
Controlling a Signal-regulated
Pedestrian Crossing using Case-based
Reasoning

Øyvind Shahin Berntsen Kheradmandi
Fredrick Strøm

Master of Science in Computer Science

Supervisor: Agnar Aamodt, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Problem description

The aim of this project is to investigate whether today's signal controlled pedestrian

crossings can be improved by using methods within the �eld of arti�cial intelligence, and

particularly the use of Case-based reasoning. This includes identifying what informa-

tion can be extracted and used to improve safety and e�ciency, for both motorists and

pedestrians. This will be the basis of an implementation of an experimental system for

controlling a signal controlled pedestrian crossing. The implementation of such a system

will also consist of integrating the Intention-based Sliding Doors system, created by John

Sverre Solem in an earlier MSc project at IDI, to interpret the intention of pedestrians.

The system will be experimentally tested, to uncover its potential, and it will be

compared with today's systems to reveal whether it is more favorable. A study should

also be performed to identify if there are any information sources not available at the time

that can be used to improve the systems performance in the future. The project will be

completed in collaboration with The Norwegian Public Roads Administration.

Assignment given: 11. January 2012

Supervisor: Agnar Aamodt, IDI

Co-supervisors: Jo Skjermo, Norwegian Public Roads Administration

Anders Kofod-Petersen, IDI

i

ii

Abstract

The tra�c domain, and in particular the domain of tra�c control, is a highly complex

and uncertain domain. A large network of roads, signal controlling systems, vehicles,

pedestrians and other tra�c units makes the domain intractable. There are great amounts

of data available from di�erent parts of tra�c, thus there is a need for a method that can

take advantage of this data in a systematical manner.

In this thesis, we present a prototype Case-based Reasoning (CBR) system which

purpose is to execute tra�c at a signal controlled pedestrian crossing. The system uses

pedestrian- and vehicle data to take decisions in real-time. The system is created as an

OSGI bundle and uses the CVIS (Cooperative Vehicle-Infrastructure System) framework

to enable communication with other tra�c systems and tra�c units. myCBR is used

as a framework for making the process of retrieving and reusing cases easier. Experts

from Norwegian Public Roads Administration were an important resource in de�ning the

structure of the cases and for �lling the case base with useful cases. Pedestrian data is

obtained by using a Kinect sensor, and the Intention-based Sliding Doors system created

by Solem, a previous MSc at our group, is integrated for interpreting the intention of

pedestrians at the crossing. Vehicle data is obtained by using simulation software called

SCANeR Studio.

The results of the project showed that the CBR system adapted to the current tra�c

situation, and that correct cases were retrieved. These tests were performed in a limited

test environment, and to evaluate the system properly, tests in a real environment is

necessary.

iii

iv

Sammendrag

Tra�kk domenet, og spesielt tra�kkkontroll, er et komplekst domene, med mange usikker-

heter. Store nettverk av veier, signal-regulerte systemer, kjøretøy, fotgjenger og andre

tra�kkenheter gjør domenet vanskelig å håndtere. Mengdene data som er tilgjengelig fra

de forskjellige delene av tra�kken er store, og det trengs derfor metoder som kan dra nytte

av disse dataene på en systematisk måte.

I denne masteroppgaven presenterer vi et eksperimentelt system som tar i bruk Case-

basert Resonnering (CBR) for å utføre tra�kk i et signal-regulert gangfelt. Systemet

bruker fotgjenger- og kjøretøy data for å ta avgjørelser i sanntid. Systemet er laget som

en OSGi bundle og bruker CVIS (Cooperative Vehicle-Infrastructure System) rammever-

ket for å muliggjøre kommunikasjon med andre tra�kksystemer og tra�kkenheter. myCBR

er blitt brukt som rammeverk for å gjøre prosessen med å hente ut og gjenbruke caser,

enklere. Eksperter ved Statens vegvesen har vært en viktig ressurs i å de�nere casenes

struktur og for å fylle opp case basen med nyttige caser. Fotgjenger data er blitt innhentet

ved å bruke en Kinect sensor, og systemet �Intention-based Sliding Doors� laget av Solem,

en tidligere MSc i vår gruppe, har blitt integrert for å tolke intensjonen til fotgjengere ved

gangfeltet. Data om kjøretøy har blitt innhentet ved å bruke en tra�kksimuleringspro-

gramvare kalt SCANeR Studio.

Resultatene av prosjektet viste at CBR systemet tilpasset seg den nåværende tra�kksi-

tuasjonen, og hentet ut riktige caser. Testene ble utført i et begrenset testmiljø og for å

evaluere systemet grundig er det nødvendig å teste systemet i et mer realistisk miljø.

v

vi

Preface

This Master thesis constitutes the �nal work of our 5 year Master of Science studies in

Computer Science. The work has been carried out at the Department of Computer and

Information Science at the University of Science and Technology (NTNU), in coopera-

tion with the Norwegian Public Roads Administration (NPRA). The work started in the

autumn of 2011 with a specialization project.

We would like to thank our main supervisor Agnar Aamodt for his valuable assistance

throughout the project. It has been an honor working with him, and hopefully gaining

some of his knowledge. Without it, this project would not have been as valuable to us as

it has been.

We would also like to thank the NPRA for facilitating our work on this project, and

especially our co-supervisor Jo Skjermo. He has been of great value for understanding the

tra�c domain and also in creating and testing our prototype system. We would also like

to thank our other co-supervisor, Anders Kofod-Petersen, for giving us great ideas along

the way and for giving us aid in integrating the Sliding Doors project. We also wish to

thank Kristin Kråkenes and Helge Stabursvik at the NPRA for valuable input during the

project.

Last, but not least, we would like to thank our family and friends for all the support

they have given during our years of studying.

vii

viii

Contents

1 Introduction 1

1.1 Goals . 2

1.2 Motivation . 2

1.3 Overview of the report . 4

2 Background 7

2.1 Specialization project . 7

2.2 Tra�c today . 8

2.3 CVIS . 11

2.4 CBR . 14

2.5 Intention-based Sliding doors . 16

2.6 Evolutionary algorithms . 16

3 Related research 19

4 Methodological approach 25

4.1 Tools . 25

4.1.1 CBR tools and frameworks . 25

4.1.2 Bundles and software . 26

4.1.3 IDE's . 26

4.2 myCBR vs. jCOLIBRI . 26

4.2.1 jCOLIBRI . 27

4.2.2 myCBR . 27

4.2.3 Choosing the right tool . 28

4.3 myCBR . 29

4.3.1 Documentation . 29

ix

x CONTENTS

4.3.2 Case base . 30

4.4 Knowledge acquisition . 30

4.4.1 Test crossing at Brattøra . 31

4.4.2 Counting vehicles and pedestrians at Brattøra 31

4.4.3 Collecting information to create the case base 33

4.5 Installing frameworks . 33

4.5.1 Installing the Intention-based Sliding Doors framework 33

4.5.2 Installing CVIS . 33

4.6 How to evaluate the system . 34

4.6.1 Expert validation of the system in real-time 34

4.6.2 Leave-one-out cross-validation . 35

4.6.3 Performance tests in the SCANeR Studio 36

4.6.4 Evaluating the system with interpretation of pedestrian intention . 39

5 Implementation 41

5.1 System overview . 41

5.2 Case base . 43

5.2.1 Case structure . 43

5.2.2 Similarity functions . 47

5.2.3 Global similarity . 50

5.2.4 Evolutionary algorithm . 50

5.2.5 Building the case base . 51

5.3 Features . 54

5.3.1 Range of the features (Discretizing) 54

5.3.2 Communication between bundles 55

5.3.3 Integrating the Intention-based Sliding Doors 56

5.3.4 Type of pedestrian . 59

5.3.5 Other features . 59

5.4 Retrieval . 60

5.4.1 Create a query case . 60

5.4.2 Retrieving a set of cases . 62

5.4.3 Choosing the most similar case . 62

5.4.4 Using the solution . 62

CONTENTS xi

5.5 System description . 63

5.5.1 Class diagram . 63

5.5.2 Description of the classes . 65

5.5.3 Class diagram for the interpretation of pedestrian intention module 72

5.5.4 Walkthrough of the system . 74

5.6 Modules created for evaluation purposes 81

5.6.1 Adding cases real-time . 81

5.6.2 Leave-one-out cross-validation . 81

5.6.3 Module for sending pedestrians into the CBR system 82

6 Evaluating the system 83

6.1 Results . 83

6.1.1 Cross-validation . 83

6.1.2 Simulator tests . 84

6.2 Discussion . 98

7 Conclusion and further work 103

7.1 Further work . 103

7.2 Conclusion . 107

xii CONTENTS

List of Figures

2.1 Task structure of the architecture introduced in the specialization project . 8

2.2 Push button with signaling light for pedestrians 9

2.3 An illustration of how CVIS is intended to be used 12

2.4 Test site for CVIS in Trondheim . 14

2.5 The CBR cycle by Aamodt and Plaza[1] 15

2.6 The basic cycle of an Evolutionary Algorithm[2] 17

4.1 Pedestrian crossing at Brattøra . 32

4.2 Part of the form for counting pedestrians and vehicles 32

4.3 Screenshot from SCANeR Studio, showing the simulated section of road

used in the test scenarios . 38

4.4 Screenshot from SCANeR Studio, which shows the tra�c light that is con-

trolled by the CBR system. 38

5.1 An overview of the system . 43

5.2 Tra�c �ow similarity . 48

5.3 Speed of detected vehicle similarity . 49

5.4 Positive intention similarity . 49

5.5 Time waited similarity . 49

5.6 Type of pedestrian similarity . 50

5.7 A screenshot of the user interface when the system is interrupted at a query. 53

5.8 An overview of the sliding doors system, integrated with the CBR system . 57

5.9 The process of building a new query case 61

5.10 Class diagram of the CBR system . 64

5.11 Activator class . 66

5.12 Tra�cSituationCase class . 67

xiii

xiv LIST OF FIGURES

5.13 QueryBuilder, TestQueries and Tra�cEventHandler class 68

5.14 Tra�cSituation and Cbr class . 69

5.15 CaseBuilder class . 70

5.16 Tra�cLightSimulator class . 71

5.17 Class diagram for the interpretation of pedestrian intention module 73

5.18 Class diagram for the C++ code . 73

5.19 An overview of the communication between the three systems 74

5.20 The CBR system indicate that no intention is detected 75

5.21 The Kinect sensor installed on top of the tra�c light 76

5.22 A screenshot from the intention-based system 77

5.23 A positive intention has been detected, and pedestrians are waiting 79

5.24 A screenshot from the SCANeR Studio, which shows the tra�c light that

is controlled by the CBR system. 79

5.25 The CBR system gives a green light to pedestrians 80

6.1 Number of correctly classi�ed cases, relative to the case base size 84

6.2 Average waiting time for pedestrians with di�erent amounts of tra�c . . . 99

List of Tables

4.1 Settings for the tra�c lights for vehicles, on each side of the CBR controlled

tra�c light . 39

4.2 Settings for the tra�c lights for pedestrians, on each side of the CBR

controlled tra�c light . 39

5.1 First draft of the case structure . 45

5.2 Case structure . 48

5.3 Weights found by the EA . 51

5.4 Range of features . 56

6.1 Properties of the normal tra�c light that is used as comparison to the CBR

controlled tra�c light . 84

6.2 Criteria for evaluating e�ciency in a pedestrian crossing 86

6.3 Criteria for evaluating safety in a pedestrian crossing 87

6.4 Description of test scenario 1 . 88

6.5 Results from test scenario 1 . 88

6.6 Description of test scenario 2 . 89

6.7 Results from test scenario 2 . 89

6.8 Description of test scenario 3 . 90

6.9 Results from test scenario 3 . 90

6.10 Description of test scenario 4 . 91

6.11 Results from test scenario 4 . 92

6.12 Description of test scenario 5 . 93

6.13 Results from test scenario 5 . 93

6.14 Description of test scenario 6 . 94

6.15 Results from test scenario 6 . 95

xv

xvi LIST OF TABLES

6.16 Description of test scenario 7 . 96

6.17 Results from test scenario 7 . 97

Chapter 1

Introduction

In this thesis, we want to study the use of Case-based Reasoning (CBR) in the domain

of tra�c control, particularly in controlling a single signal controlled pedestrian crossing.

It is a complex domain, with large amounts of available data. By using di�erent detec-

tors for acquiring information about pedestrians and vehicles, we use solutions to earlier

experienced situations for changing the signals in the crossing. The amount of available

data is much greater when it comes to vehicles than pedestrians. For example, there are

no detectors for monitoring the movement or amount of pedestrians. As a result of this,

we have integrated a system created by Solem[3] for creating an intelligent sliding door.

The intelligent sliding door uses arti�cial intelligent methods to interpret whether an

individual approaching the door has the intention to enter, or to just walk by. This

can in many ways be compared to the task of inferring the intention of a pedestrian

approaching a signal controlled pedestrian crossing. It is reasonable to believe that such

an interpretation can speed up the process of performing tra�c control, since the system

does not need to wait for the pedestrians to execute the signaling. It can also provide the

system with the number of pedestrians that wish to cross the road. This is an important

value, since it can give indications on how important it is to let the pedestrians pass,

and how long transition time they should get. In addition to this, the information can

contribute in replacing the push button that pedestrians use to signal the system that

they wish to cross the road, since the system makes the discovery on its own.

We will also investigate if there is any other knowledge that can be utilized, to make

more intelligent decisions. This includes uncovering what vehicle related information can

be utilized to control a signal controlled pedestrian crossing, like the amount of tra�c

1

2 CHAPTER 1. INTRODUCTION

or the speed of vehicles. We will also look at the possibility to classify the type of

pedestrians that wish to cross the road, to make it possible to customize the crossing for

slower pedestrians.

A prototype system has been developed to demonstrate the potential of CBR in this

domain. The system uses the number of pedestrians that have the intention to cross

the road, along with other important tra�c features, to retrieve cases that represent

earlier experienced situations, and uses the solutions from these situations to solve new

situations.

In the next section, we present the goals of this project. Section 1.2 give some the

motivational factors of this project, before an overview of the report is presented in

section 1.3.

1.1 Goals

1. Study to what extent Case-based reasoning is a suitable technology in the domain

of tra�c control, and particularly in controlling a single pedestrian crossing.

2. Create an experimental CBR system for controlling tra�c in a signal controlled

pedestrian crossing that can perform better than today's systems in terms of:

(a) E�ciency

(b) Safety

(c) User friendliness

1.2 Motivation

The tra�c domain, and in particular the domain of tra�c control, is a highly complex

and uncertain domain. A large network of roads, signal controlling systems, vehicles,

pedestrians and other tra�c units makes the domain intractable. There are great amounts

of data available from the di�erent parts of tra�c, thus there is a need for a method that

can take advantage of this data in a systematical manner.

We want to uncover whether CBR is a method that can solve problems in the domain

of tra�c control, and particularly in controlling a single pedestrian crossing. Our theory

1.2. MOTIVATION 3

is that CBR can use earlier experienced situations in tra�c to solve new problems, by

looking at available data from sensors or similar sources. Compared to a similar method,

rule-based reasoning, CBR can seem more applicable in a domain where it is hard for

experts to de�ne some rules cover the whole domain. It is reasonable to believe that this

is the case in the tra�c domain, since many situations can be similar to earlier experienced

situations, but not necessarily the same. For example, if a normal pedestrian, in terms

of speed and behavior, approaches a crossing, the system should give the pedestrian a

normal transition time. But if the pedestrian approaches the crossing along with 10 of

his normal friends, the pedestrians should get increased transition time, since they will

probably need more time to cross. And if one of his friends is sitting in a wheelchair,

they might need even longer transition time. But what if the tra�c is high? Then maybe

the transition should be shorter or it should be executed later, to make the tra�c �ow

as good as possible. These ever-changing situations might be di�cult to cover with rules,

because it would require a very large number of rules, with a high amount of conditions.

Another thing that might make CBR more suitable is that it is easy to change the

cases in the case base. Adding, updating or removing rules in a rule-based system can

be a time-consuming process, since changing one rule can involve changing all rules that

are dependent of the modi�ed rule. In CBR, all cases are independent of each other, and

therefore a new case can be learned, or manually added, without it changing the rest of

the case base. This is an obvious advantage in a domain where changes can occur at any

time. For example, if an intersection is changed, or the roads in the area close to the

intersection are changed, then the tra�c through the intersection will also change. In a

CBR system, this can be handled by either adding cases to cope with the changes, or by

letting the system itself learn how the changes has altered the tra�c.

There are also motivational factors that come from the cooperation with the Norwegian

Public Roads Administration (NPRA) (Norwegian: Statens vegvesen). The NPRA is

responsible for planning, construction and operation of the national and county road

networks in Norway. Today's systems are in many ways not intelligent and will often

need supervision of human experts. Therefore, the NPRA wanted to investigate if it is

possible to create more intelligent ways to execute tra�c control. In this project, we want

to reveal if it is feasible to remove the push button at pedestrian crossings by detecting

pedestrians with camera sensors. It is important to point out that we in this project will

4 CHAPTER 1. INTRODUCTION

test the system as if the push button is still there, but that it is a small step towards

actually removing the push button.

Removing the push button can improve safety, since it can be di�cult for some pedes-

trians (e.g. blind pedestrians) to locate the button[4]. It may also enable the system to

make faster decisions, since it does not have to wait for pedestrians to push the button.

In addition, some pedestrians push the button, but still cross the road before the light

changes.

Figures from NPRA[5] show that about 36 % of all tra�c related accident in Oslo

occurs in intersections. In approximately 21% of tra�c related accidents, pedestrians are

involved. In Norway, about 35 % of all that are killed or seriously wounded in tra�c

accidents are pedestrians (46 % in the world[6]). These numbers show how important it

is to improve the safety for pedestrians, and particularly at intersections and pedestrian

crossings.

Other factors which are important for the NPRA and the Norwegian government are

economy and the environment [7]. Reducing the duration of red light for vehicles will result

in reduced emission of gasses that can cause damage to the environment. Economically,

optimizing execution of tra�c can lead to reduced delay for both vehicles and pedestrians,

which again can lead to reduced costs.

The last important motivational factor, from the NPRAs point of view, is universal

design. The Norwegian Ministry of Transportation and Communication describes a uni-

versally designed transport system as: �A Transport system that as far as possible can be

used by all, without the need for adjustments or special facilities� [7]. Removing the push

button of the crossing can make it easier for disabled pedestrians to cross the road, if it is

done properly. In addition, knowing what types of pedestrians intends to cross the road

can be used for adjusting the transition time for pedestrians, by giving extended transition

time to slower pedestrians and giving shorter transition time to faster pedestrians.

1.3 Overview of the report

In the next chapter, we look at some important background information, both related to

the tra�c domain and to the di�erent approaches we aim to use during the project. In

chapter 3, we present some related research within the tra�c domain that uses Case-Based

1.3. OVERVIEW OF THE REPORT 5

Reasoning. Chapter 4 describes the tools, approaches and methods used for implementing

and evaluating the system. In chapter 5, we describe the process of implementing the

CBR system. This includes creation of the case base, a description of how the values

for the features were acquired, a thorough description of the classes in the system, and a

walkthrough of the system. Chapter 6 presents the results of the evaluation of the system,

along with a discussion of the results. In chapter 7, we propose some further work and

conclude on the results of this project.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we present the background of this research area. In the �rst section, we

talk about the specialization project we conducted in the autumn of 2011, which forms

the basis of the work done in this thesis. Next, we give a brief introduction to how tra�c

control and tra�c in general works to day. Section 2.3 describes a research project called

CVIS (Cooperative Vehicle-Infrastructure Systems), which objective is to enable systems

that use vehicle to infrastructure communication. Next, a short introduction to the CBR

methodology is given. Section 2.5 presents the Intention-based Sliding Doors project.

Finally, we describe evolutionary algorithms, which is a mechanism for performing intel-

ligent search. An evolutionary algorithm was used in the system to intelligently estimate

the optimal weights of the features in the cases.

2.1 Specialization project

In the autumn of 2011, we conducted a specialization project, where the goal was to inves-

tigate whether CBR could be a reasonable method in the domain of tra�c control. Tra�c

control is a wide concept, ranging from controlling a large tra�c network through a cen-

tralized control station, to controlling a single signal controlled crossing. Many problems

were studied to determine if there were any areas in this domain where the strengths of

CBR could be utilized. The study included reading scienti�c papers concerning CBR as a

method, CBR in the tra�c domain and reading about the tra�c domain in general, to be

able to fully understand what problems could be solved. The project resulted in a system

speci�cation, where the purpose of the system is to control a signal controlled pedestrian

7

8 CHAPTER 2. BACKGROUND

crossing. This speci�cation has been the basis for the system presented in this report. In

�gure 2.1, the task structure of the system speci�cation presented in the specialization

project is shown. It includes essentially the same parts as the system presented later in

this report.

Figure 2.1: Task structure of the architecture introduced in the specialization project

2.2 Tra�c today

In today's society, there are many varieties of intersections and pedestrian crossings. An

intersection can be of two di�erent shapes; either X-cross or T-cross. Pedestrian crossings

can have no signal control, be signal controlled or it can be a PUFFIN-crossing1. Signal

controlled pedestrian crossings can be either time controlled or tra�c controlled. When

a pedestrian crossing is time controlled, it means that the system ignores pedestrians and

vehicles, and is only controlled by static or dynamic time intervals (dynamic intervals

can be changed e.g. by experts sitting at a centralized control station). Time controlled

crossings may be used in urban areas where there will be pedestrians waiting at almost all

times. Tra�c controlled crossings can either detect pedestrians (by using a push button)

or detect both pedestrians and vehicles (by using inductive loops that lie beneath the

1PUFFIN - Pedestrian user-friendly intelligent crossing

2.2. TRAFFIC TODAY 9

Figure 2.2: Push button with signaling light for pedestrians

asphalt). Detecting both pedestrians and vehicles is most common in today's systems.

An intersection will typically consist of two to four signal controlled pedestrian cross-

ings, and is therefore much more complex. Today, each crossing cannot be controlled

separately, and parallel crossings are controlled connectedly. This may obviously impair

the tra�c �ow, since it prevents the system from being able to send vehicles through on

one side, while letting pedestrians cross on the other side.

PUFFIN crossings are the type of crossings that probably are most similar to the

prototype system presented in this report. It originally stems from United Kingdom[8].

It di�ers from normal crossings in several ways:

• The lights for signaling pedestrians (see �gure 2.2) is on the same side of the road

as the pedestrians, and turned so that the pedestrian can both monitor the tra�c,

and look at the light.

• An on-crossing detector ensures a red light for the vehicles until the pedestrian has

crossed (within practical limits).

• Detection of pedestrians on the sidewalk makes it possible to cancel requests to

change the lights, if the pedestrian crosses prematurely or walks away.

In a PUFFIN crossing, there will be detectors oriented towards both the crossing and

10 CHAPTER 2. BACKGROUND

the sidewalk. The detector oriented towards the crossing is used to adjust the red light for

vehicles, by monitoring pedestrians to see when they have crossed the road. A traditional

crossing will use the average speed of 1.2 m/s of pedestrians and not adapt to the fact

that pedestrians can walk both faster and slower.

The detector oriented towards the sidewalk can be used to cancel requests for pedes-

trians to cross the road. This will typically occur if the pedestrian pushes the button to

signal that they want to cross the road, but either changes their mind or jaywalk. The

system will detect this behavior and cancel the request so that the light never changes.

The concept is facilitated to work in single signal controlled pedestrian crossings, and

not intersections. It also works better in areas where the number of pedestrians is small,

since a large amount of pedestrians often will lead to long red periods for vehicular signal

groups.

Studies performed by the Norwegian Public Roads Administration[9] showed that the

accumulated time of a red light to vehicles was reduced when introducing the PUFFIN

concept. The average waiting time for motorists went down from 15 seconds to 13.6

seconds, which corresponds to a 9 % reduction. It is also important to emphasize that

these numbers does not include annulment of requests to let pedestrians cross. 9 % of

requests to let pedestrians cross were not used, which according to the studies would give

a total reduction in delay for motorists of 17.5 %. There are several PUFFIN crossings

installed in the world and also in Norway. In Oslo, the PUFFIN concept has been tested

in two crossings, one at Rv155 Enebakkveien and another at Rv160 Bærumsveien.

In this project, we present a system that we believe can act more intelligently compared

to the existing PUFFIN crossings, and can give more promising results. If detection of

pedestrians that have intention to cross the road is accurate enough, the system can be

able to work without a push button to signal change of lights. It can also only detect

pedestrians with intention to cross the road, instead of detecting all pedestrians that

enters the range of the sensors.

Another relevant system is the SPOT/UTOPIA system[10]. It is an adaptive control

system for signal regulated areas. The system is developed by Mizar Automazion, in Italy,

and its goals as a control system is that:

• No public transport vehicles should be stopped by the signal controlling units

• Other tra�c should have as good or better termination conditions as before

2.3. CVIS 11

SPOT/UTOPIA performs optimization based on predicting the tra�c volume. It uses

detectors to build a pro�le of the tra�c arriving at each intersection. The pro�les form

the basis of the optimization of the signal switching in the intersections. Tra�c controlled

pooling can both terminate more tra�c, as well as giving priority to selected groups of

road units, than e.g. a time controlled system. SPOT/UTOPIA is in use in a number

of cities like; Oslo, Gothenburg, Copenhagen, Malmo, Trondheim and in several cities in

Italy.

2.3 CVIS

In this section, we present a framework called CVIS, which was used in developing the

CBR system. According to the developers of CVIS [11]:

CVIS (Cooperative Vehicle-Infrastructure Systems) is a major new European

research and development project aiming to design, develop and test the tech-

nologies needed to allow cars to communicate with each other and with the

nearby roadside infrastructure.

CVIS use OSGi (Open Services Gateway initiative framework), which is a framework

to make the process of creating module based systems easier in Java[12]. Figure 2.3

illustrates some areas where CVIS is intended to be used. In OSGi, applications are

called bundles. The di�erence between a bundle and a standard Java application is that

bundles can be remotely installed, started, stopped, updated and uninstalled without

requiring any reboot. The objective of the CVIS project is to increase e�ciency and

safety in tra�c by enabling Vehicle-to-Vehicle and Vehicle-to-Infrastructure cooperation.

The communication is made possible by using wireless networking and GPS sensors. Road

side units (RSU) are placed on the side of the road, and vehicles in an area around the

RSUs can download applications from it. This makes it possible to create context-aware

applications, which can serve the motorists in a more useful manner. The RSUs can

also communicate simple information to the vehicles, like letting the motorist know if

there are dangerous conditions ahead. In the future, more and more vehicles will be

equipped with touch screens, which will enable systems to communicate visually with the

motorists. Vehicles can also communicate information to the RSUs. Examples are speed

12 CHAPTER 2. BACKGROUND

Figure 2.3: An illustration of how CVIS is intended to be used

of the vehicle or that the vehicle is �acting strange� (i.e. the vehicle can communicate if

the driver is doing something they should not do).

Communication in CVIS can be achieved in several ways. CVIS uses an architecture

called "Communications access for land mobiles" (CALM) for communications. CALM

enables the following communication modes:

• Vehicle-to-Infrastructure (V2I): communication initiated by either roadside or vehi-

cle (e.g. petrol forecourt or toll booth)

• Vehicle-to-Vehicle (V2V): peer to peer ad-hoc networking amongst fast moving ob-

jects following the idea of MANET's/VANET's.

• Infrastructure-to-Infrastructure (I2I): point-to-point connection where conventional

cabling is undesirable (e.g. using lamp posts or street signs to relay signals)

The CVIS project chose 20 applications that were developed, to show that the project

is feasible, and to demonstrate its potential. Here, we will brie�y describe two of them:

2.3. CVIS 13

The �rst application is used to improve safety for pedestrians. It is a vehicle alert system,

which informs an RSU that a vehicle with abnormal behavior is approaching (e.g. if the

driver is a drunk driver). The RSU (at the intersection) can receive the information and

evaluate whether it should let pedestrians cross. This information can also be forwarded to

vehicles (touch screen inside the vehicle) and pedestrians (e.g. on a Smartphone) close to

the crossing[13]. The second application was designed to do strategic routing of tra�c[14].

To achieve this, the application sends information from vehicles, about the area around

the vehicle and the vehicles destination, to a centralized unit. In this way, the system can

route each vehicle optimally, and at the same time balance all the individual routes, to

give an optimal overall tra�c �ow.

As mentioned earlier, universal design is a key area for the Norwegian Public Roads

Administration. Liao et al. has developed a system to make it easier for blind and partially

sighted people to cross the road in an intersection[15]. An application for Smartphone's

were developed to make it possible for the disabled pedestrian to signalize to the intersec-

tion that it has a desire to cross the road. It can also give site speci�c information, such

as size of the intersection and the number of crossings in the intersection. The application

was not implemented in CVIS, but is a good example of a possible CVIS application.

In Trondheim, there is a test site for CVIS at E6 going north towards the city center

(see �gure 2.4). The blue circles are rooftop stations and the red circles are street stations.

Since the hardware and software is already installed, it enables the possibility to test CVIS

applications in actual real-world scenarios.

14 CHAPTER 2. BACKGROUND

Figure 2.4: Test site for CVIS in Trondheim

2.4 CBR

The roots of Case-based reasoning (CBR) can be traced back to the early 1980s with

Roger Schank's work at Yale University in the U.S with his dynamic memory model[16].

The model was the basis of Janet Kolodner's system CYRUS, which was the �rst CBR

system to be implemented[17]. CYRUS was a question/answer system about travels and

meetings of and US former Secretary of State (Cyrus Vance).

The idea behind CBR is that situations have a tendency to occur more than once and

that earlier experienced situations can be used to solve new, similar situations. CBR is

inspired by the way we humans solve problems, by being reminded of a similar problem

that has been experienced earlier, and use that experience to solve the new problem.

Aamodt and Plaza proposed to break the reasoning process into 4 steps; Retrieve, Reuse,

Revise and Retain[1] (see Figure 2.5). In the retrieval step, cases that are an exact or a

close match with the current problem will be retrieved. Reuse takes one or several cases

and tries to adapt the solutions so they can solve the problem. In the revise step the

solution is evaluated by testing in the real world or by asking an expert. If the solution

2.4. CBR 15

Figure 2.5: The CBR cycle by Aamodt and Plaza[1]

is satisfactory, it will be stored in the last step, the retain step.

There are several di�erences between CBR and other instance-based methods. For

one, cases in CBR can have a very complex case structure (e.g. the cases can be an

integrated part of an ontology or a semantic network). In the tra�c domain, there is a lot

of general domain knowledge that could be included in a system. This is not possible with

simple instance-based methods. Moreover, in CBR there are typically fewer cases that

cover greater parts of the problem domain, instead of many instances that each covers a

small part of the domain. Creating a large amount of examples can be a more di�cult

process than creating some cases with more knowledge integrated. Another thing that

separates CBR from other instance-based methods is that it adapts the cases to �t the

new situation, instead of just �nding the closest possible match. All of this makes it

reasonable to believe that CBR is a stronger method in the �eld of tra�c control and

tra�c in general.

16 CHAPTER 2. BACKGROUND

2.5 Intention-based Sliding doors

An important feature of the system we present in this report is that it can interpret

whether pedestrians intend to cross the road and use this to make faster and more accurate

calculations. To do this interpretation, we have integrated a system made by Solem[3],

which purpose was to infer the intention of humans walking towards a sliding door. The

motivation behind the system was that sliding doors today are mostly based on simple

detection mechanisms, and that a more intelligent sliding door could perform better. It

uses a Kinect sensor to detect human activity in front of the door. Strategic points on the

human body (hips, shoulders and torso) were detected to infer the user's intention. They

used a rule-based reasoning mechanism to decide whether the user intended to enter or

not. The results of the from the study showed that the system could infer the correct

intention of the user in 77-86 %2.

2.6 Evolutionary algorithms

In a CBR system, adjusting the weights of the features is important, because there will

often be a di�erence in the importance of the features. It can be hard to �nd the optimal

weights, because of the high amount of possible combinations. Evolutionary algorithms

(EAs) are a way of searching through a solution landscape, like the weights of features, in

a more intelligent manner than random search. It is inspired by the evolutionary process

seen in nature, where individuals are born and only the best individuals are allowed to

reproduce.

The basic cycle of an EA is shown in �gure 2.6[2]. The process starts with creating a

number of random individuals to explore the complete search space. Each individual is

a given a genotype (typically a bit-string), which can be directly or indirectly translated

into a phenotype. The phenotype normally represents a solution to the problem. Next,

the solution is evaluated by a �tness function, where better solutions are given a higher

�tness value. It is important in this step to not only give credit to optimal solutions,

but also solutions that are good in some way. After �tness is given to all individuals,

the parents, i.e. the individuals that will be used in reproduction of child individuals,

are chosen. This is normally done by choosing a number of adults that have the highest

286 % when removing test cases that was classi�ed incorrectly due to hardware limitations.

2.6. EVOLUTIONARY ALGORITHMS 17

Figure 2.6: The basic cycle of an Evolutionary Algorithm[2]

�tness value to be the parent set. As in nature, the genotype of two parents are then

combined and mutated, to form new individuals. This cycle is repeated until the �tness

function gives satisfying results by one or more of the individuals.

18 CHAPTER 2. BACKGROUND

Chapter 3

Related research

Expert systems have been used in the tra�c domain for many years. Wentworth splits

systems that are used in tra�c into four very broad groups; �Tra�c Management and

Control�, �Tra�c Impact and Safety�, �Highway Design and Planning� and �Highway

Management�[18]. The �rst two groups are well represented in AI, and particularly by

rule-based systems. However, rule-based systems have been considered to be somewhat

limited in the tra�c domain[19][20]. Waters and Li point out that tra�c safety is a

complex function of a wide range of factors, such as: �road network, environmental con-

ditions, driver behavior and vehicle conditions�. Creating a rule base that can cover such

a complex problem domain can be very di�cult.

In the group �Tra�c Management and Control�, there have been developed rule-based

systems to support strategic routing of tra�c[21][22]. Sadek et al. highlight some limita-

tions to using rule-based systems in tra�c management. For one, they argue that it can

be hard �nd the optimal places to split tra�c, because it is of a more algorithmic nature.

Second, it can be di�cult for an expert to formulate their experiences of routing tra�c,

into simple rules.

As mentioned before, CBR can be seen as a parallel to rule-based systems, but that

CBR does not need an explicit model of the domain. A case contains the experience

of a signi�cant situation. This makes it easier to expand the case base with new cases,

because cases can have some overlapping between what problems the cases solve, without

it a�ecting the reasoning process. In rule-based systems, it is much more important to

keep the independence between rules, so that the rules will not be contradicting.

Even though CBR is not widely used in the tra�c domain, some work has been done in

19

20 CHAPTER 3. RELATED RESEARCH

the area. SICAS [23] is a system created for sharing domain knowledge about tra�c safety,

between experts and analytics. The system uses a concept called organizational memory,

where access to existing data is made easier for the user. Generalized domain knowl-

edge was stored in a normal knowledge base, while cases describing earlier experienced

situations were stored in a case base. They believe that generalized domain knowledge

alone can solve simple problems, but that complex problems have to be solved with the

experiences from the case base.

Case studies were carried out by experts, along with analysis of domain-related doc-

uments, to build an expertise model. The results from the case studies were also used

for determining what knowledge pieces a case should incorporate. This includes the main

features of the case, potential problems that can occur, contributing factors, possible

correcting actions and the global conclusions, if there are any.

The authors state that CBR seems like a promising approach in this domain. The

reason for this is that by having experts solve case studies, cases can be generated in

a natural way. In this way, there exists an historical set of site analyses accumulated

over several years. They also point out that experts often refer to case examples when

solving a site analysis, thus it is a natural approach for the experts. Furthermore, since

cases also can contain an explanation on why a situation has occurred, it can make the

communication between the analyst and experts easier.

Lin et al. have developed a system called ISECR (Information system for estimating

crash reductions)[24]. ISECR is described as a functional, intelligent database that con-

sists of published literature, which quanti�es the estimated reduction bene�ts for various

road safety improvements. Users can query the system for cases that are similar to the

problem at hand. To choose the best cases, they are weighted by quality, so that good

cases will be retrieved before less good cases. The cases retrieved are then summarized to

give an estimate of the range and reliability of how road improvement can improve safety

(reduce crashes).

The contents of each case are separated into six sub cases, were each part contains

di�erent types of knowledge. For example, one part contain general knowledge (such as

author of the study and title of the study) and another part contains knowledge about the

location where the crash has happened (e.g. at a signalized intersection). Each sub case

can contain multiple features. This is similar to how we considered representing cases in

21

our system, since problems can be represented by both pedestrian and vehicle knowledge,

and the solution can be split into transition time and when to execute the transition. This

is explained in section 5.3.

Another system that uses CBR in planning transportation systems, is a system called

PLANiTS[25] (Planning and Analysis Integration for Intelligent Transportation Systems).

PLANiTS gives support in planning transportation systems, by retrieving similar experi-

ences, and presenting the solutions to the experiences in a structured and proper manner.

In the system, cases consist of actions; to improve the transportation system, performance

measures and environments; de�ned in terms of space, time and user/traveler descriptors.

This forms a planning vector, where the values of the di�erent features are used for cal-

culating the distance between a query and the historical case. In addition, by letting

the user change the level of stringency, the system can provide the user with di�erent

solutions. The CBR system can be used along with structured models, semi-structured

expert systems and/or unstructured electronic support for human interactions.

In another study, CBR was used together with GIS1 technology to evaluate the tra�c

safety in rail-road intersections in Calgary, by analyzing collision history and site-speci�c

data[19]. GIS was used for manipulating and analyzing collision data, while the CBR

part of the system was used for identifying possible safety issues, by looking at historical

collision data at the rail-road intersection. They use a CBR tool called eGain, the case

description (the features of the case) is represented by questions, which has to be answered

by the user of the system. As in the ISECR system, cases are split into multiple parts,

here referred to as clusters, which deals with di�erent parts of the problem. When the

user has answered all the mandatory questions, the eGain knowledge reasoner searches

for the most relevant cases and presents them to the user. The study does not specify

how similarity between cases is calculated.

TIMELY is a system that was developed to generate an initial design for the signal

phase in an intersection, and then simulate delays in tra�c and adjust the signal phases

accordingly[26]. It uses CBR to �nd a good initial phase design. The system searches

through a case base, containing cases of earlier created intersections, were the solution is

the signal phases at these intersections. Similarity between cases is calculated by looking

1Geographic Information System is a system used to capture, store, manipulate, analyze, manage, and

present all types of geographical data

22 CHAPTER 3. RELATED RESEARCH

at the tra�c volumes going into the intersection and the intersections geometry. If a case

is retrieved successfully, its solution is reused, without any modi�cation/adaption to the

solution. This is an interesting system, since it attempts to �nd the optimal signaling

phases for an intersection. In our system, the solutions given by a case is a nominal

value that must be translated into a time interval. The performance of the system is

highly dependent on that these intervals are correctly con�gured. Using a similar system

as TIMELY to estimate these intervals for intersections or signal controlled pedestrian

crossings would therefore be interesting.

All of the systems presented above di�er from our system in that they are used for

planning and o�ine safety issues only. Therefore, these systems do not need to address

issues concerning using the system to make real-time decisions. The main issues concern-

ing real-time decision are related to automatically building query cases and uncertainties

that arise. For example, a system that relies on sensors to provide information for the

query case must always take into account that the data may be incorrect. The next two

systems are used for tra�c control, and are taking decisions in real-time.

Schutter et al. describes a multi-agent decision support system that uses CBR to

assist tra�c control center operators in doing their work[27]. The system is used for

giving support in taking decisions when unforeseen events occur (e.g. tra�c accidents

or unexpected weather conditions). Cases were generated o�ine by using macroscopic

or microscopic tra�c simulation, or by having experts consider actual tra�c situations

during a time period. When the system is used in a real tra�c control center, a module for

adaptive learning was proposed as a solution to make the system more e�ective when new

problems arise. The tra�c network is split into multiple sub networks, each representing

a tractable part of the tra�c network. Each sub network has its own case base, where

the cases describe the tra�c situation in the sub network, along with the predicted in�ow

demands and out�ow restrictions, the control measures and the incident status.

The most interesting part of this study is the use of multiple case bases to make

the system scalable when presented with larger tra�c networks. The predecessor of the

system did not scale well when it was tested on a large tra�c network. A similar approach

could be used in the future with our system, since it is important that the CBR controlled

pedestrian crossing can "cooperate" with the rest of the tra�c network. This is discussed

further in section 7.1.

23

Li and Zhao presented in 2008 a system that uses CBR in urban intersection control[28].

The system is similar to the system presented in this report, in that both are used for

real-time tra�c control, with no experts available to correct or evaluate the decisions

taken by the system. It uses a three-step process. First, a case is built by gathering data

from the detecting and surveillance system. Second, the most similar previous case is

retrieved from the case base. If no similar case exists, actuated control is used to take

a decision. If this happens, the system will temporarily store the solution used by the

actuated control. It then uses feedback information from the detecting and surveillance

system to evaluate if the solution was successful. If the feedback information tells the

system that tra�c congestion is more serious after the solution was applied, the system

will delete the case. If, on the other hand, the tra�c congestion is less serious, the case

will be permanently stored, so that it can be used in future decision making.

As can be seen, many of these applications use CBR along with one or more other

methods, to solve problems. Of the seven researches mentioned in this chapter, 3 fo-

cus on safety [23][24][19], 2 focus on design and planning[26][25] and 2 focus on tra�c

management[27][28]. None of the articles concerns highway management. Also, none of

these studies addresses problems concerning pedestrians. This also seems to be the gen-

eral trend in systems in this domain. It is surprising, since pedestrians are a great part

of tra�c, and particularly in urban tra�c.

We have not been able to �nd any CBR systems that solve problems related to pedes-

trians, but there have been some work on this matter in the �eld of AI, especially in

computer vision. Hogg et al. predicts the movement of a pedestrian by continuous ob-

servation of long image sequences[29]. Although this study was performed to investigate

the surveillance problem of identifying abnormal situations, the ideas can still be linked

to the tra�c domain. A model of pedestrian movement was learnt, in an unsupervised

manner, by tracking objects over long image sequences. It is based on a combination of a

neural network, implementing vector quantization and a type of neuron with short-term

memory capabilities. Models of the trajectories of pedestrians could also be used to as-

sess `incidents of interest' within a scene or predict future object trajectories. Assessment

of abnormal situations could be useful also in the tra�c domain, since it can be used

to prevent accidents. It is reasonable to believe that these predictions could be used to

interpret the intention of pedestrians. By looking at the direction of the trajectories, if

24 CHAPTER 3. RELATED RESEARCH

the trajectory goes into the crossing or towards it, it could also be used to predict that

the pedestrian intends to cross the road.

Many systems have been developed that uses computer vision to detect pedestrians

[30][31][32]. Gavrila presents a prototype system that detects pedestrians from a moving

vehicle. The system used a two step approach for detecting objects. The �rst step involves

looking at contour features and a hierarchical template matching approach, to create a set

of candidate solutions. The second step involves �ltering out the best solutions from the

candidate solutions. Detecting pedestrians from a moving vehicle can prevent accidents

involving pedestrians, by for example automatically stopping the vehicle if it detects a

pedestrian close to the front of the vehicle. Even though this cannot be directly linked to

our system, it is still an interesting study, since it is a good example of knowledge that can

be interesting to incorporate with a CBR system that controls tra�c. For example, in a

situation where a vehicle has to automatically stop to avoid an accident, this information

could be forwarded to the system, so that it can take it into account.

The NPRA has a vision of zero fatal- or sever accidents in road tra�c. Since pedestri-

ans are a key part of these accidents today (see section 2.2), it is important for the NPRA

to create road systems that are safe for all tra�c units. It is interesting to investigate if

CBR can take good decisions in this domain, because of the small work that has been

done there. In addition, cases represent experienced situations like accidents, situations

that resulted in a tra�c jam or similar unwanted outcomes. It can also represent desired

situations, like situations where there are no tra�c jams. By using solutions to problems

that has already occurred, it is possible to learn from earlier mistakes, to create safer and

more e�cient pedestrian crossings.

Chapter 4

Methodological approach

In this chapter, we will describe the di�erent methods that were used in conducting this

project. It includes a description of the tools and frameworks that were used, why we

decided to use myCBR[33] over jCOLIBRI [34] and how we gathered knowledge for the

CBR system. We will also describe the methods that were used to evaluate the system.

4.1 Tools

In this section, we list the di�erent tools and frameworks that were used in developing

the system.

4.1.1 CBR tools and frameworks

myCBR 3.0 BETA is a tool to create own Case-Based reasoning applications in Java.

It is open-source and developed at the DFKI1.

myCBR 2.6 is a plugin to Protégé. This plugin includes functionality to set up the

Case-Base visually in Protégé. This project can be stored as XML and used in

myCBR 3.0 BETA.

Protégé 3.4.8 is an open-source ontology editor and a knowledge-based framework.

That support di�erent plugins to extend the original functionality[35].

1German Research Center for Arti�cial Intelligence

25

26 CHAPTER 4. METHODOLOGICAL APPROACH

4.1.2 Bundles and software

CVIS is a system to standardize communication between vehicles and road side units,

based on the OSGi framework, as mentioned in section 2.3.

OSGi is a framework to create bundles that can be integrated in CVIS described in

section 2.3.

Sliding doors is an intention-based system developed by a master student at NTNU.

The system was written in C++ and uses the OpenNI framework, along with other

frameworks described in 4.5.1, to intepret whether humans have the intention to

enter a sliding door[3].

SCANeR Driving simulator is a simulation program for testing and driving, devel-

oped by OKTAL. With the simulator, it is possible to create customized tra�c fa-

cilities and establish two-way communication between the simulator and third-party

applications[36]. It comes in two versions; SCANeR Studio dedicated to engineer-

ing and research and SCANeR Driving Training that is used for training and safety

awareness.

4.1.3 IDE's

Eclipse is an open source IDE (Integrated Development Environment). It supports easy

installation of plugins to use SVN and create OSGi bundles[37].

Microsoft Visual C++ 2010 Express is a free C++ IDE and is a part of the Visual

Studio 2010 express[38].

4.2 myCBR vs. jCOLIBRI

We had three choices for frameworks to develop the CBR system; myCBR, jCOLIBRI and

creating our own framework. The last choice was discarded early, because the two other

frameworks both seemed promising and we were sure that we could create a framework

that could provide the similar functionality in such a short time. We will now describe

the frameworks myCBR and jCOLIBRI, and argue why we chose one over the other.

4.2. MYCBR VS. JCOLIBRI 27

4.2.1 jCOLIBRI

jCOLIBRI is a framework to create CBR applications and have been in development since

2005. The framework comes in two editions; one for developers (jCOLIBRI) that want

to code the application in Java, and another for designers (jCOLIBRI Studio) where the

source code is created automatically after making the con�gurations in the jCOLIBRI

Studio.

The jCOLIBRI framework provides functionality for all the steps in the CBR cycle (see

section 2.4). It supports �ve di�erent retrieval strategies; with seven selection mechanism,

more than 30 similarity metrics, 20 adaption and maintenance components, and a lot

of other features. Overall, the jCOLIBRI seems like a complete and well-functioning

framework, with a diverse set of features.

When starting a development process with a large framework, it is necessary to have

access to a good documentation, to avoid spending large amounts of time understanding

the framework. jCOLIBRI is well documented with Javadoc and several test examples. It

is also important to point out that the jCOLIBRI framework supports importing similarity

functions from myCBR.

4.2.2 myCBR

myCBR is an open-source case-based reasoning tool developed at the DFKI. The tool

comes in two versions; myCBR 2.6 builds on top of the Protégé ontology editor and

myCBR 3.0 BETA, which works as a standalone application. Both of these systems are

created as plugin projects and include similarity measures, a retrieval engine and support

for creating explanation-aware CBR systems.

myCBR 2.6 is a plugin to Protégé that includes basic CBR functionality, such as

similarity-based retrieval. When a CBR system is developed in Protégé, the project can

be exported to XML �les that contain the similarity measures and the case base. In

Protégé, cases can be added manually or by importing a CSV2 �le. These cases can also

be exported as XML.

myCBR 3.0 BETA makes it possible to create CBR systems in Java. The tool can be

included as a library and imported into the project. myCBR 3.0 BETA lets the developer

use methods for importing the case base, using similarity measures and for using the

2Comma separated values

28 CHAPTER 4. METHODOLOGICAL APPROACH

retrieval engine. Since cases can be exported as XML from Protégé, building a case base

is both easy and fast.

The bene�ts of using myCBR 3.0 BETA as a development tool to create a CBR system

is that it is a standalone plugin to any type of project, and it is documented in a Javadoc

and some simple examples. The obvious disadvantage is that it is still in a BETA version.

Because of this, some methods have not yet been implemented, it is not bug free and the

documentation is still sparse.

4.2.3 Choosing the right tool

jCOLIBRI is a framework for making it easier to create CBR systems, in all of the steps

of the CBR cycle. myCBR 3.0 BETA is a more simple tool that provide less functional-

ity. Functionality for retaining cases is not fully implemented, though it's planned. For

creating less complex prototype CBR systems, myCBR seems to be the best tool, since

it's easier to get familiar with, and it provides much of the basic functionality needed.

jCOLIBRI seems like the better choice when creating more complex CBR systems.

jCOLIBRI is much better documented than myCBR 3.0 BETA. Both frameworks have

a Javadoc, explaining the di�erent methods implemented, but jCOLIBRI has tutorials and

a lot more code examples. myCBR 3.0 BETA only got one code example, which is fairly

basic, and no tutorials. The bene�t is that the framework is much smaller, so it's still

quite easy to understand. The developers of myCBR are currently working on better

documentation, which will probably come with newer versions of myCBR 3.

The system we present in this report has to be an OSGi bundle in CVIS. The developers

of myCBR 3.0 BETA has ported it to work as an OSGi bundle. For that reason it is

easier to implement an application with myCBR in CVIS than in jCOLIBRI, which is not

ported to OSGi. If we chose to use the jCOLIBRI framework, the project would have to

be converted into an OSGi bundle, which would take extra time, because OSGi bundles

require a speci�c structure of the code and properly adjusted settings.

myCBR supports most functionality to build a simple CBR system. Since it's also

already ported to work with OSGi, was the best choice for CBR framework. Still, we

believe that in creating a larger CBR system, jCOLIBRI would be a better choice and

that it could be necessary to create the system in jCOLIBRI if it were to be released.

4.3. MYCBR 29

4.3 myCBR

We will now describe myCBR more thoroughly, since we chose to use it as the framework

for creating the CBR system. We have used both versions of myCBR in this project. my-

CBR 3.0 BETA was used for developing the system, while myCBR 2.6 was used together

with Protégé to create the case base and for creating similarity functions.

4.3.1 Documentation

Both of the versions have di�erent documentation. The reason they got di�erent doc-

umentation is because myCBR 2.6 is a plugin for Protégé, while myCBR 3.0 BETA is

a development tool created for developers. myCBR 2.6 is better documented, because

myCBR 3.0 is still in beta.

myCBR 2.6

Version 2.6 is documented through a tutorial, which cover all the necessary steps, from

installation of the framework, to creating a complete case base. It also explains how to

import and export cases to Protégé. To test the case base, the tutorial explains how to

use the retrieval engine. An explanation of how to export a project from Protégé, and

use the project in myCBR 3.0 BETA, is not covered by the tutorial.

myCBR 3.0 BETA

myCBR 3.0 BETA is documented through a Javadoc and a code example. The Javadoc

describes the system in detail, and gives a good overview of the di�erent methods that

the framework provides. Although the system is thoroughly described in the Javadoc, it

is di�cult to get an overview of how all the methods can be used together. A graphical

description of the architecture or more detailed examples would probably make this easier.

The code example from the webpage introduces how to create a case base with myCBR

3.0 BETA. This example is short and is only of aid in the starting phase, to understand

how to use the basics of the framework. myCBR 3.0 BETA isn't a large CBR tool and

doesn't require a lot of documentation, but more advanced code example would easy the

development process.

30 CHAPTER 4. METHODOLOGICAL APPROACH

4.3.2 Case base

In myCBR 3.0 BETA it is only possible to create the case base by using methods in the

framework, and not with a graphical tool like Protégé. This is both time-consuming and

in�exible. The case base should be easy to create and edit, because changes will happen,

especially in the early stages of the development process. Since Protégé, with myCBR

2.6, provides easier ways for both creating the case base, de�ning similarity functions and

for setting the weights of the features, we used it for this purpose.

The creation of the case base can is done in the following steps; �rst a CSV �le is

created with all the cases, second the weights and similarity measures are set, and �nally

the project is exported to XML �les. The �les contain the whole project and can be

loaded into myCBR 3.0. Small changes in the case base can be made directly in the

XML �les, although this can make the �les unreadable by the XML parser in myCBR 3.0

BETA.

The following �les are created from Protégé:

• {FILE_NAME}.pprj is a �le used to load the project in Protégé.

• {FILE_NAME}.XML contains the case base, and is used by Protégé.

• {FILE_NAME}_CBR_CASEBASE.XML contains the case base created by my-

CBR 2.6

• {FILE_NAME}_CBR_EXPLANATIONS.XML contains the explanations if the

system is made explanation-aware.

• {FILE_NAME}_CBR_SMF.XML is a �le containing the similarity measures, and

is used in myCBR 3.0 BETA to load the project.

4.4 Knowledge acquisition

Knowledge acquisition is an important part of creating a knowledge based system. In this

section, we will therefore present some of the methods that were used for acquiring the

knowledge needed for creating and testing the CBR system. The �rst section describes

a test crossing that was used for getting relevant data when testing the system and

for con�guring domain dependent parts of the system. Section 4.4.2, explains how we

4.4. KNOWLEDGE ACQUISITION 31

proceeded in counting pedestrians and vehicles at the test crossing. Finally, we give a

short introduction to how the rest of the knowledge for creating cases was acquired.

4.4.1 Test crossing at Brattøra

As mentioned earlier, most of the tra�c data available today are tra�c and road data only.

The CBR system is highly dependent on information about pedestrians, and as a result

of this, we decided to count pedestrians in a pedestrian crossing. This made the tests

of the system much more realistic, rather than sending a random number of pedestrians

to the system. On recommendation from the experts at the NPRA, we decided to count

pedestrians and vehicles (to make the numbers consistent) at a signal controlled pedestrian

crossing at Brattøra, in Trondheim. A sketch of the crossing is shown in �gure 4.1. It

shows the tra�c lights and the detectors (inductive loops, marked with D1-D5).One of

the reasons why we selected this crossing, is that it is not controlled by any other signaling

systems. In addition, the tra�c around the crossing is quite high, because it is close to

the center of Trondheim and it lies in an area where many people work. There are also

many pedestrians that use this crossing. The speed limit at the crossing is 60 km/h.

4.4.2 Counting vehicles and pedestrians at Brattøra

We performed two sessions of counting vehicles and pedestrians at Brattøra. The �rst

counting was at 12.30 pm on the 8th of March 2012, and lasted for one hour. The second

counting was at 16.30 pm on the same day, also lasting one hour. The reason why we

chose these time periods was that the �rst represents a time period where tra�c is normal,

while the second represents a time period where it is rush hour. Before the counting was

conducted, a form was created to document the results (shown in �gure 4.2). The time

column indicates the time interval; 1 is the �rst minute, 2 is the second minute etc. The

vehicle column represents the number of vehicles that have passed through the crossing

within the current time interval, in both directions. The pedestrian column represents

the number of pedestrians that have used the crossing within the current time interval.

The slowest type of pedestrian column is used to document what type of pedestrian was

the slowest to cross the road within the time interval, e.g. one pedestrian on a bike will

be marked as fast and if one of the pedestrians is slow, it is marked as slow. A fast

pedestrian, among normal pedestrians, was marked as normal.

32 CHAPTER 4. METHODOLOGICAL APPROACH

Figure 4.1: Pedestrian crossing at Brattøra

Figure 4.2: Part of the form for counting pedestrians and vehicles

4.5. INSTALLING FRAMEWORKS 33

4.4.3 Collecting information to create the case base

Collection of information to create the case base was done by conducting a study of the

domain and by having meetings with experts on tra�c control and tra�c safety. A more

detailed explanation of the process is described in section 5.2.

4.5 Installing frameworks

The CBR system is dependent on 3rd party frameworks to function properly. This in-

cludes installing all necessary frameworks and libraries for running the Intention-based

Sliding doors framework, and installing the CVIS framework for making the system able

to communicate with other tra�c applications. In this section, we will describe brie�y

what frameworks and libraries are needed for running the CBR system.

4.5.1 Installing the Intention-based Sliding Doors framework

To measure the di�erent features of the human body, the Intention-based Sliding doors

framework use 3rd party frameworks and libraries. Running the code therefore required

installation of these frameworks/libraries. OpenNI is an open source framework that pro-

vides an interface for physical devices and for middleware components. The framework

provides an API for writing applications utilizing natural interaction. NITE is a mid-

dleware intended to be used together with the OpenNI framework. It provides a means

for tracking humans and for getting skeletal data. OpenCV is an open-source library

providing functions for computer vision, with a focus on real-time applications. The last

installation was of a collection of C++ libraries called Boost. It provides some function-

ality that is not supported by basic C++.

4.5.2 Installing CVIS

To run the CVIS bundles, the program Knopler�sh Pro CVIS 3.2.0 is required. This

program was given from the NPRA, along with an installation guide. The Eclipse Enter-

prise Edition was used since it's the version of Eclipse that supports creation of bundles.

Knopler�sh is an OSGi service framework and was installed through the Eclipse mar-

ketplace, which made it possible to create new bundles. JAR �les given by NPRA were

34 CHAPTER 4. METHODOLOGICAL APPROACH

included in the new bundle project to provide CVIS functionality. These JAR �les are

what di�erentiate CVIS from Knopler�sh.

4.6 How to evaluate the system

In this section, we will describe the di�erent ways the system was evaluated. In the �rst

two subsections, we will present two methods that were used to improve and evaluate the

strength of the case base, and why we chose to use these methods. Next, we describe the

method that was used for evaluating how good the system would perform at the task of

controlling a pedestrian crossing. Finally, we explain why the interpretation of pedestrian

intention module was not a part of the simulator tests.

4.6.1 Expert validation of the system in real-time

When creating cases for the system, the best way would be to add cases that directly

re�ect real-world situations. Situations that are relevant to the system happen with

varying frequency, so it is hard to just sit down, observe tra�c, and wait for abnormal

situations to happen. Since these situations has not been stored anywhere (both because

there has been no need to do so, and since mixing information about pedestrians and

vehicles is not regular), other than in the minds of experts, we needed a way to create

these cases. This is challenging, because it is easy to leave some cases out if it is not done

in a systematic manner.

When having meetings with the experts at the NPRA we found that they had problems

getting an overview of the case base when presenting them with 21 cases. Imagine doubling

or even tripling the amount of cases. It would make it even harder to get a good overview of

the cases in the case base. To make the process of covering the complete problem domain

easier, a solution could be to divide the cases into categories, to see what problems are

not completely covered. The problem with this approach is that it is actually quite hard

to divide cases into categories, because many cases can be put into multiple categories.

Another solution to this problem is to create a module for the system, where cases can

be updated, deleted and added cases to the case base, while the system runs. This will let

the expert actually observe the current situation, and let him/her evaluate the solution

proposed by the system. The query case and the retrieved cases will be represented in a

4.6. HOW TO EVALUATE THE SYSTEM 35

systematic way, which makes the updating of the case base easier. We chose to implement

this module in our system, because we believed it would make the process easier and that

it would make it easier to further develop the system.

4.6.2 Leave-one-out cross-validation

To evaluate the strength of a CBR system, and the case base that it uses, it is important

to use a method that can evaluate whether the system can reason beyond the examples

(cases) already given to the system. If the system cannot solve new problems, its usefulness

is greatly reduced. To evaluate the systems strength, a test set with cases never seen by

the system has to be used. One possible way to acquire this test set is to observe a

pedestrian crossing and creating the cases from actual data, or to talk to experts and

create a test set together with them. The drawbacks of these methods are that they can

be very time-consuming.

Because of the time constraints of this project, we decided to use leave-one-out cross-

validation, instead of creating a test set. The reason we use leave-one-out cross-validation,

over k-fold cross-validation, is because the case base is small. K-fold cross-validation has

a tendency to waste data when the k is small[39]. Leaving out just one case is normal

when evaluating case-based systems, since case bases rarely contain a large amount of

cases.

Leave-one-out cross-validation removes one case from the case base, and then uses this

as a test case. Every case in the case base will be used as a test case, and the result is the

number of cases that were correctly classi�ed. This method helps to �nd shortcomings

in the solution space, by revealing what parts of the case base is not adequately covered.

We also use this method in setting the weights of the features of the cases. How the

cross-validation was implemented into the system is explained in section 5.6.2.

Knowing when the results of a cross-validation test are satisfying can be di�cult to

estimate. The results can be 100%, and the system can still perform badly over a test

set, if some categories are not covered at all. Also, adding cases does not necessarily

increase the number of correctly classi�ed cases, if the case itself cannot be classi�ed by

the other cases. Still, the number of correctly classi�ed cases does not have to be 100%,

since the case is removed from the case base when performing the evaluation. Because of

the reasons mentioned above, we set the limit for when the case base is complete to 75%.

36 CHAPTER 4. METHODOLOGICAL APPROACH

The evaluation process will be executed in the following steps:

1. Find the weights to the features that gives best performance

2. If the result is not satisfactory (less than 75% correctly classi�ed cases), add more

cases in the parts of the solution space that got few cases and go back to step one.

3. Case base complete (more than 75% correctly classi�ed cases).

4.6.3 Performance tests in the SCANeR Studio

The optimal way to test a system that performs tra�c control would be to test it in

real-world scenarios. Such tests would require a lot of resources and it also would require

thorough tests of the system beforehand, to ensure that the system would not be a safety

risk. Since this is not possible, due to the time constraints of this project, we had two

other choices; create a set of test cases and give them as input to the system or compare it

to a system similar to those used today in a tra�c simulator. We chose the second option.

The reason for this was that this would probably test the system in a more correct way,

since the situations occurring in a simulator would be more realistic. It is reasonable to

believe that this would give the system cases that it has not seen before.

The problem with such an approach is that it is in fact quite hard to mimic the

behavior of a real signal controlled pedestrian crossing. Many of the crossings today are

controlled by intersections connected to the crossing (see section 2.2 about the SPOT

system), which makes it di�cult to create a simulated version of the crossing. Also, the

crossing should be a possible bottle-neck, with high tra�c �ow and many pedestrians, so

that the system can be tested against a crossing that is di�cult to control. There were

two possible ways we could perform the simulations; with the SCANeR Studio or with a

tra�c simulation software called Aimsun. The SCANeR Studio was brie�y described in

section 4.1. Aimsun is developed by TSS-Transport Simulation Systems and according

to them Aimsun is: �A tra�c simulation software that allows you to model anything from

a single bus lane to the whole of Manhattan�[40]. The reason we chose the SCANeR

Studio is because it provides possibilities for controlling the tra�c on a more detailed

level. For example, the NPRA has equipment that lets you drive a simulated vehicle in

the scenarios. This could enable testing speci�c scenarios, like if a vehicle is driving too

fast. Aimsun would provide possibilities for using more exact models of the tra�c in and

4.6. HOW TO EVALUATE THE SYSTEM 37

out of the crossing. For example, in the future it is likely that there will be models in

Aimsun for simulating the tra�c network in the city of Trondheim.

The signal controlled pedestrian crossing we decided to compare with is a crossing

at Brattøra in Trondheim. This crossing is not controlled by other intersections. It is

also located in an area with much passing tra�c and many pedestrians, due to close by

industrial areas. This comparison site was described more thoroughly in section 4.4.1.

The simulated crossing in the SCANeR Studio is not identical to the real crossing.

For one, the tra�c that goes into the crossing is not exactly the same as in the real

crossing. To get the same tra�c, we would need to create a much larger tra�c network,

to simulate the tra�c that comes from both directions in the crossing. The roundabout,

that is located north of the crossing, is also removed. Creating a roundabout in the

simulator requires a lot of work when it comes to setting the priorities for vehicles in

di�erent directions. Also, when we con�gured the roundabout in the SCANeR Studio

vehicles sometimes stopped, for no apparent reason. The time constraints of this project

also made it di�cult for us to spend much time on perfecting the surroundings of the

pedestrian crossing in the simulator.

To emulate the tra�c that enters the crossing, we created a signal controlled pedestrian

crossing on each side of the crossing controlled by the CBR system. In this way, we could

regulate the tra�c to get some gaps in tra�c, which is more realistic than sending a

constant stream of vehicles through the crossing. These crossings were con�gured so that

they would not have too much of an impact on the tra�c, so that they would not cause

any tra�c jams. The settings for the two signaling systems are shown in table 4.1 (tra�c

light for vehicles) and table 4.2 (tra�c light for pedestrians). The simulated section of

road is shown in �gure 4.3. The red circles mark the crossings, and the crossing in the

middle is the one used for testing. The distance between the crossing and the two crossings

on each side is about 700 meters. Figure 4.4 shows a more detailed screenshot of the CBR

controlled tra�c light in SCANeR Studio.

One of the goals of this project was to create a system that would perform better than

today's system in terms of; e�ciency, safety and user friendliness (see section 1.1). Since

it is not possible to test whether the user friendliness has improved in a simulator, we

decided to only test e�ciency and safety.

38 CHAPTER 4. METHODOLOGICAL APPROACH

Figure 4.3: Screenshot from SCANeR Studio, showing the simulated section of road used

in the test scenarios

Figure 4.4: Screenshot from SCANeR Studio, which shows the tra�c light that is con-

trolled by the CBR system.

4.6. HOW TO EVALUATE THE SYSTEM 39

Signal color Interval time

Green 90 seconds

Green and Amber 3 seconds

Red 8 seconds

Amber 1 seconds

Table 4.1: Settings for the tra�c lights for vehicles, on each side of the CBR controlled

tra�c light

Signal color Interval time

Red 94 seconds

Green 5 seconds

Green blinking 3 seconds

Table 4.2: Settings for the tra�c lights for pedestrians, on each side of the CBR controlled

tra�c light

4.6.4 Evaluating the system with interpretation of pedestrian in-

tention

A good evaluation of the CBR system, with interpretation of pedestrian intention, would

be to test the accuracy of the interpretation and to test if the module could improve

the CBR system in terms of; increased tra�c �ow and greater safety for pedestrians and

vehicles. There are several obvious di�culties that arise when doing such an evaluation.

For one, a good evaluation of such a system would require great synchronization between

sending people into the range of the Kinect sensor and simulating tra�c in SCANeR

Studio. Second, the Kinect sensor have limitations when it comes to speed of detection

and the number of people it can detect (because of 3rd party library limitations, the

program often crashed when �ve or more human shaped objects were in range of the

Kinect sensor). Also, creating scenarios with pedestrians entering the sensor, some with

positive (i.e. a pedestrian intends to cross the road) and some with negative (i.e. a

pedestrian that does not intend to cross the road) intention, requires a lot of e�ort.

Since the system presented in this thesis is an experimental system, we decided, in

cooperation with our supervisors, that it was not necessary to fully test this part of the

system. The purpose of the module is to show that it is possible, to some extent, to infer

40 CHAPTER 4. METHODOLOGICAL APPROACH

the intention of pedestrians, instead of having the pedestrians signal their intention by

pushing a button. Therefore, we did not see the necessity to evaluate the accuracy of the

module any further than the tests done by Solem in the Intention-based Sliding Doors

project[3] (these results were presented in section 2.5). Also, we decided not to test this

module in terms how it would increase the e�ciency and safety in a crossing, because of

the di�culties mentioned above. Instead, we tested the system by running some simple

scenarios, with few pedestrians and a less complex background environment. In this way,

we believe that the concept of interpreting whether a pedestrian has an intention to cross

the road could be proved to be doable.

Chapter 5

Implementation

In this chapter, we will describe the CBR system that has been implemented, along with

the modules that were created to assist the system. Section 5.1 gives an overview of the

system. A description of the case base, including the structure of the cases, how the case

base was �lled and a description of the similarity functions, is given in section 5.2. Sec-

tion 5.3 goes through each feature, explaining how the data for each of them is obtained,

and how the data is distributed in the system. Section 5.4 explains in detail the process

of retrieving cases in the system. Section 5.5 gives a more thorough description of the

system. Finally, we describe the modules that were created for enhancing the evaluation

process and for improving the case base.

5.1 System overview

An overview of the system is given in �gure 5.1. In the bottom left corner, a Kinect

sensor is shown. This illustrates the sensors that are supposed to be placed on the top the

tra�c lights, to monitor the area around the crossing. It sends images from the sidewalks,

which are analyzed by the module for interpreting the intention of pedestrians, and the

not yet implemented interpretation of type of pedestrian module. Data is sent through to

the CBR system by using communication standards de�ned by CVIS. If the CBR system

receives one or more positive intentions, the CBR cycle will start.

The �rst step in CBR cycle is the creation of a new query case, which happens when

the number of positive intentions is greater than zero. To create a new case, the system

will collect the most recent data from the sensors. Vehicle- and pedestrian data are

41

42 CHAPTER 5. IMPLEMENTATION

continuously modi�ed through the CVIS communication, so that the query case in the

CBR system will be up to date. In this way, the query case represents the current tra�c

situation. Next, the query case is used for retrieving similar cases. If more than one case

is retrieved, the most frequent solution is chosen. It will either contain the transition time

for pedestrians, or suggest that the tra�c light should not be changed. If the tra�c light

should not be changed, the CBR cycle will start from step one with the creation of a new

query case. This process will continue until tra�c light has been changed, or when the

number of positive intentions is zero.

If a solution containing a transition time is returned by the system, it is passed on

to a simulated tra�c light. This is a visualization of a pedestrian tra�c light, which

shows the outcome of the solution given by the CBR system. To control the tra�c light

in SCANeR Studio, a CVIS event is published from the simulated tra�c light. In this

way, the simulated tra�c light and the tra�c light in SCANeR Studio will always be

synchronized.

The gray box in the �gure represents a module that is used for �sending� pedestrians

into the system. It makes the evaluation process easier, since it allows the system to run

without having to send pedestrians in front of the Kinect sensor. In addition, it allows

the user to specify the type of pedestrian, since the module for interpreting the type of

pedestrian has not been implemented. This module is described in section 5.6.3.

5.2. CASE BASE 43

Figure 5.1: An overview of the system

5.2 Case base

In this section, we will describe how the case structure was established and how the case

base was �lled with constructive cases. We also describe the similarity functions that

de�ne how similarity between cases is calculated.

5.2.1 Case structure

In this section, we will describe the process of creating a case structure based on the work

done in our specialization project, and information gained through meetings with experts

in the relevant domains. Our focus has been on making a case structure that is rich, in

the way that it can handle complex problems, but yet is simple, in that all unnecessary

features are discarded. This has been an iterative process, where a case structure were

produced and refactored over time, to get the best possible �nal result.

Knowledge acquisition

The �rst step in creating a good case structure is to acquire those features that are

important to describe situations in the problem domain. Extracting these features can

44 CHAPTER 5. IMPLEMENTATION

often be a very di�cult process. Experts can have di�erent views on what features are

the most important ones, and it is therefore important to do a thorough investigation.

Knowledge acquisition is an essential part of creating the case structure, since it can

ensure that the solutions proposed by the systems are the most satisfying solutions.

As mentioned in section 2.1, the process of studying the problem domain and the

possibilities of using CBR in the domain, began in the specialization project. It included

reading manuals produced by the Norwegian Public Roads Administration, reading ar-

ticles on the matter and going to the ITS1 World Congress 2011 in Orlando. From this

research, we discovered that information about the situation in a pedestrian crossing can

be split into two parts; vehicle information and pedestrian information. Examples of traf-

�c related information will typically be how the tra�c �ows and speed of the vehicles in

the area. An example of pedestrian related information is number of pedestrians. It is

important to point out that information regarding vehicles is much more available than

pedestrian information, since there have been a lot of focus towards this category of tra�c

units.

One of the decisions we had to make when creating the case structure was whether

we should have one or two case structures. The reason for this is that the system has

to both estimate the optimal transition time and decide when the transition should be

initiated. Thus, we had to consider if we should have one case base with cases to estimate

transition time and one to decide when it should change the light, or if we should have

one case base with cases representing both solutions. One of the positive things of having

two separate case structures, and two case bases, is that some of the features are more

related to one part of the solution. For example, if a vehicle is detected or not, does

not directly a�ect the transition time, but it greatly a�ects when to make the transition,

since it can be useful to let a detected vehicle pass before letting the pedestrians cross

the road. Furthermore, two case bases make the retrieval process faster, since the number

of combinations is actually lowered. Still, we decided to create one case base. The main

reason for this was that the cases for deciding when to change the light had almost all

the features of the other case structure. Also, in some situations the transition time given

to the pedestrians is important for when the lights should be changed. For example, if a

slow group of pedestrians wants to cross the road during the rush hour, the system should

1Intelligent transportation systems

5.2. CASE BASE 45

Feature Possible values

Number of vehicles Low, Normal, High

Gap in tra�c True, False

Vehicles per time unit Low, Normal, High

Distance from the closest vehicle to the crossing

and the crossing

Short, Medium, Long

Speed of the vehicle closest to the crossing Slow, Normal, Fast

Number of positive intentions Few, Normal, High

Time waited Short, Medium, Long

Speed of the pedestrian closest to the crossing Slow, Normal, Fast

Type of pedestrian SlowGroup, Slow, Normal, Fast

Current date and time Date format

Proposed transition time (solution) null, ExtraTime, Normal, LessTime

Table 5.1: First draft of the case structure

wait as long as possible to change the lights, because the group will need an extended

transition time. These situations are solved more easily if the solutions are retrieved from

one case base.

The second step of acquiring the most important features was to sit down with experts

on the domain and bene�t of their knowledge. Our �rst meeting was with Kristin Kråkenes

and Helge Stabursvik at the NPRA in Trondheim. Kristin Kråkenes is an expert on

signal control and Helge Stabursvik is an expert on tra�c safety in general. Prior to the

meeting, we proposed a possible case structure, based on the work described above. Our

�rst concern was that we would put ideas into the expert's heads and make their responses

biased, if we showed them the proposed structure right up front. We therefore attempted

to explain the problem to them without showing them our initial draft of a case structure.

We soon discovered that acquiring the knowledge we wanted was as harder than expected.

It was both hard for us to describe to them exactly what we wanted to achieve with our

system, and to describe what information we wanted from them. An obvious mistake was

to try and extract the features from them, without showing them our proposed solution.

When showing them our proposal, it made it easier for them to understand what a case

is and what a feature in a case can be. The proposed case structure is shown in table 5.1.

46 CHAPTER 5. IMPLEMENTATION

The meeting also strengthened our assumption that work done in tra�c control is

centered on vehicles and not pedestrians. The experts were much more direct in their

response when talking about vehicles, while the responses concerning pedestrians were

vaguer. Additionally, the features describing vehicles and tra�c were more obvious, and

hence the experts agreed on most the features we proposed. For example, it is quite

obvious that the tra�c �ow a�ects the number of pedestrians the system can allow to

cross the road. For pedestrians, they also agreed on most of our proposed features, but

they pointed out some features that were more important than others. We took this into

account when creating the �nal case structure.

The �nal case structure

The �nal case structure is shown in table 5.2. Number of vehicles and vehicles per time

unit were two features in the initial draft of the case structure. Since the number of

vehicles is more or less the same as vehicles per time unit, if it is a very small time unit,

we merged them into one feature, namely tra�c �ow. Tra�c �ow gives an indication

of how much tra�c has passed through the crossing in a given time interval (e.g. �ve

minutes). It is an important feature because e.g. a higher tra�c �ow can indicate that

there is a greater chance for tra�c jams to occur. Thus, when the tra�c �ow is high, the

system must be more cautious to let pedestrians cross the road, while if the tra�c �ow is

low, the system can let pedestrians cross more often.

The second feature is vehicle detected, i.e. if there is a vehicle detected in any of the

lanes in the direction of the crossing. This is a very important feature, because it enables

the system to detect gaps in tra�c, so that it can exploit these, and let pedestrians pass

at the most optimal time (because of this we could remove the �Gaps in tra�c� feature).

If a vehicle passes one of the detectors, the vehicle will stay detected until it has passed

the crossing. The way this is done is to estimate the time the vehicle will use from the

detector to the crossing, by using the speed of the detected vehicle. Since the detectors

are placed close to the crossing (the standard is about 70 meters to the detector furthest

away), we did not include the �Distance from closest vehicle to crossing and the crossing�

feature. In the future, there is a great chance that vehicles will be equipped with GPS, so

that detection can be done in a much longer range, and for a much longer period of time.

The speed of the detected vehicle is also a part of the case structure. It is important

5.2. CASE BASE 47

because if a vehicle with high speed is approaching the crossing, the system might need

to let the pedestrians wait, because the vehicle may not have time to stop.

The next feature is the number of positive intentions. This information is not available

in today's systems, where a push button is used to request transition, because only one

pedestrian pushes the button. In our system it is acquired in the module for interpreting

pedestrian intention. It is important because the number of pedestrians that requests to

cross the road can a�ect both when the pedestrians should pass, and for how long (e.g. if

there are many pedestrians with intention to cross the road, the system should give them

more transition time, and if there is one pedestrian that wants to cross, the system can

let him/her pass if there is a small gap in tra�c).

The time pedestrians have waited for a green light is also an important feature. It

directly a�ects when the system should let pedestrians cross, since if the time waited is

�Long�, it should let pedestrians pass no matter what. In other situations, it is used to

estimate when to let pedestrians pass (e.g. if a vehicle is detected and time passed is

�Short� or �Medium�, the pedestrians should not get a green light).

The last feature is the type of pedestrian. It is probably the most important feature,

since it very important when it comes to giving the correct transition time. For example,

if the type of pedestrian is �Slow�, the pedestrian should always be given �ExtraTime� or

more. This feature can also a�ect when the system should give a green light to pedestrians.

For example, if the type is �SlowGroup� and the tra�c �ow is �High�, then the system

should wait until �Long� time has passed because the slow group needs �ExtraExtraTime�

to pass.

5.2.2 Similarity functions

After establishing the structure of the cases, in terms of a problem description and a

solution, the next step is to de�ne how similarity is calculated between di�erent values

of features. In this section, we will present the similarity functions that were de�ned

for each feature (the local similarities), while we in the next section will describe how

the similarity between a query case and a case in the case base is calculated (the global

similarity). The myCBR plugin in Protégé o�ers multiple ways of con�guring similarity

functions (table similarity, ordered similarity, externally scripted similarity functions in

Jython, and more). We used this plugin for con�guring the similarity functions. It is

48 CHAPTER 5. IMPLEMENTATION

Feature Possible values

Tra�c �ow Low, Normal, High

Vehicle detected True, False

Speed of detected vehicle null, Slow, Normal, Fast

Number of positive intentions Few, Normal, High

Time waited Short, Medium, Long

Type of pedestrian SlowGroup, Slow, Normal, Fast

Proposed transition time (solution) null, ExtraExtraTime, ExtraTime,

Normal, LessTime, LessLessTime

Table 5.2: Case structure

important to point out that the values used in table similarity are not based on research,

but on the information we got from the experts at the NPRA. A possible improvement

of the system could therefore be to either make the systems learn these parameters, or

have an expert set more optimal values. All values that are exact matches are given

the maximum similarity value, which is 1.0. Also, all similarities are symmetric, i.e. if

one feature is similar to another feature; the second feature is just as similar to the �rst

feature.

Tra�c �ow similarity

The con�guration of the similarity of the tra�c �ow feature shown in the table in �g-

ure 5.2. High values of "Normal" tra�c �ow can indicate that tra�c is rising. Therefore

the similarity between "High" and "Normal" tra�c �ow is set to 0.2.

Figure 5.2: Tra�c �ow similarity

Speed of detected vehicle similarity

The con�guration of the similarity of the speed of detected vehicle feature shown in the

table in �gure 5.3. Here, the similarity between "Normal" and "Slow" is set to 0.5. The

5.2. CASE BASE 49

reason for this is that it is less important if a vehicle is "Slow" or "Normal", because the

safety is not an issue for any of the values.

Figure 5.3: Speed of detected vehicle similarity

Positive intention similarity

The similarity for number positive intentions is con�gured in the table shown in �gure 5.4.

"Normal" values are given partial credit for when the number of positive intentions is

"Few" or "High".

Figure 5.4: Positive intention similarity

Time waited similarity

The similarity for time waited is con�gured in the table shown in �gure 5.5.

Figure 5.5: Time waited similarity

Type of pedestrian similarity

The similarity for type of pedestrian is con�gured in the table shown in �gure 5.6. For this

feature, the values for "Slow" and "Slow group" are given a 0.2 similarity, because both

values indicate that there are slower pedestrians that request to cross the road. Similarly,

the values "Normal" and "Fast" are given a 0.2 similarity. This is because we de�ne

"Normal" pedestrians as pedestrians that can increase their speed if needed.

50 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Type of pedestrian similarity

5.2.3 Global similarity

The similarity between two cases is calculated by the weighted sum of all the features.

The weights were learned by an evolutionary algorithm, which is explained in the next

section.

5.2.4 Evolutionary algorithm

Testing all combinations of feature weights to improve the system, would be a very time-

consuming, especially if it was to be done manually. Of course, some intuition could be

used to set the weights according to the knowledge we have about the problem domain.

Still, getting the perfect set of weights would be di�cult. As a result of this, an evolu-

tionary algorithm was implemented to easy the process. The algorithm consists of a core

method, a unit, selection strategies and genetic operators. The core method initializes

values and runs the evolutionary cycle. Some of the parameters in the system can be

manually changed to improve the results. These parameters are the number of units, the

rate at which mutation should be performed and the number of mutations that should be

performed.

The �rst step of the cycle is to create units representing di�erent solutions. A unit

is created with a genotype, which can be translated into a phenotype. The genotype is

represented by an array of size 46, were each place in the array can either be the value

zero or one. It is translated into the phenotype by splitting the genotype into six parts,

where each part represents one of the weights of the features. The weight is the binary

value of the zeroes and ones.

There are three types of units; children, adults and parents. The �rst units that are

created have a randomly initialized genotype. These are the adults. Selection strategies

are used for choosing which of the adults should be allowed to be parents. The selection

strategies are based on a �tness function, where di�erent units get di�erent �tness values,

5.2. CASE BASE 51

based on how good the solutions are. Typically, the units with the highest �tness will be

allowed to reproduce, but there is also some randomness in the selection, to be able to

explore the whole solution space.

The �tness function runs the cross-validation algorithm described in section 5.6.2, and

uses the results from it as �tness for the unit (e.g. if the result is 10 out of 20 correctly

classi�ed, the �tness would be 0.5).

Then a full replacement of units is used, which means that all adults are replaced

by a set of children. Two parents will create two children by doing a cross-over on their

genes. Mutation is performed on the genes, to explore the whole solution space. To

ensure that the very best units doesn't disappear in the selection of parents, elitism is

used, which involves storing a number of adults that have the highest �tness, so that they

are guaranteed to reproduce.

When the �tness of the population is high enough, the cycle will stop, and the solution

represented by the best unit will be returned. The weights found by the EA are shown in

�gure 5.3. The weights range from 0 to 12.8.

Feature Weight

Tra�c �ow 0.5

Vehicle detected 12.4

Speed of detected vehicle 10.2

Positive intentions 1.5

Time waited 3.8

Pedestrian type 6.2

Table 5.3: Weights found by the EA

5.2.5 Building the case base

Building the case base consisted of several phases, both before and after testing the system.

In the �rst phase, we created new cases manually in cooperation with the NPRA. The

experts at the NPRA did not fully understand what a case is in our terms, and we also

realized that sitting down with the experts and creating useful cases from scratch, would

not be a very good approach. Because of this, we created a set of cases based on some

facts they provided:

52 CHAPTER 5. IMPLEMENTATION

• If the tra�c �ow is high, pedestrians can wait longer

• If the tra�c �ow is high, the transition time for pedestrians should still be long

enough for them to be able to cross the road before the light changes

• If no cars are detected at the inductive loops, the tra�c light should change to

utilize all gaps in tra�c (this is especially important when tra�c �ow is high)

• If a slow group (e.g. a school class) wants to cross the road, it is desirable to let

the whole group cross the road together and therefore give a much longer transition

time

21 cases were created, where the focus was to cover the facts listed above. In the

meeting with the experts at the NPRA, we wanted to check whether all cases were giving

the correct solution, if some of the cases where less important and if there were any

important cases that should be added.

In the next phase of building the case base, we created a set of training cases and used

it to improve the case base. The training set was based on the numbers acquired when

counting vehicles and pedestrians at Brattøra. These numbers were also used for �nding

the reference values for features in the case base (e.g. a "High" amount of pedestrians was

set to seven pedestrians or more). Each case in the training set was created by looking at

the number of pedestrians that crossed the road at the same time, and by looking at the

number of vehicles in the past �ve minutes, to see what the tra�c �ow was. The features

"Vehicle detected" and "Speed of detected vehicle", was manually inserted because we did

not have the exact time for when each vehicle passed the inductive loops at the crossing.

Furthermore, the type of pedestrian was set to a value other than "Normal" in some cases,

because it was very few pedestrians that were slower or faster than the norm, when we

counted.

The CBR system is constructed so that an expert can interrupt the system if it makes

any mistakes (a more detailed description of this system can be found in section 5.6.1).

Figure 5.7 shows the user interface where the expert can interrupt the system if it gives

incorrect solutions. When running the system against the training data, we made sure

that that the solutions given by the system were correct. If a solution was correct, the

system could continue. If the system made a mistake, we could either enter the correct

solution to the problem or propose a change in the weights of the attributes. In this way,

5.2. CASE BASE 53

Figure 5.7: A screenshot of the user interface when the system is interrupted at a query.

the case base was improved in a systematical way, which contributed to make the cases

is the case base more correct and more useful. After this process the case base contained

31 cases.

After running cross-validation tests on the system, we discovered some de�ciencies in

the case base. The �rst de�ciency was that even though we had covered most of the

problem domain, we did not have enough cases to fully represent the di�erent parts of the

problem domain. To get a good overview of the di�erent parts of the case base, the cases

were categorized by what types of situations their solution aims to solve. The categories

are listed below:

• Normal situations

• Let pedestrians pass if there is a gap in tra�c

• Pedestrians has not waited long enough

• Pedestrians has waited "Long" time

• A slow pedestrian wants to cross the road

• A slow group of pedestrians wants to cross the road

• A fast pedestrian wants to cross the road

54 CHAPTER 5. IMPLEMENTATION

• A fast vehicle approaches the crossing

• High tra�c in the area around the crossing

By adding cases to categories that were not su�ciently covered, the system was less ex-

posed to noise in the query cases. This also increased the accuracy in the cross-validation.

After these cases were added, the case base contained 66 cases. To sum up, 21 cases were

added before the meeting with the experts, 10 cases were added when using test queries

generated from the data obtained at Brattøra, and 35 new cases were manually added to

cover all categories.

Another thing that was discovered was that there are very strong dependencies between

features in the cases. For example, the feature �Type of pedestrian� is of great importance

in cases where the solution is not null (i.e. when the system allows pedestrians to cross),

while if the solution is null, the feature is not that important. This makes the system

more exposed to noise, because small changes in cases, can give very di�erent solutions.

In section 7.1,we propose a solution to this problem.

5.3 Features

In this section, we will describe the system acquires the knowledge for each of the features.

First, we explain how the incoming data were transformed from continuous values to

nominal values. Second, we describe how communication between bundles (applications

in OSGi) is used for getting the data from the di�erent sources. Section 5.3.3 describes

how the Intention-based Sliding Doors system was integrated with the CBR system, to

interpret the intention of pedestrians. Section 5.3.4 explains how information about the

type of pedestrian was acquired by the system, before the last section is about how the

system obtains the rest of the features.

5.3.1 Range of the features (Discretizing)

To make the process of retrieving similar cases easier, we discretized the features from

continuous to nominal features. The range of the discrete features are shown in table 5.4.

The tra�c �ow feature is split into low, normal and high. To de�ne a range for these

values, we used actual detector data from the crossing at Brattøra (see section 4.4.1).

5.3. FEATURES 55

The data consisted of the vehicles that passed the detectors, in both directions, from

13.02.2012 to 17.02.2012.

The range of the speed of detected vehicles feature was acquired by simply looking at

the speed limit at the crossing. We found the range for the number of positive intentions

by looking at the counting of pedestrians we conducted. The range of the time waited

feature is based on the opinions of the experts from the NPRA. The type of pedestrian

feature is a discrete value, and did not need to be translated.

The values of the solution feature was obtained by calculating the distance (7.5 meters

at the crossing in Brattøra) from one side of the road to the other, and using the distance

together with an estimated speed of pedestrians, to calculate the transition time. The

speed for the di�erent solutions has not been a target of research, but rather been based

on intuition. For example, the normal speed is set to be 1.2 m/s, which is the speed used

by the NPRA for normal pedestrian crossings. The speed for �LessLessTime� was set to

2.0 m/s because this is approximately the speed a slow runner will have.

It is important to point out that the transition time given by the solution does not

correspond to the actual time the pedestrians will have to cross. This value is called

the emptying time (Norwegian: Tømmingstid). It is the time that it takes to empty the

crossing. To calculate the total transition time, the green time is calculated by dividing

the emptying time by 2 and adding 2. The green blinking time is found by dividing

the emptying time by 2. If the solution is to give �Normal� transition time, this would

correspond to a green time of 5.125 seconds and a green blinking time of 3.125 seconds,

which would result in a total transition time of 8.25 seconds.

5.3.2 Communication between bundles

In OSGi, bundles use something called a Service to export or import data from other

bundles. A Service is a Java object instance, registered into the OSGi framework, with

a set of properties. By publishing Service Events, bundles can let other applications

use their data. This way of handling communication is one of the features of OSGi

that enables the developer to create modular systems. This is very useful in the tra�c

domain. For example, if a bundle is created for interpreting the intention of pedestrians in

an intersection, this information can be accessed by any number of bundles. In this way,

useful information can be exported to several bundles in the system in a simple manner.

56 CHAPTER 5. IMPLEMENTATION

Feature Range

Tra�c �ow (5 min. time interval) 0 - 34 = Low, 35 � 88 = Normal, 88+ = High

Vehicle detected True, False

Speed of detected vehicle no vehicle = null, 0 � 45 km/h = Slow, 46 � 55

km/h = Normal, 56 km/h + =Fast

Number of positive intentions 1 � 3 = Few, 4 � 7 = Normal, 8+ = High

Time waited 0 � 16s = Short, 17 � 50s = Medium, 50s+ =

Long

Type of pedestrian SlowGroup, Slow, Normal, Fast

Proposed transition time (Solution) null = no transition, ExtraExtraTime = 12.0s,

ExtraTime = 7.5s, Normal = 6.25s, LessTime =

5.0s, LessLessTime = 3.75s

Table 5.4: Range of features

5.3.3 Integrating the Intention-based Sliding Doors

This section describes how the Intention-based Sliding Doors system was integrated with

our system. First, we will explain how the original system works and what changes were

made to make it more suitable in the domain of tra�c control. Next, we will show how we

made use of the code in our system by integrating it with CVIS. Finally, we will present

some of the problems that occurred during the implementation phase, along with some

limitations in using the Intention-based Sliding Doors code with the Kinect device as a

sensor.

Intention-based Sliding Doors overview

The framework made by Solem was originally intended to control sliding doors in a

crowded environment. It consists of several classes, from recognizing and tracking users,

interpreting the user's intention to controlling the sliding door. All though controlling

a sliding door is quite di�erent from controlling a pedestrian crossing, there are some

similarities. In both cases, the task of the system is to only let the people that actually

have an intention to enter/cross, to do so. The biggest di�erence is that if the system

makes a mistake letting pedestrians cross the road; it can have severe consequences (both

related to safety and e�ciency in the crossing). Thus, the accuracy of such a system must

5.3. FEATURES 57

Figure 5.8: An overview of the sliding doors system, integrated with the CBR system

be close to perfect. There were also some other problems that had to be overcome:

• The Intention-based Sliding Doors is written in C++, so there was a need for com-

munication between C++ and Java.

• An intention-based tra�c light has to manage how many users have the intention

to cross, while with sliding doors the system only need to know if one user has the

intention to enter.

• The system for interpreting pedestrian intention has to know if there are no longer

any pedestrians in sight, which is when the number of intentions to cross changes

from one to zero.

There were multiple possibilities for transferring data from C++ to Java. We consid-

ered using something called JNI (Java Native Interface) where the C++ code is wrapped

so that it is possible to call the C++ methods from Java. The positive side with this

58 CHAPTER 5. IMPLEMENTATION

approach would be that we could transfer data directly into the CBR system, because

the C++ code could be a bundle on its own. The problem with the approach is that

the Intention-based Sliding Doors use four large frameworks, for coding in C++ and for

image processing with the Kinect device (the frameworks are described in section 4.5).

Using JNI is quite complex even with simple code, and when using both more complex

code and having to make it work with all four frameworks, we decided that wrapping the

code was too much work, for little gain.

Instead, we decided to create a socket connection between the C++ code and the Java

code. An overview of how the integration was done is shown in �gure 5.8. The C++ code

works as a client that always processes the incoming images, and sends all information

through the socket, to an OSGi bundle. This bundle is not a part of the CBR system.

The bundle publishes an event asynchronously, so that other bundles can subscribe to the

stream of information. The advantage of receiving the pedestrian's intention in a separate

bundle is that other bundles (i.e. other tra�c applications) can use the information for

other purposes. This makes it possible to use the information for purposes that might not

be evident today. Our CBR system listens to the event by registering to it and creating

an event handler.

The downside of this approach is that the data has to be sent from the C++ code

through to an OSGi bundle, and from this bundle, to the CBR system. If we had wrapped

the code directly into and OSGi bundle we would not need multiple transfers, but as

mentioned before, the gain of wrapping the code was too small.

The next change that had to be made was to keep track of the pedestrians that have

the intention to cross the road. Originally, the system does not support this feature,

because a sliding door does not distinguish between the number of people that want to

enter. When controlling a tra�c light, this is actually a very interesting feature, since

the number of pedestrians a�ects both the time needed to cross, and when the transition

should be initiated. For that reason, we had to store the number of positive intentions.

The system already created a User object for each human that enters the range of sensors.

To keep track of the number of positive intentions, we stored the intention of the user

in the User object, and counted the number of Users with positive intention, to get the

number of positive intentions. This also solved our last problem, to keep control of when

the number of positive intentions moves from one to zero.

5.3. FEATURES 59

5.3.4 Type of pedestrian

The type of pedestrian feature is an important feature, because it directly a�ects the

transition time that should be given. Extracting this data from camera sensors would be

the optimal solution. By looking at the height, speed and maybe other features like angles

between di�erent body parts, it is reasonable to believe that this feature can be obtained.

The problem with this approach is that it is very dependent on good accuracy in the

reasoning mechanism and that the sensors are maintained in a satisfactory manner. Also,

how could this reasoning mechanism for example di�erentiate between a blind pedestrian

and a normal pedestrian? A blind pedestrian will often use either a stick or a dog as

an aid to be able to move around in the environment. The problem is that �normal�

pedestrians can use a stick or walk a dog, without being blind. A solution to this problem

could be to equip blind pedestrians with a device (e.g. a Smartphone) that could signal

to the system that a blind pedestrian is within the range of the crossing.

Because of the time constraints of this project, we did not implement any of the

ideas presented above. Essentially we wanted to create a module that made a simple

interpretation of the type of pedestrian. For example, it would be possible to assume that

a school class (i.e. a slow group) wants to cross the road, by checking if the heights of

the pedestrians are below some threshold and if the number of pedestrians is above some

threshold. The problem was that the Kinect sensor gives very variable results when the

height of a person is calculated. We therefore decided not to implement this.

To be able to test the strengths of the system, without creating the module for in-

terpreting type of pedestrian, we made it possible to send di�erent types of pedestrians

manually to the system. When the system is running, the user can either press �F� (fast

pedestrian), �N� (normal pedestrian), �S� (slow pedestrian) or �G� (slow group of pedes-

trians). This adds a pedestrian with positive intention to the system, and gives it the

type corresponding to the letter. This module is described in section 5.6.3.

5.3.5 Other features

The features describing the tra�c situation (Tra�c �ow, Vehicle detected, Speed of de-

tected vehicle) were all obtained from SCANeR Studio. Tra�c �ow was calculated by

counting all vehicles that pass the pedestrians crossing within a given time interval. The

same detectors (described in section 4.6.3) are used for detecting vehicles and providing

60 CHAPTER 5. IMPLEMENTATION

the speed of the passing vehicles. This information is passed to the CBR system by

publishing CVIS events in SCANeR Studio. It is done in SCANeR Studio by using the

simulators own scripting language. The last feature, time waited, is simply obtained by

starting a timer every time a pedestrian has the intention to cross, and is reset if there

are no longer any pedestrians that have the intention to cross.

Now that we have presented the key issues regarding generating a case base with cases

and acquiring the data for the features, we will in the next section present how cases were

retrieved by the system.

5.4 Retrieval

In this section, we will describe the retrieval process of the CBR system. This includes

creating a query case, �nding a set of similar cases, choosing the best solution of these

and using the solution to perform tra�c control in a pedestrian crossing.

5.4.1 Create a query case

If the system gets a positive intention from a pedestrian (i.e. the number of positive

intentions goes from zero to one), the system will build a query case. It does this by

collecting data from di�erent detectors (described in section 5.3). This is illustrated in

�gure 5.9. If the data detected is changed, the query case will be updated, so that it will

always contain the latest data.

A query case has to consist of nominal data, which means that incoming continuous

data has to be converted. The conversion is done by taking each continuous value and

looking it up in a list of ranges, where each range indicate a nominal value. For example,

if the calculated tra�c �ow in the last �ve minutes is 100 vehicles, the value is converted

into �High�, because the range is from 88 to in�nity (for all ranges see section 5.3). After

the query case is created, it is returned to the system.

5.4. RETRIEVAL 61

Figure 5.9: The process of building a new query case

62 CHAPTER 5. IMPLEMENTATION

5.4.2 Retrieving a set of cases

After the query case has been created, the system tries to �nd the cases that are most

similar to the query case. The similarity functions were described in section 5.2. These

indicate the local similarity between each feature. The similarity between two cases is

then established by taking all the local similarities and combining them into a global

similarity. Similarity is also a�ected by the importance of each feature (the weights of

the features). For example, if a feature is weighted 0.5 and another feature is weighted

1.0, the second feature will count twice as much as the �rst feature. Once the similarities

between the query case and each case in the case base have been calculated, a set of the

cases with the highest similarity is formed.

5.4.3 Choosing the most similar case

If more than one case was retrieved, the best solution has to be chosen. It is done by

taking the solution that is most frequent in the set of cases. The problem with this

approach can e.g. occur if two cases in the set give con�icting solutions. Then the system

randomly chooses one of the solutions. This increases the possibility of the system making

mistakes.

A possible solution to this problem would be to always choose the solution that gives

the longest transition time, if the two solutions are equally frequent. This would make

the system less e�cient, but it would ensure that the system would not give too short

transition time for some pedestrians. The reason why we did not implement this was

because these events rarely happen. If it were to happen, the reason for it would be that

there are cases in the case base that have the wrong solution or that a case is missing. In

a �nal version of the system, a safety mechanism with methods to handle these situations

would be necessary.

5.4.4 Using the solution

The solution of a case is either a transition time or that a transition should not be

executed. If a transition should not be executed, the process will start from the beginning

with creating a new query case. If a transition time is returned, the nominal value (e.g.

�Normal� or �LessTime�) is converted into seconds by looking it up in a table (the table

5.5. SYSTEM DESCRIPTION 63

used in the system was shown in table 5.4 on page 56). This table can vary between

crossings, since there will be a di�erence between the norms in di�erent crossings (e.g.

the number of vehicles that pass a crossing can be much higher in some areas). These

seconds are then passed to the simulated tra�c light, which will change its signal. While

the tra�c light gives a green light to pedestrians, the system stops the generation of a

query case, but when the light is red again, the process restarts.

5.5 System description

In this section, we will give a more thorough description of the system. First, we will

describe the classes of the system, and then give a short walkthrough of the system.

5.5.1 Class diagram

A class diagram of the complete system is shown in �gure 5.10. The main class in

the system is the Activator, where all the communication goes through. The system

consists of four parts; Tra�cSituationCase to store all data about a tra�c situation, the

Tra�cLightSimulator to handle the graphics, the QueryBuilderClass to create a query

case and the Cbr class to handle retrieval and reuse of cases. The classes ReadTra�cData

and AddToXml will not be described, and we refer to the Javadoc for more information

about the functionality they provide.

64 CHAPTER 5. IMPLEMENTATION

Figure 5.10: Class diagram of the CBR system

5.5. SYSTEM DESCRIPTION 65

5.5.2 Description of the classes

The following sections describe some of the most important classes in the system.

Activator

Figure 5.11 shows the main class in the CBR system, the Activator class. This class is

the standard main class of OSGi, where a start and a stop method are used to control

what is done at startup and shutdown of the system, respectively. The class initializes

two threads, one is the Tra�cLightSimulator class that visualizes a tra�c light and the

other is the Active class that runs as long as the variable �isRunning� is true. The Active

class will constantly request a new query case, but a new query case is only created if

one or more pedestrians have the intention to cross the road. The Activator class also

contains methods for pausing and unpausing the Active class, so that the user can halt

the system if needed. When the active class has gotten a transition time, it is forwarded

to the Tra�cLightSimulator class running in the other thread, which uses it to change

the tra�c light in the simulator.

66 CHAPTER 5. IMPLEMENTATION

Figure 5.11: Activator class

5.5. SYSTEM DESCRIPTION 67

Tra�cSituationCase

The Tra�cSituationCase class (see �gure 5.12) represents a tra�c situation case, with

the features described in section 5.2. The variables similarity and solutions are optional

(not initialized in the constructor), and can be used to store the similarity between a case

and the query case, and a solution that is proposed by a case, respectively.

Figure 5.12: Tra�cSituationCase class

QueryBuilder, TestQueries and Tra�cEventHandler

Figure 5.13 shows a class diagram with the classes QueryBuilder, TestQueries and Traf-

�cEventHandler. These are classes that are used in the generation of a new query case.

The QueryBuilder is used to generate queries, and can be run in either test mode (Test-

Queries class) or normal mode (Tra�cEventHandler class). Both of the classes implement

the Query interface, which include methods that are required by the QueryBuilder. The

TestQuery class is only used in the test phase. It reads test cases from a �le, and returns

these cases when the getTra�cQuery method is called.

68 CHAPTER 5. IMPLEMENTATION

The Tra�cEventHandler class receives vehicle and pedestrian data through Service

events (see section 2.3). The new data that come from the events are locally stored

in the class. When the method getTra�cQuery is called, the stored data is used to

generate a Tra�cSituationCase object, which is returned if the number of positive pedes-

trian intentions is greater than zero. There is a communication between the Tra�cEven-

tHandler and the Activator, even when the TEST_QUERY mode runs. This is because

the KeyEventListener is inside the EventHandler, which is used to deactivate and activate

the main thread. Di�erent buttons are bound to send di�erent pedestrians e.g. `s' = slow

and `f' = fast, and this is the reason why the KeyEventListener is inside this class.

Figure 5.13: QueryBuilder, TestQueries and Tra�cEventHandler class

5.5. SYSTEM DESCRIPTION 69

Tra�cSituation and Cbr

Figure 5.14 shows a class diagram containing the Tra�cSituation class and the Cbr class.

These are used for retrieving and reusing cases from the case base. The Tra�cSituation

class uses the myCBR tool to load the CBR project that was created in Protégé. It

contains two public methods; one that retrieves cases from the case base and returns the

cases with the highest similarity, and the other method to store a case to the XML �le

representing the case base. The Cbr class uses methods from the Tra�cSituation class,

to �nd the best case out of a set of cases that are similar to the query case.

Figure 5.14: Tra�cSituation and Cbr class

70 CHAPTER 5. IMPLEMENTATION

CaseBuilder

The CaseBuilder class, shown in �gure 5.15, is used for converting data between contin-

uous data, that is stored in a Tra�cSituationCase object, to nominal data. The ranges

of the nominal values are stored in HashMap's in the class. The class also contains a

method for converting the solution (which is a String value) to a double value, so that it

can be used by the tra�c light.

Figure 5.15: CaseBuilder class

5.5. SYSTEM DESCRIPTION 71

Tra�cLightSimulator

The Tra�cLightSimulator class is shown in �gure 5.16. It is used for creating a graphical

version of a tra�c light, to visualize what the pedestrians would see in reality. When the

Activator class receives a solution, the changeLight method is called. This method will

simulate how the tra�c light changes the light, with the green time being based on the

input value in the changeLight method. To change the tra�c light in SCANeR Studio,

the changeColorSimulator in the Activator class is used.

The class also contains the rest of the graphics like; the visualization of the current

case, the matching cases and how long a pedestrian has waited. The two classes; TableVal-

ues and FirstRowFontAndColorChange, are used for updating and con�guring the table,

which displays the query case and the cases with highest similarity in the user interface.

Figure 5.16: Tra�cLightSimulator class

72 CHAPTER 5. IMPLEMENTATION

5.5.3 Class diagram for the interpretation of pedestrian intention

module

In this section, we will describe the classes of the interpretation of pedestrian intention

module. We have excluded most of the classes created by Solem in the Intention-Based

Sliding Doors project, because most of the changes that have been done are in the class

UserHandler. A class diagram for the Java code is shown in �gure 5.17 and the class

diagram for the C++ code is shown in �gure 5.18. As mentioned before, the communica-

tion between the C++ code and the Java code goes through a simple socket connection.

The method inferUsersIntentions, in the UserHandler class, has been modi�ed to send

the inferred intention of pedestrians through a socket connection. It calls the method

getAllUsersIntention, which counts the number of pedestrians that have the intention to

cross the road. The information is sent through the socket connection by calling the

method SendInts in the Client class.

The Java code runs as an OSGi bundle. The reason for this is that it makes it easier

to forward the data to the CBR system. In the Activator class, a socket server is run

from the start method (the initial method running in an OSGi bundle) in a new thread.

It has to be run in a separate thread, or else the bundle will never stop running the start

method, and it will never get the status as �Active� (the di�erent statuses of OSGi is

explained in section 2.3). The Server class contains a run method that listens for Clients.

If a Client wants to connect, the WorkerRunnable class is run in a separate thread. This

enables the server to accept multiple clients connecting to it. The WorkerRunnable class

handles the input and output of the client.

When a Client has connected to the server, it will immediately start sending the

number of positive intentions to the Server. The method RecvInts converts the data from

binary to integer, and returns the number of positive intentions. If the returned data is

valid, the data is sent by registering a service in OSGi, and publishing it as an event, to

make it available for other bundles.

5.5. SYSTEM DESCRIPTION 73

Figure 5.17: Class diagram for the interpretation of pedestrian intention module

Figure 5.18: Class diagram for the C++ code

74 CHAPTER 5. IMPLEMENTATION

5.5.4 Walkthrough of the system

The CBR system consist of three parts, where each part runs on di�erent computers (as

shown in �gure 5.19). One of the computers runs the system for interpreting pedestrian

intention. It receives images data from the Kinect sensor, and sends the number of

positive intentions to another computer, which runs the CBR system. The last computer

runs SCANeR Studio that simulates the tra�c, which got a two-way communication with

the CBR system. The SCANeR Studio sends information about the vehicles and receives

the status of the tra�c light.

Figure 5.19: An overview of the communication between the three systems

When the CBR system starts, the user is presented with a user interface. Figure 5.20

shows the user interface, when no positive intentions from pedestrians has been detected.

On the left, there is a graphical version of a tra�c light, which will change according

to the solutions given by the system. On the right, there is a table that will list the

query case (second row) and all retrieved cases (remaining rows). In the bottom of the

user interface, there are buttons for changing the mode of the system and for adding

cases when the system is running. The buttons are only activated if the user pauses the

system, which can be done by pressing the letter �p�. The cancel button will re-activate

the system. The �Test mode� button activates a system that loads pre-de�ned queries

from a �le into the system.

5.5. SYSTEM DESCRIPTION 75

Figure 5.20: The CBR system indicate that no intention is detected

To trigger the tra�c light, a positive intention is required, which is interpreted by the

intention system. A positive intention is a pedestrian that is facing directly or heading

against the Kinect sensor. Figure 5.21 shows the Kinect sensor installed on top of the

tra�c light. The tra�c light is controlled in parallel with the simulated tra�c light, and

the tra�c light in SCANeR Studio.

76 CHAPTER 5. IMPLEMENTATION

Figure 5.21: The Kinect sensor installed on top of the tra�c light

Figure 5.22 shows a screenshot from the intention system (user interface is created by

Solem [3]). In the top left corner, the number of pedestrians detected is shown (users). The

rest of the screen shows detected pedestrians with a grid representing important points

on the pedestrian's body, which are used for calculating the intention of pedestrians. The

number of positive intentions is passed to the CBR system, and used as a feature in the

query case. If a pedestrian with positive intention disappears from the sensors range, that

intention is removed from the number of positive intentions.

5.5. SYSTEM DESCRIPTION 77

Figure 5.22: A screenshot from the intention-based system

When a positive intention comes from the intention system, the CBR system creates

a timestamp for when the detection was made. This time is used to calculate the waiting

time, as shown in the bottom left corner of �gure 5.23. "3s" means that the �rst pedestrian

has waited 3 seconds and a green progress bar illustrates the time waited.

In �gure 5.23, a positive intention has been detected, and is sent to the CBR system

and stored as the feature �PositiveIntentions�. If it is the �rst positive intention, the

system will set the timestamp for the �TimeWaited� feature to be the current time. If

more pedestrians walk in front of the Kinect sensor, the number of positive intentions will

increase, but the timestamp will remain unchanged.

If the detectors in SCANeR Studio are triggered by a vehicle, the speed of the detected

vehicle is sent to the system. This speed is used directly to set the feature �SpeedOfDe-

tectedVehicle� and a timestamp for when the vehicle was detected is set. The timestamp

is used for calculating when the vehicle has passed the crossing, by using the distance

78 CHAPTER 5. IMPLEMENTATION

from the detector to the crossing and the speed of the vehicle. When the time calculated

time has ended, the �VehicleDetected� feature is set to �null�, if no other vehicle has been

detected in the meantime. Also, every vehicle that passes the detectors in SCANeR Studio

are counted and used to calculate the number of vehicles the last �ve minutes. This value

is used by the feature �Tra�cFlow�. As mentioned before, the module for interpreting the

type of the pedestrian has not been created, for that reason the feature �PedestrianType�

is prede�ned to normal when a pedestrian is detected by the Kinect. All these features

are converted to continuous data, and represented as the query case shown in �gure 5.24

in the second row of the table.

The system gets the query case, which is used to retrieve the cases with the highest

similarity. The third row of the table on �gure 5.23, displays a retrieved case, with

similarity 1.0. This similarity is calculated by the weighted sum of all the cases features,

and is 1.0 because all the features are equal with the query case. Since the retrieved

case has the solution �null�, it will not change the tra�c light, and therefore continue the

reasoning process. This query case will now contain the latest data, because the sensor

data stored locally in the CBR system is always updated.

In �gure 5.25, it can be seen that the query case has changed. The tra�c �ow is now

calculated to �Low� and no vehicle is detected. Now the system retrieves two new cases

from the case base, shown in the third and the fourth row of the �gure. Both cases were

retrieved because they got an equal similarity of 0.986. Only the tra�c �ow is di�erent

between the query case and the retrieved cases. As can be seen in table 5.2 on page 48, the

similarity between low and normal tra�c �ow, and between high and normal tra�c �ow,

is zero. Therefore, both cases get equal similarity. The reason why the similarity is as

high as 0.986, even if one feature is not equal, is because the weight for the �Tra�cFlow�

feature is only 0.5 (see table 5.3 on page 51).

5.5. SYSTEM DESCRIPTION 79

Figure 5.23: A positive intention has been detected, and pedestrians are waiting

Figure 5.24: A screenshot from the SCANeR Studio, which shows the tra�c light that is

controlled by the CBR system.

Since both solutions give �LessTime� as transition time, this solution is chosen. This

number is used by the simulated tra�c light to give pedestrians a green light. The number

below the simulated tra�c light in the �gure now indicates how long the tra�c light has

80 CHAPTER 5. IMPLEMENTATION

left of the green time. The system also publishes an OSGi event, which is listened to by

a script created in SCANeR Studio. This event tells the simulator to change the tra�c

light. The vehicles in SCANeR Studio will stop when the tra�c light is red or amber,

and start again when the tra�c light turns green. Then the CBR system will continue to

retrieve cases to solve new situations.

Figure 5.25: The CBR system gives a green light to pedestrians

5.6. MODULES CREATED FOR EVALUATION PURPOSES 81

5.6 Modules created for evaluation purposes

In this section, we describe the modules that were created for evaluation purposes only.

5.6.1 Adding cases real-time

To make the process of building the case base more systematic, we created a module

for editing the case base. An optimal way would be to be able to add, edit and remove

cases from the case base in real-time. It would also be useful to be able to change the

weights of the features, without having to manually edit the XML �les representing the

case base. The problem was that myCBR 3.0 BETA does not support changing the XML

�les. The methods are included in their Javadoc, but they are not yet implemented. As a

result of this, we had to create our own XML parsers for dealing with this issue. Editing

and removing cases requires searching through the XML �les, and removing or editing

the correct parts. Since we already had problems with the XML �les being corrupt when

creating them in Protégé, we chose not to make it possible to edit or remove cases through

the program.

A module for adding cases to the case base was created. When the system runs, the

expert (or other users) can deactivate the system if it makes a mistake (i.e. retrieves a

case incorrectly or if no case is retrieved at all). Deactivating the system also gives the

expert time to evaluate the retrieved cases, and stores the query case if he or she thinks

it is of value to the system. It is done by providing a solution to the query, and then

re-activating the system. The system edits the XML �les to include the new case.

5.6.2 Leave-one-out cross-validation

A separate system was created for cross-validating the system. Instead of building a

query case from vehicle- and pedestrian data, the cases in the case base are used as query

cases. Since we used leave-one-out cross-validation, the query case was simply chosen by

taking the �rst case in the case base, removing it, and using it as a query to the system

(without the solution). The solution of the query case was used as a reference to validate

the performance. After validating the performance of the single query case, the case is

put back into the case base, and the next case is used as a query to the system. This

continues until all cases have been used as a query case

82 CHAPTER 5. IMPLEMENTATION

We de�ned two evaluation parameters, accuracy and partial accuracy. Accuracy is

directly derived from the number of correctly classi�ed cases. Partial accuracy is the

number of correctly classi�ed cases, plus the number of partially matching cases. Here,

we give partial credit to solutions that give one step longer transition time than the

correct solution (e.g �ExtraExtraTime� is given partial credit if �ExtraTime� is the correct

solution). It is reasonable to believe that this parameter can give a more correct indication

of how well the system would perform. The results of the cross validation can be found

in section 6.1.1

5.6.3 Module for sending pedestrians into the CBR system

In the performance test with SCANeR Studio, described in section 4.6.3, pedestrians are

sent to the CBR system through a module that reads pedestrians from a �le. The �le

consists of two columns; the time at which the pedestrian should enter the tra�c light

(i.e. 00:04:00 will send a pedestrian after four minutes) and the type of the pedestrian,

which is either `N' for normal pedestrian, `S' for slow pedestrian, `SG' for slow group or

`F' for fast pedestrian. Each line of the �le is one pedestrian.

The module runs in a separate bundle that sends the pedestrians, and the slowest type

of pedestrian, to the CBR system. It runs in an in�nite loop that checks the time passed

against the time for when the next pedestrian should be sent. If the time has passed, the

number of pedestrians are increased, and sent to the CBR system.

When the CBR system gives transition time, a value with the tra�c light color is

sent to SCANeR Studio through CVIS. This value is also readable by the send pedestrian

module, which uses this value to clear the number of pedestrians that are waiting. It is

cleared when the tra�c light is no longer green (i.e. when it turns amber for vehicles).

This makes the scenarios more realistic, since pedestrians that enter the scene when the

light is green (for pedestrians) will cross the road.

Chapter 6

Evaluating the system

The CBR system was evaluated both in terms of usefullness in the domain and in terms

of how accurate it is. Section 6.1 present the results of the cross-validation tests and the

performance tests in SCANeR Studio. In section 6.2 we discuss the results in terms of

how good the system performed and if the results are valid.

6.1 Results

In this section, we present the results from the cross-validation tests and the performance

tests using SCANeR Studio.

6.1.1 Cross-validation

Cross-validation was used to evaluate the performance of the case base. The initial case

base, on which we performed cross-validation tests, contained 31 cases (see section 5.2.5).

The performance from the cross-validation test showed an accuracy of 45.2% correctly

classi�ed cases. This wasn't a satisfying result, and it indicated that the case base did

not have enough cases to cover the whole problem domain. To improve the accuracy,

more cases were added to the parts of the solution space that had few cases. When new

cases were added, cross-validation was used on the case base. How the di�erent case bases

preformed are shown in the diagram in �gure 6.1. The accuracy rapidly increased when

the case base was small, but slowed down when the size of the case base increased. The

�nal case base, with 66 cases, has an accuracy of 75.8%. The reason we stopped at this

percentage was explained in section 4.6.2. Average similarity among the retrieved cases

83

84 CHAPTER 6. EVALUATING THE SYSTEM

was 0.9642, which indicates most of the retrieved cases were close to the query case. The

resulting case base was used in the simulator tests, which we will now present.

Figure 6.1: Number of correctly classi�ed cases, relative to the case base size

6.1.2 Simulator tests

In the simulator tests, our CBR controlled tra�c light and a normal time controlled tra�c

light were tested against each other in di�erent test scenarios. Both of the systems were

run in the same environment, with no random variables, so that the results could be

evaluated against each other. The scenarios can be split into three main groups; with

�Low�, �Normal� or �High� tra�c �ow. A total of 7 test scenarios were conducted to

evaluate the system. The properties of the normal tra�c light is presented in table 6.1.

Interval Normal tra�c light

Green time 8.25 seconds

Amber time 3 seconds

Change time 30 seconds

Table 6.1: Properties of the normal tra�c light that is used as comparison to the CBR

controlled tra�c light

Scenarios 1 to 5 were tested with �High� tra�c �ow, test number 6 with �Normal�

tra�c �ow and test number 7 with �Low� tra�c �ow. The reason why we got �ve test

scenarios with �High� tra�c �ow is that we wanted to see when one of the tra�c lights

would start to cause tra�c congestions.

6.1. RESULTS 85

To evaluate whether the system performs better, we de�ned several criteria which can

be seen as important for evaluating the safety and e�ciency of the crossing. The criteria,

along with explanations of why we chose them and what they test, are shown in table

6.2 and 6.3. �Two or less vehicles delayed by tra�c light� and �No vehicles delayed by

tra�c� are only used when number of vehicles on the road is low or medium. These are

not included in the test scenarios with �High� tra�c �ow, simply because there are very

few gaps when the tra�c is high.

86 CHAPTER 6. EVALUATING THE SYSTEM

Criterion Explanation

Vehicles passed Total number of vehicles passed the tra�c light during the

time period. If the pedestrian crossing creates queue or re-

duced speed, fewer vehicles will pass the crossing, and the

result will be a less e�cient tra�c system.

Average pedes-

trian waiting

time

This is the average waiting time among all the pedestrians

that used the tra�c light. This measure how e�cient the

crossing is for pedestrians.

Numbers of

transitions

executed

This value indicates the total number of times the tra�c light

gave pedestrians transition time. Vehicles e�ciency may be

a�ected by too many transitions and pedestrians are a�ected

by too few.

Two or less ve-

hicles delayed by

tra�c light

This value is number of times one or two vehicles are stopped

by the tra�c light. It gives an indication of situations where

a gap was close to be exploited, but instead interrupted the

tra�c.

No vehicles de-

layed by tra�c

light

This value is number of times a tra�c light changed and no

vehicles had to stop. This is a perfect transition where the

tra�c isn't interrupted.

Less time to fast

pedestrians

When all the pedestrians waiting are fast, less time is given.

This will increase the e�ciency because the vehicles have to

wait a shorter time period.

Less time to nor-

mal pedestrians

In some situations normal pedestrians are given less time to

increase the e�ciency.

Table 6.2: Criteria for evaluating e�ciency in a pedestrian crossing

6.1. RESULTS 87

Criterion Explanation

Extra time to

slow pedestrians

When a slow pedestrian is detected among the pedestrians,

extra time is given. The safety of the slow pedestrian will

increase, because of a more suitable crossing time.

Extra time to

slow groups

A slow group will typically need a very long transition time,

so that the group does not have to cross the road in several

batches. The extra time should be enough to send the whole

group in one cycle, which will increase safety.

Average waiting

time less than 16

seconds

This is the number of times the average waiting time of all the

pedestrian that shall cross is less than 16 seconds. Short wait-

ing time will increase safety, because it reduces the possibility

that pedestrians will jaywalk.

Pedestrians

waited more

than 50 seconds

A long waiting time will result in reduced safety, because im-

patient pedestrians are most likely to attempt to jaywalk. It

also reduces e�ciency for pedestrians.

Table 6.3: Criteria for evaluating safety in a pedestrian crossing

Test scenario 1

The �rst scenario is a basic test scenario with high tra�c �ow. The tra�c �ow and

number of pedestrians are based on the counting performed at Brattøra (see section 4.4).

The type of pedestrians does not directly correspond to the pedestrians that were counted

at Brattøra. The reason for this is that only a very small fraction of the pedestrians were

�abnormal�. This is probably because the crossing is not located in an area were slower

pedestrians travel through. Also, since the counting was performed in March, the weather

in Trondheim a�ected the number of �Fast� pedestrians (cyclists etc.). To be able to test

the strength of the system, we added both �Slow� and �Fast� pedestrians to the scenario.

The properties of test scenario 1 are shown in table 6.4.

88 CHAPTER 6. EVALUATING THE SYSTEM

Parameter Value

Time period 30 min

Tra�c �ow High

Vehicles per hour 1700

Pedestrians 69

Slow pedestrians 6 (8.7%)

Fast pedestrians 2 (2.9%)

Slow group 0 (0%)

Table 6.4: Description of test scenario 1

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 828 829

Average pedestrian waiting time 25.0 27.4

Numbers of transitions executed 21 19

Less time to fast pedestrians 2/2

Less time to normal pedestrians 11/14

Safety:

Extra time to slow pedestrians 5/5

Average waiting time less than 16 seconds 4/21 1/19

Pedestrians waited more than 50 sec. 9/21

Table 6.5: Results from test scenario 1

The results of test scenario 1 are shown in table 6.5. Some of the criteria in the

tables contain only results for the CBR controlled tra�c light (e.g. "Less time to fast

pedestrians"). This is because these are situations that never happens with the normal

tra�c light. In this scenario, the performance is almost the same between the CBR

controlled tra�c light and the normal tra�c light. The average number of pedestrians

waiting is lower for the CBR controlled tra�c light, which is a result of the system being

able to let pedestrians pass at all times.

6.1. RESULTS 89

Test scenario 2

Since both systems performed well on test scenario 1, some of the properties (shown in

table 6.6) have been changed to make the task harder. The number of pedestrians has

been increased with 20%. The number of slow and fast pedestrians has been increased to

correspond to the change in the number of pedestrians.

Parameter Value

Time period 30 min

Tra�c �ow High

Vehicles per hour 1700

Pedestrians 83 (+20%)

Slow pedestrians 8 (9.6%)

Fast pedestrians 8 (9.6%)

Slow group 0 (0%)

Table 6.6: Description of test scenario 2

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 829 829

Average pedestrian waiting time 25.4 26.4

Numbers of transitions executed 25 27

Less time to fast pedestrians 3/3

Less time to normal pedestrians 12/16

Safety:

Extra time to slow pedestrians 5/5

Average waiting time less than 16 seconds 5/25 3/27

Pedestrians waited more than 50 sec. 8/25

Table 6.7: Results from test scenario 2

Table 6.7 shows the results from the second test scenario. Increasing the number of

pedestrians did not make the task of controlling the crossing too hard for any of the tra�c

90 CHAPTER 6. EVALUATING THE SYSTEM

lights. The CBR controlled tra�c light is performing better than the normal tra�c light,

in terms of letting pedestrians wait for a shorter time period in average, but the di�erences

in the results are small.

Test scenario 3

Table 6.8 shows the properties of the third test scenario. Now the number of vehicles per

hour has been set to 1954 (+15% compared to the counting), since the results from the

second test scenario showed no sign of tra�c congestions.

Parameter Value

Time period 30 min

Tra�c �ow High

Vehicles per hour 1954 (+15%)

Pedestrians 83 (+20%)

Slow pedestrians 8 (9.6%)

Fast pedestrians 8 (9.6%)

Slow group 0 (0%)

Table 6.8: Description of test scenario 3

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 979 956

Average pedestrian waiting time 30.9 26.4

Numbers of transitions executed 23 27

Less time to fast pedestrians 3/3

Less time to normal pedestrians 11/12

Safety:

Extra time to slow pedestrians 5/5

Average waiting time less than 16 seconds 2/23 3/27

Pedestrians waited more than 50 sec. 17/23

Table 6.9: Results from test scenario 3

6.1. RESULTS 91

The results of the third test scenario are shown in table 6.9. As can be seen, the CBR

controlled tra�c light is adjusting to the increase in number of vehicles, by letting the

pedestrians wait longer before they can go across. In 17 of 23 transitions, the pedestrians

will have to wait the maximum number of time (50 seconds). This leads to an increase in

the number of vehicles that can pass the crossing (979 compared to 956). Still, none of

the systems are experiencing any tra�c congestions.

Test scenario 4

For test scenario 4, we increased the number of vehicles by 25% relative to the numbers

from the counting. This is because the there were no tra�c congestions in test scenario

3. The properties of test scenario 4 are shown in table 6.10.

Parameter Value

Time period 30 min

Tra�c �ow High

Vehicles per hour 2124 (+25%)

Pedestrians 83 (+20%)

Slow pedestrians 8 (9.6%)

Fast pedestrians 8 (9.6%)

Slow group 0 (0%)

Table 6.10: Description of test scenario 4

92 CHAPTER 6. EVALUATING THE SYSTEM

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 1055 986

Average pedestrian waiting time 30.6 26.4

Numbers of transitions executed 20 27

Less time to fast pedestrians 3/3

Less time to normal pedestrians 9/11

Safety:

Extra time to slow pedestrians 6/6

Average waiting time less than 16 seconds 4/20 3/27

Pedestrians waited more than 50 sec. 16/20

Table 6.11: Results from test scenario 4

Table 6.11 shows the results of the fourth test scenario. The normal tra�c light did

not create queues, but the tra�c moved slower, which resulted in that fewer vehicles

passed the tra�c light. Although the CBR controlled tra�c light let more vehicles pass,

the average waiting time for pedestrians did not increase, compared to test scenario 3.

Test scenario 5

The �fth test scenario consists of 3 tests. This is because the normal tra�c light with a 30

second waiting time pedestrians had problems with handling the large amount of vehicles

per hour. We therefore performed a test with a normal tra�c light with 50 second waiting

time, which is consistent with the maximum transition time given by the CBR system.

The properties of the scenario are shown in table 6.12.

6.1. RESULTS 93

Parameter Value

Time period 30 min

Tra�c �ow High

Vehicles per hour 2294 (+35%)

Pedestrians 83 (+20%)

Slow pedestrians 8 (9.6%)

Fast pedestrians 8 (9.6%)

Slow group 0 (0%)

Table 6.12: Description of test scenario 5

Criterion CBR

controlled

tra�c light

Normal

tra�c

light 30sec

Normal

tra�c

light 50sec

E�ciency:

Vehicles passed 1105 974 1080

Average pedestrian waiting time 36.94 26.4 36.1

Numbers of transitions executed 20 27 19

Less time to fast pedestrians 3/3

Less time to normal pedestrians 10/11

Safety

Extra time to slow pedestrians 6/6

Average waiting time less than 16 seconds 1/20 3/27 1/19

Pedestrians waited more than 50 sec. 19/20

Table 6.13: Results from test scenario 5

Table 6.13 shows the result from test scenario 5, for the three runs that were carried

out. As mentioned, the normal tra�c light with a 30 second waiting time was not able

to prevent queues. It is also important to note that the CBR controlled tra�c light

performed better than the normal tra�c light with a 50 second waiting time, since it

let 25 more vehicles pass, even when the normal tra�c light let all pedestrians cross the

road after the maximum time (50 seconds) and the CBR controlled tra�c light gave extra

transition time to slow pedestrians.

94 CHAPTER 6. EVALUATING THE SYSTEM

Test scenario 6

Vehicles per hour are reduced to match the numbers from the counting at Brattøra from

12.30 to 13.30, when the tra�c �ow was normal. As in the counting from 15.30 to 16.30,

the pedestrians that crossed the road at Brattøra were mostly normal. Consequently, we

decided to add pedestrians in both the �Fast� and the �Slow� category. The properties of

the scenario are shown in table 6.14. This scenario is not run to test how the system can

handle larger amounts of tra�c, but to test its ability to take advantage of gaps in tra�c

to and give an adjusted transition time to pedestrians.

Parameter Value

Time period 30 min

Tra�c �ow Normal

Vehicles per hour 1000

Pedestrians 38

Slow pedestrians 4 (9.5%)

Fast pedestrians 4 (9.5%)

Slow group 1 (2.6%)

Table 6.14: Description of test scenario 6

6.1. RESULTS 95

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 480 480

Average pedestrian waiting time 9.1 28.2

Numbers of transitions executed 28 22

Two or less vehicles delayed by tra�c light 14/28 3/22

No vehicles delayed by tra�c light 4/28 0/22

Less time to fast pedestrians 4/4

Less time to normal pedestrians 18/19

Safety:

Extra time to slow pedestrians 4/4

Extra time to slow groups 1/1

Average waiting time less than 16 seconds 23/28 3/22

Pedestrians waited more than 50 sec. 0/28

Table 6.15: Results from test scenario 6

The results from test scenario 6 are shown in table 6.15. To evaluate the system's

ability to exploit gaps in tra�c, we have added two new evaluation criteria; �No vehicles

delayed by tra�c light�, and �Two or less vehicles delayed by tra�c light�. The �rst

criterion is met if the transition for pedestrians is executed, with no vehicles having to

wait for a green light. This means that the system has exploited a gap in tra�c, letting

pedestrians pass when there are no vehicles. Since the total transition time can be from

approximately 6 to 14 seconds, situations can occur were one or two vehicles can arrive

at the crossing at the end of the transition time. Because of this, the criterion �Two or

less vehicles delayed by tra�c� was added.

The numbers show that the times where no vehicles were stopped were 4 by the CBR

controlled tra�c light and 0 by the normal tra�c light. Stopping two or less vehicles

occurred in 14 out of the 28 transitions with the CBR controlled tra�c light. In section 6.2,

we will discuss why this happened, and how we could improve the system so that the

number of times when no vehicles were stopped is increased.

It is also notable that no pedestrians had to wait the maximum time of 50 seconds,

96 CHAPTER 6. EVALUATING THE SYSTEM

and that all pedestrians got the correct transition time. Also, the average waiting time

for pedestrians was much lower with the CBR controlled tra�c light, compared to the

normal tra�c light (9.1 seconds over 28.2 seconds).

Test scenario 7

The last test scenario was conducted with �Low� tra�c �ow. Table 6.16 shows the prop-

erties of the seventh test scenario.

Parameter Value

Time period 30 min

Tra�c �ow Normal

Vehicles per hour 360

Pedestrians 38

Slow pedestrians 4 (9.5%)

Fast pedestrians 4 (9.5%)

Slow group 1 (2.6%)

Table 6.16: Description of test scenario 7

6.1. RESULTS 97

Criterion CBR controlled

tra�c light

Normal tra�c

light

E�ciency:

Vehicles passed 173 172

Average pedestrian waiting time 5 28.2

Numbers of transitions executed 28 22

Two or less vehicles delayed by tra�c light 6/28 16/22

No vehicles delayed by tra�c light 19/28 5/22

Less time to fast pedestrians 4/4

Less time to normal pedestrians 20/20

Safety:

Extra time to slow pedestrians 4/4

Extra time to slow groups 1/1

Average waiting time less than 16 seconds 27/28 3/22

Pedestrians waited more than 50 sec. 0/28

Table 6.17: Results from test scenario 7

Table 6.17 shows the results from the seventh test scenario. The results for the normal

tra�c light did not change from the previous test scenario, except that the vehicles passed

has increased. This is not unexpected, since the tra�c light is controlled in a static

manner, which makes it unable to adapt to the situation.

The CBR controlled tra�c light got changes in the results related to pedestrians. The

results showed that the average waiting time for pedestrians was reduced to 5 seconds.

This shows that the CBR system �nds a more appropriate waiting time, based on the

tra�c situation that is detected.

The CBR controlled tra�c light exploited gaps in tra�c in 19 of the 28 transitions,

while the normal tra�c light only exploited gaps 5 times.

98 CHAPTER 6. EVALUATING THE SYSTEM

6.2 Discussion

In this section, we will discuss the results presented in the previous section and attempt

to point out the strengths and weaknesses of the system. The test scenarios were used to

evaluate the strength of the system in controlling a signal controlled pedestrian crossing,

while the results from the cross-validation evaluated the strength of the system in terms

of how good it is at retrieving cases and reusing solutions.

The �rst �ve scenarios that were run in the simulator were focused on testing whether

the system could adjust to high amounts of tra�c. This is important for testing the

e�ciency of the system, because the number of vehicles the system can send through the

crossing directly re�ects the e�ciency of the crossing. Test scenarios 2 to 5 are the most

interesting, because test scenario 1 had fewer pedestrians.

The most obvious di�erence between the CBR controlled crossing and the normal

crossing, is that the CBR controlled crossing adjusts the intervals between transitions

relative to the amount of tra�c. Figure 6.2 shows the average waiting time for pedestrians

for the di�erent amounts of tra�c. It is important to point out that the scenarios with

360 and 1000 vehicles were carried out with fewer pedestrians. As can be seen, the

number increases along with the tra�c �ow (the normal tra�c lights have �xed time

intervals, thus the only change in average waiting time comes from the di�erent amount

of pedestrians). This is a negative aspect in terms of safety, since long waiting time can

make pedestrians impatient, which may lead to pedestrians jaywalking. It also makes the

crossing less e�cient for pedestrians, since they use more time to get from one place to

another. However, according to the experts at the NPRA, it is generally more accepted

by pedestrians that they need to wait longer when tra�c is high. Thus, it can be seen as

positive that the waiting time increases, since it may alleviate some of the pressure from

the crossing. Also, the average waiting time for the normal tra�c light with a 50 second

waiting time is almost the same as the highest value for the CBR controlled tra�c light.

The system also performs much better when the tra�c �ow is �Normal� or �Low�, with

9.1 seconds and 5.0 seconds waiting time, respectively.

A second interesting result is the number of vehicles that passed the crossing. In test

scenario 2 (see table 6.7 on page 89), both systems allowed 829 vehicles to pass. This is

not the exact half of the vehicles per hour, because the vehicles are sent into the system

about 1 km from the crossing, on each side of the road. It is still the maximal number

6.2. DISCUSSION 99

Figure 6.2: Average waiting time for pedestrians with di�erent amounts of tra�c

of vehicles that could be sent through the crossing. In test scenario 3 and 4, the normal

tra�c light created some congestion. When the number of vehicles was increased for the

�fth test scenario, the tra�c stopped with the normal tra�c light, only letting 974 vehicles

pass, compared to 1105 by the CBR controlled tra�c light (see table 6.13 on page 93).

Since the normal tra�c light changed the light after 30 seconds, and the maximum time

for the CBR controlled tra�c light was 50 seconds, we changed the con�guration of the

normal tra�c light to 50 seconds. Table 6.13 on page 93 showed that the CBR controlled

tra�c light still handled the large amount of vehicles better (although not signi�cantly).

This happened even though the CBR system gave an increased transition time in 6 out of

6 times when slow pedestrians were detected (3 times the system gave less transition time

to fast pedestrians). It is reasonable to believe that this slight di�erence comes from the

CBR systems ability to time the transitions better, and that it gives a shorter transition

time to some of the normal pedestrians.

It is important to point out that the test environment is far from perfect. There exist

much more complex systems that are used to control crossings today, than the tra�c

lights that used as comparison to the CBR controlled tra�c light. Also, formations of

tra�c congestions are less likely to occur in the simulator than in the real world. The

100 CHAPTER 6. EVALUATING THE SYSTEM

reason for this is that the crossing is not a part of a larger tra�c network, thus the

congestion will have to be formed in this crossing alone. In a larger tra�c network, the

crossings are dependent of each other, so that small congestions in one crossing can create

larger congestions over time in the complete network. Thus, it would be interesting to

test the system in a larger tra�c network, by for example using Aimsun (described in

section 4.6.3). Another interesting test would be to use multiple connected versions of the

CBR controlled tra�c light, to see if the systems would in some way work together (for

a further discussion, see section 7.1). Still, the results seem promising, since the system

dynamically adjusts to changes in the tra�c situation.

In the last two test scenarios (see table 6.15 on page 95 and table 6.17 on page 97),

the tra�c �ow was lowered, to test other parts of the case base. Here, the criteria; �Two

or less vehicles delayed by tra�c light� and �No vehicles delayed by the tra�c light�, were

added. These are important because when there are fewer vehicles on the road, it is

essential to �nd a balance between giving a green light to vehicles and to pedestrians. If

the times when no vehicles are approaching the crossing can be used to let pedestrians

cross the road, the e�ciency of the signaling system is increased. The reason we added

the criterion, �Two or less vehicles delayed by tra�c light�, is because if this occurs, the

system is often closer to executing an optimal transition. In many of these situations, the

vehicles stop at the end of the transition time, this makes it close to not delaying any

vehicles.

Test scenario 6 had a �Normal� tra�c �ow with 1000 vehicles per hour. Compared to

the earlier scenarios, the average waiting time has greatly decreased, from about 25 to 34

seconds, to 9.1 seconds, as mentioned earlier. This is caused by the system's ability to

exploit gaps in tra�c and because the reduced tra�c �ow makes the system less strict on

letting pedestrians pass. In 14 of the 28 transitions that were executed, there were two

or less vehicles that had to wait for a green light. In 4 out of 28 times no vehicles were

delayed at all. It seems reasonable that the �rst number is so much higher, because there

will be gaps in tra�c when the tra�c �ow is �Normal�, but they are not large enough to

be perfectly utilized. Still, the system uses gaps to a much greater extent than the normal

tra�c light, which only hit gaps randomly.

For the last test scenario, the tra�c �ow was set to �Low�. As expected, the average

waiting time for pedestrians were further lowered, to 5 seconds. In 19 out of 28 transitions

6.2. DISCUSSION 101

(67.9%), no vehicles were delayed by the tra�c light, compared to only 5 out of 22 times

(22.7%) for the normal tra�c light. This is to some extent a�ected by the transition

time given by the CBR controlled tra�c light. When the number of pedestrians are

�Few�, i.e. 1 to 3 pedestrians, then �Normal� pedestrians are given less time to cross the

road. For this reason, the CBR controlled tra�c light can more easily exploit gaps in

tra�c, since the gaps can be smaller, while the static transition time of the normal tra�c

light can be too long. In section 2.2, we described a type of signal controlled pedestrian

crossing called PUFFIN. This type of pedestrian crossing can work somewhat similar as

the CBR controlled crossing, because the PUFFIN crossing uses camera sensors to change

the tra�c light when the pedestrian has walked across. The di�erence is that the CBR

controlled tra�c light uses the number of pedestrians that has an intention to cross the

road. This can be used to predict the increase or decrease in transition time, instead of

looking back and changing the transition time. Furthermore, a PUFFIN crossing is best

used in areas where there are few pedestrians crossing the road and in areas where it is

less likely that tra�c congestions will occur, because it will always prioritize pedestrians.

With our system, the crossing will only prioritize pedestrians in periods where the tra�c

is low, thus it is reasonable to believe that it can function in busier areas.

There are some problems with the CBR system, as it is today, that we now wish to

present. This is both caused by the lack available tra�c data and caused by the fact that

some of the important modules have not been implemented yet. First, there is a problem

with the detectors that were used in the test scenarios. These are very similar to the

detectors that are available today. The main problem is that they only detect when a

vehicle is just above the detector. To fully detect gaps in tra�c, it would be useful to

follow the closest vehicle for a longer distance (e.g. 300 meters). The detectors that are

furthest away from the crossing is placed 70 meters from the crossing. If the speed of a

vehicle is 60 km/h, the vehicle will use approximately 4.2 seconds from the detector to the

crossing (given a constant speed). The transition times given by the CBR system vary

from about 6 seconds to 14 seconds. Thus, it would be more practical to know if there

are vehicles 6 to 14 seconds away. In section 7.1, we will discuss this in more detail.

Another important thing to be aware of is that the module for interpreting the type of

pedestrians has not yet been implemented. There is no guarantee that the interpretation

can be done successfully. The way the system is implemented today, it relies on the fact

102 CHAPTER 6. EVALUATING THE SYSTEM

that it will always get a good interpretation of what type the pedestrians are. Still, it

is reasonable to believe that looking at di�erent features of the human body can give

an indication of what type of pedestrian is approaching the crossing. In section 7.1, we

present some ideas on how this interpretation could be accomplished.

In addition to the information retrieved from the camera sensors, some pedestrians

can be equipped with devices, to let the system know that an �abnormal� pedestrian is

approaching. An example is blind pedestrians, because it can be hard to detect blind

pedestrians by looking at the images from the camera sensor (discussed in section 5.3.4).

Having to equip some pedestrians with devices are of course a second choice, since devices

can be less reliable (problems with battery, Bluetooth/WIFI connection etc.).

Overall, the experimental results of the test scenarios give promising indications. The

CBR system does not make any obvious mistakes in the retrieval phase. For that reason,

the system always gives extra time to slower pedestrians, and a shortened transition

time for faster pedestrians. If this can be introduced in a real crossing, it could improve

the safety in the crossing, since slower pedestrians can cross the road without having to

worry about not getting there in time. The system also performs well at adjusting to

the di�erent situations that occur in tra�c, by changing the waiting time for pedestrians

and exploiting gaps in tra�c. By prioritizing vehicles in times of the day when there

are high amounts of tra�c, and prioritizing pedestrians when the amounts are lower, it

is reasonable to believe that the systems overall e�ciency can be improved. The high

average similarity from the cross-validation tests (see section 6.1.1) also indicate that the

case base is properly �lled. Still, there is much work left on many components of the

system. Some of the possibilities will be discussed in the next chapter.

Chapter 7

Conclusion and further work

This chapter proposes some possible future work that can be done on the system, and

give some concluding remarks on the work done in this project.

7.1 Further work

There are many aspects that should be considered when further developing the system

presented in this report. Many components of the system can be enhanced, and many

components can be added to improve the system. In this section, we will present some

ideas that can be useful for those who may further develop the system.

Development of the system can be split into several parts; case base maintenance,

improving the steps of the CBR cycle, adding or removing features from the case structure,

and changing how the query case is built. For the �rst part, case base maintenance, with

the amount of features that is used in the cases today, the cases that are in the case base

seems satisfactory. The reason for this is that the system has not made any mistakes in

the test scenarios. Still, it could be useful to have experts go through the cases once more;

to verify that all the cases in the case base give correct solutions. Some cases are actually

quite hard to give a solution, because they typically lie between two solutions. Also, if

new important features were to be added, the case base would have to be updated.

The steps of the CBR cycle can be improved in many ways. For one, the table

similarity functions that were used in the evaluation contain values that were manually

con�gured, based on indications given by the experts at the NPRA. The retrieval process

could therefore be improved by �ne tuning these values, by either creating a learning

103

104 CHAPTER 7. CONCLUSION AND FURTHER WORK

algorithm for �nding the optimal values, or by putting more e�ort in setting the values

manually.

Another problem with the system is that some of the features in the cases are very

dependent of each other. For example, the type of pedestrian feature is very important

in cases where the solution is to give a transition time, while it can be of very little

importance in cases where the solution is to not execute a transition. This increases the

number of cases that is needed, because the case base has to be �lled with very similar

cases, where only the type of pedestrian feature and the solution is changed. Since the

number of features is quite small, it doesn't cause many problems for the system. But

if some features were to be added, it could involve having to add a very large amount of

cases, which can make the retrieval process slower than what is desirable.

A possible solution to this problem would be to change the way cases are retrieved.

Instead of retrieving cases from the whole case base, the case base could be divided into

categories, where the retrieval would only be performed on one or some of the categories.

The categories of the query could be decided by a simple set of rules. For example, if the

type of pedestrian is �Slow� or �SlowGroup�, the retrieval algorithm could search parts of

the case base with only these types of situations. Such an approach would make the search

smaller, since the system would not have to search through the whole case base. This

is similar to work done by Smyth et al.[41]. There the case base was split into di�erent

competence groups, where cases in a competence group share competence (i.e. they solve

the same types of problems) with one or more of the cases in the group. By representing

each group with one reference case, the retrieval process is carried out by searching in the

set of reference cases, and then search in the competence group of the retrieved reference

case. Using reference cases for each category could be an alternative to having a set of

rules for deciding the categories of a case.

There is also work that needs to be carried out to interpret what type a pedestrians

is, as mentioned in earlier chapters. By looking at di�erent features on the human body

such as; height (to di�erentiate children from adults), how the body is shaped (e.g. an

old man might walk more crooked), or by looking at whether the pedestrian is using a

walking aid (walking stick, crutches, wheel chair etc.), it could be possible to interpret

the type of pedestrian. Another feature could be the speed of the pedestrian. Alone,

this could not be used to interpret the type of pedestrian, because all pedestrians can

7.1. FURTHER WORK 105

walk slowly, even if they are fully capable of walking faster. It is not the purpose of the

system to give normal pedestrians that walk slowly, an extended transition time. The

speed could rather be used to verify the solution of the interpretation. For example, if

a young man walks slowly towards the crossing, if the interpretation of the images from

the camera sensors tells the system that the young man is a normal pedestrian, and then

the system will re-evaluate the camera data to see if it might have made a mistake. On

the other hand, if the pedestrian is interpreted to be slow, and the speed is slow, then it

is probable that the pedestrian does in fact need an extended transition time.

Before the system can be used in the real world, the accuracy of the interpretation of

pedestrian intention has to be improved. As mentioned before, Intention-based Sliding

Door created by Solem had an accuracy of 86%. To use the system in the real world, the

accuracy has to be close to perfect. The �rst obvious limitation of this system is that it

uses a Kinect sensor. This sensor is not developed for monitoring a possibly large crowd of

people. Thus, there is a need for using a more appropriate sensor. Another problem with

interpreting the intention of a pedestrian is that abnormal pedestrians, such as people

carrying an umbrella or other large objects, may occlude the sensor images, making it

very hard to do a correct interpretation. Thus, it might be necessary to use multiple

interpretation mechanisms. In chapter 3, we described work done by Hogg et al.[29],

where they trained an arti�cial neural network, on long image sequences, to predict the

trajectories of pedestrians. It is an interesting approach, since knowing the path of which

the pedestrian is likely to follow, could be used to tell if the pedestrian indents to cross

the road. This is an example of a method that could be used together with the system

created by Solem. A possible approach would then be to create a CBR system or some

other similar mechanism, to switch between the di�erent methods for interpreting the

intention of pedestrians.

In chapter 3, we described a system created by Li and Zhao, where CBR was used for

urban intersection control. If the system could not retrieve any cases for a given situation,

actuated control was used to control the intersection. The system used a detecting and

surveillance system to see, over a period of time; if the solution was successful (i.e. tra�c

congestion was less serious). If it was, the solution would be permanently stored as a case

in the case base. This is a very interesting approach, because making the system learn,

could improve its performance over time. For example, if the system uses the solution of

106 CHAPTER 7. CONCLUSION AND FURTHER WORK

a case several times to let pedestrians pass, but every time the pedestrians are given a too

long transition time, then the system could update the case to give a shorter transition

time. Similarly, if no case were to be retrieved, then the system could have an underlying

default system that could take control of the crossing, and give a default transition time.

The system could then see if this solution was correct, and if it was, store the query case

with the default solution in the case base. However, integrating learning in a system

that is not controlled by humans, and is used in real-time, can be risky. For example, if

the detectors used are not working correctly (e.g. caused by pollution), the system can

start learning incorrect cases, which may impair the systems performance. Thus, it is

important to only learn cases that the system can guarantee are correct.

The detecting and surveillance system mentioned above, could also be used to cancel

the green time, if the system has made a mistake (e.g. a pedestrian did not have the

intention to cross after all) or if the green time was to long (i.e. the pedestrians that had

intention to cross has already crossed the road). This is used in PUFFIN crossings (see

section 2.2).

As mentioned in section 6.2, the detectors for detecting vehicles that are used in the

test scenarios, and that are available in the real world today, have some limitations. In the

future, it is probable that vehicles will be equipped with a GPS sensor, so that vehicles

in fact can be monitored for greater distances. This would enable the system to be more

prepared and to make more accurate decisions than it could today. For example, the

system could use the distance from the closest vehicle to assess whether it could let some

pedestrians cross the road, given the transition time they need (e.g. if the vehicle is 7

seconds away, but a slow pedestrian needs 9 seconds to cross the road, the system would

not execute the transition).

To reveal the real strengths of the system, it is also necessary to test how well the

system would work in a larger tra�c network, with multiple CBR controlled tra�c lights.

It would be interesting to see if the tra�c lights would dynamically adjust to each other, or

if a centralized system would have been used to control the crossings. A possible way to do

it would be to create a multi-agent system where each CBR controlled tra�c light would

be agents, interacting with each other through a centralized unit. This is similar to the

approach used in the system created by Schutter et al., which was described in chapter 3.

There the tra�c network was split into smaller sub networks, where each sub network

7.2. CONCLUSION 107

had its own case base. By representing signal controlled crossings and intersections as

agents, each having its own case base, it might be possible to control large tra�c network.

The case bases could be similar in similar areas (e.g. two intersections with about the

same amounts of vehicles and pedestrians, could have the same case bases initially), but

learning mechanisms could make the case bases di�erent over time.

A last suggestion on how the system could be improved is to add more knowledge to

the system. An example is to add a feature for di�erentiating between di�erent types

of vehicles that approach the crossing. For example, knowing if an emergency vehicle

is approaching or if a bus is close by, can give these vehicles a higher priority. Also,

adding knowledge about the area around the crossing (or having the system learn it)

could improve the reasoning process. For example, if a school is located near the crossing,

it can indicate that large amounts of pedestrians will use the crossing in the hours when

the school children go to school, and when they go home. This could be used for predicting

the type of pedestrian feature, since most of the pedestrians that cross the road at these

times will be school children. It could also enable the system to predict at what times

the amount of pedestrians will be high, so that it can be prepared for these situations.

7.2 Conclusion

In this thesis, we have presented a prototype system that uses Case-based reasoning for

controlling a pedestrian crossing. It uses solutions to earlier experienced situations, to

solve new problems. Situations are described by di�erent features, related to both vehicles

and pedestrians. Pedestrians are monitored by a Kinect sensor, and a system created by

a previous MSc student in our group (Solem), was integrated to interpret the intention

of pedestrians. In this way, the system can determine if someone wants to cross the

road, without having the pedestrians make the signal themselves. Vehicle information

was obtained through the SCANeR Studio, which is a software tool for simulating tra�c.

The information from pedestrians and vehicles was sent to the system using a framework

called CVIS.

The system has been programmed in Java, and uses myCBR as a tool for making the

process of creating a CBR system easier. This project has been conducted in cooperation

with the Norwegian Public Roads Administration.

108 CHAPTER 7. CONCLUSION AND FURTHER WORK

The goals of this project was to study whether CBR could be proved useful in con-

trolling a single pedestrian crossing, and if such a system would be better than today's

systems in terms of; e�ciency, safety and user-friendliness. The prototype system that has

been implemented shows promising results. Using past experience to solve new problems

seems to work in this domain, since system is able to dynamically adjust to changes in the

tra�c situation. It improves e�ciency in that gaps in tra�c can be exploited and that

it is able to balance between prioritizing vehicles and pedestrians. Safety is improved in

that some types of pedestrians are given an extended transition time. It is also reasonable

to believe that automatically detecting whether pedestrians intend to cross the road can

improve the user-friendliness, since the pedestrians does not have to perform the signaling

themselves.

The prototype system created in this project is just a foundation for what we hope will

be a larger and more comprehensive system in the future. The systems strength is that

it adapts to the tra�c situation, so that more optimal transitions can be executed. Also,

the interpretation of pedestrian's intentions enables the system to take faster decisions,

because the system does not need to wait for the pedestrians to signal. The system

also has some weaknesses that need to be improved. The most apparent weakness is the

interpretation of intention, since its accuracy needs to be is too low. This mostly comes

from the fact that the Kinect sensor was not developed for monitoring pedestrians, making

it less useful for this matter. Using a more appropriate sensor, with a more accurate

reasoning mechanism, would improve the accuracy, and therefore the entire system. Also,

the cases could incorporate more knowledge, like type of vehicle and distance to closest

vehicle, to better describe the tra�c situation. In addition, there is a need for interpreting

the type of pedestrians, since this module has not been implemented. Still, we believe

that a full implementation of the system could improve the way pedestrian crossings are

controlled.

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, method-

ological variations, and system approaches. In AI Communications, pages 39�59,

1994.

[2] Keith L. Downing. Introduction to evolutionary algorithms, 2010. Lecture note from

the course IT3708 - Subsymbolic Methods in AI at IDI.

[3] John Sverre Solem. Intention-based sliding doors. Master's thesis, Norwegian Uni-

versity of Science and Technology, 2011.

[4] Billie Louise Bentzen and Lee S. Tabor. Accessible pedestrian signals. Technical

report, Report presented to the U.S. Access Board, 1998.

[5] Norwegian Public Roads Administration. Vegtra�kkulykker. Technical report, Nor-

wegian Public Roads Administration, 2009.

[6] World Health Organization. Global status report on road safety. Technical report,

WHO - Department of Violence & Injury Prevention & Disability (VIP), 2008.

[7] Norwegian Ministry of Transportation and Communication. National transport plan

2010-2019. Technical report.

[8] Statens vegvesen. Håndbok 142, 2007.

[9] Kyrre Gran. Utprøving av pu�n-konseptet, 2005.

[10] SWARCO. Spot / utopia. URL:http://www.swarco.no/default.asp?menu=35,

2010. [Online; accessed 22-March-2012].

[11] ERTICO. About cvis. URL:http://cvisproject.org/en/about_cvis/, 2011. [On-

line; accessed 19-November-2011].

109

110 BIBLIOGRAPHY

[12] OSGi Alliance. About osgi. URL:http://www.osgi.org/About/HomePage, 2011.

[Online; accessed 20-October-2011].

[13] Katrin Bilstrup, Annette Böhm, Kristo�er Lidström, Magnus Jonsson, Tony Larsson,

Lars Strandén, and Hossein Zakizadeh. Vehicle alert system. 2007.

[14] ERTICO. The new cooperative era. URL:http://www.cvisproject.org/download/

ERT_CVIS_FinalProject_Bro_06_WEB.pdf, 2009. [Online; accessed 21-February-

2012].

[15] Chen-Fu Liao. Mobile accessible pedestrian signals (maps) for people who are blind.

In 18th ITS World Congress, Orlando, Florida, 2011.

[16] Roger Schank. Reconstructive Memory: A Computer Model. Cambridge University

Press, 1983.

[17] Janet L. Kolodner. Dynamic memory; a theory of reminding and learning in com-

puters and people. 1982.

[18] J.A. Wentworth. Expert systems in transportation. In AAAI Technical Report WS-

93-04, 1993.

[19] Kaidong Li and Nigel Waters. Transportation networks, case-based reasoning and

tra�c collision analysis: A methodology for the 21st century. In Aura Reggiani and

Laurie A. Schintler, editors, Methods and Models in Transport and Telecommunica-

tions, pages 63�92. Springer Berlin Heidelberg, 2005.

[20] Adel W. Sadek, Michael J. Demetsky, and Brian L. Smith. Case-based reasoning for

real-time tra�c �ow management. Computer-Aided Civil and Infrastructure Engi-

neering, 14(5):347�356, 1999.

[21] Neil Prosser and Stephen Ritchie. A real-time expert system approach to freeway

incident management. In Transportation Research Record, Issue 1320, pages 7�16,

1991.

[22] A. Gaupta, V.J Maslanka, and Spring G.S. Development of prototype knowledge-

based expert system for managing congestion on massachusetts turnpike. In Trans-

portation Research Record No. 1358, pages 60�66, 1992.

BIBLIOGRAPHY 111

[23] A.C Boury-Brisset and N. Tourigny. Knowledge capitalisation through case bases

and knowledge engineering. In Knowledge-Based systems 13, pages 297�305, 2000.

[24] Fred Lin, Tarek Sayed, and Paul Deleur. Estimating safety bene�ts of road im-

provements: Case based approach. In Journal of Transportation Engineering, pages

385�391, 2003.

[25] Asad Khattak and Adib Kanafan. Case-based reasoning: A planning tool for intelli-

gent transportation systems. In Transpn Res.-C, pages 267�288, 1996.

[26] L. Wang, C.C. Hayes, and R.R. Penner. Automated phase design and timing adjust-

ment for signal phase design. In Applied Intelligence 15, pages 41�55, 2001.

[27] B. De Schutter, S.P. Hoogendoorn, H. Schuurman, and S. Stramigioli. A multi-agent

case-based tra�c control scenario evaluation system. In Intelligent Transportation

Systems, 2003. Proceedings. 2003 IEEE, pages 678 � 683 vol.1, oct. 2003.

[28] Zhenlong Li and Xiaohua Zhao. A case-based reasoning approach to urban intersec-

tion control. In Proceedings of the 7th World Congress on Intelligent Control and

Automation, pages 7113�7118, 2008.

[29] N. Johnson and D.C. Hogg. Learning the distribution of object trajectories for event

recognition. In Image and Vision Computing, pages 609�615, August 1996.

[30] D. Gavrila. Pedestrian detection from a moving vehicle. In Computer Vision

� ECCV 2000, volume 1843 of Lecture Notes in Computer Science, pages 37�49.

Springer Berlin / Heidelberg, 2000.

[31] L. Zhao and C.E. Thorpe. Stereo- and neural network-based pedestrian detection.

Intelligent Transportation Systems, IEEE Transactions on, 1(3):148 �154, sep 2000.

[32] Paul Viola, Michael J. Jones, and Daniel Snow. Detecting pedestrians using patterns

of motion and appearance. In International Journal of Computer Vision, pages 153�

161, 2005.

[33] DFKI GmbH. mycbr. URL:http://mycbr-project.net/index.html. [Online; ac-

cessed 18-March-2012].

112 BIBLIOGRAPHY

[34] Complutense University of Madrid. jcolibri. URL:http://gaia.fdi.ucm.es/

research/colibri/jcolibri. [Online; accessed 24-May-2012].

[35] The National Center for Biomedical Ontology. Protègè. URL:http://protege.

stanford.edu/. [Online; accessed 18-March-2012].

[36] OKTAL. Scaner. URL:http://www.scanersimulation.com/. [Online; accessed 18-

March-2012].

[37] Eclipse Foundation. Eclipse. URL:http://www.eclipse.org/. [Online; accessed

18-March-2012].

[38] Microsoft. Microsoft visual c++ 2010 express. URL:http://www.microsoft.com/

visualstudio/en-us/products/2010-editions/visual-cpp-express. [Online;

accessed 18-March-2012].

[39] Andrew W. Moore. Cross-validation for detecting and preventing over�tting. URL:

http://www.autonlab.org/tutorials/overfit10.pdf. [Online; accessed 05-June-

2012].

[40] TSS-Transport Simulation Systems. About aimsun. URL:http://www.aimsun.com/

wp/?page_id=21, 2012. [Online; accessed 24-April-2012].

[41] Barry Smyth and Elizabeth McKenna. Footprint-based retrieval. In Case-Based

Reasoning Research and Development, volume 1650 of Lecture Notes in Computer

Science, pages 719�719. Springer Berlin / Heidelberg, 1999.

	Title Page
	masteroppgave.pdf

