
Android object recognition framework

Mats-Gøran Karlsen

Master of Science in Computer Science

Supervisor: Alf Inge Wang, IDI
Co-supervisor: Tor Ivar Eikaas, Cyberlab

Department of Computer and Information Science

Submission date: July 2012

Norwegian University of Science and Technology

Problem Description

Cyberlab, a small company developing simulators and games for education and
training, is investigating new and innovative game concepts for mobile applications.

Incorporating parts from the real world into games can facilitate development of
games that better immerse the player. Object recognition is one way of doing this
and Cyberlab is interested in using this technology in their portfolio. The aim is
to develop an object recognition framework for smartphones suitable for usage in
real-world conditions.

The goal of this project is to continue the development of an existing Android
object recognition framework to improve its performance, flexibility and usability.

Assignment given: 29. January 2012.
Supervisor: Alf Inge Wang, IDI.
External supervisor: Tor Ivar Eikaas, Cyberlab.

Abstract

This thesis is a continuation of the author’s specialization project where the ulti-
mate goal is to build an object recognition framework suitable for mobile devices in
real world environments, where control over parameters such as illumination, dis-
tance, noise and availability of consistent network architectures are limited. Based
on shortcomings related to object recognition performance and architectural issues
the author’s goal was to increase the flexibility, usability and performance of the
framework.

Literature was reviewed on frameworks in order to discover useful techniques for
development and documentation. Together with a re-introduction to the imple-
mented recognition scheme an evaluation of the original framework artefact was
performed with regards to the goals of this thesis. The results from the evaluation
aided in finding an approach that balanced trade-offs between flexibility, usability,
correctness and performance. By using proven framework development and docu-
mentation tactics from the literature study the author created a new iteration of
the framework, improving upon the previous solution. The result is a stand alone
artefact containing a hierarchy of software packages which divide functionality and
offer customization using a combination of inheritance and components. The in-
troduction of components hides domain knowledge and allows for easier reuse.

In order to improve recognition performance and framework flexibility the author
added external server support for image information extraction as well as support
for the usage of different feature detectors and descriptor extractors. Because of
time constraints the author did not test these new feature detectors and descriptor
extractors suitability or performance. This testing can now be performed by the
customer.

In order to ensure proper correctness a lower bound on the image resolution is set
at 600x600 pixels. Using properly built models correct recognition in about 90% of
the cases is achievable. The added support for server side information extraction
improves the object recognition performance by 42% in ideal conditions using the
lower bound images. This improvement is still not enough to meet the performance
criteria and combined with other issues results in the framework falling short of
being ready to build production environment applications.

Sammendrag

Denne oppgaven er en videreføring av forfatterens spesialiseringsprosjekt, hvor det
endelige målet er å bygge et objektgjenkjennelsesrammeverk egnet for mobile en-
heter i reelle miljøer hvor kontroll over parametre som belysning, avstand, støy og
internettilgang er begrenset. På grunn av svakheter knyttet til objektetgjenkjen-
nelsens ytelse og arkitektur er forfatterens mål å øke fleksibiliteten, brukervenn-
ligheten og ytelsen til rammeverket.

Det ble utført en litteraturstudie av rammeverk for å finne nyttige teknikker for
utvikling og dokumentasjon. Sammen med en reintroduksjon av den opprinnelige
objektgjenkjenningen ble det gjennomført en evaluering av det opprinnelige ram-
meverket. Resultatene fra evalueringen hjalp til med å finne en tilnærming som bal-
anserte fleksibilitet, brukervennlighet, korrekthet og ytelse. Ved å bruke velprøvde
rammeverksutviklings- og dokumentasjonsteknikker fra litteraturstudien har forfat-
teren generert en ny versjon av rammeverket. Resultatet er en frittstående artefakt
som inneholder et hierarki av programvarepakker som separerer funksjonalitet og
tilbyr skreddersøm ved bruk av arv og komponenter. Innføringen av komponenter
skjuler domenekunnskap og åpner for enklere gjenbruk.

For å forbedre ytelsen på objektgjenkjennelsen og rammeverkets fleksibilitet har
forfatteren lagt til støtte for informasjonsuthenting fra bilder ved hjelp av en ek-
stern server, samt støtte for bruk av andre detektorer og deskriptorer. På grunn
av tidsbegrensninger har forfatteren kun testet serverløsningen. Testing av ulike
detektorer og deskriptorer kan nå utføres av kunde.

For å sikre tilstrekkelig korrekthet er en nedre grense for oppløsning satt til 600x600
piksler. Ved bruk av gode modeller vil korrekt gjenkjennelse kunne oppnås i ca 90%
av tilfellene. Den tillagte støtten for ekstern server vil kunne forbedre ytelsen med
opp til 42% ved ideelle forhold og bruk av minimumsoppløsning. Denne forbedrin-
gen er likevel ikke nok til å nå kvalitetsmålene. Kombinert med andre problemer
resulterer dette i at rammeverket i sin nåværende form ikke kan benyttes direkte
til kommersielle formål.

Preface

This thesis is the result of the subject TDT4900 - Computer and Information
Science, Master Thesis at the Norwegian University of Science and Technology
(NTNU). The author is a game technology Master’s graduate student at at the
Department of Computer and Information Science(IDI) which is a subsection of the
Faculty of Information Technology, Mathematics an Electrical Engineering (IME).

The author would like to thank Alf Inge Wang for valuable input into the technical
aspects of this document. Thanks to the good folks at Cyberlab, Tor Ivar Eikaas
and Frank Jacobsen, for their valuable input and continued support for this project.

Most importantly my greatest gratitude goes to you Eva and Careca, my two
soulmates. Without your continued support and encouragements coming this far
would not have been possible.

Contents

I Introduction 1

1 Project Background 3
1.1 Motivation . 3
1.2 Project Goal . 3
1.3 Project Context . 4
1.4 Stakeholders . 4

1.4.1 Author . 4
1.4.2 Supervisor . 5
1.4.3 External Supervisor . 5

2 Research 7
2.1 Research Question . 7
2.2 Research Methodology . 8

3 Previous Work 11

4 Framework platforms 13
4.1 Android . 13

4.1.1 Development target devices 14
4.1.2 Tools . 14
4.1.3 Development devices . 15

4.2 OpenCV . 15
4.2.1 Android and OpenCV . 16

II Prestudy 17

5 Framework 19
5.1 Definitions . 19

5.1.1 Framework . 19
5.1.2 Flexibility . 20
5.1.3 Usability . 20

5.2 Comparison to other reuse techniques 20
5.3 Classification . 22

5.3.1 Scope . 22
5.3.2 Extensibility . 22

5.4 Strength and weakness . 24
5.4.1 Challenges . 25
5.4.2 Benefits . 26

5.5 Development . 27
5.5.1 Hooks and Templates . 29
5.5.2 Hot Spots . 29
5.5.3 Contracts and Protocols . 30
5.5.4 Process . 30
5.5.5 Implementation . 37

5.6 Documentation . 40
5.6.1 Stakeholders . 41
5.6.2 Knowledge Presentation . 41
5.6.3 Documentation practices . 42
5.6.4 A process . 44

6 Object Recognition 49
6.1 Definitions . 49

6.1.1 Object Recognition . 49
6.1.2 Correctness . 49
6.1.3 Performance . 50

6.2 Taxonomy . 51
6.3 Conceptual Models For Local Object Recognition 51
6.4 The Current Framework Solution . 54

6.4.1 Information extraction . 54
6.4.2 Model creation . 57
6.4.3 Matching . 60

7 Evaluation Of The Current Framework Solution 65
7.1 Architecture . 69
7.2 Object Recognition . 70

7.2.1 Information extraction . 70
7.2.2 Matching . 72

III Own Contribution 75

8 Framework Evolution Tactics 77
8.1 Development . 77

8.1.1 Object recognition . 78
8.2 Trade-offs . 79

8.2.1 Flexibility vs. Usability . 79
8.2.2 Usability vs. Performance vs. Correctness 79

8.3 Documentation . 80

9 Requirements 81
9.1 Framework . 81

9.1.1 Functional Requirements . 81
9.1.2 Non-functional Requirements 82

9.2 Example Applications . 82
9.2.1 Functional Requirements . 82
9.2.2 Use Cases . 85
9.2.3 Non-functional requirements 92

10 Architecture 93
10.1 Framework Overview . 94

10.1.1 Package Diagram . 95
10.1.2 Class Diagrams . 98

10.2 Example Applications . 103
10.2.1 Recognition Functionality . 105
10.2.2 Model Creation Functionality 108
10.2.3 Model Storage . 112
10.2.4 External Detector . 114
10.2.5 Collaboration . 114
10.2.6 Socket Communication . 115

11 Implementation 117
11.1 Example Applications . 117

11.1.1 Quiz . 117
11.1.2 QuizAdmin . 121

11.2 Framework bugs . 127

12 Object Recognition Results 129
12.1 Model building . 129
12.2 Recognition settings . 131
12.3 Correctness . 131

12.3.1 2D recognition (ORR1) and invariance to perspective, scale
and rotation . 131

12.3.2 3D recognition , rotation and recognition in cluttered images 132
12.3.3 Invariance to occlusion . 132
12.3.4 Invariance to noise . 133
12.3.5 Invariance to illumination . 134

12.4 Performance . 135
12.4.1 Recognition speed . 135

IV Evaluation 137

13 Evaluation 139
13.1 Research . 139
13.2 Development . 140

xii

13.3 Documentation . 143
13.4 Overall thesis evaluation . 144

14 Conclusion 145
14.1 Conclusion . 145
14.2 Future Work . 146

References 150

V Appendices 159

A Google Nexus S Specifications 161

B 2D object recognition test results 163
B.1 Test setup . 163
B.2 Recognition at 400x400 . 164
B.3 Recognition at 600x600 . 165
B.4 Recognition efficiency . 165

C Quiz Performance Tests 167
C.1 Test Setup . 167
C.2 Results . 168

D Application Installation 169
D.1 Phone[1] . 169
D.2 Emulator . 169

E Framework Installation 171
E.1 Android . 171

E.1.1 Prerequisites . 171
E.1.2 Install Instructions . 172

E.2 External support . 179
E.2.1 Detector . 179
E.2.2 HTTP database synchronizator 187

F Framework Bugs 189
F.1 CyberlabOD . 189
F.2 Framework examples . 190
F.3 External Socket Detector . 191

G Quiz Recognition Images 193
G.1 Category Initialization . 194
G.2 Recognition Question Answers . 200

G.2.1 Images Of Real World Objects 203

List of Figures

2.1 Research approach . 9

4.1 Distribution of Android devices as of June 2012[2] 14

5.1 Documentation patterns and their relationships 44

6.1 A model of image information extraction 52
6.2 A possible paradigm for creating object models using several 2-

dimensional images . 53
6.3 A model for performing recognition using an image with a collection

of object models . 53

6.4 Approximate Gaussian second order derivatives. Left to right: B
2

By2 gpσq,
B

2

Bx2 gpσq, B
2

BxBy gpσq. Grey regions equals zero. 55
6.5 Haar wavelet types used for SURF. These respond to vertical and

horizontal image features. 56
6.6 SURF descriptor extraction for one keypoint (pixels on grid inter-

sections). Grey background grid shows the pixel orientation in the
image. The black grid is rotated in the direction of the vectors in
step 1 of the extraction process. 56

6.7 Summary of model construction . 57
6.8 Summary of recognition process . 60

7.1 Package diagram of existing solution 65
7.2 Overview of framework classes . 66
7.3 Recognition performance on a test object at different resolutions

using a database with 25 models. (Based on isolated test. The
complexity of the image influence performance and there are cases
where recognition is twice as fast for each resolution.) 67

xiv LIST OF FIGURES

7.4 Recognition correctness on a test object at different resolutions using
a database with 25 models. Each object was captured at the same
distance. Recognition were performed from 3 different positions;
to the left of the object, centered in front, and to the right of the
object. For each position, recognition was performed twice based on
how the smartphone was rotated; the same way as the images used
for model construction and arbitrary rotation . Recognition were
only performed once for each position i.e. there were no retries if
recognition failed. 68

10.1 Framework hierarchy . 94
10.2 Framework package diagram . 95
10.3 Overview of the framework recognition package 98
10.4 Overview of the framework activity package 100
10.5 Overview of the framework support package 101
10.6 Overview of the framework db package 103
10.7 System deployment. Framework requires Android version >= 2.3.1

(ONR7, PNR1). 104
10.8 Object recognition . 105
10.9 Simplified object recognition class collaboration diagram 106
10.10Simplified sequence diagram for object recognition 107
10.11Model creation . 108
10.12Simplified model creation class collaboration diagram 110
10.13Simplified sequence diagram for model creation. 111
10.14Entity relationship diagram of database 112
10.15Simplified sequence diagram for model storage 113
10.16Simplified detector class collaboration diagram 114
10.17Simplified sequence diagram for the socket communication between

an application and the external detector 115

11.1 Initial state of the quiz application. Left: First run welcome screen.
Right: Camera activity. 118

11.2 Cancelling the camera activity when the application is in Find a
category mode allows access to the application settings. These are
not meant to be accessible in production applications. Left: The
options menu. Right: Application preferences menu. 118

11.3 Quiz application performing object recognition on an image to ini-
tialize a quiz category. Left: The captured image is shown along
with a scan bar indicating that detection is in progress. Center:
The image to the left initializes geography questions. Right: It’s not
allowed to redo previously answered categories. 119

11.4 Quiz application text question. Left: A geography text question
with available alternatives. Center: User has answered correctly.
Right: User has answered incorrectly. 120

LIST OF FIGURES xv

11.5 Quiz application object recognition question. Left: A geography
question with an image button initializing the camera activity. Cen-
ter: User has found the correct object and the application indicate
the area of recognition (PR4, PR8). Right: User has not found the
correct object. 120

11.6 Initial state of the quiz admin application. Top left: The options
menu is only accessible in this activity. Top right: The database
has been downloaded successfully. Lower left: The database has
successfully been uploaded. Lower right: Application preferences
menu. 121

11.7 The application shows all categories that contain recognition ques-
tions in the database. Left: Categories with object recognition ques-
tions. Clicking a category shows assignments in the category. Cen-
ter: All object recognition questions in the database. Clicking a
question allows for editing of the answer. Right: All models in the
database. Clicking an item in the list allows for deletion if the object
is not connected to a question. New models can be added from the
options menu. 122

11.8 Model creation help is initialized automatically the first time the
user tries to add a new model. Left: Help goes through a series of
steps explaining the creation process. Right: Model creation help is
accessible from the options menu. 123

11.9 The steps involved in creating an object model. Top left: The user
grabs two images of the object from two different poses. Top right:
The application shows a progress bar during construction. Lower
left: A model summary is shown after the construction indicating
the quality of the model(PR5). The user confirms if the model is
satisfactory. Lower right: Users adds metadata to the model before
saving (PR4). 124

11.10The edit recognition question answer process. Top left: The user
selects a recognition question and choose edit. Top right: The users
selects a model from the list and confirms the change. Lower left:
The system confirms that the change has been done. Lower right:
The new answer is now connected to the recognition question. 125

11.11The user is allowed to delete models that are not connected to
questions. Left: The delete option is shown if the user selects the
Show/Edit/Delete Objects option in the main menu. Right: The
model was successfully deleted. 126

12.1 Model creation: Object photographed from two different directions
A and B . 129

12.2 Examples of model bases that yield good recognition results. 130
12.3 3D recognition of the models shown in figure 12.2. Recognition works

on rotation and in cluttered scenes 132
12.4 Recognition on occluded objects: A glyph (2D object. ref. figure

G.7) , a magazine and a box (3D objects. ref. figure B.2) 133

xvi LIST OF FIGURES

12.5 Recognition on grainy/blurry images of a magazine and a box. The
model is created using views shown in figure 12.2 133

12.6 Recognition on a magazine and a box under different illumination
conditions. The model is created using views shown in figure 12.2 . . 134

B.1 2D object recognition test directions 163
B.2 2D object recognition test example. Top row: Recognition from di-

rections depicted in figure B.1 where object is rotated in same direc-
tion as in original model creation images. Bottom row: Recognition
on random rotated object from directions shown in figure B.1 164

G.1 Science category . 194
G.2 Science category . 195
G.3 Math category . 196
G.4 Geography category . 197
G.5 History category . 198
G.6 Trivia category . 199
G.7 Science answer . 200
G.8 Math answer . 201
G.9 Geography answer . 202
G.10 History answer . 203
G.11 Trivia answer . 204

List of Tables

6.1 Changeable parameters for mobile object recognizer 63

7.1 Available feature detectors in the OpenCV library. In addition to the
ones listed a few adapters over detectors exist: GridAdapted, Pyra-
midAdapted, DynamicAdapted. The performance column compares
their generally considered speed against SURF. 71

7.2 Available descriptor extractors in the OpenCV library. Each of these
can be wrapped in an opponent adapter (opponent color space in-
stead of RGB). The performance column compares their generally
considered speed against SURF. 71

9.1 Functional requirements for object recognition framework 81
9.1 Functional requirements for object recognition framework cont. . . . 82
9.2 Non-functional requirements for framework 82
9.3 Functional requirements for example applications 83
9.4 Framework example application system users. 84
9.5 Administrator installs application. 86
9.6 Administrator starts application for the first time. 86
9.7 Administrator adds model to database. 87
9.8 Administrator removes model from database. 87
9.9 Administrator browses database models. 88
9.10 Administrator browses quiz object recognition assignments. 88
9.11 Administrator links model with assignment. 89
9.12 Visitor installs application. 90
9.13 Visitor starts application for the first time. 90
9.14 Visitor must initiate a new quiz category by finding a category object. 91
9.15 Visitor answers object recognition questions. 91
9.16 Visitor answers quiz questions. 92
9.17 Non-functional requirements for example applications. 92

12.1 Default recognizer parameters . 131

A.1 Technical specifications of test device[3] 161

xviii LIST OF TABLES

B.1 2D Glyph recognition on figure G.7 results using 400x400 recogni-
tion resolution (X:Match. O:No object matches. W:Wrong object
matched). A,B,C are images taken from the left, in front of and to
the right of the object holding the device oriented the same way as
the images used for creating the model. A1,B1,C 1 is similar to their
counterparts but the device is randomly rotated. 164

B.2 2D Glyph recognition on figure G.7 results using 600x600 recogni-
tion resolution (X:Match. O:No object matches. W:Wrong object
matched). A,B,C are images taken from the left, in front of and to
the right of the object holding the device oriented the same way as
the images used for creating the model. A1,B1,C 1 is similar to their
counterparts but the device is randomly rotated. 165

B.3 Approximate recognition speed on figure G.7 in a database consisting
of 25 objects. 165

C.1 Performance (in seconds) of image information extraction using ex-
ternal detector on images of size 600x600 168

C.2 Performance (in seconds) of image information extraction using de-
vice on images of size 600x600 . 168

C.3 Performance increase using external server for information extrac-
tion over information extraction on device using images of size 600x600.168

F.1 The known bugs in the core framework, the reason for them not
being fixed and the authors assessment on their repair difficulty (
easy, medium and hard) . 189

F.2 The known example bugs, the reason for them not being fixed and
the authors assessment on their repair difficulty (easy, medium and
hard) . 190

F.3 The known external detector bugs, the reason for them not being
fixed and the authors assessment on their repair difficulty (easy,
medium and hard) . 191

Part I

Introduction

Chapter 1

Project Background

1.1 Motivation

This project is an extension of the author’s previous project in the course TDT4501
- Specialization project. The goal of that project was to start development of an
object recognition framework for Android. The results from that project showed
that further improvements had to be done both with respect to improving perfor-
mance of the recognition as well the architecture of the framework. The author’s
involvement with the framework ends with this thesis and new developers will be
in charge of its continued evolution. Therefore the improvements of the framework
must prioritize usability, to increase the potential for usage, as well as knowledge
transfer from author the new developers.
The customer, Cyberlab, does not currently employ experts in the domain of object
recognition and can be seen as novices in regards to framework usage. With time
however they will become experts and possibly start using the framework in ways
the current developer can not foresee. One important question is therefore how the
framework architecture can allow for such unforeseen usage. Documentation must
be of such quality that it supports reuse and minimize architectural drift over time.
Improvement of performance, here recognition speed, can not be performed in iso-
lation. The correctness of recognition must be preserved. Therefore it is important
to identify the context of the framework, i.e dictate its scope of usage. The au-
thor has to make sure that the framework design fits the domain usage and fulfils
application domain requirements in order to avoid expensive re-engineering.

1.2 Project Goal

The goal of this project is to continue development of the framework artefact deliv-
ered by the author in the course TDT4501 - Specialization project towards produc-
tion environment quality. The evaluation of the results from the previous project

4 Project Background

form the the initial input into methods for improving the flexibility, usability and
performance of the new framework iteration. The author will perform an in depth
study of frameworks in order to find systematic approaches and best practices for
implementation and documentation in order to increase the chance of framework
reuse.

1.3 Project Context

Video games have become a multi billion dollar industry and by the end of 2007 it
surpassed the music industry in revenue[4]. The mainstream breakthrough of video
games together with the introduction of the mobile phone and its ever increasing
functionality, gaming on these devices is gaining interest[5], also by developers of
serious games like Cyberlab[6].

Cyberlab has for some time now looked into ways to enhance the learning experience
by melting virtual with real world elements. The type of applications that use
images to achieve this inter world melting need automated methods to extract and
combine information, object recognition. There are two ways of using this kind
of technology; bringing virtual objects/information into the real world, augmented
reality[7], or bringing the object into the virtual world. The challenges concerning
object recognition are many since there is no single solution to solve all problems.
Highly domain specific knowledge is therefore required to be able to utilize this
technology fully. For small developers, such as Cyberlab that focus elsewhere,
gaining competence in this field may not be viable. In order for small companies to
be competitive, focus must be on creating content not gaining domain knowledge
outside of their field of interest[8]. Frameworks help in this aspect; hiding most of
the implementation specifics and speeds up the development process.

1.4 Stakeholders

This is a list of the stakeholders and their concerns regarding the project.

1.4.1 Author

• Mats-Gøran Karlsen

The research and artefacts produced will give the author a better understanding
of best practices involved in building frameworks and the challenges involved in
using object recognition in real world conditions on mobile devices with limited
processing power.

1.4 Stakeholders 5

1.4.2 Supervisor

• Alf Inge Wang

The main concern for the supervisor is the academic value of the thesis. Documen-
tation must be of such nature that further research within the topic is possible.

1.4.3 External Supervisor

• Tor Ivar Eikaas

In relation to this thesis the external supervisor is the project sponsor, also known as
the customer or the client. The main concern is suitability, usability and usefulness
of the resulting software artefact in regards to the domain of interest.

6 Project Background

Chapter 2

Research

2.1 Research Question

Continued software development effort requires that high level goals of the software
artefact are clearly stated. This is important in order to avoid architectural drift
and define precise functional and non-functional requirements which serve as input
and evaluation of the quality in the development effort. This realization leads the
author to the following research question:
How to evolve the object recognition framework towards production quality?
This question requires that there are clearly stated high level goals which the
framework tries to solve so an educated decision based on the evaluation of the
existing solution can be made on whether development effort should be spent on
improving existing functionality or adding new features.
In order to answer the research question and hence identify where focus should be
when modifying the framework, the author has identified a list of sub-questions
divided into three categories:

• Framework:

Q1: What is the difference between a framework and other reuse techniques
such as libraries?

Q2: Which software qualities should be prioritized?
Q3: What are the greatest risks involved in developing frameworks in regards

to usability, reusability and flexibility?
Q4: Are there common evolutionary patterns in frameworks which help eval-

uate their maturity?
Q5: Are there any commonly used design or development techniques used in

framework development?

8 Research

Q6: How should the framework be documented?
Q7: What separates a good software framework from a bad one, and how

can the author analyse the quality of the existing solution?

• Object recognition:

Q8: How to define correctness in the context of object recognition?
Q9: How to define performance in the context of object recognition?
Q10: How is the object recognition performed in the existing framework

solution?
Q11: How can performance be improved while still maintaining correctness?
Q12: Are there scenarios where the quality of object recognition can change?
Q13: Are there possible design solutions to improve performance?
Q14: Are there possible algorithmic solutions to improve performance?

2.2 Research Methodology

In scientific research it is important to use tools and models that enable possibili-
ties to evaluate the quality of the work done. Software development is difficult for
several reasons. Basili[9] identifies three main reasons for this when it comes to
software and software engineering; inherent complexity, lack of well defined prim-
itives or components of the discipline, and that software is developed instead of
produced. He further identifies three available research paradigms related to soft-
ware development:

• Engineering method: In order to evaluate the research questions a system
is developed based on requirements and tested if the artefact produced solves
these in an adequate way. Possible changes to the hypothesis are made and
the artefact is changed accordingly in an iterative process to better suit the
requirements.

• Empirical method: Here statistical approaches are used to evaluate hy-
potheses, where collection of data is used as verification. This method is
suited for evaluating the resulting artefact against existing solutions.

• Mathematical method: This method is based on the analytical paradigm
and often the formal way of performing experiments. A formal hypothesis is
developed. Data is collected through various experiments and results from
these are compared to empirical observations.

In this thesis the author will use the engineering method as the main research
method. The existing framework solution will be evaluated and a new iteration
will be created solving the identified issues.

2.2 Research Methodology 9

In order to perform a thorough evaluation a literature study into the topics frame-
works and object recognition is conducted. The research is guided by a series of
research questions that aim at helping answer the main research question in sec-
tion 2.1. The results of this study is published in respectively chapter 5 (Q1-Q7),
chapter 6 (Q8-Q9) and chapter 7.

Figure 2.1: Research approach

The results from the prestudy will inform the author on the necessary steps needed
to improve the framework in the direction stated by the goals of this thesis which
is provided in chapter 8. Chapter 9 elicits the framework and example applica-
tion requirements based on the evolution tactics and object recognition prestudy.
Chapter 10 presents the architectural choices as a result of the requirements and
the tactics chosen. Chapter 11 presents the example applications developed and

10 Research

chapter 12 show the results of the quality of the object recognition and require-
ments involved in creating models of good quality. Chapter 12 also present the
results of applying the performance enhancement tactic. Chapter 13 evaluates the
success of the applied tactics. Chapter 14 sums up the results and concludes on
the success of the project and points out future work.

Chapter 3

Previous Work

This thesis is a continuation of the authors previous work. A comprehensive ex-
planation of the implemented object recognition scheme is given in chapter 6 and
a presentation and evaluation of the resulting framework artefact is presented in
chapter 7.

12 Previous Work

Chapter 4

Framework platforms

This chapter introduce distilled information on the Android development platform
and the tools involved in development. The chapter ends with an introduction of
the OpenCV library, which large parts of the framework rely on to perform basic
object recognition and image manipulation tasks.

4.1 Android

Android is an operating system for mobile devices and is developed by the open
handset alliance led by Google. Version 1.0 was released in May 2007 and has since
then been under rapid development. The latest version of Ice Cream Sandwich
(4.0.4) was released on March 28, 2012 [10]. The operating system was first intended
for smartphones but the popularity of tablet devices has resulted in two different
flavours of Android. Major versions starting with 2 is intended for smartphones
and releases starting with 3 is intended for tablets or devices using larger screens.
The reason for this distinguishing is mainly requirements related to different screen
sizes. These differences are removed starting with version 4.
The system has widespread support with the backing from over 84 hardware, soft-
ware and telecommunication companies. This is possible because the system relies
on open standards. The software is released under the Apache License[10], allowing
usage of the software for any purpose, redistribution, modification and distribution.
The permissive nature of the license does not require modified versions to be dis-
tributed under the same license.
The system is based on the Linux-kernel. Middleware, libraries (such as Java-
compatible libraries) and APIs are implemented in C and runs on an Apache Har-
mony based application framework. Applications are written in the Java program-
ming language using a subset of the Java 6 SE API[11]. Swing, AWT and applet
classes are replaced with custom libraries for graphics and mobile development.
Source code is compiled, using just-in-time compilation, into Androids own Dalvik

14 Framework platforms

executable and is run by the Dalvik virtual machine sitting on top of the operating
system. Each application is a different user and runs on its own virtual machine
(VM), inside an isolated process in the operating system. The security principle
used by the operating system is least privilege[12]; each application is given access
to the components it needs and no more.

4.1.1 Development target devices

Figure 4.1: Distribution of Android devices as of June 2012[2]

[2] Developing software is a trade-off between using newer APIs, which are more
mature and exhibit newer features, and availability of devices able to run it. As
figure 4.1 shows, the majority of devices today use Android version 2.2 and 2.3.3.
Newer versions of the operating system are backwards compatible and are able to
run applications developed for earlier targets[13].

4.1.2 Tools

Development for Android is done using the Android SDK (Software Development
Kit) which delivers all the necessary functionality to build applications such as De-
bugging, Profiling and Device access. This can be used as a standalone tool giving
the developer the freedom of choice when it comes to third-party tools such as IDEs
(Integrated Development Environment). Despite this, Eclipse is the recommended
development environment and Android offers a ADT (Android Development Tools)
plug-in for this tool. Installation instructions for these tools are given at the official
Android development site[14].
Written Android development textbooks are starting to show up but the rapid de-
velopment of the operating system renders most of them to quickly be outdated.

4.2 OpenCV 15

The official development pages[14] offer vast technical documentation which is pre-
cise, comprehensive and free. Lots of useful examples can be found here as well.
The Android SDK also offers documentation through optional downloads.

4.1.3 Development devices

The SDK tools offers virtual devices through AVD (Android Virtual Device) which
can be used to test and debug applications[15]. Each virtual device can be con-
figured to emulate a vast amount of different handset configurations, enabling ex-
tensive testing. In order to do real world testing most Android systems offer the
possibility of putting the device into debug mode. This allows the developer to
connect the device to the computer through USB and install and test the applica-
tion in real world conditions. This option offers the same possibilities as the virtual
device[16].

4.2 OpenCV

Object detection is a huge field and requires extensive knowledge about different
algorithms. In order to minimize the amount of critical code the framework relies
on OpenCV for most of the image detection sub-tasks, image manipulation and
matrix algebra.
OpenCV, initially developed by Intel, is an open-source computer vision library for
extracting information from images[17]. It contains over 500 performance optimized
functions. The majority is implemented in C/C++ and the objects themselves are
mostly self contained. The aim of the library is to make computer vision accessible
to programmers and users in the area of real-time human-computer interaction
and mobile robotics. Users can both use the library for learning and because of its
performance.
Areas addressed by the library are:

• object/human/face segmentation

• detection

• recognition

• tracking

• camera calibration

• stereo vision

• 2D/3D shape reconstruction

The library also provides data structures and compatible matrix algebra packages
to support algorithms in the areas listed above, as well as important routines such
as segmentation, feature detection and recognition.

16 Framework platforms

4.2.1 Android and OpenCV

In 2010 the GSoC 2010 project ported the library to Android where. The library is
compatible with Android 2.2, but versions greater than 2.3.1 is recommended[18].
The library can be obtained from the projects web pages[19] together with guides
for installation. As of writing there are no official Android specific documentation
except for installation instructions and sample code released as part of the library
and short comments inside the library. The author is positive that this will change
in the near future because of Googles active involvement in the project[20]. Until
then, developers using the library must expect using a priori knowledge as well
as trial and error. Official C/C++ documentation[21] is a good place to get an
overview over available functions as well as looking at some sample applications to
get a feel for the flow of control. The author recommends OpenCV 2 Computer Vi-
sion Application Programming Cookbook[22] for thorough explanations about usage
of basic data structures in relation to common computer vision tasks. The examples
in this book is also implemented in C/C++.
The official pages offers some best practices in order to ensure stability and performance[23]:

• The library communicates with the Android application framework through
JNI (Java Native Interface) calls. These are quite expensive and should be
avoided when possible especially in loops.

• Initialize data structures at the start of the application an reuse them later.
The library extensively use pointers to avoid moving data back and forth.

• If possible, release data structures to the Android garbage collector to mini-
mize application memory usage.

Part II

Prestudy

Chapter 5

Framework

Although frameworks, an object-oriented reuse technique, have been successfully
used for some time a consensus on its definition in literature has not yet been
reached. This may be an indication of the difficulty in grasping abstract concepts,
which is one one of the key characteristics with reusable software. For people
unfamiliar with frameworks this has led to confusion about what a framework is
and how it differs from other reuse techniques. The following sections tries to
clarify this in the context of this thesis, how to design, implement and document
frameworks in order to support the goals of the thesis. The chapter informally
answers research questions Q1-Q7 in section 2.1

5.1 Definitions

5.1.1 Framework

According to Fayad et.al[24] there are some reoccurring framework definitions found
in literature. One is "A framework is a reusable design of all or part of a system
that is represented by a set of abstract classes and design all or part of a system
that is represented by a set of abstract classes and the way they interact". A second
is "A framework is the skeleton of an application that can be customized by an
application developer". These definitions explain the structure and the intended
purpose and they are not conflicting.
Johnson and Foote[25] define a framework as a partially complete application that
can be customized to produce applications targeted for particular business units
and application domains. The framework represents a reusable design of a sys-
tem or subsystem that decomposes into a set of interacting objects. Johnson[26]
summarizes the definition of a framework into an equation:

Framework � Components�Patterns (5.1)

20 Framework

The framework consists of a library of reusable components that interacts in a
predefined way described by the design patterns.
Aguiar and David[27] defines frameworks as reusable, semi-defined applications
that can can be modified to produce custom applications.
Common to all of these techniques is the consensus that frameworks are a kind
of design reuse documented in object-oriented code; a particular program is de-
composed into objects and the communication pattern between these dictates the
architecture of applications using the framework. There are examples of frame-
works using non object-oriented languages[28].
Since the framework under development in this thesis is highly domain specific, the
author will adopt the interpretation of Hautamäki[29]: "A framework captures the
programming expertise necessary to solve problems in a particular problem domain;
it hides parts of the design that are common to all applications in that domain, and
makes explicit the pieces that needs to be customized."

5.1.2 Flexibility

Software flexibility is "the ability of software to change easily in response to different
user and system requirements"[30]. In this thesis flexibility means to which degree
the framework is customizable and relates to the range of possible application con-
figurations the framework can support. Examples are application context, detector
switching, support for external resources and dynamic application configuration.

5.1.3 Usability

This thesis will define usability as how easy it is for the framework user to accom-
plish a desired task and the kind of user support it provides[31]. The framework
should try to:

• Minimize the learning curve.

• Minimize the impact of errors.

• Provide the necessary tools to support efficient use.

• Provide enough flexibility to support the needs of the users.

• Increase the confidence and satisfaction of using it.

5.2 Comparison to other reuse techniques

The most important parts of a framework are:

• The way that it is divided into its components.

5.2 Comparison to other reuse techniques 21

• Reuse of the internal interfaces of a system and the way its functions are
divided amongst the components.

• Secondary: Frameworks reuse implementation.

Frameworks share characteristics with general reuse techniques, in particular de-
sign reuse and object-oriented component reuse[24, 26, 29]. The following sections
shortly introduce these two techniques and how frameworks differ along with some
other key aspects of frameworks..
Early object-oriented reuse techniques relied heavily on usage of component li-
braries, implemented software that only require configuration. Their biggest ad-
vantage are their ease of use and they are considered the ideal reuse method since
no knowledge about their inner workings are required. This is also their biggest
disadvantage. Slight differences in requirements renders pre-existing components
unusable and new ones must be added. Frameworks use component libraries as
reusable code offering them a reusable context in which error handling, data ex-
change and interfaces are standardized. Frameworks also ease the the development
of new components by providing specifications and templates for implementation.
Because of the close relationship to component libraries, frameworks are often mis-
taken for being libraries. There is no strict line between a white-box framework
and a simple class hierarchy and the latter has the possibility of becoming the first.
In the simplest form a white-box framework is a program skeleton where the sub-
classes are additions to the skeleton. In most cases frameworks can be differentiated
from libraries if there are dependencies among its components or if programmers
complain about its complexity.
A component represents code reuse and a textbook represents design reuse. Since
design reuse can be applied in more contexts it is applied earlier in the develop-
ment process and therefore can have larger impact on the project. The problem is
that this reuse is informal, require special tools and there are no standard design
notation. Frameworks are similar to design reuse except it is expressed using a pro-
gramming language and thus do not require special tools other than the standard
development tool kit. The framework is represented by a set of classes (usually ab-
stract), one for each kind of object. The interaction patterns between the objects
define the architecture of the framework and is just as much part of the framework
as the classes.
In traditional reuse the developer selects components from a library by writing
a main program that call the components when necessary. This means that the
developer decides when to call the components and she is responsible for the overall
structure and flow of control in the program. In frameworks this is normally the
opposite and it’s called inversion of control or the Hollywood principle[32]. The
main program is reused and the developer decides what components are plugged
into it and makes new ones if necessary. The framework is then responsible for the
overall structure and flow of control in the program.
Frameworks reuse analysis: The framework describes the kinds of objects that are
important and provides a vocabulary for talking about a problem. Framework

22 Framework

experts will see problems in terms of the framework and will naturally divide it
into the same components. This makes it easier to understand each others design
because of the common vocabulary. This method of creating applications is oppo-
site of standard software architecture approaches where the architecture is elicited
from functional and non-functional requirements[33].
Analysis, design and code reuse are all important. In the long run analysis and
design reuse provides the biggest pay off.

5.3 Classification

Fayad et al.[24] argues that although frameworks mostly are independent of domain
they can be classified by scope and extensibility. Subsection 5.3.1 and 5.3.2 presents
these two concepts.

5.3.1 Scope

Scope refers to where in the software/business chain the framework is being intro-
duced. The scope is subdivided into the business and the application domain. The
business domain is related to problem space (e.g. a banking application) whilst the
application domain is oriented towards software design and addresses architectural
issues. The three domains listed by Fayad et al.[24] are:

• System infrastructure frameworks: Used within a software organiza-
tion and aims to simplify the development of portable and efficient system
infrastructures (e.g. operating system, user interfaces).

• Middleware integration frameworks: Mainly used to integrate distributed
applications and components into the software architecture allowing for mod-
ularization, reuse and seamless integration into distributed environments.

• Enterprise application frameworks: Address broad application domains
and are cornerstones of enterprises business activities. Compared to the
other two framework domains, enterprise frameworks are expensive to de-
velop and/or purchase, but can provide a substantial return on investment
since they support end user artefacts directly.

5.3.2 Extensibility

Regardless of scope, frameworks can also be classified based on the techniques used
to extend them to achieve flexibility. This classification has two extrema:

• White-box frameworks: These rely heavily on inheritance and dynamic
binding. Classes inherit functionality from their base classes using the "IsA"

5.3 Classification 23

relationship where the new objects are of the same type as their parents.
Custom functionality is achieved by overriding predefined hook methods us-
ing patterns like template methods. The class name stems from the fact that
the internals of the parent is visible to its children. The advantages of using
inheritance is its straightforward use and the ease of modifying an existing
implementation. This is also a downside since the developers need intimate
knowledge of the internal structure of the framework. Another downside is
that the objects lack run-time modifiability and this limits flexibility and ulti-
mately reusability. Inheritance breaks encapsulation but this can be avoided
by only using abstract base classes since these usually provide little to no
implementation. White-box frameworks are widely used and they tend to
produce systems that are tightly coupled to the frameworks inheritance hier-
archies.

• Black-box frameworks: Functionality is added by composing objects us-
ing references and thus defines a "HasA" relationship. This is called object
composition and new components are introduced into the framework by fol-
lowing standard interfaces defined by the framework. The components are
integrated into the framework using patterns like strategy[34] and functor[35].
This mechanism is more flexible than inheritance because compositions can
change dynamically at run-time. Objects involved are required to have well-
defined interfaces so the user only need to understand the external interface.
Other theoretical advantages are smaller classes and class hierarchies com-
pared to white-box frameworks, where all functionality is available by using
different combinations of components. In practice though the functional-
ity is never rich enough and new components need to constantly be added.
Black-box frameworks are generally structured using object composition and
delegation rather than inheritance. The result is that black-box frameworks
generally are easier to use and extend than white-box frameworks. On the flip
side developing a black-box framework is harder since developers must define
interfaces and hooks that anticipate a wider range of potential use-cases.

These two extrema represents the endpoints in an extensibility continuum where
frameworks often contain behaviour from both. These gray-box frameworks are
designed to avoid the disadvantages introduced by the two former. A good gray-box
framework has enough flexibility and extensibility whilst still hiding unnecessary
information from the application developer.

Looking at evolutional aspects of frameworks Johnson and Foote[25] notice that
frameworks tend to evolve from white-box into black-box frameworks. The reason
for this is that the design of the framework gradually becomes clearer and leads to
components of higher functionality.

24 Framework

5.4 Strength and weakness

Failing to address the challenges in the following list[24], greatly increase the risks
of failure when developing and using frameworks:

• Development effort: Creating high quality reusable frameworks that bal-
ances flexibility and usability for complex problem domains is difficult. Docu-
menting the software process and design principles associated with developing
them is key in order for them to be usable.

• Learning curve: Learning to use frameworks requires a lot of effort. It
can take months to become productive and hands-on mentoring is often re-
quired in addition to providing documentation. If this extra cost cannot be
amortized over several projects, a framework might never be cost effective.
Another challenge is evaluating the suitability of the framework with the
problem domain early in the project since this may not be apparent until
after the learning curve has flattened.

• Integratability: Applications increasingly use several frameworks at once.
If a framework is developed for isolated use, problems integrating it with other
frameworks may cause unexpected problems ranging from documentation
issues to architectural mismatches. Inversion of control is an essential feature
of frameworks and integrating the event loops from two frameworks who are
not designed to interoperate with each other is hard.

• Maintainability: Application requirements change frequently and so must
frameworks. Framework evolution also result in change in applications relying
on them. Maintenance includes both modification and adaptation and may
involve both the functional and the non-functional level. Maintenance may
take different forms such as adding/removing functionality or generalization.
Maintenance requires deep knowledge of the inner workings of the framework
and often application developers must rely on framework developers for this.

• Validation and defect removal: Well designed modular frameworks can
localize the impact of software bugs. Despite this validating and debugging
applications using frameworks can be difficult. There are several reasons for
this.

1. Well-designed frameworks typically create abstractions of application
specific details using sub-classing, object composition or template mod-
ification. Although these techniques offer flexibility and extensibility, it
greatly complicate their instances.

2. Distinguishing bugs in the framework from bugs in the application are
sometimes difficult for reasons such as requirement mismatch, overly
coupled design or an incorrect implementation. Customizing compo-
nents in a framework greatly increase the possible sources for errors.

5.4 Strength and weakness 25

3. Inversion of control and lack of explicit control flow. Single stepping
through runtime behaviour with a debugger causes jumps back and forth
between the framework code and the application code.

4. Developers may not understand the framework code, or simply do not
have access to the code.

• Efficiency: Extensibility is enhanced by several levels of indirection. Exam-
ples are dynamic binding of objects by sub-classing and customizing inter-
faces. Generality and flexibility reduce efficiency in ways such as increased
storage use due to lack of concrete data types, performance degradation due
to additional overhead of invoking dynamically bound methods or lack of
flexibility such as inabilities of placing objects in shared memory.

• Lack of standards: There are still no widely accepted standards for design-
ing, implementing, documenting and adapting frameworks. Often vendors
use industry standards in order to sell proprietary software. Standards are
no guarantee that the software is suitable for usage in a domain.

In addition to the challenges mentioned in the list over, there are additional trade-
offs that must be considered when frameworks are involved. Subsection 5.4.1 and
5.4.2 summarize challenges and benefits mentioned in [24, 26, 29, 36].

5.4.1 Challenges

Reuse is valuable - but its not free. This section collects challenges mentioned in
different articles and which must be considered before and while developing and
using frameworks:

• Companies who want to take advantage of them must pay their price.

– Frameworks share similar costs as other reuse techniques, they all require
domain analysis and engineering, training of developers and inefficien-
cies are often introduced causing a big expense before benefits can be
realized. Cost-benefit analysis should be performed before using them.

– Benefits can only be gained over time and require up front investments.
– Because of the iterative nature of development and difficulty related to

implementation, frameworks are hard to create on schedule. Framework
design can never be on the critical path of an important project.

• Frameworks are harder to learn than other reuse techniques:

– Because of their customizability, reuse of high-level design and inter
class dependencies, frameworks have complex interfaces and often a set
of classes must be learned together.

26 Framework

– Before being able to use a framework users need to spend a lot of effort
on understanding its underlying architecture, its design principles and
how to customize it.

– The fact that frameworks embed design reuse in code makes them spe-
cific to a particular programming language. Programming languages
are good at describing the static interface of an object, but not its dy-
namic interface. This means that it is hard for developers to learn the
collaborative patterns of a framework by reading it.

• Frameworks require better documentation and longer training than other
systems. In addition to this challenge, documentation is difficult due to the
frameworks abstractness.

– Despite providing excellent documentation a framework must be used
before it can be understood.

– Mentoring from framework experts may be necessary.

• They are hard to develop, requiring more expertise and time than developing
normal applications. This is the reason why they are not used more widely.

• White-box frameworks can be difficult to use because they require application
developers to write a substantial amount of code.

• Black-box frameworks can be limiting.

5.4.2 Benefits

This section summarize benefits related to framework development and use col-
lected from different articles:

• Frameworks are powerful since they can be used for just about any kind of
application and a good framework can reduce the development by an order
of magnitude.

• Frameworks embed design reuse in code which makes them easier for pro-
grammers to learn and apply than other forms of design reuse documenta-
tion.

• They don’t need any special tools other than the normal programming envi-
ronment.

• It is possible to combine frameworks and domain specific languages making
the framework capable of embedding domain knowledge. This allows devel-
opers to save time and money during development.

• Frameworks form a basis for the domain specific language and aids experts
in communicating using a common language. Framework experts also tend
to map a framework onto problems equally.

5.5 Development 27

• Frameworks help coordinate people working on the same project because
the problem domain is divided into objects with well defined interfaces and
specific responsibilities.

• Uniformity reduces the cost of maintenance since programmers can move
from one application to the next without having to learn a new design.

• Application developers can focus on their particular problem domain.

• Frameworks allow rapid prototyping.

• Modularity: Frameworks encapsulate volatile implementation behind stable
interfaces. This improves software quality since the impact of design and
implementation changes are localized.

• Re-usability: Frameworks offer generic components and leverage and store
experience and the knowledge of domain experts. This avoids recreation and
revalidation of common solutions to reoccurring problems which improves the
programmers productivity while enhancing quality, performance, reliability
and interoperability.

• Reuse enables open systems. Developers can use components from different
vendors, which means reuse of interface design.

• Extensibility: Frameworks offer hook methods to extend its stable interfaces.
These methods decouple stable interfaces and behaviour, qualities that are
essential to ensure flexibility.

• Inversion of control: Canonical processing steps are customized by event
handler objects which are invoked via the framework’s reacting dispatching
mechanism. Preregistered object hook methods perform the specific process-
ing on the events.

5.5 Development

Developing frameworks are significantly more difficult than developing applications
and although there exists several techniques for developing object-oriented software
they cannot be directly used when creating frameworks. The limited available
formal techniques, two are presented in section 5.5.4, are mostly theoretical. This
is because many experts believe that frameworks cannot be a result of systematic
design[24], but rather a result of evolution in a bottom up fashion. The development
is informal and performed through an iterative process which requires both domain
and design expertise. Reasons for the iterative development cycle are:

• Domain analysis: Explaining the domain is difficult and mistakes done are
discovered as the system is built, causing iteration.

28 Framework

• The only way to learn what changes is by experience: The framework
explicitly define the parts of the architecture that are likely to change. Com-
ponents allow for this variation and are easy to change, changes to interfaces
and shared invariants are hard.

• Abstractions depend on the original examples: Each example intro-
duced makes the framework more generalized and reusable. Because of the
complexity related to building frameworks there are limitations on how many
examples can be used as templates. New examples with other requirements
causes change in the framework.

One of the greatest challenges is to balance ease of use with theory of the problem
domain while still providing enough features in order to be useful. In practice this
involves finding the reusable design and the hot spots which makes the framework
flexible. Gamma et al.[37] notice that design patterns can be useful in the frame-
work development process and they argue that frameworks using design patterns
are far more likely to achieve high levels of design and code reuse than ones that
don’t use them. The problem is that in order to use patterns one must know them.

A white paper published by Taligent inc.[38] note that from a users perspective an
easy to use framework is one that performs useful operations with no extra effort
on the user. The framework should work with little to no client code and doing
small changes to the default behaviour should create new sophisticated solutions.
If users don’t understand the framework they will build their own solution. This
view is supported by Booch[39] who has observed that a framework will not be
used if the cost of using it is higher than the developers perceived cost of writing
an application without it. This requires a balance between simplicity in interfaces
and the frameworks flexibility. A completely flexible framework can be difficult to
learn and difficult for developers to support. The size of the framework shouldn’t
be too big either and developers should break down larger frameworks into smaller,
more focused ones. These smaller frameworks should be designed to interoperate
which improve flexibility and re-usability.

In order to be successful a framework should be:

• Complete: The framework supports needed features and provide default
implementations where possible.

• Flexible: The abstractions are applicable in different contexts.

• Extensible: Users can easily modify and add functionality by using hooks
provided by the framework.

• Understandable: By following standard design, coding guidelines and doc-
umentation the user interaction with the framework is clear.

5.5 Development 29

5.5.1 Hooks and Templates

An abstract class provides part of the implementation to its subclasses. The meth-
ods that allow for customization are divided based on how they allow this[24]:

• Template methods define the skeleton of an algorithm by leaving some
steps unimplemented. Subclasses must provide the missing functionality.
Each step is defined as a separate method that can be redefined by a subclass,
without changing changing the overall structure.

• Hook methods provide a default implementation which can be overrid-
den by the subclasses. This enables extensibility by allowing applications to
extend stable interfaces. Hook methods systematically decouple the stable in-
terface and behaviours of an application domain from the variations required
by instantiations of an application in a particular context.

The specific methods are characterized according to subjective perspectives. A
method can either be a hook method or a template method - or both, depending
on the contents and the context.
A class that has a template method is called a template class and a class with a
hook method is a hook class. The notions of the hook- template classes are similar
to the methods naming them.
The idea behind the template/hook metaphor is that the template methods in the
template classes invoke hook methods in the hook classes. A hook class can in
principle contain several hook methods , which are invoked in turn by the template
method.

5.5.2 Hot Spots

Fayad et al.[40]. Successful frameworks must identify hot spots, places in the
framework which can be customized. Binding time characterizes the point of time
at which an alternative is selected and bound to the hot spot. This can be done
beforehand by the application developer or at run-time by the user. Each hot spot
allows the user or developer to plug in an application domain specific class or classes
when building a custom application from the framework. The class that is to be
plugged in must be compatible, thus not every class fit into these spots. There are
two interfaces involved, the services that a class must provide(interface called from
the framework) and the ones served (interface called from the custom class) by the
framework to the class. The services the class must provide is represented by the
commonalities between the different possible classes and hence known beforehand.
The ones provided by the framework are often less clearly described. In black-box
frameworks this is not a problem since the framework supplies pre-fabricated-to-fit
classes. The developer selects one of them, possibly modifying them by supplying
some parameters and plugs them into the framework. In a white-box framework
an alternative must be developed as required. This is difficult if the interface to

30 Framework

be called is missing due to the required knowledge about the frameworks inner
workings. The result is that the developer must learn the internals.
Examples of hotspots are unimplemented methods in an abstract class or concrete
methods that are overridden in order to change the default behaviour.

5.5.3 Contracts and Protocols

In object-oriented reuse, a contract is a specification of the obligations and collab-
orations that must be followed by participating objects jointly working together to
achieve a goal[41]. The contract specifies a set of participating objects and their
individual obligations. This involves the type constraints in their method signa-
tures, the semantics of their interface methods and constraints on the behaviour as
well as dependencies between objects. The contract further specify the precondi-
tions required before contract establishment as well as the invariant that must be
maintained by the involved parties.
A Protocol is a specification of an object such as the type of messages that is
possible to send it[25]. The type, which is a protocol by itself, of the arguments
in the message is also important. The interface between objects is defined by the
protocol, and objects that have identical interfaces are said to be interchangeable.
A set of classes that define the same protocol are said to be plug compatible.
From these, complex objects can be created by performing object composition, a
programming style known as building tool kits.
Standard protocols are powerful because of polymorphism. Languages not support-
ing polymorphism use methods with similar but different names. Each language
have combinations of their own unique protocols as well as ones that are used in
other languages. Experienced programmers rely heavily on protocols and new pro-
grammers find it much easier to read and create new programs once the these have
been learned. Standard protocols ensure that new components are compatible with
old ones.
Although contracts and protocols are important for specifying collaborative obli-
gations and interfaces, they also play an important role in communication between
programmers. The shared vocabulary is reusable and aids in learning new classes.

5.5.4 Process

According to Johnson[42] the typical way of developing frameworks is to build an
application in a particular problem domain and divide it into reusable and non-
reusable parts. A second application is developed using as much code as possible
from the first application. The developers notice that the framework obtained from
the first application is not very usable. This is fixed. Then a third application is
developed reusing as much software as possible. Again the developer notice that
the framework is not completely reusable. This is fixed and the iteration cycle
continues.

5.5 Development 31

Based on the observed pattern, Johnson suggest a way to develop frameworks
using two base applications functioning as templates. The two templates should
be similar and illustrate features that need to be supported by the framework.
Common abstractions in the two applications are found and developers figure a
way to decompose them into standard components. The development team should
include people who have already developed applications in the domain. After this
is done the project team is divided into a framework group and two application
groups. The framework group elicits and adds functionality needed by considering
different applications and provide documentation and training . The application
groups reuse as much of the code as possible and provide feedback to the framework
group. The groups should also consider applications that will break the framework
in order to define the limits of the framework.
The number of programmers involved making a framework should be 2-4[38]. If
there are more than 4, the framework should be further split into smaller frame-
works. The reason for this is that the communication pattern between the par-
ticipants become less effective as the team size increase and degrades significantly
when there are more than 4 people. More than one programmer is recommended
unless the single programmer both is an experienced framework developer and a
domain expert. Splitting a framework into smaller pieces and mapping them onto
interconnected teams presents challenges related to communication.
According to the white paper presented by Taligent Inc.[38] the framework devel-
opment effort is divided into four tasks.

• Identify and characterize the problem domain

– Process outline: The problem domain is analysed and frameworks are
identified by the similarities in sub-problems solved by different appli-
cations.

– Examine existing solutions.
– Identify which parts of the problem the framework will solve: The prob-

lems are modelled and abstractions are found.
– Identify key abstractions: Past experiences are used to identify abstrac-

tions and the framework design is initiated. If the developers are novices
in the domain or haven’t developed applications for it, existing appli-
cations should be examined and writing a few applications should be
considered. These applications can be used to identify the abstractions.

– Get input from clients and refine solutions.

• Define the architecture and design

– Design interaction patterns between users and the framework: Devel-
opers determine classes and member functions that users will interact
with directly. Interaction must be as simple as possible, documentation
must provide requirements and constraints in the framework in order
to prevent errors and wrong usage. The framework developers should

32 Framework

strive to reduce necessary client code by providing concrete implemen-
tations, minimize the number of classes that must be derived, minimize
the number of functions that must be overridden and use illustrative
class and function names.

– Provide tools: Tools provide a mechanism to reduce the learning curve
and help manage the framework. These can be big applications with
a high level of functionality or simple executables. The tools can be
documentation tools such as hyperlinked documentation or editors that
modify the framework.

– Apply recurring design patterns.
– Get input from clients and refine solutions.

• Implement the framework

– Implement the core classes.
– Test the framework.
– Ask clients to test the framework.
– Iterate to refine design and add features: The design process is iterative

and beginning with the initial design users determine how the framework
can be improved. Developers should try and refine the framework by
adding more default behaviour and extend the ways users interact with
the frameworks data structures. New features must be implemented,
tested and verified. In this step developers reanalyse the problem domain
refine design by testing, feedback and using their own knowledge.

• Deploy the framework

– Provide documentation. Documentation and code comments are an es-
pecially important part of frameworks. If users don’t understand the
framework they won’t use it. The documentation must clarify which
classes that can be used directly, which classes that must be instanti-
ated and which classes that must be overridden. Users are interested in
solving problems and usually the architectural aspects are less impor-
tant. A variety of documentation is best and which types are normally
dependent on the stakeholders.
∗ At a minimum sample programs should be provided. Examples are

concrete and exemplifies the flow of control. During development
test application must be developed and these can form the founda-
tion for the samples provided. The applications should demonstrate
how to use the framework in different contexts.

∗ Diagrams of the framework architecture.
∗ Descriptions of the framework.
∗ Descriptions on how to use the framework.

– Establish a process for distribution: Developers must plan how the fin-
ished framework will be distributed and supported.

5.5 Development 33

– Provide technical support for the users: The benefits of the framework
can only be reached if users have additional support where answers pro-
vided by the standard documentation is enough.

– Maintain and update the framework. In the early stages of the life cy-
cle most maintenance is related to bug fixing and providing support for
extra features. Later the framework must be updated in order to adapt
to changing requirements. The impact of these on users must be mini-
mized. Constantly changing frameworks will break existing applications
and makes the framework difficult to use. It’s better to add new classes
than to change existing class hierarchies. The same is true for methods.

Although most research involve iterative framework development there are some
systematic approaches. Roberts and Johnson[36] propose using a pattern language
as the main driver behind the development process. Each pattern consists of:

• Name.

• Context.

• Problem description.

• Forces affecting the pattern.

• Solution and rationale.

• Implementation instructions.

• Examples and related patterns.

The patterns are related to one another and they are overlapping. The order in
which they are applied can vary. Here the author shortly summarize the patterns.
The link between the patterns are showed by numbers in parenthesis.

1. Three examples: The developer has decided to build a framework and the
problem is how one should start developing it. The major force behind this
pattern is the notion that people generalize from concrete examples and that
having a framework, even if it only marginally help, ease development. The
solution to the problem is that three applications should be developed. The
argument for this is that frameworks cannot simply be created by sitting
down and thinking about the problem, very few people have the insight to
come up with proper abstractions. Domain experts won’t understand how
to codify the abstractions in their heads and programmers won’t understand
the domain well enough to derive the abstractions. Most of the time the ab-
stractions won’t become apparent until after the framework has been reused.
The implementation can be done in two ways. Firstly one can simply build
three applications, making sure that code and people are carried over from
one project to the next. People tend to build applications without trying to

34 Framework

reuse code until they suddenly realize they should build a framework. Since
they already have developed the three applications they often do a good job
at building the framework the first time. Secondly one can prototype several
applications without creating industry strength version of them. People using
the framework have to refactor it but the result is a lot closer than using a
single application as a starting point. The development of the applications
only require standard development techniques. The developer should strive
to create a system that is flexible and extensible. The initial version of the
framework will probably be a white-box framework(2).

2. White-box framework: The second application is under development and
the problems is choosing between inheritance or polymorphic composition
as a reuse technique. Inheritance results in strong coupling between com-
ponents, but lets the developer modify them which involves programming.
Polymorphic composition requires the developer to know what is going to
change. The solution is to use inheritance by generalizing from the classes in
the individual applications using patterns like template methods and factory
methods to increase the amount of reusable code from the superclass. The
reason for this decision is that inheritance is a straight forward way of allow-
ing users to change code in object-oriented environments and new classes are
simple to create from the existing ones. The semantics of the inheritance is
not important, just the ability to reuse code and this is enough to start using
the framework, which allows the developer to see what is likely to change.
Later the framework can be converted to a black-box framework by encap-
sulating code and parametrizing it. At this point the developer should have
the proper insight to point out which parts that that are likely to change
and which parts that are not. The implementation relies on programming-
by-difference. Each time a class similar to one used before is developed a new
subclass is created and their common code is stored in the superclass. After
a couple of subclasses are created the developer will realize which parts are
stable and these are then extracted into an abstract class. The same is true
for methods where similarities are collected into one method and moved into
an abstract class. As the development progresses component libraries(3) are
created. Black-box frameworks(4) are similar but use a different context.

3. Component library:The developer is creating the secondary and subse-
quent examples based on the white-box framework(2). The problem is how
one avoids writing similar objects for different framework instances. The
forces behind this are that using the framework requires unnecessary effort
since components are easier to use and upfront it is difficult to decide which
components users will need. The solution is to start with a simple library
containing obvious objects and add new as required. The reason for this so-
lution is that once new objects are added some will be problem-specific and
never be reused and will eventually be removed from the framework. These
will however provide insight into the type of code users must write. The ones
that are reused will form a basis for major abstractions within the problem

5.5 Development 35

domain and should be converted into objects in the framework. These objects
are the concrete subclasses of abstract classes. The component library can
be created by accumulating all of the concrete classes created for the various
applications. In the beginning all classes are put in the component library.
Classes that are being consequently reused by applications should be included
in the component library. Over time a great amount of the components will
be refactored into smaller ones and disappear. As components are added to
the library the developer will start to see recurring code that is shared among
the components. This is the time to start looking for hot spots(4), places in
the code that change from application to application.

4. Hot Spots: The developer is adding components to the library and discov-
ers that code is being rewritten and wants to eliminate common code. The
force behind the solution is to collect changes in a few locations making them
easier to track down and change. This can be done by separating mutable
code from immutable code and encapsulating the immutable code within ob-
jects where possible. Reusing objects are easier that reusing methods. When
this code is encapsulated the variation can be captured by composing objects
rather than creating subclasses and writing methods. This will simplify the
the reuse process and show users where the framework developer expect the
framework to change. Good names makes the understanding of control flow
less important for understanding the framework. The implementation relies
heavily on what changes and refer to design patterns such as the ones pre-
sented by Gamma et al.[43] to find solutions to these challenges. The creation
of hot spots often result in finer grained objects(6) causing the framework to
become more black-box(7).

5. Pluggable objects: The developer is adding to the component library and
most of the subclasses differ in trivial ways and she wants to avoid having
to add these kind of subclasses. Adding new classes increase the complexity
of the system and using methods with complex parameters are difficult to
understand and use. The solution is to design adaptable subclasses that can
be parametrized with messages to send, index to access, blocks to evaluate or
other characteristics that distinguishes a trivial subclass from another. Cre-
ating new classes that implement these small differences is overkill. Instead
one should add parameters to the instance creation protocol which aids in
reuse of the original class without resorting to programming. If the differ-
ence between objects are constants, symbols or class references the developer
could create instance variables by passing a reference to the objects construc-
tor. If the variation is a small piece of code block this can be passed to the
constructor and stored as an instance variable. Pluggable objects are one
way of encapsulating hot spots in the framework and the parameters can be
supplied by a builder(8).

6. Fine-grained objects: The developer is refactoring the component library
in order to improve reusability and is uncertain when to stop dividing ob-
jects. More objects in the system obfuscates understandability but simply

36 Framework

choosing objects that implement the required functionality is easier to use
since no programming is required. The solution is to break objects into
smaller ones until dividing the object would result in objects without indi-
vidual meaning in the problem domain. Frameworks will be used by domain
experts and the framework will be supported by tools creating the compo-
sitions automatically. It is therefore more important to avoid programming.
Implementing this solution involves finding classes in the component library
that encapsulate multiple behaviours and are candidates for further decom-
position, replacing the original with the decomposed objects that recreates
the behaviour. Code duplication and the need to create additional subclasses
for each new application is avoided. As the objects become more fine grained
the framework becomes more black-box(7).

7. Black-box framework: The developer is creating pluggable objects by
encapsulating hot spots and creating fine-grained objects. The problem is
choosing between inheritance and polymorphic composition as a reuse tech-
nique. The same forces apply here as in the white-box framework(2). The
solution is using inheritance as an organizational tool of the component li-
brary but using composition of components when creating applications. The
inheritance will create a taxonomy of the different parts of the library easing
browsing. Composition allows for maximum flexibility. When in doubt use
composition. The reason for this is that using components are a lot easier
than inheritance since the user doesn’t need to have intricate knowledge about
the framework. The reason for using inheritance as an organizational tool is
that people like to organize things into hierarchies. The implementation is
performed by converting inheritance relationships into component relation-
ships. Common code is pulled out and encapsulated in new components.
The previous patterns will provide techniques for locating and creating new
component classes. Black-box frameworks can be supported by builders(8).
These can browse the framework and compose objects graphically.

8. Visual builder: The developer has a black-box framework and objects can
be created by simply connecting objects of existing classes. The scripts con-
necting these classes are similar where only the objects involved being dif-
ferent and the developer wishes to simplify the creation of the scripts. The
compositions of the objects are convoluted and difficult to understand, build-
ing tools are expensive and the users are rarely programmers. The solution
is to make a graphical program that lets the user specify the objects that
the application will consist of. After the user has combined the objects the
application is automatically created. The reason for this is that the code is a
script which is simple to create automatically. The graphical interface is user
friendly and uses tools that are familiar to the user. The implementation
differs and can be an application entirely consisting of dialogue boxes and
browsers, but usually graphs are used to represent the complex relationships.
The builder is a visual programming language and requires the developer to
create language tools(9).

5.5 Development 37

9. Language tools: The developer has added a builder(8) that creates complex
composite objects and wonders how to inspect and debug these objects. The
tools available are inadequate for dealing with specialized compositions and
building good tools is expensive. The solution includes building specialized
inspect and debugging tools. The implementation involves finding the por-
tions of the framework that are difficult to inspect and debug. Usually this
involves portions where patterns such as wrappers and strategies are used to
compose objects. The tools should allow the user to evade portions of the
composition that are unimportant.

Another systematic theoretical method of creating frameworks is presented by
Koskimies and Mössenböck[44]. The goal of this method is to avoid early com-
mitment to an application specific architecture and classes. This allows for usage
of general design patterns in the early stages of development.
The design is performed in two phases. Firstly problem generalization is done by
using a single example problem which is generalized into its most general form
aided by answering the following questions:

• Which concepts of the problem domain exist in variants and should be treated
uniformly?

• Is it possible to find a concrete concept that can be generalized into a more
abstract one. thus making the framework reusable in situations for which it
was not originally intended?

Secondly the framework design is considered in reverse order, where implementation
starts at the most general level from which new and more refined frameworks
are obtained. The result is a hierarchy of more refined frameworks where design
experience and domain knowledge is used to obtain the hot spots in each framework.
For each framework the following questions are asked:

• Which parts of the system might change?

• Where might a user want to hook custom code into the framework?

The last step is to implement the original example using the resulting framework,
demonstrating that the framework is applicable in this representative case.

5.5.5 Implementation

Frameworks take advantage of all three distinguishing characteristics of object-
oriented programming languages[24]:

• Data abstraction: Represents an interface behind which implementations
can change.

38 Framework

• Polymorphism: Enables the ability for a single variable or procedure pa-
rameter to take values of several types. This enables mixing and matching
of components, lets an object change its collaborators at runtime and makes
it possible to develop generic objects that can work with a wide range of
components.

• Inheritance: New components are easy to make since only the differing
parts needs to be implemented.

Standard interfaces make it possible to mix and match components and to build
a wide variety of systems from a small number of components. New components
that meet these interfaces will fit into the framework. The component designers
automatically reuse the design of the framework since they must adapt to the
interface standard. As mentioned in section 5.5.3 protocols define interfaces and
it is important to standardize them. Johnson and Foote[25] have developed a set
of rules for helping find standard protocols. The following rules help minimize
the number of different names and maximize the number of names shared by the
classes, making the interfaces easier to learn:

1. Recursion introduction: If one class communicates with a number of other
classes, the interface to each of these should be the same. An operation
implemented by performing a similar operation on the components of the
receiver should have the same name so readers of the program note their
connection. The result is that a method for a message sends the same message
to other objects. If the other methods are in the same class the method
is recursive even if there are no real recursion, hence the name recursion
introduction. This rule can help decide the class in which an operation should
be a method.

2. Eliminate case analysis: Checking the class of an object is almost always
a mistake. Class checks should be replaced with messages sent to the object
whose class is being checked. Methods must be created in the class candidates
so they can respond to the message. Case analysis of the values of variables
is usually a bad idea also and it would be better to have a separate class
for each kind of variable. Eliminating case in accessing instance variables is
difficult but just as important.

3. Reduce the number of arguments: Messages with many arguments are
hard to read. With the exception of the constructor, a message with half a
dozen arguments should be redefined. A message with less arguments is more
likely to be similar to some other message thereby increasing the possibility
of giving them the same name. The number of arguments can be reduced
by breaking the message into several smaller ones or by creating a new class
that represents a group of arguments. Often there will be several kinds of
messages that pass the same objects. This set of objects can be replaced by
a new object.

5.5 Development 39

4. Reduce the size of methods: Well designed methods are usually small
and classes only consisting of small methods are easier to subclass. Large
methods probably need to be broken into pieces. Often a method is split
when a subclass is made. Most of the inherited method is correct but one
part needs to be changed. Instead of rewriting the whole method it is split
into pieces and the one piece that has changed is redefined. This makes the
superclass even easier to subclass.

The important classes in the framework are usually abstract and the framework
often contains a component library that contains concrete subclasses of these. Each
object in the framework is described by an abstract class which is to objects what
frameworks are to programs, a design[29]. The abstract classes are places where
common code reside and they provide a means of creating standard interfaces that
subclasses must follow and thereby offer flexibility to the software that use them.
Abstract classes can have three types of methods:

• Abstract methods which are empty interface skeletons that the subclasses
must provide implementations for.

• Template methods (ref. section 5.5.1) which are abstract algorithms imple-
mented by abstract operations. These are partially implemented.

• Base methods, hook methods (ref. section 5.5.1), that are fully implemented.

Creating abstract classes are difficult, but one possibility is to generalize from a set
of concrete classes[42]. Create an empty superclass and move common code and
variables from subclasses into to the new superclass. Rename functions to give the
classes the same interface. The code in the subclasses are usually similar but not
the same. Abstract out the differences and move the rest to the superclass. The
result is that subclasses contain more methods, but these are smaller. Look for
commonalities and represent each idea once. Breaking large functions into smaller
ones will help reduce bugs related to reusability. This holds true for classes as well,
and large classes should be broken into smaller classes or components. Multiple
inheritance can be simulated by dividing objects into smaller pieces which in many
cases improves the design of the system. It is important to use descriptive names
for classes, functions and variables in order to increase readability and it helps users
notice connections.
The ability to perceive generalization is often related to experience in a domain
and in general programming. A sign that abstractions have been found is that code
size decreases. Similar to the the rules for finding protocols, Johnson and Foote[25]
propose a set of rules for finding abstract classes:

1. Class hierarchies should be deep and narrow: Well developed class
hierarchies should be several layers deep. Shallow hierarchies are evidence
that change is needed but not how. The obvious way is to create new su-
perclasses from a set of common classes. The classes are likely to provide

40 Framework

different methods for a specific message, but it is often possible to split a
method and implement parts of it in both the superclass and the subclass.

2. The top of the hierarchy should be abstract: Inheritance for the sake
of generalization or code sharing is a good indicator for the need of a new
subclass. The methods and variables inherited from the superclass can be
moved into its own abstract class. The abstract class becomes the new parent
class of both the original superclass and the new subclass.

3. Minimize access to variables: The main difference between abstract and
concrete classes is the presence of data representation. A class can be made
more abstract by eliminating the dependence of the data representation. One
way to do this is to access all variables by sending messages. Data represen-
tation can be changed by redefining the accessing messages.

4. Subclasses should be specializations: Inheritance can be used in differ-
ent ways, but the ideal is specialization. The elements of the subclass is seen
as elements of the superclass. Usually the subclass will not redefine any of
the inherited methods but rather add new ones. A special case is creating
concrete classes from abstract ones which is different from subclassing con-
crete classes. The abstract class works as a template forcing subclasses to
implement certain methods. The abstract class may also implement some
methods in an overly general fashion, so subclasses must redefine them. If a
superclass can be switched with a subclass in all situations, the subclass is a
specialization. There are cases where subclasses are not specializations and
these occur in cases where the superclass is poorly designed. It might take
a great deal of work to determine a proper design. In projects with strict
deadlines the trade-off may be that the developer decides to use this poorly
designed superclass and generates subclasses that might be more general than
their parent.

Some programming languages, such as Java, separate interfaces from classes[24]. In
these languages it is possible to describe an entire framework in terms of interfaces.
These systems however can only specify the static aspects of an interface and lack
the collaborative model of object interaction which are important in frameworks.
The consequence is that Java frameworks tend to have both an interface and an
abstract class defined for a component.

5.6 Documentation

A good framework relies on good designs and implementations, but this is far from
enough. If the developers fail to convey their knowledge to maintainers and users
the framework is useless. This implies that in addition to commenting code and
using descriptive names accurate and comprehensible documentation is crucial to
the success of the framework. The lack of good documentation is a major reason
why many frameworks fail[45].

5.6 Documentation 41

In order to fulfil their purpose, framework documentation must convey[46]:

• The purpose of the framework: A framework is a reusable design for
solutions to problems in a particular domain. The problem domain itself must
be described. This allows user to filter out frameworks that are inappropriate
for their problem domain.

• How to use the framework: The documentation should show how to
build applications. Most users want to know as little as possible about the
framework and therefore they are not interested in the description of the
design.

• The detailed design of the framework: The design includes the differ-
ent classes in the framework as well as how instances of these collaborate.
Interconnecting objects without understanding how they work is possible,
but understanding the details unleash all the benefits associated with using
frameworks (ref. section 5.4.2).

5.6.1 Stakeholders

One of the difficulties in documenting software is the fact that it must address differ-
ent audiences that require different kinds of information. Butler and Dénommé[47]
identify four types of stakeholders that framework documentation must address:

• Regular re-user: Customize the framework in ways expected by the devel-
opers. The documentation must address each expected customization.

• Advanced re-user: Customize the framework in unexpected ways by com-
bining the hot spots(ref. section 5.5.2) in original ways. The documentation
must convey the principles and constraints of the hot spots and how these
collaborate.

• Framework developer: Evolves or generalizes the framework in order to
extend its range of applicability and flexibility. In addition to the other issues
of documenting the framework, architectural information must be conveyed
by using similar techniques as in standard software development.

• Developer of another framework: Wants to learn the principles behind
the flexibility of the framework. The design patterns must be documented.

5.6.2 Knowledge Presentation

Documentation related to software artefacts are divided into two categories based
on the intended purpose of the documentation[27][48]:

42 Framework

Prescriptive
How to use the framework. The goal of this type is to provide knowledge on
common issues related to the domain of the software and how they are solved

Descriptive
How is the framework built, i.e information related to the software archi-
tecture design. The goal is to transfer knowledge from the developers to
advanced users seeking to either analyse, maintain, modify or test the soft-
ware.

5.6.3 Documentation practices

Finding a formal way of documenting frameworks has proven to be difficult. Studies
have been performed to evaluate the usefulness of different techniques, but these
are mostly pragmatic and case sensitive. Some of the techniques that has proven
useful in different contexts are shortly described here. The list is based on the
short survey of methods in [47]:

• Example application: The framework is documented through source code
for a working example application. Often this is the only documentation
available to users. In order for this to be useful there should be several graded
example applications illustrating the different hot spots (ref. section 5.5.2)
in the framework. This technique is often viewed as minimal documentation
and it is often used together with other documentation such as cookbooks.

• Recipe: Typical examples of reuse is presented as recipes. These are informal
and often presented in natural language, supported by pictures and source
code. A recipe often follows a certain structure with sections such as purpose,
individual steps, cross references to other recipes and source code. Recipes
are used by cookbooks.

• Cookbooks: A cookbook is a collection of recipes often supported by a guide
to the contents either in form table of contents or by using the first recipe as
an overview for the cookbook.

• Pattern Language: Informal pattern languages can be used for document-
ing frameworks using natural language. These must not be mistaken for
design patterns such as those presented by Gamma et al. [43]. The patterns
are based on the cookbook approach, where recipes are standardized by cre-
ating them using an Alexandrian form[49], and renamed to patterns. Each
pattern consists of a problem description, detailed discussion of ways to solve
the problem and a solution summary. Their organization follows a spiral ap-
proach, where the first pattern is an overview of the framework concepts and
an introduction to the other patterns. The most frequently used patterns
are presented early. Patterns including details related to collaboration and
architecture are delayed as long as possible.

5.6 Documentation 43

• Interface Contract: Refer to section 5.5.3.

• Design Pattern: Design patterns present solutions to common design prob-
lems. They describe the problem and its context, the solution and the con-
sequences of applying it. Problems might be illustrated by examples. The
solution is presented by describing objects and classes participating in the
design, as well as the contracts (ref. section 5.5.3) that must be followed. A
pattern may be supported by collaboration diagrams and concrete example
solutions. An important part of the pattern description is analysis of benefits
and trade-offs related to applying the pattern. In software documentation
design patterns are effective at conveying micro-architectures[50], the details
of interfaces and implementations of components, their composition and how
they interact.

• Motif: Motifs are created using a specific template containing the name and
intent, reuse description, steps involved in customization and cross references
between motifs, design patterns and contracts. Design patterns presents the
architecture and the contracts(ref. section 5.5.3) provide details about col-
laborations, dependencies and obligations between the participating objects
relevant to the motif.

• Framework Overview: The context of the framework is the first step help-
ing users reuse frameworks. Here the domain jargon is defined and the scope
of the framework is presented such as what it solves and which parts are flex-
ible. Example applications and an overview of the rest of the documentation
can be presented here. The framework overview is often the first part in a
cookbook.

• Reference Manual: An object-oriented reference manual describes each
class. Normally the description involves presenting the purpose, responsibil-
ity, the role of its data members and information about its methods. Method
descriptions involve presenting its functionality, its pre and post conditions
and affected data members. In framework documentation this can be infor-
mation about what role a class or method play in providing flexibility for hot
spots.

• Hooks: Hooks provide solutions to well known problems[51]. They explain
how and where a design can be changed, the requirements which must be
fulfilled in doing this as well as constraints that must be followed. Together
these explain the effects imposed on the system by the hook. A hook de-
scription usually consists of a name, the problem solved by the hook, method
of adaptation, parts of the framework affected by the hook, other hooks re-
quired in order to use this hook, the components that participate in the hook,
constraints and comments. Hooks can be organized using hot spots, and a
hot spot tends to have several hooks within it.

44 Framework

5.6.4 A process

Although there exists a set of useful documentation practices (ref. section 5.6.3)
there is a lack of well defined processes for documenting frameworks. Some of the
reasons for this is a lack of standards, cost related to the time-consuming effort
of creating documentation, the need for reusable documentation and the need to
satisfy the different stakeholders (ref. section 5.6.1) among others.
Aguiar and David[27] propose a process driven by a set of patterns. The patterns
are based on the Alexandrian form[49] and the result of applying a pattern is a
documentation artefact. The goals of the pattern language are:

• Help developers document frameworks systematically.

• Increase awareness of typical problems faced when documenting frameworks.

• Expose trade-offs between cost, quality, detail and complexity.

• Provide practical guidelines on how to balance the trade-offs by finding the
best combination of documents, activities and tools to the specific context at
hand.

Figure 5.1, taken from the original article, gives an overview of the patterns involved
and how they are interconnected.

Figure 5.1: Documentation patterns and their relationships

5.6 Documentation 45

As figure 5.1 shows, the pattern language describes a path commonly followed
when documenting a framework. The relationship between the patterns form a
documentation skeleton which is organized similarly to the patterns in the pattern
language (ref. section 5.6.3). It also follow the recommendations given by Johnson
(refer to the introduction of 5.6.3).
Here a short summary of each pattern in figure 5.1 is given:

• Documentation roadmap: In order to satisfy all stakeholders (ref. sec-
tion 5.6.1), the documentation that comes with frameworks contain a lot of
information presented and organized in different ways and at different levels
of abstraction. The developers want to present this information in a user-
friendly way where readers quickly can find the information they need. The
solution is affected by the stakeholders and the way they reuse the frame-
work. The problem can be addressed by providing a roadmap for the rest of
the documentation, which reveal its organization and how different pieces of
information fit together. This helps readers quickly find the entry points and
the information they are looking for. The roadmap help navigation in both
directions, enabling the reader to notice connections. In order to be effective
the roadmap should be task-oriented and provide:

– Topics organized by audience, kind of task and order of use.
– Emphasize the main entry points and subordinate the secondary ones.
– Links between the topics and the roadmap. The importance of each of

these are dependent on the type of framework, the type of audience being
addressed, the kinds of reuse explicitly supported in the documentation
and which tasks are deemed most important.

• Framework overview: In order to be effective the documentation needs to
convey information on the purpose of the framework, how to use it and how
it is designed and implemented. In addition to this the framework must cus-
tomize the presentation based on the type of stakeholder it wishes to address.
The developers must provide a quick, but precise summary of all this infor-
mation to all stakeholders so they can early on evaluate if the framework
fit their needs. The kinds of information presented is affected by differing
requirements related to completeness of information and the intended stake-
holders. It is important that the information is easy to understand. This
can be achieved by describing the problem domain and the range of problems
the framework was designed to solve. Additionally a common vocabulary for
the framework should presented. This can be done by defining a basic vo-
cabulary supported by a rich set of concrete examples. In combination these
describe the range of problems the framework covers and which parts that are
flexible. The framework overview should refer and link to graded examples,
documentation roadmap and cookbook and recipes.

• Cookbook and recipes: In order to achieve effective reuse, explanatory
how-tos are important. Documentation needs to be effective in guiding users

46 Framework

to information that helps them learn using the framework. How the docu-
mentation should do this is affected by the respective stakeholder (ref. sec-
tion 5.6.1), the correct balance between prescriptive and descriptive infor-
mation(ref section 5.6.2), the most commonly used tasks in the framework,
requirements for completeness, cost-effectiveness and ease of usage. The ar-
ticle authors propose creating one recipe for each framework customization
organized in a cookbook. The cookbook and recipes can be switched for other
approaches such as design patterns (For an explanation of recipes, cookbooks
and design patterns refer to section 5.6.3). The most important part of the
documentation is the kind of information conveyed. Mostly this should be
prescriptive information (ref. section 5.6.2) that instructs users how to cus-
tomize the hot spots(ref. section 5.5.2) in the framework. In addition ar-
chitectural constructs and design details should be explained briefly when
necessary. The rationale for this is that the best documentation for novice
users are the ones that provides detailed instructions on using a specific fea-
ture without describing the theory behind it in detail. This implies that large
parts of the framework must be created for this kind of use. The understand-
ing of the theory behind the frameworks design and architecture grows with
usage. Since recipes focus on how to use the framework it is useful to enhance
their usefulness by referring to related customizable points and source code.

• Graded examples: Information conveying the potential areas of usage are
of great importance to new users. These users are task oriented and the
developers must convey graded and concrete information that helps poten-
tial users evaluate the appropriateness of the framework and help new users
create artefacts from the framework with minimal effort. Therefore documen-
tation must be task-oriented, convey information appropriate for the different
stakeholders (ref. section5.6.1) and be cost-effective at the same time. The
pattern propose providing a small but representative set of graded training
examples to illustrate the problems that the framework solve as well as its
features. Each example should illustrate a single new way of customizing
the framework and the complexity of the examples should differ. The com-
plete set of examples should cover the entire framework. Usage of hypertext
links in source code connecting the example with useful information such as
related examples as well as executable code are valuable for the overall un-
derstanding of the framework. Concrete examples are a perfect complement
to documentation that more abstractly conveys the same kind of information.
They also help the understanding of the flow of control between the object
instances. By providing graded examples the information is separated based
on the stakeholders framework expertise, helping both novices and experts.

• Customization points: The users need information on how to customize
the framework and the documentation must be organized in such a way that
it clearly convey which parts of the framework are customizable and how
the customization is performed. How the information should be conveyed
depends on the customization task imposed by the framework, the correct

5.6 Documentation 47

balance of prescriptive and descriptive information, the kinds of stakeholders
involved, the need for complete information and easy to use documentation.
In order to provide this the documentation should include a list of all the hot
spots and for each one in detail describe the hooks(ref. section 5.6.3) and the
hot-spot subsystem (inheritance or object composition) that implements the
flexibility. The list of customization points should be organized by different
criteria in order to increase documentation usability. The lists helps users
evaluate the suitability of the framework with regard to their problem domain
and can do so with more confidence.

• Design internals: Advanced usage of the framework may not be well enough
documented and therefore information regarding the design the framework
must be available. As with the other patterns it is important to effectively
convey this information. The documentation must inform users of the un-
derlying principles and the framework’s basic architecture, balancing the de-
scriptive and prescriptive information while minimizing the design informa-
tion complexity. This can be done by providing detailed information about
the design internals of the framework, especially the parts involving hot spots.
The information can be presented as design patterns (ref. section 5.6.3) or
source code among others. Documenting architectures is difficult and time
consuming.

48 Framework

Chapter 6

Object Recognition

The wide range of possible applications for object recognition has resulted in an
area where extensive research has been made. The main problem is that of the
generic vision problem:
"Given a sequence of images, for each pixel determine whether it belongs to some
particular object or other spatial construct, localize all objects in space, detect and
localize all events in time, determine the identity of all the objects and events in the
sequence, determine relationships among objects and relate all objects and events
to the available world knowledge."[52]
The following sections give a definition of object recognition and the concerns that
must be accounted for in order to use this technology in real world applications. The
end of this chapter briefly introduces the method originally used in the framework.
The chapter informally answers research questions Q8-Q10 in section 2.1

6.1 Definitions

6.1.1 Object Recognition

Object recognition is classified as a subtask of computer vision, a field that covers
core technology for automated image analysis enabling computers to see. The goal
of this subtask is to identify one or several pre-defined learned objects or object
classes in one or more images[53].

6.1.2 Correctness

In order to get measurable quantities of how well the object recognition works it’s
important to elicit requirements and constraints. Recognition in the framework is
considered correct when it fulfils the requirements in the following list set forth by
Treiber and Treiber[54], where the values are domain specific:

50 Object Recognition

• Accuracy: The object position must meet a certain accuracy. This might
be error bounds that must not be exceeded.

• Recognition reliability: A constraint on the error rate, i.e. the number of
false positives, must be met.

• Invariance: The method used for recognition must be insensitive to some
kind of variance. The choice of algorithm should strive to maximise inter-
class variance while minimizing intra-class variance. The introduction of
variance may be a part of the image acquisition process as well as or derived
directly from the objects themselves. The application determines what kinds
of variance the recognition scheme has to cope with:

– Illumination: In grey scale images illumination strength, angle and
colour affects image intensity. Regardless of illumination the object
should be recognized.

– Scale: The area of pixels in the image belonging to the object varies.
Often this is a result of the distance between the object and the image
sensor. The algorithm used should compensate for this variability.

– Rotation: The rotation of the object is often not known. The system
should be able to determine this.

– Background clutter: Images may show more than just the object. Recog-
nition should be unaffected by this.

– Partial occlusion: In some cases the whole object might not be visible
in the image. Recognition should to some extent be able to handle this.

– Viewpoint change: Images are often 2D representations of objects lo-
cated in 3D space. 2D appearance in images strongly depend on the
position of the image sensor relative to the object. Invariance to this
property is desirable but this is impossible for arbitrary shapes. Partial
invariance is possible.

6.1.3 Performance

Performance can in the context of object recognition be interpreted as a measure
of how well the recognition performs in terms of recognition(i.e. number of false
positives), how fast the algorithm is expressed as asymptotic notation or expressed
as how much time has passed between the recognition is started until it
finishes measured in seconds. The author will use the last of these possible
interpretations. The performance is used in pragmatic terms where the measure
is device dependent. The author will use the Google Nexus S as a benchmark(ref.
appendix A).

6.2 Taxonomy 51

6.2 Taxonomy

In the general case object recognition, as the extension of the generic vision prob-
lem, has been proven computationally intractable by Tsotsos[55, 56] and Parodi et
al.[57]. They observe however that depending on the size of the input, bounded
visual search or small task guidance can turn an exponential time complexity vision
problem into a linear one. This property has led to significant effort into devel-
oping approximation algorithms that solves specific problems, but not optimally.
The different solutions can roughly be divided into two categories based on how
information is extracted from the image[58, 54]:

• Global, appearance-based methods: Algorithms that aims at recogniz-
ing the complete object. These methods usually learn from sets of images
where the object is present. Common global features are extracted and sta-
tistical classification techniques are applied.

• Local, feature-based methods: Focus here is on keypoints, areas in the
image that have certain unique characteristics. Extracting these usually im-
plies three steps:

1. Extract and describe local features using models and test images.
2. Select image features that match the model.
3. Elect the best subset of keypoints (called inliers) that present the highest

correlation with the model.

The set of keypoints from the election process represent unique properties
linked with the object in the frame, from which recognition can be performed.

Treiber et al.[59] argue that although global recognition methods generally are eas-
ier to implement and yield better performances than local ones, they are not well
suited for real world applications. The global methods suffer from lack of discrimi-
nation and can only classify clearly distinct objects. Further strict quality require-
ments related to image segmentation and removal of clutter (e.g. background) make
these methods unsuitable in cases where control over the environment is limited.
Local recognition models on the other hand generally perform better in uncontrol-
lable environments. The reason for this is their invariance to illumination changes
and background clutter as well as being able to cope with intra class variance. This
comes at a price though, higher computational complexity.

6.3 Conceptual Models For Local Object Recog-
nition

The overall process of performing automated object recognition involves several
steps which can be divided into subtasks. These subtasks often cross into other

52 Object Recognition

areas of computer vision and are therefore applicable in fields outside local object
recognition[53]. The following list gives a short overview of the subtasks involved
for performing local object recognition.

• Pre-processing: Before the image can be used there may be certain require-
ments needed before the computer vision method can be applied. Examples
are re-sampling or noise reduction.

• Feature extraction: Different feature extraction algorithms are used to
obtain information from the image. These can be global features such as
lines, edge ridges or more complex ones such as texture, motion or local
features such as corners, blobs and points.

• Detection/Segmentation: Here decisions are made if points or regions in
the image contain information that is relevant for further data extraction.
Typical examples are selection of interest points or segmentation of image
regions that contain a specific feature of interest. This step is used to remove
irrelevant data and make the dataset smaller.

• Model generation: Models are created using techniques specific to the
recognition scheme. These can be based on statistical data, complex 3D
models or simple ones where the model is created based on information ex-
tracted from a single image. The models are stored in a database and used
to determine if a specific object is present in an image.

• High-level processing: The segments are used to extract a model which
forms the basis for the specific task performed by the application. Examples
of tasks are verification that data in the model fit specific assumptions, clas-
sifying the model as being a specific object, the model being an object that
fit into a predefined category or comparing different views of the same object.

• Decision making: Here the final application decision is made. Decisions
can be if the model(s) pass criteria set by the application or if a specific object
is recognized.

These subtasks can be divided into three processes: Information extraction, model
creation and matching. Conceptual models of how these processes relate to the
subtasks are given in figure 6.1 - 6.3. The models depicts a pipeline architecture[60],
a sequential process where each subtask is considered a dedicated unit that solves
part of the problem, commonly used in image processing[61, 62].

Figure 6.1: A model of image information extraction

6.3 Conceptual Models For Local Object Recognition 53

Figure 6.1 shows how an image, fpx,yq, first is preprocessed before features in the
image are being extracted. These features are either being enhanced by adding
context information or removed by filtering. The result from these steps create a
model of the unknown object, U , which can be used as a model in itself, used to
match against a database of known objects or used further in construction of a
model. A possible scenario of further model construction is shown in figure 6.2,
where several unknown objects, Ui, are used to create one object model using
a model generator (High-level processing). The framework in this thesis uses a
variant of this technique.

Figure 6.2: A possible paradigm for creating object models using several 2-
dimensional images

A possible model for the matching process is shown in figure 6.3. The matching
(High-level processing) is preceded by the information extraction process (figure
6.1). The Unknown object, U , and pre-existing database models, Mi, are fed into
the matcher. The final result, ripU,Mq, contains the decision made in the last step
where an answer to the original query is given.

Figure 6.3: A model for performing recognition using an image with a collection of
object models

54 Object Recognition

6.4 The Current Framework Solution

The object recognition currently implemented in the framework (from the spe-
cialization project[63]) is based on a solution developed specifically for devices
with limited computational power developed by Revaud et al.[64]. Information
extraction is done by using local recognition methods and models are created by
performing linear combination of two views of the object.

6.4.1 Information extraction

The recognition method presented by Revaud et al. does not pose any limitation on
technique used for information extraction. However the implementation only sup-
ports the SURF[65] keypoint detector and description extractor, the same method
used by the original authors. The main reason for this choice is SURFs invariance
to skew, anisotropic scaling and partially perspective effects invariability.

SURF keypoint detector

Keypoint detection, also known as feature extraction, is in SURF based on convolv-
ing the input image with a Hessian matrix in order to find points of interest, also
known as blobs, or in the case of extraction; keypoints . Convolution is a common
used technique in image processing. When performed in the spatial domain the
process is equivalent to moving a 180� rotated filter (mask. here: Hessian matrix),
wpx,yq, over the image, fpx,yq, and calculating the sum of the products at each
location, resulting in a new processed image[66]:

wpx,yq
fpx,yq �
a̧

s��a

b̧

t��b

wps, tqfpx�s,y� tq (6.1)

At a given point x=(x,y) in the image I, the hessian matrix H(x,σ) in the point x
using scale σ is defined as:

Hpx,σq �
�
Lxxpx,σq Lxypx,σq
Lxypx,σq Lyypx,σq

�
(6.2)

where Lxxpx,σq is the convolution of the Gaussian second order derivative B
2

Bx2 gpσq
with the image I at point x. This is similar for Lxypx,σq and Lyypx,σq. The
result of convolving the image with the mask is that regions exhibiting sudden
variations in pixel intensity when moving to one of their neighbouring pixels are
highlighted by the mask indicating object edges[67], keypoints. Figure 6.4 shows
that the different gaussian masks highlight different features. The combination of
these in (6.2) creates a filter that highlights horizontal, vertical and diagonal pixel
changes, edges.

6.4 The Current Framework Solution 55

SURF exploits the determinant of (6.2) to determine the scale of each keypoint.

detpHapproxq �DxxDyy�p0.9Dxyq2 (6.3)

Dxx, Dyy and Dxy in (6.3) are the approximations of the Gaussian second order
derivatives depicted in figure 6.4. The value in front of Dxy is a weight used to
simplify the calculation. The magnitude of the determinant gives the level of change
at that specific point. If (6.3) is zero the property of the determinant dictates that
either two rows or two columns are equal[68]. This means that there are no edges.
Big or small values indicate sharp edges. Determining the scale of these changes
are done by applying masks of different sizes to the image. For comparison reasons
the filter responses are normalized with respect to their mask size.

Figure 6.4: Approximate Gaussian second order derivatives. Left to right: B
2

By2 gpσq,
B

2

Bx2 gpσq, B
2

BxBy gpσq. Grey regions equals zero.

SURF descriptor extractor

The SURF descriptor extraction process consists of 2 steps:

1. Fixing a reproducible orientation based on information around the blob.

2. Construct a square region aligned to the selected orientation and extract the
SURF descriptor.

Step 1 is achieved by convolving the area around the keypoint with Haar-wavelet
masks(ref. figure 6.5) in a radius proportional to the scale at which the keypoint was
detected. Once the wavelet responses have been calculated these are represented
as vectors in a coordinate system spanned by horizontal responses along one axis
and vertical responses along the other which is aligned with the two axis in the
image. The dominant orientation is found by summing the responses within a
sliding orientation window covering an angle of π

3 . This ends in a new set of
vectors and the longest of these represent the orientation.

56 Object Recognition

Figure 6.5: Haar wavelet types used for SURF. These respond to vertical and
horizontal image features.

Step 2 is performed by the construction of a square region around the keypoint.
This region is proportional to the scale at which the keypoint was detected and
oriented in the direction found in step 1. Figure 6.6 shows that further subdivision
is performed into regions of size 4x4 which again is split into 5x5. In each 4x4 region
a vector, v, is formed by performing Haar-wavelet filtering at regular intervals. In
the figure, one of these regions are greyed out and callout A indicates 5 of these
points. For each region and filter direction, the cumulative sum of the pixel values
is calculated. The vector, v, contains these sums and their absolute values:

v � p
¸
dx,
¸
dy,
¸

|dx|,
¸

|dy|q (6.4)

After performing this operation on all sub-regions a descriptor vector of size 64 can
be extracted for each keypoint.

Figure 6.6: SURF descriptor extraction for one keypoint (pixels on grid intersec-
tions). Grey background grid shows the pixel orientation in the image. The black
grid is rotated in the direction of the vectors in step 1 of the extraction process.

6.4 The Current Framework Solution 57

6.4.2 Model creation

Figure 6.7, taken directly from the original article[64], depicts that the overall
model construction process is divided into four steps.

Figure 6.7: Summary of model construction

The idea behind this scheme is that an object can under different transformations be
expressed as a linear combination of a small number of views. This makes it possible
to obtain real 3D recognition and at the same time avoid the cost of creating a 3D
mesh. This saves time both during model construction and recognition.
The first step is information extraction and is performed as described in section
7.2.1 for two images showing the object in different poses. The second step is
matching analogous to the method described in section 6.4.3 with the addition of
performing symmetric matching on the keypoints:

symmetricmatchpv̂,VBq �
#
matchpmatchpv̂,VBq,VAq : tvA,vBu
otherwise : null

(6.5)

The third step is reducing the size of the model. Reduction is performed by sorting
the matches using the following quality criterion where k and k1 is a matching pair
of keypoints:

score� k.strength �k.scale �k1.strength �k1.scale (6.6)

58 Object Recognition

The scale dictates how far away the keypoint can be detected and the strength
improves robustness to illumination changes. Optional filtering to remove outliers
(spurious matches) can be performed before creating a subset containing the N
best matches which is used for further model construction.
The final step is the creation of the model. The model consists of two parts; an
averaged descriptor vector and a position matrix. The rationale for only keeping
an averaged descriptor vector is the assumption that the matched and sorted de-
scriptors returned from the previous step are nearly identical for both images. For
each matching pair(k,k1) the average of a descriptor is defined as:

M.Vi � k.V 1
i �k1.V 2

i

2 ,@i P r1,64s (6.7)

where 64 is the number of features used by SURF for each keypoint.
The model position matrix is created using the minimal model presented by Ullman
and Basri[69]. The model states that every possible view of an object can be
obtained from two of its views provided that the image is considered translucent,
i.e. no occlusion.
O is a rigid object, an ordered collection of 3D points. P1 is an image of O and P2
is the image of O following a rotation R. R, U and the identity matrix, I, are 3x3
row vectors:

R� rr1, r2, r3sT (6.8)
I � re1,e2,e3sT (6.9)
U � ru1,u2,u3sT (6.10)

Any given 3D point ρ� px1,y1q of O is in P1 expressed as:

x1 � e1 �ρ
y1 � e2 �ρ (6.11)

and in P2:

x2 � r1 �ρ
y2 � r2 �ρ (6.12)

A third view, P3, of the object is obtained by applying (6.10) to O. The point ρ in
this new view is:

x̂� u1 �ρ
ŷ � u2 �ρ (6.13)

6.4 The Current Framework Solution 59

Assuming that e1,e2 and r1 span <3 and a1,a2,a3, b1, b2 and b3 are scalars:

u1 � a1 �e1�a2 �e2�a3 � r1

u2 � b1 �e1� b2 �e2� b3 � r1 (6.14)
ó

x̂� u1 �ρ� pa1 �e1�a2 �e2�a3 � r1qρ� a1 �x1�a2 �y1�a3 �x2

ŷ � u2 �ρ� pb1 �e1� b2 �e2� b3 � r1qρ� b1 �x1� b2 �y1� b3 �x2 (6.15)

Equations (6.15) hold for every point ρ of O. The scalar coefficients are the same
for a given 3D position.
Let X1,X2 and X̂ respectively be the vector of all the x coordinates of the feature
points from P1,P2 and P3. Y1 is the vector from all y coordinates in P1 and Ŷ is
all the y values from P3:

X1 � rx11,x12 � � �x1N s
X2 � rx21,x22 � � �x2N s
Y1 � ry11,y12 � � �y1N s (6.16)

X̂ � a1 �X1�a2 �Y1�a3 �X2

Ŷ � b1 �X1� b2 �Y1� b3 �X2 (6.17)

Within the N-dimensional space spanned by (6.16), X̂ and Ŷ in equation (6.17)
exists in a three-dimensional subspace spanned by X1,X2 and Y1. Theoretically
for any image taken of the object O, X̂ and Ŷ reside within this subspace and
thereby any 2D view of the object O can be found using (6.17).
The 3 vectors in (6.16) are clustered in a new position matrix called P:

P � rX1,Y1,X2s (6.18)

In order for P, the model position matrix, to be used for translation, the model
coordinates must be transformed into homogeneous coordinates[70]. This is done
by adding a fourth unit vector T:

T � r11,12...1N sT (6.19)

as a fourth row to (6.18):

P � rX1,Y1,X2,T s (6.20)

60 Object Recognition

The original authors of the article further discuss methods for optimization of
recognition speed by orthogonalizing P before storing it. This does not yield correct
results, the matrix must be orthonormalized.
The memory cost of the model is small with a total of 68N floating point values:

• 65N values for SURF descriptors

• 3N values for positions matrix (T vector in (6.20) is dispensable)

The model creation is bound by the keypoints matching which is OpM2q, where M
is the average number of keypoints per image.
The model only takes orthogonal projection over a plane into account but seems
to perform well despite this limitation.

6.4.3 Matching

Figure 6.8: Summary of recognition process

Figure 6.8 is taken directly from the original article[64]. The recognition is done in
4 main steps.
The first step is information extraction and is performed as described in section
7.2.1. Next a match of the keypoints in the model with the image keypoints is

6.4 The Current Framework Solution 61

attempted using the descriptor matching presented in the following subsection.
The euclidean distance (6.31) is calculated NxM times, where N is the number of
model keypoints and M the number of image keypoints. For each model keypoint an
ordered list, Li, containing all matching image keypoints below a given threshold,
Tmatch, is kept. The ordering is such that the top ranked keypoint in each list
initially feed the recogition loop in step 3.
To extrapolate the object, the matcher uses a full allignment scheme presented by
Ullman and Basri[69]. This enables the recognizer to handle object occlusion (here:
unmatched model keypoints). Revaud et al. proposes that the position matrix, P,
in (6.20) should be orthogonalized, this requirement is incorrect. In order for the
optimalization scheme to work the matrix must be orthonormalized which can be
proven by substitution in equation (6.25). Using this the quality of the matching is
the correlation between a vector (descriptor from a keypoint), V, and the subspace
spanned by P. The projection of V onto P yields a scalar product. The orthogonal
projection gives the minimal distance toward a subspace[71] and hence this method
can retrieve both coefficients, A and B. This enables the extrapolation of the model
from the test image using (6.17):

A� PTX ñ X̂ � PA

B � PTY ñ Ŷ � PB (6.21)

In order to handle occlusion, i.e. some rows in P and V is 0, a matrix P 1 is
constructed using P and U (a NxN identity matrix deprived of rows corresponding
to the missing keypoints):

P 1 � U �P � rP 1

1,P
1

2,P
1

2,P
1

4s (6.22)

A and B are found when equations (6.23) are minimized:

U � X̂�U �X � P 1 �A�U �X
U � Ŷ �U �Y � P 1 �B�U �Y (6.23)

ó
A� rpUP qT pUP qs�1PT pUXq
B � rpUP qT pUP qs�1PT pUY q (6.24)

If P is orthonormalized the following optimization is possible:

pUP qT pUP q � I4�rpIn�UqP sT rpIn�UqP s (6.25)

When k N
2 , where k is the number of missing keypoints, the right hand side of

(6.25) is prefered since Opkq OpN �kq.

62 Object Recognition

The result of this scheme is a memory usage of 4N and an alignment scheme bound
by OpNq.
After extracting the model the detection loop estimates the distance between the
matched keypoint and the estimated model keypoint:

Dist� pX� X̂q2�pY �Y 2q2�S (6.26)

Dist is an N rows vector and the distance is corrected by S, a vector containing the
scales of the currently image keypoints used:

S � rscale1, �,scaleN sT (6.27)

The correction done by S tries to account for the imprecision of its location and
thereby remove outliers (false matches).

The image keypointK 1

i associated with the model keypointKi, where i = argmax(Dist),
is disconnected from Ki. This results in a missing match and the point will be in-
terpolated in the next iteration.

In order to recover a hypotethical matching for each lonely keypoint, Ki, select the
image keypoint, K 1

i, in Li which presents the smallest euclidean distance, d, to its
predicted position if d ?

distModel.

The loop exits if one of the following conditions are met:

• distModel �maxipDistq Tdist

• remainingMatches Tremaining

• number of iterations ¡ 8N

Matching is based on the following score:

score� Tdist
distModel

� nbRemaining
Tremaining

(6.28)

distModel and nbRemaining (remaining number of matched keypoints) are exit
parameters of the loop, Tdist and Tremaining are predefined parameters.

Perfect matching yields an infinite score and bad matching gives scores toward 0.

Table 6.1 shows all the changeable matcher parameters.

6.4 The Current Framework Solution 63

Parameter Where Effects
Ratio Model creation Number of matched keypoints between

the 2 object images, gives model creation
filter more keypoints to chose from,
number of spurious matches

Tdist Recognition Upper threshold for the distance between
the worst aligned extrapolated model
keypoint and image keypoint, acceptance
of outliers, matching score

Tremaining Recognition Lower threshold for remaining matched
keypoints after alignment, acceptance of
outliers, matching score

Tmatch Recognition Match threshold between model keypoint
and image keypoint

Table 6.1: Changeable parameters for mobile object recognizer

Descriptor matching

The descriptor matching is performed in the same manner as described by Bay et.
al[65] and is shortly explained here for completeness.
Given two images, A and B, their set of descriptors are given by:

VA � tvA : descriptor of interest point in image Au (6.29)
VB � tvB : descriptor of interest point in image Bu (6.30)

Matching between two keypoints is done by calculating the Euclidean distance[72],
d, between their corresponding descriptor vectors, v1 and v2:

dpv1,v2q �
b
pv11�v21q2�pv12�v22q2 � � � pv1N �v2N q2 (6.31)

Equation (6.31) describes the length of the connecting N-dimensional line segment
between the two points. The set of spatial distances between a keypoint in A and
all keypoints in B is then given by:

D � ttd,vBu : the euclidian distance, d, between
v̂ P VA and all vB P VB ordered by du (6.32)

The nearest neighbour ratio matching strategy is applied. A match between two
keypoints is found when the best match is within a given ratio, r, of the second
best match:

matchpv̂,VBq �
#
minpDq ¤ r �minpD�minpDqq : vB
otherwise : null

(6.33)

64 Object Recognition

Chapter 7

Evaluation Of The Current
Framework Solution

This chapter evaluates the current framework solution and propose different tactics
for improving the framework architecture and object recognition performance. The
chapter informally answers research questions Q8-Q10 in section 2.1

Figure 7.1: Package diagram of existing solution

The framework is currently distributed as an entity containing two prototype ap-
plications, a model builder and an object recognizer. These are meant to show the
framework usage. Figure 7.1 shows the package organization:

66 Evaluation Of The Current Framework Solution

main
The entry point of the prototype application. This package consists of one
activity that enables the user to choose further activities.

creator
Implements the model creation prototype.

recognizer
Implements the object recognition prototype.

db
The implemented database handler used by creator and recognizer.

features2d
The developed framework code. A class diagram of the package contents is
shown in figure 7.2 followed by a description of each class.

Figure 7.2: Overview of framework classes

Figure 7.2 shows the classes contained within the features2d package:

Bytificator
Provides methods for image compression (resizing) and file operations neces-
sary to store data to the file system.

FDetector
Provides all necessary functionality for the object recognition and model con-
struction as well as translation and display of the model onto the image.

CreateSerializable
Provides functionality for conversion between non-serializable data structures
used by OpenCV and serializable data structures.

67

ScoreObjLocation
Provides functionality for storage of object score and location in the image
where the object is detected. The latter only provide crude functionality and
should be enhanced.

SerializableKeyPoint
Provides a serializable data structure which can be used for storage.

OpenCV
Is considered a part of the framework since this delivers important function-
ality and data structures used.

All classes in the framework except ScoreObjLocation and SerializableKeyPoint are
static classes. The reason for this is performance. The application does not need
to use unnecessary memory references to an instantiated class. Static classes also
simplifies parallelization since they are stateless.

Figure 7.3: Recognition performance on a test object at different resolutions using
a database with 25 models. (Based on isolated test. The complexity of the image
influence performance and there are cases where recognition is twice as fast for
each resolution.)

The original report[63] concludes that the correctness of the recognition is ac-
ceptable if the image input resolution is at 600x600 pixels but the speed of the
recognition is too slow. At a resolution of 400x400 pixels the recognition of objects

68 Evaluation Of The Current Framework Solution

in a small database containing 25 objects takes 5-10 seconds. The performance
requirements are 1-2 seconds. The slowest parts of the recognition are related to
feature detection and descriptor extraction.
Simple performance tests, using one test object, show that the speed of recognition
correlates with the size of the image used for recognition (ref. figure 7.3). Feature
extraction on larger images result in an increased number of detected keypoints,
causing a ripple effect which degrades recognition performance.
The image size also influence the correctness of the recognition as figure 7.4 shows.
Increasing the resolution from 400x400 pixels to 600x600 pixels results in the av-
erage number of correct matches going from 64% to 92%.
In some cases the matcher yields results where several objects in the database
are matched against the test image. The object recognition scheme does not yet
support recognition of several objects in one image. In cases where there is supposed
to be only one object in the image it is possible to exploit this knowledge by
iteratively decreasing the value of the Tmatch parameter until none or only one
object is matched. This parameter (ref. table 6.1) controls the radius at which two
descriptors are said to be matching. This tightens the bound on matching between
object model keypoints and the test image keypoints. Originally the object matcher
performs work linearly with the size of the database, adding this extension cause
indeterministic matching performance.

Figure 7.4: Recognition correctness on a test object at different resolutions using a
database with 25 models. Each object was captured at the same distance. Recogni-
tion were performed from 3 different positions; to the left of the object, centered in
front, and to the right of the object. For each position, recognition was performed
twice based on how the smartphone was rotated; the same way as the images used
for model construction and arbitrary rotation . Recognition were only performed
once for each position i.e. there were no retries if recognition failed.

7.1 Architecture 69

The choice of using the SQLite3 database provided by the operating system com-
bined with storage of data in the file system proved to be one of the most complex
parts of the implementation. The database was originally designed to hold several
images with descriptors and keypoints plus support for several recognition schemes.
The author first tried to store binary data into the database but this proved so
ineffective for storage and retrieval that it hampered performance severely. Syn-
chronization between files and database, an over-engineered database as well as the
ability to edit objects resulted in method calls with many parameters and the ob-
ject edit method in ImagesDbAdapter(fig. 7.2) is quite complex. Activity diagrams
had to be used in order to get the implementation right. The author concluded
that the database is over-engineered and could be simplified quite a lot. The choice
to stick with the original design was based on the fact that the only purpose of
the database was to provide storage for testing of the object recognition. A new
storage solution must be designed for production use.

7.1 Architecture

This section analyze the framework based on the research in chapter 5 and 6.
The current state of the framework fails in both hiding common design knowledge
from the user and explicitly stating which pieces that needs to be customized. As
an example the model creation and recognition process, in figure 6.7 and figure
6.8, is implemented as part of the prototype application with support from the
framework. These parts could be extracted from the applications and offered as
hot spots in the framework through abstract activities or tasks.
The extensibility in the framework heavily relies on inheritance and is a sign of
a young and immature framework. The current state is closer to a library where
the user picks implemented functionality and calls these from her own main loop
herself. This means that there is no inversion of controls and no default behaviour
that simplifies the framework usage. The framework could be made more black-
box by wrapping the OpenCV Mat and KeyPoints in self sustaining objects that
represent the recognition schemes supported in the framework. Further by using
generalization, common interfaces for these objects can be standardized allowing
for flexibility where new recognition schemes can be added and mixed with exist-
ing ones. Customizable methods can offer default as well as custom framework
behaviour. This allows for development of contracts and protocols that must be
followed, and once learned should ease development of applications. This also al-
lows for separation of functionality into a package and class tree structure which
ease framework browsing and simplifies maintenance. The current framework only
consists of a flat structure with all classes in it. The combination of these enhance-
ments results in usage of all three reuse techniques in object-oriented software: data
abstraction, polymorphism and inheritance.
The current framework does not take novice users into account because of the
domain knowledge exposed due to the integrated nature of the prototypes. The

70 Evaluation Of The Current Framework Solution

framework should be completely separated from the applications and distributed
as a separate artefact (eases maintenance), using the applications as documenta-
tion. Further, the documentation process should take advantage of the knowledge
in section 5.6 eliciting the purpose of the framework, how to use it and the detailed
design. This ensures that concerns from all stakeholders are being taken into ac-
count; transferring framework developer knowledge through both descriptive and
prescriptive methods. The documentation process should be performed system-
atically by applying relevant patterns in a similar fashion as presented in section
5.6.4, resulting in inter-connected documentation which enhances reusability.
The development of the framework followed the same pattern as the one proposed
by Johnson (ref. section 5.5.4), where example applications forms the basis for the
framework.

7.2 Object Recognition

This section elicits possibilities in enhancing the performance of the object recog-
nition and matching.

7.2.1 Information extraction

Here the author presents possible solutions for extending and performing image
information extraction in order to improve performance while still maintaining
recognition correctness. The possible solutions are divided into two categories
where the author looks into possible algorithmic solutions and framework design
solutions.

Algorithmic options

The recognition scheme in section 6.4 can be customized by changing the infor-
mation extraction solution. Because the framework heavily relies on the OpenCV
library, the number of possible algorithms for information extraction is limited
by the capabilities of these. Implementing new solutions requires too much effort
due to challenges related to compatibility and maintenance issues with both the
OpenCV library and the framework.
The available options are divided into feature detectors and descriptor extractors.
By combining compatible detectors and extractors, new information extraction
solutions can be constructed. Invariance to illumination changes and background
clutter are properties shared by all local information extractors (ref. section 6.2).
Invariance to partial occlusion and viewpoint changes are concerns mostly handled
by the individual recognition scheme. These facts reduce the correctness concerns
to scale and rotation invariance. Their performance evaluation is compared against
SURF.

7.2 Object Recognition 71

Correctness
Keypoint
detector

Scale
invariant

Rotation
invariant Performance

FAST[73]
No (Yes with

pyramid
adapter).

No. Faster.

STAR[74] Yes. Yes. Faster.
SIFT[65] Yes. Yes. Slower.

ORB[73]
No. (Yes with

pyramid
adapter)

Yes. Faster.

MSER[75]
Yes. Improves
with pyramid

adapter.
Yes. Faster.

GFTT[76]
No.(Yes with

pyramid
adapter)

Yes. Faster.

HARRIS[75, 77]
No.(Yes with

pyramid
adapter)

Yes. Faster

Table 7.1: Available feature detectors in the OpenCV library. In addition to the
ones listed a few adapters over detectors exist: GridAdapted, PyramidAdapted,
DynamicAdapted. The performance column compares their generally considered
speed against SURF.

All the different keypoint detectors in table 7.1, except for FAS, are suitable for
information extraction in uncontrollable environments. How well they perform
as part of the recognition scheme in the framework is largely dependent upon how
repeatable their keypoint extraction is as well as the amount of keypoints extracted.
Low repeatability and few keypoints would suggest challenges in both matching and
model creation.

Correctness
Descriptor
extractor

Scale
invariant

Rotation
invariant Performance

SIFT[65] Yes. Yes. Slower.
ORB[73, 78] No Yes. Faster.
BRIEF[79] No No. Faster

Table 7.2: Available descriptor extractors in the OpenCV library. Each of these
can be wrapped in an opponent adapter (opponent color space instead of RGB).
The performance column compares their generally considered speed against SURF.

As table 7.2 shows there are currently no alternative extractors currently available
in OpenCV that can replace the SURF descriptor extractor. Calonder et. al[79]

72 Evaluation Of The Current Framework Solution

point out that rotation invariance is less important because of the widespread use
of orientation sensors in todays mobile devices. These can be used to control the
object orientation in the images, allowing the usage of much faster extractors such
as U-SURF (orientation dependent SURF descriptor extractor). Additionally the
authors of BRIEF point out that a scale invariant version is planned in the future.
The addition to scale invariance in BRIEF should also benefit ORB since the latter
use a modified version of the BRIEF descriptor extractor (Sterable BRIEF)[78].

Design options

The author has identified the following architecture design options for improving
the information extraction performance:

• Utilize available resources in multicore devices:

– Segment the image into smaller regions and perform information extrac-
tion on the segments in parallel. Challenges related to this solution is
how to solve feature detection on the segment borders.

– Implement parallel SURF[65].

• Utilize the GPU through Renderscript[80] or OpenCL. Renderscript is offi-
cially supported by Android. OpenCL is available through some third party
libraries such as the one developed by ZiiLabs [81]. The disadvantage is that
both options only support a subset of the available Android GPUs (GPGPU
development : General-purpose computing on graphics processing units).

• Use external server(s) to perform whole or part-whole information extraction.
The challenges related to this solution is server availability, secure trans-
mission of data, bandwidth requirements and error management because of
unreliable network access[82].

7.2.2 Matching

The author considers identification and extension of new recognition schemes out-
side the scope of this thesis and will therefore only look into framework design
possibilities.

Design options

The author has identified the following architecture design options for improving
the matching performance:

• Utilize available resources in multicore devices:

7.2 Object Recognition 73

– Parallel matching is possible by dividing the model database into subsets
and run matching on each subset. The challenges are how to handle
matches in several subsets. The solution to is case dependent.

– Utilize the GPU using Renderscript or OpenCL. The problems with
these solutions are elicited in section 7.2.1.

• Use external server(s) to perform matching. The challenges here are similar
to those presented in section 7.2.1.

74 Evaluation Of The Current Framework Solution

Part III

Own Contribution

Chapter 8

Framework Evolution Tactics

The sections in this chapter present the author’s tactics and trade-offs for achieving
the goals of improving flexibility, usability and performance.

8.1 Development

The development will follow the same process as the author’s previous project[63]
which ended in the first iteration the framework. This follows the process and
patterns presented in section 5.5.4. The author will develop new example applica-
tions that differ slightly from the original prototypes while reusing as much code
as possible. This should lead to new abstractions.

The new goals are rooted in the prestudy of frameworks (ref. chapter 5) and the
evaluation of the current framework solution (ref. chapter 7):

• Completely separate the framework from the example applications by moving
it into its own Android library project.

• The examples will provide prescriptive documentation for framework usage
(ref. section 5.6.2).

• Move toward components: Hide domain knowledge (here: OpenCV data
structures) by wrapping them in framework objects and offer methods for
creating them. This makes the framework more black-box and easier to use
(ref. section 5.5.3).

• Use patterns such as Factory, Templates and Singleton to utilize well known
patterns. These aid in describing framework behaviour and should ease usage,
increase code reuse and increase the chance of framework success (ref. section
5.5.3)

78 Framework Evolution Tactics

• Use abstract classes and interfaces to establish contracts and protocols (ref.
section 5.5.3).

• Provide abstract and concrete activities and tasks to help expose the frame-
work hooks, templates and hot spots and provide default framework be-
haviour(ref. section 5.5.1 and section 5.5.2).

• Separate concerns: Move common functionality into packages to ease mainte-
nance (debugging and adding new functionality) and increase flexibility (ref.
section 5.5.5).

• Use the implementation tactics in section 5.5.5 such as data abstraction,
polymorphism and inheritance to introduce a framework hierarchy which ease
maintenance and usage.

8.1.1 Object recognition

This section presents the tactics and trade-offs for improving the object recognition
correctness, flexibility, usability and performance.

Correctness

To achieve the correctness goals in section 6.1.2 the author puts a lower constraint
on 600x600 for input image resolution. This should result in correct recognition in
about 90% of the cases if the model is satisfactory and the image capture device is at
arms length from the object. The length from the object is considered satisfactory
for the customers application domain (mainly exhibitions).

Flexibility vs. Performance

In order to improve the object recognition flexibility the author chooses the follow-
ing tactics:

• Modify the recognition scheme to allow for usage of all feature detectors and
descriptor extractors in OpenCV. Not all are suitable (ref. section 7.2.1). The
correctness and performance of these compared to SURF will not be tested
in this thesis in favour of starting development of external server support
for information extraction. The addition of this feature allows for increased
flexibility.

• Add support for external information extraction. This is a trade-off between
performance and flexibility. The author wants to use external support to
increase recognition performance. The highest performance boost should be
expected when the whole recognition scheme is performed on an external
server because of its higher computational capabilities and less data transfer

8.2 Trade-offs 79

(only the results need to be returned instead of a data structure). The reason
for only adding information extraction is that the author wishes to improve
flexibility. Information extraction is only seen as a step towards full external
recognition. By gradually adding steps the application developer can be
offered a series of alternative ways of adding external support. I.e. performing
full recognition externally or doing any other variant where each step in figure
6.1-6.3 potentially can be performed on either the device or on the server.

Usability vs. Performance

• Simplify the model storage solution. The OpenCV Android library does not
support model storage directly. By using the Java Native Interface the author
can access the OpenCV C++ operations that allow for data storage in human
readable files. Accessing these will greatly improve storage performance over
the existing solution since the current framework converts between OpenCV
and Java data structures. Using the OpenCV solution ensures cross platform
compatibility.

8.2 Trade-offs

This section describe the rest (ref. section 8.1.1) of the trade-offs that needs to be
considered.

8.2.1 Flexibility vs. Usability

One of the major concerns in enhancing the framework flexibility is that it af-
fects usability. The author will try to avoid negative effects by wrapping domain
knowledge into components thus allowing for flexibility while enhancing usability.
This however affects framework maintainers negatively since debugging and black-
box components put higher demands on their programming and domain knowledge
skills. This is considered secondary to framework usage.

8.2.2 Usability vs. Performance vs. Correctness

Increasing performance of the recognition scheme using an external server can com-
plicate application development and deployment. The framework will add support
for automatic fallback. Applications can use default implemented behaviour that
allow applications to run in degraded mode; if the network or server fails the ap-
plication will further compress the image and perform all operations on the device.
This will favour performance and flexibility over correctness. The application will
still be usable if it suddenly is isolated. The degraded recognition correctness will
put stricter demands on the object capture process (Findings show (ref. section

80 Framework Evolution Tactics

12.3) show that lower resolution affects the invariance to rotation and the allowed
distance to the object).

8.3 Documentation

The documentation is crucial for the success of the framework. The author planned
on using the systematic process presented in section 5.6.4. This is not possible
however with the limited time available. Therefore the author decided to provide
all the documentation necessary through this document, the example applications
and the code documentation (Javadoc and Doxygen).
The author recommends that the framework maintainer separates this document
from the framework by extracting the framework documentation information and
combine it with the code examples and code documentation from the applications
by applying the systematic process in section 5.6.4.

Chapter 9

Requirements

This chapter present the requirements for the framework and the example appli-
cations. Some of the sections are taken from the author’s previous report[63] and
they are included since requirement specifications are an essential part for software
artefacts. These requirements act as guidelines for application design, architecture
and implementation.

9.1 Framework

This section elicits the functional and non-functional requirements for the frame-
work.

9.1.1 Functional Requirements

Table 9.1 shows the functional requirements together with a unique ID, a short
description of the requirement as well as a priority of either high (H), medium (M)
or low (L). The ID is used for easy referral to each requirement. The description
explains the requirement itself. The priority indicates the relative importance of
the requirement.

ID Description Priority
ORR1 Support for recognition of 2D objects H
ORR2 Support for recognition of 3D objects H
ORR3 Identify recognized object H
ORR4 Identify location of recognized object in image M
ORR5 Identify pose of detected object in image L
ORR6 Enable retrieval of object information L
ORR7 Object recognition is invariant to rotation H

82 Requirements

Table 9.1: Functional requirements for object recognition framework

ID Description Priority
ORR8 Object recognition is invariant to scale H
ORR9 Object recognition is invariant to illumination H
ORR10 Object recognition is invariant to noise M
ORR11 Object recognition is invariant to occlusion L
ORR12 Model data structure is suitable for persistent H

storage
ORR13 Build object model H
ORR14 Object matcher H
ORR15 Expose modifiable parameters M
ORR16 Indicate quality of built model H
ORR17 Support for information extraction via a server H
ORR18 Support stand alone object recognition H

Table 9.1: Functional requirements for object recognition framework cont.

9.1.2 Non-functional Requirements

Table 9.2 shows the non-functional requirements for the framework. The table
follows the structure as the one in section 9.1.1. Refer to that section for the table
explanation.

ID Description Priority
ONR1 Hide domain specific knowledge H
ONR2 Perform object recognition within 1-2s H
ONR3 Code provides development documentation H
ONR4 Provide example application showing object recognition H
ONR5 Provide example application showing model construction H
ONR7 Support Android 2.3.1 and newer H
ONR8 Size of object model as small as possible M

Table 9.2: Non-functional requirements for framework

9.2 Example Applications

This section elicits the functional and non-functional requirements for the example
applications.

9.2.1 Functional Requirements

The functional requirements are divided into two parts.

9.2 Example Applications 83

• There are a set of functional requirements directly linked to documenting the
framework functionality. These are listed in table 9.3.

• The customer wants proof that the framework is suitable for their application
domain. Therefore the author decided to develop the examples as a quiz and a
quiz administration application. Both take ideas from the original framework
prototypes. In order to identify the quiz functional requirements a different
approach was applied; a set of user stories supported by use cases.

Framework functionality demonstration

Table 9.3 shows the functional requirements linked directly to demonstrating the
framework functionality. The table has the same structure as the one in section
9.1.1. Refer to that section for the table explanation.

ID Description Priority
PR1 Test object model construction H
PR2 Test 2D object recognition H
PR3 Test 3D object recognition H
PR4 Identify recognized object H
PR5 Indicate quality of generated object model H
PR6 Provide persistent storage for object models H
PR7 Enable object query on stored object models H
PR8 Indicate location and pose of identified objects L
PR9 Expose recognizer settings in order to H

optimize framework
PR10 Test external information extraction H

Table 9.3: Functional requirements for example applications

User Stories

The author decided to make user stories the backbone for the example applications.
The user stories were developed in collaboration with the customer to ensure that
their needs were met. The idea is that you write short notes about what the
different users would like to do. The user stories state what kind of goals a user has
for the application - what functionality the user wants to have - thereby indicating
the required development effort. They differ from typical requirement specifications
in that they focus on user needs and not how the system is implemented. Each
user story is given a priority based on the context of the application.

The two applications have two different distinct actors. These are listed in table
9.4.

84 Requirements

Actor ID Description Example of actions

A1.Admin Administers models in
database

Device touch- graphical interface,
can build object models using
images from device camera, can
delete models, can add models.

A2.Visitor
Plays a quiz game
driven by object

recognition

Device touch- graphical interface,
answer questions by clicking on
correct answers, answer questions
by taking a picture of objects with

built in camera, instantiate
categories by photographing

objects.

Table 9.4: Framework example application system users.

The user stories are written: As a ’user’ I want to ’goal’ so that ’reason’ and
are given a priority. Each user story is given a unique ID which is used for easy
referral to each story. The description explains the requirement itself. Since the
example applications mostly focus on showing off framework functionality, such as
recognition and model creation, the stories involving these actions are prioritized.

Quiz administration application

U1. Administrator installs application.
As an administrator I want to know how to install the application so I can
use my own device when interacting with the system.
Priority: Low

U2. Administrator starts application for the first time.
As an administrator I quickly want to know how to use the application so I
can start modifying the database.
Priority: High

U3. Administrator adds model to database.
As an administrator I want to add a new object to the database so that I can
modify/edit answers to assignments.
Priority: High

U4. Administrator removes model from database.
As an administrator I want to remove a model from the database to avoid
storing outdated references to objects.
Priority: Medium

U5. Administrator browses database models.
As an administrator I want an overview of all the models in the database so
that I can easily find models of interest.
Priority: High

9.2 Example Applications 85

U6. Administrator browses object recognition questions.
As an administrator I want an overview of all the questions that involve
object recognition so that I can efficiently edit the ones I am interested in.
Priority: High

U7. Administrator links model with question.
As an administrator I want to link a model with a question so that I can
change the answer.
Priority: High

Quiz application

U8. Visitor installs application.
As a visitor I want to know how to install the application so I can play the
quiz on my own device.
Priority: Low

U9. Visitor starts application for the first time.
As a visitor I quickly want to know how to play the quiz so I can concentrate
on answering questions.
Priority: Medium

U10. Visitor must initiate a new quiz category by finding a category
object.
As a visitor I must find the correct object so I can apply my knowledge on a
specific subject.
Priority: High

U11. Visitor answers object recognition questions.
As a visitor I must find the correct object to the quiz question so I can gain
new knowledge about it.
Priority: High

U12. Visitor answers quiz questions.
As a visitor I want to answer a quiz so I can apply my knowledge on a subject.
Priority: Medium

9.2.2 Use Cases

From the user stories the author made use cases that show how the example ap-
plications will work.

86 Requirements

Quiz administration application

Use Case Name U1.Administrator installs application.
Participating

actors
A1.Admin
Download support system

Flow of events

1. Administrator activates support for installation
from unknown sources.
2. Administrator downloads application.
3. Administrator installs application.

Extensions

2a. Administrator initiates download using 2D QR-
code.
2b. Administrator enters download URL into device
web browser.

Entry conditions Administrator wants to interact with system using
her own device.

Exit conditions

Administrator successfully downloads application
and starts to use it.
Administrator can’t install application and needs
support.

Quality
requirements

Download and installation takes reasonable time to
finish.

Table 9.5: Administrator installs application.

Use Case Name U2.Administrator starts application for the
first time.

Participating
actors

A1.Admin
Administrator application

Flow of events

1. Administrator starts application.
2. Application greets administrator and present
short instructions on usage and how to photograph
objects for model construction.
3. Administrator clicks OK after reading the instruc-
tions.
4. Application informs the administrator on how to
find the instructions for later reading.

Extensions None

Entry conditions Administrator has successfully installed the admin-
istrator application.

Exit conditions Administrator understands how to use the applica-
tion and knows how to construct object models.

Quality
requirements None

Table 9.6: Administrator starts application for the first time.

9.2 Example Applications 87

Use Case Name U3.Administrator adds model to database.
Participating

actors
A1.Admin
Administrator application

Flow of events

1. Administrator enters application.
2. Administrator selects add object.
3. Application presents the administrator with the
image acquisition interface.
4. Administrator chooses image1 containing pose A
of object.
5. Administrator chooses image2 containing pose B
of object.
6. Administrator enters object data.
7. Administrator selects create object model.
8. Administrator determines if object model is satis-
factory.

Extensions

3a. Administrator opens instructions on how to pho-
tograph new objects.
8a. Model is unsatisfactory.
8a1. Administrator selects cancel. Return to 3.
8b. Model is satisfactory.
8b1. Administrator selects OK.

Entry conditions Administrator wants to add a new object in
database.

Exit conditions Application confirms model creation.
Application publishes model in list.

Quality
requirements

Model creation process gives feedback on progress.
Indication of model quality.

Table 9.7: Administrator adds model to database.

Use Case Name U4.Administrator removes model from
database.

Participating
actors

A1.Admin
Administrator application

Flow of events
1. Administrator browses models (U5).
2. Administrator selects model.
3. Administrator selects delete.

Extensions None

Entry conditions Administrator wants to delete a model from the
database.

Exit conditions Application confirms deletion of object model.
Quality

requirements Application prompts for deletion verification.

Table 9.8: Administrator removes model from database.

88 Requirements

Use Case Name U5.Administrator browses database models.
Participating

actors
A1.Admin
Administrator application

Flow of events 1. Administrator enters application.
2. Administrator selects browse models.

Extensions None

Entry conditions Administrator wants to get an overview of the models
in the database.

Exit conditions Application presents list of models.
Quality

requirements None.

Table 9.9: Administrator browses database models.

Use Case Name U6.Administrator browses object recognition
questions.

Participating
actors

A1.Admin
Administrator application

Flow of events 1. Administrator enters application.
2. Administrator selects browse assignments.

Extensions None

Entry conditions
Administrator wants to get an overview of the as-
signments with object recognition answers in the
database.

Exit conditions Application presents a list of the object recognition
questions.

Quality
requirements None.

Table 9.10: Administrator browses quiz object recognition assignments.

9.2 Example Applications 89

Use Case Name U7.Administrator links model with assign-
ment.

Participating
actors

A1.Admin
Administrator application

Flow of events

1. Administrator enters browse assignment (U6).
2. Administrator selects a specific assignment in the
list.
3. Application presents assignment modification in-
terface.
4. Administrator selects modify answer.
5. Application presents browse models list.
6. Administrator selects specific model.
7. Application returns to assignment modification
interface.
8. Administrator selects save.
9. Application presents confirmation dialog.
10. Administrator confirms.
11. Application confirms administrator action.
12. Application returns to assignments list.

Extensions

3a. Administrator cancels operation.
3a1. Application returns to assignments list.
7a. Administrator has selected wrong model. Return
to 4.
10a. Administrator selects cancel.
10a1. Application confirms action. Return to 3.

Entry conditions Assignment exists in database.
Model exists in database.

Exit conditions Application confirms assignment modifications.
Application modifies assignment.

Quality
requirements Application confirms administrator actions.

Table 9.11: Administrator links model with assignment.

90 Requirements

Quiz application

Use Case Name U8.Visitor installs application.
Participating

actors
A2.Visitor.
Download support system.

Flow of events

1. Visitor activates support for installation from un-
known sources.
2. Visitor downloads application.
3. Visitor installs application.

Extensions
2a. Visitor initiates download using 2D QR-code.
2b. Visitor enters download URL into the devices
web browser.

Entry conditions Visitor wants to use the application using her own
device.

Exit conditions
Visitor successfully downloads application and starts
to use it.
Visitor can’t install application and needs support.

Quality
requirements

Download and installation takes reasonable time to
finish.

Table 9.12: Visitor installs application.

Use Case Name U9.Visitor starts application for the first time.
Participating

actors
A2.Visitor.
Quiz application.

Flow of events

1. Visitor starts application.
2. Application greets user and presents short instruc-
tions.
3. Visitor clicks OK after reading the instructions.
4. Application informs the visitor how to find the
instructions for later reading.

Extensions None.
Entry conditions Visitor has successfully installed application.

Exit conditions
Visitor understands how to use the application and
how the application ties into the visitor center pre-
sentations.

Quality
requirements None.

Table 9.13: Visitor starts application for the first time.

9.2 Example Applications 91

Use Case Name U10.Visitor must initiate a new quiz category
by finding a category object.

Participating
actors

A2.Visitor.
Quiz application.

Flow of events
1. Application starts camera.
2. Visitor photographs object.
3. Application performs object detection

Extensions
4a. Application recognizes the object and initiates
the quiz category.
4b. The object is not recognized. Return to 1.

Entry conditions Visitor has successfully started application.

Exit conditions

Visitor understands assignment and starts searching
for a solution.
Visitor doesn’t understand assignment and can’t give
an answer.
Application is in assignment mode.

Quality
requirements None.

Table 9.14: Visitor must initiate a new quiz category by finding a category object.

Use Case Name U11.Visitor answers object recognition ques-
tions.

Participating
actors

A2.Visitor.
Quiz application.

Flow of events

1. Visitor clicks on image acquisition button.
2. Application presents the visitor with the image
acquisition interface.
3. Visitor takes picture of hher solution.
4. Application performs recognition on the object.
5. Application gives feedback on the Visitors answer.

Extensions

5a. Visitor gives the wrong answer to the assign-
ment. Return to 2.
5b. Visitors gives the correct answer. The applica-
tion moves on to next question.

Entry conditions Application has given the visitor an assignment.
Exit conditions Application is in quiz mode (U12).

Quality
requirements Application gives visitor clear feedback on solution.

Table 9.15: Visitor answers object recognition questions.

92 Requirements

Use Case Name U12.Visitor answers quiz questions.
Participating

actors
A2.Visitor.
Quiz application.

Flow of events

1. Application asks the visitor a question and gives
the visitor 4 choices.
2. Visitor clicks on 1 of the choices.
3. Application gives feedback on the answer.
4. If quiz is not completed return to 1.

Extensions

3a. Visitor gives the correct answer.
3a1. Application informs the visitor that she has
answered correct.
3b. Visitor gives the wrong answer.
3b1. Application informs the visitor that she gave a
wrong answer. Return to 2.

Entry conditions Visitor has solved assignment.
Exit conditions Visitor has completed the quiz.

Quality
requirements

Application gives visitor clear feedback on each an-
swer.

Table 9.16: Visitor answers quiz questions.

9.2.3 Non-functional requirements

Table 9.17 shows the non-functional requirements for the example applications.
The table has the same structure as the one in section 9.1.1. Refer to that section
for the table explanation.

ID Description Priority
PNR1 Run on Android 2.3.1 and newer H
PNR2 Perform object recognition within 1-2s H
PNR3 Stand alone application H
PNR4 Separate concerns H
PNR5 Long running task shall run in its own thread H
PNR6 Avoid ANR dialog H
PNR7 Code is commented M

Table 9.17: Non-functional requirements for example applications.

Chapter 10

Architecture

This chapter presents the architecture and the rationale for the choices made for
both the framework and the examples. In order to evaluate all functional and non-
functional requirements of the framework the architecture of example applications
is presented. Functionality from chapter 9 is mapped onto the framework by indi-
cating the fulfilled requirement in parenthesis.The authors choices of architectural
views are based on the stakeholders presented in section 1.4 and 5.6.1.

94 Architecture

10.1 Framework Overview

Figure 10.1: Framework hierarchy

Figure 10.1 shows the framework package hierarchy. The reason for creating a
hierarchy where each package encloses a set of functionality is to improve modifia-
bility, code reuse, ease maintenance and to ease framework browsing. The structure
follows the rules in section 5.5.5 where the tree is deep and narrow and the ab-
stractness decreases with tree depth.

The framework is divided into two parts, support and recognition. The support
package contains helper classes and methods not directly linked to the object recog-
nition itself. The framework currently only has support for local recognition. If, in
the future, the framework owner wishes to add global recognition, the local recog-
nition node should be moved into a new parent named recognition. A new sub tree
should be added under recognition named global recognition where all functionality
to global recognition is put. Common functionality shared by the local- and global
recognition is put in the parent.

10.1 Framework Overview 95

10.1.1 Package Diagram

Figure 10.2: Framework package diagram

96 Architecture

Figure 10.2 shows the packages in the framework and how they relate to each other.

recognition

Wraps all object recognition functionality in the framework. This package contains
common code shared by the sub packages.

recognition.LICOV
This is the currently only implemented recognition scheme in the framework,
which is explained in section 6.4. This recognition scheme has been named
LICOV by the author and is an acronym for LInear COmbination of Views.

recognition.extractor
The framework supports local (performed on device) and external (performed
on an external server) information extraction. This package wraps this func-
tionality and contains an abstract class that implements common code and
define interfaces that must be followed by the extractors.

recognition.extractor.net
This package wraps all functionality related to the external information
extraction.

recognition.extractor.device
All functionality related to local information extraction is implemented
here.

recognition.activity
This package offers abstract activities and tasks that can be extended by the
framework user and is meant to ease application implementation by explicitly
exposing hooks and hot spots in the framework.

recognition.activity.task
This package contains abstract and concrete tasks as well as a task
manager. The concrete tasks implement default framework behaviour
for information extraction, model creation and object detection.

recognition.db
The framework supports storage of data in SQLite databases. This package
offers a default database handler, an abstract database adapter and a concrete
database adapter.

10.1 Framework Overview 97

support

All support functionality (not directly connected to the object recognition) used
by the recognition package is put into its own package. This functionality is also
valuable to the framework user.

support.exception
Contains a helper exception class which allow for more accurate and effective
debugging.

support.templates
Offer classes, implemented with the template pattern, for copying data be-
tween different sources.

support.interfaces
Contains the interface specification for the exception class in support.exception
and an interface specification for classes planning to use the support.templates.

98 Architecture

10.1.2 Class Diagrams

Recognition

Figure 10.3: Overview of the framework recognition package

10.1 Framework Overview 99

Figure 10.3 shows all classes in the recognition package. The classes rely heavily
on the OpenCV library and this is therefore considered part of this package.
The package contains abstract and concrete objects that wraps OpenCV data struc-
tures, thereby hiding domain knowledge from the user (ONR1), inside three types
of objects LocalMatch, LocalModel and Unknown. All of these extend LocalObject
which contains one variable; type. Objects created using different feature detectors
and descriptor extractors will be of a different type. This allows for type checking
(i.e. checking for compatible objects). The objects form a hierarchy where the
concrete objects form the leafs:

Unknown
Contains the information extracted from an image. This is either an un-
known entity that needs to be recognized or an object that can be used as
a basis to create models. The Unknown wraps ImageFeatures, which con-
tains the features and descriptors extracted from the image as well as the
image itself. The reason to keep the image is because of the dependency be-
tween the compressed image and the keypoint positions. The original image
can be compressed more than once, because of the fallback functionality in
UnknownTask. Therefore it is convenient to explicitly connect the Image-
Feature with the bitmap. This allows for easy implementation of a function
called drawKeypoints in Unknown, returning a new bitmap with the keypoints
drawn onto it.

LICOVModel
This class wraps the recognition model (ref. section 6.4.2) into its own self
sustainable object. This object must implement the methods defined in Lo-
calModel. This allows for a common way of handling all models in the frame-
work. The methods are meant to force all framework models to support self
serialization. This simplifies model storage greatly as the sequence diagram
in figure 10.15 shows (ORR12).

LICOVMatch
Match results are also wrapped inside objects. Figure 10.3 shows that match
results for the LICOV scheme returns four Mat objects. Wrapping these
simplifies handling of the match results while hiding specific knowledge on
how the recognition (described in section 6.4.3) works. All match objects
in the framework must implement the methods defined in LocalMatch thus
allowing for a common way of handling all match objects in the framework.
Each match object contains a reference to the bitmap used for recognition.
This simplifies the drawing of the matched model keypoints onto the image
as well as drawing a bounding box enclosing the keypoints. These methods
are used to show where the object is in the image.

Wrapping the OpenCV data structures in components allow for methods creat-
ing them. LICOVrecognitionTools implement all methods necessary for creating
LICOVmatch (ORR14) and LICOVmodel objects (ORR13). These offer default

100 Architecture

methods that use the SURF feature detector and descriptor extractor as well as a
set of default parameters. Customization is offered by parametrization where all
OpenCV feature detectors and descriptor extractors are supported. Creator and
matcher parameters can be changed by modifying the default values in LICOVcre-
atorOptions and LICOVmatcherOptions (ORR15).
The LocalRecognitionTools use all the methods in LICOVrecognitionTools and im-
plements some specific helper methods used by the latter. This class is meant as
a collector for all object creation tools in the framework. Framework users only
need to use this class. This makes the framework easier to use since all supported
recognition schemes are collected in one class.
ImageFeatures are created using one of the LocalFeaturesExtractors. The extractors
can be created by accessing the LocalFeaturesExtractorFactory. The factory creates
default or custom DeviceLocalFeaturesExtractor (ORR18) or SocketLocalFeature-
sExtractor(ORR18) . All OpenCV feature detectors and descriptor extractors are
supported.
SocketLocalFeaturesExtractor relies on SocketComm for communication with the
external information extraction server. For more information on the communica-
tion protocols refer to section 10.2.6.

Activity

Figure 10.4: Overview of the framework activity package

Figure 10.5 shows all classes contained within the activity package.
The package contains two abstract activities that are meant to ease the imple-
mentation of activities involved in creating models, AbstractModelActivity, and

10.1 Framework Overview 101

matching objects, AbstractGeneralActivity. These contain methods for starting the
camera and accessing the built in image library in the device. Two abstract meth-
ods cameraActivityResult and libraryActivityResult are exposed where the users can
implement their own camera and library result handlers.
The abstract activities are supported by abstract and concrete tasks. The tasks
form a hierarchy that is meant to match the object hierarchy in the recognition
package. All tasks subclass AbstractWorkerTask which allows for usage of the
TaskManager. The TaskManager is a support operation for activities that wishes
to obtain their reference to their tasks if they are restarted. This can happen when
they run in the background, such as when the camera activity is in the foreground.
In order to free up memory, the Android operating system can stop background
activities[83] and the activities lose all their object references. This reference can
be stored by calling detach on the TaskManager for each task before the activity
is killed. The reference can be obtained again by calling attach on restart. This is
possible because TaskManager is a singleton object.

Support

Figure 10.5: Overview of the framework support package

Figure 10.5 shows all classes contained within the support package. The classes
rely heavily on the OpenCV library and therefore this is considered part of the
package.

102 Architecture

MatrixManipulation offer matrix operations on Mat objects that are not available
in OpenCV. All methods are static to improve performance.
ImageOps offer methods for converting Mat objects to bitmaps, resizing images,
drawing keypoints and loading images from the file system into memory. All meth-
ods are static to improve performance.
CopyFromURLToHttp, CopyFromUrlToFileTemplate and
CopyFromStreamToFileTemplate are methods for copying binary data between dif-
ferent sources. The first is not implemented as a template because the methods for
copying to HTTP sinks are dependent on the script that receives the data. The
StreamCopy interface must be implemented by classes that wishes to use the copy
templates.
UrlAuthentication is a helper class for feeding web server login credentials to the
built in Authenticator in Android.
CollectExceptions is a helper class for collecting a train of exceptions in order to
correctly represent the exception stack where the "causing" exception is on top of
the stack. This should allow for more accurate and effective debugging.
FileStorage offer methods for saving and loading OpenCV data structures and
framework object models to the file system. This class uses the Java Native Inter-
face to directly access the OpenCV C++ file storage operations. This allows for a
fast, easy and consistent way of storing fully cross platform compatible OpenCV
objects in XML or YAML file format. This is a huge framework feature improve-
ment. Earlier, all OpenCV Mat and KeyPoint data structures had to be converted
into Java serializable data structures before being saved to binary files. Saving and
loading was a slow and painful process since the primitives in the Mat structure
change with the type of descriptor extractor used for creating them. This causes
complex type checking when converting between the Java structures and OpenCV
structures. All methods are static to improve performance.

10.2 Example Applications 103

DB (ORR3, ORR6)

Figure 10.6: Overview of the framework db package

Figure 10.6 shows all classes contained within the db package.
DatabaseHelper is a concrete class for creating the database from a text file which
contains legal SQLite syntax for initializing a database or copying an already exist-
ing database into the application. The DatabaseHelper also has an export function.
AbstractSQLiteDBAdapter uses the DatabaseHelper for importing, loading and ex-
porting databases as well as for opening and closing the database. This is common
functionality shared by applications.
QuizSQLiteDBAdapter is a concrete database implementation used by the example
applications. The rationale for placing this class in the framework is based on
the component library approach presented in section 5.5.4. All code shared by
applications should be collected in a common component library. Over time this
should help the framework developers see new abstractions. The hope is that some
code from this class will help in that respect and the parts that are common between
this class and new SQLiteDBAdapters can be extracted into new components. Then
the parts that are application specific can be moved out of the framework.

10.2 Example Applications

The purpose of this section is to show the usage of the framework. How the
sequence of calls are made to perform model creation and recognition (ONR4,

104 Architecture

ONR5). The rest of the functional and non-functional requirements are mapped
onto the example applications and the framework.

Figure 10.7: System deployment. Framework requires Android version >= 2.3.1
(ONR7, PNR1).

Figure 10.7 shows how both example applications are deployed. The applications
use external server support for information extraction (PR10). The application
and the Detector communicates using a custom communication protocol. For more
information about this refer to section 10.2.6.

The applications share information by copying a SQLite database to and from
a web server. The framework does not currently support sharing of data across
devices. This functionality is added to the examples because this aids in showing
the framework in real world contexts. The implementation is extremely simple
and will not be discussed further in the main part of this thesis since it is outside
the scope of the current framework. For more information on how the solution is
implemented refer to appendix E.

10.2 Example Applications 105

10.2.1 Recognition Functionality

Figure 10.8: Object recognition

This section presents the logical view of the recognition functionality in the frame-
work in context of the Quiz application(PR2, PR3, ONR4 ,PNR3). Figure 10.8
shows an informal view of this process(PNR4). The application fetches the shared
database from an external resource and loads it onto the device. If this fails the ap-
plication falls back to a backup stored on the device (a local preinstalled database
or an earlier downloaded database if the application has been run before). The
application uses functionality offered by the Android operating system for image
capture. The image is stored on the file system and a reference is sent back to
the application. The process follows the pipeline architecture presented in figure
6.1 and figure 6.3. The image is compressed and loaded into memory. By default
the external detector is used with an image resolution of 600x600. If this extractor
somehow fails the applications falls back to the device extractor but resizes the
image to 300x300. After extraction the data is sent to a matcher. The extracted
image data is matched against existing database models. The matcher results are
analysed and a decision on the existence of a model in the image is performed.

106 Architecture

Collaboration

Figure 10.9: Simplified object recognition class collaboration diagram

10.2 Example Applications 107

Figure 10.9 shows a simplified class collaboration diagram of the object recognition
activity. QuizActivity is the only class that is part of the application, the rest
are framework classes. The diagram shows how all domain knowledge is hidden
inside objects and there are no direct communication between the application and
OpenCV. The regular framework user only needs to know the steps involved in
creating the Unknown object and matching it against the models in the database.
This framework share the property which is common among frameworks, inter class
dependency (ref. section 5.1.3). Novice framework users must learn a set of classes
at once, which can be difficult.

Flow of Control

Figure 10.10: Simplified sequence diagram for object recognition

108 Architecture

The sequence of calls necessary to perform the recognition is shown in figure 10.10.
This explains the flow of control between the classes in the framework and between
the framework and the application. The diagram also shows how the main pro-
cessing is handed over from the main user interface thread to the worker threads
thus avoiding a locked user interface(PNR5,PNR6).

10.2.2 Model Creation Functionality

Figure 10.11: Model creation

This section presents the logical view of the model creation(PR1,PR2,PR3, ONR5)
functionality in the framework in context of the QuizAdmin application. Figure
10.11 shows an informal view of this process(PNR4). The similarity between this
figure and figure 10.8 proves design reuse. The application grabs the external
database from the web server and when the database modifications are finished the
application copies the database back to the web server. The QuizAdmin application
does not have a preinstalled database. The rationale for this is that no one will use
an outdated database. The application fetches images using the built in camera
activity in Android. The process follows the pipeline architecture presented in

10.2 Example Applications 109

figure 6.1 and figure 6.2. The image is resized and loaded into memory. By default
the the external detector is used with an image resolution of 600x600. If this
extractor somehow fails the applications falls back to the device extractor but
resamples the image to 300x300. After information extraction the data is sent to a
model generator that builds the model. The model is serialized and stored in the
database.

Collaboration

Figure 10.11 shows a simplified class collaboration diagram of the model creation
activity. Model creation is the most complex and most difficult activity to learn
in the framework. This is because there are lots of tasks and models to keep track
of. This is worsened by the fact that activities are restarted when they are in the
background. The CreateLicovModelActivity uses a helper class CustomImageView
to keep track of the connections between the ImageView on the screen, the bitmap
and the Unknown object. Aside from these classes the domain knowledge involved
in creating the model is wrapped within objects and the application has no direct
communication with the OpenCV library. This collaboration diagram is similar
to the model recognition diagram in figure 10.9 and proves code reuse and design
reuse. Dependencies between classes is common for frameworks and are one of the
reasons for them being hard to learn (ref. section 5.1.3). Novice users must expect
to learn several classes at once.

110 Architecture

Figure 10.12: Simplified model creation class collaboration diagram

10.2 Example Applications 111

Flow of Control

Figure 10.13: Simplified sequence diagram for model creation.

A simplified process view of the model creation is shown in figure 10.13. This helps
communicate the flow of control between the classes in the framework and between
the framework and the application. The information extraction and model creation
is performed on separate threads freeing up the main thread to do perform user
interaction(PNR5,PNR6).

112 Architecture

10.2.3 Model Storage

This section explains how applications can save models by using built in function-
ality in the framework (PR6,PR7).

Database Design

The database functionality is shown in the entity-relationship diagram in figure
10.14. The database is constructed to support the quiz. The interesting part in
the context of the framework is how simple model storage is. The entity Model is
the only part involved in the storage of the model. The framework serializes the
object into a human readable file, i.e. XML, and stores this file as a blob in the
database together with metadata that identifies the object.

Figure 10.14: Entity relationship diagram of database

10.2 Example Applications 113

Flow of Control

Figure 10.15: Simplified sequence diagram for model storage

Thanks to the simplified way of serializing data the process of storing objects has
become a trivial exercise (ref. figure 10.15). The user calls the QuizSQLiteD-
BAdapter with a reference to the object. QuizSQLiteDBAdapter asks the model to
serialize itself and receives a byte array representation of the human readable file.
The bytes are stored as a blob in the database.

114 Architecture

10.2.4 External Detector

This section presents the external information extractor(ORR17), shipped as part
of the framework, and how this communicates with the Android framework.

10.2.5 Collaboration

Figure 10.16: Simplified detector class collaboration diagram

Figure 10.16 shows a simplified class collaboration diagram of the detector. The
Server listens for connections and instantiate Worker threads when new connec-
tions are established. The Worker thread class implements all of the commu-
nication protocols such as authentication, intent clarification and data transfer.
Currently only information extraction is supported. Extraction is performed by in-
stantiating CvUtils that use OpenCV functionality to perform keypoint detection
and descriptor extraction. The data is serialized into OpenCV XML or YAML and
returned to the Worker which transfers the data back to the Android application.

10.2 Example Applications 115

10.2.6 Socket Communication

Figure 10.17: Simplified sequence diagram for the socket communication between
an application and the external detector

Figure 10.17 shows how the Android framework applications communicate with the
server. The client and server performs two way authentication using strings. After
this succeeds the client sends an intent which clarifies what it wants the server to
do. Currently the only intent supported is information extraction but the way of
sending intents allow for protocol extensibility. After the intent has been clarified
the client sends information about the file such as file name and size. After the

116 Architecture

server replies the client sends data. The server performs its operations and return
the file in the same manner as the client-to-server copy operation. When this is
done both close their connections. For protocol specifics refer to the SocketComm
(Javadoc) or the Worker(Doxygen) documentation.

Chapter 11

Implementation

This chapter presents the application user interfaces and maps the rest of the
functionality from section 9.2.1 onto them. Challenges and problems related to the
implementation are discussed.

11.1 Example Applications

This chapter presents the user interface in the two example applications. User
story U1 and U8 are not seen here and they are part of the application installation
process explained in appendix D. The mapped functionality is shown in parenthesis.

11.1.1 Quiz

After the quiz application is started the user is presented with one of the two views
shown in figure 11.1. If the application is started for the first time the user is
greeted with a welcome message (U9). The message is adapted to fit as framework
documentation where highlights of the framework changes are listed along with
application usage information. After closing the message the application enters
the camera activity and the user is tasked with finding an object that initialized a
quiz category. The quiz does not implement a scoring system and ends when all
categories have been answered.

Since the application is prescriptive documentation for the framework, a debug
menu is added. This can be accessed by cancelling the camera in the "find category"
mode and pressing the options button. The user can then either manually choose
to re-download the database (if she has set up application compatible support for
this. For more information refer to appendix E) or choose to edit the application
preferences (PR9). A view of these two options is shown in figure 11.2.

118 Implementation

Figure 11.1: Initial state of the quiz application. Left: First run welcome screen.
Right: Camera activity.

Figure 11.2: Cancelling the camera activity when the application is in Find a
category mode allows access to the application settings. These are not meant to be
accessible in production applications. Left: The options menu. Right: Application
preferences menu.

11.1 Example Applications 119

After the user has found an object the object recognition process is started. If
the object initializes a category the category quiz is started (PR4, U10). If the
category has been previously answered, the application informs the user and asks
her to find a different category. These three steps are shown in figure 11.3.
The application offers two different kinds of questions; text questions and object
recognition questions. The first is shown in figure 11.4 where the system asks the
user a question along with a series of answer alternatives (U12). The user continues
to answer until she is correct. The system gives feedback on the answers.
A recognition question is shown in figure 11.5. The system asks a question and the
task of the user is to find the object that answer this correctly (U11). The system
moves on to the next question when the user provides the correct object(PR4).

Figure 11.3: Quiz application performing object recognition on an image to ini-
tialize a quiz category. Left: The captured image is shown along with a scan bar
indicating that detection is in progress. Center: The image to the left initializes ge-
ography questions. Right: It’s not allowed to redo previously answered categories.

120 Implementation

Figure 11.4: Quiz application text question. Left: A geography text question
with available alternatives. Center: User has answered correctly. Right: User has
answered incorrectly.

Figure 11.5: Quiz application object recognition question. Left: A geography
question with an image button initializing the camera activity. Center: User has
found the correct object and the application indicate the area of recognition (PR4,
PR8). Right: User has not found the correct object.

11.1 Example Applications 121

11.1.2 QuizAdmin

Figure 11.6: Initial state of the quiz admin application. Top left: The options menu
is only accessible in this activity. Top right: The database has been downloaded
successfully. Lower left: The database has successfully been uploaded. Lower right:
Application preferences menu.

122 Implementation

The quiz administration application only involve parts of the database that are
related to the object recognition. The reason for this is to simplify the application
so it better suits as framework documentation. The user is not allowed to add
categories or questions, but she can edit the answer by either choosing an existing
model in the database or adding a new model.
When the application is started the user is presented with the activity shown
in figure 11.6. This activity has an options menu that allows for downloading
and uploading of the database as well as an option for changing the application
preferences such as changing the socket server settings and database synchronizer
settings.
The user has three options for accessing and filtering information in the database.
She can either choose to filter by category, questions or just view all the models in
the database (U5,U6). The options are shown in figure 11.7. For example the user
can select category and from there view all recognition questions in that category.

Figure 11.7: The application shows all categories that contain recognition questions
in the database. Left: Categories with object recognition questions. Clicking
a category shows assignments in the category. Center: All object recognition
questions in the database. Clicking a question allows for editing of the answer.
Right: All models in the database. Clicking an item in the list allows for deletion
if the object is not connected to a question. New models can be added from the
options menu.

11.1 Example Applications 123

The user can add new models by selecting add object from the options menu when
she is in the database models view (U3). The first time she enters model creation
the application presents a walkthrough giving tips for creating good models (U2).
This help can be accessed at any time through the options menu in the model
creation activity. (ref. figure 11.8).

Figure 11.8: Model creation help is initialized automatically the first time the user
tries to add a new model. Left: Help goes through a series of steps explaining the
creation process. Right: Model creation help is accessible from the options menu.

124 Implementation

Figure 11.9: The steps involved in creating an object model. Top left: The user
grabs two images of the object from two different poses. Top right: The application
shows a progress bar during construction. Lower left: A model summary is shown
after the construction indicating the quality of the model(PR5). The user confirms
if the model is satisfactory. Lower right: Users adds metadata to the model before
saving (PR4).

11.1 Example Applications 125

Figure 11.10: The edit recognition question answer process. Top left: The user
selects a recognition question and choose edit. Top right: The users selects a
model from the list and confirms the change. Lower left: The system confirms that
the change has been done. Lower right: The new answer is now connected to the
recognition question.

Figure 11.10 shows the process involved in editing a recognition question answer

126 Implementation

(U7). This task is straight forward; the user select the recognition question, select
edit and chooses the new answer from the model list.

The processes involved in creating the model is shown in figure 11.9. The user takes
two images of the object from two poses and selects create model. After the model
has been built the user is presented with a summary model quality (PR5). By
selecting cancel the model is mapped onto the input images, shown by a bounding
box around the matched keypoints(PR8). If the user is satisfied she recreates the
model. If not she should change one or both of the input images.

Figure 11.11 shows the process of deleting a model (U4). The delete option is only
available to the user if she selects "Show/Edit/Delete Objects" from the main menu.
The system only allows deletion of models that are not connected to a recognition
question. This is done in order to prevent breaking the database integrity.

Figure 11.11: The user is allowed to delete models that are not connected to
questions. Left: The delete option is shown if the user selects the Show/Edit/Delete
Objects option in the main menu. Right: The model was successfully deleted.

11.2 Framework bugs 127

11.2 Framework bugs

The example applications were developed and debugged on different Android vir-
tual devices and the authors own Android device (ref. appendix A). The appli-
cations run fine on these. This is not true for other devices however, such as the
HTC Desire HD and the Samsung Galaxy SII. The problem is related to the cus-
tom camera activities implemented by the device manufacturers, which causes the
operating system to behave differently. The example applications are restarted
spuriously while they are in the background. For one camera activity the back-
ground application can be restarted several times. This makes it hard to keep track
of the state of the application. This behaviour is spurious on the HTC Desire HD
and consistent on the Samsung Galaxy SII. Since the author does not have access
to the latter for debugging, fixing it is difficult. This problem is critical and should
be given the highest priority by the framework maintainer.
The bug is not in the parts of the applications that belong to the framework, but
the solution should be moved into the framework since this will be a common
problem for all applications in the domain.
All known bugs in the framework and the example applications are listed in ap-
pendix F along with ideas for solutions, the reason for them not being solved and
the authors assessment on their repair difficulty.
Until the bugs are fixed the author recommends using a Samsung Galaxy Nexus S
for application testing and framework development.

128 Implementation

Chapter 12

Object Recognition Results

This chapter presents recommendations for initial settings of model construction
and object recognition, model creation and settings, recognizer settings and the
frameworks recognition correctness and performance. The two first sections, model
building and correctness, are taken from the authors original report[63]. The recog-
nition scheme used is the same, but the underlying architecture is changed. These
are included to show the constraints and the suitability of the implemented recog-
nition solution and provide documentation for the model construction. The last
part documents the performance changes after applying the performance increase
tactic.
The last of the unmapped functional requirements in table 9.1 are mapped to show
that the recognition solution fulfils the requirements. The mapping is given in
parenthesis.

12.1 Model building

130 Object Recognition Results

Figure 12.1: Model creation: Object photographed from two different directions A
and B

Model construction must be influenced by where in the environment the object is
to be placed. If the object is located at the same height as the average person and
in such a way that the capture device is nearly perpendicular to a specific surface,
figure 12.1 shows two good positions (A and B) from which the model can be
constructed. This should give good recognition results from views between A and
B. On the other hand a to wide an angle between these will cause trouble finding
a representative set of keypoints. The author recommends making sure that the
model consists of all of the 32 keypoints, (current model limit). A wide angle will
also cause problems in recognizing the object from the center position (middle of
A and B in figure 12.1). Figure 12.2 gives two examples of object poses which have
provided good models.
These are not absolute rules and are based on the authors own trial and error.
Tweaking to fit specific purposes must be expected.

Figure 12.2: Examples of model bases that yield good recognition results.

The model has two tunable parameters: Number of keypoints and ratio(ref. table
6.1). These are set 32 and 0.7, which are the same values as in the original articles

12.2 Recognition settings 131

[64, 65]. If needed these can be changed through LICOVcreatorOptions (ref. figure
10.3) in the recognition package (ORR15). Models are built using image sizes of
600x600.

12.2 Recognition settings

The default recognizer parameters are shown in table 12.1. These have been found
through trial and error and are considered good starting points. The parameters
are explained in section 6.4.3 and table 6.1. They can be accessed through the
LICOVmatcherOptions (ref. figure 10.3) in the recognition package (ORR15).

Parameter Value
Tdist 150

Tremaining 8
Tmatch 0.22

Table 12.1: Default recognizer parameters

12.3 Correctness

This section proves that the recognition scheme is suitable for real world environ-
ments, where factors such as light and object perspective varies, if the the image
resolution is above above a certain threshold.

12.3.1 2D recognition (ORR1) and invariance to perspec-
tive, scale and rotation

The recognition scheme’s invariance to perspective, scale(ORR8) and rotation(ORR7)
were presented in figure 7.4. Appendix B show the data from the two tests.
Recognition at 600x600 resolution provides better results with correct recognition
in 92% of the cases. 2% of the images are wrongly identified. At resolution 400x400
correct recognition is only achieved in 64% of the images. 33% are not recognized
at all and 3% are wrongly identified. From table B.1 it is obvious that some images
are more difficult to match and sensitivity to rotation is higher than in the 600x600
case.

132 Object Recognition Results

12.3.2 3D recognition , rotation and recognition in cluttered
images

Figure 12.3 shows that the recognition scheme is able to handle recognition of
objects in a cluttered 3D environment(ORR2, ORR10). The models used are shown
in figure 12.2.

Figure 12.3: 3D recognition of the models shown in figure 12.2. Recognition works
on rotation and in cluttered scenes

12.3.3 Invariance to occlusion

The recognition scheme’s ability to handle occlusion is based on where the model
keypoints are located. As long as a good portion of the keypoints are not occluded
the recognition scheme works(ORR11). The more keypoints, the better occlusion is
supported at the expense of speed and memory (bigger models and more keypoints
to match against). Figure 12.4 show that using 32 keypoints still yields acceptable
results.

12.3 Correctness 133

Figure 12.4: Recognition on occluded objects: A glyph (2D object. ref. figure G.7)
, a magazine and a box (3D objects. ref. figure B.2)

12.3.4 Invariance to noise

Figure 12.5 show that the recognition scheme is able to handle images with noise
(ORR10). The one on the left is taken in low illumination conditions (to introduce
sensor noise) and the image to the right is blurred because of movement.

Figure 12.5: Recognition on grainy/blurry images of a magazine and a box. The
model is created using views shown in figure 12.2

134 Object Recognition Results

12.3.5 Invariance to illumination

Figure 12.6 shows the hallmark of using local keypoint features such as SURF. The
recognition scheme handles illumination changes extremely well. The two models
used are shown in figure 12.2 where the model images are taken under completely
different illumination(ORR9).

Figure 12.6: Recognition on a magazine and a box under different illumination
conditions. The model is created using views shown in figure 12.2

12.4 Performance 135

12.4 Performance

This section discuss the success of the performance improvement tactic.

12.4.1 Recognition speed

The author chose to implement an external server for information extraction in
order to improve the object recognition performance. A series of simple tests using
the quiz example were performed to document the performance improvement . For
a thorough explanation of the setup and the result details refer to appendix C.
To ensure correctness a minimum resolution of 600x600 was used. Recognition
without external server support took on average 21 seconds. By using external
server support the average was reduced to 9 seconds, a 43% increase in performance.
This number is optimistic since the device ran on a network with a short path to
the server. In real world settings the number of devices connected to the server
will also degrade performance.
The recognition performance is not adequate to fulfil the non-functional require-
ments ONR2 and PNR2.

136 Object Recognition Results

Part IV

Evaluation

Chapter 13

Evaluation

In this chapter the author evaluate the research, development and documentation
process. The author reflect on the success of the framework evolution and discuss
the success of applying the chosen tactics to reach the thesis goals of improving
flexibility, usability and performance.

13.1 Research

The previous specialization project formed the background for this thesis. The
authors domain and application knowledge gained from that project and the eval-
uation from that project formed the basis for the continued development effort.
Since the author initially did not know how to solve the remaining challenges a
series of research questions were created. The main issue was in which direction
the framework should be evolved. The research questions were divided into two
categories, frameworks and object recognition. Since these questions do not have
one simple answer, the presentation of the possible different solutions are meant as
a presentation and discussion of the possible solutions.

Answers to research questions Q1-Q7 are presented informally through the litera-
ture study in chapter 5. The questions formed the basis for a systematic approach
for performing an in depth study aiming at informing on proven successful tech-
niques and best practices for developing and documenting frameworks. A proper
definition of flexibility and usability in the context of framework as well as a defi-
nition of what a framework is allowed for deeper understanding of which directions
the framework could be evolved. The challenges and benefits help in communicat-
ing which factors that needs to be considered by the customer if they ever plan
to benefit from using this framework. The two main lessons to remember is that
frameworks are not free and it is important that the customer commits the time
and resources necessary if they ever wish to benefit from using the framework. The

140 Evaluation

other lesson is that the success of a framework is both dependent on good develop-
ment practices and proper documentation that takes the framework stakeholders
concerns into consideration.

Answers to research questions Q8-Q10 are answered in chapter 6 in the same infor-
mal manner as the ones answered in chapter 5. The importance of proper documen-
tation and knowledge transfer were the main reason for including this chapter. The
chapter explains the context of local object recognition and how the implemented
solution for recognition and model creation works. This also allowed the author
to correct previous mistakes and remove parts not necessary for understanding the
solution. Correctness and performance can be ambiguous. The author presented
definitions for these in context of the object recognition in this thesis.

The research on frameworks and object recognition allowed for a proper evaluation,
rooted in scientific knowledge, of the artefact delivered from the specialization
project. The newly gained knowledge allowed the author to answer the rest of the
research questions, Q11-Q12 by giving possible solutions to the challenges presented
in the specialization report as well as tactics for evolving the framework with respect
to the goals of improving flexibility, usability and performance.

The knowledge gained from eliciting solutions for research questions Q1-Q12 al-
lowed the author to answer the the main research question: How to evolve the
framework towards production quality?. The answer to this question is given by
the new artefact, its documentation and the rationale behind the changes.

13.2 Development

The author chose to continue the development using example applications as the
basis for the framework development. This method of development follows the
systematic approach presented by Roberts and Johnson which is presented in sec-
tion 5.5.4. This tactic combined with applying the rules presented in chapter 5.5.5
has resulted in separation of the framework and the example applications. The
framework is now distributed as an Android library project which can be reused
by referencing it in the application projects.

The author think that this tactic has proven extremely useful. Reusing the code
from the original prototypes has allowed for new abstractions and more important
development of components. The usage of OpenCV over two semesters has helped
the author understand an important component of the framework. The author
better understand the steps necessary for manipulating structures and know the
limitations of this component. One of these limitation is that the Android port
has no support for persistence for the KeyPoint and Mat data structures. This
functionality is available in the C++ implementation. The author therefore decided
to use Java Native Interfaces to directly access these operations enabling a cross
platform storage solution for the framework as well as object self serialization. Self
serialization simplifies the application storage implementation (ref. section 10.2.3).

13.2 Development 141

The continued use of the tactic has allowed the author to evaluate its qualities.
Changing tactic at this stage of development would not have been as useful since
the application domain already was fleshed out in the specialization project. Also
valuable time must have been spent on learning a new development method.

The prestudy worked as a brainstorming exercise that allowed the author to elicit
possible solutions for improving the object recognition performance. Research into
framework development practices helped the author define series of goals for im-
proving the framework architecture. The framework had a flat class structure
containing all the functionality. The framework was shipped as part of an applica-
tion. The framework code was intertwined with the example’s. By applying tactics
such as abstract activities the author managed to separate the framework from the
examples. Using tactics for building components allowed for wrapping of domain
knowledge and creating a framework that requires less domain knowledge to use.
Applying the full set of tactics resulted in a framework which separate concerns
into their own packages organized as a hierarchy. This increases flexibility and help
future framework developers decide where to put new functionality and users can
more easily find the functionality they need.

The cross platform storage solution allowed for easier implementation of an external
information extractor. The author chose the external information extractor solu-
tion over the one using a different extractor. The rationale for this was that a lot
of time have had to be used to research and test the suitability of different informa-
tion extractors with the currently implemented recognition solution. This would
have hampered the flexibility and usability goals. A middle ground was chosen
where the author added support for all feature detectors and descriptor extractors
in the framework, allowing for flexibility where the framework users themselves can
perform the suitability tests themselves.

To improve flexibility the author chose to implement parts of the recognition
scheme. The author chose to use socket connections for communication using
C++ supported by OpenCV. The initial choice of using OpenCV proved to be a
good choice together with implementing a cross platform storage solution. This
allowed for easier development of an external information extractor where most of
the required functionality already was provided through OpenCV. The choice of
only implementing parts of the recognition on the external server was to ensure
that not too much effort were committed before a proof of concept for the solution
proved usable. The author had to validate that there were a significant enough
performance gain in using an external solution, a lot of time is wasted on socket
initialization and data communication, which compared to local operations are ex-
tremely slow. If this had failed the author would have fallen back to an alternative
where new information extractors would have been tested. Implementing the object
recognition in a series of steps further improve the frameworks flexibility. The au-
thor recommends continued stepwise implementation of the pipeline nodes in figure
6.1-6.3. Users can then create their own mix of externally supported recognition
that better fit their application domain.

Currently the external server is not ready for production environments. The au-

142 Evaluation

thor prioritized implementing protocols and the recognition scheme. The server is
dependent on POSIX systems and Eclipse for compilation. Nor is the data sent
between the client and the server encrypted, exposing the authentication protocol
which is sent in clear text.

The author provided hooks and default behaviour through abstract activities and
abstract and concrete tasks. These proved extremely useful. Figure 10.8, 10.9,
10.11 and 10.12 show high design and code reuse. The default implementations
allow application users to implement already working solutions.

The application examples contains a bug that renders them unusable on a certain
devices. Time constraints and lack of access to devices that coherently expose the
problem are the reasons for the bug not being fixed. The bug is not exposed by
the authors own development device (ref. appendix A) and the Android virtual
devices. This problem must be given the highest priority from the framework main-
tainer. The lesson learned is that development of Android applications involving
external activities should be performed using a set of Android devices from differ-
ent manufacturers. This does not ensure complete cross device compatibility, since
the applications run fine on Samsung Nexus S devices but not on Samsung Galaxy
SII devices, but using different devices should reduce the risk of developing device
dependent applications. Catching problems such as this at an early stage reduces
the problem solution complexity.

The author has proved that the framework is usable within the customers domain
by providing examples that incorporate the object recognition in a knowledge quiz.
All the requirements in chapter 9 are by the author considered satisfied except
for performance. The lower bound on the computational complexity is provided
by the correctness requirement where 600x600 is considered the lowest allowable
resolution, which should allow for about 90% correct recognition at arms length
and suitable models (ref. appendix B). Using external information extraction over
local recognition on the development device, an increase in recognition performance
of 42% is possible in ideal conditions. This reduces the average recognition time
from 21 seconds to 9 seconds (ref. appendix C) in the quiz application. This is still
far from the requirement of 1-2 seconds, but a decent improvement in recognition
speed. In order to achieve the performance goal there are several choices which can
be applied in isolation or in combination involving requirements for faster devices,
relaxation of correctness requirements, relaxation of performance requirements,
faster keypoint detector, faster descriptor extractor or perform the full recognition
on an external server. Visual effects can also be applied to distract the user, making
the recognition seem faster than it really is.

The author is optimistic that adding all object recognition to the external server will
improve the object recognition performance even further. The reason for this is the
availability of increased computational resources. Less data has to be transferred
to and from the server. Currently the original bitmap has to be sent and the
OpenCV data structures has to be returned. XML and YAML are not optimized
for reducing the storage size since they use text to store primitives. Possibilities of
reducing the size using compression should be looked into.

13.3 Documentation 143

13.3 Documentation

Documentation is crucial for the framework success. Initially the user planned to
follow the documentation process presented in section 5.6.4. This is not possible
however because of the limited time available. Therefore this document along with
the example applications and the code documentation (Javadoc and Doxygen) are
the framework documentation. This is not ideal since the users must search through
a lot of information that are not part of the framework. The author has however
enabled hyperlinks in the table of contents, allowing users reading the pdf version
to quickly jump to chapters of interest. Because of this the thesis contains extensive
information of how the object recognition is implemented, the architectural choices
and the rationales and trade-offs for creating them. Collecting as much information
in one document reduces the risk of information being incomplete or lost.
The author recommends that the framework owner applies the process in section
5.6.4 and creates hyperlinked documentation, extracting the parts necessary from
this document and combining it with the code snippets from the example applica-
tions and using the Javadoc and Doxygen html files as support. The framework
document structure should be similar to the one in figure 5.1, where potential users
quickly can identify the frameworks suitability with their needs. Following the sys-
tematic process ensures that the documentation will address the concerns of the
stakeholders in section 1.4 and 5.6.1.
The example applications are dependent on external resources. The author realize
that this is not optimal for framework users that plan on using these for learning
purposes. The rationale for doing this was was a trade-off between the customers
needs and the documentation needs of the framework. The applications show off
the framework in a context suitable for the customer while providing information on
framework usage. Simpler stand alone applications should be considered that are
easier to instantiate. One way to solve this is to implement the original prototypes
using the new framework. This would also help in proving the suitability of the
framework.
Based on the requirements in section 5.6 the author considers the provided docu-
mentation complete:

• The purpose of the framework: The purpose of the framework is given
in part I of this document.

• How to use the framework:

– Installation instructions are given in appendix D and appendix E.
– How to use the framework is documented by the example applications,

code documentation (Javadoc and Doxygen) and chapter part III of this
document.

• The detailed design of the framework is presented in part III using
different views based on the needs of the identified stakeholders in section 1.4
and 5.6.1.

144 Evaluation

Documentation of the framework is not enough by itself. As described in section
5.4 often mentoring from developers and expert users are necessary. Therefore the
author has offered to be available for a limited amount of time in order to help the
customer and the framework maintainer until they gain the knowledge necessary
to begin application development and continued development of the framework.

13.4 Overall thesis evaluation

The author believe that the comprehensive prestudy is necessary in order to gain
enough domain knowledge to produce a satisfactory artefact. This combined with
the vast amount of documentation necessary to document it properly is by the au-
thor considered to much work for one student alone, which the size of this document
supports. Research in chapter 5.5.4 states that framework teams should be com-
posed of 2-4 developers, unless the developer is a domain expert and experienced
framework developer. Based on these facts and with the exception of the serious
bug in the example applications the author is quite satisfied with the achieved
result. The framework architecture is greatly improved over the old one and the
tactics implemented for development and documentation has improved flexibility,
usability and performance. The framework is not ready for commercial production
quality but a lot closer.

Chapter 14

Conclusion

14.1 Conclusion

This master thesis is a continuation of the author’s previous work from the TDT4501
- Specialization project. The documentation, artefact and evaluation from that
project formed the initial input where the goal was to improve upon the existing
solution with respect to flexibility, usability and performance. In order to find a
solution to the main issue, How to evolve the framework towards production qual-
ity?, the author defined a series of sub-questions that by finding possible answers
to these should provide enough knowledge to define the improvement approach.
The answers to the questions were informally conducted by performing a literature
prestudy into frameworks and object recognition along with formal definitions of
flexibility, usability correctness and performance in context of this thesis. The re-
sults from the two previous chapters formed input to an evaluation of the initial
framework artefact, which gave possible answers to the remaining research ques-
tions.

From the prestudy the author defined a set of goals and tactics for improving the
flexibility, usability and performance of the framework. The end result is a frame-
work that use proven successful techniques for implementation and documentation
which should increase the chance for framework reuse. The framework has evolved
from a completely white-box framework delivered as part of a prototype applica-
tion to a stand alone grey-box framework with customizable components. The
components hide object recognition domain knowledge from the users, allowing
them to focus on application problems rather than object recognition problems.
The provided examples are customized towards the customer and they show that
the framework is suitable for their needs.

The framework offers increased flexibility by supporting external information ex-
traction. This improves the object recognition performance by as much as 42%
when images of 600x600 pixels are used. This image size forms the lower bound

146 Conclusion

for the computational complexity since lower resolutions affect correctness nega-
tively. Resolutions of 600x600 ensure correct recognition in 90% of the cases when
the device is at arms length from the object and the object model is of satisfac-
tory quality. Flexibility and usability are further increased in the framework by
implementing default behaviour that falls back from external to local information
extraction if the connection with the server fails, allowing them to run in isolated
environments. The correctness requirement is relaxed in order to preserve perfor-
mance. The default fallback resolution is 300x300 and correctness is reduced to
around 60%.
The bugs in the framework and example applications, lack of encryption between
the framework and its external resources and the unsatisfied performance require-
ment result in a framework falling short of being ready for production environments.
It is however a lot closer than its predecessor.

14.2 Future Work

In this section the author presents suggestions for future work which will guide the
continued evolution of the framework. The suggestions are broken up into smaller
sections suggesting different approaches for improvement

Evaluate the existing solution

The customer should evaluate the quality of the current framework solution. The
results can be used as input to an new framework iteration. The evaluation fits with
the development process used by the author. The evaluation works as a quality
feedback loop that help improve the framework quality (ref. section 5.5.4).
The evaluation can be performed using different resources. The author has identi-
fied the following:

• Evaluation is performed by the customer

• The evaluation can be done as part of a software architecture course, such
as NTNUs TDT4240 which currently is taught by the thesis’ supervisor.
The framework can be used as a case study where groups of students use the
framework to develop applications that may be helpful to the customer. They
can give feedback on tactics (good and bad) used in the framework and point
out weak parts of the documentation while learning from the author’s mis-
takes. It is important to also provide this documentation for the framework
being useful for them.

• Evaluation can be performed through a project specialization course such as
TDT4501. The same course from which this project originated. A student
evaluates the solution and point out weak spots that needs improvement. As
part of this project proper documentation can be created. I.e. by using the
technique discussed in section 13.3

14.2 Future Work 147

Number of student developers

In order to ensure development of new and high quality iterations of the framework
the development team should consist of more than one student. Domain experts
should also be made available.

• The continued evolution should be done by more than one student. Most
students are not experienced framework developers nor domain experts. 2-4
students should be satisfactory. (5.5.3). There should be at least one student
familiar with image processing (object recognition expert) and one familiar
with software architecture (architecture and documentation expert).

• There should be a supervisor with knowledge in the field of computer vision
in addition to the the software architecture supervisor. Getting professional
help aid novice users in producing higher quality artefacts. The institute, at
which the author currently studies, has such expertise in Prof. Blake and
Assoc. Prof. Hokland.

Information extraction

SURF is moved into non-free part of OpenCV starting with version 2.4.1. The
commercial implications of this needs to be clarified.

Example applications

This section presents future work for improving to the example applications ranked
in order of importance:

1. Fix the bug in the example applications. An explanation of these and possible
solutions are presented in appendix F.

2. Add new simpler example applications that can run in isolation. (i.e re-
implement the old prototypes in the previous version of the framework using
the new framework iteration).

Detector

This section presents future work for improving to the detector ranked in order of
importance:

1. Fix remaining bugs in detector. An explanation of this and possible solutions
are presented in appendix F.

2. Add support for windows sockets.

3. Make detector independent of Eclipse.

148 Conclusion

4. Secure communication with the client.

5. Add support for matching.

6. Add support for model creation.

7. Add support for removal of outliers in both model creation and matching.
This can be done using RANSAC which is provided by the OpenCV library.
Building better models and matching should be more accurate since outliers
will be removed. Where this can be implemented in the model construction.
process is documented in section 6.4.2.

8. Add support for OpenCV 2.4.1

9. Standardize the communication and data transfer protocol, i.e HTTPS and
XML. This reduces the amount of critical code in the framework thus easing
maintenance and improving stability. Standardized protocols prolongs the
life of a system.

Framework

This section presents future work for improving the framework ranked in order of
importance:

1. Fix remaining bugs in framework. An explanation of this and possible solu-
tions are presented in appendix F.

2. Use AsyncTask get method instead of the get* methods in the tasks in
org.cyberlab.local.activity.task. For more information about this refer to their
Javadoc.

3. Secure communication with the server.

4. Add support for external matching

5. Add support for external model creation

6. Add support for removal of outliers in both model creation and matching.
This can be done using RANSAC which is provided by the OpenCV library.
Building better models and matching should be more accurate since outliers
will be removed. Where this can be implemented in the model construction.
process is documented in section 6.4.2.

7. Test and add new information extraction methods using other detectors and
extractors.

8. Add support for synchronization of SQLite databases via external server.

9. Add support for data storage in external database, ex MySQL.

14.2 Future Work 149

10. Add support for OpenCV 2.4.1.

11. Check if bug in OpenCV k-nearest neighbour (knn) match is fixed in the
new version of OpenCV. The workaround in the framework (located in Lo-
calRecognitionTools and LICOVrecognitionTools) should be removed. This
reduces outdated code as well as amount of code in framework that needs to
be maintained.

12. Standardize the communication and data transfer protocol, i.e HTTPS and
XML. This reduces the amount of critical code in the framework thus easing
maintenance and improve stability. Standardized protocols prolongs the life
of a system.

13. Research and find other object recognition schemes suitable for mobile de-
vices. The extensive research in the object recognition field results in new
and innovative solutions.

Documentation

This section presents future work for improving to the framework documentation
ranked in order of importance:

1. This is the most important part and will continue to be: Update documen-
tation to reflect changes and to avoid drift. Fixing outdated documentation
is time consuming. The developers involved in making changes must update
the documentation to reflect their changes. Over time these may not longer
be available and critical architectural information may be lost.

2. Generate stand alone hyperlinked documentation that minimizes the need for
maintenance from this document, example applications and the code docu-
mentation. The process in section 5.6.4 is suitable for this purpose.

3. Create code snippet examples from the example applications.

4. Look into other possible ways of performing documentation that require less
resources and decrease the necessity for maintenance.

150 Conclusion

References

[1] “Simple guide to installing android apk files.” http://www.brighthub.com/
mobile/google-android/articles/37151.aspx, 6 2012.

[2] Google, “Platform Versions.” http://developer.android.com/about/
dashboards/index.html, 6 2012.

[3] Droid Sector, “Samsung Nexus S.” http://www.droidsector.com/devices/
samsung-nexus-s, 6 2012.

[4] M. of Culture and C. Affairs, “Report no. 14 to the storting: Video games.”
http://www.regjeringen.no/en/dep/kkd/Documents/regpubl/stmeld/
2007-2008/report-no-14-2007-2008-to-the-storting.html?id=518787,
6 2012.

[5] Wikipedia, “History of video games.” http://en.wikipedia.org/wiki/
History_of_video_games, 6 2012.

[6] C. O. AS, “About cyberlab.” http://www.cyberlab.org/wp/wordpress/
?page_id=2, 6 2012.

[7] Y. Marion, D. E. Holmstrøm, J. Eriksson, M. Opheim, K. Babington,
K. B. Viktil, and J. ÌĄs Valero, “Augmented reality using android,” tdt4290
customer driven project, Norwegian University of Science and Technology
(NTNU), http://www.ntnu.edu/, 11 2010.

[8] M. Zyda, “From visual simulation to virtual reality to games,” Computer,
vol. 38, pp. 25 – 32, sept. 2005.

[9] V. Basili, “The experimental paradigm in software engineer-
ing,” (Berlin, Germany), pp. 3 – 12, 1993//. experimental
paradigm;software engineering;complexity;well defined primitives;research
paradigms;experimentation;software research;software development;.

[10] Wikipedia, “Android (operating system).” http://en.wikipedia.org/wiki/
Android_(operating_system), 6 2012.

http://www.brighthub.com/mobile/google-android/articles/37151.aspx
http://www.brighthub.com/mobile/google-android/articles/37151.aspx
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://www.droidsector.com/devices/samsung-nexus-s
http://www.droidsector.com/devices/samsung-nexus-s
http://www.regjeringen.no/en/dep/kkd/Documents/regpubl/stmeld/2007-2008/report-no-14-2007-2008-to-the-storting.html?id=518787
http://www.regjeringen.no/en/dep/kkd/Documents/regpubl/stmeld/2007-2008/report-no-14-2007-2008-to-the-storting.html?id=518787
http://en.wikipedia.org/wiki/History_of_video_games
http://en.wikipedia.org/wiki/History_of_video_games
http://www.cyberlab.org/wp/wordpress/?page_id=2
http://www.cyberlab.org/wp/wordpress/?page_id=2
http://www.ntnu.edu/
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)

152 REFERENCES

[11] M. H. Goadrich and M. P. Rogers, “Smart smartphone development:
Ios versus android,” (Dallas, TX, United states), pp. 607 – 612, 2011.
Android;Apps;Eclipse;IOS;Iphone;Java;Objective-C;Smartphones;Xcode;.

[12] Android, “Application fundamentals.” http://developer.android.com/
guide/components/fundamentals.html, 6 2012.

[13] Android, “Development Considerations.” http://developer.android.com/
guide/topics/manifest/uses-sdk-element.html#considerations, 6
2012.

[14] Android, “Installing the sdk.” http://developer.android.com/sdk/
installing/index.html, 6 2012.

[15] Android, “Managing Virtual Devices.” http://developer.android.com/
tools/devices/index.html, 6 2012.

[16] Android, “Using hardware devices.” http://developer.android.com/
tools/device.html, 6 2012.

[17] G. Bradski, “The opencv library,” Dr.Dobb’s Journal, vol. 25, no. 11, pp. 120–
120–125, 2000. 202684726; 62275148; Copyright Miller Freeman Inc. Nov 2000;
Bradski, Gary; English; 18657; 120-125; San Mateo; IDRD; Programming lan-
guages; Data imaging; DDJOEB; Nov 2000; 1243684; Computer programming.

[18] O. project, “Opencv for android release notes.” http://code.opencv.org/
projects/opencv/wiki/Android_Release_Notes, 6 2012.

[19] O. project, “Android.” http://opencv.willowgarage.com/wiki/, 6 2012.

[20] Google, “GSoC: Open Source Computer Vision Library (OpenCV).” http:
//www.google-melange.com/gsoc/org/google/gsoc2012/opencv, 6 2012.

[21] O. project, “Opencv v2.3 documentation.” http://opencv.itseez.com/, 6
2012.

[22] R. LaganiÃĺre, OpenCV 2 Computer Vision Application Programming Cook-
book. Packt Publishing, 2011.

[23] O. project, “Android best practices.” http://opencv.alekcac.
webfactional.com/android/android-best-practices.html, 6 2012.

[24] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building Application Frame-
works: Object-Oriented Foundations of Framework Design, ch. Application
Frameworks, pp. 3–22. Wiley Computer Publishing, 1999.

[25] R. Johnson and B. Foote, “Designing reusable classes,” Journal of object-
oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[26] R. E. Johnson, “Frameworks = (components + patterns),” Commun. ACM,
vol. 40, pp. 39–42, October 1997.

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#considerations
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#considerations
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html
http://code.opencv.org/projects/opencv/wiki/Android_Release_Notes
http://code.opencv.org/projects/opencv/wiki/Android_Release_Notes
http://opencv.willowgarage.com/wiki/
http://www.google-melange.com/gsoc/org/google/gsoc2012/opencv
http://www.google-melange.com/gsoc/org/google/gsoc2012/opencv
http://opencv.itseez.com/
http://opencv.alekcac.webfactional.com/android/android-best-practices.html
http://opencv.alekcac.webfactional.com/android/android-best-practices.html

REFERENCES 153

[27] A. Aguiar and G. David, “Patterns for effectively documenting frameworks,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 6510, pp. 79 –
124, 2011.

[28] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, “Application frameworks,” in
Building Application Frameworks, ch. 1, pp. 3–27, Wiley Computer Publishing,
1999.

[29] J. Hautamäki, A survey of frameworks. University of Tampere, Department
of Computer Science, 1997.

[30] McGraw-Hill Dictionary of Scientific & Technical Terms. The McGraw-Hill
Companies, Inc., 6 ed., 2003.

[31] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ch. Understanding Quality Attributes, pp. 71–98. Addison-Wesley, 2007.

[32] J. Vlissides, “Protection, part i: The hollywood principle,” C++ Report, vol. 8,
no. 2, 1996.

[33] L. Bass, P. Clements, and R. Kazman, Software Architecture In Practice,
ch. Creating An Architecture, pp. 69–261. Addison-Wesley, 2007.

[34] E. Gamma, R. Helm, R. E. Johnson, and J. Vissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, ch. Behavioral Patterns, pp. 221–
351. Addison-Wesley Professional, 1995.

[35] Oracle, “Functor Pattern.” http://coherence.oracle.com/display/
INCUBATOR/Functor+Pattern, 2012 6.

[36] D. Roberts, R. Johnson, et al., “Evolving frameworks: A pattern language for
developing object-oriented frameworks,” Pattern languages of program design,
vol. 3, pp. 471–486, 1996.

[37] E. Gamma, R. Helm, R. E. Johnson, and J. Vissides, Design Patterns:
Elements of reusable object-oriented software, ch. Introduction, pp. 1–29.
Addison-Wesley Professional, 1995.

[38] T. Inc., “Buidling object-oriented frameworks.” http://lhcb-comp.web.
cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf, 6 2012.

[39] G. Booch, “Designing an application framework,” Dr Dobb’s Journal-Software
Tools for the Professional Programmer, vol. 19, no. 2, pp. 24–35, 1994.

[40] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building Application Frame-
works: Object-Oriented Foundations of Framework Design, ch. Framework De-
sign by Systematic Generalization, pp. 353–377. Wiley Computer Publishing,
1999.

http://coherence.oracle.com/display/INCUBATOR/Functor+Pattern
http://coherence.oracle.com/display/INCUBATOR/Functor+Pattern
http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf
http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf

154 REFERENCES

[41] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: specifying behav-
ioral compositions in object-oriented systems,” in Proceedings of the European
conference on object-oriented programming on Object-oriented programming
systems, languages, and applications, OOPSLA/ECOOP ’90, (New York, NY,
USA), pp. 169–180, ACM, 1990.

[42] R. E. Johnson, “How To Develop Frameworks.” http://wiki.lassy.uni.lu/
Special:LassyBibDownload?id=453, 6 2012.

[43] E. Gamma, Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[44] K. Koskimies and H. Mössenböck, “Designing a framework by stepwise gener-
alization,” Software EngineeringâĂŤESEC’95, pp. 479–498, 1995.

[45] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Application Frameworks,
ch. Documenting Frameworks, pp. 495–503. Wiley Computer Publishing, 1999.

[46] R. E. Johnson, “Documenting frameworks using patterns,” SIGPLAN Not.,
vol. 27, pp. 63–76, October 1992.

[47] G. Butler and P. Dénommée, “Documenting frameworks,” Building Ap-
plication Frameworks: Object-Oriented Foundations of Framework Design,
pp. 495–504, 1999.

[48] M. Morrison, “Java 1.1 unleashed.” http://gbengasesan.com/fyp/2/htm/
ch29.htm, 3 2012.

[49] J. Coplien, “Software design patterns: Common questions and answers,” The
Patterns Handbook: Techniques, Strategies, and Applications. Cambridge Uni-
versity Press, NY, pp. 311–320, 1998.

[50] J. Hollingsworth and B. Weide, “Micro-architecture vs. macro-architecture,”
in Proceedings of the Seventh Annual Workshop on Software Reuse, Citeseer,
1995.

[51] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building Application Frame-
works, ch. Reusing Hooks, pp. 219–233. Wiley Computer Publishing, 1999.

[52] J. K. Tsotsos and N. D. B. Bruce, “Computational foundations for atten-
tive processes.” http://www.scholarpedia.org/article/Computational_
foundations_for_attentive_processes, 6 2012.

[53] Wikipedia, “Computer vision.” http://en.wikipedia.org/wiki/Computer_
vision, 6 2012.

[54] M. A. Treiber and M. Treiber, “Introduction,” in An Introduction to Object
Recognition, vol. 0 of Advances in Pattern Recognition, pp. 1–10, Springer
London, 2010. 10.1007/978-1-84996-235-3_1.

http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=453
http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=453
http://gbengasesan.com/fyp/2/htm/ch29.htm
http://gbengasesan.com/fyp/2/htm/ch29.htm
http://www.scholarpedia.org/article/Computational_foundations_for_attentive_processes
http://www.scholarpedia.org/article/Computational_foundations_for_attentive_processes
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Computer_vision

REFERENCES 155

[55] J. Tsotsos, “The complexity of perceptual search tasks,” (Palo Alto, CA, USA),
pp. 1571 – 7, 1989. computer vision;computational complexity;perceptual
search tasks;psychology;bottom-up case;NP-complete;.

[56] J. Tsotsos, “Analyzing vision at the complexity level,” Behavioral and Brain
Sciences, vol. 13, no. 3, pp. 423–469, 1990. cited By (since 1996) 130.

[57] P. Parodi, R. Lancewicki, A. Vijh, and J. Tsotsos, “Empirically-
derived estimates of the complexity of labeling line drawings of poly-
hedral scenes,” Artificial Intelligence, vol. 105, no. 1-2, pp. 47 –
75, 1998/10/. empirically-derived estimates;labeling complexity;line
drawings;polyhedral scenes;3D structure;worst-case complexity;random in-
stances;perspective projections;median-case complexity;.

[58] Wikipedia, “Object recognition.” http://en.wikipedia.org/wiki/Object_
recognition, 6 2012.

[59] M. A. Treiber and M. Treiber, “Summary,” in An Introduction to Object Recog-
nition, vol. 0 of Advances in Pattern Recognition, pp. 183–186, Springer Lon-
don, 2010. 10.1007/978-1-84996-235-3_8.

[60] C. V. Ramamoorthy and H. F. Li, “Pipeline architecture,” ACM Comput.
Surv., vol. 9, pp. 61–102, Mar. 1977.

[61] R. C. Gonzales and R. E. Woods, “Filtering in the frequency domain,” in
Digital Image Processing, pp. 199–305, Pearson/Prentice Hall, 2008.

[62] R. C. Gonzales and R. E. Woods, “Image restoration and reconstruction,” in
Digital image processing (M. McDonald, A. Dworkin, W. Opaluch, S. Disanno,
and R. Kernan, eds.), pp. 311–389, Pearson/Prentice Hall, third ed., 2008.

[63] M.-G. Karlsen, “Object recognition for android,” tdt4501 computer sci-
ence, specialization project, Norwegian University of Science and Technology
(NTNU), http://www.ntnu.edu/, 12 2011.

[64] J. Revaud, G. Lavoué, Y. Ariki, and A. Baskurt, “Fast and cheap object
recognition by linear combination of views,” in Proceedings of the 6th ACM
international conference on Image and video retrieval, CIVR ’07, (New York,
NY, USA), pp. 194–201, ACM, 2007.

[65] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in Computer Vision – ECCV 2006 (A. Leonardis, H. Bischof, and A. Pinz,
eds.), vol. 3951 of Lecture Notes in Computer Science, pp. 404–417, Springer
Berlin / Heidelberg, 2006. 10.1007/11744023_32.

[66] R. C. Gonzales and R. E. Woods, “Fundamentals of spatial filtering,” in Digital
Image Processing, pp. 144–150, Pearson/Prentice Hall, 2008.

[67] R. C. Gonzales and R. E. Woods, “Using the second order derivative for im-
age sharpening - the laplacian,” in Digital Image Processing, pp. 160–162,
Pearson/Prentice Hall, 2008.

http://en.wikipedia.org/wiki/Object_recognition
http://en.wikipedia.org/wiki/Object_recognition
http://www.ntnu.edu/

156 REFERENCES

[68] J. C.H. Edwards and D. E. Penney, “Higher order determinants,” in Elemen-
tary Linear Algebra, pp. 82–86, Prentice Hall, 2005.

[69] S. Ullman and R. Basri, “Recognition by linear combinations of models,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 13,
pp. 992 –1006, oct 1991.

[70] D. Hearn and M. P. Baker, “Matrix representations and homogenous coor-
dinates,” in Computer graphics with OpenGL, pp. 237–240, Pearson/Prentice
Hall, 2004.

[71] J. C.H. Edwards and D. E. Penney, “Orthogonal projections and least square
solutions,” in Elementary Linear Algebra, pp. 220–229, Prentice Hall, 2005.

[72] Wikipedia, “Euclidian distance.” http://en.wikipedia.org/wiki/
Euclidian_distance, 12 2011.

[73] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alter-
native to SIFT or SURF,” in Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, pp. 2564–2571, IEEE, 2011.

[74] W. Garage, “Star Detector.” http://pr.willowgarage.com/wiki/Star_
Detector, 6 2012.

[75] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Gool, “A comparison of affine region detectors,”
International journal of computer vision, vol. 65, no. 1, pp. 43–72, 2005.

[76] L. W. Kheng, “Feature Detection and Matchin (Slides).” www.comp.nus.edu.
sg/~cs4243/lecture/feature.pdf, 6 2012.

[77] P. Meer, “Harris Detecor (Slides).” http://cronos.rutgers.edu/~meer/
TEACH/ADD/Harrisdet.pdf, 6 2012.

[78] G. Bradski, “Willow Garage, OpenCV, ROS, And Object Recogni-
tion.” http://www.ais.uni-bonn.de/~holz/spme/talks/01_Bradski_
SemanticPerception_2011.pdf, 6 2012.

[79] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust in-
dependent elementary features.,” Computer Vision–ECCV 2010, pp. 778–792,
2010.

[80] Android, “android.renderscript.” http://developer.android.com/
reference/android/renderscript/package-summary.html, 6 2012.

[81] ZiiLabs, “Android.” http://www.ziilabs.com/products/software/
android.php, 6 2012.

[82] G. Forman and J. Zahorjan, “The challenges of mobile computing,” Computer,
vol. 27, pp. 38 –47, apr 1994.

http://en.wikipedia.org/wiki/Euclidian_distance
http://en.wikipedia.org/wiki/Euclidian_distance
http://pr.willowgarage.com/wiki/Star_Detector
http://pr.willowgarage.com/wiki/Star_Detector
www.comp.nus.edu.sg/~cs4243/lecture/feature.pdf
www.comp.nus.edu.sg/~cs4243/lecture/feature.pdf
http://cronos.rutgers.edu/~meer/TEACH/ADD/Harrisdet.pdf
http://cronos.rutgers.edu/~meer/TEACH/ADD/Harrisdet.pdf
http://www.ais.uni-bonn.de/~holz/spme/talks/01_Bradski_SemanticPerception_2011.pdf
http://www.ais.uni-bonn.de/~holz/spme/talks/01_Bradski_SemanticPerception_2011.pdf
http://developer.android.com/reference/android/renderscript/package-summary.html
http://developer.android.com/reference/android/renderscript/package-summary.html
http://www.ziilabs.com/products/software/android.php
http://www.ziilabs.com/products/software/android.php

REFERENCES 157

[83] Android, “Activity.” http://developer.android.com/reference/android/
app/Activity.html, 6 2012.

[84] “Tips: How to install apk files on android em-
ulator.” http://openhandsetmagazine.com/2008/01/
tips-how-to-install-apk-files-on-android-emulator/, 6 2012.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://openhandsetmagazine.com/2008/01/tips-how-to-install-apk-files-on-android-emulator/
http://openhandsetmagazine.com/2008/01/tips-how-to-install-apk-files-on-android-emulator/

158 REFERENCES

Part V

Appendices

Appendix A

Google Nexus S
Specifications

This is the test device used to do benchmarking. This table gives a short overview
of the device specifications so later comparison benchmarking is possible.

Display
Screen diagonal 4"
Resolution 800x480
Density High
CPU
Manufacturer Samsung
Type S5PC110
Speed 1 GHz
Hardware
RAM 512 MB
Internal storage 16 GB
Interface Touch screen
Camera
Main camera 5 MP
Front camera Yes
Flash LED

Table A.1: Technical specifications of test device[3]

162 Google Nexus S Specifications

Appendix B

2D object recognition test
results

B.1 Test setup

Figure B.1: 2D object recognition test directions

This test quantifies the quality of recognition on simple drawings, glyphs, taken
from 3 different directions. The glyphs are printed on sheets of A4 paper and
placed on a magnetic board at the same height as the camera. The camera is
approximately at arms length from the board. Firstly the glyphs are photographed
at the same rotation as the images used for model creation. The three positions
are called A, B and C. The situation is shown in figure B.1. Secondly the glyph
is randomly rotated and then photographed from the same three positions, now
named A1,B1 and C 1. An example of the six views is shown in figure B.2. In all
there are 11 glyphs and these can be found in [63]. The same test was performed
twice but images were captured at different resolutions; 400x400 and 600x600.
Images of the different scenes were only captured once for each test.

Specifications of the test device can be found in appendix A.

164 2D object recognition test results

Figure B.2: 2D object recognition test example. Top row: Recognition from direc-
tions depicted in figure B.1 where object is rotated in same direction as in original
model creation images. Bottom row: Recognition on random rotated object from
directions shown in figure B.1

B.2 Recognition at 400x400

Glyph A A1 B B1 C C 1

1 X X X X X O
2 X X X X X X
3 W O X X O X
4 O X W O O O
5 X X X O X X
6 X X X X X X
7 O O X O X O
8 X O X O X X
9 X O X X X O
10 O O X O X O
11 X O X X X O

Table B.1: 2D Glyph recognition on figure G.7 results using 400x400 recognition
resolution (X:Match. O:No object matches. W:Wrong object matched). A,B,C
are images taken from the left, in front of and to the right of the object holding the
device oriented the same way as the images used for creating the model. A1,B1,C 1

is similar to their counterparts but the device is randomly rotated.

B.3 Recognition at 600x600 165

B.3 Recognition at 600x600

Glyph A A1 B B1 C C 1

1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X O W X X O
5 X X X X X X
6 X X X O X X
7 X X X O X X
8 X X X X X X
9 X X X X X X
10 X X X X X X
11 X X X X X X

Table B.2: 2D Glyph recognition on figure G.7 results using 600x600 recognition
resolution (X:Match. O:No object matches. W:Wrong object matched). A,B,C
are images taken from the left, in front of and to the right of the object holding the
device oriented the same way as the images used for creating the model. A1,B1,C 1

is similar to their counterparts but the device is randomly rotated.

B.4 Recognition efficiency

Resolution Recognitionrss
300x300 10
400x400 10
500x500 15
600x600 14
700x700 14
800x800 20
900x900 20

1000x1000 27

Table B.3: Approximate recognition speed on figure G.7 in a database consisting
of 25 objects.

166 2D object recognition test results

Appendix C

Quiz Performance Tests

C.1 Test Setup

This test quantifies the speedup of using an external detector for information ex-
traction. Specifications on the Android device are given in appendix A. The detec-
tor ran on Debian squeeze (amd64) using a desktop workstation with 12 GB RAM
and 2 quad-core Intel i7-920 processors @ 2.7 GHz. The server was connected to
the NTNU campus network while the device was connected to the WIFI (802.11g)
NTNU campus network.

The tests were performed using the category initialization activity in the quiz
example application. When the recognition process starts the models are preloaded
into the device memory. All in all there are 5 models loaded into memory and all
are matched against the image data.

Two tests were performed, one where the external server extracted the information
and one where the information extraction were done locally on the device. A
resolution of 600x600 were used in both tests.

The tests were performed 3 times for each category image. The image IDs in table
C.1 and table C.2 are:

1. Figure G.3.

2. Figure G.6.

3. Figure G.4.

4. Figure G.5.

5. Figure G.1.

168 Quiz Performance Tests

C.2 Results
Image ID Test 1[s] Test 2[s] Test 3[s] Avg.[s]

1 8 7 8 8
2 9 11 7 9
3 11 11 8 10
4 10 9 13 11
5 8 7 8 8

Avg. - - - 9

Table C.1: Performance (in seconds) of image information extraction using external
detector on images of size 600x600

Image ID Test 1[s] Test 2[s] Test 3[s] Avg.[s]
1 21 17 19 19
2 19 19 18 19
3 20 21 21 21
4 30 31 29 30
5 17 17 16 17

Avg. - - - 21

Table C.2: Performance (in seconds) of image information extraction using device
on images of size 600x600

Image ID Avg. performance
increase[s]

Avg. performance
increase [%]

1 11 42
2 10 47
3 11 48
4 20 37
5 9 47

Avg. 12 43

Table C.3: Performance increase using external server for information extraction
over information extraction on device using images of size 600x600.

Appendix D

Application Installation

D.1 Phone[1]

Prerequisites:

• Android SDK

• Android USB drivers

For installation of the SDK look at http://developer.android.com

For installation of Android USB drivers go to http://developer.android.com/
sdk/win-usb.html

To be able to install applications from other sources than android market on
your phone you need go to Settings Ñ Application Settings and enable Unknown
Sources. Also go to Settings Ñ SD Card and Phone Storage Ñ Disable Use for
USB Storage. You can enable it again later. Next, open Command Prompt and
type: adb install path/file.apk Where path is the full path to the APK file and file
is the name of the APK application file. The application is now installed.

D.2 Emulator

Prerequisites:

• Android SDK

For installation of the SDK look at http://developer.android.com

Install apk in device emulator [84]

http://developer.android.com
http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html
http://developer.android.com

170 Application Installation

1. Add SDK_ROOT to your system variables pointing to /tools folder under
the sdk

2. Run the emulator

3. Copy the apk file to /tools folder

4. Change directory to /tools and run from command line $adb install your_application.apk
Now check applications list in the emulator and you should see the new ap-
plication installed and ready.

Appendix E

Framework Installation

E.1 Android

E.1.1 Prerequisites

The CyberlabOD framework requires the following libraries and tools being in-
stalled. For installation refer to the links:

1. Eclipse IDE (http://www.eclipse.org/downloads/).

2. Android Development Tools (ADT) for Eclipse. SDK Platform An-
droid 2.3.1, API 9 (http://developer.android.com/sdk/installing/index.
html).

3. Eclipse CDT (http://www.eclipse.org/cdt/).

4. Android NDK (http://developer.android.com/tools/sdk/ndk/index.
html).

5. OpenCV 2.3.1 (Installation using OpenCV for Android binary package
with Eclipse: http://opencv.itseez.com/doc/tutorials/introduction/
android_binary_package/android_binary_package.html#android-binary-package).

http://www.eclipse.org/downloads/
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://www.eclipse.org/cdt/
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://opencv.itseez.com/doc/tutorials/introduction/android_binary_package/android_binary_package.html#android-binary-package
http://opencv.itseez.com/doc/tutorials/introduction/android_binary_package/android_binary_package.html#android-binary-package

172 Framework Installation

E.1.2 Install Instructions

The CyberlabOD library is packed as a ready-for-use Android Library Project. You
can simply reference it in your projects.
Each sample included is a regular Android project that already references the
CyberlabOD library. Follow the steps to import CyberlabOD and samples into
workspace:

1. Unpack the zip file using your favourite archive utility.

2. Right click on the Package Explorer window and choose the import option
from the context menu:

E.1 Android 173

3. In the main panel select General Ñ Existing Projects into Workspace and
press the next button:

174 Framework Installation

4. Locate your CyberlabOD package folder in the select root directory. (If you
have created a workspace in the package directory, then just click the browse
button and instantly close the directory, choosing dialog with the OK button!)
Eclipse should automatically locate the CyberlabOD library and samples:

5. Click the finish button to complete the import operation.

E.1 Android 175

6. The projects will be imported with a bunch of errors:

7. The following steps must be performed to remove the Eclipse errors in the
CyberlabOD framework project:

• Fix the reference to OpenCV workspace project:
(a) Right click the CyberlabOD project in the package explorerÑ select

properties Ñ select Android.

176 Framework Installation

(b) Under library there will be a red cross indicating an error:

(c) Click remove under the library pane.
(d) Click add.
(e) Select OpenCV.
(f) Click OK.

• Fix references to Android NDK, the C/C++ libraries and the OpenCV
package directory:

E.1 Android 177

(a) In project properties select C/C++ build Ñ Environment.
(b) Click on ANDROID_NDK and select edit. Enter the full path to

the directory where you installed the Android NDK in your system:

(c) Click on INCLUDE and select edit. Enter the full path to the
C/C++ header directory in the system. On UNIX systems this is
normally
/usr/include:

(d) Click on OPENCV_PACKAGE_DIR and select edit. Enter the
full path to the directory where you installed the OpenCV library:

(e) Click on OK, closing the properties window.

• Right click project in package explorer. Select Android Tools Ñ Fix
project properties. This should remove invalid properties.

• Select the project. Select project from the Eclipse menu Ñ Build All.
The project should build without errors.

• If there are no errors, the framework is ready for use.

8. To remove the Eclipse errors in the example applications, the CyberlabOD
library project reference must be updated.

178 Framework Installation

• (a) Right click the example application project in the package explorer
Ñ select properties Ñ select Android.

(b) Under library there will be a red cross indicating an error:

(c) Click remove under library pane.
(d) Click add.
(e) Select CyberlabOD.
(f) Click OK twice to close the properties dialog.

• Right click the example application and select refresh.
• There should be no errors and the application should be ready to run.

E.2 External support 179

E.2 External support

E.2.1 Detector

The CyberlabOD framework has support for external resources. To date this only
includes one component, an image features extractor. The component is imple-
mented as a C++ socket server that listens for clients wanting to use its services.
The socket support server is not ready for a production environment until the
following features/issues has been added/resolved:

• Encrypt socket communication.

• Add log features.

• Recycle socket to allow for immediate server restart. Crash the server and
restart. The socket server is not allowed to restart immediately. Ref. table
F.3.

• Fix the image extractor bug. Ref. table F.3.

• Stress test system in a realistic environment.

• Define the maximum number of concurrent clients the socket server supports.

• Create make file scripts, removing the dependency to Eclipse.

• Add parameters to detector and operating system wrappers, allowing control
of starting and stopping as well as parameters for socket timeout, server listen
port numbers, maximum number of concurrent clients.

Prerequisites

The detector requires the following libraries and tools. For installation refer to the
links and your specific platform:

1. Posix system. The detector currently doesn’t support Windows sockets.

2. Eclipse IDE (http://www.eclipse.org/downloads/).

3. Eclipse CDT (http://www.eclipse.org/cdt/).

4. OpenCV >= 2.3.1. The system relies on OpenCV for extendability and
cross platform support (http://opencv.willowgarage.com/wiki/InstallGuide).

5. Platform specific C/C++ development tool chain. (Refer to platform
specific installation instructions. Can be found by using a search engine or
system manuals).

http://www.eclipse.org/downloads/
http://www.eclipse.org/cdt/
http://opencv.willowgarage.com/wiki/InstallGuide

180 Framework Installation

6. Boost C++ thread library. Platform independent threading library.
Should ease cross platform development. (http://www.boost.org/)

The author recommends Debian or a similar system that offers installation of the
dependencies through a package management system.

http://www.boost.org/

E.2 External support 181

Install Instructions

The detector is a regular C++ eclipse project.
Follow the steps to import the Detector into the workspace:

1. Unpack the zip file using your favourite archive utility.

2. Right click on the Package Explorer window and choose the import option
from the context menu:

182 Framework Installation

3. In the main panel select General Ñ Existing Projects into Workspace and
press the next button:

E.2 External support 183

4. Locate your Detector package folder in select root directory. (If you have
created a workspace in the package directory, then just click the browse
button and instantly close the directory choosing dialog with the OK button!)
Eclipse should automatically locate Detector project:

5. Click the finish button to complete the import operation.

184 Framework Installation

6. The project will be imported with a bunch of errors:

7. The following steps must be performed to remove the Eclipse errors in the
Detector project,:

(a) Right click the Detector project in the package explorer Ñ select prop-
erties Ñ select C/C++ General Ñ Paths and Symbols.

E.2 External support 185

(b) Under the includes tab make sure that both GNU C and GNU C++ has
references to the header directories for the STD library (on linux nor-
mally /usr/include), OpenCV (on Linux normally in /usr/include, but
varies on the different platforms) and Boost thread (on Linux normally
in /usr/include, but varies on the different platforms).

(c) Select library paths. Make sure that this points to the STD libraries (on
Linux normally in /usr/local/lib), OpenCV libraries (on Linux normally
in /usr/local/lib, but varies on the different platforms) and Boost (on
Linux normally in /usr/local/lib, but varies on the different platforms).

186 Framework Installation

(d) Select libraries. Make sure that the libraries listed corresponds with the
file names in the library folders in the previous step. NB! These names
can vary. The naming convention here is: opencv_core points to the file
libopencv_core.dylib. So if the name of a library file is libboost_thread-
mt.dylib, the name in libraries should be boost_thread-mt.

(e) For Mac OS X systems:

i. Select C/C++ Build Ñ Settings Ñ Binary Parsers:

ii. Tick Mach-O 64 Parser. This enables generation of the binaries.

(f) Click the OK button in the properties dialog box, exiting back to Eclipse.

(g) Select Project Ñ Clean from the menu.

(h) Select Project Ñ Build All from the menu.

E.2 External support 187

(i) If the project builds without errors you are done and can run the project
as a Local C\C++ Application.

E.2.2 HTTP database synchronizator

The example applications implement support data synchronization by uploading
and downloading their SQLite3 database to a server using HTTP. By running
their own local instance of the database, the applications are capable of running
in isolated environments. The server is by the author considered outside the scope
of this thesis, but will elaborate on a minimal solution for providing the server
synchronization support.

Prerequisites

• HTTP server (i.e. Apache) with mod_rewrite (allow password protection)
and PHP support.

• PHP file upload script.

188 Framework Installation

Configuration

• In the public accessible folder add a file called .htaccess with the following
code:

1 AuthUserFile <path to p r i va t e f o l d e r >/.htpasswd
2 AuthType Bas ic
3 AuthName "<Custom␣ text>"
4 Require va l id�user

• In the private folder create .htpasswd using the htpasswd command. This
encrypts the password.

• Create a PHP file upload script. Here is the script used by the author:

1 <?php
2 $target_path = "<path␣ to ␣ f i l e s ␣ f o l d e r >" ;
3 $target_path = $target_path . basename($_FILES [

’ up l o ad ed f i l e ’] [’name ’]) ;
4 i f (move_uploaded_file ($_FILES [’ up l o ad ed f i l e ’] [’

tmp_name ’] , $target_path)) {
5 echo "The␣ f i l e ␣ " . basename($_FILES [’

up l o ad ed f i l e ’] [’name ’]) .
6 " ␣has␣been␣uploaded " ;
7 } else {
8 echo " There␣was␣an␣ e r r o r ␣ uploading ␣ the ␣ f i l e , ␣

p l e a s e ␣ t ry ␣ again ! " ;
9 // echo "Here i s some more debugg ing in f o : " ;
10 // print_r ($_FILES) ;
11 // print_r ($_SERVER) ;
12 }
13 ?>

Appendix F

Framework Bugs

This chapter collects the known bugs in the framework, the example application
and the external socket detector.

F.1 CyberlabOD

Bug description Why is it not
resolved? Complexity

The "Dynamic" feature detectors
are only used by the Android
version of OpenCV and doesn’t
exist on other platforms. This
feature is not disabled in the
SocketLocalFeaturesExtractor

advanced constructor and trying to
use a "Dynamic" feature detector
crashes the socket server. The

constructor should reject attempts
to use these by either throwing an
exception, falling back to the non

dynamic type of the feature
detector or convert the "Dynamic"
requests in the same manner as the

Android OpenCV library.

Time constraints Easy

Table F.1: The known bugs in the core framework, the reason for them not being
fixed and the authors assessment on their repair difficulty (easy, medium and hard)

190 Framework Bugs

F.2 Framework examples

Bug description Why is it not
resolved? Complexity

When camera intents return,
dependent upon the device, the
application activity is restated.
The operating system stop

activities in the background to free
available memory. (Ref activity life

cycle in official Android
documentation). This causes the
applications to loose track of its
state resulting in behavior like
restarting the camera or not

displaying the image returned. The
bug appears frequently on HTD

Desire HD devices and it is
consequent on Samsung Galaxy SII
devices. The author recommends
using the latter. Possible solutions:
Implement custom camera activity,

create singleton to store the
activity state or find where to store
the state in the activities using the
provided methods in the Android

framework.

Time constraints
The bug doesn’t

appear on the device
available to the author

or on the Android
emulator, resulting in
time consuming and
difficult debugging.

Medium to
Hard

(Debug
device

dependent)

Table F.2: The known example bugs, the reason for them not being fixed and the
authors assessment on their repair difficulty (easy, medium and hard)

F.3 External Socket Detector 191

F.3 External Socket Detector

Bug description Why is it not
resolved? Complexity

If the server crashes it cannot be
immediately restated. This can be
fixed by recycling the socket when

this happens. The Detector
documentation mentions this

problem and indicates where in the
source code the fix should be

implemented.

Time Constraints Easy

The "Dynamic" feature detectors
are only used by the Android
version of OpenCV and doesn’t
exist on other platforms. This
feature is not disabled in the

CvUtils advanced constructor and
trying to use a "Dynamic" feature
detector crashes the server. The

constructor should reject attempts
to use these by either throwing an
exception or falling back to the non

dynamic type of the feature
detector.

Time constraints Easy

Table F.3: The known external detector bugs, the reason for them not being fixed
and the authors assessment on their repair difficulty (easy, medium and hard)

192 Framework Bugs

Appendix G

Quiz Recognition Images

The images listed in this Appendix chapter can be used to test the Quiz application.

194 Quiz Recognition Images

G.1 Category Initialization

Figure G.1: Science category

G.1 Category Initialization 195

Figure G.2: Science category

196 Quiz Recognition Images

Figure G.3: Math category

G.1 Category Initialization 197

Figure G.4: Geography category

198 Quiz Recognition Images

Figure G.5: History category

G.1 Category Initialization 199

Figure G.6: Trivia category

200 Quiz Recognition Images

G.2 Recognition Question Answers

Figure G.7: Science answer

G.2 Recognition Question Answers 201

Figure G.8: Math answer

202 Quiz Recognition Images

Figure G.9: Geography answer

G.2 Recognition Question Answers 203

G.2.1 Images Of Real World Objects

For convenience here are images taken of real world objects used for answering
recognition questions.

Figure G.10: History answer

204 Quiz Recognition Images

Figure G.11: Trivia answer

G.2 Recognition Question Answers 205

206 Quiz Recognition Images

G.2 Recognition Question Answers 207

	Title Page
	I Introduction
	Project Background
	Motivation
	Project Goal
	Project Context
	Stakeholders
	Author
	Supervisor
	External Supervisor

	Research
	Research Question
	Research Methodology

	Previous Work
	Framework platforms
	Android
	Development target devices
	Tools
	Development devices

	OpenCV
	Android and OpenCV

	II Prestudy
	Framework
	Definitions
	Framework
	Flexibility
	Usability

	Comparison to other reuse techniques
	Classification
	Scope
	Extensibility

	Strength and weakness
	Challenges
	Benefits

	Development
	Hooks and Templates
	Hot Spots
	Contracts and Protocols
	Process
	Implementation

	Documentation
	Stakeholders
	Knowledge Presentation
	Documentation practices
	A process

	Object Recognition
	Definitions
	Object Recognition
	Correctness
	Performance

	Taxonomy
	Conceptual Models For Local Object Recognition
	The Current Framework Solution
	Information extraction
	Model creation
	Matching

	Evaluation Of The Current Framework Solution
	Architecture
	Object Recognition
	Information extraction
	Matching

	III Own Contribution
	Framework Evolution Tactics
	Development
	Object recognition

	Trade-offs
	Flexibility vs. Usability
	Usability vs. Performance vs. Correctness

	Documentation

	Requirements
	Framework
	Functional Requirements
	Non-functional Requirements

	Example Applications
	Functional Requirements
	Use Cases
	Non-functional requirements

	Architecture
	Framework Overview
	Package Diagram
	Class Diagrams

	Example Applications
	Recognition Functionality
	Model Creation Functionality
	Model Storage
	External Detector
	Collaboration
	Socket Communication

	Implementation
	Example Applications
	Quiz
	QuizAdmin

	Framework bugs

	Object Recognition Results
	Model building
	Recognition settings
	Correctness
	2D recognition (ORR1) and invariance to perspective, scale and rotation
	3D recognition , rotation and recognition in cluttered images
	Invariance to occlusion
	Invariance to noise
	Invariance to illumination

	Performance
	Recognition speed

	IV Evaluation
	Evaluation
	Research
	Development
	Documentation
	Overall thesis evaluation

	Conclusion
	Conclusion
	Future Work

	References
	V Appendices
	Google Nexus S Specifications
	2D object recognition test results
	Test setup
	Recognition at 400x400
	Recognition at 600x600
	Recognition efficiency

	Quiz Performance Tests
	Test Setup
	Results

	Application Installation
	Phoneapk-phone-installer
	Emulator

	Framework Installation
	Android
	Prerequisites
	Install Instructions

	External support
	Detector
	HTTP database synchronizator

	Framework Bugs
	CyberlabOD
	Framework examples
	External Socket Detector

	Quiz Recognition Images
	Category Initialization
	Recognition Question Answers
	Images Of Real World Objects

