NTNU - Trondheim
Norwegian University of

Science and Technology

3D Visualization of X-ray Diffraction Data

Thomas Lgfsgaard Falch

Master of Science in Computer Science
Submission date: June 2012

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Dag W. Breiby, IFY

Norwegian University of Science and Technology
Department of Computer and Information Science

3D VISUALIZATION OF X-RAY
DIFFRACTION DATA

Thomas Lgfsgaard Falch

ii

Problem Description

With the introduction of fast area detectors, X-ray diffraction experiments now
routinely yield data sets on the order of several gigabytes when studying nanos-
tructured materials with the method known as ”reciprocal space mapping”. Due
to complicated scattering geometries, the data points do not fall on any grid,
nor is the density of points constant in all directions. These facts, along with
the large data volumes, makes creating meaningful visualizations challenging.
The overall goal of this project is to develop methods to create high-quality
visualizations of three-dimensional X-ray diffraction data. This will be done
by extending and modifying volume rendering techniques such as ray casting.
Due to the computationally intensive nature of the problem, modern multi-core
processors and programmable GPUs will be considered.

Assignment given: 15. January 2012
Supervisor: Anne C. Elster, IDI
Co-supervisor: Dag W. Breiby, IFY

iii

iv

Abstract

X-ray diffraction experiments are used extensively in the sciences to study the
structure, chemical composition and physical properties of materials. The out-
put of such experiments are samples of the diffraction pattern, which essentially
constitutes a 3D unstructured dataset. In this thesis, we develop a method for
visualizing such datasets.

Our visualization method is based on volume ray casting, but operates di-
rectly on the unstructured samples, rather than resampling them to form voxels.
We estimate the intensity of the X-ray diffraction pattern at points along the
rays by interpolation using nearby samples, taking advantage of an octree to
facilitate efficient range search. The method is implemented on both the CPU
and the GPU.

To test our method, actual X-ray diffraction datasets is used, consisting of up
to 120M samples. We are able to generate images of good quality. The rendering
time varies dramatically, between 5 s and 200 s, depending upon dataset, and
settings used. A simple performance model is developed and empirically tested
to better understand this variation. Our implementation scales exceptionally
well to more CPU cores, with a speedup of 5.9 on a 6-core CPU. Furthermore,
the GPU implementation achieves a speedup of around 4.6 compared to the
CPU version.

vi

Sammendrag

Rgntgendiffraksjonseksperimenter er i utstrakt bruk i naturvitenskapene for a
studere stukturen, den kjemiske sammensetnigen, og de fysiske egenskapene
til materialer. Resultatet av slike eksperimenter er punktprgver av diffrak-
sjonsmgnsteret, som i hovedsak er et 3D ustrukturert dataset. I denne oppgaven
utvikler vi en metode for a visualisere slike dataset.

Var visualiseringsmetode er basert pa volumstralekasting, men opererer di-
rekte pa de ustrukturerte punktprgvene, heller enn a repunktprgve dem for &
lage volumelementer. Vi estimerer intensiteten til rentgendiffraksjonsmgnsteret
pa punkter langs stralene ved a interpolere med naerliggned punktprgver, og tar
fordel av et octree for a tilrettelegge for effektive sgk. Metoden blir implementert
bade for CPUer og GPUer.

For a teste metoden var, blir virkelige rgntgendiffraksjonsdataset, bestaende
av opptil 120M punktprgver, brukt. Vi er i stand til a generere bilder med god
kvalitet. Bildedannelsestiden varierer dramatisk, mellom 5 s og 200 s, avhenging
av datasetet og instillingene brukt. En enkel ytelsesmodell blir utviklet og em-
pirisk testet for bedre a forsta denne variasjonen. Var implementasjon skalerer
usedvanlig vel til flere CPU-kjerner, hastigheten gker med en faktor pa 5,9 pa
en 6-kjerne CPU. Videre oppnar GPU-versjon en hastighetsgkning pa omkring
4,5 sammenlignet med CPU-versjonen.

vii

viii

Acknowledgements

This masters thesis is the result of work done at the HPC-lab at the Department
of Computer and Information Science in collaboration with the Department of
Physics at the Norwegian University of Science and Technology.

I would like to thank my supervisor, Dr. Anne C. Elster and my co-
supervisor Dr. Dag Breiby for invaluable feedback and guidance, and for al-
lowing me to work with a problem I found truly interesting. I would also like
to thank PhD candidate Jostein Flgystad for his valuable help and support.

I and Dr. Anne C. Elster would like to thank the Department of Computer
and Information Science, NVIDIA and AMD for their hardware donations to
the HPC-lab, which made this work possible.

I am indebted to my family for their encouragement and support throughout
my studies, and in particular these last hectic months.

Finally, I want to thank the other students at the HPC-lab for creating a
fun, inspiring and motivating work environment, and the Computer Science and
Nanotechnology classes of 2012 for five great years in Trondheim.

Thomas Lgfsgaard Falch
Trondheim, June 2012

ix

Contents

Problem Description iii
Abstract v
Sammendrag vii
Acknowledgements ix
1 Introduction 1
1.1 Outline 3

2 X-ray Diffraction 5
2.1 X-rays Interaction with Matter 5
2.2 X-ray Diffraction Patterns 6
2.3 Experimental Setup oL 7

3 Volume Rendering 11
3.1 Volumetric Data 0. 11
3.2 Indirect Volume Rendering 11
3.3 Direct Volume Rendering Techniques 12
3.3.1 Image Order Techniques 12

3.3.2 Object Order Techniques 14

3.4 The Volume Rendering Integral 14

4 Parallel and GPU Computing 17
4.1 Parallel Computing L o 17
4.1.1 Parallel Computer Architecture 17

4.1.2 Parallel Scaling 18

xi

4.2 GPGPU Computing

4.3

4.2.1
CUDA
4.3.1
4.3.2
4.3.3
4.3.4

CPUs ComparedtoCPUs
Programing Model
Hardware Implementation
Performance Considerations
Maximize Memory Throughput

Multivariate Interpolation

Trilinear Interpolation,
Inverse Distance Weighting
Kriging
Anisotropic Interpolation

5.1
5.2
5.3
5.4

Related Work

Implementation
7.1 Overview
7.1.1 Design Choices
7.2 Preprocessing and Filtering,
7.2.1 Input Data and Preprocessing
7.2.2 Filtering
7.3 Volume Ray Casting
7.3.1 RayCreation
7.3.2 CastingaSingleRay
7.3.3 Optimizations oL
734 Colors
74 Range Search
741 Octree e
7.5 Parallelization oo o
7.6 Interactivity
7.6.1 Incremental Update
GPU Implementation
81 Overview
8.2 Removing Recursion
8.3 Memory Considerations
8.3.1 Precision o
8.3.2 Optimizations,

xii

27
27
28
29
30

35

37
37
39
40
40
41
42
42
43
44
46
47
47
o1
51
52

9 Results and Discussion 61

9.1 Methodology 61
9.1.1 Datasets 61
9.1.2 Testing Environment 62
9.1.3 Measurements Lo 63

9.2 Overview 63

9.3 Filtering 65
9.3.1 Median Filtering 66

9.4 Interpolation oo 66
9.4.1 Interpolation Techniques. 66
9.4.2 Anisotropic Interpolation 68

9.5 Memory Consumption 70

9.6 Performance. 72
9.6.1 Performance Model 73
9.6.2 Performance Results and Discussion 75
9.6.3 Parallel Scaling 80

9.7 GPU e 81
9.7.1 GPU ComparedtoCPU 81
9.7.2 GPU Optimizations 82

10 Conclusion and Future Work 85

10.1 Future Work Lo 86

A RSV User Manual 95

A1l Quick Start 95

A2 Overview e 95
A21 Raycasting 96
A22 Files o 96

A3 Compilation L 97
A.3.1 Dependencies 97
A3.2 Compilation. 98

Ad Use. . . .o 99
A41 InputFile 99
A.4.2 Moving the Camera 100
Ad43 Grid 100
Ad44 HUD. 100
A45 Color 100
A4.6 Saving Images 100
A47 TraceSingle Ray 101

A.4.8 Configuration File
A49 BatchMode.,
A.4.10 Single Image Mode L.
AA411 Quiting
A5 Development

B Transfer Functions
C Selected Source Code

D Poster

Xiv

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Scattering of X-rays oL
X-ray scattering by free electrons
X-ray diffraction experiment setup
Geometry of results of diffraction experiment

Mlustration of volume data
Image order direct volume rendering
Illustration of emission and absorption

Comparison of GPU and CPU
Thread hierarchyo L.

Trililnear interpolation
The effect of rapidly changing functions on interpolation radius .
Anisotropic distance L
Anisotropic functions and interpolation

Overview of implementation
Spatial distribution of input data
Schematic depiction of camera
Illustration of problems with empty space skipping
Illustration of our empty space skipping algorithm
Transfer function
Sample octreeo
Searching in octree L oL oL
Screenshot

7.10 Multi-resolution/incremental update

XV

© 00 N

12
13
15

20
22

8.1

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Al
A2
A3

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Stack optimization oL oo 57

Visualization of the 27uc dataset 63
Visualization of the 00571 dataset 64
Results of filtering o 65
Visual results of different interpolation methods. 67
Effect of varying radius and anisotropic matrix 69
Memory consumptiono 71
Octreedepth o 71
Timing results with varying search radius 76
Timing results with varying step size 76
Timing results for different interpolation methods 7
Timing results for filtering 79
Timing results with varying transfer function 79
Speedup with more threads 80
Speedupon GPU 81
Results of GPU optimizations 83
Raycasting 96
Schematic overview of raycastingin2D 97
Callgraph 107
Transfer function f1 oL oo 109
Transfer function 2 L. 109
Transfer function t1 110
Transfer function t2 L oL 110
Transfer function t3 L oL 110
Transfer function t4 Lo o 110
Transfer function t5 L 110

Xvi

List of Tables

9.1
9.2
9.3
9.4

Hardware and software used in tests 62
Settings used in Figure 9.5 68
Tree depth, and memory consumption 72
Timing results Lo 73

xvii

xviii

Chapter 1

Introduction

X-rays are perhaps best known for their application in medicine. However, X-
rays are also extensively used in the sciences to study the structure, chemical
composition and physical properties of materials. In one kind of experiment, an
X-ray beam is directed onto a sample of a material, and measurements of how
the material scatters, or spreads, the X-rays are made. The outcome of these
experiments is essentially samples of a three-dimensional scalar field, known as
the diffraction pattern.

It is difficult to analyze these samples of the diffraction pattern automati-
cally. To extract information about the material being studied, it is necessary
to visualize the diffraction pattern and let experts interpret the resulting im-
ages. The ability to turn the measured data into high quality visualizations is
therefore of great importance.

When the data is two-dimensional, generating such images is trivial. How-
ever, recent advances in sensor technology has made it possible to perform
measurements much more efficiently. This has led to an increasing number of
three-dimensional datasets. Visualizing this kind of data remains a challenge.

One approach is to visualize two-dimensional slices of these datasets. While
simple, the utility of the images generated with this method remains limited,
as much mental effort is required to reconstruct the full, three-dimensional,
diffraction pattern.

A better solution is to visualize the three-dimensional data directly. While
techniques and tools exists for visualizing three dimensional datasets of scien-
tific origin, the nature of the X-ray data makes most of them unsuitable. For
practical reasons, the diffraction pattern cannot be sampled on a uniform gird.

Hence, the data is not in the form of voxels, but rather in what can essentially
be regarded as an unstructured ’'cloud’ of samples. To complicate matters fur-
ther, the samples are not uniformly distributed, but organized in layers, where
the distance between different layers is significantly larger than the distance
between points in the same layer. The sheer size of the datasets also present a
challenge, they frequently consists of millions of samples, resulting in gigabytes
of raw data.

Since their invention, computers have been an indispensable aid for the sci-
ences, making problems involving massive amounts of numerical computation
possible to solve. As the preceding discussion hints at, and the remainder of
this thesis will make clear in more detail, visualizing 3D diffraction patterns
is one such problem. Previously, the most demanding problems required spe-
cialized and costly computers. However, the continued validity of Moore’s law
has made consumer grade hardware ever more capable. In particular, modern,
programable graphical processing units (GPUs) have brought teraFLOPS scale
computing to the PC [1].

While originally developed to render 3D graphics for games and similar ap-
plications, GPUs have recently emerged as a compelling alternative to the CPU
for general purpose computations. The GPU is designed for a special kind of
workload, those that combine high degrees of parallelism with high computa-
tional intensity, making it ideally suited for scientific computing.

In this thesis, we tackle the problem of creating 3D visualizations of X-ray
diffraction data. Our main goal is to generate images of the highest possible
visual quality. In order to be useful for scientists analysing the results of X-
ray diffraction experiments, the generated images must accurately depict the
diffraction pattern, and be free of artefacts. Furthermore, we aim at making
our method and implementation as flexible and adjustable as possible, so that
it can successfully be used for datasets with varying properties, and to highlight
different parts of the same dataset.

A secondary goal is to achieve good performance. This includes both se-
lecting an efficient rendering algorithm using fast data structures, and also de-
veloping a high performing, optimized, implementation. In particular, we are
interested in how modern, programmable GPUs can be used.

Finally, realizing that the two previous goals are somewhat conflicting, we
attempt to find ways to dynamically trade of speed for performance, thus allow-
ing a low quality overview of the diffraction pattern to be rendered at interactive
or even real time speed. This can be highly useful to quickly find good camera
positions and settings, without having to wait for the slow, high quality images
to become ready.

1.1 Outline

This thesis is structured as follows:

Chapter 2 provides background information about X-rays, X-ray scattering
and diffraction, and X-ray diffraction patterns.

Chapter 3 provides background information about direct volume rendering,
with an emphasis on volume ray casting.

Chapter 4 provides background information about parallel computing, general
purpose GPU computing, and NVIDIA’s CUDA framework.

Chapter 5 provides background information about multivariate interpolation
of unstructured samples, and anisotropic interpolation.

Chapter 6 describes previous and related work in the fields of GPGPU com-
putation, and direct volume rendering, with an emphasis on rendering of
unstructured data.

Chapter 7 describes our implementation of a method using volume ray casting
to visualize 3D X-ray diffraction patterns.

Chapter 8 describes how we modified our implementation to allow it to run
on graphical processing units, using NVIDIA’s CUDA framework.

Chapter 9 describes the performance results of our tool, both in terms of speed
and image quality, and discusses these results.

Chapter 10 concludes, and discusses possible future work.

Appendix A contains the user manual for the tool we have implemented.
Appendix B lists the transfer functions used in some of our experiments.
Appendix C contains selected source code.

Appendix D contains a poster summarizing this thesis, to be displayed at the
International Supercomputing Conference 2012.

Chapter 2
X-ray Diffraction

This chapter provides an introduction to X-rays, X-ray scattering and diffrac-
tion, and X-ray diffraction patterns. The remainder of this thesis describes how
to visualize results from X-ray diffraction experiments, so an understanding of
the origin of the data is vital for the full appreciation of the material. We will
not attempt to cover this vast field in any detail, but rather provide a simple
introduction aimed at the non-expert. The interested reader is referred to the
extensive literature on the subject, see for instance [2] or [3].

2.1 X-rays Interaction with Matter

X-rays are electromagnetic waves with a wavelength in the range of 0.01 - 10 nm.
While perhaps best known for their application in medicine, X-rays are also used
extensively to study the structure, chemical composition and physical properties
of materials. The wavelength of X-rays has the same order of magnitude as
the distance between atoms and molecules in most common materials. For
this reason, X-rays passing though a sample of a material will be scattered,
that is, spread in new and different directions relative to the original beam, as
illustrated in Figure 2.1. Measuring how the X-rays are scattered will reveal
valuable information about the sample.

When X-rays interact with matter, sevaral phenomena occur, which account
for the above mentioned scattering. For simplicity, we will limit our discussion
to elastic scattering, which we explain next.

When a sample is hit by an X-ray beam, each of the charged particles, such

7/<

Figure 2.1: The X-rays of the incident beam are scattered as they pass through the
sample.

as electrons, in the sample will experience the time varying electrical field of
the X-rays. The varying electrical field will cause the particles to oscillate.
The oscillation will cause each of the charged particles to give rise to its own
electromagnetic field, with the same wavelength as the waves originally causing
the oscillation. That is, each particle becomes an X-ray source.

This concept is illustrated in Figure 2.2. The incoming X-rays, the wave
crests of which are shown in dark gray, cause the two charged particles at a
and b to oscillate. The oscillating electrons give rise to two new spherical X-ray
waves, spreading out from the electrons.

The incoming X-ray wave and the new waves will combine to form a com-
posite wave which will be the superimposition of the individual waves. In some
directions the waves will cancel each other out, in others combine constructively.
Measuring the composite wave will therefore result in a diffraction pattern.

2.2 X-ray Diffraction Patterns

The diffraction pattern is essentially the intensity of the scattered X-rays as
a function of the direction of scattering. This direction is specified by the
scattering vector Q which is defined as Q = k, — k;. Here k; is the direction
of the incoming beam, while k,. is the direction of the outgoing, scattered wave.
Both of these have the same length, that is: |k;| = |k,| = 2%, where X is the
wavelength of the X-rays. This is illustrated in Figure 9.1.

While the derivation is beyond the scope of this exposition, it can be shown
that:

Figure 2.2: Illustration of X-ray scattering by free electrons. The incoming X-rays,
indicated by the dark gray, straight lines, cause the electrons at a and b to oscillate,
and send out their own X-ray waves, indicated by the concentric, light gray, circles.

1(Q) = A(Q)A(Q)

Where p(r) is the electron density of the sample, and A(Q) is the amplitude
and I(Q) the intensity of the scattered wave. That is, the diffraction pattern
is essentially the Fourier transform of the electron density of the sample. This
relationship is at the heart of X-ray diffraction analysis, making it possible to
relate the diffraction pattern to the structure and properties of the sample.

2.3 Experimental Setup

Figure 9.1 shows the setup of the kinds of experiments performed to generate
the data we use as input for the tool described in this thesis [4, 5]. A 2D sensor
array is used to measure the scattered X-rays from a beam incident on the
sample. For each pixel in the array, the corresponding scattering vector can be
computed, to obtain a set of samples of the diffraction pattern. By rotating the

7

sensor array relative to the sample and beam, or rotating the sample relatitive
to the beam and sensor array, a new set of diffraction pattern samples can be
gathered.

Detector

X-ray source

Sample

Figure 2.3: X-ray diffraction experiment setup. X-rays from the source hits the
sample, and are scattered. The scattered X-rays are meassured with an area detector.
Each pixel in the sensor has a coresponding scattering vector Q

The samples will then have the form (Q, Qy,@-,I) where Q,, Q, and Q.
are the coordinates of the scattering vector Q, and I is the measured intensity.
The samples can be thought of as points in 3D space, with an attached intensity
value.

Because of the geometry of the setup, all the samples from one frame will
be placed on the same curved surface in 3D space, as shown in Figure 2.4.
Measuring multiple frames will result in multiple surfaces, each with a slightly
different curvature. For practical reasons, the distance between two such sur-
faces will be greater than the distance between two neighbouring samples on
the same surface.

>

Figure 2.4: All the sets of samples from one frame will fall on the same curved
surface. Here, three such curved surfaces are shown, in different colors, with the
samples belonging to each surface indicated in the same color. The shape of different
surfaces is not identical.

10

Chapter 3

Volume Rendering

Volume rendering is the process of generating a 2D image of a 3D volumetric
dataset. In this chapter, we examine some volume rendering techniques, with a
special emphasis on volume ray casting, which is the method we use.

3.1 Volumetric Data

Volumetric data is a set of samples of the form (z,y, z,v), where v is the value
of some property at the location (x,y, z) in 3D space. In general, the samples
may be taken at random locations. However, it is frequently the case that the
samples are taken on a regular three-dimensional grid. The latter case will result
in a set of vozels'. A voxel is a cubic volume element corresponding to a sample
at its center. Volumetric data is illustrated in Figure 3.1.

Volumetric datasets arise frequently in medicine and the sciences. Some
examples include stacks of 2D magnetic resonance imaging (MRI) and computed
tomography (CT) scans, the results of numerical simulations using finite element
methods, and geological, seismic and meteorological data.

3.2 Indirect Volume Rendering

Before proceeding to volume rendering proper, it should be noted that it is
frequently possible to render volumetric datasets by converting it into, or ex-

From volumetric pixel, or volumetric picture element.

11

(a)

Figure 3.1: Tllustration of volume data. (a) shows unstructured data, where the
samples are taken at random locations. (b) shows samples taken on a uniform grid.
(c) shows a voxel representation of the samples from (b), that is, (b) and (¢) show
different representations of the same data. Different shades of blue indicate different
values of the sampled property.

tracting from it, geometric primitives, and then render those primitives using
standard techniques. An example of this is isosurface extraction. The set of
samples is partitioned by a binary classifier in an application dependent way,
for instance into a high-intensity and low-intensity partition. The interface be-
tween the partitions is then rendered as a polygonal mesh, using an algorithm
like marching cubes [6]. Such techniques are effectively discarding much of the
information in the 3D dataset, resulting in inferior images. In particular, ob-
jects without a clearly defined surface, such as clouds or flames, are a poor fit
for this kind of rendering.

3.3 Direct Volume Rendering Techniques

Following [7], direct volume rendering techniques can broadly be classified into
image order and object order techniques. Image order techniques starts with
the pixels, and determines, for each pixel, which samples will influence its value.
Object order techniques starts with the samples, and determines, for each sam-
ple, the pixels whose values it will influence.

3.3.1 Image Order Techniques

All image order techniques share the same framework, as illustrated in Figure
3.2. Form an eye/camera, rays of sight are cast, through each pixel, and into
the volume. At points along the ray samples of the value of the volume will be

12

obtained, using some kind of interpolation. The estimates at the points are then
mapped to color and opacity values, and finally combined to obtain the color of
the pixel. It is in this last step that the techniques vary. Some alternatives are:

X-ray The values of the samples are simply summed, and the sum mapped to
a color.

Maximum intensity projection The sample with the highest value along
each ray is mapped to a color. All other samples along the ray are dis-
carded [8]. A variation, local maximum intensity projection, uses the first
value along the ray above a certain threshold, rather than the global max-
imum [9].

Full volume ray casting All of the samples along a ray are combined to find
the color of the corresponding pixel. Different techniques with varying
degrees of sophistication exists for performing the combination.

Full volume ray casting, commonly referred to as just ray casting or ray
marching, is clearly the most capable and flexible of these, and have been widely
used and studied [10, 11, 7].

Eye/camera image

r;y\

/

Figure 3.2: The standard image order direct volume rendering framework. From a

Volume

eye/camera, rays are cast through each pixel and into the volume. The value of the
volume along the ray is used to determine the color of the pixel.

13

3.3.2 Object Order Techniques

In object order techniques, each sample is projected onto the screen, and as-
sembled into a final image. Several different techniques exists, which we will
describe in the following.

Splatting

One object-order technique is splatting [12]. Here, an image plane footprint is
calculated for each sample. The samples are traversed in either front-to-back or
back-to-front order, and each new footprint is composited into an incrementally
updated buffer.

Shear-Warp Factorization

The basic idea of shear-warp factorization [13] is to transform the volume into
an intermediate form where projection is simpler. In more detail, the view
transformation matrix, which transforms samples from volume to image space
is factorized:

M'uiew =5 Mwa'rp

S shears the volume so that the front face of the volume is parallel with the
image plane. The volume is then projected onto the image, and the image is
warped with M,,qrp to correct for the distortion caused by the shear.

Texture Mapping

Texture mapping [14] works by cutting slices through the volume, parallel to
the image plane. The volume is then sampled to find the values at each of the
pixels of the slices. Finally, the slices are composited together to form the final
image. The technique resembles shear-warp factorization, but the volume is
not sheared prior to cutting the slices, so in general, they are not parallel with
any face of the volume. Texture mapping can be done in hardware on GPU’s
[15, 16].

3.4 The Volume Rendering Integral

As described above, during full volume ray casting, it is necessary to combine
all the samples along a ray to determine the color value of the corresponding

14

pixel. This can be done by evaluating the volume rendering integral [17] along
the ray.

In the following, the simple emission-absorption optical model is assumed.
Each point in the volume emit and absorb certain amounts of light. More
advanced models, taking into account effects such as scattering and indirect
illumination, exists [18, 17], but will not be presented here.

Furthermore it is initially assumed that the volume is continuous. This
assumption will be relaxed later.

Let x(t) denote a ray, parameterized by ¢, the distance from the eye. Then
s(x(t)) is the scalar value, ¢(s(x(t))) the emitted light and x(s(x(¢))) the ab-
sorbed light a distance ¢ form the eye along the ray. For notational convenience,
we define:

0 t=d

t

Figure 3.3: Illustration of emission and absorption. Some of the light emitted at
t = d will be absorbed along the way to the eye. Figure from [17].

If ¢ light is emitted a distance d from the eye, only a part of it, ¢’ will reach
the eye, the remainder will be absorbed along the way, as shown in Figure 3.3.
If constant absorption of k is assumed, then:

If, however, the absorption varies, it must be integrated along the ray:
¢ = .o Jo rDat

This is the contribution to the total amount of light reaching the eye along
the ray from a single point. The total amount C can be found by integrating
over all the points along the ray:

15

N Lo
C= / c(t) - e Jo wDydt gy
0

Where N is the distance from the eye to the most distant point in the volume.
This is the volume rendering integral.
In practice this integral cannot be evaluated analytically, but must be ap-
proximated numerically. Letting
C; = c(i- At)At

and

the integral can be approximated using the standard rectangle method:

9

C~ anci e im0 K — Zn:(]i . HB*K]‘
=0 i=0

=0

Here, C; can be thought of as the light emitted , while e=%J is the light
absorbed, by a small ray segment. Rather than specifying absorption, it is more
common to use opacity, defined as:

Ai = 1 — 6Ki
which results in:

n 1
i=0 j=0
If the volume consists of discrete samples, rather than being continuous, as
assumed so far, neither ¢(t) nor k(t) can be found directly. One approach is to
find these values based on the known samples, using interpolation. Multivariate
interpolation is discussed in detail in Chapter 5.

16

Chapter 4

Parallel and GPU
Computing

A recent trend in high performance computing is using graphics processing
units for general purpose computation (GPGPU) [19, 20]. GPUs are massively
parallel computational units. Combining high computational power, low cost
and energy efficiency, GPUs offer a compelling alternative to CPUs for compute
intensive tasks.

In this chapter we first provide a short introduction to parallel computing in
general. We then proceed to introduce general purpose GPU computing, and
explore NVIDIA’s CUDA GPGPU framework in some detail.

4.1 Parallel Computing

Here, we will briefly introduce some concepts of parallel computing. More details
can be found in our previous work [21], or in standard textbooks, such as [22].

4.1.1 Parallel Computer Architecture

There are several ways of classifying parallel computers. Firstly, we might look
at the relationship between memory and compute units:

Shared memory In this type of computer, all the compute units access the
same shared memory, and can use this memory for communication.

17

Distributed memory Each compute unit has its own private memory. Com-
munication must be performed through explicit message passing.

Another classification scheme, known as Flynn’s taxonomy [23], looks at the
relationship between instruction and data streams:

Single Instruction, Single Data stream (SISD) These are nonparallel com-
puters, where one processor uses one instruction stream to operate upon
one data stream.

Multiple Instruction, Multiple Data streams (MIMD) This is essentially
a combination of several SISD computers. Each compute units uses one
instruction stream to operate on one data stream.

Single Instruction, Multiple Data streams (MIMD) Here, each compute
unit uses the same instruction stream to operate upon different instruction
streams, typically in lockstep.

The final combination, Multiple Instruction, Single Data stream (MISD) is
of little practical interest.

4.1.2 Parallel Scaling

Ideally, increasing the number of processing units by a factor of n should de-
crease the computation time by the same factor. Most problems are, however
not perfectly parallelizable, so more sophisticated models are required.

First we define parallel speedup as:

S = Tserial
Tparullel

Where Tieriqr and Tparaiier is the serial and parallel execution time, respec-
tively. Given a problem consisting of a serial part which cannot be parallelized,
and a perfectly parallelizable part, the speedup as a function of the number of
processors is:

S = Teem’al o s+p o 1
Tpa’r‘allel s+ % (1 - p) + %

Where s is the fraction of execution time spent on the serial part, p=1—s
the fraction spent on the parallel part (on a serial computer) and N is the
number of processors. This result is known as Amdahl’s law [24].

18

We might instead start with s’ and p’, the fraction of time spent on the serial

and parallel parts on a parallel computer, respectively. The speedup will then
be:

Tserial o s’ +p/ N
T

parallel s’ + pl

S = =s'+p N

This result is known as Gustafson’s law [25]. While apparently contradictory,
it is important emphasize that Amdahl’s and Gustafson’s laws are equivalent,
because s is not equal to s’. The two laws are based on different assumptions,
Amdahl assumes that as the computer becomes more parallel, it will still be used
to run the same problem. Gustafson assumes that the more parallel computer
will be used on a larger instance of the problem.

4.2 GPGPU Computing

Graphics processing units were developed to accelerate the rendering of 2D, and
later 3D graphics. This is a highly parallel task. The input, a list of geometric
primitives, typically triangles, must be shaded and converted into screen space.
This can be done independently for each vertex of each triangle. The triangles
are then rasterized to fragments. Each fragment must then be shaded, and
possibly textured. This can also be done in parallel for each fragment. Finally,
all the fragments of one pixel are composited to find the color of that pixel.

Originally, GPUs were fixed function units. However, to satisfy the demand
for better and more photorealistic graphics, they gradually became more config-
urable and programmable. In particular, the fixed per-vertex and per-fragment
operations were replaced with shader programs, which would be executed once
for each vertex or fragment.

As the programmability as well as the computational power of GPUs grew,
it was realized that they could be used for other things than graphics. Initially,
this was done rather awkwardly, by mapping the input to graphics primitives,
the computation to shader programs, and the output to one or more images.

Soon, programing environments were developed that abstracted away the
graphics details. At the same time, the underlying hardware became ever more
flexible, and the combination allowed the GPU to be used as a general purpose,
highly parallel, processor.

19

4.2.1 CPUs Compared to CPUs

While both are capable of general purpose computation, the hardware archi-
tecture of GPUs and CPUs differ dramatically. This is illustrated in Figure
4.1.

Control ALU ALU

CPU GPU

Figure 4.1: Comparison of GPU and CPU architecture. In a CPU, a large fraction
of the transistors are used for flow-of-control logic and caches. GPUs, on the other
hand, devote most of the transistors to computation. Figure from [1].

CPUs have traditionally been optimized to increase the performance and
reduce the latency of a single thread. For this reason, a large number of the
available transistors are used to implement advanced flow of control mechanisms
such as branch prediction and out-of-order execution. Furthermore, large caches
are used to reduce memory access latency. While modern CPUs have multiple
cores, each of these are fairly independent, targeted at task parallelism.

As described above, graphics rendering is a highly parallel task. GPUs
have therefore been designed to maximize the throughput of a large number
of threads, at the expense of the performance of any single thread. As a con-
sequence of this goal, GPUs devote a larger parts of the transistors to actual
computation, sacrificing caches and flow-of-control logic. Thread switching is in-
expensive, so latency can be hidden by simply executing another thread. While
modern CPUs have 2-8 cores, modern GPUs have several hundred [1]. To reduce
the amount of control logic even further, these cores are organized into groups,
where all the cores in the group execute the same instruction, on different data.
GPUs are therefore best suited for data parallel problems.

Since GPUs and CPUs have different memory spaces (this will be described
in more detail in Section 4.3), referring to Section 4.1 above, it is clear that
a system with a CPU and GPU is essentially a distributed memory computer
with two nodes, the CPU and GPU. Each of these nodes can be considered a
shared memory computer. Furthermore, such a heterogeneous system will be

20

beneficial for application performance. Referring to Amdahl’s law, the serially
oriented CPU can be used to reduce s, while the GPU increases N. Thus, the
two platforms complement each other.

4.3 CUDA

Released in 2006, NVIDIA’s Compute Unified Device Architecture (CUDA) is a
parallel computing architecture that allows developers to use a modified version
on C to do general purpose computation on GPUs [1]. In this section, we will
briefly describe the CUDA programing model.

4.3.1 Programing Model

The CUDA programing model is based upon the SPMD paradigm, where the
same program is executed in parallel on several data items. While resembling
the SIMD paradigm, described in Section 4.1, SPMD is more flexible. Rather
than having the same instructions performed on all the data in lock-step, SPMD
allows for branching and loops.

Kernels

The program that is executed on the different data items is known as a ker-
nel. Kernels are structured like regular functions, but are executed N times in
parallel by N different threads. Each kernel is given a unique thread id that
allows it to identify the data to operate on. A simple kernel, which multiplies
the elements of two arrays are shown in listing A.1.

Thread Hierarchy

As described above, the kernel is executed by N threads in parallel. The number
N typically depends upon the input data size. All the threads are part of a one-
, two- or three-dimensional block of threads. The blocks are organised into a
one-, two- or three-dimensional grid of thread blocks. The thread hierarchy
is illustrated in Figure 4.2. Threads in the same block can perform simple
synchronization, threads in different blocks cannot synchronize.

21

© 0 N e U oR W N e

=
= o

__global__ multVectors(int* a, int* b, int* c){
int i = threadIdx.x;
c[i]l = al[i]l * b[il;

}

int main (){

//execute 1 block of N threads
multVectors<<<1, N>>>(a,b,c);

}

Listing 4.1: Sample kernel multiplies the elements of two arrays. The kernel proper
is the function on lines 1-4. The kernel is launched on line 9. The triple chevron
syntax is used to indicate the number of blocks and the number of threads per block.

Grid

Block (0, 0) ' Block (1,0) | Block (2, 0)

Block (0, 1" Block (1,1) "Block (2, 1)

Figure 4.2: Illustration of thread hierarchy. Each grid consists of several blocks,
and each blocks consists of several threads. Figure from [1].

22

Memory Hierarchy

The GPU has access to memory in two different physical locations: fast on
chip memory, and slower, off chip (but on the graphics card) memory, known
as device memory. In addition, there is the computers main memory, which
the GPU cannot access. The CPU has to explicitly copy data from the main
memory to the GPU memory before the GPU can start computing.

The two physical memory locations are divided into several logical memory
spaces, with different properties. In addition the per thread, on chip, registers,
there are:

Local Each threads has private local memory, with the same lifetime as the
thread. Local refers to visibility, not location, as it is placed in device
memory.

Shared All the threads in a block have access to shared memory, with the same
lifetime as the block. Is in fast, on chip memory.

Global Global memory is visible to all the threads in block, and persists across
kernel launches. Is in device memory.

Texture Read-only memory optimized for sequential access. The data is in
device memory, but is cached.

Constant Read-only memory optimized for simultaneous access by different
threads. The data is in device memory, but is cached.

Similar to global memory, texture and constant memory are visible to all
threads, and persist across kernel launches.

4.3.2 Hardware Implementation

As described above, GPU cores are organized into units that execute the same
instructions in lock-step. In CUDA parlance, these units are known as streaming
multiprocessors (SM). Each SM consists of several processing cores (known as
CUDA cores), some special function units, a register file, shared memory and
shared control logic.

At runtime, each SM is assigned a number of blocks, which it executes
concurrently. If the number of blocks exceeds the combined capacity of all the
SMs, some blocks may be queued. In more detail, the threads of each block
is partitioned into groups of 32, known as warps, and scheduled for execution.

23

When executed, each thread in the warp is issued the same instruction. If
branches are encountered, each path is executed serially, with those threads
taking other paths disabled. In this way, the SIMD nature of the SM are hidden
from the programmer.

4.3.3 Performance Considerations

The performance of CUDA kernels is highly sensitive to small changes in the
program [26]. Following [1] and [27], we will here discuss two key topics when
optimizing for performance on the GPU.

Maximize Utilization

At a high level, maximizing utilization includes dividing work between the GPU
and CPU, and overlapping the computation on the CPU with either computa-
tion on the GPU or transfer of data between the GPU and CPU.

On a lower level, it is important to maximize the occupancy of the SMs.
Rather than using deep pipelines, and caches to hide latency, GPUs simply issue
instructions from other threads. Having a high number of threads available and
ready for execution is therefore vital. Occupancy, defined as the ratio of resident
warps to the highest allowable number of resident warps should therefore be
maximized. Each SM has a fixed number of registers and amount of shared
memory, and it can only host an integer number of blocks at the same time.
Hence, the occupancy depends upon the number of registers used by each thread,
the amount of shared memory used by each block, and the number of threads
in a block. This is best illustrated with an example.

The Tesla C1060 GPU has 16 K registers, and 16 KB of shared memory. If
each thread uses 16 registers, there are 512 threads per block, and no shared
memory is used, each SM can host 16K /16 = 1024 threads, that is 2 blocks or
1024/32 = 32 warps, which is the maximum, resulting in a occupancy of 100%.

If the register usage is increased to 17, each SM can only host 16 K/17 = 936
threads. This is not enough for 2 full blocks, so it can therefore only host 1
thread block of 512 threads, giving an occupancy of 50%.

4.3.4 Maximize Memory Throughput

Maximizing memory throughput involves two key steps. Firstly, low throughput
memory accesses should be avoided. Secondly, the most efficient memory access
patterns for the given type of memory should be employed.

24

The first step involves minimizing the data transfer between the host and
device, which have low bandwidth. Furthermore, the usage of global and local
memory, both of which are physically located in slow, off-chip, and on older de-
vices non-cached, DRAM memory should be minimized, while shared memory,
which is on chip and hence faster should be employed to a as large degree as
possible. In particular, shared memory can often be used as a user managed
cache. Finally, texture memory, while being located in off-chip DRAM mem-
ory, is cached, and optimized for certain access patterns. It can therefore be
beneficial to use it in certain scenarios.

The second step involves changing the memory access patterns to better fit
the type of memory. Global memory accesses are coalesced, so if threads of the
same warp access a contiguous area, this results in fewer memory transactions,
compared to a situation where the accesses of the threads are spread. Further-
more, the minimum transaction size is 32 bytes. Unless it can be coalesced with
other accesses, reading a 4 byte integer will therefore result in reading 32 bytes,
effectively reducing throughput by a factor of 8.

25

26

Chapter 5

Multivariate Interpolation

Interpolation is a method of finding the value of some unknown function f(z)
at a new z given the value of f at several other x-values, xg, z1, ..., z, [28]. In
general, x might be a vector, as in our case, where we need to find the value
of the diffraction pattern I(Q) at locations along rays, given only samples of [
at other locations. In this chapter, we examine some methods for multivariate
interpolation.

5.1 Trilinear Interpolation

If the samples are on a uniform grid, that is, in the form of voxels, trilinear
interpolation [29] can be used. In essence, it performs linear interpolation three
times in a row, using the eight surrounding samples of the interpolated point.

Referring to Figure 5.1, given the eight samples taken at zq,z1, ..., x7, with
values D(zg), D(x1), ..., D(27), the unknown value D(x14) at x14 is interpolated
by first calculating:

D(xg) = l(xo, z1,78) D(xg) = l(z2, 23, 29)
D(x10) = l(w4, 25, 210) D(x11) = l(z6, 7, 211)

These values are then used to calculate:

D(z12) = l(zs, 29, 212) D(z13) = l(z10, 11, Z13)

And finally:

27

X7 X11 Xe

\ x&
X4 X1 Xs
X14
X,
X 9\ Xz
Xlz\
Xo Xg X3

Figure 5.1: Illustration of trilinear interpolation. zo to x7 are the points with known
values, and x14 the interpolated point.

D(x14) = l(712, 713, T14)
Here [(xz,y, z) is linear interpolation at z using known values at = and y:
D(z) - d(x, 2) + D(y) - d(y, 2)
d(z,y)

Where d(z,y) is the euclidean distance. Modern graphics cards can do tri-
linear interpolation in hardware.

Uz, y,2) =

5.2 Inverse Distance Weighting

Inverse distance weighting, [30] is another multivariate interpolation technique.
As opposed to trilinear interpolation, it does not require the samples to be on a
regular grid, but works for any kind of irregularly spaced data. The main idea
is that the value at the interpolated point is a weighted average of the samples,
where the weights are inversely proportional to the distance between the sample
and the interpolated point.

Given N samples taken at x1, xo, ..., xy with values D1, Ds, ..., Dy, the in-
terpolated value at the point z is:

N
@) = Z w; () D;

i=1 Z;V:1 wj(z)

where

28

1

with d(z;,) being the euclidean distance between x and z;.

The value of the exponent u can be varied to change the behaviour of the
algorithm. High values of u assigns higher weights to close samples and lower
weights to distant samples compared to low values of u.

One variation of the basic IDW method described so far is to only use the
samples close to a interpolated point, rather than all the samples. This might
be done either because the distant points are considered to not carry any infor-
mation about the value at the interpolated point, as discussed further in Section
5.4, or simply to reduce the required computational effort.

Close samples can be defined as either all those within some radius r of the
interpolated point, as the n nearest neighbours of the interpolated point, or
some combination.

5.3 Kriging

Kriging! [31] is a family of interpolation techniques where the value at the
interpolated point is a weighted average of the samples, and the weights are
chosen to minimize the error of the prediction.

In particular, it is assumed that the N samples, taken at x1, zs, ..., xny with
values z(x1), z(x2), ..., 2(xn) are the realizations of a stochastic process Z(x).
To find the unknown value at the point z, kriging computes a predictor Z (z0)
of Z(xo) given by:

N

Z(xo) = Z Xi(zo)z(xs)

i=1

where the weights \;(z¢) (henceforth denoted simply A;) are chosen such
that the variance of the prediction error:

Var(Z(zog — Z(x0))

is minimized. The details of how this is done depends upon the assumptions
made about Z, the stochastic process. In the following we present ordinary

INamed after Daniel Gerhardus Krige, who pioneered the technique.

29

kriging, which assumes that the mean p, of Z is unknown, but constant, and
that the covariance function of Z is known.
Ordinary kriging adds the additional constraint of unbiasedness:

N
> Ai=0
=1

The weights minimizing the variance can then be found using the method
of Lagrange multipliers, resulting in the equation system:

-1

A y(z1, 1) - y(w,an) 1 Y(z1,0)
AN Y(zn,z1) - y(en,zn) 1 Y(N, z0)
p 1 1 0 1

Here, ~ is the semivariogram of Z, (2~ is the variogram) which, under the
assumptions of ordinary kriging, is related to the covariance as follows:

2v(z;, z;) = Cov(z;, x;) + Cov(zj, x;) — 2Cov(z;, ;)

As is evident from the relationship with the covariance function, the vari-
ogram is used to describe how related the value at two locations are. In practice
it is rarely known, and must be estimated from the samples, or simply guessed.

5.4 Anisotropic Interpolation

Anisotropy refers to the property of being directionally dependent. In anisotropic
interpolation [32, 33] the influence of a sample on the interpolated point depends
not only on the distance to and value of the sample, but also the direction.

Both kriging and IDW, as well as some other interpolation techniques, are
essentially weighted averages of samples, having the general form:

N
f(z) = Z w; D;
i=1
Where w; is the weight assigned to the sample at x; with value D;.

The weight assigned to a sample reflects the assumed similarity of the sample
and the value at the interpolated point. A large weight indicates that it is

30

believed that the value at the interpolated point is similar to the sample, while
a small weight indicates the opposite.

i s i s

Figure 5.2: In the rapidly changing function on the left, the sample at s has little
information about the value at the interpolated point i. In the slowly changing function
on the right, the sample carries more information.

In general, it is natural to assume that similarity depends upon distance, so
that samples close to the interpolation point should be assigned high weights.
What should be regarded as close depends upon how rapidly the underlying
function varies. If the underlying function changes rapidly, the values of distant
samples are probably weakly related to the value at the interpolated point.
Hence, close samples should be assigned higher weights relative to more distant
ones. If, on the other hand, the underlying function changes slowly, more of
the weight should be shifted to distant samples. This concept is illustrated in
Figure 5.2.

In IDW, information about how the underlying function changes can be
incorporated by adjusting the power parameter u or the radius r. Increasing
or reducing r assigns more weight to close samples.

In some cases, it might be known that the underlying function changes more
rapidly in one direction than in another. An example of such a function is shown
if Figure 5.4. If that is the case, the weight assigned to a sample should not
depend only on the distance, but also the direction. A distant sample in the
direction of rapid change should be assigned less weight compared to a equally
distant sample in the direction of slow change.

In both IDW and kriging, this can easily be achieved by using a anisotropic
distance metric, rather than the standard euclidean distance metric. The anisotropic
distance between two points x and y can be defined as:

31

a

dap L_:a\

: d.. =6.71
d'ap =3 d',. = 3.55
\ dpc =6 *,
b d'ye = 1.90 [«
Figure 5.3: The euclidean, denoted by d,, and anisotropic, denoted by d;y, distance

between three points, with A = [0.1,0;0,1]. This A compacts the x-axis.

d.(x,y) = Vd’Ad

Where d = x—y is the vector defined by the points, and A is a N % N matrix
specifying the anisotropy, with N being the dimensionality of the points. If A is
an identity matrix, this is the same as euclidean distance. Using other matrices
can ”compact” or "expand” different directions.

This is best explained with a concrete example. Figure 5.3 shows three
points, a = (0,3), b = (0,0), and ¢ = (6,0). The euclidean distances between
the points are dq, = 3, dp. = 6 and d,. = 6.71. Using the anisotropic matrix

0.1 0
=% 1]

The anisotropic distances becomes:

'y =10.1-02+32=3
r=+/0.1-62+02 =1.90
'y =1/0.1-62 432 =355

Figure 5.4 illustrates the utility of anisotropic interpolation in a situation
where the underlying function changes more rapidly in one direction than in
another.

32

A B
C D

Figure 5.4: Ilustration of anisotropic functions and interpolation. A is the original
function, and B-D are reconstructions from 500 uniformly distributed samples using
IDW with v = 2. In Band D, r =1, in C, r = 3. In D, anisotropic distance is used,
with A =[1,0;0,0.3]. The results in D are clearly superior.

33

34

Chapter 6

Related Work

In this chapter, we describe some previous and related work in the fields of
GPGPU computation and direct volume visualization, with a particular em-
phasis on visualization of unstructured data, and ray casting.

We have described previous work on generic direct volume visualization in
Chapter 3.1.

Many computationally intensive tasks have been ported to the GPU, one
recent review is [19]. At the Norwegian University of Science and Technology’s
High Performance Computing lab, it has, for instance, been used to perform
3D ultrasound reconstruction and visualization [34], simulating fluid flows in
porous rocks [35] and simulating and visualizing snowfall [36] and avalanches
(37, 38].

Recently, direct volume visualization has also been performed on the GPU.
Early approaches, like those presented by Cullip and Neumann [15] and further
developed by Cabral et al. [16] were essentially doing texture mapping, exploit-
ing the GPU’s ability to do this in hardware. As the GPU grew more flexible,
it was also used for full volume ray casting. Stegmainer et al. present a flex-
ible framework for GPU-based volume rendering in [11], based on ray casting.
Crassin et al. have visualized billions of voxels on the GPU [39], using oc-
trees combined with a mipmap like approach to avoid having to store the entire
dataset in the limited GPU memory. These aproaches used shader programs,
more recently, Marsalek et al. [40] have shown that the higher level CUDA
framework can be used without compromising performance.

The works presented so far has been based upon structured volume data in
the form of voxels. Much work has also been done on unstructured data.

35

One main approach is performing resampling, that is, by superimposing a
uniform gird on the spatial domain of the data, and interpolate values at the
vertices, using the original data, to form voxels. The voxels are then rendered
using standard techniques. This is done by Wihelms et al. [41] in the case where
the original data were a curvilinear grid, and by Navratil et al. [42] to visualize
the results of cosmological particle based datasets. Fraedrich et al. [43] take a
sligtly different approach, and resample the results of SPH simulations on a 3D
grid fixed to the view volume rather than simulation domain, and uses GPU
texture mapping to for visualization.

Much work has also been done in the case where the data is in the form of
unstructured meshes, curvilinear grids or irregular cells, that is where the data
is essentially deformed voxels, or cells in the shape of tetrahedra etc. Garrity
[44] uses such data where the connectivity of the cells are known. Once the
first cell a ray intersects has been found, subsequent cells can be found by
checking which of the faces of the current cell the ray intersects, and moving
to the corresponding cell. Giertsen [45] does not assume that the connectivity
is known, or even that all the cells are connected. The intersections between a
plane perpendicular to each scanline of the final image and the cells are used.

Finally there is the case of completely unstructured volume data, often re-
ferred to as point clouds. Here splatting, originally proposed by Westover [12]
is popular, and is for instance used by Hopf and Ertl [46] to visualize the results
of n-body simulations, with millions of particles. Ray casting based techniques
are also used. Chen [47] visualizes point based volume objects using ray cast-
ing. At equidistant points along the rays, nearby points are found and used to
evaluate a radial basis function. An octree is used to speed up the process of
determining the nearby points. The leafs of the octree contain all the points
which may influence rays passing though that cell. Hence, some points may be
stored in multiple leaf nodes. A similar approach is taken by Kahler et al. [48]
to render the results of SPH simulations on the GPU.

36

Chapter 7

Implementation

In this chapter, we describe how we implemented our method for visualizing 3D
X-ray diffraction patterns.

7.1 Overview

As described in Chapter 2, the output of X-ray diffraction experiments is es-
sentially a unstructured volume dataset, consisting of samples of the intensity
of the X-ray diffraction pattern. We have implemented a method, based on
volume ray casting, for visualizing such datasets.

Figure 7.1 illustrate how our method works to generate a single image. For
each pixel in the output image, a ray is cast from the eye/camera, through
that pixel, and into the volume. The intensity of of the volume is found at
points along each ray. This is done by interpolation, using samples of the X-ray
diffraction pattern close to each point. The intensities are then mapped to color
and opacity values, and the colors and opacities along each ray are composited
to find the color of the corresponding pixel.

Prior to this taking place, we naturally need to read the data, and also
perform some preprocessing and filtering. We then build an acceleration data
structure, in order to facilitate the efficient retrieval of those samples close to a
point.

To summarize, the main steps of our algorithm are:

e Read, preprocess and filter data.

37

Eye/camera

Bounding box

Figure 7.1: Overview of implementation. The input is a set of samples of a X-
ray diffraction pattern, here shown as blue dots. Rays are cast from the eye/camera,
through each pixel, and into the volume. The value of the diffraction pattern is
estimated at points along the ray, by interpolating among neighbouring samples. Here,
we show one such point, on one such ray.

38

e Build acceleration data structure.
e Create rays.
e Cast rays:

— Find neighbouring samples of points along each ray.
— Interpolate to estimate intensity at point.
— Map intensities to color and opacity.

— Combine all color and opacity values along each ray.

In the following sections, we will elaborate upon each of these steps.

7.1.1 Design Choices

As mentioned in the introduction, our main goal is high quality, artifact free,
visualization, at the expense of performance. This goal motivated the following
design choices.

Firstly, we decided to produce the visualization using the diffraction pattern
samples directly. These samples have no spatial structure, making them difficult
to manage. One obvious possibility would be to resample the diffraction pattern
on a uniform grid to produce voxels. While the voxel approach almost certainly
would be faster, we feared that it would lead to inferior results in terms of
quality.

Secondly, we decided to use volume ray casting. It is not the fastest di-
rect volume visualization algorithm, especially for unstructured data, where
splatting is more popular. However, it is highly flexible, well documented and
understood, and capable of superior image quality [49, 7, 43].

Thirdly, while there is some structure to the data, as described in Chapter
2, we have chosen to ignore this, and treat the samples as if they were taken
at random locations. We made this decision because we saw no obvious way
to exploit the structure of the data. At the same time, this approach made it
easier to preprocess and filter the data, as our method made no assumptions
about it.

Lastly, we have strived to make our implementation flexible, customizable
and configurable. The settings that produce the highest quality images depends
upon the dataset, what part of the dataset is viewed, and the specific aspects
of the dataset the user wants to focus on. Hence, no single set of settings is
universally best, and the user should be given as much control as possible. Im-
portantly, this also includes the ability to alter or augment our implementation,

39

by, for instance, adding new interpolation algorithms. We have therefore taken
great care to make our code flexible and readable.

7.2 Preprocessing and Filtering

Prior to visualization the data must be converted to an appropriate form. To
reduce noise, and remove data that does not contribute to the final image,
filtering is performed.

7.2.1 Input Data and Preprocessing

The raw output of X-ray diffraction experiments, is, as described in Chapter 2,
a set of frames, along with a set of angles specifying the location of the sensor
relative to the beam and material sample for each frame. The conversion of this
data into a set of diffraction pattern samples on the form (x,y, z,4) where x, y, x
specifies the scattering vector and i the intensity of one pixel is described in [4],
and is not performed by out tool.

While z,y, z technically describes the scattering vector, they can be inter-
preted as specifying a point in 3D space. Under this interpretation, the input
becomes a unstructured volume dataset.

It is important to point out that, while we in several figures in this chapter
illustrate this dataset as being uniformly distributed in a axis-aligned box, this
is generally not the case. Firstly, the convex hull' of the samples typically only
occupy a small subsection of their bounding box. Secondly, the samples are not
uniformly distributed within their convex hull, but rather organized in layers,
as described in Chapter 2. The spatial distribution of the samples is illustrated
in Figure 7.2.

The raw data is in double precision floating point format. Our implemen-
tation can easily be recompiled to use both single and double precision floating
point numbers. Double precision numbers provide enhanced accuracy and might
be necessary for some datasets and settings. However decreased memory con-
sumption and improved performance (in particular on the GPU) can be achieved
by reducing the precision. Since the output is images, small differences caused
by reduced precision might not be detectable by the human eye. If needed, the
raw data can therefore be converted to single precision.

1The smallest polyhedron containing all the samples.

40

Figure 7.2: Distribution of samples, illustrated in 2D. The samples of the diffraction
pattern are shown as blue dots, darker dots indicate higher intensity. The convex hull
is shown in gray.

7.2.2 Filtering

To reduce noise, and remove samples that does not contribute to the final image,
filtering is performed.

Threshold Filtering

The input datasets typically consists of large regions with low intensity, and
smaller regions with high intensity. This is shown schematically in Figure 7.2,
and in practice in Figure 9.2 and 9.1. For visualization purposes, the regions
with low intensity should be transparent. By implicitly treating empty regions
as transparent, samples with low intensity can simply be removed. This will
reduce the size of the dataset, without affecting the output image. In our
implementation, all samples with an intensity below a user specified threshold
are ignored when the data is loaded.

Median Filtering

For various reasons, the data might contain noise, often in the form of a single
sample with high intensity in a region with low intensity, or a single sample
with low intensity in a region with high intensity. We use a variation of median
filtering [50] to remove such noise.

For each sample, we find the median of it and its neighbouring samples
intensity, and discard the sample if its intensity is significantly different from
the median. In more detail, the neighbours of a sample are defined as those

41

closer to the sample than a user defined radius. How these points are found
is described in Section 7.4. By assuming that the intensities follow a Poisson
distribution, their standard deviation can be approximated as the square root
of the median [51]. We discard a sample if its intensity differs from the median
by more than a user specified number of standard deviations.

7.3 Volume Ray Casting

To visualize the diffraction pattern, we use volume ray casting.

7.3.1 Ray Creation

We use the standard pinhole camera model [52]. A detailed schematic overview
of the camera and image plane is shown in Figure 7.3. The user specifies the
position E, the direction f, and the field-of-view 6 of the camera. The user
also specifies the resolution of the image. In order to uniquely define the image
plane, we also need a vector u defining up, and the distance between the camera
and image plane. We use the vector orthogonal to f which forms the minimum
angle with the z-axis as up vector, and a arbitrary fixed distance to the image
plane.

Figure 7.3: Schematic depiction of camera. Given the position E, direction f and
field-of-view 6 of the camera, the up vector u, center of image C' and resolution, the
location of the centers of pixels, such as Pip can be found.

42

With this information, the position of the center of each pixel in the image
plane can be found. A ray is created for each pixel, with the direction of the
ray being defined by the center of its pixel and the camera position.

7.3.2 Casting a Single Ray

We refer to the processing of a single ray to find the color value of its pixel as
casting the ray. For each ray, starting at the camera, we move along the ray,
and estimate the intensity of the volume at equidistant points. The points are
separated by a user specified distance d, known as the step size. To estimate
the intensity at a point, we first find all the samples whose distance to the point
is less than a user specified threshold r, known as the search radius. To find
these samples, we use range search, as described in detail in Section 7.4.

When the search has found the neighbouring samples, we estimate the inten-
sity at the point, using interpolation. We have implemented both kriging and
IDW interpolation. As described in Chapter 5, ordinary kriging, which is the
variant we have used, requires the variogram, (or technically, the semivariogram)
to be known. We have used a exponential semivariogram:

—d(z;.25)
'Y(xhxj):l_e R

With d being the distance between the samples, and R is a user specified
parameter. We support arbitrary values of the power parameter u for IDW
interpolation, but have optimized for the common cases of u = 1 and v = 2.
Finally, we support arbitrary, user specified, matrices for anisotropic distance
calculation. Anisotropic distance is only used for the weights for IDW, and in
the variogram for kriging, to decide which points to use for the interpolation,
regular euclidean distance is used. Empty regions are treated as transparent,
that is, if no samples are found, we set the intensity to 0.

Once the estimated intensity has been found, we map it to a color and
opacity value. The color and opacity values of all the points of a ray are then
used to evaluate the volume rendering integral, as described in Chapter 3.1, to
find the color of the rays pixel.

In practice, we evaluate the integral incrementally, in a front to back manner,
as described in [17]. Starting at the camera, for each point along the ray, we
update the color using the formulae:

C; = 1{71 + (1 - ;71)01‘

43

Aj=A_ +(1-A_ A

Where C; and A; are the color and opacity of the i’th point, C/_; and
A;_, the accumulated color and opacity so far, and C] and A} are the new
accumulated color and opacity. The initial value of both the color and opacity
is 0, that is, C) = 0 and A{, = 0. The final color of the pixel is C}, - A}, where
n is the number of points along the ray.

7.3.3 Optimizations

To improve performance, we employ three common optimizations [53], which all
aim to reduce the number of points at which the intensity must be estimated.

Firstly, rather than estimating the intensity at points along the entire ray,
we use only the part of the ray within the bounding box of the samples. The
intersection can be found using standard techniques [54].

Secondly, we use early ray termination. Rather than estimating the intensity
at all n points along the ray, we stop when A’ becomes sufficiently close to 1. A
value of A} equal to 1 indicates that the part of the volume between the camera
and the 1’th point is completely opaque. The color values at further points will
therefore not contribute to the color of the pixel of the ray, so there is no point
in continuing.

Thirdly, the filtering described in Section 7.2.2 leaves large regions of the
volume empty. As described above, these regions are treated as transparent.
Searching in these regions is therefore a waste of computational resources, ide-
ally, empty space should be skipped. We have implemented a technique that
reduces the number of searches in empty regions.

One way to do this is by taking advantage of the acceleration data structure,
once a empty leaf node is encountered, one simply jumps to the end of it. This
works well if voxels are used, but might lead to incorrect results for our method.
Even if the leaf node of the search point is empty, there might still be samples
within the search radius. Figure 7.4 illustrates this concept.

While it is possible to work around this problem, we have instead imple-
mented a novel empty space skipping system. If the result of a search is empty,
we increase the step size by a factor n. Each subsequent empty search result
continues to increase the step size, until a threshold is reached. When a non-
empty search is encountered, we move back to the previous point, reset the step
size to its default value, and proceed. Our algorithm is illustrated in Figure
7.5.

44

5

Figure 7.4: Tllustration of why skipping a empty node might cause incorrect results.
When A is reached and the empty node detected, we could skip it by jumping to C.
This would lead to incorrect results, as B would be treated as transparent. Even
though the node in the center is empty, its neighbour contains samples (indicated by
red dots), some of which influence B

Figure 7.5: Illustration of our empty space skipping algorithm. The gray areas
indicate regions with a high density of samples, while white areas are empty. The
empty result at A will cause the step size to be increased. Once we reach a nonempty
search at C, we retract to B, reset the step size, and proceed. The end result is that
we search at all the points shown along the ray.

45

The ideal values for the threshold and factor depends, in the same way as
the step size itself, upon the dataset, and are specified by the user. Great care
must be taken to avoid setting the threshold to high, as the resulting coarseness
of the sampling might miss small structures in the dataset.

7.3.4 Colors

Mapping the intensity of a point to a color and opacity value is done using a
transfer function.

The intensity range of X-ray diffraction patterns is very large, typically sev-
eral orders of magnitude. It is therefore common practice to use the logarithm of
the intensity for visualization purposes. After taking the logarithm, we normal-
ize by dividing by the logarithm of the maximum intensity of all the samples?.
That is:

log(TI)
log(Imaz)
This results in a number between 0 and 1.
Figure 7.6 shows a sample transfer function, mapping normalized intensities
to colors.

Inorm -

Color value

e

T T 1
0.6 0.8 1
Normalized intensity

Figure 7.6: Example of a transfer function. The gray line is for alpha/opacity. A
normalized intensity of 0.42 would result in the RGBA color (216,94,54,21)

We supports arbitrary, user defined, transfer functions. In more detail, the
user is allowed to specify the red, green, blue and alpha values for an arbitrary
number of normalized intensity values. The color of any intensity value can then
be found by linear interpolation between the two nearest specified points.

For efficiency, we precompute a table with a high number of entries for the
transfer function.

2Note that this normalization makes the base of the logarithm arbitrary.

46

7.4 Range Search

During the ray casting, we need to determine the intensity at points along each
ray. This is done by interpolating among the samples close to each point. During
filtering we remove a sample if it is significantly different from the surrounding
samples.

In both cases, we have a fixed point, and wish to find all the samples close to
that point. To make the intuitive notion of ”close” more precise, we introduce
the search radius, r, and define close samples as those having a distance to the
fixed point less than r. We can visualize this problem as attempting to find
those samples lying inside a sphere of radius r centered at the fixed point. This
is essentially the range search problem from computational geometry [55].

In the following, we will refer to this sphere as the search sphere, or, in 2D
examples, as the search circle.

The samples inside the search sphere can naively be found in O(N) time,
with N being the total number of samples, by computing the distance between
the given point and each of the samples, and retaining those samples where the
distance is less than r.

The performance can, however, be significantly improved by building an ac-
celeration data structure. Numerous data structures for range search has been
proposed in the literature [56, 57]. We have chosen the octree data structure,
due to its conceptual simplicity and ease of implementation, intuitive and pre-
dictable structure and good performance. To fulfill our goal of creating a flexible
implementation (cf. Section 7.1.1), we have structured our code so that this
structure can easily be replaced.

7.4.1 Octree

The octree is a well known spatial subdivision data structure for range search
[58]. Each node in the tree corresponds to a cube, and the children of a node
are the eight octants of the cube. Figure 7.7 shows a sample octree.

The root node of our octree is the bounding box of all the samples. Leaf
nodes contain those samples that lie in their corresponding cube, and may be
empty if no such samples exits.

Construction

Pseudocode for construction of our octree is shown if algorithm 1. Starting
with an empty root node, samples are inserted one at a time. The leaf node

47

T COO00000 OOOVDVVU

+

Figure 7.7: Octree on the right, with corresponding cubes on the left. Figure from
[59]

of the sample is found by descending down the tree. If the leaf node contains
more than 8 samples, we split it. That is, it is converted into an internal node,
and the 8 samples are inserted into its new child nodes. Leaf nodes may contain
more than 8 children if splitting them would cause the maximum height of the
tree to increase beyond a certain threshold. This threshold is determined by the
size of the search radius relative to the size of the bounding box, as described
in the next section.

48

Algorithm 1 Construction of octree

function INSERTPOINT(Node n, Sample s, int d)
if n.isLeaf then
if n.numSamples < 8 or d > MAX then
n.ADD(s)
else
n.SPLIT() > Create child nodes, and add old samples to them
INSERTPOINT(n,8,d+1)
end if
else
m = n.FINDCHILD(s) > Find child node of n containing s
INSERTPOINT(n,8,d+1)
end if
end function

Search

Since the computation of box-box intersections is simpler than box-sphere in-
tersections, we use the bounding box of the search sphere when searching in the
octree. The search will return all the samples in leaf nodes intersecting with
this bounding box. Each of these samples must subsequently be investigated to
see if it is inside the search sphere.

Pseudocode for range search with a box in an octree is shown in algorithm 2,
and illustrated in Figure 7.8. At each node, we find the child nodes intersecting
the search box, and search those nodes recursively. The search returns the
samples of the leaf nodes of the tree where the intersection between the node
and the box is nonempty. The combined volume of these leaf nodes is usually
larger than the volume of the search box. Hence, the search may also return
samples not lying within the search box, and by extension not in the search
sphere. Each of the returned samples must therefore be checked to see if this is
the case.

49

Figure 7.8: Searching in octree, illustrated in 2D. Even though we are only interested
in the samples in the circle (marked with dark red), all the samples in those leaf nodes
intersecting with the bounding box of the search circle will be returned. That is, all
the red samples will be returned.

Algorithm 2 Range search in octree

function RANGESEARCH(Node n, Box b)
if n.isLeaf and INTERSECTS(n,b) then
return n.samples
end if
samples = [] > Empty array
for all c in n.children do
if INTERSECTS(c,b) then
samples.ADD(RANGESEARCH(c,b))
end if
end for
return samples
end function

If the octree search returns many samples that are not in the search sphere,
this last step can be costly. It is therefore desirable that the combined volume
of the leaf nodes returned matches the search sphere as closely as possible. This
can be achieved by reducing the size of leaf nodes. There is, however a trade-off,
as reducing the size of the leaf nodes will increase the depth of the tree, making it

50

more costly to find the leaf nodes in the first place, and also increasing memory
overhead.
In our implementation, we set the maximum tree height equal to:

R
hmaz = UogQ(?)J +2

Where r is the search radius, and R is the smallest dimension of the bounding
box of the samples. This means that the size of the smallest leaf nodes is between

r r T T T r3
4><4><43Lnd2><2><2.

7.5 Parallelization

Ray casting and similar algorithms are well known to be embarrassingly parallel
problems [22]. The processing of a single ray does not depend upon any of the
other rays, so all the rays can be processed in parallel.

This can be done naively by spawning one thread for each processor core,
and assigning an equal number of rays/pixels for each thread to process. How-
ever, the amount of work required varies significantly between rays. If a ray
immediately enters a opaque region, it will be terminated quickly, while other
rays may pass through the entire volume. Some rays do not intersect the volume
at all, and requires almost no processing.

By dividing the rays/pixels evenly between the threads, some threads may
finish significantly earlier than others, leading to wasted resources. To achieve
better load balancing, we use the thread pool implementation developed for our
earlier work, described in [21].

All the rays are placed in a work queue. Each thread in the thread pool will
remove one or a few rays from the queue, process them, and then remove more
threads until the queue is empty. This ensures that no threads will be idle while
others are working for significant amounts of time.

7.6 Interactivity

In more practical terms, we have implemented our method as a C library with
a corresponding API. Different client applications can then use this library to
generate images, and subsequently display them, or save them to disk.

We have created one such client application*. It is based on OpenGL, and

3 Assuming that the original bounding box is cubic.
4In addition to several simple ones, for testing and profiling purposes.

o1

Figure 7.9: Screenshot of our client application, showing the built in transfer func-
tion editor.

allows users to interactively move the camera around to view the volume from
different angles. It also allows the transfer function to be edited, and settings
to be changed. A screenshot of the application is shown in Figure 7.9.

7.6.1 Incremental Update

Our primary concern has been to generate images of the highest possible quality.
High resolution images can therefore not be generated at real-time or even
interactive rates (see Chapter 9 for detailed timing results).

While it might be acceptable to let the rendering of the final, high quality
image be an offline task, the ability to generate low quality previews at interac-
tive rates might still be a desiderata. The ideal camera position, color transfer
function and other rendering parameters is usually not known a priori. Finding
these will often require significant experimentation, and being able to quickly
see the effects of changes will reduce the time needed for this process.

We have implemented a system which achieves this effect. When the user
moves the camera to a new position, or changes some setting, several images
with increasing resolution are produced, and displayed as the become ready.
Low resolution images require less rays, and hence less processing time. Based
on the low resolution images, the user can decide is she wishes to move the
camera to a new position, or wait for the high resolution images to become
available.

52

Figure 7.10: Incremental update by gradual resolution increase. By first processing
the dark blue pixels/rays, then the light blue pixels/rays and finally the white pix-
els/rays, the resolution of the image is incrementally increased from 2 X 2 to 8 x 8.
Producing the first image is 16 times faster than the last.

We implement this system by simply changing the order in which the rays/pix-
els are processed. First, the rays necessary for the lowest resolution image are
processed. Then, the additional rays necessary for the image with the second
lowest resolution are processed, and so on. This is illustrated in Figure 7.10.
This way information is made available as soon as its ready, without increasing
the time needed to produce the final full resolution image.

93

54

Chapter 8

GPU Implementation

As mentioned in Chapter 7, ray casting is a problem that is easily parallelizable.
There is a high number of rays, each of which can be processed independently,
in parallel. Furthermore, processing each ray requires a lot of numerical com-
putation.

As such, it is a problem ideally suited for the GPU, a platform designed
precisely for highly parallel, compute intensive tasks. The fact that the output
of ray casting is an image, makes the GPU an even better match, as the task of
moving the finalized image to the GPU for display is made superfluous.

We have created an implementation of our visualization method where the
ray casting is performed on the GPU. In this chapter, we describe how this
was done. It should be noted that porting our method to the GPU was not
our primary focus, as mentioned in Chapter 1. At the same time, tuning an
application for the GPU is known to be a labour intensive task [26]. Our GPU
version is therefore not as functional, or as optimized as it could be.

8.1 Overview

We have used NVIDIA’s CUDA framework, introduced in Chapter 4, to port
our implementation to run on the GPU.

We have created a kernel that process a single ray. IV such kernels are then
run on the GPU in parallel, with one thread for each ray/pixel of the output
image. The kernel uses the same algorithm as described in Chapter 7, but
it is, at the moment, less flexible. We currently only support isotropic IDW

95

interpolation, and some settings are hard coded.

CUDA allows the usage of a subset of the C programing language. Porting
our application was therefore fairly straightforward. Some changes and modifi-
cations were, however, needed. In the following sections we will describe them.

8.2 Removing Recursion

While newer GPUs, such as the Tesla C2070 supports recursion, older models,
such as the Tesla C1060, does, however, not [1]. We wanted to support as many
devices as possible, to allow end users with older hardware to take advantage of
our GPU version. The recursive octree search algorithm described in Chapter
7 was therefore changed.

We did this by replacing recursion with iteration in combination with a
manually managed stack. Finding all the samples within a search box is done
by initially pushing the root node of the tree onto the stack. At each step of
the iteration, one node is popped. If it is a leaf node, its points are added to
those returned. Otherwise, those child nodes of the popped node overlapping
the search box are pushed onto the stack. The loop runs until the stack is empty.
A pseudocode version of this algorithm is shown in 3.

Algorithm 3 Range search in octree using iteration

samples = || > Empty array
stack.PUSH(root)
while stack is not empty do
n = stack.POP()
if n.isLeaf then
samples.ADD(n.samples)
else
ch = GETOVERLAPPINGCHILDREN (1, searchBox)
stack.PUSH(ch)
end if
end while

The depth-first nature of the algorithm ensures that the stack size is bounded
by O(D) where D is the maximum depth of the tree. The reason is that, at any
given time, the stack only contains the nodes on the path from the root to the
current node.

56

To avoid redundant calls to getOverlappingChildren(), the stack will also
contain the children of the ancestors of the current node that will be visited
later. Since each node has a maximum of eight children, and the size of a
pointer to a node is 4 bytes', a more specific upper bound on the stack size is
32D bytes.

128

345
346
351
352

[128711000011]

Figure 8.1: Stack optimization. On the top, a portion of a octree is shown. The
shaded child nodes are to be pushed onto the stack. In the bottom left is the original
stack, and in the bottom right is the optimized stack, after the shaded nodes have
been pushed. The stacks grow downwards.

As mentioned, we push all the children of a node that overlaps the search
box at the same time Rather than pushing a pointer to each of these child
nodes, we can push a pointer to the parent node, along with a description of
which of its child nodes that are pushed. This idea is illustrated in Figure 8.1.
The description can be encoded in one byte, where each bit indicates, whether
a child is pushed. By reducing the size of the node pointer to 24 bits, we can
combine the parent node pointer, and child descriptor in a single 4 byte integer.
This way, the upper bound on the stack size is reduced to 4D bytes.

It should be noted that only 5 bits, and not 8 are needed to identify the
children of a node, as some combinations (i.e. all involving exactly three child
nodes) are illegal. Due to the significantly increased complexity, we did not take
advantage of this opportunity for optimization. Furthermore, reducing the size
of node pointers to 24 bits means that no more than 2% nodes is supported.
This has proved to be sufficient in practice.

1We do not use actual pointers, but integer indices in a array.

o7

8.3 Memory Considerations

Preforming computations on the GPU requires the data to be operated upon to
be transfered from host memory to GPU device memory as described in Chapter
4. We have adapted our tree data structure so that is occupies one consecutive
block of memory, and updated the pointers, so they are all relative to the start of
this block. All the samples are also placed in one consecutive block of memory,
with the pointers from the leaf nodes of the tree to the samples being relative
to the start of the samples block. This way, the tree and samples can easily
be moved from main memory to GPU memory, and the pointers will still work,
even if the address spaces are different.

8.3.1 Precision

Newer GPUs have support for double precision floating point numbers. How-
ever, as many GPU applications (in particular, traditional ones, like computer
games) does not require double precison, support for single precision is bet-
ter. NVIDIA’s newest cards, based on the Fermi architecture, support twice as
many single precision as double precision FLOPS [60]. Furthermore, the use
of double precision numbers will lead to increased device memory and register
consumption, both of which are scarce resources. Finally, texture memory does
not support texels larger than 32 bits [1]. Storing the samples in texture mem-
ory is therefore only feasible if each of the four numbers constituting a sample
is stored using single precision.

For these reasons, we have elected to primarily support single precision float-
ing point numbers for the GPU version of our implementation. Double precision
is only supported in a limited way, in particular, neither of the optimizations
described below can be used in combination with double precision. The mech-
anisms needed to convert the raw data to single precision format were already
in place, as described in Chapter 7.

8.3.2 Optimizations

As described in Chapter 4, memory operations are much more costly on the
GPU. It is therefore important to optimize the memory access patterns. We
have implemented two simple such optimizations.

Firstly, we realized that when a leaf node is found that overlaps the search
box, all its samples will be accessed sequentially, to check if they actually are
within the search radius of the search point, and if that is the case, be used in the

o8

interpolation. Texture memory is optimized for such streaming access patterns.
We therefore shuffle the order of the samples, so that all samples belonging to
the same leaf node are placed together. We then store all the samples as a
texture.

Secondly, we realized that the top levels of the tree will be accessed very
frequently, all searches will include some of these nodes. By caching them in
shared memory, access time is reduced. Therefore, all thread blocks will start
by reading in the topmost nodes of the tree, before proceeding to the rendering
proper. The number of nodes that can be cached depends upon the available
shared memory. It is important to avoid using so much shared memory that
fewer thread blocks can be scheduled simultaneously on the same streaming
multiprocessor. Currently, we manually adjust the amount of shared memory
used for the node cache.

99

60

Chapter 9

Results and Discussion

In this chapter we present and discuss our results. We will take a detailed
look at the quality of the images our implementation produces, as well as its
performance, both on the CPU and GPU.

9.1 Methodology

In this section, we will describe how we conducted our experiments.

9.1.1 Datasets

Two different datasets were used to test our tool. Both are actual X-ray diffrac-
tion datasets, and were provided by J. Flgystad!:

27uc Diffraction pattern from a thin film of PbTiO3. Consists of 5 687 136
samples in a 0.238 A~1 x 0.226 A~! x 0.393 A~! bounding box, with
intensities ranging from 0 a.u. to 40005.5 a.u.?3. A large fraction of the
samples have low intensity, using a filtering threshold of 10 a.u. removes
36.45% of the samples. Total size of raw data is 173.5 MB. A visualization
of the dataset is shown in Figure 9.1.

IDepartment of Physics, Norwegian University of Science and Technology

21 A= 1 Angstrom = 1-1071%m. The scattering vector is measured in inverse distance
units, hence the —!

3a.u. = arbitrary unit.

61

00571 Diffraction pattern from Cu[Ce¢H4(OH)COO]2(H20),. Consists of 121
518 151 samples in a 3.89 A~! x 3.92 A~ x 4.04 A~! bounding box, with
intensities ranging from 0 a.u. to 17389.8 a.u. A very large fraction of
the samples have low intensity, a filtering threshold of 10 a.u. removes
99.98% of the samples. The dataset is therefore very sparse after filter-
ing, compared with 27uc. The total size of the raw data is 3.62 GB. A
visualization of the dataset is shown in Figure 9.2.

9.1.2 Testing Environment

The tests were performed on two different desktop PCs, machine A, equipped
with a 2.8 GHz Intel Core i7 930 processor and NVIDIA Tesla C1060 GPU, and
machine B, with a 3.2GHz Intel Core i7 970 processor and NVIDIA Tesla C2070
GPU. Detailed information about the hardware and software of the computers
can be found in table 9.1.

Machine A Machine B
Hardware
CPU model Intel Core i7 930 Intel Core i7 970
CPU cores 4 6
CPU frequency 2.8 GHz 3.2 GHz
Memory 12 GB 24 GB
GPU model NVIDIA Tesla C1060 | NVIDIA Tesla C2070
GPU memory 4 GB 6 GB
GPU cores 240 448
Software
(OF) Ubuntu Linux 11.04 Ubuntu Linux 10.04
Linux kernel 2.6.38 2.6.32
GCC version 4.4.5 4.4.3
NVCC release 4.0 4.1

Table 9.1: Hardware and software of the two computers used to run our experiments.
The number of CPU cores refers to physical cores. Both CPU’s have simultaneous
multithreading (Hyper-Threading), doubling the number of logical cores.

Most of the experiments were performed on machine A, we will explicitly
mention when machine B was used. In all cases, the compilation flag -03 was
used, to enable maximum compiler optimization.

62

9.1.3 Measurements

Timing measurements were taken using the clock_gettime function with the
CLOCK_MONOTONIC clock [61]. Unless otherwise noted, the timing results pre-
sented are for one 1024 x 1024 image. Only the time required for the rendering
proper is presented. Time used to load data, build data structures etc. is not
included, since several images can be generated once this is done. For the CPU
version, 8 threads were used on machine A, and 12 threads on machine B, unless
otherwise noted.

9.2 Overview

Figure 9.1 and 9.2 are representative of the results we achieve, the images were
generated in 125.1 s and 4.75 s respectively.

Figure 9.1: Visualization of the 27uc dataset, generated with our method.

63

Figure 9.2: Visualization of the 00571 dataset, generated with our method.

64

9.3 Filtering

The threshold filtering proved to be highly useful, as it allowed a large fraction
of the samples to be discarded, essentially without affecting the quality of the
final image. The results of filtering is shown in Figure 9.3. The effects of
filtering on performance is presented and discussed in Section 9.6.

In Figure 9.3a no filtering has been performed. The low intensity samples
have simply been hidden by using a transfer function that makes them trans-
parent (i.e. by assigning them a opacity of 0). These low intensity points are
shown in Figure 9.3b. No filtering is performed there either, but the transfer
function has been modified to show the low intensity samples. Finally, in Figure
9.3c, the same transfer function as in 9.3b has been used, but the low intensity
samples have been removed prior to rendering, so that similar results to 9.3a
are obtained. The two transfer functions used here are shown if appendix B,
as transfer function f1 and f2.

(a) No filtering. (b) No filtering. (c) Filtering.

Figure 9.3: Results of filtering. In (a), no filtering is performed, but the transfer
function assigns no opacity to low intensity samples. In (b), the transfer function is
changed to show the low intensity samples. In (c), the same transfer function is used
as in (b), but all low intensity samples are filtered away prior to rendering, yielding
similar results as in (a).

In this case, a filtering threshold of 30 was used, which resulted in 88.93%
of the samples being discarded. That is, Figure 9.3c is rendered with only 629
773 of the original 5 687 136 samples. Figure 9.2, showing the 00571 dataset,
was rendered with a filtering threshold of 10, which resulted in 99.98% of the
samples being discarded.

The appropriate threshold value is highly dataset dependent, and it might

65

also be desirable to use different thresholds for different images of the same
dataset to emphasise different structures.

9.3.1 Median Filtering

The utility of median filtering turned out to be lower than expected. In partic-
ular, it turned out to be difficult to avoid false positives, that is, the filtering
often removed samples that were not noise. We did therefore disable median
filtering for our tests. It might, however, be more usefull for other datasets.

9.4 Interpolation

In this section, we will present and discuss the qualitative differences between
the different interpolation techniques, and anisotropic interpolation.

9.4.1 Interpolation Techniques

As described in Chapter 7, we have implemented two different interpolation
methods, IDW and kriging. In this section, we will discuss the relative visual
quality of the images produced using these techniques. Their performance is
presented and discussed later, in Section 9.6.

Figure 9.4 shows three versions of the same part of the 27uc dataset, ren-
dered using different interpolation techniques, Figure 9.4a was rendered with
IDW with v = 1 (IDW1), Figure 9.4b IDW with v = 2 (IDW2), and Figure
9.4c kriging, using the exponential semivariogram described in Chapter 7, with
R = 0.0001.

While the overall results are broadly similar, there are clear differences. The
result of IDW2, in particular, differ from the two others. In the yellow-green
rod connecting the two blue-white ”spheres” several bright dots can be seen,
these are barely visible in the IDW1 result, and can not be made out in the
kriging result. Similarly, even ignoring the bright spots, the intensity does not
vary smoothly along the rod in the IDW2 image, as it does in the two others.
This is particularly noticeable in the rods low intensity, middle region.

Both of these artefacts can be attributed to the fact that IDW2 assigns more
weight to close samples, and less weight to distant samples, compared to the
other two methods. A ray passing close to a high intensity sample will therefore
be highly affected by it, resulting in a bright pixel. A ray not passing so close
to any high intensity samples will yield a comparatively duller pixel.

66

(a) IDW, u = 1. (b) IDW, u = 2.

(¢) Kriging.

Figure 9.4: Visual result of different interpolation methods.

67

Comparing IDW1 and kriging, we note that the results of IDW1, with the
exception of the previously mentioned, barely visible, bright spots, are more
smooth and visually pleasing than those of kriging. The highly complex nature
of kriging interpolation makes it difficult to explain the cause of these results.

Finally, it is important to point out that kriging is a much more flexible
method then IDW, because of the amount of freedom in selecting the variogram.
Changing the variogram can give significantly different results. However, the
poor performance of kriging (in terms of speed, discussed in more detail in
Section 9.6) made it time-consuming and inconvenient to experiment with dif-
ferent settings. Other variograms might therefore give better results than those
we have presented here.

9.4.2 Anisotropic Interpolation

Figure 9.5 shows the effect of using anisotropic interpolation, and how it can be
used to improve the image quality. The settings used to generate these images
are shown in table 9.2. IDW interpolation with u = 2 were used in all cases.

Figure | Radius | Anisotropy
9.5a 0.005 A=1;
9.5b 0.01 A=13

1 0
9.5¢ 0.005 A=|10 01 O
0 1

Table 9.2: Settings used in Figure 9.5. I3 is the 3 x 3 identity matrix.

The images are from the 00571 dataset, zoomed in on two of the rod-like
structures. Figure 9.5a uses a small radius, and no anisotropy. The resulting
image has quite poor quality. In particular, the rightmost part of the rods
appear discontinuous, as the search radius is to small to span the gaps between
adjacent layers of samples. This problem can be mitigated by simply increasing
the search radius. This is done in Figure 9.5b. While most of the artifacts
of Figure 9.5a are removed, new ones are introduced. The increased radius
increases blurring. The rods appear thicker, and the oscillation in intensity
along the rods is less crisp.

Figure 9.5c¢ combines a small radius with anisotropic distance measurement.
The anisotropy used compacts distances along the rods. The result is that
for interpolation points inside the rod, other samples inside the rod will be

68

(b) Radius: 0.001, no anisotropy.

(¢) Radius: 0.005, anisotropy.

Figure 9.5: Effect of varying radius and anisotropic matrix. In (a), a small radius
and no anisotropy is used. In (b) the radius is increased. In (c) the radius is the same
as in (a), but anisotropic interpolation is used.

69

more heavily weighted. As we can see, the discontinuity artifacts are almost
completely removed, without introducing the same amount of blurring, resulting
better image quality.

As described in Chapter 5, anisotropic interpolation is appropriate when
the underlying function changes more rapidly in one direction than in others.
In this case, the underlying function changes much more slowly along the rod
than in directions orthogonal to it, so it should come as no surprise that the use
of anisotropic distance improves the quality.

Anisotropic distance is, however, no silver bullet. In regions where the un-
derlying function changes uniformly in all directions, the use of anisotropic
interpolation will introduce artifacts. This can be seen in Figure 9.5¢c, the sin-
gle points in the top and bottom of the image appear stretched, relative to the
other figures.

9.5 Memory Consumption

The raw data consumes considerable amounts of memory, as described in Sec-
tion 9.1.1. However, threshold filtering will typically significantly reduce this.
Furthermore, lowering the precision from double to single will naturally cut the
memory consumption in half.

Turning from the raw data to the acceleration data structure, Figure 9.6
shows the memory consumption of the octree for different search radii, filtering
thresholds and datasets. Note that this is only the memory used for the data
structure, not the samples.

With a filtering threshold of 10, the memory consumption falls steadily for
the 27uc dataset, but remains constant for the 00571 dataset as the search radius
increases. Lowering the filtering threshold to 0.1 barely affects the 27uc dataset.
In the case of the 00571 dataset, the lowered threshold significantly increases
the memory consumption, and causes it to fall as the radius is increased.

The memory consumption of the octree depends upon two factors: the max-
imum depth of the tree, and its completeness, that is, how many of its branches
have maximum depth. As explained in Chapter 7, we impose a maximum depth
limit on the octree which depends upon the search radius (relative to the size
of the bounding box). The maximum tree depths for the radii used here are
shown in table 9.3. Completeness depends upon the density of samples. In
dense areas, branches tend to be long, in less dense areas, they tend to be short.
This is illustrated in Figure 9.7.

The 27uc dataset is fairly dense, with uniformly distributed samples, for both

70

25

20

15

Size (MB)

10

10000

—— 27uc
—m— 00571 [1000 —===

100

Size (MB)
on
o
G c
NS
=

10

F - B

0 0.1
0.002 0.0‘03 0,604 0.0‘05 0.0‘06 0,607 0.0IO8 0.0‘09 0,‘01 0.002 ‘ 0.dU4 0.606 U.dos 0.61
Search radius (1/A) Search radius (1/A)
(a) Filtering threshold 10. (b) Filtering threshold 0.1.

Figure 9.6: Memory consumption of the octree data structure for different datasets,
search radii and filtering thresholds. Note the logarithmic scale in (b).

Figure 9.7: Branch length in octrees, illustrated in 2D with a quadtree. Here, nodes
are split when it contains more than 4 samples. The tree is threfore deeper in the dense
region on the left, compared to the less dense areas on the right. At the same time,
the maximum tree depth is 3, so even though some level 3 leaf nodes contains more
than 4 samples, they are not split.

71

27uc 00571
Radius | Depth | Max size | Depth | Max size
0.002 7 S8OMB 11 320 GB
0.004 6 10 MB 10 40 GB
0.006 6 10 MB 10 40 GB
0.008 5 1.25 MB 9 5 GB
0.01 5 1.25 MB 9 5 GB

Table 9.3: The maximum tree depth and maximum size for different search radii.
The method for calculating the maximum tree depth is described in Chapter 7. The
maximum size is the size of a complete tree, and is calculated using the formula:
S =nx* Zio 8¢ where D is the max depth, and n the size of a single node, in our
case 40 B. Note that in practice, trees are rarely complete, these are pessimistic upper
bounds.

the filtering thresholds shown here. The tree is therefore mostly complete, and
the depth is limited by the maximum depth, not the number of samples. The
memory consumption will therefore increase when the search radius is increased
enough to allow the maximum depth to increase, as most of the branches of the
tree will be expanded.

With a filtering threshold of 10, the 00571 dataset is not dense, with the
exception of a few, small, high density regions. The tree will therefore be fairly
incomplete, only a few of the branches are at full length. Increasing the maxi-
mum tree depth by increasing the search radius will therefore only cause a few
of the branches to extend, and the memory consumption will remain close to
constant.

Lowering the filtering threshold to 0.1 will include more samples, increasing
the density, thus causing the tree to become more complete. The behaviour of
the memory consumption as the search radius is increased therefore resembles
that of the 27uc dataset. The increased completeness also causes the memory
consumption to be on a overall higher level.

9.6 Performance
In this section, we will look at the performance of our implementation. The
results stated in Section 7.1, of 125.1 s for 27uc and 4.75 s for 00571 are

typical. To get more rigorous results, we created a movie of each dataset, by

72

rendering a high number of images at different locations. The results are shown
in table 9.4.

Dataset | No. of Frames | Mean | Std. dev.
27uc 111 | 3334 s 1272 s
00571 101 11.9 s 2.70 s

Table 9.4: Mean and standard deviation of the rendering times for a high number
of frames.

The high standard deviations illustrate a important point: the rendering
time differs dramatically, depending upon the dataset, the settings used, and
the scene rendered. In the remainder of this section we will look at how the per-
formance of our implementation varies when different parameters are changed.

To better understand our results, we will first introduce a simple performance
model for our ray casting method. We will then present timing results, and
discuss them in the light of the performance model.

9.6.1 Performance Model

To more fully appreciate the results presented in this section, we will introduce
a performance model. We will make our model as simple as possible, but be
careful to mention the simplifying assumptions we make.

We use T to denote the time required to render a full image. To render a
full image, we need to cast a ray for each pixel, so:

T =nT,

Where n is the number of pixels/rays, and T, is the time required to cast
one ray. Here we assume that the same amount of time is required for all the
rays, which is inaccurate.

To cast a single ray, we estimate the intensity at points along the ray. While
different rays have different length in practice, we assume for simplicity that all
have the same length L. Then, if the distance between estimation points is d,
we need to estimate the intensity at % points, so the time required for a single
ray is:

Where T, is the time required for estimation at a single point, Here, we have
ignore the time required to map the intensity to color and opacity values, and
combine the colors and opacities at different points.

The estimation time consists of two parts: Ty, the time required to search
and find the samples to be used during interpolation, and 7;, the time required
for the interpolation itself:

T, =T, +T,

As described in Chapter 7, range search in an octree consists of two steps:
first, the acceleration data structure is used to find the samples in the search
sphere. The search will typically also return some samples outside the sphere,
so in a second step, all the returned samples must be checked. Therefore, the
search time can be written as:

T,=T,+T;

Where T, is the time required for the search in the octree, and T the time
required for the subsequent filtering.

Analyzing the time required for general range searches in octrees is com-
plex. However, we allways use the same search radius. Therefore, the range
search is equivalent to one tree descent for each of the leaf nodes the search box
might overlap. Since we have a fixed lower bound on the size of the leaf nodes,
which depends upon the search radius, the number of such leaf nodes is allways
bounded by a constant. (This is explained in more detail in Chapter 7). Hence,
the search time is proportional to the tree height:

7, = Ollog()

where r is the search radius, and R the length of the sides of the bounding
box.

The filtering time depends upon the number of samples returned. Assuming
constant sample density D, the time is proportional to the volume of the search
spehere:

Ty = O(Dr?)

The time required for interpolation depends upon the method used, and the
number of samples:

74

T;.rpw = O(Dr?)
Ti,Krige = O(DT9>

For IDW we only need to go through the samples and compute the distance to
each sample. Hence, the time required is linear in the number of samples. Once
again assuming constant sample density, the number of samples is proportional
to the cube of the search radius.

Kriging involves computing the inverse of a k x k matrix, where k is the
number of samples used, and the required time is therefore cubic in the number
of samples, or proportional to the search radius to the power of 9.

Combining all of this, we get the following equation for the time required to
render a full image using IDW interpolation:

D R
Trpw = O(ng(log(?) +Qr?))
Similar equations can be found for the other combinations.

9.6.2 Performance Results and Discussion

Here, we will look at how the rendering time varies when different settings are
changed.

Search Radius

Figure 9.8 shows how the rendering time for several search radii. The rendering
time increases with the search radius. The rate of increase does also grow with
the search radius.

The fact that the rendering time increases with the search radius is expected.
Increasing the search radius will increase both the time needed for searching and
interpolating. The growth in the rate of increase is also expected, as the number
of samples used during interpolation is proportional to the cube of the search
radius (assuming constant density).

Step Size

Figure 9.9 shows the rendering time for several step sizes. As we can see, the
rendering time decreases as the step size increases. The rate of decrease is also
decreasing with the step size.

75

700

600 /

400

Time (s)

300

200

100

0 T T T T T T T 1
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Search radius (1/A)

Figure 9.8: Rendering time with varying search radii.

4
100 N

80

60

Time (s)

40

\

20

0
0.001 0.002 0.003 0.004
Step size (1/R)

Figure 9.9: Rendering time with varying step size.

76

A decrease in rendering time as the step size increases is also expected.
Increasing the step size is equivalent to reducing the number of points at which
the intensity is estimated. The reduction in the rate of decrease is also expected
as the number of estimation points is inversely proportional to the step size.

Interpolation Technique

Figure 9.10 shows timing results for the interpolation techniques mentioned in
Section 9.4.1, for various search radii. As we see, the rendering time increases
with the search radius. Furthermore, IDW2 is faster than IDW1, and both IDW
techniques are significantly faster than kriging as the search radius increases.

10000 +——— - - - - -
—<— IDW1
—&— IDW2
1000 —+ Kriging [—— - - -
100 +——— - - - - -

Time (s)

T T 1
0.001 0.002 0.003 0.004
Search radius (1/A)

Figure 9.10: Rendering time with varying interpolation methods and search radii.
Note the logarithmic scale.

The timing results of the different interpolation schemes are also as antici-
pated. Firstly, the rendering time with all the methods increase as the search
radius is increased because more points are used for interpolation. Secondly, the
rendering time with kriging increases much faster because its time complexity
is O(IN3) where N is the number of samples used, while the time complexity
of IDW is O(N). The fact that IDW1 is slightly faster than IDW2 is caused
by the fact that no square roots, which is an expensive operation, needs to be
computed.

"

Filtering

The performance impact of filtering is shown in Figure 9.11, both with and
without our empty space skipping optimization. As an increasingly larger per-
centage of the low intensity points are filtered away, the rendering time de-
creases. Enabling the empty space skipping results in speedups between 3.13
and 3.69.

Filtering decreases the total number of samples n, which also causes the
sample density D to drop*. Because of this, we expect the rendering time
to decrease as more points are filtered away, which is consistent with what
we observe. According to our model, decreasing the number of points should
improve the performance due to two effects.

Firstly, the tree traversal should be faster because parts of the tree should
be shallower. While the tree depth is depends upon the sample density, it is
bounded by a size constraint on the leaf nodes relative to the search radius and
bounding box (as described in Chapter 7). In this case, the maximum depth
remained the same, but it was less complete, that is, several branches were
shorter.

Secondly, the density is decreased, which reduces the time spent filtering the
return of the octree range search, and the time spent interpolating.

Transfer Function

How the performance is affected by the transfer function is shown in Figure 9.12.
Here, 512 x 512 images were rendered. The transfer functions used are listed
in appendix B as t1 to t5, and only vary in how they assign opacity. The first
transfer function assigns high opacity to medium and high intensity samples,
while the other functions assigns decreasing amounts of opacity. It should be
clear that equivalent results could be obtained by keeping the transfer function
constant, and artificially changing the intensities of the samples, or changing the
dataset or scene to one with samples with different intensities. As we can see,
rendering scenes with semi-transparent objects is more time consuming than
scenes with opaque objects, provided that early ray termination is enabled.
Our model is not sufficiently complex to explain the change in rendering time
caused by changing the transfer function. This is because this effect is caused
by the early ray termination optimization, described in Chapter 7, which we
have not included in our model. Early ray termination stops rays once the
accumulated opacity reaches a certain threshold, thus effectively reducing L. In

4More realistically, the density will only decrease in certain regions.

78

1 —&—— No skipping
—#— Skipping
200

150

Time (s)

100

0 20 40 60 80 100
Precent filtered

Figure 9.11: Rendering time with different filtering. In each case, the n percent of
the samples with lowest intensity is discarded.

150
140 3

130 /./.
120 /./

110 /

Time (s)

100 —— No termination [
—&— Termination
90 &
80 T T T 1
2 3 4 5

Transfer function

Figure 9.12: Rendering time with varying transfer functions.

79

a scene were a high degree of the samples have intensities which are mapped
to high opacity values, many rays will be terminated prematurely. This will
not be the case in a scene where most samples map to low opacity values,
as few rays will accumulate the necessary opacity required to be terminated
early. The main trend of the results we observe are therefore agreeing with
our expectations. We also notice that the effect is less pronounced as we use
increasingly ”transparent” transfer functions. This is also as expected: once the
scene is so transparent that a certain ray cannot be terminated before it leaves
the volume, making the scene even more transparent will not affect that ray.
Finally, disabling early ray termination will cause the rendering time to be the
same for all transfer functions, which is expected, since no rays are terminated.
Using early ray termination can result in a speedup of 1.54, when the most
opaque transfer function is used.

9.6.3 Parallel Scaling

Figure 9.13 shows the speedup achieved as the number of threads is increased.
These experiments were performed on machine A (with 6 cores).

Speedup

Threads

Figure 9.13: Speedup as the number of threads are increased.

As expected, our implementation scales exceptionally well as the number
of threads are increased from 1 to 6. Beyond 6 threads we have more threads
than physical cores, but we still see some improvement due to simultaneous
multithreading (Hyper-Threading).

80

9.7 GPU

In this section, we will present and discuss results from the GPU version of
our implementation. As already mentioned, these results are of a preliminary
nature, as the GPU implementation is less polished than the CPU version.

9.7.1 GPU Compared to CPU

70

B 27uc, float

60 _ |l 27uc,double
W 00571, float
[l 00571, double

Time (s)

i7 930 i7 970 C1060 C2070

Figure 9.14: Rendering time on GPU and CPU, for different CPUs, GPUs, floating
point precisions and datasets.

Figure 9.14 shows the rendering time on the CPU compared to the GPU,
for different datasets and floating point precisions. Here, we have used both
machine A and B, hence, we have results for two different CPUs and GPUs.

The first thing we notice is the significant speedups which are achieved when
moving from the CPU to the GPU. Comparing single precision performance on
the best CPU (i7 970) to the best GPU (C2070) we see a speedup of 4.64 for
the 27uc dataset, and 4.62 for the 00571 dataset.

Secondly, we notice the poor performance of double precision floating point,
in particular on the C1060 for the 27uc dataset, where single precision is 7.79
times faster than double precision. In general, there is a bigger difference be-
tween single and double precision for the 27uc dataset compared to 00571, and
on the GPU, compared to the CPU.

The first result is expected. As we saw in Section 9.6.3, ray casting is a

81

highly parallel problem. It is also computationally intensive and therefore a
ideal fit for GPUs. The improved performance is therefore as expected.

Furthermore, the poor performance of double precision is also as anticipated.
The difference is more prominent on the GPU compared to the CPU, and the
C1060 compared to the C2070 because GPUs have poor double precision sup-
port, especially on older GPUs such as the C1060 (as described in Chapter
8).

To explain the difference between the 27uc and 00571 datasets, we need
to recall that, after filtering, 00571 is very sparse compared to 27uc. Most
of the range searches will return no samples, so more time will be spent do-
ing search than interpolation. The situation is reversed for the 27uc dataset,
where more time is spent doing interpolation than search. Interpolation is more
computationally intensive, involving expensive floating point operations such as
multiplication, division and square roots. Searching is comparatively simple:
the only floating point operations performed are comparison. Switching form
single to double precision will therefore lead to a larger performance hit for the
27uc dataset, both on the CPU and GPU, and in particular on the older C1060.

9.7.2 GPU Optimizations

Figure 9.15 shows the speedup achieved when applying the memory optimiza-
tions described in Chapter 8. The effect of the texture optimization varies.
On the C1060 with the 27uc dataset, we see a clear improvement, however, on
the C2070 with the same dataset, using texture memory decreases performance
slightly. For the other combinations of datasets and compute platforms, we see
slight improvements. There is no effect of the node cache optimization, except
on the C1060 for the 00571 dataset, where we observe a slight improvement.

As already mentioned, the 00571 dataset consists of fewer samples after
filtering. Using texture memory for the samples might therefore cause less
performance improvements, since there will be fewer memory accesses. The
C2070 does, as opposed to the C1060 have L2 and L1 cache. These might serve
the same purpose as using texture memory, which would explain why we don’t
see any improvement for 27uc on the C2070.

The rendering time of 27uc is dominated by interpolation. The node cache
only speeds up the range search, and this might explain why it has little effect for
this dataset. For 00571, we see some improvement on the C1060 as expected,
but not on the C2070. That might be caused by the fact that the C2070 is
equipped with L1 and L2 caches, which might makes our user managed cache
unnecessary and superfluous.

82

15

l No texture, no cache
B No texture, cache

1.4 —{ [Texture, no cache =
B Texture, cache

1.3

1.2

Speedup

1.1

27uc C1060 00571 C1060 27uc C2070 00571 C2070

Figure 9.15: Normalized rendering time with different combinations of optimiza-
tions, datasets and GPU’s. The normalization makes the effect of the optimizations
more visible for each dataset/GPU combination. It is, however, not possible to makes

direct comparison between the dataset/GPU combinations.

83

84

Chapter 10

Conclusion and Future
Work

X-ray diffraction experiments are used extensively to study the structure and
properties of materials. Improved sensor technology has recently made 3D
datasets common, but visualization of such datasets remains challenging, since
the datasets are large, and unstructured.

The goal of this thesis was to investigate how high quality visualizations of
3D X-ray diffraction patterns can generated in an efficient manner. We have
developed a method based on volume ray casting, and implemented it on the
CPU and GPU.

Our method differs from traditional ray casting algorithms by not using data
in the form of voxels. Our input is a set of samples of an X-ray diffraction pat-
tern. These samples are not taken on a uniform grid and therefore constitute an
unstructured volume dataset. The method we have developed operates directly
on these samples, rather than resampling them on a uniform grid.

The intensity of the X-ray diffraction pattern was estimated at points along
the ray by interpolating among nearby samples. We have used an octree to fa-
cilitate efficient range search to find these samples. Two different interpolation
techniques were implemented, inverse distance weighing, and kriging. Both of
these techniques have been adapted to support anisotropic interpolation. To
improve performance we have implemented standard ray casting optimization
techniques such as early ray termination and empty space skipping. We have
developed a novel, acceleration data structure agnostic algorithm for performing

85

empty space skipping, suitable for situations where voxels or similar represen-
tations are not used. Threshold filtering was used to remove samples with low
intensity that would otherwise not contribute to the final image. In practice,
we could often remove between 40% to 99% of the samples, greatly reducing
memory consumption, and improving performance.

Volume ray casting is a highly parallel, computationally intensive problem,
and is therefore ideally suited for the GPU. We have implemented a fully func-
tional, but less flexible and optimized version for the GPU, using NVIDIA’s
CUDA framework. To improve performance we have used texture memory for
the samples, and cached the topmost nodes of the octree in shared memory.

We have tested our implementation using actual X-ray diffraction data, con-
sisting of up to over 120 M samples. Our method is capable of producing images
of good quality. Of the implemented interpolation techniques, IDW with u = 2,
in combination with anisotropic interpolation where appropriate, yielded the
best results in terms of visual quality.

The rendering time varies significantly, from 5 s to over 200 s, for realistic set-
tings, depending upon dataset, scene, and settings used. To better understand
this variability, we have developed, and empirically tested a simple performance
model. There was a good agreement between the predictions of the model and
the observed rendering times. Our implementation scaled very well to more
processor cores, with a speedup of 5.9 for 6 cores. For the GPU version of our
implementation, we saw speedups around 4.6.

10.1 Future Work

Possible future work can broadly be divided into efforts to improve the visual
quality of images, and efforts to improve the performance in terms of rendering
time and memory consumption.

To achieve better image quality it could be fruitful to investigate more
complex and sophisticated optical models, rather than the simple emission-
absorption model we have used. Furthermore, it would be interesting to explore
new interpolation techniques, or variations of those we have used, in combina-
tion with anisotropic interpolation.

Currently, the optimal settings and transfer function for a dataset must be
determined manually, often through time consuming trial and error. It would
therefore be useful to develop a system that could analyze the dataset, and
automatically determine the optimal settings, or at least provide a good guess.

For certain datasets, the best settings varies in different parts of the dataset,

86

this is particularly true for anisotropy. Extending our method to allow different
setting to be used in different parts of the dataset is therefore also an interesting
possibility.

To improve performance, two approaches can be taken: the current algo-
rithm could be further optimized, or a completely new or heavily modified ver-
sion could be developed.

While our implementation is fairly well optimized for the CPU, we believe
it is possible to improve performance even further. In particular, it would be
interesting to see if data could be reorganized so that SIMD instructions could
be used during interpolation, and if changing the order in which rays are cast
could be optimized to better exploit caching.

More time could be spent optimizing our GPU implementation. The perfor-
mance of GPU codes is highly sensitive to optimization, and is therefore a big
potential for significant improvement. At the same time, the GPU version could
be made as flexible and full featured as the CPU version. Another possibility
would be extend the system to use multiple GPUs, or GPUs in combination with
the CPU. This would include the development of sophisticated load balancing
systems.

Performance can also be improved by changing or modifying the algorithm
used. This might include using a different acceleration data structure, some-
how organizing the samples prior to rendering, or performing resampling and
preinterpolation. Using a completely different visualization algorithm is also a
possibility. Splatting promises improved performance relative to ray casting, at
the cost of flexibility and image quality. Comparing these methods for rendering
X-ray diffraction data would be interesting.

Finally, it would be highly interesting to attempt to exploit the structure
of the input data. We currently treat our input data as an unstructured vol-
ume dataset. The samples are, however, not actually randomly distributed,
but rather organized on well defined curved layers. Taking advantage of this
structure might result in big performance improvements, and potentially also
improve image quality.

87

88

Bibliography

NVIDIA, NVIDIA CUDA C Programing Guide, 2012. http:
//developer.nvidia.com/nvidia-gpu-computing-documentation Ac-
cessed 30.04.2012.

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics. Wi-
ley, 2nd ed., 2011.

N. Kasai and M. Kakudo, X-Ray Diffraction by Macromolecules. Springer,
2005.

J. B. Flgystad, “Domain structures in PbTiOj3 thin films,” Master’s thesis,
Department of Physics, Norwegian University of Science and Technology,
2010.

S. O. Mariager et al., “High-resolution three-dimensional reciprocal-space
mapping of InAs nanowires,” Journal of Applied Crystallography, 2009.

W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” SIGGRAPH Comput. Graph., vol. 21,
pp- 163-169, Aug. 1987.

C. Hansen and C. R. Johnson, The Visualization Handbook. Elsevier, 2005.

J. Wallis, T. Miller, C. Lerner, and E. Kleerup, “Three-dimensional dis-
play in nuclear medicine,” Medical Imaging, IEEE Transactions on, vol. 8,
pp- 297 —230, Dec 1989.

Y. Sato et al., “Local maximum intensity projection (LIMP): A new ren-
dering method for vascular visualization,” Journal of Computer Assisted
Tomography, vol. 22, pp. 912-917, Nov.-Dec. 1998.

89

[10]

[11]

[12]

[13]

[17]

[18]

[19]

M. Levoy, “Display of surfaces from volume data,” Computer Graphics and
Applications, IEEE, vol. 8, pp. 29 —37, May 1988.

S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A simple and flexible
volume rendering framework for graphics-hardware-based raycasting,” in
Volume Graphics, 2005. Fourth International Workshop on, pp. 187 — 241,
June 2005.

L. Westover, SPLATTING: A parallel, feed-forward volume rendering al-
gorithm. PhD thesis, University of North Carolina - Chapel Hill, 1991.

P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp fac-
torization of the viewing transformation,” in Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, SIGGRAPH
94, pp. 451-458, ACM, 1994.

A. Van Gelder and K. Kim, “Direct volume rendering with shading via
three-dimensional textures,” in Volume Visualization, 1996. Proceedings.,
1996 Symposium on, pp. 23 —30, 98, Oct. 1996.

T. J. Cullip and U. Neumann, “Accelerating volume reconstruction with
3D texture hardware,” Radiation Oncology, vol. 61, pp. 1 — 6, 1994.

B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware,” in Proceedings
of the 1994 symposium on Volume visualization, VVS 94, pp. 91-98, ACM,
1994.

M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski, “Advanced illumi-
nation techniques for GPU-based volume raycasting,” in ACM SIGGRAPH
2009 Courses, SIGGRAPH ’09, pp. 2:1-2:166, ACM, 2009.

N. Max, “Optical models for direct volume rendering,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 1, pp. 99 —108, Jun 1995.

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, pp. 879 —899, May
2008.

J. Nickolls and W. Dally, “The GPU computing era,” Micro, IEEFE, vol. 30,
pp. 56 —69, Mar.-Apr. 2010.

90

[21]

[25]

[26]

T. L. Falch, “Optimization and parallelization of ptychography reconstruc-
tion code,” project report, Department of Computer and Information Sci-
ence, Norwegian University of Science and Technology, 2011.

P. Pacheco, An Introduction to Parallel Programing. Elsevier Morgan Kauf-
man, 2nd ed., 2011.

M. J. Flynn, “Some computer organizations and their effectiveness,” Com-
puters, IEEE Transactions on, vol. C-21, pp. 948 —960, Sept. 1972.

G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20, 1967,
spring joint computer conference, AFIPS 67 (Spring), pp. 483-485, ACM,
1967.

J. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM,
vol. 31, pp. 532-533, May 1988.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W .-
m. W. Hwu, “Optimization principles and application performance evalua-
tion of a multithreaded GPU using CUDA,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming,
PPoPP 08, pp. 73-82, ACM, 2008.

NVIDIA, CUDA C Best Practices Guide, 2012. http://developer.
nvidia.com/nvidia-gpu-computing-documentation Accessed

04.05.2012.
E. Kreyzing, Advanced Engineering Mathematics. Wiley, 9th ed., 2006.

Wikipedia, Trilinear Interpolation, 2012. http://en.wikipedia.org/
wiki/Trilinear_interpolation Accessed 06.06.2012.

D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 23rd ACM national conference,
ACM 68, pp. 517-524, ACM, 1968.

N. Cressie, “The origins of kriging,” Mathematical Geology, vol. 22, pp. 239—
252, 1990.

M. Tomczak, “Spatial interpolation and its uncertainty using automated
anisotropic inverse distance weighting (IDW) - cross-validation/jackknife
approach,” Journal of Geographic Information and Decision Analysis,
vol. 2, no. 2, pp. 18-30, 1998.

91

[33]

[35]

[36]

[40]

[41]

[42]

C. Castano-Moraga, M. Rodriguez-Florido, L. Alvarez, C.-F. Westin, and
J. Ruiz-Alzola, “Anisotropic interpolation of DT-MRI,” in Medical Image
Computing and Computer-Assisted Intervention MICCAT 2004 (C. Baril-
lot, D. Haynor, and P. Hellier, eds.), vol. 3216, pp. 343-350, Springer Berlin
/ Heidelberg, 2004.

H. Ludvigsen, “Real-time GPU-based 3D ultrasound reconstruction and
visualization,” Master’s thesis, Department of Computer and Information
Science, Norwegian University of Science and Technology, 2010.

E. O. Aksnes, “Simulation of fluid flow through porous rocks on modern
GPUs,” Master’s thesis, Department of Computer and Information Science,
Norwegian University of Science and Technology, 2009.

R. Eidissen, “Utilizing GPUs for real-time visualization of snow,” Mas-
ter’s thesis, Department of Computer and Information Science, Norwegian
University of Science and Technology, 2009.

Qystein. E. Krog, “GPU-based real-time snow avalanche simulations,”
Master’s thesis, Department of Computer and Information Science, Nor-
wegian University of Science and Technology, 2010.

Qystein. Krog and A. Elster, “Fast GPU-based fluid simulations using
SPH,” in Applied Parallel and Scientific Computing (K. Jnasson, ed.),
vol. 7134 of Lecture Notes in Computer Science, pp. 98—109, Springer Berlin
/ Heidelberg, 2012.

C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels: ray-
guided streaming for efficient and detailed voxel rendering,” in Proceedings
of the 2009 symposium on Interactive 3D graphics and games, 13D 09,
pp- 15-22, ACM, 2009.

L. Marsalek, A. Hauber, and P. Slusallek, “High-speed volume ray casting
with CUDA,” in Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium
on, p. 185, Aug. 2008.

J. Wihelms, J. Challinger, N. Alper, S. Ramamoorthy, and A. Vaaziri,
“Direct volume rendering of curvilinear volumes,” SIGGRAPH Comput.
Graph., vol. 24, pp. 41-47, Nov. 1990.

P. Navratil, J. Johnson, and V. Bromm, “Visualization of cosmologi-
cal particle-based datasets,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 13, pp. 1712 —1718, Nov.-Dec. 2007.

92

[43]

R. Fraedrich, S. Auer, and R. Westermann, “Efficient high-quality vol-
ume rendering of SPH data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 16, pp. 1533 —1540, Nov.-Dec. 2010.

M. P. Garrity, “Raytracing irregular volume data,” SIGGRAPH Comput.
Graph., vol. 24, pp. 35-40, Nov. 1990.

C. Giertsen, “Volume visualization of sparse irregular meshes,” Computer
Graphics and Applications, IEEE, vol. 12, pp. 40 —48, Mar. 1992.

M. Hopf and T. Ertl, “Hierarchical splatting of scattered data,” in Pro-
ceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS '03, pp. 57—,
IEEE Computer Society, 2003.

M. Chen, “Combining point clouds and volume objects in volume scene
graphs,” in Volume Graphics, 2005. Fourth International Workshop on,
pp. 127 — 235, June 2005.

Kahler et al., “Simultaneous GPU-assisted raycasting of unstructured point
sets and volumetric grid data,” Volume Graphics, 2007.

J. Huang, K. Mueller, R. Crawfis, D. Bartz, and M. Meissner, “A practical
evaluation of popular volume rendering algorithms,” in Volume Visualiza-
tion, 2000. VV 2000. IEEE Symposium on, pp. 81 =90, Oct. 2000.

R. Gonzalez and R. Woods, Digital Image Processing. Pearson, 3rd ed.,
2008.

R. E. Walpole et al., Probability and Statistics for Scientists and Engineers.
Pearson Prentice Hall, 8th ed., 2007.

E. Angel, Interactive Computer Graphics. Addison Wesley, 5th ed., 2009.

M. Levoy, “Efficient ray tracing of volume data,” ACM Trans. Graph.,
vol. 9, July 1990.

A. S. Glassner, An Introduction to Ray Tracing. Morgan Kaufmann, 1989.

M. de Berg et al., Computational Geometry, Algorithms and Applications.
Springer Berling Heidelberg, 3rd ed., 2008.

J. L. Bentley and J. H. Friedman, “Data structures for range searching,”
ACM Comput. Surv., vol. 11, pp. 397409, Dec. 1979.

93

[57]

[58]

[59]

[60]

[61]

H. Samet, Foundations of Multidimensional and Metic Data Structures.
Morgan Kaufmann, 2006.

R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, pp. 1-9, 1974.

Wikipedia, Octree, 2012. http://en.wikipedia.org/wiki/Octree Ac-
cessed 07.05.2012.

NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi, 2012. http://www.nvidia.com/object/fermi_architecture.
html Accessed 30.04.2012.

The Open Group, clock_getres. http://pubs.opengroup.org/
onlinepubs/9699919799/functions/clock_getres.html Accessed
17.05.2012.

94

Appendix A

RSV User Manual

This is the user manual for RSV, a tool using volume ray casting to visualize
X-ray diffraction patterns.

A.1 Quick Start

If you are impatient, this should be enough to get you started:
To compile:

$ make

To run:

$./a.out

Use [a] and the arrow keys to move around.

A.2 Overview

This manual describes how to use RSV. We'll focus on how to use the tool, rather
than giving detailed descriptions of its inner workings, interested readers should

95

check out the master’s thesis’ written about RSV for an in detph treatment.

A.2.1 Raycasting

Raycasting? is a technique to generate 2D images from 3D volume data, and
is illustrated in Figures 1 and 2. As shown in Figure 1, for each pixel in the
image, a "ray of light” is sent from the eye/camera, through the pixel, and into
the volume. Samples of the volume will be taken at points along the ray, and
the value at each sample is mapped to a color. Finally the colors for all the
samples of the ray are blended to find the final color for the pixel.

Figure A.1l: High quality figure illustrating raycasting. A ray is cast from the eye
at E, through the pixel P and into the volume. At the points I1 - I7 the value of the
volume is found, and mapped to a color. The colors are then blended to find the final
color for the pixel.

A.2.2 Files

This is an overview of the files used by RSV (after compilation):

a.out The executable.

config.txt Configuration file.

1Thomas L. Falch, 8D Visualization of X-ray Diffraction Data, Norwegian University of
Science and Technology, 2012
2Not to be confused with the similar technique of ray tracing.

96

m

Figure A.2: Schematic overview of raycasting in 2D

color.txt Color configuration file. Optional. If not pressent, default colors will
be used.

batch.txt Used to specify a batch of images to be generated. Only needed in
batch mode.

moviemaker.sh Script to create movies from sets of images. Only needed in
batch mode.

In addition, an input hdf5 file is obviously required.

A.3 Compilation
A.3.1 Dependencies
The following libraries are required in order to compile and run RSV:

e hdfb
e openGL

e glut (in particular, the freeglut implementation is required)

97

lapack

e blas

fimpeg (for movie creation, not required for compilation)

e imagemagick (for movie creation, not required for compilation)
A.3.2 Compilation
To compile, it should be enough to use:

$ make

CUDA Support
To enable CUDA support, you need to download and install the SDK (and
possibly driver) from NVIDIA’s web pages: www.nvida.com. Make sure you
can compile and run some of the example programs before proceeding.
Then, repalce the line:
cuda=false
in the makefile with :
cuda=true
And then:

$ make clean

$ make

Precision

RSV supports both single and double precision floation point numbers. Switch-
ing requires recompilation, and is controlled by the float flag in the makefile.
For single precision, set:

98

float=true

for double precision set:

float=flase

And then:
$ make clean

$ make

to recompile.

A.4 Use

A.4.1 Input File

The input hdf5 file can be specified in one of two ways. Either by using the -f
option, ie:

$./a.out -f myfile.hdf5
Or by using the DEFAULT_FOLDER setting in the config.txt file, ie:
DEFAULT_FOLDER=/home/data/

If the default folder setting is used, RSV will seach through the folder for hdf5
files. The first one found will be used.

99

A.4.2 Moving the Camera

Use [w] [s] [a] [d] [a] [z] to move the camera forewards backwards, left,
right, up and down, respectively. Use [1] to rotate the camera to
the left, right up and down, respectively

Use to decrease the fov (zoom in), [c] to increase the fov (zoom out)
and to reset the fov to its default Value

In zoom mode, the mouse can be used to select an area to zoom in on. This
is done by left-clicking and draging. The are indicated by the opaque rectangle
will be zoomed in upon. Zooming is not done by moving the camera, but by
reducing the field of view, corresponding to theta in Figure 2. Use [[] to toggle
between zoom and trace modes.

A.4.3 Grid
Use to toggle the visibility of the grid. Use to toggle the visibility of

numbers on the grid. Other aspects of the grid can be controlled with settings
in the configuration file.

A.4.4 HUD

Use to toggle the visibility of the HUD. Note that the progress bar is an
experimental feature, which might be wrong.

A.4.5 Color

Use to toggle the display of the transfer function editor. Use the mouse
to select color chanels and the values of the different "bands”. The image will
only be updated when the transfer function overlay is hidden.

Use to save the current color transfer function. WARNING: this will
overwrite the contents of the color.txt file. Make a backup of this file if neccesary.

A.4.6 Saving Images

Use to save an image of whats currently displayed. The image will be saved
as rsw_hh_mm_ss-dd_mm_yyyy.bmp, based upon the time of creation.

100

A.4.7 Trace Single Ray

In trace mode, a single ray can be traced, and the intensity, and accumulated
color for each interpolated point will be dumped to a file named raydump.txt
WARNING: any existing file with this name will be overwritten. To trace a
single ray, left-click on any pixel. Use to toggle between zoom and trace
modes.

A.4.8 Configuration File

Most of the parameters of RSV can be found in the config.txt configuration file.
The file is read when RSV is started. Pressing will cause RSV to reread
the file, but some settings will be ingored, as they require RSV to be restarted.
Settings may be commented out (or removed completly), in wich case default
values will be used. (However, the file, even if empty, must be present).
The following list provides a list of the settings available, a description,
default value, and whether changing the settings requires restart.

DEFAULT_FOLDER Unless the input file is specified with the -f option, RSV will
look in this folder, and use the first hdf5 file found as input.
Default value: /home/data. Requires restart.

INTERPOLATION_RADIUS Corresponds to r in Figure 2. To estimate the intensity
at z, all data points whose distance to z is less than r is used.
Default value: 0.002. Requires restart.

RESOLUTION The size of the images generated will be RESOLUTION * RESOLUTION.
This value must be a power of 2 (ie 256, 512 etc).
Default value: 512. Requires restart.

INTERPOLATION_MODE The algorithm used for interpolation. The possible values
are:

0 Kriging.
1 Inverse distance weighting with p = 1 (standard IDW).

2 Inverse distance weighting with p = 2.

See somewhere else for a more detailed description of these algorithms.
Default value: 1. Does not require restart.

NEIGHBOUR_MODE Determines wich data points are used for interpolation. The
possible values are:

101

0 Some number of close points. In particular, all the points in the leaf
node of the interpolation point.

1 All points within INTERPOLATION_RADIUS of the interpolation point.

It may seem as if using 0 will cause the value of INTERPOLATION_RADIUS
to be ignored. However, the value of INTERPOLATION_RADIUS influences
the depth of the tree, and hence the size of leaf nodes.

Default value: 1. Requires restart.

STEP_SIZE Corresponds to d in Figure 2. The distance between interpolation
points along a ray.
Default value: 0.05. Requires restart.

ANISO_MATRIX Specifies the matrix to be used for anisotropic distance measure-
ment for interpolation. Row major.
Default value: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0. Does not require restart.

EYE_INITIAL The initial possition of the eye/camera. Corresponds to e in Fig-
ure 2.
Default value: Depends upon dataset. Requires restart.

FORWARD_INITIAL The initial direction of the eye/camera. Corresponds ot f in
Figure 2.
Default value: Depends upon dataset. Requires restart.

GRID_BASE The base of the grid lines. Possible values are:
0 Origo (ie (0,0,0)).
1 The corner of the bounding box with smallest coordinates.
Default value: 1. Does not require restart.

GRID_SPACING The distance between grid lines. Default value: Depends upon
dataset. Does not require restart.

VERBOSE The amount of "usefull” output. Possible values 0-2. Higher value
gives more output.
Default value: 1. Does not require restart.

FILTERING_THRESHOLD All datapoints with a intensity less than this will be
ignored.
Default value: 0. Requires restart.

102

MEDIAN FILTERING Whether median filtering should be used or not.
Default value: 0. Requires restart.

NUM_THREADS The number of threads used.
Default value: Depends upon processor, the number of threads used will
be the same as the number of logical processors. Requires restart.

COLOR_BANDS The number of points to interpolate between for the color transfer
function. If the color.txt file is used, the numbers must correspond.
Default value: 11. Requires restart.

DATA_STRUCTURE The type of spatial subdivision datastructure used to acceler-
ate the range searches. Possible values are:

0 Octtree.
1 Grid.

Default value: 0. Requires restart.
NOTE: The gird datastructure is experimental.

STEP_FACTOR The factor with which the step size is increased during empty
space skipping.
Default value: 2.0. Does not require restart.

STEP_LIMIT Max step size, the step size will not exceed this value during empty
space skipping.
Default value: 0.04. Does not require restart.

OPACITY_THRESHOLD Rays will be terminated when this accumulated opacity is
reached.
Default value: 1.0. Does not require restart.

THRESHOLD_MEDIAN_FILTER Samples whose intensity is higher than this value
times the median intensity of its neighbours will be removed during median
filtering.

Default value: 15. Does not require restart.

VARIOGRAM_RADIUS This is R in the semivariogram 1 — eft.
Default value: 0.00001. Does not require restart.

BATCH_SIZE During loading, samples are read from file in batches of this size,
filtered, and inserted into the acceleration data structure. Useful when

103

the raw data size is larger than main memory (but the filtered data size
is not).
Default value: 1e9. Does not require restart.

NOTE: Only a minimum of input validation is performed. Stupid values
(like negative search radius) might cause undefined results (i.e. segfaults).

Syntax

The configuration file parser is, well, kinda crappy, so it’s important that the
syntax is correct. For most settings it is:

NAME=value

With the name in all caps, and no whitespace. The only exception is ANTSO_MATRIX,
whitespace is used to separate the values of the matrix (but not before the first
value).

Empty lines, and lines starting with # are ignored.

A.4.9 Batch Mode

Batch mode is used to create a number of images, and convert them into a
movie, without user intervention. To start RSV in batch mode, use the -b
option.

Using batch mode requires the batch.txt file to be present. This file specifies
the images to be generated. The syntax is:

xe ye ze xf yf zf
f
xe ye ze xf yf zf
f
xe ye ze xf yf zf

Odd lines spcifies camera possitions and directions, correspoinding to £ and
f in Figure 2.(cf. EYE_ INITIAL and FORWARD_INITIAL). Even lines specifies the
number of frames between the possitions. The camera will be smoothly moved
and turned from one position to the next.

NOTE: The rotation algorithm requires the cross product of two subsequent
forward vectors to have a nonzero length.

104

© 0 N e U A W N e

=
= o

A.4.10 Single Image Mode

Single image mode is used to generate a single image. After the image is gen-
erated, it will be written to a file, and the application will be terminated. In-
cremental update is disabled, nothing will be displayed until the full resolution
image is finished. To start RSV in single image mode, use the -s option.

A.4.11 Quiting

Use [Esc| to quit.

A.5 Development

RSV has been designed to be unusually easy to modify and extend. Here, an
overview of the code is presented as an aid for such undertakings.

The file simple.c, parts of which are reproduced in listing is a minimal work-
ing program. Figure A.3 shows a callgraph for this program.

Compilation couldn’t be made simpler:

$ make simple

To run:
$./simple

Running the program will cause an image to be generated and saved, but
no GUI will be shown.

#include <...>

Ranges* ranges;

Root* root;

Raycreator* rc;

Ray* rays;

Display_color** images;
Transfer_Overlay* transfer_overlay;

void load_data(){
Loader 1 = init_loader (1e9);

105

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

root = create_root(l.ranges);

while (has_next (&1)){
root->insert_points(root->s, next (&1l));

}

root->finalize (root->s);

}

void setup (){
rc = init_raycreator (&root->ranges);
rays = (Ray*)malloc(sizeof (Ray)*RESOLUTION*RESOLUTION) ;

//When incremental update is used, we need all these buffers
//Now we really only need the last one, but have to create all of

them
images = (Display_color**)malloc(sizeof (Display_color*) * (int)(
log2 (RESOLUTION) - 3));
int ¢ = 0;
for(int res = 16; res <= RESOLUTION; res *=2){
images[c] = (Display_color*)malloc(sizeof (Display_color) * res
* res);
c++;
}
transfer_overlay = init_transfer_overlay(&root—>ranges);

int main(int argc, char*x argv){
load_config_file (0);
load_data();
setup () ;
create_rays(rc, rays);
trace_rays(RESOLUTIDN, 0, RESOLUTION*RESOLUTION) ;
int i = log2(RESOLUTION) - 4;
write_bmp (images[i], RESOLUTION,RESOLUTION,NULL) ;

Listing A.1: Parts of simple.c

106

load_config_file()

settings.c

==

setup()

main()

init_loader()
loader.c

create_root()
root.c

has_next()
loader.c

insert_points()
node.c

finalize()
node .c

init_raycreator()
raycreator.c

create_rays()
raycreator.c

init_transfer_overlay()
transfer.c

trace_rays()
ray.c

write_bmp()
bmp.c

trace_ray()

ray.c

get_intensity_for
node.c

_pos()

blend()

color.c

range_search()

node.c

krige()
krige.c

idw_interpolate()

idw.c

set_color_from_table()
transfer.c

s, and which files they are

1010

Callgraph of the most important funct

Figure A.3
located in.

107

108

Appendix B

Transfer Functions

These are the transfer functions used in the filtering, and transfer function
experiments in chapter 9.

Figure B.2: Transfer function f2

109

Color value

Color value

Color value

Color value

Color value

Normalized intensity

Figure B.3: Transfer function t1

Normalized intensity

Figure B.4: Transfer function t2

Normalized intensity

Figure B.5: Transfer function t3

Normalized intensity

Figure B.6: Transfer function t4

Normalized intensity

Figure B.7: Transfer function t5

110

© 00N UA W

Appendix C

Selected Source Code

Some selected parts of our source code is included here. The full source code,
including Makefiles is located in the source code attachment upladed to the
thesis submission system of the Department of Computer and Information Sci-
ence. It is also freely available at http://folk.ntnu.no/thomafal/master.

Display-color trace.ray(Rayx ray, Rootx root, int print){
if (ray—>distance <= 0){
Display_color b = {0,0,0,0};

return b;

}

if (ray—=distance < —1){
Display_color b = {255,0,0,255};
return b;

}

if (ray—>color.r > —1 && print = 0){

return to_display.color(ray—>color);

FILEx file;
if(print){

file = fopen("raydump.txt”, "wt");
}

normalize_ray(ray);
Color output = {0,0,0,0};

Coord pos = ray—>start;

double acc-distance = 0;
double local.step-size = STEP.SIZE;
while (acc-distance < ray—>distance){

if(inside(pos, &root—>ranges)){
real.t intensity = root—>get-intensity-for_pos(root—>s, pos);

if (intensity > 0 & local_step_size > STEP_SIZE){
acc.distance —= local_step_.size;
pos = add_scaled_Coord (pos, ray—>dir, —local_step_size);
local_step-size = STEP.SIZE;

}
else if(intensity = 0 & (local-step.size * STEP.FACTOR) <= STEP_LIMIT){
local_step-size = STEP.FACTOR;

111

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

58
59
60
61
62

©ON oUW

¥
else{
blend(&output, intensity);

if (print){
fprintf(file , "%f,%f,%f,%f,%f\n" intensity , output.r, output.g, output.b,

if (output.a > OPACITY.THRESHOLD){
break;

}
}

pos = add.scaled-Coord(pos, ray—=>dir, local.step.size);
acc.distance += local.step.size;

ray—>color = output;

i (print){
fclose (file);

return to_display_color(output);

output.a);

Listing C.1: From ray.c

void insert_point(Nodex n, Pointx p, Ranges r, int depth){
if (n=>is_leaf){

//We insert the point in this node
if (—=>num_children < 8 || depth >= max.depth){
if (—=>num_children = 0)
n—=>pointer = (voidxx*)malloc(sizeof(voidx*) * 8);

}
//We need to expand the child array
if(n—>num_children = n—>is_leaf){
n—=>is_leaf %= 2; //We should check that it doesn’'t overflow...
n—>pointer = (voidxx)realloc ((voidx)n—>pointer, sizeof(voidx*) * n—>is_leaf);

if (n—=>pointer = NULL){
printf("%d_NULLI\n" , n—>is_leaf);

}
}
n—>pointer [n—>num_children++] = (voidx)p;

if (n—=>num_children > max_num_children){

max_num_children = n—=>num_children;
}
}
// This node is full, and should be split
else{

//Back up points

Pointx points[8];

for(int ¢ = 0; ¢ < 8; ct++){
points[c] = (Point*x)n—=>pointer[c];

free (n—=>pointer);

//Overwrite to make new leaf nodes

n—>pointer = (voidx)get_new_nodes(node_list , 8);

real_t dx = (r.xmax — r.xmin) /4.0;

real_t dy = (r.ymax — r.ymin)/4.0;

real_t dz = (r.zmax — r.zmin)/4.0;

for(int c= 0; c < 8; ct++){
((Nodex)n—>pointer)[c].is_leaf = 8;
((Nodex)n—>pointer)[c]. num_children = 0;
((Nodex)n—=>pointer)[c].x = n—=>x + (dx * ((c < 4) ? 1 : —1));
((Nodex)n—=>pointer)[c].y = n=>y + (dy * ((c%4< 2) ? 1 : —1));
((Nodex)n—>pointer)[c].z = n—=>z + (dz * ((c%2 = 0) ? 1 : —1));

112

49

50 //Insert existing points into new leafs

51 for(int ¢ = 0; ¢ < 8; c++){

52 int index = get.index(*points[c], r);

53 if (index = —1){

54 //No point left behind!

55 continue;

56 }

57 Ranges nr = get_ranges_for_index(index, r);

58 insert_point(&((Nodex)n—>pointer)[index], points[c], nr, depth+1);
59

60

61 //Insert new point into new leafs

62 int index = get_index(%p,r);

63 Ranges nr = get_ranges_for_index (index, r);

64 insert_point(&((Nodex)n—>pointer)[index] , p, nr, depth+1);
65

66 // This node is no longer a leaf

67 n—=>is_leaf = 0;

68

69 num_leaves 4= 7;

70 }

71

72 //This ain't no leaf, we just continue down

73 else{

74 int index = get.index(*p,r);

75 Ranges nr = get_ranges_for_index (index, r);

76 insert_point(&((Nodex)n—>pointer)[index] , p, nr, depth+1);
77

78 |}

Listing C.2: From node.c

1 #ifdef TEXTURE

2 | __device.. real.t get_intensity_for_pos.full (Coord pos, Nodex nodes, Nodex node.cache, unsigned intx stack,
int base){

3 #else

4 --device_.. real_.t get_intensity_for_pos_full(Coord pos, Point* points, Nodex nodes, Nodex node.cache,
unsigned intx stack, int base){

5 #endif

6

7 real_t intensity

8 real_t weight =

9 short tos = 0;

10 unsigned char inc = 1;

11

12 unsigned int current_node = 0;

13 unsigned int b = get_covered_subnodes(pos, root_node);

14 stack [base + tos] = current_node | (b << 24);

15 tos += inc;

16

17 while (tos > 0){

18 current.node = stack[base + tos —inc] & O0x00ffffff;

19 b = (stack[base + tos —inc] & 0xff000000) >> 24;

20

21 if (b > 255)f

22 return 0;

23 }

24

25 unsigned int t = 1;

26 while ((b & t) = 0){

27 t=t<<1;

28

29 current.node += (unsigned int)log2((float)t);

30 b=b " t;

31

32 if(b = 0){

33 tos —= inc;

34 }

35

36 else{

37 stack [base + tos—inc] = (stack[base + tos —inc] & 0x00ffffff) | (b << 24);

38 }

39

113

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

58
59
60
61
62
63
64
65
66

68
69
70
71
T2
73
T4
75
76

78
79
80
81
82
83
84
85
86

88
89

91
92
93
94

95

96

97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Node n;

if (current.node < NODE.CACHE.SIZE){

n = node_cache[current.node|;
else{
n = nodes[current_node |;

if(n.is_-leaf){
for(short ¢ = 0; ¢ < n.num_children; c++){
#ifdef TEXTURE
float4 point = texlDfetch(pointTexture, (long int)n.pointer + c);

#else

Point point = points[(long int)n.pointer + c];
#endif

real.t dx = pos.x — point.x;

real_.t dy = pos.y — point.y;

real_.t dz = pos.z — point.z;

real.t distance = sqrt(dxxdx + dy=dy + dzxdz);

if (distance < INTERPOLATION_RADIUS.D){
#ifdef TEXTURE
intensity += (1/distance)*point.w;

Ray#* rays, Colorx colors,

unsigned

#else
intensity += (1/distance)*point.intensity;
#endif
weight += (1/distance);
¥
else{
b = get.covered_subnodes(pos, nodes[current_node]);
unsigned int temp = (unsigned int)nodes[current_.node]. pointer;
stack [base + tos] = (temp) | (b << 24);
tos += inc;
}
}
if(intensity <= 0){
return 0;
real_t ratio = intensity/weight;
if(ratio <= 1){
return 0;
}
return log(ratio);
}
#ifdef TEXTURE
__global__ void kernel(Nodex nodes, Display_colors image, Rays rays, Color% colors, unsigned ints stack, int
stack.size){
#else
__global__ void kernel(Point* points, Nodex nodes, Display_colors image,
intx stack, int stack.size){
#endif
int i = blockldx.x * blockDim.x 4 threadldx.x;

--.shared__ Node node_cache [NODE.CACHE.SIZE];

if (threadldx.x < NODE.CACHE-SIZE){
node_cache[threadldx.x] = nodes[threadldx.x];

--syncthreads();
if(rays[i].distance <= 0){
Display_color b = {0,0,0,0};
image[i] = b;
return;

i

rays[i] = normalize_ray(rays[i]);

114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

Coord pos = rays[i].start;
real.t acc.-distance = 0;
Color output = {0.0,0,0,0.0};

while (acc.distance < rays[i].distance){
#ifdef TEXTURE

real_t intensity = get.intensity_for_pos_full(pos, nodes, node.cache, stack,
#else
real_t intensity = get.intensity_for_pos_full(pos, points, nodes, node.cache,

#endif
output = blend.d (output, intensity , colors);
if (output.a > 0.99f){

break;
}

pos = pos + (rays[i].dir«*STEP_.SIZE.D);
acc.distance += STEP.SIZE.D;
}

image[i] = to.display_.color_d (output);

ixstack_size);

stack ,

ixstack_size);

Listing C.3: From raytrace_kernel.cu,label=shit3

115

116

Appendix D

Poster

The poster shown on the next page, which summarizes this thesis, is to be
displayed and presented by the author at the International Supercomputing
Conference, in Hamburg, June 18-20 2012.

117

‘uoisioa4d jujod buyeoyy Jusisyip yum ‘swaojie|d
JUSISYIP UO S19Se1ep JUSISHIP 104 SIINSSJ IUBWI04IDd

0L02D 0901D 0L6 L! 0€6 £!

(s) swiL

aigqnop ‘12500 M
1eoy ‘12500 M

sianop'>nzz M 09

1eop onzz @

0L

‘'Swyjliobje uonezijensia

9AIeUID]|e JO uoilehiIsaAul pue

‘NdS ay3 Joj Jeindiued ul ‘uoneziwndo
J9YN} SSPN|DUL MJOM ININH o

"MO|S ||113S SI Ing ‘Ajijenb poob

J0 sabew adnpoid ued poyiaw JnQ e

310N\ 1NIN4 pUe UoISN|dU0D)

‘NdD 9103-9
03} paJedwod ‘NdD U0 9’ Jo dnpaads «
‘Spealy} 9 Yim 6°G Jo dnpaads «
'S3INsaJ 1s9q sp|alA uonejodiaiul
21doJ30SIue Y3IM UuoieuUIqWIOD Ul AAd] e
'S 00Z PUB S G USIMID(

‘KIopIm sallen awll bulispusy e
‘sa|dwes

INOZT 03 dn Jo Bunsisuod ‘eyep
uondellip Ael-x [eal Yiim paisal e

S]|NS9Y

Z0jouyoay, pue 20udg

J0 AISIOATU) URIBAALION

ASo10uyda], pue 0UINS

*T-DdH '&W

‘NdD 3yl pue Ndd a3yl Yyjoq

JOJ poyiaw Jno pajuswajdwi aney S\ e
‘uolyejodualul

21doJ30SIue yiim uoieuiquiod

ul ‘bulbliy 1o pA@l JaYae buisn

‘so|dwes Agueau buowe Hulyejodiaqul
AQ AJIsua3ul By 912WI11SD I
‘'sa|dwies paJnidoniisun ayl

uo Ajpoadip 91eldado apn ‘buljdwesal ON e
‘'suJayied uoidellIp 9yl 9zljensiA

031 Buinsed Ael SWIN|OA 3SN SN\

POYISIN

£0119d 40 wyy ulyy wouy uided uondeiyiq Indino sjdwexy

wrRypuoLy, — ANLN

"POYIBW INO JO MBIAIBAOC J13WSYIS

xoq Buipunog

eiawed/ah3

‘2bua|jeyd e sujewsal

1ng ‘quepiodwi S uonezijensiA g o
]Jaselep painioniisun

ac e Ajjenuasss ‘uioned

uoiellip Ael-x ayy Jo sajdwes

2Je sjuswiIadxa 9say] JO INSal 3y «
‘s|ela1ew

J0 saiuadoud pue aun31dnays aya Apnas
01 S92UDID2S Y1 Ul A|]DAISUSIXD pasn
2Je syjuswiiadxa uoldelllp Ael-x

uoI1dNPOoJIU|

peisAg|4 uiaysof ‘Aqiaig ‘W Beq ‘491s|3 ') auuy :siosiAladns ydjeq pieebsig] sewoyl

SuJlalied uoindeuyiqg Aeld-x azijensip 01 bulysedAey buisn

	Title Page
	masteroppgave.pdf

