
Applications of artificial potential fields
for real time strategy games
Troop formations and movements used trained

potential functions

Finn Robin Kåveland Hansen

Master of Science in Computer Science

Supervisor: Helge Langseth, IDI
Co-supervisor: Anders Kofod-Petersen, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

APPLICATIONS OF ARTIFICIAL POTENTIAL

FIELDS FOR REAL TIME STRATEGY GAMES

Troop formations and movements using trained potential
functions

Master thesis by
ROBIN KÅVELAND HANSEN

Supervised by
HELGE LANGSETH

ANDERS KOFOD-PETERSEN

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer Science

Norwegian University of Technology and Science

June 26, 2012

i

Abstract

This thesis describes the effort of adapting potential field methods towards man-
aging groups of units in real-time strategy game like environments. The focus is
on discovering the suitability of this technology to create realistic group behaviour
and whether it can be adapted to use learning for this purpose.

A flexible simulation system for units that are controlled by potential field
methods in environments similar to those found in real-time strategy games is de-
veloped. This is then used to conduct experiments where different types of group
behaviours are sought after. Stochastic optimization techniques are applied in an
attempt to create and optimize desired group behaviour. The results are discussed
and possible future directions for this research are proposed.

Sammendrag

Denne oppgaven beskriver arbeidet ved å bruke potensialfelt-baserte metoder for
å styre grupper av enheter i miljøer som likner på real-time strategispill. Fokuset
settes på å oppdage hvor passende teknologien er for å oppnå realistisk oppførsel
av grupper og om den kan bli tilpasset til å bruke læringsteknikker.

Et fleksibelt simulasjonssystem for enheter som blir kontrollert med potensialfelt-
baserte metoder i slike miljøer blir utviklet. Dette blir brukt til å utføre eksperi-
menter som har som mål å få grupper av enheter til å adlyde bevegelsesmøn-
stre som er nyttige i strategispill. Stokastiske optimiseringsteknikker blir benyttet
for å skape og forbedre potensialfunksjoner som gir ønskede bevegelsesmønstre.
Oppgaven avslutter med å diskutere resultatene som blir funnet og se på mulige
interessante retninger for videre undersøkelser av funnene.

ii

Acknowledgements

Thanks to Helge Langseth for pushing me in the right direction when I was headed
nowhere and for limitless patience when I needed advice.

Thanks to Anders Kofod-Petersen for valuable feedback on this thesis and ad-
vice on how to perform research.

Thanks to my family for giving me your best my entire life. You mean more to
me than I can express with any amount of words.

Thanks to Ronja Eline Kristensen for the patience, support and taking care of
me when I get too distracted by my thesis to do it myself.

Thanks to all my friends and colleagues. I have been nothing short of incredibly
lucky in getting to know so many wonderful people.

Robin Kåveland Hansen
Trondheim, June 26, 2012

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background and motivation . 1
1.2 Goals and research questions . 2
1.3 Research method . 3
1.4 Thesis Structure . 4

2 Theory and Background 5
2.1 Real-time strategy games . 5

Concepts of real-time strategy games 5
Suitability for AI research . 7
Game industry artificial intelligence 8
Publications of real-time strategy game artificial intelligence 9

2.2 Artificial potential fields . 11
Introduction to Artificial Potential Fields 11
Traditional artificial potential fields 11
Artificial potential fields in robotics 14
Artificial potential fields for distributed behaviour 16
Combining artificial potential fields with other techniques 19
Artificial potential fields in real-time strategy games 20
Notes on complexity and relation to N-body problem 21

2.3 Optimization techniques and evolutionary computation 22
Local search and optimization algorithms 22
Evolutionary computation techniques 23

3 Implementation and Experimental Setup 26
3.1 Requirements . 26
3.2 Implementation . 27

Dependencies . 27
Design and implementation . 28
Notes on SimObjects . 29

iii

iv CONTENTS

Performance analysis . 30
3.3 Experimental setup . 32

Physical quantities in the simulation system 33
Minimal experiment . 33
Notes on the use of inspyred . 34
Genotypes and bounds used with inspyred 35

4 Experimental Results 37
4.1 Formation experiments . 37

Marching in a line . 38
Creating a box formation . 45
Creating a wedge formation . 54

4.2 Robustness testing . 62
Robustness of line formation . 62
Robustness of box formation . 66
Robustness of wedge formation . 70

5 Evalution and Conclusion 75
5.1 Simulation environments and real-time strategy games 75

Rationale for creating a simulation environment 75
Comparison of simulation environments and RTS games 76

5.2 Summary of results . 77
Line formation results . 77
Box formation results . 77
Wedge formation results . 77

5.3 Conclusion . 78
Created formations . 78
Transferrability of created formations 78
Suitability for learning . 79
Overall conclusion . 79

5.4 Future work . 80
Finding box and wedge formation setups that transfer well 80
Degree of complexity required for training situations 80
Using learning to construct complete potential functions 81
Learning from multiple environments for one formation 81
Implement rts-game behaviour for units 81
Calculating potential functions on the GPU 81
Implementation in a real game . 82

Appendices 83

Folders and files included with thesis 84

References 86

List of Figures

2.1 StarCraft, blockbuster real-time strategy game 6
2.2 Magnitudes of (2.3) for ξ = 10 and (2.6) for η = 5, ρ0 = 4 for r ∈ (0, 6] 13
2.3 The horse shoe shape or v-shape of obstacles creates a local minimum. 15
2.4 Social potentials for c1 = 1, σ1 = 1, c2 = 8, σ2 = 2 and their difference. . 17
2.5 Vector field from a simple social potential force law and a tangential

potential field that resolves the local minima issue. 18
2.6 Vector field from a simple potential force law in 3d. 19
2.7 Robots sharing a social potential force law. Initial and later clustering

and vector field. 20

3.1 High level look at simulation architecture. 29
3.2 An attractive line with “round edges” and one without. 30
3.3 Runtime per update step for different simulation sizes, with errorbars. 31

4.1 The initial distribution of units for the line formation experiment and a
distribution of units at a later time in the simulation. 40

4.2 First revolution and final configuration of line experiment with hand-
crafted parameters. 41

4.3 Snapshots of line experiment with machine-learned weights for po-
tential fields. Created while adapting simulations to inspyred. These
weights were found by an ES. 43

4.4 Initial distribution of units and the area of their bounding square in the
box experiment. 46

4.5 Early and final configuration of the box experiment with the best pa-
rameters from Table 4.4. 49

4.6 PSO best result at timesteps 46 and 412. 51
4.7 The progression of best individual fitness for each GA run. 52
4.8 Initial distribution of units for the wedge experiment. The red lines

show the shape of the wedge formation. 55
4.9 On the left, potential field with 3 attractive virtual leaders in the corners

of a triangle. On the right, using virtual leaders as the edges of the
triangle. 57

4.10 Using edges from the corners of the triangle to its center of mass as
attractors. 57

4.11 The final configuration of the wedge experiment with the best parame-
ters that were found by trial and error. 59

v

4.12 Initial distribution of units for robustness test of line and distribution
when new units are added. 63

4.13 Two units about to collide in the tail of the line formation and the best
final configuration found. 65

4.14 Last simulation frame before collision for SA, GA, ES and PSO (left to
right, top to bottom). 68

4.15 On the left, initial distribution of units for wedge robustness test. On
right, three new units appearing and trying to join formation. 71

4.16 Two visualizations of the simulated annealing parameters used, right
before and right after collisions. 72

4.17 Potential function that does well on the wedge robustness test - the
Custom entry in Table 4.18. 73

List of Tables

4.1 Some experimental results with handcrafted potential functions 41
4.2 Statistics of best individuals found by different optimization techniques

through 10 runs. 43
4.3 Best genomes found by 10 runs of 4 optimization techniques. 44
4.4 Experimental results with handcrafted potential functions for the box

formation experiment. 49
4.5 Best, median and worst optimization result by PSO on the box experi-

ment. 50
4.6 Best, median and worst optimization result by GA on the box experiment. 51
4.7 Best, median and worst optimization result by ES on the box experiment. 51
4.8 Best, median and worst optimization result by SA on the box experiment. 52
4.9 Statistics for best individuals found through 10 runs of each optimiza-

tion technique on the box experiment. 53
4.10 Handcrafted potential function parameters for the wedge experiment. 58
4.11 Optimization result statistics for the wedge experiment. 60
4.12 Simulated annealing optimization results for the wedge experiment. . 60
4.13 Genetic algorithm optimization results for the wedge experiment. . . . 60
4.14 Particle swarm optimization results for the wedge experiment. 61
4.15 Evolutionary strategies optimization results for the wedge experiment. 61
4.16 Robustness of discovered paremeters from the line experiment. 64
4.17 Performance of parameters from the box experiment in expanding its

size to the maximum number of units before a collision. A is the
amount of units in the formation. 67

4.18 Wedge robustness test results. 73

vi

Chapter 1

Introduction

1.1 Background and motivation

The computer game industry is a billion dollar industry in the US alone [Williams,
2002], and computer games are quickly becoming one of the most popular forms
of home entertainment in the world. Real-time strategy games is a subgenre of
computer games that present several difficult problems to solve. They are noted
for being complex approximations to the real world. Most computer players of
these games either cheat by using their game engine access to obtain additional
resources, units or information - or they are no match for expert level human
players. Because of their complexity as simplified simulations of the real world,
creating good computer players for these games can potentially be applied to many
real world problems [Laird and VanLent, 2001]. Because they are common, they
present an attractive arena for testing artificial intelligence techniques extensively
with relatively little need for expensive equipment [Buro and Furtak, 2003]. The
concepts of real-time strategy games are discussed in some depth in Section 2.1.

One of the areas in which computer players can easily beat human players is
the amount of actions they can perform per time unit. This is called APM (short
for actions per minute) in the gaming community. Because human players need
mechanical skills such as using a keyboard or a mouse to issue instructions, they
can not hope to match the speed with which a computer can issue instructions to
a game. This has not been leveraged particularly well in current games. Almost
no commercial games utilize learning systems or indeed any cutting edge artifi-
cial intelligence techniques from academia. There is a large gap to be filled in
discovering which techniques that can be applied with success in real-time strat-
egy games. Currently, most games employ one of or a combination of rule-based
systems, scripted players and finite state machines to govern computer player be-
haviour.

1

2 CHAPTER 1. INTRODUCTION

One way to utilize the capability of issuing many instructions in small time is
to control single units in a smart manner. Where a human player will have to
issue orders to groups of units, a computer player can issue orders to each unit
individually, allowing for much more fine grained control of their movements.
This need not only be leveraged to create better computer players. It can also
allow humans to issue orders to a group of units that they then execute in a novel
and intelligent way, creating a more immersive and realistic gaming experince.
Seen this way, a group of units in a real-time strategy game is a multi-agent system
that receives instructions from the outside and decides how to execute the orders
internally.

Potential field methods originated to control robots in static configuration spaces
in the late 1980s [Khatib, 1986]. They use the powerful metaphor that obstacles
should exert a repulsive force on the robot and goals should exert attractive forces
on it. [Reynolds, 1987] shows how simple rules for an individual in a large group
can cause the group as a whole to exhibit interesting and realistic behaviours. [Reif
and Wang, 1999] adapts the idea to potential field methods to create distributed
behaviour in multi-agent systems governed by potential functions. Potential func-
tions are created by following a methodical approach of how to define them such
that they result in the desired behaviour. [Vadakkepat et al., 2000] shows that
it is possible to apply evolutionary computation techniques to potential functions
and that this results in desired behaviour. Potential field methods are attractive
because of their elegance, simplicity and efficiency. They are discussed in depth in
Section 2.2.

1.2 Goals and research questions

This thesis is focused on filling the niche of micro-management in the context of
real-time strategy games. This is an area in which a computer player should be
able to function better than human players, but at present this is not the case.
Further, it is also the case that most games use their own implementation of rules,
scripting or finite state machines to govern individual units or groups of units.
This type of specification is tedious, error-prone and can not easily be made to
handle unanticipated environments and situations. This thesis is focused towards
discovering whether it is possible to do this better. The two high level research
questions are:

1. Can potential field methods be applied as a good control mechanism for
groups of units in a real-time strategy game?

2. Can learning be applied to potential field methods in order to provide a good
control mechanism for groups of units in a real-time strategy game?

1.3. RESEARCH METHOD 3

A good control mechanism for groups of units needs to satisfy several proper-
ties. This thesis will focus primarily on being able to create coherent formations
of units that correspond to classical military formations that are applied to win
tactical battles in real-time strategy games. The control mechanism clearly needs
to be able to accomodate unit groups of different sizes. Furthermore it needs to
be able to work in different environments and with units that have non-uniform
properties. For this work, the main property that will vary amongst units is their
movement speed.

Learning is very desirable because it can reduce the complexity of setting up
the control mechanism to work properly and simplify the process of adapting it to
new situations. Furthermore, a capability for learning is one of the most desirable
goals for computer opponents in real-time strategy games because it provides an
excellent way for the game to adapt difficulty level to the skill level of the human
opponent. This is highly desirable in order to increase replay value for the game.

The stated goals extracted from these research questions are:

1. Create classical military formations that can adapt to different amounts of
units and different environments in a real-time strategy game like system,
using potential field setups crafted manually as the control mechanism.

2. Create classical military formations that can adapt to different amounts of
units and different environments in a real-time strategy game like system,
using optimization techniques to create potential functions for the control
mechanism.

1.3 Research method

The research method that will be used for this thesis is to develop a simulation
system that can approximate real-time strategy game environments and control
simulated units through the use of potential field methods.

In order to test the suitability of potential field based methods as a control
mechanism for groups of units, experiments will be performed that attempt to
create classical military formations. Each formation will be tested for robustness
by introducing additional complexity into its environment.

In order to test whether trained potential fields can be used as a control mech-
anism for groups of units, experiments will be performed where well-known op-
timization techniques are applied in order to create military formations. Each
formation will be tested for robustness by introducing additional complexity into
its environment.

4 CHAPTER 1. INTRODUCTION

Performance measurements will be used to provide a numerical context with
which to evaluate results. Visual inspection will be used to discuss the character-
istics of the formations that are created.

1.4 Thesis Structure

Chapter 2 sets the context for this thesis. It starts by discussing the domain of real-
time strategy games and prior research that is relevant to this thesis in Section 2.1.
In Section 2.2 artificial potential field methods are introduced. Different methods
are discussed in some depth and we take a look at the limitations and problems
with the method. We finish this section by discussing prior research in group
behaviour using potential fields. Section 2.3 ends the chapter by looking at some
techniques that can be used to train potential functions.

Chapter 3 documents the experimental setup used for the work in this thesis.
That includes Section 3.1, which names the requirements for a potential field sim-
ulation system and Section 3.2 which discusses the design and implementation
used for the simulation system that was created for this thesis. Section 3.3 shows
the basic experimental setup that was used for all experiments performed for this
thesis, including a discussion of the simulation environment and how optimization
techniques were applied to create potential functions.

Chapter 4 documents the experiments that were performed for this work. Sec-
tion 4.1 documents the creation of a moving line formation, a box formation and
a wedge formation through the use of artificial potential fields for distributed be-
haviour. Section 4.2 tests the developed formations in environments and circum-
stances that are more complex than the environments and circumstances they
were created in.

Chapter 5 concludes this thesis. Section 5.1 presents a comparison of the envi-
ronments used in the experiments and typical properties of environments in real-
time strategy games. Section 5.2 is a review of the experimental results that sets
the stage for Section 5.3, which discusses whether the research goals for this thesis
have been met. Section 5.4 ends this thesis by looking at the possible directions in
which to take this work in the future.

The appendix is a guide to the files that accompany this thesis, including source
code, videos and experimental data.

Chapter 2

Theory and Background

2.1 Real-time strategy games

Concepts of real-time strategy games

Real-time strategy is a genre of computer games where the participants manage
units and structures under their control to dominate areas of the map in which
the game takes place, or destroy their opponents’ units and structures. Very of-
ten resource and information gathering are paramount, and many games feature
several different types of resources that need to be accumulated to expand armies
and bases. Typically the map in which the game is played is covered in fog of war,
a shroud that covers unexplored areas of the map and makes enemy operations in
the area invisible.

Games take place in game worlds usually called maps. Maps are either auto-
generated or designed by engineers to have different base locations for players,
resource nodes, obstacles and often different types of terrain or elevation. Real-
time strategy games progress in real-time, which means that quick decision making
is important, because there is rarely much time to deliberate and make perfect
calls.

Real-time strategy games usually have different types of units with different
properties and capabilities. Some very typical properties will be their maximum
speed, whether the are ground-based or whether they fly, their armour and their
attack range and damage. Units are produced by certain structures or become
available when certain structures are built. Very often structures enable upgrades
to units to be purchased or researched. Together these concepts form the tech
tree - each new technology that becomes available may unlock several others. For
example, building a tank factory will enable building tanks and possibly upgrading

5

6 CHAPTER 2. THEORY AND BACKGROUND

Figure 2.1: StarCraft, blockbuster real-time strategy game

their armour.

When people talk about real-time strategy games, they will often refer to four
different concepts that each designate an area in which a player needs to perform
well. The most natural of these is strategy - this is the plan a player has on how
to win the game. A strategy need not be static, it can be a plan for the first 2 or 3
minutes of a game and then it will need to be adjusted as more knowledge about
the environment and the opponents become available. The strategy is typically
formed by a player’s experience and their knowledge of the tech tree, the map
and their opponent. The execution of a strategy is often spoken about as macro
management. This could entail gathering enough resources to execute the strategy,
to complete structures at the correct timings, to keep producing units that gather
resources and to purchase upgrades. This means that a strategy is a mental model
of how the game should proceed and macro management refers to the mechanical
skill necessary to achieve it.

Similarly there is a divide between the tactic and the control of units in a man-
ner such that they conform to it, aptly called micro management. A tactic is the
mental model of how to approach a battle, given the units that have been provided
by the execution of the strategy. This could for example be to surround an enemy

2.1. REAL-TIME STRATEGY GAMES 7

group of units with ones own units. Micro management is the mechanical aspect
of this, that is to provide the units with orders that enables them to complete the
tactic. A tactic need not be static either, if a player is losing a battle, they may
want to salvage what they can from it and try to escape with some units, or they
may want to just do as much damage as possible.

These four different concepts interact with each other. A player that excels at
macro management but is not very good at micro management would perhaps
employ a strategy that has less stringent requirements for micro management. A
player who has a great strategy may still lose against a less clever player with
better mechanical skills. Skill at the mechanical aspects of the game enables a
player to use more complex and demanding strategies and tactics.

Suitability for AI research

Real-time strategy games constitute an excellent test-bed for AI research. They
present large, complex environments that attempt to approximate the real world.
Decisions must be made quickly, and the players must plan ahead far into the fu-
ture. They must reason at many different levels of abstraction and they must learn,
if they are to perform well. Often, important decisions must be made quickly, with
imperfect information. This makes it impossible to approach a real-time strategy
game like one would approach many of the games where computers can outper-
form world-class human players, like chess and checkers. Enumerating all pos-
sibilities is simply put impossible, or in simple games, prohibitive because of the
computational complexity.

Many classical AI problems arise in real-time strategy games. The following is
by no means an exhaustive list of desirable problems to solve for an agent that
plays a real-time strategy game (adapted from [Buro and Furtak, 2004]):

Real-time planning
A strategy needs to be developed and adjusted throughout the game, with
little time to calculate it.

Opponent modelling
Humans adjust to changes in their opponent’s strategies and computer play-
ers that do not do this are at a severe disadvantage.

Terrain analysis
Humans are able to utilise choke points and other terrain traits to maximise
the efficiency of their troops. Additionally they are capable at judging which
parts of the map that are important.

Resource management
All real-time strategy games have trade offs where a bigger military force can

8 CHAPTER 2. THEORY AND BACKGROUND

be obtained early at the expense of research or economy. An agent needs to
manage his resources well to reach a good result against a human player.

Path-finding
Path-finding is a simple problem that is made more complicated by a dynamic
and hostile environment. The goal may no longer be to find the shortest
path, but to find the safest path that does not send forces too far from the
agent’s home base.

Information retrieval
The agent needs to obtain information, which in itself is a relatively simple
task. However due to having limited time and resources it needs to be smart
about which information to obtain.

Learning
To ever compete with humans, an agent would be required to learn from the
games it plays.

Real-time strategy games are partially observable, stochastic, dynamic, multi-
agent environments. This means that they have a lot in common with real world
environments - certainly that they are very difficult environments for an agent
to master. An artificially intelligent agent that competes with world class human
players in real-time strategy games would be very impressive indeed.

Furthermore, real-time strategy games themselves can have many real world
usages - including training programs and military simulations. [Laird and VanLent,
2001] and [Buro and Furtak, 2003] make compelling arguments that real-time
strategy games provide an excellent venue for creating advanced AI programs.

Game industry artificial intelligence

The game industry has different goals for artificial intelligence than academia.
This is because it is an entertainment industry and the primary goal for an AI
opponent in a game is to provide an entertaining challenge that is neither too easy
nor too hard to beat. Furthermore, the constraints for the resources allowed to
be used by an AI are significant - games are complex, and components such as
networking, physics simulations and graphics consume most of the computational
resources a game can use. As such, most games in the industry use simple and
efficient techniques to implement the computer players. Some common techniques
include:

AI scripting
AI scripting is very common and it typically means that the player follows
a set sequence of steps that describe how it should behave. Although a

2.1. REAL-TIME STRATEGY GAMES 9

computer player that uses a script will not be adaptable, it can still have a
multitude of scripts it can use. Scripts are typically created by expert level
humans and can provide a good challenge for novice players.

Rule Based Systems
Rule based systems are also extremely common. While they are often used
in conjunction with scripts, they can also be used on their own. Rule based
systems enhance the gaming experience with an opponent that can react in
diverse ways - for example it might react to a player attacking it by perform-
ing a counter attack on the player’s base.

Finite State Machines
Finite State Machines allow for more complex behaviour than RBS. They
allow the agent to have different scripts for different situations or phases of
the game and different rules for how to react, given their state.

None of these techniques allow for much reasoning - and more importantly,
while the computer player using these techniques may be able to react to different
types of situations, it is not able to learn. Furthermore, it is reliant on the help of
human experts to provide any sort of challenge to human players and even then
they may not be particularly good. It is very hard for programmers to anticipate
human ingenuity and prepare rules for how to handle all the different strategies
that players might come up with against the computer player.

In practice, this works out well enough. Although many games ship with com-
puter players that do not provide challenge to humans for long, most modern
computer games allow humans to play against one another. The industry is mainly
concerned with providing a believable opponent for human players. Some games
create challenging opponents for players by enabling the computer to cheat - let-
ting them to see the entire map, and giving them a resource advantage are the
most common ways of doing this. This can be both confusing and annoying for
human players and the industry is increasingly moving away from this way of
challenging them. Additionally most modern games come with multiplayer modes
that let humans play against one another once the computer opponent becomes
too boring or easy to play against.

Publications of real-time strategy game artificial intelligence

In recent years, creating agents that play real-time strategy games has become
much easier. In the past, it has been very difficult to make agents that play these
games - game industry is a billion dollar industry and companies are reluctant to
release their source code or APIs that allow people to implement agents that play
their games. Because real-time strategy games are incredibly complex, it has not
been feasible for researchers to implement and test their own games to use for
implementing agents.

10 CHAPTER 2. THEORY AND BACKGROUND

Projects like ORTS [Buro, 2003] and BWAPI [BWAPI, 2012] are rapidly chang-
ing this. ORTS is an open source game engine that was created to study AI in
real-time strategy games. BWAPI is an open source library that can connect to an
instance of running game of StarCraft: Brood War, Blizzard Entertainment’s mas-
sively successful game. Both of these frameworks facilitate creating AI software
that play the games. StarCraft: Brood War is one of the most successful games
of all time and the human competition here is fierce, even 13 years after its 1998
release.

AIIDE (Artificial Intelligence and Interactive Entertainment) arranges compe-
titions between agents that play StarCraft: Brood War annually and some of the
recent entries have achieved impressive results. The Berkely Overmind is one ex-
ample of a bot that has done well enough to garner attention in the popular press
[Huang, 2011]. The Overmind uses several technologies that are not typically
used for this purpose in the game industry to great effect. Notably it uses machine
learning and artificial potential fields. This combination enabled it to win in the
2010 AIIDE competition, [Weber, 2011].

Surprisingly, it is also possible to do well in the AIIDE competition with very
simple concepts. MimicBot is perhaps the most startling example of this - it suc-
cessfully defeated several much more advanced bots using the simple idea to
mimic the opponents’ strategies. By focusing on micro-management and tactics,
it defeated bots that were much better at reasoning about strategy. This is an im-
portant point - reasoning incredibly well about strategy is not much help if you
are unable to fight your battles smartly. MimicBot does very clever terrain analysis
and its choke-point detection algorithm has been published in [Perkins, 2010].

[Weber et al., 2010] presents a more complicated agent that plays StarCraft.
This agent is designed to be able to pursue goals of different granularity at the
same time, enabling it to reason both about strategical and tactical level deci-
sions. The authors name this requirement multi-scale AI. This works proceeds and
culminates in [Weber, 2012].

Some headway has been made in artificial intelligence in other genres of games
that could be applied to real-time strategy games in the future. [Orkin, 2004]
discusses an approach named Goal Oriented Action Planning that has been suc-
cessfully used in the commercial first person shooter game F.E.A.R.. GOAP uses a
planning approach that works a lot like STRIPS and employs A*-search to guide
the planner. [Long, 2007] finds this to enhance the behaviour of non-player char-
acters significantly for first-person shooter games. [Weber et al., 2011] notes some
difficulty in adapting this to multi-scale AI situations because of the difficulty in
letting the system reason on multiple levels and representing worlds symbolically
in a manner that enables GOAP to function well.

2.2. ARTIFICIAL POTENTIAL FIELDS 11

2.2 Artificial potential fields

Introduction to Artificial Potential Fields

Artificial potential fields is a technique that was initially developed to solve the
robot navigation problem. They were proposed for this purposed by [Khatib,
1986] and have been adapted in many different ways.

Potential fields uses observations from physics where complex, stable motions
that have many properties that would be useful in robotics arise from relatively
simple laws. By simulating repulsive forces from obstacles and attractive forces
from objectives, one could get a heading for a robot that is looking to solve navi-
gation problems.

Potential field functions provide for a highly efficient technique of obstacle
avoidance that is also simple to implement. We shall also see that the technique
has applications that range far beyond path planning.

Traditional artificial potential fields

Artificial potential fields typically work by having a potential function that takes
as input the robot’s position and calculates the sum of forces on it. In many cases,
it turns out that the results improve when the potential function also takes into
account the current velocity of the robot. For our purposes, a potential function is
a function that takes the state of the robot R, and its environment E as input and
produces the impulse ~a it should set on its actuators at time t:

~a(t) = f(R(t), E(t)) (2.1)

For static configuration spaces, E(t) is simply the same state, regardless of its
time parameter. Traditional potential functions have this property. The potential
field is the gradient of the potential function in the robots configuration space
and because the environment is static, it can be entirely precomputed. The robot
will then simply have a table of impulses it should set at different positions in the
environment. The potential function becomes a function of the robots position
p(t) and its static environment E.

~a(t) = f(p(t), E) (2.2)

12 CHAPTER 2. THEORY AND BACKGROUND

The technology artificial potential fields get the name from the fact that they
are negative gradients of potential functions. The gradient of the potential func-
tion can show us where the robot would attempt to go in any position in its
environment. Namely, it would always go from high potential to low potential.
Therefore, the usual representation is a potential field function U and its negative
gradient. This is a gradient descent method. Other potential field methods instead
will sum the potential functions on the robot and use the result to calculate where
it should go. These methods are equivalent in practice.

(2.3) shows a common attractive potential function adapted from [Ge and Cui,
2000]. ξ is a positive scaling factor that determines the strength of the attraction.
It is usually the case that m = 1 or m = 2. This results in a constant or parabolic
shape for the magnitude of the pull as a function of the distance r(p, g) = |g − p|
from the robot to its goal, respectively. (2.4) is the force that results from setting
m = 2. An object that emits an attractive potential is often called a goal, target or
an attractor.

Uatt(p, g) =
1

2
ξrm(p, g) (2.3)

Fatt(p, g) = −∇Uatt(p, g) = ξ(g − p) (2.4)

Constructing a repulsive potential field is very similar in nature. However in
this case, rather than multiplying by distance as done in (2.3), one divides by
distance such that the repulsion is strong when very near the source of it. Using
η as a positive scaling factor for the magnitude of the force, r(p, o) as the minimal
distance between the robot and an obstacle and ρ0 as the distance of influence
of the obstacle, one can construct the common potential function Urep as in (2.6).
When the distance between the obstacle and the robot is shorter than the influence
distance, this results in the force (2.7). An object that emits a repulsive potential
is often called an obstacle or a repulser.

f(p, o) =
1

r(p, o)
− 1

ρ0
(2.5)

Urep(p, o) =
1

2
ηf 2(p, o), If r(p, o) < ρ0 else 0 (2.6)

Frep = −∇Urep(p, o) = ηf(p, o)
1

r2(p, o)
∇r(p, o) (2.7)

The total potential field for the robot is obtained by summing up all the fields
in its environment. Usually, there is one for the goal Fatt and one for each obstacle

2.2. ARTIFICIAL POTENTIAL FIELDS 13

Figure 2.2: Magnitudes of (2.3) for ξ = 10 and (2.6) for η = 5, ρ0 = 4 for r ∈ (0, 6]

o such that the total is:

F(p) = Fatt(p, g) +
∑
o

Frep(p, o) (2.8)

The calculated force vector can then be translated in some way to set the im-
pulses on the robot actuators and produce its acceleration:

~a(t) = t(F(p(t))) (2.9)

For a static environment, this can be precomputed and reused for the dura-
tion that the robot is in this environment. The simplest method way to adapt this
type of potential in a dynamic environment is to allow the robot to recalculate the
potential as often as often as needed. Doing this, only a small area in the environ-
ment is usually calculated at a time, maintaining the efficiency of the method.

For dynamic environments, a useful variant of (2.1) is one that also takes into

14 CHAPTER 2. THEORY AND BACKGROUND

account both the velocity ~vr of the robot. For further precision, the velocities of
obstacles are used and a potential function that depends on the relative velocity
~vro between the robot and obstacle o is developed in [Ge and Cui, 2002]. It is
shown that using this additional information, more advanced behavior can be
produced. The following scenarios are analyzed in depth, using a potential field
of the form (2.10): moving target, moving target in environment with obstacles,
moving target with moving obstacles.

F = −∇U(pr, vro, po) (2.10)

It is shown that adapting potential fields in this way produces good paths for
robots in very difficult environments.

Artificial potential fields in robotics

Although there are many advantages to this approach of navigation, problems
were also discovered, some of them without obvious solutions. Particle systems
can eventually create static configurations, which takes place when each particle
gets stuck in a minimum in the potential field. This surfaces in artificial potential
fields in the form of local minima, in which robots can get stuck. Several tech-
niques exist to allievate this issue, most of them are probabilistic and rely on the
robot detecting when it’s stuck. [Bell and Weir, 2004] has a discussion of the dif-
ferent types of local minima and how to avoid some of them. [Bell, 2005, chap.
4] has a discussion of which types of obstacle shapes that cause local minimum
problems. [Bell, 2005, chap. 5] has a lengthy discussion of the various techniques
that exist to alleviate the local minima problem.

An even more difficult problem to solve is when a system oscillates. This is not
uncommon in real particle systems and it is much harder for a robot to detect than
simply realizing that it is immobile and not at its target.

[Rimon and Koditschek, 1992] presents an approach for creating potential
functions that do not have the problem of local minima. These functions, named
navigation functions, are provably correct and guarantee collision-free motion and
convergence to the destination of the robot. This technique is more computation-
ally expensive and it does not easily generalize to situtations in which the robot’s
target or the obstacles in the environment are mobile. Furthermore, restrictions
are placed on the shape of obstacles that makes this method impractical in many
real domains.

[Koren and Borenstein, 1991] notes the following problems as present with
traditional potential fields methods.

2.2. ARTIFICIAL POTENTIAL FIELDS 15

Figure 2.3: The horse shoe shape or v-shape of obstacles creates a local minimum.

• Local minima in which robots can get stuck.

• Robots are unable to enter in the passage between closely spaced obstacles.

• Oscillations near obstacles.

• Oscillations in passages between closely spaced obstacles.

• Goals can be nonreachable with obstacles nearby.

There are various ways of solving these problems, but in many cases they
are impractical or pose restrictions on the robots domain that make them un-
usable. [Rimon and Koditschek, 1992] requires that all objects are elliptical or
star-shaped, but the method presented therein can provably handle the above
problems. [Ge and Cui, 2000] solves the last problem and it is possible to com-
bine this method with local minima avoidance heuristics and techniques.

16 CHAPTER 2. THEORY AND BACKGROUND

Artificial potential fields for distributed behaviour

Inspired by [Reynolds, 1987], there have been many ventures into using artificial
potentials to create distributed behaviour among simulated creatures and robots.
This paper presents an interesting result of simulated bird flocks. Each bird here
is a very simple actor, but the flock as a whole can exhibit complex and interest-
ing behaviours. This approach is very similar to artificial potential fields found
in robotics, but instead of obstacle avoidance the focus is creating complex flock-
ing behaviour. Each simulated bird has simple rules for how to react to its local
environment, analogous to force laws or potentials from other research.

[Reif and Wang, 1999] takes this one step further and use potentials to create
interesting and complex behaviours in very large systems of robots through simu-
lation. Two different types of approaches are shown here, force laws are shown to
be highly efficient for creating certain types of distributions and behaviours among
the robots and spring laws are shown to be able to create exact structures in their
relations. These structures are named spring laws because they are rigid, so long
as there is room for them to be, but they are elastic when the group of robots need
to be compressed to avoid obstacles. They do however maintain the structure of
the group while compressed, only the distances between members of the group
are adjusted.

Simple building blocks consisting of two pre-selected constants c and σ are
used to build force laws between robots. Given the vector ~rij between two robots
i and j, force law between them is a sum of terms built from different values for c
and σ as in (2.11).

f(c, σ) =
c

| ~rij|σ
~rij
| ~rij|

=
c · ~rij
| ~rij|σ+1

(2.11)

This chooses some magnitude for the force between i and j and multiplies it
by the unit vector between them to obtain the direction of the force. By setting
c negative or positive, f(c, σ) can be used either as a repulsive potential function
or an attractive potential function. Because the authors focus on group behaviour,
most objects are both repulsers and attractors. This is done by setting the poten-
tial between two objects to be (2.12) where c1 is negative and c2 is positive and
plugging into (2.11).

F(i, j) = f(c1, σ1) + f(c2, σ2) (2.12)

It is shown that for robots governed by such force laws, there exists some
equilibrium distance d. The significance of the equilibrium distance is that this is
where the force applied from (2.12) is 0, such that robots would be at rest. The

2.2. ARTIFICIAL POTENTIAL FIELDS 17

Figure 2.4: Social potentials for c1 = 1, σ1 = 1, c2 = 8, σ2 = 2 and their difference.

authors use the concept of equilibrium distance to calculate the expected density
of robots in a group that all obey the same force law.

Forces are used to set velocities directly, such that the velocity of a robot i in
an environment with robots 0 through n obeying the same force law F becomes:

~vi =
∑

j<n,j 6=i

F(i, j) (2.13)

The authors show how to define force laws such that they can generate partic-
ular types of desirable behaviours.

In Figure 2.5 a social potential is used to calculate the vector field a robot
would see. In this case, there is one obstacle, located in 0, 0 and a goal, located in
15, 15. The force law for the obstacle is a simple repulser with c = 10, σ = 2 and
the force law for the goal is a simple attractor with c = −10, σ = 1. The plots have
been scaled, as the forces very near the obstacle and the goal approach positive
and negative infinity respectively. Figure 2.6 shows the same field plottet on a 3d

18 CHAPTER 2. THEORY AND BACKGROUND

surface. The path of the robot in this plot would be equivalent to that of a ball
that was dropped onto this surface.

Figure 2.5: Vector field from a simple social potential force law and a tangential
potential field that resolves the local minima issue.

There is a local minimum along the line that goes through both the goal and
the obstacle in this field. In this case, we could add a tangential potential field
around the obstacle to circumvent the problem. Tangential potential fields have
a rotation around their center, such that a local minimum is avoided. This can
be done by adding a fraction of the normal of the vector from the robot to the
obstacle to the potential, see Figure 2.5.

The system developed by the authors features groups of robots, where groups
are allowed to have separate internal and external force laws. This means that
robots in the group affect each other by the same rule, but that they affect robots
in different groups with a different rule. Using these simple building blocks, the
authors show a variety of different behaviours, such as escorting, searching mine-
fields or moving formations to be possible. One of the simplest behaviours is the
clustering force law, an example of an initial and later configuration of robots fol-
lowing this force law can be seen in Figure 2.7. Between each pair of robots here
is a force law with c1 = 15, σ1 = 2, c2 = −1, σ2 = 1.

Force laws need not be reflective, that is a robot can exist that pulls and re-
pulses other robots without being affected by them.This gives rise to an interesting
idea of having a leading robot that others follow in some formation. This robot
does not need to be a real robot, [Leonard and Fiorelli, 2001] shows that virtual
robots can be accounted for to adjust behaviour. These may even pop in and out
of existance while simulations are running to provide leadership for formations
or allow for change in formations. We note in passing that using some layouts
for virtual leaders can be used to force groups of robots into different types of
formations.

[Leonard and Fiorelli, 2001] also show several techniques for developing groups

2.2. ARTIFICIAL POTENTIAL FIELDS 19

Figure 2.6: Vector field from a simple potential force law in 3d.

of robots that obey a certain structure or exhibit a certain behaviour. In the frame-
work developed herein, local potential fields are allowed - that is, fields in which
invidiuals are only affected by their nearest neighbours (and possibly virtual lead-
ers).

Combining artificial potential fields with other techniques

[Vadakkepat et al., 2000] shows promise in applying an multi-objective evolution-
ary algorithm to choose weights on simple potential functions of the form (2.14),
where rg is the distance from the robot to the goal and ro is the distance from the
robot to obstacle o. Here, a and n are constants that are evolved. The robot has a
constant velocity and uses the force only to set its angle of movement.

F =
1

rg
+
∑
o

1(
aro
)n (2.14)

An additional equation is introduced for local minima avoidance. When the
robot detects that it is at a stand-still (when (2.14) is 0), it applies an escape force.

20 CHAPTER 2. THEORY AND BACKGROUND

Figure 2.7: Robots sharing a social potential force law. Initial and later clustering
and vector field.

The escape force has additional parameters b, c, d and m that are also evolved. The
authors observe that their method produces optimal smooth paths for cases where
the environment contains moving goals and targets.

This method is carried over to [Vadakkepat et al., 2001] where it is tested with
a robot soccer system. The robots are able to seek the ball while maintaining
collision free paths. Although the robot is able to kick the ball and maintains
relatively smooth paths, the authors conclude that the potential field functions
need to be optimized in real-time to achieve good results.

Using the idea of virtual leaders, it is possible to combine classical pathfinding
techniques such as A*-search with artificial potential fields with relative simplicity.
To do this, one would let a virtual leader follow a path discovered by A*-search
and let all other robots be attracted to it. This enables the usage of potential
fields for group-interaction and a different technique for pathfinding, making the
method very versatile. Even using A*-search for pathfinding, it is still possible to
use evolutionary techniques to evolve the weights for the potential field functions
that govern the group internally.

Artificial potential fields in real-time strategy games

[Hagelbäck and Johansson, 2008] [Hagelbäck and Johansson, 2009] show some
promise in applying potential fields to the domain of real-time strategy games.
A computer program that plays a strategy game implemented on the ORTS plat-
form is documented. This program won the 2008 ORTS tournament. The Berkely
Overmind project impressively won the 2010 AIIDE competition, using trained
potential fields as a very important part of its technology. The Overmind uses
reinforcement learning to train its potential fields [Klein, 2012].

2.2. ARTIFICIAL POTENTIAL FIELDS 21

Notes on complexity and relation to N-body problem

Artificial potential fields are very closely related to the N-body problem - solving
them exactly can be shown to equivalent. In practice, they are instead solved
similarly to how N-body simulations are created. This means that the barnes-hut
method [Barnes and Hut, 1986] can be adopted to solve them efficiently, opening
up for the possibility of highly complex environments for very large systems of
robots that are controlled with artificial potential fields. Using Euler’s method for
simulating artificial potential fields is sufficient for having several hundred objects
that affect each other with force laws on modern computers and run them in real-
time according to [Reif and Wang, 1999].

22 CHAPTER 2. THEORY AND BACKGROUND

2.3 Optimization techniques and evolutionary com-
putation

Local search and optimization algorithms

Several different techniques are applicable to locate good weights for potential
functions. Because potential functions map from reals to reals, many search al-
gorithms are hard to adapt to discovering good weights. This is a review of some
techniques that can work well together with contineous, real-valued search spaces.

Hill-climbing search

Hill-climbing is a very simple search algorithm that will find a local maximum.
It achieves this by simply moving the search state in the direction that causes
the greatest increase in the evaluation of the search state. Hill-climbing can not
guarantee an optimal solution and it can get stuck on plateaus that border local
maxima if there are restrictions in place for how many times it can move the
search state with no improvement in its evaluation. There are many variants of
hill-climbing, one of the most novel ones being the random restart version. This
algorithm works by attempting to restart the search at another, random state if
it fails to find a maximum that is good enough or one that is known not to be
the global maximum. For some problems, it is very efficient ([Russell and Norvig,
2003]). A trivial modification to this that takes advantage of modern computer
architectures is to run hill-climbing searches in parallell.

Simulated annealing search

Simulated annealing ([Kirkpatrick et al., 1983] [Russell and Norvig, 2003])re-
fines on hill-climbing search significantly. Instead of always moving to the best
successor-state, it picks a random successor-state. If the new state is better, the
search proceeds from there. If it is not, it proceeds from that state with some
probability p = P (S, S ′, T) < 1. P scales downwards with the loss of quality from
S to S ′ and scales upwards with the temperature T . As the search progresses, T
decreases and when it reaches T = 0, it becomes a special case of simple hill-
climbing search. Simulated annealing is a good combination of random walking
and greedy search and has been shown to be very efficient for a multitude of prob-
lems. [Floreano and Mattiussi, 2008] lists simulated annealing search together
with evolutionary computation techniques because it so closely resembles them. It
is very similar to evolutionary programming, using a special simulated annealing
selection strategy. Simulated annealing can be used with vectors of real by letting
the random search state be generated by randomly changing an element in the
vector.

2.3. OPTIMIZATION TECHNIQUES AND EVOLUTIONARY COMPUTATION 23

Particle swarm optimization

Particle swarm optimization is a machine learning technique that is driven by co-
operation between the involved particles. This is different from evolutionary tech-
niques, which we shall later see are driven by competition between the involved
individuals. It is loosely based on cooperation in bird flocks in search of food
([Kennedy and Eberhart, 1995]).

A PSO instance consists of a number of particles that move on the search space,
looking for a global optimum. A particle knows its location in the search space and
its performance. Initially, the search will have the particles distributed randomly
in the search space. The particles communicate their performance to their neigh-
bours and shift their positions by adding up a fraction of their previous direction
(inertia), a fraction of the direction to the position where it found the highest per-
formance so far (cognitive rate) and a fraction of the direction towards its highest
performing neighbour (social rate).

To avoid stagnation and to enable the optimization to explore novel search
areas, a degree of uncertainty is required. This is usually achieved by making
the particles unable to know locations exactly, so that the location of the best
recorded performance and the location of the best performing neighbour has some
uncertainty.

[Floreano and Mattiussi, 2008] notes that PSO performs well on optimization
problems with real-value functions compared to other techniques.

Evolutionary computation techniques

Evolutionary computation techniques present the textbook classic of how inspira-
tion for computational processes can be found in nature. The idea is very simple -
to apply the process of evolution on data. A population of individuals that directly
or indirectly encode solutions to some search problem are generated. This is the
initial generation. In every generation, the currently existing individuals are eval-
uated with a fitness function that is problem-specific. A group of individuals are
then selected from the current population to be used for creating the next genera-
tion. These may be combined and possibly mutated before they are placed in the
new generation.

While these processes are inspired by nature, they are fundamentally differ-
ent in several ways [Floreano and Mattiussi, 2008]. Namely, the fitness function
is created by humans to direct evolution in an evolutionary computation. Real
evolution is not directed, it is completely open-ended. All individuals created by
an evolutionary computation will tend to try to satisfy some fitness function - this
fitness function defines the chances of their genes to be passed onto successive

24 CHAPTER 2. THEORY AND BACKGROUND

generations. In nature, we could say that the fitness of an individual is the success
it had in imparting its genes - it is not possible to create a real-valued function to
order individuals in other ways.

Genetic Algorithms

A genetic algorithm is a very well-known case of an evolutionary computation
technique. In this case, the population consists of strings from a finite alphabet,
usually the binary alphabet {0, 1}. Evolution takes place by repeatedly applying
genetic operators to the population to produce new generations. It halts after
some amount of generations, or when a predefined predicate for fitness is true.
The following types of operators are commonly found in GA systems:

Crossover
Combines the genes of two individuals into new individuals. Crossover at-
tempts to preserve good genes while still exploring the search space.

Mutation
Performs a random alteration of an individual. A common mutation is to flip
a bit in a genotype that is represented by a bitstring.

Selection
Typically a weighted random process of selecting which individuals that will
be allowed to fill the next generation.

Within the framework defined by these, there is a huge amount of variations
that can be defined [Floreano and Mattiussi, 2008]. Although the mechanics of
evolutionary computations that use different representations of individuals may
be similar to the canonical GA, they are typically not named as such.

Selection of evolutionary computation operators

For the problem domain in this thesis, working with vectors of real numbers is
more important than working with bitstrings. A short discussion of operators that
work well with this representation follows.

Arithmetic crossover
Produces one genome from two parents, by taking the average of n randomly
chosen positions of the parents’ genomes.

Blend crossover
Similar to arithmetic crossover with added mutation(s). Values are chosen

2.3. OPTIMIZATION TECHNIQUES AND EVOLUTIONARY COMPUTATION 25

randomly from the range bounded by the parents’ genes, but this range is
extended by some given amount.

Uniform crossover
Produces two genomes from two parents, by swapping genes at n randomly
chosen positions of the parents’ genomes.

Gaussian mutation
For each gene in the genome, has a chance of adding a value randomly
chosen from the gaussian distribution with a given mean and variance.

Rank-based selection
Ranks all individuals from best to worst and selects individuals with proba-
bility proportional to its rank.

Tournament selection
Picks some number of individuals from the population at random and choose
the individual with the highest fitness. To select n individuals, n tournaments
will be run.

Generational replacement
Replace entire population by their offspring. Sometimes comes with elitism,
allowing some of the fittest individuals from the old population to survive to
the next generation.

Plus replacement
Replace the entire existing population by the best population-many elements
from the combined set of parents and offspring.

Evolutionary Programming and Evolutionary Strategies

Evolutionary programming is more commonly used with vectors of reals as geno-
types and sometimes operate directly on phenotypes. It generally applies pertur-
bations with a method similar to gaussian mutation (see 2.3) and very often it
uses tournament selection with gradual population replacement. EP does not use
crossover.

Evolutionary strategies are similar, but the variance of the distribution used
for mutation is genetically encoded and evolves alongside the rest of the genetic
material in individuals.

Chapter 3

Implementation and Experimental Setup

3.1 Requirements

To assist in the process of implementing a system to allow for the experiments in
this thesis to be done, a small list of requirements were developed. These provide
guidelines for design decisions that needed to be done in the implementation.

Flexibility
The simulation system must be flexible enough to support several types of
potential fields, actuators and some degree of scripting.

Visualization
The simulation system must allow for visualization of potential fields, objects
manoveuring in these and their obstacles. The system should support doing
this in real-time to allow for rapid experimentation of potential field setups.

Extensibility
The system must be able to be extended to allow for integration of third-
party libraries that perform optimization through the use of genetic algo-
rithms and similar techniques.

Correctness
The system must be able to reproduce previous results in the field - in par-
ticular, the results presented in [Reif and Wang, 1999] are important for this
thesis.

Ease of use
The system should be relatively easy to use, as many experiments will be
performed. This means that it is unacceptable to spend a lot of time setting
up simulations when the system can assist the process to make it go quicker.

26

3.2. IMPLEMENTATION 27

Efficiency
To ensure that it is possible to combine the system with optimization tech-
niques, it is necessary that simulations that produce minimal output can be
run very quickly. If this criterion is not met, experimenting with several dif-
ferent optimization techniques will take too long.

These requirements affected the implementation in various ways. To ensure
that the system was flexible and easy to use, Python was chosen as the program-
ming language to implement it in. Python is a mature language that easily allows
for scripting and has a large body of mature modules for visualization and opti-
mization techniques. While it is a byte-compiled language that is not particularly
efficient for numerical code, it is easy to interface to C, such that inefficient code
can easily be rewritten to C when necessary.

3.2 Implementation

Dependencies

The simulation system that was developed is mainly a library that the user can call
from python programs. Additionally, a small core of scripts follow that produce
or consume JSON-data for purposes such as running simulations, plotting or gen-
erating animated videos for visualization. A small number of third-party libraries
were used to build the system, these were:

Cython
Cython provides a compiler that will generate highly efficient C code from
Python code. It does this by extending the Python syntax to allow for type
specifiers. This was used for the most numerically intensive code in the
system.

Matplotlib and numpy
Matplotlib is a library for producing pretty plots of many types, including
3d-surface plots, contour plots, scatter plots and vector fields. numpy is
a requirement for Matplotlib and provides highly efficient code for array
manipulations.

inspyred
inspyred is a framework that provides several interesting optimization tech-
niques, such as genetic algorithms, simulated annealing, hill-climbing search
and particle swarm optimization.

pygame
pygame is a set of bindings to the SDL library and is used to produce stream-
ing visualization of running simulations.

28 CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL SETUP

ffmpeg
ffmpeg can combine several pictures to generate an animation in a well-
known movie-format.

Design and implementation

The design for the system is relatively simple. Starting at the bottom, the units
that are simulated are instances of the class SimObject. This class can represent
pointmasses or line segments. An object of this class has an instance of SimOb-
jectData, in which forces and velocity are stored. Arbitrary data can be attached
to a SimObjectData instance by adding them to a hash-table. SimObjects support
attaching hooks to be run before, during or after the simulation step such that
actuators can be defined by client code and constraints such as maximum speeds
can be enforced. Additionally, adding hooks here allows client code to detect and
get out of local minima. These two classes were compiled to C with the help of
Cython, as was the vector calculation code they use.

Also written in Cython are the PotentialTerm and ForceLaw classes. A ForceLaw
is a container and convenience class for PotentialTerms - calculating the force from
a ForceLaw will merely sum up the forces from all its terms. A ForceLaw calculates
the force that a SimObject would exert at a given point, using that ForceLaw.

A SimObjectGroup is a container for several SimObjects that naturally belong
together. In addition to its constituent objects, it contains an internal ForceLaw
and an external ForceLaw. The internal ForceLaw is applied between objects in
this group, whereas the external ForceLaw is used to allow the objects in this
group to affect objects in other groups.

The heart of a Simulation instance is the GroupManager class. This is a con-
tainer for several SimObjectGroups. It contains a list of relations and knows which
groups that should affect each other, such that for example groups of obstacles will
provide a push to all groups that contain units that have obstacle-avoidance.

A Simulation instance provides the machinery necessary to update all of the
aforementioned classes and can be read in from configuration files. It is also the
hook-point for live visualization, offline plotting, generating data dumps and doing
performance measurements. All classes that have been mentioned so far can be
serialized and deserialized to JSON.

The system provides one main command, apfmain.py, which is used to man-
age project folders consisting of plot-data, generating movies and running simu-
lations. A script is also generated inside these project folders to allow for more
fine-grained control of simulations than what can be done with simple data files.
This is needed, for example, to have SimObjects that use different rules for move-

3.2. IMPLEMENTATION 29

Figure 3.1: High level look at simulation architecture.

ment than potential fields (for example hardcoded patrol paths). By default, the
script that is included will visualize the running simulation in a pygame window.

Notes on SimObjects

SimObjects can be used either to define straight lines or points. When potential
functions are calculated between SimObjects, the shortes distance between them
is used to calculate the force, in general. However, in some cases it might be
beneficial to have lines that exert forces only along its perpendicular line. For this
reason, two different types of distance calculations are implemented. One of these
is only applicable for lines with “round edges”. These are lines that act is if their
end points are point-masses, such that there is a circular potential field around
their end points. Lines without this property do not exert any forces to points that

30 CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL SETUP

are not above or below the line-segment.

Figure 3.2: An attractive line with “round edges” and one without.

A SimObject can be queried for properties. If it fails to find the property that
is being asked of it, it will fall back to asking its group for a value for it. Arbitrary
properties can be attached to a SimObject by adding it to the hash-table located
in the SimDataObject. Similarly, SimObjectGroups have a hash-table called data
that serves as another location for client-provided data to reside. Only three prop-
erties have special significance to the simulation system, the “plt” property is a
matplotlib colorspec that defines how the object looks if plotted and “max_speed”
is the maximum amount of distance an object is allowed to move in one time unit.
There is also a “draw” property that is useful for persistent objects that have a
utility purpose, but take no actual part in experiments. This is here to let client
code take advantage of distance-vector calculation code implemented in SimOb-
jects without littering plots with objects that do not have any forces associated
with them.

Performance analysis

To discover whether the technology of potential fields is usable for AI in computer
games, it is necessary to have, at the very least a rudimentary understanding of

3.2. IMPLEMENTATION 31

how computationally expensive they are. A simple benchmark of the simulation
system was conducted to test whether it is at all applicable for modern computer
games. It is not necessary to calculate the potential fields for all objects at each
frame update, although this will lead to better results. We expect the calculation
times to increase quadratically with the amount of objects in the simulation, as
the algorithm used is a very basic adaption of Euler’s method of integration.

The performance test is simple. For each input size, 3 simulations were run.
The input size determines the amount of objects in the simulation. They are ran-
domly distributed in a large area. Each simulation is run for 1000 update steps
and the time for each update step is averaged. The result is the average update
time for the 3 simulation runs and we calculate the standard error of this as well.
All the objects are added to the same group and this group uses an internal force
law. If r(i, j) is the distance between units i and j and ~u(i, j) is the unit vector that
gives the direction, then the force law between them is (3.1).

f(i, j) = ~u(i, j)
(−1
r(i, j)

+
20

r2(i, j)

)
(3.1)

Figure 3.3: Runtime per update step for different simulation sizes, with errorbars.

32 CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL SETUP

To make it actually viable to use potential fields for artificial intelligence in
games, it needs to be possible to update the forces on units several times per
second with large groups. Although the implemented simulation system is not
heavily optimized, it does give an indication of the cost of running artificial poten-
tial fields. At the very least, a commercially developed game using this technology
would not do worse. Figure 3.3 documents the time taken to run one simula-
tion step, in milliseconds, for several different input sizes. The benchmark was
conducted with a commodity laptop, sporting an Intel(R) Core(TM) i5 CPU run-
ning at 2.40GHz and one core was used. As expected, the runtime seems to scale
quadratically with input size. With the simulation system written in Python, a
byte-compiled dynamically typed language and most games written in compiled,
statically typed language, one would expect a very significant speed-up in a com-
mercial implementation.

It is also not necessary to sample the forces on the units at every frame update,
although this improves precision of movement. We can conclude from this that
the efficiency of the method is sufficient for implementation as a subsystem of a
commercial game.

3.3 Experimental setup

Each experiment is a set of data files that are consumed as input by a simulation,
which is either run as default simulation or a script that enhances the simulation
in some way. Enhancements can either be additional data that is added to the
simulation programmatically or it can be code.

Simulations produce plots, movie and machine readable data files as output.
An experiment is described by the following:

Objective
The stated objective of the simulation - that is, the desired behaviour of the
simulation.

Environment
The environment in which the simulation is run. A description of the general
rules of physics and any obstacles present.

Motivation
Why the experiment is useful - how the desired behaviour of the simulation
could be useful for a game-ai agent.

Performance Measure
How the performance of the simulation is measured. This is a numerical
measurement that is either being maximized or minimized, such that sim-

3.3. EXPERIMENTAL SETUP 33

ulation instances can be ranked according to how close they are to desired
behaviour.

Expected Outcome
A short description of the characteristics of the expected results.

Physical quantities in the simulation system

While the simulation system does not attach any sort of physical measurement
unit to any quantity it deals with in a simulation, it is useful to establish what they
correspond to. For example, it is useful to discuss the simulated time elapsed in
terms of seconds, even though there doesn’t need to be a 1-to-1 correspondence
between simulated seconds and real seconds.

Simulated time is expressed as a sum of time-deltas, as is common for methods
based on Euler’s method of integration. That is, a time-delta for each step of the
simulation is selected before it is running and then that is used to step the simula-
tion until it is done. Therefore the simulated time is the amount of steps multiplied
by the time-delta at each step. For finer grained simulations, the time-delta can be
reduced. In most cases, a value that corresponds to an actual framerate is a pretty
good value. By using a time-delta of 1

24
, movies produced by the system will have

a 1-to-1 mapping between real-time and simulated time, if every simulation step
is plotted.

Distance has no unit of measurement attached to it either and neither does
velocity or acceleration. The normal relationships between these hold. Velocity is
distance travelled per time unit, acceleration is the difference in velocity per time
unit. Because there is no actual correspondence between real-world units (such as
pixels) and the simulation space, plots produced by the system have axes, labeled
with coordinates. Arrows are scaled liberally in general - the relationship that
objects with long arrows have larger forces than objects with short arrows holds
true because scaling is uniform.

The simulation system does not incorporate a concept of mass, drag or friction.
These concepts could easily be added through the use of the simulated objects
hash-table and usage of actuator-hooks.

Minimal experiment

A minimal experiment contains two json-formatted files. One of these correspond
to settings that should be used by the simulation system (such as what names
to give output files, time-delta to use) and the groups of objects that should be
simulated. The time-step (this is called “dt” in apfrc, the setting file), and the
amount of simulation “steps” to run need to be defined.

34 CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL SETUP

Additionally, there should be one group of units and an internal force law be-
tween them in the input file. By running the system from its apfmain.py command
with the parameters create <project-name>, such a minimal experiment will be
created in the folder project-name.

Notes on the use of inspyred

The optimization techniques used in the experiments all come from the python
library inspyred. It implements all the techniques outlined in 2.3 and more. In
inspyred, all optimization techniques are instances of an evolutionary computation
baseclass, which enables them to be used in almost exactly the same way. For each
optimization technique, the following must be supplied

• Either an initial population or a generator function that can generate indi-
viduals on demand.

• A fitness function that evaluates the fitness of an individual.

• A bounder that encloses the search space for the specific genes in an individ-
ual.

• A termination condition.

• A population size.

Unless otherwise stated in the experiments, all the default values set by in-
spyred are applied to optimize the potential field weights.

Genetic Algorithm for vectors of reals
An evolutionary computation built nearly like a canonical GA. This uses rank
selection and generational replacement. To adapt it to the vector of reals
implementation, it uses blend crossover. The default parameters are:

• crossover_rate = 1

• mutation_rate = 0.1

• gaussian_mean = 0

• gaussian_stdev = 1

Evolutionary Strategy
This uses plus replacement and gaussian mutation. The parameters for the
gaussian mutation are evolved using an adaptive mutation specified by the
inspyred system. The default values for parameters are:

• τ = 1√
2
√
n
, where n is the length of a candidate.

3.3. EXPERIMENTAL SETUP 35

• τ ′ = 1√
2n

• ε = 0.000001 is the minimum strategy parameter.

The parameters for the gaussian mutation are updated as:

σ′i = σi + eτ ·N(0,1)+τ ′·N(0,1) (3.2)
σ′i = max(σ′i, ε) (3.3)

Simulated Annealing
This uses a special replacement strategy called simulated annealing replace-
ment. All individuals are parents and parents are replaced by their offspring
depending on the simulated annealing evaluation. Offspring are gaussian
mutated variants of their parents. If temperature and cooling rate are not
provided, the computation will use the range (1, 0) as a cooling schedule, but
this works only when the computation knows either the maximum number
of generations or the maximum number of fitness evalutions it can perform.

• mutation_rate = 0.1

• gaussian_mean = 0

• gaussian_stdev = 1

Particle Swarm Optimization
Assumes sequence of reals and uses distance from previous timestep to cal-
culate the velocity of the individuals in the population. This PSO algorithm
is based on [Deb and Padhye, 2010]. It uses the following default values:

• Topology is set to a star topology.

• inertia = 0.5

• cognitive_rate = 2.1

• social_rate = 2.1

Genotypes and bounds used with inspyred

Each experiment provides inspyred with genotypes that are represented as vectors
of real values. Each gene in the genotype is bounded by an experiment-specific
bounding function. A gene has a lower and an upper bound and if it is outside this
range, it is simply moved inside it, according to this simple procedure:

def bound(genome , lower_bounds , upper_bounds) :
f o r each index , gene in genome :

i f gene < lower_bounds [index] :
gene = lower_bounds [index]

i f gene > upper_bounds [index] :
gene = upper_bounds [index]

36 CHAPTER 3. IMPLEMENTATION AND EXPERIMENTAL SETUP

To provide a good seed population, care needs to be taken while generating it.
If the population is generated entirely randomly, it will most likely consist entirely
of individuals with genes that need bounding. To prevent that from happening,
the generator is also aware of the bounds. Two different methods immedately
come to mind - generating each gene as a uniform random distribution between
the lower and upper bound, or using a gaussian distribution with the average of
the lower and upper bound as a mean and a standard deviation that guarantees
that most generated genomes will require no bounding. The second method is
interesting because it will spread the genomes in the more interesting area of the
search space - presumably boundary values are not so interesting. This enables
the experiment to “hint” at where the good values for genes are, which is a very
favourable property to ensure good results. Therefore, this method was used:

def f i l l (genome , lower_bounds , upper_bounds) :
f o r each index , gene in genome :

low , high = lower_bounds [i] , upper_bounds [i]
mean = (low + high) / 2
stddev = (high − low) / 5
gene = rand_gauss (mean , stddev)

Although this can generate genomes that will have bounded genes, it will take
place extremely rarely because of the low deviation of the distribution used. The
initial population will however explore a smaller area of the bounded search space,
such that this requires the bounds to be set with some care.

Experiments define their own evaluation functions, but these all work by the
same principle - they accept a genome, create a new artificial potential field sim-
ulation and apply the genome to its weights. They then return the score of this
simulation as the fitness of the genome. Typically, each gene in a genome sets one
parameter for a particular potential function. For example, for social potentials
(see (2.12)), a gene of [−1, 1, 5, 2] could correspond to the potential function with
catt = −1, σatt = 1 and crep = 5, σrep = 2. The evaluation functions encode this
information, they assign the parameters according to their own scheme.

Chapter 4

Experimental Results

4.1 Formation experiments

37

38 CHAPTER 4. EXPERIMENTAL RESULTS

Marching in a line

Objective
Create a simulation of units that march in a flat formation. The units are
initially randomly spread in a small area and need to converge to a line
formation quickly. The line formation should move a short distance in a
coherent formation.

Environment
The environment does not have any obstacles. Units can move at a lim-
ited speed. Their velocity is calculated by adding acceleration to it at every
timestep. Their acceleration is calculated from potential fields. Units are not
allowed to collide.

Motivation
A line formation provides a benchmark for a relatively simple manouver that
an rts-agent needs to be able to perform. It is commonly used to block
passage for enemy units. It is also applicable for sweeping large sections of
terrain, looking for hidden objects, such as mines.

Performance Measure
Minimize the amount of units that collide and the average distance from
units to the line that is the center of the formation.

Expected Outcome
A setup of potential functions that guides units into a line formation. We
expect a tighter line formation with less space between the units and the
line from applying optimization techniques.

Description

This experiment takes place in a 2-dimensional world, using a contineous coordi-
nate system. The extent of the world is not bounded, but the units are initially
distributed in a 60 by 60 box, centered around the origin and they are expected to
stay within this area. To start with, positions for 10 units within this box are gen-
erated, using a random uniform distribution inside the box (with the constraint
that no unit is placed within a distance of 5 from another).

Units are assumed to be circular, with a radius of 1.25. The distance between
units is calculated from their centers, which means that two units are colliding if
their distance is ≤ 2.5. If two units collide, they will both be removed from the
simulation. Units are actuated by calculating their acceleration vector and adding
it to their current velocity vector. Their acceleration is simply the sum of forces
on them. Units are allowed to move at a maximum velocity of 0.5 per simulated
second.

4.1. FORMATION EXPERIMENTS 39

The line that marks the center of the formation is initially positioned such that
its center is at the location (−25, 0). Its extent is 44 and it is oriented along the
y-axis. It will stay in this position until 25 simulated seconds have passed, after
which it will move in a straight line to (25, 15). Its speed is limited to 0.3 per
simulated second. Once there, it will rotate counterclockwise exactly twice. The
line rotates with an angular velocity of 0.0375 radians per simulated second, which
means that it moves faster at its endpoints than units are allowed to. After the line
has rotated twice, the simulation terminates. The simulation will be run with a
timestep of 0.2.

Performance measure

Let t denote the current timestep, n(t) the amount of units alive at timestep t and
r(i, t) the shortest distance between the center of unit i and the line at time t.
Then the performance of the simulation at timestep t is given as:

p(t) =
1

n(t)

∑
i<n(t)

r(i, t) (4.1)

The performance of the simulation is the average performance of each timestep
and a penalty for the amount of units that died. Let T (S) be the amount of
timesteps in the simulation S and d(S) the amount of units that collided. Then,
the performance of the simulation is given as:

P (S) = 30 · d(S) + 1

T (S)

∑
t<T (S)

p(t) (4.2)

A simulation in which all units die terminates prematurely and sets 1000 as its
performance.

Solution strategy

To prevent unit collisions, we need units to repulse each other. In order to position
them on the line, they need to be attracted to it. This gives us the logical division
that all the units will be in the same group and the line will have its own group.
We will set one force law that works internally among units and we will set a force
law that acts as an attractor between the units and the line. The line is not affected
by any potential fields, it is scripted to move in a certain way. It acts as a virtual
leader.

The pull from units to the line should scale with their distance to it, such that
units that are far away are pulled harder than units that are close. To ensure

40 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.1: The initial distribution of units for the line formation experiment and
a distribution of units at a later time in the simulation.

that units that get close to one another are repulsed, we will scale the magnitude
of forces between them inversely with their distance. Let r(i, j) be the distance
between units i and j, σ1 and c1 be positive constants. Then the magnitude of the
force between the units will be given as:

f(i, j) =
c1

rσ1(i, j)
(4.3)

This is a social potential force law. Because c1 is positive, the force is a repulsive
one. Because σ1 is also positive, the force increases as units get closer. To add
direction to this force, we simply multiply it by the unit vector ~u(i, j) that is the
direction from unit i to unit j.

Let rl(i) be the distance from unit i to the line and c2 be a negative constant
and σ2 a negative constant. Using a social potential force law again, we get:

a(i) =
c2

rσ2l (i)
(4.4)

Because c2 < 0, this is the magnitude of an attraction between unit i and the
line. Since we also require that σ2 < 0, this magnitude scales positively with the
distance rl. To add direction to this force, we multiply it by the unit vector ~uli
which is the direction from unit i to the nearest point on the line. In total, the
force on a unit i is then given as:

F(i) = ~ul(i)a(i) +
∑
j 6=i

f(i, j)~u(i, j) (4.5)

4.1. FORMATION EXPERIMENTS 41

Figure 4.2: First revolution and final configuration of line experiment with hand-
crafted parameters.

Result with handcrafted potential functions

Reiterating the meaning of parameters, c1 is the coefficient that constitutes the
magnitude of the repulsive force between units, it is divided by their distance
raised to σ1. c2 is the coefficient that constitutes the magnitude of the attraction
between units and the line and it is divided by that distance raised to σ2. Because
there are 10 units and the line is 44 long, setting c1 = 6 seems a good place to
start. Because we do not want the repulsive force to dominate too much, we set
σ1 = 2. We want the units to be attracted to the line, but we do not know how
strongly yet, so we set c2 = −1, σ2 = −1.

We observe that two units die in this case, so we require them to push each
other earlier or more strongly. Clearly, there exists a case where the pull from the
line dominates the repulsion between units. Setting σ1 = 1 fixes this particular
case. This is already a good result - no units die at this point. It seems unlikely
that this is optimal, though. Table 4.1 is presentation of a sequence of attempts
to better the performance. Figure 4.2 is a visualization of the last run. Finding
potential functions that solve this problem is clearly not too difficult.

c2 σ2 c1 σ1 Survived Performance
−1 −1 6 2 8 63.254
−1 −1 6 1 10 5.27562
−1 −1 8 2 8 63.3336
−1 −1 8 1.5 10 4.28025
−0.5 −1 6 2 10 3.60628
−0.5 −1 5 2 8 63.4308
−0.5 −0.5 7 2.3 10 3.51985

Table 4.1: Some experimental results with handcrafted potential functions

42 CHAPTER 4. EXPERIMENTAL RESULTS

Using optimization techniques

From Table 4.1 it seems very clear that there exist many good solution in the
region bounded by:

0 < c1 ≤ 14,0 < σ1 ≤ 3

−2 ≤ c2 < 0,− 2 ≤ σ2 < 0

Recalling from Subsection 3.3, this means that the majority of the initial pop-
ulation will be generated inside that range. The genotype is simply a 4-element
vector of reals that correspond to these parameters. With one exception, all de-
fault values explained in Subsection 3.3 will be used. We make the exception
that a gaussian_stddev of 1 is too high, since the weights we use are so small and
so adjust it to 0.3 to prevent very large mutations from happening. Furthermore,
because the genome is very short, we raise the mutation rate for the simulated
annealing trial from 0.1 to 0.25. For all of the optimization algorithms, regardless
of population size, we limit the amount of fitness evaluations allowed to 240.

To ensure that we will not simply get lucky with the initial population, each
optimization technique will be run 10 times with a different initial population
each time. The evolutionary strategy and genetic algorithm will both be run with
a population size of 40, whereas particle swarm optimization will be run with a
population size of 12 and simulated annealing will run with only one candidate in
its population. We can use these low population sizes because we have bounded
the region and generate the initial population in a way that makes it very likely
that at least some individuals in the initial population will have a good fitness.

Results of optimization techniques

Table 4.2 shows different statistics for the best individual generated by the 10
optimization runs for each optimization technique that was used. We note that
PSO seems exceptionally well-suited for this particular optimization problem - it
has the strongest median, average and best case. ES has by far the lowest variance
in results and consistently produce very good potential functions. SA is notable for
producing the highest variance - undoubtedly, the other optimization techniques
utilize their ability to explore many areas in the search space in parallell well.
While these performances are not exceptionally much stronger than the ones gen-
erated in much less time by trial and error, it is worth noting that all runs produced
potential functions which ensure the survival of all units.

Table 4.3 shows the best individual produced by the best run, median run and
worst run for each optimization technique. It is interesting to see the variety in

4.1. FORMATION EXPERIMENTS 43

Figure 4.3: Snapshots of line experiment with machine-learned weights for poten-
tial fields. Created while adapting simulations to inspyred. These weights were
found by an ES.

Technique Best Average Median Worst Variance
ES 3.23154 3.35999 3.368 3.56088 0.00832085
SA 3.26314 3.56375 3.51894 4.61347 0.142634

PSO 3.0933 3.25616 3.19977 3.79004 0.0385233
GA 3.32057 3.60986 3.57893 4.16558 0.0550932

Table 4.2: Statistics of best individuals found by different optimization techniques
through 10 runs.

weights that are applied. All these individuals create potential fields for which
all units survive, despite how different some of them are. This reinforces the
importance of the concept of equilibrium distance - it is the relationships between
the weights that matter, not their absolute magnitudes.

Conclusion

We have shown that we can make units that work under conditions similar to
those found in games march in a line formation using artificial potential fields.
Furthermore it is possible to make them spread relatively evenly along their line
formation. The units in this experiment adapt relatively well when the line rotates
faster than they can move in most cases.

Optimization techniques can discover good potential functions for this type of
formation. Although they do not in all cases result in potential functions that per-
form better than parameters discovered by trial and error they all result in potential
functions that achieve the objective of the experiment. This is promising because it
may be harder to discover potential functions for experiments that demand more
parameters.

44 CHAPTER 4. EXPERIMENTAL RESULTS

Technique c2 σ2 c1 σ1 Performance
ES best −0.666186 −0.480902 9.60076 2.62909 3.23154

ES median −0.564949 −0.96016 8.29156 2.40485 3.368
ES worst −0.206973 −0.1 5.6278 3 3.56088
SA best −0.409996 −0.333396 10.2848 3 3.26314

SA median −0.4752 −2 6.85887 2.05795 3.51894
SA worst −2 −1.11039 8.39082 1.04318 4.61347
PSO best −0.992032 −0.334872 14 2.87928 3.0933

PSO median −0.907889 −1.20949 14 2.62581 3.19977
PSO worst −0.324438 −2 5.61709 1.85067 3.79004

GA best −0.8736 −0.960802 10.4985 2.33163 3.32057
GA median −0.92958 −1.37381 9.74959 1.88497 3.57893
GA worst −1.36468 −1.39426 9.72775 1.39983 4.16558

Table 4.3: Best genomes found by 10 runs of 4 optimization techniques.

All optimization techniques that were tested for this experiment produce good,
usable potential functions with a high degree of reliability. Evolutionary strate-
gies stand out in this experiment by producing a worst case that is comparable
to the median cases found by genetic algorithms and simulated annealing. Par-
ticle swarm optimization stands out in its best few cases, recording the highest
performing set of parameters and the highest performing median.

4.1. FORMATION EXPERIMENTS 45

Creating a box formation

Objective
Create a simulation of units that gather together in a compact box forma-
tion. The units are initially randomly distributed in a small area and need to
converge to a box formation quickly.

Environment
The environment does not have any obstacles. Units have a simulated fric-
tion to limit their speed. Their velocity is calculated by adding acceleration
to it at every timestep. Their acceleration is calculated from potential fields.
Units are not allowed to collide.

Motivation
Strategy games commonly require players to pack their units into small ar-
eas. This is also a very space-efficient formation to use for troop movements
and it is a good default formation from which it is possible to go into other
formations quickly.

Performance Measure
The average area of the smallest square that can fully contain all units for
each timestep divided by the amount of space occupied by units.

Expected Outcome
A setup of potential functions that guides units into an approximately square
formation quickly. Optimized potential functions are expected to pack more
tightly and more quickly than handwritten ones.

Description

Like in the line experiment, this experiment takes place in a 2-dimensional world
with a contineous coordinate system. Also similar is that the world is not bounded,
but the initial distribution of units is inside a 60 by 60 box. For this experiment, 20
units will be placed inside this box using a random uniform distribution with the
constraint that no unit can be placed within a distance of 5 from another. Units
are circular with a radius of 2, such that they crash when the distance between
them is ≤ 4. Units that collide will be removed from the simulation. Instead of
employing a speed limit for units, we will use a hook that slows down their speed
to 3

4
of what it was, at each tick. This simulates a friction effect and means that it

will take a large force for units to move very quickly.

Because each unit requires an area of πr2 = 4π at least, we know that the
formation can pack no tighter than 80π ≈ 251.33 unless units die. The smallest
square in which 20 circles of radius 4 can be packed, has an area of 322.423922761
([Nurmela and Östergård, 1997]), corresponding to a side length of 17.9561667056.

46 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.4: Initial distribution of units and the area of their bounding square in
the box experiment.

The simulation will run for 3000 timesteps, each lasting 0.2 simulated seconds.

Performance Measure

Let t denote the current timestep, A(t) the area of the smallest square that fully
contains all living units at time t. Let d(t) be the amount of dead units at time t and
n(t) be the amount of living units. We choose 152 as the penalty for a unit dying,
because it corresponds to a relatively large expansion of the bounding square. We
divide this by the known minimum area occupied by this many units to get out a
number that relates to how far we are from the optimal packing. We let p(t) be
the performance of the simulation at time t:

p(t) =
A(t) + 225d(t)

n(t)4π
(4.6)

Let T (S) be the amount of timesteps t in the simulation instance S. Then the

4.1. FORMATION EXPERIMENTS 47

performance of S is given as:

P (S) =
1

T (S)

∑
t<T (S)

p(t) (4.7)

This performance measure is designed to be minimized. We choose to pack
units into a box instead of a different shape (like a disc) because most real-time
strategy games use isometric worlds.1

Solution strategy

There are three different types of behaviour we need to encourage. Units can not
collide, so they need to repulse one another. They need to attract one another, or
they all need to be attracted to the same area. Finally, the shape of their formation
should efficiently utilize the area of a square.

Units governed by simple attractive-repulsive force law pairs, have as we have
seen in Figure 2.7 and [Reif and Wang, 1999] a tendency to form clusters shaped
like discs. A disc is not really what we are aiming for, although it is a space-efficient
packing of the units. To make a disc formation into a box formation, what is
needed is to add attraction to the areas where the corners of the square would
be. This presents a problem, however. Supposing that the pull to the corners scale
inversely with the distance to it. Then, units near the center of the box could be
almost unaffected by it. However, units that come very close receive extreme levels
of attraction. Supposing instead that we let the attraction scale with the distance.
Then units that are far away get pulled towards the corners very strongly as well.
Furthermore, units will seek to the areas in which the attraction from the corners
cancels out. This only happens in the center of the formation and we are back to
where we started.

Attracting units to the corner as a function of how far away they are is still
a promising idea, however. This is because units that are close to the corners
are affected only very weakly, which means that they can safely go all the way
into the corner and fill up the square. Recalling 2.2, it is not unusual to design
potential functions that have a minimum distance of influence, ρ0. We can use this
to ensure that only units that are already within the relevant area of the square
are pulled towards corners. We are already calculating the bounding square of the
formation and it is trivial to add virtual leaders to its corners to pull units in that
direction. We will let ρ0, the minimum distance of influence for the virtual leaders,
be dependent on the side length s(t) of the bounding square at time t such that
ρ0(t) =

s(t)
2

. In other words, each corner of the bounding square acts like a virtual
1Worlds that consist of tiles of some shape, typically square. In other words, the terrain obsta-

cles are usually built from rectangles.

48 CHAPTER 4. EXPERIMENTAL RESULTS

leader that attracts units in a circle with radius equal to half the side length of the
bounding square.

Going back to how clustering force laws work, we require that attraction dom-
inates repulsion when units are far away from one another. Let r be the distance
between the units and ~u be the unit vector that gives the direction between two
units, then the force law f(i, j) between units i and j is given as:

f(i, j) = ~u
(c1
rσ1

+
c2
rσ2

)
(4.8)

By choosing c1 to be negative, that term is the attractive part of the force law
and we require that σ1 < σ2 to make it dominate for when r is large.

We will define a similar force law between the virtual leaders and the units
that should form a box formation. Let ρ0 be the minimum distance of influence of
a virtual leader, ~u be the unit vector that gives the direction between a unit and
the virtual leader, and r be the distance between them. Then the force between
the virtual leader j and the unit i is:

f(i, j) =

{
~uc3r

−σ3 if r < ρ0
0 otherwise (4.9)

By setting c3 and σ3 negative, units that are far away from the corners will be
attracted to them more than units that are close. The force on each unit in the
group is the sum of forces from the other units in its group plus the sum of forces
from the virtual leaders.

Result with handcrafted potential functions

The adjustment of parameters and the results they gave are documented in Table
4.4. We have decided on which of the parameters for the experiment to set nega-
tive and which to set positive. At this point, we need to decide on the magnitudes
and try to discover parameters that not only produce a box with a small area but
also let as many units as possible survive. We reason that it is better to start on
the safe end, so we decide to set c1 = −1, σ1 = 1 and c2 = 12, σ2 = 2 as a starting
point.

For the time being, we do not let the virtual leaders at the edges of the forma-
tion exert any forces. Keeping the values for the attractive part of the clustering
force law constant, we reduce c2 until we get our first collision. At this point, we
attempt to make the virtual leaders in the corners of the bounding square come
into play. Because we decided to set σ3 negative, we need to be careful with the

4.1. FORMATION EXPERIMENTS 49

Figure 4.5: Early and final configuration of the box experiment with the best
parameters from Table 4.4.

c1 σ1 c2 σ2 c3 σ3 Survivors P (S)
−1 1 12 2 0 −0 20 5.0227
−1 1 10 2 0 0 20 3.96564
−1 1 9 2 0 0 18 4.66045
−1 1 9 2 −0.05 −0.05 20 3.69161
−1 1 9 2 −0.05 −0.025 20 3.68374
−1 1 9 2 −0.025 −0.025 16 6.87506
−1 1 9 2 −0.0375 −0.05 20 3.63013

Table 4.4: Experimental results with handcrafted potential functions for the box
formation experiment.

magnitude of both that and c3, as they scale positively with the distance from the
corner to the unit - meaning that they can quickly dominate the clustering force
law and stretch the formation. The area of the bounding square for the final frame
of the last simulation run has an area that is 588 - only 1.82 times larger than the
optimal packing of circles into a square.

Using optimization techniques

The genome for this optimization problem is a vector of 6 reals:

[c1, σ1, c2, σ2, c3, σ3]

Because of the complex interactions between these parameters and the fact
that there are 6 of them, it is much more difficult to bound the search space
for this problem than for the line experiment. We make the assumption that large
absolute values for the forces from the virtual leaders will stretch the formation, so
we set the bounds for those to −0.8 < c3 < 0,−0.8 < σ3 < 0. We also require that

50 CHAPTER 4. EXPERIMENTAL RESULTS

c1 < 0 to create attraction between the units and that c2 > 0 to create repulsion.
We set −2.5 < c1 < 0 and 0 < c2 < 20. We do not know whether we want the
magnitude of the internal forces to scale positively with distance or negatively, so
we will allow both by setting −2 < σ1 < 2, −1 < σ2 < 4. To summarize:

−2.5 < c1 < 0,− 2 < σ1 < 2

0 < c2 < 20,− 1 < σ2 < 4

−0.8 < c3 < 0,− 0.8 < σ3 < 0

For this experiment we will use the default parameter values provided by in-
spyred again, with the modification that we set gaussian_stdev to 0.1 to avoid
large mutations. For the simulated annealing runs, population size will again be
1, while it will be 20 for evolutionary strategies, 12 for particle swarm optimiza-
tion and 40 for genetic algorithms. Each optimization technique will be allowed to
evaluate the performance of 240 simulations. Again, we make the exception that
for simulated annealing we set mutation_rate differently, this time to 0.2. Each
optimization will be run 10 times, with different initial populations.

Results of optimization techniques

Tables 4.5 through 4.8 document best, median and worst optimization runs for
this experiment. Table 4.9 documents statistics for the 10 runs of each optimiza-
tion technique.

c1 σ1 c2 σ2 c3 σ3 P (S)
−1.12931 0.173039 17.3137 1.31857 −0.532291 −0.378826 2.24204
−1.06658 0.731205 10.3184 1.72049 −0.0691291 −0.485037 2.95752
−0.0289707 −0.649268 9.72028 1.36011 −0.172005 −0.332695 4.87545

Table 4.5: Best, median and worst optimization result by PSO on the box experi-
ment.

The results from applying PSO to the problem are impressive, again. However
the impressive performances are mostly due to quickly packing into a box, not
so much because the units pack into a very small box. The area of the bounding
square for the best PSO run is 23.182 = 537.31, 1.66 times as big as optimal packing
of the the units in a square. What’s more impressive is the pace at which this
square is formed. As we can see in Figure 4.6, we get a very good approximation
of a box formation already at timestep t = 46 of the simulation and it is almost
static from timestep t = 412. It takes more than twice as long for the best result
from Table 4.4 to reach its stable configuration.

4.1. FORMATION EXPERIMENTS 51

Figure 4.6: PSO best result at timesteps 46 and 412.

c1 σ1 c2 σ2 c3 σ3 P (S)
−0.936459 0.285367 14.123 1.4454 −0.37234 −0.294172 2.23663
−0.982124 0.179539 8.51833 1.0619 −0.322346 −0.543172 2.46691
−0.723981 0.0387806 9.51887 0.912572 −0.421388 −0.468015 5.41593

Table 4.6: Best, median and worst optimization result by GA on the box experi-
ment.

On this experiment, the genetic algorithm performed much better than all the
other optimization techniques. This is a little surprising in context of the line
experiment, where it had the worst best result, the worst average and the worst
median. Even more surprising is the fact that it seems to do this despite often
throwing away good results in early generations (See Figure 4.7). An obvious
enhancement to the results found by the GA would be to keep a store of the best
individual found so far or to use elitism to ensure that it would not perish. The
figure also suggests that running more iterations could improve the results.

c1 σ1 c2 σ2 c3 σ3 P (S)
−0.001 −1.38582 9.00403 2.34396 −0.001 −0.001 2.66467
−1.28216 0.0973462 8.14626 0.761273 −0.260933 −0.296327 3.94356
−0.001 −0.754197 11.792 2.82204 −0.001 −0.001 5.47226

Table 4.7: Best, median and worst optimization result by ES on the box experi-
ment.

Simulated annealing again suffers from its inability to search the search space
in parallell. It seems much more dependent on having a good starting position
for the search than the other optimization techniques do. This results in it finding
very good results once in a while, but its average result is by far the worst. It is
possible that this is because the cooling schedule used is not very good. However,
the other optimization techniques required almost no tweaking to produce strong
results. Because the runtimes are almost identical (recall that they are all allowed

52 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.7: The progression of best individual fitness for each GA run.

the same amount of simulation evaluations), this speaks in favor of not using
simulated annealing for this particular problem.

c1 σ1 c2 σ2 c3 σ3 P (S)
−0.069546 −0.369282 11.7752 1.83189 −0.377307 −0.381649 2.22552
−0.931956 1.48086 14.5459 2.82628 −0.001 −0.342177 7.26702
−1.41064 0.311503 15.2475 3.07503 −0.424079 −0.429368 251.39

Table 4.8: Best, median and worst optimization result by SA on the box experi-
ment.

With the exception of the 6 worst of the simulated annealing results, all po-
tential functions developed here result in a very good approximation to a square
formation. It is also interesting to note the internal structure in the formations.
The most common internal shape seems to be one for which it is easy to transition
into a wedge formation. The centermost units typically form a diamond shape. Ex-
tending this shape to the left, right, top or bottom of the shape results in a triangle
with the side as its base. Figure 4.6 illustrates this type of internal shape. This
has a structural resemblance to the optimal packing of equal circles in a square.

4.1. FORMATION EXPERIMENTS 53

Technique Best Average Median Worst Variance
PSO 2.24204 3.05471 2.95752 4.87545 0.476711
GA 2.23663 2.97767 2.46691 5.41593 0.989851
ES 2.66467 4.00748 3.94356 5.47226 0.663325
SA 2.22552 37.3505 7.26702 251.39 5202.29

Table 4.9: Statistics for best individuals found through 10 runs of each optimiza-
tion technique on the box experiment.

Conclusion

We can conclude that artificial potential fields can be used to put units in strategy
game like environments into box formations. The box formations produced do not
resemble typical grid-like box formations, but their outer shape is close to square.
Units can be packed tightly and quickly to maintain a square shape that is a good
default formation from which to spread into looser formations, line formations or
wedges.

Optimization techniques can be applied to potential field functions to produce
novel formations. All four optimization techniques applied to the problem can
produce good results with very reasonable reliability. Because of the performance
measurement used for this experiment, most parameters that result in good per-
formance are focused around moving the units into a square formation fast. The
weights discovered are thus not necessarily the best for units tightly or safely.

Genetic algorithms with blend crossover and particle swarm optimization pro-
duce very good potential functions for this formation with a very high degree of
reliability.

54 CHAPTER 4. EXPERIMENTAL RESULTS

Creating a wedge formation

Objective
Create a simulation of units that gather together in a wedge formation. The
units are initially distributed in a box formation.

Environment
The environment does not have any obstacles. Units have a simulated fric-
tion to limit their speed. Their velocity is calculated by adding acceleration
to it at every timestep. Their acceleration is calculated from potential fields.
Units are not allowed to collide.

Motivation
Wedge formations are useful for breaking and splitting enemy formations to
isolate enemy groups of units from one another.

Performance Measure
The fraction of units inside the predetermined wedge shape averaged over
each timestep.

Expected Outcome
A setup of potential functions that guides units into an approximately wedge
formation, similar to a filled v-shape. Optimized potential functions are ex-
pected to pack quickly.

Description

The experiment takes place in the same world and the same conditions as in the
box experiment (see 4.1). To be more precise, the final frame of the box experi-
ment instance that was found by the best PSO run is used as the first frame of this
experiment. The rules of this simulation are identical, units are slowed down to
3
4

of their speed at every simulation timestep, they are circular with a radius of 2
and they are removed from the simulation if they crash. The initial distribution
of units can be seen in 4.1. The simulation will run for 3000 timesteps, using a
timedelta of 0.2.

A wedge formation is vaguely like a triangle. It is typically employed to break
through enemy lines. The tip of the wedge is often heavily reinforced. Because of
its v-shaped front, it is hard to do flanking manouvers on a wedge - the distance to
get behind it is long. To give the wedge punching power, the main weight of units
need to be positioned behind its tip.

Because of its similarity to a wedge, we use a triangle to delimit the area in
which we’d like the units to be. The height of this triangle is equal to the side
length of the bounding square for the units at the start of the simulation. The

4.1. FORMATION EXPERIMENTS 55

Figure 4.8: Initial distribution of units for the wedge experiment. The red lines
show the shape of the wedge formation.

length of the base of the triangle is 2 times as long. Primarily, we are looking to
fill the center of this triangle with units in a spearhead-like formation. The center
of the base of the triangle is located in (0, 0).

Performance Measure

Let t be the current timestep in a simulation. Let a(t) be the amount of units inside
the wedge shape at time t and n be the amount of units that were added to the
simulation. The performance of the simulation at timestep t is p(t) as in (4.2).

p(t) =
a(t)

n
(4.10)

Let T (S) be the amount of timesteps in simulation S. Then the performance of

56 CHAPTER 4. EXPERIMENTAL RESULTS

the simulation is:

P (S) =
1

T (S)

∑
t<T (S)

p(t) (4.11)

This performance measure is designed to be maximized. It is the average frac-
tion of units that are inside the wedge shape at any timestep.

Solution Strategy

We require the following of our units to create a good wedge formation:

• The units should not collide.

• The largest density of units should be below the tip of the wedge.

• The frontline of the units should be approximately shaped like an upside-
down v.

To avoid collisions, we will use a repulsive force law between units. For the
other two behaviours, we will attempt to use attractive virtual leaders. It is not
immediately obvious how to use virtual leaders to accomblish this. The simple
approach of adding virtual leaders to the corner of the triangle can not give us
the desired v-shape we are looking for. This is because the minimum with this
layout does not look like a wedge at all, see Figure 4.9. This plot is taken with
an attractive force law with c = −1, σ = −0.25. Using attractors as edges of the
triangle gives a better shape. Even so, we can tell that while the minimas are on
the lines of the triangle, these spots will be filled by some units and then their
potential will rise. When that happens, there will be minimas both outside and
inside the triangle.

What we need to do is to make the minimas be located inside the triangle, not
at its edges. Using virtual leaders that are lines from the corners of the triangle
to its center of mass gives us the shape in Figure 4.10. This is a good shape to
base our formation on. The center of mass of the triangle is the most attractive
point in the shape, which should make the formation dense behind the tip of the
wedge. Additionally, once the local minima present along the lines are filled, the
new minimas will still be closer to the interior of the triangle than in either of the
other solution strategies. These lines are using round edges.

4.1. FORMATION EXPERIMENTS 57

Figure 4.9: On the left, potential field with 3 attractive virtual leaders in the
corners of a triangle. On the right, using virtual leaders as the edges of the triangle.

Figure 4.10: Using edges from the corners of the triangle to its center of mass as
attractors.

We let r(i, j) be the shortest distance from i to j and ~u(i, j) be the direction
between them. Let v be a virtual leader and j a unit. Then the force on each unit
i is:

F(i) =
∑
j 6=i

(
~u(i, j)

c1
rσ1(i, j)

)
+
∑
v

~u(i, v)
(c2
rσ2(i, v)

)
(4.12)

We require that c1 > 0 to create repulsion between units and we require that
c2 < 0 to create attraction to the virtual leaders. We also require that σ1 > 0 so
that repulsion is stronger when units are close than when they are far away. We
need σ2 < 0 to make attraction stronger when they are far away than when they
are close.

58 CHAPTER 4. EXPERIMENTAL RESULTS

c1 σ1 c2 σ2 Survivors P (S)
10 1 −0.5 −0.5 20 0.355525
10 1 −0.5 −0.75 20 0.515475
10 1 −0.75 −0.75 20 0.700125
10 1 −0.9 −0.75 0 0
9 1 −0.75 −0.75 14 0.699375
9 1 −0.75 −0.7 20 0.710225
9 1 −0.8 −0.7 20 0.790625
9 1 −0.25 −1 20 0.4785
9 1 −0.5 −1 20 0.977375
9 1 −0.525 −1 14 0.70035

Table 4.10: Handcrafted potential function parameters for the wedge experiment.

Results with handcrafted potential functions

Table 4.10 documents a series of attempts to better the performance of the wedge
experiment. For the first attempt, we set parameters such that we are reasonably
sure that the repulsive force between units will dominate the attraction to the
virtual leaders. This gives us a formation that is much larger than the triangle
the units should try to occupy, as expected. Increasing the attraction to the virtual
leaders reduces this in size. Once we have set c2 = −0.9, σ2 = −0.75, the attraction
dominates too much and all units die. We attempt to go back to an earlier set of
parameters and this time reduce the repulsion very slightly instead of increasing
attraction. This is also enough to cause some units to die, although the surviving
units all stay inside the triangle.

Trying instead to reduce the coefficient of the attractive force signicantly and
instead let it scale linearly with distance seems like a promising path. Bumping
up the coefficient for the attraction leaves us with a very good result. Trying to
increase it much further causes units to die again. The best result from the hand-
crafted potential functions leaves the final configuration documented in Figure
4.11.

This is a very good wedge formation. The core of the formation is well pro-
tected by a v-shaped front and the tip of the formation has the large weight of
units that is called for.

Using optimization techniques

The genome for this optimization problem is a vector of 4 reals:

[c1, σ1, c2, σ2]

4.1. FORMATION EXPERIMENTS 59

Figure 4.11: The final configuration of the wedge experiment with the best pa-
rameters that were found by trial and error.

Because we have already found an extremely strong solution, we could narrow
the search space down to the bounds around that. However it is more interest-
ing to see if perhaps there exist more areas with good solutions and furthermore
whether the optimization techniques will be able to locate it without much assis-
tance. Therefore, we will bounds that are a little spread:

0 < c1 < 20,0 < σ1 < 2

−2 < c2 < 0,− 2 < σ2 < 0

We will use the parameter values provided by inspyred, excepting the value
for gaussian_stdev, which we set to 0.1. For simulated annealing, we will set
mutation_rate to 0.25. The population sizes are 1 for simulated annealing, 12
for particle swarm optimization, 40 for evolutionary strategies and 40 for genetic
algorithms. We will allow 300 fitness evaluations for each technique for each run.
We will perform 10 runs with different initial populations for each technique.

60 CHAPTER 4. EXPERIMENTAL RESULTS

Technique Best Average Median Worst Variance
SA 0.966325 0.649028 0.722225 0.20285 0.0550979
GA 0.988775 0.961755 0.973575 0.88975 0.000975161
PSO 0.9774 0.797828 0.861475 0.41975 0.0394358
ES 0.886 0.79281 0.8509 0.6067 0.0101037

Table 4.11: Optimization result statistics for the wedge experiment.

c1 σ1 c2 σ2 P (S)
4.57825 1.22634 −0.183973 −0.929281 0.966325
10.0242 0.364445 −1.64309 −1.04323 0.722225
5.54302 0.0139136 −0.49841 −1.74024 0.20285

Table 4.12: Simulated annealing optimization results for the wedge experiment.

c1 σ1 c2 σ2 P (S)
12.7609 1.08366 −0.696471 −0.914919 0.988775
11.6994 0.899228 −0.803483 −0.976608 0.973575
10.6517 0.815878 −0.9832 −0.892773 0.88975

Table 4.13: Genetic algorithm optimization results for the wedge experiment.

Results of optimization techniques

Tables 4.12 through 4.15 document the best, median and worst optimization runs
for this experiment. Table 4.11 documents statistics for the optimization runs.

All optimization techniques are able to find good potential functions for this
problem. None of the results do much better than the handcrafted functions,
which is not unexpected.

Simulated annealing has the worst average performance, the highest variance
and also a bad worst case. This stands in stark contrast to the genetic algorithm,
which performs exceptionally well on this experiment. Its average case is only
marginally worse than the parameters found by hand were and its worst case is
better than the best case of evolutionary strategies on this problem.

Particle swarm optimization has the second best average case and it achieves
a very good best case as well. However, its worst case is worse than that of both
evolutionary strategies and genetic algorithms.

On the whole, most of the results obtained by these optimization runs give
satisfactory wedge shapes. They are not necessarily contained inside the triangle
provided to the simulation, however and in some cases units collide.

4.1. FORMATION EXPERIMENTS 61

c1 σ1 c2 σ2 P (S)
12.8845 0.856295 −0.892512 −1.02084 0.9774
12.0033 0.681236 −0.855669 −1.15603 0.861475
6.23697 1.08907 −0.482609 −0.38614 0.41975

Table 4.14: Particle swarm optimization results for the wedge experiment.

c1 σ1 c2 σ2 P (S)
14.3339 1.21731 −0.520555 −0.907055 0.886
13.6439 0.705424 −0.99712 −1.1048 0.8509
6.83697 2 −0.168134 0 0.6067

Table 4.15: Evolutionary strategies optimization results for the wedge experiment.

Conclusion

We can conclude that potential fields can be used to position units in a strategy
game like environment into wedge formations. The wedge formations produced
adhere closely to the desired outcome of a grouping of units with a v-like frontline
and a thick concentration of units behind the tip of the shape.

Optimization techniques can produce good potential functions to create this
type of formation. Genetic algorithms with blend crossover produce exceptionally
good results very reliably.

62 CHAPTER 4. EXPERIMENTAL RESULTS

4.2 Robustness testing

Robustness of line formation

Objective
Discover whether experimental results from previous experiments can be
applied to more complex environments.

Environment
The environment has patches of terrain where units move more slowly. Units
can move at a limited speed that differs from unit to unit. Their velocity is
calculated by adding acceleration to it at every timestep. Their acceleration
is calculated from potential functions found in 4.1.

Motivation
The utility of potential fields would be much greater if it is possible to use
simple environments to create formations that work in a vide variety of en-
vironments.

Performance Measure
Minimize the amount of units that collide and the average distance from
units to the line that is the center of their formation.

Expected Outcome
Tight clumps of units and possibly collisions near the back end of the line
when it moves through difficult terrain. The line shape is also expected to be
ragged while moving through terrain where only some units will be slowed.

Description

This experiment takes place in a world that is almost exactly like the world in
the line experiment. The difference is that there are now patches of terrain that
prevent units from moving at their maximum speed. Additionally, we introduce a
new initial distribution of units.

The line that marks the center of the formation of units will start aligned along
the x-axis with its center positioned at (−27, 0). Its extent is still 44. After 50
seconds, the line will move along the x-axis until its centerpoint is located at (20, 0)
with a speed of 0.25 per simulated second. After it has been at rest for 30 seconds
in this position, it will move towards (20, 40) and at that point, the simulation
ends.

Units are placed initially in the lower left part of the environment. Once 150
seconds have passed in the simulation, two new units will be added in the lower

4.2. ROBUSTNESS TESTING 63

Figure 4.12: Initial distribution of units for robustness test of line and distribution
when new units are added.

left of the environment. These should join up with the line formation. Units have
maximum speeds picked from {0.3, 0.35, 0.4} such that every third unit has each
of these maximum speeds.

At (5, 0) and (20, 25) there are two circular terrain patches of radius 6 that
prevent units from moving faster than 0.2. The line moves through these patches.
The entire line moves though the first of these patches and an extent of the line
formation moves through the second one.

No optimization or tuning of parameters will be performed for this experiment,
only parameters that were found in the line experiment will be used.

Performance Measure

The performance measure is the same as for the line experiment. It is reproduced
here for convenience:

p(t) =
1

n(t)

∑
i<n(t)

r(i, t)

P (S) = 30 · d(S) + 1

T (S)

∑
t<T (S)

p(t)

This is the average distance from the units to the line plus a penalty for each
collision. For a more thorough explanation, see 4.1.

64 CHAPTER 4. EXPERIMENTAL RESULTS

Technique c2 σ2 c1 σ2 P (S)
Handcrafted −0.5 −0.5 7 2.3 2.58148

ES −0.666186 −0.480902 9.60076 2.62909 2.51007
SA −0.409996 −0.333396 10.2848 3 2.52954

PSO −0.992032 −0.334872 14 2.87928 62.5073
GA −0.8736 −0.960802 10.4899 2.33163 62.2868

Table 4.16: Robustness of discovered paremeters from the line experiment.

Solution strategy

The same solution strategy that was developed in 4.1 will be used here. The
potential function that will be applied is:

a(i) =
−c2
rσ2l (i)

f(i, j) =
c1

rσ1(i, j)

F(i) = ~ul(i)a(i) +
∑
j 6=i

f(i, j)~u(i, j)

This potential function will be tested with the best parameter values that were
found by each optimization technique and trial and error in the line experiment.

Results

Table 4.16 shows the performance of the different parameters from the line ex-
periment for this more complex environment. It is interesting to note that the two
highest performing potential functions from the line experiment both cause units
to collide in this environment. These parameter values performed well in the line
experiment because they pulled units very close to the line.

Common for all of the experiment runs is that the units get squeezed together
tightly while the line passes the first patch of terrain where they are forced to
move more slowly. This is where the collisions happen. Units that are positioned
on the line exert repulsion around them, so the visualization makes it seem that
the line formation moves because the unit that is furthest to the back is pulled to
the line and it exerts a push on the units ahead of it. When the units pack too
closely together, this push causes one unit to dart into a unit that has been slowed
down ahead of it.

All parameters result in coherent line formations. Not all units are able to

4.2. ROBUSTNESS TESTING 65

Figure 4.13: Two units about to collide in the tail of the line formation and the
best final configuration found.

catch up with the line after passing through the second patch of terrain where
they move slower. The two units that spawn at a later point in time only catch up
with it during the last few seconds.

Conclusion

Clearly changing the environment of the experiment was too much for some of
the potential functions that were discovered. However on the whole, the results
strongly indicate that it is possible to train potential functions in one environment
and utilize them in others. The case with 3 out of 5 trials was that all units survived
and kept to a coherent line formation in a very satisfactory manner.

66 CHAPTER 4. EXPERIMENTAL RESULTS

Robustness of box formation

Objective
Discover whether experimental results from previous experiments can scale
as the number of units in the formation increases.

Environment
No obstacles. Units have a simulated friction to limit their speed. Their
velocity is calculated by adding acceleration to it at every timestep. Their
acceleration is calculated from potential fields discovered in 4.1. Units are
not allowed to collide.

Motivation
The utility of the box formation setup would increase significantly if it were
to be able to scale to accomodate larger numbers of units.

Performance Measure
The average area of the smallest square that can fully contain all units for
each timestep divided by the amount of space occupied by units at that
timestep.

Expected Outcome
The potential functions found in the box formation experiment are optimized
to pack units quickly into a small area. Therefore, we do not expect to be
able to add many additional units before collisions happen. We also expect
the shape of the formation to become more disc-like as more attraction is
added towards the center of mass of the formation.

Description

This environment is identical to the one used in the box experiment, with a minor
modification - units have radius 1.5 instead of 2. The same initial distribution
of units is used. This should enable the addition of several units before the first
collision, allowing inspection of the shape of the formation as it grows.

Units are added from the positions (−40,−40), (40,−40), (−40, 40), (40, 40) ev-
ery 45 seconds in the simulation. This will grow the bounding square and the new
units will attempt to join up with the formation. In doing this, they will create re-
pulsion towards its center. It is only a matter of time before the repulsion towards
the center becomes so strong that units collide. When the first collision happens,
the simulation terminates.

4.2. ROBUSTNESS TESTING 67

Performance Measure

The same performance measure that was used for the box experiment will be used.
It is repeated here for convenience:

p(t) =
A(t) + 225d(t)

n(t)4π

P (S) =
1

T (S)

∑
t<T (S)

p(t)

For a thorough explanation of the meaning of these terms, see 4.1. As one of
the objectives here is that the shape of the formation stays close to a box formation,
visual inspection will also be used to discuss the results.

Solution strategy

The same solution strategy that was used in the box formation experiment will be
used here. The test will be run with the best potential functions found by PSO, ES,
GA, SA and trial and error.

Results

Table 4.17 documents the performance of the different weights that were applied
to this experiment. The row A denotes the amount of units that were alive in the
simulation prior to the first collision.

Parameters ES PSO GA SA Handpicked
c1 −0.001 −1.12931 −0.936459 −0.069546 −1
σ1 −1.38582 0.173039 0.285367 −0.369282 1
c2 9.00403 17.3137 14.123 11.7752 9
σ2 2.34396 1.31857 1.4454 1.83189 2
c3 −0.001 −0.532291 −0.37234 −0.377307 −0.0375
σ3 −0.001 −0.378826 −0.294172 −0.381649 −0.05
A 40 44 40 40 24

P (S) 9.55571 5.28116 8.27221 8.53572 18.6356

Table 4.17: Performance of parameters from the box experiment in expanding its
size to the maximum number of units before a collision. A is the amount of units
in the formation.

It is a little surprising to see how much better the optimized potential functions
perform on this experiment than the hand picked one. Clearly their characteristics

68 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.14: Last simulation frame before collision for SA, GA, ES and PSO (left
to right, top to bottom).

are better for this test. They all use higher repulsion for the intergroup force law
than the human set, with the exception of the ES parameters, which uses much
less intergroup attraction. Interestingly, the PSO parameters that were not best for
the box experiment itself performs much better here than the alternatives.

Figure 4.14 documents the last simulation frame of each of the optimized
potential functions. The shapes of these box formations are all very close to square.
This is in part because units at the corners are pulled, but also in part because
that’s where units join the formation. The shapes become more disc-like between
the intervals when new units join the formation and the virtual leaders in the
corners are pulled out of their influence range.

Conclusion

None of the potential functions that were found scaled as well as hoped for. The
maximum amount of units in any formation before there were collisions was 44.
That is a reasonable number, but because there is lag in initiating movement of
the formation, it would decrease significantly for a moving formation.

4.2. ROBUSTNESS TESTING 69

As Figure 4.14 shows, the density of units near the middle of the formation
is very high. This is because pull from the virtual leaders at the corners of the
box doesn’t reach this area at all. Clearly, a different approach for the potential
function from the edges of the box is needed. Adjusting the range of the attraction
from the virtual leaders up to half the diagonal of the box will ensure that there is
always some pull here. However, this introduces another problem - these attractive
zones will overlap and create deadzones, where no units will go. Essentially this
leads to 5 areas of densely packed units near the corners and in the middle of the
formation.

Were it not for this problem, it could be concluded that different potential
functions with the same setup of virtual leaders could be found that would enable
the formation to contain any reasonable number of units. However, this is not the
case, because the problem of densely packed units in the middle of the formation
is caused by this area having no attraction to corners. This becomes very visible
when units join the formation - the bounding square grows such that the virtual
leaders are pulled out of range from the middle of the formation, which leads to
denser, disc-like packing.

70 CHAPTER 4. EXPERIMENTAL RESULTS

Robustness of wedge formation

Objective
Discover whether experimental results from previous experiments can be
applied to more complex environments.

Environment
The environment has patches of terrain where units move more slowly. Units
can move at a limited speed that may differ between units. Their velocity is
calculated by adding acceleration to it at every timestep. Their acceleration
is calculated from potential fields found in 4.1.

Motivation
The utility of potential fields would be much greater if it is possible to use
simple environments to create formations that work in a vide variety of en-
vironments.

Performance Measure
Minimize the amount of units that collide and maximize the amount of units
in a predefined triangle shape that moves.

Expected Outcome
Because the potential setups discovered in 4.1 are optimized to pack a wedge
tightly and quickly, it is expected that this environment that requires units
to space out more in order to be safe, will be very challenging and many
collisions are expected.

Description

This experiment takes place in a world that is similar to the one used for the wedge
experiment. Units now have limited speeds, picked from the set {0.4, 0.45, 0.5} in
turn. There are initially 15 units, left part of the simulated world. Once 150
seconds have passed, 3 more units will be added in the upper left of the world.
These should join up with the wedge formation.

The triangle that defines the wedge formation is initially placed with its corners
at (−50,−40), (−50, 40), (−10, 0). When it moves, it moves with a speed of 0.15
per simulated second. Letting seconds be the amount of simulated time that has
passed and direction be a two-dimensional vector that will be normalized and
multiplied with the speed of the line, its movement can be stated as:

i f 90 < seconds < 260:
d i r e c t i o n = {1 , 0}

i f 260 < seconds < 440:
d i r e c t i o n = {1 , 1}

i f 440 < seconds < 460

4.2. ROBUSTNESS TESTING 71

d i r e c t i o n = {1 , −1}
i f 600 < seconds < 780

d i r e c t i o n = {−1, 0}

There are patches of terrain that slow units down to 0.1 in this environment.
They are circular and have a radius of 4. They are located in the following loca-
tions: (0, 0), (10,−5), (20, 10), (−5,−10), (−10, 15), (10, 20.

The simulation terminates after 800 seconds have passed.

Figure 4.15: On the left, initial distribution of units for wedge robustness test. On
right, three new units appearing and trying to join formation.

Performance Measure

This simulation uses the same performance measure as the one developed in 4.1
with a minor modification. The performance measure is repeated here for conve-
nience:

p(t) =
a(t)

n

The modification we require is to let n become n(t) - the maximum amount
of units that could be alive at timestep t. This is because we add units to the
simulation while it is running.

P (S) =
1

T (S)

∑
t<T (S)

p(t)

For a more thorough explanation of this performance measure, see 4.1.

72 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.16: Two visualizations of the simulated annealing parameters used, right
before and right after collisions.

Solution strategy

The same solution strategy that was used in the wedge experiment will be applied
here. Letting ~u(i, j) give the direction from unit i to unit j and ~u(i, v) give the
direction from unit i to the virtual leader v, the potential function is:

F(i) =
∑
j 6=i

(
~u(i, j)

c1
rσ1(i, j)

)
+
∑
v

~u(i, v)
(c2
rσ2(i, v)

)

Results

Table 4.18 documents the performance of the different weights that were found
for the wedge experiment, applied to this more complex environment. It is clear
that none of them perform particularly well. Most of the weights do manage to
gather all the units into a coherent wedge formation, but collisions take place
almost as soon as the formation starts moving. In some cases, units that are very
far away from the formation get pulled so strongly towards it that it dominates
repulsion between them even when they have almost collided.

Because the performance metric for the wedge experiment was focused on
quickly packing units into a wedge, the wedge formations become very tight and
offer very little space for manouvering. This becomes a problem when units move
at different speeds and it is exacerbated by the areas where units are forced to
move slowly. Most collisions take place when the center of the formation is in the
middle of the terrain patches that slow down units.

To exclude the possibility that the premises for this test were faulty, some fur-
ther testing was performed that discovered a simple potential function that allows

4.2. ROBUSTNESS TESTING 73

Technique c1 σ1 c2 σ2 P (S) Survivors
Handpicked 9 1 −0.5 −1 0.392049 0

GA 12.7609 1.08366 −0.696471 −0.914919 0.326027 0
SA 4.57825 1.22634 −0.183973 −0.929281 0.360501 0
ES 14.3339 1.21731 −0.520555 −0.907055 0.654116 6

PSO 12.8845 0.856295 −0.892512 −1.02084 0.342038 0
Custom 20 1.25 −0.5 −0.5 0.7574 18

Table 4.18: Wedge robustness test results.

Figure 4.17: Potential function that does well on the wedge robustness test - the
Custom entry in Table 4.18.

74 CHAPTER 4. EXPERIMENTAL RESULTS

more units to live and a more coherent wedge formation to manouver the terrain.
This is documented in Table 4.18 as the entry named Custom. The formation
this potential function creates is nowhere near as tightly packed as the other ones
tested - with good reason. The wedge shape is much larger than it needs to be
to accomodate this amount of units and the penalty for collisions is much higher
than the penalty for straying outside of the triangle.

Conclusion

We can conclude that none of the potential functions discovered in 4.1 transfer
particularly well to the environment used here. Because this environment is not
highly complex compared to those found in many real-time strategy games, it is
clearly not sufficient to simulate a static wedge formation to discover potential
field functions for one that needs to move through a difficult environment. In all
cases, the repulsion between units was insufficient to save them from collisions
when their speeds are different and they get clumped heavily because of terrain.

This is a result of three different factors:

• The environment in which the wedge shape was trained is insufficiently com-
plex to transfer the shape to the environment in this experiment.

• The performance measure focuses on packing into the triangle quickly, which
leads to results that apply as much pull as possible to the center of the for-
mation.

• The wedge shape was trained with units that were initially distributed in a
very different way from the distribution used in this experiment.

The greatest contributor here is the design of the performance measure. We
conclude that optimizing the potential functions for safety over speed may im-
prove these results considerably, but rather than exploring that further, propose
this hypothesis as future research.

Chapter 5

Evalution and Conclusion

5.1 Simulation environments and real-time strategy
games

Rationale for creating a simulation environment

The simulation environment used for this research differs from typical real-time
strategy games in some ways. While an existing game could have been used for
the simulations, this limits the type of environment that could have been simu-
lated. Furthermore, existing methods of hooking into well-known games present
significant overhead that makes it impractical to run many thousands of games in
a short period of time. Other games could have been used that permit hooking
directly into the game engine with AI, such that the more time-consuming parts
of the game could be turned off to permit more games to be run. This however
does present the problem that a complete agent needs to be prepared, complete
with planning, path-finding and understanding of the internal data types used in
the game.

A simulation environment avoids these problems and allows for much more
testing to be done in a shorter timeframe. As long as the simulation environment
can be made reasonably similar to a game environment, it should be possible to
import potential fields found in the simulation environment to the game. The
game engine part of this can be made less complex, as learning can happen in the
simulation system.

75

76 CHAPTER 5. EVALUTION AND CONCLUSION

Comparison of simulation environments and RTS games

Real-time strategy games typically do not use contineous coordinate systems, such
as the simulation environments use. Instead, they have some smallest discrete unit
of size, often a pixel. Units occupy areas corresponding to some discrete amount
of this size. Terrain is created by setting up tiles that contain some discrete amount
of this size. A tile can contain pixels where units can not walk, these are obstacles.
It may also contain terrain with different properties, areas where units walk more
slowly or similar. Commonly, a tile is either an obstacle or it is not.

This difference between the simulation environments and real-time strategy
games is not a big hurdle. It seems easier to adapt potential functions created
for contineous environments to discrete environments than the other way around.
Concepts such as euclidian distances, directions and movement speeds can still
work the same way.

While units in most real-time strategy games are not circular, these games op-
erate with the concept of a “hitbox”. The hitbox is the actual area occupied by
the unit, regardless of its visual shape. It is used to calculate distances, collision
detection and similar. It is commonly rectangular. This is a minor difference, units
in the simulation system could have had more complex shapes, but this does not
seem necessary in order to test the method.

Collisions in real-time strategy games do not typically result in unit death or
even damage. Instead, they have solid body physics, such that units simply are
not able to move “into” one another. The simulation environments used harsh
penalties for collision to ensure that units would be forced to spread out over an
area instead of gathering in a clump. It is possible that a better approximation
to a game would be to disallow units moving into one another and leave it at
that. However because the shape of a formation is important, we have chosen
to penalize formations that have areas where units clump very tightly. It is also
unclear what would happen if say 3-4 units attempted to move to the same exact
location in a game.

While some real-time strategy games do operate with concepts of acceleration,
they often simplify it greatly. For example, units may have 3 different velocity
magnitudes to choose from. They are either at rest or travel with one of these
velocities. This leads to units that can stop instantly. The simulation environment
used acceleration and deceleration. It may be that a closer approximation to a
real-time strategy game would be to use immediate actuation, that is to set the
velocity directly from the forces calculated. It also seems clear however that if
potential field based troop movement can be made to work in the more complex
case where acceleration is handled, they can be made to work with velocities.

Overall, many of the properties of the simulation environments approximate

5.2. SUMMARY OF RESULTS 77

the real world better than the typical real-time strategy game does. In particular,
the presence of acceleration and deceleration is a property that makes it more
complex to develop good control mechanisms. As noted in [Laird and VanLent,
2001], [Buro and Furtak, 2003], realistic games provide a very interesting testbed
for AI methods. The simulation environments are made more suitable by the
presence of more realistic physics.

5.2 Summary of results

Line formation results

The potential field setup for line formations discussed in this thesis creates well-
behaved groups of units that closely resemble a line formation. The results indicate
that several optimization techniques are able to create potential functions that ac-
complish this. The potential functions created for the line formation perform well
in a more complicated environment and the line formation is able to accomodate
additional units with ease in most cases. Units in the formation adapt well under
difficult circumstances, such as when the line moves faster than they are able to
or when they have non-uniform maximum speeds.

Box formation results

Box formations are created that pack units quickly into a shape that strongly re-
sembles a box along its edges. The box formation packs more tightly in its center
than in its outer regions and does not scale up to accomodate additional units
gracefully. Applying optimization to the box can result in potential functions that
create boxes that pack quicker and tighter. When units are added to the box forma-
tion, the bounding square increases in size and the virtual leaders in the corners
move such that their minimum range of influence is too short to reach the middle
of the formation. This makes the box formation become more disc-like. Due to the
tight packing in the box, it it not particularly well-suited for moving formations.

Wedge formation results

Potential field functions that create wedge-shaped formations are created with
relative ease. The edges of the formation screate the desired v-shape with a heavy
weight of units behind the tip of the formation. Like the box formation, the wedge
formation packs units more tightly in its center, which is desirable to give the
wedge punching power. Optimization results in wedges that pack quickly and
tightly. Applying the discovered wedge formations to more complex environments
results in several collisions. Despite the large wedge shape the units are allowed

78 CHAPTER 5. EVALUTION AND CONCLUSION

to fill, the potential functions create very tightly packed wedges that are ill-suited
for movement through difficult terrain.

5.3 Conclusion

Created formations

We have shown how potential field methods may be applied in order to create
unit movements that closely match classical line, box and wedge formations in
environments with rules similar to those found in real-time strategy games.

While the internal structure of the box formation discovered does not match
the ranks-based or hexagonal grid-based structures often seen in this type of for-
mation, it is clearly possible to create an external structure that is close to this.
The wedge formation is easily and efficiencly created using the box formation as
a basis and it closely resembles traditional wedge formations.

We can conclude that potential field based methods can create classical military
formations. Because the potential field setups can be created with a high level of
abstraction per formation type, they are well-suited for the purpose of gathering
units into formations with classical outward shape. For wedge formations, they
also create a desirable internal structure and shape.

Transferrability of created formations

We have shown that it is possible to create potential field managed line forma-
tions that function well in more diverse environments than they were developed
in. The line formation can accomodate different amounts of units than it was cre-
ated for with very little difficulty and it also works as expected using units with
non-uniform maximum speed. This result strongly indicates that it is possible to
use potential field methods to create group behaviour that transfers well between
different environments and groups of units.

The box and wedge formations that were developed do not transfer well. It is
not possible to conclude that potential field methods in general can not achieve
this objective because the performance measures used for the environment were
too focused on properties of the formation that directly work against transferra-
bility. Notably, they create formations where units pack quickly and tightly, which
means that the amount of space in which to manouver inside the formation is
minimal. More research is needed to establish whether these formations can be
managed well by potential field methods. Using different performance measures,
adjusting the solution strategies with different potential functions or introducing

5.3. CONCLUSION 79

an additional parameter for the amount of units in the formation to the potential
functions are promising ideas.

Suitability for learning

Offline learning techniques are well suited for finding potential functions that re-
sult in desired behaviour, if that behaviour can be specified accurately with a nu-
merical fitness function. This is clear from the fact that all optimization techniques
applied in the experiments were able to find satisfactory potential functions in all
cases. The lack of transferrability of the functions found can in very large part be
attributed to performance measures that do not accurately reflect behaviour that
transfers well.

For cases where it is possible to evaluate several sets of potential functions
in parallell, PSO and GA are great techniques for optimizing potential functions.
Simulated annealing with the parameters used in this thesis did not deliver good
results reliably. Evolutionary strategies have many of the same characteristics as
genetic algorithms, but performed worse for this thesis. The genetic algorithm
created to work with a vector of reals genotype performs remarkably well, despite
being run with a lower population size than what is common for this type of al-
gorithm. Particle swarm optimization also delivers reliably with an even lower
population size. It is however clear that all the optimization techniques employed
for the experiments can produce satisfactory potential functions. This strongly in-
dicates that the problem is well suited for learning, especially when taking into
consideration the relatively low numbers of evaluations that were used for train-
ing. Arriving at feasible results with low numbers of evaluations is naturally a
very favorable property - evaluating performance in a real-time strategy game is
not computationally inexpensive.

In the case with the box formation, learned solutions outperformed solutions
that were created by hand with a wide margin. For the other formation exper-
iments, the gain was less significant. It is unclear whether the improvement is
worth the configuration time and computation time for these formations, but these
techniques can be employed to efficiently explore possibilities for potential func-
tions. Furthermore, the indication that potential fields can be learned as a control
mechanism increases the utility of the method for being applied to different envi-
ronments.

Overall conclusion

More research is needed to conclude whether potential field methods constitute a
good control mechanism for groups of units in real-time strategy games. However
the results in this thesis strongly indicate that the method has the potential to

80 CHAPTER 5. EVALUTION AND CONCLUSION

fullfil this property.

This thesis applies offline learning techniques to potential field methods and
shows that it is possible to combine these to create a control mechanism for groups
of units in real-time strategy games that is applicable for learning. More research
is needed to establish whether the method is well suited for online learning tech-
niques.

5.4 Future work

Finding box and wedge formation setups that transfer well

The box and wedge formations documented in this thesis do not transfer well to
more complicated environments and different amount of units. Being able to find
setups that work for more units, in more complicated environments is necessary
to use potential field methods for real-time strategy games.

Some possibilites for this include: looking into nearest-neighbours potential
functions, using repulsive edges on bounding box of a square function, with at-
tractors in the corners and repulsive units, using distance of influence potential
functions for repulsion amongst units, training the formations in more complex
environments and building potential functions that take as input the amount of
units in a formation.

Transfer learning approaches may be worth investigating to accomplish this
goal. The problem of making our box and wedge formations work in more diverse
environments and with different groups of units is very similar to the problems
investigated in [Wilson et al., 2008] and [Sharma et al., 2007].

Degree of complexity required for training situations

One reason why the line formation from this thesis transfers better than the box
and wedge formations is because it was created in a more complex training situ-
ation than the box and wedge formations were. Naturally it is therefore a more
useful result. However, specifying a more complex training situation requires more
work. Therefore it would be useful to know the degree of complexity that is re-
quired for behaviour to transfer from training situations to other environments.

5.4. FUTURE WORK 81

Using learning to construct complete potential functions

This thesis concerns itself only with optimization of parameters for predefined
potential functions. It would be very interesting indeed to apply optimization to
create potential functions that could be functions of more types of input such as
current velocity or current acceleration. A learning system could be developed
that can train the potential field setup in full, such that it attempts different types
of virtual leader layout for formations. This could possibly be achieved with a
genetic programming approach [Koza and Poli, 2005]. Another way would be
to allow the training system to encode the virtual leader layout as a part of the
genotype, allowing it to pick potential functions to evolve from a predefined set of
functions.

Learning from multiple environments for one formation

It seems likely that one way to increase the transferrability of potential field setups
would be to learn in multiple environments, instead of a single, simple one. It
would be interesting to observe how this would affect results and it would be
interesting to find out how complex environments need to be to produce good
potential functions for a game.

Implement rts-game behaviour for units

The simulation in this thesis does not have any particular behaviour for units other
than as a group. In a real game, units have attacking and defending moves, and
concepts such as attack range become important for finding good formations. For
units with only melee attacks, keeping a strict formation makes sense. For a mixed
formation of ranged and melee units, it may not. Testing should be performed for
battle simulations where units have individual behaviour, such as attacking enemy
units.

Calculating potential functions on the GPU

Being able to calculate on the GPU would make the method scale to much higher
amounts of units in a simulation. In turn, this enables for more extensive training
and testing. It may be that the reduction operation needed to sum up the forces
on each object is too expensive for this to make sense, but calculating the force
between any pair of objects becomes so cheap that this is worth trying.

82 CHAPTER 5. EVALUTION AND CONCLUSION

Implementation in a real game

To truly discover the suitability for potential field methods for distributed be-
haviour in real-time strategy games, an implementation in an actual game is nec-
essary. There are several candidates for this. While [BWAPI, 2012] allows for im-
plementation for StarCraft: BroodWars, it seems that the method is a much better
fit for environments where it can operate on the game engine level directly. BWAPI
is created such that bots using it operate on the graphical user interface level. An
interesting candidate is [Wildfire Games, 2012]. This is an open source game that
is structurally similar to StarCraft, based on the popular Age of Empires franchise.
The project is currently looking for programmers to implement the artificial intel-
ligence for the game. Some work has been made in economy and planning but
reportedly the micro management of the AI is not very strong: [Kogelnig, 2012].
The current AI uses potential fields to decide structure placement, so the technol-
ogy seems like an excellent fit for this particular game. Another possible target
environment is the ORTS platform, see [Buro, 2003].

Appendices

83

Folders and files included with thesis

Media

The media folder contains animated videos of experimental results for all 3 for-
mation experiments and all 3 robustness tests. The folders contain animations of
the best potential functions discovered for the experiment by each of the follow-
ing optimization techinques: PSO, SA, GA, ES. Additionally it contains a video of
the field generated by human settings. The wedge robustness folder has an ad-
ditional animation, because an additional potential function was created for this
experiment.

Figures

The figures folder contains all the fullsize figures created for this thesis. They are
unfortunately not organized according to which section they have been used for,
but they do have descriptive names.

Source

The source folder contains the source code of the simulation system that was cre-
ated for this experiment. The README file here contains the installation instruc-
tions for the system. These are not very detailed and the installation procedure
has not been tested first hand for other systems than linux_x64. It may be that the
Cython (ccalcs.c) generated C code that is included with this distribution is not
compatible with 32-bit platforms. Running the cython command-line command
on ccalcs.pyx should create a new, compatible version if this is the case. This file
is located in source/apf-0.1.3/apf/lib/ccalcs.pyx.

84

85

Experiments

This folder contains the input data and scripts that were written to perform the
experiments for this thesis. Each folder has at least the following files:

apfrc
The settings to use for running the experiment through the simulation sys-
tem.

indata.json
Initial, statically placed units. Initial force laws if any.

script.py
The script that was used to run the experiment. In general this contains func-
tionality for running the experiment with different parameters, visualizing it
live, plotting to files or generating videos. May additionally contain code to
hook experiment up with optimization techniques in the inspyred library.

Experiments that were optimized contain a number of csv-files in a folder
named csvs. These are named according to which optimization type they detail,
which initial random seed that was used and whether they contain detailed data
about individuals. Inspyred has an analysis module that can digest these files to
produce fitness plots and similar statistics.

References

Barnes, J. and Hut, P. (1986). A hierarchical 0 (N log iV) force-calculation algo-
rithm. nature, 324(4).

Bell, G. (2005). Forward Chaining for Potential Field Based Navigation. PhD thesis,
University of St. Andrews.

Bell, G. and Weir, M. (2004). Forward chaining for robot and agent navigation
using potential fields. In Proceedings of the 27th Australasian conference on Com-
puter science-Volume 26, pages 265–274. Australian Computer Society, Inc.

Buro, M. (2003). ORTS: A hack-free RTS game environment. Computers and
Games, pages 280–291.

Buro, M. and Furtak, T. (2003). RTS games as test-bed for real-time AI research.
In Proceedings of the 7th Joint Conference on Information Science (JCIS 2003),
pages 481–484.

Buro, M. and Furtak, T. (2004). RTS games and real-time AI research. In Pro-
ceedings of the Behavior Representation in Modeling and Simulation Conference
(BRIMS), volume 6370.

BWAPI (2012). BWAPI. http://code.google.com/p/bwapi/, last accessed May
2012.

Deb, K. and Padhye, N. (2010). Development of efficient particle swarm optimiz-
ers by using concepts from evolutionary algorithms. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pages 55–62. ACM.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence. MIT Press.

Ge, S. and Cui, Y. (2000). New potential functions for mobile robot path planning.
Robotics and Automation, IEEE Transactions on, 16(5):615–620.

Ge, S. and Cui, Y. (2002). Dynamic motion planning for mobile robots using
potential field method. Autonomous Robots, 13(3):207–222.

Hagelbäck, J. and Johansson, S. (2008). The rise of potential fields in real time
strategy bots. Proceedings of Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE).

86

http://code.google.com/p/bwapi/

REFERENCES 87

Hagelbäck, J. and Johansson, S. (2009). A Multi-agent Potential Field based bot
for a Full RTS Game Scenario. Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE).

Huang, H. (2011). Skynet meets the Swarm: how the Berkely Overmind
won the 2010 StarCraft AI competition. http://arstechnica.com/gaming/
2011/01/skynet-meets-the-swarm-how-the-berkeley-overmind-won-the
-2010-starcraft-ai-competition/.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Neural
Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages
1942–1948. IEEE.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research, 5(1):90.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220:671–680.

Klein, D. (2010, accessed May 2012). The Berkely Overmind Project. http://
overmind.cs.berkeley.edu/.

Kogelnig, R. (2012). AI in 0. A. D. http://aigamedev.com/open/interview/
ai-in-0ad/, last accesses June 2012.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In Robotics and Automation, 1991. Pro-
ceedings., 1991 IEEE International Conference on, pages 1398–1404. IEEE.

Koza, J. and Poli, R. (2005). Genetic programming. Search Methodologies, pages
127–164.

Laird, J. and VanLent, M. (2001). Human-level AI’s killer application: Interactive
computer games. AI magazine, 22(2):15.

Leonard, N. and Fiorelli, E. (2001). Virtual leaders, artificial potentials and coor-
dinated control of groups. In Decision and Control, 2001. Proceedings of the 40th
IEEE Conference on, volume 3, pages 2968–2973. IEEE.

Long, E. (2007). Enhanced NPC behaviour using goal oriented action planning.

Nurmela, K. and Östergård, P. (1997). Packing up to 50 equal circles in a square.
Discrete & Computational Geometry, 18(1):111–120.

Orkin, J. (2004). Symbolic representation of game world state: Toward real-time
planning in games. In Proceedings of the AAAI Workshop on Challenges in Game
Artificial Intelligence.

Perkins, L. (2010). Terrain Analysis in Real-Time Strategy Games: An Integrated
Approach to Choke Point Detection and Region Decomposition. In Sixth Artificial
Intelligence and Interactive Digital Entertainment Conference.

http://arstechnica.com/gaming/2011/01/skynet-meets-the-swarm-how-the-berkeley-overmind-won-the
http://arstechnica.com/gaming/2011/01/skynet-meets-the-swarm-how-the-berkeley-overmind-won-the
-2010-starcraft-ai-competition/
http://overmind.cs.berkeley.edu/
http://overmind.cs.berkeley.edu/
http://aigamedev.com/open/interview/ai-in-0ad/
http://aigamedev.com/open/interview/ai-in-0ad/

88 REFERENCES

Reif, J. and Wang, H. (1999). Social potential fields: A distributed behavioral
control for autonomous robots. Robotics and Autonomous Systems, 27(3):171–
194.

Reynolds, C. (1987). Flocks, herds and schools: A distributed behavioral model.
In ACM SIGGRAPH Computer Graphics, volume 21, pages 25–34. ACM.

Rimon, E. and Koditschek, D. (1992). Exact robot navigation using artificial po-
tential functions. Robotics and Automation, IEEE Transactions on, 8(5):501–518.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pren-
tice hall.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., and Ram, A. (2007).
Transfer learning in real-time strategy games using hybrid CBR/RL. In Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence,
number 1041-1046.

Vadakkepat, P., Lee, T., and Xin, L. (2001). Application of evolutionary artificial
potential field in robot soccer system. In IFSA World Congress and 20th NAFIPS
International Conference, 2001. Joint 9th, pages 2781–2785. IEEE.

Vadakkepat, P., Tan, K., and Ming-Liang, W. (2000). Evolutionary artificial poten-
tial fields and their application in real time robot path planning. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, volume 1, pages 256–
263. IEEE.

Weber, B. (2010, accessed September 2011). Aiide 2010 star-
craft ai competition. http://eis-blog.ucsc.edu/2009/11/
aiide-2010-starcraft-ai-competition/.

Weber, B. (2012). Integrating learning in a multi-scale agent. PhD thesis, University
of California, Santa Cruz.

Weber, B., Mateas, M., and Jhala, A. (2011). Building human-level ai for real-time
strategy games. In 2011 AAAI Fall Symposium Series.

Weber, B. G., Mawhorter, P., Mateas, M., and Jhala, A. (2010). Reactive planning
idioms for multi-scale game AI. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, pages 115–122. IEEE.

Wildfire Games (2012). 0 A.D. http://wildfiregames.com/0ad/, last accessed
June 2012.

Williams, D. (2002). Structure and competition in the US home video game in-
dustry. International Journal on Media Management, 4(1):41–54.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2008). Learning and Transferring
Roles in Multi-Agent Reinforcement.

http://eis-blog.ucsc.edu/2009/11/aiide-2010-starcraft-ai-competition/
http://eis-blog.ucsc.edu/2009/11/aiide-2010-starcraft-ai-competition/
http://wildfiregames.com/0ad/

	Title Page
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Goals and research questions
	Research method
	Thesis Structure

	Theory and Background
	Real-time strategy games
	Concepts of real-time strategy games
	Suitability for AI research
	Game industry artificial intelligence
	Publications of real-time strategy game artificial intelligence

	Artificial potential fields
	Introduction to Artificial Potential Fields
	Traditional artificial potential fields
	Artificial potential fields in robotics
	Artificial potential fields for distributed behaviour
	Combining artificial potential fields with other techniques
	Artificial potential fields in real-time strategy games
	Notes on complexity and relation to N-body problem

	Optimization techniques and evolutionary computation
	Local search and optimization algorithms
	Evolutionary computation techniques

	Implementation and Experimental Setup
	Requirements
	Implementation
	Dependencies
	Design and implementation
	Notes on SimObjects
	Performance analysis

	Experimental setup
	Physical quantities in the simulation system
	Minimal experiment
	Notes on the use of inspyred
	Genotypes and bounds used with inspyred

	Experimental Results
	Formation experiments
	Marching in a line
	Creating a box formation
	Creating a wedge formation

	Robustness testing
	Robustness of line formation
	Robustness of box formation
	Robustness of wedge formation

	Evalution and Conclusion
	Simulation environments and real-time strategy games
	Rationale for creating a simulation environment
	Comparison of simulation environments and RTS games

	Summary of results
	Line formation results
	Box formation results
	Wedge formation results

	Conclusion
	Created formations
	Transferrability of created formations
	Suitability for learning
	Overall conclusion

	Future work
	Finding box and wedge formation setups that transfer well
	Degree of complexity required for training situations
	Using learning to construct complete potential functions
	Learning from multiple environments for one formation
	Implement rts-game behaviour for units
	Calculating potential functions on the GPU
	Implementation in a real game

	Appendices
	Folders and files included with thesis
	References

