
Terrain Rendering Techniques for the
HPC-Lab Snow Simulator

Kjetil Babington

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

This project builds on current and previous graduate students work on the
NTNU HPC-Lab snow simulator. The goal of this work is to make the current
simulation more realistic. This will be done by adding in features, such
as better terrain, based on one or more sources terrain data. The features
may use terrain generation algorithms and/or other appropriate software and
techniques. Enhanced snow particle rendering may also be included.

i

Abstract

This thesis presents a technique for GPU-based terrain rendering and the
changes made to the HPC-lab snow simulator to integrate the new ter-
rain rendering technique into the simulator. Our novel terrain rendering
technique combines ideas from existing terrain rendering techniques such as
CDLOD[19] and Geometry Clipmaps[12] into a hybrid method. The terrain
rendering works on patches of quads, that are tessellated, using hardware tes-
sellation based on the level of detail needed. The tessellated patches are then
displaced, using a vertex texture fetch of the heightmap in the tessellation
shader. The implemented GPU terrain rendering technique is then added to
the HPC-lab snow simulator, and changes to the simulator are implemented
to facilitate the new terrain rendering technique, all of the old GLSL shaders
are updated to the newest standard, the code structure is changed, and the
collision detection of the snow simulator is updated to accommodate changes
made to the terrain.

The results from our benchmarks show that the tessellation pipeline can
be used to facilitate terrain triangle count of over 16 million triangles while
maintaining a stable frame rate of over 1400 FPS. When used in combination
with the simulator, the implementation is still able to achieve frame rates that
are vastly greater than the old implementation in the snow simulator. The
visual results acheived from using Perlin noise gives the simulator a more
realistic feel, while not degrading the performance of the implementation.
Suggestions for futher improvements are also included.

iii

Acknowledgments

This thesis is the result of a semester long master project, done at the Nor-
wegian University of Science and Technology(NTNU) in Trondheim. I would
like to thank Dr. Anne C. Elster for providing me with opportunity to do this
thesis with her, and for the work she has put in to make the HPC-lab such
a great place to work. I would also like to use the opportunity to thank the
rest of the HPC-lab members for their support and the positive working en-
vironment they provide at the lab. Finally, I would like to thank NVIDIA for
their sponsoring of Dr. Elster and her HPC-lab through their Mad Scientist
purchase Program.

i

Contents

Problem Description i

Abstract iii

Acknowledgments i

1 Introduction 1

1.1 Outline . 2

2 Background 3

2.1 Modern GPUs . 3
2.1.1 Di�erences between the CPU and the GPU 4

2.2 CUDA . 5
2.3 OpenGL . 6

2.3.1 The Graphics Pipeline 7
2.3.2 Tessellation stage . 7

2.4 The HPC-lab Snow Simulator 9
2.4.1 Terrain . 10
2.4.2 Wind simulation . 11
2.4.3 Particle updates, collision detection, and rendering . . 12

2.5 Terrain Rendering . 12
2.5.1 Regular Grids . 13
2.5.2 Our Terrain Rendering Approach 15

2.6 Noise . 16
2.6.1 Perlin Noise . 16

2.7 Use of Perlin Noise . 19

3 Implementing and Optimizing Terrain Rendering 21

3.1 Terrain Rendering . 21
3.1.1 Terrain Representation 21
3.1.2 LOD-function . 22

iii

iv CONTENTS

3.1.3 Tessellation . 23
3.1.4 Rendering . 23
3.1.5 Texturing . 24

3.2 Noise Implementation . 24
3.2.1 Blending Noise . 24

3.3 The Snow Simulator . 25
3.3.1 Overhaul . 26
3.3.2 Shader overhaul . 26
3.3.3 CUDA Changes . 28

4 Results 31

4.1 Test Setup . 31
4.2 Terrain Rendering Benchmarks 31

4.2.1 Static Viewpoint . 32
4.2.2 Moving Viewpoint . 33

4.3 Kernel Pro�ling Comparison 34
4.4 Visual results . 34

5 Conclusion and Future Work 35

5.1 Conclusion . 35
5.2 Future Work . 36

List of Figures

2.1 The di�erent division of space on the chip of GPUs and CPUs[1] 4
2.2 A chart showing the development of GFLOPs of di�erent gen-

erations of GPUs and CPUs[1] 5
2.3 The released roadmap of future generations of GPU from NVIDIA 5
2.4 The stages of the rendering pipeline 8
2.5 A primitive tessellated with di�erent levels of inner and outer

tessellation levels, ©Philip Rideout 9
2.6 The HPC-lab snow simulator 10
2.7 Optional caption for list of �gures 11
2.8 Wireframe representation of a ROAM triangulation 13
2.9 Optional caption for list of �gures 13
2.10 The regular grids used in Geometry Clipmaps, the colors of

the grid represent the detail level ©Microsoft Research 14
2.11 Quadtree LOD selection . 15
2.12 The grid corner points . 17
2.13 The gradients . 17
2.14 The resulting in�uence vectors 18
2.15 The blending functions . 19
2.16 Example of generated Perlin noise 20

3.1 The new texturing scheme . 25
3.2 Class diagrams of the snow simulator 27

4.1 Frame rate for static viewpoint 32
4.2 Frame rate for moving viewpoint 33

v

vi LIST OF FIGURES

List of Tables

vii

viii LIST OF TABLES

Listings

3.1 The level of detail selection function 22
3.2 The tessellation evaluation code 23
3.3 The tessellation evaluation shader 23
3.4 The new collision detection code 28

ix

x LISTINGS

Chapter 1

Introduction

Terrain geometry is a very important part of rendering outdoor graphical
environments. The terrain provides the basis for other parts of the environ-
ment to build upon, so creating and rendering the terrain with the realism
required, while maintaining a fast frame rate, has always been an important
research area. The most widely used representation of the terrain geometry,
is the heightmap, a 2D grid of height values. The heightmaps can be cre-
ated from real world data, or can be procedurally made. The simplest way
to render the heightmap is the brute force approach, where each heightmap
value corresponds to one vertex. For larger terrains, this is unsuitable, since
the number of vertices grows too large to be processed in real-time by the
GPU.

The HPC-lab snow simulator is a continuous work at the HPC-lab at the Nor-
wegian University of Science and Technology (NTNU). The simulator started
as a smoke simulator, and has since been updated into a full snow simula-
tor. This work builds upon the work of Ingar Saltvik[18], Robin Eidissen[7],
Hallgeir Lien[11], changes to the simulator are made. The collision detection
system between falling snow particles and terrain is improved, and the all of
the code is updated to create a better working environment. Old outdated
shader code is updated to the newest GLSL standard, and the old �xed
function code for OpenGL is replaced with more modern implementations.
The HPC-lab snow simulator has so far used a variation of the brute force
approach for rendering terrain. This thesis aims to increase the rendering

performance of the terrain, by utilizing a more modern approach for terrain
rendering. Tessellation capabilities of modern graphics cards are utilized for
a dynamic level of detail system. The triangle density of the parts of the
terrain further away from the camera are reduced, while the parts that are

1

2 CHAPTER 1. INTRODUCTION

close to the camera, are increased so that even more details can be shown at
close range. These changes to the implementation enables the HPC-lab snow
simulator to have an even higher complexity, in other parts of the simulation,
e.g. the wind �eld resolution could be increased even higher, or the particle
count could be increased.

To further increase the realism of the HPC-lab snow simulator, a procedural
texturing scheme is implemented. Perlin noise is used to create detail tex-
tures that can be added to regular textures to increase the realism of natural
textures, such as rocks, grass, sand, and mountains. The noise textures are
also used to increase the details of heightmaps, e.g. to create mountainous
heightmap terrain, and to create a more natural looking experience.

1.1 Outline

This thesis is organized as follows

Chapter 2 introduces the background knowledge related to this master the-
sis. An introduction to GPUs and GPU programming through CUDA and
OpenGL is given, the HPC-lab snow simulator is introduced, state of the art
rendering techniques related to terrain and our novel terrain rendering tech-
nique is introduced. Lastly, an introduction to the Perlin noise is given.

Chapter 3 gives the details of our novel terrain rendering approach, and
details the changes made to the snow simulator to incorporate it in the HPC-
lab snow simulator. This chapter also presents the changes made to our snow
simulator, to increase the performance of the simulation.

Chapter 4 presents the performance benchmarks of the terrain rendering
implementation, and gives a detailed discussion about the results. Bench-
mark results for the updated snow simulator is also presented. At the end,
the visual quality achieved is also presented and evaluated.

Chapter 5 presents the conclusion and potential future improvements.

Chapter 2

Background

This chapter will introduce concepts, background knowledge, and related
works used in this thesis. A short introduction to GPUs and GPU comput-
ing through CUDA and OpenGL will be given. The HPC-lab snow simulator
will be introduced. Terrain rendering methods related to our novel terrain
rendering approach will be introduced. An overview of the terrain render-
ing method detailed in this thesis will be given. Texture noise generation
algorithms and applications will be discussed and presented.

2.1 Modern GPUs

The GPU, or the graphical processing unit is a specialized chip designed to
o�oad the work of creating images intended for display, from the CPU. The
GPU comes with special hardware for processing and rasterization of huge
amounts of vertices and triangles in parallel. This was also one of the main
driving forces behind the high-performance nature of the GPU, real-time,
realistic graphics for games. But as the power, and parallelism of the GPU
increased, so did the interest in the possibility of using the GPU for other
applications. The GPU is no longer just a tool for graphics, but is also used
for research, simulations, and other applications which require huge amounts
of computational power.

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: The di�erent division of space on the chip of GPUs and CPUs[1]

2.1.1 Di�erences between the CPU and the GPU

The biggest di�erence between the CPU and the GPU is how space on the
chip is divided. As can be seen from Figure 2.1, a large portion of the CPU
space is �lled with caches, and control structures, while on the GPU, there are
smaller caches and control structures, but a lot more duplicated functionality.
Because of this the CPU is a much more �exible unit than the GPU. The
CPU can be optimized by taking advantage of instruction level parallelism,
and the relatively large caching structures present. The GPU on the other
hand does not have this �exibility, but is a lot more focused on performing
the same operation simultaneously, and thus focuses a lot more on parallel
processing power. Since there is so little space set aside for caching on the
GPU, careful consideration for how memory is used is necessary to achieve
optimal performance. Optimizations such as memory coalescing, avoiding
bank con�icts, and other memory optimizations must performed to reach
optimal performance when using the GPU[17].

As can be seen from Figure 2.2, the theoretical GFLOPs of the GPU is rising
much faster than for the CPU, and this trend is just going to continue. In
June 2011, NVIDIA released their roadmap, Figure 2.3 for GPU architecture,
and Kepler, the next version of GPU architecture is state to have a increase of
almost 3 over the current Fermi architecture, and Maxwell, Keplers successor
is slated to have an even higher increase in power [14].

2.2. CUDA 5

Figure 2.2: A chart showing the development of GFLOPs of di�erent gener-
ations of GPUs and CPUs[1]

2.2 CUDA

CUDA, or Compute Uni�ed Device Architecture is a parallel computing envi-
ronment developed by NVIDIA for general purpose, high performance paral-

Figure 2.3: The released roadmap of future generations of GPU from NVIDIA

6 CHAPTER 2. BACKGROUND

lel computing. CUDA enables developers to write highly parallel code, which
can be executed on CUDA enabled devices. CUDA is written in a slightly
extended C/C++ language, with some restrictions. As CUDA has matured,
a lot of API wrappers have also been created for other languages, such as
wrappers for Java, Fortran and Python.

A typical CUDA program is divided into host code, and device code. The host
code runs on the CPU of the system. Host code is responsible for memory
transfers, to and from the device and kernel invocation. Device, or kernel code
is executed on the CUDA-device of the system. To launch a kernel, the host
code need to invoke the function through special CUDA syntax. A typical
invocation of a kernel speci�es the kernel name, the number of blocks, the
number of treads per block, and the kernel parameters. kernelName <<<
blocks, threads >>> (param1, param2). During compilation the host part
of the code, and the device part of the code gets separated. The device code
get compiled with NVCC. While the host code get compiled with a traditional
C/C++ compiler. The compiled GPU functions then gets embedded as load
images in the host object �le.

The memory model of CUDA is divided into di�erent levels, each with its
own limitations and advantages. Global memory is the largest, but also the
slowest memory that threads have access to. So to get optimal speeds, this
memory should be accessed as little as possible. Each thread has access to
some private local memory, and depending on whether there are free registers
or not, the local memory might be placed in global memory. All threads inside
a common block also share some fast shared memory. Two additional read-
only memory places also exist, Constant and Texture memory. Constant
memory is very limited, but is accessible from any thread, and is cached.
Texture memory resides in global memory, but is read-only, so it does not
su�er the same performance limitations as normal global memory.

2.3 OpenGL

OpenGL (Open Graphics Library) is a standard speci�cation de�ning a cross-
language, multiplatform API for writing applications that produce 2D and
3D computer graphics. OpenGL was developed by Silicon Graphics Inc (SGI)
in 1992. The standard is now managed by Khronos Group[9].

2.3. OPENGL 7

2.3.1 The Graphics Pipeline

The graphics pipeline consist of several stages, where some are programmable.
Each stage plays a role in creating, lighting, coloring, and presenting graphics
to the framebu�er. Figure 2.4 shows the current pipeline for OpenGL 4.2
and DirectX 11, the green colored boxes are stages that are programmable
through GLSL or HLSL depending on whetherOpenGL or DirectX is being
used.

Vertex shaders are run once for each vertex given to the graphics processor.
The purpose is to transform each vertex's 3D position in model space to
screen-space. Vertex shaders can manipulate properties such as position,
color, and texture coordinate, but cannot create new vertices. The output
of the vertex shader goes to the next stage in the pipeline, which is either
the tessellation stage, if tessellation shaders are present, geometry stage if a
geometry shader is present, or to the fragment stage.

Geometry shaders can generate new graphics primitives, such as points,
lines, and triangles, from those primitives that were sent to the beginning of
the graphics pipeline.

Tessellation shaders takes as input a patch, and outputs a tessellated
patch. Tessellation shaders can increase the vertex count of the input patch,
by doing tessellation, thereby increasing the detail level of the input primitive.
Figure ?? show how a quad is tessellated.

Fragment shaders compute color and other attributes of each pixel. Frag-
ment can implement a range of di�erent lighting techniques, do bump map-
ping, shadow creation, specular highlights, translucency and other phenom-
ena. They can alter the depth of the pixel, or output more than one color if
multiple render targets are active.

2.3.2 Tessellation stage

Tessellation shaders are used extensively through out this project, and a
thorough introduction them are therefor included. The tessellation stage is
the newest addition to the OpenGL language. They were added in version
4.0 [13]. The tessellation stage, consist of three sub-stages, control shader,
primitive generator, and the evaluation shader.

8 CHAPTER 2. BACKGROUND

Figure 2.4: The stages of the rendering pipeline

Control shader

The control shader is run once for each vertex in the output patch, and
computes the attributes of the vertices, e.g. the tessellation levels. The
input to the control shader comes from the vertex shader.

Primitive generator

If a Tessellation Evaluation shader is linked, then this stage subdivides the
input patch into a collection of points, lines, or triangles according to the

2.4. THE HPC-LAB SNOW SIMULATOR 9

Figure 2.5: A primitive tessellated with di�erent levels of inner and outer
tessellation levels, ©Philip Rideout

tessellation levels computed in the control stage.

Evaluation shader

The Evaluation shader takes the location of each vertex generated from the
primitive generator, and makes a vertex with a position and di�erent associ-
ated values.

2.4 The HPC-lab Snow Simulator

The HPC-lab snow simulator is a project under continues development at the
HPC-lab at the Norwegian University of Science and Technology. An image
from the simulator can be seen in Figure 2.6. The work started as a smoke
simulator[20], but was later updated to a snow simulator by Ingar Saltvik.

10 CHAPTER 2. BACKGROUND

His master thesis [18], describes how he implemented a snow simulationer
on multicore CPU. Robin Eidissen then built upon Saltvik's work through
his master thesis[7], where he implemented, and showed how the GPU could
be used to simulate falling snow. The snow simulator was further improved
by Gjermundsen[8] and Chellia[4]. The latest addition to the simulator was
done by Hallgeir Lien. He added import functionally for real maps created
from USGS DEM data and procedural generation of roads[11].

Figure 2.6: The HPC-lab snow simulator

2.4.1 Terrain

In our snow simulator, the terrain geometry is represented as a height map.
Each of the grid points in this height map de�nes a vertex. The height map
then gets loaded into OpenGL, using a VBO, and an indexing scheme is cal-
culated. To reduce the number of vertices stored, a triangle strip indexing

2.4. THE HPC-LAB SNOW SIMULATOR 11

scheme is used, where the �rst triangle is de�ned by three indices, but sub-
sequent indices only use one new index, plus the two previous indices.

(a) Heightmap image (b) Rendering of the
heightmap

Figure 2.7: Heightmap image (a) and the rendering of that heightmap image
(b)

As the simulation is run, a snow cover is build upon the terrain. The height
of this build up is stored in the W coordinate of the terrain vertices, and
used by GLSL during rendering to raise the height of the vertices and to do
blending so that the cover appears white.

2.4.2 Wind simulation

The wind simulation is done modeling the wind as a �uid. The �ow of the
�uid is then solved using the Navier-Stokes Equations for incompressible �ow.
The equations are then solved by setting the viscosity to zero, and density
to one.

∇ · u = 0 (2.1)

∂u

∂t
= −(u · ∇)u−∇p (2.2)

In Equation 2.1 and 2.2, u represents the velocity �eld vector, and p repre-
sents the pressure. The equation is then solved numerically by �rst solving
the advection step, then the Poisson equation is solved for the pressure p.
Then �nally projecting the velocities into a divergence-free �eld[8].

12 CHAPTER 2. BACKGROUND

2.4.3 Particle updates, collision detection, and render-

ing

The falling snow particles are a�ected by the wind velocity and gravity, and
their positions are updated for each frame. The wind velocity is found by
doing a lookup in the wind velocity texture. The acceleration of the snow
particle is given from the drag (The di�erence between the velocity of the
wind and the snow particle), and the gravity a�ecting the particle. A circular
velocity is also added to each snow particle, to make it spin around its own
axis.

For each frame, the simulation checks if the snow particles have collided with
the terrain. If any snow particle has a position lower than that of height of
the heightmap at that coordinate, then the snow particle is reset, to a random
location on the top, and the snow height at that position is increased[8]

The rendering of the falling snow particles are done through OpenGL and
GLSL shaders. The snow particles are rendered as a points with varying size
and a texture. The snow simulator is set-up so that CUDA, and OpenGL
share bu�ers through the CUDA-OpenGL interop interface. By sharing
bu�ers through interop, the contents, like the position of all of the snow
particles and the terrain, need not be copied up from the GPU device to
the host, and then down to GPU device again for each frame. The di�erent
CUDA kernels updates the positions of the snow particles. These changes
are then visible to OpenGL, which can then use the updated bu�ers directly
when rendering, this allows for very fast real-time rendering.

2.5 Terrain Rendering

A number of techniques exists for rendering terrains, they can roughly be
classi�ed into three di�erent categories: regular grid or hierarchical algo-
rithms, that recursively divides the terrain data using a common structure
such as binary trees or quadtrees. Triangulated irregular networks that rep-
resents the terrain surface through a polyhedron with triangular faces, or the
relatively new way of rendering terrain through the use of voxels. As the
graphics hardware have become faster and faster changes to terrain render-
ing algorithms from CPU based to GPU based implementations have become
more and more common, and the latest state of the art methods are fully or
almost fully GPU based implementations.

2.5. TERRAIN RENDERING 13

2.5.1 Regular Grids

Figure 2.8: Wireframe representation of a ROAM triangulation

ROAM (Real-time Optimally Adapting Meshes) is a well known hierarchi-
cal rendering scheme, using a binary tree in the recursive division of the
terrain[6]. ROAM triangulates the terrain grid into right-angled isosceles
triangles. Each of these triangles can then be divided into two new right-
handed isosceles triangles. The triangles may also be merged, if needed. The
resulting triangulation is then stored in a binary tree. Two priority queues
are used to control which of the triangles are in need of a split or a merge.
Care must be taken when splitting triangles, to avoid T-junctions. Figure
2.9(b) shows how a T-junction might be formed. T-junctions are triangles
that form T-shapes. This introduce potential cracks in the terrain when
rendered, and are therefore undesirable. When a ROAM triangle split in-
troduces a T-junction, a forced split on another triangle is done, to avoid
T-junctions. Figure 2.9 shows how a forced split might occur. Since ROAM
does most of its work on the CPU, it is considered an outdated technique om
the new era of powerful GPUs.

(a) Split (b) Forced splits (c) Complete tri-
angulation

Figure 2.9: Shows how a split can lead to a T-junction (a) Shows how the
T-junction is removed by splitting more triangles (b) Shows the complete
triangulation (c)

14 CHAPTER 2. BACKGROUND

Geometry Clipmaps is another terrain rendering technique based on using
regular grids. It was presented by Frank Losass and Hugues Hoppe in the
paper, Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids
[12]. Their method focuses on doing as much as possible of the processing on
the GPU, only falling back on the CPU when absolutely necessary. This is
one of the reasons they are able to achieve the high-performance benchmarks
for large terrain sizes, with a performance of about 1200 FPS for render-
ing 450,000 triangles on a ATI 5870 graphics card.[12] Geometry clipmaps
rely on using a set of nested regular grids centered around the viewpoint,
where grids closer to the viewport are smaller, but have a high detail level,
and grids further away are larger, but with reduced detail. As the view-
point moves around, the grids follow and are updated. The vertices of the
clipmaps are stored in toroidal arrays, which allows the bu�ers to be updated
incrementally[3]. These incremental updates to the bu�ers are one of the few
operation done on the CPU. However, an improved implementation using
vertex texture, is outlined in GPU Gems 2, by Asirvatham and Hoppe [2].
By using vertex textures increased frame rates, and reduced processing time
were achieved. [2].

Figure 2.10: The regular grids used in Geometry Clipmaps, the colors of the
grid represent the detail level ©Microsoft Research

2.5. TERRAIN RENDERING 15

Figure 2.11: Quadtree LOD selection

Continuous Distance-Dependent Level of Detail (CDLOD) is another
GPU-based terrain heightmap rendering implementation.[19] It is based around
using a quadtree of regular grids. The main focus of the implementation is
improving the LOD function from previous implementation. The heightmap
is organized into a quadtree, this quadtree is then used to select the appropri-
ate level of detail. At run-time nodes of the quadtree are selected rendering,
the depth of the selected nodes, gives the level of detail. For each added
depth level in the quadtree, the detail of the rendered node is increased by a
factor of four. E�ectively this gives a completely continuous LOD function,
that provides smooth and accurate results[19]. CDLOD produces a higher
quality triangle distribution and utilization, and rendering frame rate than
the improved geometry clipmap, presented at the end of last paragraph, but
with a n added memory cost for storing the quadtree. [19]

2.5.2 Our Terrain Rendering Approach

This thesis will present a fully GPU-based terrain rendering technique that
builds upon ideas of both CDLOD and geometry clipmaps. It uses a �xed grid
mesh, that is displace in the vertex and tessellation shader. The quadtree
structure of CDLOD is completely removed, there is no utility structure
operating on the CPU side, everything is done on the GPU. The level of detail

16 CHAPTER 2. BACKGROUND

function uses the idea that the LOD should be completely predictable, and as
such the selection of detail level depends only on the distance of the viewpoint
to the primitive. The LOD function is a continuous function, and decides the
tessellation levels used in the tessellation shader. The technique is intended
to render heightmaps that are no larger than the maximum allowed textures
size of the graphics hardware used. This is one of the main shortcomings
of the implementation, but as the snow simulator is unable to handle larger
sizes, without degradation of simulation quality, it is acceptable. Changes
to the implementation, so that it can handle larger terrain, are discussed
in Chapter 5.2. The implementation requires graphics hardware that have
shader model 5.0, with hardware tessellation capabilities.

2.6 Noise

Noise is often used to generate procedural content, such as �re texture, nat-
urally looking grass, water and rock textures, as input to a city generation
application[10]. One of the most famous noise generation functions for proce-
dural content generation is the Perlin noise function, and its derivatives.

2.6.1 Perlin Noise

Perlin noise is a mathematical function for generating coherent pseudo-random
gradient noise. Since it is coherent, there are no discontinuities when mov-
ing from one point to the next. Perlin noise can be generated for multiple
dimensions, and the algorithm complexity of the function is O(2n), where n
is the number of dimension. Perlin noise was �rst described by Ken Perlin
in the paper "An image synthesizer" in 1985 [16].

Math and Algorithm

To explain how Perlin noise is generated, an example of 2D Perlin noise
generation is presented and explained. Given a Perlin noise function:

pnoise2D(x, y) = z (2.3)

where x, y, z are real numbers. The noise function can then be de�ned as a
regular 2D grid, where each whole number de�nes a point on the grid. now

2.6. NOISE 17

given four grid-points (x0, y0), (x0, y1), (x1, y0), (x1, y1). Figure 2.12 shows
the grid-points.

Figure 2.12: The grid corner points

And a function:

G(x, y) = (gx, gy) (2.4)

Which takes as input a grid point and returns a pseudo-random gradient
vector with a length of 1. For each of the four given grid points a vector
P going from the grid-points to the (x, y) point, are generated. Figure 2.13
Then the in�uence of each gradient is computed as the dot product between
the gradient and the associated P . Figure 2.14 shows the resulting in�uence
vectors.

Figure 2.13: The gradients

18 CHAPTER 2. BACKGROUND

s = g(x0, y0) · P0 (2.5)

t = g(x0, y1) · P1 (2.6)

u = g(x1, y0) · P2 (2.7)

v = g(x1, y1) · P3 (2.8)

Figure 2.14: The resulting in�uence vectors

These four values are averaged together using a weight for each value. A
blending function is used to give weight, and make the (x, y) point seem
closer or further away from the actual grid-points. The blending function
�rst proposed by Perlin was the Hermite blending function:

P = 3t2 − 2t3 (2.9)

This was later revised by Ken Perlin[?], and a �fth polynomial blending
function was proposed as a replacement. Figure 2.15 shows the graph of
both blending functions.

P = 6t5 − 15t4 + 10t3 (2.10)

The improved blending function is very similar to the �rst blending function,
having a zero �rst derivative at the end point, but with the added bonus of
also having a zero second derivative at the endpoints.This makes the second
derivative continuous everywhere in the function. Using the second blending
function the value returned from pnoise2D then becomes:

P (t) = 6t5 − 15t4 + 10t3

vx0 = s ∗ P (x− x0) + u ∗ (1− P (x− x0))

vx1 = t ∗ P (x− x0) + v ∗ (1− P (x− x0))

vxy = vx0 ∗ P (y − y0) + vx1 ∗ P (y − y0)

2.7. USE OF PERLIN NOISE 19

Figure 2.15: The blending functions

vxy is the noise value returned from the pnoise2D(x, y) function.

2.7 Use of Perlin Noise

In our implementation Perlin noise is used to create detailed heightmaps with
�owing mountainous terrain. Perlin noise gives the perfect combination of
realistic presentation of the terrain needed, and variabiliity of the generate
terrain.

20 CHAPTER 2. BACKGROUND

Figure 2.16: Example of generated Perlin noise

Chapter 3

Implementing and Optimizing

Terrain Rendering

This chapter will describe how the tessellation based terrain rendering pipeline
is implemented, how noise is used to increase the realism of the terrain ren-
dering, how the tessellation based terrain rendering pipeline is integrated
with the HPC-lab snow simulator and the changes that need to be made to
make it function.

3.1 Terrain Rendering

The platform chosen for the implementation is OpenGL using GLSL 4.2
shaders. The reason for this choice is that our snow simulator is built using
OpenGL and CUDA. Changing over to DirectX for rendering is there not
a choice. Although a DirectX rendering pipeline, could be considered for a
future project, if only to enable the use of quadbu�ers for 3D stereo rendering,
without using a NVIDIA Quadro grahics card.

3.1.1 Terrain Representation

The terrain is represented as patch of �at quads, which is generated at the
start of the application. The patch is then added to a vertex bu�er, and
stored in the GPU memory. The patch contains a grid of 11× 11 quads. An
index bu�er is also used, but instead of using a similar indexing scheme as

21

22CHAPTER 3. IMPLEMENTING ANDOPTIMIZING TERRAIN RENDERING

Eidissen did in[7], each vertex of the quad is index explicitly, since this is re-
quired when using tessellation shaders with quad tessellation [13]. Since only
121 quads are stored in the VBO, and each quad consists of four vertices,
the amount of memory required on the GPU to store the terrain geometry is
reduce considerably, and although the heightmap image must be stored as a
texture now, this again is o�set by the fact that a normal map texture is no
long required, since normal can be calculated directly from the heightmap in
the shaders. Compared to Eidissen's approach of storing the full triangula-
tion in a VBO, the reduced memory footprint is quite considerable for larger
sizes of terrain. The implementation takes advantage of instanced based ren-
dering capabilities of OpenGL, where multiple instance of the same geometry
can be rendered without submitting new geometry to the rendering pipeline.
The vertex shader takes care of displacing/moving the vertices based on an
instance id provided to the shader by the OpenGL pipeline.

3.1.2 LOD-function

One of the main drawbacks of how the terrain rendering is done in Eidis-
sen implementation is that the terrain has the same detail level, whether the
viewer is close to the triangles, or further away. But the detail level of terrain
that is far away could be reduced, without the view even noticing. One way
this could have been done is to make triangles far way represent larger terrain
geometry, than triangles close to the viewpoint. The new terrain implemen-
tation utilizes a precise and continuous level of detail function. The only
deciding factor for the level of detail is the distance from the viewport, this
means that terrain closer to the viewpoint is tessellated more, and therefor
have a higher detail level than terrain which is far way. The LOD selection
function is implemented in the tessellation control shader. Listing 3.1 shows
the LOD selection function. The input to the function is a position, and
the returned value is the selected tessellation level, which corresponds to the
LOD.

Listing 3.1: The level of detail selection function

f l o a t lod (vec3 pos) {
vec3 d i s t anc e = cameraPos . xyz−(pos . xyz *0 . 5) ;
d i s t anc e *= 0 . 1 5 ;
f l o a t d = LOD−clamp (pow(l ength (d i s t ance) , 0 . 5 7) , 0 . 0 , LOD−1) ;
r e turn d ;

}

3.1. TERRAIN RENDERING 23

3.1.3 Tessellation

Both the tessellation control and evaluation shader are used in the imple-
mentation.The tessellation evaluation shader contains code for calculating
the LOD level and removing patches that are outside of the view (frustrum
culling). Listing ?? shows the complete tessellation control shader code.

Listing 3.2: The tessellation evaluation code
f l o a t lod (vec3 pos) {

vec3 d i s t anc e = cameraPos . xyz−(pos . xyz *0 . 5) ;
d i s t anc e *= 0 . 1 5 ;
f l o a t d = LOD−clamp (pow(l ength (d i s t ance) , 0 . 5 7) , 0 . 0 , LOD−1) ;
r e turn d ;

}

The evaluation shader contains code for displacement of the vertex based on
the terrain height and for calculates attributes such as texture coordinates,
and depth. Listing ?? shows the complete tessellation control shader.

Listing 3.3: The tessellation evaluation shader
f l o a t lod (vec3 pos) {

vec3 d i s t anc e = cameraPos . xyz−(pos . xyz *0 . 5) ;
d i s t anc e *= 0 . 1 5 ;
f l o a t d = LOD−clamp (pow(l ength (d i s t ance) , 0 . 5 7) , 0 . 0 , LOD−1) ;
r e turn d ;

}

3.1.4 Rendering

Since the geometry contained in the VBO sent for rendering contains only
�at patches, a method for adding height and geometry detail to these patches
is needed. Vertex textures and displacement mapping provides the required
functionality to make this happen. Vertex texture is a feature that was added
with shader model 3.0. It adds texture sampling capabilities to shaders other
than the fragment shader. Before SM 3.0 only the fragment shader had access
to texture sampling capabilities. Since the introduction, vertex texture fetch-
ing hardware has only improved, with more new modern graphics hardware.
Listing

Vertex textures are often used to provide displacement mapping. In the
case of heightmap rendering, the height of the terrain can be sampled in
the vertex shader, and then the vertex could be displaced by changing the

24CHAPTER 3. IMPLEMENTING ANDOPTIMIZING TERRAIN RENDERING

position of the vertex. With the advent of tessellation shaders, displacement
mapping and vertex textures can also be done in the tessellation stage, this
functionality is utilized in the implementation to displace the new tessellated
primitives to the correct height sampled from the heightmap texture.

3.1.5 Texturing

To texture the terrain, three base texture are used. One for grass, one for
mountain terrain, and the last for the snow cover. The terrain is then tex-
tured base on the height, slope and the height of the snow cover. The blend-
ing function used is very simple and could be improved to create even better
texturing. Figure 3.1 shows the new texturing scheme. Listing ?? shows the
complete fragment shader, used to texture the terrain.

3.2 Noise Implementation

A variation of the implementation presented by Simon Green in GPU Gems

2[2], is used as the base noise generating function for our implementation.
Noise is generated on the GPU by rendering the output from two perlin
noise shaders to framebu�ers. The content of the framebu�ers are then
copied to textures. These texture can then be used later, for instance as a
base for a heightmap. The solution of pre-generating the noise texture at
the start of the program, and then storing them in memory for later use,
decrease the computational power that must be expended on doing costly
noise generation in real-time. The noise can now simply be sampled as a
texture. The downside by storing the noise texture in memory, is that there
are limits to how large and how many textures can be stored in memory on
the graphics card.

3.2.1 Blending Noise

To create more interesting noise, the base function can be calculated more
than once, with varying input, and then blending the results. This creates
noise that can have lots of di�erent properties.

TODO:EXAMPLES.

3.3. THE SNOW SIMULATOR 25

Figure 3.1: The new texturing scheme

3.3 The Snow Simulator

Parts of the snow simulator are outdated, and needs to be updated to use
current state of the arts techniques. To enable the new terrain rendering
pipeline to function with the snow simulator, some of the CUDA code needs
to be updated. The old terrain rendering pipeline is also in need of a face
lift to adequately perform using the updated CUDA code.

26CHAPTER 3. IMPLEMENTING ANDOPTIMIZING TERRAIN RENDERING

3.3.1 Overhaul

The code base of the HPC-lab snow simulator has steadily increased in size
over the past few years, as new master students have used it as a basis
for either their thesis or fall projects. As more and more functionality is
added to the simulator, the complexity increases. To better handle current
and future projects, a overhaul of the structure of the code is necessary.
Figure 3.2(a) shows the class diagram of the old code. The classes controlling
the wind simulation, Wind and WindLBM, are two separate classes, even
though they have functions that are conceptually the same, there is no code
reuse between them. The lack of an abstract base class to hold functions
that are shared between all inherited classes, really shows in the main loop
of the program. The main loop is cluttered with with branching function
calls depending on what kind of wind simulation should be done. Figure
3.2(b) shows the new and updated class diagram of the snow simulator. The
wind, terrain, snow classes are now abstract classes, and concrete classes
that inherits from these base classes are added. A simulator class is added
to control the simulation. It instantiates the correct subclass for the snow,
wind, and terrain, and polymorphism will take care of calling the correct
virtual function, in the instantiated class. The main function contains the
code for creating a OpenGL window, and instantiating the simulator class,
and running the main loop. The main loop calls the update function in the
simulator class, and then the update function of the simulator class, passes
this call on to any simulation part (wind, snow, terrain) that needs it.
Likewise, when it is time to render, the main function calls the appropriate
function in the simulator class, which passes this on. The change from using
normal function calls, to virtual function calls is expected to decrease the
by a tiny amount [5], but the performance decrease is also expected to be
o�set by the removal of the branches in the main loop of the program, and
even if that is not enough, the time spent executing these virtual functions
are minuscule compared to the rest of the program. The utility label on the
class diagrams Figure 3.2(a) and Figure 3.2(b) contains utility classes, e.g. a
shader class, responsible for loading, compiling, and linking shaders, di�erent
con�guration classes, and cuda helper classes.

3.3.2 Shader overhaul

Many of the shaders that are used in the snow simulator were created using
GLSL 1.2. This poses a problem now that the simulator is being overhauled,
so all of the old shader code had to be updated to current standards. All of

3.3. THE SNOW SIMULATOR 27

(a) old class-diagram

(b) new class-diagram

Figure 3.2: Class diagrams of the old simulator structure (a) class-diagram
of the new simulator structure (b)

28CHAPTER 3. IMPLEMENTING ANDOPTIMIZING TERRAIN RENDERING

the new shaders can be seen in the Appendix. The vertex shader for the snow
and terrain are supplemented with access to the projection matrix and view
matrix from the camera class of the simulator, since the deprecated matrix
functions for OpenGL and GLSL were removed.

Because of the changes to the CUDA code, detailed in the next section 3.3.3.
Displacement mapping is added to the vertex shader of the terrain. The
heightmap texture is sampled for the height of the terrain and the height of
the snow cover at that position. The returned sample vector, contains the
height of the terrain in the x, position of the vector, and the height of the snow
cover in the w position. The snow height is then used as a blending factor
between the base texture, and the snow cover texture in the fragmentshader.
The fragment shader for the terrain is also update with multitexturing, using
splatting. The slope of the terrain is used as a procedural texturing technique.
The height and the slope of the terrain are used as blending factors, between
a grass texture, and a rock texture, to create a more realistic look.

3.3.3 CUDA Changes

Geometry Collision

The new terrain rendering pipeline makes the old geometry collision detec-
tion code obsolete. Since the full geometry of the terrain no longer exists
in a VBO, the CUDA code checking for collision between snow particles
and the terrain, will fail. Eidissen suggested an improved collision detection
method[?], but was not able to implement it because of time constraints.
The method uses the heightmap texture directly, to do height comparison
between the snow particles and the terrain. This way the uncoalesced reads
of the terrain bu�er is removed, and the texture memory cache can be ex-
ploited to increase the performance of the collision tests. The heightmap
texture is shared between CUDA and OpenGL, since it is also used to do dis-
placement mapping in the OpenGL shaders. The snow particle re-spawning,
that happens when the snow particle is lower than the terrain height, is
unchanged.

Listing 3.4: The new collision detection code
f l o a t lod (vec3 pos) {

vec3 d i s t anc e = cameraPos . xyz−(pos . xyz *0 . 5) ;
d i s t anc e *= 0 . 1 5 ;
f l o a t d = LOD−clamp (pow(l ength (d i s t ance) , 0 . 5 7) , 0 . 0 , LOD−1) ;
r e turn d ;

3.3. THE SNOW SIMULATOR 29

}

Updating the Obstacle Field

Another part of the CUDA code that is changed, is how the obstacle �eld is
updated. Because of the changes to the terrain rendering, the full geometry
is not present in any bu�ers on the GPU. So the code that handles the
updating of the obstacle �eld must use the heightmap, since snow build up
and terrain geometry is only re�ected on that texture. It is still done on the
CPU, but this could possibly be changed, to make it even faster. Updates
of the obstacle map is still done at one step per 0.1 seconds. The updating
cycle is now:

1. Copy the heightmap texture from the GPU. (Changed)

2. Zero local obstacle map memory.

3. Set self bit of each cell to 1 if below terrain, 0 otherwise.

4. Set the remaining 26 bits to 1 or 0, according to which neighbors are
obstacles.

5. Copy the obstacle map to the GPU

30CHAPTER 3. IMPLEMENTING ANDOPTIMIZING TERRAIN RENDERING

Chapter 4

Results

In this chapter, results from the performance benchmarks of the terrain ren-
dering implementation and the updated snow simulator implementation will
be presented and evaluated. Performance characteristics and scaling prop-
erties of the rendering implementation and snow simulator, under di�erent
con�gurations and input will be examined. Lastly the visual results achieved
will be presented and evaluated.

4.1 Test Setup

To test the performance of our terrain rendering method, two system were
selected, Table ?? shows the speci�cations of those test systems. The GT
520 card was chosen since it is a low end consumer card, this enables us to
show how the performance of the terrain rendering will be a�ected by lower
hardware speci�cations. The Tesla card was chosen to give feedback on how
the rendering method scales with better graphics hardware. The other card
was a high end NVIDIA Tesla C2070.

4.2 Terrain Rendering Benchmarks

Two di�erent benchmarks are performed, on where the viewpoint during the
rendering is static, the other one where the viewpoint move with a predeter-
mined path.

31

32 CHAPTER 4. RESULTS

4.2.1 Static Viewpoint

Figure 4.1: Frame rate for static viewpoint

Benchmarks

Discussion

When the viewpoint is static, the whole terrain is visible, and the culling
e�ect of the our new implementation thus does not come into e�ect. As we
can see from Figure ?? when and the map sizes are small, the old brute
force approach is not too far behind our new method. However, as the map
sizes increases the old brute force approach quickly falls o�. The reason for
this is that when the terrain is small the LOD of our implementation, is not
able to fully reduce the complexity of the terrain as it is too small. The LOD
function works on distance and when the distance is small the e�ects of using
LOD become unnoticeable.

The e�ects of the LOD function becomes even more apparent with the lower
end consumer graphics card. As can be seen from Figure 4.2. The increased
frame rate of our approach becomes more important faster since the lower-
end graphics card is unable to process larger quantities of triangles.

4.2. TERRAIN RENDERING BENCHMARKS 33

4.2.2 Moving Viewpoint

Benchmarks

Figure 4.2: Frame rate for moving viewpoint

Discussion

When the viewpoint is moving around through the terrain the e�ect of culling
away quads that are outside the view, become apparent very fast. From
Figure ?? we can see that for small map sizes the brute force approach is
still not to far behind, since there just is not enough detail in the terrain.
But while the brute force approach frame rate is reduce almost as fast as in
the static viewpoint test, our new method falls o� much slower. This is the
e�ect of culling away quads that are outside the view, it greatly reduces the
amount of work the GPU has to do each frame, since none of the quads that
are culled, needs to be tessellated.This shows how important it is to remove
unneeded primitives from being sent down to the graphics unit without even
being rendered in the end.

34 CHAPTER 4. RESULTS

4.3 Kernel Pro�ling Comparison

Time constraints prevented us from doing a full comparison of the update
CUDA code, but the preliminary results were promising. Results from the
CUDA visual pro�ler shows, that the particle update, where the collision
detection code resides, have been reduced, but a comparison that used equal
hardware as Eidissen did is not done. But the texture cache hits were a bit
high still. An interesting notes, is that we can see from the time distribution
that the distribution have changed from what Eidissen reported in ??. This
either means that the new generation of hardware have di�erent character-
istics and therefore the distribution is di�erent, or someone have performed
updates to the CUDA code, without reporting it. This poses a problem since
if there is no report about changes done do the simulator then it become
di�cult to accurately compare implementations and improvements. All code
changes should therefore be documented adequately, either by writing a re-
port about the changes, or documenting changes with a comment.

4.4 Visual results

Large detailed heightmaps can be rendered while maintaining a stable frame
rate. Even when the full simulation is run the frame rates are still acceptable
even with the largest map sizes. Figure ?? shows a rendering of a very large
heightmap, and Figure ?? shows the same rendering with a snow cover. Perlin
noise can create very realistic looking terrain. Figure ?? shows a rendering
of a terrain created by Perlin noise and Figure ?? show the same terrain with
a snow cover.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The goal of this thesis was to improve the HPC-lab snow simulator by im-
proving the rendering of the terrain, a major bottleneck in the last version.
A new terrain rendering pipeline was added to the simulator, capable of ren-
dering large and detailed landscapes, with good performance. In addition,
introducing generated Perlin noise combined with premade heightmaps, in-
creased the realism of the simulation. The texturing of the terrain was also
improved, by using multiple texture and blending them together based on
the slope and height of the terrain, immersing the viewer.

The improvements made to the code structure of the simulator, proved suc-
cessful, although they did not directly give a performance increase. However,
they provide useful abstractions, that give future students working on the
simulator a better structure to work with. The cleanup of old shader code,
and the removal of all old �xed function OpenGL code, gave the simulator
renewed life, and a more stable graphics code base to build upon.

The changes to the CUDA geometry-particle collision detection code, proved
successful, reducing the time spent on collision detection signi�cantly. There
could even be further improvements when combined with particle sorting
to further exploit the texture caching present within texture memory of the
GPU.

The visual quality achieved with the new terrain rendering pipeline, in com-
bination with the simulation of wind and snow particles, provides the simu-
lator with a very convincing presentation of landscapes, ranging from snowy

35

36 CHAPTER 5. CONCLUSION AND FUTURE WORK

mountainous terrain to �at grassland.

5.2 Future Work

The novel terrain implementation presented in this thesis, functions well for
relativly small map sizes, (256-256 - 8192x8192), but for anything larger
smarter solutions could be considered. Combining the �nding here with
solutions presented in the background chapter ??, could provide solutions
giving both the performance and visual quality needed for realistic rendering
of huge terrain.

To facilitate larger terrain, the wind simulation code would have to be im-
proved. One way to possibly improve the wind simulation code could be to
apply level of detail to the wind simulation voxels, so that voxels that are
further away are combined to one, or something like the solution presented
in [15]. Where a novel framework for automatically simplifying the dynamics
computation of particle system is presented.

Bibliography

[1] NVIDIA CUDA Programmning Guide 4.0.

[2] GPU Gems 2. Addison-Wesley, 2005.

[3] Nick Brettell. Terrain rendering using geometry clipmaps. Master's
thesis, Cosc, Canterbury, ?

[4] Joel Chellia. The ntnu hpc snow simulator on the fermi gpu. Master's
thesis, Norwegian University of Science and Technology, Department of
Compute Science, 2010.

[5] Karel Driesen and Urs Holzle. The direct cost of virtual function calls
in c++. SIGPLAN Not., 31(10):306�323, October 1996.

[6] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller,
Charles Aldrich, and Mark B. Mineev-Weinstein. Roaming terrain:
Real-time optimally adapting meshes, 1997.

[7] Robin Eidissen. Utilizing gpus for real-time visualization of snow. Mas-
ter's thesis, Norwegian University of Science and Technology, Depart-
ment of Computer Science, 2009.

[8] Aleksander Gjermundsen. Lbm vs sor solver on gpus for real-time snow
simulations. Master's thesis, Norwegian University of Science and Tech-
nology, Department of Compture Science, 2009.

[9] The Khronos Group. http://www.khronos.org. last accessed.

[10] Praveen Kumar Ilangovan. Procedural city generator. Master's thesis,
Bourne mouth, .

[11] Hallgeir Lien. Procedural generation of road for use in the snow simu-
lator. Specialization Project. Department of Computer Science NTNU
Trondheim Norway.

37

38 BIBLIOGRAPHY

[12] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain ren-
dering using nested regular grids. ACM Trans. Graph., 23(3):769�776,
August 2004.

[13] Kurt Akeley Mark Segal. The opengl graphics system: A speci�cation
(version 4.0 (core pro�le)), March 2010.

[14] NVIDIA. Isc-brie�ng-sumit-june11-�nal, June 2011. Last accessed at
13/12 - 2011.

[15] D. O'Brien, S. Fisher, and M.C. Lin. Automatic simpli�cation of par-
ticle system dynamics. In Computer Animation, 2001. The Fourteenth

Conference on Computer Animation. Proceedings, pages 210 �257, 2001.

[16] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph.,
19(3):287�296, July 1985.

[17] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.
Stone, David B. Kirk, and Wen-mei W. Hwu. Optimization principles
and application performance evaluation of a multithreaded gpu using
cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on Prin-

ciples and practice of parallel programming, PPoPP '08, pages 73�82,
New York, NY, USA, 2008. ACM.

[18] Ingar Saltvik. Parallel methods for real-time visualization of snow. Mas-
ter's thesis, Norwegian University of Science and Technology, 2006.

[19] Filip Strugar. Continuous distance-dependent level of detail for render-
ing heightmaps (cdlod). -.

[20] Torbjørn Vik. Real-time simulation of smoke through parallelizations.
Master's thesis, Norwegian University of Science and Technology, De-
partment of Compute Science, 2003.

	Title Page
	masteroppgave.pdf

