
An Investigation of Team Effectiveness in
Agile Software Development

Lars Martin Riiser Haraldsen

Master of Science in Computer Science

Supervisor: Torgeir Dingsøyr, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

Agile teamwork has been widely used and accepted in today's industry of
software development. The methods in agile teamwork claim to improve
performance and predictability, and has during the past years become the
target for an emerging area of research. The majority of the existing studies
concerning agile teamwork mainly focus around eXtreme Programming (XP).

This report is one of few that discuss teamwork in software development
having the agile methodology �Scrum� in the main focus. The report focus
on teamwork and team e�ectiveness. It discuss existing literature concerning
Scrum and teamwork as well as showing the results from an observed ethno-
graphically informed study of an agile project. All �ndings, challenges and
opportunities, are analyzed and compared to theories around teamwork. The
primary literature used are case studies about Scrum conducted in the past
�ve years. Some descriptive literature is also used to support my �ndings.

My main results are that solid leadership and members willing to adapt
are of great importance. I also found that working in a closed room together
facilitates teamwork and can increase team e�ectivenes. My teamwork model
and framework for this project might not be completely optimal for this
speci�c observed project. Overall, I have found that Scrum can be hard
to adapt to. However, the agile practices facilitates team e�ectiveness. In
addition, my results show that Scrum guidelines support communication and
adaptability.

Ultimately, it is interesting to see what can be improved in agile methods
and to what extent team e�ectiveness changes.

Keywords: Agile development, Scrum, Teamwork, Team e�ectiveness,
Team performance

Abbreviations

Abbreviation Word/Meaning
PP Pair Programming
XP eXtreme Programming
SSO Single Sign On
PB Product Backlog
PBI Product Backlog Item
SB Sprint Backlog
QA Quality Assurance
pdm Participation in decision making
TfT Table for Tasks
MPM Mutual Performance Monitoring
CC Consultant Company

Table 1: Abbreviations

iii

Preface

This report is the result of a study conducted in my �nal semester of Com-
puter Engineering at the Norwegian University of Technology (NTNU).

Ever since I �rst started working in projects back at secondary school, I
have been intrigued by teamwork and observing how project members impact
the results. When I was �rst introduced to Scrum I was thrilled by the idea
of adapting it to the marked and the customer's needs. During my years
at NTNU I have used Scrum in small projects, both student projects and
summer-internship related, and found it to be e�ective. However, I wanted to
�nd out more about what the success criterias are and how the methodology
can be improved. I was determined to further explore the topic of agile
development, having Scrum as main focus.

This report is an in-depth ethnographical study written by Lars Martin
Riiser Haraldsen in January through June 2012. From the moment I started
working with this master thesis, my intentions were to increase my knowledge
of agile development and contribute with another case to existing literature.

Acknowledgements

I would like to use this opportunity to thank my advisor, Associate Pro-
fessor Torgeir Dingsøyr for excellent guidance and knowledgeable feedback
throughout the entire project. In addition, I would also like to thank the
representatives from the observed case, both the consultant company and its
client, for taking the time to let me interview and observe. The material
gained from these interviews has been very informative and of great value.

v

Contents

1 Introduction 1

1.1 Motivation and Focus . 1
1.2 Problem De�nition . 2
1.3 Report Scope . 3
1.4 Limitations and Restrictions 4
1.5 Report Outline . 4

2 Background for Agile Development 6

2.1 Extreme Programming . 8
2.2 Kanban . 8
2.3 Scrum . 11

3 Team E�ectiveness Model 14

3.1 Leadership . 15
3.2 Mutual Performance Monitoring 17
3.3 Backup Behavior . 18
3.4 Adaptability . 19
3.5 Team Orientation . 19

4 Research Design 21

4.1 Literature Study . 21
4.2 Ethnographically Informed Study 25

4.2.1 Chosen Approach . 25
4.2.2 Context . 27
4.2.3 Challenges . 32
4.2.4 Bias . 32
4.2.5 Data Analysis . 32

4.3 Important Data Collection . 35

vii

CONTENTS CONTENTS

4.3.1 Sprint Planning . 35
4.3.2 Sprint Retrospective 36
4.3.3 Daily-standup Meetings 37
4.3.4 Use of Burn-down Charts 37

5 Results and Discussions 38

5.1 Leadership . 39
5.2 Mutual Performance Monitoring 46
5.3 Backup Behavior . 51
5.4 Adaptability . 55
5.5 Team Orientation . 61

6 Conclusion 67

7 Future Work 71

8 Appendix A - eXtreme Programming 77

9 Appendix B - Interview Guides 80

viii

List of Figures

2.1 Kanban Board . 10

3.1 Salas' team e�ectiveness model. Taken from [1]. 15

4.1 Project Events and Satisfaction 29

5.1 Burn-down chart from sprint 8 45
5.2 From the work station of the development team 48
5.3 From the workstation with the Kanban board in the background 49
5.4 Project Work Station Wall . 50

8.1 The life cycle of XP . 77
8.2 Planning/Feedback Loops in XP 79

ix

List of Tables

1 Abbreviations . iii

4.1 Article Retrieving Steps . 22
4.2 Titles on retrieved articles . 23
4.3 Articles retrieved and used for this thesis 24
4.4 Data collection dates and methods for my case study 33
4.5 Data collection dates and methods for my case study, part 2 . 34

5.1 Literature Results - Leadership 40
5.2 Case Results - Leadership . 41
5.3 Case Results - Leadership2 . 42
5.4 Literature Results - Mutual Performance Monitoring 46
5.5 Case Results - Mutual Performance Monitoring 47
5.6 Literature Results - Backup Behavior 52
5.7 Case Results - Backup Behavior 53
5.8 Literature Results - Adaptability 56
5.9 Literature results - adaptability part 2 57
5.10 Case results - adaptability . 58
5.11 Case results - adaptability part 2 59
5.12 Literature Results1- Team Orientation 62
5.13 Literature Result2 - Team Orientation 63
5.14 Case Results - Team Orientation 64

xi

Chapter 1

Introduction

Software development and how it should be structured to produce faster and
better solutions has been discussed for a long time. Working agile has become
a �new� approach of creating software and has been adapted by the industry.
Such methodologies claim to provide better predictability than traditional
methods as well as a much improved team performance. This thesis is about
software development teams using agile methods to organize their tasks and
processes.

�Scrum is like chess�

Ken Schwaber (Scrum Originator)

This is a famous quote that describes Scrum and its process. Scrum
is one of the most famous agile methodologies. Like chess, there are rules
for Scrum which can be used straight forward. In chess you can follow the
rules and move your pieces around randomly. However, to become a Grand
Master in chess, you have to develop your pieces with a plan and purpose,
creating a synergy that is strong enough to overpower your opponent. It is
the same for agile development teams. To master and take full advantage
of agile methodologies it requires more than following the given guidelines.
This thesis will observe and discuss a team that has taken di�erent agile
methodologies and combined them to �t their working strategy the best.

1.1 Motivation and Focus

With this thesis I aim to gain a deeper understanding of agile teamwork and
what makes it e�ective. Also I want to investigate if there is room for even

1

CHAPTER 1. INTRODUCTION

further improvements. Agile development has become more frequently used
in the past decade and has become a hot topic in today's market. However,
very little empirical data can be found on Scrum projects within software
development. The number of existing scienti�c articles concerning Scrum is
relatively low, and many of the published articles deals with lessons learned
or adaption. Dybå and Dingsøyr [36]found 1996 studies on agile development,
but only a single study addressed Scrum directly. Considering Scrum to be a
potentially attractive methodology for a wide range of projects, I believe this
area deserves further extensive research. I am greatful for the opertunity to
observe and report from a live case. Thinking agile is a totally new way of
thinking when it comes to team work. The focus has turned from a command-
and-control view to a self-manageable team where everyone involved knows
which areas the rest of the team works on as well. This creates opportunities
where developers work in an environment where they get the resources and
the help they need.

It is also interesting that most companies �nd the transition into agile
teamwork di�cult. This thesis will discuss a project that takes an experi-
enced agile consultant company and mixes it with developers from a customer
with no previous experience with the Scrum methodology.

I have analyzed existing literature on agile development and found to
what extent it could a�ect team e�ectiveness. I wanted to study a project
on my own to compare it and add to existing studies and to help this team
become more e�ective. As there are especially few studies concerning Scrum,
I found this area to be the most interesting.

1.2 Problem De�nition

The results from this thesis seeks to add to the pool of existing Scrum studies.
The approach is to observe a project where the Scrum methodology is used
by a team where some of the workers are not familiar with the methodology.
This is to determine whether or not Scrum facilitates team e�ectiveness and
to discover the advantages and disadavantages of the method. The data I
extract from the studied project will be compared to existing literature to
illustrate how practice di�ers from theory in teamwork.

Considering the above, the main objective of this project was to investi-
gate:

�How does the Scrum methodology facilitate team e�ectiveness and what

2

1.3. REPORT SCOPE

are the advantages and disadvantages?�

This beeing the primary research question, the focus of this report con-
cerns Scrum methodology theory and how it facilitates teamwork in a real
case. I want to �nd out whether or not the Scrum methodology is as good as
the literature claims it to be and investigate wherethere could be room for
improvement. This thesis investigates how a project team uses Scrum and
adapts to it while trying to optimize their team e�ectiveness. The studied
project uses principles from other agile methods as well. This will also be
concidered and discussed in the report.

In regards to the research question it is relevant to investigate to what
extent the Scrum methodology uses basic teamwork principles in order to
produce team e�ectiveness. The model of Salas' �big �ve� will be used for
this.

Having a self-organized team structure is what di�er agile methodologies
from traditional teams. This a�ects the leaders preferable behavior and how
close he is working with the team. Additionally it is of interest to investigate
how planning and progress are measured and carried out and how the soft-
ware methodology has been adapted to �t the company's needs. It is believed
that every project has di�erent criterias for success and also di�erent ways to
complete these criterias. When it comes to Scrum it will be interesting to see
how the project team adapts to the methodology and how this impacts the
project. The adjustments a team makes for their speci�c project is crucial
to the results of whether or not the team will work e�ectively and complete
all requirements before the delivery date. This will be interesting to observe
and investigate as well.

1.3 Report Scope

This report will describe an ethnograpically informed reasearch on a software
development project. I was observing over half the projects period, and this
report will present results according to team e�ectiveness. In addition, I
have examined available existing literature in agile software development.
The results here are analyzed and compared to the case research in order to
add to existing research on teamwork.

3

CHAPTER 1. INTRODUCTION

1.4 Limitations and Restrictions

This depth study accounts for one semester, the tenth and �nal grade of my
program of computer engineering. I have restricted the focus of my research
to embrace Scrum as the primary teamwork model. However, there will
be a short introduction to the meaning of Agile Software Development and
some of its di�erent team work models. This report will also go through the
fundamentals of teamwork having Salas' teamwork model [Salas et al. 2005]
as a starting point. I wanted to �nd out how well Scrum �ts into this model.
There are many interesting aspects, but having limited previous studies and
time there are some areas I have chosen to cut out of this study:

� Scrum used in global software development. Reason: Too narrow focus
point.Working global is a totally di�erent way of working in a team.

� A thorough orientation of Scrum and its purpose. Reason: I want
my focus to be on the teamwork and not the Scrum guidelines. I will
however present Scrum and its fundamentals.

� A deeper look in the relations with the customer and the work con-
cerning GUI and design discussions. Reason: Too narrow. This is only
a small part of Scrum.

Primarily I wanted to focus on non-global Scrum teams where the team had
to adapt to the Scrum methodology in some way. It is also important to
point out that best practices can change through time. Thus, the results
and conclusions of earlier researches might be outdated. This report have
accounted for that by focusing on recent studies. Even though there are a
large number of highly in�uential and important articles, newer studies will
help describing today's development processes and teamwork more correctly.

1.5 Report Outline

The following chapters have di�erent roles:

Background for Agile Development

This chapter will give the reader a solid background concerning agile method-
ologies and theories used in this thesis. The main focus will be Scrum.

4

1.5. REPORT OUTLINE

Fundamentals in Teamwork

This chapter takes introduces the framework I have used to analyze my re-
sults. It presents a model that introduces core elements in succeding to make
teamwork e�ective.

Research Method and Design

This chapter discusses the chosen literature used for this thesis. I present
the retrieving process for previous articles and my chosen approach for the
case study. It also explains how data was analyzed.

Results and Discussions

This chapter presents my results from the studied literature and the case
study. The results are compared and discussed seperatly for each section.

Conclusion

This chapter will present my conclusion of this thesis.

Future Work

In this chapter I will suggest improvements and possible ways to take my
work further.

Appendix A - eXtreme Programming

Gives a more thorough introduction to eXtreme Programming (XP).

Appendix B - Interview Guides

Shows the interview guides that are used for the case project.

5

Chapter 2

Background for Agile

Development

This chapter will provide the reader with an understanding of the term �agile�
and its meaning when it comes to Software Development. It is divided into
sub-sections where each section discusses a used methodology within the
studied project.

To understand what agile development really means, one can start with
the de�nition of the word �agile�. A concise meaning of this word within the
world of software development is hard to �nd. However, here is the de�nition
from an online dictionary:http://dictionary.reference.com/browse/agile:

1. Quick and well coordinated in movement

2. Active; lively: an agile person

3. Marked by an ability to think quickly; mentally acute or aware: She's
95 and still very agile.

Take de�nition 1 and add �software development� and you get �Quick and
well coordinated in movement of software development�. Quick and well co-
ordinated can mean that the team is well coordinated. Adding de�nition
3 and you get a team that has the ability to think quickly and can change
quickly. This is exactly what agile development is about; changing quickly
according to the marked needs and the �ow during development processes.
Agile has also been de�ned in [18] where they look at many di�erent studies
concerning agile development.

6

http://dictionary.reference.com/browse/agile

�agility involves both the ability to adapt to di�erent changes and to re�ne
and �ne-tune development processes as needed�.

and
�agility �as the software team's capability to e�ciently and e�ectively re-

spond to and incorporate user requirement changes during the project life
cycle.�

are two de�nitions that explains agile development properly. If the reader
of this report is not familiar with agile development I will advice him/her to
read this article.

Early on, agile methods were �rst inspired by a trend in Japan after
World War II [?]. The Japanese wanted to produce according to demand.
This resulted in few wrong estimates and overtime work hours. Later, such
methods were applied in software development and optimized over time. To
work agile provides practical approaches which are summarized and stated as
guiding principles in the Agile Manifesto: http://agilemanifesto.org/. The
main values from this Manifesto are:

1. � Individuals and interactions over processes and tools�

2. � Working software over comprehensive documentation�

3. �Customer collaboration over contract negotiation �

4. �Responding to change over following a plan�

These values form the core of today's agile methodologies.
Project teams have during the past years showed an increase of interest

in project teams [2]. This study has described the background philosophies
concerning agile software development. It states that agile methods can be
seen as a reaction plan to plan-based or traditional methods. In the study
they describe agile development as:

�Methods for agile software development constitute a set of practices for
software development that have been created by experienced practitioners.�

In traditional methods it is believed that all problems are fully speci�able
and that there allways exist a solution for each problem. Agile methods,
however, address a more unpredictable world relying on people and their
creativity. This thesis will not go any further into the di�erence between
traditional and agile methods, however, I recommend reading[2] for further
background information.

7

http://agilemanifesto.org/

CHAPTER 2. BACKGROUND FOR AGILE DEVELOPMENT

This study concludes that for small projects with changing requirements,
agile methodologies work well..

Several di�erent agile methodologies exist. Here is a list of the method-
ologies used in this project:

2.1 Extreme Programming

Extreme Programming (XP) focuses on best practice for development. From
[2] they describe XP succinctly as: �

�Consists of twelve practices: the planning game, small releases, metaphor,
simple design, testing, refactoring, pair programming, collective ownership,
continuous integration, 40-hour weeks, on-site customers, and coding stan-
dards.�

If the reader would like a more thorough review of XP take a look at
Appendix A in chapter8.

2.2 Kanban

Kanban is another agile methodology for developing products and processes.
The emphasis lies on delivering in time without working overtime. Kanban
uses a task queue available to all participants where developers pull their
work from.

The name Kanban originates from Japan where �Kan� means visual and
�ban� means a board or card. Kanban was �rst used in a Toyota produc-
tion system in the 1940's. The agile method itself is formulated by David
Anderson and has three core principles:

� Start with what you know and what you do now. The Kanban method
starts with what you have now and stimulates for further incremental
changes to your system.

� Incremental and evolutionary change. The development team has to
agree on that an incremental and evolutionary change is the way to
improve the system.

� Respect each others responsibilities and roles. Every team has some
elements that should be preserved. Kanban should be integrated among
these processes and habits.

8

2.2. KANBAN

In David Anderson's Kanban - Successful Evolutionary Change for your Tech-
nology Business he describes �ve core properties. These are important for a
successful implementation of the Kanban method:

1. Visualize the work�ow. Visualizing the work�ow is subtle. It is about
revealing mechanisms: the interactions, the hando�s, the queue bu�ers,
the waiting and the delays that are involved in the production of a piece
of valuable software.

2. Limit Work In Progress. This implies the pull system which Kanban
uses. The pull system acts as a stimuli for continuous incremental
changes to the system.

3. Measure and Manage Flow. This point highlights the focus of keeping
work moving and using the need for �ow as a driver for improvement.
The work should be monitored, measured and reported. By doing so,
the system can be evaluated to have positive or negative e�ects on the
team as a whole.

4. Make Process Policies Explicit. This point is to encourage the entire
team and the leadership by re�ecting the teams e�ectiveness. By having
an explicit understanding it is possible to discuss in a more rational and
empirical way. Thinking of a process as a set of policies rather than a
work�ow is a powerful technique.

5. Use Models to Recognize Improvement Opportunities. This shows that
Kanban is quantitative and can take a scienti�c approach to improve-
ments. When team members have a shared understanding of the work,
work�ow, processes and risks the e�ectiveness of the team will rise.

Kanban revolves around a board that is used to manage work in progress
(hence the meaning of Kanban �Visual Board�). It is common for agile teams
to put their user-stories on the board in di�erent stages such as �in progress
/ development�, �to testing� and �done�. Such a board can be shown below
in �gure:2.1.

9

CHAPTER 2. BACKGROUND FOR AGILE DEVELOPMENT

Figure 2.1: Kanban Board

The basic idea behind this board is that the user-stories travel from the
left side of the board to the right. The board has seven columns. On the left
side are the goals. These are kept on the left side so that everyone in the team
knows what goals that are being worked on now. Right next to the goals
column comes the story queue. This is a prioritized queue, where the top-
most story will be the �rst to be started. The next four columns di�ers from
team to team. On Figure 2.1 they have dividied them into di�erent stages of
the user-stories: Acceptance, Development, Test and Deployment. The last
column shows the tasks when they are done and ready to be deployed into
production.

Kanban enthusiasts claims that using such a method as the Kanban board
can pay be highly bene�tial [44]. They believe organizations that utilize this
properly and leverage the high frequency of delivery will bene�t �nancially.

10

2.3. SCRUM

2.3 Scrum

The word Scrum was actually �rst used in rugby as a name for a special
strategy to get the ball back in to play. In Software Development it is an ag-
ile approach to manage projects [Abrahamsson et al., 2010, Linda Rising and
Norman S. Jano�, 2000]. Scrum is designed to work empirical and should en-
capsulate existing practices. This, meaning that every individual scrum team
for every individual project can combine scrum with other methodologies to
�t the team and the project the best, thus maximizing team e�ectiveness.

In Scrum, processes are monitored and small adjustments to the require-
ments are made continously during the development phase. Scrum has a de-
tailed supported guideline concerning the management aspects of a project,
but lacks more details around the development itself. This sub chapter will
provide the reader a short introduction to Scrum [Beedle et al., 2000] and its
essential fundamentals.

Di�erent roles

In a Scrum project the di�erent stakeholders are dealt di�erent roles. We
have three di�erent roles; the product owner, the Scrum master and the
Scrum Team.

The product owner acts as a link between the Scrum team, the customer
and all the other stakeholders of the project. His responsibility is to manage
the product backlog.

The Scrum Master is responsible for the project following Scrum and its
guidelines. His task is not to manage the project, but to work together with
the team developing. His primary job is to facilitate the Scrum team so that
the principles of Scrum are followed.

The Scrum Team is the core part. They are responsible for designing, de-
veloping, testing and often deploying the product. The team is self-organized
and shares the same mental model and goals for the project. A typically ideal
team consists of 5-10 persons.

Task Estimation

The task estimation is when the Scrum team works through the di�erent
requirements, breaks them up as much as possible and then estimates how
many work hours each piece will take. There are several ways of doing this

11

CHAPTER 2. BACKGROUND FOR AGILE DEVELOPMENT

and lots of tools that can help. An e�ective tool is called �Planning Poker�
[Kjetil Moløkken-Østvold 2008]. In planning poker each developer is dealt a
hand of cards where a hand presents all Fibonacci numbers from 1 to 100.
The number presents work hours. For every piece of the work breakdown
structure each developer draws a card from their hand and put it on the
table. This card represents what he/her believes the time of implementation
will take. The average time will be the estimate for this function. After each
function is estimated all developers get his/her card back and they are ready
to estimate the next function. This is done for each function/requirement in
the project.

The Product Backlog

The product backlog is a list of all features or work that needs be completed.
This list is prioritized based on customer needs and implementation time.
New items can be added or deleted at any time. Such a document is needed
before the implementation phase begins. However, the di�erent features on
the list are not binding. The product backlog also helps every developer get
an overview of the system as a whole.

Sprint Backlog

The sprint backlog is a list of features taken from the product backlog. The
amount of features taken depends on the length of the sprint, number of
developers and how many work hours each feature is estimated to take. All
of these features are decomposed to concrete tasks that are to be �nished
before the sprint is done.

Daily Meetings

Every work day the developers gather for a short meeting (around 15 minutes)
to share three points:

� What has been completed since the last meeting?

� What will he/she be working on until the next meeting?

� Are there any issues that hinder progress in the development?

12

2.3. SCRUM

Usually these meetings take place at the same location to the same time
every morning. This way, everybody has a concept of the general work and
progress.

Sprint Planning and Review Meetings

The sprint planning meeting is a meeting prior to the sprint. It is used to
create the sprint backlog. The result should be a plan that covers how the
team should have a commitment ready at the end of the sprint. Such a com-
mitment should include a working release of a part of the system. The sprint
review meeting is a meeting performed at the end of each sprint. The prod-
uct with its new implemented features are presented for the customer and
other interested stakeholders. This enables good feedback from the customer
and might provide new requirements or features to the product backlog.

Burndown Chart

The burndown chart is a tool very often used in Scrum projects. It shows
the hours spent on each feature, all remaining hours and the working hours
left of that sprint. It is useful as a management tool to monitor the working
process and see whether adjustments are needed or not. Phases in a Scrum
Project In a Scrum project there exists typically three phases: Pre-phase,
development phase and a post-phase. The pre-phase consists of design and
planning. In this phase, the product backlog is built along with short plan
for the separate releases. This phase is typically as short as possible. The
development phase is the part where the scrum team develops the product.
It is separated into several sprints and shields the team from requirement
changes and time-frames, as they are handled in between the sprints. This
makes scrum agile and very �exible. The post-phase is after the last release.
In this phase there are typically time for the last documentation, system
testing and deployment. Scrum can be implemented in a project in several
di�erent ways. It is not always most bene�cial to apply all standard �rules�
when using Scrum either. It varies from project to project and team to team.
Often Scrum is best combined with other agile methods.

13

Chapter 3

Team E�ectiveness Model

There are several studies concerning teamwork and team e�ectiveness [43].
This report will focus on one model, but I strongly recommend the reader to
take a closer look into [43], for further understanding of teamwork models.

According to James J. et al. [45] team e�ectiveness can be evaluated
by using di�erent objective or subjective measures. He states that objec-
tive measures usually miss critical factors. Because of this it appears to be
agreement across studies that subjective measures, using scales combined of
team satisfaction and ability to achieve goals to evalute team e�ectiveness.
In this study I will de�ne team e�ectiveness as a measure of a team working
together in such a way that the core goals are accomplished within a certain
time frame and the team members are satis�ed.

To further categorize team e�ectiveness I will use a teamwork model from
a solid study [?]. It will be described in the sections below. The model will be
used to form the framework for the ethnographical study provided in chapter
�ve.

Salas' study believes that good teamwork can be achieved if the right
sets of components are there. In their study they discuss �ve core areas
within a project teamwork and explains why each of these are important.
The components discussed are: leadership, mutual performance monitoring,
backup behavior, adaptability and team orientation. Their opinion is that all
these areas are needed to achieve good team e�ectiveness, however, they can
be implemented di�erently from project to project. This section will present
the di�erent areas and what is needed for each area to achieve good team
e�ectiveness.

Below is a model presenting the the core areas. The model also shows

14

3.1. LEADERSHIP

three coordinating mechanisms which support the areas to provide better
performance.

The model is taken from [1]

Figure 3.1: Salas' team e�ectiveness model. Taken from [1].

3.1 Leadership

Leadership is one of the core components of the model. It is discussed by
lots and lots of studies where the majority concludes a team provides better
with some sort of leadership. Without having a team leader that knows how
to guide and facilitate pro�tably, team performance can decrease [6]. This is
supported by Salas et al.'s studies where they state that a good team leader
is key to maximize a teams performance abilities. The study explains that

15

CHAPTER 3. TEAM EFFECTIVENESS MODEL

a team leader should be able to generate possible solutions or at least start
a thinking process within the team. He should be able to structure and
organize the individual strengths and resources that each member provides,
using the strengths to increase team performance.

A good leader has several tasks. Some of his tasks is to coordinate the
processes, motivate the team members and provide the team with a shared
mental model. A shared mental model is a mechanism that helps team
members to interpret information the same way [?]. They state that such a
model facilitates communication and coordination in a team setting. This
information is also backed up by empirical evidence from [7] which states
that:

�The provision of enriched information by team leaders results in more
similar and accurate mental models among team leaders�.

There are certain rules for how a leader should behave, mostly depend-
ing on how newly the team is established and their previous experience with
working in teams. Typically will behavior, individual performance, motiva-
tion and trust change during a project, and the leader should change his
leading style accordingly. In Durham et al. 1997 [?] they discuss two types
of leadership. The �rst type includes a commanding leader, also known as
the traditional leader from [10], which has a tough leadership style. The
essential characteristic for this type is that he makes the decisions for the
group. As a contrast to the commander or traditional leader, they discuss
leadership within self-managing teams. Self-managing teams do not operate
without a leader, but the role of their leaders has a completely di�erent task.
They are often called facilitators, coordinators or coaches and has as role to
ensure good communication within the team. This type of leadership has
been increasingly used in today's world of work and with great success [8].
In this study they issue the importance of participation in decision making
(pdm) and how much a team can pro�t from it. They state that:

�Participation by group members should be especially valuable when the
task involves interdependence (i.e., it is a team task) and the team has to
learn how to perform it e�ectively without prior training.�

Traditional style of leadership would be likely to prevent or discourage
such communication since their focus lies on getting subordinates to follow
orders. They also advise that the team leader should develop team-based
norms that enforce expectations between the di�erent members of the team.
When the team members feel they contribute to the team and understand
the importance of working together team performance increased. This is

16

3.2. MUTUAL PERFORMANCE MONITORING

also backed up in [1, 7]. The results of Durhams et al.'s studies was that
teams with coordinators tended to have higher performance than teams with
commanders and that a more �participative� style was bene�cial for the team.

3.2 Mutual Performance Monitoring

Mutual Performance Monitoring is the second core area Salas et al.'s studies
look into. It has been de�ned in[11] as the ability to:

�keep track of fellow team members'work while carrying out their own . .
. to ensure that everything is running as expected and . . . to ensure that
they are following procedures correctly�.

This study shows that e�ective teams have members that pay attention
to what other team members do. This is especially important in stressful
periods in the project, when team members potentially increase their mistake
ratio. Having the knowledge of what fellow team members are working on
makes it easier to encourage and facilitate each other. Studies show that
individuals are often not aware of their own de�ciencies when it comes to
performance abilities. Getting feedback from a trusted team member can
make individual aware of his or her de�ciencies, thus increasing performance.

Salas et al.'s studies explains that keeping track of fellow team members
are easier when they work close to each other. Working in the same room can
provide the team easier access to understand who's working on the various
tasks at all times. It also makes it easier for team member to help each other
out.

As mentioned in 3.1 a shared mental model is also important to achieve
e�ective performance monitoring. Such a model helps providing a shared
understanding of the tasks, the goals and the team responsibilities. The
model 3.1 shows that Mutual Performance Monitoring is connected with
Mutual Trust. It is important that team members are open for feedback
from other members. Trust within team settings has been de�ned as

�shared perception . . . that individuals in the team will perform par-
ticular actions important to its members and . . . will recognize and pro-
tect the rights and interests of all the team members engaged in their joint
endeavor�[19].

Not having su�cient trust in other team members can expend time and
energy in protecting, checking and inspecting each other instead of providing
value-added ideas. Having team members feeling their input is not valued

17

CHAPTER 3. TEAM EFFECTIVENESS MODEL

or used appropriately they may be less willing to share the information [20].
The same study shows that team members might completely stop sharing in-
formation if they fear being perceived as incompetent. Trust is an important
underlying mechanism to accept a certain amount of risk that comes when
one have to rely on each other. Trust is a big part of Mutual Performance
Monitoring considering that it is understood and accepted by team members
that people are in fact looking out for each other for the good of the team.

3.3 Backup Behavior

Backup Behavior is the third area of Salas' model. It has also been described
in [21], where he discuss three di�erent situations where providing backup
behavior is important:

1. To provide feedback and coaching to improve performance

2. To assist a team member in performing a task

3. To complete a task for a team member because he or she has an over-
loaded amount of work

The ability to reduce workload for an individual team member is important
when it comes to team performance [1]. Salas' studies discuss that team
e�ectiveness can increase when team members take over an already started
task and �nish it. They conclude that if the task of an overloaded team
member is not facilitated or taken over, it is expected that team performance
will degrade drastically. This is supported by [22] where they state that teams
which are able to compensate for each other in periods of stress have fewer
errors in their work.

The importance of backup behavior does not simply lie in the improved
performance outcome, but also in how it a�ects team processes. Having good
backup behavior allows for greater adaptability in changing situations and
environments, thus increase team performance in such situations [21]. This
can also be seen from 3.1 where backup behavior can lead to adaptability.

Salas' study discuss how a shared mental model is important in this area
as well. Backup behavior is typically decided by the needs of the team. A
shared mental model can form the core decisions of when a team member
must step in and provide back up, how it should be done and what assistance
is needed.

18

3.4. ADAPTABILITY

3.4 Adaptability

Adaptability is de�ned in [1] as the ability to understand and recognize de-
viations and then readjust accordingly. In projects there are almost never
work that is performed 100% after plan and schedule. Typically a project
consists of risks; information missing, new information emerging, team mem-
bers become sick or important tools arrive later than planned. When such
risks occur the team has to adapt to the new situation, and thus make adapt-
ability a crucial area for team e�ectiveness. Research from [22] discuss this
and concludes that teams being more adaptable were rated as more e�ective
than others.

Adaptability assists teams to respond to unexpected demands. For adapt-
ability to provide better team performance, the changes in the environment
my constantly be concidered. Usually, when teams have worked on a project
for a long time routines and habits have been established which can result in
members not see changes in the environment as quickly. Salas' study states
that such mindlessness can result in productivity loss or missed oppertunities
for innovation and improvement. Sometimes it might be good to pause work-
ing for a short period of time just to overlook the project and work situation
as its whole.

Team adaptability can be important for many di�erent teams and in many
di�erent situations. It is important for team tasks that require innovation
(e.g. research teams) or for teams that experience a failure (e.g. soccer teams
that fail to achieve their goals e.g. winning the championship). Similar to
backup behavior, team adaptability can be manifested in many ways depend-
ing on challenges and team tasks. The rate of work, how many tasks that is
under progress and who performs the tasks are important factors that come
into play when discussing adaptability. However, there are so many other
factors that make adaptability very individual from team to team.

3.5 Team Orientation

The �nal aspect of Salas' model �The Big Five� is team orientation. Concider-
ing the four previous areas to be more behavioral matters, team orientation
is |more attitudinal. Team Orientation is the ability to take other team mem-
ber's behavior into account and set team goals over individual goals. It is
an important dimension within the �big �ve� as it improves both individual

19

CHAPTER 3. TEAM EFFECTIVENESS MODEL

e�ort and performance as well as individual satisfaction [22]. In addition it
facilitates the overall team performance by for instance having better decision
making within a team [23]. As they describe it in [23]:

�Team orientation is not only a preference for working with others but
also a tendency to enhance individual performance through the coordination,
evaluation, and utilization of task inputs from other members while perform-
ing group tasks�.

Basically this means that each team member should aquire the skill to
perform individually through input of other team members. This is of course
in addition to the skill of working in a team. Salas' study states that individ-
uals with a more team oriented view, would take other team members input
when making a decision. Although the input was not always seen as correct,
the quality of the decision improved.

In Salas' study they have also found that team orientation result in in-
creased cooperation and coordination, which may increase task involvement,
information sharing, strategizing and goal setting, thus improves team per-
formance. This is backed up by many other studies: In [24] they have found
that good team orientation results in increased cooperation and coordina-
tion among team members. In [23] they found that individuals with a team
orientation more frequently considered teammate input to decide on a �nal
course of action.

20

Chapter 4

Research Design

This chapter presents how I collected and chose the literature and my data
from the empirical study that was used for this thesis. The work for this
thesis has consisted of two primary ways of gathering data: Searching for
studies from online databases and studying a project team using Scrum.
This chapter will provide information concerning the study chosen, how data
should be collected and its appropriateness. Section 4.1 will describe the
collection of litterature studies and how I have used them for this thesis,
while section 4.2 will describe the same for the ethnographical case study.

4.1 Literature Study

I wanted to search for studies in order to get an in-depth understanding of
Scrum and how it is used in project management. This would allow me
to have the necessary background information and be better prepared when
observing the project team.

For the searching process I chose literature from a database called �Web
of Science�. The goal was to �nd around 20-30 di�erent documents where I
believed comparing approximately 8-10 would be su�cient. In the search for
relevant and reliable articles my criterias were that:

� The article has to primarily be a Scrum study concerning a software
development team that works in today's industry. This means that
student projects and similar studies will be excluded. The majority
of the article should be about scrum principles and its use in project
management today.

21

CHAPTER 4. RESEARCH DESIGN

� It has to be a scienti�c article. This means that experience reports and
�lessons learned� - reports will be excluded.

� Documents focusing on the whole Scrum methodology. Many docu-
ments tend to focus on only seperate parts of Scrum in a project. I
wanted to get as much data on the whole process as possible.

To ful�ll my criterias I investigated all of the titles from the retrieved articles.
If the article looked interesting, based on the title, I would examine the
abstract and in some cases read parts of the article to further investigate if
it was of any use.

The retrieving steps were:

� Re�ne my search to �only articles�

� Re�ne my search to �Computer Science Software Engineering� and
�Computer Science Information Systems� articles.

� Sorting my search by �Times Cited�

� Removing duplicates shown in table 4.1 below.

Table4.1 shows my retrieving process presented in table. Table 4.2 then
shows the titles of the articles found.

Table 4.1: Article Retrieving Steps

Keyword for

Search

Total

Re-

sults

Total

Re-

sults

After

Re�n-

ing

Result

After

Choos-

ing

�Scrum Development� 251 25 6

�Agile Team� 672 62 6

�Agile Methodology� 841 80 3

�Scrum Software� 106 23 1

22

4.1. LITERATURE STUDY

Table 4.2: Titles on retrieved articles
Keyword for

Search

Title on Articles

�Scrum

Development�

�Customising agile methods to software practices at Intel Shannon�,

�A teamwork model for understanding an agile team: A case study of a

Scrum project�,

�The impact of agile principles on market-driven software product

development�,

�The agile requirements re�nery: Applying SCRUM principles to

software product management�,

�A decade of agile methodologies: Towards explaining agile software

development�,

�Scrum in a Multiproject Environment: An Ethnographically-Inspired

Case Study on the Adoption Challenges�

�Agile Team� �Overcoming Barriers to Self-Management in Software Teams�,

�Agile Process Improvement: Diagnosis and Planning to Improve

Teamwork�,

�Challenges to Teamwork: A Multiple Case Study of Two Agile Teams�,

�Overcoming Barriers to Self-Management in Software Teams�,

�Scrum and team e�ectiveness: Theory and practice�,

�Understanding self-organizing teams in agile software development�

�Agile

Methodology�

�Beyond the customer: Opening the agile systems development process�,

�Agile Project Management: Steering fom the Edges�,

�The Impact of Methods and Techniques on Outcomes from Agile

Software Development Projects�

�Scrum Software� �Software Development Methodologies, Agile Development and Usability

Engineering�

The table below, 4.3, shows each study that I have chosen to include as
a basis for the literature study in this thesis.

23

CHAPTER 4. RESEARCH DESIGN

Table 4.3: Articles retrieved and used for this thesis
Title Author (s) Published ID

Customising agile methods
to software practices at

Intel Shannon

Brian Fitzgerald,
Gerard Hartnett

and Kieran Conboy

2006 [32]

A teamwork model for
understanding an agile
team: A case study of a

Scrum project

Nils Brede Moe,
Torgeir Dingsøyr
and Tore Dybå

2010 [34]

Scrum in a Multiproject
Environment: An

Ethnographically-Inspired
Case Study on the
Adoption Challenges

Artem Marchenko
and Pekka

Abrahamsson

2008 [41]

The agile requirements
re�nery: Applying SCRUM

principles to software
product management

Kevin Vlaanderen,
Slinger Jansen,

Sjaak Brinkkemper
and Erik Jaspers

2010 [9]

Overcoming Barriers to
Self-Management in
Software Teams

Nils Brede Moe,
Torgeir Dingsøyr,
and Tore Dybå

2009 [?]

Scrum and team
e�ectiveness: Theory and

practice

Nils Brede Moe
and Torgeir
Dingsøyr

2008 [3]

Understanding
self-organizing teams in

agile software development

Nils Brede Moe,
Torgeir Dingsøyr,

Tore Dybå

2008 [4]

Challenges to Teamwork: A
Multiple Case Study of

Two Agile Teams

Viktoria Gulliksen
Stray, Nils Brede
Moe, and Torgeir

Dingsøyr

2012 [?]

Primavera Gets Agile: A
Successful Transition to

Agile Development

Bob Shatz and
Ibrahim Abdelsha�

2005 [38]

As shown in table 4.3 nine studies have been included. The studies that
are not included have been removed because it's either too short, did not

24

4.2. ETHNOGRAPHICALLY INFORMED STUDY

for�ll my criterias or had too little focus on Scrum.

4.2 Ethnographically Informed Study

In [2]they state that there is a lack of quality Scrum studies. This concerns
especially mature Scrum teams. Based on this and my motivation described
in 1.1(ikke skrevet ferdig) I wanted to investigate what characterizes team
e�ectiveness in Scrum teams.

4.2.1 Chosen Approach

There are several approaches to investigate teams on this matter. When
studying teamwork within software development, case studies and ethno-
graphically informed studies are the two most usual approaches. Based on
a previous subject (IT3010 Research methods) I took this autumn and my
preparatory project for this thesis I ended up doing an empirical ethnograph-
ical study. I believe my research question will be answered best by doing an
such a study. Qualitative ethnographical studies are argued very positively in
[37, 38]. Here he discuss researches concerning how projects are investigated
with ethnographic research.

In [37], the study provides guidelines for how to investigate properly. He
suggests that �eld notes should be written up regularly, interviews should
be written as soon as possible and that the situations should be reviewed
regularly during the research progress. The types of project I wanted to
make research on can be seen similar to examples from [37, 38], which I also
believe strengthen my choice of doing an ethnographically informed research.

Having this in mind I ended up with a project where a consulting company
co-operated with their customer by forming a development team together.
My case is more of a �convenience case� than a speci�c case to perform a
speci�c study. The company and the educational institution allowed me to
study this case and I was happy to do so because it was for�lled my criterias
as well.

To increase validity and trustworthiness of my �ndings I used seve|ral
ways of gathering data. My �ndings, results and data concerning the case
project have been veri�ed by the project leader from the consultant company.
My basic approach to gather data:

25

CHAPTER 4. RESEARCH DESIGN

� Observing meetings of interest. Such meetings are: Daily stand-up
meetings, Sprint planning, Sprint retrospective, Demo's.

� Taking daily �eld notes

� Conducting interviews and �small talks�

� Looking into documents of importance. Such documents are: the burn-
down charts, the contract between the consultant company and the
client, the product backlog, the sprint backlog.

The ethnograpical study was conducted by observing this project as an out-
side �researcher�. By conducting interviews and having �small talks� with
developers right after a discussion of interest, it was possible to record a
representation of their daily work. I would also gather information from the
contract and the product backlog to get a full understanding of the project.
The burndown charts helped me monitor it and see whether or not the de-
velopers reached their sprint goals.

The structured interviews were conducted in the middle of the project
and in the later phases. The interviewees worked either as Scrum Master or
as a Project leader for either the consultant company or the customer. The
small talks were conducted right after discussions or important meetings and
the interviewees here were individuals from the development team. In total
�ve interviews and four small talks were conducted. The small talks were
semi-structured (depending of the conversation) with questions like:

1. �Can you tell me about the conversation you had with Person X�

2. �What were you thinking during this conversation?�

3. What do you think they/he/she were/was thinking ?�

However, the small-talks deviated a lot from this structure. All the interviews
and small-talks have been transcribed and analyzed. The transcriptions have
been sent back to the interviewees and been validated and accepted for me
to use further in this thesis. The interview guides can be found in the ap-
pendix of this thesis. However, the interviews di�ered much from the original
interview guides.

The developers from the consulting company are very experienced with
Scrum and has been using it for many years. The developers from the cus-
tomer, however, had not used it at all. The plan was that the customer's

26

4.2. ETHNOGRAPHICALLY INFORMED STUDY

developers would learn �as they work� through pair programming and guid-
ance, with the idea that they could overtake the product and work on it by
themseleves after delivery date.

4.2.2 Context

The studied project is a co-operative project between a consultant company
and one of their customers. They call the project �Min Side� which is a
student portal for information. The customer is an educational institution in
Norway where the goal is to simplify information access and create a Single
Sign On (SSO) portal for the students. The project owner believes it is
important to emphasis that this is primarily the making of a student portal
and that students will be the target that should bene�t the most from this
project. I was observing and interviewing the sprints from sprint 6 through
10.

Background

This project was initiated because a university wanted to optimize their com-
munication �ow. In 2009 the university established a project called �Front
O�ce 2012�. The customer issued Front O�ce 2012 because they wanted to
improve their front end systems and improving communication. The project
has as main goal to simplify a students' everyday life. The goal is that this
result in less frequently asked questions for the employees - because the sys-
tem is simpli�ed! Having this solution should let the institution increase with
bout 2000 students every year, without increasing sta�. The product owner
also believes that the project will increase communication and interaction
with the students as well as become the primary way of information �ow.
It is divided into six di�erent parts and the project I have studied for this
master thesis is one of these parts.

General Information

The project I have been studying is called �My Page� and started 8th. of
May 2011. The project completes with a working go-live version the 15th.
of August 2012. The primary goal for this project is creating an SSO portal
to professionalize their front end services and then creating �My Page� that
provides all information a student need. The institution has approximately

27

CHAPTER 4. RESEARCH DESIGN

18000 people that study and work there, and is growing by approximately
10-20% a year. They want to keep the same amount of administrative em-
ployees and need a system that allows that while the institution is growing.
The system they use now does not allow that. It consists of di�erent un-
derlying systems which handle various areas from economics to individual
and administrative tasks. The students do not �nd the information they
are looking for, thus creating more administrative work. This is what the
new system is supposed to prevent. The new system should include all un-
derlying systems and feel like the user only runs one system. Basically the
system takes an extra layer on top and gathers all services there. The system
will handle functionalities like exams, mails, payments and information from
the di�erent courses and from the sta�. Each of these functions were han-
dled separately by underlying systems such as Aggresso, Banner, Its-learning
among others.

In the beginning of this project the consultant company estimated the
project to be 7300 working hours with nine sprints and an extra tenth bu�er
sprint. However this estimate was totally reevaluated already in Sprint two.
Here they included 480 hours for the SSO and 120 hours for installation of QA
test and development environments and ended up with an estimate of 8100
hours. Sprint 1-8 are used for developing and implementing. The 9th. sprint
is a test sprint that involves two weeks of delivery tests and then two weeks
of acceptance tests within the customers environment. Each sprint lasts for
four weeks and has a capacity of 500 hours from the consultant company and
100 hours from the customer which result in a workload of 600 hours each
sprint. {(8100-(10x600))=2100 timer til overs..?! (Spør prosjektledere!).}

- 480 timer har vært en del av prosjektet fra dag 1! Men det ble tatt inn
som en del av backlogen - fordi disse timene hadde for mye usikkerhet. Disse
ble tatt inn allerede i Sprint 0. Pga usikkerheten blir disse estimert ettervært
og gjort om til pbi'er i hver sprint. POC - Sprint 0 - etter A/D fasen.

- Skriv om linje 3-6.

- Skille mellom utviklingsmetodikk og prosjekt. Selve prosjektet har: -
LES Kontrakt og skriv om avnsitt!,

Below is a �gure that illustrates a high level time line including project
events and project satisfaction.

28

4.2. ETHNOGRAPHICALLY INFORMED STUDY

Figure 4.1: Project Events and Satisfaction

As shown in �gure 4.1 the team has a very good overall satisfaction during
most of the project. However, there were periods where not everybody was
so satis�ed and the graph drops down correspondingly. This will be more
discussed in chapter 4.3.

Team Members, Roles and Elements

The development team itself consists of seven developers, where four of them
come from the consultant company and three from the customer. The three
developers from the customer work 25-50% of full work time at this project.
The four developers from the consultant company work 60-100% on this
project. Both sides have their own project leader. The development team
uses a hybrid working approach where the combination of three di�erent
agile methodologies; Scrum, XP and Kanban creates the core principles for
their working situation. Scrum covers the majority of this hybrid approach.
The team members have very di�erent knowledge with previous use of agile
methodologies.The developers from the consultant company are very expe-
rienced with Scrum and the agile principles. They have had several other
projects where Scrum has been used e�ectively. The developers from the

29

CHAPTER 4. RESEARCH DESIGN

client's side are trying this style of work for the �rst time. One of the sub-
goals is to make them adapt to Scrum and enable them to take over the
project for further developing and maintenance after version one is deliv-
ered.

The core of the Scrum/hybrid methodology, as viewed and changed by
the project team, they have divided Scrum elements in four roles, �ve types
of meetings and �ve types of artifacts. They are as follows:

Roles:

� Project Leader - One for the vendor and one for the customer. Runs
administrative and economical issues, overlooks the progress and controls
time issues. The project leader on the customer side is also the Project
Owner - a relevant term in Scrum.

� Scrum Master - Is the subordinate and responsible for the �nal so-
lution. He facilitates and drives the development team. He is solid and
knowledgeable and he knows what is going on at all times.

� Development Team - The team that develops and implements the
solution. Scrum Master is also a part of this team.

� Functional Experts - Experts on the system from the vendor's side of
the project. They know how the components should look and work when the
system is completed.

Meetings:

� Sprint Demo - A demo presented by the development team, led by the
Scrum Master, where the implemented components from the previous sprint
are presented for the customer.

� Sprint Planning - A planning meeting for the development team and
often accompanied by a functional expert. Estimates and divides tasks for
the upcoming sprint.

� Sprint Retrospective - A meeting for the development team to go
through pro's and con's for the previous sprint.

� Daily-standup Meetings - Everyday meetings where the developers tell
each other what they have been working on, what they will work on this day
and if there are any problems that prevent their work. These meetings last
approximately 10-15 minutes.The project leaders and functional experts are
present at some of these meetings.

� Regular Meetings - All other meetings. Typical if something out of the
ordinary happens.

Artifacts:

30

4.2. ETHNOGRAPHICALLY INFORMED STUDY

� Product Backlog - A list of items that is made from the customer's
requirements speci�cation.

� Sprint Backlog - A list of items that should be implemented for a
speci�c sprint.

� Burn-down Charts - An administrative tool to see how much work
that has been done and what remains for each sprint.

� Retrospective Table - A table used in the process of Sprint Retrospec-
tive. Lists up all pro's and con's for a speci�c sprint.

� Table for Tasks in Progress (TfT), to QA, and for Documentation
- A table used to control the number of tasks in progress, in QA and for
documentation.

Using this hybrid method and this setup provides what the team believes
to give the best performance for this project. From XP they use pair pro-
gramming to ensure that the customer's developers adapt to Scrum and can
take care of the system after version one is released. The table for tasks
in progress, QA and documentation is taken from the method Kanban and
ensures that no more than 6 tasks should be under development, four tasks
to documentation and two tasks in QA at the same time. Throughout the
project, the sprint lengths of four weeks were kept constant and the team
involved eight di�erent developers, one scrum master and two project leaders.

Work Setting and Information Sharing

The development team works together in a closed room. Each developer pri-
marily works individually on their own laptop connected to a large monitor.
They have access to a projector and the TfT is visible for all to see. They
use SharePoint to share documents and administer tasks.

The functional experts work in the room next door. This has changed
several times during the project. At the beginning of the project, in the
analysis and design phase, the functional experts and the developers worked
closely together. After this phase they were separated and the functional
experts worked in a completely di�erent location. At that point the func-
tionals were used more randomly. However, when they were moved to the
room next to the developers, they were used more frequently.

31

CHAPTER 4. RESEARCH DESIGN

4.2.3 Challenges

When doing ethnographic research I will face several challenges [F. J. Riemer,
2008, Article 12A]. I am aware that the team members and I will form some
kind of relationship. They must all agree to participate in the research and
fully understand the purpose of the research and the implications of their
participation. Con�dentiality is of course assured for all participants. I
am also aware of the rigor within qualitative research and will describe the
validity and reliability of my �ndings.

4.2.4 Bias

It is important to know my experience and limitations before starting such
a study. At this moment I am a student at my �fth year in Computer
Engineering. During my studies I have only used agile methods, and I thus
believe that agile methodologies are more useful than the traditional ones.
However, this can be negated because of my limited practical experience
outside the university.

4.2.5 Data Analysis

In this section I will discuss what I have found from the chosen literature
and the ethnographically informed study.

Interpreting data requires time. Because of the local research on one team
the focus is deep.

�An ethnographer's job is to capture the thick description of an event,
experience or scene� [38].

Because of the amount and variety of the collected data I chose a system-
atic and analytical approach to analyze the di�erent data su�ciently. This
goes for both the literature and the ethnographical results. Notes from inter-
views, burn down charts, product backlog and sprint backlogs and �eld notes
are primary data sources that have been categorized and analyzed. The ma-
terial are categorized in di�erent folder: �Important documents�, �Interviews�
and �Field Notes�. The table below 4.4 shows when I was collecting data for
this study and what type of method I used the di�erent dates.

32

4.2. ETHNOGRAPHICALLY INFORMED STUDY

Table 4.4: Data collection dates and methods for my case study

Date Data Collection
Method

Comments

27.01.2012 Interview Interview with project leader from the
consultant company. A thorough

introduction to the project.
30.01.2012 Observation / �eld

notes
Observed the demo and retrospective
meeting of sprint 5 as well as planning

meeting for sprint 6
31.01.2012 Observation / �eld

notes and interview
Observed the daily working situation and

interviewed the Scrum master.
22.02.2012 Observation / �eld

notes, interview and
small talks

I observed the daily working situation and
interviewed the project leader from the

customer's side. In addition, I found time to
have conversations with two developers.

23.02.2012 Recieving burn-down
charts updates

From this date and during the rest of the
sprint I recieved daily updates of the

burn-down charts.
27.02.2012 Observation / �eld

notes and small talk
Observing the demo and retrospective

meeting for sprint 6 as well as the planning
meeting for sprint 7. Also got the chance to
speak with one of the developers after the

planning meeting.
28.03.2012 Observation / �eld

notes and had a long
talk with the project

leader from the
consultant company

Clari�ed the context and corrected all the
mistakes concerning the project part of my

thesis.

33

CHAPTER 4. RESEARCH DESIGN

Table 4.5: Data collection dates and methods for my case study, part 2

Date Data Collection
Method

Comments

29.03.2012 Observation / �eld
notes

I observed the daily working situation and
got an interview with one of the developers.

Easter
2012

Studied contract,
change order papers,

requirement
speci�cation papers
and the product

backlog

Reading... Lots of reading.

18.04.2012 Observation / �eld
notes and small talk

Observing the daily working situation and
had small talks with the functionals.

19.04.2012 Observation / �eld
notes

Observing the daily working situation

27.04.2012 Observation / �eld
notes

Observing the daily working situation

03.05.2012 Skype interview Interview with the project leader from the
consultant company

May 2012 Communication
through email and

phone

Communication with Scrum master and the
project leader from the consultant company

Having the di�erent data in the di�erent folders I further categorized my
analyzed data. Concidering the framework that was established in chapter
3 I categorized my �ndings based on the focus areas of the model 3.1 from
Salas' studies. There are �ve main areas: Leadership, Mutual Performance
Monitoring, Backup Behaviour, Adaptability and Team Orientation. These
�ve areas form the core of the analysis done for this thesis. Some data that
were collected are concerned with the side elements from the model: Mutual
Trust and Shared Mental Model. These will be pointed out in the report,
but still connected to one of the �ve main areas. The same categories are
used for the literature studies.

34

4.3. IMPORTANT DATA COLLECTION

4.3 Important Data Collection

This chapter will present the most important ways I observed to collect
data. It focus on how the di�erent meetings were conducted. This chapter
will also focus on how problems were facilitated within my studied case.
Solving problems are crucial and often connected with three main areas of
Scrum; Sprint Planning, Sprint Retrspective and Daily-standup Meetings.
The observed team had, however, very few complications. This chapter will
explain how the observed team used these aspects of Scrum to handle both
external and internal demands and issues.

4.3.1 Sprint Planning

Sprint planning meetings are an important part of Scrum. Every iteration of
Scrum begins with this meeting and is supposed to be a conversation between
the product owner and the development team. At this meeting there should
be an agreement on which tasks have the highest priority and thus which
should be implemented �rst.

For the observed team the meetings were led by the Scrum master and
took place before each sprint. The meetings were consequently after the
retrospective meetings and always on the same day. For the observed sprints,
the observed team diversed from the original Scrum guidelines. The tasks
from the product backlog were given priority and estimated. The Scrum
master would have examined the product backlog and explained all tasks
to the team so that everybody knew how much work each task involved.
If the Scrum master does not know exactly how a function should work, a
functional worker is called in. A functional worker is an employee at the
educational institution and is working (and will be working after the project
is �nished) with these tasks. At these meetings there is often a functional
present to help explaining the functionality of certain tasks. In this way the
team gets an understanding of all tasks and know what should be done for
the upcomming sprint. After a task is explained properly, the team will do
their own estimates and then allocate the task to one of the developers. This
deviates from the original Scrum principles. In this way the developers know
from the beginning of the sprint what they are expected to complete at the
end of each sprint and can plan their upcomming four weeks. The Scrum
master remarked that:

�Allocating tasks like these were an adaptment we made for the team and

35

CHAPTER 4. RESEARCH DESIGN

it has worked out nicely for us. Up to around sprint three we only allocated
the �rst task and then �nished that before adding a new task to each developer.
Now the developers can choose what they want to work with right away.�

Consequently, the more enthusiastic and competent developers chose the
preferred tasks, while the more passive developers ended up with more �bor-
ing�, but often easier tasks. The di�erence of enthusiasm and competence
within the team was a large gap. To close this gap experiential learning and
pairprogramming were used. Some tasks were given to two programmers that
should pair up; one skilled and one that should learn. This could prove to be
di�cult because all team members worked with di�erent time capacity on the
project. The developers that worked only 20%-50% on the project could not
be assigned di�cult tasks, because the competence and time at that point
would not make them able to �nish the task. They were instead given easier
tasks and help so they could learn and improve during the project. All tasks
were added to burndown charts and updated every day by the project leader.

The scrum master shows a very good understanding of the system as a
whole, as well as what is good for the team. He does most of the talking at
these meetings, however, there are discussions under the estimation process.
He appears as a knowledgeable and technical developer as well as an extrovert
person who is good with people. Because of his technical expertise the project
leaders give him absolute credibility so that he can decide which tasks should
be implemented at what point.

4.3.2 Sprint Retrospective

Sprint Retrospective meetings are also a core part of Scrum. They are held
at the end of each sprint and involve a discussion between the scrum master
and the team where the themes are pro's and con's of the �nished sprint. The
meeting is held so that the team can learn and adapt from mistakes and/or
positive incidents, thus increasing team e�ectiveness of future sprints.

For the observed team, the retrospective meeting was held right before
the sprint planning having the project leader present. The meetings are led
by the project leader and the scrum master. The team use a few minutes
where each member writes down what went well on a post-it note. These
notes are placed on a board and the team members also explain why this
speci�c incident was positive for them. After each team member has placed
at least one post-it on the board, the scrum master groups them together
(because there are often similarities) and each team member will agree on

36

4.3. IMPORTANT DATA COLLECTION

what are the most important points. These are written down and will be
rememberd for future sprints. After a round of pro's, the same thing is done
for con's. The team become aware of their de�ciencies and thus improves
e�ectiveness of future sprints.

In one of the retrospective meetings the several team members pointed out
issues where they could not get the screen images from the external company
that designs them fast enough. When these images were not delivered to a
certain time, the developers were set back and had to focus on other tasks.

4.3.3 Daily-standup Meetings

Daily-standup meetings are are meetings happening every day at the same
time and place. They should not last for more than 10-15 minutes and ev-
ery developer should answer three questions: What have I done since last
meeting? What am I suppose to work with today? What problems have
occured? Having answered these questions while all team members are lis-
tening will give everyone some understanding of what individual developer
has been working on.

For the observed sprints, the team had these meeting every day, except
for the days when retrospective and sprint planning meetings took plce. The
project leaders were present some of these daily-standup meetings to follow
up and get an understanding whether or not the team is doing what they
should. These meetings were also used to discuss issues the development team
experienced. Usually such discussions were stopped and continued after the
daily-standup with only the concerned people.

4.3.4 Use of Burn-down Charts

Burn-down charts are graphical representations of work left versus time left.
In ths project they were used actively. The project leader updated them
every day such that the development team could see what had been done
and what was left to do. Whenever a task was completed, the developer
completing this task would �ag it �done� and write up (�burn down�) the
number of hours spent on this task. This would be visualized on the next
burn-down chart. The charts were also very useful to see how many hours
that had to be moved to the next sprint.

37

Chapter 5

Results and Discussions

In this chapter I will present what I have learned from studying the literature
and the case. I wanted to �nd an answer to:

�How does the Scrum methodology facilitate team e�ectiveness and what
are the advantages and disadvantages?�

This chapter will focus on the teamwork model and discuss my �ndings
for each section to answer this research question. I have categorized the
results in tables with an emphasis on Salas' model 3.1 and this chapter is
structured accordingly. The following tables will show what areas in Salas'
model the results belong to. For each section I will �rst present the �ndings
before presenting and elaborating the results from the case study. The results
will then be discussed. This type of structure has become more and more
popular in ethnographically informed studies. This way of structuring also
makes it easier to contextualize my �ndings. Some of the results will occur
in more than one table as they touch on several focus areas.

For the literature results tables each row contains one �nding with a
corresponding result. In addition I also show an ID which is a reference to
the literature where this �nding originates. The �ndings from my observed
case are shown in the case study tables. These results have been given an
ID with a �#� in front (like this: #X) to seperate them from the literature
results. The case tables also present how I gathered the data for the speci�c
�nding. The ID's will be used when discussing the results.

The literatures used are mostly case studies that are conducted over the
years 2008-2010. The studies consist of small Scrum teams (4-8 team mem-
bers). The contents focus on the working process and situations where team
members express themselves regarding to what extent they believe Scrum is

38

5.1. LEADERSHIP

working for them.

5.1 Leadership

Leadership in Scrum is a shared responsibility shared between the team mem-
bers. Seeing as Scrum is meant for self-managing teams, the Scrum master
will in most cases work as a type of leader the rest of the team can turn to
for assitance and guidance. Salas et al.[1] describes how leadership impacts
team e�ectiveness as:

�Leadership a�ects team e�ectiveness not by handling down solutions to
the team, but rather by facilitating team problem solving through cognitive
processes, coordination processes, and the team's collective motivation and
behaviors.�

Leadership has been studied and discussed by lots of researchers. My
theory section 3.1 emphasizes �ndings from [1] where facilitation and coor-
dinating processes and communication are the main focus.

39

CHAPTER 5. RESULTS AND DISCUSSIONS

Below are tables presenting the results within the leadership category.

Table 5.1: Literature Results - Leadership

ID Findings Results
[38] Hired a coach to facilitate the beginning phase of

Scrum. The study shows that having a coach
that acts as a temporary leader helps the team

familiarize itself with the guidelines of Scrum and
thus use it e�ectively at an early stage.

Team e�ectiveness
increased

[40] Using burn-down charts to monitor the team
members and making these charts visible for the
team members. The results gave workers a feeling
that their work was meaningful. It was also a
great way for the project leader to monitor the

work process.

Team e�ectiveness
increases

[35] A �nding that concerned people not listening to
each other when discussing technical issues. From

the study the developer state:
�When we discuss technical issues, it often ends
in a kind of ``religious� discussion, and then I

give up. And then you let people continue do what
they are doing.�

This is related to leadership concidering everyone
in the team shuld be heard.

Developers stopped
participating in

debates, less feedback
were given,

motivation decreased,
and thus e�ectivenes
possibly decreased as

well.

[35] The team su�ering from developers not following
the provided guidelines. The Scrum Master was
not experienced and did not manage to lead the

meetings properly.

Team e�ectiveness
decreases

[34] Transition was di�cult and slow, resulting in the
Scrum Master taking more control than Scrum

guidelines allow.
The Scrum Master proceeded in the same fashion
in which he had run the entire project and did

not adapt when things were not optimal.

Team e�ectiveness
decreases

40

5.1. LEADERSHIP

Table 5.2: Case Results - Leadership

ID Collection

Method

Findings Results

#1 Observation
and

Interviews

The Scrum Master is extremely valuable
and a great asset to the project. He is
solid at a high technical and social level
and has complete control of everything
that goes on at all times. He has a clear
vision of results, goals and tasks that are
under progress and tasks that have not
been started. He also shows a good

understanding of which developers are
best suited for the di�erent tasks.

Team e�ectiveness
is solid and the
project has a

stable progression.

#2 Observation The developers from the consultant
company were experienced with Scrum.

This facilitates the
self-managing and

leadership of
Scrum.

#3 Interviews,
burn-down
charts

Good planning between the project
leaders. Meetings are scheduled and

carried out as planned. Extra resources
are allocated right away when necessary.

Ensures a stable
progression in the

project.

#4 Observation
and

interviews

The team had no problems with
self-organization and communicated well
with both the Scrum Master and the

project leaders.

Facilitates good
communication
and helps to

improve teamwork.
#5 Observation

from retro-
spective
and

planning
meetings

The team achieves a mutual
understanding of results, tasks and goals.
At these meetings the Scrum Master

presents and explains each task to ensure
everyone understands what each tasks

involves.

Facilititates a
shared mental
model and a
common

understanding of
the goals for the
upcomming sprint.

41

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.3: Case Results - Leadership2

ID Collection

Method

Findings Results

#6 Observation
from
Demo

The Scrum Master leads and
presents their work on the demo.
Each developer, however, also
has to prepare a part that they
have worked and present it

individually.

This facilitates better
understanding of the
project as its whole
and can contribute in
a slow but steady

increase of
e�ectiveness.

#7 Interviews Towards the end of the project,
the QA environment collapsed.
This incident would set back the
team if it had not been for good
decision-making by the scrum
master and the project leader.

An individual server: a
�stand-alone box�was made.

An important
function of the system
had to be delayed.
However, the project
could continue as

planned because this
function was given to
external developers
from America.

#8 Burn-
down
charts

Updated burn-down charts were
sent to all team members every

morning.

Facilitates motivation
and makes team
members feel they
contribute to the

project
#9 Observation

from
planning
meetings

Scrum-Master was talking so
much that it seemed hard for the
�weaker� programmers to join

the discussion at all.

Does not correspond
with Scrum
guidelines.

Leading a team can prove to be di�cult. The literature results from
[35, 34] show how di�cult it can be to lead a self-managing team. Who
should take responsibility to guide and facilitate when the team struggles?
In Scrum, leadership is a shared responsibility between all the roles. A leader
should be able to direct, guide and coordinate other team members, assign
tasks and establish a general positive atmosphere among other things. In
Scrum, the aspect of teamwork is a �ne balance between intervention and
motivation for the Scrum-Master. In the literature [38] they hired a coach to

42

5.1. LEADERSHIP

facilitate Scrum in the beginning of the project. This worked out positively
and team e�ectiveness increased. In my observed case, however, hireing a
coach was not necesarry and therefor not done. The Scrum master and the
developers from the consultant company were experienced in using Scrum
[Result #2] and could act as coaches toward the inexperienced developers.
From interviews and observation I learned that the learning process was slow
and that a lot of time was consumed by it. This could, however, be for many
reasons. It could also be that the less experienced developers would not
easily adapt to the Scrum process while all the experienced developers were
present. Maybe they would rather use Scrum more e�ciently when trying
completely on their own in future events.

Within my case, leadership worked relatively well without any important
issues concerning team e�ectiveness. One of my �ndings is that �The team
had no problems with self-organization and communicated well with both
the Scrum master and the project leaders� [Result #3]. This can be seen
from observation and interviews. One of the developers states that:

�I think scrum master is a great guy! He is socially intelligent and tech-
nically very smart. I believe I speak for the whole team when I say that
communication with him works very well.�

This is backed up by observations from the daily work as well. The scrum
master excels as a remarkable and solid leader with great technical knowledge
as well as beeing ambulatory at a social level [Result #1]. From observations
I noticed that close to all technical issues was primarily discussed with him.
If any developer wondered about something or had any technical issues, the
scrum master would be the �rst person the team member would ask.

The Scrum Master's central role within the team could also be observed
from the di�erent meetings. When the project leader was not present, the
Scrum master was the one leading these meetings. That the scrum-master
contributes and appears as a good role model is one of the reasons why this
project works so well. This is backed up by theory in [1] which they state
that:

�a leaders contribution to the team is one of the key points to increasing
team performance.�

In section 3.1 it is presented that a team leader should be able to generate
possible solutions or at least start a thinking process within the team. From
my results I would say that Scrum Master would give solutions to the team
in many ways. This could be seen from observation where developers are

43

CHAPTER 5. RESULTS AND DISCUSSIONS

stuck with a task. If the problem is not handled and discussed right away, it
is discussed under a daily-standup meeting.

The retrospective and planning meetings were in the form of �present and
discuss� where discussions within the team were emphasized. The Scrum
master was usually the one doing most of the talking and the discussions
were usually between the consultant company's developers. A result of this
was that the other developers had a hard time joining the discussions [Result
#8]. A developer said:

�Sometimes it can be hard to enter the discussions. Especially if its not
within my area. I don't really mind him talking this much. He knows this
better than anyone else here so why shouldn't he?�

.In my literature studies [35] one can see a similarity where the person
leading a discussion not listening to the other team members. In the literature
studies this resulted in less team e�ectiveness and is also backed up from
theory [1] where it is discussed the importance of listening to each team
member. In the case study, however, there seemed to be several reasons why
people did not participate equally in the discussions. Reasons such as: not
so experienced in the topics, lack of interest and that the developers did not
work 100% on this project are the most important ones. That beeing said,
I do not believe team e�ectiveness was reduced in my observed case, as it
was in the literature and in theory. Having a Scrum-master pushing the
discussion forward and dividing tasks as they were, seemed to be the most
optimized way of doing things [Result #5]. This also made the team gain a
common understanding for what needed to be done. Such a shared mental
model and a common understanding for the upcomming sprint facilitates
good teamwork. This is also backed up in theory from Salas' model as can
be seen in chapter3.1.

From both the literature result [40] and results from my case, burn-down
charts were used actively and the results were positive [Result #7]. These
charts helped the developers to see to what extent they were scheduled with
the tasks and how much that remained this sprint. The chart below from
5.1is taken from the middle of sprint 8 and shows that the team is pretty
much in schedule. The blue area covers the tasks that has not been started
on yet and as can be seen from the �gure, these tasks follows the guided
black diagonal line pretty nicely.

44

5.1. LEADERSHIP

Sprint Burndown - A3
Indicates the team's progress towards completing its work for a sprint.

Parameter Values

Sprint: Release 0.4\Sprint 8

Area: All (No Filter)

Start Date: 3/26/2012

Finish Date: 4/27/2012

Data Updated: 4/19/2012 1:02:01 AM

By: BIMS\rularsen

Generated: 4/19/2012 8:00:09 AM

Figure 5.1: Burn-down chart from sprint 8

That managers use management tools such as burn-down charts is a good
way to monitor and control the work progress. This type of tool also shows
the work e�ort of the team together and make the developers feel they con-
tribute to the project. This is also con�rmed in the theory [21, 1] where it
is stated that a team leader facilitates team e�ectiveness by monitoring the
internal and external environment.

The theory in [1] describes how a leader should combine and synchronize
the individual contribution of each team member. In my observed case,
the developers with less experience are set to do tasks they are capable of
completing. The team also use pair programming - comparing a weaker
developer with a stronger one which facilitates the individual contribution to
the team.

45

CHAPTER 5. RESULTS AND DISCUSSIONS

5.2 Mutual Performance Monitoring

In section 3.2MPM is de�ned as:

�keep track of fellow team members'work while carrying out their own . .
. to ensure that everything is running as expected and . . . to ensure that
they are following procedures correctly. �

MPM emphasizes working in the same room, having a shared mental
model and information sharing among other things. Below I will present and
discuss my �ndings from this area.

My results are presented in the tables below:

Table 5.4: Literature Results - Mutual Performance Monitoring

ID Findings Results
[41] This project had a developer working

overindividually (see (*) further down in
this table). After a serious conversation
with the rest of team he started attending
the daily meetings and participated more in

team related discussions.

The team
environment became
more productive and

collaborative

[42] Developers complained about a lack of
information about the progress of the

project.
�The information �ow has been low since
the beginning of this project ten years ago.�

Developers cared less
and less about the

project.

[41] A developers worked individually. Not
attending daily-standup meetings and not
knowing what the others were working on.
The developer in this speci�c case was a
specialist, but implemented results that

poorly integrated with the rest of the team.
(*)

Frustration among
team members. Work
had to be redone.
Not e�cient!

[3] The team became unaware of what the
others were working on and thereby lost

sight of the big picture.

Daily standups
became uninteresting.
Team e�ectiveness

decreased

46

5.2. MUTUAL PERFORMANCE MONITORING

Table 5.5: Case Results - Mutual Performance Monitoring

ID Collection

Method

Findings Results

#1 Observation The location setting of the
developers working environment

is a closed room with the
functionals in the neighbour
room. However, only the
consultant company's

consultants were seated here
together.

Facilitates MPM for half
the development team.

#2 Burn-
down
charts

Burn-down charts were used for
monitoring performance. They
are updated each day so that all
team members can see how the

team is doing.

Facilitates MPM.

#3 Interview
and obser-
vation

Scrum master facilitates
developers working on similar
tasks to talk to each other to

save time.

The developers are
co-operating, but it does
not seem to save any time.

#4 Interviews
and obser-
vation

From an interview with the
scrum master and two of the

developers it was clear that the
team members did not know
what other members were

working on.

Positive and negative. The
developers seems more

focused on their own tasks.
However, the downside is
that they cannot take

advantage of other peoples
work when working on

similar tasks.

Mutual performance monitoring is facilitated through several aspects of
Scrum. The daily scrum meetings, the review, planning and retrospective
meetings and the burndown charts are all elements where mutual perfor-
mance monitoring is featured. Theory from Salas[1] states that communica-
tion is key for this area. In the literature[41] I found that some developers did
not attend the daily meetings, but working completely on their own. They
created good solutions for their tasks, but they were poorly integrated with
the rest of the developers. This resulted in extra hours spent on reprogram-

47

CHAPTER 5. RESULTS AND DISCUSSIONS

ming and team e�ectiveness was obviously decreased. It was not the case in
the project I observed. Here, developers were allways present at the daily-
standups (if nothing special had occured). The project leaders also attended
these meetings when they could �nd the time.

The developers from the consultant company shared a closed room [Result
#1]. Below are some photos of their working station:

Figure 5.2: From the work station of the development team

48

5.2. MUTUAL PERFORMANCE MONITORING

Figure 5.3: From the workstation with the Kanban board in the background

49

CHAPTER 5. RESULTS AND DISCUSSIONS

Figure 5.4: Project Work Station Wall

Concidering how the developers are situated there exist both positive and
negative sides. As can be seen from the photos, the developers are sitting
in a closed room where it is easy to monitor and communicate. However,
only half the team is working in this closed room. This facilitates mutual
performance monitoring for these developers. Having the developers seated
like this improves communication and enables more feedback. It also facil-
itates the social parts of a project where the developers more often have
lunch together. However, as for the other half, this is decreased - at least to
a certain extent. I would state only to a certain extent, becaue whenever the
developers are pair programming this happens in the same room. This pair
programming facilitated a learning process for the customer's consultants.
One of the developers from the customer side said:

�I really enjoy working two and two. I learn a lot from this process!�
However it did not seem to save any time later in the project [Result

#3]. A reason can be that the customer's consultants in this room are only

50

5.3. BACKUP BEHAVIOR

dedicated 20%-60% of their time to this project and thus the learning process
took very long time.

Another postive thing about this room is that the functionel workers are
seaeted in the room next door [Result #1]. This has worked out good for
the team. From observation I see that the functionals are more used and the
feedbacks concerning the screen images are given more frequently.

In [3] they found that developers complained about not knowing what
the di�erent members were working on. The developers did not feel they
could see �the whole picture� and that this decreased the productiveness. In
my observed case I would argue that all developers do not know what the
others are working with. Especially the developers seated in a di�erent room
do not know what all the others are working on [Result #4]. However, I do
not believe this decreased team e�ectiveness, because the developers working
100% of the project are seated together and know more or less what is going
on.

As mentioned in chapter 5.1 burn-down charts also facilitates mutual
performance monitoring [Result #2]. The employers can pay attention to
what has been done and what remains of work. The project leader states:

�We use the burn-down charts actively. This is because the developers can
easily see how far they have come with their work for this sprint, and its a
good tool for me to monitor the work process. This is excellent for us!�

From observations I can see that the burn-down charts are actively used.
However, it is hard to see whether or not team e�ectiveness was increased. I
would have to compare this to other projects to see if it really helped team
e�ectiveness or not.

5.3 Backup Behavior

Within the Scrum guidelines, there are no direct practices that supports
backup behavior. However, as described in section 3.3, this behavior is of
big importance when it comes to team e�ectiveness. While Scrum relies on
beeing an e�ective self organizing team, backup behavior also concerns pro-
viding feedback, coaching and facilitating and assitance from team members
to complete tasks for each other.

Below I will present and discuss my �ndings related to backup behavior.

The tables below show my results for backup behavior.

51

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.6: Literature Results - Backup Behavior

ID Findings Results
[42] Too many specialists were working on the

same project. Nobody in the team could
help out with when a specialist became

overloaded with work. The specialist states:
�We clearly have trouble transferring
knowledge. The project is so big that
everyone cannot know everything.�

Tasks were completed
later than scheduled.

[42] No backup behavior was ensured. The
developers did not care whether they

�nished 90% or 70% of their work at each
sprint. The remaining work was simply

moved to the next sprint.

Working overtime and
an �isolation� period
where the team

members were not
allowed incoming

phone calls.
[41] Overindividualism was found in this study.

In the case studied two developers were
�free� from the daily-standups unless they
had something they wanted to share.

One of the developers
produced work that
was poorly integrated
with the rest of the

team

52

5.3. BACKUP BEHAVIOR

Table 5.7: Case Results - Backup Behavior

ID Collection

Method

Findings Results

#1 Interviews
and obser-
vation

One week, some of the developers had
to work overtime to achieve the sprint

goals. Some developers were
overloaded with work and received
help from fellow team workers.

This facilitates
backup behavior. It
helped the team to
catch up and achieve
the sprint goals.

#2 Interview Towards the end of the project, the
QA environment collapsed. This

resulted in external developers being
hired to implement one of the

important functions.

The project could
continue as planned.

#3 Interviews,
burn-down
charts

Good planning between the project
leaders. Meetings are scheduled and

carried out as planned. Extra
resources are allocated right away

when necessary.

Ensures a stable
progression in the

project.

#4 Observation There were incidents where developers
from the client's side needed help

�nishing their tasks. More experienced
developers came to assist as soon as

they had a hand free.

This facilitate good
backup behavior and

better team
e�ectiveness.

#5 Observation
from retro-
spective

Developers would speak out when
they had issues with some of the tasks

or happenings in the last sprint.

The developers would
get help with the
task. Facilitates
backup behavior

#6 Observation
during
demo

The project leader from the client side
as well as the functionals gave good

feedback on the displays and functions
that were presented

The development
team knows what

needed a ��x� in the
upcomming sprint.

Backup behavior was one of the areas with the least �ndings and results.
This area might need more research to get good results. In my literature �nd-
ings the [42] they faced a challenge where too many specialists were working
on the same project. Nobody else could handle their work and thus, when
these developers became overloaded, tasks could not be completed as sched-

53

CHAPTER 5. RESULTS AND DISCUSSIONS

uled. The developers would not care if tasks for the given sprint were �n-
ished. In this case all un�nished tasks were simply moved to the next sprint.
Working like this violates with point three from section 3.3:

�To complete a task for a team member because he or she has an overloaded
amount of work�

and results in reduced team e�ectiveness. In the same study, I could
see that individual goals were given a higher priority compared to the team
goals. The developers chose tasks that looked interesting prior to the highly
prioritized tasks. This project ended with an �isolation� period where all the
developers were �isolated� in a room till the project was �nished. This is
obviously not a wanted position, concidering working overtime is one of the
primary issues that should disappaer when transitioning into working agile.

In my observed case, backup behavior was not a problem. Mutual com-
munication between the leaders, the scrum master and the development team
worked well in the project [Result #2, #3 and #5]. An example can be the
organized weekly meetings between scrum master and project leaders. Also,
the daily-standup meetings and retrospective meetings showed that the team
members would speak out whenever problems occured. From a regular work
day I observed a developer said:

�... I don't think I can handle this task on my own ...�
It did not take long before the scrum master came and assisted him

[Result #4]. Additional incidents similar to this were observed, with and
without the scrum master interfering. A few times when a developer needed
help the scrum master arranged for pair programming with a developer with
more expertise in the needed area.

There was a small period where the developers worked overtime [#Result
1]. This lasted for approximately one week. Agile methods do not emphasize
working overtime. However, I believe the development team solved this pe-
riod perfectly. The overloaded workers recieved assitance from workers with
some extra time. The willingness to work and helping out facilitates backup
behaiour and helped the team out, so they did not fall behind the next sprint.
Such willingness to work is researched and backed up by theory to increase
team e�ectiveness [1].

The developers showed evidence of e�ective backup behavior through pair
programming, assistance and feedback given [Result #4 and #6].

A developer said:
�Pair programming has worked excellently. I appreciate this and think it

helps us learning this way of working as well as knowledge transfer concerning

54

5.4. ADAPTABILITY

programming.�

From observation and interviews it was easy to see that backup behavior
was facilitated both from the developers and the leaders. Because of good
planning and agile decision making, external resources were initiated when
needed [#Result 3]. Also, when developers had di�culties in completing
their tasks, developers with more expertise within that area were helping
out. This clearly improved team e�ciency for this project.

5.4 Adaptability

Adaptability is probably the area within Salas' model that pro�t most from
agile methodologies. In section 3.4 I haved de�ned adaptability as

�the ability to understand and recognize deviations and then readjust ac-
cordingly�.

Scrum facilitates the ability to readjust to deviations. This is because of
the constant �ow of feedback and communication between the development
team and the customer. Adaptability can be important for many di�erent
teams and in many di�erent ways and can be the big di�erence between
failure and success.

The tables below present my results related to adaptability.

55

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.8: Literature Results - Adaptability

ID Findings Results
[40] Pair programming provided the team

twith good knowledge sharing and
were used on speci�c di�cult tasks.

The weaker developers
improved and the team as
a whole became more

adaptable over time. Lead
to a smaller code base.
Team e�ectiveness slowly

increased.
[42] The client approached the developers

directly and said:
�We have to do something about this
now!� - referring to a speci�c tasks.

The developers then faced the
problem of going past the limit for
maximum number of tasks they are

supposed to have in progress.

Team members said yes to
the client's demands but
were not able to adapt
properly to handle them.
This resulted in tasks

beeing delayed.

[41] The Scrum-Master tended to be �too
concerned� about solving people's

problems instead of allowing them to
solve the problems themselves. As a
result the team decided not to let the
Scrum Master be present at team

retrospective meetings.

The team found the
retrospectives to be more
comfortable. However, the
retrospectives became less
organized and also less

e�ective.

56

5.4. ADAPTABILITY

Table 5.9: Literature results - adaptability part 2

ID Findings Results
[41] The developers lacked interest in

adapting to the agile principles. The
Scrum master from one of the cases

studied in this article stated:
�it becomes quite easy to drift back to
the �old ways� when nobody takes

personal interest in Agile�

The team experienced a
long period where nobody
took initiative to lead the
agile principles properly.

This resulted in people not
always knowing what to
do, which in turn made
them less e�ective.

[3] Customer support interrupted the
work of the developers.

The team did not manage
to adapt to this. The result
was that the Scrum Master
took charge of the direction
and the team became less
self-managing. Team
e�ectiveness decreased

[41] The team faced di�culties when
adapting to Scrum. The Scrum

Master placed an over-emphasis on
Scrum and the team did not share all

of this emphasis.

Developers spent time to
argue whether or not
Scrum was suitable for
them and therefore lost

time developing.

57

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.10: Case results - adaptability

ID Collection

Method

Findings Results

#1 Interview
and obser-
vation

The Scrum Master sets a
�weaker� programmer

together with a �stronger�
programmer to make them

work together in
pair-programming. From

interviews and observations
of retrospective and
planning meetings the

developers are very satis�ed
with this way of working.

Facilitates both
adaptability for the

weaker programmer as
well as good team

orientation. However,
hours dedicated to this
type of work means less
hours focusing 100% on

developing.

#2 Interview
and obser-
vation

One week, some of the
developers had to work
overtime to achieve the

sprint goals. None of them
seemed unhappy about this,
but rather supported the
process and wanted to
complete the tasks.

This shows good
adaptability and desire

to work. The
developers adapted to
the extra workload and
managed to overcome

it.

#3 Interview There was a challenge with
the screen images which was
given late to the developers.

Developers had to work
on other aspects of the

project, but were
probably not so

e�cient as they could
have been if the screen
images were ready.

58

5.4. ADAPTABILITY

Table 5.11: Case results - adaptability part 2
ID Collection

Method

Findings Results

#4 Interview There was a change order in
the requirements
speci�cation which

dedicated more work to the
deveopers.

Extra resources were
initiated and the
developers allready

working in the project
dedicated more time to
the project. Showed
good adaptability!

#5 Interview There was a challenge with
the test environment beeing

down.

The project leader, in
discussion with scrum
master made some
quick decisions and

took care of it. Showed
good adaptability!

#6 Interviews Adapting to Scrum became
a challenge. One of the

reasons might have been not
having a big design up front.
Some developers started
questioning whether this

was the best way of working
in this project

Some of the developers
struggled adapting to

Scrum.

From the theory [1] they discuss that almost no software development
projects are performed 100% as planned and scheduled. This is also shown
in both my �ndings from the literature [41, 3] and in my case study [Result
#4]. Throughout the project, adaptabilty concerning the tasks were quite
e�ective. There was a challenge where the customer added extra functionality
to the requirements speci�cation. In this case extra resources were added and
more time was dedicated for some developers.

During the project there were few technical problems. For instance, to-
wards the end of the project, the testing environment being down become an
issue [Result #5]. The leaders and the team had to adapt to the situation.
They discussed various solutions for the problem, but ended up with a quick
�x that worked out for all parts: Creating a stand-alone box, a test-server

59

CHAPTER 5. RESULTS AND DISCUSSIONS

for the di�erent operators where testing was needed. The project leader
announced in an interview:

�The last update is that QA is down.we can still be on schedule, but
there has to be some changes.... I have discussed with scrum master and we
ended up with creating a test-server where this is needed�

This �x helped the team to be on schedule and continue as planned.
In the literature [41] most teams struggle with adapting to scrum. There

can be several reasons for this. In[41] the scrum master had so much emphasis
on scrum that developers started questioning whether the methodology was
good for the team or not. In my studied case the adapting process was
also a struggle. From interviews I learned that most developers wanted to
try Scrum and was set to do so. It is seen from theory, literature[41] and
in this case [Result #6] that adapting to agile methods are di�cult. In my
studied case there are team members who �nd the traditional way better. To
facilitate the adaption to agile methods they used pair programming [Result
#1]. From observation I learned that the learning process was still slow, but
the developers seemed more happy with the situation.

From an interview with the project leader from the client's side I found
that he believed in a more long-term planning and that Scrum did not full�ll
this to the wanted expectations. He explains that if the development tasks
would be 100% clear at all times Scrum would probably have worked better.
He has a point concidering a period where the screen images were not deliev-
ered to the developers on time [Result #3]. A better approach to this could
be that the external company which designs these images could have been
included earlier in the project, maybe even before the development phase.
This does not mean the developers did not deliver anything in this phase,
but it was an unfortunate situation where e�ciency was slightly decreased.
The project leader states:

�The company handling screen images should have been initiated earlier.
Possibly in the design phase. Having them working a few months this autumn
before the developers were initiated would bene�t the project. I also believe
this would help us having developed more in this phase as well.�

That some developers struggle adapting to Scrum can also be seen from
observation. I believe that developers have too little time dedicated to this
project. Having other paralell ongoing projects that require just as much
attention a�ects the agile principles for this project. The developers not
familiar with Scrum is working 20%-60% on this project and this a�ects
adapting properly. From interviews and observation I could see that one of

60

5.5. TEAM ORIENTATION

the developers not familiar with Scrum before the project, had adapted and
begun to like Scrum and its way of working. He enjoys the project so much
that he gladly work overtime which gives him about 100% on this project.
This tells me that adapting to a new methodology also concerns interest for
the method and the project. Obviously interest for a project will increase the
individual e�ciency, but it can also a�ect the entire team positively. When
he spends this much time on the project it is also easier to become familiar
and adapt to it and on later stage he can a�ect the team members that has
not become found of the method.

5.5 Team Orientation

The �nal area in my framework discussed in chapter 3 is team orientation.
Section 3.5 describes team orientation as:

�the ability to take other team member's behavior into account and set
team goals over individual goals.�

Team orientation is also well facilitated by Scrum. Scrum includes plan-
ning procedures and several meetings that facilitates team orientation. How-
ever, to achieve good team orientation Scrum leaves much in�uence in the
hands of the team. Below I present and discuss my results concerning the
last area from Salas' model.

The tables below present my �ndings related to team orientation:

61

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.12: Literature Results1- Team Orientation
ID Findings Results
[38] The study discusses developers working in a

di�erent role than usual in order to assist
overloaded team members.

From the study:
�. . . the team never worked overtime or
weekends. Additionally, developers got to

work outside their roles to help their Scrum
team achieve its sprint goals.�

Productivity, morale
and team e�ectiveness

increased.

[35] After an episode where the scrum master
was not present, developers started using
the Scrum daily meeting as it should be
used. Together they found out that they

wanted to work more as a unit and
understand what the di�erent developers

are working on.

Internal
communication

improved and results
improved with time!

[42] Introduced �Project Concern� which is a
functional aspect concidered to be of such

importance that it should be treated
seperately and be visible to everyone.

De�ning such
concerns strengthened

team orientation

[42] Introudced �The Wall� which categorized
the remaining tasks into �not started�, �in
progress� and ��nished�. The wall was

visible to the entire team.

The developers got a
shared vision of what
was left of work.

E�ectivity increased
slightly.

[42] An unrealistic plan made the team members
prioritize individual goals over team goals.

Developers started
choosing the most
interesting tasks
instead of the ones
with the highest

priority.

62

5.5. TEAM ORIENTATION

Table 5.13: Literature Result2 - Team Orientation
ID Findings Results
[42] Team meetings where everyone participated

were ine�ective and without a clear agenda.
The discussions concerned only the project

owner, project leader and the Scrum
Master. The topics often totally excluded

the developers.

This a�ected the
team's chance of

really committing to
the team goals and
plans, which is
necessary for
achieving team
orientation.

Performance slowly
decreased.

[3] In this case, the team barely participated in
decision making during planning meetings.
The most experienced developer took all the

decisions.

Scrum's daily
stand-up meetings

became uninteresting,
the developers cared
less for the project
and productivity

decreased.
[35] Developers prioritized individual goals over

team goals. A developer stated:
�People working alone results in the team
not discovering problems, because you do

not get feedback on your work.�

Lack of tem
orientation weakened
the team work, thus
team e�ectiveness

decreased.
[35] In this study team members did not feel

comfortable with all the other team
members. The researchers found that the

team was lacking trust and team
orientation. One of the interviewed

developers stated:
�There is no problem getting criticism from

people you feel safe with, but when you get

feedback from people you do not like, it is

di�erent�

Feedback within team
members were

reduced. Quality of
project was most
likely reduced.

63

CHAPTER 5. RESULTS AND DISCUSSIONS

Table 5.14: Case Results - Team Orientation
ID Collection

Method

Findings Results

#1 Observation
and

Interviews

Developers not working
100% on this case. Scrum
master is working 60% and
one of the developers IS

working as little as 20% on
the case.

This a�ects team
goals not being

prioritized because
there are other

projects that also
require attention.
This a�ects the
wealth of team
orientation.

#2 Observation
from retro-
spective
and

planning
meetings

Some developers seemed
uninterested in the

discussions.

This a�ects the
individual developer's
chance of committing
to the team goals.
This weakens the
team's chance of

achieving good team
orientation.

#3 Observation
from

planning
meetings

During the planning poker
process a developer from the
client side was observed
�cheating�. The developer
repeatedly looked over at

the neighbor and then threw
the same estimation card on

the table as he did.

This also a�ects the
individual developers
chance of committing
to the team goals -

weakening the chance
of good team
orientation.

From what I have found out in literature and the analasis of my case the
general feeling is that teams struggle to achieve good team orientation. Team
orientation is facilitated in several areas of the di�erent teams, but not on all
areas. This chapter will take a further look into some of the di�erent areas.

In [35] they discuss the lack of trust between the scrum master and the
rest of the team members. The theory of teamwork from [1] states that trust
is one of the core components in team work. This can also be seen from
3.1. It directly a�ects mutual performance monitoring, but a�ects all areas

64

5.5. TEAM ORIENTATION

within �the big �ve�. Salas state that without su�cient amount of trust, team
members will spend time and energy protecting their own work instead of
collaborating to gain new ideas. The lack of trust was no issue in the studied
case. The developers felt comfortable talking to each other and to the scrum
master and it showed that trust was there at all times during the project.
This facilitated team orientation and also increased the team e�ectiveness
for the project.

Team orientation is about having the ability to take feedback from other
members and then use this feedback for own decision-making and work. In
scrum it is organized to facilitate team orientation by using daily stand-up
meetings. In my case, daily standup meetings are practiced every working
day except the days of retrospective and planning meetings. If there are de-
velopment issues they are brought up on these meetings. The scrum master
often knows the answer or at least knows someone that can provide the an-
swer. These daily standups obviously increased team e�ectiveness. Results
from my literature part[35, 4] also show that teams not taking these meetings
seriously struggle in becoming well functioning self-managing teams. Liter-
ature also showed that things were better after team members understood
that daily meetings could work as a helping tool, which again proved to be
even more useful in the later stages of the projects. A quote from one of the
developers working on a project from [35]:

�The good thing about Scrum is that Scrum reminds us to talk to each
other about the project.�

This shows that the workers believed in Scrum and liked the idea to talk
to each other about the project, even though their scrum master used little
out of the Scrum guidelines. The team members showed that they wanted
to work in a team. This resulted in increased team e�ectiveness.

Salas' [1] describes good team orientation as individuals wanting to work
in a team and to set team goals over individual goals. From my literature
results [35] the di�erent teams struggle with this. This is shown in my case
as well. An explanation of this can be that some of the developers are not
working 100% on this case. From interviews and observation, my general
impression was that the team members was interested and tried to work as a
team, some factors impeded the team e�ort. These factors were some orga-
nizational factors concerning the paralell ongoing projects, as well as the lack
of involvement in discussions from some members on the clients side. It is
di�cult to come forth and play a big part of discussions the other members
have more knowledge about, however it decreases the team orientation when

65

CHAPTER 5. RESULTS AND DISCUSSIONS

the same people always are discussing. The idea of the planning poker tool
is that it should facilitate adaptability and team orientation. However this
is not entirely the case in this project. Even though the planning poker tool
includes everybody, some developers from the clients side seemed uninter-
ested. Also, as can be seen in 5.14 I observed a team members �cheating�
in the planning process [Result #3]. This a�ects the individual chance of
commiting to the team goals. The reasons for such behavior can be so much,
however, ultimately it will decrease team orientation.

It is also interesting to see that the developers working less on the project
seem to be less interesting in it as well [Result #1 and #2]. Having developers
working as little as 20% on the project does not help for the learning process
or team orientation. The scrum master says in an interview:

�The learning process is slow for some developers. The reason for this can
be many things, but we just have to deal with it. We are still on time and
will �nish within time�

From observation it seems like scrum master is right about this. Even
though the team lacks team orientation I doubt that team e�ectiveness was
decreased too much. Knowledge and experience seem to be just as good to
increase e�ectiveness.

66

Chapter 6

Conclusion

In this study I wanted to answer the question:

�How does the Scrum methodology facilitate team e�ectiveness and what
are the advantages and disadvantages?�

To answer this question, the core areas from Salas' model were in focus.
Previous research papers have been investigated and compared, a case study
has been observed and analyzed and the results from both have been dis-
cussed and compared. I have found that teams were struggling to adapt to
a new working methodology. Scrum as a methodology is working very well,
but only after the developers get used to it. My literature results show that
scrum works well in some areas of all the studied projects, but very well on
all areas in another project. My observed study also shows that Scrum is
working very well at some areas, but that there are room for improvement
in other areas.

Leadership

Through this study the author has found that having an experienced scrum
master is alpha and omega to success. My case study shows that the scrum
master is one of their keys for a successfull project. Teamwork is easier when
the developers know what should be done and when each task that should be
completed are explained properly. The retrospective and planning meetings
provided the team with a shared understanding for the upcomming sprint.
Such shared understanding is explained in theory as a �shared mental model�
that increases good teamwork. This is also the case for my observed team.

67

CHAPTER 6. CONCLUSION

From my results in chapter 5.1 I can conclude that the self-managing
team with the solid scrum master facilitate good leadership and that team
e�ectiveness is increased. The results from my literature shows that having
a scrum master not knowing how to use the scrum guidelines impacts the
team to such an extent that team e�ectiveness greatly decreases. If the team
is inexperienced and does not have any obvious choice for a scrum master a
coach can guide the team to success. Having a coach to facilitate and help
out, at least in the early stage of a project can be the di�erence between
success and failure.

Mutual Performance Monitoring

One of my main �ndings for this area is that working in a closed room
facilitates teamwork and increase team e�ectiveness. The easy access to help
from other developers is very useful. In addition, I have found that the use of
burn-down charts is a great tool to facilitate mutual performance monitoring.
These helped the team knowing how much work that was left in each sprint
and make the planning easier in the process. Overall I can conclude with
the observed team had areas where mutual performance monitoring helped
teamwork and e�ciency.

Backup Behavior

In the literature I found that not having backup behavior resulted in tasks
not completed and work being moved to the next sprint. My main �ndings
is that having a plan for what happens when backup is needed is crucial
for a project to be successful. The observed team helped each other out
and the leader arranged for quick external support. I can conclude with the
team having good backup behavior and that team e�ectiveness was increased
because of this.

Adaptability

Adaptability was a challenging area in both the studied literature and in
my observed case. My main �nding is that in order to adapt properly to
agile methods, interest and time is of big importance. In addition I found

68

that there are several ways to support adaptability. For example can pair
programming be used as a tool to support the learning process and increase
good teamwork. I also found that adapting to the di�erent issues that might
occur during a development project is very important for team e�ectiveness.

Team Orientation

Teams struggle with achieving good team orientation. One result is that
developers struggle to set team goals over individual goals. This can be seen
both in my observed case and in the studied literature. I also found that
developers working less than 100% on a project can be an issue concerning
good teamwork. For instance, there was lack of involvement in discussions.
Theory from chapter 3.5 states that this would decrease team e�ectiveness.
In my case I would argue that there was little choice of changing the way
things were handled in order to increase e�ectiveness. I believe including
everyone at all times, for my observed case, would cost the team more time
and e�ort than necessary. When developers are working less than 100%, it
comes a point were it is better for the leader to lead the discussions and push
forward the important points, rather than having everybody to say their
meanings. For my observed case I would say that Salas' teamwork model
would not be the best choice.

Scrum and Teamwork

Overall, I have found that Scrum facilitates teamwork and will in most areas
increase team e�ectiveness.

For example, Scrum facilitates involvement for discussions. Having nego-
tiating skills also proves to be very important in teamwork. Everybody in
the team should be forced to join discussions when decisions should be made.
Using the scrum daily meetings can be a good way of improving these skills.
Joining discussions also facilitates several areas of Salas' model.

My studies show that it can be hard to adapt in to agile development
methodologies. However, the studies also show that when using agile de-
velopment, such as Scrum, and follow the guidelines correctly, teams are
satis�ed and productivity improves. Concidering this, there are still things
that can be improved and several areas around agile development that can

69

CHAPTER 6. CONCLUSION

be discussed and be made further research on.

Salas' Model

Salas et al. 2005 and their statements concerning teamwork are correct ac-
cording to what I have found out. However, according to team e�ectiveness I
can argue that not all areas are answered. Within my literature studies when
there is a lack of team orientation, good leadership, lack of backup behavior,
mutual performance monitoring or adaptability within the team, team e�ec-
tiveness is decreased. Concidering my studied project it is not allways like
this. For instance there were issues concerning team orientation and mutual
performance monitoring where Salas' would argue that team e�ectiveness
would decrease. In my observed case study, I could argue that Salas' model
might not be the best model to measure e�ectiveness for this speci�c project.

70

Chapter 7

Future Work

The intention of my work was to study several literary papers, investigate
a software development project and compare these to draw conclusions con-
cerning the areas of Salas' model. As my �ndings from this report are based
on quite few studies and only one case study, I suggest adding more cases
as a basis for the analysis. I would also recommend using another model in
addition to Salas' as a framework for project teamwork theories to analyze
more concerning team e�ectiveness.

71

Bibliography

[1] Eduardo Salas, Dana E. Sims and C. Shawn Burke. Is there a �big
�ve� in teamwork? 2005. Online version can be found at URL:
http://sgr.sagepub.com/content/36/5/555

[2] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software
development: A systematic review. Information and Software Technol-
ogy, SINTEF ICT, S.P. Andersensv. 15B, NO-7465 Trondheim, Norway,
2008.

[3] Nils Brede Moe and Torgeir Dingsøyr, Scrum and Team E�ectiveness:
Theory and Practice, NO-7465 Trondheim, Norway, 2008.

[4] Nils Brede Moe, Torgeir Dingsøyr, Tore Dybå, Understanding Self-
organizing Teams in Agile Software Development, IEEE Computer So-
ciety Washington, DC, USA ©2008

[5] David Cohen, Mikael Lindvall and Patricia Costa. An introduction to
agile methods. Fraunhofer Center for Experimental Software Engineer-
ing 4321 Hartwick rd, Suite 500 College Park, MD 20742 USA, 2004

[6] G. L. Stewart and C. C. Manz. Leadership for self-managing work teams:
A typology and integrative model. 1995

[7] S. J. Zaccaro, A. L. Rittman and M. A. Marks. Team leadership. Lead-
ership Quarterly. 12, 451�483, 2001

[8] Cathy C Durham, Don Knight, Edwin A Locke. E�ects of Leader Role,
Team-Set Goal Di�culty, E�cacy and Tactics on Team E�ectiveness.
1997

72

BIBLIOGRAPHY

[9] Kevin Vlaanderen, Slinger Jansen, Sjaak Brinkkemper and Erik Jaspers,
The agile requirements re�nery: Applying SCRUM principles to soft-
ware product management, Department of Information and Computer
SciencesUtrecht University, 2010

[10] Yukl, G. A. Leadership in organizations. Englewood Cli�s, NJ: Prentice
Hall. 1989

[11] R. M . McIntyre and Eduardo Salas. Measuring and managing for team
performance. ISBN: 978-0-76231-141-5, 1995

[12] Cooper, R., & Sawaf, A. Executive EQ: Emotional intelligence in lead-
ership and organizations. New York: Grosset/Putnam. 1996

[13] Robert R. McCrae & Oliver P. John. An Introduction to the Five-Factor
Model and Its Applications. 1992

[14] Susan L. Kichuk & Willi H. Wiesner. The Big Five personality factors
and team performance: implications for selecting successful product de-
sign teams. 1997

[15] Judy Kay, Nicolas Maisonneuve, Kalina Yacef, Peter Reimann. The Big
Five and Visualisations of Team Work Activity. 2006

[16] George A. Neuman, Stephen H. Wagner and Neil D. Christiansen. The
Relationship between Work-Team Personality Composition and the Job
Performance of Teams. 1999

[17] Arthur E. Poropat. A Meta-Analysis of the Five-Factor Model of Per-
sonality and Academic Performance. 2009

[18] H. van Vliet, A decade of agile methodologies: Towards explaining agile
software development. journal homepage: www.elsevier.com/locate/jss.
85 (2012) 1213� 1221

[19] Webber, S. S. Leadership and trust facilitating cross-functional team
success. Journal of Management Development.Vol. 21 Iss: 3, pp.201 -
214, 2002

[20] Bandow, D. Time to create sound teamwork. The Journal for Quality
and Participation. 24(2), 41-47, 2001

73

BIBLIOGRAPHY

[21] S. J. Zaccaro, A. L. Rittman and M. A. Marks. Team leadership. Lead-
ership Quarterly. 2001

[22] M. A. Campion, G. Medsker and C. Higgs. Relations between work
group characteristics and e�ectiveness: Implications for designing e�ec-
tive work groups. Personnel Psychology. 1993

[23] J. E. Driskell and Eduardo Salas. Collective behavior and team perfor-
mance. Human Factors,Volume: 34, Issue: 3, Pages: 277-288, 1992.

[24] Eby, L. T., & Dobbins, G. H. Collectivistic orientation in teams: An
individual and group-level analysis. Journal of Organizational Behavior,
18, 275-295, 1997

[25] Randy J. Larsen & David M. Buss. Personality Psychology - Domains
of Knowleedge About Human Nature. Fourth Edition. Chapter Three
(New York, Published by McGraw - Hill). 2010

[26] John, O.P. The �Big Five� factor taxonomy: Dimensions of personality in
the natural laguage and questionnaires. In L.A. Pervin (Ed.), Handbook
of personality (pp. 66-100). New York: Guilford Press. 1990

[27] Saucier, G., and Goldberg, L.R. What is beyond the Big Five? Journal
of Personality, 66, 495-524. 1998

[28] Wiggins, J. S. The �ve-factor model of personality: Theoretical perspec-
tives. New York: Guilford Press. 1996

[29] Block, J. Going beyond the �ve factors given: Rejoinder to Costa and
McCrae (1995). Psychological Bulletin, 117, 226-229. 1995

[30] McAdams, D. P. The �ve-factor model in personality: A critical ap-
praisal. Journal of Personality, 60, 329-361. 1992

[31] Bob Schatz and Ibrahim Abdelsha�, Primavera Gets Agile: A Successful
Transition to Agile Development, May/June 2005 (vol. 22 no. 3).

[32] Brian Fitzgerald, Gerard Hartnett and Kieran Conboy, Customising ag-
ile methods to software practices at Intel Shannon, Volume 15 Issue 2,
April 2006 Pages 200 - 213.

74

BIBLIOGRAPHY

[33] Nina Dzamashvili Fogelstrom, Tony Gorschek, Mikael Svahnberg and
Peo Olsson,The impact of agile principles on market-driven software
product development, DOI: 10.1002/spip.420, 2009

[34] Nils Brede Moe, Torgeir Dingsøyr and Tore Dybå, A teamwork model for
understanding an agile team: A case study of a Scrum project, SINTEF,
NO-7465 Trondheim, Norway, 2010

[35] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå, Overcoming Barriers
to Self-Management in Software Teams. Volume: 26, Issue: 6 Page(s):
20 - 26, 2009

[36] Dingsoyr Torgeir, Nerur Sridhar, Balijepally VenuGopal, A decade of
agile methodologies: Towards explaining agile software development,
SINTEF, NO-7465 Trondheim, Norway, 2012

[37] Michael D. Myers, Investigating information systems with ethnographic
research.Volume 2 Issue 4es, Dec. 1999 Article No. 1

[38] Frances Julia Riemer, Ethnography Research. Ph.D. 6. Riemer, F, 2008

[38] Bob Shatz and Ibrahim Abdelsha�. Primavera Gets Agile: A Successful
Transition to Agile Development, IEEE SOFTWARE Published by the
IEEE Computer Society. 0740- 7459/05/20.00 ©2005

[39] Nina Dzamashvili Fogelstrom, Tony Gorschek, Mikael Svahnberg and
Peo Olsson., The impact of agile principles on market-driven software
product development, DOI: 10.1002/spip.420, 209

[40] Brian Fitzgerald, Gerard Hartnett and Kieran Conboy. Customising ag-
ile methods to software practices at Intel Shannon. Volume 15 Issue 2,
April 2006 Pages 200 - 213.

[41] Artem Marchenko and Pekka Abrahamsson, Scrum in a Multiproject
Environment: An Ethnographically-Inspired Case Study on the Adop-
tion Challenges. ISBN: 978-0-7695-3321-6, 2008

[42] Viktoria Gulliksen Stray, Nils Brede Moe, and Torgeir Dingsøyr. Chal-
lenges to Teamwork: A Multiple Case Study of Two Agile Teams. Pages:
146-161, 2011

75

BIBLIOGRAPHY

[43] Torgeir Dingsøyr and Tore Dybå. Team E�ectiveness in Software Devel-
opment - Human and Cooperative Aspects in Team E�ectiveness Models
and Priorities for Future Studies. NO-7465 Trondheim, Norway.

[44] Je� Patton, Agile Product Design. 2009,
http://www.agileproductdesign.com/blog/2009/kanban_over_simpli�ed.html

[45] James J. Jiang, Jaideep Motwani and Stephen T. Margulis (1997). IS
team projects: IS professionals rate six criteria for assessing e�ectiveness
Team Performance Management

76

Chapter 8

Appendix A - eXtreme

Programming

Extreme Programming is the most researched �eld within agile methods [2].
It provides a clear description on how projects should be run and is based
on existing methodologies. This is shown in 8.1 below:

Figure 8.1: The life cycle of XP

77

CHAPTER 8. APPENDIX A - EXTREME PROGRAMMING

The XP methodology is mainly for small to medium sized teams which
work with technology that allows changes when the customer asks for a
change in the requirements. The guidelines for XP are important in several
areas of a project. I will not go into all of them in this report, but I have
listed the most essential below:

1. The Planning game: Developers and customers cooperate to decide
scope and timing and estimate the amount of work.

2. Pair programming: Two people produce code from one work station

3. Continuous releases: New features or versions of a system are re-
leased and can be used right away by the customer

4. 40-hours week: No team member can work more than 40 hours each
week. Anything more than this will be seen as a problem for the entire
team.

5. Shared Workspace: The team works together in an open workspace
which makes it easier to cooperate. This also makes it possible for any
team member to change any code within the project at any time.

78

Figure 8.2: Planning/Feedback Loops in XP

79

Chapter 9

Appendix B - Interview Guides

In this appendix I will present the di�erent interview guides that were used.
All the interviews were done in norwegian.

Interview Guide for Project Leader - Client

This is an interview guide for the interview with the project leader - client
side. The interview itself is much longer including a lot more questions. In
this interview I wanted to focus on getting a good overview of the project
and the project leader's work and impact on the project.

1. Hva går prosjektet ut på?

2. Hvor mye jobber du på prosjektet?

3. Hva er dine oppgaver? Hvordan utfører du dem?

(a) Oppfølging: Er du noe med utvikler teamet og når eventuelt?

4. Hva slags erfaring har du med utvikling fra tidligere?

5. Kan du beskrive hvordan kommunikasjon mellom deg, teamet og pros-
jektleder til Capgemini foregått?

(a) Oppfølging: Gi eksemple

(b) Oppfølging: Beskriv hvordan man løser problemer når de oppstår

(c) Oppfølging: Få en hierarkisk oversikt til prosjetet

80

6. Hvordan synes du kvaliteten er på det som er utviklet har vært til nå?

7. Hvordan synes du e�ektiviteten er?

8. Hva har fungert særdeles bra i prosjektet?

(a) Gi eksempler!

9. Hva har fungert mindre bra?

(a) Gi eksempler på problemer som har oppstått

10. Etter prosjektet er ferdig. Hva skjer videre?

11. Hvordan har dette prosjektet vært sammenlignet med andre prosjekter?

Interview Guide 1 for Project Leader - CC

Interviewguide for the project leader from the consultant company. This in-
terview also focus on getting an overview of the project - from the consultant
company's perspective - and the project leader's impact on the project. It is
interesting to see whether there are any di�erences among the project leaders
context of the project.

1. Hvor lenge har prosjektet foregått?

2. Når skal prosjektet avsluttes?

3. Hvordan kom dere i kontakt med kunden?

4. Hvorfor valgte dere å gjennomføre prosjektet?

5. Hvordan foregikk utforming av kravspesi�kasjon og planleggingsfasen?

(a) Gi eksempler

6. Hvordan har oppgaver blitt oppdelt og tildelt?

(a) Gi eksempler

7. Hvordan har dette prosjektet vært sammenlignet med andre prosjekter?

81

CHAPTER 9. APPENDIX B - INTERVIEW GUIDES

8. Hvor viktig har prosjektet vært for �rmaet?

(a) Oppfølging: Vil �nne ut om �rmaet prioriterer dette prosjektet
høyt?

9. Hvordan synes du kvaliteten er på det som er utviklet?

(a) Oppfølging: Hva tror du synes kunden om kvaliteten?

10. Hva har fungert særdeles bra i prosjektet?

11. Hva har fungert mindre bra?

12. Hvor ofte har du kontakt med kunden?

13. Har det vært endringer av kravspesi�kasjon?

(a) Oppfølging: Hva slags endringer.. Hvordan løser dere dette?

Interview Guide Scrum Master

Interview guide for an interview with the Scrum Master. This interview
focuses on how the work is distributed and performed during the project. In
addition it also focuses on Scrum Master and what experience he has within
agile development.

1. Jobber du bare på dette prosjektet?

(a) Følg opp: Hvor mye evnt av tiden hans til dette og hvor mye til
andre. Mye overtid?

2. Hva med resten av teamet?

(a) Få med hvem som jobber og hvor mye

3. Hvordan har oppgaver blitt oppdelt og tildelt?

4. Hva slags erfaring har du med smidig utvikling?

(a) Scrum?

82

5. Følger teamet Scrum guidelines?

(a) Hvordan?/Hvordan ikke? Eksempli�ser!

6. Hvordan føler du samarbeidet innenfor teamet fungerer?

7. Følger dere de daglige møtene?

(a) Ja/nei?

(b) Hvordan fungerer dette?/Hvorfor ikke?

8. Hvordan ble estimeringsprosessen gjennomført?

(a) Hva synes du om denne? Få positive og negative sider hvis de
�nnes!

9. Fungerer bruken av backloggene?

(a) Hvordan ble de planlagt?

(b) Hvordan blir det brukt?

10. Hvor viktig har det vært å fullføre sprint backloggene?

11. Blir burndown charts brukt i prosjektet?

(a) Hvis � hvordan? Synes du disse er nyttige?

12. Hvordan har dette prosjektet vært sammenlignet med andre prosjekter?

13. Hvordan synes du kvaliteten på det som er utviklet er?

14. Hva synes teamet om kvaliteten?

15. Hva har fungert særdeles bra i prosjektet?

(a) Eksempler!

16. Hva har fungert mindre bra?

(a) Eksempler!

17. Har det vært mye endringer i kravspesi�kasjonen?

(a) Hvordan løser dere dette i såfall?

(b) Påvirker dette prosjektet i stor grad? Forklar!

83

CHAPTER 9. APPENDIX B - INTERVIEW GUIDES

Interview Guide 2 - CC

Interview guide number two for the project leader and Scrum Master from
the consultant company. This interview focuses on teamwork and Scrum,
having Salas' model [1] in focus. It is interesting to see whether the Scrum
Master and project leader have the same opinions about the development
team.

Leadership:

� Hvordan synes du prosjektet har gått?

� Positive/Negativer sider. Mulighet.

� E�ektivitet?

� Har lederen fasilitert og koordinert prosessene på en positiv måte?

� Eksempli�ser!

� Hva har vært bra her?

� Mindre bra?

� Felles modell?

� Har teamet hatt en felles forståelse av prosjektets fremgang?

� Hvordan har beslutninger blitt tatt?

� Tror du teammedlemmene føler de har bidratt til å styrke prosjektet?

� SSO � henter dere dere inn igjen?

Mutual Performance Monitoring:

� Tror du folk i teamet vet hva de andre i teamet holder på med av
oppgaver?

� Hvis ikke detaljer nok så er det helt fair

� Føler du at folk i teamet har kunnet stole på hverandre?

84

Backup Behavior:

� Det var en periode dere trengte mer arbeidskapasitet � hvordan taklet
dere dette?

� Hvordan ble dette tatt i mot av teamet?

Adaptability:

� Hvordan har de uerfarne utviklerne (ift Scrum) tilpasset seg Scrum?

� Har dette gått �nt? Eksempler!

� Har det vært andre måter teamet har måtte tilpasse seg ting på?

Team Orientation:

� Har andre oppgaver påvirket dette prosjektet på noen måte?

� andre prosjekter osv..?

� Hvordan inntrykk har du av teamet fra standup-møtene?

� Kan også ta opp demo-møter, retrospektive, planning meetings og
sammenligne!

� Hvordan føler du kompetansen i teamet har vært distribuert?

� Føler du dere har levert det dere har tenkt?

� Hvordan tenker du fordelingen av arbeidet til kunden sine konsulenter
har vært?

� Tror du en annen måte å fordele resurrsene kunne vært en ide?

� F.eks la de bare jobbe sprint 1-5..? Hvorfor/Hvorfor ikke?

Til Prosjektleder anngående oppgaven min:
Trenger jeg mer til contexten anngående releases til sluttbrukerne?
Beskriver contexten prosjektet på en oversiktlig måte?

85

	Title Page
	Introduction
	Motivation and Focus
	Problem Definition
	Report Scope
	Limitations and Restrictions
	Report Outline

	Background for Agile Development
	Extreme Programming
	Kanban
	Scrum

	Team Effectiveness Model
	Leadership
	Mutual Performance Monitoring
	Backup Behavior
	Adaptability
	Team Orientation

	Research Design
	Literature Study
	Ethnographically Informed Study
	Chosen Approach
	Context
	Challenges
	Bias
	Data Analysis

	Important Data Collection
	Sprint Planning
	Sprint Retrospective
	Daily-standup Meetings
	Use of Burn-down Charts

	Results and Discussions
	Leadership
	Mutual Performance Monitoring
	Backup Behavior
	Adaptability
	Team Orientation

	Conclusion
	Future Work
	Appendix A - eXtreme Programming
	Appendix B - Interview Guides

