pro-
grams and execution platforms, and partially or fully automate the analysis of their inter-
action.

We have used the notion of synchronized supersteps to create a system-wide bound on the
amount of outstanding computation and communication at a point of execution, and shown
how this permits the work of all processing elements to be captured in P -dimensional vec-
tors of communication and computation time for the present step. In order to obtain these
vectors, the computational and communication characteristics of the executing platform
can be captured in matrices which contain linear approximations of empirically measured
subsystem behavior. The construction of these matrices result in similar shapes, which
permits the program and platform characteristics to be combined by element-wise prod-
uct, and superstep execution time to be obtained by the maximum of horizontal sums. The
resulting method couples the computation and communication requirements of a program
to an independent profile of the executing platform.

We have seen that synchronization cost can be modeled as the critical path through a
weighted dependency graph, producing accurate predictions parametric in system topol-
ogy and scale. For bulk-synchronous programs, the impact of synchronization is an un-
avoidable overhead, which suggests that program scalability requires that computational
and communication intensities are of sufficient magnitude to make this overhead tolerable.
Two case studies illuminated the cost of synchronization in different ways. One showed
that the performance parameter space of software synchronization methods admits effi-
cient synchronization methods to be automatically generated. Another showed that cost of
synchronization in a stencil application can become a limiting performance factor at mod-
est scales, but that measures to improve the balance of computation and communication
per synchronization can be leveraged towards reducing this effect. This demonstrates a
technique to determine the impact of synchronization on program behavior, and validates
it by practical utilization of its predictions.
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The accuracy of obtained performance predictions is limited by two main constraints: the

uncertainty inherent to approaching platform parameters as statistics, and corresponding

limitations on the accuracy of extrapolated tendencies. The latter is to some extent an

artifact of the former, but the effect can be dampened by improving the precision of the

parameter benchmarks. Estimates of limited relative error for extended runs can be ob-

tained, but in order to approximate an absolute time of completion, initial approximations

must likely be updated with information gathered throughout run time.

A model derived from the proposed framework has proven effective in predicting the

optimal point of overlap for a stencil application which provided some flexibility in the

trade-off between communication and computation. Although the analysis was partly per-

formed manually, this was restricted to transferring parameter values from one benchmark

program to another, suggesting that the entire process would be automatable using only

slightly more elaborate software. The framework is thus well suited for the purposes of

automatic application performance tuning.

In conclusion, these partial results combine to answer our research question:

How can automation support the analysis of interactions between a parallel algo-
rithm and the executing platform when both show heterogeneous performance char-
acteristics?

We have seen that the modeling of algorithmic requirements and architectural facilities in

terms of matrices and vector cost functions yields a system model of sufficient accuracy

to approximate and expose optimized parameter choices. This benefit arises from com-

posing both algorithmic and architectural models from piecewise linear functions which

can be determined in isolation. The effects of their interactions can then be examined by

simulations which are computationally inexpensive compared to the parameter space they

capture. The accuracy of the resulting model is obtained by admitting a large number of

performance parameters, which can be effectively used in analysis because their manipu-

lation can be effectively automated.

9.1 Process and Publications

The initial motivation of this work was to investigate the impact of heterogeneous perfor-

mance parameters in COTS computational clusters on the scalability of numerical com-

putations, with a view towards developments in automatic performance tuning methods.

That intention permeates the work detailed in this thesis, but published parts of it have

altered the perspective slightly.

A shift in the relative costs of moving and manipulating data has been apparent for a num-

ber of years, gradually making application performance depend strongly on data move-

ment [11]. This communication requirement rapidly eclipses the cost of computation,

whether in the form of memory traffic or network transmissions. For this reason, this

thesis is primarily concerned with the impacts of locality and communication.
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With the view that memory traffic and remote communication manifest the same principles

at different scales, it is natural to begin an exploratory study from the bottom up. Initial

studies addressed pure signaling costs on distributed shared memory architectures. This

resulted in a conference paper [73], subsequently extended into a journal publication [72],

which tested a range of spin-lock synchronization algorithms. A key point from that work

is that measurements of synchronization time can expose locality characteristics which are

otherwise hidden from software control.

Attention was then devoted to the BSP computational model, as its programming interface

permits a direct mapping between software constructs and model terms. A performance

comparison of BSP, MPI and hybrid implementations of a stencil application showed that

BSP permits the program to expose the potential for sustained performance while up-

scaling, but the implementation failed to realize it, creating an artificial communication

bottleneck [70]. As this is not necessarily inherent to the model, work was begun to create

an implementation and adapted performance model to incorporate locality and overlap.

The results of that effort is presented in this thesis.

The aspect of automatic performance tuning relies on accurate performance models to

search parameters for optima. Both analytic [71] and empirically driven [32] approaches to

dynamic optimization have been investigated in application specific contexts. While such

approaches are application dependent by nature, their use is instrumental to exploiting the

potential of increasingly complex computing platforms, and most of the work in this thesis

is therefore written with a view towards automated model management. An abbreviated

description of the method presented in Chapter 7 was published as a conference paper

[75], representing a demonstration of the power of these techniques, applied to a general

problem which occurred in the course of the work. A summary was also published as a

Ph.D. forum short-paper [74], giving an overview of the framework presented here.

9.2 Future Work

While the work presented in this thesis shows that the proposed framework can produce a

practically applicable heterogeneous performance model of a simple application on COTS

SMP clusters, a number of interesting variables have been treated as fixed, to restrict the

scope of the experimental work. This section describes several directions to extend the

scope of the developed model.

9.2.1 Profiling Extensions

The developed run-time library provides a great level of detail in the mapping between the

execution model, and the elements of the performance model. Specifically, the size and

destination of each act of communication are known at the time of its execution, and the

cost of computation can be evaluated by the time between initializing transmissions and/or

synchronization. Capturing such timings at a local level is feasible through a negligible
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overhead, permitting an fairly accurate view of execution to be gathered and analyzed off-

line. Providing simple library extensions to programmatically turn profiling on and off

reduces the work of instrumenting an application program to a matter of selecting which

supersteps should be recorded.

9.2.2 On-Line Adaptivity

An issue with the performance data captured by the benchmarking procedures given in this

thesis, is that they are subject to variation at run time, leaving the model to approximate

them statistically. While we have seen that a balance between accuracy and variation per-

mits the model to predict the behavior of programs far more complex than the benchmark,

the inaccuracy will invariably grow proportionally with the difference of scale between

benchmark and application.

Two ways to address the former problem would be to increase the level of detail in the

platform model, and to provide hardware which allows tighter bounds on observable per-

formance. While these are both worthwhile endeavors which would benefit the strength

of predictions, any nondeterministic behavior will ultimately bound their validity even in

the absence of external factors such as O/S or background load. An alternative to such

improvements is to exploit the low cost of obtaining performance predictions using our

method, noting that the application program itself could construct them using observed

values while running. For cases which admit static analysis, this would relieve the pro-

grammer of determining the requirements of the program, and it would also apply to pro-

grams which alter their requirements based on dynamic results.

A further challenge in this area is to determine an appropriate level of abstraction to pro-

vide a simple programming interface for informing the running application about the per-

formance parameters of its platform. Presently, programs are required to read and interpret

the structure of the raw benchmark data explicitly. This is impractical, and creates a strong

dependency between the program logic and the exact profiling method. An approach to

this would be to provide library functions for loading and storing profiles to isolate the

internal representation from user code, along with routines for obtaining simulated costs

of function calls at run time.

9.2.3 Range Of Applications

The validation of results in this thesis use programs developed for the purpose of our ex-

periments, meaning that a proper real-world scenario has not been tested. Although full

application programs written with BSPlib are rare, the implementation used in this work

has been tested with the programs in bspedupack [19], which includes a sparse matrix-

vector multiplication function. That implementation unfortunately favors get communi-

cation, which carries no potential for communication overlap, and the input matrices are

formatted by a particular preprocessing tool, which prevents simple testing with arbitrary

matrices without additional work. A feasible test would still be to adapt the SpMV im-
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plementation to use put communication, and measure its performance when applied in a

solver for any of the larger systems published e.g. at the Matrix Market [79].

9.2.4 Range Of Interconnects

The decision to target commodity clusters with MPI over TCP/IP on gigabit ethernet links

poses the question of how our benchmarks would be modified in order to provide pre-

dictability using other communication mechanisms. For our purposes, focus on these

widely available technologies enabled testing on two independent systems of variable scale

and topology. It is important to note that overlapping communication and computation is

presently an issue of great concern throughout much research in high performance com-

puting, and there is ongoing development in a wide range of related approaches. The

family of Partitioned Global Address Space (PGAS) languages is particularly relevant, us-

ing one-sided remote memory access similar to our library, with compilers which admit a

less intrusive notation than function calls. The GASNet library provides a one-sided com-

munication functionality very similar to that implemented here, supplying back-ends for a

range of interconnects with hardware supported remote memory access.

As the facilities of the GASNet interface allow an almost direct mapping of BSPlib oper-

ations, an initial version was developed to the point of featuring memory registration, put

and synchronize calls, but remained incomplete because the back-ends on our test plat-

forms proved not to overlap asynchronous operations. Completing this implementation to

compare performance figures attainable using LAPI and Myrinet back-ends would be an

interesting extension of this work.
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