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Sammendrag

Denne masteroppgaven presenterer en m̊ate for å kontrollere Microman-
agement i Real-Time Strategy (RTS) spill ved bruk av Potential Fields
(PF) som er optimisert ved hjelp av Multi-Objective Evolutionary Algo-
rithms (MOEA), nærmere bestemt Non-dominated Sorting Genetic Algo-
rithm (NSGA-II). Den klassiske RTS tittelen StarCraft: Broodwar er brukt
som testplattform p̊a grunn av sin status i AI miljøet, den detaljerte in-
formasjonen som er tilgjengelig fra tidligere forskning og prosjekter, og
open-source rammeverket Brood War Application Programming Interface
(BWAPI). Det foresl̊atte AI’et kontrollerer sine enheter ved å plassere flere
forskjellige Potential Fields p̊a slagmarken. Vektene som brukes bak PF’ene
sine kalkulasjoner er optimisert ved bruk av NSGA-II. Dette arbeidet er et
forsøk p̊a å forbedre tidligere metoder som er gjort med PF i RTS. Resul-
tatene indikerer at Multi-Objective Optimization er en egnet metode for å
optimisere PF i RTS.
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Abstract

This thesis presents an approach to controlling Micromanagement in Real-
Time Strategy (RTS) computer games using Potential Fields (PF) that are
tuned with Multi-Objectve Optimized Evolutionary Algorithms (MOEA),
specifically the Nondominated Sorting Genetic Algorithm (NSGA-II). The
classic RTS title StarCraft: Broodwar has been chosen as testing platform
due to its status in the competitive AI scene, the amount of detailed informa-
tion available from previous research and projects, and the free open-source
framework Brood War Application Programming Interface (BWAPI). The
proposed AI controls its units by placing several types of Potential Fields
onto the battlefield. The weights behind the PFs’ calculations are optimized
using NSGA-II. This work is an attempt to improve on previous methods
done with PF in RTS. The results indicate that Multi-Objective Optimiza-
tion is a suited method for optimizing Potential Fields in RTS games.
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Chapter 1

Introduction

StarCraft: Brood War is one of the most popular real-time strategy (RTS)
games in the world. Since its release in 1998 it has gained critical acclaim
and has been an important part of the electronic sports 1 scene. In South-
Korea the game is still widely played, and at a point the competitive scene
was so big that StarCraft matches is shown on Korean cable TV. This long
term popularity has resulted in numerous patches being released over the
years, making StarCraft a very balanced game. Balanced means that the
different races in StarCraft (there are three) are equal in strength. This
balance and popularity has caused a string of AI competitions to be aimed
at the StarCraft platform. Inspired by these events, most notably the 2010
conference Artificial Intelligence and Interactive Digital Entertainment (AI-
IDE) 2, which first featured StarCraft in 2010, prompted the desire to ex-
plore the possibilities of this domain. The goal of this thesis is to effectively
utilize Evolutionary Algorithms (EA) in an Artificial Intelligence (AI) for
StarCraft: Brood War.

1.1 Background Project

To prepare for this master thesis a specialization project was written the
semester prior. The project was to design an architecture for a StarCraft
AI to be used in the master thesis. Six groups, composed by a total of
twelve students, cooperated on the literature review part of this task, which
was a large undertaking and a total of 400 articles were considered. The
domains of AI, architectures and RTS games were explored and to do this

1Electronic sports is the general term for competitive play of video games. Other terms
are e-sports, pro gaming and cybersports.

2Organized by the RTS Game AI Research Group at the university of Alberta
http://webdocs.cs.ualberta.ca/ cdavid/starcraftaicomp/
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Chapter 1

in a thorough way the groups used a technique called structured literature
review (SLR). In short the SLR technique works like this: first use a set
of terms in various search engines to find a set of articles. These articles
are then filtered several times with increasingly complex techniques, so that
irrelevant articles are rejected early in the process to save time. The final
set of articles was very broad and resulted in unique architectures for each
group, designed based on the articles.

Some of the articles found during the SLR were used in this master thesis,
and the rich domain knowledge gained has been useful to understand how
best to approach our problem. The architecture to be used in this thesis was
designed in collaboration, and the implementation was done by the other
group. The architecture is further explained in Section 5.3.

1.2 StarCraft

This section is dedicated to describing the basics of StarCraft, and will
assume no prior knowledge of the game.

1.2.1 General Rules

In StarCraft you have a birds eye view of the battlefield, and you can select
and control your buildings or army by issuing commands such as e.g. moving
an individual soldier (hereafter referred to as a unit) of your army to certain
locations, or making a certain building produce a tank. These buildings and
units have hit points (HP), which is the amount of damage they can take
before being destroyed and removed from the game.

The game is won by defeating your opponent, which is much like a typical
war scenario where armies defend and attack until one part is overpowered.
Victories usually occur when a player concedes, which can be done at any
point in the game if a player decides his chances of winning are unrealistic.
The only other way of making Starcraft declare a winner is to destroy all
the buildings a player has until he has none left. There are three races in
Starcraft that players can choose to play as: Terran, Protoss and Zerg. These
all have different buildings and units available, and their strengths and weak
points differ. These differences are further elaborated in Subsection 1.2.2.

1.2.2 The Three Races

The story of StarCraft is set in space far in the future and centers around
the three races Terran, Zerg and Protoss. They fight for dominion over
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Introduction

the galaxy, which is the perfect excuse for staging countless battles in an
RTS game. While having very different strengths and weaknesses the three
races are viewed as being balanced and are equally favoured when playing a
match. However it requires skill when learning how to play each of the races
well, and knowing one race do not automatically make you a good player in
another race.

The differences and similarities are many, but the most characteristic differ-
ences are explained in the following paragraphs and shown in Figure 1.1.

Terran The Terran is a race of humans capable of travelling through space.
The relative strength of Terran units are placed between Protoss and Zerg
units, and is regarded as an easy race to learn. The other two races require
more knowledge and skill to win a match. Terran have good defensive mea-
sures and can more safely than the other races defend the base and amass
a huge army before attacking. Other special features of the Terran race is
that their buildings can be moved and their gatherers can repair certain
units and all buildings.

Zerg The Zerg is a race of insectoids, whose main interest is taking over
and devouring everything in the galaxy. The relative strength of the Zerg
units are the weakest and thus they have to employ different tactics than
the Terran race. As a counter to their weaker unit they are able to produce
a wast amount of units in a short period of time, quickly replenishing their
army. Some Zerg units are able to hide underground, and they can also have
the advantage of superior speed. These possible advantages are decided by
what upgrades that have been completed.

Protoss The Protoss is a race of aliens with a high intellect and psionic
powers. They have the strongest units, however they also have the highest
cost. All Protoss units have shields that have to be taken down (by doing
damage to the unit) before the Hit Points (HP) of the unit can be deplen-
ished. These shields regenerate and is one of the reasons Protoss units are
quite fearsome.

1.2.3 Resources and Economy

Buildings and units can be built or trained respectively using resources
which are gathered at predefined spots on each map. Each race has a build-
ing where resources can be deposited, called the main building. The main
building of each race is able to train units capable of harvesting resources.

3
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Figure 1.1: A comparison of the three races.

Figure 1.2 shows the unit training menu for the main building, notice it
can only train one type of unit (shown in the top left corner). Each race
has a different name for these units (Zerg has drones, Terran has SCVs and
Protoss has Probes), but their functions are identical, so the general term
for them is simply workers. These workers are able to gather resources and
depositing them in the main building, thereby earning the player resources
for him to spend.

The two types of resources are called minerals and vespene gas. These can be
gathered from points on the map called mineral patches and vespene geysers
respectively as shown in Figure 1.2. The main base acts as a collection point
and is typically placed by the player as close as possible to the mineral and
vespene gathering points to decrease the travelling distance of the worker
unit.

The more workers you have gathering resources the higher the gathering
rate you have, but only up to a certain point. The reason for this is that
each resource point can only be harvested by one worker at a time, so the
optimal amount of workers would be when a resource point is constantly
being harvested from by some worker, and there is no queue for workers when
they come to harvest. When this optimal amount of workers is achieved the
mineral patch or vespene geyser is saturated. When all all mineral patches
and vespene geyesers at a base is saturated the base is said to be saturated.

Each player starts with one main base, commonly called the main. The
closest spot where another base can be built is called the natural (short for
natural expansion) and the act of building a new base is called expanding.
Since the resources are limited and the gathering rate important for the
outcome of a game expanding to ones natural is usually something that a
player wants to do at some point during the game to increase his income.

4
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Figure 1.2: Screenshot taken from the main base of a Terran early in the
game. The yellow text and figures annotate different elements in the game
as well as the game’s user interface.

1.2.4 Technology

When constructing buildings the general purpose is to use them to produce a
selection of offensive units associated with the building. Buildings might also
offer purchasable upgrades for your units, such as increased damage. The
purpose of a building can also be to unlock higher technology. Technology,
also called “tech”, is the term for how advanced your available buildings,
units and upgrades are, thereby unlocking higher technology means getting
access to more buildings, units and upgrades.

As most units and buildings are not available in the beginning of the game,
the step of unlocking technology is usually repeated throughout the game
to help you fight your enemy. Little to nothing in Starcraft is free of charge,
so producing units and buying upgrades always costs resources.

The order in which buildings are built is an integral part of the game since it
is the recipe of how and when a player may get access to certain technology
and units. The sequence of which buildings unlocks what is called the tech
tree, an example of a hierarchical visualization is shown in Figure 1.3. A
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player will typically decide a certain path in the tech tree to follow, since
trying to unlock everything is too expensive and too time-consuming. The
activity of unlocking technology in the tech tree is called teching.

Figure 1.3: The first half of the Terran tech tree.

1.2.5 Units

The strength of a StarCraft unit is determined by its HP, armor, attack
damage, cooldown, attack range and the special attacks it can do. HP and
armor determines the survivability of the unit. The more armor a unit
has the less HP are lost from the same attack. The combination of the
attack damage and cooldown determines how much damage a unit can do
per time. Attack range plays a factor in that the longer a unit’s attack
range the further away the unit can stand and still attack an enemy unit. If
two units of opposing teams have different attack ranges the unit with the

6



Introduction

longest attack range will be able to attack several times before the other
unit is able to reach him. Special abilities can both boost survivability of
one or several units and do damage to one or several enemy units. Special
attacks will not be used in the implementation because of its complexity,
and thus not used in the strength definition.

A unit can be defined as strong relative to another unit if it has better
survivability and can do more damage over time. The other unit would
then be defined as weak. This definition is made for the sake of comparing
units in this report. The strength is not defined explicitly within the game,
but it is reflected through the cost of the unit. However, the usefulness
of a unit is determined by the situation, like what units it is facing. Since
some units are strong against others having the right composition given your
opponents composition might decide who wins an engagement.

If a unit kills one or more units that in total cost more than its own cost,
then this unit is cost effective. This is achieved by good unit composition
that counters the enemy units and good Micromanagement (see Section 3.2).
Some units can do attacks that affect an area on the map, called area of effect
(AoE) attacks. These attacks can do tremendous damage if fighting against
a group clustered units. This is a good example of cost efficient play. The
ability to do strong attacks usually comes at a price; e.g. the unit high
templar has a very strong AoE attack, but also have very few hit points,
making it very easy to kill if not positioned well (see Section 3.2)).

In order to own units a player needs something called supply. Supply is the
amount of units you can own at any given time, and it maxes out at 200.
Some units take up one supply while others can take up six. More supply
is gained from building certain buildings or units. There is one building or
unit for each race. If you do not have enough supply to create more units
you are supply blocked. Putting your opponent in this state by destroying
supply buildings or units is a good tactic.

1.2.6 Fog of War and Scouting

Fog of War (FOW) is a game mechanic normal in RTS games. FOW is
present wherever you don’t have any units or buildings placed, and you can
not see enemy units or buildings in those areas. Special for StarCraft is that
FOW is also present if enemy units are on higher ground than your units,
thus forcing you to move your own units to higher ground, as you cannot
attack anything you cannot see. It is the reason one has to do Scouting.

Scouting is the term used for finding out what your opponent is doing.
Notice how black the map shown in Figure 1.2 is, this is because the player
has not scouted anything and has only has map vision of his own base.
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Scouting is done in several ways, depending on what race you play and how
long the game has lasted. An example of scouting is moving a worker to
your opponent’s base to see what he is building and what number of units
he has trained. As the game progresses you will gain access to units which
are better suited for Scouting, e.g. flying and fast moving units. Some units
are also invisible, making them good scouts. Terran have a special ability
that lets them see a small area anywhere on the map for a short period of
time. Using this ability in the opponents base is a good idea.

By scouting your opponent you can observe what units he plans to train
and react by making units that counter them. It is also useful to decide
where it is best to attack and get alerted about impending attacks. As the
match progresses it is normal to try to monitor your opponents’ movements
constantly by placing scouts across the map.

1.3 Research Questions

Can RTS Micromanagement be perceived as a Multi-Objective Problem?
Will an implementation using MOO be an improvement of one using a single-
objective GA, and finally - will this be an improvement on previous work
done with Potential Fields in RTS games?
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Theory and Methodology

In this chapter the theoretical fundamentals and concepts the solution is
based on will be explained. The focus is on Potential Fields, Evolutionary
Algorithms, Multi-Agent Systems and Multi-Objective Optimization.

2.1 Potential Fields

Potential Fields, also called Artificial Potential Fields (APF), is a method
originally used for maneuvering robots between obstacles (Khatib, 1986). In
a topological space it creates attracting and repelling fields, typically centred
around a point. They can be thought off as magnetic charges working on a
charged particle, each field attracting or repelling. The sum of all the fields,
given the particles position, determines which direction it moves. Figure 2.1
shows a repelling Potential Field, where the repelling force is stronger closer
to the center of the field.

Potential Fields have mostly been used to control robots because of their
topological nature. However, they have also been used in other domains
where the problem can be solved by simulating topology. Potential Fields
have also been used for the deployment of mobile networks (Zavlanos and
Pappas, 2007) and RTS games (Hagelbäck and Johansson, 2008).

The force (attractive or repulsive) from a Potential Field decreases the fur-
ther away from the center you get. It can decrease in different ways: lin-
early; exponentially or discretely. The different variations represent different
wanted behaviours. For example a discretely decreasing field could be used
to keep the particle outside a strict boundary, useful for avoiding obstacles
because you do not want to be affected by the obstacle unless you are close
enough to crash. A linearly decreasing field on the other hand is better used

9
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Figure 2.1: A repelling Potential Field (Safadi, 2007).

when several units are to be considered at once. When deciding where to
move you will want to consider all enemy and friendly units and give more
weight to the units that are closer to you. This is useful because enemy units
close to you are more likely to be able to attack you, and friendly units close
to you more likely to be able to protect you. However enemy units that are
further away might be able to attack you if they move closer and thus have
to be taken into consideration as well.

When representing Potential Fields the strength value from each Potential
Field can be assigned to each pixel. An example of how this could look is
shown in Figure 2.2, where both a negative and a positive linear Potential
Fields are shown. A unit on a pixel position will move towards the pixel with
the highest value surrounding it. Of course, one can increase the granularity
and let several pixels represent one cell in a grid. This is actually a good
way to lessen the computational power needed to do computations with them
(Hagelbäck and Johansson, 2008). One does not have to represent such a
grid explicitly. One can use the distance between the agent and the fields
to create a result vector. If multiple units are using the same fields, e.g. if
the fields are set by a centralized intelligence, representing them in a grid
makes sense. The grid would be calculated beforehand and each unit would
only need to check the values of the spaces closest to it. If each unit has
their own Potential Fields calculating them this way would be impractical,
as it would mean each unit would have to represent the whole grid and then
decide what to do. Using the relative distance would be the best choice.

10
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Figure 2.2: Two potential fields with strength values shown.

Potential Fields have been applied to RTS games as shown by Hagelbäck and
Johansson (2008); Sandberg (2011). There are several advantages of using
Potential Fields, they handle dynamic domains well and easily produce the
behaviour wanted in these games (Hagelbäck and Johansson, 2008). Path-
finding in a dynamic environment can be very hard. The most common
path finding solution, the A* algorithm, struggles with this. Because of the
nature of Potential Fields dynamic environments does not give a Potential
Fields algorithm any extra work (Sandberg, 2011). Micromanagement (see
Section 3.2) is a good example of wanted RTS behaviour that’s possible with
Potential Fields. Moving units away from enemy units, which is sometimes
needed, can be done by placing negative fields on these units. Similarly
making your units attack a weak target the Potential Fields can be designed
to be strong on weak units.

2.2 Evolutionary Algorithms

Evolutionary Computation (EC) is a general term used for a group of
stochastic search techniques who are loosely based on the Darwinian princi-
ple Survival of the Fittest, which they utilize by emulating evolution to op-
timize and improve their solutions. EC groups several techniques, the main
types being Genetic Algorithms (GA), Evolutionary Strategies and Genetic
Programming. All of these are also classified by the term Evolutionary Al-
gorithms (EA), which have mechanisms in common such as reproduction,
mutation, recombination and selection. An EA has a population of encoded
solutions which can be manipulated by the mechanisms mentioned before,
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and evaluated by a fitness function (Floreano and Mattiussi, 2008). EA
requires both a fitness function as well as an objective, which represents a
more high-level goal than the fitness function. This will be presented in
Section 2.3.

An encoded individual in an EA population is called a genome, and is of-
ten represented as a string of bits, the encoding plans or blueprints for
these individuals are called genotypes. The genotype is composed of sev-
eral chromosomes, each of which represents a parameter for the solution.
The genotype is turned into a phenotype by taking the chromosomes and
decoding them into real values that can together form a testable solution
candidate.

The cycle of life in an EA is depicted by Figure 2.3. The cycle on the
figure starts in the bottom left corner as a set of genotypes, before the first
step of evolution the first generation is often randomly generated. Once
translated into phenotypes, the candidates have their fitness evaluated by
testing it within the specific problem domain. The fitness of each individual
determines their chance of staying in the population, and the chance of
being selected as parents to breed new individuals into the next generation.
Once the breeding is completed, the new genotypes are brought into the
population and the cycle continues onto a new generation of individuals.

Figure 2.3: The basic EA cycle (Downing, 2010).

12
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Evolutionary Operators (EVOPs) are techniques that are aimed at gener-
ating populations with high fitness, the three major EVOPs for EA are
selection, recombination and mutation (Coello et al., 2007).

Selection decides how individuals of a population are drafted for parent-
hood depending on their fitness. There are several techniques available for
EA implementation, one of which is tournament selection. In tournament
selection the individuals are drafted into smaller groups, or tournaments, to
compete against each other for parenthood using their fitness values. The
size of these tournaments are chosen manually and determines the selection
pressure of the EA. Selection pressure is how difficult it is to be drafted for
parenthood. The higher the selection pressure the more the individuals with
high fitness are favoured, as a result the convergence rate in EA is largely
determined by the selection pressure. The tournaments are held until the
number of parents wanted has been reached (Floreano and Mattiussi, 2008).

Elitism is the act of preserving an entity to the next generation without
changing it. You do this if you want to preserve the best individuals in
a population without risking that they are drastically changed during mu-
tation or recombination. Elitism is an important part of Multi-Objective
Optimization (see Section 2.3).

The Recombination EVOP focuses on how to best combine the different
chromosomes of each parent to produce a new genotype that ideally takes the
best properties from each partner genotype. Recombination in evolutionary
algorithms is crossover, which cuts the parent genotypes at one or more
given points and recombines the parts into a new child. In Figure 2.4 single-
point crossover is shown. The two parts of the bars parents and children
represent the chromosomes. The crossover operation switches part of each
chromosome to create two new children with a part of each parent (Floreano
and Mattiussi, 2008).

Figure 2.4: An example of a single point crossover done by cutting genotype
segments and recombining pieces of each parent.
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The mutation EVOP is the process of randomly changing the genome. Mu-
tation can change one or several parts of the genome in a random fashion.
How it is changed depends on the representation of the geneotype. In Figure
2.5 we show an example of mutation where the genotype is a series of bits
and it is mutated by inverting a single bit on a random place in the bitstring.
Changing several parts of the genome at once would make it change drasti-
cally. Mutating too rarely, on the other hand, could make the EA converge
towards a local optima.

Figure 2.5: Single bit mutation

Choosing the right combination of EVOPs and their parameters is crucial for
the performance of an EA. There is no domain-independent answer that is
more correct. It depends on the problem at hand and how an EA represents
that problem, and there is room for creativity and intuition when tuning the
parameters. The parameters of an EA is mutation chance, crossover chance,
selection mechanism, population size and the number of generations.

2.3 Multi Objective Optimization

Earlier we mentioned how an EA require both an objective and fitness func-
tion. The difference between these two can be vague at times. Objectives
are high-level goals in the problem domain which describe what you want to
accomplish. While fitness functions work in the algorithm domain to mea-
sure how well a particular solution manages to accomplish these goals, this is
done by assigning a value to that solution that reflects the measured quality.

Definition 1. (Pareto Dominance (Coello et al., 2007)) A vector
u = (u1, ..., uk) is said to dominate another vector v = (v1, ..., vk) (denoted
by u � v) if and only if u is partially less than v, i.e., ∀i ∈ {1, ..., k}, ui ≤
vi ∧ ∃i ∈ {1, ..., k} : ui < vi.

When a problem has multiple conflicting objectives, it becomes increasingly
complex to represent the overall quality of a solution by a single fitness
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function. We can define the problem of multi-objective optimization as the
search for a vector of decision variables which are optimized to yield bal-
anced and acceptable results for all the objectives. The clue to this is to
find good compromises (or trade-offs) to satisfy all the objectives evenly,
the goal being to find the Pareto optimum, which is defined as:

Definition 2. (Pareto Optimality (Coello et al., 2007)) A solution
x ∈ Ω is said to be Pareto Optimal with respect to (w.r.t) Ω if and only
if there is no x′ ∈ Ω for which v = F (x′) = (f1(x

′), ..., fk(x′)) dominates
u = F (x) = (f1(x), ..., fk(x)).

Saying a vector v1 dominates vector v2 means that it performs better over
all the objectives as Definition 1 states. This can be illustrated by looking at
the solutions in objective space by plotting them in a coordinate space where
each objective is a dimension as shown in Figure 2.6. The outer solutions
in this space who do not have both their coordinates exceeded by another
solution form collectively what is called the Pareto front.

Figure 2.6: Non-dominated vectors in objective space, collectively called the
Pareto front (Deb et al., 2000). This objective space has two objectives and
thereby two dimensions.
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Since the definition of a multi-objective problem suggests it is not possible to
have a single, globally optimal solution, the ability of EA to produce a large
variety of candidate solutions is very beneficial. This has motivated many
Multi Objective Evolutionary Algorithms (MOEAs) to be suggested. The
primary goal of these MOEAs is to utilize EAs ability to generate multiple
Pareto-optimal candidates in a single run.

The problem of evaluating the performance of a Micromanagement AI can
be viewed as a multi-objective problem, there are several factors to consider
when evaluating the performance of the AI, and it will sometimes be difficult
to compare two solutions as they might excel at different Micromanagement
techniques (later discussed in Section 3.2). A multi-objective approach will
make it possible to optimize the Micromanagement solution for several tech-
niques at once, so the complex behaviour that is micromanagement can be
approximated.

2.3.1 Nondominated Sorting Genetic Algorithm (NSGA-II)

One of the most adopted Multi Objective Genetic Algorithms (MOGA) is
the improved non-dominated sorting genetic algorithm (NSGA-II) which is
an elitist approach that does not require any additional user-defined param-
eters. NSGA-II combines the population of adults Rt and the population
of children Qt, and sorts them according to their non-domination rank as
shown by the pseudo code in Figure 2.7. The rank is based on what pareto
front the individual belongs to in accordance to who the individual domi-
nates and who it might be dominated by.

NSGA-II attempts to promote diversity and good spread in the objective
space by looping through the population and assigning a Crowding Distance
metric to each solution as shown in Figure 2.9, this reflects how close it is
to its neighbouring solutions and keeps the population diverse by making
the algorithm more likely to explore solutions from lesser clustered objective
space.

When creating the mating pool NSGA-II uses a selection operator ≥n which
rewards objective fitness and spread by looking at the non-domination rank
and crowding distance. The logic behind the operator is shown in Figure 2.8.
It then continues by selecting the N best solutions for Pt+1 according to the
operator (N being the population size). Binary Tournament selection and
recombination EVOPs are then applied to create a new offspring population
Qt+1.
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Figure 2.7: Pseudo code of the fast non-dominated sort algorithm used in
NSGA-II (Deb et al., 2000)

The main loop of NSGA-II as shown in Figure 2.10 is repeated until a user
defined condition is met, or manually terminated.
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Figure 2.8: The selection operator as presented by (Deb et al., 2000).

Figure 2.9: Pseudo code for the crowding distance assignment (Deb et al.,
2000).

Figure 2.10: Pseudo code for the NSGA-II main loop (Deb et al., 2000).
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Game Domain and
Mechanics

StarCraft is a complex game and it is best described in different parts. The
game can be divided into Macromanagement and Micromanagement. This
chapter will detail specifically Micromanagement mechanics, what available
information is important to consider and how a computer can potentially
outplay a human at Micromanagement.

3.1 Macromanagement

Macromanagement is making high level decisions during a match. These
decisions entails as to what buildings to build, when to attack, when to
scout, and in general strategical and tactical decisions. A big part of these
decisions is what to use your accumulated resources on, and when one should
try to increase the income by expanding to a new base. An example of when
it is wise to expand is when attacking the enemy, so that the enemy does
not have the opportunity to attack your new base while it is undefended.

While having a thought out plan about what to build at the start of the
match is good, being able to adapt to new information during a match is
even more important. If you are able to spot your opponent’s buildings or
units you can figure out what his plans are, and adapt to counter him. This
is some of the reason why the game is so complex, your opponent can do
something that you have never seen before, or pretending to do something
else than what he is really doing. This high level of reasoning is called the
meta-game.

In this project we are collaborating with another group, and they will be

19



Chapter 3

handling the Macromanagement part of the game. This gives the oppor-
tunity to focus exclusively on Micromanagement, which is described in the
following subsection.

3.2 Micromanagement

Micromanagement is the activity of controlling units during a battle. Doing
this well requires a lot of skill and concentration. While it is possible to play
StarCraft without prioritizing Micromanagement, doing so helps immensely
because it will allow the player to be cost effective with his units (Sandberg,
2011). Positioning one unit in the wrong place can decide whether you loose
or win a combat engagement, which again can decide if you win or loose the
match. The game has a simple path algorithm which positions your units
for you when you are moving in to attack an enemy, but the positioning
is rarely optimal because the algorithm only considers finding the shortest
path from A to B.

The most important Micromanagement techniques are; positioning, focusing
fire, withdrawing units temporarily, and keeping units alive. Being able to
execute these three puts you at a great advantage over players who can’t,
as you can be more cost-effective.

3.2.1 Positioning

Positioning involves where different types of units stand in relation to each
other, the enemy and the environment. Examples of positioning are that
weaker units should stand behind stronger units for protection, and units
that want to be healed needs to stand within attack range of healing units.
In the latter case the attack is a healing attack that replenishes HP, not one
that does damage. Units should stand in such a way that they can attack the
enemy while still having the ability to retreat. Standing on higher ground
makes your units’ attacks stronger.

Where your units should stand varies on the situation they are in. At some
times your units should be spread to avoid area of effect attacks, at other
times they should be grouped together so not to be picked off by enemy units.
The numerous behaviours needed as well as the complexity of each behaviour
makes it a difficult problem implementation-wise. Both the positions and
the types of enemy units needs to be considered. It is also more general
than the other techniques mentioned, and thus a bigger task to take on.
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3.2.2 Focus Fire

Having your units attack the same enemy unit, is called focus fire, and will
let you take down the enemy units more effectively. Which types of units
you focus on first is important as some units can be killed fast but have very
strong attacks. Taking down units that are close to dying is also important
as they can keep attacking at full strength until they are dead.

The challenge here is to make sure focus firing is happening without putting
your units at a greater than necessary risk. Which means that you should
attack weak units but not if it means running through a a group of enemy
units to do so. Of course, the pros and cons of doing any move in StarCraft
are numerous.

3.2.3 Retreating

Each unit has a cooldown between attacks, which is the time it takes to
reload the weapon. When a unit is on cooldown it is unable to attack
until the cooldown wears off. Moving out of range of enemy units when
on cooldown lets the unit avoid damage like Figure 3.1 shows. If this is
exploited and your enemy fails to exploit it one has a great advantage.
These techniques are very useful, but also hard to do for a human player
because you usually control numerous units at a time. For example the task
of selecting a single unit from a group of 50 and Micromanaging it while
having to Macromanage is a difficult task. Especially since you would want
to retreat several units every second for the whole duration of the battle. A
computer is able to do these tasks effortlessly and with millisecond precision,
this is further explained in Subsection 3.3.1.

When using a computer each of these tasks can have their own processes
(see Section 5.3) and acting with millisecond precision is possible.

The challenge here is to do the move effectively. The unit should move out of
range for just long enough, so that it can attack at once when the cooldown
wears off. If enemy units follow it this becomes increasingly difficult, es-
pecially if the result is that the unit has to run far before the cooldown
wears of. If this leads the unit to be backed up against the wall it is at a
disadvantage larger than that of being on cooldown.

Micromanagement is a problem where each instance in time have almost an
endless search space of possible moves and outcomes, and shows really how
complex RTS games are. Brute forcing this problem is out of the question,
as even determining if an action at an instance is optimal is impossible to
determine. The best we could hope for would be a solution where good
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Figure 3.1: These two screenshots shows a Dragoon attacking and moving
away from a Zealot. Dragoon is able to exploit its superior attack range by
moving away from the Zealot while the Dragoon is on cooldown.

guesses can be made in any situation. In other words a highly dynamic
solution.

3.2.4 Staying alive

Keeping units alive is very important as a damaged unit can still do damage
to enemy units, but a dead one cannot. Because of this one often wants
to pull damaged units away if they’re being attacked. If not explicitly con-
trolled a unit will attack the closest unit of the opposing team within attack
range. This means that if a damaged unit is pulled away, the enemy unit(s)
attacking it might shift focus to another one of your unit. Hopefully one
with more HP.

Other ways to make sure your units stay alive is attacking with undamaged
units first. To do this technique an AI one would have to make sure a unit
changes its behaviour when it is damaged in such a way that it would be
more careful than the undamaged units. Thus staying alive for longer than
it would otherwise.

3.3 Attributes

StarCraft is a highly complex domain and it is important to objectify it
to understand how the methods presented in Chapter 2 can be used to
effectively solve the problem of Micromanagement. Relevant information
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that can be abstracted and used in Micromanagement will be discussed
here.

A map in StarCraft should be perceived as a grid. The positions on this
grid are represented by two dimensional coordinates x and y, where there
is one coordinate for each pixel on the grid. The map can vary in size and
usually contains various forms of terrain: flat terrain; low- and high ground;
ramps that provide a way to move from low- to high ground and impassable
obstacles. All information about the size and shape of the terrain is final and
is known to every player. It is important to note that vision from low- to high
ground is greatly reduced, giving advantage to anyone fighting on the high
ground onto the low ground. Chokepoints are narrow areas, and a group
of units within the chokepoint will be at a disadvantage against a group of
enemy units of the outside. This is because the units in the chokepoint will
not be able to spread out so all units can attack simultaneously. Such factors
are important to analyse when entering a combat, and it is easy to located
the coordinates of these choke point by using terrain analysing features in
the API.

To objectify the domain we will determine the properties and variables of it.
Properties are constant while variables can vary for each timestep. First the
objectification of the map will be shown to give an understanding on how
the basic information flow works. Like where a unit can walk and how this
data is presented in BWAPI which will be presented in Chapter 5. The most
important thing to take away from these properties and variables are what a
position on the map means. afterwards the properties and variables directly
related to Micromanagement will be presented, as they are important for
understanding the solution.

• Obstacles (property)

• Ramps (property)

• Chokepoints (property)

• Low Ground (property)

• High Ground (property)

• Mineral Deposits (property)

• Vespene Geysers (property)

• Units (variable)

• Buildings (variable)

A property is the property of the terrain at the position in question. All
positions are either defined as high- or low ground, but can only have one
more property. Either that it is an obstacle, a ramp, that it is in a chokepoint
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or that it is clear terrain. Mineral Deposits and Vespene Geysers area have a
constant position but they gradually decrease in value (amount of remaining
resources) as they are gathered from. Units and buildings are variables in
the way that they are not constant in any position or in the game. All
units, and some buildings, can move around and all units and buildings can
be destroyed. Only one unit or building can be in the same position at once,
with the exception of workers when gathering minerals.

A player will always have complete information about his own units. In-
formation about enemy units are available as long as they are not covered
by the fog of war. This includes not only their coordinates and velocity,
but also a series of variables and properties that can be exploited and used
in calculations to determine Micromanagement decisions or analysis. The
properties and variables of special interests are:

• Armor (property)

• Cooldown (property)

• Attack damage (property)

• Attack range (property)

• Movement speed (property)

• HP (variable)

• Remaining cooldown (variable)

• Position coordinate (variable)

Properties of units is information that do not change, with a few exceptions
that are not relevant to the solution. While variables are observed data
that is unique and can change every timestep. The properties show the
relative strength of the unit as discussed in Subsection 1.2.5, and the aggre-
gated strength of enemy and friendly units is important for deciding if to
attack or run away from a combat engagement. The variables are real-time
information and useful for Micromanagement decisions, especially the posi-
tion coordinate because it can be used to calculate the distance to the unit.
When combined with attack range the distance gives information about if
an enemy unit can attack the unit, if the unit can attack the enemy unit
and how far it has to move for any of these to happen.

3.3.1 Actions Per Minute

Actions per minute (APM) is a common term in the RTS genre. It is a
measurement for the speed or frequency at which a player is able to interact
with the game. It does not directly correspond to the skill of a player, but
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it can show how aware a player is, the intensity of a situation and how fast
the player is able to carry out the actions that needs to be done. Typical
APM ranges from 20 for beginners to about 300 for professional gamers 1.
This is a game mechanic where an AI can easily reach inhuman capabilities,
some StarCraft AIs have a recorded APM of several thousand 2.

3.3.2 Functions

Section 3.3 has so far covered the detailed, low-level data that can be ab-
stracted from the game. This subsection will elaborate on how this informa-
tion can be used in computations to make decisions in Micromanagement.

As implied in Subsection 3.3.1 there is great potential for AI in RTS when
it comes to multi-tasking and speed. A human player will consider and use
most of the information available to a degree when doing Micromanagement,
but it is impossible for him to observe all the information at the same time.
An AI will on the other hand be able to measure everything precisely and
control all the units with the same precision. This is the main advantage an
AI has over a human player. It lacks the complex reasoning ability a human
has, but can make up for it with superior oversight and unit control.

For the AI to be able to make Micromanagement decisions in StarCraft
it needs to use the properties and variables related to Micromanagement.
There are several key equations that will enable the AI to execute the Micro-
management techniques. One such equation uses the relationship between
attack ranges and distance. To explain this MSD will be defined as the
unit’s maximum attack range, eMSD as the enemy unit’s maximum shoot-
ing distance and distance as the distance between then two units.

If MSD−eMSD > 0 the unit will be able to attack the enemy unit without
being hit itself, as long as it pulls back after it has attacked. It can attack
again when the remaining cooldown is 0. This is the retreating technique
(see Subsection 3.2.3). On the other hand if MSD − eMSD < 0 the unit
will be in the opposite position and risk getting hit far more times than the
opponent. If MSD << eMSD the retreating technique cannot be executed
and attacking without retreat is the best tactic, because the unit will not
be able to take advantage of the MSD difference. Using the distance vari-
able, found by calculating the vector between two coordinates the following
equation can be created:

distance− eMSD > 0 (3.1)

1http://wiki.teamliquid.net/starcraft/Actions per Minute
2Recorded footage of AIIDE StarCraft AI Competition contestants are freely available

on YouTube
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This function can be used as a boolean expression, outputting True if the
unit is outside the enemy’s attack range and False if it is inside it.

The remaining cooldown variable is important in relation to what actions
the unit should take. If on cooldown (remaining cooldown > 0) the unit
should pull away from the enemies’ attack ranges to avoid getting hit unnec-
essarily. When on cooldown the unit should attack an enemy unit as soon
as possible, since not doing this right away reduces the total damage output
of the unit. This implies that if a unit is to pull away from enemy attack
ranges it still has to be close enough so it can attack once the cooldown is
finished. The following function can be used to distinguish between being
on cooldown and not being on cooldown:

remaining cooldown > 0 (3.2)

The HP variable can be used to determine which enemy to take down in an
engagement, as well as determine if the unit needs to be more careful (if it’s
HP is low). The less HP an enemy unit has the fewer attacks are needed to
destroy it and the sooner it dies the sooner it is no longer able to attack.
If several friendly units were to focus on the same enemy it would also be
destroyed quicker. Looking at the HP of a friendly unit on the other hand
can be used to determine if the unit should put more focus on staying alive,
as discussed in the previous section. To create functions to represent the
HP of friendly and enemy units the following variables are defined: HP as
the unit’s HP, eHP as the enemy’s HP and max(X) as the maximum value
of variable X.

1− eHP

max(eHP )
(3.3)

1− HP

max(HP )
(3.4)

By HP
max(HP ) you get the percentage of the remaining HP of the unit. So each

of the equations’ output increases as the HP of the unit decreases. This is
useful to emphasize low HP.

Equation 3.3 returns a high value when the enemy unit’s HP is low. This
can be used to target enemy units with low HP, as described in Subsection
3.2.2.

Equation 3.4 returns a high value when the unit’s HP is low. When a friendly
unit’s HP is low measures should be taken to make it stay alive, as discussed
in subsection 3.2.4.
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This chapter has covered the more advanced aspects of StarCraft, the next
chapter will cover related research in this domain and how previous StarCraft
AI’s has used some of some of the information presented here.
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Related Work

In this chapter we will mention research related to our work and further on
detail some StarCraft bots that have had significant importance in our own
research and implementation.

The idea of evolutionary computation (EC) was made widely known in the
1960s by Rechenberg (1965); Fogel et al. (1966); Holland (1975), and was
aimed at tackling problems in software and hardware systems that were
too difficult for the current available analytical methods, by exploiting the
mechanics of natural evolution. Today it is applicable in many fields such as
machine learning, system optimization, hardware design, computer-assisted
manufacturing, material production technologies, and robotics (Floreano
and Mattiussi, 2008, p. 1). Evolutionary algorithms, a subset of EC, has
the potential to discover novel, innovative solutions that differ greatly from
human-designed solutions. A good example of this statement is the NASA
X-band antenna that was designed by the help of an evolutionary algorithm
(Floreano and Mattiussi, 2008, p. 40).

Evolutionary Algorithms have been used for several types of games and
while not in widespread use it has proven useful in certain domains. Among
these are first-person shooter games (Priesterjahn et al., 2006) and real-time
strategy games (Fernandez-Ares et al., 2011). It is the most effective when
used to optimize decision mechanisms that are already in place, like state
machines (Fernandez-Ares et al., 2011), behaviour trees (Lim et al., 2010)
or Potential Fields (Hagelbäck and Johansson, 2008)

Multiple objectives in problems has been a troubling issue for optimiz-
ing solutions. Classical optimization methods have suggested converting
the multi-objective optimization problem to a single-objective optimization
problem by emphasizing one particular Pareto-optimal solution at a time
(Deb et al., 2000). However, due to the EAs ability to search for multiple
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solutions concurrently in a single run, several multi-objective optimization
evolutionary algorithms (MOEAs) have been suggested over the years (Zit-
zler and Thiele, 1998). One of the most famous algorithms to date that
has shown promising results (Deb et al., 2000) is the nondominated sorting
genetic algorithm (NSGA-II), which we will be using as part of our imple-
mentation. NSGA-II is an improved version of NSGA suggested by (Srinivas
and Deb, 1994), which reduces the complexity of the original algorithm from
O(mN3) to O(mN2).

This work is largely based on Johan Hägelback’s research on using multi-
agent Potential Fields in real-time strategy games (Hagelbäck and Johans-
son, 2008) and adjusting these fields by the help of the optimization tech-
niques of genetic algorithms (Sandberg, 2011). The idea of using artificial
Potential Fields (APF) in multi-agent systems (MAS) is not a new one how-
ever, where the earliest ideas of this roots back to 1986 robotics (Khatib,
1986). Newer research shows more applicable areas for APF’s, Howard et.al
presented a potential-field based approach to deploying a mobile sensor net-
work (Howard et al., 2002), and the concept was first brought to the game
domain by Johannson et.al (Johansson and Saffiotti, 2001) who used Ar-
tificial Potential Fields (APF) in a bot for the Robot Soccer Cup in 2001.
The same year (Vadakkepat et al., 2001) also applied Evolutionary Artificial
Potential Field on the Robot Soccer platform, adjusting the weights of the
APF with multi-objective evolution.

Multi-Agent Systems has been used in games such as the board game Diplo-
macy (Kraus and Lehmann, 1995), Johansson has also defined a general
architecture of this kind aimed at board games (Johansson, 2006). Com-
bining this self-organized type of system with APF was first presented by
(Hagelbäck and Johansson, 2008), in which they showed a step-by-step
methodology for designing Multi-Agent Potential Field (MAPF) solutions
for RTS games. This work was later followed up by (Sandberg, 2011) who
explored the possibility of adjusting the weights of MAPF’s with evolution-
ary optimization (see Section 4.1 and Section 4.2). Sandberg also chose
StarCraft: Broodwar as the testing platform to develop the AI for, arguing
for the balanced gameplay and interesting high complexity.

Numerous bots have been created for StarCraft and similar RTS games. Few
of them have been documented well, however some have thorough scientific
articles describing them. These have given us a good deal of information
and is the closest we get to knowing what is good solutions without testing
it ourselves.
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4.1 MAPF bot

In a series of articles Johan Hagelbäck (Hagelbäck and Johansson, 2008)
uses Potential Fields in RTS games, among them StarCraft. The whole
game is controlled by Potential Fields but a lot of the focus is directed
towards Micromanagement. His articles are the inspiration for Sandberg
(2011) which is further explored in 4.2.

Hägelback uses Multi-Agent Potential Fields (MAPF) for his solution. In
MAPF each agent has their own Potential Fields where each agent is a unit
in the game. Potential Fields are also assigned to objects and to abstract
concepts like reacting to opponents movements (called forces). When de-
signing the MAPF solution one goes through several steps to make sure the
solution is good enough (Hagelbäck and Johansson, 2008).

1. Identify the objects of the game.

2. Identify the driving forces in the game.

3. Assign fields to objects.

4. Identify the granularity and space in the enviornment.

5. Identify the agents.

6. Design the supporting architecture.

In this solution the Potential Fields are calculated once every frame and
they are shared among all the units in one group. Each unit then looks at
the 8 tiles around him and the one he is standing on to determine in which
direction to move. It moves in the direction where the value is the strongest.
If the strongest pixel is the one the unit is on the unit will stay still.

The Potential Fields for StarCraft are not discussed in detail, so equations
are unknown, however the Potential Fields for other games are discussed.
The important thing to know is that there are few types of fields, four in
the case of the game Tank Battle which also is a RTS game.

Hägelback adresses the challenge of Fog Of War (Hagelbäck and Johansson,
2008). He showed that with minor additions to the algorithm the perfor-
mance could become as good as without FOW. The most important part was
saving the condition of the units not currently visible because of FOW. Also
having perfect information about the obstacles on the map is a necessity.

Hagelbäck and Johansson (2008) also addressed possible problems one can
have when using Potential Fields. Like units getting stuck in local optima
and performance issues. For getting stuck in a local optima he suggests
adding random noise to the calculations so the output always is a little bit
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Figure 4.1: Two potential fields with strength values shown (Hagelbäck and
Johansson, 2008). The lighter the blue color is the stronger the field is.

different. For performance issues he suggests increasing the granularity (see
Section 2.1) and making sure the Potential Field equations are effective.

The weights for the attributes that decide how strong or weak a Potential
Field is, are hard coded. However since he has few attributes he is doing
OK. If one were to have more attributes, the task of finding the correct
combination of weights would be very difficult. If one were to use more
attributes another approach would be desirable.

The bot did OK against the best bots from the 2010 AIIDE competition,
winning 33% of the matches. To improve the results Hagelbäck and Jo-
hansson (2008) suggests improving the Micromanagement and exploiting
the special abilities of different units better.

4.2 EMAPF bot

Thomas Sandberg presents an AI that uses Potential Fields and Evolu-
tionary Algorithms (Sandberg, 2011). His method is named Evolutionary
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Multi-Agent Potential Fields (EMAPF) and is based on the MAPF method
described in the previous section. The upgrade done by Sandberg is that
he uses Evolutionary Algorithms to tune the weights of the Potential Fields
functions instead of hard coding them like Hagelbäck does. He argues that
tuning the Potential Fields is time-consuming and difficult, and using EA
to tune them will be easier and allow for more attributes to be used.

The Potential Fields are calculated in the same was as in (Hagelbäck and
Johansson, 2008), but the fields themselves are different. For one there are
more types of Potential Fields, and the rationale behind this is that the EA
optimization is able to handle more Potential Fields than hard-coding. The
different fields are:

Maximum Shooting Distance An attractive field that attracts the unit
to be within shooting distance of an enemy.

Weapon Cool Down A repulsive field on an enemy unit when the unit is
on cooldown.

Centroid Of Squad An attractive field on the center of the squad of units
that the unit is a part of.

Center Of The Map An attractive field at the center of the map to make
units favor the center of the map over the edges.

Map Edge A repulsive field on the edge of the map so units won’t walk
into it.

Own Unit A repulsive field on friendly units to avoid collisions.

Enemy Unit A repulsive field on enemy units to avoid collisions.

Neutral Unit A repulsive field on neutral units to avoid collisions.

The same pipeline is used for designing the solution as it is in the MAPF
solution, but tuning of the EA is added. The detailed description of how
Sandberg (2011) designs his EA is useful. For example he has a large number
of parameters, which is also his reason for optimizing with an EA.

He is also focused on Small Scale Combat (SSC), which essentially is the
same as Micromanagement. In his experimental setup there are no buildings
and thus no possibility to produce new units. Instead each player is given a
set of units, and the player with units left wins. The main reason why his
experimental setup is interesting is that he uses BWAPI, the same API as
the one used for the experiments in this thesis. Which means that some of
the challenges he faced and his solution to these challenges will be similar
to those in this work.

During training he calculates the fitness after an engagement has ended.
The fitness functions include the amount of units you have, how many units
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you have killed and how many you have lost. Finally the remaining hit
points and shields are added to the score. The experiments in this report
will be done in a similar fashion, using a custom-made map and predefined
units. This lets you control the enviornmental attributes you want the AI
to take into account while training.

The EMAPF implementation produces good results, beating the built-in AI
in StarCraft consistently, (Sandberg, 2011), which strengthens its relevance.
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Tools and Framework

In this chapter the API used to communicate with StarCraft will be ex-
plained, as well as a library that extends the API called BWSAL. The
architecture for the AI in this work will also be presented, which contains
a modular case-based reasoning (CBR) framework and that the Microman-
agement AI plugs into.

5.1 BWAPI

Brood War Application Programmable Interface (BWAPI) 1 is the API that
is going to be used for controlling and getting information from StarCraft:
Brood War. This is the API that the StarCraft AI competitions are based
on 2. It was also the basis in the authors’ Specialization Project where
the research was centred around the use and possibilities of BWAPI. The
API is written in and for C++, however there exists wrappers for several
languages like Java and Python. Once compiled the DLL (Dynamic-link
library) is injected by launching StarCraft using the third-party program
Chaoslauncher 3.

BWAPI gives complete access to the game states and control over all units
and buildings, as well as lookup information about different static game
properties. To exemplify what unit information of high importance BWAPI
provides; the current hit points (HP), position coordinates, cooldown (for
the next attack), attack strength as well as a myriad of unit-type specific
information. These are also examples of the type of information that will be

1http://code.google.com/p/bwapi
2AIIDE acquired a content-use license from Blizzard to host the competition in 08.2011
3http://wiki.teamliquid.net/starcraft/Chaoslauncher
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exploited in the AI that this report presents, and will be further explored in
Chapter 6.

5.2 BWSAL

The Brood War Standard Add-on Library (BWSAL) is a library for BWAPI
that provides several useful features. Among these are automating building
placement, scouting and additional unit information.

While the features provided by BWSAL is mainly of interest for AIs more
versatile than one only focusing on Micromanagement, the UnitGroup and
the UnitGroupManager classes will prove useful. They provides additional
information about the position of the AI’s units, as well as relevant topo-
logical positions like choke points.

There are no alternative language wrappers available for BWSAL, which
means that any project using it needs to be written in C++.

5.3 Architecture

The architecture for the AI bot is based on the research done by the authors
and several other students during a collaborative Specialization Project. The
architecture behind the AI is structured as a module that can be plugged into
a Case Based Reasoning (CBR) oriented agent architecture that is developed
in parallel by a group of colleagues in connection with their thesis. The focus
of the CBR agent is around Macromanagement, and the Micromanagement
AI in this report will act as a plug-in that is activated as a reactive part of the
system. The top-level architecture for this system is showed in Figure 5.1,
and will be further explained in the following paragraphs.

The architecture is based on a layered architecture used in robotics. It has
three layers, where the top one is the Planning layer, the second one is the
Executive layer and the third is the Reactive layer. The Planning layer
makes plans, and alters them as new information is gained.

The Executive layer will be responsible for resource management, deciding
how to execute plans and in which order to do so. It passes the plans down
to the reactive layer. The commands passed are composed of keywords like
“Attack” and “Enemy base”.

The Reactive Layer executes its orders by initializing new Behaviours. Be-
haviours are given specific unit groups or buildings that is theirs to supervise
and control. A Micromanagement AI will act as a Simple Behaviour in this
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Planning

ExecutiveGlobal store Communication

BWAPI

Reactive

Sensors Actuators

Figure 5.1: The three layered architecture.

system as shown in Figure 5.2, instantiation will come from the Reactive
layer once it senses a combat situation. When instanced the Micromanage-
ment Behaviour will be delegated control over the units that needs to be
Micromanaged.

A behaviour is able to communicate its success with the Executive layer, and
through that the Planning layer, with a simple communication protocol. A
behaviour is usually initialized with a specific order like “Attack Enemy Base
X”. After this order is complete, or if the execution of this order fails, the
behaviour reports back before terminating. In the case of the Micromanage-
ment AI the order is to destroy the target within range of the group of units.
If the enemy units are destroyed a “Success” is returned. If all the friendly
units in the group dies then “Failed” is returned. Behaviours will live until
either the behaviour itself says that it is done, or it is prematurely killed.
Killing the Micromanagement behaviour may happen if the Executive layer
finds that the unit group is of more use somewhere else or it predicts that
the group will loose the combat engagement and should escape instead. The
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Micromanagement AI makes no such predictions, and will thus continue its
behaviour until either all the units in its possession are dead, or the enemy
units are.

Reactive Layer

Global State 
Monitor

Behaviour Tree

Complex
Behaviour

Complex
Behaviour

Simple 
Behaviour

Simple 
Behaviour

Simple 
Behaviour

. . .

Behaviour 
Instantiation

Behaviour 
Update

New 
Behaviour

Figure 5.2: The Reactive layer.

In addition to the mentioned layers the architecture has the Global Store
and the Communication Module. The Global Store works as a collective
memory and is similar to a Black Board. It keeps updated information on the
game state as well as variables used. An example is that if new information
comes to light all parts of the architecture gets to know it at once and can
change their behaviour accordingly. The Communication Module handles
the communication between layers in a simplistic but consistent way and is
what is used for the API as discussed in the previous paragraph. Having
the Communication Module lets the different layers be independent of each
other, as they do not need information about where the messages comes
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from or goes to.

The Micromanagement AI as a Simple Behaviour in relation to the system
architecture is depicted in Figure 5.3. The inner workings of the Microman-
agement AI will be further detailed in the next chapter.

Figure 5.3: Architectural view of the Micromanagement AI implemented as
a Simple Behaviour.
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Chapter 6

Model

The solution to the Micromanagement problem will be Potential Fields that
are tuned by a multi-objective genetic algorithm (MOGA). The Microman-
agement techniques presented in Chapter 3 are the basis for the solution.

Since the solution is complex the explanation will be divided into parts ad-
dressed separately. The solution is an expansion of the ideas from Hagelbäck
and Johansson (2008) and Sandberg (2011), using MOGA to optimize in-
stead of GA.

6.1 AI Overview

The AI will be in one of two possible modes when playing. The training mode
is for evolving solutions with a GA, and the testing mode is for running a
match with a manually set solution. This section will focus mainly on the
training mode and this is this mode that is used for finding the final solution.

At the beginning of a match the AI will have a genome that represents a
set of weights used in the Potential Field functions, these weights will be
used for the entirety of the match and the purpose of the match will be
to test how well the AI performs with the given weights. This means that
during training, as the AI will pick different weights, the AI’s behaviour will
only change between matches. How these weights and their Potential Fields
decide the actions of the controlling units is explained in Section 6.2.

In training mode each StarCraft match is a fitness test. The data that is used
to decide the fitness is gathered both during and at the end of the match,
and then used in the fitness functions (see Section 6.2.1). This means that
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Figure 6.1: Overview of the AI in training mode.

during training the set of weights represented by the genome will evolve,
and the average individuals behaviour change.

While in testing mode the AI performs quite similarly to the testing mode
shown in Figure 6.1, except that it disconnects the evaluating and evolving
part, and has a manually set weight array. This means that its behaviour
will never change between matches. The testing mode will be used for the
experiments.

6.2 Potential Fields

The algorithm will decide in which direction a unit will move or who to
attack based on the Potential Field functions. They will output a value that
represents a direction or a target, and is translated by the algorithm into a
StarCraft command. The purpose of the Potential Fields is to execute the
techniques presented in Section 3.2.

Every unit you control will have their own Potential Fields which means
they have to be calculated for each unit. This is in contrast to Hagelbäck
and Johansson (2008) who have the same Potential Fields for all groups of
units. The fields will be placed on all enemy units in sight and at the center
of the group (COG) of soldiers you control. The fields on the enemy units
are for deciding who to attack and deciding in which direction to retreat.
The fields placed at the center of the group are for directing the unit towards
other friendly units when retreating. The Potential Fields will be updated
several times each second because the environment in StarCraft is highly
dynamic and fast paced.
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6.2.1 Functions

The functions decide how strong a field is. There are three potential fields:
One for enemy units when not on cooldown, one for enemy units when on
cooldown, and one for the center of squad.

There are different fields depending on whether it is for an enemy unit,
COG, or if the unit is on cooldown. The functions use the properties and
variables presented in Section 3.3. Sandberg (2011) inspired the general style
of the functions, especially the dependence on Maximum Shooting Distance
(MSD), but they are quite different because the placement is different. Also
there are fewer types of Potential Fields (only three), because this approach
to the Micromanagement problem is different. There is more focus on Mi-
cromanagement techniques and less on general Micromanagement in the
solution in this thesis.

The functions will use the following terminology:

force The total attraction/repulsion exerted from one Potential Field.

distance The distance from the enemy unit.

MSD The maximum shooting distance of the unit.

eMSD The maximum shooting distance of the enemy unit.

HP The unit’s HP.

eHP The enemy unit’s HP.

HPmax The maximum amount of HP a unit can have.

wn A weight.

max(x, y) The greater of x and y.

forceattack = w3 ∗ (1− eHP

eHPmax
) + w4 ∗

1

distance
(6.1)

Equation 6.1 shows the function used when the unit is not on cooldown. In
this mode the Potential Fields around enemy units will have an attracting
force, and the unit with the highest attractive force is attacked. It is neces-
sary that only the strongest field is the one that affects the movement of the
unit to achieve focus firing. Because if a unit in StarCraft is commanded
to attack in a direction it will automatically attack the closest one, but to
achieve effective focus fire one will want to, at times, attack other units than
the closest one.
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forceescape =

{
w0 ∗ distance if(distance−max(MSD, eMSD) + w2 ∗ (1− HP

HPmax
) > 0)

− w1
distance else

(6.2)

Equation 6.2 shows the function for the field emitted by an enemy unit
when a friendly unit is on cooldown. The force of the field is repulsive if
you are inside the enemy unit’s maximum shooting distance in addition to
a threshold, and attractive while outside. The result is that the unit is kept
a certain distance outside the enemy unit’s MSD, so that it can avoid being
attacked by the enemy unit while being able to move in for the attack as
soon as the cooldown is over. Because of this it is desirable that this distance
is short, but not so short that the unit cannot escape.

forceCoG = w5 (6.3)

Equation 6.7 shows the function used for the COG Potential Field. It is
only active while on cooldown, because attacking takes priority when the
unit able to attack. However when on cooldown all the forces are summed
to decide the direction of where the unit should move. The COG Field is
used to guide the unit towards the other friendly units, which is a part of
the positioning challenge. If gathered together units have less of a chance
to be picked off. The field is constant and only dependent on the weight,
which represents the importance of moving towards the COG.

Before implementing the functions they were simulated in Excel to see if the
functions created the desirable Potential Fields.

6.3 NSGA-II

NSGA-II will be used to tune the weights used in the Potential Fields func-
tions. Because of the complexity of the problem (defined in Section 1.3)
several objectives are needed, and multi-objective optimization is a good
way to solve problems with multiple objectives (Coello et al., 2007). It is
also a way for us to improve upon the solution presented in Subsection 4.2.

The objectives represent how well the AI performs the Micromanagement
techniques. These behaviours are: positioning, focus firing retreating and
staying alive as discussed in Section 3.2. The NSGA-II algorithm will op-
timize the PF functions’ weights using fitness functions based on the ob-
jectives. Parameters like mutation rate and population size will be tuned
manually.
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6.3.1 Objectives

The objectives are:

Focus firing attacking a weaker unit.

Positioning moving the units to their optimal positions.

Tactical retreating moving away from enemy firing range when on cooldown.

Staying alive retreating more further when unit’s HP is low.

Representing the objectives directly in fitness functions is not feasible, but
implicitly doing so is possible. The resulting fitness functions reward one or
several of the objectives at once, but care has been taken to make sure they
are not overlapping more than necessary.There has also been an attempt to
make them as generic as possible to allow for new behaviours. There are a
total of four fitness functions who focus on different parts of the performance.

fitnessKS =

∑noKilledUnits
n=0 valueUnitn −

∑noLostUnits
n=0 valueUnitn∑noEnemyUnits

n=0 valueUnitn ∗ 2
(6.4)

The killscore (fitnessKS) is a value calculated by StarCraft at the end of
each match. It is based on how many units lost compared to units lost by the
opponent, and takes into account the relative strength of each unit, giving
a higher score to units who are stronger. n represents a unit, identified by
a number between 0 and the total number of killed or lost units. valueUnit
is the value of the unit. Because the total value of the enemy units and the
total value of the friendly units is not necessarily the same, the value range
of fitnessKS varies according to what units are fighting.

The killscore awards all the objectives and is a general measure of good
Micromanagement. Focus firing is rewarded because focus firing kills en-
emy units faster than not focus firing. The other objectives are based on
survivability and surviving means loosing fewer units.

fitnessHP =

∑noUnits
n=0

HPn
max(HPn)

noUnits
(6.5)

The HP fitness (fitnessHP ) is the average HP remaining at the end of the
match divided by the maximum HP possible. HPn is the HP of unit n and
max(HPn) is the highest HP the unit can have. The fitness is a measure
of how many hits the units have taken and especially rewards tactical re-
treating. Of course, it is a general reward as all the fitness functions give
off bad values given a loss. The HP fitness will output 1 if no friendly units
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took any damage during the match. If the match was lost, the fitness will
return the remaining enemy units’ HP as a negative value, resulting in -1 if
no damage was dealt by the friendly units.

fitnessFF =

∑noUnits
n=0

damagen
max(damagen)

noUnits
(6.6)

The focus fire fitness (fitnessFF ) function takes the current damage output
and divides it on the maximum damage output possible up to this point.
damagen is the damage a unit n has done this far. The result will be between
0 and 1 and represent how large a percentage of the total possible damage
the group of units have done.

This fitness function rewards attacking as often as possible, and though
it does not reward focus firing explicitly it is likely to boost it because it
makes sure everyone attacks. When everyone attacks focus firing is more
likely to occur. Non-attacking unit will be heavily punished by this function.
There is no explicit focus fire fitness function, but it is encouraged in the
PF functions, and if it is a useful tactic it will be rewarded because fewer
units die.

fitnessSA =

∑noUnits
n=0

timeAliven
max(time)

noUnits
(6.7)

The last fitness function records how long a unit managed to stay alive in
relation to the total time. It is averaged over all units because it is the
performance of the group as a whole that is relevant. Focus firing, position-
ing and staying alive is only effective if two or more units are cooperating.
The fitness function rewards survivability and is meant to promote moving
back while hurt and let other units with more HP take damage, as well as
positioning correctly when on cooldown.

6.3.2 Genome Representation

The genotypes in the population are normalized bitstrings. Since the differ-
ent PF weights will have different proportions as described in the previous
subsection, the decoding algorithm has a set of parameters telling it the
range and number of bits dedicated to each of the chromosomes. E.g. one
weight might have the range [0.10] represented by 8 bits, which will allow it
to differentiate up to circa 0.04 accuracy.
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6.3.3 Evolutionary Operators

For the NSGA-II implementation mutation, single-point crossover and bi-
nary tournament selection was used. Mutation is done on the individual-
level, meaning that an individual has one chance for one of its genes to be
mutated and nothing more. Crossover has one chance in the breeding pro-
cess to do a single-point crossover, if this occurs a random point between the
chromosomes is chosen and recombination is done on two parents to create
two recombined children as Figure 2.4 shows.
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Experiments

In this chapter the experimental setup and the experiments will be pre-
sented. The results will be thoroughly discussed in relation to the experi-
mental setup and the implementation. In the experiments we wish to tune
the Potential Fields to different combat scenarios consisting of different unit
compositions, which is defined in Section 7.2. Each scenario will have its
own training session and its separate generation data to work with. Genera-
tion data will not be exposed to a mix of testing scenarios, which means that
two different scenarios will produce two different sets of potential solutions
over two different training sessions. The reason for this is that different
variations of unit compositions fighting each other will have different prop-
erties and therefore different potentials for what can be accomplished with
Micromanagement (see Section 3.3). It is impossible to test every variation
of scenarios since there are so many, but by having a set of general scenarios
it will be easier to observe the difference in performance and results. The
first scenario is chosen because it is the best unit composition for utilizing
all the Micromanagement techniques at once. The second scenario will be
one used by Sandberg (2011) so that the Potential Fields solution can be
compared with theirs.

The questions these experiments attempt to answer are:

• Does the Potential Fields solution optimized by Multi-Objective Op-
timization (NSGA-II) perform better than one optimized by Genetic
Algorithms?

• Does the AI perform better than the AI created by Sandberg (2011)?

These questions are designed to answer the research questions (see Sec-
tion 1.3) using the techniques presented in Chapter 6.

The first questions will be answered by creating two Potential Field solu-
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tions. One evolved by a NSGA-II and one evolved by a GA. The two will be
compared by the results and the data gathered from the training process.

To be able to answer the second question the AI has to be tested in a
similar setting as Sandberg (2011). In his report he describes numerous
experiments, unfortunately the results of these experiments are not repre-
sented in a way that makes them easily comparable. Another problem is
that reconstructing the exact same experimental environment is difficult be-
cause some of the experimental parameters are not documented, and the
map used for the experiments must be reconstructed based on description
and assumptions. A similar experiment will have to suffice. In the exper-
iments by Sandberg the successfulness of a match scenario is described by
units lost and units remaining, which will be used as result comparison for
the second of the experiment in this report.

7.1 Experimental Setup and Configurations

This section will describe the preparations, the configurations and how the
experiments were to be conducted.

7.1.1 Test Platform

All tests were run on a desktop computer with 3GHz Intel Core 2 Duo CPU,
4GB RAM and 64-bit Windows 7. The following software was installed in
order to perform the experiments:

• StarCraft: Broodwar retail version patched to 1.16.1

• BWAPI 3.6.1 (revision 3769)

• BWSAL 0.9.12

• Boost C++ Libraries 1.49.0

• Chaoslauncher 0.5.4.1

To speed up testing, the system doing the experiment ran multiple instances
of StarCraft. All the instances loaded and saved data from a shared XML
file, allowing each instance to pick an untested individual from the popula-
tion. This required that one instance acted as an evolution master, meaning
that when all the individuals in the population were tested the evolution
master would produce a new generation to the XML file while the other
instances waited. The runtime of each test was made additionally faster
with the BWAPI function setLocalSpeed(0), meaning zero delay between
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each game frame. Additional configurations such as disabling CPU throt-
tling, the sound engine and user interface has also been made to increase
the testing performance.

7.1.2 Evolutionary parameters

To find the most suited crossover and mutation rates the AI was evolved
with six different sets of parameters. The population was evolved over 20
generations in order to distinguish and compare the result data. The reason-
ing behind the fixed number of solutions was based on trial and error, after
looking at a couple of graphs from different mixtures of population size and
number of generations it was found that 20 generations with 40 individuals
was sufficient information to distinguish between evolutionary progressions
with different pairs of crossover and mutation parameters.

Since the a match is not deterministic the more matches a genome is tested
on the more accurate and representable the average results will be, for the
results in this report each genome has been tested two times. This number
comes from the experiment attributes that was used by Sandberg (2011).

It took around 2 hours to reach the 20th generation. The unit composition
used in these tests were 9 Vultures controlled by the AI versus 9 Hydralisks
controlled by the built-in StarCraft AI.

The collection of result data from the six different test runs can be found in
Appendix A. Figure 7.1 shows a comparison of the highest performing set of
parameters versus one of the lowest performing sets. Judging by the result
data and the growth in fitness shown shown in the figure, evolution with 3%
mutation and 15% crossover proved to be the best set of parameters.

FitnessKS is a strong indicator of the results of a match. The higher
fitnessKS is the more enemy units have been killed compared to how many
friendly units have been lost. Thus this is the most important fitness value
when deciding which solution has the best performance. The other objec-
tives are important for the development of the NSGA-II algorithm, as they
award different techniques, but not as important for deciding the best in-
dividual. A steady growth in the objectives is however important, as it
indicates a non-random development and implies that they can converge
towards a good value.

The results vary quite a bit and stays within a smaller value range than
expected. This will be further explored in Section 7.4 and 7.5.

The NSGA-II algorithm is quite different from a normal GA algorithm in
the way that it uses more elitism (see Section 2.3.1), as well as the mutation
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Figure 7.1: Comparison of the best results, 3% mutation 15% crossover, and
one of the worst results 15% mutation 15% crossover.

EVOP being performed on the individual level. Thus a higher than normal
mutation rate and crossover can be safely used to explore diverse solutions
while still keeping the best solutions.

7.1.3 Potential Fields functions

For the experiments the ranges of the weights used in the Potential Field
functions need to be determined. Since several functions use more than one
weight, they need to be proportionally correct to each other in order to
reflect their magnitude of importance.

For example in forceattack (Equation 6.1) there are two parts of the calcula-
tion. w4 ∗ 1

distance is the most significant part, and will be of a higher range
than w3 ∗ (1 − eHP

max(eHP )). At the same time the last part needs to have a
relatively high maximum value in order to not be disregarded completely.
w4 will have a higher maximum value than w3 to avoid running through
enemy units as discussed in Subsection 6.2.1.

However as all weights have a minimum value of 0, the weight w4 can still
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be disregarded if it is found to be unimportant. This opens for emergent
behaviour. For example it is possible that focusing down enemies with low
HP does not help win a match faster and the evolved solution will move
that weight towards 0.

All the weight ranges have been set in relation to each other by manually
calculating the Potential Field outputs in theoretical scenarios.

The weight ranges are showed in the following table:

Weight Minimum Maximum

w0 0 50

w1 0 1000

w2 0 10

w3 0 400

w4 0 1000

w5 0 500

Table 7.1: unit data table

w3 and w4 are in forceattack (Equation 6.1) which decides which enemy unit
to attack. It is the only Potential Field in effect when not on cooldown and
as a result the size of these two weights are only relative to each other. As
mentioned, w4 should have a higher range than w3. The maximum value
has been set to 1000 and 400 respectively.

w0 in Equation 6.2 is the part of forceescape that decides how much a unit
should be attracted to enemy units if outside their MSD in addition to a
threshold. w2 is the weight that affects this threshold. This Potential Field
is only in effect when the unit is on cooldown. The other Potential Field
that is active while on cooldown is forceCoG (Equation 6.7), which is only
controlled by w5.

During combat the unit will be in close proximity to several friendly units
and each of these units will emit the attractive field (whose value is controlled
by w0). The sum of these fields will be cominded into one force vector and
thus w0 should have a small value. The maximum value chosen is 50. This
is different from forceCoG which has one field for all friendly units.

w2 decides the threshold and 1 − hp
max(HP ) decides which percentage of the

threshold is to be used. Thus w2 needs to represent the maximum threshold
distance. None of these weight ranges were tested in game as they are so
numerous and dependant on each other.

When distance − max(MSD, eMSD) + w2 ∗ (1 − hp
HPmax

) < 0 the field
− w1

distance is placed on the enemy unit(Equation 6.2). It does however com-
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pete with the other enemy units’ attracting fields (since the unit is probably
outside many units’ max(MSD, eMSD)), so the maximum value should be
high to allow for this behaviour. This is shown in Figure 7.2, where one
enemy unit is within the unit’s MSD, and thus decides to run away. When
running away it is wanted that the unit runs towards the other friendly units
for protection, thus w5’s maximum value should not be enough to override
w1 but still enough to affect it.

Figure 7.2: The orange circle shows the MSD of the unit and the blue circles
shows the MSD of the enemy units. In the experiments a blue line shows
the direction the unit is moving in when running away

7.2 Match setup

The matches will all share the same map designed by the authors using
the StarCraft Campaign Editor, which is the official program for making
StarCraft maps. The map is 192x192 tiles each tile in StarCraft is a 32x32
pixels area, and it is configured for two players to start with a predefined
set of units placed a short distance away from each other. One player is the
Potential Fields AI while the other is the built-in AI that StarCraft uses.
The terrain in this map is lower ground and there are no obstacles placed
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anywhere besides the walls that encloses the edges of the map.

The different experiments will involve several unit compositions, the prop-
erties of the different units can been seen in Table 7.2.

Unit Race HP Armor Attack damage Range Cooldown

Hydralisk Zerg 80 0 10 4 15

Vulture Terrain 80 0 20 5 30

Zealots Protoss 100 1 16 1 8

Dragoon Protoss 100 1 20 4 30

Table 7.2: Unit data taken from the StarCraft: Broodwar Expert Guide 1.

All experiment results are stored in XML files, and simple python scripts
were created by the authors to produce graphs by parsing these files. The
plotting framework matplotlib2 was used in these scripts.

7.3 Challenges

Due to some instability in the running process the game would occasion-
ally crash during training. Because of this the testing platform also had a
daemon script running, which would clean up after a crash and restart the
training procedure, so that constant supervision over the experiments was
not needed.

BWAPI is not bug-free and still under development, which has caused some
instability and random crashes due to memory leaks and various bugs. The
nature of EA training demanded that the game needed to be restarted a large
amount of times, this caused some challenges. One of which was the actual
restart mechanic in the BWAPI, which would sometimes just fail and the bot
would be stuck in the score screen (the end screen after a match is complete)
without the ability to restart until a supervisor could do it manually. The
other major bug lies within StarCraft itself; it turns out that the game has
a memory leak that is only an issue if the game plays thousands of matches
repeatedly within a single instance. This bug was never reported during the
19 years of the official StarCraft maintenance since no human player would
ever play that many matches continually (Sandberg, 2011). Some of these
bugs were not possible to handle with the daemon script, which meant a test
could stop at any time and require manual restart, although this happened
rarely.

1http://www.gamefaqs.com/pc/75249-starcraft-brood-war/faqs/2473
2http://matplotlib.sourceforge.net
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The C++ language also posed a challenge getting accustomed to as none of
the authors had experience with the language to any extent before working
on this thesis. Developing in the CBR architecture described in Section 5.3
also proved challenging since there was a lot of code to understand, and it
also made the architecture of the Micromanagement AI a bit more complex
than what was strictly necessary.

7.4 Experiment 1: NSGA-II vs. GA

To address the first experiment question an AI evolved with NSGA-II will
be compared to one evolved with GA. A conclusion will be made by com-
paring the fitness rate progression as well as comparing the win rate of the
fittest solution found for each method. The GA implementation uses the
same binary tournament selection as NSGA-II, and will have some of the
same evolutionary parameters. As Subsection 7.1.2 concluded, the best pa-
rameters proved to be 3% mutation and 15% crossover. To make the GA
more comparable, fitnessKS was chosen as its fitness function. The reason-
ing behind this is that fitnessKS is based on the in-game unit value, which
makes it the most representable value for the end-result of a match.

Once the different variations have been evolved, the best individual from the
last generation will play ten matches under observation. During observation,
the game speed will be turned down from the training speed described in
Subsection 7.1.1 to a normal speed. Since the Potential Fields functions
have been designed from the bottom up and the intended behaviour already
defined, it should be possible to identify the cause behind the behaviour. Of
course, emergent behaviour would also be very interesting to see.

For an AI to be deemed better than another it needs to win more consis-
tently. Table 7.3 and Table 7.4 shows the NSGA-II and GA experimental
set-up respecively.

Experiment parameters

Controlled units 7 Dragoons
Enemy units 7 Zealots
Matches 10

Population 40
Generations 40

Mutation rate 3
Crossover rate 15

Table 7.3: Experiment 1: NSGA-II
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Experiment parameters

Controlled units 7 Dragoons
Enemy units 7 Zealots
Matches 10

Population 40
Generations 40
Mutation rate 3
Crossover rate 15

Table 7.4: Experiment 1: GA

7.4.1 Results

The immediate difference seen in these results is the fast improvement curve
within the first five generations. The Dragoon versus Zealot unit compo-
sition is a good scenario for testing the Micromanagement techniques. A
basic use of shoot and retreat will enable the Dragoon to stay alive longer
while dealing damage because the attack ranges of Zealots and Dragoons
are so different. This can explain the rapidly increasing curve in the first
generations in fitnessKS in Table 7.3 and 7.4 since it is less challenging for
evolution to get the roughly correct weights than to perfect them.

Another interesting aspect in the results is the decrease in fitnessHP in
comparison with the parallel increase in fitnessKS . This could be the result
of the units prioritizing the focus fire technique. Kill score only increases as
a unit dies, not when it is damaged, while fitnessHP represents overall HP
lost. Focusing on a unit with low HP will ensure that the unit dies faster
and that there is one less enemy unit on the battlefield that can damage
friendly units. However, moving into position to attack a weak unit could
cost time that can otherwise be used to deal damage to another enemy unit
that might not die during the battle. As a result, focusing fire might increase
the kill score as more units get killed, but can also decrease the damage done
to surviving enemy units.

Figure 7.4 shows little progress in terms of mean fitness. Comparing it to
fitnessKS in Figure 7.3 indicates a clear improvement in favour of NSGA-II.
However, this difference became less distinct when the best individuals from
each end-generation played their ten matches versus the built-in StarCraft
AI.

The results in Table 7.5 are quite similar and the two AIs loose most of
the matches they play. The manual preliminary tests done by the authors
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Figure 7.3: MOGA evolved 7: Dragoons versus 7 Zealots. Mutation rate
3%, Crossover rate 15%.

GA MOGA

Win 1 Win 2
Loss 9 Loss 8

Table 7.5: Win and loss rates in Experiment 1.

with this unit composition showed that this match up was winnable if good
Micromanagement was used. This and the observations made during the
tests conclude that neither of the AIs Micromanage optimally. The rest of
this section will discuss the observations and explore the possible causes for
the results.

During the observation of the matches the Micromanagement techniques
intended were present, but also some behaviours that were not intended.
When the Dragoons first engage the Zealots they move as a cluster right into
the Zealots, and have trouble retreating when on cooldown, often blocking
each other from moving away. This is of course not the wanted behaviour
and it does not take advantage of the superior attack range of the Dragoons.
However, when a few units remain and they are further apart from each
other, the Dragoons improve their retreating technique radically. Alas it is
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Figure 7.4: GA evolved: 7 Dragoons versus 7 Zealots. Mutation rate 3%,
Crossover rate 15%.

often too little too late. The reason for this behaviour can be numerous and
will be further explored in Subsection 7.5.1.

One technique that seemed to work well was focus fire. The units cooperated
on destroying enemy units with low HP that were within reasonable range
as designed by Equation 6.1. This behaviour is shown in Figure 7.5, where
the red lines show which target a unit is going to attack. Several units are
targeting the same enemy unit even if other enemy units are closer. There
were also observed a few examples of a unit with high HP stepping closer to
the enemy so that the enemy switched target from an escaping unit with low
HP. This behaviour is due to the escaping field described by Function 6.2.

It was stated in Section 7.2 that each genome will run two times, but the
more times each genome runs, the more precise the fitness will be. This is due
to the fact that the built-in StarCraft AI possesses some random behaviour.
At times it will suddenly halt its units’ movement for no apparent reason.
Randomness like this might result in a lucky win, causing noise in the fitness
evaluation and making it difficult to determine if a solution is consistently
high performing based purely on the fitness values.

The results produced in this experiment proved NSGA-II to have a better
learning curve than GA in terms of the objective functions. However in terms
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Figure 7.5: Four Dragoons focus firing one Zealot, the remaining two are on
cooldown and are running away.

of win ratio it did not prove its superiority adequately enough in comparison
to the GA solution. This indicates that there is something wrong with
the Potential Fields part of the solution, as both AI techniques struggled
more than would be expected. To further explore this we conducted a new
experiment, comparing the GA solution to Sandberg’s solution. As they
both use the same AI (genetic algorithms) method we will be comparing the
Potential Fields parts of the solutions.

7.5 Experiment 2: GA vs. EMAPF

In this experiment the Micromanagement AI described in this thesis will be
compared to Sandberg (2011)’s EMAPF AI. One of the experiments in his
thesis will be replicated and the results compared. The information about
the experiment is shown in Table 7.6.

Sandberg (2011) did this experiment with three different solutions. With
the best solution he lost only one unit in the engagement. The success of
the experiment will be determined in relation to his result. The best result
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Experiment parameters

Controlled units 9 Vultures
Enemy units 9 Hydralisks
Matches 10

Generations 40
Mutation rate 3
Crossover rate 15

Table 7.6: Experiment 2

from the 10 matches will be used for comparison, as this is what Sandberg
does in his experiments.

Since the map and the unit placement is different from Sandberg’s, the ex-
periment won’t be completely fair, and this will be taken into consideration.

7.5.1 Results

Solution GA EMAPF

Remaining units 5 8

Table 7.7: Remaining units in Experiment 2.

In Sandberg’s best run he has 8 of 9 units alive after the match, while the
GA has 5 units remaining in the best run. While the difference is not huge
it is big enough to determine that the Potential Fields solution in this thesis
is not as good as Sandberg’s EMAPF solution.

9 Vultures vs 9 Hydralisks

Win 3
Loss 7

Table 7.8: Win and loss rates in Experiment 2

Although this experiment produced better results than the previous exper-
iment, the results are still not satisfactory when looking at the average win
rate. A highlight is, however, that the AI did very well the few times that it
won; the best match left the AI with five remaining units, the second best
with four. The results enforce the implication that the Potential Fields part
of the solution is lacking and is not as good as the EMAPF solution in its
current form.
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Sandberg has shown the match in question in a Youtube video3 which makes
it possible to compare the behaviour observed during the experiment with
the behaviour of his AI. During the match his units behave in the following
fashion: the units (Vultures) move towards the middle of the map. When
they encounter the enemy units (Hydras) the Vultures spread out and sur-
round them, keeping distance between the friendly units. They move in to
attack and and then retreat over and over again, getting attacked less than
if they were standing still. A snapshot of this behaviour is shown in Fig-
ure 7.6. Focus firing is also observed during the test. There is no collision
between friendly units in the video.

Figure 7.6: The units in the EMAPF solution are spread around the enemy
units.

The biggest difference between the behaviours of the EMAPF and the GA
is in the beginning of the match, where the units cluster together instead of
spreading out and surrounding. There are several possible reasons for this:

• Center of Group attraction.

• The enemy unit repulsion is too weak.

3http://www.tinyurl.com/9vulturesvs9hydralisks
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• No collision avoidance.

• The thresholds are too small.

The potential issue with Center of Group attraction is if the center of the
group is too close to the enemy units. Then it will encourage the units to
stay close to the group instead of moving as far away from the enemy units
to avoid getting attacked. It is also a problem if the units are surrounding
the enemy. Then the COG will be placed in the middle, encouraging the
units to move towards the enemy instead of running away.

The potential issue that the enemy unit repulsion is too weak is linked to
the issue with Center of Group attraction. The attraction is meant to steer
the unit towards other friendly units when retreating because of the fields
around the enemy units. However, if the fields around the enemy units are
not strong enough the Center of Group attraction becomes more powerful
than intended.

During the experiments we observed collisions between units, especially at
the start of a match when they were clustered together. Even if some units
attempted to run away from the enemy they were not able to because other
friendly units were blocking their exit path. This is something that Sandberg
(2011) does not struggle with (at least not from what is seen in the Youtube
video), since Sandberg has small repulsing fields around each friendly unit
to avoid these collisions.

As mentioned in Section 7.1.3 the threshold weight is the weight that decides
how far away from the max(MSD,MSDe) value the unit should go when
retreating, relative to it’s remaining HP. If this threshold was larger, the
units would move even further away, making sure there would be a safe
distance between the unit and the enemy units.

Each of these potential causes can be addressed. The center of group attrac-
tion can be removed altogether, or given a much smaller maximum value,
by changing the value range of w5. Conversely, weak enemy unit repulsion
can be addressed by increasing the weight range of w4.

Collision avoidance can be handled by creating a new Potential Field to be
added on friendly units. The implementation is designed in such a way that
this addition is simple and should only take about an hour to implement and
test. To address the threshold issue, the threshold weight’s (w2) maximum
value can be increased.
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7.6 Discussion

To answer the experiment questions the results need to be discussed, and
to explain the results the data from the experiments conducted needs to be
understood.

7.6.1 Objective functions

The graphs for the development of the mean objective fitness is a good
indicator as to how well the EA performed. However there is some steady
growth in the different objectives. This is especially true for fitnessFF .
This is the objective function that rewards focus firing, a technique seen
executed quite well during the experiments.

fitnessMA also grows steadily. This implies that the bot becomes increas-
ingly good at keeping its units alive for a longer time. This is both an
indication of generally better play, the tanking behaviour seen in the experi-
ments and that the units are better at retreating from enemy fire. While the
latter is not optimal during the whole match, there is a clear improvement
from an unevolved solution.

fitnessHP and fitnessKS are very tied together and output quite similar
values, especially visible in Figure 7.1. These values vary the most and is
also the ones prone to instability due to the non-deterministic nature of
the StarCraft game. Especially since these graphs are from the Vultures
vs. Hydras scenario, which is a more random and difficult set-up than
the scenario run in Experiment 1. Also the lacking performance in the
Potential Fields causes these values to vary more than expected because it
is impossible for the Micromanagement AI to develop optimal behaviour.

7.6.2 Potential Fields functions

The weights have a tremendous importance and is the backbone of the whole
solution. The weights had to be constrained to different ranges because of
the nature of the PF functions and to reduce the search space for the EA. The
functions were structured simplistic and normalized so it should be easier
to identify the important factors, and rather let the weights connected to
the factors decide just how important they are in proportion to each other.
Because of the time used to evolve a solution it is difficult to tell if the ranges
of the weights are correct, or if they should be larger or smaller. Incorrect
weight ranges could be a reason that the Potential Fields did not perform
optimally.
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Except for the two weights in question (w4 and w2), the weight ranges seems
to have been set correctly based on observation made from the experiments.
The reason for the limited performance is likely to be the implementation
of the Potential Fields. The solution improves rapidly in early generations,
but quickly stagnates to a mediocre performance with behaviours that are
not intended according to the PF designs. Despite supervising the early PF
outputs during development, these flaws were not properly identified until
late into the experiments.

7.6.3 MOGA vs GA

The training data showed that MOGA evolved better and were able to
optimize all four objectives at once. The GA solution evolved more randomly
and was not able increase its average fitness in the population. Despite the
indication of increased performance with NSGA-II over GA the experimental
results were not enough to prove this claim.
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Conclusion

Success builds character, failure
reveals it.

This thesis presented a Potential Fields based Micromanagement AI for the
RTS game StarCraft, optimized using NSGA-II. The goal as the authors
started working on this thesis was to find a way to improve already existing
results presented by previous RTS Micromanagement bots using Potential
Fields. There was no previous solutions utilizing Multi-Objective Optimiza-
tion to develop PFs, so developing one would be a step forward in the
domain.

In the end the experiments yielded disappointing results in terms of prac-
tical performance and the AI did not perform better than previous bots.
However as discussed the AI learns rapidly up until a certain point in its
performance. The question whether this problem lies in the design or the
implementation of the Potential Fields was raised. Which would explain the
lacking performance of the AI regardless of its weight values.

After evaluating the results of the conducted experiments, the authors re-
vised the possible causes of error suggested in Subsection 7.5.1 and created
two new revisions of the AI with a mixture of increasing weight thresholds,
removing the Center of Group field and adding a repulsive collision avoid-
ance field at each friendly unit. The new revisions were given a short ten
generations to evolve, and then tested to check for improvements. Unfortu-
nately neither of the revisions showed any improved performance, but they
did help to empower the suspicion that the fault does indeed lie in the fun-
damental implementation of the Potential Fields, and not within the design
itself.
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8.1 Further work

For further work it would be interesting to see a different design approach to
the Potential Fields controlling the Micromanagement. Fields that expand
behaviour like collision avoidance as well as taking more detailed aspects
of the game into the calculations like terrain, obstacles, and enemy unit
cooldown in the case of StarCraft.

It would also be interesting to see a more thorough training procedure. If
more time is available each individual can be tested more than two times
for higher accuracy. Co-evolution is also a possibility and would probably
have a great impact on the behaviour of an optimal solution. Another
approach could also be training the AI versus an experienced human player,
because the built-in StarCraft AI performs far from optimally and employs
few different tactics in Micromanagement.

The source code for the EMAPF bot created by Sandberg (2011) is available
on-line, extending it to using NSGA-II with the objectives presented in this
report would prove more direct and conclusive results of how MOO affects
the performance.

The results in this report indicate that Multi-Objective Optimization is
indeed a valid approach worth exploring for tuning Potential Fields in RTS
games. StarCraft has proven an excellent test platform, but the methods
are applicable for almost any RTS game because of the generic nature of the
genres domain rules and environment. It would be interesting to see this
approach attempted in a different RTS game.
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Results: mean fitness
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Figure A.1: 20 generations. 9 Hydralisk versus 9 Vultures. Mutation rate
3%, Crossover rate 3%.

Figure A.2: 20 generations. 9 Hydralisk versus 9 Vultures. Mutation rate
3%, Crossover rate 15%.
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Figure A.3: 20 generations. Mutation rate 15%, Crossover rate 15%.

Figure A.4: 20 generations. Mutation rate 15%, Crossover rate 50%.
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Figure A.5: 20 generations. Mutation rate 50%, Crossover rate 50%.

Figure A.6: 20 generations. Mutation rate 50%, Crossover rate 100%.
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