
Enhancing and Porting the HPC-Lab
Snow Simulator to OpenCL on Mobile
Platforms

Frederik Magnus Johansen Vestre

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Problem description

This project builds on the snow simulator developed by current and previous graduate students
at the NTNU HPC-Lab. The work will include porting the code so that it works on current and
future mobile platforms. Improved rendering techniques and other enhancements will also be
considered.

iii

Abstract

English

Porting a computationally demanding CUDA application to a GPU designed for mobile phones
and tablets, which supports OpenCL, is the subject of this thesis.

Significant effort is made to prepare the snow simulator of the HPC-LAB at IDI, NTNU, for
porting to an OpenCL capable GPU for mobile phones, with a reasonably limited effort, when it
arrives. The snow simulator is ported to OpenCL, documented, and improved by considering
multiple sorting algorithms, as well as sorting the snow particles.

A thorough study of GPUs for mobile devices and high performance computing, as well as their
history is conducted to serve as a background for future porting of the simulator.

The core code resulting from the OpenCL port is documented in detail to prepare for future
projects on completing the port to a mobile device.

The OpenCL port of the snow simulator is tested on a range of different OpenCL implementa-
tions. The performance of GPUs designed for different use is compared, and memory manage-
ment is identified as the biggest bottleneck for performance. This bottleneck is further investi-
gated by studying the performance of the simulator when disabling certain copy operations.

OpenCL supports more than just GPU devices. CPUs, Cell processors, and other acceleration
cards are also supported. To investigate OpenCL on other devices, a part of the simulation is
executed on a CPU, and compared with executing it on a GPU. The CPU version perform on
par with the GPU version when using a laptop GPU.

v

vi

Norwegian

Porting av en CUDA-applikasjon som krever høy ytelse, til en GPU designet for mobiltelefoner
og nettbrett er tema for denne oppgaven.

I oppgaven gjøres det en betydelig innsats for å legge til rette for at snøsimulatoren til tungreg-
ingslaboratoriet på IDI, NTNU, med forholdsvis begrenset innsats, kan portes til en GPU for
mobiltelefoner og nettbrett som støtter OpenCL, når den blir tilgjengelig. Snøsimulatoren er
tilpasset OpenCL, dokumentert og forbedret ved å vurdere ulike sorteringalgoritmer, samt å
sortere snøpartiklene.

Som bakgrunn for fremtidige tilpasninger av simulatoren, er det gjennomført en inngående
studie av GPUer for mobile enheter, og tungregning, samt deres historie.

Kjernekoden som kommer fra OpenCL-tilpasningen, er dokumentert i detalj for å legge til rette
for fremtidige prosjekter, og forberede dem på å gjennomføre tilpasningen av simulatoren til en
mobil enhet.

Tilpasningen av simulatoren til OpenCLer testet på en rekke forskjellige OpenCL-implementasjoner.
Ytelsen til GPUer som er designet for forskjellig bruk er sammenlignet, og minnehåndtering er
utpekt som den største flaskehalsen for ytelse. Denne flaskehalsen er undersøkt ytterligere ved
å studere ytelsen til simulatoren, når visse kopieringsoperasjoner er deaktivert.

OpenCL støtter mer enn kun GPUenheter. CPUer, Cellprossesorer, og andre akselerasjonskort
støttes også. For å undersøke OpenCL på andre enheter, ble en del av simuleringen kjørt på en
CPU, og sammenlignet med å gjøre den på en GPU. CPU versjonen yter på samme nivå so GPU
versjonen når den blir kjørt på en laptop GPU.

Acknowledgements

I would like to thank Dr. Anne C. Elster for supervising this thesis. I would like to thank Jan
Rovde for looking at all sorts of strange behaviour conducted by the snow simulator and giving
hints of their reasons. Many thanks go to Rune Jensen for looking at my code, helping my back
on the right track during debugging and suggesting ways to optimize the simulator. I would
like to thank the Norwegian demo scene community at #scene.no at the EFNet Internet Relay
Chat (IRC) server for many interesting discussions and viewpoints of mobile GPU computing
and the history of mobile phones in general.

I would also like to thank ARM for cooperation regarding mobile GPU access, and NVIDIA
for donating the GPUs in the NTNU/IDI HPC-Lab through Dr. Elster’s membership in their
Professor Partnership program.

vii

Contents

Problem description iii

Abstract v
English . v
Norwegian . vi

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

Glossary xix

1 Introduction 1
1.1 Goals . 1
1.2 Problem description . 2
1.3 Project description . 2
1.4 Outline . 3

2 Mobile graphics computing units (GPUs) 5
2.1 The emergence of smartphones . 5
2.2 Phone inspired tablets . 6
2.3 The use cases of mobile GPUs . 6
2.4 Mobile device manufacturing ecosystem . 7
2.5 Mobile GPU market . 8
2.6 State of standardisation . 9
2.7 Open source graphics drivers . 11
2.8 The architecture of mobile GPUs . 12

2.8.1 PowerVR tile rendering . 13
2.8.2 Mali tile rendering . 13

ix

x CONTENTS

3 General purpose computing on graphical computing units 15
3.1 High performance computing: The road to GPGPU 15
3.2 History and benefits of OpenCL . 16
3.3 GPGPU architecture . 17

3.3.1 Programming model . 17
3.4 Memory model . 18

3.4.1 Synchronization . 18
3.5 Terminology used in GPGPU . 18
3.6 Debugging . 19
3.7 OpenCL . 20

3.7.1 Devices, Context & Command-queue . 20
3.7.2 Synchronization . 20
3.7.3 Memory . 20

3.8 OpenCL versus CUDA . 21

4 Description of the snow simulator 23
4.1 History of the simulator . 23

4.1.1 Code history . 25
4.2 Organisation of the simulator . 26
4.3 Simulator flow . 28

4.3.1 Obstacles . 28
4.4 Wind simulation . 28

4.4.1 Navier-Stokes simulation . 30
4.5 Snow simulation . 33
4.6 Porting to OpenCL . 34

4.6.1 Abstracting API specific code . 35
4.7 Calling conventions . 35

4.7.1 Kernel porting . 35
4.7.2 Implementation changes . 37

5 GPU sorting 39
5.1 Motivation . 39
5.2 Traditional sequential sorting algorithms . 39
5.3 Requirements for GPU algorithms . 39
5.4 GPU sorting algorithms . 40
5.5 Bitonic sort . 42

5.5.1 Previous bitonic sort implementations . 42
5.5.2 Porting bitonic sort from the CUDA SDK examples 43
5.5.3 Optimizing and adapting bitonic sort for particle sorting 43
5.5.4 Improving local correctness . 43

5.6 Integration with the snow simulator . 46
5.7 Future improvements to the sorting algorithm . 47

6 Tests and results 49
6.1 Methodology, hardware and implementations . 49
6.2 Visualization of the results and statistical method 50

CONTENTS xi

6.3 CPU versus GPU wind simulation . 50
6.4 Full simulation . 51
6.5 Simulation on different GPUs . 51

6.5.1 The NVIDIA Tesla card . 52
6.5.2 The GPUS with display output . 53
6.5.3 Common trends . 53

6.6 Rendering performance . 55
6.6.1 Terrain rendering performance . 55
6.6.2 Snow rendering performance . 55

6.7 Visual results . 56

7 Conclusion & Future work 61
7.1 Conclusions . 61
7.2 Future work . 62

References 63

Appendices 67

A Source Code 69
A.1 Simulation GPU code . 69

A.1.1 WindSystem.cl . 69
A.1.2 SnowSystem.cl . 72

A.2 Sorting . 75
A.2.1 BitonicSort.cl . 75
A.2.2 BitonicSortHostInterface.cpp . 79

A.3 Drawtmp.py - for visualizing the sorted data . 81
A.4 Testing . 82

A.4.1 Script for generating test graph data . 82

List of Figures

1.1 Thesis assignment . 2

2.1 Mobile device elements . 8
2.2 Interfaces intercepted by Lima for reverse engineering 11
2.3 Triangles in a tile-grid . 13

3.1 The memory model of GPUs . 19

4.1 Timeline of thesis related to the snow simulator . 24
4.2 Git version control history DAG example . 26
4.3 Organization of the snow simulator . 27
4.4 Simulation loop sequence & interaction diagram . 29
4.5 Obstacles covering the area under the terrain . 29
4.6 Wind system classes overview . 30
4.7 Self advection . 31
4.8 Values for ω(k) used in SOR . 32
4.9 Schematic overview of wind projection . 33
4.10 Snow system classes overview . 33
4.11 Smooth ground kernel operation . 34
4.12 Kernel memory access strategy . 36

5.1 GPU sorting networks . 41
5.2 Bitonic sort network for 16 elements . 42
5.3 Local correctness comparision network . 44
5.4 Redistribution to improve local correctness . 45
5.5 Bitonic sort: alternating local sort versus alternating local and global sort 45
5.6 Artefacts caused by changing the index of particles during simulation 46

6.1 Wind simulation only . 51
6.2 Wind & snow simulation on GPU-CPU . 52
6.3 Simulation on different GPUs . 53
6.4 Laptop wind simulation results . 54
6.5 Snow simulation with and without terrain rendering 55
6.6 snow particle rendering . 56
6.7 Snow outside the domain . 57

xiii

xiv LIST OF FIGURES

6.8 Curtain-like distribution of snow . 57
6.9 Pressure distribution . 58
6.10 Pressure distribution and wind velocities . 59

List of Tables

2.1 Leading hardware GPUs for mobiles and tablets . 9
2.2 Khronos standards applicable for mobile computing 11

3.1 The most used terminology in OpenCL and CUDA 19

6.1 Specifications of the hardware and software used to test the simulator on CPU . . . 49
6.2 Specifications of the hardware and software used to test the simulator 52

xv

Acronyms

API Application Programming Interface. 1, 2, 10, 12, 15, 16, 18, 20, 21, 27, 28, 35, 37, 50, 56, 62

CAD Computer Aided Design. 53

CPU Central Processing Unit. 1, 7, 8, 10, 16, 17, 20, 23, 49–52, 61

CTM Close To the Metal. 16

CUDA Compute Unified Device Architecture. 1–3, 15–21, 23, 25, 26, 28, 35–37, 42, 43, 51, 56, 58,
61, 62

DAG Directed Acyclic Graph. 26

DMA Direct Memory Access. 20

ES Embedded Systems. 10, 11

FPS Frames Per Second. 50, 51, 53–55

GLSL the openGL Shading Language. 12, 15, 16, 21

GPGPU General purpose graphics Processing Unit. 1–3, 7, 11, 15–18, 20, 26–28, 35, 50–55, 62

GPU Graphics Processing Unit. 1–3, 5–13, 15–21, 23, 25–28, 31, 35, 39–42, 49–51, 53, 54, 61, 62

GS Gauss-Seidel. 32

HPC High Performance Computing. 1–3, 15, 23

IDE Integrated Development Environment. xix

IDI Department of Computer and Information Science. 2

IP Intellectual Property. 7–9

IRC Internet Relay Chat. vii

LBM Lattice Boltzmann methods. 23, 25, 30

xvii

xviii ACRONYMS

NDA Non disclosure agreement. 12

NTNU Norwegian University of Science and Technology. 2

SDK Service Development Kit. 42, 50, 51

SIMD Single Instruction Multiple Data. 17

SM Streaming multiprocessor. 17, 35

SoC System on a Chip. 7–9

SOR Successive Over Relaxation. 25, 32

SPMD Single Program Multiple Data. 17, 40

VBO Vertex buffer object. 28, 30, 37

VCS Version Control System. 25, 26

Glossary

AMD Advanced Micro Devices: A semiconductor company that develops computer processors
and related technologies for commercial and consumer markets. In 2006 AMD bought ATI,
a GPU vendor. 16, 20, 21, 42, 43, 50, 51

ARM ARM: Maker of processor IP with near monopoly for processing in advanced mobile
devices. 2, 3, 7, 10, 12, 13

Direct X A graphics API from Microsoft which mainly is used for programming games on the
Windows platform. 9

Git A distributed version control system for code. 2

NVIDIA A semiconductor company that develops GPUs and related technologies for commer-
cial and consumer markets. Currently largest in both markets. 1, 8, 16, 21, 25, 42, 51–53

OpenCL Open Computing Library is a standard specification defining a cross-platform API for
functions that are specialized for running on highly parralell hardware, e.g a Graphics
Card. 1–3, 8, 15–21, 25, 26, 28, 34–37, 42, 43, 49–52, 56, 58, 61, 62

OpenGL Open Graphics Library is a standard specification defining a cross-language, cross-
platform API for writing applications that produce 2D and 3D computer graphics. It is
among other things widly used for scentific visualization. 9–12, 15, 20, 28, 30, 35, 50, 52,
53, 55, 56

Silicon Graphics Inc. SGI was a manufacturer of high-performance computing solutions, in-
cluding computer hardware and software. Its initial market was 3D graphics display ter-
minals, but its products, strategies and market positions evolved significantly over time.
15

XNA A quite high level coss platform archictecture and Integrated Development Environment
(IDE) for writing games on Microsoft platforms. Originally an acronym for Xbox New
Architecture, but recently "XNA’s Not Acronymed". 9

xix

Chapter 1

Introduction

High Performance Computing (HPC) has traditionally been exclusive for large organization
with lots of resources. However, computing performance has always been increasing. During
the last decades the consumer marked for computers have exploded. Due to the economics of
scale, developing hardware for consumers gives better return on investment than developing
specialized hardware for demanding professionals. Consumer technology has therefore formed
the basis of HPC solutions in the last decade [DSSS05].

General purpose graphics Processing Unit (GPGPU) is the means of using a Graphics Process-
ing Unit (GPU) to perform computation in applications traditionally handled by the Central
Processing Unit (CPU). The use of GPGPUs for HPC computing became feasible about 5 years
ago with the introduction of a GPGPU Application Programming Interface (API) by NVIDIA
called Compute Unified Device Architecture (CUDA). New forms of HPC computing became
accessible for the general public as quit cheap GPUs which were originally designed to support
computationally demanding graphics in computer games could now be used for demanding
physical simulations and signal processing tasks.

The popularity of smartphones and tablets has created strong demand for relatively advanced
graphics on those devices too. The programming interfaces of GPUs for mobile phones are in-
spired by the interfaces for desktop computers, and devices that supports one of interfaces for
GPGPU programming on desktops, will be available for smartphones this autumn. The devices
for smartphones have different underlying architecture and performance characteristics than
desktop devices, even though the programming interface is the same. To gain maximum perfor-
mance out of the devices, these difference have to be taken into consideration when designing
or porting programs for smartphones or tablets.

1.1 Goals

The aim of this thesis is to port a computationally demanding program to the GPU of a tablet
or mobile phone which supports OpenCL. By looking into porting a program which requires
high performance to a performance constrained device insight into how the mobile platforms
work, how powerful the platforms are, and what kinds of quirks the they inhibit will hopefully
be gained.

1

2 CHAPTER 1. INTRODUCTION

The HPC lab at Department of Computer and Information Science (IDI), Norwegian University
of Science and Technology (NTNU) started to develop a snow simulator in 2006. The simulator
as it is today, is a result of several thesis and has been used to experiment with different models
for physical phenomena, and do research on how to get maximum performance from GPUs.
The simulator already had been tuned for a desktop GPU. It was therefore a good candidate
for porting to a mobile device, since the experiences of tuning it to the mobile device can be
compared to the experiences from the desktop GPU tuning.

1.2 Problem description

“This project builds on the snow simulator developed by current and previ-
ous graduate students at the NTNU HPC-Lab. The work will include porting the
code so that it works on current and future mobile platforms. Improved rendering
techniques and other enhancements will also be considered. ”Figure 1.1: Thesis assignment

The assignment for this master thesis is quoted in Figure 1.1. The goals for the assignment
was suggested by the student, but the final text was written by the advisor. The main focus
of the assignment is to port the snow simulator to mobile platforms, getting it working on the
platforms, and gather experience from that.

Because mobile platforms which contained hardware necessary to run the snow simulator were
not available for the market yet when this thesis was written cooperation with the vendors of the
graphics solution was required. The IDI HPC lab at NTNU has contact with ARM which design
a mobile GPU which are going to support OpenCL. This thesis, however, was not initiated by
ARM. Therefore some uncertainty existed about the feasibility of the project.

1.3 Project description

One of the API which future mobile GPUs will support is OpenCL. The snow simulator was
written using another GPGPU API, named CUDA. An earlier student had ported an older ver-
sion the snow simulator from CUDA to OpenCL a specialization project. The ported code had
not been touched in two years, and the simulator has changed much since. Therefore the first
part of the project was to get the code up running and up to date with the last changes of the
simulator.

A serious effort was done in to obtaining the resulting code from the OpenCL port. However
no archived code was found at the HPC lab. Contacting the student who did the port was
attempted, but alas no contact could be made. Since the old code was no longer available it was
decided to redo the port from scratch using the most up to date simulation code.

To make sure that future students would be able to not experience these problems a proper ver-
sion control system was introduced, and a group for the whole HPC-lab, including my advisor
was created at the servers of the department. The Git version control system was selected to
enable students to work with their assignments easily in separate branches; using local reposi-

1.4. OUTLINE 3

tories if necessary. When each branch is merged at the end of the semester this will produce a
common base for future students to work from, and a history where it is possible to see which
projects which are included in which version.

Porting the simulator to OpenCL was done in parallel with lobbying to get access to the mobile
hardware. The first step of getting access to mobile hardware supporting OpenCL was to do
a survey to discover which vendors which were designing OpenCL capable hardware. After
browsing the internet for press releases and product specifications 5 vendors were discovered.
An application to the ZiiLabs OpenCL Early Access Program was submitted, but did not result
in any response.

My advisor did also contact the graphics division of ARM which promised to try to get a Mali
sample to work on. The faculty has a good relationship with ARM, which have done several
thesis together with the faculty earlier, and even did some thesis in cooperation with the faculty
this term. An informal agreement was made to borrow prototype hardware from ARM, but the
hardware did not arrive in time to be useful for this thesis.

Even if the hardware necessary for running the snow simulator on mobile targets did not arrive
porting of the simulator to OpenCL was continued. When the port reached a runnable and
physically stable state attention was divided to focus on optimizing and refining the rendering
of the snow simulator.

The development of video game consoles, and personal computers have influenced how high
performance computing is done. The research and development cost for new processors like the
CELL processor has been divided between scientific HPC use and developing the Playstation 3
game console.

Graphic cards for gaming have surpassed the computing power of the central computing unit
of personal computers several years ago. In recent years it has been a revolution in the pro-
gramming flexibility of graphic cards for personal computers. When tasks are computationally
intensive and possible to solve in parallel, GPGPU frameworks such as CUDA and OpenCL are
capable of exploiting the performance of the graphics card.

1.4 Outline

This thesis falls into three parts. In the first part, Chapters 1 to 3, an outline of the field is
presented. The technologies required for the simulator and their history is examined. In Chapter
two the motivation for porting the snow simulator to a tablet is presented. The programming
interfaces and technical architecture of mobile GPUs are also presented. In Chapter three the
history and characteristics of GPGPU is presented. An overview of the differences between
CUDA, which the snow simulator is ported from, and OpenCL, which it is ported to, is given to
put the port in context.

In the second part, Chapters 4 and 5, the porting, and ways of optimizing rendering is described.
The description of the porting is contained in Chapter 4. It description is quite detailed to form
a basis for further work by later students. Chapter 5 looks at how rendering performance can
be optimized by sorting snow particles on the GPU.

In the last part, Chapters 6 and 7, the simulator is tested and the thesis is wrapped up in a
conclusion. Chapter 6 concerns testing to profile the performance and visual results sported by

4 CHAPTER 1. INTRODUCTION

the simulator. In this Chapter some characteristics of the simulator which could benefit from
further optimization is also discovered. At last in Chapter 7 conclusions from this thesis are
summarises, and ideas for future work are discussed.

Chapter 2

Mobile graphics computing units (GPUs)

This chapter gives an overview of how mobile phones and tablets have became an essential
part of the computing experience for end users, and how this has affected the GPUs in these
devices. Relevant standards and developments of mobile graphics are discussed. At the end of
the chapter an introduction to the architectures of mobile GPUs are given.

2.1 The emergence of smartphones

The Apple iPhone revolutionized the phone marked for end users. It was an evolution of Apples
digital music players. Therefore the focus of the phone was not calling but to be a mobile enter-
tainment and communication device. The iPhone came with unlimited Internet usage. It was
integrated in to the iTunes store. Small programs called Apps can be bought from the store very
easily to extend the phones functionality. However the most important feature of the iPhone
was its ease of use and focus on aesthetics, even if it has quite advanced futures. Many users
had old accounts for iTunes used for buying music, which lowered the bar for buying Apps to
the phone. Advanced Apps which pushed the hardware of the phone to the limits appeared
creating demand for phones with even more performance. A web browser capable of browsing
normal desktop web pages was also included.

The ubiquity of mobile devices does also open for interaction with the environment which is
difficult for a fixed computer. Augmented reality is extending the real world with synthetic
elements trough the use of technology. In practise this means capturing a live image of the real
world on a camera, and compositing signs, images etc. on top of the image. To do this the image
has to be placed in to the model of objects to be composed. This requires substantial processing
power. Currently this is only possible for recognition with low frame rates [BOM11].

Mobile gaming is another driving factor for smartphone adaption. Mobiles are good devices for
casual games because people always bring their smart phone with them. Smartphone games
are much simpler than games for more powerful devices. Therefore they are cheaper to create.
This allows more experimentation in game play because the cost of failure is lower. Game de-
velopment has always been fast to push hardware to the limit, and is a central driver for more
performance in mobile phones as well.

5

6 CHAPTER 2. MOBILE GRAPHICS COMPUTING UNITS (GPUS)

2.2 Phone inspired tablets

Traditionally tablet computers have been struggling to find a need to fill for the general con-
sumer. They have been very expensive, and the user interface of the tablets was adapted from
desktop computers which use a mouse and a keyboard as input tools. User interfaces designed
to be operated by a mouse have widgets which require precise placement of the mouse pointer,
such as small buttons, sliders etc. To gain the accuracy of a mouse on tablets styluses are re-
quired. Styluses however are easily lost, and cumbersome to use. As a consequence tablets
based on desktop technology flopped. [JS09] describes the tablet marked, form factor and de-
sign goal as it was in 2009.

April the 3rd, 2010 the tablet marked was completely changed by the announcement of the
Apple iPad [App10]. It created a mass marked for tablets by expanding the iPhone ecosystem.
Instead of scaling down PC user interfaces Apple scaled up the relatively simple user interface
used on their smartphones. Relatively cheap components originally made for mobile phones
was used to make a more affordable tablet. The tablet was marketed as a hip fashion item.

The iPad was not the first tablet to focus on a simple interface for Internet consumption. Nokia
for example released a tablet with the same use case in 2005 [Sha05]. However no integration
with a similar ecosystem as the one supported by the iPhone was present.

Tablets and smart phones are also gaining markets from Nintendo GameBoy and Playstation
portable, positioning themselves as a replacement for mobile game consoles for casual gaming.
The games used for tablets are often quite small, cheap, and fast to make. Therefore a game can
be created by one, or just a few persons. This lowers the bar of entry to the marked, and makes
it possible to experiment and create innovative gameplay concepts.

Tablets and mobile are also expanding in to professional use cases. Professionals are expressing
interest in using these devices in settings where personal computers are viewed as cumbersome
and difficult to use. Examples include supporting doctors on a sick bed visit in an hospital, and
using mobile phones to collect data from inspections of roads, railways etc.

2.3 The use cases of mobile GPUs

The mobile GPU has evolved from displaying simple graphics to do a range of heavy processing
functions of visual data on the mobile phone. In this section several use cases of the modern
mobile GPU is outlined.

The screen estate of mobile phones and to some extend tablets are very small. Therefore in-
novative user interfaces are required to use the screen space optimally. This have prompted
a redesign of the user interfaces from phones from the ground. These interfaces uses fancy
animations to make them attractive for the users. In the beginning the graphics accelerators
for user interfaces supported acceleration of 2D graphics; creating smooth gradient, composing
transparent images etc.

Movie playback has been seen as a obvious feature for smart phones, partially because it was
supported on the iPod, which the iPhone evolved from. A video accelerator was required to
enable video playback on a battery constrained device. This hardware has been obsoleted by
the mobile GPU.

2.4. MOBILE DEVICE MANUFACTURING ECOSYSTEM 7

The demand for games is creating a demand for more processing power to do be able to cope
with demanding graphics and effects. Simple 3D games are already supported on modern
phones. This has caused mobile GPU’s to focus on 3D graphics too.

Most smart phones and tablets have cameras. In the beginning images were acquired straight
from the camera and transferred to social media platforms. To differentiate the applications of-
fering these services additional features were included. Simple image processing effects were
implemented, filters simulating analogue effects making images look worn have gained popu-
larity. GPU makers have identified this as operations which may be benefited from GPU accel-
eration. Therefore GPGPU processing have been added to the road maps of nearly all mobile
GPU vendors.

The market for tablets and smartphones has grown substantially over the last years, and is
expected to grow still. The growing marked has released lots of capital for development of new
devices, making tablets and smart mobile phones more powerful than desktops were merely
15 years ago. To keep up with the graphics performance expected of the devices, specialized
graphics processors are included. Many different companies compete to create the best graphics
processors. The graphics processors are released at horrendous speed, supporting more and
more features and programming interfaces for each release.

2.4 Mobile device manufacturing ecosystem

Mobile smart phones and tablets are advanced devices which contains hardware and software
produced by many different vendors. The relationships between these vendors are outlined in
Figure 2.1. The relationship is split in to 4 horizontal layers along interfaces which are often
interfaces between components delivered by different vendors. However some vendors handle
all except the topmost layer themselves.

All modern, mobile advanced electronic devices consist of so called System on a Chip (SoC). The
SoC integrate the most important functions of the device in to a single chip to reduce the dis-
tance between electronic components, and hence the power required to transfer data between
the parts of the system. This chip consists of several subsystems. Designing such a subsystem
is a extremely complex task requiring substantial work by highly skilled engineers. In addition
software, like for example compilers and debuggers, has to be written to interface with the hard-
ware; for example compilers and debuggers. Therefore most companies buy finished designs
(called Intellectual Property (IP)), from other companies. Mobile CPU is the prime example of
IP being licensed from a specialized firm. ARM is the leading company for supplying IP for
mobile device CPUs, having over 95% of the market [Mor11]. Similarly some mobile GPUs can
be licensed as IP, while others are only supplied as part of finished SoCs.

A mobile device manufacturer may buy finished SoCs from SoC manufacturers and integrate
them into their devices (as in Figure 2.1 layer 3). The mobile device manufacturer designs the
complete phone and write software for the phone. The software is based on modules licensed
from the SoC manufacturer. In this layer the device producer have to take care of selecting chips
and components that can be integrated with the software they want to use on the device.

The operating system for Android phones and tables is provided by Google, but the device
manufacturers customise it by adding their special software, and drivers for their hardware.

8 CHAPTER 2. MOBILE GRAPHICS COMPUTING UNITS (GPUS)

ARM CPU IP GPU IP Other IP SoC Vendor IP

System on a ChipSoC Vendor glue

Chip foundry produces
the chip for SoC vendor

Handset designer &
producer

Battery

Antenna

Display

Memory

Driver
package

Driver Driver &
tools Driver

Driver

Handset
software

Mobile OS

3rd party Apps

Consumer

Phone network service
provider

1

2

3

4

Figure 2.1: Stakeholders of mobile standardization & elements of a mobile device

App developers interface the operating system of the devices to create apps. The apps are then
sold directly to the consumer in a store controlled by the operating system vendor. These devel-
opers are partly consumers themselves, partly selling to the consumer market. Therefore they
are located between layer 3 and 4 in Figure 2.1.

2.5 Mobile GPU market

The mobile GPU marked is a healthy marked with four large competitors. An overview of these
competitors is given in Table 2.1. A fifth competitor; Zii Labs does also produce mobile GPUs
but no products for end users are available from normal outlets on the Internet. All vendors
except NVIDIA have announced roadmaps which claims GPUs with OpenCL support will be
released in Q4 2012 or Q1 2013. The vendors of CPUs which uses a IP based business model
have finished the IP for GPU models which support OpenCL already. However no SoCs using
this IP is quality assured and ready to be released in consumer products at this moment. The IP
vendors will not have finished the drivers for the GPUs yet either.

1Tegra4 rumored to support GPGPU [Val12]

2.6. STATE OF STANDARDISATION 9

Vendor CL model BM Hardware examples
AMD Mali T604 IP SmartIQ, Samsung galaxy: tab 7.7, phones 2 & 3
Qualcomm Adreno 3xx SoC HP touchpad tablet, HTC EVO phone
Power VR SGX Series 6 [Ima12] IP iPhone, iPad, Nexus S
Nvidia Tegra Tegra 41 SoC Thinkpad tablet, EEE-Pads, Galaxy tab 10.1

Table 2.1: Leading hardware GPUs for mobiles and tablets

2.6 State of standardisation

The smartphone device platform is a quite standardized platform for developers. When it comes
to interfacing with the operating system of mobile phones the success of the Apple iPhone cre-
ated a marked of critical size for apps. Other handset makers answered this by creating a com-
mon operating system for their phones. This lead to a big enough marked share for some apps
to be released for both platforms.

Lately Microsoft have joined the marked with their Windows based phones. However the num-
ber of different platforms is still quite limited for app developers who want to reach all smart-
phone users. The availability of apps has a considerable influence of whether it is possible for
new platforms to survive in the marked. Microsoft did actually pay several companies to create
apps for their phone before it was launched, to create a critical mass of apps so that consumers
would be interested in buying smartphones with their operating system.

App developers who target smartphones, encounters the same lack of formal standardization of
app platforms, as developers targeting the desktop computer market. A few operating systems
dominates the market and their interfaces act as de facto standards. This is a typical devel-
opment of a mature marked where no standards exist. When it comes to mobile GPUs, their
programming interfaces mirror the interfaces used on PC’s. They are however modernized, and
scaled down to fit the needs of mobile devices.

Both Google and Apple use operating systems based on OpenGL on their desktops. Therefore
their phone operating systems also use OpenGL. There are several mobile GPU manufacturers,
but only two big operating systems have existed on mobile phones. Therefore all GPU vendors
have to implement the GPU standards required by the mobile OS manufacturers.

Microsoft however uses their own Direct X technology on the desktop. Therefore the Windows
phone operating system does not use OpenGL, but a scaled down version of Direct X with the
XNA framework on top to simplify the creation of games. Consequently all graphics code has
to be rewritten to interface Direct X or XNA, when ported from another smartphone platform.
This may stop some vendors from porting their application to Microsoft phones, if the marked
for their application is not believed to be big enough. However code application can be written
cross platform for all platforms controlled by Microsoft. This may provide the required marked
share for porting applications by tapping into the marked share of desktop users.

Standardization is an important enabler for interoperability between different solutions, and
often a sign of a mature ecosystem. Leading vendors will often try to inhibit standardisation to
maintain their leading position, and to make it more difficult for competitors to compete with
their products. History shows many examples of this. When graphics acceleration solutions
were developed for desktop and mainframe markets several different interfaces for the systems

10 CHAPTER 2. MOBILE GRAPHICS COMPUTING UNITS (GPUS)

existed. Each vendor would deliver a vertically integrated system from the hardware, with
software to the user interface. For external developers several different programming interfaces
had to be interfaced. The graphics computer industry continued in this state for many years
until smaller vendors started to mimic bigger vendors, and one of the leading vendors (SGI)
started to standardize their interface to get a head start with the upcoming standard (OpenGL)
[CvDPH98].

Apple computing is the last vendor which continues to produce vertically integrated systems
for personal computers. This is possible because they have targeted a niche marked and focused
on exclusivity and design instead of price and performance. Apple have gained a substantial
marked share among creators of creative content like movies and graphics on desktop systems.
In the recent years however they have shifted towards using standardized hardware compo-
nents, and then assemble finished products. Vertical integration does however limit the number
of combination of finished components which simplifies software development and testing of
different hardware combinations.

Apple has transfered the recipe used on desktop system to music players, and then mobile
phones with the iPhone. This proved to be very successful and positioned apple as a marked
leader in mobile phones. The phone did also use standardized hardware components, but the
software was tightly controlled, but quite easily extendible with applications (apps). The first
major competitor to the iPhone was provided by Google with the Android operating system.
The Android operating system counters the tightly controlled iPhone with openness setting an
unprecedented standard of openness in the mobile handset marked. This is a classical way to
counter tightly controlled marked leading solutions. Several competing manufacturers were col-
laborating to create a common platform which made programs interoperable between vendors.
To differentiate themselves, they included their own branding, applications and hardware.

The development of mobile platforms has been driven by the vendors of the complete systems,
not the makers of the underlying technology. The vendors of the complete systems want to be
able to change components simply and without changing their code base. For Android support
of several different underlying hardware has been essential to the philosophy of their operat-
ing systems. This has led to standardization of all hardware interfaces. Hardware component
vendors, who do not implement standards, do not stand a chance in the marked. The hardware
vendors are forced to compete on implementing the standards as cheap as possible with the
highest possible performance, instead of locking each other out with incompatible interfaces.
Most of the standards of GPUs are exposed to the programmers of apps for the phones and
tablets. For the app programmers being able to use standards increase the number of potential
devices can run their code, and hence the marked potential of the apps.

Currently ARM has a near monopoly on the designs of the CPU architecture used in mobile
phones. Therefore their instruction set has emerged as a de facto standard for CPU programs
on mobile phones.

GPUs and graphics accelerators however are provided by several different vendors who imple-
ment the graphics rendering a bit differently. Therefore a common API is presented to the pro-
grammers. The first API which was produced was the OpenGL Embedded Systems (ES) [Gro04]
in 2004. This API was created by the Khronos Group, which is the proprietor of OpenGL. Soon
Khronos released several other specifications for other graphics and media purposes. These
standards are listed in Table 2.2.

2.7. OPEN SOURCE GRAPHICS DRIVERS 11

Standard name Description of area
OpenGL ES Embedded version of OpenGL 3D graphics API
OpenVG For 2D Vector Graphics to accelerate Flash, SVG & 2D interfaces
OpenCL For GPGPU processing
OpenSL ES For music and sound playback and recording
OpenMAX For audio/video-playback, 3 layers: AL, IL & DL

Table 2.2: Khronos standards applicable for mobile computing

Many of these standards are implemented in the majority of GPUs in mobile phones today.
OpenGL ES is supported in one version or another on nearly all phones already, OpenVG does
also enjoy widespread support on mobile GPU’s. OpenCL is announced in future models by
several vendors, and OpenMAX is going to be integrated with future Android API’s.

2.7 Open source graphics drivers

Traditionally mobile phones have been rather closed devices. After the introduction of smart-
phones some flexibility has been introduced. However this flexibility has been confined to vir-
tual machines with extensive sandboxing. This is very good for traditional end users which
want a phone which can do some fancy stuff, but where no apps can interfere with the basic
usage of the phone.

However there have always been enthusiasts who want do improve their products. Hardware
vendors guard their trade secrets from competitors, and others by only shipping phones with
compiled binary drivers with the phones. This stops enthusiasts from improving the lower
layer of the phone operating system. Because the operating systems of smartphones are based
on quite open Unix operating systems, which then are locked down some mobile devices, they
have been hacked (also called rooted, or jailbraked). A hacked phone can be changed by the
user. For Android devices the operating system is based on Linux, which is Open Source. The
GPU drivers however are often binary modules without any source available. This hinders op-
timization of the drivers, and cause incompatibility with newer version of the kernel. Therefore
some developers have started reverse engineering the drivers for some mobile GPUs.

 Linux kernel

mali.ko

 ARM based SoC

Mali GPU

Application

Graphics
manager

(Xorg etc.)

Mali libEGLMali libGLSL
(incl. compiler)

Application code

Figure 2.2: Interfaces intercepted by Lima for reverse engineering, based on info from [Ver12]

12 CHAPTER 2. MOBILE GRAPHICS COMPUTING UNITS (GPUS)

Currently two projects for reverse engineering GPUs are in development. Both projects are
intercepting communication between the driver and hardware to figure out how the hardware
works. The most mature project is the Lima driver for ARM Mali GPU’s. The project has just
demonstrated a working driver for simple OpenGL example scenes consisting of cubes. Figure
2.2 shows how a mobile GPU driver is integrated with the surrounding system on a Linux
platform. The red lines symbolizes the interfaces which were monitored during the reverse
engineering of the Lima driver. At the moment it looks like most of the focus of the drivers is to
implement the openGL Shading Language (GLSL) support for programming the GPU.

The other project created to make open source mobile GPU drivers is named Freedreno. This
driver should drive the Adreno GPUs from Qualcomm. 2D acceleration is supposed to work.
The driver is created by an employee in the GPU section of Texas Instruments. The employee
started his own driver because of fears concerning Non disclosure agreement (NDA)s for the
Mali GPUs. Because this project still is young the success of this project is very uncertain.

Open Source Graphics driver does also benefit academic work. Details on how the GPU’s work
which is difficult to figure out are documented by the driver projects. Even more detail is avail-
able by reading the source code produced by the projects. This may for a basis for research in to
low level graphics development outside the graphics companies.

The architecture of current open source drivers is driven by a modular approach where reuse is
promoted. The common code for GPU drivers is developed as a part of the Mesa [Mes] open
source OpenGL implementation by the [WMV] project. The main developers of the Gallium
project is currently employed by the visualization firm VMWare which uses the drivers for their
visualization solutions.

Because the development of the drivers is not done as part of the marked competition between
GPU vendors, it may be possible to enhance the performance of GPUs with less efficient drivers.
The reuse of modules does in effect also provide a lower level abstraction of the GPUs than the
current standardized APIs. This makes it easier to experiment with other APIs and interfaces.
In the Linux world several replacements for the dominating X Window System have been de-
veloped over the years. However getting good driver support has always been an issue. Binary
drivers which interface with the X Window System cannot be used by replacements, and get-
ting vendors to support experimental projects which produce no benefit for the vendors, is very
difficult.

2.8 The architecture of mobile GPUs

The architecture of mobile GPUs are quite different from normal desktop and laptop GPUs.
This is mainly because of the power envelope each GPU type is designed for. A mobile GPU is
designed to run off a small battery and need to use as little power as possible. GPUs for mobiles
use very low voltages internally to conserve power. These voltages are too small to be used
to drive external buses. Therefore higher voltages have to be used for buses. This means that
external transfers are little power efficient. This is the most important premise for the design of
mobile GPUs. [AMS08]

Two of the most popular mobile GPUs (PoverVR & Mali) uses a tiling algorithm for rendering
[AMS08] [SKP10]. This algorithm has also been used in gaming consoles like the Xbox 360
[SKP10].

2.8. THE ARCHITECTURE OF MOBILE GPUS 13

Tile 1,1

Tile 2,1

Tile 3,1

Tile 2,1 Tile 3,1 Tile n,1

Tile n,mTile 1,m

Figure 2.3: Triangles in a tile-grid

The tiling algorithms divide the screen in to tiles (of e.g. 16x16 pixels) as in Figure 2.3, with
accompanying bins. Each tile is then rendered separately. The tiling algorithm requires less
memory, but accesses the memory more often. The memory used in the algorithm is moved
inside the graphics chip, as cache memory. This makes it power efficient, as no external bus
transfers are required for access.

When a GPU scene is prepared for rendering, all triangles are transferred to the GPU. Then all
triangles are transformed to their final positions. Afterwards each triangle is considered, and a
pointer is added to the bin accompanying each tile the triangle intersects. The tiles can then be
rendered in parallel.

2.8.1 PowerVR tile rendering

The PoverVR architecture is described in an overview [Pow09] and is used as a basis for the
description of how each title is rendered.

The first step of rendering a tile is to Figure out which parts of which triangles which are vis-
ible. This is done by casting rays at each pixel, by specialized hardware. Afterwards the GPU
Figures out which pixels share the same vertex to simplify shading and texturing. The shading
and texturing done by PowerVR is very similar to desktop GPUs and was not described in the
overview.

2.8.2 Mali tile rendering

I was not able to find detailed documentation of the ARM Mali processor architecture at the
ARM web page, but the general optimization guide [ARM11] hinted of a tiling architecture
similar to PoverVR. However I found a marketing article [Fal06] from Falanax, the firm which
designed Mali before they were acquired by ARM. This article outlines the architecture.

The Mali architecture tries to be a hybrid between (desktop) intermediate mode rendering and
tile based rendering, to exploit the advantages of each algorithm. The z-termination algorithm

14 CHAPTER 2. MOBILE GRAPHICS COMPUTING UNITS (GPUS)

seems to focus more on efficiency than accuracy, and typically eliminates approximately 50% of
the occluded pixels.

Chapter 3

General purpose computing on graphical computing
units

This chapter concerns general purpose computing on graphical computing units. It is intended
to give a basic understanding on how a GPU executes general programs, and how problems
have to be formulated to exploit the power of GPUs.

First a short overview of the history of GPUs is given, then modern GPUs are described gener-
ally. At last the details of the CUDA and OpenCL APIs are described, and how they differ.

3.1 High performance computing: The road to GPGPU

For the real time graphics industry 1992 was the year of standardization. Before that each vendor
had it’s own proprietary interface. At the time Silicon Graphics Inc. was the leader of the
computer graphics market. When the market got more competitive and other vendors started to
standardize the competing programming interfaces, Silicon Graphics Inc. opened, documented
and standardized it’s proprietary API and renamed it OpenGL. In effect this forced all other
vendors to do catch up.

Originally graphical computing units were device with a fixed hardware architecture for render-
ing graphics. No programming of the units where possible. In February 2001 [NVI01], graph-
ics pipelines became much more flexible by supporting programmable shaders. Shaders were
made to do advanced lightning and produce more detailed surfaces. They are executed in paral-
lel for each pixel or vertex in the models they shade. This parallelism can be exploited for doing
HPC work by rendering the objects to off screen image buffers and sending the buffers back to
the CPU.

GLSL [KBR04] which was standardized in 2003 [Boa03], introduced a high level language which
made it quite easy to write shaders. GLSL has a syntax inspired by C and functions for doing
geometric math functions. In the early days of GPGPU computing GLSL was the language
of choice for doing computations on GPUs. Writing general purpose programs using GLSL
requires some effort mapping problems into a graphic domain. All information used outside
the shading kernels had to be mapped in to 2- or 3-dimensional textures with one or more
colour channels. GLSL shaders are split up to multiple passes of the graphics pipeline. Early

15

16 CHAPTER 3. GENERAL PURPOSE COMPUTING ON GRAPHICAL COMPUTING UNITS

programmable GPU used different hardware for each pass. Therefore it was important to split
the work between all the passes for optimal performance.

After GLSL started to be used for generic computation the vendors recognized the business
potential of GPGPU. In 2006 the GPU both NVIDIA and AMD released solutions adapted for
GPGPU programming. NVIDIA even released specialized graphics cards without screen con-
nectors for GPGPU.

AMD wanted to give low level access to their GPUs and released Close To the Metal (CTM)
[AMD]. CTM was an assembly-like language for AMD GPUs. Because CTM was very low level
it was not used very much. This language is now defunct, and AMD has gone over to supporting
OpenCL. NVIDIA released CUDA which is a more high level solution modelled. The language
CUDA uses for code executed on the GPU is a combination of a generalization of GLSL and the
syntax and level of hardware control characteristic of the C programming language.

3.2 History and benefits of OpenCL

The OpenCL standard was developed in 2008. Apple computer wanted to use GPUs in their
operating system to increase performance of their systems. Apple has good experience chal-
lenging different vendors to provide the cheapest and best components for their computers. It
is believed that it is the reason why CUDA was not chosen as the sole solution for GPGPU by
Apple.

To standardize OpenCL Apple took the incentive [Mar08] to form a Khronos “Compute Work
Group” to standardize OpenCL. AMD and NVIDIA joined the work group from the start. The
standard finished very fast, in about 6 months, to be included in Apples operating system. Other
implementations, and use outside Apples echo system needed, however, 2-3 years to get rea-
sonably stable. It is still very easy to provoke the need for a reboot of a machine by passing
argument which are slightly outside the specification to the drivers.

Even if OpenCL is driven by GPGPU computing and inspired by CUDA, it is designed with
more than GPUs in mind. OpenCL is designed to be independent of hardware as long as it is
highly parallel, and has quite low memory latency compared to for example clusters.

CPUs for desktop, laptop and mobile computers have also became parallel to increase perfor-
mance, because heat has made it prohibitive to increase the clock frequencies of the processors.
Both of the leading desktop CPU manufacturers provide OpenCL drivers for their CPUs. This
means that in a few years, all modern computers will contain an OpenCL capable device. Com-
puters which does not have high end GPUs, will be able to run OpenCL code, with less perfor-
mance. Therefore no alternative implementations of code optimized using OpenCL is required
to run the program even on low end hardware.

The OpenCL specification is also designed to work with state of the art processor architectures
designed for high performance computing like the IBM Cell Blade servers. Some enthusiasts
have also managed to run OpenCL programs on the Cell processors of a Playstation 3 gaming
console, but that became impossible when Sony stopped supporting custom programs on the
PS3. This makes OpenCL a very scalable and accessible API available on everything from mobile
phones to supercomputers.

3.3. GPGPU ARCHITECTURE 17

3.3 GPGPU architecture

In this chapter OpenCL terminology will be used. More information on the terminology and
OpenCL versus CUDA terminology is detailed in Section 3.5.

GPUs are designed to do high performance computations. They are not fit do to information
bookkeeping etc. Therefore device management, memory management, program allocation and
invocation is done at an host processor, together with work not fit for GPGPUs.

3.3.1 Programming model

Modern GPUs are highly parallel computers. They can run over 128 different executions con-
currently, normal state of the art desktop CPUs can run up to 8. They focus on computations
and not logic.

Most programs for CPUs are serial or task parallel programs. These program split problems
in to several tasks which are run concurrently, or multiple programs are ran concurrently on
different cores for multitasking.

Work groups have common memory which can be accessed faster than global memory and inde-
pendent of other work groups. This minimizes the speed penalty of synchronization, compared
to using global memory. An iterative differential equation solver is a good example of using this
organization. The matrix can be divided in to blocks, and then only the borders between blocks
need global synchronization.

Graphics synthesis is generally a data parallel problem. The same operation is executed on
millions of vertices and pixels. Therefore GPUs are designed to run data parallel programs. This
parallelism is exposed to GPGPU programs in the form of kernels. The main idea of kernels is
to expose the parallelism of for-loops. Instead of running a loop serially for each element of
a problem the looping is managed by the GPU. The inner part of the loop is programmed in
a kernel and executed concurrently by the GPU. If the kernel is executed more times than the
GPU supports concurrently, the GPGPU framework will schedule multiple concurrent execution
passes.

GPU does however need to do some different tasks concurrently. Therefore the concurrent pro-
cessors are organized in three different levels of parallelism. In the upper level different type of
work can be executed with out significant performance penalty.

The upper parallel processing level consists of elements named work groups. All work groups
are executed on separate Streaming multiprocessor (SM) which are responsible for executing
their group. No synchronization between work groups are available, except by calling a new
kernel. The next level is work items. Each work item can operate on different addresses in
memory, have separate registers and variables. All work items in one work group runs the
same executions (called Single Program Multiple Data (SPMD) in Flynn’s taxonomy). Diverging
executions, for example produced by if-tests, have to be executed by all work items of a work
group. If the instructions are not supposed to be executed by the work item, the result will
be thrown away. The last level of parallelism is Single Instruction Multiple Data (SIMD). All
GPGPU languages support vector data types, float4 is for example 4 floats in one variable. When
doing arithmetic operations on vector data types, all the elements of a vector can be computed
in one instruction by parallel electronics in hardware.

18 CHAPTER 3. GENERAL PURPOSE COMPUTING ON GRAPHICAL COMPUTING UNITS

3.4 Memory model

Memory is one of the largest bottlenecks in modern processors. Mass memory is often several
orders of magnitudes slower than the processors. Therefore intelligent use of caching and local
memory are required to keep the processor running at maximum speed. The memory model
of GPUs is adapted to the programming model. It is split in to a complex hierarchy of mem-
ory, as illustrated in Figure 3.1, to try to deliver the performance required by modern graphics
applications. Each type of memory has it’s own characteristics strengths and weaknesses.

The largest memory is the global memory. This memory is designed to hold textures and ge-
ometry information for graphics. Therefore this memory is huge (often more than a gigabyte),
but writing to this memory from the GPU is quite slow. Management and allocations in this
memory has to be done by the host. The host memory is the only memory which is accessible
by the host, and the only persistent memory between kernel calls.

The local memory is memory which is coupled to each work group. The size is in the magnitude
of 16-64kb per work group. The memory works as scratch memory for the work groups. In
OpenCL, the size of this memory has to be known before the kernel is executed. Since the
memory only is writeable for the kernel, it has to be initialized from other memory. Often it
works as a per work group cache for global memory.

The memory for each work item is split in to two. Each item has a number of registers (e.g. 8
or 16), which are fast, and some overflow memory which is slow. To maintain good speed it is
essential to keep the number of variables in a kernel below the number of the registers.

Access to all memory shared by more than one work item is cached. To exploit the caching,
programs have to be written in a manner where adjacent memory is accessed at the same time.
Sometimes however this is not the case. The main memory of GPUs is divided in to multiple
banks. Each banks supports only one read at a time. Therefore the most efficient way to access
memory is to fill the width of the memory buses by accessing adjacent memory, but then address
memory which is far away and hopefully in another bank.

3.4.1 Synchronization

Barriers are used inside a work group to make sure all work items inside the groups have
reached the barrier before continuing. If the kernel does not execute the barrier, the result is
undefined and most likely the program will not advance beyond the barrier.

If programmers want to synchronize kernels without the work group, they have to make a new
kernel call. Barriers can also be used on the host with multiple work queues at the host ensuring
that all work queues reach the barrier before continuing.

3.5 Terminology used in GPGPU

This section will describe the terminology used in the two leading programming interfaces for
GPGPU; CUDA and OpenCL. Two leading programming models for GPGPU is CUDA and
OpenCL. The first API to be designed was CUDA. OpenCL was created as an effort to stan-
dardize the API across multiple graphics card vendors, and to be used by other types parallel
processors too. The OpenCL API is very inspired CUDA. Therefore it is quite similar organized.

3.6. DEBUGGING 19

Device

Global memory
Constant memory

Host

Heap

Stack

Workgroup

Local memory

Work item

Private
memory

Work item

Private
memory

Work item

Private
memory

Workgroup

Local memory

Work item

Private
memory

Work item

Private
memory

Work item

Private
memory

Workgroup

Local memory

Work item

Private
memory

Work item

Private
memory

Work item

Private
memory

Figure 3.1: The memory model of GPUs

OpenCL CUDA
Work-item Thread
Work-group Thread block
Global memory Global memory
Constant memory Constant memory
Local memory Shared memory
Private memory Local memory

Table 3.1: The most used terminology in OpenCL and CUDA

Porting from CUDA to OpenCL is mostly syntax dependent, and very little reorganization of
the program is required.

3.6 Debugging

Debugging code which runs on GPUs are very difficult, mostly because of the massive paral-
lelism of the code. Some tool kits and tools for debugging do exist. But the support for OpenCL
is very new, and immature in many cases. Most of the debugging tools does only debug the out-
side of the kernels. This can be used to profile which kernels are bottlenecks in the application,
but will not give insight into how variables are changed inside the kernels and why memory
accessing errors occurs.

20 CHAPTER 3. GENERAL PURPOSE COMPUTING ON GRAPHICAL COMPUTING UNITS

Some implementations have started to integrate debugging with their GPGPU API implemen-
tations. AMD has created a printf statement for it’s OpenCL implementation, but this is not
portable across implementations. Cross platform support of debuggers are another problem.
For example Intel released a debugger supporting step by step debugging in Visual Studio. No
Linux support for debugging was mentioned in the release notes. [Int12b]

3.7 OpenCL

In this section the OpenCL standard is described in more detail, outlining programming details,
and how the architecture of GPUs are mapped to the OpenCL API.

3.7.1 Devices, Context & Command-queue

The syntax of the OpenCL API is inspired by the other standards created by the Khonos Group
like OpenGL. The C version is quite verbose, but standardized wrappers for more high level
languages exist. Multiple devices and device types are supported.

Some boilerplate code is necessary to use OpenCL. At the start of each program, all devices are
enumerated and the program asks for a device which matches certain characteristics (type: GPU
or CPU, available memory, number of compute units etc.). When the program decides which
device it wants to use, it creates a context. The context is used to create command queues and
manage memory objects.

The only way a host can order a device to do operations is to submit items to a work queue. To
submit an item with the C-API, all parameters have to be pushed by a separate function call.
This creates very verbose code compared to CUDA code.

Command queues can be ordered or out of order. If the queue is out of order, the device can
reorder elements in the queue to make the execution more efficient. This means that other mech-
anisms must be used to enforce dependencies.

3.7.2 Synchronization

OpenCL features two methods for synchronizing parallel work. Events do global synchroniza-
tion in a work-queue between kernel and memory-operations, while barriers manage synchro-
nization inside a kernel.

Events are used at the host side to build a graph of dependencies between elements on a work
queue. Then out of order execution may be enabled on the queue, which lets the scheduler exe-
cute elements in any order (as long as the event graph structure is fulfilled). Memory operations
may for example be executed even if a kernel is running, if the Direct Memory Access (DMA)
engines used for transferring memory are free.

3.7.3 Memory

OpenCL features explicit memory management in the same way as C. Memory may be allocated
on a (limited) stack or managed explicitly by using buffers (or images).

Buffers are allocated on the host and passed as pointers in to kernels. Copying data from host
memory to device memory and visa versa is done explicitly because it is relatively expensive.

3.8. OPENCL VERSUS CUDA 21

The copying can be done when the buffers are allocated, or as an operation added to the work
queue. After buffers are used they have to be freed to not leak memory.

Buffers can be allocated read only, write only and read write. Specifying the mode of the buffer
can optimize the placement of the buffer in device memory. All modes are viewed from the
device.

3.8 OpenCL versus CUDA

The main benefit for CUDA is that it is more mature, and supports more features because it does
not depend on the bureaucracy of standardization, nor does it have to be flexible to support as
many platforms as OpenCL. However OpenCL does support extensions which may be used
before the features are standardized. The biggest benefit of OpenCL is that it supports more
platforms and vendors, and is simpler to set up. OpenCL is supported by consumer drivers
shipped by NVIDIA and AMD for Windows.

In CUDA code ran on the device, and code ran on the host can be programmed in the same file.
Global variables can be defined in the host code and accessed from kernel code. The host code
and the kernel code is compiled before the program is executed. All code calling GPU kernels
has to be compiled together with the kernels for all targets supported by the compiler. This
leads to incredibly bloated executable files. In OpenCL the code is compiled at runtime, passed
as a string to the driver, like GLSL. The driver may then optimize the code for the device it is
supposed to be ran for only. Debugging CUDA code is simpler than OpenCL because the code
is produced by the same compiler, and because the tools are more mature.

To run multiple kernels asynchronously in CUDA, a specialized set of function calls has to be
used. This is more cumbersome than the generic OpenCL APIs. The support for running kernels
asynchronously has lagged behind OpenCL, but will most likely catch up pretty soon because
NVIDIA uses CUDA as a basis for their OpenCL driver. This can be seen in Linux; stack traces
generated when using OpenCL include calls to the CUDA library by OpenCL driver functions.

Chapter 4

Description of the snow simulator

This chapter is organized in two parts. First the current state of the snow simulator is outlined.
The code and implementation of the mathematical algorithms is the focus of this part. For a
more detailed discussion of the algorithms of the simulator see [Sal06]. Afterwards the porting
process, and the changes to the simulator introduced during porting is described.

4.1 History of the simulator

The snow simulator has been a basis for multiple thesis and autumn projects at NTNU. Most of
the thesis produced are available from the web page of the lab [Els] maintained by my advisor,
or from DAIM [IDI], a repository of master thesis maintained by the faculty. Figure 4.1 provides
an overview of all relevant thesis and specialization projects relevant to the snow simulator
produced by the HPC lab since the first thesis about the simulator. Records on the timeline
marked with a leaf are specialization projects written during the autumn semester. Records
which are written with grey text concerns simulation subjects relevant for the simulator, but
haven’t worked with the code of the simulator. In the following paragraphs a quick overview
of all thesis which have worked on the actual simulator code will be given.

The first snow simulator written was written by Saltvik in 2006, as a master thesis [Sal06]. This
thesis laid the foundation for the simulator. The underlying mathematical and physical models
from this thesis still forms the core of the simulator today. The simulator was implemented on
a CPU using multiple threads to parallelize the simulation work. Real time simulation with an
acceptable frame rate was achieved. However very few particles (a few 10’th of thousands) were
simulated.

Because the simulator still was quite slow no further work on the simulator was done in two
years. During autumn 2008 [Eid09] ported the snow simulator to CUDA, but the report is dated
2009 because it was delivered in February. Nearly all memory used by the simulator was kept
on the GPU and extensive care was shown to optimize the program for the GPU architecture. In
this thesis rendering was also rewritten and improved.

The GPU snow simulator was developed further in spring 2009 in [Gje09]. In this specialization
project the simulation code for simulating fluid flow trough porous rocks using Lattice Boltz-

23

24 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

LBM vs SOR solvers on
GPUs for real-time snow
simulations

Implement LBM solver
for the wind �eld in the
snow simulator

Alexander Gjermundsen

The NTNU HPC Snow
Simulator on the Fermi GPU

Implement LBM solver
for the wind �eld in the
snow simulator

Joel Chelliah

2006 2007 2008 2009

2010 2011

Parallel Methods for Real-
Time Visualization of Snow

Original snow simulator
running on a CPU

Ingar Saltvik
Parallel Methods for Real-
Time Visualization of Snow

Rewriting the snow
simulator for execution
on GPUs by using CUDA

Robin Eidissen

Procedural Generation of
Roads for use in the Snow
Simulator

Support real terrain
heightmaps, and gener-
ate roads trough the
snow simulator.

Hallgeir Lien

Improve speed of terrain
by mimpapping, and
using perlin noise for
better snow cover for the
terrain.

Kjetil Babington

Improving the visual pres-
entation of the simulator
by raytracing and realistic
sky rendering

Kjetil Babington
Real time ray tracing for the
 HPC-lab snow simulator

Enhancing and Porting the
HPC-Lab Snow Simulator to
OpenCL on Mobile Platforms

Porting the snow simula-
tor to OpenCL and pre-
pare for porting to
mobile phones and
tablets

Frederik M J Vestre

Physically Based Simulation
and Visualization of Fire in
Real-Time using the GPU
Simulation of �re using
Navier-Stokes.

Knut E. S. Rødal & Geir Storli

GPU-based Real-Time Snow
Avalanche Simulations

Simulation of Avalanch-
es using (WC)SPH on a
GPU using CUDA

Øystein Eklund Krog

The Lattice Boltzmann
Simulation on Multi-GPU
Systems

LBM on multiple GPUs
using OpenCL

Thor Kristian Valderhaug

Simulation of Fluid Flow
Through Porous Rocks on
Modern GPUs

LBM �uid simulation on
GPU using CUDA

Eirik Aksnes

Fluid simulations using SPH
on GPUs

Investigating avalanche
simulation from 2010,
and reimplementing
avalanches using
(PCI)SPH

Jan Erik Rovde

Snow simulator port to
OpenCl

Ported the Snow simula-
tor to an early version of
OpenCL

Jarle Erdal Steinsland

Improve avalanche
simulation and integrat-
ing it with the snow
simulator.

Jan Erik Rovde

2012

Delivery due this summer

Figure 4.1: Timeline of thesis related to the snow simulator

4.1. HISTORY OF THE SIMULATOR 25

mann methods (LBM) [Aks09] was integrated with the snow simulator. The LBM method and
the original Navier-Stokes based method was benchmarked for performance.

During autumn 2010 [Che10], the snow simulator was optimized for the NVIDIA Fermi GPU.
Substantial gains were produced by optimizing memory accesses and usage to take advantage
of all caches and different types of memory on the GPU. This project focused mainly on optimiz-
ing the LBM code, but the Successive Over Relaxation (SOR) code was also touched. Removal
of branches and serial code was also performed to optimize the code. This resulted in a speed
up of about 1.5 times the original speed for the simulator. Some of these optimizations were
specific to the GPU and the compiler.

In 2010 [Ste10] ported the simulator to OpenCL in order to support more devices than NVIDIA
GPUs. During autumn 2011 a module for importing real terrain was integrated in the snow
simulator by Hallgeir Lien in [Lie11]. The terrain was integrated in order to do snow cover
simulation for roads, and to optimize the location of the roads in the terrain of the simulator.
In [Bab11] Kjetil Babington looked in to use ray tracing for visualizing the snow particles of
the simulator, and different methods for improving the appearance of the sky. In [Rov11] the
avalanche framework started in [Kro10] was improved in order to integrate it with the snow
simulator.

During this spring three thesis concerning the snow simulator are written. The two other stu-
dents working on snow simulator related thesis are: Kjetil Babington who continues to improve
the visual appearance of the snow simulator by improving the terrain rendering, and Jan Rovde
who continues the avalanche integration started during autumn.

4.1.1 Code history

Most of the thesis in Figure 4.1 which are not greyed out have contributed code to the simulator.
Porting the simulator to OpenCL was the subject of a specialization project during autumn 2
years ago. Both my advisor and I have tried to retrieve the code and report for this project.
This has unfortunately not been possible. Therefore I had to port the simulator from CUDA
to OpenCL one more time. No explicit routines for managing the snow simulator code have
existed. My advisor has asked all students to deliver code on memory sticks at the end of each
semester. However most students are very exhausted when their thesis are delivered, and likely
to forget to do this. Physical memory sticks are also easy to loose, compared to networked
storage provided by an IT-department.

The lack of routines regarding the management of the snow simulator code has caused some
confusion regarding the history of the development of the simulator. This is the case regarding
which simulator has been used as the code base for later thesis. Development of the simulator
has sometimes been done in parallel. This results in diverging code which has to be merged
together. If the code is not merged it may be lost, or at least incompatible with later develop-
ments. Then the advancements of the thesis which produce the code will not be benefiting later
students working on the simulator. To avoid this, the code from this thesis has been included in
a Version Control System (VCS) at a centralized location managed by the faculty, and not by the
students.

A VCS for code is a system which manages all source code for a programming project. The
primary element of a VCS is a commit. A commit is a snapshot of a specific version of the code.

26 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

Merge Branch OpenCL improvements
Experimental feature which is un�nished
Merge branch clwind
Merge branch drawimprovements
Prepare CUDA version for OpenCL work
Improve transparency for snow rendering
Fix coordinate systems for wind simulation
Make snow simulator awesome
Make wind simulation compile
Start on experimental feature
Sorting improvements for rendering
Start preparing to merge OpenCL improvements
Fix builsystem, now libSOIL is properly detected
Finish porting of wind system kernelsFinish porting of wind system kernels

Figure 4.2: Git version control history DAG example. The commit messages for the commits are
listed to the right reverse ordered by date

Ideally the code should be committed every time a bug is fixed or a feature is implemented. The
VCS stores the difference between each commit. Therefore old commits can be accessed, and
the code can be retrieved as it was when it was committed.

VCSs have traditionally been managed on a central server. All commits and changes have
been done on the server. In the last few years distributed VCSs have become more popular,
at least in the open source community. These systems works locally. Each developer has his
own repository and creates his own history of commits called a branch. Over time the branches
and commits will form a Directed Acyclic Graph (DAG) as shown in Figure 4.2. The branch is
then pushed into a central repository, which collects the branches of multiple developers. Two
branches can be merged to form a single code base for further development. Merging works
by extracting the changes from a common earlier commit, and applying changes from both
branches to the same base. When both branches change the same part of a file, a conflict is
marked. This has to be solved manually by the user merging the histories.

Different thesis may work in their own branches, and push to their own separate branch on the
server maintained by the faculty. Then at the end of the semester, the branches can be merged,
and a common basis can be created for the new projects which are going to build on the code. If
a student obfuscates the code when optimizing it, or introduces regressions in other ways later
projects may retrieve parts of the code and use it to understand how the simulator works.

4.2 Organisation of the simulator

The simulator was originally written in C, C++ and CUDA. The simulator consists of several
classes and functions. To make the snow simulator support both OpenCL and CUDA, I have
introduced an abstraction layer between the GPU independent and the GPU dependent part of
the simulator. The process of creating the abstraction layer is described as part of the porting
process in Section 4.6.1.

A visual overview of the organization is given in Figure 4.3. Before the abstraction layer was
created, the GPGPU interface was managed by the main function and the distinction between
management of each sub module and the GPGPU interface was a bit fuzzy. This is symbolized

4.2. ORGANISATION OF THE SIMULATOR 27

• GPGPU management
• Initialize the simulator
window.
• Initializing all other
modules.
• The main loop.
• Input event handling.
• Finalizing and closing
the simulator.

Main function

Wind management

Snow management

Terrain management

Snow renderer

Wind GPU kernels

Snow GPU kernels

1. 2. 3. 4.

Wind sim interface

Snow sim interface

(a) Before porting

• Initialize the simulator
window.
• Initializing all other
modules.
• The main loop.
• Input event handling.
• Finalizing and closing
the simulator.

Main function

GPGPU management

Wind management

Snow management

Terrain management

Wind sim interface

Snow sim interface
Snow renderer

Wind GPU kernels

Snow GPU kernels

1. 2. 3. 4.

(b) After porting

Figure 4.3: Organization of the snow simulator

by the dotted line between column 2 and column 3 of Figure 4.3a.

After the abstraction 4 levels are prominent in the architecture of the simulator. This is symbol-
ized by the 4 columns of Figure 4.3b which represents each level of detail towards the kernels
run on the GPU. Column 1 and 2 are independent of the GPGPU API while column 3 & 4 are
dependent on it. The interfaces between column 2 and 3 are formalized and one implementation
for each GPGPU API is created.

The first column consists of a function called “main”, which is the entry point of the program.
This function coordinates all the other modules and keeps the simulator running. The responsi-
bilities of this function is listed in the figure. Because all GPGPU responsibilities are moved in to
separate classes, the only difference in the main function between GPGPU APIs is which classes
that are initialized. The window system and event loop handling is independent of each GPGPU
system. A mobile platform however may need other interfaces with the underlying system, and
then the main function may have to be rewritten completely. However this will be dependent
on the mobile platform. Most likely the other modules will be usable from a rewritten main
function.

28 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

The second column contains the common code for all subsystems which is not dependent on
the GPGPU API in use. The Wind and Snow interface controls the API specific interfaces and
manages all communication with the outside world. Most of this code is resource management
and it is simple to understand their function by looking at the code.

The terrain class does not use CUDA at all, therefore no changes to this class has been done
during the porting. The terrain class is not described in this chapter, as no knowledge of the
class was required during the porting. The terrain implementation is however described quite
detailed in Section 3.2.1 of [Eid09]. Interaction with the terrain, as a result of snow particles
hitting it, is described in Section 4.5.

The rendering code in the snow particle interface accepts Vertex buffer object (VBO) (an OpenGL
memory buffer) with one entry for each snow particle. This object is created on the GPU. The
result of the OpenCL and the CUDA simulation is identical. Therefore no changes to the snow
particle rendering was done during the porting.

Column 3 and 4 of Figure 4.3 are outlined in the next sections.

4.3 Simulator flow

The GPU code of the simulator consists of two sub simulations which are very independent:
Wind simulation and simulation of snow particles. The interaction between the parts of the
simulation is outlined in Figure 4.4. The figure outlines the main functions for each sub simula-
tion; “Simulate” in the wind simulation, which is described in Section 4.4, and “MoveParticles”
in the snow particle simulation, which is described in Section 4.5. The outlines list the kernels
executed on the GPU, together with the number of elements they are executed for. For the move
particles function each locked OpenGL texture is also listed.

Each simulation subsystem is placed on its own side of a centre dividing line. The only commu-
nication between the subsystems is the wind field, which needs to be communicated for each
time step, and the obstacles of the terrain, which only needs to be communicated occasionally;
e.g in the magnitude of each 10. second. This makes it possible to do the simulation of the
different subsystems using different type of hardware and API’s.

4.3.1 Obstacles

Both the wind and snow particle simulation are dependent on the terrain of the simulator. A
simplification of the terrain, called obstacles, is used for interaction with the terrain. One or two
times a second an obstacle map is regenerated from the terrain by the host.

The obstacles are stored in an integer matrix covering all of the wind domain. The values of this
matrix is initially set to 1 if the coordinate is below the terrain, or 0 if not. Then each coordinate
is examined and the final value is determined based on the values of the neighbouring cells. At
last the elements at the borders are updated to satisfy border conditions.

4.4 Wind simulation

The wind simulation consists of 6 steps outlined in the left part of Figure 4.4. The names used
in the figure are the names of the GPU kernels implementing each step. For more information

4.4. WIND SIMULATION 29

WindSystem::Simulate

1. wind_advect
2. build_solution
3. solve_poisson
4. set_boundary
5. wind_project
6. wind_to_tex

5x

SnowSystem::MoveParticles

1. part_update wind, pos, terrain
terrain2. smooth_ground

wind

ter
rai

n
RenderDebug Render

Figure 4.4: Simulation loop sequence & interaction diagram

Figure 4.5: Obstacles covering the area under the terrain

30 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

WindSystem

Device
renderDebug
renderObstacles
renderPressure
simulate
updateObstacles
init
freeResources

CLWindSystem

dim
idim
tdim
delta_time
wind_vel
obstacle
poisson_tab
convert
pressure
solution
make_vel_lines
make_obs_points
make_pressure_points
wind_advect
build_solution2
solve_poisson2
set_boundary2
wind_project2
windPressureInit
windToTexture
calculateTable

CUDAWindSystem

Figure 4.6: Wind system classes overview

about the mathematics and assumptions applied in the wind simulation see [Sal06], Chapter 4.2.
For information about the original implementation of the CUDA simulation see [Eid09] Chapter
3.

Some more kernels are included in the wind system class. These kernels provide data for debug
rendering. These kernels work by iterating trough a grid of n points evenly distributed over
the wind, or pressure memory buffer and record the coordinates and the values of the buffers at
these locations. These values are then written in to VBO objects and passed to OpenGL drawing
functions by the host in the Wind management class in Figure 4.3. The output of this rendering
is studied in Section 6.7.

The wind simulation is the largest part of the simulator. Two versions of the wind simulation
are implemented. One method based on LBM, and one using the Navier-Stokes equation. Both
versions model the wind as a fluid. The LBM version simulate the fluid on a microscopic level
using particles, while the Navier-Stokes version look at the fluid macroscopically. I have ported
and looked in to the Navier-Stokes version, which was used in the original simulator. Therefore
only the Navier-Stokes based simulation is described here.

4.4.1 Navier-Stokes simulation

∇ ·u = 0 (4.1)
δu

δt
u = −(u ·∇)u−∇p (4.2)

4.4. WIND SIMULATION 31

The Navier-Stokes equation is an equation made to model several physic phenomena necessary
to predict the flow of fluids. Some of these phenomena are not contributing much when the
equation is used to model air flow in an open landscape. Therefore some simplifications has
been done. The air is assumed to have has zero viscosity (4.1) and defined to have a density of
one. After these simplifications the wind model can be computed using incompressible Euler
equations (4.2).

The Euler equations are multi dimensional differential equations. These equations has to be
solved for the entire wind domain. It is not feasible to solve the equations analytically. Therefore
the equations are approximated numerically. The volume of the simulation is sampled in a 3-
dimensional grid, and solved for discrete points in time and space. This is a massively parallel
high performance computing problem, which is ideal to do on a GPU.

The Euler equation is solved in two steps; self-advection and projection. When implementing
these steps they are further split which results in the GPU kernel calls outlined at the left side of
Figure 4.4.

Three buffers of memory covering the domain are used when solving the equation. The buffer
named “wind_vel” contains the velocity and direction of the wind. The buffer “pressure” con-
tains the atmospheric pressure for each point in the domain. The buffer “solution” contains the
solution of Equation 4.3. Which is used in the next step. The pressure is reset during each time
step, and recalculated from the wind field. In addition an obstacle buffer is used to mask out
everything which is below a terrain etc.

Self-Advection

u

p
current

Figure 4.7: Self advection

First the self advection part u∗ = −(u ·∇)u is computed by using an Eulerian interpolation as
illustrated in Figure 4.7. To get the new direction of the advection the old direction is subtracted
to get an origin of the movement. The magnitude and direction of the wind at the origin is
sampled (using interpolation) and used as the new direction.

32 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

Poisson equation preparation

Then Equation 4.1 and the last part of Equation 4.2 is combined. Then the combined equation
is transformed to a Poisson equation using the Helmholtz-Hogde decomposition. The Poisson
equation can be expressed as Ap = b. Here p is unknown. To solve the equation A and b must be
found. A is a normal diagonal matrix, which is hard coded in to the Poisson solving function.
b is computed before the equation is solved in the “build_solution” kernel by solving Equation
4.3 for all points in the domain. This solution is stored in a separate buffer and used together
with the pressure field in the next step.

(∇ ·u)i,j,k =
(xi+1,j,k − xi−1,j,k + yi,j+1,k − yi,j−1,k + zi,j,k+1 − zi,j,k−1)

h
(4.3)

Poisson equation solving

0 1 2 3 4 5
Iteration: k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Va
lu

e:
 ω

(k
)

Figure 4.8: Values for ω(k) used in SOR

xk = (1− ω(k))xk + ω(k)x(k−1) (4.4)

The GPU kernels “solve_poisson” and “set_boundary” are responsible for solving the Poisson
equation.

The POisson equation is solved by using SOR, a variant of Gauss-Seidel (GS) interpolation. SOR
is an iterative equation approximation technique. Equation 4.4 is ran for multiple steps. k is the
index of the current step, and ω(k) is the relaxation factor. This factor is dependent on each
problem, and no way except trial and error has been found to find the optimal factor. In our
implementation the factor varies with each time step as outlined in Figure 4.8, to give faster
convergence. In each iteration, boundary conditions are maintained by the “set_boundary”
kernel.

A significant part of the “solve_poisson” kernel manages obstacles i.e. the border between the
wind-/pressure-field and the terrain. Only the elements above the surface of the terrain is man-
aged by the algorithm. This introduces a whole new set of special boundary conditions because
SOR uses the average of the neighbourhood belonging to each point as a basis for solving the
equation. For each point the obstacle map is consulted, and if an obstacle is present the cor-
responding value from the neighbourhood is considered to be zero. This upsets the average.

4.5. SNOW SIMULATION 33

Therefore a table (“poisson_tab”) based on how many, and what kind of masks which are ap-
plied is factored in to the solution.

Projection

Figure 4.9: Schematic overview of wind projection

After the pressure has been computed by the POisson solver it has to be projected on to the
temporary wind information created by advection (u∗). This is done by the “wind_project”
kernel and is illustrated in Figure 4.9. The projection uses two vectors as a base; u∗ and up. (up)
is created inside the kernel by computing the gradient of the pressure field. Then the two vectors
are multiplied component-wise to form (u) which is used as an input for the snow simulation,
and for the next wind simulation step.

4.5 Snow simulation

SnowSystem

Device
tdim
initParticles
freeParticles
moveParticles

CLSnowSystem

terrain_dim
scene_dim
wind_dim
snowGrowth
radiuses
omegas
snow_growth
gravity
part_vel
convert
wind_vel
part_update
smooth_ground

CUDASnowSystem

part_vel
part_rot_radius
part_rot_omega

Figure 4.10: Snow system classes overview

The snow simulation is based on two kernels. One kernel to manage the particles (“part_update”),
and one to smooth the ground after the particles hit it (“smooth_ground”).

34 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

Particle management

Each particle has several attributes: position, velocity, radius and rotation. The position and
velocity is maintained for each particle, while the radius and rotation is initialized to random
values and reused for each 31’th particle. They are treated as read only.

The particle management kernel works by computing the drag of the particles, factoring in wind
and gravity. Afterwards a circular motion is added depending on the radius and rotation of the
particle.

When a particle is above or below the domain. The particle is moved to the top of the domain
and, repositioned in the x-z axes pseudorandomly by bit fiddling the previous position. The
velocity is adapted from the wind field at the new position. If the particle is hitting the terrain
the snow level of the terrain increased before the particle is repositioned. The snow level is
increased for the point in the terrain where the particle hits, and some points in the vicinity.

If a particle gets out of the domain one each of the sides (in front, behind, to the left or to the
right) the particle is wrapped around and enters from the other side.

Smooth ground

-

+

+

+ +-

(a) Smooth ground per pixel
stencil

1x

3x

- +
+ ++ -

Smooth ground
stencil

(b) Smooth ground operation, from the side

Figure 4.11: Smooth ground kernel operation

To simulate how snow is distributed on the terrain, a smooth ground kernel is implemented. The
kernel goes trough the terrain and smooths out any spikes. It does also facilitate a very coarse
approximation of avalanche management. The kernel works by looking around in a 4-point
stencil as illustrated in Figure 4.11, and if the current point is the highest it decreases the hight,
if not it increases the hight. The stencil is implemented by dividing the terrain in to quadratic
blocks to be solved in one OpenCL work group. The width of the work group is called a stride.
The terrain is then copied to local memory for each block. The local memory is one element
larger than the block in each direction to be able to run the stencil for the outer elements.

4.6 Porting to OpenCL

The first thing that was done when porting the code was to get an overview of the code and
try to figure out which elements had to be ported. To improve the changes of keeping the

4.7. CALLING CONVENTIONS 35

port updated a common code base supporting both GPGPU APIs was created. Creating this
abstraction was a good way to get familiar with the code.

4.6.1 Abstracting API specific code

When the code was examined, a partial abstraction of the GPGPU interface was discovered. This
interface was a result of the fact that the snow simulator was written in C++, and the interface
to CUDA was written in C. Therefore an interface between C and C++ was required. However
it was preferable to have the interface for GPGPU in C++ to be able to use class-inheritance. The
CUDA specific host code was therefore ported to C++ and a minimal C interface was created to
call the GPU kernels. These wrappers are generated with information from the CUDA kernel
source code by a python script. The wrappers can be linked externally as normal C functions,
and contains one line of code only, which calls the kernel which they wrap.

After the restructuring, each subsystem using GPGPU is represented by a (super)class, which
then has a subclass with implementations for each GPGPU API as (outlined in Figure 4.6). This
makes it simple to switch subsystems at compile time. During the first phase of the porting the
wind simulation was running using OpenCL, while the snow simulation ran using CUDA. This
is possible because the communication between the two subsystems is very limited (as outlined
in Figure 4.4), and uses OpenGL textures and vertex buffers.

4.7 Calling conventions

The biggest challenge when porting the snow simulator was to get the coordinate order correct,
as the order was y,z,x, and not the intuitive x, y, z. Each dimension was oriented as in Figure
4.12. CUDA does not optimize kernel calls which are called with three dimensional bounds
for memory access. Therefore the snow simulator uses only one dimensional bounds. The
dimensions are split along the memory hierarchy of the GPU as in Figure 4.12. The x axis is split
along the threads of the GPU; one thread per row. Then each thread accesses adjacent x values,
which translates to adjacent memory. This memory may be fetched in one memory access by
the SM. The values along the z axis are distributed over different blocks, which means they
are run concurrently, but not on the same streaming multiprocessors. However access to the
global memory is kept in the same y-plane as the other SMs. This keeps the access to the global
memory adjacent, exploiting caches caching global memory. At last the y axis is distributed over
loop iterations. This happens most seldom, and therefore the y-planes are stored furthest apart
in memory.

4.7.1 Kernel porting

The kernel porting was done one kernel at the time, until all kernels were compiled without er-
rors. During porting, a clean up of the CUDA was done, to make the resulting OpenCL code as
easy to understand and debug, as possible. None of the clean up steps should cause any perfor-
mance degradation of the code, as any sane compiler should generate the same code regardless
of how pointers are computed, and variables are named.

Especially the wind simulation kernel file was very messy, and showed signs of optimizations
and hacks. Different versions of the same function was present, but not called from anywhere

36 CHAPTER 4. DESCRIPTION OF THE SNOW SIMULATOR

X

Y

Z

Figure 4.12: Kernel memory access strategy

in the code. Most of the variables in the functions was one letter long; most likely because equa-
tions use one letter. Pointer arithmetic are used in loops and to look up elements in arrays. The
arithmetic did not seem to work properly in OpenCL, and included some assumptions on the
sizes of variables used by the architecture, which may result in different behaviour on different
OpenCL implementations. Because the CUDA compiler does not do very much optimization,
some constants where defined as volatile variables to increase speed. This made the code diffi-
cult to read.

After the kernels compiled as OpenCL code, one kernel at the time was introduced to the sim-
ulation loop. Each time a new kernel was introduced the program crashed. Then parts of the
kernel was commented out until the program ran again. When the program ran, the parts iden-
tified to make the program crash were investigated and corrected.

When all kernels were running without crashing the focus turned to getting the simulator to
behave in the same way as the CUDA version. At this stage the calling conventions of Section
4.7 was a large obstacle to figure out, and then to get consistent across all kernels. Before this
was figured out, random crashes, and crashes as a result of small changes were frequently expe-
rienced. After this was solved, the wind simulation progressed quite steadily to a stable state.
In this state, it did not work exactly as the CUDA code, but it was stable enough to provide a
base for performance benchmarks to be done, and to give meaningful information when ported
to a mobile device.

4.7. CALLING CONVENTIONS 37

The wind simulation kernels were ported by exporting the result of the wind simulation to a
VBO, which was then imported in to CUDA, to do the snow simulation. When the wind simu-
lation was stable enough, the snow simulation was ported. This code had not been optimized
as heavily as the snow simulation code. Therefore it was simpler to understand and easier to
port. The initial port of the snow simulation kernels took about a week. However, two issues
remained.

One issue was the “smooth_ground” function which showed strange spikes at regular locations
in the terrain. After some investigation it was discovered that the amount of shared memory
was too small for the kernel to do it’s work. This resulted in a working kernel, until the size of
the terrain changed. After further investigation, the padding of the area examined in one block
was figured out. This is documented in Section 4.5. By setting the stride width correctly and
providing enough memory the smooth ground works as in CUDA.

The other issue was the particle initialization code, which is originally described in the “Particle
repositioning” subsection of section 3.3.1 in [Eid09]. The CUDA implementation “use inherent
noise in the floating point representation of the position of each particle. The method has no spe-
cific formal basis and was developed by trial and error, but the resulting distribution appears
uniform and pleasing to the eye.” [Eid09] (page 44). This algorithm is difficult to port to OpenCL
and may be dependent on the device, and therefore can vary between different OpenCL imple-
mentations. No fully working replacement was found, but a half way working replacement was
made using float, int-casts and modulo operations. This is discussed further in Section 6.7.

4.7.2 Implementation changes

The largest changes in the simulator results from the abstraction of API specific code outlined
in Section 4.6.1. In the kernels some usage of local memory was removed to simplify the code at
the time and focus on getting it correct. Reintroducing this usage of block memory would most
likely improve performance.

Computation of array indexes was also rewritten to use array indexes instead of pointer arith-
metic. The address of the resulting array element was then retrieved and stored in the pointer.
A good compiler will compile these expressions to the same code as the pointer arithmetic. The
code is however easier to read and does not reference the type name. Therefore it will work
even if the variable type is changed.

Chapter 5

GPU sorting

This chapter looks as sorting on the GPUs in order to enhance the performance of snow particle
rendering, and to advance the visual quality of particle rendering in the snow simulator.

5.1 Motivation

The snow simulator renders a lot of snow flakes as particles on the GPU. These particles are orig-
inally stored in a random order. In section 3.3.1 of [Eid09], sorting the particles is suggested to
improve cache performance. Several techniques used in particle rendering require the particles
to be sorted [MG10]. Techniques which measure densities of particles for transparent rendering
and shadowing, need to look up particles at a certain position. They also require that particles
are visited in a certain order dependent on the light source or camera. Rendering without trans-
parency needs to figure out which particles are obstructing others. This is simpler and faster
to do on a sorted list. Sorted lists do also aid collision detection [KSW04], which probably will
be implemented in future versions of the simulator in order to do more realistic simulations.
A sorted particle list may also speed up computation of the snow particle movement because
accesses to the wind field which drives the particles will have better locality, and therefore will
be cached better.

5.2 Traditional sequential sorting algorithms

For traditional computers, sorting has been done with sequential algorithms. The most efficient
algorithms for comparison based sorting, are based on the divide and conquer principle. This
may look like a very good candidate for parallelization, as the divided problems may be sorted
independently. However the outermost steps have to be done as one operation, or as a parallel
merge.

5.3 Requirements for GPU algorithms

The most efficient sequential algorithms for comparison based sorting, are data driven. The
steps the algorithm takes depends on the data which it is sorting. This may lead to very different

39

40 CHAPTER 5. GPU SORTING

execution patterns depending on the characteristics of the data to be sorted. This is no problem
for serial execution. For parallel execution this causes a number of problems. An algorithm
which is designed for parallel execution, should meet as many as possible of the following
requirements, at least partially.

1. Equal workload on all parallel processors.

2. Clear communication patterns to simplify synchronization and reduce synchronization
overhead.

3. Cache friendly memory accesses.

Reasons for requirement 1

If the workload of the parallel processors is distributed unevenly, waiting will be introduced if
one execution unit is finished before another. In this way the processing power of the waiting
units is wasted. If the processors are guaranteed to finish at the same time, synchronization
logic can can be limited completely resulting in even better performance.

Reasons for requirement 2

Tightly coupled parallel systems, like GPUs, use SPMD execution units. These units benefit from
coordinated, predictable communication patterns. If the code does not exhibit such patterns, the
GPU has to execute all instructions requested for all the data in each unit, and then throw away
the results that are not applicable. This degrades performance.

Reasons for requirement 3

GPUs do also have requirements for memory access patterns. For example recent NVIDIA cards
have a 128 byte memory bus. Therefore data accesses of up to 128 bytes of data linearly will be
combined to one access. However data accesses exceeding the bandwidth of the bus will be
slower, as multiple accesses can be done simultaneously, but only if they access different mem-
ory banks. Such memory accesses is much simpler to create with an algorithm with clear com-
munication patterns, especially if the communication patterns are predictable, and independent
of the data that the algorithm is processing.

5.4 GPU sorting algorithms

Data-independent sorting algorithms satisfy most of the requirements outlined in Section 5.3.
They can be designed easily to saturate the SPMD’s of the GPU and make memory access pat-
terns, memory bandwidth usage and synchronizing points deterministic. The algorithms or-
ganize the sorting problem as a network of compare and swap operations, where the addresses
and organization of the elements which are compared are independent of the data. Even though
data independent sorting algorithms are considered best in theory, papers exist which concludes
that data driven sorting algorithms are best for parallel use cases. For example [CT08] imple-
ments a version of quick sort tailored for GPUs. In the result section of the paper they conclude
that their algorithm is the best based on their tests. Later papers however like [PSHL10] pro-
vides faster data independent sorting implementations. This may indicate that the algorithm to

5.4. GPU SORTING ALGORITHMS 41

the GPU, making sure that all execution units, memory bandwidth etc. is saturated with useful
work, seems to be more important than the algorithm in use. Additionally some algorithms
may be better suited to certain initial distributions and problem sizes than others.

Odd-even transition
sort pattern:

Odd-even merge
sort pattern:

Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:Bitonic merge sort pattern:

1 2 3

1 21 2 3

4

(a) Sorting patterns for GPU sorting algo-
rithms

a1
a2
a3a4

b1
b2
b3
b4

Odd
merge

Even
merge

Compare
 block

a

b

<

>

Compare
 block

a

b

<

>

Compare
 block

a

b

<

>

Compare
 block

a

b

<

>

C1

C2

C3

C4

C5

C6

C7

C8

(b) Network for one odd-even
merge sort iteration

Compare
 block

a

b

<

>

a1
a2
a3
a4

b1
b2
b3
b4

Compare
 block

a

b

<

>

Compare
 block

a

b

<

>

Compare
 block

a

b

<

>

C1

C2

C3

C4

C5

C6

C7

C8

n-element
bitonic
sorter

n-element
bitonic
sorter

(c) Network for one bitonic sort it-
eration

Figure 5.1: GPU sorting networks

The simplest data independent sorting network is odd-even transition sort. Odd even transition
sort works in two passes, comparing all odd elements with the next one, and then all even
elements with the next one. This is illustrated in the left part of Figure 5.1a. This gives an O(n2)

sorting algorithm, which is not very efficient. However all intermediate passes may be used as
partially sorted sequences, which may be useful if only nearly sorted data is required.

The odd-even merge sort algorithm improves on the odd-even transition sort by sorting the data
into two separate sequences recursively, and then merging the sequences to form one sequence.
A sorting network implementing the merge step is visualized in Figure 5.1b. The resulting
sorting pattern is outlined in the middle of Figure 5.1a. By moving from a linear reduction step
to a recursive reduction step, the runtime is shortened from O(n2) to O(n log2(n)+ log(n)). This
is slower than quick sort’s average case (O(n log(n))), but in practice it can outperform quick
sort for a specific range of n, because the algorithm is better suited to the processing device.
If the sequences are nearly sorted already, quick sort will get near its worst case performance,
which favours odd-even merge sort even more.

42 CHAPTER 5. GPU SORTING

5.5 Bitonic sort

Bitonic sort is a sorting algorithm which was designed in 1968 by Ken Batcher [Bat68] for parallel
hardware implementation using circuits with wires for implementing the network as connected
in Figure 5.1c. Figure 5.2 is a schematic drawing of a circuit implementing bitonic sort for 16
elements. Because the algorithm is designed for fixed wires, its memory access is predictable. If
the implementation is done correctly, all the requirements for GPU sorting outlined in Section
5.3 are fulfilled.

Figure 5.2: Bitonic sort network for 16 elements, figure in public domain from Wikipedia

Bitonic sort can be regarded as an extension of odd-even merge sort, where the merge and
compare passes are combined to reduce the amount of work. It works by arranging bitonic se-
quences recursively for 2 elements into a sequence, expanding the sequence until it occupies all
elements to be sorted. [Bat68] defines a bitonic sequence as “the juxtaposition of two monotonic
sequences, one ascending, the other descending”. This means that a bitonic sequence is two
sorted sub sequences of half the size of the full sequence, one of the sequences is sorted in the
reverse order.

In the outermost step of the bitonic sorting, the algorithm is modified to produce a fully sorted
sequence instead by keeping the same sorting for both subsequence. This produces a normally
sorted sequence (as in iteration 4, right part of Figure 5.1a), instead, of a bitonic sequence (as in
iteration 3, right part of Figure 5.1a).

5.5.1 Previous bitonic sort implementations

Bitonic sort has been included as an example from all major GPU vendors. AMD and Intel in-
cludes an OpenCL example in their Service Development Kit (SDK)’s, and NVIDIA includes an
example in their CUDA SDK. The Intel bitonic sort implementation includes some optimiza-
tions, but it does not look like it is designed to run on a GPU. The AMD example consists of 50
code lines, and contains no optimizations at all. Both these examples contains no code for syn-
chronizing the sorting across groups. Therefore only one work group is used. This massively
underutilizes the GPU, and makes the sorting too slow for any real world use.

NVIDIA however has included a quite complicated example in the CUDA SDK. This example
uses shared memory to speed up the computation and multiple kernels and kernel calls to syn-
chronize work between blocks. This ensures that the whole of the GPU is utilized. In the next

5.5. BITONIC SORT 43

section I describe how I did the porting of this example to OpenCL and modified it further to
suit my application.

5.5.2 Porting bitonic sort from the CUDA SDK examples

First all CUDA specific expressions with direct mappings to OpenCL functions were replaced
using preprocessing macros, and search and replace. Very few CUDA features which did not
have direct counterparts in OpenCL, were used by the kernels. Some global variables were
used, and they had to be moved into the argument lists of the kernels. The comparator function
was originally in a separate file, and shared with an odd-even sort CUDA implementation. This
function was moved in to the same file as the bitonic sort kernel in the OpenCL port, to simplify
linking.

The function calling the kernels was completely rewritten, as OpenCL kernel calls are more
cumbersome and detailed than CUDA calls. The shared memory size is also disregarded, as
the total thread count per block is smaller than the shared memory size per block for most data
types. To simplify debugging and testing of the sorting algorithms, a simple script visualizing
the sorted data of the example code provided by NVIDIA was created. This script is included
in Section A.3.

5.5.3 Optimizing and adapting bitonic sort for particle sorting

Sorting all particles completely using bitonic sort for each frame, resulted in a 30fps to 20fps
drop for 221 particles on a Mac Book Pro with an AMD Radeon 6490M. This fame rate drop
was unacceptable for real time performance, and would be very difficult to justify by improved
rendering time and features. Therefore schemes for partial sorting were examined.

The first scheme for partial sorting introduced was to create a hybrid of odd-even transitional
sort and bitonic sort by modifying the kernel which sorts all elements bounded by the size of
an OpenCL group. This results in locally sorted elements inside one block in one iteration. In
the next iteration the blocks used for sorting is shifted by half the block length and then sorted
in a reverse bitonic sequence. The lower elements of the shifted blocks are thus transferred to
the block below and the higher to the block above. This scheme is visualized in Figure 5.3. To
transfer an element from the lowest block to the highest block requires as many iterations as
there are blocks. For 221 elements with a block size of 512 elements this results in 4096 frames,
or 136 seconds. Therefore further optimization was required.

5.5.4 Improving local correctness

To reduce the time used for one element to travel from one end of the array to the other, a
step moving data longer distances is introduced. However this step does not produce perfectly
sorted sequences, so it is used quite seldom compared to the sorting steps in Section 5.5.3. Using
this step each 5th frame can be a good compromise between global and local movement to keep
the lists as sorted as possible.

To move data longer distances, each block is divided up to several pieces. Each piece is the
length of one coalesced memory access (at the moment defined to 128 as bytes). When there are

44 CHAPTER 5. GPU SORTING

22

Array in
 original order

1
Redistribute

pieces

2
Put original block
data in sequence

with pieces

3

Sort data with
blockwise bitonic

sort

3Write pieces
back to correct

addresses

rite pieces 2Array in sorted
order

1

1

3

Figure 5.3: Comparison network for improving local correctness, at the bottom: Real network
produced by visualization program (position is input, output is color coded on a HSV-scale)

5.5. BITONIC SORT 45

Figure 5.4: Redistribution of blocks to improve local correctness. The diagonal lines represent
the index each piece at that point will be compared with.

(a) Only local sorting, with alternating offset

(b) alternating offset, then global improvement (each third line is normal, offseted, global cor-
rection sort)

(c) Difference between Figure 5.5a and Figure 5.5b inverted. White means no difference, cyan
is enhanced to make small differences visible

Figure 5.5: Bitonic sort: alternating local sort vs alternating local and global sort. The coloured
lines are at the same indices as the vertical lines of Figure 5.4

46 CHAPTER 5. GPU SORTING

more blocks than pieces, the blocks are shared over pieces belonging to multiple blocks, as in
Figure 5.4.

After the pieces are assigned to each block, they are traversed to locate where the block can
be inserted to be in order with the pieces. Then the values in the array at the location of all
the blocks are read in to shared memory. The blocks are then sorted in shared memory, before
the contents pieces are distributed back to their respective position. This process is outlined in
Figure 5.3.

Figure 5.5 shows that both sorting versions uses about the same time to reach a stable completed
solution. However the globally improved version displays fewer big differences in the later
stages, especially in the lowest and highest values.

All elements in Figure 5.5c which are cyan are small differences which will cause minimal prob-
lems for a use case dependent on nearly sorted values. The oscillating elements in the stable
solution on the right of Figure 5.5b, are most likely due to a bug in the implementation of the
algorithm. However this bug is local to a single block, and can be corrected by running a local
sort after the global sort, before the result is used.

5.6 Integration with the snow simulator

After the sorting algorithm was verified graphically, as in Figure 5.5, it was integrated into the
move particles function of the snow module in the simulator. A separate class for controlling
the sorting algorithms was created. This class was controlled and initialized by the snow system
class.

For each frame, one of the sorting functions was called to keep the particles sorted. This caused
the particles to change array index. Some parameters related to circular particle movement are
randomly generated at the start of the simulation. These parameters are stored in much smaller
arrays than the number of particles, and accessed based on the particle index (using modulo
to make it fit the smaller arrays). When the array was sorted, the indices of the elements were
changed. This caused some artefacts for the particles in the simulator visualized as lines, when
showing the trace of the particles. Figure 5.6 is made by capturing a video of the simulator,
adding an echo effect to enhance the trace of the particles, and adjusting the colours of a frame
of the video.

(a) Rotation of snow particles using array in-
dex

(b) Rotation using stored index

Figure 5.6: Artefacts caused by changing the index of particles during simulation

5.7. FUTURE IMPROVEMENTS TO THE SORTING ALGORITHM 47

The current state of the circular movement is stored as the forth element of the velocity vector of
the particles. This is an angle, which is represented as a value from 0 to 2π. A float variable can
store significantly more data. Therefore the offset in the movement tables (integers from 0-31)
was combined with the angle and stored in the vector. Thus no extra memory was required to
store the offset.

The result of the integration with the snow simulator is presented in Section 6.6.2.

5.7 Future improvements to the sorting algorithm

In a future version the speed of convergence to a nearly correct solution may be improved even
further, by altering the distribution of blocks to be make sure that the lower blocks are compared
with the upper blocks in every configuration. The snow simulator can also be improved by
implementing more features, which will benefit from a sorted list of particles. The comparison
function of particles may also be improved, by partitioning the floating point coordinates of the
particles in to small bins to simplify the comparison.

Chapter 6

Tests and results

In this chapter the performance and visual results of the simulator will be examined. Different
hardware and OpenCL implementations will be tested to see how they affect the performance
of the simulator. At the end a brief overview of the visual results and rendering performance of
the simulator will be given.

6.1 Methodology, hardware and implementations

Porting the snow simulator to OpenCL made it possible to run it on a number of different
platforms. In this chapter the most accessible platforms are tested. The specifications of the
platforms tested, are listed in Table 6.1 and 6.2. The table is split into separate tables for each
category of systems tested. Because some of the platforms have very different performance, and
comparing all platforms at once will result in confusing graphs, the comparison is split in to
two parts: CPU versus CPU and GPU versus GPU. In the first part one GPU platform and two
CPU platforms running on the same system are compared. The configurations used in this part
is listed as 1-4 in Table 6.1. In the second part another system is used to compare different GPU
platforms from different vendors. In this part configuration 5-8 from Table 6.2 is used.

Cfg OS CPU GPU Impl. Vers
1. Linux C2 Quad Q9300@2.5 GeForce GTX 560 Ti Nvidia 1.1
2. Linux C2 Quad Q9300@2.5 GeForce GTX 560 Ti CUDA 4.2.1
3. Linux C2 Quad Q9300@2.5 GeForce GTX 560 Ti Nvidia, Intel 1.1, 1.1
4. Linux C2 Quad Q9300@2.5 GeForce GTX 560 Ti Nvidia, AMD 1.1, 1.2

Table 6.1: Specifications of the hardware and software used to test the simulator on CPU

Three different aspects of the simulator is tested: Wind simulation, snow simulation and full
simulation (wind & snow). The size of the simulation is increased to observe how the perfor-
mance of the OpenCL implementations vary with different memory requirements and compu-
tational complexity.

49

50 CHAPTER 6. TESTS AND RESULTS

6.2 Visualization of the results and statistical method

All graphs resulting from the tests, show the simulation size on the x axis and the performance
of the simulator on the y axis. The simulation size is sampled and visualized on a logarithmic
scale as the number of snow particles or the dimensions of the wind field of the simulator. The
sampling is done on a logarithmic scale to fulfil requirements from some of the algorithms and
GPGPU APIs which require, or are optimized for problem sizes which is a power of two. The
performance loss is often inverse algorithmic which gives a linear graph which is simpler to
compare to the other results.

The performance of the simulator along the y axis is, measured in Frames Per Second (FPS).
FPS is widely used as a way to describe the performance of real time systems. It has also been
used in earlier reports on the snow simulator. Therefore it is easier to compare the results of this
thesis and the old thesis when using the same measurement units.

All tests work by running the simulator and measuring the achieved performance. External
factors running on the computer may affect the performance differently for different problem
sizes and variable combinations. Therefore some of the tests were run two times, especially if the
results didn’t follow a smooth function. For most of the combinations the noise was negligible.
In these cases only one run is included in the graphs. However in some cases the noise was
significant. In this case 4-5 runs were performed. Then all the results were averaged and the
standard derivation was computed and included as error bars in the graphs.

6.3 CPU versus GPU wind simulation

This chapter looks at how the CPU handles executing a wind simulation kernel which is opti-
mized for a certain GPU. When no debug rendering is enabled the wind simulation has very
little interaction with the snow simulation and rendering. Therefore the wind simulation was a
good candidate for testing CPU implementations of OpenCL. Three OpenCL implementations
for CPUs were considered. The Intel SDK for OpenCL Applications [Int12a], the AMD acceler-
ated parallel processing SDK and the OpenCL implementation included in Mac OS X 10.7.4.

The implementation of OpenCL for CPU’s in Mac OS X proved to be too unstable for testing.
Code that worked on all the other implementations failed on Mac OS X when ran on a CPU, and
when debugging the code testing if a variable was not a number worked once, but not twice in
a row. Therefore testing the simulator on CPU on Mac OS X was abandoned.

Originally the simulator uses a standardized extension of OpenCL to transfer the result of the
simulations for rendering to OpenGL. The support for this extension is limited for platforms us-
ing the CPU as the processor for OpenCL kernels. Therefore the transferring code was rewritten
to copy the results of the simulation using the OpenGL API. The transfer of simulation results
to the GPU is limited by the bandwidth of the GPU bus. This bottleneck is regarded as one
of the largest problems in current GPU design [Ceb04]. Therefore this will probably be one
of the biggest bottlenecks of an hybrid CPU - GPU implementation. To see the impact of this
bottleneck, all the tests in this section is performed both with and without this transfer.

Figure 6.1a shows how different implementations of wind simulation performs on systems 1, 3
and 4 of Table 6.1. All the implementations do not share the results of the simulation by using
the OpenGL-OpenCL interoperability extension. The green and cyan runs does not copy the

6.4. FULL SIMULATION 51

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
log(2,Particles)

0

200

400

600

800

1000

1200

1400

FP
S

res-amd-ocl-wind-glcopy.txt
res-amd-ocl-wind-nocopy.txt
res-intel-ocl-wind-glcopy.txt
res-intel-ocl-wind-nocopy.txt
res-nv-ocl-sim-windNI.txt

(a) Wind simulation without opencl/opengl
integration

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
log(2,Particles)

0

500

1000

1500

2000

2500

3000

FP
S

res-nv-cda-sim-wind.txt
res-nv-ocl-sim-windINTER.txt
res-nv-ocl-sim-windNI.txt

(b) Wind simulation with opencl/opengl inte-
gration

Figure 6.1: Wind simulation only

result at all. Comparing these runs with the blue and red runs gives insight into how big the
performance hit of the copying is.

The performance hit of the copying seems smaller than the difference between the OpenCL-
implementations. The implementation with the worst performance, is the AMD implementa-
tion. The most likely explanation is that the AMD implementation is ran on a CPU produced by
Intel, and therefore not tuned for the CPU. The Intel implementation however is nearly on par
with the Nvidia GPU-implementation when the memory is copied from the GPU to the CPU
and back. It is even faster than the GPU of the MacBook Pro, which averages on about 55 FPS
(plotted in Figure 6.4).

6.4 Full simulation

In this section a full simulation, which includes both wind and snow particle simulation is ex-
amined. Figure 6.2 outlines a full simulation for CPU, GPU and CUDA. The characteristics of
this simulation is very similar to the wind only simulation. The snow simulation (which is il-
lustrated in Figure 6.5 for reference) does not affect the performance of the simulation in any
significant way.

6.5 Simulation on different GPUs

All GPU’s in this section were tested on the same system which is detailed in Table 6.2. This
isolates the implementations and GPUs from external influences from CPUs, system software,
motherboards etc. The Tesla-(system 6. of Table 6.2) and Quadro (system 5.) GPU was tested
with an NVIDIA driver. Then the cards were removed, the AMD card (system 7.) was inserted
and the AMD GPU driver and the AMD APP SDK (OpenCL driver) was installed.

The cards produced by NVIDIA are designed primarily for GPGPU work. These cards are
designed for maximum compute performance and to support double precision floating point

52 CHAPTER 6. TESTS AND RESULTS

Cfg OS CPU GPU Impl. Vers
5. Linux C2 Quad Q9550@2.83 Quadro FX 5800 Nvidia 1.0
6. Linux C2 Quad Q9550@2.83 Tesla C1060 Nvidia 1.0
7. Linux C2 Quad Q9550@2.83 ATI Radeon 5870 AMD 1.2

8. Mac OS X C i7-2635QM@2.0Ghz ATI Radeon 6490M Apple 1.1

Table 6.2: Specifications of the hardware and software used to test the simulator

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
log(2,Particles)

0

200

400

600

800

1000

1200

FP
S

res-nv-cda-sim-snowwind.txt
res-nv-ocl-sim-snowwind-nosort-INTER.txt
res-nv-ocl-sim-snowwind-nosort-NI.txt
res-amd-ocl-windpart.txt
res-intel-ocl-windpart.txt

Figure 6.2: Wind & snow simulation on GPU-CPU

variables. The Tesla card is a graphics card without a display. This card is dedicated to GPGPU
work. However all results have to be transfered back to the host CPU for further processing or
to be displayed.

The results of the simulation is plotted in Figure 6.3.

6.5.1 The NVIDIA Tesla card

In the snow simulation all elements of the snow simulator were disabled except the snow simu-
lation module. The snow simulation uses the OpenCL / OpenGL for much of it’s memory. This
is most likely the reason for the bad performance of the NVIDIA Tesla card.

In the wind simulation a separate pass of the Tesla card was performed, and included as the
green line. In this run no OpenCL / OpenGL integration was performed. This causes a massive
speed up compared to the other cards.

When both the snow and wind simulation was running the Tesla card performed best. In this
simulation the computational requirements was much higher compared to the communication
requirements. This suits the Tesla card better.

6.5. SIMULATION ON DIFFERENT GPUS 53

11 12 13 14 15 16 17 18
log(2,Particles)

100

150

200

250

300

350

400

450

500

FP
S

amd-snow.txt
avgres-snow-quadro.txt
avgres-snow-tesla.txt

(a) Snow simulation on GPUs

4.0 4.5 5.0 5.5 6.0
log(2,Particles)

0

200

400

600

800

1000

1200

1400

FP
S

reswindnt.txt
amd-winda.txt
avgres-wind-tesla.txt
avgres-wind-quadro.txt

(b) Wind simulation on GPUs

4.0 4.5 5.0 5.5 6.0
log(2,Particles)

100

150

200

250

300

350

FP
S

res-snowwind-quadro.txt
res-snowwind-tesla.txt
amd-snowwindavg.txt

(c) Snow & Wind simulation on GPUs

4.0 4.5 5.0 5.5 6.0
log(2,Particles)

0

200

400

600

800

1000

1200

FP
S

res-snowwind-quadro.txt
res-snowwind-tesla.txt
nv-rescdasw.txt
nv-resoclsw.txt
amd-snowwindavg.txt

(d) Snow & Wind simulation on GPUs for all
generations

Figure 6.3: Simulation on different GPUs

6.5.2 The GPUS with display output

The Quadro card from NVIDIA is designed for 3D desktop work, like Computer Aided Design
(CAD) and modelling 3d objects. Marketwise therefore, it is in the middle ground between a
consumer gaming card, and a GPGPU card like Tesla. The performance characteristics of the
Quadro card and the AMD card were very similar. All the tests in Figure 6.3 shows that the The
AMD card performed about 50 FPS better than the Quadro card. These cards do both support
graphics output, and were released nearly at the same date.

6.5.3 Common trends

For most of the runs the frame rate of the simulation is nearly constant until a certain point
before it decreases rapidly. However the frame rate of the Tesla GPU without OpenGL interface
and the modern GPU of configuration 1 and 2 decreases linearity from the start. This may be
explained by improved memory management, which reduces the fixed cost of memory transfer.

54 CHAPTER 6. TESTS AND RESULTS

In this case the variable performance cost related to the size of the simulation dominates the
fixed performance costs even for small problems. Therefore all increases in problem size causes
degraded performance. The performance is however higher than the performance of the other
GPUs at all times.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
log(2,Domain size)

48

49

50

51

52

53

54

55

56

FP
S

avglaptop.txt

Figure 6.4: Wind simulation on system 8 of Table 6.2 (MacBook Pro)

The results of the simulation for GPUs are very dependent on the type and generation of the
GPUs used to run the simulation. All the GPUs tested in Figure 6.3 shows performance in the
same ballpark. The more recent GPUs displayed as the top results in Figure 6.3d show double
performance compared to the old desktop and GPGPU GPUs. This is expected and can be
viewed as a conformation of Moor’s Law which suggests that the performance of computer
devices doubles each 2nd year.

However the laptop in system 8 of Table 6.2 shows results in Figure 6.4 which are in the magni-
tude of 55 FPS. This laptop is quite new, and can therefore be compared with the systems 1-4 in
Table 6.2. The fact that the results for the laptop is much lower than the results for the desktop
shows that different GPU profiles have a huge impact on performance. This indicates that the
performance of GPUs for mobile phones may be quite low. It is however difficult to predict
this performance because the architecture of the mobile GPUs is quite different from desktop
GPUs. However the fact that the architecture is even more focused on locating frequently used
memory close to the compute units, makes it probable that memory will become a bottleneck.
Similar bottlenecks are visible in Figure 6.3d as the difference between green line which does
not transfer the result of the wind simulation and the red line which does transfer the result. In
the case of mobile GPUs it is likely that the bottleneck will be bigger, and therefore it is likely
that the difference will be more pronounced.

6.6. RENDERING PERFORMANCE 55

6.6 Rendering performance

The snow simulator gives a graphic output of the results of the simulation. The graphical pre-
sentation consists of several elements.

• Terrain

• Snow particles

• Wind debug info: Velocity vectors, pressure

In this section the performance of generating the visual outputs are examined. Then some visual
results are presented and discussed.

6.6.1 Terrain rendering performance

When looking for ways to optimize the rendering of the simulator the terrain was identified as
the most interesting part to optimize. Rendering terrain has a huge effect on the performance of
the simulator. Especially on the MacBook in system 8 of Table 6.2.

snowrenderavg.txt

Figure 6.5: Snow simulation with and without terrain rendering on system 8

Figure 6.5 shows this by comparing running a snow simulation with and without rendering
terrain. The green line shows snow simulation without rendering terrain. The blue line shows
simulation and terrain rendering. The FPS achieved for the simulator without rendering the
terrain is 10 times the FPS when rendering it. A fellow student of mine has rewritten the terrain
rendering in a thesis which is written in parallel to mine. Therefore I did not focus on optimizing
the terrain, and the terrain rendering was disabled in all other tests of the simulator to make sure
it did not affect the results of the tests.

6.6.2 Snow rendering performance

Rendering snow is done in OpenGL. Therefore the rendering code is similar for both GPGPU
implementations. The original snow particle rendering code rendered some particles with larger

56 CHAPTER 6. TESTS AND RESULTS

Yes
Render snow

So
rt

 p
ar

tic
le

s

No

Yes

No

(a) sort vs no sort with and without rendering

4 5 6 7 8 90

2000

4000

6000

8000

10000

12000

(b) Draw snow

Figure 6.6: snow particle rendering

size for better visual performance. This was turned off during the tests for this thesis to make
sure the performance of the rendering was equal in all test cases. All the results for Figure 6.6
are computed on hardware configuration 1 of Table 6.1. Figure 6.6b shows the performance of
the OpenGL-only rendering when no simulations are running.

In Figure 6.6a 4 cases are examined. The fact that the distance between the cases with rendering
(red and blue) and without rendering (cyan & green) is the same shows that sorting does not
improve rendering time.

6.7 Visual results

The goal of porting the snow simulator to OpenCL and adapt it to mobile platforms was to
reproduce the visual experience of the simulator as it is when using CUDA on a desktop. This
has been done to a certain extent. The simulation of snow in OpenCL works nearly in the same
way as the CUDA simulation. The only difference is the initialization, or repositioning, of snow
particles at a random position after they have hit the ground. This is done by casting and pointer
manipulation in CUDA. OpenCL is a more cross platform API therefore the initialization is done
in only floats. This initialization is not properly clamped to the domain of the simulation. This
is however managed by the out of bounds code in the snow movement kernel, which moves all
particles inside the domain. This is illustrated in Figure 6.7

Several artefacts regarding the snow distribution appears when wind forces are applied. The
snow forms curtains where snow particles are concentrated, as shown in Figure 6.8, and areas
where nearly no snow particles exists. This may be caused by the distribution function not
distributing the particles uniformly if they start to fall at the same position on the ground. The
reposition function was modified to try to mitigate the problem, but no working algorithm was
found.

The snow simulator contains some debug visualization modes to observe the behaviour of the
wind field. The pressure and wind velocity vectors can be studied visually using debug modes

6.7. VISUAL RESULTS 57

Figure 6.7: Snow outside the domain; upper part: Difference between early frame and after 1
sec. Lower part: After 0.5 sec

Figure 6.8: Snow forming curtains when wind are enabled because of deficiencies in the reini-
tialization function

58 CHAPTER 6. TESTS AND RESULTS

integrated in the simulator. Pressure is visualized by evenly spaced squares as shown in Figure
6.9. The colour of the squares vary with the magnitude of the pressure. Yellow squares means
low pressure, while red squares means high pressure.

Figure 6.9: Pressure distribution

The wind velocity and direction is visualized by small lines which originate from the same
points as the pressure visualization points. This is shown in Figure 6.10. The lines are drawn
along the direction of the wind at their origin. The length and colour of the lines are dependent
on the velocity of the wind.

The wind of the snow simulator is very stable. In the start of the simulation the difference of
pressure causes wind to flow. Soon however the pressure is transferred to a stable pattern de-
pending on the obstacles on the ground. This causes the pressure and wind to settle, especially
when simulating with slow frame rates. This may be caused by some scaling factors which have
been changed between the OpenCL port and the original CUDA version. Some investigation
of this has been done, but more experimentation is required to find the optimal parameters.
The main concern of this thesis is however to investigate the performance and characteristics
of OpenCL implementations. Therefore making the simulation physically correct has not been
an area of focus as long as the simulation is usable for visual inspection and to produce bench-
marks.

6.7. VISUAL RESULTS 59

Figure 6.10: Pressure distribution and wind velocities

Chapter 7

Conclusion & Future work

The original goal of this thesis was to investigate modern GPUs for mobile computing by porting
a snow simulator to a mobile platform. This included bringing the OpenCL port of the snow
simulator done 2 years ago, up to date. Because the existing port could not be found, and the
mobile hardware which the simulator was going to run on did not arrive in time, the focus of
the thesis was altered. The new goal of the thesis was to prepare the snow simulator for the
porting, in order to make it as simple to port as possible when the hardware finally arrives.

7.1 Conclusions

To improve performance of snow particle movement [Eid09], and to enable some more render-
ing techniques sorting the particles was implemented. However no performance improvement
was noticed, most likely due to the fact that sorting the particles degrade performance more
than cache locality improves it. For rendering no improvement was made as long as the snow
particles were rendered identically.

Porting the snow simulator to OpenCL enabled testing on different devices. The simulator
was tested on a CPU with two OpenCL implementations to investigate how CPUs performs
compared to GPUs, and to examine how different CPU OpenCL implementations perform on
the same hardware. Tests on an Intel CPU indicated that the Intel implementation was faster
than the AMD implementation, and on par with a mobile GPU.

The simulator was also tested on multiple GPUs and against the CUDA implementation. In
these tests memory management turned out to be the most important performance factor. The
CUDA implementation was faster for small problem sizes, and on par with the OpenCL on
larger problem sizes. The reason for this is most likely that the CUDA code has been tuned for
GPUs using techniques which can not be translated directly to OpenCL.

The CUDA snow simulator code from earlier projects was optimized for speed. Therefore some
of the code was quite difficult to understand. Very few comments in the code existed, but all
algorithms were described in earlier thesis. However, some implementation details crucial to
understanding the code was left out. These details have been figured out and documented in
this thesis.

61

62 CHAPTER 7. CONCLUSION & FUTURE WORK

This thesis is intended to serve as a solid base for finishing the port of the snow simulator to a
mobile device. The simulator is ported to the OpenCL API which will be available on mobile
phones, and verified to work with multiple OpenCL implementations. Preparations for future
work on the port are done by documenting and storing the code in a way which simplifies
further work to finish the port.

7.2 Future work

The most obvious task for the future in this thesis is to finish the port of the simulator to a mobile
device when a device with a GPU supporting OpenCL becomes available.

Another future project could be to look at the ability to execute kernels concurrently by using
events. This is a feature introduced to GPGPU by OpenCL, but recently it has also been sup-
ported by CUDA. Events can be used to create a dependency network for the OpenCL kernels
and memory access functions. Thus the OpenCL implementation can execute the kernels in
parallel. Removing serial kernel execution can improve the performance of the simulator, es-
pecially if different parts of the simulation can be executed in parallel on multiple devices. For
example the wind simulation, snow simulation and rendering can be performed in parallel on
three different GPUs.

References

[Aks09] Eirik Ola Aksnes, Simulation of fluid flow through porous rocks on modern GPUs, Mas-
ter’s thesis, IDI, Norwegian University of Technology and Science, July 2009.

[AMD] AMD, A Brief History of General Purpose (GPGPU) Computing, http:

//www.amd.com/us/products/technologies/stream-technology/

opencl/pages/gpgpu-history.aspx accessed May 2012.

[AMS08] T. Akenine-Moller and J. Strom, Graphics processing units for handhelds, Proceedings
of the IEEE 96 (2008), no. 5, 779–789.

[App10] Apple, Press release: Apple Launches iPad, http://www.apple.com/pr/

library/2010/01/27Apple-Launches-iPad.html, Jan 2010.

[ARM11] ARM, Mali optimization guide, http://infocenter.arm.com/help/topic/
com.arm.doc.dui0555a/DUI0555A_mali_optimization_guide.pdf,
2011.

[Bab11] Kjetil Babington, Real-Time Ray Tracing for the HPC-lab Snow Simuator, December
2011.

[Bat68] K. E. Batcher, Sorting networks and their applications, Proceedings of the April 30–
May 2, 1968, spring joint computer conference (New York, NY, USA), AFIPS ’68
(Spring), ACM, 1968, pp. 307–314.

[Boa03] OpenGL Architecture Review Board, Arb_shading_language_100, http://www.
opengl.org/registry/specs/ARB/shading_language_100.txt, 2003.

[BOM11] V.F. Bauset, J.M. Orduna, and P. Morillo, Performance characterization on mobile phones
for collaborative augmented reality (car) applications, Distributed Simulation and Real
Time Applications (DS-RT), 2011 IEEE/ACM 15th International Symposium on,
Sept 2011, pp. 52 –53.

[Ceb04] C. Cebenoyan, Graphics pipeline performance, GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics, R. Fernando, Ed., Pearson Higher Educa-
tion (2004).

[Che10] Joel Chelliah, The NTNU HPC Snow Simulator on the Fermi GPU, December 2010.

[CT08] D. Cederman and P. Tsigas, A practical quicksort algorithm for graphics processors,
Algorithms-ESA 2008 (2008), 246–258.

63

http://www.amd.com/us/products/technologies/stream-technology/opencl/pages/gpgpu-history.aspx
http://www.amd.com/us/products/technologies/stream-technology/opencl/pages/gpgpu-history.aspx
http://www.amd.com/us/products/technologies/stream-technology/opencl/pages/gpgpu-history.aspx
http://www.apple.com/pr/library/2010/01/27Apple-Launches-iPad.html
http://www.apple.com/pr/library/2010/01/27Apple-Launches-iPad.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0555a/DUI0555A_mali_optimization_guide.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0555a/DUI0555A_mali_optimization_guide.pdf
http://www.opengl.org/registry/specs/ARB/shading_language_100.txt
http://www.opengl.org/registry/specs/ARB/shading_language_100.txt

64 REFERENCES

[CvDPH98] Steve Carson, Andries van Dam, Dick Puk, and Lofton R. Henderson, The history
of computer graphics standards development, SIGGRAPH Comput. Graph. 32 (1998),
no. 1, 34–38.

[DSSS05] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier, High-performance computing:
clusters, constellations, MPPs, and future directions, Computing in Science Engineer-
ing 7 (2005), no. 2, 51 – 59.

[Eid09] Robin Eidissen, Utilizing gpus for real-time visualization of snow,
http://www.idi.ntnu.no/~elster/master-studs/robine/

robin-eidissen-master-ntnu.pdf, February 2009.

[Els] Anne C. Elster, IDI HPC-lab web page, http://research.idi.ntnu.no/

hpc-lab accessed May 2012.

[Fal06] Falanax (now ARM), Competitive advantages of the Mali graphics Ar-
chitecture, http://www.design-reuse.com/articles/9591/

competitive-advantages-of-the-mali-graphics-architecture.

html, 2006.

[Gje09] Alexander Gjermundsen, LBM vs SOR solvers on GPUs for real-time snow simulations,
Master’s thesis, IDI, Norwegian University of Technology and Science, 2009.

[Gro04] Khronos Group, OpenGL ES Specification, http://www.khronos.org/

registry/gles/specs/1.0/opengles_spec_1_0.pdf, 2004.

[IDI] IDI, Digital Arkivering og Innlevering av Masteroppgaver, http://daim.idi.

ntnu.no/ accessed May 2012.

[Ima12] Imagination techologies, PowerVR series 6 announcement, http://www.imgtec.
com/news/Release/index.asp, Jan 2012.

[Int12a] Intel, Intel SDK for OpenCL Applications 2012, http://software.intel.com/
en-us/articles/vcsource-tools-opencl-sdk/, 2012.

[Int12b] Intel, Intel SDK for OpenCL* Applications 2012 Release Notes, http://software.
intel.com/en-us/articles/opencl-release-notes/, 2012.

[JS09] R. Jarrett and P. Su, Building tablet pc applications, O’Reilly Media, Incorporated,
2009.

[KBR04] John Kessenich, Dave Baldwin, and Randi Rost, The open shading language, http:
//www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf,
2004.

[Kro10] Øystein Eklund Krog, GPU-based Real-Time Snow Avalanche Simulations, June 2010.

[KSW04] P. Kipfer, M. Segal, and R. Westermann, Uberflow: a gpu-based particle engine, Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, ACM, 2004, pp. 115–122.

http://www.idi.ntnu.no/~elster/master-studs/robine/robin-eidissen-master-ntnu.pdf
http://www.idi.ntnu.no/~elster/master-studs/robine/robin-eidissen-master-ntnu.pdf
http://research.idi.ntnu.no/hpc-lab
http://research.idi.ntnu.no/hpc-lab
http://www.design-reuse.com/articles/9591/competitive-advantages-of-the-mali-graphics-architecture.html
http://www.design-reuse.com/articles/9591/competitive-advantages-of-the-mali-graphics-architecture.html
http://www.design-reuse.com/articles/9591/competitive-advantages-of-the-mali-graphics-architecture.html
http://www.khronos.org/registry/gles/specs/1.0/opengles_spec_1_0.pdf
http://www.khronos.org/registry/gles/specs/1.0/opengles_spec_1_0.pdf
http://daim.idi.ntnu.no/
http://daim.idi.ntnu.no/
http://www.imgtec.com/news/Release/index.asp
http://www.imgtec.com/news/Release/index.asp
http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
http://software.intel.com/en-us/articles/opencl-release-notes/
http://software.intel.com/en-us/articles/opencl-release-notes/
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf

REFERENCES 65

[Lie11] Hallgeir Lien, Procedural Generation of Roads for use in the Snow Simulator, December
2011.

[Mar08] Katie Marsal, Apple proposes OpenCL as high-speed computing standard, http:

//www.appleinsider.com/articles/08/06/17/apple_proposes_

opencl_as_high_speed_computing_standard.html, Jun 2008.

[Mes] Mesa, Mesa 3D Graphics Library, http://www.mesa3d.org accessed May 2012.

[MG10] Duane G. Merrill and Andrew S. Grimshaw, Revisiting sorting for gpgpu stream archi-
tectures, Proceedings of the 19th international conference on Parallel architectures
and compilation techniques (New York, NY, USA), PACT ’10, ACM, 2010, pp. 545–
546.

[Mor11] Timothy Prickett Morgan, ARM Holdings eager for PC and server expan-
sion, http://www.theregister.co.uk/2011/02/01/arm_holdings_q4_

2010_numbers, Feb 2011.

[NVI01] NVIDIA, Press release: Nvidia introduces geforce3–breaks new ground in the quest for
real-time cinematic graphics, http://www.nvidia.com/object/IO_20010530_
6131.html, Feb 2001.

[Pow09] PowerVR, PowerVR MBX Technology Overview, http://www.imgtec.

com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.

External.pdf, May 2009.

[PSHL10] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, Fast in-place sorting with
cuda based on bitonic sort, Parallel Processing and Applied Mathematics (2010), 403–
410.

[Rov11] Jan Rovde, Fluid simulations using SPH on GPUs, December 2011.

[Sal06] Ingar Saltvik, Parallel Methods for Real-Time Visualization of Snow, Master’s thesis,
IDI, Norwegian University of Technology and Science, June 2006.

[Sha05] Dinesh C. Sharma, CNet: Nokia debuts linux based web device, http://news.cnet.
com/Nokia-debuts-Linux-based-Web-device/2100-1041_3-5720066.

html, June 2005.

[SKP10] BVN Silpa, G. Krishnaiah, and P.R. Panda, Rank based dynamic voltage and frequency
scaling fortiled graphics processors, Proceedings of the eighth IEEE/ACM/IFIP inter-
national conference on Hardware/software codesign and system synthesis, ACM,
2010, pp. 3–12.

[Ste10] Jarle Erdal Steinsland, Porting the OpenCL snow simulator to opencl for mobile applica-
tions, December 2010.

[Val12] Theo Valich, Nvidia tegra 4 to get GPGPU, http://vr-zone.

com/articles/nvidia-tegra-4-to-get-gpgpu-i.e.

-gpu-computational-capabilities-kepler-inside-/15361.html,
Mar 2012.

http://www.appleinsider.com/articles/08/06/17/apple_proposes_opencl_as_high_speed_computing_standard.html
http://www.appleinsider.com/articles/08/06/17/apple_proposes_opencl_as_high_speed_computing_standard.html
http://www.appleinsider.com/articles/08/06/17/apple_proposes_opencl_as_high_speed_computing_standard.html
http://www.mesa3d.org
http://www.theregister.co.uk/2011/02/01/arm_holdings_q4_2010_numbers
http://www.theregister.co.uk/2011/02/01/arm_holdings_q4_2010_numbers
http://www.nvidia.com/object/IO_20010530_6131.html
http://www.nvidia.com/object/IO_20010530_6131.html
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://news.cnet.com/Nokia-debuts-Linux-based-Web-device/2100-1041_3-5720066.html
http://news.cnet.com/Nokia-debuts-Linux-based-Web-device/2100-1041_3-5720066.html
http://news.cnet.com/Nokia-debuts-Linux-based-Web-device/2100-1041_3-5720066.html
http://vr-zone.com/articles/nvidia-tegra-4-to-get-gpgpu-i.e.-gpu-computational-capabilities-kepler-inside-/15361.html
http://vr-zone.com/articles/nvidia-tegra-4-to-get-gpgpu-i.e.-gpu-computational-capabilities-kepler-inside-/15361.html
http://vr-zone.com/articles/nvidia-tegra-4-to-get-gpgpu-i.e.-gpu-computational-capabilities-kepler-inside-/15361.html

66 REFERENCES

[Ver12] Luc Verhaegen, The Lima Driver: Liberating the ARM Mali GPU, http://people.
freedesktop.org/~libv/FOSDEM2012_lima.pdf, May 2012.

[WMV] WMVare, Gallum3D GPU driver architecture - open source project page, http://
wiki.freedesktop.org/wiki/Software/gallium accessed May 2012.

http://people.freedesktop.org/~libv/FOSDEM2012_lima.pdf
http://people.freedesktop.org/~libv/FOSDEM2012_lima.pdf
http://wiki.freedesktop.org/wiki/Software/gallium
http://wiki.freedesktop.org/wiki/Software/gallium

Appendices

67

Appendix A

Source Code

A.1 Simulation GPU code

A.1.1 WindSystem.cl

1 //# def ine CL_USE_TEXTURES
2 #define REF(p , a , b , c) (p) [((b) *dim . z +(c)) *dim . x +(a)]
3 #ifdef CL_USE_TEXTURES
4 #pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
5 #define WINDVEL_TYPE __read_only image3d_t
6 #define WINDVEL_TYPE_W __write_only image3d_t
7 #define WIND_SAMPLES(wind , x , y , z) s a m p l e _ t r i l i n e a r (wind , (float4) { (float) x , (float) y , (float) z , 0 } , dim)
8 #define WIND_SAMPLE(wind , pos) s a m p l e _ t r i l i n e a r (wind , (float4) { (float) pos . x , (float) pos . y , (float) pos . z , 0 } , dim)
9 #define WIND_WRITE(wind , pos , value) write_imagef (wind , pos , value)

10 #define WIND_WRITES(wind , x , y , z , value) {int4 www_pos = (int4) { (int) (x) , (int) (y) , (int) (z) , 0 } ; \
11 write_imagef (wind , www_pos , value) ; }
12 #else
13 #define WINDVEL_TYPE __global __read_only float4*
14 #define WINDVEL_TYPE_W __global float4*
15 #define WIND_SAMPLES(wind , x , y , z) REF(wind , (int) x , (int) y , (int) z)
16 #define WIND_SAMPLE(wind , pos) REF(wind , (int) pos . x , (int) pos . y , (int) pos . z)
17 #define WIND_WRITE(wind , pos , value) WIND_SAMPLE(wind , pos) = (value)
18 #define WIND_WRITES(wind , x , y , z , value) WIND_SAMPLES(wind , x , y , z) = (value) ;
19 #endif
20 #define WIND_SAMPLE_OFFSET(wind , pos , a , b , c) WIND_SAMPLES(wind , pos . x+a , pos . y+b , pos . z+c)
21 #define INIT () \
22 int y = get_global_id (0) / (dim .x*dim .z) ; \
23 int z = (get_global_id (0) − (y * (dim .x*dim .z))) / dim .x ; \
24 int x = get_global_id (0) − (y * (dim .x*dim .z)) − (z*dim .x) ;
25
26 #define VOX_SELF (1 < <0)
27 #define VOX_LEFT (1 < <1)
28 // . .
29 #define thread_x ((unsigned int) g e t _ l o c a l _ i d (0))
30 #define block_x ((unsigned int) get_group_id (0))
31
32 float4 sample_trilinear (__read_only image3d_t image , float4 pos , int4 dim) {
33 const sampler_t sampler = CLK_ADDRESS_CLAMP|
34 CLK_FILTER_LINEAR ;
35 return read_imagef (image , sampler , pos) ;
36 }
37 #else
38 float4 sample_trilinear (__global __read_only float4* array , float4 pos , int4 dim) {
39 #define REFTLF4 (p , a , b , c) REF(p , (int) pos . x+a , (int) pos . y+b , (int) pos . z+c)
40 #define POSADJ(pos , val) ((pos) ==0?1.0 f−(val) : (val))
41 pos .x = max (pos .x , 0 . 0f) ; // f o r y & z too
42 pos .x = min (pos .x , dim .x−0.99f) ; // f o r y & z too
43 float4 fpos = (float4) {pos .x−(float) ((int)pos .x) , pos .y−(float) ((int)pos .y) , pos .z−(float) ((int)pos .z) , 0 } ;
44 //REFTLF4 (array , k , i , j)

69

70 APPENDIX A. SOURCE CODE

45 //Unrolled loop :
46 float4 ival , jval , kval ;
47 kval = REFTLF4 (array , 0 , 0 , 0) * POSADJ (0 , fpos .x) ;
48 kval+= REFTLF4 (array , 1 , 0 , 0) * POSADJ (1 , fpos .x) ;
49 jval = kval * POSADJ (0 , fpos .z) ;
50 kval = REFTLF4 (array , 0 , 0 , 1) * POSADJ (0 , fpos .x) ;
51 kval+= REFTLF4 (array , 1 , 0 , 1) * POSADJ (1 , fpos .x) ;
52 jval+= kval * POSADJ (1 , fpos .z) ;
53 ival = jval * POSADJ (0 , fpos .y) ;
54 kval = REFTLF4 (array , 0 , 1 , 0) * POSADJ (0 , fpos .x) ;
55 kval+= REFTLF4 (array , 1 , 1 , 0) * POSADJ (1 , fpos .x) ;
56 jval = kval * POSADJ (0 , fpos .z) ;
57 kval = REFTLF4 (array , 0 , 1 , 1) * POSADJ (0 , fpos .x) ;
58 kval+= REFTLF4 (array , 1 , 1 , 1) * POSADJ (1 , fpos .x) ;
59 jval+= kval * POSADJ (1 , fpos .z) ;
60 ival+= jval * POSADJ (1 , fpos .y) ;
61 return ival ;
62 }
63 #endif
64 __kernel void wind_advect (WINDVEL_TYPE wind_vel ,
65 WINDVEL_TYPE_W wind_vel_write ,
66 __write_only __global float *pressure ,
67 __read_only __global int* obstacle ,
68 __read_only int4 dim ,
69 __read_only float delta_time ,
70 __read_only float4 boundary) {
71 INIT () ;
72 float4 v ;
73 int mask = REF (obstacle , x , y , z) ;
74 v = WIND_SAMPLES (wind_vel , x , y , z) ;
75
76 if (x > 0 && x < dim .x−1 && y > 0 && y < dim .y−1 && z > 0 && z < dim .z−1) {
77 v .x = (float)x − delta_time * v .x − 0 . 5f ;
78 v .y = (float)y − delta_time * v .y − 0 . 5f ;
79 v .z = (float)z − delta_time * v .z − 0 . 5f ;
80 v = sample_trilinear (wind_vel , v , dim) ; //_sample (v) ; //FIXME : Do some f i l t e r i n g here ?
81
82 if ((mask & (VOX_SELF | VOX_LEFT | VOX_RIGHT))) v .x = 0 ;
83 if ((mask & (VOX_SELF | VOX_ABOVE | VOX_BELOW))) v .y = 0 ;
84 if ((mask & (VOX_SELF | VOX_UP | VOX_DOWN))) v .z = 0 ;
85
86 if (y == dim .y−2) {
87 WIND_WRITES (wind_vel_write , x , y+1 , z , v)
88 }
89
90 } else {
91 v = boundary ;
92
93 }
94 WIND_WRITES (wind_vel_write , x , y , z , v)
95 REF (pressure , x , y , z) = 0 . 0f ;
96 }
97
98 //Z (block) ,X (thread) − y loop
99 __kernel void build_solution2 (

100 __local float4 *shared ,
101 __read_only WINDVEL_TYPE wind_vel ,
102 __global float *solution ,
103 __read_only __global int* obstacle ,
104 __read_only int4 dim ,
105 __read_only float factor) {
106 #define YADVANCE dim .x*dim .z
107 int active = (thread_x−1) <= (dim .x+1) && thread_x < (unsigned int) dim .x−1;
108 //make r e l e v a n t p o i n t e r s f o r t h i s thread
109 __read_only __global int *loc_obs = &obstacle [(1 +block_x) *dim .x+thread_x] ;
110 __global float *loc_sol = &solution [(1 +block_x) *dim .x+thread_x] ;
111 int4 wvpos = (int4) {thread_x , 0 , 1 +block_x , 0 } ;
112 float last = WIND_SAMPLE (wind_vel , wvpos) .x ;
113 wvpos .y+=1;
114 //Along the whole y−border
115 for (unsigned int y = 1 ; y < dim .y−1; ++y) {
116 float res = −last ;
117 last = WIND_SAMPLE (wind_vel , wvpos) .y ;
118 //Syncronize r e s o l u t i o n
119 barrier (CLK_LOCAL_MEM_FENCE) ;
120 if (active) {
121 res += WIND_SAMPLE_OFFSET (wind_vel , wvpos , 1 , 0 , 0) .x ;

A.1. SIMULATION GPU CODE 71

122 res −= WIND_SAMPLE_OFFSET (wind_vel , wvpos , −1 ,0 ,0) .x ;
123 }
124 barrier (CLK_LOCAL_MEM_FENCE) ;
125 res += WIND_SAMPLE_OFFSET (wind_vel , wvpos , 0 , 0 , 1) .z ;
126 res −= WIND_SAMPLE_OFFSET (wind_vel , wvpos , 0 ,0 ,−1) .z ;
127 //Next z 2d−plane − Advance windvel
128 wvpos .y++;
129 res += WIND_SAMPLE (wind_vel , wvpos) .y ;
130 res *= factor ;
131 //Advance Obstacle
132 loc_obs = &loc_obs [YADVANCE] ; //y++
133 //Advance Pressure
134 loc_sol = &loc_sol [YADVANCE] ; //y++
135 //Take o b s t a c l e in to account
136 res *= (float) ((* loc_obs & VOX_SELF) == 0) ;
137 if (active) {
138 *loc_sol = res ;
139 }
140 }
141 }
142
143 __kernel void solve_poisson2 (__local float *block ,
144 __local float *prev ,
145 __local int *masks ,
146 __global float *pressure ,
147 __read_only __global float *solution ,
148 __read_only __global int* obstacle ,
149 __read_only __global float* poisson_tab ,
150 __read_only int4 dim ,
151 __read_only float w ,
152 __read_only int which
153) {
154 //divide shared i n t o d i f f e r e n t memory areas
155 float curr ;
156 int mask ;
157 int x = get_local_id (0) ;
158 int z = get_group_id (0) +1;
159
160 prev [x] = REF (pressure , x , dim .y−1, z) ;
161 block [x] = REF (pressure , x , dim .y−2, z) ;
162
163 //#pragma u n r o l l
164 for (int y = dim .y−2; y > 1 ; y−−) {
165 barrier (CLK_LOCAL_MEM_FENCE) ;
166
167 mask = REF (obstacle , x , y , z) & 1 2 7 ;
168
169 if ((~mask & 126) && (mask & VOX_SELF) == 0) {
170 float res ;
171 //Does t h i s depend on some fancy overflow ?
172 if ((unsigned) (x−1) <= (unsigned) (dim .x+1)) {
173 res = 0 ;
174 res += block [x−1] * (float) ((mask & VOX_LEFT) == 0) ;
175 res += block [x+1] * (float) ((mask & VOX_RIGHT) == 0) ;
176
177 res += REF (pressure , x , y , z−1) * (float) ((mask & VOX_UP) == 0) ;
178 res += REF (pressure , x , y , z+1) * (float) ((mask & VOX_DOWN) == 0) ;
179
180 curr = block [x] ;
181 }
182 barrier (CLK_LOCAL_MEM_FENCE) ;
183 block [x] = REF (pressure , x , y−1, z) ;
184 if ((unsigned) (x−1) <= (unsigned) (dim .x+1)) {
185 res += prev [x] * (float) ((mask & VOX_BELOW) == 0) ;
186 res += block [x] * (float) ((mask & VOX_ABOVE) == 0) ;
187 res −= REF (solution , x , y , z) ;
188 res *= poisson_tab [mask> >1];
189 res *= w ;
190 res += curr * (1 . 0f − w) ;
191 prev [x] = curr ;
192 REF (pressure , x , y , z) = res ;
193 }
194 }
195 else {
196 REF (pressure , x , y , z) = 0 . 0f ;
197 }
198 }

72 APPENDIX A. SOURCE CODE

199 }
200 __kernel void set_boundary2 (__global float *pressure ,
201 __read_only __global int* obstacle ,
202 __read_only int4 dim ,
203 __read_only int which
204) {
205 INIT () ;
206 int mask = REF (obstacle , x , y , z) & 1 2 7 ;
207 if (x > 0 && x < dim .x−1 && y > 0 && y < dim .y−1 && z > 0 && z < dim .z−1) {
208 if ((mask & VOX_SELF) && mask != 127) {
209 if (! (mask & VOX_LEFT))
210 REF (pressure , x , y , z) = REF (pressure , x−1, y , z) ;
211 else if (! (mask & VOX_RIGHT))
212 REF (pressure , x , y , z) = REF (pressure , x+1 , y , z) ;
213 else if (! (mask & VOX_UP) //up , down, above , below . . .
214 }
215 if (x == 1 && which & VOX_LEFT)
216 REF (pressure , 0 , y , z) = REF (pressure , 1 , y , z) ;
217 if (x == dim .x−2 && which & VOX_RIGHT) //up , down, above , below . . .
218 }
219 }
220
221 __kernel void wind_project2 (__local float *shared ,
222 WINDVEL_TYPE wind_vel ,
223 WINDVEL_TYPE_W wind_vel_write ,
224 __read_only __global float *pressure ,
225 __read_only int4 dim ,
226 __read_only float factor
227) {
228
229 //Block = our part of shared memory
230 local float *block = &shared [get_local_id (0)] ; //does the have to be l o c a l or p r i v a t e ?
231
232 int active = (unsigned) (thread_x−1) <= (unsigned) (dim .x+1) && thread_x < dim .x−1;
233 //make r e l e v a n t p o i n t e r s f o r t h i s thread
234 int4 wvpos = (int4) {thread_x , 0 , 1 +block_x , 0 } ;
235 __read_only __global float *loc_press = &pressure [(1 +block_x) *dim .x+thread_x] ;
236
237 // i n i t loop v a r i a b l e s
238 float last = loc_press [0] ;
239 loc_press = &loc_press [YADVANCE] ; //y++?
240 block [0] = *loc_press ;
241 //Along the whole y−border
242 for (unsigned int y = 1 ; y < dim .y−1; ++y) {
243 wvpos .y++;
244 float4 v = WIND_SAMPLE (wind_vel , wvpos) ;
245 v .z −= factor * loc_press [dim .x] ;
246 v .z += factor * loc_press[−dim .x] ;
247
248 barrier (CLK_LOCAL_MEM_FENCE) ;
249 if (active) {
250 v .x −= factor * block [1] ;
251 v .x += factor * block[−1];
252 }
253 barrier (CLK_LOCAL_MEM_FENCE) ;
254 v .y += factor * last ;
255 last = block [0] ;
256 loc_press = &loc_press [YADVANCE] ; //y++
257 block [0] = *loc_press ;
258 v .y −= factor * block [0] ;
259 if (active) {
260 WIND_WRITE (wind_vel_write , wvpos , v) ;
261 }
262 }
263 }

A.1.2 SnowSystem.cl

1 //# def ine CL_USE_TEXTURES
2 #ifdef CL_USE_TEXTURES
3 #define WINDVEL_TYPE __read_only image3d_t
4 #else
5 #define WINDVEL_TYPE __global __read_only float4*
6 #endif

A.1. SIMULATION GPU CODE 73

7 void incrementHeight (int4 terrain_dim , int x , int y , float amount , __global float4 *grid) {
8 if (x < 0) x = 0 ; // & y
9 if (x >= terrain_dim .x) x = terrain_dim .x−1; // & y

10 int ix = terrain_dim .x * y + x ;
11 if (grid [ix] . w < 1 . 0f)
12 grid [ix] . w += amount ;
13 }
14
15 int2 calcGridPos (float4 p , int4 terrain_dim , int4 scene_dim) {
16 int2 gridPos ;
17 // f o r both . x and . y :
18 gridPos .x = floor ((float)terrain_dim .x*p .x/scene_dim .x) ;
19 if (gridPos .x < 0) gridPos .x = 0 ;
20 if (gridPos .x >= terrain_dim .x) gridPos .x = terrain_dim .x−1;
21
22 return gridPos ;
23 }
24
25 #define SG_STRIDE 18
26
27 __constant int sg_off [4] = { −1, −SG_STRIDE , 1 , SG_STRIDE } ;
28
29 __kernel void smooth_ground (__global float4 *grid ,
30 __local float4 *shared ,
31 int4 terrain_dim ,
32 int4 gridDim ,
33 int4 scene_dim) {
34 const int tx = get_local_id (0) ;
35 const int ty = get_local_id (1) ;
36
37 __local float4 *block = &shared [(ty+1) * SG_STRIDE +tx+ 1] ;
38 grid = &grid [get_global_id (1) *terrain_dim .y + get_global_id (0)] ;
39 block [0] = grid [0] ;
40
41 if (tx == 0) {
42 if (get_group_id (0) == 0)
43 block[−1] = block [0] ;
44 else
45 block[−1] = grid[−1];
46 }
47 if (tx == get_local_size (0)−1) {
48 if (get_group_id (0) == get_num_groups (0)−1)
49 block [1] = block [0] ;
50 else
51 block [1] = grid [1] ;
52 }
53 if (ty == 0) {
54 if (get_group_id (1) == 0)
55 block[−SG_STRIDE] = block [0] ;
56 else
57 block[−SG_STRIDE] = grid[−terrain_dim .y] ;
58 }
59 if (ty == get_local_size (1)−1) {
60 if (get_group_id (1) == get_num_groups (1)−1)
61 block [SG_STRIDE] = block [0] ;
62 else
63 block [SG_STRIDE] = grid [terrain_dim .y] ;
64 }
65
66 barrier (CLK_LOCAL_MEM_FENCE) ;
67
68 float mod = 0 . 0f ;
69 const float a = block [0] . y + block [0] . w ;
70 #pragma u n r o l l
71 for (int i = 0 ; i < 4 ; ++i) {
72 int k = sg_off [i] ;
73 float b = block [k] . y + block [k] . w ;
74 float diff = b − a ;
75
76 if (fabs (diff) > 0 . 0 5f) {
77 // I am highes t
78 if (diff < 0) {
79 if (block [0] . w > 0 . 1f) {
80 float snow = block [0] . w ;
81 if(−diff < snow)
82 snow = −diff ;
83 mod −= 0 . 0 5f * snow ;

74 APPENDIX A. SOURCE CODE

84 }
85 }
86 else {
87 if (block [k] . w > 0 . 1f) {
88 float snow = block [k] . w ;
89 if (diff < snow)
90 snow = diff ;
91 mod += 0 . 0 5f * snow ;
92 }
93 }
94 }
95 }
96
97 barrier (CLK_LOCAL_MEM_FENCE) ;
98 block [0] . w += mod ;
99 grid [0] = block [0] ;

100 }
101
102 void reposition (float4 *pos , int4 scene_dim) {
103 // S h u f f l e p o s i t i o n b i t s around to get a new randomized p o s i t i o n at top
104 float temp = (*pos) .x ;
105 int3 ipos = (int3) { (int) ((* pos) .x * 1 0 0 . 0f) , (int) ((* pos) .y * 1 0 0 . 0f) , (int) ((* pos) .z * 1 0 0 . 0f) } ;
106 (*pos) .x = (ipos .x%750 − ipos .z%500 + ipos .y % 20) / 1 . 0f ;
107 (*pos) .z = (ipos .z%300 + ipos .x%300 + ipos .y % 20) / 1 . 0f ;
108 (*pos) .y = (float)scene_dim .y − 2 . 0f ;
109 }
110
111 __kernel void part_update (__global float4 *part_pos ,
112 __global float4 *part_vel ,
113 __global float4 *grid ,
114 WINDVEL_TYPE wind_vel ,
115 __global float *omegas ,
116 __global float *radiuses ,
117 __global __read_only float *convert ,
118 int4 wind_dim ,
119 int4 scene_dim ,
120 int4 terrain_dim ,
121 float delta_time ,
122 float snow_growth ,
123 float gravity) {
124 int tid = get_global_id (0) ;
125 float4 pos = part_pos [tid] ;
126 float4 vel = part_vel [tid] ;
127 float4 v_drag = sample_trilinear (wind_vel , (float4) {pos .x*convert [0] + 1 . 0f , pos .y*convert [1] + 1 . 0f , pos .z*←↩

convert [2] + 1 . 0f , 0 . 0f } , wind_dim) ;
128
129 v_drag .x −= vel .x ;
130 v_drag .y −= vel .y ;
131 v_drag .z −= vel .z ;
132 float temp = v_drag .x*v_drag .x + v_drag .y*v_drag .y + v_drag .z*v_drag .z ;
133 float v_fluid_abs = native_sqrt (temp) ;
134 temp = v_fluid_abs ;
135 v_drag .x *= temp*gravity*vel .w ;
136 v_drag .y *= temp*gravity*vel .w ;
137 v_drag .z *= temp*gravity*vel .w ;
138
139 float ax = v_drag .x ;
140 float ay = −gravity + v_drag .y ;
141 float az = v_drag .z ;
142
143 // E x t r a c t rot_ index and t h e t a from pos .w
144 int rot_idx = (pos .w/(2*M_PI)) ;
145 float rot_val = pos .w−((rot_idx) * (2 *M_PI)) ;
146 rot_idx−−;
147
148 float rot_omega = omegas [rot_idx & 3 1] ;
149 rot_val += rot_omega*delta_time ;
150
151 //and put i t pback
152 rot_val−=(rot_val>2*M_PI) * 2 *M_PI ; //wrap r o t _ v a l to make i t i n s i d e a l l o c a t e d space
153 pos .w = rot_val+ ((rot_idx+1) * 2 *M_PI) ; //Store back in pos .w
154
155 rot_omega *= radiuses [rot_idx & 3 1] ;
156 float v_abs = fmax ((float)native_sqrt (vel .x*vel .x + vel .y*vel .y + vel .z*vel .z) , 1 . 0f) ;
157 float v_circ_x = −sin (rot_val) * rot_omega ;
158 float v_circ_z = cos (rot_val) * rot_omega ;
159

A.2. SORTING 75

160 pos .x += (vel .x + v_circ_x) *delta_time + 0 . 5f*ax*delta_time*delta_time ;
161 pos .y += vel .y*delta_time + 0 . 5f*ay*delta_time*delta_time ;
162 pos .z += (vel .z + v_circ_z) *delta_time + 0 . 5f*az*delta_time*delta_time ;
163
164 vel .x += ax*delta_time ;
165 vel .y += ay*delta_time ;
166 vel .z += az*delta_time ;
167 part_vel [tid] = vel ;
168
169 if (pos .y < −1.0f) pos .y = scene_dim .y−2.0f ; //+= scene_dim . y ;
170 else if (pos .y > scene_dim .y) {
171 reposition(&pos , scene_dim) ;
172 float4 wind = sample_trilinear (wind_vel , (float4) {pos .x*convert [0] + 1 . 0f , pos .y*convert [1] + 1 . 0f , pos .z*←↩

convert [2] + 1 . 0f , 0 . 0f } , wind_dim) ;
173 part_vel [tid] = (float4) {wind .x , wind .y , wind .z , vel .w } ;
174 }
175
176 int moved = 0 ;
177 if (pos .x < 0 . 0f) {
178 pos .x += scene_dim .x ;
179 moved = 1 ;
180 }
181 else if (pos .x > scene_dim .x) {
182 pos .x −= scene_dim .x ;
183 moved = 1 ;
184 }
185 if (pos .z < 0 . 0f) {
186 pos .z += scene_dim .z ;
187 moved = 1 ;
188 }
189 else if (pos .z > scene_dim .z) {
190 pos .z −= scene_dim .z ;
191 moved = 1 ;
192 }
193 int2 ip = calcGridPos (pos , terrain_dim , scene_dim) ;
194
195 float4 hv = grid [terrain_dim .x * ip .y + ip .x] ;
196 float h = hv .y + hv .w ;
197 snow_growth = 0 .064f ;
198 if (pos .y < h) {
199 if (moved) {
200 reposition(&pos , scene_dim) ;
201 float4 wind = sample_trilinear (wind_vel , (float4) {pos .x*convert [0] + 1 . 0f , pos .y*convert [1] + 1 . 0f , ←↩

pos .z*convert [2] + 1 . 0f , 0 . 0f } , wind_dim) ;
202 part_vel [tid] = (float4) {wind .x , wind .y , wind .z , vel .w } ;
203 }
204 else if (ip .x != terrain_dim .x−1 && ip .y != terrain_dim .y−1) {
205 incrementHeight (terrain_dim , ip .x , ip .y , snow_growth * 0 . 1 5f , grid) ;
206 // . . . l o t s f o r more increment height funct ion c a l l s , which are removed to shorten the code in the appendix
207 reposition(&pos , scene_dim) ;
208 float4 wind = sample_trilinear (wind_vel , (float4) {pos .x*convert [0] + 1 . 0f , pos .y*convert [1] + 1 . 0f , ←↩

pos .z*convert [2] + 1 . 0f , 0 . 0f } , wind_dim) ;
209 part_vel [tid] = (float4) {wind .x , wind .y , wind .z , vel .w } ;
210 }
211 }
212 part_pos [get_global_id (0)] = pos ;
213 }

A.2 Sorting

A.2.1 BitonicSort.cl

In this section only significantly modified functions are included to try to keep the appendix in
a managable size.

1 /*
2 * B i t o n i c sor t , based on NVIDIA CUDA b i t o n i c s o r t example which i s
3 * Copyright 1993−2010 NVIDIA Corporation , but d e r i v a t i v e can be used as long as
4 * " This software conta ins sorce code provided by NVIDIA Corporation " i s in the documentation.−
5 *
6 * Changes copyright 2012 Freder ik M. J . Vestre under BSD the l i c e n s e with a t t r i b u t i o n .
7 *

76 APPENDIX A. SOURCE CODE

8 */
9 //Based on http ://www. i t i . fh−f l ensburg . de/lang/algorithmen/ s o r t i e r e n / b i t o n i c / b i t o n i c e n . htm

10
11 #define blockIdx ((unsigned int) get_group_id (0))
12 #define blockDim ((unsigned int) get_num_groups (0))
13 #define threadIdx ((unsigned int) g e t _ l o c a l _ i d (0))
14 #define threadDim ((unsigned int) g e t _ l o c a l _ s i z e (0))
15
16 //Remove , def ine as dependent 2* threadDim (* v a r _ s i z e)
17 #define SHARED_SIZE_LIMIT s h a r e d _ s i z e _ l i m i t
18 #define SORT_TYPE float4
19 #define KV_SORT
20 #define VAL_TYPE float4
21 #define MAKEKEY(key) (((((* key) . z * 10 00) +(* key) . y) * 1 0 . 0) +(* key) . x)
22
23 inline void Comparator (
24 __local SORT_TYPE *keyA ,
25 __local SORT_TYPE *keyB ,
26 #ifdef KV_SORT
27 __local VAL_TYPE *valA ,
28 __local VAL_TYPE *valB ,
29 #endif
30 int dir
31) {
32 SORT_TYPE tk ;
33 #ifdef KV_SORT
34 VAL_TYPE tv ;
35 #endif
36 if ((MAKEKEY (keyA) > MAKEKEY (keyB)) == dir) {
37 tk = *keyA ; *keyA = *keyB ; *keyB = tk ;
38 #ifdef KV_SORT
39 tv = *valA ; *valA = *valB ; *valB = tv ;
40 #endif
41 }
42 }
43 //Because of picky amd : (
44 inline void ComparatorLoc (
45 SORT_TYPE *keyA ,
46 SORT_TYPE *keyB ,
47 #ifdef KV_SORT
48 VAL_TYPE *valA ,
49 VAL_TYPE *valB ,
50 #endif
51 int dir
52) {
53 SORT_TYPE tk ;
54 #ifdef KV_SORT
55 VAL_TYPE tv ;
56 #endif
57 if ((MAKEKEY (keyA) > MAKEKEY (keyB)) == dir) {
58 tk = *keyA ; *keyA = *keyB ; *keyB = tk ;
59 #ifdef KV_SORT
60 tv = *valA ; *valA = *valB ; *valB = tv ;
61 #endif
62 }
63 }
64 __kernel void bitonicSortQndLocal (
65 __local SORT_TYPE *s_key ,
66 __global SORT_TYPE *d_DstKey ,
67 __global SORT_TYPE *d_SrcKey ,
68 #ifdef KV_SORT
69 __local VAL_TYPE *s_val ,
70 __global VAL_TYPE *d_DstVal ,
71 __global VAL_TYPE *d_SrcVal ,
72 #endif
73 __read_only uint arrayLength ,
74 uint dir ,
75 uint offseted
76) {
77
78 #define g l o b a l _ o f f s e t ((o f f s e t e d ! = 0) * threadDim)
79 #define LOC_START_ELM_IDX g l o b a l _ o f f s e t +(blockIdx * 2 * threadDim) + threadIdx
80 //use s t a r t of memory i f a t the end of block , and globa l o f f s e t
81 int offsetLast = (blockIdx==(blockDim−1)&&(offseted ! = 0)) ;
82 // o f f s e t l a s t i s equal within a block , which makes t e s t based on i t cheap
83
84 int end_elm_idx = ((offsetLast==0) * (global_offset+(blockIdx * 2 * threadDim) + threadIdx+ (threadDim)))

A.2. SORTING 77

85 + (offsetLast * (threadIdx)) ;
86 #define LOC_END_ELM_IDX end_elm_idx
87 s_key [threadIdx + 0] = d_SrcKey [LOC_START_ELM_IDX] ;
88 s_key [threadIdx + threadDim] = d_SrcKey [LOC_END_ELM_IDX] ;
89
90 #ifdef KV_SORT
91 s_val [threadIdx + 0] = d_SrcVal [LOC_START_ELM_IDX] ;
92 s_val [threadIdx + threadDim] = d_SrcVal [LOC_END_ELM_IDX] ;
93 #endif
94
95 for (uint size = 2 ; size < threadDim * 2 ; size <<= 1) {
96 // B i t o n i c merge
97 uint ddd = dir ^ ((threadIdx & (size / 2)) != 0) ;
98 for (uint stride = size / 2 ; stride > 0 ; stride >>= 1) {
99 barrier (CLK_LOCAL_MEM_FENCE) ;

100 uint pos = 2 * threadIdx − (threadIdx & (stride − 1)) ;
101 Comparator (
102 &s_key [pos + 0] ,
103 &s_key [pos + stride] ,
104 #ifdef KV_SORT
105 &s_val [pos + 0] ,
106 &s_val [pos + stride] ,
107 #endif
108 ddd
109) ;
110 }
111 }
112 if (offsetLast)
113 {
114 for (uint stride = threadDim/2; stride > 0 ; stride >>= 1) {
115 barrier (CLK_LOCAL_MEM_FENCE) ;
116 uint pos = 2 * threadIdx − ((threadIdx) & (stride − 1)) ;
117 if ((pos+stride) >=threadDim)
118 pos = 0 ;
119 Comparator (
120 &s_key [pos + 0] ,
121 &s_key [pos + stride] ,
122 #ifdef KV_SORT
123 &s_val [pos + 0] ,
124 &s_val [pos + stride] ,
125 #endif
126 (! dir)
127) ;
128 #if 1
129 Comparator (
130 &s_key [pos + (threadDim) + 0] ,
131 &s_key [pos + (threadDim) + stride] ,
132 #ifdef KV_SORT
133 &s_val [pos + (threadDim) + 0] ,
134 &s_val [pos + (threadDim) + stride] ,
135 #endif
136 (! dir)
137) ;
138 #endif
139 }
140 }
141 else
142 //ddd == d i r f o r the l a s t b i t o n i c merge step
143 {
144 for (uint stride = threadDim ; stride > 0 ; stride >>= 1) {
145 barrier (CLK_LOCAL_MEM_FENCE) ;
146 uint pos = 2 * threadIdx − (threadIdx & (stride − 1)) ;
147 Comparator (
148 &s_key [pos + 0] ,
149 &s_key [pos + stride] ,
150 #ifdef KV_SORT
151 &s_val [pos + 0] ,
152 &s_val [pos + stride] ,
153 #endif
154 (! dir)
155) ;
156 }
157
158 }
159 barrier (CLK_LOCAL_MEM_FENCE) ;
160 d_DstKey [LOC_START_ELM_IDX] = s_key [threadIdx] ;
161 d_DstKey [LOC_END_ELM_IDX] = s_key [threadIdx + (threadDim)] ;

78 APPENDIX A. SOURCE CODE

162 #ifdef KV_SORT
163 d_DstVal [LOC_START_ELM_IDX] = s_val [threadIdx] ;
164 d_DstVal [LOC_END_ELM_IDX] = s_val [threadIdx + (threadDim)] ;
165 #endif
166 }
167 //Continous memory a c c e s s with in bytes ; FIXME : can t h i s be read dynamicly and passed to the kernel ?
168 #define MEM_ACCESS_WIDTH_BYTES 128
169 __kernel void bitonicSortQndGlobal (
170 __local SORT_TYPE *s_key ,
171 __global SORT_TYPE *d_DstKey ,
172 __global SORT_TYPE *d_SrcKey ,
173 #ifdef KV_SORT
174 __local VAL_TYPE *s_val ,
175 __global VAL_TYPE *d_DstVal ,
176 __global VAL_TYPE *d_SrcVal ,
177 #endif
178 __read_only uint arrayLength ,
179 __read_only uint dir ,
180 __read_only uint sort_buffer_len ,
181 __local uint *buf_offsets
182) {
183 #define LOCAL_WIDTH (threadDim * 2)
184 #define NUM_BLOCKS (arrayLength/LOCAL_WIDTH)
185 #define USED_BUFFER_LEN (s o r t _ b u f f e r _ l e n)
186 #define BUF_PER_BLOCK (threadDim /(USED_BUFFER_LEN))
187 #define BBM_ADJ 1
188 #define BLOCKBUF_MISMATCH ((NUM_BLOCKS/(BBM_ADJ*BUF_PER_BLOCK)))
189
190 #define RIGHTOFFSET(idx) ((((idx) /USED_BUFFER_LEN) %(NUM_BLOCKS/BLOCKBUF_MISMATCH)) * (LOCAL_WIDTH))
191 #define BLOCKS_IN_MISMATCH (NUM_BLOCKS/BLOCKBUF_MISMATCH)
192 #define SOFF_IDX_FLIP (idx) (idx%BLOCKBUF_MISMATCH)
193
194 #define SHARINGOFFSET(idx) (SOFF_IDX_FLIP (idx) * (arrayLength/BLOCKBUF_MISMATCH))
195 #define BLKOFFSET(idx) (((idx/BLOCKBUF_MISMATCH)%BUF_PER_BLOCK) *USED_BUFFER_LEN)
196
197 __local uint localblock_offset_idx ;
198 uint bs_tmp ;
199 if (threadIdx%USED_BUFFER_LEN==(USED_BUFFER_LEN/2)) {
200 buf_offsets [threadIdx/USED_BUFFER_LEN] = (SHARINGOFFSET (blockIdx) +BLKOFFSET (blockIdx) +RIGHTOFFSET (←↩

threadIdx)) ;
201 }
202 #if 1
203 #if 1
204 barrier (CLK_LOCAL_MEM_FENCE) ;
205 if (threadIdx==0) { //FIXME : very bad u t i l l i s a t i o n , use binary search ins tead
206 localblock_offset_idx=0x4000000 ;
207 for (int i=0;i<BUF_PER_BLOCK ;i++) {
208 if (buf_offsets [i] >(blockIdx*LOCAL_WIDTH) +2) {
209 localblock_offset_idx=i ;
210 break ;
211 }
212 }
213 if (localblock_offset_idx==0x4000000)
214 localblock_offset_idx=BUF_PER_BLOCK ;
215 else if (localblock_offset_idx>0)
216 localblock_offset_idx−=1;
217
218 }
219 #else
220 if (threadIdx==0) { //FIXME : very bad u t i l l i s a t i o n , use binary search ins tead
221 localblock_offset_idx=BUF_PER_BLOCK/2;
222 }
223 #endif
224 barrier (CLK_LOCAL_MEM_FENCE) ;
225 #define LOCALPART_OFFSET (l o c a l b l o c k _ o f f s e t _ i d x *USED_BUFFER_LEN)
226 #define CUR_BUF_OFFSET(pos) (((pos) <LOCALPART_OFFSET) ? (b u f _ o f f s e t s [(pos) /USED_BUFFER_LEN]+ threadDim + ((pos)%←↩

USED_BUFFER_LEN)) : \
227 (((pos)−LOCALPART_OFFSET<threadDim) ? \
228 ((blockIdx*LOCAL_WIDTH) +(pos)−LOCALPART_OFFSET) : \
229 (buf_offsets [((pos)−threadDim) /USED_BUFFER_LEN]+threadDim+ ((pos−threadDim)%←↩

USED_BUFFER_LEN))))
230 #define GLOB_START_ELM_IDX CUR_BUF_OFFSET ((threadIdx))
231 #define GLOB_END_ELM_IDX CUR_BUF_OFFSET ((threadIdx+threadDim))
232 #else
233 #define CUR_BUF_OFFSET(pos) (b u f _ o f f s e t s [(pos) /USED_BUFFER_LEN])
234 #define GLOB_START_ELM_IDX blockIdx *LOCAL_WIDTH+threadIdx
235 #define GLOB_END_ELM_IDX (CUR_BUF_OFFSET(threadIdx)) +threadDim +(threadIdx%USED_BUFFER_LEN)

A.2. SORTING 79

236 #endif
237
238 #define MAKE_DIR(pos) d i r
239
240
241 s_key [threadIdx + 0] = d_SrcKey [GLOB_START_ELM_IDX] ;
242 s_key [threadIdx + threadDim] = d_SrcKey [GLOB_END_ELM_IDX] ;
243 #ifdef KV_SORT
244 s_val [threadIdx + 0] = d_SrcVal [GLOB_START_ELM_IDX] ;
245 s_val [threadIdx + threadDim] = d_SrcVal [GLOB_END_ELM_IDX] ;
246 #endif
247
248 for (uint size = 2 ; size < threadDim * 2 ; size <<= 1) {
249 // B i t o n i c merge
250 uint ddd = dir ^ ((threadIdx & (size / 2)) != 0) ;
251 for (uint stride = size / 2 ; stride > 0 ; stride >>= 1) {
252 barrier (CLK_LOCAL_MEM_FENCE) ;
253 uint pos = 2 * threadIdx − (threadIdx & (stride − 1)) ;
254 Comparator (
255 &s_key [pos + 0] ,
256 &s_key [pos + stride] ,
257 #ifdef KV_SORT
258 &s_val [pos + 0] ,
259 &s_val [pos + stride] ,
260 #endif
261 MAKE_DIR (pos)
262) ;
263 }
264 }
265 //ddd == di r f o r the l a s t b i t o n i c merge step
266 {
267 for (uint stride = threadDim ; stride > 0 ; stride >>= 1) {
268 barrier (CLK_LOCAL_MEM_FENCE) ;
269 uint pos = 2 * threadIdx − (threadIdx & (stride − 1)) ;
270 Comparator (
271 &s_key [pos + 0] ,
272 &s_key [pos + stride] ,
273 #ifdef KV_SORT
274 &s_val [pos + 0] ,
275 &s_val [pos + stride] ,
276 #endif
277 !MAKE_DIR (pos)
278) ;
279 }
280 }
281 barrier (CLK_LOCAL_MEM_FENCE) ;
282 #if 1
283 d_DstKey [GLOB_START_ELM_IDX] = s_key [threadIdx] ;
284 d_DstKey [GLOB_END_ELM_IDX] = s_key [threadIdx + (threadDim)] ;
285 #else
286 d_DstKey [blockIdx * 2 *threadDim+threadIdx] = GLOB_START_ELM_IDX ; // ((GLOB_END_ELM_IDX) %1000) *8 ;//←↩

GLOB_START_ELM_IDX ;
287 d_DstKey [blockIdx * 2 *threadDim+threadDim+threadIdx] = GLOB_END_ELM_IDX ;
288 #endif
289 #ifdef KV_SORT
290 d_DstVal [GLOB_START_ELM_IDX] = s_val [threadIdx] ;
291 d_DstVal [GLOB_END_ELM_IDX] = s_val [threadIdx + (threadDim)] ;
292 #endif
293 }

A.2.2 BitonicSortHostInterface.cpp

1 CLSorting : : CLSorting (GPGPU* device) {
2 // . . .
3 bsSharedQndLoc = clCreateKernel (program , "bitonicSortQndLocal" , &err) ;
4 bsSharedQndGlob = clCreateKernel (program , "bitonicSortQndGlobal" , &err) ;
5 }
6
7 uint CLSorting : : factorRadix2 (uint *log2L , uint L) {
8 if (! L) {
9 *log2L = 0 ;

10 return 0 ;

80 APPENDIX A. SOURCE CODE

11 }else {
12 for (*log2L = 0 ; (L & 1) == 0 ; L >>= 1 , *log2L++) ;
13 return L ;
14 }
15 }
16 uint CLSorting : : bitonicSortAdv (
17 cl_mem d_DstKey ,
18 cl_mem d_SrcKey ,
19 #ifdef KV_SORT
20 cl_mem d_DstVal ,
21 cl_mem d_SrcVal ,
22 #endif
23 uint batchSize ,
24 uint arrayLength ,
25 uint dir ,
26 int doSHMSort ,
27 int sort_num ,
28 int sort_den
29) {
30 int err ;
31 if (arrayLength < 2) //Nothing to s o r t
32 return 0 ;
33 cl_ulong shmSize=512;//min of : opencl work group shm s i z e and work items in work group
34 int ai ;
35 //Only power−of−two array lengths are supported by t h i s implementation
36 uint log2L ;
37 uint factorizationRemainder = factorRadix2(&log2L , arrayLength) ;
38 if (factorizationRemainder != 1) {
39 printf ("Warning, sort not power of 2") ;
40 return 0 ;
41 }
42 dir = (dir != 0) ;
43 size_t blockCount = batchSize*arrayLength / shmSize ;
44 size_t threadCount = shmSize/2;
45 blockCount *= threadCount ; // cuda dimensions −> opencl dimensions
46 if (false && arrayLength <= shmSize) {
47 if ((batchSize * arrayLength) % shmSize != 0) {
48 printf ("Array length not divisable by shm size") ;
49 return 0 ;
50 }
51 ai = 0 ;
52 clSetKernelArg (bsShared , ai++ , sizeof (cl_uint) , &shmSize) ; //SHM
53 clSetKernelArg (bsShared , ai++ , shmSize*sizeof (SORT_TYPE) , NULL) ; //SHM
54 clSetKernelArg (bsShared , ai++ , sizeof (cl_mem) , &d_DstKey) ;
55 clSetKernelArg (bsShared , ai++ , sizeof (cl_mem) , &d_SrcKey) ;
56 #ifdef KV_SORT
57 clSetKernelArg (bsShared , ai++ , shmSize*sizeof (VAL_TYPE) , NULL) ; //SHM
58 clSetKernelArg (bsShared , ai++ , sizeof (cl_mem) , &d_DstVal) ;
59 clSetKernelArg (bsShared , ai++ , sizeof (cl_mem) , &d_SrcVal) ;
60 #endif
61 clSetKernelArg (bsShared , ai++ , sizeof (cl_uint) , &arrayLength) ;
62 clSetKernelArg (bsShared , ai++ , sizeof (cl_uint) , &dir) ;
63 size_t mThread = shmSize/2;
64 size_t mBlock= arrayLength*mThread ;
65 err = clEnqueueNDRangeKernel (device−>queue , bsShared , 1 , NULL , &blockCount , &threadCount , 0 , NULL , NULL) ;
66 CL_CHECK_ERROR (err , "Error while calling bss kernel") ;
67 err = clFinish (device−>queue) ;
68 CL_CHECK_ERROR (err , "Error while running bss kernel") ;
69 }else {
70 ai = 0 ;
71 clSetKernelArg (bsShared1 , ai++ , sizeof (cl_ulong) , &shmSize) ; //SHM
72 clSetKernelArg (bsShared1 , ai++ , sizeof (SORT_TYPE) *shmSize , NULL) ; //SHM
73 clSetKernelArg (bsShared1 , ai++ , sizeof (cl_mem) , &d_DstKey) ;
74 clSetKernelArg (bsShared1 , ai++ , sizeof (cl_mem) , &d_SrcKey) ;
75 #ifdef KV_SORT
76 clSetKernelArg (bsShared1 , ai++ , shmSize*sizeof (VAL_TYPE) , NULL) ; //SHM
77 clSetKernelArg (bsShared1 , ai++ , sizeof (cl_mem) , &d_DstVal) ;
78 clSetKernelArg (bsShared1 , ai++ , sizeof (cl_mem) , &d_SrcVal) ;
79 #endif
80 if (doSHMSort)
81 err = clEnqueueNDRangeKernel (device−>queue , bsShared1 , 1 , NULL , &blockCount , &threadCount , 0 , NULL , ←↩

NULL) ;
82 CL_CHECK_ERROR (err , "Error while calling bss1 kernel") ;
83 err = clFinish (device−>queue) ;
84 for (uint size = 2 * shmSize ; size <= arrayLength ; size <<= 1) {
85 for (unsigned stride = (size * sort_num) /sort_den ; stride > 0 ; stride >>= 1)
86 if (stride >= shmSize) {

A.3. DRAWTMP.PY - FOR VISUALIZING THE SORTED DATA 81

87 ai = 0 ;
88 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_mem) , &d_DstKey) ;
89 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_mem) , &d_DstKey) ;
90 #ifdef KV_SORT
91 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_mem) , &d_DstVal) ;
92 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_mem) , &d_DstVal) ;
93 #endif
94 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_uint) , &arrayLength) ;
95 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_uint) , &size) ;
96 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_uint) , &stride) ;
97 clSetKernelArg (bsMergeGlob , ai++ , sizeof (cl_uint) , &dir) ;
98 size_t mBlock= (batchSize*arrayLength) /(shmSize/2) ;
99 size_t mThread = (shmSize/4) ;

100 mBlock*=mThread ;
101
102 err = clEnqueueNDRangeKernel (device−>queue , bsMergeGlob , 1 , NULL , &mBlock , &mThread , 0 , NULL , ←↩

NULL) ;
103 CL_CHECK_ERROR (err , "Error while calling bmg kernel") ;
104 err = clFinish (device−>queue) ;
105 }else {
106 ai = 0 ;
107 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_ulong) , &shmSize) ; //SHM
108 clSetKernelArg (bsMergeShared , ai++ , sizeof (SORT_TYPE) *shmSize , NULL) ; //SHM
109 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_mem) , &d_DstKey) ;
110 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_mem) , &d_DstKey) ;
111 #ifdef KV_SORT
112 clSetKernelArg (bsMergeShared , ai++ , sizeof (VAL_TYPE) *shmSize , NULL) ; //SHM
113 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_mem) , &d_DstVal) ;
114 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_mem) , &d_DstVal) ;
115 #endif
116 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_uint) , &arrayLength) ;
117 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_uint) , &size) ;
118 clSetKernelArg (bsMergeShared , ai++ , sizeof (cl_uint) , &dir) ;
119 err = clEnqueueNDRangeKernel (device−>queue , bsMergeShared , 1 , NULL , &blockCount , &threadCount ,←↩

0 , NULL , NULL) ;
120 CL_CHECK_ERROR (err , "Error while calling bms kernel") ;
121 break ;
122 }
123 }
124 }
125 return threadCount ;
126 }

A.3 Drawtmp.py - for visualizing the sorted data

1 # !/ usr/bin/python
2 # −*− coding : utf−8 −*−
3
4 import sys
5 from functools import partial
6 from itertools import permutations
7 from PySide import QtCore , QtGui
8 from PySide .QtCore import QPointF , QRectF , QLineF
9 from PySide .QtGui import QTransform , QColor , QVector2D

10 import json
11 import atexit
12
13 def main () :
14 iter_height = 10
15 app = QtCore .QCoreApplication (sys .argv)
16 iterations = None
17 print "Reading and parsing"
18 with open ("qnddata.txt" , "rb") as data :
19 iterations = [[float (element .strip ()) for element in iteration .strip (" ") .split (" ")] for iteration in ←↩

data .read () [0 :−1] .split ("\n")]
20 print "Parsed"
21 numiter = len (iterations)
22 # numiter = 3
23 iterstep = 1
24 img = QtGui .QImage (len (iterations [0]) , (numiter/iterstep) *iter_height , QtGui .QImage .Format_RGB32)
25 painter = QtGui .QPainter (img)
26 color = QtGui .QColor ()
27 MXP=11

82 APPENDIX A. SOURCE CODE

28 for i in xrange (0 ,numiter ,iterstep) :
29 iteration = iterations [i]
30 print "Painting" , i
31 for j ,element in enumerate (iteration) :
32 if 0.0 <element and element< 1 . 0 :
33 color .setHsvF (0 . 0 , 0 . 0 ,element) ; # g r e y s c a l e
34 # c o l o r . setHsvF (element , 1 . 0 , 1 . 0) ; # c o l o r
35 elif element<0:
36 color .setHsvF (0 . 1 , 0 . 5 , 0 . 5)
37 elif element>2**MXP :
38 color .setHsvF (0 . 5 , 0 . 1 , 0 . 9)
39 else :
40 color .setHsvF (element/ (2 * *MXP) , 1 . 0 ,element/ (2 . 0 * *MXP))
41 painter .fillRect (j ,i*iter_height , 1 ,iter_height−1,color)
42 color .setHsvF (0 . 5 , 0 . 9 , 0 . 9 , 0 . 5)
43 painter .fillRect ((len (iterations [0]) /2)−2, 0 , 4 , (numiter/iterstep) *iter_height ,color)
44 color .setHsvF (0 . 8 , 0 . 9 , 0 . 9 , 0 . 5)
45 painter .fillRect ((len (iterations [0]) /4)−2, 0 , 4 , (numiter/iterstep) *iter_height ,color)
46 color .setHsvF (0 . 2 , 0 . 9 , 0 . 9 , 0 . 5)
47 painter .fillRect ((3 *len (iterations [0]) /4)−2, 0 , 4 , (numiter/iterstep) *iter_height ,color)
48 painter .end ()
49 print "Painted, now saving"
50 img .save ("qndsortviz.png") ;
51 print "Saved"
52
53
54
55 if __name__ == "__main__" :
56 main ()

A.4 Testing

A.4.1 Script for generating test graph data

1 # !/ usr/bin/env python
2 from jinja2 import Template
3 from jinja2 import Environment , FileSystemLoader
4 from copy import copy
5 import shutil , os , subprocess , time , fcntl , signal , re , pickle
6 import datetime
7 codedir = "/Users/freqmod/pgmz/snowgit/"
8 builddir = codedir+"bld/"
9 env = Environment (loader=FileSystemLoader (os .path .dirname (os .path .realpath (__file__))))

10 renderTmp = env .get_template ("renderopts.h")
11 configTmp = env .get_template ("config.tmpl")
12 cfg = {'stereo' : 0 ,
13 'LBM' : 'false' ,
14 'road' : "../release/mntroad.rd" ,
15 'numpart' : 65536 ,
16 'renderSnow' : '0' ,
17 'simSnow' : '0' ,
18 'simWind' : '1' ,
19 'windX' : 62 ,
20 'windY' : 14 ,
21 'windZ' : 62 }
22 opts = {'drawWind' : False ,
23 'drawObs' : False ,
24 'drawPress' : False ,
25 'drawTerr' : False ,
26 'drawRoad' : False }
27
28 def dotest (opts , cfg) :
29 global renderTmp , configTmp ;
30 renderoptsCnt = renderTmp .render (opts)
31 configCnt = configTmp .render (cfg)
32 # generate renderopts . h and recompile the s imulator
33 shutil .copy (builddir+"snow" , "./snow")
34 snowout = open ("/tmp/comm.txt" ,"wb")
35 snow = subprocess .Popen (["./snow"] , stdout=snowout , stderr=subprocess .STDOUT)
36 print "Call"
37 time .sleep (1 0)
38 snow .send_signal (signal .SIGINT)

A.4. TESTING 83

39 time .sleep (3)
40 snowout .close ()
41 with open ("/tmp/comm.txt" ,'rb') as snowout :
42 snowoutput = snowout .read ()
43 avgfps = re .search (r'run was: ([0-9\.]+)' ,snowoutput) .group (1)
44 with open ("results.txt" ,'rb') as writtenresfle :
45 writtenres = writtenresfle .read ()
46 print "AVGFPS:" , avgfps
47 print "Terminated"
48 snow .terminate ()
49 return (avgfps , writtenres)
50 winds = (1 6 , 1 8 , 2 0 , 2 2 , 2 4 , 3 2 , 4 8 , 5 6) # , 6 4 , 9 2 , 1 2 8) # (2 * * 1 0 , 2 * * 1 2 , 2 * * 1 4 , 2 * * 1 6 , 2 * * 1 8 , 2 * * 2 0)
51 parts = (2 * * 1 1 , 2 * * 1 2 , 2 * * 1 3 , 2 * * 1 4 , 2 * * 1 5 , 2 * * 1 6 , 2 * * 1 7 , 2 * * 1 8)
52 results = []
53 # f o r part , wind in zip (parts , winds) :
54 # f o r part in p a r t s :
55 for wind in winds :
56 # cfg [' numpart '] = part
57 cfg ['windX'] = cfg ['windZ'] = wind
58 cfg ['windY'] = cfg ['windZ']/2
59 print opts ,cfg
60 result = dotest (opts , cfg)
61 results .append ((copy (opts) ,copy (cfg) ,result))
62 print results
63 with open ("results %s.txt" % (datetime .datetime .now ()) ,'wb') as fh :
64 pickle .dump (results , fh)

	Title Page
	Problem description
	Abstract
	English
	Norwegian

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Glossary
	1 Introduction
	1.1 Goals
	1.2 Problem description
	1.3 Project description
	1.4 Outline

	2 Mobile graphics computing units (GPUs)
	2.1 The emergence of smartphones
	2.2 Phone inspired tablets
	2.3 The use cases of mobile GPUs
	2.4 Mobile device manufacturing ecosystem
	2.5 Mobile GPU market
	2.6 State of standardisation
	2.7 Open source graphics drivers
	2.8 The architecture of mobile GPUs
	2.8.1 PowerVR tile rendering
	2.8.2 Mali tile rendering

	3 General purpose computing on graphical computing units
	3.1 High performance computing: The road to GPGPU
	3.2 History and benefits of OpenCL
	3.3 GPGPU architecture
	3.3.1 Programming model

	3.4 Memory model
	3.4.1 Synchronization

	3.5 Terminology used in GPGPU
	3.6 Debugging
	3.7 OpenCL
	3.7.1 Devices, Context & Command-queue
	3.7.2 Synchronization
	3.7.3 Memory

	3.8 OpenCL versus CUDA

	4 Description of the snow simulator
	4.1 History of the simulator
	4.1.1 Code history

	4.2 Organisation of the simulator
	4.3 Simulator flow
	4.3.1 Obstacles

	4.4 Wind simulation
	4.4.1 Navier-Stokes simulation

	4.5 Snow simulation
	4.6 Porting to OpenCL
	4.6.1 Abstracting API specific code

	4.7 Calling conventions
	4.7.1 Kernel porting
	4.7.2 Implementation changes

	5 GPU sorting
	5.1 Motivation
	5.2 Traditional sequential sorting algorithms
	5.3 Requirements for GPU algorithms
	5.4 GPU sorting algorithms
	5.5 Bitonic sort
	5.5.1 Previous bitonic sort implementations
	5.5.2 Porting bitonic sort from the CUDA SDK examples
	5.5.3 Optimizing and adapting bitonic sort for particle sorting
	5.5.4 Improving local correctness

	5.6 Integration with the snow simulator
	5.7 Future improvements to the sorting algorithm

	6 Tests and results
	6.1 Methodology, hardware and implementations
	6.2 Visualization of the results and statistical method
	6.3 CPU versus GPU wind simulation
	6.4 Full simulation
	6.5 Simulation on different GPUs
	6.5.1 The NVIDIA Tesla card
	6.5.2 The GPUS with display output
	6.5.3 Common trends

	6.6 Rendering performance
	6.6.1 Terrain rendering performance
	6.6.2 Snow rendering performance

	6.7 Visual results

	7 Conclusion & Future work
	7.1 Conclusions
	7.2 Future work

	References
	Appendices
	A Source Code
	A.1 Simulation GPU code
	A.1.1 WindSystem.cl
	A.1.2 SnowSystem.cl

	A.2 Sorting
	A.2.1 BitonicSort.cl
	A.2.2 BitonicSortHostInterface.cpp

	A.3 Drawtmp.py - for visualizing the sorted data
	A.4 Testing
	A.4.1 Script for generating test graph data

