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Abstract

NUTS is a 2U CubeSat, scheduled for launch in 2014. NUTS is be-
ing developed at NTNU, and students take part in both the design
and the construction of the satellite. Miniature satellites adhering
to the Cubesat specification are often composed of separate mod-
ules. A data bus is common method for inter-module communica-
tion. But being a shared medium, traffic on data buses susceptible
to disturbances from failing modules. NUTS uses I2C as the bus
type. The lack of centralised arbitration poses several challenges
with respect fair use of bus time, fault resistance and error recov-
ery.

This paper describes the process of developing a bus protocol for
NUTS. The main goals of the NUTS bus protocol is to provide some
extent of fairness between the modules, dictate a lower bound on
data throughput given certain assumptions, as well as providing a
useful abstraction to ease the implementation of higher-level logic.
Several support functions are needed to make this possible. This
includes defining a system architecture and develop a basic set of
drivers required to communicate over an I2C bus.

Each module participating in testing of the bus driver implementa-
tion, have USB interface connectors. This interface will be used to
control the module or modules under test. If any latencies are to
have guaranteed bounds, the latency in interrupt processing must
be both predictable and constrained. The interrupt processing la-
tency is measured to find out if this can be an issue.

To ease both testing and debugging, a USB interface was used to
control the modules under testing. The existing USB stack was
extended to provide a separate communications channel, making
it possible to provide terminal services and data transmission fea-
tures at the same time. A design for the NUTS bus protocol is also
proposed. To aid the implementation of this protocol, an I2C mas-
ter driver has been developed. A design for an I2C slave driver has
also been suggested

We find that guaranteeing fair access to a I2C bus requires spe-
cial considerations in both transmitter and the receiver. Fairness is
an issue that must be respected at system-level. Variations in the
interrupt processing latency when using FreeRTOS suggests that
there may be room for improvement.
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Overview and planning
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1Project overview

Introduction

Before diving into specifics, it is beneficial to understand the framework
conditions for both the satellite project and the specific problems ad-
dressed in this thesis. The purpose of this chapter is to do just that,
in addition to give a short summary of the status of the NTNU Test
Satellite (NUTS) project.

The NUTS project is a project whose purpose is to build, design and
launch a 2U CubeSat into Low Earth Orbit (LEO)-orbit. It is expected to
launch by 2014, with a engineering model completed in June/July 2012.
NUTS is part of the Norwegian Student Satellite Project, also known as
ANSAT. The ANSAT programme was launched in 2006 [21] as a collab-
orative effort between educational institutions and related industries in
Norway. Its ultimate goal is to build three CubeSats, and launch them
into space by 2014. These three satellites are NUTS, CUBESTAR and
Hincube. This involves at least three educational institutions: Narvik
University College, University of Oslo and NTNU.

The primary focus will be on miniaturised satellites, more specifi-
cally picosatellites adhering to the CubeSat specification. Introductorily
the CubeSat specification is described, including the availability of Com-
mercial off-the-shelf (COTS) hardware that adhere to this specification.
Following that, is a brief introduction to the background for this project
and the main features of the NUTS project. This includes an overview
over its other Norwegian peers. At last, the main topic of this thesis is
described, followed by a very short description of each chapter in this
report.
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1.1 CubeSat specification

Developed by California Polytechnic State University and Stanford Uni-
versity, the specification provides a set of mechanical, electrical, oper-
ational and other requirements [6] for small satellites. This includes
specifications for the orbital deployment mechanism, access ports that
enable last-minute testing and procedures for testing and integration.
CubeSats comes in standard sizes or ”units”, ranging from 1U up to
3U. A 1U CubeSat measures 10x10x10cm and has a maximum mass of
1kg[18]. The outer dimensions of a 1U CubeSat is shown in figure 1.1.

Figure 1.1: The CubeSat specification illustrated for a 1U CubeSat

Source: Nugent et al. [18]

CubeSats are launched into space by piggybacking on a rocket. When
the rocket has reached the target altitude, it is deployed from a mech-
anism called a Poly-PicoSatellite Orbital Deployer (P-POD) like the one
shown in figure 1.2. A CubeSat has separation springs that helps in
separating the CubeSats after deployment from the P-POD. The Cube-
Sats are completely powered off as long as the deployment switches are
depressed. These switches are seen in figure 1.1.

The standardised dimensions and mechanical features of compliant
CubeSats has led to the development and availability of COTS com-
ponents [12][5][15]. It is even possible to buy complete ”CubeSat-kits”,
where the customer only have to add payload, an Electrical Power Sup-
ply system (EPS), radio transceiver and antenna in order to have a
satellite ready for deployment [7] — or solutions where almost all nec-



Figure 1.2: The CubeSat P-Pod Mk3. Holds up to 3U CubeSats in place inside
the launch vehicle.

Source: Nugent et al. [18]

essary subsystems are implemented on a single Printed Circuit Board
(PCB)[23].

CubeSat module connections

The CubeSat design specification focuses on structural properties and
elements related to launch safety [6, p. 11], while everything else is left
out. This is enough for hardware vendors to provide certain components
like solar panels and battery packs, but the requirements in the speci-
fication do not dictate mechanical or electrical properties of modules
PCB. Instead, the use of the CubeSat Kit Bus connector with a PC/104-
compliant form-factor has become widespread for COTS-modules for
CubeSats.

Figure 1.3: PC/104 are stacked on top of each other. This is possible through
the use of stack-through connectors.

Source: PC/104 Specification [20, p. 4]



The PC/104 standard provide a more rugged and compact version of
the PC/AT bus. It is based on the IEEE P996.1 draft specification [20, p.
iii], of what has become known as the Industry Standard Architecture
(ISA) bus standard 1. Thus, PC/104 defines both a form factor and a
data bus. The data bus type is ISA with some significant changes [20, p.
3]:

• Each ”expansion card” has a physical size of 90 by 96 mm.

• Reduced bus drive for most signals to 4mA.

• The cards on the bs are stacked with pin- and socket-connectors,
as shown in figure 1.3. Eliminates the need for a backplane.

• Each card has standoffs in each corner, fastening them to neigh-
bouring cards. This improves mechanical stability for a stack of
cards.

While there is no need for a backplane, it is common to have one of
the cards in a stack act like a mainboard. This mainboard would contain
a CPU that would act like a peripheral controller — as well as a bus
arbiter — if needed.

The PC/104 standard has become popular in CubeSats. This may be
attributed to the CubeSat Kit-product. Specifically, the CubeSat Kit Bus
connector is compatible with PC/104 [8, p. 17], meaning it conforms to
the non-optional parts of the mechanical and electrical specifications in
the PC/104-standard. Only a subset of the pins are implemented on
the CubeSat Kit-motherboard; for power supply, only 5V and GND are
provided. In addition, the CubeSat Kit does not use ISA as the data bus
type. Instead, the pins are used for I2C, SPI and user-defined purposes
(general I/O). The PC/104 form factor with the CubeSat Kit Bus is by
far the most commonly used for COTS parts. If a CubeSat project is to
use any COTS-modules, it is difficult if not impossible to avoid CubeSat
Kit and CubeSat Kit-like products.

1.2 Project mandate
The purpose of this project is to utilise the internal data bus of the NUTS
satellite. The work in this thesis is a continuation of work done by the

1 While literature on ISA refers to IEEE P996, the specification was never completed.
This means that there may be minor variations in interpretation of signals and
timings between different PC chipsets



author during the TDT4501 - Computer Science, Specialization Project
last semester. There, the purpose was to develop identify overall soft-
ware requirements and investigate means for inter-module and satellite-
ground-communication.

The work done last semester has paved the way for developing this
concept further, and to include the internal data bus. This means that
any software developed has to both implement some kind of bus proto-
col, and be compatible with the existing software on the NUTS satellite.

1.3 Project background
The ANSAT programme was not the first of its kind in Norway. The pre-
decessors to the three satellites in the ANSAT programme, is NCUBE-1
and NCUBE-2. With the goal of stimulating cooperation between Nor-
wegian educational institution, their main mission was to communicate
with amateur ground stations and deploy AIS (Automatic Identification
System)-receivers2 into space[11]. The AIS-receivers would have been
used to track ships and reindeers equipped with AIS-transponders.

Figure 1.4: The NCUBE-2 student satellite

Source: nCube (satellite) [17]

NCUBE-1 and NCUBE-2 were like each other. However both mis-
sions were failures in the sense that they never succeded in being sucess-
fully launched into orbit. NCUBE-1 was destroyed when its carrier vehi-
cle – a Dnepr rocket – failed during launch[4]. NCUBE-2 was launched
into orbit, but it was not possible to establish contact with the satellite.

2 Automated tracking system, mainly used for tracking ships at sea. The tracked
vessel uses a VHF transponder to send information about its identity, position,
cargo, speed etc.



1.4 NTNU Test Satellite

Unlike most CubeSat projects, NUTS has a backplane for connecting
module cards. For research purposes, it is interesting to try something
different. But the rationale behind the having a backplane is the added
flexibility it gives: In addition to having a satellite platform that can ac-
commodate a variety of payloads, the use of a custom design enables
improvements in the data and power buses [3]. The most important im-
provement is the ability to isolate modules from the rest of the system.
This includes removing the module from the bus and disabling the mod-
ule, effectively cutting it completely off the backplane. Also, had the tra-
ditional stacking approach been used, the logic in the NUTS backplane
would have to be integrated into each module card. This would make
it more difficult to implement some of the safety features stated in the
requirements for the NUTS backplane [10]: That a single failing module
should not be able to bring the whole system down. The caveat is that
the use of a ”non-standard”-backplane with custom connectors, makes
it difficult to use any third-party modules if need arise.

The NUTS payload is an infrared camera. This camera will be used
to observe a phenomenon called gravity waves. When air interacts with
the earth terrain and in weather, then some of the air propagates into an
OH-layer in the middle of the atmosphere. This layer emits shortwave
infrared radiation, and perturbations from rising air flows makes it pos-
sible to observe wave patterns in the intensity of this radiation. This is
called gravity waves.

Camera paylaods are common in Cubesats. What makes NUTS dif-
ferent, is the use of an infrared camera payload. The observation of
gravity waves is made possible by using a InGaAs-sensor (Indium Gal-
lium Arsenide).

1.5 Problem description

The NUTS backplane is the main mean of inter-module communication
in the satellite. Being a shared medium by definition, any data bus is
susceptible to interference patterns introduced in the case where multi-
ple bus users want to utilise the bus at the same time. Being a relatively
low-bandwidth data bus without any advanced arbitration scheme, I2C-
buses are particularly sensitive to these problems.

The main topic of this thesis is to investigate possibilities to guaran-
tee bus fairness and possibilities with respect to fault tolerance on the



NUTS data bus. The goal is to develop a bus protocol and implement
this in a portable software library.

One of the main issues encountered when developing software, is re-
lated to testing for correctness. In order to facilitate testing, the modules
used during testing will use USB connectors to enable direct control of
them.

Part of the assignment is to design the software architecture for the
two master modules in the system: The radio module and the OBC-
module. This will form the foundation of the whole system as a single
entity.

1.6 Stakeholders

The project is sponsored by Nasjonalt senter for romrelatert opplæring
(NAROM), the NTNU Department of Electronics and Telecommunica-
tions, in addition to the NTNU Department of Engineering Cybernetics.
As the financing institutions, they have a vested interest in the success
of the project. However, they are not directly involved in the decisions
taken as part of the work on this thesis. The project leader, Roger Birke-
land, is involved throughout the whole project. This makes him the
ultimate decision-maker for all project work. Also, the students work-
ing on the projct are stakeholders. However at this point the work of
each individual student is not tied to the rest of the individuals doing
work on the NUTS-project.

1.7 Related work

I2C is a popular bus type in CubeSats, but most projects rely on lax or
on-existing latency-requirements and sheer bandwidth. In these situa-
tions, high utilisation of the data bus and bus fairness is not a problem
in practice. Therefore, it is hard to find similar CubeSat projects where
the issues addressed in this thesis, have been solved or evaluated.

1.8 Previous work

Hardware-wise, the OBC-module, the radio module and the backplane
are more or less completed. FreeRTOS has been chosen as the operating
system on the OBC-module, and a communications library called Cube-



sat Space Protocol (CSP) has been ported to Windows Vista, and verified
to work on the OBC-module.

The designer of the OBC-module developed various drivers as part
of testing the OBC module [30, p. 35]. This includes, but may not be
exclusive to:

• Configuring the static memory controller for using external Static
Random Access Memory (SRAM).

• Partial implementation of programming with JTAG by bit-banging
designated JTAG-pins.

• Configuration of the flash memory controller.

This code has not been modified to work with FreeRTOS. It remains to
be seen how much of this can be used further on in the project.



2Background

Introduction

This chapter begins by introducing the two other satellites in the ANSAT
programme, with comparisons with the NUTS-project where it is possi-
ble. Following this, comes a detailed overview over the current project
status for NUTS. After that the NUTS backplane and OBC module is
described in detail. The current state of the existing software used in
the NUTS-project is also included.

Wrapping up the chapter, is a detailed discussion of I2 and the Uni-
versal Serial Bus (USB) standard. The focus in these sections, is on de-
tails that are relevant to the material that follows the main part in this
report.

2.1 CubeSats in the ANSAT programme

This section presents Cubestar and HiNCube. They share some features
with NUTS, but are also quite different from other aspects.

CubeSTAR

Being developed at University in Oslo (UiO), Cubestar is a 2U cubesat
due for launch in 2013 into low polar orbit. Its payload serves as a tech-
nology demonstration of a new probe: A multiple-Needle-Langmuir
Probe (m-NLP). The instrument is able to measure the density of elec-
trons in the upper earth atmosphere. This can be leveraged to get a bet-
ter understanding of ”space weather” and predict how this will affect
orbiting radio transceivers, such as Global Positioning System (GPS).

11



Figure 2.1: CubeSTAR

Source: CubeSTAR [9]

For communication, the CubeSTAR is fitted with a Ultra-high Fre-
quency (UHF)-transceiver. It uses Gaussian Frequency-Shift Keying (GFSK)-
modulation and the data link with a baudrate of 9600. AX.25 is used as
the data framing protocol [13].

CubeSTAR does not use a COTS OS. Instead, they rely on develop-
ing their own systems software. Internal commands have set Hamming
distance between them. When a module receives a command, it can
then calculate the minimum Hamming distance between the received
command, and the set of known commands. This scheme enables both
error detection and correction.

To ensure system availability, the current plans are to use a combina-
tion heartbeat timers in the OBC- and Telemtry, Tracking and Command
(TT&C)-module. If either fails to respond to the other within a reason-
able timeframe, a module reset is initiated.

For computer hardware aboard the satellite, the main microcontrollers
are Atmel ATmega128s. The ATmega128-series are 8-bit microcontrollers
with limited processing capabilities. However, nothing aboard the CubeSTAR
requires significant computational power. The most demanding com-
puting application onboard, may be the encryption of downlink pack-
ets. But the microcontroller suppoorts instructions for performing en-
cryption and decryption using Advanced Encryption Standard (AES).

When processing payload data, system integrity may be ensured by
implementing triple modular redundancy.

Like NUTS, hardware-wise, the CubeSTAR is similar in that it has
a backplane with separate modules for EPS , OBC, TT&C, payload and
Attitude Determination and Control System (ADCS). I2C is used as the
internal data bus. But for added redundancy and throughput, it has two
data buses.



2.2 HiNCube
HiNCube is a 1U Cubesat that is nearing completion. Its payload is
simply a camera with no particular purpose than taking pictures and
transmitting them to the ground station[19]. Part of the payload mod-
ule is also logic for receiving telemetry data from eight thermal sensors
situated in each corner of the Cubesat.

HiNCube has a ”traditional” Cubesat-design based on the PC/104
form-factor [1], with stacked module PCBs with a combination of mod-
ules boards developed and created by third parties, in addition to cus-
tom designed modules. In the case of HiNCube, the On-board Data
Handling (OBDH)-module has been bought from Pumpkin Inc. The
COMM- and EPS-modules provided by GomSpace. The software used
on these modules is also developed and provided by GomSpace.

With the exception of the COMM and EPS-modules, the HiNCube
systems software is custom designed. The internal communication pro-
tocol is CSP, with the CSP implementation library ported to the custom
Operating System (OS) used on some of the modules. All modules ex-
pose their functionality through CSP services on the internal data bus.
The COMM-module uses CCSDS Space data link protocol for the data
link between ground and space.

During normal operation, the motherboard/OBDH-module takes the
role as a command proxy, acting on the behalf of the Ground Support
Equipment (GSE). This means that the radio forwards any commands
from the ground segment, further to the OBDH.

The internal data bus uses I2C in multi-master mode, but Serial Pe-
ripheral Interface (SPI) was used in earlier designs[14].

2.3 Cubesat satellite subsystems
A typical satellite has various subsystems. This is done on the basis of a
functional decomposition into manageable units with separated respon-
sibilities. The exact tasks that are assigned to each subsystem is highly
specific to the mission, but in NUTS the subsystems are defined to be in
one of the following categories:

• TT&C

• ADCS

• EPS



• OBC/OBDH

• Payload

Beacon control
Beacon transmit
Radio receive
Radio transmit
Command processing

System control
Housekeeping
Data storage
Payload processing
Command dispatcher
Command scheduler
Command processing

Power management Camera control
Command processing

Sensors
Actuators
ADCS processing
Command processing

Radio OBC EPS Payload

ADCS

Figure 2.2: The NUTS subsystem with their delegated responsibilities

The TT&C-system is responsible for ground-satellite-communication.
This involves receiving and responding to commands from the ground.
Without the TT&C system, it is impossible to control the satellite.

The ADCS system provides the means to measure and change the
orientation and altitude of the spacecraft. By using a model of the dy-
namics of the spacecraft, the ADCS-system can use actuators to counter-
act and interact with external forces from gravity and the earth magnetic
field. Using the magnetic field of the earth for orientation is commonly
used in small satellites, where the moment of intertia is small and there
is no room for a propulsion system using compressed gas.

Providing power for the vehicle is the responsibility of the EPS sys-
tem. Without a functioning power system that can provide reliable and
stable power supply, the satellite is not of much use. The main power
source for satellites orbiting the Earth is the combination of batteries
and solar panels. During Sun eclipse the satellite is running on battery
power, and the power budget may be more limited. The efficiency of
both batteries and solar panels decrease over time, and the mission will
essentially end when either of them fails. But the EPS-system may aid in
increasing the life span, by preventing the batteries from overcharging
and overheating.

Usually a satellite needs a computer for doing various computational
tasks. This is typically related to processing of data from the payload-
system, storage of data in non-volatile memory for later retrieval, peri-



odic tasks such as logging of system status and general system health
supervision. This responsibility lies with the OBC- or OBDH-system.

When all these assignments are put together, the end result is the
complete system shown in figure 2.2.

Radio OBC/
OBDH

EPS Payload

Radio

ADCS

Ground segment

Space segment

Figure 2.3: The defined subsystems in NUTS in the space segment, and the
ground station in the ground segment

In addition to the satellite systems, there is a ground segment on
earth. The ground segment contains the equipment necesarry to manage
the mission, and process telemetry and payload data received from the
satellite. An illustration of the whole system is shown in 2.3. The ground
segment consists of at least a computer terminal and a radio connected
to an antenna. For the purpose of understanding the system from a high
level, this is as much details that are needed. But the satellite software
does shape the software used on the ground station, because it is the
ground station that must be capable of understanding data sent from the
satellite and it must be able to issue commands that are understandable
to the satellite software. However, this is not a topic in this report.

2.4 NUTS status and project timeline

Currently, there is about a dozen students working on NUTS as part
of their master thesis. In addition, several students are working on the
project as part of the course TFE4850 Experts in team. Starting at the end
of April, there is also a group of volunteer students that will begin work
on different aspects of the NUTS project. This includes three people
that are assigned to work solely with software development, both GSE-
software and software for embedded systems.



The NUTS backplane is more or less completed. However the de-
sign may be revised by removing superfluous board connectors and cir-
cuitry to enable the use of a larger-sized battery pack [16]. At the time of
writing, there is also a minor issue with the per-module current limiter-
logic. When this situation arises, the current limiters will continuously
trip and reset with the result that the module is essentially left without
power.

The ADCS system uses solar sensors, gyroscopes and magnetome-
ters to determine the orientation of the satellite. The satellite will have
solar panel on five sides, and intensity measured at each solar panel
is used for sensing the relative direction to the sun. A new method
for altitude estimation has been developed, tested and found to be re-
liable and accurate when compared to the well-known and commonly
used ”Extended Kalman Filtering”. The method is a variant of QUEST
(Quaternion Estimator), called EQUEST (Extended QUEST).

NUTS will use magnetorquers to change the orientation of the satel-
lite. Magnetorquers are electromagnetic coils. By controlling the electric
current through the coils, they are able to interact with the magnetic
field of the Earth. The control algorithms used for stabilization and
detumbling 1 are yet to be decided. But various controllers have been
tested and developed for prototyping.

The main mechanical structure is responsible for holding the satellite
components together. During launch, the satellite is exposed to major
lateral forces, as well as excessive vibration. While the frame plays a
minor role when the satellite is in orbit, it may provide some degree
of protection from cosmic radiation. The thermal properties are also
important, because heat dissipation can only happen through heat radi-
ation.

The most common material used for the main structure is aluminium.
The material of choice for the primary structure in NUTS is a composite
material, composed of a carbon fiber fabric and an epoxy resin. While
carbon fiber has been used in previous Cubesat missions, using an all-
composite frame is not that common. Carbon fiber has several attractive
properties such as good stiffness and strength, low weight and very low
thermal expansion when compared to aluminium. A test frame has
been manufactured. The ongoing work on the satellite structure, is de-
velopment and manufacturing of a structure that attaches the satellite

1 Detumbling is the process of reducing the angular velocity of the satellite after
orbital insertion



components with the frame. There is also some remaining work related
to testing, production and approval.

A security analysis has been performed [29]. The major threat was
found to be the case where a malicious third party would be able to
control the satellite, while payload confidentiality was not an issue. The
encrption algorithm and the packet authentication mechanism in a com-
munications library called CSP was also briefly evaluated. CSP uses
SHA-1 for packet authentication using message authentication codes.
This hashing algorithm has several weaknesses. Currently a new Hash-
based Message Authentication Code (HMAC)2 algorithm called BMW is
being tested for use on the existing NUTS computer hardware. One of
the key elements is benchmarking the algorithm when used on the ac-
tual hardware. There is also some issues related to how private keys are
to be distributed, as well as the generation of suitable sequency numbers
used to prevent replay attacks.

The EPS system is also being designed and tested. The EPS is com-
prised of the module board itself, in addition to a battery pack and solar
panels. It provides the backplane with 3.3V and 5V power buses. For
added reliability, the power buses are duplicated. This is to prevent me-
chanical failure in the backplane, from rendering all the modules pow-
erless. The EPS module is expected to be finished by the end of june
2012.

While the payload is going to be an InGaAs camera, a suitable cam-
era is yet to be found. Because of the limited downlink, some processing
will also have to be done aboard the satellite. This includes compres-
sion and post-processing of the images taken by the camera. Because of
the relatively long exposure times required to take good pictures, mo-
tion blur is also going to be an issue. These matters are currently being
worked on.

The antenna system consists of a radio module with two Very High
Frequency (VHF) transceivers. The modulation scheme is going to be
FSK (Frequency Shift Keying) with carrier frequencies at 146MHz and
437MHz. Because the ADCS system may fail, the aim is to achieve close
to isotropic radiation pattern for the antennas. The current design uses
two crossed dipole atennas located in zenith and nadir direction, one for
each of the frequencies. The satellite is also going to be equipped with
a beacon transmitting morse code. The purpose of having a morse code

2 Message authentication codes are used to verify the integrity and authenticity of
messages sent from the satellite.



transmitter, is that it should always be present and active. Even if all the
software on the satellite fails, the morse code beacon would still work.

2.5 NUTS system overview

This section gives a thorough description of the elements that are of
direct relevance to the development of a bus protocol for NUTS. The
key elements are the master modules and the backplane itself. The two
master modules are able to supplement each other and enforce the bus
protocol. The backplane provides the means to make this possible.

We begin by describing the NUTS backplane, by giving a overview
over the features followed by an exhaustive description of the semantics
of all of the control signals. After that, the OBC and the radio module
is described. The OBC module is the main computer in the satellite.
At last, the software that is currently used or implemented for NUTS is
briefly touched upon.

Figure 2.4: OBC setup for development. It sits in one of the master slots on the
backplane.

NUTS backplane

The NUTS backplane is responsible for distributing power and provide
access to a data bus. The backplane is the central PCB, into which mod-



ules are connected. The connectors on the backplane also gives each
module additional mechanical stability.

Overview

Unlike a traditional motherboard in a desktop or laptop computer, the
NUTS backplane does not contain any peripheral hardware or any elec-
tronics not related to generic control of backplane modules. Instead, the
backplane basically provides a set of slots, power buses, a data bus and
some control logic without the use of complex controllers. One of the
design goals was that the backplane should operate without the use of
software.

The data bus type is I2C. From a electronics design standpoint, the
key advantages of using I2C is that no central arbitration logic is re-
quired and that only two bi-directional bus lines are needed for commu-
nication. The rest of the logic is implemented in each chip that wants to
use the I2C bus. Support for I2C is also widespread.

The backplane has three types of connectors for different types of
modules: Slaves, two masters and an EPS connector. The EPS socket
must be different, because the EPS module supplies power to the power
lines in the backplane, instead of drawing power from it. Master con-
nectors has extra lines to control the backplane. This enables features
that are not available from slave modules.

Each module is provided with dual 3.3V and 5V power lines. There
are per-module power switches to disable the power supply to indi-
vidual modules. In addition, each module has current monitors. The
INA219 current monitor has an I2C interface, and they are connected to
the backplane data bus as long as the module has not been isolated from
the internal bus. This makes it possible to monitor both the voltage and
current provided to each module.

Each module connector has bus isolation buffers/repeaters. This
does not only make it possible for each side of the buffer to operate
at different voltages: The NXP PCA9517 bus repeater used on the back-
plane has an input to enable or disable it. This input is controllable by
backplane master modules. The bus isolation mechanism may be used
by backplane masters to prevent other modules from erroneously occu-
pying the bus for prolonged perionds of time. The use of bus repeaters
also reduce bus capacitance.

Each power line supplied through each module connector, is pro-
tected by current-limiting switches. The current backplane design limits
the current to each module to about 300mA [10, p.41]. If the load cur-



rent to a module exceeds that, the current limiting switch will latch off
for a brief period of time before turns on again. If the reason for the
high current draw was a single event latchup or any transient event, the
switch will not turn off again. A backplane master may see if the current
limiting switches on either power line through one on the control lines
made available to backplane masters.

I2C is a multi-master capable bus. The same semantics applies in the
NUTS backplane. This means that any regardless of whether the module
is a backplane master or not, it is still able to initiate communication to
any other module connected to the backplane. The I2C bus supports
fast mode, giving a theoretical throughput of 400kbit/s.

The state of the power switches and bus isolation buffers are stored
in flip-flops. When the backplane is reset, the state of all power switches
and bus repeaters defaults to on. The backplane has a reset monitor with
a watchdog reset. The indended purpose of the backplane watchdog is
twofold: a) During backplane power-up, the watchdog resets all mod-
ules to the default state, and b) If both master modules become disabled
for some reason, the watchdog timer triggers (and reset all bus and
power switches to ON). While there are reset lines going to all modules,
a watchdog trigger does not assert this signal to the backplane modules.

Figure 2.5 shows a block diagram over the elements that constitute a
slave module slot on the backplane. The master modules have access to
an extra set of lines, making them able to control the logic for a specific
module. Each module is also supplied with two power lines at 3.3V
and 5V. Inside the power module dedicated to the connector, there is a
circuit that does OR-ing of the power lines. This circuit could fail, but it
would not affect the rest of the system. The power module also contains
current limiters that serves as an extra safety mechanism if the module
short-circuits the power lines.

The bus repeaters are located within the logic module shown in fig-
ure 2.5. Functionally, they act as bi-directional buffers that repeat the
signal seen on one side, to the other side of the buffer.

The control logic in the backplane is controllable from either of the
two master module slots. There is no arbitration on these lines. In-
stead, they use open-drain logic to eliminate the risk of damaging high
currents if two masters try to use the control lines at the same time.

There is a risk that memory elements in the backplane may change
state because of single event effects. A possible work-around is to have
a master continuously set the correct state for each module.



Figure 2.5: Backplane logic module

Source: [10]

Master module control signals

Module logic is controlled by a master by setting three ADDR lines (each
module has three ID lines). If the module is present, the ACK signal is
asserted. The master can then assert PWR EN and/or BUS EN and
store the result into latches by pulling SET low. When a module is se-
lected by having its ID match the current settings on the ADDR lines,
four JTAG/SWD lines are connected through a bidirectional buffer. Also,
when the module is selected they can be reset by pulling MODULE RESET
low. The PWR FLAG signal can be read when a module is addressed,
indicating whether there is an over-current condition at the addressed
module.

Some signals control does not control a specific module. These sig-
nals are BP RESET, SYSTEM RESET1 and SYSTEM RESET2.

There is no arbitration for the backplane control logic. To ensure that
a master has exclusive access to the backplane, it can assert the address
lines and then compare them with the expected values. If they match,
then the master can proceed.

In summary, a backplane master has access to the following signals



when addressing a module through the ADDR lines:

• ACK: Indicates that the addressed module is present (or not)

• PWR EN: Used to switch the module power switch on or off.

• BUS EN: Used to enable or disable the module bus repater.

• PWR FLAG: If asserted, it indicates that the current limiters have
tripped.

• MODULE RESET: Reset the module.

• SET: Used to latch the module settings asserted on the other con-
trol lines.

• DBG TMS, DBG TDO, DBG TCK, DBG TDI: JTAG lines used to
program the module.

When trying to force a badly behaving slave off the data bus by using
the BUS EN# signal, one must take som precautions. The datasheet for
PCA9517 states that the enable pin must not change during I2C bus
operations. Thus a badly behaved slave should be held in reset before
disabling the bus repeater. The signals needed to achieve this is shown
in figure 2.6.

BUS_EN

SET

Module is held in reset
while disabling the I2C
buffers

Latch the "bus disabled"
state

ADDR0

ADDR1

ADDR2

ACK

MODULE_RESET

Figure 2.6: Timing diagram for isolating a module from the bus

A master module is also able to program other modules. This pro-
cedure is encapsulated in the timing diagram shown in figure 2.7. This
shows that the master receive a confirmation of the presence of the slave



ADDR0

ADDR1

ADDR2

ACK

DBG_TMS

DBG_TDO

DBG_TDI

DBG_TCK

Figure 2.7: Timing diagram for programming a module

with address 101. The JTAG lines are routed to this module, and pro-
gramming can commence.

A module can also be reset. The reset line is routed into the ad-
dressed module. In a properly designed slave module, pulling the reset
line low should perform a hardware reset. The signals asserted by a
master module that is to reset slave with address 101 is shown in figure
2.8.

Signifies  that a module with
matching ID is present

Hardware reset of
the addressed module

ADDR0

ADDR1

ADDR2

ACK

MODULE_RESET

Figure 2.8: Timing diagram for resetting a module

A slave can also be completely disabled. This disabled state is stored
in the logic module shown in figure 2.5. The corresponding timing dia-
gram is shown in figure 2.9.

The following signals are not specific to any addressed module:

• BP RESET: Reset the backplane

• SYSTEM RESET1 and SYSTEM RESET2: System reset. This re-
sets all modules except the initiating master module.



BUS_EN

SET

ADDR0

ADDR1

ADDR2

ACK

PWR_EN

Signals must be held
long enough for SET
signal to go high

Figure 2.9: Timing diagram for disabling a module

These lines are always available, and no kind of arbitration mecha-
nism is necessary for them to work properly.

NUTS OBC

The OBC module is the main computer in the satellite. It is responsi-
ble for the supervision of system health, logging of flight data and the
control of other modules through commands sent over the internal data
bus. The OBC module is also the only module that has extra external
memory.

The different memory types are shown in figure 2.10. The module
also has a 4Mb OTP (One-time Programmable) EPROM (Eraseable Pro-
grammable Read Only Memory). While it is not radiation hardened, the
OTP memory is likely to be more resilient memory corruption because
of radiation. This makes it suitable for storing system software.

The CPU on the OBC module is an Atmel AVR32UC3A3256. It is a
modern 32-bit microcontroller that targets cost-sensitive, low power ap-
plications with need for processing power. The CPU core does not have
a MMU (memory management unit), so hardware support for memory
protection is limited. However it does have a MPU (memory protec-
tion unit). The MPU makes it possible to set protection bits on memory
segments, although there is no support for paging.

The 16Gb NAND flash is used for persistent storage of various data.
However, the software for realising this has not been developed. It is
clear that some means of storing and retrieving information from the
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256KB Flash
(program memory)
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(data memory)
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Figure 2.10: Hierarchic view of the different types of memories available on the
OBC module.

flash memory is needed. What is not clear, is what kind of file system
satisfies the need to guarantee the integrity of the stored data.

To supplement the meager amount of RAM integrated into the MCU
package, the OBC has 16Mb of SRAM. SRAM is expensive and more
DRAM (Dynamic RAM) can be had for the same price and same phys-
ical size. However DRAM is more complex to interface with, requiring
periodic refreshes, higher access latency than SRAM and more complex
addressing to the the multiplexing of row and column addresses on the
same address lines. The access latency to SRAM is also better.

The general physical structure of the OBC module is shown in 2.11.
What is missing from the diagram, is a UHF(Ultra High Frequency)-
transceiver meant to be used in a wireless bus experiment. The state
of this wireless bus is not known, and the transceivers have never been
tested on the OBC module itself.

AT32UC3A3256
(main MCU)

4Mb One-Time 
Programmable memory

16Mb SRAM

Backplane
connector

16Gb NAND
Flash

Figure 2.11: Block view of the OBC module

The OBC module uses FreeRTOS as the operating system. To ease



communication internally in the satellite, and between the satellite and
the ground station, it uses a communications/networking library called
CSP.

During normal operation, the OBC module shall perform mission
critical tasks. In addition, it will act on behalf of the ground station.
Any commands sent from the ground is forwarded to the OBC module.
The OBC is also responsible for executing tasks that are scheduled for
later execution.

NUTS Radio

The radio module is similar to the OBC module hardware-wise. Unlike
the OBC, it does not have any One-Time Programmable (OTP)-memory
or external flash memory for persistent storage. Currently, no software
has been tested on the radio module and the state of the hardware re-
mains unknown. It is very likely that the basic software on the OBC
module, including the OS will work without any complications on the
radio module.

Existing software for NUTS

In order to be able to fulfill the needs of the project, the ground station
software is going to be a combination of COTS and/or freely available
software and custom developed software. The ground support equip-
ment software for NUTS is currently being developed. At this point, the
first steps is to write a software requirements specification and deter-
mine how to best make use of the available man-power.

FreeRTOS is a GPL licensed operating systems that targets micro-
controllers. It is a real-time operating system, meaning that the CPU
scheduler satifies real-time requirements. It supports various degrees
of multitasking, ranging from a preemptive sheduler and co-operative
multitasking to co-routines. The latter is suited for environments where
memory is extremely constrained.

FreeRTOS could be considered to be an operating system kernel,
with various utility functions. There is no driver model, support for
file-systems or any other inherent hardware support except for the pro-
cessors that it is ported to. But it still gives a foundation for a hardware
abstraction. Also, using a multitasking OS scales better than using a
simple control loop when the specific computational processes are not
known beforehand. And even then, the OS may prove to be the best
alternative.



FreeRTOS is not the only operating system that targets microcon-
trollers and embedded systems. There are several examples of RTOS,
such as VxWorks, Windows CE, RT-Linux, ECOS, QNX and Integrity.
The main reason that FreeRTOS was chosen was because it was already
ported to the AVR32UC3.

Developing a library for general internal communication, and com-
munication between the satellite and the ground would be time-consuming.
Fortunately, there was a suitable library available under a free license:
CSP. The library still has to be augmented to fit into the specific scenario,
but it saves development time to use software that already implements
some of the features that are needed.

2.6 USB standard

The USB (Universal Serial Bus) standard is an industry standard that
describes an serial bus interface for extending a host computer with pe-
ripheral devices. The motivation for developing such a standard was to
replace a mixture of different serial and parallell connectors, and vari-
ous interfaces such as SCSI, RS-232 and Centronics with a single unified
interface. The main goal of the USB standard, is to have a single, ver-
satile specification that can be used by different vendors to design and
build hardware devices that are compatible with each other.

The USB specification defines not only a communication protocol,
but also programming interfaces required by devices and USB host sys-
tems, electrical and mechanical properties and the bus protocol[27]. USB
2.0 defines three fundamental transfer rates called low, full and high
speed at 480Mbps, 12Mbps and 1.5Mbps respectively. USB 3.0 adds a
new transfer type named SuperSpeed. SuperSpeed mode enables trans-
mission rates up to 5Gbps[24].

USB devices are divided into classes, after their capabilities. There
are classes for mass storage devices, human interface devices (HID)
and communication devices (CDC). They are identified by special class
codes, and they aid the host in finding a driver. Often, a single driver
can support devices from different vendors.

The most recent revision of the standard is USB 3.0. This replaces
previous revisions, but remains backwards compatible with USB 2.0. It
uses some of the same concepts as the previous revisions of the stan-
dard, but adds a second bus to enable higher speed. The dual-bus na-
ture also makes it a bit different, and therefore any discussion of USB
3.0-specific features are omitted.



USB is a cable bus where peripheral devices are connected in a tiered
star topology. The center of each star is a hub. A hub is connected to
another USB device, which is either a function or an another hub. When
devices are connected to hubs, they add a new tier. Up to five hubs may
be connected to each other. At the top tier is the root hub. The root
hub is integrated into a host system, and the USB interface to the host
computer is referred to as a host controller.

USB is a polled bus where the host controller initiates all transfers.
The only exception to this rule is that devices are allowed to notify the
host when they wake up from power-saving modes. Normally, the host
sends a special SOF (Start Of Frame) packet or applies a keep alive signal
at regular intervals. If no such event take place for 3ms, a device is
effectively commanded to suspend itself.

These keep-alive signals establish a common time frame that is used
as basis for transactions to an endpoint. For a low- or full-speed bus the
time base is 1ms, and for a high-speed bus there is a 125µs time base.
These are called frames and microframes respectively. As an example,
the transfer types isochronous and interrupt are given access to the bus
every Nth frame/microframe, where N is an attribute of the endpoint.
The polling interval for the endpoint is expressed in frames instead of
an absolute time period.

When a device is connected to a host, one of the first steps is that
the host applies a reset condition. When a device is reset, it returns to
a unconfigured state. This is a way for the host to put the device in a
known state, from which further configuration can happen.

Figure 2.12: Data flow between the endpoints in an interface to buffers on the
USB host

Source: USB 2.0 specification

Communication between a host and a device happens through pipes.



As shown in figure 2.12, a pipe is a logical connection between software
on the host and an endpoint on a device. An endpoint is either a source
or a consumer of data, and it is uniquely identified by the device ad-
dress, a 4-bit endpoint address and a direction that is either IN or OUT.
The direction refers to the flow of data with respect to the host, meaning
that an IN endpoint always sends data upstream, towards the host.

Client software on the host sends and receives data through pipes.
A pipe has several parameters associated with them:

• Allocated bandwidth and bus access

• Characteristics from the endpoints associated with the pipe (direc-
tion and maximum packet payload sizes)

• Transfer type, which is either isochronous, bulk, interrupt or con-
trol

• A type, which is either stream or message

Data sent on stream pipes are one-way and have no USB-defined
format. Message pipes allow data to be transferred in both directions,
and the data must have a USB-defined structure. These pipes are always
used for control transfers. The default pipe consists of the two endpoints
with address zero. It is always available after a device has received
a bus reset. The default pipe is used by the host software to identify
the device, get configuration requirements from the device and finally
configure the device.

Interrupt transfers have a guaranteed latency, and are typically used
to notify the host that some non-periodic event has happened on the
device. Because the device can not notify the host itself, the device must
wait until the next polling interval to notify the host of the occurence (or
non-occurence) of an event. For instance, for IN transactions a interrupt
endpoint may notify the host that it has buffered a character and that the
host may retrieve this by doing a bulk transfer to a different endpoint.

Control transfers are typically used to send commands to a device,
and query for device status. These kind of transfers always happen over
message pipes. Control transfers are used for the initial configuration of
the device over the default control pipe, but after configuration control
transfers can be used on either the default control pipe or other pipes for
device- or device class-specific control. Being carried through message
pipes, means that the payload has a USB defined structure. Chapter
9 of the USB specification[27] defines standard, class-specific or vendor-
specific requests that can be used to change the state of the device. Being



carried through message pipes, means that the payload has a USB de-
fined structure. Chapter 9 of the USB specification[27] defines standard,
class-specific or vendor-specific requests that can be used to change the
state of the device.

USB devices has a number of descriptors. Descriptors are simply
data structures with a defined format. They are used to describe what
a device can do and what it requires from the host. Their contents form
the basis for what kind of commands a host can send to a device. The
descriptors are organised in an hierarchy of descriptors. This hierarchy
is shown in 2.13.

Device descriptor

Interface descriptor 0 Interface descriptor k(...)

Endpoint descriptor 1

Endpoint descriptor k

(...)

Configuration descriptor 1

(...)
Excludes endpoint zero

Figure 2.13: USB standard descriptors. Class-specific and special descriptors
are omitted from the figure.

Device descriptors are retrieved from the device through requests
over control pipes. Standard-defined requests to get descriptors are
GET CONFIGURATION and GET DESCRIPTOR. These commands must
be supported by a USB device, and even class-specific or vendor-specific
descriptors are retrieved throgh these requests.

Descriptors that are common and present in all USB devices are:

• A single device descriptor

• One or more configuration descriptors

• One or more interface descriptors

• Zero or more endpoint descriptors



The device descriptor provides the host with fundamental informa-
tion, including the supported USB revision, number of configurations,
device class and subclass and maximum packet length for endpoints
zero. Device class may be omitted from the configuration descriptor. In
this case, the device class and subclass is specified in the interface de-
scriptors. This could be the case for a device that provides two UART-
to-USB bridges. Only one configuration may be active at the same time,
but there is no such limitation with interfaces. While all interfaces in
a configuration are active at the same time, they may be ”bound” to
different drivers on the host. A device that has multiple independent
interfaces, the device is called a ”composite device”.

A configuration has attributes that describes if the device is bus pow-
ered or not, the maximum power consumption and the number of in-
terfaces. When the host requests a configuration descriptor, it will read
the whole subtree below and including the selected configuration de-
scriptor, that is all related interface and endpoint descriptors are also
returned.

Interface descriptors are groupings of endpoints, where the end-
points together provide a specific feature in the device. Notably, the
two default control endpoints are not included in any interface descrip-
tor. Their attributes are fully described by the device descriptor and the
fact that they are always used for control transfers.

When connected to a USB host, a USB device undergoes multiple
state changes. The general configuration steps for a USB device could
be:

1. Initiate device reset. Device responds to commands sent to address
0. Because only one device is reset at the time, and on the same
bus, address 0 is guaranteed to be unique.

2. Host finds the maximum packet size for the endpoint 0, through
the ”get descriptor” command.

3. Host sends a ”set address” command, and gives the device a bus-
unique address.

4. Host uses GET DESCRIPTOR, GET CONFIGURATION to find a
suitable driver. The driver configures the device with a SET CONFIGURATION
request.

5. Device-specific requests can be sent now, for further configuration.



These steps are shown as a state diagram in figure 2.14. The process of
identifying and assigning an address to a device, is called bus enumer-
ation in the USB specification.

Figure 2.14: State diagram for a USB device

Source: USB 2.0 specification



2.7 USB Communications Device Class (CDC)
The CDC specification is a generic USB device class that defines an archi-
tecture that is suitable for typical communications devices. Revision 1.2
of the CDC specification focuses on telecommunication and networking
devices. The goal of the specification is not to add new communications
protocols, but simply to enable a host to identify what existing protocols
to use[25].

The CDC 1.2 specification actually covers three classes:

• Communications Device Class

• Communications Interface Class

• Data Interface Class

The device class itself serves to identify the device to the host. The
communications interface class defines an interface used for device man-
agement. This consists of a management element and optionally a noti-
fication element. The management element uses the default control pipe
to manage the communications device and its interfaces. The optional
notification element of the communucations interface is used to send
interface- and endpoint-events to the host. This is typically an interrupt
pipe.

All USB CDC devices have at least one interface using the Commu-
nications Interface Class. Interfaces implementing this class could be
regarded as ”master interfaces”, because they manage zero or more in-
terfaces that together implement a complete function. The association
between the ”master interface” and the interfaces it accepts management
requests on behalf on, is described in union functional descriptors.

The communications device presents data to the USB host in a form
defined by another class than Communications Device Class. The com-
munications interface is not used for actual data transfer. This task is
delegated to one or more additional interfaces. If no other device class
is suitable for data transfer, the Data Interface Class can be used to de-
fine an interface used to transfer data from and to the host.

In addition to the classes described in the CDC specification, there
are subclasses for specific types of devices. These subclasses define com-
munications function. The CDC specification defines a wide variety of
models. A model describes a type of device by specifying requirements
with respect to interfaces, endpoints and requests that a device imple-
menting a model must support.



2.8 Inter-module communication and the I2C
bus standard

A common factor between all modular satellite systems, is that they
need some means for internal communication. Using a wired bus is the
traditional solution to this.

For satellites, I2C has become a de-facto standard. However SPI is
also used. Attractive features with serial buses, are that they have sim-
pler design, use fewer lines and are not as susceptible to clock skew as
parallel buses. Using few lines also means that the parasitic capacitance
may become less of a problem with higher clock frequencies.

The disadvantage of serial buses are mainly throughput. This can be
mitigated by using higher transfer rates, but other problems may arise
when using high frequencies.

Inter-Integrated Circuit (I2C) was developed by Phillips. It is a sim-
ple two-wire serial bus suitable for a wide variety of uses in electronics.
One of the main advantages with using I2C is that there is in many
cases not necessary to design a bus interface, as support for I2C is likely
to the present in the chip used in a particular design. Many micro-
controllers have support for this in hardware, and even if the hardware
does not support I2C, the relative low complexity of the bus makes it
feasible to implement it in software. Only using two wires for the bus,
also makes it easier to trace on a PCB. Supported transmission rates are
100kbps, 400kbps, 1Mbps and 3.4Mbps. These transfer rates are called
Standard-mode, Fast-mode, Fast-mode Plus and High-speed mode re-
spectively[22].

Devices participating in a transaction on an I2C bus can assume one
of two roles: Master or slave. All transfers are initiated,and eventually
terminated, by the master. The master and slave role may change, and
multiple masters may be connected to the same bus. Devices that are
using the bus are either reading or writing data. This means that a
module can take one of four possible roles in a bus transaction:

• Master transmitter or receiver

• Slave transmitter or receiver

The two wires used on the bus are called SDA and SCL. The SDA
line is used to carry data bits, while the SCL line is used for the clock
signal. The bus lines are open-drain design and devices manipulates
the bus lines by performing a wired-AND function. That is, devices are



only able to pull the bus lines towards ground. This design requires
the use of pull-up resistors, to pull the bus lines high when no module
is driving them. Figure 2.15 shows a typical design, with two modules
and pull-up resistors on the SDA and SCL lines. The maximum wire
capacitance, Cw is 400µF. If the capacitance is high, an alternative is to
use smaller pull-up resistors or split the bus into segments with bus
repeaters.

SDA

SCL

Module A Module B

Rp

Vdd

Rp

Figure 2.15: Devices connected to an I2C bus

Each device connected to the bus has an address, and it is not uncom-
mon for a device to respond to several addresses. The address length is
either 7 or 10 bits. Some addresses are reserved. For instance, address
0000 000 is the general call address. It is used to address all devices on
the bus. Sending the word 0x6h to the general call address is the same
as requesting all modules to perform a software reset. Address 1111
0XXX (X is don’t care) is reserved for 10-bit addressing. In total, eight
addresses are reserved for special purposes.

Bus transactions happens nine bits at the time: The first eight bits
are data bits (first bit sent is the most significant). They are followed
by a acknowledge/not acknowledge bit (ACK/NAK). Uses 8-bit words:
A bus transaction consists of a multiple of 8bit words. The exception
to this is the start bit precedeing a new bus transaction, and a stop bit
following a transaction. The format of bus transactions are shown in
figure 2.16.

Legend
Master provides data

Slave provides data

Either master or slave
provides data

Master read Data ... A PNS Slave addr. R AData 0 Data nA

Master write S Slave addr. AData 0 Data ... A Data n PA AW

General format R/WS Slave addr. AData 0 Data ... A Data n PA A/N

Figure 2.16: The general format of I2C transactions



Each transaction begins with a start condition (S) and ends with a
stop condition (P). In between the start and the stop condition, transac-
tions happens in multiples of nine bits. A start condition can happen
during a transaction, provided it was a multiple of nine bit since last
start condition. In that case, it is called a repeated start condition (Sr).

The start condition is signaled then SDA is pulled low while SCL is
high. The stop condition is raised when SDA transitions from low to
high, and SCL is already a logic high. The bus is busy in between the
start and the stop condition.

A transaction starts by the master sending a start condition, followed
by the slave address and a direction bit. If the direction bit is low, the
master want to write to the addressed slave. Otherwise, it is a master
read from slave. If a slave recognises its own address on the bus, it pulls
the SDA line low during the clock following the direction bit. With
the exception of the start and stop condition, data must be kept stable
when SCL is high. Figure 2.17 shows the different stages of an I2C bus
transaction.

S P

7-bit slave address
Multiple of 8 data bits,
followed by 1-bit ACK/NAK

Address ACK
or NAK

Master read
or write

Bus goes idle

S

R/W A

Figure 2.17: The general format of an I2C transaction. Logically separate parts
have different coloring.

The timing diagram for minimal master read and master write trans-
fers are shown in figures 2.19 and 2.18. The clock is always generated
by the master, but a slave is allowed to stretch the low clock. Clock
stretching happens if the slave needs more time to process or retrieve
data.

SDA

SCL
S P

Figure 2.18: Minimum master write to slave module. Master writes 0 bytes.

The master read transfer shown in figure 2.19 illustrated the fact that
during a master read, the slave have to provide at least one byte of data.
As shown in figure 2.16, the slave provides the data after the addressing
stage with the direction bit set to high (”read”).



A NAK may take on different meanings. During a master write,
a NAK means that the slave is unable to accept more data. During a
master read, a NAK indicates to the slave that this was the last byte to
be sent to the master, and that a stop or repeated start condition should
follow after. If a NAK is received during the addressing stage, it means
that no device has recognised the address put on the bus.

S P

SDA

SCL

Figure 2.19: Minimum master read from slave. Master reads a single byte.

A realistic use-case for combined starts is shown in figure 2.20. Here
the master starts the transaction by writing to the slave. It then sends a
repeated start, followed by a new addressing stage. After that, the mas-
ter reads data from the slave. This is a sensible communication pattern
where the slave acts like a piece of memory. During the write stage, the
master tells the slave what address to read from. The read stage retrieves
data from memory. It also fits well with a command/response-pattern.

Combined transaction

S Slave addr. W A Data 0 SrA Data ... A Data n Slave addr. R A AData 0 Data ... A Data n N PA

Write burst Read burst

Dual-burst transaction

Figure 2.20: The format of a combined I2C transaction

There is no centralised arbitration mechanism with I2C. In a multi-
master environment, it may happen that two masters start transmitting
data at exactly the same time. The primary consideration, is that a de-
vice is only able to pull a line low. With I2C arbitration happens if a
master tries to send a logic high, but senses a logic low. The master
module detecting this difference loses arbitration and must wait for the
bus to become idle. In theory, it is possible for I2C masters to start
sending the same data at exactly the same time without any arbitra-
tion happening. If this occurs, the master devices will all perceive the
transaction as being successful.

When master is reading data from slave, it is not possible for the
slave to signal that it doesn’t have more data. Moreover, the master does
not identify itself to the slave. This means that it is not possible for



a slave to discriminate between masters, unless this is implemented in
software.

I2C also has other disadvantages. First, it is not a very fast bus. The
maximum supported data rates are lower than other serial buses. In
addition, it is not very hard to lock up the bus. Programming errors can
easily lead to stuck SCL lines, or modules can perceive the bus as being
in the wrong state. This can happen if a master module has seen a start
condition on the bus, but fails to see the stop bit. When that happens,
the bus logic in the master must assume that the bus is busy. There is no
restrictions on the amount of clock stretching, and the bus design itself
gives very little help in finding the offending device.



Part II

NUTS support functions
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3USB standard I/O

Introduction

To aid in debugging and development, the OBC module is fitted with
a mini-B receptable USB connector. This allows a computer used for
development, to communicate directly with the module – without going
through the backplane.

This chapter describes how this feature was implemented, and the
challenges involved doing so. The necessary background is provided,
followed by a brief description of the solution

The microcontroller used on the OBC module has support for USB,
but it also has a UART (Universal Asynchronous Receiver/Transmit-
ter) module. An alternative would be to communicate with the UART
throgh a typical D-Sub DB9 connector. But using USB for this kind of
communication brings some advantages over the traditional approach:
Size of the connector and flexibility, software-wise.

Adding a DB9-connector could quickly get in conflict with the frame.
This is especially the case if the connector adds more surface area to
the module. Even if it would be possible to overcome this potential
problem, USB still has an edge. USB is very flexible and is well suited
for any type of data transfers, both low- and high-speed. Currently, the
main concern is transmitting binary data in addition to having a simple
terminal interface. Having both of these, without developing custom
software on the development computer is not trivial using only a single
DB9-connector. In addition, using USB is more future-proof: The OBC
module has NAND flash memory. In the future, it is not unlikely that a
file system is used to manage the flash memory. And in that case, one
could reap the benefits of existing USB drivers for mass storage devices
in addition to having better data rates than using a simple UART.
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3.1 Motivation
The USB-connector on the OBC shall provide a debugging interface.
This debugging interface shall serve two functions:

1. It shall provide a serial terminal interface for interactive debugging
and testing of software

2. It shall provide a independent serial interface for general transfer
of binary data

To reduce complexity and take advantage of existing software, it is im-
perative that the solution:

• Uses existing drivers in the OS when possible

• Does not require the implementation of extra software, to multi-
plex terminal input/output with other binary data

• Works with FreeRTOS – the OS used on the OBC module

The goal is to make the OBC module appear as a virtual COM-port
to the host. To avoid the need to multiplex unrelated data on the same
port, the OBC module must provide two virtual COM-ports to the host.
The former is already working. Atmel provides a working USB-stack,
with device firmware to enable a host computer to communicate with
the OBC over a virtual COM port. The current solution make the OBC
appear as a CDC-class device. Generic drivers for CDC-class USB-to-
serial devices is shipped with windows, in the form of usbser.sys. This
means that no custom drivers are necessary on the host computer. How-
ever, Windows must be told to match the usbser.sys driver with the de-
vice through the use of an Inf-file. The Inf-file tells the operating system
what driver to use for a specific combination of a USB vendor ID, prod-
uct ID and a management interface ID.

The goal is to make the OBC present itself as two virtual COM-ports,
by using as much as the existing code as possible.

3.2 Current CDC-class device implementation
The USB device code provided by Atmel, implements a CDC device
that follows the Abstract Control Model. The Abstract Control model is
suitable virtual COM-port devices. When used for this purpose, a Com-
munication Class Interface and a Data Class Interface is required[26, p.



8]. The data class interface uses two endpoints for data transfer: Bulk
IN and OUT.

When the host requests the configuration configuration, all related
descriptors are returned. In this case, the descriptors that are returned
are:

1. Configuration descriptor with two interfaces

2. Communication Class Interface descriptor

3. Header Functional descriptor

4. Call management functional descriptor

5. Abstract control management functional descriptor

6. Union functional descriptor with 0 as the master interface, and 1
as the first slave interface

7. The notification endpoint descriptor (Interrupt IN)

8. Data Class Interface descriptor

9. Bulk OUT endpoint descriptor

10. Bulk IN endpoint descriptor

The architecture of the USB stack on the OBC is shown in figure 3.1.
The UART lib provides an Application Programming Interface (API)
that is similar to what a typical UART would have. This is acheived by
reading and writing from and to endpoint buffers. The CDC task is re-
sponsible for calling UART lib at a configurable time interval. Queuese
are used to store incoming and outgoing characters.

3.3 Solution overview

Extra descriptors have to be added to provide a device with two vir-
tual COM ports. Interface Association Descriptors (IAD) are needed to
”bind” interfaces associated with the same function, together. Without
these descriptors, Windows would not be able to bind the interfaces
associated with the two virtual COM ports, with the same driver[28].
IAD descriptors are not part of the official USB 2.0 standard. Instead



C library

I/IO queues

UART USB lib

CDC task

USB driver

read write

Figure 3.1: The USB stack architecture on the OBC

they are defined in an USB Engineering Change Notice. After the neces-
sary modifications were applied, the following descriptors are returned
when the host requests the configuration descriptor:

Buffer space must be allocated for the endpoints must be allocated
when the set configuration request is received from the USB host.

1. Configuration descriptor with four interfaces

2. IAD descriptor with 0 as the first interface, and 2 as the number of
interfaces

3. Communication Class Interface descriptor

4. Header Functional descriptor

5. Call management functional descriptor

6. Abstract control management functional descriptor

7. Union functional descriptor with 0 as the master interface, and 1
as the first slave interface

8. The notification endpoint descriptor (Interrupt IN)



9. Data Class Interface descriptor

10. Bulk OUT endpoint descriptor

11. Bulk IN endpoint descriptor

12. IAD descriptor with 2 as the first interface, and 2 as the number of
interfaces

13. Communication Class Interface descriptor

14. Header Functional descriptor

15. Call management functional descriptor

16. Abstract control management functional descriptor

17. Union functional descriptor with 2 as the master interface, and 3
as the first slave interface

18. The notification endpoint descriptor (Interrupt IN)

19. Data Class Interface descriptor

20. Bulk OUT endpoint descriptor

21. Bulk IN endpoint descriptor

The same inf-file as before was used, except that the extra master
interface was added as a declaration in the file. The UART lib, the CDC
task and the I/O library was also changed to make it possible to use
both of the data interfaces at the same time.

Endpoint buffers are allocated when the USB host sets a configura-
tion. This is done in the function void usb user endpoint init(uint8 t

conf idx). Configuration of the three extra endpoints were added to
this function.





4System architecture

Introduction

This chapter describes the system architecture. The architecture is re-
alised through the implementation of the bus protocol and the software
used on each module in the satellite. The topic of this chapter, is to give
a overview over the communication patterns within the system, because
they are the most relevant to the design of the NUTS bus protocol.

4.1 Architecture overview

The architecture defined does not attempt to be all-encompassing. The
crucial elements to the bus protocol, are the communication pattern be-
tween the modules. The architecture tries to take into account require-
ments that have been identified before the start of the project described
in this thesis. These requirements can be found in section 8.

Radio OBC EPS Payload

ADCS

Figure 4.1: System architecture
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The architecture restricts how modules are allowed to communicate
with each other. These restrictions are capture in figure 4.1. During
normal operation, the OBC module act like a proxy for commands orig-
inating from the ground segment. All subsystems can perform internal
tasks without using the data bus. Under normal circumstances, only the
OBC is allowed to issue commands to other modules. The only excep-
tion is the radio module. This module is allowed to send commands to
the OBC. The commands originate from the ground segment.

The OBC monitors the health of the system, by periodically querying
each subsystem for status. Failing modules can be reset or disabled
through the control lines in the backplane. The absence of any status
query commands at the radio is an indication that the OBC has failed.
In that event, the radio is responsible for resetting or disabling the OBC
module. If this fails, the radio must assume the role what the OBC had.



Part III

NUTS bus protocol
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5NUTS bus protocol

Introduction

This chapter introduces the proposed design of the NUTS bus protocol.
First the context of the NUTS bus protocol is provided. This is to give the
reader an understanding of why a bus protocol. The background behind
the proposed design is rooted in other protocols for media access. The
section following next, describes typical media access control protocols.
A brief discussion of typical mechanisms gives a general overview over
how this is solved in contemporary systems.

Lastly the proposed NUTS bus protocol is described. Part of this, is
also a discussion about how the protocol can be implemented, as well
as any potential challenges when doing so.

5.1 Context

NUTS has several subsystems realised on separate, physical module
cards. These modules communicate with each other an I2C bus. The
I2C-standard does specify a bus protocol, but if the purpose is to guar-
antee fairness, it is not sufficient.

Assume a data bus that supports a transfer rate of W bps. If only
one module uses the bus, it is reasonable to expect it to be able to use
the bandwidth available. If N modules wants to use the bus at the same
time, an optimal and ”fair” bus protocol would enable the modules to
get a throughput of W/N bps, excluding any overhead.
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5.2 Media access methods and fair data bus
access

When developing a bus protocol, it is necessary to have an understand-
ing of the environment in where the protocol shall be used. The key
points about the data traffic on the internal data bus are:

• Small packets

• Short, transient bursts of data transfer, followed by longer idle pe-
riods

• Not inherently real-time

• Want configuration flexibility and operational robustness

Some decisions, tradeoffs and desired features shape the bus proto-
col. They are the drivers behind the design of the protocol. The key
drivers in the NUTS bus protocol are:

• Low overhead from packaging and routing

• Reduce bandwidth used by arbitration

• Shuld provide satisfactory use of the available bandwidth in both
worst-case and light traffic-scenarios

• Deterministic latency

• Support for prioritization, or some method to pre-empt ongoing
transactions

• Robustness

• Must be possible to implement in software

There are various protocols that may be suitable to use as a starting
point for the NUTS bus protocol. What follows is a quick overview
over various methods to control access to a medium, and these methods
provide relevant inspiration. The methods under consideration are:

• Polling

• TDMA. Time Division Multiple Access

• Binary countdown



Polling

The main attractive feature of polling is its simplicity. In a polling based
system, a central master is given the responsibility of starting data trans-
fers. It does this by ”asking” each module in turn, if they have any
data to send. A strict implementation would require all data to be sent
through the central master, and peer-to-peer communication would not
be allowed. In the case of NUTS, this is not a major limitation because
that is how the system should work during normal operation. But the
dependency on a central master is a major issue. The central master is a
single point of failure, and it is clear that using a polling-based solution
calls for the need to have a failover mechanism.

For NUTS, the OBC would be the central master. It would periodi-
cally query each module for data. This would also work when sending
data from the ground station to the OBC module. But it would require
the radio to buffer incoming data until the next polling interval. Using
polling is also not very efficient, because bus resources are wasted when
modules have no data to send or receive. The main idea of using polling
is still quite reasonable for a system such as NUTS. The main challenge
would be handling the change of master roles if the OBC module should
fail.

TDMA

The principle of operation with TDMA, is that modules are assigned
time slots. When a module has data to send, it would be required to
wait until its next time slot. The time slot itself is simply a time interval
where the module is allowed to access the bus. This is illustrated in
figure 5.1.

Master 0 may use the bus

Master 1 may use the bus

Time slot variations
due to clock inaccuracies

Figure 5.1: I2C with TDMA-like frames



Using TDMA could give better bus utilization than polling-based
methods. But it is also the case, the in a low traffic sitation, a lot of
the time slots will be wasted. The result would be extremely poor bus
utilization. Most of the time, only the OBC module is going to need to
use the bus. But when receiving commands from the ground station,
the radio will have forward this command to the OBC. But in all other
situations, the time slot belonging to the radio would go unused. The
time slot could have different sizes, but that would not work well during
periods where both the radio and the obc have substantial amounts of
data to send.

TDMA would also require support for breaking transactions up into
smaller pieces. This will require supporting software on both I2C slave
and masters. The time slice wuld also have to be quite long, to reduce
overhead for bus transfers. But this would again be in conflict with the
desire to divide the bus resources evenly when the radio also has to use
the bus.

A implementation using TDMA would require some means of es-
tablishing global time. That would require an authoritative time source
that would also be a single point of failure.

Binary countdown

Binary countdown is a method to give data transfers a priority. A pos-
sible implementation using a general transmission medium, could start
transfers with a number. By ”counting ones”, it would be possible to
establish priority in the case of bus conflicts. With binary countdown all
modules would wait for an idle channel. If a module is the sole user of
the bus at the current point in time, it is allowed to proceed as usual. But
ff two modules start transmission at the same time, the message priority
would determine who would win arbitration.

Using binary countdown would require data bus signals to be able to
override each other. With I2C, the module that sends the ”lowest” signal
would win arbitration. Unfortunately the first bits in an data transfer is
the slave address. The principle of using binary countdown is therefore
not very realistic in practice.

Summary

Neither of the alternatives are trivial to implement without violating
the I2C-standard. Their use would require a software implementation



of a I2C-like protocol, through bit-banging. This would be very time-
consuming to both implement and test.

But in the end, the system can rely on raw bandwidth and non-
existing latency requirements. This grants some leniency with respect
to the design of the bus protocol.

5.3 NUTS bus protocol

The proposed solution is a combination of polling and TDMA. The I2C
protocol can not be changed, but it is possible to dictate fairness within
the confines of the system architecture decribed in . The relevant frame-
work conditions are:

• Only the two backplane masters are allowed to initiate bus trans-
fers. This means the OBC and the radio module.

• During normal operation, only the OBC is allowed to address slave
modules.

• The OBC sends ”heartbeat” packets periodicaly to the other mod-
ules, including the radio module.

• The absence of OBC-to-radio-requests is an indication that the
OBC has hung.

The main idea is to introduce mandatory wait cycles during long bus
transactions. The wait cycles is an opening for the other module to take
the bus, as is illustrated in figure 5.2. The bus is idle between the stop
condition (P) and the next start condition (S).

SDA

SCL
SP

Window  of opportunity
for "taking" the bus

Figure 5.2: The I2C bus can be taken when idle

As if shown in figure 5.3, a bus transfer consists of up to Tmax cycles.
This is followed by up to w wait cycles. The minimum number of cycles



is about ten. This can be seen in the I2C timing diagram shown in figure
2.18 in section 2.8. Ten cycles is the approximate length of the shortest
bus transfer possible. Tbuf is the minimum number of cycles between a
stop signal and a start signal. This is dicated by the I2C standard. In
practice, Tbuf is so small that it can be taken to be zero.

The bus allocation is illustrated in figure 5.4. The grey areas denote
wait stages.

[~10, Tmax] bus cycles [tbuf, w] bus cycles

Main concept, self imposed fairness

Figure 5.3: Main concept of ”self-imposed fairness”

Master 0 use the bus

Master 1 use the bus

Bus usage, two mastersBus usage, single master

Wait cycles
Figure 5.4: Bus activity with mandatory wait cycles

During the wait stage, the module that owned the bus immediately
prior to the transaction cycles, has to wait at least w cycles before at-
tempting to take the bus. This scheme has the following properties:

• The delay cycles gives other modules a chance to take the bus

• The maximum latency is bounded by the sum of the burst length
and the duration of a single wait stage

• Fixed overhead, albeit a bit high



The expression in equation 5.1 states the throughput given n wait
cycles and k bytes to be either sent or received. This assumes a single
addressing phase.

f (n, k) =
fbus hz

2 + 8k + n
(5.1)

5.4 Assumptions

The use of this method to provide fair access to the bus assumes some
knowledge of the system. Notably, the following assumptions have to
be made:

• Have to be able to know who is responsible for holding the bus.

• The radio must have a set maximum latency for addressing the
OBC during long OBC-to-slave bus transactions.

• The radio is restricted to communicating with only the OBC mod-
ule normal operation.

• It must be possible to resume a bus transaction, because long trans-
actions will have to be interrupted by wait cycles.

• Clock stretching is not allowed, neither for master nor for slave.

There are two I2C masters in NUTS. When a module is holding the
bus busy, it must be either the other master or a slave that this master
communicates with.

Because bus transfers may be broken into smaller pieces, the software
on both the I2C slave and master must support resuming of transfers.
Some types of I2C devices may not be able to resume a transfers. A typi-
cal example would be NAND flash with an I2C interface. Writes have to
be done in entire blocks. If several blocks are to be written, it is not un-
common that the master has to wait 100ms per block write. This means
that the maximum allowed duration of a bus transfer, has to exceed that
of the minimum duration of all transfers to all i2c slaves on the internal
data bus. There are no such memories in the present design of NUTS.
If this is changed in the future, they memory interface has to be hidden
behind a microcontroller used for buffering and assembly/reassembly
of data.



Deciding the amount of wait cycles

The number of wait cycles, w, is a compromise between the minimum
I2C transfer length, the target maximum latency for getting access to the
bus, and the amount of protocol overhead.

Implementing the wait stages is likely to require scheduling events in
the future. This requires accurate timers. In addition, the I2C hardware
is likely to depend on interrupts. Given that this is the case, the variation
in interrupt processing can be make or break the NUTS bus protocol.

Test cases

How the bus protocol should work in practice, is best conveyed through
example cases.

Case 1

Scenario: The OBC master does read/write from/to slave. The requires
a multiple of Tmax bus cycles.
Expected outcome: The OBC does transactions in intervals Tmax cycles,
followed by w wait cycles.

Case 2

Scenario: The same as Case 1. But the radio module also wants to use
the bus to communicate with the OBC module.
Expected outcome: The OBC and the radio module does transactions in
intervals Tmax cycles, followed by [Tbuf, w] wait cycles.

Case 3

Scenario: The radio wants to use the bus, but the OBC is using the bus
longer than expected.
Expected outcome: Radio resets the and tries to use the bus again. The
OBC is responsible for resuming the transaction, but because a back-
plane reset occurred during an OBC read/write, the OBC must wait.
The Radio successfully takes the bus, and communicates with the OBC.
Notes: The backplane reset is not very likely to resolve the situation, but
the alternative would be to do a system reset.



Case 4

Scenario: The same as Case 3. The backplane reset fails to resolve the
situation.
Expected outcome: There are several possibilities:

• The OBC already knows about the situation, but has not taken any
action yet.

• The OBC has not noticed because it was not using the bus.

• The OBC is the culprit. Either due to software or hardware error.

The radio should proceed with disabling the least important modules.
his happens until everything except the OBC. When only the OBC and
the radio module are left, the radio must then reset the OBC module.

Case 5

Scenario: The OBC reset from Case 4 resolves the sitation. The radio
finishes its transaction with the OBC. The other modules are still dis-
abled.
Expected outcome: When a slave fails to respond to respond to heart-
beat commands, the OBC re-enables them.

Case 6

Scenario: The OBC reset does not resolve the situation.
Expected outcome: The radio reactives the other modules, except the
OBC. This is left disabled. The radio must assume the role the OBC had
as a system status logger. Manual intervention is required to exit from
this state.

Case 7

Scenario: A module is responsible for holding the bus longer than al-
lowed. This is detected by the OBC during an OBC-to-Radio-transaction,
or OBC-to-other-module-transaction.
Expected outcome: Try to reset the backplane. If this does not work,
the least important modules are disabled in order until the offender is
found.



Case 8

Scenario: The OBC finds that the Radio is responsible.
Expected outcome: The OBC resets the radio. If this fails to resolve the
situation, the OBC waits up to two passes, periodically testing the bus
state. If the situation is not solved within two passes, the OBC assumes
that either an software or hardware error on the radio has occured. The
OBC starts reprogramming the radio, to see if this resolves the situation.
Rationale: If the bus is no longer working, it should still be possible to
solve the situation from the ground. The possible recovery procedure at
this point, is to disable all modules from the radio. A module reset of
the OBC or any other module cannot be expected to work because the
culprit is in the backplane. This assumes that the reset logic still works.

This is a very serious situation. At this point the missions should be
considered to be a at EOL (End-Of-life). All modules will now have to
operate autonomusly. The OBC is disabled at this point. Any software
or hardware error in the radio at this point means the definitive end of
the mission.

The OBC is disabled because it no longer makes sense to have it
active. The only hope is that the radio is still working. And if that is
the case, the OBC must to be allowed to interfere by repogramming the
radio module with a possibly faulty firmware image. It is also quite
possible that the ADCS system is still operating.

Implementational considerations

Because bus transfers are split into pieces, both bus masters and slave
must be able to resume bus transfers. This may be challenging, because
an I2C master does not identify itself to the slave. A identification mech-
anism must be implemented in software.

Splitting bus transfers may also be complicated. It would not be
possible to split a transfer containing a repeated start, without changing
the semantics of the transfer. Instead a set of rules must the developed,
for what format transfers should have. This is clearly an application
level concern, and no bus abstraction library would be able to provide a
satisfactory all-around solution.

The first step is to develop a I2C driver that enabled applications to
use the bus using high level function calls. But it would still be up to
each application to not violate the bus protocol.



Summary

The advantages with this solution to the NUTS bus protocol are:

• Requires no extra hardware. The protocol is implemented in soft-
ware.

• Does not require us to go outside the I2C standard.

• No single point of failure. Each master module is responsible for
following the protocol, and both master modules are able to re-
spond to protocol violations.

• Deterministic latency

• Relatively low implementational complexity

The disadvantages are:

• Lower bus utilisation than without any arbitration.

• Protocol violations are only going to be detected when the other
master wants to use the bus.

• Have to find a upper bound on the response time of each master.

• It may be difficult to support resuming of transfers.





6Interrupt latency

Introduction
The software responds to hardware events through interrupt service
routines. The underlying event may happen at a certain frequency,
but both the hardware and the software introduce delays. These delays
makes it impossible to respond instantaneously to these events.

This chapter describes how the delay introduces by software, can
be measured. In an experiment, hardware timers are used to generate
interrupt at various frequencies. At the end of each period, a hardware
interrupt is raised. The delay between the timer where the interrupt was
raised, and to the point where the software can respond is measured
both when using FreeRTOS v7.0.0. As a reference, the delay is also
measured when not using an operating system.

6.1 Motivation
When the purpose is to build a system with that provides ”fair” ac-
cess to the data bus, a combination of hardware and software makes
this kind of behaviour possible to implement. What kind of involvment
is required from either is also highly dependent on the chosen hard-
ware and the software. Because I2C does not have a central arbitration
mechanism, each I2C master has to behave in a fair manner. This means
giving other I2C masters the chance to use the bus. This almost certainly
is going to involve the use of software.

The events of interest in the context of fair access to the data bus are:

• A module has held the bus for too long, and it must relinquish
control to give other module a fair chance to use it.
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• A module wants to use the bus, and the hardware senses that the
bus is idle. An interrupt is raised, and the module must try to take
control over the bus.

• A module has more data to send, but must has already continously
used the bus as long as it is allowed to do. A ”wake-up” event
must be scheduled, so that the module can take the bus yet again
if no other module takes the bus in the meantime.

• A module wants to use the bus, and the bus has just become idle.
The module should take the bus as fast as possible.

When measuring delays introduced by software, the hardware where
a specific event originates from is not of much interest. Hardware timers
are convenient to set up to generate ”timer events”. The delay between
a timer event and the point where a piece of useful program code is
able to do something about it, is unlikely to be different for different
hardware events.

The purpose of measuring interrupt latency is not so much tied to
the context of using this with either a hardware or software implemen-
tation of I2C, as it is to determine exactly how much we can rely on the
predictability of events processed by interrupt service routines. At this
point, it is not possible to say anything meaningful about the software
that is going to run on each module in the satellite. For this reason, the
experiment does not try to simulate any kind of ”workload” in the form
of extra tasks and drivers.

6.2 Test environment

The experiment uses the same microcontroller as is used on the OBC-
module. While little is known about the software at launch-time, using
the same hardware should should give results that are possible to repro-
duce on the OBC-module. The operating system and compiler toolchain
is also the same.

The hardware used for this experiment is:

• UC3-A3 Xplained evaluation board with an AVR32UC3A3256 mi-
crocontroller

• AVR JTAGICE mkII programmer and debugger



The software enironment is the combination of compiler toolchain,
operating system and drivers provided by Atmel. The drivers are a part
of AVR Software Framework (ASF).

• FreeRTOS v7.0.0

• Atmel AVR Studio 5 (Version: 5.0.1163)

• AVR32 GCC version 4.4.3 with GNU toolchain 3.2.3 261

• AVR Software Framework ASF-2.5.1-17860.53

For this experiment, the code is compiled with the O1-option. No other
optimization flags were changed from the defaults. The relevant drivers
from ASF are:

• Timer/Counter driver

• Interrupt controller driver

The drivers are likely to affect the results. The timer/counter driver
because it is ultimately thius code that alters the hardware registers of
the timer/counter module. Interrupt processing times are also affected
by the interrupt controller driver. To test what kind of impact the inter-
rupt controller driver implementation has on the results, the experiment
is also run without using an operating system.

6.3 Experiment description

The experiment uses two hardware timers. The timers are located within
the same peripheral timer/counter-module, because that enables the
possibility of using a synchronised start of the timer/counters. With-
out being able to start the timers at exactly the same time, small errors
are introduced in the measurement. This is due to drift between the
timers because of the instruction execution latency between starting the
timers separately.

One of the timers are used as a counter, while the other timer is
configured to generate interrupts at a specific frequency. In a situation
where there is no jitter, the expected time (in cycles) between each in-
terrupt is given by fCPU

finterrupts
. Deviations from this number is regarded as

jitter.



The actual number of cycles between each interrupt, k, is bounded
by:

fCPU

finterrupts
≤ k <

2 · fCPU

finterrupts

If k was lower than the lower bound, it would mean that the interrupt
controller could somehow predict the future and generate the interrupt
ahead of time. The upper bound is there because exceeding this, would
mean that interrupts would be lost simply because the time taken to
process a single interrupt is longer than the time to the next interrupt.
In this case, the system simply cannot accomodate the current interrupt
frequency, and any measurements are meaningless. This also means that
the time executing the Interrupt Service Routine (ISR) must be lower
than the time between each interrupt.

6.4 Hardware considerations

The UC3 has several timers that are appropriate for this kind of exper-
iment. The Timer/Counters on the UC3, uses 16-bit counters. Because
the timers use the peripheral clock B signal, the resolution is limited for
higher frequencies. This stems from the fact that the peripheral clock B
(PBA) frequency is ultimately derived from the CPU frequency. In prac-
tice, this is not a major issue. The jitter benchmark is only interesting for
high interrupt rates. Moreover, the PBA clock source may be prescaled
at the Timer/Counter. In any case, the limited size of the 16-bit counter
register and a high input clock to the timer is only a limitation if longer
time durations are to be measured. That is time intervals spanning mul-
tiple seconds, minutes, hours and days.

Each Timer/Counter has three independent channels, and they can
be individually configured to tick with the same frequency as one of
either five internal clock sources or three external clock sources. The
clock source to each channel can also be individually enabled and dis-
abled. The center of each channel is a 16-bit ”Counter Value” register,
in addition to three registers: RA-RC.

In addition, each channel has two separate input/outputs, TIOA and
TIOB. The TIOA signal of a channel may also be clock input to other
channels in the same Timer/Counter module. Also, both the TIOA and
TIOB signals may be outputs or trigger inputs, depending on whether
the channel operates in waveform or capture mode.



Each Timer/Counter channel can operate in two modes: Waveform
mode and capture mode. Capture mode allows a TC channel to perform
measurement on input signals, while waveform mode is used for wave
generation. For measuring the interrupt latency, both the counter and
the interrupt channel is set up in waveform mode. In waveform mode,
the TIOA and TIOB signals may be configured to be outputs. They
may drive external pins if the I/O-controller is configured to let the
Timer/Counter-module do this. This functionality may be useful for
debugging purposes, to ensure that the timer ”ticks” at the expected
rate.

Channel triggers resets the counter and starts the clock, if it is not
already started. In addition to external triggers on there are other meth-
ods to trigger a channel:

• Software: Programmatically ”starts” a channel.

• RC Compare: The channel triggers when the Counter Value regis-
ter equals the RC register, when channel is in waveform mode.

• SYNC trigger: Same effect as a software trigger, except that this
triggers all channels within the Timer/Counter module.

6.5 Hardware setup
The benchmark uses two channels on a Timer/Counter module. The
channels are set to operate in waveform mode. In waveform mode,
the RA, RB and RC-registers are used as compare registers against the
channel Counter Value Register.

For the experiment, the overall hardware configration was:

• Use Timer/Counter 0

• Use channel 1 as a counter channel

• Use channel 2 as the ”interrupt” channel

• Both channels are configured in ”up” mode, and trigger on RC
compare

• Channel 1 is configured to generate interrupt on Counter Value
overflow

• Channel 2 is configured to generate interrupt on RC compare



• TIOB is configured as output on channel 2, and set to toggle on
RC compare

• TIMER CLOCK3 is set as the clock source for both channel 1 and
channel 2

• The PBA clock is set to the same as the CPU clock, and the CPU
clock is set to 12MHz

In up mode the counter iterates up to the value in the RC-register.
When they are equal, the counter starts again at the beginning. TIOB
on channel 2 is configured to toggle when this happens. The result
is that the corresponding I/O pin is toggled at half the interrupt fre-
quency. This way, the timer ticks can be observed on an oscilloscope.
The expected waveform compared to the counter register and the RC
register is shown in figure 6.1. The period of the TIOB waveform would
be exactly twice as long as the period of the waveform ”traced” by the
counter value register.

Counter value

Time
TIOB

RC

0xFFFF

Figure 6.1: The TIOB pin toggles on RC compares. The compare event resets
the RC register, and toggles the TIOB pin.

TIMER CLOCK3 is connected to the Peripheral B clock, divided by 8.
Available dividers are 2, 8, 32, 128. Ideally the implementation could
choose a clock source based upon the requested interrupt frequency, but
this functionality was not implemented for simplicity reasons. However
TIMER CLOCK3 is a good compromise because with a Peripheral B clock
of 12MHz, it is possible to generate interrupts at a wide and set of high
frequencies.

Channel 2 is used as the interrupt channel, because the TIOB out-
put on this channel on TC0 is available on a pin header on the UC3-A3
Xplained evaluation board. Channel 1 was chosen as the counter chan-
nel because FreeRTOS may be configured to use TC0 with channel 0 in



waveform/RC-compare mode to generate timer ticks. Thus, the same
Timer/Counter module could be used to run the benchmark, without
affecting the timer channel used by the operating system. However,
the implementation was changed to use SYNC triggering to synchro-
nise the counter and interrupt channel, after it was found to affect the
results. There is no way to do a selective SYNC trigger, so all channels
are affected. This means that the benchmark must have exclusive access
to the Timer/Counter module used in the experiment.

To make this possible, the FreeRTOS source code was changed to use
Timer/Counter 1, when the OS is configured to use a Timer/Counter. In
any case, this is a configurable parameter when initializing the bench-
mark.

The benchmark may be configured to use the AVR32 Count register
to calculate the number of cpu clock cycles spent in the timer interrupt
ISR. However, by default FreeRTOS uses AVR32 Count/Compare inter-
rupts for the periodic timer ticks. If this feature is to be used with FreeR-
TOS, care should be taken that the AVR32 Count register is not used by
the operating system. Instead, FreeRTOS should use a Timer/Counter
channel when this benchmark feature is used.

The counter channel is set to interrupt on counter value overflow.
This is to catch serious errors during debugging, because this ISR should
never be executed. The implementation of the ISR that is responsible for
storing the result is shown in listing 6.1

Listing 6.1: The ISR implementation for the interrupt channel
1 a t t r i b u t e ( ( i n t e r r u p t ( ”none” ) ) )
2 s t a t i c void t i m e r i n t e r r u p t ( void ) {
3 # i f jitterSTORE ISR EXECUTION CYCLES == 1
4 S e t s y s t e m r e g i s t e r (AVR32 COUNT, 0 ) ;
5 # endif
6 u i n t 1 6 t time ;
7 u i n t 3 2 t j i t t e r ;
8 time = R d b i t f i e l d ( t i m e r s t c−>channel [ counter channel ] . cv , AVR32 TC CV MASK ) ;
9

10 j i t t e r = Abs ( ( time<<3) − jitterEXPECTED TIME DIFF ) ;
11 j i t t e r s a m p l e s [ j i t t e r s a m p l e s i d x ++] = j i t t e r ;
12 j i t t e r s a m p l e s i d x &= jitterSAMPLE COUNT−1;
13
14 i f ( time > max time ) {
15 max time = time ;
16
17 i f ( j i t t e r > m a x j i t t e r ) {
18 m a x j i t t e r = j i t t e r ;
19 }



20 }
21
22 t c r e a d s r ( t i m e r s t c , i n t e r r u p t c h a n n e l ) ;
23 r e s e t c h a n n e l s ( ) ;
24 # i f jitterSTORE ISR EXECUTION CYCLES == 1
25 i n t e r r u p t e x e c t i m e = G e t s y s t e m r e g i s t e r (AVR32 COUNT ) ;
26 # endif
27 }

The implementation is kept as short as possible. The value of the
counter channel bypasses the driver to save time between the start of
the ISR and the ”latching” of the counter value. The routine stores the
jitterSAMPLE COUNT last results in an array, to calculate an estimated
average at the end of the experiment.

The jitter experiment is run from an FreeRTOS task, or in an ordinary
function when no operating system is used. The code for both of them
is shown in listing 6.2

Listing 6.2: The code that calls the jitter test code. The first function is
used with FreeRTOS, while the second function is sued when not testing
within FreeRTOS

1 s t a t i c void j i t t e r b e n c h m a r k t a s k ( void ∗pvParams ) {
2 for ( s i z e t i = 0 ; i < params count ; i ++) {
3 vTaskDelay (TASK DELAY S ( 5 ) ) ;
4 j i t t e r i n i t ( params [ i ] ) ;
5 j i t t e r s t a r t ( ) ;
6 vTaskDelay (TASK DELAY S( benchmark time sec ) ) ;
7 j i t t e r s t o p ( ) ;
8 j i t t e r r e s u l t s [ i ] = j i t t e r g e t m e t r i c s ( ) ;
9 }

10 b a r r i e r ( ) ;
11 asm v o l a t i l e ( ”nop” ) ; /∗ B r e a k p o i n t f o r f e t c h i n g r e s u l t s ∗ /
12 vTaskDelete (NULL) ;
13 }
14
15 s t a t i c void j i t t e r b e n c h m a r k n o t a s k ( void ) {
16 bool i rq enab led = I s g l o b a l i n t e r r u p t e n a b l e d ( ) ;
17 E n a b l e g l o b a l i n t e r r u p t ( ) ;
18
19 for ( s i z e t i = 0 ; i < params count ; i ++) {
20 j i t t e r i n i t ( params [ i ] ) ;
21 j i t t e r s t a r t ( ) ;
22 cpu delay ms ( benchmark time sec ∗ 1000 , APPLI CPU SPEED ) ;
23 j i t t e r s t o p ( ) ;
24 j i t t e r r e s u l t s [ i ] = j i t t e r g e t m e t r i c s ( ) ;
25 }
26



27 b a r r i e r ( ) ;
28 asm v o l a t i l e ( ”nop” ) ; /∗ B r e a k p o i n t f o r f e t c h i n g r e s u l t s ∗ /
29
30 i f ( ! i rq enab led )
31 D i s a b l e g l o b a l i n t e r r u p t ( ) ;
32 }

The benchmarks are run for 20 seconds. This is more than enough time
to gather enough sample points when not using an operating system.
When using FreeRTOS, the results may be affected by ”phases” of high
jitter. This is difficult to predict when a lot of tasks are running. To
reduce the effect of this, the only tasks that are running during the ex-
periment is the jitter benchmark task itself. In addition to the timer
interrupts in the jitter benchmark, there are periodic ”tick”-interrupts
from the operating system. These interrupts lead to the execution of a
critical section, albeit short. This was not possible to eliminate. Unfor-
tunately, the relative timing of these interrupts are likely to affect the
results when benchmarking with FreeRTOS.

6.6 Testing the implementation

The Timer/Counter was configured to toggle an external pin. The out-
put on this pin was observed by connecting an oscilloscope probe to the
matching pin on a pin header on the evaluation board. This hardware
setup is shown in figure 6.2.

Figure 6.2: The setup used to test the experiment implementation



Observing the effects of the jitter benchmark code, without affect-
ing the results is not trivial. During testing, an AVR JTAGICE mkII
debugger/programmer was used. By using a debugger, one can assert
that appropriate functions are called. The timer clock is frozen while
the debugger has stopped program execution. This means that timer
increments can be observed by single stepping through the code and
observing the hardware registers with the debugger.

Figure 6.3: The waveform created by toggling TIOB at a target rate of 1kHz
(left) and 20kHz (right)

The code was developed and run on an UC3-A3 Xplained evaluation
board, and the benchmarking code was configured to trigger the TIOB
pin on each RC compare. The TIOB pin on Timer/Channel 0 is pin PX19
on the AVR32-UC3A3. On the evaluation board, this pin was available
as pin 8 on header J3. Using a probe, the toggling could be observed
with an oscilloscope. An example with an interrupt frequencies of 1kHz
and 20kHz is shown in figure 6.3. The measurments taken shows that
at a low interrupt rate of 1kHz, the signal on the TIOB pin agrees with
what could be expected. But at a interrupt rate of 20kHz, there is a
quite substantial discrepancy between the expected result of 10kHz and
the actual result of about 8.3kHz. This could be due to the fact that the
timing requirements with respect to the CPU frequency, are more strict
at high interrupt rates. The interrupt rate is set by the code snippet
shown in 6.3

Listing 6.3: The code that configures the RC register with the requested
interrupt rate

1 s t a t i c void s e t t i m e r c h a n n e l r c ( void ) {
2 unsigned short r c v a l u e ;
3 r c v a l u e = ( jitterTIMER CLOCK HZ + ( i n t f r e q h z << 2 ) )



4 /( i n t f r e q h z <<3);
5 i f ( t c w r i t e r c ( t i m e r s t c , in te r rup t ch ann e l , r c v a l u e )
6 == TC INVALID ARGUMENT ) {
7 b u i l t i n b r e a k p o i n t ( ) ;
8 }
9 a c t u a l i n t f r e q h z = ( jitterTIMER CLOCK HZ >> 3)/ r c v a l u e ;

10 }

The requested interrupt rate is rounded to a number that is possible with
the current prescaler. But there was no difference between the actual and
the requested interrupt rate in any of the test cases. The actual cause of
the deviation from the expected pin toggling rate was not found.

6.7 The test cases

The purpose of the experiment is to get an indication of how long it takes
between a hardware interrupt, and to the time where the system is able
to process the event. The test cases are run in two different contexts:

• With FreeRTOS, from within a task. The only other interrupt
source is the periodic timer ”tick”-interrupts from the OS.

• Without an operating system and with no other interrupt source
than the timer interrupts from the jitter test code.

The CPU core frequency is 12MHz, but the results are expressed
in clock cycles. For that reason, the result themselves should not be
affected by increasing or lowering the clock frequency, as long as the
number of cycles between each interrupt is higher than the number of
clock cycles it takes to set up the system stack, calling the interrupt
routine and returning from it. The interrupt frequencies used in the
test are not directly related to any specific interrupt pattern when using
other peripheral modules on the UC3 microcontroller. This is deliberate
in this case, because at this point there is very little existing software for
the OBC that could be used as a meaningful reference point. Instead
the interrupt frequencies are chosen on the merit that the time between
each interrupt, can be expressed as various lengths of I2C transactions
on the internal data bus in the satellite. This assumes a CPU clock
frequency of 12MHz, although the test results themselves are not tied to
any particular use case.

The microcontroller supports four interrupt levels. In addition to
testing various interrupt frequencies, interrupt level zero and interrupt



level three will be compared. These are the interrupt levels with the
lowest and highest priority. The test parameters are as following:

• Interrupt rate at 1kHz, with interrupt level zero and three.

• Interrupt rate at 5kHz, with interrupt level zero and three.

• Interrupt rate at 10kHz, with interrupt level zero and three.

• Interrupt rate at 15kHz, with interrupt level zero and three.

• Interrupt rate at 20kHz, with interrupt level zero and three.

Assuming a CPU clock frequency fcpu = 12MHz, a series of com-
parisons can be made as shown in table 6.1. At 12MHz the cycle time
is about 83.3ns. At the maximum supported CPU clock frequency of
66MHz, the cycle time is about 15.15ns.

Table 6.1: Clock cycles between interrupts, related to I2C bus cycles

Interrupt frequency CPU
cycles

Bus cycles

(100kHz)
Bus cycles

(400kHz)
1kHz 12000 100 400
5kHz 2400 20 80
10kHz 1200 10 40
15kHz 800 6 26
20kHz 600 5 20

The results in table 6.1 can be compared to the duration of a bus
transaction. Assume that a start and a stop bit together takes two bit
times on an I2C bus, that the address stage takes nine bit times, and
each byte sent or received to or from a I2C slave also takes nine bit
times. In that case, it is useful to use 20 bus cycles as a baseline for a
minimal but ”useful” bus transaction (2 for start and stop, 18 for address
and a single data byte). For a I2C bus operating in standard mode, the
time between each interrupt is already at the minimal transaction time
limit at 5kHz.



6.8 Retrieving the results

Figure 6.4: A breakpoint is set at some point after the results are stored. The
tests results are retrieved through the immediate window

There are few alternatives for getting the test results from the micro-
controller. One option would be to send the results over an USB cable.
This requires a USB stack. While this is available, it could affect the test
results both when using FreeRTOS and without FreeRTOS. This would
also require extra code for formatting the data. For simplicity, the jitter
benchmark code stores the results in an globally accessible array. By
setting a breakpoint at some point after the test is completed, it is possi-
ble to read out the results from the immediate window. The immediate
window in AVR Studio 5 allows the user to execute C statements when
the program is paused by the debugger. This procedure of pausing at a
breakpoint and reading the results is shown in figure 6.4

6.9 Results
If any guarantees are to be made with respect to the interrupt processing
latency, only the maximum jitter is of any interest. But there are no
inherent real-time requirements in the system. Having a high delay in
the worst case may be acceptable. Also, designing for the worst case
may also be overly pessimistic. The worst-case jitter observed in the
tests are shown in figure 6.5, for both interrupt level zero and interrupt
level three. Judging from the results, it would seem that the interrupt
level has a definite impact on the interrupt latency. To see if this is
the case, it is useful to compare the average jitter, as is shown in figure
6.6. The same figure also shows the result when not using an operating
system.

From figure 6.6, it is clear that the operating system has an impact
on the interrupt latency. However the results also show that the error
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Figure 6.5: The maximum measured jitter when using FreeRTOS
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Figure 6.6: The jitter results with estimated averages and standard deviation
with FreeRTOS (left) and without FreeRTOS (right)

margins are huge relative to the average latency. Still, if there is no strict
requirement that the interrupt latency is bounded by a certain amount
of cycles, the results shows that it is better to design for the average case.

6.10 Discussion

When not using an OS, the interrupt latency is always the same. This
is as expected, but because the same interrupt controller driver is used
both with and without FreeRTOS, the ”no-OS” results gives best-case
results. When not using an OS the interrupt latency is always 88 cycles.
The worst case result dictated by the architecture is 17 cycles, and the
best latency possible is twelve cycles[2]. The relative slowdown seen in



the results are due to the implementation of the interrupt controller
driver. When an interrupt occurs, the CPU has to go through at least
two jump tables until the actual ISR is called. This comes in addition to
the worst-case latency described by the technical reference manual.

The standard deviations and the averages are estimated from the
last 32 interrupts. This is similar to a Finite Impulse Response (FIR)
filter, because old history is quickly forgotten. This is especially true
when measuring at high interrupt frequencies. There were a couple of
alternatives for calculating the average:

• Doing a ”rolling” avereage.

• Use a longer sample history buffer.

• Do multiple test runs and add the results together. The weights
are the same, so the result would have been correct.

The UC3 has ho hardware support for floating point calculations.
This means that even simple single-precision calculations take many
clock cycles. This would lead to the risk that execution of the ISR would
take too long. As an alternative, using integers and round the result at
each sample point. This was found to be too biased to old history. The
average would simply ”stick” to the same value, unless an outlier were
encountered.

Using a longer sample buffer history was also an alternative. But this
introduced some overflow errors with the current implementation. This
could likely have been solved by running the tests several times and
average the results from different test runs. This would introduce some
rounding errors, but it would likely be possible to increase the history.
The key point is that the history must be long enough to cover any high
latency phases. Due to limited time, this solution was not tried.

A completely different source of error is the time between the begin-
ning of the ISR, and the time where the value of the counter register is
read. But this only takes a few cycles, is on a completely different scale
than the test results shown in figure 6.6 and figure 6.5.

6.11 Implementational notes
The UC3 supports nesting of interrupts. This means that an interrupt
with a higher priority may interrupt the servicing of a lower-prioritised
interrupt. If the ISR of a low-priority interrupt is executing, and a high-
priority interrupt occurs, control is transferred to the new ISR. Some



ports of FreeRTOS support interrupt nesting. In this case, there are
two configurable parameters: configKERNEL INTERRUPT PRIORITY and
configMAX SYSCALL INTERRUPT PRIORITY. The former sets the interrupt
priority used by the tick interrupt, while the latter sets the highest in-
terrupt priority from which interrupt-safe API functions can be called
from. This affects what kind of interrupts that can be ”put on hold”
because of critical sections created by code like shown in listing 6.4. The
current version of the UC3 port of FreeRTOS does not take advantage
of this. Instead, critical sections ultimately end up disabling interrupts
globally.

Listing 6.4: FreeRTOS critical sections
1 taskENTER CRITICAL ( ) ;
2 / / Atomic o p e r a t i o n s
3 taskEXIT CRITICAL ( ) ;

If the UC3 port could take full advantage of the interrupt nesting
feature, it would be possible to write ISRs that could not be interrupted
or deferred. On the other hand, those ISRs would not be able to use
the FreeRTOS API. This is quite unrealistic for interrupt routines that
must communicate with FreeRTOS task, and that is not a very unrealistic
requirement.

To see if the results when using FreeRTOS could be improved, some
minute changes were done to the FreeRTOS source code. All critical sec-
tions in the UC3 port of FreeRTOS port eventually calls the portDISABLE INTERRUPTS()

macro. For instance, taskENTER CRITICAL() simply keeps track of an in-
terrupt nesting variable and then calls portDISABLE INTERRUPTS().

In a quick attempt at improving the results when using FreeRTOS,the
call to portDISABLE INTERRUPTS() was substituted with a call to DISABLE INT LEVEL(0).
This way, critical sections would have no way to interfering with the ex-
ecution of the ISR used in the experiment when the latter is executed
under interrupt level three. This did seem to improve the maximum
interrupt latency to be slightly above the maximum latency when not
using an OS. This was not investigated further, because the results are
purely academic: Using this method, it would not be allowed to call
functions from the FreeRTOS API. However, one could reasonably as-
sume that the reason that there was still a difference, was at least partly
due to the timer tick interrupts from the operating system.



6.12 Conclusion
The test results show that the worst case latency is up to around 1500
clock cycles. This means that it is difficult to schedule events with an
accuracy much better than a complete, but short transaction on the in-
ternal data bus. This could be a serious problem for a software imple-
mentation of I2C, but in practice it is not a problem when using the I2C
module on the UC3. Still, it does mean that even if the hardware is able
to monitor the bus for I2C start- and stop events, it may be difficult to
use the bus effectively. For improved throughput, DMA (Direct Memory
Access) should be used for both tranmission and reception of data.

In any case, the results indicate that it is likely to be difficult to pre-
dict exactly how long a bus transfer is going to take. Even if the UC3 has
support for I2C in hardware, it does need software intervention during
the bus transaction. And the latency for responding to these events is in
the order of several bus transactions in the worst case.





7I2C driver implementation

Introduction

This chapter describes the implementation of an I2C master driver for
FreeRTOS, and the AVR32UC3A3256 microcontroller. This driver is in-
tended to be the basis for implementing higher-order logic required to
support resuming transfers over the bus, and breaking long transfers
into smaller parts. This chapter also outlines the design of an packet-
based I2C slave driver.

7.1 I2C master driver

The I2C master driver is based on the concepts of messages. FreeRTOS
tasks wanting to use the bus, calls wrapper functions in the driver. The
operations that are supported are master read from slave, master write
to slave, master write followed by read and master read followed by
write. The driver functions that do bus operations creates a single ”i2c
message” per function invokation. This message is posted to an internal
queue of i2c messages.

A separate I2C driver task is responsible for ”consuming” items in
the message queue. The items are posted to an ISR, where the actual bus
transfer happens. The i2c message buffer is a static array. In addition,
there is a queue of pointers. The queue of pointers have room for two
items fewer than the static message buffer. The driver task consumes
items from the queue. The fact that the queue has the given size relative
to the static message buffer, ensures that the ISR can be in the process
of sending a message at the same time that someone is adding an item
to the message buffer. This is illustrated in figure 7.1.
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I2C Message I2C Message I2C Message I2C Message I2C Message I2C Message I2C Message I2C Message

Queue capacity
Pointer to next message
to be sent

Current queue "window"

Next queue "window"

Figure 7.1: I2C master driver, principle of operation

I2C messages contain a series of 1 or more ”bursts”. A burst is a
one-way transfer with no effective length limit. A burst is again broken
down into commands. Commands are units that the hardware is able to
understand. This relationship is shown in figure 7.2.

I2C message Burst 0 (...) Burst n

CMD 0 (...) CMD n

Figure 7.2: The I2C master driver breaks I2C messages into commands, that is
something the hardware understands.

Testing the I2C master driver

The i2c message to command translation are tested separately from the
driver itself. This is because this functionality is self-contained and not
dependent on the driver itself. This makes it possible to write unit tests
for the translation-functions. An example procedure for doing this is
shown in listing 7.

Listing 7.1: I2C driver API for FreeRTOS tasks



1 void i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t r x ( void ) {
2 i 2 c m e s s a g e t message ;
3 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
4 i 2c cmd spec t command [ 2 ] ;
5
6 message . burs t count = 1 ;
7 message . s lave address = 0xAA;
8 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0xDEADBEEF ;
9 message . burs t [ 0 ] . bufsz = 2 5 5 ;

10 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
11
12 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
13 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
14 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
15
16 assert cmd empty (command [ 1 ] ) ;
17
18 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
19
20 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
21
22 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
23
24 a s s e r t c m d s t o p s e t (command [ 0 ] , t rue ) ;
25
26 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
27
28 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
29
30 a s s e r t c m d r x a c k s e t (command [ 0 ] , f a l s e ) ;
31
32 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0xDEADBEEF ) ;
33 }

The tests for the I2C driver calls for the use of an actual slave mod-
ule. In thos case, an XMEGA A1-Xplained evaluation board was used
for testing while an UC3-A3 Xplained evaluation board contained the
master under test. The test circuit is shown in figure 7.3. There are se-
rial resistors at the pins on the master module. Using an oscilloscope,
it is then possible to see what module is using the bus. The whole test
setup is seen in figure 7.4.

To make the XMEGA-A1 Xplained evaluation board a suitable plat-
form for testing, the following software had to be implemented:

• A command-line interface to enable interaction with the I2C slave
module on the microcontroller.
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Figure 7.3: Circuit used to test the I2C master and slave driver

• Logic for I2C slave operation. Used drivers from ASF, but they had
to be modified to be acceptable for these tests.

• USART-driver. The driver is interrupt-driven, and uses ring buffers
to send and receive data from and to ”application code”.

An example of the command line interface is shown in figure 7.5.
When the XMEGA A1-Xplained operates in slave mode, it has two

modes of operation:

• Sink mode

• Normal mode

The distinguishing feature between them, is that in sink mode, the slave
never NAKs anything received from the master. In normal mode, the
slave NAK bytes if they lead to a buffer overflow. In sink mode, a buffer
overflow is simple the same as overwriting the oldest data stored.

The integration tests for the I2C driver assumes that data sent to
the slave is also returned when the master tries to read from the slave.



Figure 7.4: Setup for testing I2C driver

Figure 7.5: The I2C slave interface is accessible from a serial terminal program

Comparing bytes sent with bytes received, and checking bus conditions
are the key element in the integration tests.

Limitations with the implementation

Observation with an oscilloscope reveals that the master does clock
stretching when receiving data from slave. This indicates the the ISR
takes too long to execute. Also, the driver does not utilise DMA.

The driver supports 7-bit addressing. It has not been designed for 10-



bit addresses, but it should not require major changes to enable support
for this.

7.2 I2C slave driver

Like the master driver, the slave driver is based on the concept of a
queue of pointers backed by a static buffer. The driver reads received
data into a packet buffer. When a complete packet has been received, it
may be retrieved by a FreeRTOS task. This is shown in figure 7.6

Packet Packet Packet Pack Packet Packet Packet Packet

Pointer to next packet to
be processed by the 
application

Packet buffer

Incoming data

Packet buffer

1. Receiving data 
into packet scratch-
buffer

2. Packet is completely received

3. Copy into ring buffer

4. "Publish" the packet by
making adding a pointer in
a pointer queue

memcpy()
Packet buffer

Figure 7.6: I2C Slave driver architecture

Testing

The slave driver has not been tested very thoroughly. The XMEGA A1-
Xplained was used as a master module. The command-line interface
allows a user to fill transmit buffers with an arithmetic series or with
random data.



To test the slave driver, the transmit buffer at the XMEGA was set
to contain a number series. upon reception the contents of the received
data could be verified by visual inspection.

The driver has not been tested in corner cases, such as loss of arbitra-
tion during slave transmitter mode, or bus errors. Tests with repeated
starts have not been tested.





Part IV

Conclusion and evaluation
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8Conclusion and evaluation

The implementation and design of the software for NUTS is still in the
beginning. This is particularily true if the software for the ground sta-
tion is also included in the equation.

Testing and debugging in an embedded environment is challenging.
In the course of this project, most of the time were spent writing tests,
test code and utilities. One of the key elements in improving debugging
techniques, is having a terminal interface. The Atmel USB stack was
modified to support both a terminal and a data payload port. Testing of
the I2C drivers also required an elaborate framework outside the mod-
ule under test. The result was the development of an I2C master driver
and a draft implementation if a slave driver.

Testing of the I2C bus was aided by the use of a separate evaluation
board. The code developed for the XMEGA A1 proved to be very useful
for testing bus communication.

The main topic of this report is the NUTS bus protocol. A design for
this protocol has been design. However it turns out that the constraints
set by the protocol is not possible or sensible to implement at a hardware
driver level. The issue of fairness must be addressed at the system level.

The work completed throughout this project gives a solid foundation
for building better software abstractions. The I2C slave driver must be
further developed in the future. It turns out that there are a lot of design
decisions that will have to be taken, before it is possible to come up with
a definite design for the slave logic.

The communications library used in this project, CSP, must be inte-
grated with the I2C drivers and the USB drivers. Module commands
will also have to be implemented. It is also clear that an utility library
for the backplane is needed.
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Appendix

Configuring the OBC AVR32 UC3 project
This section describes how the OBC module was initially set up, to en-
able development for both the OBC module itself, as well as with the
UC3-A3 Xplained evaluation kit.

Setup procedure

The OBC project was initially created by using AVR Studio 5 by perform-
ing the following the steps described. Ssome steps omitted, because they
are not relevant to this discussion. Starting from the beginning:

1. Create a new project. Choose ”User application template - User
Board - UC3A3/A4” as the template. This is shown in figure 1.

2. Create a new example project in AVR Studio 5, and store in a
different location. The example project chosen was ”USB Device
CDC Example (from ASF V1) - EVK1100 - AT32UC3A0512”. This
should look similar to what is shown in figure 2.

3. Copy the empty board initialization stubs from step one into the
example project. The example project is now the basis for the OBC
firmware

4. Remove irrelevant parts, and code that is specific to EVK1100.
Such as the use of a joystick, the use of the USART, USB to USART-
bridging and the board initialization code. The ”User application
template”-project can now be removed.

It was found to be easier to use this example project as a starting
point, instead of copying code from the example project into an empty

97



Figure 1: Creating an empty UC3A3 project

Figure 2: Adding the USB CDC example projects

”user board”-project. Or start from scratch, using the an empty ”user
board” project, the source code from the FreeRTOS website and copying
the source code for the USB stack from the example project mentioned
above, into the newly created project.

After preparing the project as described above, the SDRAM con-
troller driver was added from ASF. This is done by choosing ”Project”
and then clocking ”Select drivers from ASF...” from within the open
project in AVR Studio 5. This should bring up the dialog shown in 3,
and from here it should be possible to add the driver for the memory



controller.

Figure 3: Creating an empty UC3A3 project

The SDRAM controller driver also includes specifications for a DRAM
chip used on the Atmel EVK1100 evaluation board. After adding the
SDRAM controller driver, the sdramc headers and code were wrapped
behind conditional compilation based on the value of the preprocessor
define ”BOARD”. This was to to prevent compilation errors as well as
to not include the code when running on the ”real” OBC module.

The header containing the specifications for the DRAM chip used
on UC3-A3 Xplained were placed in src/config/mt48lc4m16a2p7e.h.
Note that they are somewhat different than those for EVK1100, or even
the UC3-A3 Axplained memory example project!

The board-specific code from the UC3 A3 Xplained example project,
and the user board source files, must be wrapped behind macros similar
to what is shown in listing 1.

Listing 1: Conditional compilation by using preprocessor directives
1 # include ”board . h”
2 # i f BOARD == USER BOARD
3 . . .
4 # endif
5
6 or
7
8 # include ”board . h”
9 # i f BOARD == UC3 A3 XPLAINED

10 . . .
11 # endif



Board initialization is done in int init startup(void). This is de-
fined in src/thirdparty/freertos/source/portable/gcc/avr32 uc3/port.c.
Preprocessor macros make sure that only one board init() is actually
compiled, and calling this function results in behavior that is dependent
on whether the code is compiled for the OBC or the UC3 A3 Evaluation
Kit. The board initalization code sets up various peripherals, so it is im-
portant that board init() is called after initializing the power manager
and the clocks are set up and enabled.

The value of the BOARD-define is set as a compile time constant. This
can be changed from project properties.

Requirements
This section presents the system- and software requirements, with a
focus on the space segment. The requirements specifications are the
first of its kind in the NUTS-project. While no ”complete” requirements
specification exists at this point, it is given that the software and drivers
used on the OBC module must work within the confines of the existing
requirements.

System requirements

The system requirements describes the main features of the system,
without being too specific. They are the basis for a more detailed re-
quirements specification. In NUTS, we have the following system re-
quirements:

Table 1: NUTS system requirements

ID Description

S-1 Satellite must process commands from the
ground station

S-2 Satellite must send a beacon signal
S-3 Satellite must be able to send housekeep-

ing data
S-4 Satellite must be able to send payload data
S-5 Ground station must be able to send com-

mands to satellite



Table 1: (continued...)

ID Description

S-6 Both ground station and satellite must be
able to detect data corruption or complete
loss of transmitted data

Functional requirements

The system requirements in table 1 are further refined into more specific,
functional requirements as shown in 2:

Table 2: NUTS functional requirements

ID Description Priority (H/M/L)
F-1 The satellite beacon must continuously

transmit beacon signal
H

F-2 It must be possible to change the beacon
signal pattern after launch

M/H

F-3 The satellite must execute a one-time ini-
tialisation sequence on first boot up

H

F-4 The satellite must accept a ”detumble”
command. The command must be ac-
cepted by the ADCS system

M/H

F-5 The ADCS system must accept other com-
mands from both the ground segment, the
OBC or the radio

M/H

F-6 The satellite must accept and store com-
mands sent from the ground segment

M/G

F-7 The satellite must be able to create and
store commands programmatically

M

F-8 The satellite must execute housekeeping
tasks periodically

M

F-9 The satellite must store the results of run-
ning the housekeeping tasks

H

F-10 The satellite must be able to send the result
of housekeeping task runs, upon request
from the ground station

H



Table 2: (continued...)

ID Description Priority (H/M/L)
F-11 The satellite must initiate a single house-

keeping task run upon request from the
ground station

H

F-12 The radio and OBC module must be able
to run an arbitrary program

L/M

F-13 The satellite must transmit payload data
when ground station requests it to do so

L

F-14 It must be possible to initiate a full or par-
tial satellite system reset from the ground
station

M/H

F-15 It must be able to set the current time in
the satellite, from the ground station

L/M

Comments to table 2

F-1 The radio module has a separate microcontroller that controls the
beacon signal.
F-3 The initialisation sequence includes unfolding the atennas, after som
period of time. This program must not be executed more than once.
F-4 The power requirements for a detumbling operation are high. This
action must only be performed when the system is requested to.
F-5 All necessary control algorithms runs within the ADCS system.
However this item indicates that the ADCS system must accept high
level-commands like ”point towards earth”.
F-8 Housekeeping tasks include logging telemetry data like current draw
and actual voltage on the 3.3V and 5V rails for each module, andvalues
from temperature sensors. F-10 This is a more specific requirement than
F-6. F-12 This is a function that is useful to a developer, and the flight
software must make it easy to do this.

The requirements are given priorities ranging from low to high. In-
tuitively, it would seem better to start implementing the higher priority
items first. However, often lower prioritised items are prerequisites for
those of a higher priority, or they take more time to implement.



Non-functional requirements

Non-functional requirements describe attributes or properties of the sys-
tem. This includes business requirements, system requirements, quality
requirements and other requirements. We omit listing business require-
ments, because we have been unable to identify them yet. 1

Quality requirements

The quality requirements describes the desirable properties of the sys-
tem. Four main quality attributes has been identified: Modifiability,
testability, security and reliability.

Modifiability

ID Description Priority (H/M/L)
NF-M1 It shall be possible to compile and run the

same programs on the OBC and the radio,
unless they are dependent upon specific
hardware drivers.

H

NF-M2 It must be possible to change the output
device for diagnostics prinout without af-
fecting more than a single file in the source
code.

H

Testability

ID Description Priority (H/M/L)
NF-T1 It shall be possible to send a command via

the debug interface on each module, with-
out changing the command format

H

NF-T2 Commands sent to the debug interface
shall be processed the same way as com-
mands received via the data bus

H

1 The project schedule is not known yet. Neither is the resources allocated to soft-
ware.



Table 4: (continued...)

ID Description Priority (H/M/L)
NF-T3 The OBC and radio shall be able to store

a program execution trace to non-volatile
memory

L

NF-T4 It shall be possible to retrieve contents
from non-volatile memory on the OBC,
from the debug interface

L

Reliability

ID Description Priority (H/M/L)
NF-R1 Only uncorrupted commands shall be exe-

cuted
H

NF-R2 A failing program must not affect the core
functionality of the system

H

NF-R3 Execution of less-important tasks shall not
affect the timelinss of higher-prioritised
tasks

M

NF-R4 A frozen system program shall not render
the satellite useless

H

Security

ID Description Priority (H/M/L)
NF-S1 Only commands sent from our ground sta-

tion shall be executed
H

NF-S2 Data transmitted from the satellite to the
ground station must not be encrypted

H

System requirements



ID Description Priority (H/M/L)
NF-O1 The ground station software must run on

Windows Vista, or a more recent version of
Windows

H

NF-O2 The operating system on the radio and
OBC must both work on an Atmel
AVR32UC3A3256 microcontroller

H

Conclusion

The requirements specification is a work in progress, and it is clear that
a more detailed document is needed. This is especially true for a project
spanning over several years, such as the NUTS project.

I2C master driver code listings

Listing 2: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c . h
3 ∗
4 ∗ C r e a t e d : 0 4 . 0 6 . 2 0 1 2 2 2 : 0 4 : 4 9
5 ∗ Author : Dan E r i k
6 ∗ /
7
8
9 # ifndef I2C H

10 # define I2C H
11 # include ”FreeRTOS . h”
12 # include ”semphr . h”
13 # include <s tddef . h>
14 # include ” s t a t u s c o d e s . h”
15
16 # define I2C BAUDRATE 100000
17
18 /∗ The TWI module t h a t s h o u l d be used as I2C ma s t e r ∗ /
19 # define I2C MODULE (AVR32 TWIM0)
20
21 /∗ IRQ number used f o r r e g i s t e r i n g TWI i n t e r r u p t s wi th t h e INTC ∗ /
22 # define I2C MODULE IRQ ( AVR32 TWIM0 IRQ )
23
24 /∗



25 ∗ The p i n s used f o r SDA and SCL , with t h e i r
26 ∗ GPIO f u n c t i o n number ( due t o p in m u l t i p l e x i n g )
27 ∗ /
28 # define I2C TWD PIN TWIMS0 TWD PIN
29 # define I2C TWD FUNCTION TWIMS0 TWD FUNCTION
30 # define I2C TWCK PIN TWIMS0 TWCK PIN
31 # define I2C TWCK FUNCTION TWIMS0 TWCK FUNCTION
32
33 /∗ A number d e n o t i n g t h e module whose c l o c k s h o u l d be e n a b l e d in t h e PM ∗ /
34 # define I2C PM CLOCK AVR32 TWIM0 CLK PBA
35
36 /∗ The maximum number o f b u r s t s in an i 2 c message ∗ /
37 # define I2C MAX BURSTS 2
38
39 typedef
40 enum i 2 c m e s s a g e s t a t u s {
41 I2C SUCCESS , I2C ARBITRATION LOST , I2C RECV ANAK , I2C RECV DNAK , I2C ABORTED
42 } i 2 c m e s s a g e s t a t u s t ;
43
44 /∗ Burs t d i r e c t i o n d e t e r m i n e s i f i t i s r e a d i n g or w r i t i n g from / t o a s l a v e ∗ /
45 typedef
46 enum i 2 c b u r s t d i r {
47 I2C BURST MASTER READ , I2C BURST MASTER WRITE
48 } i 2 c b u r s t d i r t ;
49
50 /∗
51 ∗ R e p r e s e n t a t i o n o f a b u r s t w i t h i n a i 2 c message
52 ∗ A b u r s t i s s imp ly a s i n g l e−d i r e c t i o n t r a n s f e r , and
53 ∗ e a c h b u r s t i s s e p a r a t e d by a r e p e a t e d s t a r t
54 ∗ /
55 typedef
56 s t r u c t i 2 c b u r s t {
57 i 2 c b u r s t d i r t d i r e c t i o n ; /∗ Determines i f t h i s b u r s t i s a r e a d or a w r i t e ∗ /
58 u i n t 8 t ∗ b u f f e r ; /∗ Send or r e c e i v e b u f f e r ∗ /
59 s i z e t bufsz ; /∗ S i z e o f t h e send / r e c e i v e b u f f e r ∗ /
60 } i 2 c b u r s t t ;
61
62 typedef
63 s t r u c t i 2 c m e s s a g e r e s u l t {
64 portTickType t i m e s t a r t e d ; /∗ The t ime in t i c k s , when t h e message was s e n t ∗ /
65 portTickType time completed ; /∗ The t ime in t i c k s , when t h e message was c o m p l e t e l y s e n t / r e c e i v e d ∗ /
66 i 2 c m e s s a g e s t a t u s t s t a t u s ; /∗ S t a t u s o f t h e t r a n s a c t i o n a f t e r i t i s c o m p l e t e d ∗ /
67 } i 2 c m e s s a g e r e s u l t t ;
68
69 typedef
70 s t r u c t i2c message {
71 xSemaphoreHandle completion semaphore ;
72 i 2 c b u r s t t burs t [ I2C MAX BURSTS ] ;
73 u i n t 3 2 t burs t count ;



74 u i n t 8 t s lave address ;
75 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ;
76 } i 2 c m e s s a g e t ;
77
78 # define i2c queue read n ( buffer , bufsz , saddr , completion handle ) \
79 i2c queue read ( buffer , bufsz , saddr , completion handle , NULL)
80 # define i 2c que ue wr i te n ( buffer , bufsz , saddr , completion handle ) \
81 i 2c queue wr i te ( buffer , bufsz , saddr , completion handle , NULL)
82 # define i 2 c q u e u e w r i t e r e a d n ( t x b u f f e r , tx bufsz , r x b u f f e r , rx bufsz , saddr , completion handle ) \
83 i 2 c q u e u e w r i t e r e a d ( t x b u f f e r , tx bufsz , r x b u f f e r , rx bufsz , saddr , completion handle , NULL)
84 # define i 2 c q u e u e r e a d w r i t e n ( t x b u f f e r , tx bufsz , r x b u f f e r , rx bufsz , saddr , completion handle ) \
85 i 2 c q u e u e r e a d w r i t e ( t x b u f f e r , tx bufsz , r x b u f f e r , rx bufsz , saddr , completion handle , NULL)
86
87 void i2c queue read (
88 u i n t 8 t ∗buffer ,
89 s i z e t bufsz ,
90 u i n t 8 t saddr ,
91 xSemaphoreHandle completion handle ,
92 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;
93
94 void i 2c queue wr i te (
95 u i n t 8 t ∗buffer ,
96 s i z e t bufsz ,
97 u i n t 8 t saddr ,
98 xSemaphoreHandle completion handle ,
99 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;

100
101 void i 2 c q u e u e w r i t e r e a d (
102 u i n t 8 t ∗ t x b u f f e r ,
103 s i z e t tx bufsz ,
104 u i n t 8 t ∗ r x b u f f e r ,
105 s i z e t rx bufsz ,
106 u i n t 8 t saddr ,
107 xSemaphoreHandle completion handle ,
108 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;
109
110 void i 2 c q u e u e r e a d w r i t e (
111 u i n t 8 t ∗ t x b u f f e r ,
112 s i z e t tx bufsz ,
113 u i n t 8 t ∗ r x b u f f e r ,
114 s i z e t rx bufsz ,
115 u i n t 8 t saddr ,
116 xSemaphoreHandle completion handle ,
117 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;
118
119 const char ∗ i 2 c m e s s a g e s t a t u s s t r ( i 2 c m e s s a g e s t a t u s t s t a t u s ) ;
120
121 /∗
122 ∗ S t a r t s t h e i 2 c m as t e r t a s k . Th i s f u n c t i o n



123 ∗ WARNING: Th i s f u n c t i o n ∗MUST∗ be c a l l e d p r i o r t o any o t h e r f u n c t i o n s
124 ∗ in t h e d r i v e r !
125 ∗ /
126 void i 2 c t a s k i n i t ( void ) ;
127
128 /∗ Returns t r u e i f t h e TWIM module d o e s not use t h e bus now ∗ /
129 u i n t 8 t i 2 c i s i d l e ( void ) ;
130
131 /∗ F o r c e s t o p t h e c u r r e n t t r a n s a c t i o n by s e n d i n g a STOP a t t h e nex t b y t e ∗ /
132 void i 2 c f o r c e s t o p ( void ) ;
133
134 /∗ Return a p o i n t e r t o a s t r i n g r e p r e s e n t a t i o n o f a i 2 c message s t a t u s ∗ /
135 const char ∗ i 2 c m e s s a g e s t a t u s s t r ( i 2 c m e s s a g e s t a t u s t s t a t u s ) ;
136
137 # endif /∗ I2C H ∗ /

Listing 3: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c . c
3 ∗
4 ∗ C r e a t e d : 0 4 . 0 6 . 2 0 1 2 2 2 : 0 4 : 3 5
5 ∗ Author : Dan E r i k
6 ∗ /
7 # include ”FreeRTOS . h”
8 # include ” task . h”
9 # include ”semphr . h”

10 # include ”queue . h”
11
12 # include <s t d i n t . h>
13 # include ”board . h”
14 # include ” conf board . h”
15 # include ” c y c l e c o u n t e r . h”
16 # include ” gpio . h”
17 # include ”pm. h”
18 # include ” i 2 c . h”
19 # include ” i 2 c t r a n s a c t i o n . h”
20 # include ” s t a t u s c o d e s . h”
21 # include <atmel/twim . h>
22 # include ” gpio . h”
23
24 /∗ The number o f e l e m e n t s in t h e s t a t i c message b u f f e r ∗ /
25 # define MESSAGE QUEUE LENGTH 8
26
27 /∗ C o n t a i n s t h e r e p r e s e n t a t i o n s o f i 2 c t r a n s a c t i o n s ∗ /
28 s t a t i c i 2 c m e s s a g e t messages [MESSAGE QUEUE LENGTH ] ;
29 /∗ P o i n t e r t o t h e nex t e l e m e n t t o be w r i t t e n in m e s s a g e s ∗ /
30 s t a t i c u i n t 3 2 t messages idx = ( u i n t 3 2 t ) 0 ;
31 /∗ Used t o s e r i a l i z e a c c e s s t o t h e m e s s a g e s r i n g b u f f e r ∗ /



32 xSemaphoreHandle messages mutex = NULL;
33 /∗ Queue with p o i n t e r s i n t o t h e m e s s a g e s b u f f e r ∗ /
34 s t a t i c xQueueHandle message queue = NULL;
35
36 /∗ Semaphore used t o s i g n a l t h a t t h e d e v i c e i s r e a d y f o r a new i 2 c m e s s a g e ∗ /
37 s t a t i c xSemaphoreHandle device ready = NULL;
38
39 /∗ P r e s e n t s an a c t i v e i 2 c t r a n s a c t i o n . Used f o r i n t e r n a l b o o k k e e p i n g ∗ /
40 s t a t i c i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
41
42 /∗ R e p r e s e n t s t h e c u r r e n t l y a c t i v e command , dur ing an ongo ing t r a n s a c t i o n ∗ /
43 s t a t i c v o l a t i l e i 2c cmd spec t current cmd ;
44
45 /∗ The nex t command , f o l l o w i n g t h e c u r r e n t command ∗ /
46 s t a t i c v o l a t i l e i 2c cmd spec t next cmd ;
47
48 /∗ S t r i n g d e s c r i p t i o n s used in message r e s u l t s ∗ /
49 s t a t i c const char ∗m e s s a g e s t a t u s s t r [ ] = {
50 ” Success ” ,
51 ” A r b i t r a t i o n l o s t ” ,
52 ” Received address NAK” ,
53 ” Received data NAK” ,
54 ”Aborted”
55 } ;
56
57 /∗ The i 2 c t a s k p r o c e s s e s incoming i 2 c m e s s a g e s and d i s p a t c h e s t o t h e hw ∗ /
58 s t a t i c void i 2 c t a s k ( void ∗pvParameters ) ;
59
60 s t a t i c void hardware in i t ( void ) ;
61 s t a t i c void enable muxed pins ( void ) ;
62 s t a t i c void i n i t m a s t e r ( void ) ;
63 s t a t i c void r e s e t d i s a b l e t w i m ( void ) ;
64 s t a t i c i 2 c m e s s a g e s t a t u s t f l a g t o s t a t u s ( unsigned long twim status ) ;
65 s t a t i c void c l e a r i n t e r r u p t s ( void ) ;
66
67 s t a t i c void q u e u e s i n g l e b u r s t (
68 u i n t 8 t ∗buffer ,
69 s i z e t bufsz ,
70 u i n t 8 t saddr ,
71 xSemaphoreHandle completion handle ,
72 i 2 c b u r s t d i r t dir ,
73 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;
74
75 s t a t i c void queue bursts (
76 i 2 c b u r s t t ∗bursts ,
77 s i z e t burst count ,
78 u i n t 8 t saddr ,
79 xSemaphoreHandle completion handle ,
80 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t ) ;



81
82 u i n t 8 t i 2 c i s i d l e ( void ) {
83 u i n t 3 2 t s t a t u s = AVR32 TWIM0 . s r ;
84 i f ( ( s t a t u s & AVR32 TWIM SR IDLE MASK ) ) {
85 return 1 ;
86 } e lse {
87 return 0 ;
88 }
89 }
90
91 s t a t i c i 2 c m e s s a g e s t a t u s t f l a g t o s t a t u s ( unsigned long twim status ) {
92 i 2 c m e s s a g e s t a t u s t s t a t u s = I2C SUCCESS ;
93 i f ( twim status & AVR32 TWIM SR ANAK MASK ) {
94 s t a t u s = I2C RECV ANAK ;
95 } e lse i f ( s t a t u s & AVR32 TWIM SR DNAK MASK ) {
96 s t a t u s = I2C RECV DNAK ;
97 } e lse i f ( s t a t u s & AVR32 TWIM SR ARBLST MASK ) {
98 s t a t u s = I2C ARBITRATION LOST ;
99 } e lse i f ( s t a t u s & AVR32 TWIM SR IDLE MASK ) {

100 s t a t u s = I2C ABORTED ;
101 }
102 return s t a t u s ;
103 }
104
105 a t t r i b u t e ( ( n o i n l i n e ) )
106 s t a t i c portBASE TYPE twim isr nonnaked ( void )
107 {
108 portBASE TYPE xHigherPriorityTaskWoken = pdFALSE ;
109 u i n t 8 t t ransac t ion done = 0 ;
110 unsigned long s t a t u s = AVR32 TWIM0 . s r ;
111 s t a t i c s i z e t b u f f e r i d x = 0 ;
112
113 /∗ Check f o r any e r r o r c o n d i t i o n s . Nothing f u r t h e r down , c h a n g e s t h e r e s u l t o f t h i s ∗ /
114 i f ( s t a t u s & (AVR32 TWIM SR ANAK MASK |AVR32 TWIM SR DNAK MASK |AVR32 TWIM SR ARBLST MASK) ) {
115 I2C MODULE .NCMDR. va l id = 0 ;
116 I2C MODULE .CMDR. va l id = 0 ;
117 t ransac t ion done = 1 ;
118 }
119
120 /∗ Handle TX/RX w i t h i n t h i s command ∗ /
121 i f ( b u f f e r i d x < current cmd . cmd bytes ) {
122 i f ( s t a t u s & AVR32 TWIM SR RXRDY MASK ) {
123 current cmd . b u f f e r [ b u f f e r i d x ++] = I2C MODULE . rhr ;
124 } e lse i f ( ! current cmd . read && ( s t a t u s & AVR32 TWIM SR TXRDY MASK) ) {
125 I2C MODULE . thr = current cmd . b u f f e r [ b u f f e r i d x ++] ;
126 }
127 }
128
129 /∗ I s s u e t h e nex t command , o r mark t h e t r a n s a c t i o n as done ∗ /



130 i f ( s t a t u s & AVR32 TWIM SR CCOMP MASK ) {
131 i f ( next cmd . cmd == 0UL ) {
132 t ransac t ion done = 1 ;
133 }
134
135 i f ( next cmd . read ) {
136 I2C MODULE . i d r = AVR32 TWIM IDR TXRDY MASK ;
137 I2C MODULE . i e r = AVR32 TWIM IER RXRDY MASK ;
138 } e lse {
139 I2C MODULE . i d r = AVR32 TWIM IDR RXRDY MASK ;
140 I2C MODULE . i e r = AVR32 TWIM IER TXRDY MASK ;
141 }
142
143 current cmd = next cmd ;
144 I2C MODULE . cmdr = current cmd . cmd ;
145 I2C MODULE . s c r = AVR32 TWIM SCR CCOMP MASK ;
146 b u f f e r i d x = 0 ;
147 } e lse i f ( ( next cmd . cmd != 0UL) && ( s t a t u s & AVR32 TWIM SR CRDY MASK) ) {
148 next cmd = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
149 I2C MODULE . ncmdr = next cmd . cmd ;
150 } e lse i f ( s t a t u s & AVR32 TWIM SR IDLE MASK ) {
151 t ransac t ion done = 1 ;
152 }
153
154 i f ( t ransac t ion done ) {
155 i f ( t r a n s a c t i o n . message−>completion semaphore != NULL ) {
156 xSemaphoreGiveFromISR ( t r a n s a c t i o n . message−>completion semaphore , &xHigherPriorityTaskWoken ) ;
157 }
158
159 i f ( t r a n s a c t i o n . message−>r e s u l t != NULL ) {
160 t r a n s a c t i o n . message−>r e s u l t−>s t a t u s = f l a g t o s t a t u s ( s t a t u s ) ;
161 t r a n s a c t i o n . message−>r e s u l t−>t ime completed = xTaskGetTickCount ( ) ;
162 }
163
164 b u f f e r i d x = 0 ;
165 c l e a r i n t e r r u p t s ( ) ;
166 xSemaphoreGiveFromISR ( device ready , &xHigherPriorityTaskWoken ) ;
167 }
168
169 return ( xHigherPriorityTaskWoken ) ;
170 }
171
172 a t t r i b u t e ( ( naked ) )
173 s t a t i c void twim isr ( void )
174 {
175 portENTER SWITCHING ISR ( ) ;
176 twim isr nonnaked ( ) ;
177 portEXIT SWITCHING ISR ( ) ;
178 }



179
180 void i 2 c t a s k i n i t ( void ) {
181 message queue = xQueueCreate (MESSAGE QUEUE LENGTH−2, s i ze of ( s t r u c t i2c message ∗ ) ) ;
182
183 vSemaphoreCreateBinary ( device ready ) ;
184 messages mutex = xSemaphoreCreateMutex ( ) ;
185
186 hardware in i t ( ) ;
187
188 xTaskCreate ( i 2 c t a s k ,
189 ( ( const signed portCHAR ∗ ) ” I2C Master task ” ) ,
190 1024 ,
191 NULL,
192 tskIDLE PRIORITY +1 ,
193 NULL) ;
194 }
195
196 void i 2 c q u e u e w r i t e r e a d (
197 u i n t 8 t ∗ t x b u f f e r ,
198 s i z e t tx bufsz ,
199 u i n t 8 t ∗ r x b u f f e r ,
200 s i z e t rx bufsz ,
201 u i n t 8 t saddr ,
202 xSemaphoreHandle completion handle ,
203 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
204 {
205 i 2 c b u r s t t t x b u r s t = {
206 . b u f f e r = t x b u f f e r , . bufsz = tx bufsz , . d i r e c t i o n = I2C BURST MASTER WRITE
207 } ;
208 i 2 c b u r s t t r x b u r s t = {
209 . b u f f e r = r x b u f f e r , . bufsz = rx bufsz , . d i r e c t i o n = I2C BURST MASTER READ
210 } ;
211 i 2 c b u r s t t burs t s [ ] = { t x b u r s t , r x b u r s t } ;
212 queue bursts ( bursts , 2 , saddr , completion handle , r e s u l t ) ;
213 }
214
215 s t a t i c void queue bursts (
216 i 2 c b u r s t t ∗bursts ,
217 s i z e t burst count ,
218 u i n t 8 t saddr ,
219 xSemaphoreHandle completion handle ,
220 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
221 {
222 i 2 c m e s s a g e t ∗message ;
223
224 while ( xSemaphoreTake ( messages mutex , portMAX DELAY) != pdTRUE ) ;
225
226 message = &messages [ messages idx ] ;
227 messages idx = ( messages idx +1) & (MESSAGE QUEUE LENGTH−1);



228
229 message−>completion semaphore = completion handle ;
230 for ( s i z e t i = 0 ; i < burs t count ; i ++) {
231 message−>burst [ i ] = burs t s [ i ] ;
232 }
233 message−>burs t count = burs t count ;
234 message−>s lave address = saddr ;
235 message−>r e s u l t = r e s u l t ;
236
237 xQueueSend ( message queue , &message , portMAX DELAY ) ;
238
239 xSemaphoreGive ( messages mutex ) ;
240 }
241
242 void i 2 c q u e u e r e a d w r i t e (
243 u i n t 8 t ∗ t x b u f f e r ,
244 s i z e t tx bufsz ,
245 u i n t 8 t ∗ r x b u f f e r ,
246 s i z e t rx bufsz ,
247 u i n t 8 t saddr ,
248 xSemaphoreHandle completion handle ,
249 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
250 {
251 i 2 c b u r s t t t x b u r s t = {
252 . b u f f e r = t x b u f f e r , . bufsz = tx bufsz , . d i r e c t i o n = I2C BURST MASTER WRITE
253 } ;
254 i 2 c b u r s t t r x b u r s t = {
255 . b u f f e r = r x b u f f e r , . bufsz = rx bufsz , . d i r e c t i o n = I2C BURST MASTER READ
256 } ;
257 i 2 c b u r s t t burs t s [ ] = { rx burs t , t x b u r s t } ;
258 queue bursts ( bursts , 2 , saddr , completion handle , r e s u l t ) ;
259 }
260
261 void i2c queue read (
262 u i n t 8 t ∗buffer ,
263 s i z e t bufsz ,
264 u i n t 8 t saddr ,
265 xSemaphoreHandle completion handle ,
266 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
267 {
268 q u e u e s i n g l e b u r s t (
269 buffer , bufsz , saddr , completion handle , I2C BURST MASTER READ , r e s u l t
270 ) ;
271 }
272
273 void i 2c queue wr i te (
274 u i n t 8 t ∗buffer ,
275 s i z e t bufsz ,
276 u i n t 8 t saddr ,



277 xSemaphoreHandle completion handle ,
278 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
279 {
280 q u e u e s i n g l e b u r s t (
281 buffer , bufsz , saddr , completion handle , I2C BURST MASTER WRITE , r e s u l t
282 ) ;
283 }
284
285 s t a t i c void q u e u e s i n g l e b u r s t (
286 u i n t 8 t ∗buffer ,
287 s i z e t bufsz ,
288 u i n t 8 t saddr ,
289 xSemaphoreHandle completion handle ,
290 i 2 c b u r s t d i r t dir ,
291 i 2 c m e s s a g e r e s u l t t ∗ r e s u l t )
292 {
293 i 2 c m e s s a g e t ∗message ;
294 i 2 c b u r s t t burs t = {
295 . b u f f e r = buffer , . bufsz = bufsz , . d i r e c t i o n = d i r
296 } ;
297
298 while ( xSemaphoreTake ( messages mutex , portMAX DELAY) != pdTRUE ) ;
299
300 message = &messages [ messages idx ] ;
301 messages idx = ( messages idx +1) & (MESSAGE QUEUE LENGTH−1);
302
303 message−>completion semaphore = completion handle ;
304 message−>burst [ 0 ] = burst ;
305 message−>burs t count = 1 ;
306 message−>s lave address = saddr ;
307 message−>r e s u l t = r e s u l t ;
308
309 xQueueSend ( message queue , &message , portMAX DELAY ) ;
310
311 xSemaphoreGive ( messages mutex ) ;
312 }
313
314 s t a t i c void hardware in i t ( void ) {
315 enable muxed pins ( ) ;
316 i n i t m a s t e r ( ) ;
317 }
318
319 s t a t i c void enable muxed pins ( void ) {
320 const gpio map t twim gpio map = {
321 {I2C TWD PIN , I2C TWD FUNCTION} ,
322 {I2C TWCK PIN , I2C TWCK FUNCTION}
323 } ;
324 gpio enable module ( twim gpio map ,
325 s i ze of ( twim gpio map )/ s i ze of ( twim gpio map [ 0 ] )



326 ) ;
327 }
328
329 s t a t i c void i n i t m a s t e r ( void ) {
330 pm enable module(&AVR32 PM, I2C PM CLOCK ) ;
331
332 portENTER CRITICAL ( ) ;
333
334 I2C MODULE . i d r = ˜0UL; /∗ D i s a b l e TWI i n t e r r u p t s ∗ /
335
336 /∗ Enab l e t h e TWIM and r e s e t i t , in o r d e r t o remove s t a l e d a t a ∗ /
337 I2C MODULE . cr = AVR32 TWIM CR MEN MASK ;
338 I2C MODULE . cr = AVR32 TWIM CR SWRST MASK ;
339
340 /∗ C l e a r t h e s t a t u s r e g f o r o l d s t a t u s f l a g s , j u s t t o be s u r e ∗ /
341 I2C MODULE . s c r = ˜0UL;
342
343 /∗
344 ∗ Re−e n a b l e t h e TWIM a g a i n . Th i s i s t o make s u r e t h a t t h e s t a t e machine
345 ∗ assumes t h a t t h e bus i s i d l e ( which may , o r may not be t r u e )
346 ∗ /
347 I2C MODULE . cr = AVR32 TWIM CR MDIS MASK ;
348 I2C MODULE . cr = AVR32 TWIM CR MEN MASK ;
349
350 I N T C r e g i s t e r i n t e r r u p t ( twim isr , I2C MODULE IRQ , AVR32 INTC INTLEVEL INT1 ) ;
351
352 portEXIT CRITICAL ( ) ;
353
354 twim set speed (&I2C MODULE, I2C BAUDRATE , APPLI PBA SPEED ) ;
355 }
356
357 s t a t i c void r e s e t d i s a b l e t w i m ( void ) {
358 I2C MODULE . cr = AVR32 TWIM CR MEN MASK ;
359 I2C MODULE . cr = AVR32 TWIM CR SWRST MASK ;
360 I2C MODULE . cr = AVR32 TWIM CR MDIS MASK ;
361 }
362
363 s t a t i c void c l e a r i n t e r r u p t s ( void ) {
364 / / C l e a r t h e i n t e r r u p t f l a g s
365 I2C MODULE . i d r = ˜0UL;
366 / / C l e a r t h e s t a t u s f l a g s
367 I2C MODULE . s c r = ˜0UL;
368 }
369
370 s t a t i c void enable twim ( void ) {
371 I2C MODULE . cr = AVR32 TWIM CR MEN MASK ;
372 }
373
374 s t a t i c void i 2 c t a s k ( void ∗pvParameters ) {



375 i 2 c m e s s a g e t ∗ current message ;
376 while ( 1 ) {
377 while ( xQueueReceive ( message queue , &current message , portMAX DELAY) != pdTRUE ) ;
378
379 while ( xSemaphoreTake ( device ready , portMAX DELAY) != pdTRUE ) ;
380
381 i f ( current message−>r e s u l t != NULL ) {
382 current message−>r e s u l t−>t i m e s t a r t e d = xTaskGetTickCount ( ) ;
383 }
384
385 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , current message ) ;
386
387 taskENTER CRITICAL ( ) ;
388 r e s e t d i s a b l e t w i m ( ) ;
389 c l e a r i n t e r r u p t s ( ) ;
390
391 current cmd = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
392 next cmd = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
393 I2C MODULE . cmdr = current cmd . cmd ;
394 I2C MODULE . ncmdr = next cmd . cmd ;
395 I2C MODULE . i e r = AVR32 TWIM IER CCOMP MASK
396 | AVR32 TWIM IER CRDY MASK
397 | AVR32 TWIM IER ANAK MASK
398 | AVR32 TWIM IER DNAK
399 | AVR32 TWIM IER IDLE MASK
400 | ( ( current cmd . read ? 0 : 1 ) << AVR32 TWIM IER TXRDY OFFSET )
401 | ( ( current cmd . read ? 1 : 0 ) << AVR32 TWIM IER RXRDY OFFSET )
402 | AVR32 TWIM IER ARBLST MASK ;
403 enable twim ( ) ;
404 taskEXIT CRITICAL ( ) ;
405
406 }
407 vTaskDelete (NULL) ;
408 }
409
410 /∗
411 ∗ Try t o f o r c e t h e TWI module t o send a s t o p s i g n a l .
412 ∗ Thi s i s an a l t e r n a t i v e t o r e s e t t i n g t h e TWI , b e c a u s e o t h e r m a s t e r s
413 ∗ s h o u l d n o t i c e t h a t t h e s t o p s i g n a l i s s en t , meaning t h a t t h e bus
414 ∗ i s a v a i l a b l e f o r o t h e r s t o use
415 ∗ /
416 void i 2 c f o r c e s t o p ( void ) {
417
418 i f ( ! ( I2C MODULE . s r & AVR32 TWIM SR IDLE MASK) ) {
419 I2C MODULE . cr = AVR32 TWIM CR STOP MASK ;
420 }
421 }
422
423 const char ∗ i 2 c m e s s a g e s t a t u s s t r ( i 2 c m e s s a g e s t a t u s t s t a t u s ) {



424 return m e s s a g e s t a t u s s t r [ ( i n t ) s t a t u s ] ;
425 }

I2C transaction listings

Listing 4: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c t r a n s a c t i o n . h
3 ∗
4 ∗ C r e a t e d : 1 0 . 0 6 . 2 0 1 2 0 4 : 4 7 : 2 4
5 ∗ Author : Dan E r i k
6 ∗ /
7
8
9 # ifndef I2C TRANSACTION H

10 # define I2C TRANSACTION H
11
12 # include <s tddef . h>
13 # include <s t d i n t . h>
14 # include ” compiler . h”
15 # include ” i 2 c . h”
16
17
18 typedef unsigned long twi cmd t ;
19
20 typedef
21 s t r u c t i2c cmd spec {
22 twi cmd t cmd ;
23 u i n t 8 t ∗ b u f f e r ;
24 u i n t 8 t cmd bytes ;
25 u i n t 8 t read ;
26 } i 2c cmd spec t ;
27
28 typedef
29 s t r u c t i 2 c t r a n s a c t i o n {
30 u i n t 3 2 t b u r s t i d x ; /∗ The c u r r e n t b u r s t number ∗ /
31 u i n t 3 2 t burs t count ; /∗ ” Const ” f o r t h e whole t r a n s a c t i o n ∗ /
32 s i z e t b u r s t b u f i d x ; /∗ The o f f s e t i n t o t h e b u r s t b u f f e r i n t o which d a t a from t h e c u r r e n t cmd s h o u l d be put ∗ /
33 u i n t 8 t ∗ b u r s t b u f f e r ; /∗ ” Const ” w i t h i n b u r s t ∗ /
34 s i z e t b u r s t b u f s z ; /∗ ” Const ” w i t h i n b u r s t ∗ /
35 i 2 c b u r s t t ∗ burst ;
36 u i n t 8 t saddr ; /∗ ” Const ” f o r whole t r a n s a c t i o n ∗ /
37 i 2c cmd spec t cmd ;
38 i 2 c m e s s a g e t ∗message ; /∗ ” Const ” f o r whole t r a n s a c t i o n ∗ /
39 u i n t 8 t las t cmd sz ;
40 u i n t 8 t burs t read ;
41 } i 2 c t r a n s a c t i o n t ;



42
43
44 void i 2 c t r a n s a c t i o n i n i t ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n , i 2 c m e s s a g e t ∗message ) ;
45
46 i 2c cmd spec t i 2 c t r a n s a c t i o n n e x t c m d ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n ) ;
47
48
49
50 # endif /∗ I2C TRANSACTION H ∗ /

Listing 5: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c t r a n s a c t i o n . c
3 ∗
4 ∗ C r e a t e d : 1 0 . 0 6 . 2 0 1 2 0 4 : 4 7 : 1 2
5 ∗ Author : Dan E r i k
6 ∗ /
7
8 # include <s t d i n t . h>
9 # include ” compiler . h”

10 # include ” i 2 c . h”
11 # include ” i 2 c t r a n s a c t i o n . h”
12
13 s t a t i c void t r a n s a c t i o n u p d a t e b u r s t v a r i a b l e s ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n ) ;
14 s t a t i c bool t r a n s a c t i o n u p d a t e b u r s t o f f s e t ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n , s i z e t o f f s e t ) ;
15
16 void i 2 c t r a n s a c t i o n i n i t ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n , i 2 c m e s s a g e t ∗message ) {
17 t r a n s a c t i o n−>b u r s t i d x = 0 ;
18 t r a n s a c t i o n−>burs t count = message−>burs t count ;
19 t r a n s a c t i o n−>b u r s t b u f i d x = 0 ;
20 t r a n s a c t i o n−>burst = message−>burst ;
21 t r a n s a c t i o n−>b u r s t b u f f e r = t r a n s a c t i o n−>burst [ 0 ] . b u f f e r ;
22 t r a n s a c t i o n−>saddr = message−>s lave address ;
23 t r a n s a c t i o n−>b u r s t b u f s z = t r a n s a c t i o n−>burst [ 0 ] . bufsz ;
24 t r a n s a c t i o n−>l a s t cmd sz = 0 ;
25 t r a n s a c t i o n−>burs t read = t r a n s a c t i o n−>burst [ 0 ] . d i r e c t i o n == I2C BURST MASTER READ ;
26 t r a n s a c t i o n−>message = message ;
27 }
28
29 i 2c cmd spec t i 2 c t r a n s a c t i o n n e x t c m d ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n ) {
30 i 2c cmd spec t r e t = { . cmd = 0UL, . b u f f e r = NULL, . cmd bytes = 0 , . read = 0} ;
31 i f ( t r a n s a c t i o n u p d a t e b u r s t o f f s e t ( t r a n s a c t i o n , t r a n s a c t i o n−>l a s t cmd sz ) )
32 return r e t ;
33
34 s i z e t remain ing burs t bytes = t r a n s a c t i o n−>b u r s t b u f s z − t r a n s a c t i o n−>b u r s t b u f i d x ;
35 u i n t 8 t cmd bytes = min (UINT8 MAX, remain ing burs t bytes ) ;
36 u i n t 8 t read cmd = t r a n s a c t i o n−>burs t read ;
37 u i n t 8 t f i r s t b u r s t c m d = t r a n s a c t i o n−>b u r s t b u f i d x == 0 ;



38 u i n t 8 t l a s t b u r s t = t r a n s a c t i o n−>b u r s t i d x == ( t r a n s a c t i o n−>burst count −1);
39 u i n t 8 t l a s t b u r s t c m d = ( remaining burst bytes−cmd bytes ) == 0 ;
40 u i n t 8 t last cmd = l a s t b u r s t && l a s t b u r s t c m d ;
41
42 twi cmd t cmd = ( t r a n s a c t i o n−>saddr << AVR32 TWIM CMDR SADR OFFSET)
43 | ( cmd bytes << AVR32 TWIM CMDR NBYTES OFFSET)
44 | (AVR32 TWIM CMDR VALID MASK)
45 | ( ( f i r s t b u r s t c m d ? 1 : 0 ) << AVR32 TWIM CMDR START OFFSET)
46 | ( ( l a s t b u r s t c m d ? 0 : 1 ) << AVR32 TWIM CMDR ACKLAST OFFSET)
47 | ( ( last cmd ? 1 : 0 ) << AVR32 TWIM CMDR STOP OFFSET)
48 | ( ( read cmd ? 1 : 0 ) << AVR32 TWIM CMDR READ OFFSET ) ;
49
50 t r a n s a c t i o n−>l a s t cmd sz = cmd bytes ;
51
52 r e t . cmd = cmd ;
53 r e t . cmd bytes = cmd bytes ;
54 r e t . read = read cmd ;
55 r e t . b u f f e r = t r a n s a c t i o n−>b u r s t b u f f e r + t r a n s a c t i o n−>b u r s t b u f i d x ;
56
57 return r e t ;
58 }
59
60 s t a t i c bool t r a n s a c t i o n u p d a t e b u r s t o f f s e t ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n , s i z e t o f f s e t ) {
61 bool past end = f a l s e ;
62
63 t r a n s a c t i o n−>b u r s t b u f i d x += o f f s e t ;
64
65 i f ( t r a n s a c t i o n−>b u r s t b u f i d x >= t r a n s a c t i o n−>b u r s t b u f s z ) {
66 t r a n s a c t i o n−>b u r s t b u f i d x = 0 ;
67
68 past end = ++t r a n s a c t i o n−>b u r s t i d x >= t r a n s a c t i o n−>burs t count ;
69
70 i f ( ! past end ) {
71 t r a n s a c t i o n u p d a t e b u r s t v a r i a b l e s ( t r a n s a c t i o n ) ;
72 }
73 }
74 return past end ;
75 }
76
77
78 s t a t i c void t r a n s a c t i o n u p d a t e b u r s t v a r i a b l e s ( i 2 c t r a n s a c t i o n t ∗ t r a n s a c t i o n ) {
79 u i n t 8 t i = t r a n s a c t i o n−>b u r s t i d x ;
80 t r a n s a c t i o n−>b u r s t b u f f e r = t r a n s a c t i o n−>burst [ i ] . b u f f e r ;
81 t r a n s a c t i o n−>burs t read = t r a n s a c t i o n−>burst [ i ] . d i r e c t i o n == I2C BURST MASTER READ ;
82 t r a n s a c t i o n−>b u r s t b u f s z = t r a n s a c t i o n−>burst [ i ] . bufsz ;
83 }

I2C transaction tests



Listing 6: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c t r a n s a c t i o n t e s t . h
3 ∗
4 ∗ C r e a t e d : 1 0 . 0 6 . 2 0 1 2 0 4 : 5 4 : 1 9
5 ∗ Author : Dan E r i k
6 ∗ /
7
8
9 # ifndef I2C TRANSACTION TEST H

10 # define I2C TRANSACTION TEST H
11
12 void i 2 c t r a n s a c t i o n t e s t r u n a l l ( void ) ;
13
14 void i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t t x ( void ) ;
15
16 void i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t r x ( void ) ;
17
18 void i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t r x ( void ) ;
19
20 void i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t t x ( void ) ;
21
22 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t t x ( void ) ;
23
24 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t r x ( void ) ;
25
26 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t r x ( void ) ;
27
28 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t t x ( void ) ;
29
30 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x t x ( void ) ;
31
32 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x r x ( void ) ;
33
34 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x t x ( void ) ;
35
36 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x r x ( void ) ;
37
38 # endif /∗ I2C TRANSACTION TEST H ∗ /

Listing 7: I2C driver API for FreeRTOS tasks
1 /∗
2 ∗ i 2 c t r a n s a c t i o n t e s t . c
3 ∗
4 ∗ C r e a t e d : 1 0 . 0 6 . 2 0 1 2 0 4 : 5 4 : 1 2
5 ∗ Author : Dan E r i k
6 ∗ /
7



8 # include <s t d i n t . h>
9 # include <avr32/io . h>

10 # include ” compiler . h”
11 # include ” i 2 c . h”
12 # include ” i 2 c t r a n s a c t i o n . h”
13 # include ” i 2 c t r a n s a c t i o n t e s t . h”
14
15 s t a t i c void assert cmd empty ( i2c cmd spec t cmd ) ;
16 s t a t i c void a s s e r t c m d s t a r t s e t ( i 2c cmd spec t cmd, bool s t a r t ) ;
17 s t a t i c void a s s e r t c m d s t o p s e t ( i 2c cmd spec t cmd, bool stop ) ;
18 s t a t i c void a s s e r t c m d v a l i d s e t ( i 2c cmd spec t cmd, bool va l id ) ;
19 s t a t i c void a s s e r t c m d r e a d s e t ( i 2c cmd spec t cmd, bool read ) ;
20 s t a t i c void a s s e r t c m d r x a c k s e t ( i 2c cmd spec t cmd, bool a c k l a s t ) ;
21 s t a t i c void asser t cmd saddr equals ( i 2c cmd spec t cmd, u i n t 8 t saddr ) ;
22 s t a t i c void a s s e r t c m d b y t e s e q u a l s ( i 2c cmd spec t cmd, u i n t 8 t nbytes ) ;
23 s t a t i c void a s s e r t c m d b u f f e r e q u a l s ( i 2c cmd spec t cmd, u i n t 8 t ∗ptr ) ;
24
25
26 void i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t t x ( void ) {
27 i 2 c m e s s a g e t message ;
28 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
29 i 2c cmd spec t command [ 2 ] ;
30
31 message . burs t count = 1 ;
32 message . s lave address = 0xAA;
33 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0xDEADBEEF ;
34 message . burs t [ 0 ] . bufsz = 2 5 5 ;
35 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
36
37 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
38 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
39 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
40
41 assert cmd empty (command [ 1 ] ) ;
42
43 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
44
45 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
46
47 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
48
49 a s s e r t c m d s t o p s e t (command [ 0 ] , t rue ) ;
50
51 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
52
53 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
54
55 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0xDEADBEEF ) ;
56 }



57
58 void i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t r x ( void ) {
59 i 2 c m e s s a g e t message ;
60 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
61 i 2c cmd spec t command [ 2 ] ;
62
63 message . burs t count = 1 ;
64 message . s lave address = 0xAA;
65 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0xDEADBEEF ;
66 message . burs t [ 0 ] . bufsz = 2 5 5 ;
67 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
68
69 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
70 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
71 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
72
73 assert cmd empty (command [ 1 ] ) ;
74
75 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
76
77 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
78
79 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
80
81 a s s e r t c m d s t o p s e t (command [ 0 ] , t rue ) ;
82
83 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
84
85 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
86
87 a s s e r t c m d r x a c k s e t (command [ 0 ] , f a l s e ) ;
88
89 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0xDEADBEEF ) ;
90 }
91
92 void i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t r x ( void ) {
93 i 2 c m e s s a g e t message ;
94 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
95 i 2c cmd spec t command [ 3 ] ;
96
97 message . burs t count = 1 ;
98 message . s lave address = 0xAA;
99 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;

100 message . burs t [ 0 ] . bufsz = 2 5 6 ;
101 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
102
103 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
104 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
105 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;



106 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
107
108 assert cmd empty (command [ 2 ] ) ;
109
110 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
111 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 1 ) ;
112
113 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
114 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
115
116 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
117 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
118
119 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
120 a s s e r t c m d s t o p s e t (command [ 1 ] , t rue ) ;
121
122 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
123 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
124
125 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
126 a s s e r t c m d r e a d s e t (command [ 1 ] , t rue ) ;
127
128 a s s e r t c m d r x a c k s e t (command [ 0 ] , t rue ) ;
129 a s s e r t c m d r x a c k s e t (command [ 1 ] , f a l s e ) ;
130
131 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
132 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
133 }
134
135 void i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t t x ( void ) {
136 i 2 c m e s s a g e t message ;
137 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
138 i 2c cmd spec t command [ 3 ] ;
139
140 message . burs t count = 1 ;
141 message . s lave address = 0xAA;
142 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
143 message . burs t [ 0 ] . bufsz = 2 5 6 ;
144 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
145
146 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
147 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
148 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
149 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
150
151 assert cmd empty (command [ 2 ] ) ;
152
153 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
154 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 1 ) ;



155
156 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
157 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
158
159 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
160 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
161
162 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
163 a s s e r t c m d s t o p s e t (command [ 1 ] , t rue ) ;
164
165 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
166 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
167
168 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
169 a s s e r t c m d r e a d s e t (command [ 1 ] , f a l s e ) ;
170
171 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
172 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
173 }
174
175 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t t x ( void ) {
176 i 2 c m e s s a g e t message ;
177 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
178 i 2c cmd spec t command [ 4 ] ;
179
180 message . burs t count = 1 ;
181 message . s lave address = 0xAA;
182 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
183 message . burs t [ 0 ] . bufsz = 5 1 2 ;
184 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
185
186 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
187 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
188 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
189 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
190 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
191
192 assert cmd empty (command [ 3 ] ) ;
193
194 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
195 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
196 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 ) ;
197
198 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
199 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
200 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
201
202 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
203 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;



204 a s s e r t c m d s t a r t s e t (command [ 2 ] , f a l s e ) ;
205
206 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
207 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
208 a s s e r t c m d s t o p s e t (command [ 2 ] , t rue ) ;
209
210 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
211 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
212 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
213
214 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
215 a s s e r t c m d r e a d s e t (command [ 1 ] , f a l s e ) ;
216 a s s e r t c m d r e a d s e t (command [ 2 ] , f a l s e ) ;
217
218 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
219 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
220 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 255 + 2 5 5 ) ) ;
221 }
222
223 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t r x ( void ) {
224 i 2 c m e s s a g e t message ;
225 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
226 i 2c cmd spec t command [ 4 ] ;
227
228 message . burs t count = 1 ;
229 message . s lave address = 0xAA;
230 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
231 message . burs t [ 0 ] . bufsz = 5 1 2 ;
232 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
233
234 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
235 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
236 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
237 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
238 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
239
240 assert cmd empty (command [ 3 ] ) ;
241
242 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
243 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
244 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 ) ;
245
246 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
247 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
248 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
249
250 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
251 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
252 a s s e r t c m d s t a r t s e t (command [ 2 ] , f a l s e ) ;



253
254 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
255 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
256 a s s e r t c m d s t o p s e t (command [ 2 ] , t rue ) ;
257
258 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
259 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
260 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
261
262 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
263 a s s e r t c m d r e a d s e t (command [ 1 ] , t rue ) ;
264 a s s e r t c m d r e a d s e t (command [ 2 ] , t rue ) ;
265
266 a s s e r t c m d r x a c k s e t (command [ 0 ] , t rue ) ;
267 a s s e r t c m d r x a c k s e t (command [ 1 ] , t rue ) ;
268 a s s e r t c m d r x a c k s e t (command [ 2 ] , f a l s e ) ;
269
270 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
271 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
272 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 255 + 2 5 5 ) ) ;
273 }
274
275 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t r x ( void ) {
276 i 2 c m e s s a g e t message ;
277 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
278 i 2c cmd spec t command [ 4 ] ;
279
280 message . burs t count = 2 ;
281 message . s lave address = 0xAA;
282 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
283 message . burs t [ 0 ] . bufsz = 5 1 0 ;
284 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
285 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
286 message . burs t [ 1 ] . bufsz = 2 5 5 ;
287 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER READ ;
288
289 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
290 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
291 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
292 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
293 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
294
295 assert cmd empty (command [ 3 ] ) ;
296
297 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
298 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
299 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
300
301 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;



302 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
303 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
304
305 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
306 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
307 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
308
309 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
310 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
311 a s s e r t c m d s t o p s e t (command [ 2 ] , t rue ) ;
312
313 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
314 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
315 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
316
317 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
318 a s s e r t c m d r e a d s e t (command [ 1 ] , t rue ) ;
319 a s s e r t c m d r e a d s e t (command [ 2 ] , t rue ) ;
320
321 a s s e r t c m d r x a c k s e t (command [ 0 ] , t rue ) ;
322 a s s e r t c m d r x a c k s e t (command [ 1 ] , f a l s e ) ;
323 a s s e r t c m d r x a c k s e t (command [ 2 ] , f a l s e ) ;
324
325 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
326 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
327 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
328 }
329
330 void i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t t x ( void ) {
331 i 2 c m e s s a g e t message ;
332 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
333 i 2c cmd spec t command [ 4 ] ;
334
335 message . burs t count = 2 ;
336 message . s lave address = 0xAA;
337 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
338 message . burs t [ 0 ] . bufsz = 5 1 0 ;
339 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
340 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
341 message . burs t [ 1 ] . bufsz = 2 5 5 ;
342 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
343
344 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
345 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
346 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
347 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
348 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
349
350 assert cmd empty (command [ 3 ] ) ;



351
352 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
353 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
354 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
355
356 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
357 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
358 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
359
360 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
361 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
362 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
363
364 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
365 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
366 a s s e r t c m d s t o p s e t (command [ 2 ] , t rue ) ;
367
368 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
369 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
370 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
371
372 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
373 a s s e r t c m d r e a d s e t (command [ 1 ] , f a l s e ) ;
374 a s s e r t c m d r e a d s e t (command [ 2 ] , f a l s e ) ;
375
376 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
377 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
378 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
379 }
380
381 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x t x ( void ) {
382 i 2 c m e s s a g e t message ;
383 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
384 i 2c cmd spec t command [ 5 ] ;
385
386 message . burs t count = 2 ;
387 message . s lave address = 0xAA;
388 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
389 message . burs t [ 0 ] . bufsz = 5 1 0 ;
390 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
391 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
392 message . burs t [ 1 ] . bufsz = 5 1 0 ;
393 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
394
395 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
396 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
397 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
398 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
399 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;



400 command [ 4 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
401
402 assert cmd empty (command [ 4 ] ) ;
403
404 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
405 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
406 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
407 a s s e r t c m d b y t e s e q u a l s (command [ 3 ] , 2 5 5 ) ;
408
409 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
410 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
411 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
412 asser t cmd saddr equals (command [ 3 ] , 0xAA ) ;
413
414 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
415 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
416 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
417 a s s e r t c m d s t a r t s e t (command [ 3 ] , f a l s e ) ;
418
419 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
420 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
421 a s s e r t c m d s t o p s e t (command [ 2 ] , f a l s e ) ;
422 a s s e r t c m d s t o p s e t (command [ 3 ] , t rue ) ;
423
424 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
425 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
426 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
427 a s s e r t c m d v a l i d s e t (command [ 3 ] , t rue ) ;
428
429 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
430 a s s e r t c m d r e a d s e t (command [ 1 ] , t rue ) ;
431 a s s e r t c m d r e a d s e t (command [ 2 ] , f a l s e ) ;
432 a s s e r t c m d r e a d s e t (command [ 3 ] , f a l s e ) ;
433
434 a s s e r t c m d r x a c k s e t (command [ 0 ] , t rue ) ;
435 a s s e r t c m d r x a c k s e t (command [ 1 ] , f a l s e ) ;
436
437 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
438 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
439 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
440 a s s e r t c m d b u f f e r e q u a l s (command [ 3 ] , ( u i n t 8 t ∗ ) ( 0 x2000 + 2 5 5 ) ) ;
441 }
442
443 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x r x ( void ) {
444 i 2 c m e s s a g e t message ;
445 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
446 i 2c cmd spec t command [ 5 ] ;
447
448 message . burs t count = 2 ;



449 message . s lave address = 0xAA;
450 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
451 message . burs t [ 0 ] . bufsz = 5 1 0 ;
452 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
453 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
454 message . burs t [ 1 ] . bufsz = 5 1 0 ;
455 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER READ ;
456
457 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
458 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
459 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
460 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
461 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
462 command [ 4 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
463
464 assert cmd empty (command [ 4 ] ) ;
465
466 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
467 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 2 5 5 ) ;
468 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
469 a s s e r t c m d b y t e s e q u a l s (command [ 3 ] , 2 5 5 ) ;
470
471 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
472 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
473 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
474 asser t cmd saddr equals (command [ 3 ] , 0xAA ) ;
475
476 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
477 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
478 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
479 a s s e r t c m d s t a r t s e t (command [ 3 ] , f a l s e ) ;
480
481 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
482 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
483 a s s e r t c m d s t o p s e t (command [ 2 ] , f a l s e ) ;
484 a s s e r t c m d s t o p s e t (command [ 3 ] , t rue ) ;
485
486 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
487 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
488 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
489 a s s e r t c m d v a l i d s e t (command [ 3 ] , t rue ) ;
490
491 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
492 a s s e r t c m d r e a d s e t (command [ 1 ] , f a l s e ) ;
493 a s s e r t c m d r e a d s e t (command [ 2 ] , t rue ) ;
494 a s s e r t c m d r e a d s e t (command [ 3 ] , t rue ) ;
495
496 a s s e r t c m d r x a c k s e t (command [ 2 ] , t rue ) ;
497 a s s e r t c m d r x a c k s e t (command [ 3 ] , f a l s e ) ;



498
499 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
500 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
501 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
502 a s s e r t c m d b u f f e r e q u a l s (command [ 3 ] , ( u i n t 8 t ∗ ) ( 0 x2000 + 2 5 5 ) ) ;
503 }
504
505 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x t x ( void ) {
506 i 2 c m e s s a g e t message ;
507 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
508 i 2c cmd spec t command [ 5 ] ;
509
510 message . burs t count = 2 ;
511 message . s lave address = 0xAA;
512 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
513 message . burs t [ 0 ] . bufsz = 2 6 0 ;
514 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
515 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
516 message . burs t [ 1 ] . bufsz = 2 6 0 ;
517 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER WRITE ;
518
519 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
520 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
521 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
522 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
523 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
524 command [ 4 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
525
526 assert cmd empty (command [ 4 ] ) ;
527
528 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
529 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 5 ) ;
530 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
531 a s s e r t c m d b y t e s e q u a l s (command [ 3 ] , 5 ) ;
532
533 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
534 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
535 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
536 asser t cmd saddr equals (command [ 3 ] , 0xAA ) ;
537
538 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
539 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
540 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
541 a s s e r t c m d s t a r t s e t (command [ 3 ] , f a l s e ) ;
542
543 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
544 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
545 a s s e r t c m d s t o p s e t (command [ 2 ] , f a l s e ) ;
546 a s s e r t c m d s t o p s e t (command [ 3 ] , t rue ) ;



547
548 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
549 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
550 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
551 a s s e r t c m d v a l i d s e t (command [ 3 ] , t rue ) ;
552
553 a s s e r t c m d r e a d s e t (command [ 0 ] , f a l s e ) ;
554 a s s e r t c m d r e a d s e t (command [ 1 ] , f a l s e ) ;
555 a s s e r t c m d r e a d s e t (command [ 2 ] , f a l s e ) ;
556 a s s e r t c m d r e a d s e t (command [ 3 ] , f a l s e ) ;
557
558 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
559 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
560 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
561 a s s e r t c m d b u f f e r e q u a l s (command [ 3 ] , ( u i n t 8 t ∗ ) ( 0 x2000 + 2 5 5 ) ) ;
562 }
563
564 void i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x r x ( void ) {
565 i 2 c m e s s a g e t message ;
566 i 2 c t r a n s a c t i o n t t r a n s a c t i o n ;
567 i 2c cmd spec t command [ 5 ] ;
568
569 message . burs t count = 2 ;
570 message . s lave address = 0xAA;
571 message . burs t [ 0 ] . b u f f e r = ( u i n t 8 t ∗ )0 x20 ;
572 message . burs t [ 0 ] . bufsz = 2 6 0 ;
573 message . burs t [ 0 ] . d i r e c t i o n = I2C BURST MASTER READ ;
574 message . burs t [ 1 ] . b u f f e r = ( u i n t 8 t ∗ )0 x2000 ;
575 message . burs t [ 1 ] . bufsz = 2 6 0 ;
576 message . burs t [ 1 ] . d i r e c t i o n = I2C BURST MASTER READ ;
577
578 i 2 c t r a n s a c t i o n i n i t (& t r a n s a c t i o n , &message ) ;
579 command [ 0 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
580 command [ 1 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
581 command [ 2 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
582 command [ 3 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
583 command [ 4 ] = i 2 c t r a n s a c t i o n n e x t c m d (& t r a n s a c t i o n ) ;
584
585 assert cmd empty (command [ 4 ] ) ;
586
587 a s s e r t c m d b y t e s e q u a l s (command [ 0 ] , 2 5 5 ) ;
588 a s s e r t c m d b y t e s e q u a l s (command [ 1 ] , 5 ) ;
589 a s s e r t c m d b y t e s e q u a l s (command [ 2 ] , 2 5 5 ) ;
590 a s s e r t c m d b y t e s e q u a l s (command [ 3 ] , 5 ) ;
591
592 asser t cmd saddr equals (command [ 0 ] , 0xAA ) ;
593 asser t cmd saddr equals (command [ 1 ] , 0xAA ) ;
594 asser t cmd saddr equals (command [ 2 ] , 0xAA ) ;
595 asser t cmd saddr equals (command [ 3 ] , 0xAA ) ;



596
597 a s s e r t c m d s t a r t s e t (command [ 0 ] , t rue ) ;
598 a s s e r t c m d s t a r t s e t (command [ 1 ] , f a l s e ) ;
599 a s s e r t c m d s t a r t s e t (command [ 2 ] , t rue ) ;
600 a s s e r t c m d s t a r t s e t (command [ 3 ] , f a l s e ) ;
601
602 a s s e r t c m d s t o p s e t (command [ 0 ] , f a l s e ) ;
603 a s s e r t c m d s t o p s e t (command [ 1 ] , f a l s e ) ;
604 a s s e r t c m d s t o p s e t (command [ 2 ] , f a l s e ) ;
605 a s s e r t c m d s t o p s e t (command [ 3 ] , t rue ) ;
606
607 a s s e r t c m d v a l i d s e t (command [ 0 ] , t rue ) ;
608 a s s e r t c m d v a l i d s e t (command [ 1 ] , t rue ) ;
609 a s s e r t c m d v a l i d s e t (command [ 2 ] , t rue ) ;
610 a s s e r t c m d v a l i d s e t (command [ 3 ] , t rue ) ;
611
612 a s s e r t c m d r e a d s e t (command [ 0 ] , t rue ) ;
613 a s s e r t c m d r e a d s e t (command [ 1 ] , t rue ) ;
614 a s s e r t c m d r e a d s e t (command [ 2 ] , t rue ) ;
615 a s s e r t c m d r e a d s e t (command [ 3 ] , t rue ) ;
616
617 a s s e r t c m d r x a c k s e t (command [ 0 ] , t rue ) ;
618 a s s e r t c m d r x a c k s e t (command [ 1 ] , f a l s e ) ;
619 a s s e r t c m d r x a c k s e t (command [ 2 ] , t rue ) ;
620 a s s e r t c m d r x a c k s e t (command [ 3 ] , f a l s e ) ;
621
622 a s s e r t c m d b u f f e r e q u a l s (command [ 0 ] , ( u i n t 8 t ∗ )0 x20 ) ;
623 a s s e r t c m d b u f f e r e q u a l s (command [ 1 ] , ( u i n t 8 t ∗ ) ( 0 x20 + 2 5 5 ) ) ;
624 a s s e r t c m d b u f f e r e q u a l s (command [ 2 ] , ( u i n t 8 t ∗ )0 x2000 ) ;
625 a s s e r t c m d b u f f e r e q u a l s (command [ 3 ] , ( u i n t 8 t ∗ ) ( 0 x2000 + 2 5 5 ) ) ;
626 }
627
628 void i 2 c t r a n s a c t i o n t e s t r u n a l l ( void ) {
629 i r q f l a g s t f l a g s = cpu irq save ( ) ;
630 i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t t x ( ) ;
631 i 2 c t r a n s a c t i o n t e s t s i n g l e c m d s i n g l e b u r s t r x ( ) ;
632 i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t r x ( ) ;
633 i 2 c t r a n s a c t i o n t e s t d o u b l e c m d s i n g l e b u r s t t x ( ) ;
634 i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t t x ( ) ;
635 i 2 c t r a n s a c t i o n t e s t t r i p l e c m d s i n g l e b u r s t r x ( ) ;
636 i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t r x ( ) ;
637 i 2 c t r a n s a c t i o n t e s t t r i p l e c m d d o u b l e b u r s t t x ( ) ;
638 i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x t x ( ) ;
639 i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x r x ( ) ;
640 i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t t x t x ( ) ;
641 i 2 c t r a n s a c t i o n t e s t q u a d c m d d o u b l e b u r s t r x r x ( ) ;
642 c p u i r q r e s t o r e ( f l a g s ) ;
643 }
644



645 s t a t i c void assert cmd empty ( i2c cmd spec t cmd) {
646 i f ( cmd . cmd != 0UL )
647 b u i l t i n b r e a k p o i n t ( ) ;
648 }
649
650 s t a t i c void a s s e r t c m d s t a r t s e t ( i 2c cmd spec t cmd, bool s t a r t ) {
651 bool s t a r t s e t = (cmd . cmd & AVR32 TWIM CMDR START MASK) != 0 ;
652 i f ( s t a r t s e t != s t a r t )
653 b u i l t i n b r e a k p o i n t ( ) ;
654 }
655
656 s t a t i c void a s s e r t c m d s t o p s e t ( i 2c cmd spec t cmd, bool stop ) {
657 bool s t o p s e t = (cmd . cmd & AVR32 TWIM CMDR STOP MASK) != 0 ;
658 i f ( s t o p s e t != stop )
659 b u i l t i n b r e a k p o i n t ( ) ;
660 }
661
662 s t a t i c void a s s e r t c m d v a l i d s e t ( i 2c cmd spec t cmd, bool va l id ) {
663 bool v a l i d s e t = (cmd . cmd & AVR32 TWIM CMDR VALID MASK) != 0 ;
664 i f ( v a l i d s e t != va l id )
665 b u i l t i n b r e a k p o i n t ( ) ;
666 }
667
668 s t a t i c void a s s e r t c m d r e a d s e t ( i 2c cmd spec t cmd, bool read ) {
669 bool r e a d s e t = (cmd . cmd & AVR32 TWIM CMDR READ MASK) != 0 ;
670
671 i f ( r e a d s e t != read )
672 b u i l t i n b r e a k p o i n t ( ) ;
673 }
674
675 s t a t i c void a s s e r t c m d r x a c k s e t ( i 2c cmd spec t cmd, bool a c k l a s t ) {
676 bool a c k l a s t s e t = (cmd . cmd & AVR32 TWIM CMDR ACKLAST MASK) != 0 ;
677
678 i f ( a c k l a s t s e t != a c k l a s t )
679 b u i l t i n b r e a k p o i n t ( ) ;
680 }
681
682 s t a t i c void asser t cmd saddr equals ( i 2c cmd spec t cmd, u i n t 8 t saddr ) {
683 i f ( ( ( cmd . cmd & AVR32 TWIM CMDR SADR MASK) >> AVR32 TWIM CMDR SADR OFFSET) != saddr )
684 b u i l t i n b r e a k p o i n t ( ) ;
685 }
686
687 s t a t i c void a s s e r t c m d b y t e s e q u a l s ( i 2c cmd spec t cmd, u i n t 8 t nbytes ) {
688 i f ( cmd . cmd bytes != nbytes )
689 b u i l t i n b r e a k p o i n t ( ) ;
690
691 i f ( ( ( cmd . cmd & AVR32 TWIM CMDR NBYTES MASK) >> AVR32 TWIM CMDR NBYTES OFFSET) != nbytes )
692 b u i l t i n b r e a k p o i n t ( ) ;
693 }



694
695 s t a t i c void a s s e r t c m d b u f f e r e q u a l s ( i 2c cmd spec t cmd, u i n t 8 t ∗ptr ) {
696 i f ( cmd . b u f f e r != ptr )
697 b u i l t i n b r e a k p o i n t ( ) ;
698 }
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