
Software Architecture and the Creative
Process in Game Development

Njål Nordmark

Master of Science in Computer Science

Supervisor: Alf Inge Wang, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

The goal of this master thesis is to investigate the relationship between
software architecture, the creative team, and the development processes,
providing insight into how these relationships are today.

Primarily the thesis will look at how the different game companies use
software architecture to facilitate the creative team’s work. The thesis will
also investigate the effect the different development processes have on the
creative team. In addition, the thesis will look at to what extent the team
is given the opportunity to contribute in these processes.

Assignment given: January 16th, 2012
Supervisor: Professor Alf Inge Wang, IDI

i

ii

Abstract

The goal of this thesis has been to perform research on the relationship
between the creative team, software architecture, and game development
processes.

Researching this relationship was done in three stages. The first stage
was a literature review into software architecture and game development. In
the second stage a questionnaire was designed based on the literature review,
and this questionnaire was then distributed to several game developers. In
addition to querying the game developers on their knowledge on the field,
they were also asked whether or not they would be willing to answer a set
of follow-up questions later.

The responses to the questionnaire provided a lot of answers, but also
gave rise to new questions. In the third stage these new questions were incor-
porated into a follow-up survey which was distributed to those respondents
whom had previously answered that they were willing to answer follow-up
questions.

The problem definition has been divided into five research questions ac-
cording to the Goal Question Metric approach. Supported by the literature
review and the responses to both the questionnaire and the survey, these five
research questions have been answered in detail in Chapter 11: “Research
Conclusions”.

The results from this thesis is not generalizable to all game developers,
but provides a very interesting glimpse into how the creative team is affected
by, and is allowed to affect, the software architecture and tools used, as well
as the game development process.

iii

iv

Samandrag

Målet med denne masteroppg̊ava har vore å forska p̊a forholda mellom dei
som jobbar med dei kreative aspekta av spel, programvarearkitekturen som
vert brukt og prosessane rundt spelutvikling.

Denne forskinga vart gjennomført i tre stadium. Det fyrste stadiet var eit
litteraturstudium som fokuserte p̊a programvarearkitektur og spelutvikling.
I det andre stadiet av forskinga vart det utforma ei spørjeundersøking som
var basert p̊a litteraturstudiet. Denne spørjeundersøkinga vart s̊a send ut
til mange forskjellege spelutviklarar. I tillegg til å stilla spørsm̊al til spe-
lutviklarane om spelutvikling og dei kreative prosessane, vart dei og spurde
om dei kunne svara p̊a nokre oppfølgingsspørsm̊al.

Svara p̊a spørjeundersøkinga var til stor hjelp n̊ar konklusjonen p̊a forsk-
ingsspørm̊ala skulle utformast, men gav og grunnlag for ein del nye spørsm̊al.
I det tredje stadiet av forskinga vart desse nye spørsm̊ala tatt med i ei
oppfølgingsundersøking. Denne undersøkinga vart s̊a sendt ut til dei som
gjennom spørjeundersøkinga hadde sagt at dei var viljuge til å svara p̊a
oppfølgingsspørsm̊al.

Problemdefinisjonen har vorte delt opp i fem separate forskingsspørsm̊al
ved bruk av Goal Question Metric-tilnærminga. Understøtta av litteratur
-studiet og svara p̊a b̊ade spørjeundersøkinga og oppfølgingsundersøkinga
vert desse forskingsspørsm̊ala gjord greie for i detalj i Kapittel 11: “Research
Conclusions”.

Resultata fr̊a denne forskinga kan ikkje generaliserast p̊a ein slik m̊ate
at dei vert gjeldande for alle spelutviklarar. Trass i dette gjev resultata eit
godt innblikk i korleis dei kreative aspekta ved spelutvikling b̊ade p̊averkar
og vert p̊averka av programvarearkitekturen og verktya som vert brukte,
samt spelutviklingsprosessen.

v

vi

Preface

This report is the master thesis delivered in the course TDT4900 - Computer
and Information Science, Master Thesis, marking the end of a five year
master’s program at the Department of Computer and Information Science
under the Faculty of Information Technology, Mathematics and Electrical
Engineering at the Norwegian University of Science and Technology.

The researcher would like to thank professor Alf Inge Wang for his con-
tinuous support and enduring enthusiasm during the process of working with
this thesis, providing the researcher with the opportunity to study the field
of software architecture and games.

The researcher would also like to thank all of those who have given
their comments on the thesis, in addition to those who have proofread the
questionnaire, the survey and the thesis itself.

Trondheim, June 5th, 2012

Nj̊al Nordmark

vii

viii

Contents

I Introduction 1

1 Project Introduction 3

1.1 Project Context . 3

1.2 Project Motivation . 3

1.3 Problem Definition . 4

1.3.1 Creative Team versus Technical Team 4

1.4 Research Questions . 4

1.5 Structure . 5

1.6 Related Work . 5

2 Research Method 7

2.1 The Scientific Method for Software Engineering 7

2.2 Goal Question Metric . 8

2.3 Research Paradigms . 9

2.4 Empirical Strategies . 9

2.4.1 Survey . 10

2.4.2 Case Study . 10

2.4.3 Experiments . 11

2.5 Literature Review . 11

2.6 Measurements in Software Engineering 11

2.6.1 Objective and Subjective Measure 12

2.6.2 Direct or Indirect Measure 12

2.7 Validation of Results . 12

2.8 Application of Research Methods 13

2.8.1 Research Method and Paradigm 13

2.8.2 Problem Definition . 13

2.8.3 Empirical Strategies and Measurements 13

II Pre-Study 15

3 Software Architecture 17

3.1 What is Software Architecture? 17

ix

x CONTENTS

3.1.1 The chosen Definition of Software Architecture 18

3.1.2 Implications of this Definition 19

3.1.3 Views of Software Architecture 19

3.2 Goals of a Software Architecture 21

3.3 Designing a Software Architecture 21

3.3.1 Domain-Driven Design 21

3.3.2 Responsibility-Driven Design 22

4 Software Architecture in Games 25

4.1 Does Games need a Software Architecture 25

4.2 Game Engine Architecture . 28

4.2.1 What is a Game Engine 28

4.2.2 Modules . 29

4.2.3 Develop or Buy . 30

4.3 Middleware . 31

4.4 Supporting the Creative Team 32

5 Game Development 35

5.1 History of Game Development 35

5.2 Requirements Engineering . 36

5.3 Evolution of Game Development 37

5.3.1 Research Quality . 37

5.3.2 The use of External Game Engines 38

5.3.3 Increased use of Middleware 39

5.3.4 Tools . 39

6 Web Surveys 41

6.1 Challenges with Questionnaire Design 41

6.1.1 Limitations of Web Surveys 41

6.1.2 Types of Nonresponse 42

6.1.3 Survey Characteristics that Affect Nonresponse 42

6.2 SurveyMonkey . 45

6.2.1 Designing Web Questionnaires 46

6.2.2 Analyzing the Results 46

III Research 49

7 Questionnaire 51

7.1 Design of the Web Questionnaire 51

7.1.1 Limitations of Web Surveys 51

7.1.2 General Structure . 52

7.1.3 Length . 52

7.1.4 Disclosure of Survey Progress 52

CONTENTS xi

7.1.5 Visual Presentation 52

7.1.6 Interactivity . 53

7.1.7 Question and Response Format 53

7.2 Design of the Paper Questionnaire 53

7.3 Analysis . 54

7.3.1 Question Numbering 54

7.3.2 Presentation . 57

7.4 Questionnaire Results and Analysis 57

7.4.1 Design of Software Architecture 58

7.4.2 Changes to the Software Architecture during Devel-
opment . 64

7.4.3 Supporting the Creative Processes 70

7.4.4 Changes over Time . 74

8 Survey 79

8.1 Survey Design . 79

8.1.1 Introduction . 79

8.1.2 Game Engine . 80

8.1.3 Software Architecture and the Creative Team 80

8.1.4 Implementing Changes 81

8.1.5 Relation between the Survey and the RQs 82

8.2 Analysis of Responses . 82

8.2.1 Game Engine . 83

8.2.2 Software Architecture and the Creative Team 85

8.2.3 Implementing Changes 86

9 Experiences 89

9.1 Previous Experience with Game Developers 89

9.2 Questionnaire Experiences . 89

9.2.1 Design . 89

9.2.2 Distribution . 90

9.2.3 Collection . 90

9.3 Survey . 90

9.3.1 Design . 90

9.3.2 Feedback . 91

9.3.3 Collection . 91

9.4 Summary . 91

10 Evaluation 93

10.1 Research Method . 93

10.2 Research Performed . 93

10.3 Strengths and Weaknesses . 94

xii CONTENTS

IV Conclusions 95

11 Research Conclusions 97

11.1 Validity of Results . 97

11.2 Research Question 1 . 97

11.3 Research Question 2 . 99

11.4 Research Question 3 . 100

11.5 Research Question 4 . 101

11.6 Research Question 5 . 102

12 Future Studies 105

12.1 High-Level Third Party Game Engines 105

12.2 Cost-Benefit Trade-Off . 105

12.3 Feature Availability in Game Engines 105

12.4 Reference Architectures . 106

Bibliography 107

Appendices

A Questionnaire 111

A.1 Paper Questionnaire . 111

A.2 E-Mail sent to Game Developers 114

A.3 Web Questionnaire . 115

B Questionnaire Results 125

B.1 Company A’s Questionnaire Response 125

B.2 Company B’s Questionnaire Response 128

B.3 Company C’s Questionnaire Response 132

B.4 Company D’s Questionnaire Response 134

B.5 Company E’s Questionnaire Response 137

B.6 Company F’s Questionnaire Response 140

B.7 Company G’s Questionnaire Response 142

B.8 Company H’s Questionnaire Response 144

B.9 Company I’s Questionnaire Response 147

B.10 Company J’s Questionnaire Response 149

B.11 Company K’s Questionnaire Response 151

B.12 Company L’s Questionnaire Response 153

B.13 Company M’s Questionnaire Response 155

C Survey 157

C.1 E-Mail sent to Game Developers 157

C.2 Web Survey . 158

CONTENTS xiii

D Survey Results 163
D.1 Company B . 163
D.2 Company D . 168
D.3 Company E . 169
D.4 Company H . 171
D.5 Company M . 174
D.6 Company Z . 176

xiv CONTENTS

List of Figures

3.1 The “4+1” View Model of Software Architecture 20

4.1 2D game circa 1994 . 26
4.2 3D game circa 1996 . 26
4.3 3D game circa 2004 . 27
4.4 d‘Agapeyeff’s Inverted Pyramid 32

6.1 SurveyMonkey survey designer 46
6.2 SurveyMonkey response summary 47
6.3 SurveyMonkey report downloading 48

7.1 Questionnaire questions related to the research questions. . . 56

8.1 Survey questions related to the research questions. 82

A.1 You and Your Company . 116
A.2 Design of Software Architecture, Part One 117
A.3 Design of Software Architecture, Part Two 118
A.4 Changes to the Software Architecture during Development,

Part One . 119
A.5 Changes to the Software Architecture during Development,

Part Two . 120
A.6 Supporting the Creative Processes 121
A.7 Changes over Time . 122
A.8 Closing Remarks . 123

C.1 Survey: Introduction . 158
C.2 Survey: Game Engine . 159
C.3 Survey: Software Architecture and the Creative Team 160
C.4 Survey: Implementing Changes 161

xv

xvi LIST OF FIGURES

List of Tables

7.1 Answers to question 1 . 58

7.2 Answers to question 2 . 59

7.3 Answers to question 3 . 60

7.4 Answers to question 4 . 61

7.5 Answers to question 5 . 62

7.6 Answers to question 6 . 63

7.7 Answers to question 7 . 64

7.8 Answers to question 8 . 65

7.9 Answers to question 9 . 66

7.10 Answers to question 10 . 67

7.11 Answers to question 11 . 68

7.12 Answers to question 12 . 69

7.13 Answers to question 13 . 70

7.14 Answers to question 14 . 71

7.15 Answers to question 15 . 72

7.16 Answers to question 16 . 73

7.17 Answers to question 17 . 74

7.18 Answers to question 18 . 75

7.19 Answers to question 19 . 76

7.20 Answers to question 20 . 77

B.1 Company A’s Questionnaire Results 125

B.2 Company B’s Questionnaire Results 128

B.3 Company C’s Questionnaire Results 132

B.4 Company D’s Questionnaire Results 134

B.5 Company E’s Questionnaire Results 137

B.6 Company F’s Questionnaire Results 140

B.7 Company G’s Questionnaire Results 142

B.8 Company H’s Questionnaire Results 144

B.9 Company I’s Questionnaire Results 147

B.10 Company J’s Questionnaire Results 149

B.11 Company K’s Questionnaire Results 151

B.12 Company L’s Questionnaire Results 153

xvii

xviii LIST OF TABLES

B.13 Company M’s Questionnaire Results 155

D.1 Company B’s Questionnaire Results 163
D.2 Company D’s Questionnaire Results 168
D.3 Company E’s Questionnaire Results 169
D.4 Company H’s Questionnaire Results 171
D.5 Company M’s Questionnaire Results 174
D.6 Company Z’s Questionnaire Results 176

Acronyms

AI Artificial Intelligence

FPS First-Person Shooter

GQM Goal Question Metric

IDI Department of Computer and Information Science

IME Faculty of Information Technology, Mathematics and Electrical Engi-
neering

MMOG Massive Multiplayer Online Game

NFR Non-Functional Requirement

NPC Non-Player Character

NTNU Norwegian University of Science and Technology

OS Operating System

RQ Research Question

XML Extensible Markup Language

xix

xx LIST OF TABLES

Part I

Introduction

1

Chapter 1

Project Introduction

In this chapter a short introduction to the motivation behind the project
and the project itself is given.

1.1 Project Context

This project is articulated by professor Alf Inge Wang at Norwegian Univer-
sity of Science and Technology (NTNU). It is a master thesis in the game
research program at Department of Computer and Information Science (IDI)
under the Faculty of Information Technology, Mathematics and Electrical
Engineering (IME).

It is a research spurred from a project performed in the fall of 2011
(Nordmark [18]), and will look further into the roles of a developing or-
ganization and how these affect the software architecture of a game. The
problem definition is presented in Section 1.3.

1.2 Project Motivation

The video game industry is today a major part of the software development
industry as well as the entertainment industry. It has been an area of intense
growth since the beginning in the 1970s [29], and is in many ways just
beginning to mature into the engineering-aspect of software engineering.

In other areas of software engineering, the developers and companies
are starting to look towards how to enable simple maintenance, reuse, and
further development through best-practices both in terms of processes as
well as the technical aspects, such as software architecture. As presented in
the book by Rollings and Morris [21], the authors are also worried that the
video game industry is lagging behind the rest of the software industry.

In the research Nordmark [18] it is discovered that the game develop-
ers have a concious relationship to software architecture, but that they are

3

4 CHAPTER 1. PROJECT INTRODUCTION

lacking in other areas. These findings suggested new areas of interest, par-
ticularly how the creative team1 affects, and are affected by, the software
architecture in the underlying game or game engine.

1.3 Problem Definition

The main goal of this research entitled “Software Architecture and the Cre-
ative Process in Game Development” is to perform research into software
architecture in the field of game development. The study will look at three
different aspects of this; (1) how are game developers today using software
architecture to facilitate the creative processes in game development, (2)
which methods and practices do they use to make the creative team’s job
easier, and (3) are there ideas from other areas of software engineering which
can be used to promote the creative work in game development.

1.3.1 Creative Team versus Technical Team

In the text above, a distinction between the creative team and the technical
team is introduced. However, the researcher recognizes that most people
involved in game development perform creative work in their day-to-day
tasks. By using this distinction, it is possible to make the language of
the text both more precise and easier to read. By the creative team the
researcher includes those who work with tasks concerned with game design,
artistry, generating content, level design, story, etc. Similarly, the technical
team includes those who work with implementing the game, game engine,
and supporting tools and systems in source code.

Note that these two groups are not necessarily mutually exclusive. Mem-
bers of the technical team can very well be adept artist, and vice versa.

1.4 Research Questions

Based on the problem definition given in Section 1.3, the following research
questions have been identified:

RQ1: What are the primary ways in which the creative team can affect the
software architecture in a game?

RQ2: Are there any particular architectural approaches that facilitate the
creative processes in game development?

RQ3: Are there any particular development methods or processes which
help the creative team do their job?

1See Section 1.3.1 for a discussion of the distinction between the creative team and the
technical team.

1.5. STRUCTURE 5

RQ4: Do the organizations prioritize the needs and wants of the creative
team?

RQ5: How has game development evolved over the years as an engineering
discipline?

1.5 Structure

This thesis is divided into four main parts. Part I introduces the background
for the project, the research method used, and the overall goal of the project.
Part II investigates different areas of software architecture and research,
laying the foundation for the research. In Part III the actual research of
this thesis is presented. The results for on the different questions (metrics in
Goal Question Metric (GQM)) is analyzed to enable drawing conclusions. In
addition to this a short evaluation of the research as well as future areas of
interest is presented. In Part IV conclusions regarding the research questions
(see Section 1.4) are presented. The thesis is then concluded with some
suggestions for future studies.

1.6 Related Work

Apocalypse Engine

In 2009, Guldbrandsen and Storstein performed a research into software
architecture and game engines [13]. This research was done as a preparation
for their master thesis at NTNU.

Software Architecture in Games

In 2011, Nordmark performed a research into software architecture in games
and how the different roles of the employees in a developing organization can
affect the software architecture in the final game [18]. This research was done
immediately preceding this master thesis.

Requirements Engineering and the Creative Processes in the
Video Game Industry

Callele, Neufeld, and Schneider perform a review of practices of requirements
engineering in games, and how these practices affect the development cycle
[6]. In particular, Callele et al. address issues related to Non-Functional
Requirements (NFRs), and how these requirements should be presented in
a requirement document for the technical team.

6 CHAPTER 1. PROJECT INTRODUCTION

Postmortem Analysis of Video Games

Kvasbø presents a thorough review of most of the postmortems in Game De-
veloper Magazine [24] from 1994 through 2006, with particular focus on the
evolution of game development [16]. This research was done as a preparation
for his master thesis at NTNU.

Chapter 2

Research Method

In this chapter several key points of performing research will be introduced,
including how goals are defined, different strategies for researching those
goals, and how to validate the conclusion.

2.1 The Scientific Method for Software Engineer-
ing

To perform any kind of research, one needs to follow a scientific method. In
the article “The Experimental Paradigm in Software Engineering” [1], Basili
discusses two main approaches to researching software architecture; (1) the
scientific method and (2) the mathematical method.

Basili defines them as follows:

The Scientific Method: Observe the world, propose a model or a theory
of behavior, measure and analyze, validate hypotheses of the model or
theory, and if possible repeat the procedure.

The Mathematical Method: Propose a formal theory or set of axioms,
develop a theory, derive results and if possible compare with empirical
observations.

The mathematical method is better suited for a formalization of an exist-
ing procedure which does not necessarily require too much human thought.
However, it is difficult to use it to research the creative sides of software
engineering. During software development, there is a great deal of creative-
ness from each software developer, and thus, the scientific method is better
aligned with research into software architecture and the processes surround-
ing it.

Basili subdivides the scientific method into two more specific methods;
(1) the engineering method and (2) the empirical method.

7

8 CHAPTER 2. RESEARCH METHOD

The Engineering Method: observe existing solutions, propose better so-
lutions, build/develop, measure and analyze, and repeat the process
until no more improvements appear possible.

The engineering method is an evolutionary research method. This is
important as it usually cannot result in radical changes, but only improve
the different objects under study.

The researcher looks at an object of interest (e.g., a process or a tool),
and tries to find ways to improve this. This improvement is then imple-
mented and tried out, e.g., using a case study (see Section 2.4.2). Identifying
new objects of interest can be done in many ways. One natural way is that
the researcher knows the system because she has used it. Another way can
be by performing a explorative pre-study, e.g., by using surveys (see Section
2.4.1).

The Empirical Method: propose a model, develop statistical/qualitative
methods, apply to case studies, measure and analyze, validate the
model and repeat the procedure.

The empirical method is a more revolutionary approach than the engi-
neering method. A researcher proposes a (possibly) new set of ideas (e.g.,
a set of tools or processes). The researcher then develops measures for this
new model, and applies them to a suitable situation, e.g., by using a case
study (see Section 2.4.2). If the results are promising, this can be done
several times to further improve the new model.

2.2 Goal Question Metric

Regardless of the chosen research method, it is important to have a clearly
defined goal of the research, as well as an understanding of how one should
fulfill this goal. Basili, Caldiera, and Rombach [2] argue that any measure-
ment of any part of software engineering needs to be defined in a top down
fashion. Following this, they identify that for a measurement to be effective,
it needs to be:

1. Focused on specific goals

2. Applied to all life-cycle products, processes, and resources

3. Interpreted based on characterization and understanding of the orga-
nizational context, environment, and goal

Basili et al. then go on to propose an approach to help create these
measurements, an approach called Goal Question Metric (GQM). The GQM
approach is divided into three levels, defined as follows:

2.3. RESEARCH PARADIGMS 9

Conceptual level (GOAL): A goal is defined for an object, for a variety
of reasons, with respect to various models of quality, from various
points of view, relative to a particular environment.

Operational level (QUESTION): A set of questions is used to charac-
terize the way the assessment/achievement of a specific goal is going
to be performed based on some characterizing model. Questions try
to characterize the object of measurement (product, process, resource)
with respect to a selected quality issue and to determine its quality
from the selected viewpoint.

Quantitative level (METRIC): A set of data is associated with every
question in order to answer it in a quantitative way. The data can be
[objective or subjective]1.

This approach lends itself very well to creating questionnaires. Here one
defines the goal, which leads to the research questions, which again leads to
questions one can use on a questionnaire.

2.3 Research Paradigms

In the book “Experimentation in Software Engineering: An Introduction”
[31] the authors Wohlin et al. present the two main research paradigms in
empirical research; qualitative and quantitative research.

Qualitative: A qualitative research is performed on the object of interest in
it’s natural setting. This is done by gathering descriptions of the object
of interest from different sources and then generalizing the descriptions
into a conclusion or hypothesis.

Quantitative: A quantitative research is a research in which one tries to
identify a relationship between to objects or group of objects. This
research is usually performed in a controlled or semi-controlled set-
ting in which the researcher can modify certain values or settings and
measure the effect on the object of interest. The relationship can be
precise, e.g., a correlation factor, or it can be a more general ordering,
e.g., method A is better than method B.

2.4 Empirical Strategies

Wohlin et al. [31] identify three main approaches, or strategies, for collecting
data for a research; surveys, case studies, and experiments.

1See Section 2.6.1 for a discussion of objective and subjective measures

10 CHAPTER 2. RESEARCH METHOD

2.4.1 Survey

A survey is an activity in which one tries to make a snapshot of the current
situation. It asks a subset of a population a set of questions regarding their
perception and understanding of the object of interest. These answers are
then analyzed, generalizing the information relating to the object, enabling
assertions or conclusions to be drawn. Surveys are often used in market
research and other polls, as they are suitable to perform exploratory research,
e.g., by charting new opinions or conceptions.

Wohlin et al. [31] identify three main objectives for conducting a survey:

Descriptive surveys are used to enable assertions regarding a population
without considering the reasons for this assertion

Explanatory surveys are used to explain certain phenomenon in a pop-
ulation

Exploratory surveys are often used as a pre-study for another research,
allowing the researcher to verify that no key point is missed

2.4.2 Case Study

A case study is an activity in which one tries to measure a single object or
phenomenon at a particular time. A strong point of the case study is that it
is performed in a semi-controlled setting. In this setting, the researchers are
able to control at least parts of the situation, but still allow the participants
to act as if everything is normal.

For instance, a case study is a good way to compare a new method or
principle with a baseline. If a large company is considering changing it’s
software development methodology, it may be a good idea to allow one or a
few teams to try it out first. If the teams and projects are chosen carefully,
making sure that they are comparable to other teams and projects in the
organization, the researcher has a good starting point. The team can then
use the new methods, and the researcher can record the necessary metrics
to compare this new method to the old one.

There are two major limitations to case studies; they cannot be repli-
cated, and they have limited validity. Since a case study is a measure taken
at a specific time in a specific situation, there is no way to reconstruct this
exact situation at a later time. Because of this, it is difficult to generalize
the results of such a case study, since there is no viable, scientific way to
validate the conclusions. This again limits the validity of the results. Often
the results of a case study can only be used by the group or organization
which performed the research, and then again, only for a relatively short
period after it was performed.

2.5. LITERATURE REVIEW 11

2.4.3 Experiments

An experiment is a research activity in which the researcher controls every
aspect of the situation in which the test subjects are placed. Since the
researcher then can vary every single aspect of the situation randomly, it is
well suited to confirming theories or conventional knowledge.

As an example, a researcher wishes to test the calculation speed of a cer-
tain mathematical operation in different programming languages. She then
has control over which developer writes the program, which programming
language she uses, which compiler is used, which computer/architecture is
used, etc. By varying these variables, the researcher can identify the rela-
tionships among them and draw a conclusions.

A great strength of an experiment is that the results are valid far beyond
the organization which performed it. Anyone can redo the experiment and
check it’s validity, and thus it allows for general theories or concepts to be
proven.

2.5 Literature Review

As a part of this research, literature review will be used to answers parts
of the research questions. A literature review is a process wherein one goes
through existing literature on the subject. This is done to give the researcher
a thorough understanding of the subject matter, as well as helping to identify
gaps in the current knowledge where further research is appropriate [5].

2.6 Measurements in Software Engineering

In Wohlin et al. [31] an overview of scientific measurement focused on mea-
surement of software and software engineering is presented.

First and foremost, Wohlin et al. argue that any scientific measure must
be a valid measure. By valid, they mean a measure that does not violate any
necessary properties of the object, and that the measure correctly character-
ize the object mathematically. Furthermore, any statements made regarding
this measurement (conclusions or generalizations) must be what they term
“meaningful”. A meaningful statement is not invalidated by a change of
measurement scale (e.g., a change from Celsius to Fahrenheit).

The authors also discuss different types of measurement scales, and iden-
tify the following four different scales:

Nominal Scale: A nominal scale is a one-to-one mapping form the measure
to the scale. This makes it difficult to conclude regarding internal
ordering within the measurement.

12 CHAPTER 2. RESEARCH METHOD

Ordinal Scale: A ordinal scale is used when the measurements can be
sorted by an ordering criterion. This scale also includes the relative
distance between the measurements.

Interval Scale: An interval scale is used when the value distance between
two measurements are useful, but not the value in itself.

Ratio Scale: A ratio scale is used when there is a meaningful zero value of
the scale, and the ratio between two measurements can have a mean-
ing.

Chiefly, the nominal and ordinal scale are used when doing qualitative
research, and the interval and ratio scale are used when doing quantitative
research.

Furthermore, the authors discuss two other aspects of a measure; objec-
tive versus subjective and direct versus indirect.

2.6.1 Objective and Subjective Measure

A measure is either objective or subjective. An objective measure is a mea-
sure which is only dependent upon the object under measurement. A sub-
jective measure is a measure wherein the person measuring the object uses
judgement when measuring.

2.6.2 Direct or Indirect Measure

A direct measure is when one can measure the value directly from the object.
An indirect measure is calculated using other measures.

2.7 Validation of Results

As an important part of any research, the results will need to be validated.
Wohlin et al. [31] state that “adequate validity refers to that the results
should be valid for the population of interest”.

This implies two things; (1) the researcher needs to consider which pop-
ulation she would like to make a generalization about and (2) the researcher
needs to modify the research in a way which allows this generalization to
happen.

First and foremost the researcher should decide which population she
wants the results to apply to. Based on this, the researcher can choose a
suitable subset on which the research is to be performed. When the subset
is decided, the researcher needs to consider if this is a representable selec-
tion, and if the results from this group can actually be valid for the entire
population of interest.

2.8. APPLICATION OF RESEARCH METHODS 13

After the researcher has found a subset and concluded on which popu-
lation the research can be applied to, she can make the research specific for
this group. If the research is a survey or questionnaire, the questions can
be adapted to the selected population, making the results as applicable as
desired.

2.8 Application of Research Methods

In this section, the application of the different research methods to this
research, as well as the rationale for choosing them, will be presented.

2.8.1 Research Method and Paradigm

The research is tasked with proposing models for how software architecture
can be used to facilitate the creative processes in game development. From
this model, a subset of game developers will be studied to validate the model.

This research is a qualitative one, and suites the empirical method de-
scribed by Basili [1].

2.8.2 Problem Definition

The presented GQM approach will be used to define the problem at all the
necessary levels.

Firstly, the overarching research goal will be defined (as the conceptual
level in GQM). This goal is presented in Section 1.3. Then, the Research
Questions (RQs) will be defined to support a conclusion to the research
goal (the operational level). These are presented in Section 1.4. Lastly, the
specific questions for the questionnaire and survey will be defined, allow-
ing conclusions to be drawn regarding the RQs (quantitative level). The
questionnaire is presented in Chapter 7, and the survey in Chapter 8.

2.8.3 Empirical Strategies and Measurements

During this research, there are two main phases; (1) a pre-study on technical
solutions and processes geared at helping the creative team in the game
company, and (2) the main study where real-world data is gathered and
analyzed, comparing this data to the results of the pre-study.

During the research, a questionnaire will be sent out to game developers.
The rationale for using a questionnaire instead of a full-fledge survey, is that
it reduces the effort needed for answering. This will provide an interesting
glimpse into how different game developers are doing their work today.

After the questionnaire has been completed, a normal survey will be
sent out to a subset of game developers. This survey will be adapted to the

14 CHAPTER 2. RESEARCH METHOD

responses to the original questionnaire, enabling the researcher to conclude
on the five RQs.

Given the large discrepancy between different game developers, combined
with the pure qualitative research being performed, the results will map to
a nominal scale.

The measures will also be subjective measures, as the replies to both the
questionnaire and the survey will be subject to the researcher’s interpreta-
tion.

Part II

Pre-Study

15

Chapter 3

Software Architecture

In this chapter an introduction to software architecture will be given. First,
an understanding of what software architecture is is given. This is followed
by a short discussion of the goals a software architecture can have. Lastly,
two different methods for designing software architecture is presented.

As a complete overview is beyond the scope of this thesis, this introduc-
tion will be necessarily brief.

3.1 What is Software Architecture?

Before this research can be performed, a thorough understanding of what
the term “software architecture” means is needed.

A good starting point for anyone studying software architecture, is the
article “Foundations for the Study of Software Architecture” [19] by Perry
and Wolf. This article presents some history of the field, as well as an
intuitive understanding of software architecture.

The starting point for most major fields of study is a need of solutions
to existing problems. In the 1960s developers encountered new problems in
the computer science field, where they were to develop large-scale software
systems. This had not been done before, and spurred the study of “software
design”. This in turn became more abstract over the years, up to the point
where one can identify it as the study of software architecture.

But what is software architecture?

There are many definitions available today which all propose to be the
one definition of software architecture. Perry and Wolf [19] present the
following model:

Software Architecture = {Elements,Form,Rational} .

This model is further discussed in their article [19], but there are a few
points one should take note of:

17

18 CHAPTER 3. SOFTWARE ARCHITECTURE

Elements: These are the actual pieces that the software architecture con-
sists of. Perry and Wolf divides the elements into (1) processing ele-
ments, (2) data elements, and (3) connecting elements.

Form: The form of a software architecture is the constraints imposed on
the implementation. This can relate to properties of particular ele-
ments (e.g., this element should output its data in XML-format) or
the relationships among them (e.g., element A should be a customer
of element B).

Rationale: The last, and perhaps most important, part of the software
architecture is the rationale which is used to choose between different
elements and forms. This is what lends the software architecture its
credibility in the early stages of design and development.

Whilst this model provides some insight, it is in and of itself limited.

3.1.1 The chosen Definition of Software Architecture

However, as a complete definition and description of software architecture
is beyond the scope of this thesis, the tested and tried version found in the
book “Software Architecture in Practice” [3] will be used. The definition is
as follows:

“The software architecture of a program or computing sys-
tem is the structure or structures of the system, which comprise
software elements, the externally visible properties of those ele-
ments, and the relationships among them.”

A thorough introduction to this definition is given in Bass et al. [3], but
a few points should be introduced here:
1. “the structure or structures of the system [. . .]”:

This implies that a program chiefly consists of several elements, and
that the ordering between them are of importance. It also implies that this
ordering can be changed as a response to different conditions.
2. “which comprise software elements [. . .]”:

This implies that the actual elements chosen to do the job is part of
the software architecture. This again implies that although pieces possibly
are exchangeable, choosing one rather than the other is an architectural
decision.
3. “the externally visible properties of those elements [. . .]”:

At the same time as one includes every last bit of code into the software
architecture, one also abstracts to a sufficient level, looking at the observable
effects the different elements of the software architecture have. This allows us
to introduce constraints on the different elements, both in terms of interfaces
and inter-element relations.

3.1. WHAT IS SOFTWARE ARCHITECTURE? 19

4. “and the relationships among them”:
Lastly we return to the relationships among the elements. This definition

clearly states that the form of the final product is important, and that the
different roles elements assume, and the relationships amongst them, are
also part of the software architecture.

3.1.2 Implications of this Definition

When looking at the definition used in Bass et al. [3], some might disagree
with their notion of what software architecture is. The fact that the actual
elements chosen are part of the software architecture might disagree with
notions of a good software architecture. However, although enabling the ex-
change of modules most likely is a good architectural decision, the module
which is chosen is scrutinized, looking for the best match within the con-
straints given. These constraints can be cost, licensing, performance, etc.,
but they all imply something regarding the software architecture.

However, only the public parts of the elements are of concern. This
implies that the use of pointers most likely touches upon software archi-
tecture. The reason for this is that modifications made using this pointer
generally are observable. In contrast, temporary instance variables are not
architectural since they are not observable

Nonetheless, the complete architecture still comprises most of the in-
formation concerning a system, and quickly become too comprehensive to
document in full. Thus one needs another approach to documenting the soft-
ware architecture, an approach that can be found by using various views.

3.1.3 Views of Software Architecture

As the software architecture itself is too comprehensive to document prop-
erly, it has been suggested that it should be represented using different views
which focus on certain areas of the architecture in isolation. This is much
the same as is done in building architecture, where one represents different
views of the building for different uses. Plumbers and electricians need a
set of drawings telling them where which elements goes (e.g., pipes, power
intake, etc.), whilst the seller of the house would need another set.

Examples of views in software architecture are the physical deployment
view which illustrates where the software will be running (i.e., on which
machines) and the logical view which illustrates the different classes and
modules, and certain connections between them.

The “4+1” View Model of Software Architecture

A great example of how software architecture can be documented and pre-
sented is introduced in Kruchten [15], and is called The “4+1” View Model
of Software Architecture.

20 CHAPTER 3. SOFTWARE ARCHITECTURE

2

• the development view, which describes the static organization of the software in its development
environment.

The description of an architecture—the decisions made—can be organized around these four views, and
then illustrated by a few selected use cases, or scenarios which become a fifth view. The architecture is in
fact partially evolved from these scenarios as we will see later.

Logical View Development
View

Process View Physical View

Scenarios

Programmers
Software management

System engineers
Topology

Communications

Integrators
Performance
Scalability

End-user
Functionality

Figure 1 — The “4+1” view model

We apply Perry & Wolf’s equation independently on each view, i.e., for each view we define the set of
elements to use (components, containers, and connectors) , we capture the forms and patterns that work, and
we capture the rationale and constraints, connecting the architecture to some of the requirements.
Each view is described by a blueprint using its own particular notation. For each view also, the architects
can pick a certain architectural style, hence allowing the coexistence of multiple styles in one system.

We will now look in turn at each of the five views, giving for each its purpose: which concerns is addresses,
a notation for the corresponding architectural blueprint, the tools we have used to describe and manage it.
Small examples are drawn from the design of a PABX, derived from our work at Alcatel Business System
and an Air Traffic Control system3, but in very simplified form—the intent here is just to give a flavor of
the views and their notation and not to define the architecture of those systems.

The “4+1” view model is rather “generic”: other notations and tools can be used, other design methods can
be used, especially for the and the logical and process decompositions, but we have indicated the ones we
have used with success.

Figure 3.1: An illustration of the five views used in The “4+1” View Model
of Software Architecture. Image taken from Kruchten [15].

In this model, the idea is that a software architecture can be represented
by five views which serve very different purposes.

Four of the five views are related to how the system is implemented and
how it looks during runtime. These four views are:

1. The Logical View

2. The Process View

3. The Physical View

4. The Development View

The fifth view is used to illustrate how the four other views are connected
and highlight how the architecture as a whole fulfills the needs which are
placed on it. For completeness, the last view is:

5. Scenarios/Use Cases

A thorough introduction to how these views interrelate and are used is
given in Kruchten [15], but they can be summarized as illustrated in Figure
3.1.

The strength of this model is that all the four “main” views are treated
as a complete and distinctive representation of the software architecture. It
includes everything which it can based on the constraints of the representa-
tion for the respective view, and should therefore also include a rationale as

3.2. GOALS OF A SOFTWARE ARCHITECTURE 21

to why this specific set of choices were made. By doing this, the software ar-
chitects can be confident that their design fulfills all which is required by the
system as a whole, but without having to consider every all the information
at the same time.

3.2 Goals of a Software Architecture

The primary reason for studying and using software architecture is to achieve
certain goals. These can be tied directly into the requirements given by the
customer (e.g., “the system shall have an uptime of 99,99%”) or can be
desired attributes given by the developing organization (e.g., “it must be
simple to add support for a new printer”).

In Bass et al. [3] they discuss what they call “quality attributes”. These
attributes are certain characteristics that the final software should possess
to some extent (as given in the requirements). Bass et al. present six of
the most common qualities; availability, modifiability, performance, security,
testability, and usability.

If a traditional First-Person Shooter (FPS) game is used as an exam-
ple, these quality attributes can be ordered according to importance. One
such ordering might be (1) usability, (2) performance, (3) modifiability, (4)
availability, (5) testability, and (6) security. Based on such an ordering, the
developing organization can prioritize effort and other resources to achieve
the results they wish.

When such orderings, or other constraints, are in place, the software
architects can begin designing the software architecture. Accordingly, all
the choices the software architects make can be argued for in the rationale
using the desired qualities as a guideline.

3.3 Designing a Software Architecture

Designing a successful software architecture is a difficult job. There are
many ways of doing this, each with their own strengths and weaknesses.
Here we will briefly introduce two approaches; domain-driven design and
responsibility-driven design.

3.3.1 Domain-Driven Design

In his excellent book “Domain-Driven Design: Tackling Complexity in the
Heart of Software” [10], Evans introduce domain-driven design. Domain-
driven design is the process where software is designed by understanding the
high-level concepts of the domain you are trying to create a program for. If
you are developing an accounting application, the developers should get a
basic understanding of how the domain works by discussing it with subject

22 CHAPTER 3. SOFTWARE ARCHITECTURE

matter experts (e.g., accountants). Together, they articulate a common and
explicit model of the domain, and implement the software according to this
model.

In addition to presenting domain-driven design, Evans suggests several
ways of keeping the model up to date, keeping it a useful part of the devel-
opment team’s knowledge. Of particular interest are the “Conformist” and
“Anticorruption Layer” techniques suggested.

Conformist The conformist technique consists of allowing the soft-
ware architecture of the program you produce to be dictated fully by the
supporting technology in use. If, for example, a third party game engine is
used, the conformist approach would likely be the best way to produce cor-
rect and working software. It implies that you get a thorough understanding
of the existing application (i.e., the game engine), and that all the code you
produce follow the model and structure in it.

Anticorruption Layer The anticorruption layer approach is an ex-
treme approach. It implies that you do not wish any influence from any
third-party software on your own system. This is achieved by inserting a
layer between the third-party software and your own application. On the
inside, this layer conforms to the application’s structure, and on the outside,
this layer conforms to the third-party software’s structure. In many ways
this is a safe approach which allows third-party software to be integrated
into the application without affecting the existing structure. On the other
hand, if the layer becomes too complicated or slow, it might not be worth
the effort.

In any case, the developing organization should at all times be concious
of how they integrate third-party software into their own games. The two
presented approaches present the extremes, and for most real-life applica-
tions, something in between will be the best solution.

3.3.2 Responsibility-Driven Design

In the article “Object-Oriented Design: A Responsibility-Driven Approach”
[30] the authors Wirfs-Brock and Wilkerson present a design method which
focuses on the responsibilities of the different entities of a system. They start
out by addressing some of the problems with the data-driven design method,
most importantly including that it can lead to a violation of encapsulation,
since the structure of an object becomes part of it’s definition.

They then go on to describe the responsibility-driven approach. In
responsibility-driven design, the designers inspect the relationships between
the different modules as a client-server relationship. A server is an object
that can perform a service (e.g., provides data) and a client is an object that
requests services (e.g., requests data).

By designing modules in this way, you do not tie down the actual struc-
ture of the different modules or classes in the definition, but instead produce

3.3. DESIGNING A SOFTWARE ARCHITECTURE 23

objects which have clearly defined services which they can perform. If we
look at a game engine, each main module can be viewed as a server. The
rendering engine, for example, provides the service of generating an image
that can be viewed by the end user. The physics engine can calculate object
interactions, and the sound engine can output sound.

All these are great examples of object-oriented design, as they provide an
encapsulated service, and can, in theory, be exchanged by another module
which performs the same services (e.g., by adding a wrapper to the new
module).

24 CHAPTER 3. SOFTWARE ARCHITECTURE

Chapter 4

Software Architecture in
Games

First In this chapter a rationale for the need for software architecture in
games will be given. This is then followed by a short introduction to game
engines, and the chapter is concluded by a discussion of middleware and the
middleware’s effect on game development.

4.1 Does Games need a Software Architecture

In Blow [4] a short, but compelling, introduction to the evolution of size and
complexity of games is given. As can be seen in Figure 4.1, games started
out as rather small and limited pieces of software. However, it can be seen
from the figure that there were certain architectural decisions taken, either
consciously or sub-consciously, to identify and develop sub-modules, which
had their own responsibility.

Then, a couple years later, 3D graphics became a more important part of
gaming. Following this, the complexity of the source code increased (Figure
4.2). Now the modules are really starting to stand out. However, it is
conceivable that a company still would manage to produce a game without
needing a software architecture designed up-front.

Finally, when looking at a 3D game from 2004 (Figure 4.3), one can
see that there is no way in which a company can produce such a piece of
software without considering software architecture. When also considering
that each module consist of between 6 and 40 thousand lines of code [4], the
engineering challenge of games become intimidating.

25

26 CHAPTER 4. SOFTWARE ARCHITECTURE IN GAMES

30 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 31 more queue: www.acmqueue.com

categories is a bit artificial; we will come full-circle at the
end, seeing that there are fundamental domain-specific
reasons (problems due to highly domain-specific require-
ments) why we should expect that games are among the
most complicated kinds of software we should expect
to see (problems due to overall project size), and why
we should not expect this to change for the foreseeable
future.

PROJECT SIZE AND COMPLEXITY
To illustrate the growth of games over the past decade,
I’ve chosen four examples of games and drawn graphs
of them. Each node in a graph represents a major area of
functionality, and the arcs represent knowledge couplings

between modules. Two nodes with an arc between them
need to communicate heavily, so design decisions made
in one node will propagate through its neighbors.

Figure 1 depicts a 2D game from the early 1990s, per-
haps a side-scrolling action game for a home console, like
Super Metroid. Other genres of game would have slightly
different diagrams, for example, a turn-based strategy
game like Civilization would gain a node for computer-
opponent AI (artificial intelligence), but would lose the
node for fast graphics. Certainly Super Metroid itself also
has computer opponents, but their behavior is simple
enough that it doesn’t warrant an extra node; instead the
enemy control code is lumped in with “main/misc.”

By 1996, 3D games had become a large portion of the
game industry’s output. Figure 2 shows an early 3D game,
for example, Mechwarrior 2. Contrast this with figure 3, a
modern single-player game.

The largest endeavor we currently attempt is the 3D
massively multiplayer game (MMG), illustrated in figure
4. Everquest is the canonical first example of a 3D MMG,
though a more up-to-date example would be The Matrix
Online (expected release in 2004).

Contrasting figure 4 to figure 1 should give you a gen-
eral sense of how the situation has changed. The arcs in
these figures assume that code has been ideally factored,
but since this is never the case, real-life situations will
be more tangled. Keep in mind that each node in these
graphs is itself a complex system of many algorithms
working together, and that each of these nodes represents
somewhere between six thousand and 40 thousand lines
of source code.

There’s another category of game, the non-massively
multiplayer client/server game, which tends to house a
smaller number of players at once (perhaps 50) and does
not maintain a persistent world. The diagram for one of
those would be somewhere between figure 3 and figure 4.

Tools. To tackle such com-
plexity, it helps to have
excellent development
tools. Sadly, we do not
have excellent develop-
ment tools.

For programming on
PCs, we use a compiler
development environ-
ment like Microsoft Visual
Studio, which is basically
a wrapper around their
C++ compiler; most games
now are written primarily

Game
DevelopmentFO

CU
S

Game
Harder Than You Think

Development

A 2D Game Circa
soundsound

main/misc.main/misc./streaminga
file I/O simulationsim

fast 2D graphics

FIG 1
A 3D Game Circa 19

sound

main/misc.main/misc./streaminga
file I/O

collision
detectiondsimulationsimulationla

fast 2D graphics 3D rendering

FIG 2

Figure 4.1: An illustration of a typical 2D game from around 1994. Image
taken from Blow [4].

30 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 31 more queue: www.acmqueue.com

categories is a bit artificial; we will come full-circle at the
end, seeing that there are fundamental domain-specific
reasons (problems due to highly domain-specific require-
ments) why we should expect that games are among the
most complicated kinds of software we should expect
to see (problems due to overall project size), and why
we should not expect this to change for the foreseeable
future.

PROJECT SIZE AND COMPLEXITY
To illustrate the growth of games over the past decade,
I’ve chosen four examples of games and drawn graphs
of them. Each node in a graph represents a major area of
functionality, and the arcs represent knowledge couplings

between modules. Two nodes with an arc between them
need to communicate heavily, so design decisions made
in one node will propagate through its neighbors.

Figure 1 depicts a 2D game from the early 1990s, per-
haps a side-scrolling action game for a home console, like
Super Metroid. Other genres of game would have slightly
different diagrams, for example, a turn-based strategy
game like Civilization would gain a node for computer-
opponent AI (artificial intelligence), but would lose the
node for fast graphics. Certainly Super Metroid itself also
has computer opponents, but their behavior is simple
enough that it doesn’t warrant an extra node; instead the
enemy control code is lumped in with “main/misc.”

By 1996, 3D games had become a large portion of the
game industry’s output. Figure 2 shows an early 3D game,
for example, Mechwarrior 2. Contrast this with figure 3, a
modern single-player game.

The largest endeavor we currently attempt is the 3D
massively multiplayer game (MMG), illustrated in figure
4. Everquest is the canonical first example of a 3D MMG,
though a more up-to-date example would be The Matrix
Online (expected release in 2004).

Contrasting figure 4 to figure 1 should give you a gen-
eral sense of how the situation has changed. The arcs in
these figures assume that code has been ideally factored,
but since this is never the case, real-life situations will
be more tangled. Keep in mind that each node in these
graphs is itself a complex system of many algorithms
working together, and that each of these nodes represents
somewhere between six thousand and 40 thousand lines
of source code.

There’s another category of game, the non-massively
multiplayer client/server game, which tends to house a
smaller number of players at once (perhaps 50) and does
not maintain a persistent world. The diagram for one of
those would be somewhere between figure 3 and figure 4.

Tools. To tackle such com-
plexity, it helps to have
excellent development
tools. Sadly, we do not
have excellent develop-
ment tools.

For programming on
PCs, we use a compiler
development environ-
ment like Microsoft Visual
Studio, which is basically
a wrapper around their
C++ compiler; most games
now are written primarily

Game
DevelopmentFO

CU
S

Game
Harder Than You Think

Development

A 2D Game Circa
soundsound

main/misc.main/misc./streaminga
file I/O simulationsim

fast 2D graphics

FIG 1
A 3D Game Circa 19

sound

main/misc.main/misc./streaminga
file I/O

collision
detectiondsimulationsimulationla

fast 2D graphics 3D rendering

FIG 2
Figure 4.2: An illustration of a typical 3D game from around 1996. Image
taken from Blow [4].

4.1. DOES GAMES NEED A SOFTWARE ARCHITECTURE 27

32 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 33 more queue: www.acmqueue.com

and forth, we can’t just convert the data between formats
at function call time as that would be too slow). And
since games are so CPU-intensive, it will often happen
that the third-party component presents a significant
performance bottleneck for some input scenarios—and
the programmer must fix these situations or work around
them.

Often when third-party code fails, it’s because the
problem it solves is insufficiently large; for the amount
of work the development team spends to make the code

succeed, they might as well have written the module
from scratch—something you certainly don’t want to find
out after failing with the licensed code. The decision to
license third-party code should always be preceded by a
careful cost/benefit analysis as there’s no guarantee that
the product will actually hasten your development.
Full-Figure Option. Instead of licensing components,
we can license an entire game engine from a company
that has successfully built a solid one (see my discussion
of highly domain-specific requirements in this article).

A 3D Single-Player Game Circa 2004
sound, low-levelo

sound,un
management

main/misc.
connects to

nearly everything
(arcs not shown)

streaming file I/Og

scripting evaluatore t

collisionc isision
detection/c

physicsys

spatials at
partitioningp
and searchn

AIA

rendering:
scene

management

scripted events/sc
gameplay code/

entity layer

geometry ande
animationa
exporterso

Tools
(often not
distributed
o players) world constructionon

and layoutd l t
scripted eventppt

creationti
physically-basedeca -
audio/animation/ud o/

arrangementna

rendering:e
low-level

3D animationnD

FIG 3

Figure 4.3: An illustration of a typical 3D game from around 2004. Image
taken from Blow [4].

28 CHAPTER 4. SOFTWARE ARCHITECTURE IN GAMES

Furthermore, when discussing long build times, Blow states that “the
best way to avoid long build times is to architect the entire code base to
minimize dependencies”. Based on this and the increasing complexity of
games in software engineering terms, one can conclude that a suitable and
well planned software architecture is integral to a successful game1.

Thus, it has been established that games need to have a concious rela-
tionship to software architecture.

A survey performed in Nordmark [18] looks into the relationship that
game developers have to software architecture. In the conclusions on this
part of the survey, Nordmark state the following:

“Through this research we have shown that game developers
today have a concious relationship to software architecture, and
the benefits they reap from using it actively to promote certain
characteristics of their software. One of the main findings in the
survey is that game developers now rate software architecture as
an important part of their game, and that they strive to achieve
a software architecture which enables reuse, porting, extension,
etc. This hints towards a level of maturity in the game develop-
ment industry which has been reported and assumed lacking.”

4.2 Game Engine Architecture

If one looks at the Figures 4.1, 4.2, and 4.3, one can see that many of the
nodes represent general purpose jobs. Examples include sound management,
collision detection, and 3D animation. If we take the architecture of a game
one step further, these modules can be generalized to such an extent that
they can be used in a game engine. This generalization will be discussed in
the following sections.

4.2.1 What is a Game Engine

In Gregory [12], the difference between a game and a game engine is defined
as follows:

“Arguably a data-driven architecture is what differentiates a
game engine from a piece of software that is a game but not
an engine. When a game contains hard-coded logic or game
rules, or employs special-case code to render specific types of
game objects, it becomes difficult or impossible to reuse that
software to make a different game. We should probably reserve

1The researcher recognizes that smaller (e.g., indie) games can be made in a simpler
fashion. However, these developers would most likely also reap the benefits of a proper
software architecture.

4.2. GAME ENGINE ARCHITECTURE 29

the term ‘game engine’ for software that is extensible and can be
used as the foundation for many different games without major
modification.”

Here certain desirable architectural traits already surface. Gregory has
identified a need for the game engine to be data-driven, and that most, if not
all, of the game-specific elements should be left out of the game engine. Being
data-driven, the game engine should accept new data containing information
about the levels, the characters in it, and the possible interactions, and
render this to the user in a correct manner. This, in turn, implies that if
one uses a complete game engine to create a game, you should only have to
focus on the content, not the mechanics allowing you to create a game.

Furthermore, a game engine is usually structured around different mod-
ules. These modules each have their own responsibility (e.g., rendering,
physics, and lighting), and thus the engine itself is also a responsibility-
driven architecture.

4.2.2 Modules used in Today’s Game Engines

Guldbrandsen and Storstein [13] performed a study on state-of-the-art game
engines, wherein they looked at which modules and middleware were present
in the different game engines.

Guldbrandsen and Storstein identify two classes of modules and the mod-
ules which are present on virtually all game engines; core modules and game-
play modules.

Below is a short summary of their findings.

Core Modules versus Gameplay Modules

The research Guldbrandsen and Storstein present indicates that the game
engines have two main module types; core modules and gameplay modules.

Furthermore they confirm this distinction and present the following state-
ment:

“One should strive to define what is core functionality, and
what is more linked to gameplay. The core should be efficient
and stable, and ideally not something a game programmer would
need to touch. The gameplay layer should ideally have loose
coupling and be extensible for game programmers to incorporate
game-specific functionality.”

Core Modules
Core modules are characterized by performing a general purpose task

like rendering, physics, collision detection, particle system, etc., and are
heavy-duty modules which certainly need to be as optimized as possible.

30 CHAPTER 4. SOFTWARE ARCHITECTURE IN GAMES

As these modules are developed with performance in mind, making them
architecturally pretty is not the main focus.

Gameplay Modules

Gameplay modules are focused on the parts which game developers need
to modify to make the specific game they are working on. These consist
of entity management, scripting, message passing, etc., and are generally
not the most performance intensive modules. Since they are directed at the
game developers and designers they are often more “user friendly”, i.e., they
are developed using functional interfaces, use known architectural patterns,
etc.

Below follows a short highlight of two different modules which are typ-
ically present in modern games. These are chosen since they affect the job
of the creative team. A more thorough introduction to these, and other
modules typically present in current game engines, is given in Guldbrandsen
and Storstein [13].

Scripted Events

Scripted events are integral to making and fine-tuning the level to match the
designers original ideas. Scripts can be used to portray the story, and trigger
important events either based on actions, locations, or other indicators.

Most large game engines ship with a scripting language/system like Un-
real Engine’s UnrealScript [9].

Additional Tools

Most large-scale game engines ship with an assorted set of tools which aid
the development of the game. These tools can be everything from level
designers, scripting applications, debuggers, etc.

4.2.3 Develop or Buy

Today there are several game engines which can be bought/licensed at a
fair price, and they often are considered “mostly-ready game engines” [27].
Examples include UnrealEngine [8], Unity[25], and CryENGINE [7]. And
whilst these all show great promise, and can be the correct choice in many
situations, a decision to buy a game engine should be carefully considered.

One great benefit is that if the game company decides to buy an existing
game engine, they are given a product which is guaranteed to be working,
can support bleeding-edge graphics and physics, and allows the company
to focus on what makes their game unique, i.e., the content, instead of
developing a game engine.

A disadvantage is that the company is limited to what the game engine
is capable of doing. Of course, the organization can modify and extend

4.3. MIDDLEWARE 31

the game engine, but certain tasks can be too difficult to realize within the
bounds of the existing software to be possible.

This and other trade-offs have to be considered when buying a game
engine.

Lastly, a few examples of when buying a game engine might be unnec-
essary are:

• When it is overkill. The game is smaller and can be implemented much
simpler than what a game engine implies, or the cost of buying one
overshadows the estimated profit from the game.

• When the modifications needed exceed the benefit. This happens when
too much of the code base has to change due to requirements within
the organization and the game. It might simply be cheaper to build a
game, or in-house game engine, from scratch.

• When only one game is planned, or games are peripheral to the com-
pany’s main focus. If the developing organization only wants to make
one game in this genre, or just for promoting their other areas of ex-
pertise (e.g., tech-demo of a sound module).

4.3 Middleware

If game can be abstracted into game engines, and the game engines (typ-
ically) are structured into modules based on responsibilities, can this be
taken one step further?

This occurred to game developers, and thus third party modules, or
middleware, entered the stage.

The term “middleware” today seems to be the preferred name for these
modules. The term originates from NATO’s conference on software engi-
neering [17], and originally was used to illustrate a layer of software which
acts as a sort of abstraction on the operating system (see Figure 4.4).

To act as an example, think of a game module which needs to load a
certain set of files. A way to simplify porting between platforms, the game
developer can create a middleware which abstracts the particulars of file
loading, and provides an interface which the application program (game)
can use, e.g., file.load() and file.save().

If the game is deployed on another platform, or the platform itself
changes the implementation, the game developer only have to modify the
middleware, and the game will run as normal again.

However, this is the traditional use of the term “middleware”. Today,
when used in the context of games, middleware is a piece of general software
which performs some (rather large) module’s work. This can be a physics

32 CHAPTER 4. SOFTWARE ARCHITECTURE IN GAMES

14

NATO SOFTWARE ENGINEERING CONFERENCE 1968

3. Software Engineering

Another over-all view of the substance of software engineering was given.

d’Agapeyeff: An example of the kind of software system I am talking about is putting all the applications in a hospital
on a computer, whereby you 23 get a whole set of people to use the machine. This kind of system is very
sensitive to weaknesses in the software, particular as regards the inability to maintain the system and to extend
it freely.

This sensitivity of software can be understood if we liken it to what I will call the inverted pyramid (see figure
3). The buttresses are assemblers and compilers. They don’t help to maintain the thing, but if they fail you have
a skew. At the bottom are the control programs, then the various service routines. Further up we have what I call
middleware.

This is because no matter how good the manufacturer’s software for items like file handling it is just not suit-
able; it’s either inefficient or inappropriate. We usually have to rewrite the file handling processes, the initial mes-
sage analysis and above all the real-time schedulers, because in this type of situation the application programs
interact and the manufacturers, software tends to throw them off at the drop of a hat, which is somewhat embar-
rassing. On the top you have a whole chain of application programs.

The point about this pyramid is that it is terribly sensitive to change in the underlying software such that the new
version does not contain the old as a subset. It becomes very expensive to maintain these systems and to extend

them while keeping them live.

Figure 3. d’Agapeyeff’s Inverted Pyramid

Application
programs

Middleware

Service
Routines

Control
prog.Compilers Assemblers

Figure 4.4: d‘Agapeyeff’s inverted pyramid illustrating middlwares role in a
software system. Figure taken from Naur and Randell [17].

engine (e.g., Havok Physics [14]), a sound rendering engine (e.g., FMOD
[11]), or any other module of the game2.

As such, middleware is generally not considered to be a game engine.
Middleware can, however, be used as exchangeable modules, focusing on
only one aspect of the engine [4]. In general middleware is developed as a
stand-alone product, allowing the developing organization to focus entirely
on making it a solid piece of software. As discussed in Rollings and Morris
[21] this can result in more general, and often better optimized, software
than if a general purpose game engine development company should have
developed the same functionality.

One can view the emergence of middleware as the next step in gener-
alization of games and game engines. By selecting modules with a clearly
defined responsibility like audio or physics, one can create a high-quality,
general-purpose piece of software that can be plugged directly into a game
or game engine. The engine developers can then choose the most suitable
middleware based on purpose, cost, efficiency, etc., and write a small wrap-
per around it, making it conform to the game engine’s existing structure.

This presents an interesting proposition; should you buy a game engine
which you have to heavily modify to suit your needs, or do you wish to make
most of the game or game engine yourself, and license in parts from other
producers? This question should be considered by game developers before
they decide to develop or purchase a game engine.

Although the area of game development is an area experiencing rapid and
sometimes unpredictable change, it is reasonable to assume that middleware
will become more and more prevalent.

2Do note that Artificial Intelligence (AI) middleware still has had only limited success.

4.4. SUPPORTING THE CREATIVE TEAM 33

4.4 Supporting the Creative Team

But how should software architecture be used to support the needs of the
creative team?

In Nordmark [18] the second of the four RQs is: ”Is software architecture
helping game developers doing their job?”. The conclusion to this question
sums up the findings in a concise manner [18, pages 82 – 83]:

“From this research, we can clearly see that the game devel-
opers reap many benefits from their use of software architecture.
From a suitable software architecture, both the creative team
and the technical team are able to do their job in a quicker and
more efficient way.

If we first look at the creative team, there is one example
which illustrates very well how software architecture help them
do their job. In the documentary “Beneath the Surface” pre-
sented in Section 9.2 they present the possibility to use rapid
prototyping when developing their games. This allows the cre-
ative team, helped by the technical team, to implement early
versions of their ideas quickly, and try them out in-game. If if
works well, they can develop the idea further, and if not they
can scarp it early, freeing up time to do other things.

Furthermore, the creative team is able to implement levels
and characters without having intimate knowledge of program-
ming languages or the inner workings of the game engine. This
allows them to focus on their predominant task; developing the
content for the game.

A proper software architecture also allows the creative team
to request new functionality. If this is a new module, or just
an extension to an already existing module, the technical team
should be able to consider the actual implementation cost, and
if the cost/benefit trade-off favours the benefit, they can imple-
ment and integrate it into the game engine without unnecessary
workload or ripple-effects.

Another benefit for the technical team is that a sound soft-
ware architecture which separates generic functionality and
game-specific functionality allows for a higher amount of reuse.
They can reuse the core components, and replace them if nec-
essary. If we look at the sand engine example in Section 9.1,
this shows us that the correct use of software architecture allows
the company to extend and modify the capabilities of the game
engine without affecting too much surrounding code.

Reuse of components and software architecture allows for
quicker development cycles and a higher focus on the unique

34 CHAPTER 4. SOFTWARE ARCHITECTURE IN GAMES

parts of the game (i.e., the content).”

As this captures the essence of how software architecture can be used,
as discovered in Nordmark [18], there will be no further discussion of the
findings here.

Chapter 5

Game Development

In this chapter the relevant particularities of game development will be pre-
sented, as well as a short history of game development.

5.1 History of Game Development

This section is based on a similar chapter in the report “Software Architec-
ture in Games” [18], which in turn is based on chapters 16 and 17 in “Game
Architecture and Design” by Rollings and Morris [21].

The origins of computer games and the development of these to the home
user, started in the 1980s. The four major home computers at the time were
the Commodore 64, Sinclair ZX Spectrum, and the Amstrad 464. All of
these machines were using slow, 8-bit processors, and with a very limited
memory available.

Within these computers there was literally no variance in the available
hardware, simplifying the development requirements greatly. The developer
also worked directly on these machines. As a consequence of this, there
were no risk of the game developed to be too slow, since the programmer
constantly verified that the experience was according to the requirements.

Another consequence of the very limited resources was that the develop-
ers had to utilize every last bit of memory and every last clock cycle to make
the best game they could. Therefore they would drop the Operating Sys-
tem (OS) and all auxiliary functions, and program directly to the hardware
available1.

Since there were no good assemblers or compilers at the time, the devel-
opers had to assemble the program themselves. The developer would then
write down the op-codes (instructions for the processor) and convert them
by hand to hexadecimal digits. These digits could then be entered directly
into memory, and then tested. This process was difficult, and since the dif-

1This style gave birth to the term “writing directly to the metal”

35

36 CHAPTER 5. GAME DEVELOPMENT

ferent machine series had different hardware, there was no simple way of
porting a game from one platform to another.

After a while, there were released assemblers that were reasonably effi-
cient. This simplified the programmers work quite a bit, removing the need
to manually convert the op-codes to hexadecimal. However, there were still
several problems. Since the assembler was a software program, it needed a
bit of memory to run. This caused a problem, since the games needed every
last bit of memory, forcing the games to be assembled in pieces, and then
glued together in memory afterwards.

Another problem they had was that they could not debug the program
running on the computer. Although mitigated by the limited amount of
code, this still was a problem.

After years and years of development, introducing new hardware, OSs,
and programming languages, modern day game development was born with
the release of Doom, the first game written almost entirely in a high-level
language (C).

5.2 Requirements Engineering

In the article Callele et al. [6], a research into how the video game industry
performs requirements engineering is presented. In particular, the article
looks into how Non-Functional Requirements (NFRs) are specified, focusing
on the problems which this can cause in the game development process.

In the introduction to the article, Callele et al. provides a keen observa-
tion on some key characteristics of game development organizations [6]:

“Video games are a special type of multimedia application –
an entertainment product that requires active participation by
the user. Developed by a multi-disciplinary team, non-functional
requirements such as entertaining the user create special de-
mands on the requirements engineering process.”

From these circumstances several problems can arise. When considering
the requirements of a game, and the diverse team which develops them,
Callele et al. state the following [6]:

“Requirements engineering in the face of such diversity re-
quires the creation of a common (domain) language (and implied
world model) specific to the task at hand.”

This statement confirms that the game industry can benefit from the use
of domain-driven design.

To highlight the problems, Callele et al. perform an analysis of 50 post-
mortem reports, categorizing what went right and what went wrong into a
set of categories. Based on this analysis, the following conclusion is drawn:

5.3. EVOLUTION OF GAME DEVELOPMENT 37

“Internal factors dominate any other category by a factor of
approximately 300%.

Closer inspection of points classified as internal or schedule
factors reveals that many, if not most, of the entries are related
to classic project management issues.”

This again, lead to the conclusion that many problems in game devel-
opment were caused by “weak management of the transition from prepro-
duction to production”. To investigate the validity of this conclusion a case
study, which is presented in the same paper [6], was performed. Callele et al.
present the following conclusion from the case study:

“The [case study] showed that, if early versions of preproduc-
tion documentation are fed forward to the production team then
the production team can provide important feedback to the pre-
production team. This communication cycle enables earlier iden-
tification of emergent requirements and production constraints
and may improve the reliability of the transition from prepro-
duction to production. However, the introduction of production
personnel into the preproduction process may have a negative
effect on the creativity of the preproduction team.”

The key point to take from this article, and which they themselves
present, is “that the video game industry could learn a great deal from
current research and practice in requirements engineering and project man-
agement”.

As can be seen in the survey presented in Nordmark [18], agile develop-
ment methods and rapid prototyping have become more and more popular
within the game development industry. This does not invalidate the find-
ings in Callele et al. [6] which were written in 2005, but will affect how game
companies arrive at their design, and how this design is documented.

5.3 Evolution of Game Development

In Kvasbø [16] a thorough review of the post-mortem reports in the Game
Developer Magazine [24] is presented. This research provided several inter-
esting findings, some of which will be presented on the following pages.

5.3.1 Research Quality

The research performed in Kvasbø [16] is a thorough review of approximately
90 postmortems published in Game Developer Magazine [24], looking in
particular for features which went right, and features which went wrong.

38 CHAPTER 5. GAME DEVELOPMENT

By classifying the findings into 93 different categories these findings have
a far higher resolution than those presented in Callele et al. [6] and thus
provides a solid base for statistical analysis.

In the evaluation Kvasbø presents a set of reservations regarding the
quality of the quantitative analysis, and the evaluation of how these affect the
results. However, when discussing the qualitative analysis done regarding
several of the questions, the author is less modest.

Kvasbø’s full evaluation of the qualitative analysis is as follows:

“After being rather negative about many of our statistical
findings in the former section, it is now time to look at our confi-
dence in the other side of our findings, the qualitative evaluation
of the entire material we have read, not only the parts that were
used to create the statistics. As can be seen from the Analysis
chapter, we present our findings with a lot more confidence than
would be expected from the less than optimal results found via
the statistical analysis. The reason for the suboptimal statistical
results are outlined in the preceding sections.

What saved us, however, are the reading of the entire material
as a whole. By doing this we have gained an insight in the
development of games that is very difficult to represent via any
quantifiable method. Therefore, we firmly believe that the basis
for our analyses in the Analysis chapter are sound and that they
reflect actual tendencies in the game development industry.”

This implies that the only way to validate the results are by analysing
the entire texts themselves, and such a review is beyond the scope of this
thesis Because of this, the results presented from the research will be joined
by a short evaluation of the basis of the conclusion.

5.3.2 The use of External Game Engines

One hypothesis that Kvasbø investigate is the possibility of increased use of
an external game engines. The idea is that more and more game developers
now choose to use an external engine instead of developing one themselves.

The statistical results that Kvasbø presents on page 34, as well as the
analysis of these on pages 33 – 35, do not confirm or reject this conclusion.
Simply, no conclusion can be drawn.

However, in the qualitative analysis presented on page 50, Kvasbø state
that “we feel confident that the use of such engines has increased greatly
over the years”.

This qualitative conclusion arises from the aforementioned review of the
entire literature and knowledge of the domain. However, the researcher
acknowledges that this conclusion most likely is sound. Indications of this is

5.3. EVOLUTION OF GAME DEVELOPMENT 39

presented in Rollings and Morris [21, pages 476 – 478], Gregory [12, pages
xiii – xv and 3], and Blow [4, page 32].

5.3.3 Increased use of Middleware

A related issue is discussed in the quantitative analysis of the statistical
results. In the section ”Development” [16, pages 36 – 38] Kvasbø present a
decrease in the number of “what went right” entries related to development
categories. Several possible explanations for this is presented, but of partic-
ular interest is the increased use of middleware. Kvasbø state the following:

“Middleware The developers uses more and more middle-
ware in the creation of games, and the development phase
has therefore become more predictable, thus there are fewer
things to report.”

Note that Kvasbø present this as a possible explanation, and does not
mean to indicate that this is a result of the study. However, if one considers
the question “do game developers use more middleware now than earlier”,
both Rollings and Morris [21] and Nordmark [18, page 80] can be used to
support the hypothesis.

It is reasonable that an increased use of middleware reduces overall
project complexity since the development organization does not need to
develop every last piece of the game engine. This again reduces the number
of measures a company needs to take to tackle the development, and thus
reduces the number of measures which can be illustrated in a postmortem.

5.3.4 Tools

In the qualitative analysis of the evolution of game development Kvasbø
presents interesting sections on different tools. In particular development
tools and artistic tools are relevant in the context of this thesis.

Development Tools

The general conclusions, supported by Blow [4], is that there are no perfectly
suitable tools for writing games and game engines. A common problem
which occur is the long compile and loading times, incurring a heavy penalty
on the development team as minor changes and bug fixes takes a lot of time
[16, pages 47 – 48]. Kvasbø soundly deduce that this is an issue that has
only been affected by the increase in the complexity of the games, not by
any revolution in the development tools.

Furthermore Kvasbø state the following [16, page 48]:

“As this problem cannot be solved by the game developers
themselves, it appears from the postmortems that the most usual

40 CHAPTER 5. GAME DEVELOPMENT

solution is to create workarounds by putting as much of the game
specific code that are prone to frequent changes into external
files that are loaded at runtime. This is usually mentioned as
a success in the postmortems, while it should really be seen as
a failure of the development tools developers to supply suitable
tools for the game development industry.”

Scripting

Kvasbø also discusses the inclusion of a high-level scripting language in
games.

Kvasbø notes that the evolution observed through the postmortems illus-
trates that the level of complexity of the scripting languages have increased.
As an example Kvasbø refers to White [28]. In this example the develop-
ing organization (Naughty Dog) used their own high-level language to write
“practically all of the run-time code” instead of using traditional languages
like C++.

This argument is supported by Phelps and Parks [20], in which the au-
thors discuss the benefits and disadvantages of multi-language development.
Phelps and Parks identify the use of a scripting language, e.g., to support
level creation or AI behaviour, as one of the key areas for multi-language
development in games.

The main conclusion to be drawn from the sections regarding tools is
that the use of a separation layer between gameplay and core game engine
code is beneficial both to the technical and the creative team. This result
is confirmed by the study performed in Guldbrandsen and Storstein [13].
The technical team gets shorter build cycles, and the creative team can
help develop the gameplay without having intimate knowledge of neither
the programming languages or the inner workings of the game engine.

Chapter 6

Web Surveys

Surveys and questionnaires themselves represent great opportunities and
great challenges. In this chapter limitations of web surveys, as well as guide-
lines for creating them, will be presented.

6.1 Challenges with Questionnaire Design

When designing a questionnaire of any kinds, it is important to take into
account the different factors which could have an effect on the result. In
Vicente and Reis [26] a thorough literature review on the effects on nonre-
sponse in web surveys is performed.

6.1.1 Limitations of Web Surveys

First the authors Vicente and Reis introduce the benefits and disadvantages
of web surveys. Anyone designing a questionnaire should go through the
limitations, and see how these apply to the population of interest.

Three limitations are identified in the article:

1. Risk of nonresponse

2. Coverage

3. Sampling error

Risk of Nonresponse

The risk of nonresponse is ever present, and the main goal of Vicente and
Reis [26] is to illustrate ways in which questionnaire designers can combat
this risk. This will be further detailed in Section 6.1.3.

41

42 CHAPTER 6. WEB SURVEYS

Coverage

As a web survey is only available to those who have an Internet connect, the
population sample can exclude certain segments of the population.

Sampling Error

A sampling error is when the selection of the subset of the population is
done incorrectly, e.g., due to incomplete coverage.

6.1.2 Types of Nonresponse

In a web survey Vicente and Reis [26] argue that there are three types of
measurable rates which are of particular interest to a questionnaire designer;
(1) dropout rate, (2) item nonresponse rate, and (3) overall completion rate.

The authors define these as follows:

Dropout rate: the percentage of those who prematurely abandoned the
questionnaire, that is represents the percentage of respondents who
started the questionnaire but did not complete it.

Item nonresponse rate: the unanswered questions (“no opinions,”, “don’t
knows,” or “no answer”) as a percentage of the total number of ques-
tions in the questionnaire.

Overall completion rate: the percentage of respondents who completed
the questionnaire of all those who started the questionnaire.

Note that the first and third are opposites of each other.

6.1.3 Survey Characteristics that Affect Nonresponse

Vicente and Reis [26] then go on to discuss the different categories that affect
the nonresponse of a web survey in any way. These are; general structure,
length, disclosure of survey progress, visual presentation, interactivity, and
question/response format.

A more through description of how these affect the nonresponse is given
in Vicente and Reis [26], but a short summary is given here.

General Structure

Vicente and Reis [26] identify two main approaches to distribute the ques-
tionnaire; embedded in an e-mail and a link included in an e-mail. The cited
research concluded that using an embedded questionnaire increased the com-
pletion rate. However, this way of distributing the survey is no longer used
due to other benefits of using a web page instead. These benefits include

6.1. CHALLENGES WITH QUESTIONNAIRE DESIGN 43

simpler and better collection of the results (no human interaction is nec-
essary), you can register all the questions a respondent actually answered
before abandoning the questionnaire, and that you can actually update the
questionnaire if errors are spotted before all respondents have replied with-
out them noticing it.

Vicente and Reis [26] also compare two different visual designs; a scroll
design and a screen design. A scroll design can be compared to the tra-
ditional paper questionnaire. All the questions are on one page, and the
respondent must scroll down the page to view and answer all the questions.
At the bottom of the page, the responder can submit the questionnaire using
a button.

In a screen design, the questionnaire is divided into smaller parts, each
of which consists of only one or a few questions. These are shown on a single
web page, and the responder answers all of them before continuing. When
continuing, the respondent is show a new screen with a new set of questions,
and can continue to answer the questionnaire.

The design choice affects the item nonresponse rate, favouring the screen
design (i.e., item nonresponse rate were higher in scroll design than in screen
design).

Length

To answer a questionnaire, a respondent has to use a certain amount of
her time, and common sense imply that a longer questionnaire will have a
lower overall completion rate than a short one. In the literature there is no
consensus as to how to measure the length of a questionnaire; should it be
the number of questions, the amount of time a respondent is estimated to
use, or perhaps something else?

Vicente and Reis [26] cite studies which illustrates this relationship. In
addition to the dropout rate, the item nonresponse rate is also higher in a
long than a short questionnaire.

Vicente and Reis [26] also discuss the effect of a priori announcement of
questionnaire length. The following example will be used:

There is a set of people which are going to answer a question-
naire. One half of the group is told that the questionnaire will
take 10 minutes (collectively called “the short group”), and the
other half is told that it will take 30 minutes (“the long group”).

Based on the results presented in Vicente and Reis [26], the following
conclusions can be drawn:

• The short group will have a higher percentage of people starting to
answer the survey than the long group

44 CHAPTER 6. WEB SURVEYS

• Amongst all those who actually started the questionnaire, the short
group will have a higher dropout rate

• If the actual length of the questionnaire is 30 minutes, the short group
will have a higher percentage of people starting the questionnaire than
the long group, but also a higher dropout rate

Disclosure of Survey Progress

Vicente and Reis [26] also discuss the effect of including a progress indicator
in the questionnaire. This progress indicator should show the respondent
how much of the questionnaire is completed, as well as how much remains to
be done. The authors first identify three different kinds of progress indica-
tors; (1) an indicator which is always visible, (2) an indicator which is shown
at key points in the questionnaire, and (3) an indicator which is available
on-demand.

For the first indicator (always on), the research performed is not con-
clusive. Indications exist that such an indicator could actually increase the
dropout rate.

Regarding the second indicator (shown at key points), the research is
more positive. If this is shown at key points during the questionnaire, it
can be used to indicate that “you have already completed half the question-
naire”, and can thus be a source of motivation, again increasing the overall
completion rate.

Research on the third (on-demand) indicator does not imply any effect
on the dropout rate, but shows that such an indicator seldom is used by the
respondents.

In addition to research on having an indicator available, research has also
been performed on how this indicator behaves. A key conclusion is that any
progress indicator needs to be correct and precise. If it does not reflect the
respondents feeling of progress, the chance of a dropout increase, especially
if the estimates are below the expectations.

Lastly, research on the speed of the progress indication implies that a
slow-to-fast (slow progress in the beginning, faster towards the end) made
respondents drop out earlier in the questionnaire. This is to be expected. If
the respondent feels that she has done a fair amount of work, but the progress
bar suggests otherwise, she might consider exiting the questionnaire.

Visual Presentation

The possibilities for graphics and other “eye-candy” on computers can also
affect the nonresponse in a web survey. Vicente and Reis [26] presents re-
search which illustrates two key points regarding this:

6.2. SURVEYMONKEY 45

• A purely textual questionnaire presented with fancy text, colors, etc.
resulted in a higher dropout rate than a plain version of the same
questionnaire

• The use of logotypes in questions relating to brands or products re-
sulted in a lower item nonresponse rate than plain version of the same
questionnaire

Based on this one can conclude that graphics can help on the item non-
response rates if they are used correctly (e.g., logotypes to enhance visual
recognition) and that colorful text and backgrounds should be avoided.

Interactivity

A big advantage of a web survey over a paper-based survey is the possibility
to have an interaction with the respondent. This can be used to skip ques-
tions which are not relevant for a given responder based on earlier answers,
or to modify questions and/or response options based on earlier answers.

Vicente and Reis [26] present research which illustrates some points here:

• The item nonresponse rate is reduced when adding an alert box noti-
fying the respondent that not all questions have been answered.

• The dropout rate increased when employing a forced-response scheme,
as compared to a nonforced-response scheme.

Question and Response Format

Vicente and Reis [26] present research which shows that the use of open-
ended or difficult-to-answer questions increased the dropout rate, as opposed
to using closed-ended questions. This is only natural; if the responder has to
put a lot of effort into answering a questionnaire, she might be tempted to
quit. However, Vicente and Reis [26] also present research which shows that
two questionnaires which contain the same questions, but where one has
open-ended and the other has closed-ended answers, the item nonresponse
rate were lower in the open-ended version.

Lastly, the authors Vicente and Reis present research which shows that
the best format for answering closed-ended questions is the radio button.

6.2 SurveyMonkey

During the research performed in this paper, SurveyMonkey [22] was chosen
to create and distribute the questionnaire and the survey.

This commercial online tool allows users to simply create and distribute
questionnaires, as well as collecting the responses, enabling analysis of the
results.

46 CHAPTER 6. WEB SURVEYS

Figure 6.1: A screenshot of the survey designer available from SurveyMon-
key.

6.2.1 Designing Web Questionnaires

SurveyMonkey provides a thorough and simple interface to create new web
surveys, enabling the user to focus on how to present the questions and on
how the respondents can answer the various questions. The designer can
specify questions which are mandatory, add skip logic which skips entire
pages if they are not relevant, and present the questionnaire in a concise,
elegant, and simple way. The questionnaire is simply styled, and the style
can be selected by the designer to suit the questionnaire.

A screenshot from the survey designer is presented in Figure 6.1.

6.2.2 Analyzing the Results

After the questionnaire has been distributed to the different respondents
and the responses begin to tick in, the questionnaire designer can study and
analyse the results in “real time”. This means that there is no delay from
when the respondent enters their answers, and the designer is able to read

6.2. SURVEYMONKEY 47

Figure 6.2: A screenshot of the response summary analysis from Survey-
Monkey.

them.

SurveyMonkey provides two different means of studying the results. The
first is online, using their built-in system for viewing a summary of all re-
sponses or one complete response at a time. This way of looking through the
answers is great for evaluating if the questionnaire actually ask the questions
necessary, and that the respondents interpret them in the same way as the
designer meant them.

A screenshot of the online summary of responses is presented in Figure
6.2.

The other way of analyzing the results is to download so-called reports.
The reports represent a fixed set of responses which can be downloaded
from SurveyMonkey. In these reports, the user can define how the questions
shall be represented, the format in which they shall be downloaded, and if
the data should be prepared in any particular way. Do note that feature
availability is dependent on the type of subscription the user has.

48 CHAPTER 6. WEB SURVEYS

Figure 6.3: A screenshot of the report downloading tool from SurveyMonkey.

A screen shot of the report downloading tool is presented in Figure 6.3

Part III

Research

49

Chapter 7

Questionnaire

In this chapter the questionnaire sent out to the game developers will be
presented.

First the design and rationale behind this design will be presented. After
this, the results and their implications will be presented.

7.1 Design of the Web Questionnaire

We will now present how the questionnaire was designed with the research of
Vicente and Reis in mind. The full questionnaire can be found in Appendix
A.

7.1.1 Limitations of Web Surveys

Firstly, the thoughts regarding the limitations of a web survey, and how
these affect this questionnaire, will be presented.

Risk of Nonresponse

The risk of nonresponse is ever present. However, as will be detailed in this
chapter, the questionnaire will be designed and distributed in such a way as
to minimize this chance.

Coverage

One should note that the population which can answer this questionnaire
will need an Internet connection. However, since the respondents are game
developers, it is believed that no particular segment of the population will
be excluded.

51

52 CHAPTER 7. QUESTIONNAIRE

Sampling Error

The sampling error poses the greatest threat to this questionnaire. However,
as the questionnaire will be distributed to a large set of game developers,
representing organizations of all sizes, the coverage will be decided by the
population itself. That is to say, that if only a segment of the population
is willing to answer the questionnaire, then only that segment will be repre-
sented in the results.

7.1.2 General Structure

The questions for the questionnaire could easily be placed into six cate-
gories; You and Your Company, Design of Software Architecture, Changes
to the Software Architecture during Development, Supporting the Creative
Processes, Changes over Time, and Closing remarks.

Since a screen design is recommended, and the questions lend themselves
to this quite easily, screen design was chosen.

7.1.3 Length

This questions for this questionnaire was selected to make the questionnaire
as short as possible, but still providing useful and interesting insights.

As a result the questionnaire itself contains 32 questions, including in-
formation regarding the company.

During a test, this questionnaire took less than six minutes if the respon-
dent does not enter any comments to the answers and also knows the field.
As a result, the researcher felt that announcing the questionnaire time to be
five to ten minutes a priori would be the best way to get as many replies as
possible.

7.1.4 Disclosure of Survey Progress

Based on the few number of screens (six) it was decided to show the ques-
tionnaire progress at the bottom of every page. As the tool used (Survey-
Moneky, see Section 6.2) did not easily permit showing the progress only
at key points, this was found to be the best choice between not showing it,
showing it at the top of the page, and showing it at the bottom of the page.

7.1.5 Visual Presentation

Since the questionnaire was independent of any products or specific items,
there was no use for any logotypes or other images. In addition, the questions
were generic in form, and did not relate to the respondents interpretation
or understanding of particular technologies or concepts which could be ex-
plained with a supporting figure. Thus, no graphics were included in the
questionnaire.

7.2. DESIGN OF THE PAPER QUESTIONNAIRE 53

In terms of colors and other textual “eye-candy”, the only thing used was
a simple and neutral template for background and font color. This can be
seen as being almost identical to a black and white representation in that it
does not direct the focus to any particular areas of the questionnaire, but
makes it in general less harsh to look at.

7.1.6 Interactivity

In the questionnaire, most questions have to be answered (forced response
scheme). The respondents will be notified if they have skipped these ques-
tions and will not be able to continue on to the next screen before this has
been corrected. According to Vicente and Reis [26] this can lead to a higher
dropout rate, but this was still chosen as the approach to get the best results
and being able to correlate the different questions based on all replies.

As a positive effect, if a respondent skips a forced question and tries to go
on to the next page, she will be notified of the error by text appearing next
to the question informing her that it has to be answered. This allows the
respondent to immediately see questions which still need answering, allowing
her to continue quickly.

7.1.7 Question and Response Format

Most questions have been designed as statements which the respondent
should indicate how much she agrees with. These are presented as closed
ended questions. However, all the closed ended statement questions also
have a field for comments, allowing the respondent to adapt the answers if
necessary.

This includes the best of both worlds; respondents are given a set of
answering options, and if they feel that it does not perfectly suit them, they
can refine the answer in the comment.

7.2 Design of the Paper Questionnaire

In addition to creating a web questionnaire, a paper questionnaire were
designed to be used at GDC12 [23].

There were three design constraints for this paper questionnaire:

1. It must have the same questions as the web questionnaire

2. It must include all the information necessary to answer the question-
naire

3. It must fit on one sheet of paper (two-sided)

Given these constraints, the design were simple enough. The result can
be seen in Appendix A.

54 CHAPTER 7. QUESTIONNAIRE

7.3 Analysis

This section begins with an explanation of conventions used in the rest of
the chapter.

7.3.1 Question Numbering

In total, the questionnaire consisted of 32 questions or statements which the
respondent should answer. Of these, only 21 present questions or statements
relating to the research being performed (the others being auxiliary informa-
tion, e.g., e-mail address). One of these again is a pure comment-questions
(“Examples of 3rd party software we use:”). This results in 20 questions in
total which will be presented in this section.

These 20 questions are:

Q1: Design of software architecture is an important part of our game de-
velopment process.

Q2: The main goal of our software architecture is performance.

Q3: Our game concept heavily influences the software architecture.

Q4: The creative team is included in the design of the software architecture.

Q5: Our existing software suite provides features aimed at helping the cre-
ative team do their job.

Q6: Our existing software architecture dictates the future game concepts
we can develop.

Q7: The creative team has to adopt their ideas to the existing game engine.

Q8: During development, the creative team can demand changes to the
software architecture.

Q9: Who decides if change-requests from the creative team are
implemented?

Q10: The technical team implements all features requested by the creative
team.

Q11: It is simple to add new gameplay elements after the core of our game
engine has been completed.

Q12: During development, the creative team has to use the tools and fea-
tures already available.

Q13: Our game engine supports dynamic loading of new content.

7.3. ANALYSIS 55

Q14: Our game engine has a scripting system the creative team can use to
try out and implement new ideas.

Q15: The creative team is included in our development feedback loop (e.g.,
scrum meetings).

Q16: Our game engine allows rapid prototyping of new levels, scenarios,
and NPC’s/behavior.

Q17: Today our company uses more 3rd party modules than 3 years ago.

Q18: It is easier to develop games today than it was 5 years ago.

Q19: Middleware is more important to our company today than 3 years
ago.

Q20: Game development is more like ordinary software development today
than 5 years ago.

To distinguish them from the RQs, they will be numbered with a Q
preceding them (Q1 through Q20).

How these questions relate to the RQs can be seen in Figure 7.1.

5
6

C
H
A
P
T
E
R

7.
Q
U
E
S
T
IO

N
N
A
IR

E

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

RQ1 RQ3 RQ5

RQ2 RQ4

Figure 7.1: Illustrating which questionnaire questions (numbered Q1 through Q20) relate to the different RQs. In GQM this
is equal to metrics and questions, respectively.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 57

As can be seen from Figure 7.1, Q1 does not relate to any RQ. Q1
was included in the questionnaire simply to be able to consider how the
respondents view software architecture in terms of their own product.

7.3.2 Presentation

The results from all the questions on the questionnaire will be presented
below. They will be presented in tables like the one in Table 7.1, and for
ease of reading, only one question will be presented per page.

In all tables, except Table 7.9 detailing Q9, the scale options have been
contracted. The contractions are as follows:

Fully Agree = FA

Partially Agree = PA

Neutral = N

Partially Disagree = PD

Fully Disagree = FD

Not Applicable = NA

The complete responses can be seen in Appendix B.

7.4 Questionnaire Results and Analysis

Below the results from the questionnaire will be presented. The analysis will
be performed section by section, question by question, not relating them up
to the RQs to avoid any bias towards a set of conclusions.

Firstly, however, the results to the question regarding company size will
be presented.

Company Size

For the results of this research to be as valid as possible, one should have an
understanding of the respondents. To this questionnaire, only one company
has more than 10 employees, and this company stated that it had more than
500.

A discussion of result validity is included in Section 11.1.

58 CHAPTER 7. QUESTIONNAIRE

7.4.1 Design of Software Architecture

Q1 - Design of software architecture is an important part of our
game development process.

The statement and results can be seen i Table 7.1

Table 7.1: Answers to question 1

Design of software architecture is an important part
of our game development process.

FA PA N PD FD NA

7 2 2 1 0 1

This question was asked to get a feel for how important software architec-
ture is to game developers today. Supported by the research by Nordmark
[18], the results confirm that software architecture is important. However,
the respondents represent mostly smaller companies (up to ten employees).

A reasonable conclusion is that smaller game companies are more adap-
tive, and that they do not necessarily need to focus on optimizing the dif-
ferent bits and pieces of the game engine as much as possible. This allows
the game developers to focus more on how they use software architecture to
facilitate and simplify their own work.

This does not imply that larger game developers have a lesser focus on
software architecture, but it can be reasonable to assume that they do not
have the same priorities. The rendering engine in a top-of-the-range game
engine does not necessarily use multiple layers of abstraction, as this can
slow it down too much.

Lastly, the comment received from Company B on this question imply
the necessity of a, at least general, software architecture: “Oversights in the
game software architecture may lead to serious dead ends leading to rewrite
of entire systems”.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 59

Q2 - The main goal of our software architecture is performance.

The statement and results can be seen i Table 7.2

Table 7.2: Answers to question 2

The main goal of our software architecture is perfor-
mance.

FA PA N PD FD NA

0 7 2 1 2 1

It is interesting to note that no respondent replied that they fully agreed
to this statement. If seen in combination with the analysis of Q1, this can
be a result from the respondent chiefly being organizations with no more
than ten employees.

However, more than half (7 out of 13) partially agree. Three of the
respondents also provided comments to this question. These comments are:

• “Performance plus functionality.”

• “Also future change, ability to be datadriven, optimised deployment
processes, ease [of] automation/scriptability, testability”

• “Main goals are:

1 performances

1.5 memory consumption

2 actual purpose of the software.

Real time softwares as games *must* perform according to the plat-
form requirements in order to see the light of the day regardless of the
content”

When the comments are considered in conjunction with the seven who
partially agreed, one can conclude that performance still is a concern for
many game developers. Especially the last comment is really telling; the
game must push through the contents it needs to be a game if it should
reach the market.

In summary, performance is still a concern, but supporting features is
becoming more and more important.

60 CHAPTER 7. QUESTIONNAIRE

Q3 - Our game concept heavily influences the software architec-
ture.

The statement and results can be seen i Table 7.3

Table 7.3: Answers to question 3

Our game concept heavily influences the software ar-
chitecture.

FA PA N PD FD NA

4 5 1 2 0 1

As can be seen in the results, most game developers agree to this state-
ment. This means that they allow their underlying software to be adapted
to suit the needs of the game, making good use of both the game engine and
software architecture. However, allowing the game concept to dictate the
software architecture may incur some disadvantages.

One respondent provided the following comment: “Entirely depends on
the game concept requirements but in general: the more generic, within
boundaries, the better”. This highlights an important area of game develop-
ment. Supported by the research by Guldbrandsen and Storstein [13], one
can conclude that there should be a separation between generic modules
(core) and modules specific for a game (gameplay). This enables reuse of
the core components, and still allows the game concept to affect the soft-
ware, balancing it between reuse (saves money) and suitable game engine
(simpler to implement the game).

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 61

Q4 - The creative team is included in the design of the software
architecture.

The statement and results can be seen i Table 7.4

Table 7.4: Answers to question 4

The creative team is included in the design of the
software architecture.

FA PA N PD FD NA

5 3 3 1 0 1

Interestingly, as many as eight of the respondents indicate that the cre-
ative team to some degree is included in the design of the software ar-
chitecture. There can be many different ways in which the creative team
contribute, and three ways are presented in Nordmark [18]:

(1) Which game to make By deciding which game the company should
make, they also lay out the main constraints for the software architec-
ture.

(2) New in-game functionality By requesting new in-game functional-
ity the software architecture might have to be altered.

(3) New development features By requesting new development
features, the software architecture might need a large rework.

Furthermore, in smaller game development organizations the employees
might need to participate in several ways. The lead artist can also be one
of the people adapting or developing the game engine. This enables the
creative team and the technical team to blend their roles, and adapt the
game engine in a way which in turn is beneficial to the creative team.

One comment which also highlights an important aspect is: “This is
mostly true when working on the tools the creative team will be using. It
rarely applies to in-game specific features”.

But for whom are these findings relevant?
It is interesting to note that the large respondent (500+ employees) in-

dicated that they were neutral to this statement. This agrees with the
reasoning presented above: In a large company one can employ one or a few
dedicated architects. These architects receive requests from all the other
roles, and suggests a suitable software architecture. However, only one large
organization is not enough to conclude on this.

Regarding the smaller game developers one can conclude that they allow
the creative team to affect the software architecture in different ways. This
can also include directly affecting the design to some extent.

62 CHAPTER 7. QUESTIONNAIRE

Q5 - Our existing software suite provides features aimed at helping
the creative team do their job.

The statement and results can be seen i Table 7.5

Table 7.5: Answers to question 5

Our existing software suite provides features aimed
at helping the creative team do their job.

FA PA N PD FD NA

8 4 1 0 0 0

Basically one can conclude that the game engines, and the supporting
tools, provide features which help the creative team. This is further sup-
ported and refined in the comments. This indicates that there is now an
increased focus on the creative aspects of game development, and that the
software should support these processes.

One comment states that there are “two software tiers, that aims at
very different levels of artist integration: Visual Studio and Unity3D”. This
is further supported by the discussion of Q3. The creative team, and the
particular game in development, should preferably only interact with and
change the gameplay level of the code. However, there will always be par-
ticular features or actions which are not available at such a high level of
abstraction, and in these circumstances the creative team, perhaps with
support from the technical team, needs to dive into the source code of the
game.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 63

Q6 - Our existing software architecture dictates the future game
concepts we can develop.

The statement and results can be seen i Table 7.6

Table 7.6: Answers to question 6

Our existing software architecture dictates the future
game concepts we can develop.

FA PA N PD FD NA

1 1 6 2 3 0

This statement touches upon the very foundation of how a game company
looks upon themselves. Do we restrain ourselves to the existing technology,
or do we wish to create what our creative team conjures up?

Interestingly, eight are neutral or agreeing with the statement, and five
disagree. Based on these numbers, it is impossible to conclude one way or
the other, but since six are neutral, this seems to be a difficult question to
answer.

A hint as to why this is so can be found in the comments. The three
comments to this statement are:

• “We have engines that gives us a great benefit when building new
games and we would prefer to continue on same engines, however it
doesn’t fully dictate the games we will make in future, this is primarily
market driven”

• “It may influence, but not dictate whenever possible”

• “It makes it a bit more expensive to go to certain genres, but that’s
it.”

These comments indicate that the influence exerted by the existing soft-
ware architecture is a direct result of a cost-benefit trade-off. The higher
the cost of changing, the more influence the existing software architecture
exert on the game concepts.

64 CHAPTER 7. QUESTIONNAIRE

7.4.2 Changes to the Software Architecture during Develop-
ment

Q7 - The creative team has to adopt their ideas to the existing
game engine.

The statement and results can be seen i Table 7.7

Table 7.7: Answers to question 7

The creative team has to adopt their ideas to the
existing game engine.

FA PA N PD FD NA

1 3 6 1 2 0

On this question no clear conclusion can be drawn. However, there are
two comments which indicate a relationship which can explain the divergence
in the responses. These comments are:

• “Most of the time, the creative team is not fully aware of the game
engine limitations so it is not their job to make it work by locking the
creativity to things known to have been done with the engine before,
the people who implements just need to make the ideas work one way
or another”

• “Technical realities are always something the creative side has to work
around.”

These comments indicate that there have to a trade-off between the
creative freedom and the technical limitations. It is axiomatic that if an idea
which is not supported in the current technology should be implemented,
either the idea has to be adopted to the existing technology, the technology
adapted to the idea, or something in between. Which one of these is chosen
depend on a cost-benefit analysis.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 65

Q8 - During development, the creative team can demand changes
to the software architecture.

The statement and results can be seen i Table 7.8

Table 7.8: Answers to question 8

During development, the creative team can demand
changes to the software architecture.

FA PA N PD FD NA

5 4 4 0 0 0

Before the results from this question is discussed, an excerpt from the
e-mail sent to the developers will be presented. The e-mail state that “where
questions concern the creative team’s effect on the software architecture, this
can be indirect effects like requesting a new particle system which leads to
a change in the software architecture.” See Appendix A for the complete
e-mail.

With this in mind, one can conclude that the developing organizations
are positive to allowing the creative team to request changes to the software
architecture. This is good news for the different creative teams, as they
can work more progressively throughout the length of the project. This as
opposed to laying out all features and tweaks before coding is begun.

One comment which is relevant here is: “Depends how far in development
and how big of a changes, the odds of re-factoring an entire system late in
production are close to nil, but the development team keeps an open mind at
all times”. This, combined with the discussion of cost-benefit in Q7, implies
that the developing organizations are inclined to prioritize the wants and
needs of the creative team, given that the cost-benefit trade-off is favourable.

This agrees with common sense; if the increased experience of a change
is suitable, and the deadline is far enough away, this change will be imple-
mented. On the contrary, if the deadline is close and it is a minor increase
in experience and takes a lot of work, it will not be implemented.

66 CHAPTER 7. QUESTIONNAIRE

Q9 - Who decides if change-requests from the creative team are
implemented?

The statement and results can be seen i Table 7.9

Table 7.9: Answers to question 9

Who decides if change-requests from the creative
team are implemented?

The Technical Team Management The Creative Team

1 4 5

On this question a clear advantage of the digital version over the paper
version of the questionnaire was discovered. The goal of the question was
to get the respondent to chose which one of these, which all have a say, gets
the final word when deciding if a change gets implemented.

On the paper questionnaire, three out of five chose none or more than
one response. On the web questionnaire four respondents commented that
they would like to choose more than one response. Based on this, and to be
able to consider the results, only those who chose one option will be included
in the results presented.

When looking at the results, one can see that the creative team is of-
ten chosen as the ones which have the last word. This is only natural; if
the creative team really needs this one key element to be able to tell the
story of the game, they should be the ones to decide. On the other hand,
management is also given a lot of weight. A change has a financial impact,
and management are the ones who decides if the money should be spent
(probably supported by a cost-benefit trade-off).

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 67

Q10 - The technical team implements all features requested by the
creative team.

The statement and results can be seen i Table 7.10

Table 7.10: Answers to question 10

The technical team implements all features requested
by the creative team.

FA PA N PD FD NA

4 5 2 1 0 1

This question is a supporting question for Q8 and Q9, and highlights
the relationship between the technical and creative team. In general the
respondents are positive to implementing these changes.

There are several comments to this question, but one is of particular
interest: “[It’s] very much a dialogue, we try not to have too formal split
between tech and creative team when thinking about this, but prioritise
what the user experience should be and when we can ship at target quality”.

This comment, when seen in the light of the responses to Q8 and Q9,
once again indicates that the decision to implement a feature is a financial
decision. If it is financially viable it will be done.

68 CHAPTER 7. QUESTIONNAIRE

Q11 - It is simple to add new gameplay elements after the core of
our game engine has been completed.

The statement and results can be seen i Table 7.11

Table 7.11: Answers to question 11

It is simple to add new gameplay elements after the
core of our game engine has been completed.

FA PA N PD FD NA

6 3 2 0 0 2

It is interesting to note that the respondents generally are positive. These
changes can be fundamental, but, if a suitable software architecture is used,
can also be close to trivial.

One interesting comment which shows the downside of such a modifiable
software architecture is: “It is simple during prototyping phase, technology-
wise. However from a game concept point of view, it is highly dis-
recommended and the fact it is simple does not motivate the team to stack
up features because the existing one are just not convincing enough”.

This should be given some thought. It states that a very modifiable
software architecture can actually be a disadvantage. If the creative team
does not think that a certain feature is just the way they would like it, they
will request a new one even though they would be able to make do with what
is currently available. This indicates a need for a proper decision process
regarding implementing new features.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 69

Q12 - During development, the creative team has to use the tools
and features already available.

The statement and results can be seen i Table 7.12

Table 7.12: Answers to question 12

During development, the creative team has to use the
tools and features already available.

FA PA N PD FD NA

1 5 2 2 3 0

Here the responses are quite varied, and no single conclusion can be
drawn.

However, Company B provides answers and comments which give some
insight. Firstly, they provided the following comment on Q8: “Depends
how far in development and how big of a changes, the odds of re-factoring
an entire system late in production are close to nil, but the development
team keeps an open mind at all times”. On Q10 they indicated that they
partially agree, and supplement with the following comment: “The ones
already available and the ones they request along the way”.

Given this company’s replies, and the results in general on this as well
as Q8 and Q10, the following hypothesis is presented:

In some companies the availability of tools and other software
is decided up-front and is a rigid decision. In general, however,
adding new tools or software to the existing software suite is
more a question of cost than of principle. If it is financially
viable, and there exists an actual need, tools can be bought or
developed and thereafter used.

Note that this is a hypothesis and not a conclusion.

70 CHAPTER 7. QUESTIONNAIRE

7.4.3 Supporting the Creative Processes

Three of the four questions in this section relate to specific functionality
that a game engine can provide to support the creative team’s work. These
were asked to get a glimpse into how game engines are used today.

Q13 - Our game engine supports dynamic loading of new content.

The statement and results can be seen i Table 7.13

Table 7.13: Answers to question 13

Our game engine supports dynamic loading of new
content.

FA PA N PD FD NA

8 4 1 0 0 0

Based on the responses, one can conclude that game engines today sup-
port dynamic loading of content. There is one comment which states that
any limitations stem from the need to prepare certain content in a particular
way.

Another limiting factor can be the different“content” to be loaded. If the
game suddenly should support a new type of game mechanic, this might not
be as simple as plug and play, but might require changes to the gameplay
layer of the game engine.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 71

Q14 - Our game engine has a scripting system the creative team
can use to try out and implement new ideas.

The statement and results can be seen i Table 7.14

Table 7.14: Answers to question 14

Our game engine has a scripting system the creative
team can use to try out and implement new ideas.

FA PA N PD FD NA

6 3 2 1 1 0

Based on the responses, one can see that a scripting language in game
engines (as discussed on Page 40 in Section 5.3.4) is becoming prevalent.
This simplifies the development and allows shorter turn-around time from a
feature request to it has been implemented and tested.

Although this questionnaire does not enable such a conclusion, one can
assume that those who disagree might have made their own game engine,
and have not prioritized the effort needed to implement such a language.

72 CHAPTER 7. QUESTIONNAIRE

Q15 - The creative team is included in our development feedback
loop (e.g., scrum meetings).

The statement and results can be seen i Table 7.15

Table 7.15: Answers to question 15

The creative team is included in our development
feedback loop (e.g., scrum meetings).

FA PA N PD FD NA

11 0 1 0 0 1

The results here show that the game company appreciates the feedback
from the creative team in their development. This allows the technical team
to continuously work towards the goals of the creative team, and constantly
receive feedback on their work.

This implies that the organizations work closely across the different dis-
ciplines the employees represent, overcoming one of the perceived barriers
of game development.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 73

Q16 - Our game engine allows rapid prototyping of new levels,
scenarios, and NPC’s/behavior.

The statement and results can be seen i Table 7.16

Table 7.16: Answers to question 16

Our game engine allows rapid prototyping of new lev-
els, scenarios, and NPC’s/behavior.

FA PA N PD FD NA

9 2 1 0 0 1

As most respondents agree with this statement, one can observe a ten-
dency towards rapid prototyping. This way of working has been identified in
Nordmark [18], and allows bad ideas to be discarded before too much work
has been put into it. Allowing the creative team to do this job themselves,
while the technical team can focus on other tasks allows the organization to
spend a minimum of money on testing out new ideas, whilst still producing
new, high-quality aspects of their games.

74 CHAPTER 7. QUESTIONNAIRE

7.4.4 Changes over Time

In this section of the questionnaire, the questions relate to how game devel-
opment has changed over the years.

As the questions can be quite self-explanatory, all unnecessary discussion
will be avoided.

Q17 - Today our company uses more 3rd party modules than 3
years ago.

The statement and results can be seen i Table 7.17

Table 7.17: Answers to question 17

Today our company uses more 3rd party modules
than 3 years ago.

FA PA N PD FD NA

6 0 2 0 1 3

From the results one can conclude that third party software is more
prevalent today than before. This confirms predictions made by several
authors [18][21][13]; buying a good middleware will provide a better result
than what the organization themselves can produce at the same prize.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 75

Q18 - It is easier to develop games today than it was 5 years ago.

The statement and results can be seen i Table 7.18

Table 7.18: Answers to question 18

It is easier to develop games today than it was 5 years
ago.

FA PA N PD FD NA

7 3 1 1 1 0

The respondents tend to agree, but one comment should be highlighted:

“The challenges have changed and the quality bar has risen,
it is more accessible to people less interested in nerdy things
nowadays (engines like Unity reduced/removed the low-level as-
pect of the development), but developing a great game is still as
challenging as before, the problems to solve just have evolved.”

This is an interesting point. Technically it is simpler, but making a great
game consists of a lot more than just allowing input to dictate movements on
screen. The concept of a great game is unique, and the challenge of making
one is no different than before.

76 CHAPTER 7. QUESTIONNAIRE

Q19 - Middleware is more important to our company today than
3 years ago.

The statement and results can be seen i Table 7.19

Table 7.19: Answers to question 19

Middleware is more important to our company today
than 3 years ago.

FA PA N PD FD NA

3 4 2 0 2 2

This question complements Q17, and the responses look similar. The
conclusion must be that middleware plays an important role in todays games
and game engines.

7.4. QUESTIONNAIRE RESULTS AND ANALYSIS 77

Q20 - Game development is more like ordinary software develop-
ment today than 5 years ago.

The statement and results can be seen i Table 7.20

Table 7.20: Answers to question 20

Game development is more like ordinary software de-
velopment today than 5 years ago.

FA PA N PD FD NA

0 5 3 1 4 0

This question presents some interesting findings, mostly in the com-
ments:

• “Nope. It was software development then, and still is now”

• “Game development requires a more eccentric creative problem solving
than development in most of other industries and this will probably
remain true forever”

• “I think that the tools available today moves game dev further away
from ’ordinary software dev’ ”

78 CHAPTER 7. QUESTIONNAIRE

Chapter 8

Survey

In this chapter the follow-up survey sent out to game developers will be
presented.

First the rationale behind the design as well as the design will be pre-
sented, directly followed by a presentation of the results from the survey.

8.1 Survey Design

From the questionnaire presented in Chapter 7, a new set of questions arose.
In this section these questions and the rationale behind them will be pre-
sented.

Note that the questions in the survey are numbered from S1 through
S9. This is to distinguish them from both the RQs (numbered RQ1 through
RQ5) and the questionnaire questions (numbered Q1 through Q20).

8.1.1 Introduction

The first section in the questionnaire was used to try and collect information
regarding the respondent. This information could then be used to connect
the replies between the questionnaire and the survey.

At first, this section was mandatory. However, the researcher received
critical feedback from one respondent. Based on this feedback, the first page
was made voluntary, and the following text were placed on the top of the
page:

“All answers on this first page is voluntary, and will only
serve to correlate answers between the first questionnaire and
this follow-up questionnaire.

All answers given to both questionnaires will be anonymized
before publication and will not be used commercially.”

79

80 CHAPTER 8. SURVEY

8.1.2 Game Engine

The second section of the survey looks into how game engines are used
amongst the respondents. This should give some insight into how prevalent
external game engines are, as well as the use of middleware.

S1 - Which game engine do you use?

This question should provide an insight into how many develop their own
game engines and how many use external game engines.

In addition, it could be used to see if there are particular game engines
which are more popular than others amongst the small game developers (up
to and including ten employees).

S2 - Did you use any middleware or third party modules in your
game?

Furthermore the survey looks into the use of middleware. Instead of asking
general questions regarding which type of middleware they use, the question
is phrased so as to get a look at which middleware is the most popular.

On the first questionnaire the respondents were asked for examples of
third party software that they used. This information will be included in
the analysis of this question as it is basically the same question.

S3 - Do you have any thoughts regarding the evolution of game
engines in the future?

Lastly in the game engine section the respondents were given the opportunity
to provide some of their insight into how game engines will evolve. The
question was included in order to get as much information as possible from
the respondents regarding a few themes:

• What types of game engine will exist

• How will game engines be developed

• How will game engines be used

However, as to not guide the respondents answers, this question was
phrased as openly as possible.

8.1.3 Software Architecture and the Creative Team

The third section of the survey looks into how the creative team affects the
software architecture, and if the creative team uses features which is enabled
by a suitable software architecture.

8.1. SURVEY DESIGN 81

S4 - In what ways are the creative team allowed to contribute to
the design of the software architecture?

Q4 in the questionnaire (see Page 61) asked whether the creative team is
included in the design of software architecture. Since the results there did
not provide much insight into how this was done, this question will elaborate
on this.

S5 - Which features in particular do your software suite provide
to help the creative team do their job?

Q5 in the questionnaire (see Page 62) asks whether the existing software
suite (game engine, supporting tools, or other software) provides features
which help the creative team do their job. This question tries to identify
the particular features which are present.

S6 - To what extent do the creative team use the game engine and
its features to try out new ideas?

Expanding Q14 (see Page 71), this question looks into which parts of the
game engine the creative team actually uses when designing new aspects of
the game.

S7 - Is using the features of the game engine part of the creative
team’s routine, as in doing a sort of rapid prototyping?

This question tries to shed light over how features provided by a good soft-
ware architecture are included in the creative team’s progress.

8.1.4 Implementing Changes

On the final page of the survey, the respondents were given an example as
context for the last two questions. The example was as follows:

“You have a game engine which supports real-time physics
interaction between the game world and the entities present in it
(and between themselves). The game world is imported with a
certain physical, constant appearance (e.g., rocks and other ter-
rain) which is used for calculating the physics interaction. This
appearance is static.

The creative team then requests a new feature, in which they
would be able to introduce an earth-quake which would need to
alter the physical appearance of the game world. As a conse-
quence of this change, the system for loading the game world
would need to be made dynamic, and also support real-time al-
tering of the physical appearance of the game world.”

82 CHAPTER 8. SURVEY

S8 - How would your company reason about implementing the
above mentioned change?

This question touches upon Q8, Q9, and Q10 and to some extent also Q11.
The objective of the question is to get a glimpse of how the decision process
regarding changes are handled, as well as how the company would progress
with the implementation. The answers will of course vary wildly between
the respondents, but can support a conclusion to the RQs.

S9 - Between the creative team, the technical team, and manage-
ment, who will be involved in this decision, and how important
will their opinions be?

This is merely an extension of S8, but also extends directly on Q9 (see Page
66) and needs no further discussion.

8.1.5 Relation between the Survey and the RQs

In Figure 8.1 the relation between the questions in the survey (called metrics
in GQM) and the RQs (called questions in GQM) is presented.

S1 S2 S3 S4 S5 S6 S7 S8 S9

RQ1 RQ3 RQ5

RQ2 RQ4

Figure 8.1: Illustrating which survey questions (numbered S1 through S9)
relate to the different RQs. In GQM this is equal to metrics and questions,
respectively.

8.2 Analysis of Responses

Below, a summary and an analysis of the six responses to the survey will be
presented. For the complete responses, please refer to Appendix D.

8.2. ANALYSIS OF RESPONSES 83

8.2.1 Game Engine

S1 - Which game engine do you use?

Four of the six respondents replied that they used external game engines,
whilst the two last replied “custom” and “our own”.

This confirms the hypothesis that external game engines have become
more and more prevalent.

S2 - Did you use any middleware or third party modules in your
game?

Four of six respondents replied that they used middleware in their game
engines. When reading through the responses, one in particular stands out:

“On the previous game, developed with the in-house engine,
FMOD was the only third-party software licensed and used for
audio playback. SDL was also used for the Mac OS X port but
was a free open source library. On the next projects, done with
Unity 3D, we obviously use Unity as middleware. Because of the
way their engine is constructed, it is highly unlikely we will need
any additional third party modules as FMOD, Beast lightmap-
ping and Umbra occlusion culling solution are integrated to the
engine and part of the engine license.”

In addition to specifying which middleware the organization has used, it
also points at evolution of game engines. Based on this reply, one clear trend
of game engines shows itself; middleware becomes more and more prevalent,
even in licensable game engines.

From the responses to both this question (S2) and the examples of third
party software from the questionnaire, the following list of used middleware
and third party software can be compiled:

• Autodesk Beast - Middleware for lighting

• Autodesk Scaleform - Middleware for user interfaces in games

• Away3D - Real-time 3D engine for Flash and ActionScript 3.0

• Bink - Video codec for games

• Box2D - 2D physics engine

• DirectX - Windows’ collection of APIs to handle multimedia

• Flash - Multimedia platform for the web

• FMOD - Middleware for audio

84 CHAPTER 8. SURVEY

• libvorbis - Audio codec

• NVIDIA PhysX - Physics engine

• SpeedTree - Middleware for trees

• Substance - Texture designer

• Umbra - Middleware for rendering optimization

• Unity - A 3D game engine

• UnrealEngine 3 - A 3D game engine

S3 - Do you have any thoughts regarding the evolution of game
engines in the future?

This question received three high-quality answers. The following key points
should be noted from the replies:

Multi-platform: The ability to create a game once and build it to run
on different platforms allows game developers to reach a much larger
audience, and at the same time being able to focus on the work of
creating the game without always considering porting.

Quality of features: Whilst most game engines today present new fea-
tures, the replies, and the replies to S2 above, indicate that the quality
of the feature is more important than the quantity. If a really impres-
sive, bleeding-edge feature is included in the game engine, most games
will not use it until it works properly and is simple to use.

Simplicity: The usability of a game engine has increased rapidly from the
earliest game engines to those who dominate the market today. The
replies indicate that this trend will only continue, and that game en-
gines which are difficult to use will fall behind in the competition.
However, this simplicity must not be at the expense of freedom. As
there are limits to how much freedom a point-and-click interface can
provide, the companies should still be able to edit the source code,
allowing them to develop new and novel features.

Completeness: A game engine today must present more than “just” a ren-
dering engine which accepts input data, and produces a game. The
game engine needs to have a host of supporting features and tools, re-
lieving the individual organizations of the run of the mill development
tasks like taking models from modelling tools and converting them to
game engine-compatible data formats, or handling save games.

The researcher expects that game engines will continue their evolution
towards the characteristics above.

8.2. ANALYSIS OF RESPONSES 85

8.2.2 Software Architecture and the Creative Team

S4 - In what ways are the creative team allowed to contribute to
the design of the software architecture?

There are two recurring themes in the responses. Firstly, the creative team
affects the software architecture indirectly through working with the tech-
nical team. Secondly, the main areas they affect relate to how tools interact
with the game. This can be a result of discussions regarding workflow issues,
or based on the functional needs of the creative team.

Thus, the creative team does not affect the software architecture directly,
but through requests made to the technical team.

S5 - Which features in particular do your software suite provide
to help the creative team do their job?

When going through the replies, it becomes immediately obvious that all
companies both have and desire functionality which lets the creative team
directly import new assets and try them out in-game. By enabling the cre-
ative team to directly import their new assets from the tools into the game,
without changing a single line of code makes rapid prototyping possible.
Rapid prototyping, as discussed in this thesis as well as Nordmark [18], al-
lows the creative team to simply test out if a new idea is viable, and discard
it if it is not. This results in better use of the creative team’s time, and, in
the end, streamlines this area of game development.

S6 - To what extent do the creative team use the game engine and
its features to try out new ideas?

Quite a few of the respondents have already touched upon this question
in S5. The responses further confirm the preferred workflow with regards
to rapid prototyping. One statement which deserves notice is: “Naturally,
the more data and tools driven we can be the more the creative team can
[experiment]”.

In the extension of this, another reply also identifies the automatic tran-
sition from tools to game as an important aspect. If the creative team simply
can test out their new ideas, they will try them out often, and produce a
better game.

Additionally, if the creative team possesses some light programming skill,
they would also be able to take a copy of the project and try out altering the
source code on their own. This allows for a more fundamental approach to
implementing new features, but can still be feasible for certain organizations.

86 CHAPTER 8. SURVEY

S7 - Is using the features of the game engine part of the creative
team’s routine, as in doing a sort of rapid prototyping?

In general, the responses to this question confirms and supplements those
presented in S5 and S6.

However, one respondent introduced an interesting way of work using
“feature-oriented teams”. In the example given, these team consist of one
coder (technical team), one artist, and one designer (both from the creative
team). This allows them to focus on particular features are represented as
a single unit, allowing work to progress quickly without having to wait for
any external resources.

8.2.3 Implementing Changes

For simplicity of reading, the example the following two questions relate to
will be repeated here:

“You have a game engine which supports real-time physics
interaction between the game world and the entities present in it
(and between themselves). The game world is imported with a
certain physical, constant appearance (e.g., rocks and other ter-
rain) which is used for calculating the physics interaction. This
appearance is static.

The creative team then requests a new feature, in which they
would be able to introduce an earth-quake which would need to
alter the physical appearance of the game world. As a conse-
quence of this change, the system for loading the game world
would need to be made dynamic, and also support real-time al-
tering of the physical appearance of the game world.”

S8 - How would your company reason about implementing the
above mentioned change?

In addition to providing an interesting insight into how different game devel-
opers consider changes of this magnitude, there are a few recurring themes
in the replies.

Initially there is a decision process consisting of two main considerations;

Firstly, how important is this feature for the experience of the user?
How much better will the game be with this feature? Conversely, how much
will be lost if it is not implemented?

Secondly, if this feature will be implemented, how much will it cost in
terms of time and money? Will the added workload be justified?

If this consideration is favourable, the organization will start considering
how the feature should be implemented. From the answers, one can see that
this is started with a discussion between the creative team and the technical

8.2. ANALYSIS OF RESPONSES 87

team. Here the initial goal, as seen from the creative team, is subjected
to technical considerations. Based on this feedback and feedforward, the
creative team end up with a specification of the feature. Based on this
specification, the technical team produce a prototype. Glaring oversights,
or new, important elements are added. When both the creative and the
technical team is happy with the prototype, it is fixed into production quality
code.

S9 - Between the creative team, the technical team, and manage-
ment, who will be involved in this decision, and how important
will their opinions be?

There are a few interesting conclusions one can draw from the responses.
Firstly, management has the final say if the change significantly alters

budget or time estimates. This is not to say that this is done without
involvement from either the creative team or the technical team, but in the
end, management decides.

Secondly, in the companies which replied, all three groups seem to be
treated equally; the technical team, the creative team, and management all
get to participate in decisions like this. This makes sense, as these three
groups have three different responsibilities. Management should get the
game launched on time and budget, the creative team should produce a
game which is fun or involving, and the technical team should enable the
technology to drive the creative team’s content through in a reliable way.

88 CHAPTER 8. SURVEY

Chapter 9

Experiences

In this chapter a short presentation of the experiences gained from commu-
nicating with game developers will be given.

The presentation will focus on previous knowledge, the questionnaire,
and the survey. In particular, challenges which arise when communication
with game developers will be discussed.

9.1 Previous Experience with Game Developers

The researcher gained experience in communicating with game developers
during the study “Software Architecture in Games ” [18], and the first thing
one should consider when sending any form of request to a game developer,
is that you are asking them to spend time from their already tight schedule
on you.

Thus, when authoring an e-mail, a questionnaire, or a survey for game
developers, one should prioritize making the text concise, expressive and
unambiguous. The shorter and more direct the text is, the better. Even
though this is practiced, there are no guarantee that the game developers
will answer, and in general there will be a low overall completion rate.

9.2 Questionnaire Experiences

9.2.1 Design

When designing the questionnaire, the questions were carefully worded as
to convey their meaning as unambiguously as possible. Still, the researcher
experienced that some of the questions were interpreted differently than
they were intended. However, the replies still provided a solid foundation
for concluding on the five RQs.

89

90 CHAPTER 9. EXPERIENCES

9.2.2 Distribution

The questionnaire was distributed to game developers in two different ways;
as a paper questionnaire at GDC12 and as a web questionnaire distributed
by e-mail.

On the paper questionnaire (see Appendix A), the questions and the
necessary information to answer them were presented on one sheet of paper.
This made the questionnaire less overwhelming for the respondents. How-
ever, the questionnaire was distributed on the show floor at GDC12, and it
proved difficult to get respondents, as they were constantly busy promoting
their own products, or trying out the products of others.

When distributing the web questionnaire, an e-mail was authored which
contained information regarding the research, and the information necessary
to answer the questionnaire. This e-mail can be seen in Appendix A.

However, despite both the e-mail being concise and the questionnaire to
take less than ten minutes to answer, only 8 of 40 unique recipients answered
the questionnaire. This confirms the researchers experience from Nordmark
[18]; the overall completion rate will be low.

9.2.3 Collection

As presented in the previous section, only 8 of 40 recipients responded to
the web questionnaire, resulting in a overall completion rate of 20%.

However, the tool used (SurveyMonkey) proved to be a valuable asset.
It easily enabled downloading the responses in spreadsheet format, and this
again enabled simple analysis of the data.

The researcher received some feedback on e-mail on the questionnaire and
the tool used (SurveyMonkey). This feedback was positive, and supported
the decision to continue to use SurveyMonkey throughout the research.

9.3 Survey

9.3.1 Design

When designing the survey, the responses to the questionnaire served as a
basis for identifying areas which would benefit from further research. Once
again SurveyMonkey was chosen as the tools to create and collect responses,
and this worked well.

As on the questionnaire, the wording was chosen carefully to avoid am-
biguities, and this time the researcher did not experience any significant
mismatch between the intended meaning of the questions and the responses.

9.4. SUMMARY 91

9.3.2 Feedback

The first section of this survey was meant to allow combining the responses
from the questionnaire and the survey. However, the researcher received
feedback from one anonymous respondent which indicated that he or she
was afraid that the data collected would be exploited for financial gain.
Based on this feedback, the researcher updated the introductory text and
allowed the respondents to skip these questions.

No other respondent, before or after this change, chose to refrain from
providing this information. However, the researcher recommends that pro-
viding identifying information should be optional, as this likely will prevent
such feedback.

9.3.3 Collection

Since all recipients of this follow-up survey previously had agreed to an-
swering the questions, the response rate was significantly higher this time
around. 66% answered at least parts of the survey (six out of nine), and
55% completed the survey (five out of nine).

9.4 Summary

The researcher would recommend future research into game development to
be performed in similar ways.

Firstly, one should perform a short pre-study, only highlighting the main
areas of the research. In this pre-study, the respondents should be asked
whether or not they are willing to answer some follow-up questions. In gen-
eral, respondents which answer yes to such a question will be more inclined
to use their time and answer the questions thoroughly.

Based on this pre-study, a more thorough and targeted survey can be
designed and sent out to recipients who are willing to participate in the
research. This should increase the number of high-quality answers, and
allow for a better research to be performed.

92 CHAPTER 9. EXPERIENCES

Chapter 10

Evaluation

In this chapter an evaluation of the thesis will be given. In particular, the
research method, the actual research performed, and the thesis’ strengths
and weaknesses will be discussed.

10.1 Research Method

The research performed in this thesis is a qualitative study, and conforms
well to the empirical method described by Basili [1].

The first part of the research was a literature review, investigating differ-
ent aspects which are related to this research. The literature review provided
a good foundation on which the questionnaire could be designed.

The questions for the questionnaire was designed using the GQM ap-
proach. This resulted in a questionnaire with 20 questions, relating to the
five RQs. The questionnaire was was used to get an understanding of the
current practices amongst game developers.

As expected, the responses to the questionnaire also gave rise to new
questions. These were formulated as open-ended questions, and were dis-
tributed to a set of game developers as a follow-up survey.

The GQM approach has been of great use. This approach lends itself
well to creating both questionnaires and surveys, and thinking in terms of
goals, questions, and metrics has enabled the researcher to maintain the
focus on the overarching goal.

10.2 Research Performed

In this thesis a research is performed which investigates the relationship
between software architecture, the creative team, and the development pro-
cesses.

The initial phase of this research was a literature review which gave
the researcher a basis on which the questionnaire could be designed. This

93

94 CHAPTER 10. EVALUATION

questionnaire was estimated to take between five and ten minutes to com-
plete, and was distributed in two different ways; as a paper questionnaire
on GDC12 and a web questionnaire sent out by e-mail.

The effort needed to gather the replies, favoured using the web question-
naire as much as possible. This web questionnaire can then be sent out to a
large amount of game developers using a template e-mail. When collecting
responses to a paper questionnaire one has to introduce oneself and explain
the purpose of the questionnaire over and over again, and this takes a lot
of time and effort. With regards to analysis of the responses, the web sur-
vey also proved superior. Digital collection has several advantages, e.g., no
misinterpretation of handwriting, less time needed to analyze each response,
etc.

The feedback on the questionnaire was positive, and the responses proved
to be a great asset in both supporting the conclusions on the five RQs as well
as designing the follow-up survey. This survey was distributed exclusively
as a web survey, and resulted in several high-quality responses which further
supported the conclusions.

In summary, the answers two both the questionnaire and the survey as
well as the literature review, enabled a conclusion to be reached on the five
RQs.

Thus, this research has successfully investigated the relationship between
the creative team, software architecture, and the development and decision
processes, and provides a valuable insight into how a small game company
enable the creative team to work as efficiently as possible.

10.3 Strengths and Weaknesses

A great strength of this research is that it explores a previously little studied
area of game development, i.e., the relationship between software architec-
ture and the creative team. The literature review, the questionnaire, and
the survey all contribute to the final conclusions, and as such provides a
solid foundation for the conclusions drawn within the limits of the validity
presented in Section 11.1.

On the other hand, a weakness, or limitation, of this research is that
it cannot be generalized to be valid for all game companies, not even the
smaller game companies with ten or fewer employees.

However, the research provides an interesting glimpse into the game
development industry, and is as such considered successful by the researcher.

Part IV

Conclusions

95

Chapter 11

Research Conclusions

In this chapter the conclusions on the five research questions will be pre-
sented, as well as the validity of the results.

11.1 Validity of Results

The research performed and presented in this thesis has been based on vol-
untary responses from primarily smaller game developers with ten or less
employees. In total, there are thirteen respondents, and from these thirteen,
six replied to both the questionnaire and the follow-up survey.

The number of respondents, and the way these were selected (voluntary
responses), do not allow the results to be generalized to be valid for the
entire population of smaller game developers (ten or less employees), even
less to the population of all game developers.

Still, the research is well suited to give a picture of the situation for
smaller game developers in the industry today. In addition, it has some
strong qualitative properties as several of the responses received, both on
the questionnaire and the survey, are both detailed and of a high quality.

11.2 Research Question 1

The first RQ is:

What are the primary ways in which the creative team can
affect the software architecture in a game?

From the literature review it is known that there are three ways in which
the creative team can affect the software architecture; (1) deciding which
game to make, (2) requesting new in-game functionality, and (3) requesting
new development features.

This provides an answer to the RQ, but the research performed in this
thesis goes into more detail.

97

98 CHAPTER 11. RESEARCH CONCLUSIONS

The research confirms the conclusion that the creative team affects the
software architecture in a game. Based on the questionnaire it is concluded
that the game, as defined by the creative team, does have a certain effect on
the software architecture, and, in addition, that the organization can discard
an old software solution if it is necessary to make a new type of game. As
it is the creative team who develops ideas into new game concepts, it is
definitively given a lot of power over the main constraints of the software
architecture.

However, one should also note that if the organization has a very well-
suited software architecture, even radically changing the type of game can
have only a minor impact on the resulting software architecture.

This is not to say that the creative team specifies the software archi-
tecture. As shown in both the questionnaire and the survey, the creative
team is allowed to participate in the design of software architecture, but usu-
ally only do this indirectly. There are of course different ways to indirectly
affect the software architecture, one of which is through the discussion of
implementing tools for the creative team. What features of the game engine
should be exposed to allow this tool to do its job? How should this tool
interact with the rest of the software suite?

Usually these sorts of changes are thoroughly discussed between the cre-
ative team and the technical team. This leads to a result which is the optimal
compromise between creative freedom and technical limitations. During the
development of these tools and interactions, the creative team provides feed-
back to the technical team, which again influences the software architecture.

The creative team is also allowed to request new features during devel-
opment, which allows a dynamic evolution of the features. These features
become, with continuous development and feedback, better and better suited
to produce the game the organization is developing. However, there should
of course be some restraint when implementing new features, as there is
always a cost-benefit trade-off looming.

When large changes are to be implemented in the game, the process
becomes more formal. From both the questionnaire and the survey one can
see that the creative team can request changes, but that it cannot necessarily
demand these changes. Often the creative team is given much weight in the
decision whether or not to implement a feature, as the creative team should
be able to judge if this is a make-or-break feature. Most often, however, the
decision is a result of a dialogue between the creative team, the technical
team, and management. In this discussion technical limitations, creative
goals, end-user experience, cost, etc. are discussed, and can result in a
specification of a prototype of the feature. If this works well, the prototype
can become part of the game engine, as a direct result of the creative team’s
suggestion.

11.3. RESEARCH QUESTION 2 99

11.3 Research Question 2

The second RQ is:

Are there any particular architectural approaches that facil-
itate the creative processes in game development?

The research performed in this thesis identifies several ways in which
architectural approaches, both in terms of design and implementation, fa-
cilitate the creative processes in game development.

One interesting result of the research is that the respondents only re-
luctantly admitted that performance was the main goal of their software
architecture. A game engine is a result of a constant trade-off between dif-
ferent qualities. Examples of such qualities include “the game must run
smoothly”, “the creative team has to be able to import new assets without
the help of the technical team”, “and there must be a scripting system for
in-game events”.

However, the most important result in this RQ is that a typical game
engine is separated into two layers; core modules and gameplay modules.
Such a layered approach was identified in Guldbrandsen and Storstein [13],
and has been confirmed in the research presented in this thesis.

The core modules, which often include rendering and physics, are rela-
tively stable, and can be reused across several games. These modules are
also some of the most performance intensive modules, and an increased opti-
mization, with the cost this entails, is rightly justified. This layer is intended
to be developed and used by the technical team.

The gameplay layer on the other hand, is directed at the creative team.
This layer should be used to present and develop the specifics of the game
being produced. It will often present tools which the creative team can use
to do their job, e.g., a scripting system for adding events to levels and actors.

There are also other approaches which are being used to support the cre-
ative processes. The questionnaire shows that adding new elements, both
gameplay elements and more dynamic elements, such as Non-Player Charac-
ters (NPCs) or in-game items, is a simple process. When the creative team
works with new ideas they can import new assets and script new events
without interacting with the technical team at all.

When structured into rapid prototyping, this saves a lot of time for both
the creative team and the technical team, since the creative team can work
independently of any other members of the organization. Another great
advantage is that the ideas can be tried out as early as possible, enabling
the creative team to at once discard ideas which do not work. This in-
creases the efficiency and is a direct result of how the software architecture
is implemented.

Another trend in modern game engines is an increased use of middleware
(more on this in Section 11.6). This is mainly done to improve the quality

100 CHAPTER 11. RESEARCH CONCLUSIONS

of features in a cost-efficient manner. A direct benefit of this is that the
technical team then can prioritize their time to support the creative team.
Although this is a purely indirect effect, it is nonetheless an architectural
approach which supports the creative team.

Lastly, the research shows that game engines and their supporting tools
will continue to promote ease of use, allowing the creative team to perform
more and more of the work related to creating a new game without inter-
acting with the technical team. This is not to say that the technical team
will be superfluous, but that the relationship between the creative team, the
technical team, and the software will change.

11.4 Research Question 3

The third RQ is:

Are there any particular development methods or processes
which help the creative team do their job?

The research has uncovered three separate processes which all support
the creative team and helps them do a better job.

The first is continuously changing requirements, often manifested in an
iterative development process. This has been discussed on Nordmark [18] to
some extent, and is further confirmed by the results of the questionnaire.

By allowing the creative team to request new features and tools along
the way, it becomes unnecessary to specify all the required features before
development has begun. This saves the creative team a lot of time in the
beginning of a project, and also minimizes the number of “unnecessary”,
or superfluous, features which are implemented, which in turn saves the
technical team from spending time developing these features.

The creative team is also included in the feedback loop during develop-
ment, and this allows the technical team to produce tools and features which
are tailored to the creative team’s needs.

The second process is rapid prototyping. This has already been discussed
in Section 11.3, so only a short summary in light of the third RQ will be
presented here.

Rapid prototyping allows the creative team to try out ideas in the game
at a very early stage. This allows the creative team to only design or model
the bare essentials, import this to the game, and possibly script certain
events in the game engine. By enabling the creative team to do this them-
selves, the team can discard bad or unsuitable ideas earlier, and refine good
and suitable ideas quicker. This drives development of the game, and maxi-
mizes the time spent on developing content that actually ends up being used
in the game.

11.5. RESEARCH QUESTION 4 101

The third process is how the companies handle large changes. If they are
accepted, the organizations go through a process consisting of four steps. In
chronological order these four steps are:

1. Firstly, the creative team and the technical team discuss the idea as
presented by the creative team. This idea is then subjected to technical
limitations, and both the technical team and the creative team have to
accept compromises. The result from this step should be a specification
of the feature which both the creative team and the technical team are
happy with.

2. Then the technical team should transform this specification to a pro-
totype implementation of the feature.

3. After the prototype is ready, the creative team tries out the function-
ality and assesses whether or not it is suitable. If there are features
which are missing, the technical team add these. The result of this
step should be a complete prototype the creative team is happy to
work with.

4. In the fourth and last step, the technical team implements this proto-
type in production quality code, and it is permanently added to the
software suite.

Each of the three processes mentioned above help the creative team
do their job, either by allowing them to be as efficient as possible or by
improving the workflow in general.

11.5 Research Question 4

The fourth RQ is:

Do the organizations prioritize the needs and wants of the
creative team?

The research shows that there are several different ways in which the
creative team will be prioritized, e.g., by having features made available
which are primarily intended for the creative team’s tasks. These features
range from including a scripting system which the creative team can use
without involvement of the technical team, to allowing the automatic import
of new assets directly from the tools. This again enables the creative team
to perform rapid prototyping on their own, improving the workflow.

In addition to this, the creative team can request new features or tools
during development of the game. If the creative team needs a particular
feature or module, this can be requested. The research shows that game

102 CHAPTER 11. RESEARCH CONCLUSIONS

development organizations will try to implement these if the cost-benefit
trade-off is beneficial.

When requests for large changes are made, there will be a more formal
decision process. Due to economical concerns, management usually has the
final say in such decisions, but both the creative team and the technical team
will be included in the discussions. During this process the idea presented by
the creative team will be subjected to both technical limitations and financial
concerns, and the creative team will contribute to the final decision; should
this change be implemented or not?

If new features are implemented based on a request from the creative
team, the creative team will be included in the feedback loop, allowing the
technical team to tailor the feature to the actual need of the creative team.

When all this is seen together, one can see that the organizations will
not cater to the creative team’s every need. However, the creative team is
able to request new features and tools, and the organization will include the
team when deciding if, and how, these features will be implemented. Thus,
the creative team will be prioritized, but will not receive any elevated status
from which they could have demanded whatever they wanted.

11.6 Research Question 5

The fifth and final RQ in this thesis is:

How has game development evolved over the years as an en-
gineering discipline?

Traditionally, the game industry is considered to be“different”from other
parts of software engineering. In the early days, the games were written in
assembly, and did not utilize the operating system. Over the years, the
industry has not gotten completely rid of this reputation, and is often still
considered an immature field in software engineering.

However, the research presented in this thesis shows that game develop-
ment has evolved towards many of todays high-held principles of software
engineering (e.g., reuse).

The research has shown that the use of middleware and other third part
software (such as complete game engines), have increased over the years.
This implies a higher focus on the achieved quality for a certain amount of
money. Buying or leasing a physics module will most likely produce better
results than an in-house module at the same cost. Furthermore, when a
company buys a third party engine, this engine will most likely include
several other third party modules. This really shows that reuse of entire
components has become an integral part of game development, putting it at
least head-to-head with the rest of the software industry in this area.

11.6. RESEARCH QUESTION 5 103

Furthermore, there is a separation between the engineering aspects of
game development and the creative aspects of game development. The en-
gineering aspects of game development have become simpler over the years.
The reasons for this is not explicitly identified in the research, but it is
likely to assume that it arises partly from the increased reuse and the two-
tier software architecture (core versus gameplay modules), as well as a of
other factors.

On the creative aspects, however, the difficulty and complexity has in-
creased. There is a host of different game companies, large and small, com-
peting in the game market. As each of these companies always try to create
a completely new experience, the projects have become more complex and
difficult to complete. This is an area of game development in which much
interesting research can be performed.

In general, however, the game industry is becoming a more mature soft-
ware engineering discipline. The research discovered four characteristics
which will become more and more important for game engines. These four
characteristics are as follows:

Simplicity of use: Future game engines will continue to improve in usabil-
ity. They will become easier and easier to use, allowing many game de-
velopment organizations to create and publish a complete game with-
out necessarily having any significant game engine development skills.

Completeness of the software suite: Game engines today already pro-
vide several integrated features. Future game engines which hope to
compete in the market, will need to provide most, if not all, the fea-
tures and tools which a company needs to develop a game. In addition,
these tools and features must interoperate seamlessly, allowing the or-
ganization to work as efficiently as possible.

High-Quality Features: Today game engines are constantly affected by
feature creep. Although new features are nice, it will become more
important that the features which are delivered are both robust and
that they perform as specified.

Multi-Platform: The game engines and their supporting tools will need
to support deployment to several platforms without requiring the or-
ganization to spend much time adapting the game to these different
platforms.

Game engines are expected to continue to evolve towards these four
characteristics in the future.

104 CHAPTER 11. RESEARCH CONCLUSIONS

Chapter 12

Future Studies

In this concluding chapter of the thesis, a few suggestions for future studies
will be presented.

12.1 High-Level Third Party Game Engines

This thesis has uncovered that there is a trend toward more and more high-
level use of third party game engine. Buying these high-level game engines
allow organizations to put more effort into creating the content for the game
(i.e., the levels, models, story, etc.) instead of having to focus on software
development difficulties.

To what extent this is already done, or how the game industry is feeling
about this change, has not been studied in this thesis, but should prove
interesting areas of study.

12.2 Cost-Benefit Trade-Off

As mentioned several times during the thesis, game companies have to con-
sider adding new features, tools, or other items based on a cost-benefit
trade-off. This process is discussed in part in the analysis of S8 and S9 on
Page 86 and 87, as well as other places in the thesis.

It would be interesting to continue the study of this process, and how
this it is used in large companies as well as in smaller ones.

12.3 Feature Availability in Game Engines

As shown in this thesis, third party game engines are becoming more and
more prevalent. It would be interesting to chart which features are in use in
todays game engines, as well as how this feature availability has affected the
competitive market of game engines. E.g., are there any particular features

105

106 CHAPTER 12. FUTURE STUDIES

of certain game engines which have proved so useful that the rest of the
industry has had to follow suit?

12.4 Reference Architectures

Lastly, it would be very interesting to look into if there are any identifiable
reference architecture for different games. E.g., are there particular archi-
tectural approaches which suit puzzle-games, or perhaps FPS-games? How
will these approaches vary if the game should be single or multi player?

Bibliography

[1] Victor Basili. The Experimental Paradigm in Software Engineering. In
H. Rombach, Victor Basili, and Richard Selby, editors, Experimental
Software Engineering Issues: Critical Assessment and Future Direc-
tions, volume 706 of Lecture Notes in Computer Science, pages 1–12.
Springer Berlin / Heidelberg, 1993.

[2] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Encyclo-
pedia of Software Engineering, volume 1, chapter The Goal Question
Metric Approach, pages 528–532. John Wiley & Sons, 1994.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Addison-Wesley Longman Publishing Co., Inc., 2 edition,
2003.

[4] Jonathan Blow. Game Development: Harder Than You Think. Queue,
1(10):28–37, February 2004.

[5] David Budgen and Pearl Brereton. Performing Systematic Literature
Reviews in Software Engineering. In Proceedings of the 28th interna-
tional conference on Software engineering, ICSE ’06, pages 1051–1052.
ACM, 2006.

[6] David Callele, Eric Neufeld, and Kevin Schneider. Requirements En-
gineering and the Creative Process in the Video Game Industry. In
Requirements Engineering, 2005. Proceedings. 13th IEEE International
Conference on, pages 240 – 250, aug. – sept. 2005.

[7] Crytek GmbH. CryENGINE, 2012. URL http://www.crytek.com/

cryengine. Viewed on: 2012-04-30.

[8] Epic Games, Inc. Game Engine Technology by Unreal, 2012. URL
http://www.unrealengine.com/. Viewed on: 2012-04-30.

[9] Epic Games, Inc. UnrealScript Object Oriented Programming
Language, 2012. URL http://www.unrealengine.com/features/

unrealscript/. Viewed on: 2012-04-30.

107

http://www.crytek.com/cryengine
http://www.crytek.com/cryengine
http://www.unrealengine.com/
http://www.unrealengine.com/features/unrealscript/
http://www.unrealengine.com/features/unrealscript/

108 BIBLIOGRAPHY

[10] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley Professional, 2003.

[11] Firelight Technologies Pty. fmod: Interactive Audio Middleware, 2012.
URL http://www.fmod.org/. Viewed on: 2012-04-30.

[12] Jason Gregory. Game Engine Architecture. A K Peters, 2009.

[13] Kjetil Guldbrandsen and Kjell Ivar Storstein. Apocalypse Engine: A
Study of Software Architecture and Conventions in Modern Game En-
gines. Technical report, Norwegian University of Science and Technol-
ogy, 2009.

[14] Havok.com Inc. Havok physics, 2012. URL http://www.havok.com/.
Viewed on: 2012-05-01.

[15] Phillippe Kruchten. Architecture Blueprints – The“4+1”View Model of
Software Architecture. In Tutorial proceedings on TRI-Ada ’91: Ada’s
role in global markets: solutions for a changing complex world, pages
540–555. ACM, 1995.

[16] Audun Kvasbø. Postmortem analysis of video games. Technical report,
Norwegian University of Science and Technology, 2006.

[17] Peter Naur and Brian Randell, editors. Software Engineering: Report
of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO.
1969.

[18] Nj̊al Nordmark. Software Architecture in Games. Technical report,
Norwegian University of Science and Technology, 2011.

[19] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of
Software Architecture. SIGSOFT Softw. Eng. Notes, 17:40–52, October
1992.

[20] Andrew M. Phelps and David M. Parks. Fun and Games: Multi-
Language Development. Queue, 1(10):46–56, February 2004.

[21] Andrew Rollings and David Morris. Game Architecture and Design: A
New Edition. New Riders Games, 2003.

[22] SurveyMonkey.com, LLC. SurveyMonkey: Free online survey software
& questionnaire tool, 2012. URL http://www.surveymonkey.com/.
Viewed on: 2012-05-10.

[23] UBM Events Registration Dept. Game Developers Conference, 2012.
URL http://www.gdconf.com/. Viewed on: 2012-04-25.

http://www.fmod.org/
http://www.havok.com/
http://www.surveymonkey.com/
http://www.gdconf.com/

BIBLIOGRAPHY 109

[24] UBM TechWeb. Game Developer Magazine, 2012. URL http://www.

gdmag.com/. Viewed on: 2012-05-08.

[25] Unity Technologies. Unity – Game Engine, 2012. URL http://

unity3d.com/. Viewed on: 2012-04-30.

[26] Paula Vicente and Elizabeth Reis. Using Questionnaire Design to Fight
Nonresponse Bias in Web Surveys. Social Science Computer Review,
28(2):251–267, 2010.

[27] Jeff Ward. What is a Game Engine?, April 2008. URL http:

//gamecareerguide.com/features/529/what_is_a_game_.php.
Viewed on: 2012-04-30.

[28] Stephen White. Postmortem: Naughty Dog’s Jak & Daxter: The Pre-
cursor Legacy. Game Developer Magazine, pages 48 – 58, April 2002.

[29] Wikipedia. History of video games. URL http://en.wikipedia.org/

wiki/History_of_video_games. Viewed on: 2012-05-06.

[30] R. Wirfs-Brock and B. Wilkerson. Object-Oriented Design: A
Responsibility-Driven Approach. SIGPLAN Not., 24:71–75, Septem-
ber 1989.

[31] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing: An Introduction. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

http://www.gdmag.com/
http://www.gdmag.com/
http://unity3d.com/
http://unity3d.com/
http://gamecareerguide.com/features/529/what_is_a_game_.php
http://gamecareerguide.com/features/529/what_is_a_game_.php
http://en.wikipedia.org/wiki/History_of_video_games
http://en.wikipedia.org/wiki/History_of_video_games

110 BIBLIOGRAPHY

Appendix A

Questionnaire

In this appendix, the questionnaire as sent to the game developers will be
presented.

Firstly, the paper questionnaire will be presented. After this, the e-mail
sent to game developers will be presented, immediately followed by the web
questionnaire.

Do note that the title of the thesis has changed after the questionnaire
was designed. The original title, which can be seen below, was “Using Soft-
ware Architecture to Support the Creative Process in Game Development”,
whilst the new title is “Software Architecture and the Creative Process in
Game Development.”

A.1 Paper Questionnaire

Please see the next two pages for the paper questionnaire.

111

Software	 Architecture	 and	 the	 Creative	 Processes	 in	 Games	
Introduction	
This	 questionnaire	 is	 related	 to	 a	 study	 at	 the	 Norwegian	 University	 of	 Science	 and	 Technology	 titled	 ”Using	
Software	 Architecture	 to	 Facilitate	 the	 Creative	 Processes	 in	 Game	 Development”.	 	
In	 this	 survey	 the	 questions	 will	 relate	 to	 opinions	 and	 attitudes	 regarding	 both	 software	 architecture	 and	 how	
the	 creative	 team	 affects	 and	 is	 affected	 by	 it.	
In	 this	 questionnaire	 a	 distinction	 is	 implied	 between	 ”the	 technical	 team”	 and	 ”the	 creative	 team”.	 The	
definitions	 of	 these	 are	 given	 below.	 Please	 note	 that	 these	 teams	 are	 thought	 of	 as	 roles,	 not	 necessarily	 that	
every	 employee	 of	 your	 company	 has	 to	 be	 in	 one	 or	 the	 other.	 	

The	 technical	 team	 has	 the	 role	 of	 technical	
implementer	 (e.g.,	 software	 developer)	

The	 creative	 team	 has	 the	 role	 of	 developing	 the	
story	 and	 content	 of	 the	 game	 (e.g.,	 artist)	

Two	 other	 definitions:	
Game	 engine	 is	 the	 software	 driving	 the	 content	 regardless	 of	 whether	 it	 suits	 the	 formal	 definitions	 of	 a	 game	
engine.	
Management	 is	 people,	 or	 personnel,	 which	 is	 responsible	 for	 the	 schedule	 and	 shipping	 of	 a	 game.	
Most	 of	 the	 questions	 are	 phrased	 as	 statements.	 They	 will	 be	 presented	 with	 a	 scale	 (described	 below)	 as	 well	
as	 a	 field	 for	 optional	 comments	 (indicated	 by	 a	 C:).	 Where	 questions	 concern	 the	 creative	 team’s	 effect	 on	 the	
software	 architecture,	 this	 can	 be	 indirect	 effects	 like	 requesting	 a	 new	 particle	 system.	
Scale:	 Fully	 agree	 (FA),	 Partially	 agree	 (PA),	 Neutral	 (N),	 Partially	 disagree	 (PD),	 Fully	 disagree	 (FD),	 Not	 applicable	 (NA)	

	

You	 and	 Your	 Company	
Your	 Name:	

	 	 	 	 	

	
Your	 e-‐mail	 address:	

	 	 	 	 	

	
Your	 position	 in	 the	 company:	

	 	 	 	 	

	
Which	 company	 do	 you	 represent:	

	 	 	 	 	

	
Do	 you	 wish	 for	 your	 answers	 to	 be	 anonymized	 before	 publishing?	 Yes	 	 No 	
The	 number	 of	 employees	 in	 the	 company:	
1	 –	 5	 	 5	 –	 10	 	 10	 –	 20	 	 20	 –	 50	 	 50	 –	 100	 	 100	 –	 500	 	 500+	 	
Which	 genres	 do	 you	 develop	 games	 in:	 	
Which	 platforms	 do	 you	 develop	 games	 for:	 	

	

Design	 of	 Software	 Architecture	
Design	 of	 the	 software	 architecture	 is	 an	 important	 part	 of	 our	 game	 development	 process.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
The	 main	 goal	 of	 our	 software	 architecture	 is	 performance.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Our	 game	 concept	 heavily	 influences	 the	 software	 architecture.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
The	 creative	 team	 is	 included	 in	 the	 design	 of	 the	 software	 architecture.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Our	 existing	 software	 suite	 provides	 features	 aimed	 at	 helping	 the	 creative	 team	 do	 their	 job.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	

Our	 existing	 software	 architecture	 dictates	 the	 future	 game	 concepts	 we	 can	 develop.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	

Changes	 to	 the	 Software	 Architecture	 during	 Development	
The	 creative	 team	 has	 to	 adopt	 their	 ideas	 to	 the	 existing	 game	 engine.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
During	 development,	 the	 creative	 team	 can	 demand	 changes	 to	 the	 software	 architecture.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Who	 decides	 if	 change-‐requests	 from	 the	 creative	 team	 are	 implemented?	

The	 technical	 team	 	 Management	 	 The	 creative	 team	 	
The	 technical	 team	 implements	 all	 features	 requested	 by	 the	 creative	 team.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
It	 is	 simple	 to	 add	 new	 gameplay	 elements	 after	 the	 core	 of	 our	 game	 engine	 has	 been	 completed.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
During	 development,	 the	 creative	 team	 has	 to	 use	 the	 tools	 and	 features	 already	 available.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	

Supporting	 the	 creative	 processes	
Our	 game	 engine	 supports	 dynamic	 loading	 of	 new	 content.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Our	 game	 engine	 has	 a	 scripting	 system	 the	 creative	 team	 can	 use	 to	 try	 out	 and	 implement	 new	 ideas.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
The	 creative	 team	 is	 included	 in	 our	 development	 feedback	 loop	 (e.g.,	 scrum	 meetings).	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Our	 game	 engine	 allows	 rapid	 prototyping	 of	 new	 levels,	 scenarios,	 and	 NPC’s/behavior.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	

Changes	 over	 Time	
Today	 our	 company	 uses	 more	 3rd	 party	 modules	 than	 3	 years	 ago.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Examples	 of	 3rd	 party	 software	 we	 use:	
	
It	 is	 easier	 to	 develop	 games	 today	 than	 it	 was	 5	 years	 ago.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Middleware	 is	 more	 important	 to	 our	 company	 today	 than	 3	 years	 ago.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	
Game	 development	 is	 more	 like	 ordinary	 software	 development	 today	 than	 5	 years	 ago.	
FA	 	 PA	 	 N	 	 PD	 	 FD	 	 NA	 	 C:	

Closing	 Remarks	
Are	 you	 willing	 answer	 some	 more	 in-‐depth	 follow	 up	 questions	 later?	 Yes	 	 No	 	
Would	 you	 like	 to	 receive	 the	 research	 when	 it	 is	 completed?	 Yes	 	 No	 	
Any	 other	 information	 or	 comments:	
	

114 APPENDIX A. QUESTIONNAIRE

A.2 E-Mail sent to Game Developers

The e-mail sent to game developers is given in full below:

Dear Sir/Madam

I am a computer science masters student at the Norwegian

University of Science and Technology (NTNU), conducting

research on software architecture and games. My goal is to

learn how the creative processes of game development are

supported by the software architecture through asking game

developers about their practices.

At the end of this e-mail you will find a link to an online

survey which will take between 5 and 10 minutes to complete.

Most of the questions are phrased as statements. They will be

presented with a scale as well as a field for optional

comments. Where questions concern the creative team’s effect

on the software architecture, this can be indirect effects

like requesting a new particle system which leads to a change

in the software architecture.

A few important definitions:

* Game engine is the software driving the content regardless

of whether it suits the formal definitions of a game engine

or not.

* Management has the role which is responsible for the

schedule, economy, and shipping of a game.

* The technical team has the role of developing the software

* The creative team has the role of developing the story, art,

and content of the game (e.g., artist)

Please note that management and technical and creative team

are thought of as roles, not necessarily that every employee

of your company has to be in one or the other.

Survey:

https://www.surveymonkey.com/s/CreativeSoftwareArchitecture

--

Njål Nordmark

A.3. WEB QUESTIONNAIRE 115

A.3 Web Questionnaire

Here screen shots of the entire web questionnaire will be presented in order.

116 APPENDIX A. QUESTIONNAIRE

Figure A.1: First section of the web questionnaire: “You and Your Company”

A.3. WEB QUESTIONNAIRE 117

Figure A.2: First part of the second section of the web questionnaire: “De-
sign of Software Architecture”

118 APPENDIX A. QUESTIONNAIRE

Figure A.3: Second part of the second section of the web questionnaire:
“Design of Software Architecture”

A.3. WEB QUESTIONNAIRE 119

Figure A.4: First part of the third section of the web questionnaire:
“Changes to the Software Architecture during Development”

120 APPENDIX A. QUESTIONNAIRE

Figure A.5: Second part of the third section of the web questionnaire:
“Changes to the Software Architecture during Development”

A.3. WEB QUESTIONNAIRE 121

Figure A.6: The fourth section of the web questionnaire: “Supporting the
Creative Processes”

122 APPENDIX A. QUESTIONNAIRE

Figure A.7: The fifth section of the web questionnaire: “Changes over Time”

A.3. WEB QUESTIONNAIRE 123

Figure A.8: The sixth and final section of the web questionnaire: “Closing
Remarks”

124 APPENDIX A. QUESTIONNAIRE

Appendix B

Questionnaire Results

In this chapter the results of the questionnaire will be presented. To preserve
the respondents’ anonymity, the companies will be named “Company A”,
“Company B”, etc.

B.1 Company A’s Questionnaire Response

Table B.1: Company A’s Questionnaire Results

Company A
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Comment: Performance plus functionality.

Q3: Our game concept heavily influences the
software architecture.

Fully Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Fully Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Partially Agree

Comment: Our third party tools do not do this, but we’ve
developed in-house extensions that do.

125

126 APPENDIX B. QUESTIONNAIRE RESULTS

Company A
Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Partially Disagree

Comment: It makes it a bit more expensive to go to cer-
tain genres, but that’s it.

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Partially Agree

Comment: Technical realities are always something the
creative side has to work around.

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Fully Agree

Q9: Who decides if change-requests from the
creative team are implemented?

Management

Q10: The technical team implements all fea-
tures requested by the creative team.

Neutral

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Fully Disagree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Neutral

Examples of 3rd party
software we use:

Unity 3D and various modules for it.

B.1. COMPANY A’S QUESTIONNAIRE RESPONSE 127

Company A
Q18: It is easier to develop games today than
it was 5 years ago.

Partially Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Fully Disagree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Agree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

No

Any other information
or comments:

128 APPENDIX B. QUESTIONNAIRE RESULTS

B.2 Company B’s Questionnaire Response

Table B.2: Company B’s Questionnaire Results

Company B
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Comment: Oversights in the game software architecture
may lead to serious dead ends leading to
rewrite of entire systems

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Comment: Main goals are: 1. performances 1.5. memory
consumption 2. actual purpose of the soft-
ware. Real time softwares as games *must*
perform according to the platform require-
ments in order to see the light of the day re-
gardless of the content ;)

Q3: Our game concept heavily influences the
software architecture.

Partially Agree

Comment: Entirely depends on the game concept re-
quirements but in general: the more generic,
within boundaries, the better.

Q4: The creative team is included in the de-
sign of the software architecture.

Partially Agree

Comment: This is mostly true when working on the tools
the creative team will be using. It rarely ap-
plies to in-game specific features.

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Comment: It may influence, but not dictate whenever
possible

B.2. COMPANY B’S QUESTIONNAIRE RESPONSE 129

Company B

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Partially Disagree

Comment: Most of the time, the creative team is not fully
aware of the game engine limitations so it is
not their job to make it work by locking the
creativity to things known to have been done
with the engine before, the people who imple-
ments just need to make the ideas work one
way or another :)

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Neutral

Comment: Depends how far in development and how big
of a changes, the odds of re-factoring an entire
system late in production are close to nil, but
the development team keeps an open mind at
all times.

Q9: Who decides if change-requests from the
creative team are implemented?

Management

Comment: Ultimately, the management can overrule ev-
erybody, but I would like to check the 3 op-
tions here, the creative team judges how im-
portant the change is, the technical team de-
cides if it is realistic and the management
makes sure it can be afforded. So mostly, it is
a team decision.

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Agree

Comment: It can happen the creative team con-
tributes on technical aspects during prototyp-
ing phase. Production quality code is however
left to the technical people.

130 APPENDIX B. QUESTIONNAIRE RESULTS

Company B
Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Comment: It is simple during prototyping phase,
technology-wise. However from a game
concept point of view, it is highly dis-
recommended and the fact it is simple does
not motivate the team to stack up features
because the existing one are just not convinc-
ing enough :)

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Agree

Comment: The ones already available and the ones they
request along the way.

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Partially Agree

Comment: At some extent, in editor mode yes, at run-
time only a subset of it.

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Partially Agree

Comment: At some extent, in editor mode yes, at run-
time only a subset of it.

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Neutral

Comment: Depends on the phase of the project.

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Partially Agree

Comment: While most of the systems are designed with
simplicity and fast iteration time in mind,
certain things still requires time consuming
tweaking tasks

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Comment: It is about time... ;)

B.2. COMPANY B’S QUESTIONNAIRE RESPONSE 131

Company B
Examples of 3rd party
software we use:

Unity (which includes Beast, Umbra, FMOD,
Substance, NVidia PhysX) and some free to
use public API

Q18: It is easier to develop games today than
it was 5 years ago.

Partially Disagree

Comment: The challenges have changed and the qual-
ity bar has risen, it is more accessible to peo-
ple less interested in nerdy things nowadays
(engines like Unity reduced/removed the low-
level aspect of the development), but develop-
ing a great game is still as challenging as be-
fore, the problems to solve just have evolved.

Q19: Middleware is more important to our
company today than 3 years ago.

Partially Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Disagree

Comment: Game development requires a more eccentric
creative problem solving than development in
most of other industries and this will probably
remain true forever ;)

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

132 APPENDIX B. QUESTIONNAIRE RESULTS

B.3 Company C’s Questionnaire Response

Table B.3: Company C’s Questionnaire Results

Company C
The number of employees in the company: 1 – 5

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Fully Disagree

Q3: Our game concept heavily influences the
software architecture.

Fully Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Fully Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Partially Disagree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Fully Disagree

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Fully Agree

Q9: Who decides if change-requests from the
creative team are implemented?

The creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Fully Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Partially Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Neutral

B.3. COMPANY C’S QUESTIONNAIRE RESPONSE 133

Company C

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Partially Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Partially Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Not Applicable

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Not Applicable

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Agree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

134 APPENDIX B. QUESTIONNAIRE RESULTS

B.4 Company D’s Questionnaire Response

Table B.4: Company D’s Questionnaire Results

Company D
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Fully Disagree

Q3: Our game concept heavily influences the
software architecture.

Fully Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Partially Agree

Comment: Only because I am a programmer and also the
lead designer. Other ”creative” people don’t
know enough to be productively included.

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Fully Disagree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Fully Disagree

Comment: That is not the way we do it here. The game
design comes first, then we build what is nec-
essary to make it happen.

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Fully Agree

Comment: But again, only because the head of the ”cre-
ative team” is president of the company and
also wrote the original version of the game
engine. If someone who doesn’t know how
to program were to come to me and demand
changes to the software architecture, I would
probably not listen very seriously.

B.4. COMPANY D’S QUESTIONNAIRE RESPONSE 135

Company D
Q9: Who decides if change-requests from the
creative team are implemented?

Management

Comment: Actually it is all of the above, but the question
would not let me put that as an answer.

Q10: The technical team implements all fea-
tures requested by the creative team.

Not Applicable

Comment: Things just aren’t segmented this way in our
situation.

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Fully Disagree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Partially Disagree

Comment: Our ”scripting system” is typing in C++ code
and recompiling the game.

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Not Applicable

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Not Applicable

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Disagree

Examples of 3rd party
software we use:

Bink, libvorbis

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Fully Disagree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Fully Disagree

136 APPENDIX B. QUESTIONNAIRE RESULTS

Company D

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

A lot of these questions seem inappropriate
to our situation but I tried to answer them
anyway.

B.5. COMPANY E’S QUESTIONNAIRE RESPONSE 137

B.5 Company E’s Questionnaire Response

Table B.5: Company E’s Questionnaire Results

Company E
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Q3: Our game concept heavily influences the
software architecture.

Partially Disagree

Q4: The creative team is included in the de-
sign of the software architecture.

Partially Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Partially Agree

Comment: Use two software tiers, that aims at very dif-
ferent levels of artist integration: Visual Stu-
dio and Unity3D

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Fully Disagree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Comment: Depending on structure. For assets handling,
yes, but creatively, not so much. In latter
case, the challenge is put to programmers to
extend useage

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Partially Agree

Q9: Who decides if change-requests from the
creative team are implemented?

The technical team

Comment: Sort of. The technical team advice what is
possible, and as such has final word. If it is
possible, the decision falls on management, as
it is usually related to economic costs

138 APPENDIX B. QUESTIONNAIRE RESULTS

Company E
Q10: The technical team implements all fea-
tures requested by the creative team.

Fully Agree

Comment: Of course, if the requests are decided to be
implemented in the first place

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Neutral

Comment: This really depends a lot, and can only be
answered on a case to case effect

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Disagree

Comment: New tools can be made. However, it is cer-
tanly best to keep within the suite offered

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Partially Agree

Comment: With some constraints, content must be prop-
perly prepped of course

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Examples of 3rd party
software we use:

A lot of stuff around Unity3D and the com-
munity there

Q18: It is easier to develop games today than
it was 5 years ago.

Partially Agree

Comment: Technically and graphically, yes. Conceptu-
ally, no.

Q19: Middleware is more important to our
company today than 3 years ago.

Partially Agree

B.5. COMPANY E’S QUESTIONNAIRE RESPONSE 139

Company E
Q20: Game development is more like ordinary
software development today than 5 years ago.

Fully Disagree

Comment: Nope. It was software development then, and
still is now

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

140 APPENDIX B. QUESTIONNAIRE RESULTS

B.6 Company F’s Questionnaire Response

Table B.6: Company F’s Questionnaire Results

Company F
The number of employees in the company: 1 – 5

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Partially Disagree

Q2: The main goal of our software architec-
ture is performance.

Neutral

Q3: Our game concept heavily influences the
software architecture.

Neutral

Q4: The creative team is included in the de-
sign of the software architecture.

Neutral

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Neutral

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Neutral

Q9: Who decides if change-requests from the
creative team are implemented?

The creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Fully Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Fully Agree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

B.6. COMPANY F’S QUESTIONNAIRE RESPONSE 141

Company F
Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Fully Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Neutral

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

No

Any other information
or comments:

142 APPENDIX B. QUESTIONNAIRE RESULTS

B.7 Company G’s Questionnaire Response

Table B.7: Company G’s Questionnaire Results

Company G
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Not Applicable

Q2: The main goal of our software architec-
ture is performance.

Not Applicable

Q3: Our game concept heavily influences the
software architecture.

Not Applicable

Q4: The creative team is included in the de-
sign of the software architecture.

Not Applicable

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Fully Agree

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Partially Agree

Q9: Who decides if change-requests from the
creative team are implemented?

The creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Fully Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Not Applicable

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Agree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

B.7. COMPANY G’S QUESTIONNAIRE RESPONSE 143

Company G
Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Examples of 3rd party
software we use:

UE3, Speedtree, Scaleform

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Disagree

Q19: Middleware is more important to our
company today than 3 years ago.

Fully Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Fully Disagree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

we do not research and produce our own en-
gine but licence middleware and engine, we
spend our coding time on special features and
gameplay.

144 APPENDIX B. QUESTIONNAIRE RESULTS

B.8 Company H’s Questionnaire Response

Table B.8: Company H’s Questionnaire Results

Company H
The number of employees in the company: 500+

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Disagree

Comment: also future change, ability to be datadriven,
optimised deployment processes, ease ot au-
tomation/scriptability, testability

Q3: Our game concept heavily influences the
software architecture.

Partially Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Neutral

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Comment: We have engines that gives us a great benefit
when building new games and we would pre-
ferr to continue on same engines, however it
doesnt fully dictate the games we will make
in future, this is primarily market driven

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Fully Agree

B.8. COMPANY H’S QUESTIONNAIRE RESPONSE 145

Company H
Q9: Who decides if change-requests from the
creative team are implemented?

The creative team

Comment: depends very much on the scale of change, we
try as much as possible to keep this within
and as a dialogue between the tech/creative
teams, but if it means major change it goes
to management. We also aim to be as much
product/feature driven so primary owner is
creative team.

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Agree

Comment: its very much a dialogue, we try not to have
too formal split between tech and creative
team when thinking about this, but prioro-
tise what the user experience should be and
when we can ship at target quality

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Partially Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Neutral

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Partially Agree

Comment: yes, but could be better and more flexible (as
always...)

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Examples of 3rd party
software we use:

software or modules?

146 APPENDIX B. QUESTIONNAIRE RESULTS

Company H
Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Partially Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Neutral

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

B.9. COMPANY I’S QUESTIONNAIRE RESPONSE 147

B.9 Company I’s Questionnaire Response

Table B.9: Company I’s Questionnaire Results

Company I
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Fully Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Q3: Our game concept heavily influences the
software architecture.

Fully Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Fully Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Partially Agree

Q9: Who decides if change-requests from the
creative team are implemented?

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Disagree

Comment: Some requested features are not tech. feasible

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Neutral

Comment: Depends on the type of element - some may
require significant underlying engine changes

148 APPENDIX B. QUESTIONNAIRE RESULTS

Company I
Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Disagree

Comment: Our current engine (Unity) is easily extensible

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Disagree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Fully Agree

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Neutral

Q19: Middleware is more important to our
company today than 3 years ago.

Fully Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Fully Disagree

Comment: I think the tools available today moves game
dev further away from “ordinary software
dev”.)

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

B.10. COMPANY J’S QUESTIONNAIRE RESPONSE 149

B.10 Company J’s Questionnaire Response

Table B.10: Company J’s Questionnaire Results

Company J
The number of employees in the company: 1 – 5

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Partially Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Q3: Our game concept heavily influences the
software architecture.

Partially Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Neutral

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Partially Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Neutral

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Neutral

Q9: Who decides if change-requests from the
creative team are implemented?

The creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Agree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Neutral

150 APPENDIX B. QUESTIONNAIRE RESULTS

Company J
Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Neutral

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Neutral

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Neutral

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Agree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

B.11. COMPANY K’S QUESTIONNAIRE RESPONSE 151

B.11 Company K’s Questionnaire Response

Table B.11: Company K’s Questionnaire Results

Company K
The number of employees in the company: 1 – 5

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Partially Agree

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Q3: Our game concept heavily influences the
software architecture.

Partially Disagree

Q4: The creative team is included in the de-
sign of the software architecture.

Fully Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Fully Disagree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Neutral

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Fully Agree

Q9: Who decides if change-requests from the
creative team are implemented?

The technical team
and the creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Not Applicable

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Agree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

152 APPENDIX B. QUESTIONNAIRE RESULTS

Company K
Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Partially Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Not Applicable

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Partially Agree

Q20: Game development is more like ordinary
software development today than 5 years ago.

Neutral

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

No

Any other information
or comments:

B.12. COMPANY L’S QUESTIONNAIRE RESPONSE 153

B.12 Company L’s Questionnaire Response

Table B.12: Company L’s Questionnaire Results

Company L
The number of employees in the company: 5 – 10

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Neutral

Q2: The main goal of our software architec-
ture is performance.

Partially Agree

Q3: Our game concept heavily influences the
software architecture.

Partially Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Partially Disagree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Fully Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Partially Agree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Partially Agree

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Neutral

Q9: Who decides if change-requests from the
creative team are implemented?

The technical team,
management, and the
creative team

Q10: The technical team implements all fea-
tures requested by the creative team.

Neutral

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Fully Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Fully Disagree

154 APPENDIX B. QUESTIONNAIRE RESULTS

Company L

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Fully Agree

Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Neutral

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Not Applicable

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Fully Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Not Applicable

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Agree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

No

Any other information
or comments:

B.13. COMPANY M’S QUESTIONNAIRE RESPONSE 155

B.13 Company M’s Questionnaire Response

Table B.13: Company M’s Questionnaire Results

Company M
The number of employees in the company: 1 – 5

Design of Software Architecture
Q1: Design of software architecture is an im-
portant part of our game development pro-
cess.

Neutral

Q2: The main goal of our software architec-
ture is performance.

Neutral

Q3: Our game concept heavily influences the
software architecture.

Partially Agree

Q4: The creative team is included in the de-
sign of the software architecture.

Fully Agree

Q5: Our existing software suite provides fea-
tures aimed at helping the creative team do
their job.

Partially Agree

Q6: Our existing software architecture dic-
tates the future game concepts we can de-
velop.

Fully Agree

Changes to Software Architecture during Development
Q7: The creative team has to adopt their
ideas to the existing game engine.

Partially Agree

Q8: During development, the creative team
can demand changes to the software architec-
ture.

Partially Agree

Q9: Who decides if change-requests from the
creative team are implemented?

Management

Q10: The technical team implements all fea-
tures requested by the creative team.

Partially Agree

Q11: It is simple to add new gameplay ele-
ments after the core of our game engine has
been completed.

Partially Agree

Q12: During development, the creative team
has to use the tools and features already avail-
able.

Partially Agree

Supporting the Creative Processes
Q13: Our game engine supports dynamic
loading of new content.

Partially Agree

156 APPENDIX B. QUESTIONNAIRE RESULTS

Company M
Q14: Our game engine has a scripting sys-
tem the creative team can use to try out and
implement new ideas.

Fully Agree

Q15: The creative team is included in our de-
velopment feedback loop (e.g., scrum meet-
ings).

Fully Agree

Q16: Our game engine allows rapid pro-
totyping of new levels, scenarios, and
NPC’s/behavior.

Fully Agree

Changes over Time
Q17: Today our company uses more 3rd party
modules than 3 years ago.

Neutral

Examples of 3rd party
software we use:

Q18: It is easier to develop games today than
it was 5 years ago.

Partially Agree

Q19: Middleware is more important to our
company today than 3 years ago.

Neutral

Q20: Game development is more like ordinary
software development today than 5 years ago.

Partially Agree

Closing Remarks
Are you willing answer some more in-depth
follow up questions later?

Yes

Any other information
or comments:

Appendix C

Survey

In this section, the details of the survey are presented. Firstly the e-mail
sent to game developers regarding the survey will be given. Secondly, screen
shots of the web survey will be presented.

C.1 E-Mail sent to Game Developers

The e-mail sent to the developers is given in full below.

Dear Sir/Madam,

A while back you replied to a questionnaire regarding the

creative processes and software architecture in games. First

of all I would like to thank you for answering that

questionnaire. I really appreciate the time and effort you

have used.

Furthermore, at the end of the previous questionnaire you

indicated that you would be able to answer some follow-up

questions to said quesitonnaire. These follow-up questions are

avaialable at:

https://www.surveymonkey.com/s/FollowUpCreativeSoftwareArchitecture

Once again, thank you for replying to the questionnaire, and

thank you for your time.

--

Njål Nordmark

157

158 APPENDIX C. SURVEY

C.2 Web Survey

In this section screen shots of the web survey will be presented in order.

Figure C.1: First section of the web survey: “Introduction”

C.2. WEB SURVEY 159

Figure C.2: First section of the web survey: “Game Engine”

160 APPENDIX C. SURVEY

Figure C.3: First section of the web survey: “Software Architecture and the
Creative Team”

C.2. WEB SURVEY 161

Figure C.4: First section of the web survey: “Implementing Changes”

162 APPENDIX C. SURVEY

Appendix D

Survey Results

In this appendix the results from the survey will be presented.
Where the responses have allowed connecting the replies from the ques-

tionnaire to the survey, the companies will receive the same name (e.g.,
Company B). The one respondent which did not provide the identifying
information will be named Company Z.

D.1 Company B

Table D.1: Company B’s Questionnaire Results

Company B

Game Engine
Which game engine do you use? Unity 3D

Did you use any middleware or third party modules in your game?

Yes (please specify): On the previous game, developed with the in-
house engine, FMOD was the only third-party software licensed and
used for audio playback. SDL was also used for the Mac OS X port
but was a free open source library. On the next projects, done with
Unity 3D, we obviously use Unity as middleware. Because of the
way their engine is constructed, it is highly unlikely we will need any
additional third party modules as FMOD, Beast lightmapping and
Umbra occlusion culling solution are integrated to the engine and
part of the engine license.

163

164 APPENDIX D. SURVEY RESULTS

Company B
Do you have any thoughts regarding the evolution of game engines
in the future?

Very small game engines will most likely remain being used for
very small budget, low profile projects the same way it has always
been. With the big players, the competition is becoming tougher
and tougher, Unreal Engine and Cryengine have been leading the
market for a long time but their costs and licensing models are not
best fitted for small companies which would be able to create AAA
quality games even with a smaller budget than some bigger compa-
nies. Unity 3D has started to be seen as a dangerous competition
as it is nowadays of about the same power than the big competitiors
and after they turned their indie license into a free version, Unreal
responded by bringing the UDK for indie developer, when Unity 3D
came with robust mobile platform support and Flash, both Unreal
and Cryengine came up with similar platforms. In the future, -the
simplicity of porting and its cost will be one of the leading criterias
on defining what is the best technology available (nowadays i.e port-
ing between 2 platforms with Unity3D can be as simple as one click
and a bit of beforehand-planning = very low cost and large platform
coverage) -the workflow iteration time and usability will be equally
important as a game done with one technology of same quality but
cheaper than a game done with another technology will make the
former a winner middleware -the amount of features available will
always be a convincing factor for developers to adopt a technology.
While in practise, the quality of the features is worth far more than
their quantity, technolgies will need to stay on top of marketing with
brand new ”next-gen” mind blowing features (which will in most of
cases never be used at their best in the context of a game) In con-
clusion, engines will focus on making sure their competitor does not
have a clear competitive advantage, they will keep using their repu-
tation as one of their main selling point and they will keep adding
new features, most of them mostly for visibility purpose and they
will focus more and more on usability to reduce development costs.
That said, each technology approaches each problem a different way,
so the developers should be able to pick what fits the best for their
game depending on how the technology solves their problem and of
course on the licensing prices.

D.1. COMPANY B 165

Company B
Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

The technical team discusses all the time with the creative team in
order to find the most optimal ways to implement and expose certain
features. They influence the design of the software by communicat-
ing what workflow would work best for them before the tools get
implemented.

Which features in particular do your software suite provide to help
the creative team do their job?

If by software suite you mean middleware, Unity 3D helps us by pro-
viding a very intuitive graphical user interface, flattening the learning
curve for creative people put in contact with the tech for the first
time. It also allows the tech team to fully customize the tools avail-
able to create content and extends the existing one. -Customizing
the editor is the most helpful feature -the built-in asset importers
allows the art team to test their assets in-game without the help of
a programmer

To what extent do the creative team use the game engine and its
features to try out new ideas?

Some members of the creative team just use the game engine to
import the assets and test them in-game, some others with a very
light programming background take a copy of the project and start
messing around with features implemented by the tech team. They
prototype their own features such as camera controls, simple game-
play mechanics by doing minor changes to the base code. Once they
have something they are happy with, the tech team makes the code
production quality and the feature stays in the game. Of course, the
level design is entirely done in the Unity editor, so all level related
work is done in the game engine editor, this meaning placing objects
in the world, triggers, level flow and tweaking gameplay metrics.
Once a level is functional, the art team will iterate on it by replacing
placeholder assets by the proper ones, tweak the lighting environ-
ment and make the level look pretty in general. While this does not
always involve new ideas, most of the time, it turns out great ideas
emerge from the ability to try to envision their original idea directly
within a level.

166 APPENDIX D. SURVEY RESULTS

Company B
Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

This question is partially answer by the previous ones but as a sum-
mary, yes, it is part of the creative team’s routine. This applies both
to prototype phase for rapid prototyping and for production phase
for level editing.

Implementing Changes

How would your company reason about implementing the above
mentioned change?

We would start with a meeting involving both artists, level designers
and programmers (or at least one acting lead to represent each de-
partment). During this meeting, we would establish at which extents
does an earthquake alter the world. E.g does it only move around
certain objects or does it deform the terrain heights, destructs part
of the environment and so on, and we would come to an agreement
on how to create the most dynamic result with the least amount of
work and considering all possible known technical limitations (does
it involve network play, does it require a lot more new content or can
it be automated by code...). At this point, everyone is in sync on
what is expected from this feature, programming and art will meet
to agree on art assets necessary for prototyping (if there is a need for
prototype art), art will then get started on those and programming
will start a quick prototype (1 to 2 days at most) in order to have
a visual starting point for the next phase. During the next phase,
programming and design will meet to give feedback on the prototype
and iterate to get the system to give the result as close to what is ex-
pected by design. Once the behaviour is as expected, programming
and design will discuss on usability, what parameters can be con-
trolled and how to expose them in the most simplistic way possible,
which data needs to be serialized in order to save/reload the state,
or can we get away by ignoring certain data. Once in agreement,
programming will fix the prototype code to be production quality
and will expose the parameters as discussed. The feature goes on-
line, it will eventually be iterated again in the future within reason
if an great idea pops up and makes sense to implement.

D.1. COMPANY B 167

Company B
Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

The way we iterated the construction of this feature, the raw idea
brought by the creative team was early on made more realistic with
the minimal quality loss possible by discussing with programming,
then the idea was polished and made functional as a game feature
doable within a realistic schedule during the meeting with design.
Such a feature would have been estimated from 3 to 5 days from the
first meeting to the point it is production ready. Management would
have supervised the process at a key timing, and would generally
not have intervened in the decision unless the final time estimate is
beyond schedule or budget.

168 APPENDIX D. SURVEY RESULTS

D.2 Company D

Table D.2: Company D’s Questionnaire Results

Company D

Game Engine
Which game engine do you use? Custom

Did you use any middleware or third party modules in your game?

No

Do you have any thoughts regarding the evolution of game engines
in the future?

No response

Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

We’re a small company, so our creative team is our development
team. We call all of the shots.

Which features in particular do your software suite provide to help
the creative team do their job?

We strive to make it easy to author new content and ensure that it
functions as desired.

To what extent do the creative team use the game engine and its
features to try out new ideas?

Fully - the creative team is the same as the development team. If
we can implement something, we can try it out.

Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

Yes.

Implementing Changes

How would your company reason about implementing the above
mentioned change?

We’d debate what it would take to make the changes and whether
or not it was worth it with respect to the primary goal: shipping a
fun game.

Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

Everyone would be involved equally.

D.3. COMPANY E 169

D.3 Company E

Table D.3: Company E’s Questionnaire Results

Company E

Game Engine
Which game engine do you use? Several, Unity3D i

smuch in use

Did you use any middleware or third party modules in your game?

Yes (please specify): Several depending on project. I’m not on top
of all the details.

Do you have any thoughts regarding the evolution of game engines
in the future?

No response

Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

As long as it is in line with recommendations from the devs, the
creative team contributes quite a bit.

Which features in particular do your software suite provide to help
the creative team do their job?

primarily in rapid prototyping, tracking of tasks and milestones and
in concept / document sharing

To what extent do the creative team use the game engine and its
features to try out new ideas?

Not so much. The creatives usually mock up in other software of
choice. The devs then hands of prototypes, or pair programs with
creatives

Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

In close cooperation with the devs, yes.

Implementing Changes

How would your company reason about implementing the above
mentioned change?

The creative team would request input from the devs regarding
physics, since the devs are likely to find realistic sources for im-
plementation. Based on the feed back, the creatives would probably
look at the realistic constraints vs. the goal of the system, and pro-
vide a specification for prototyping by the devs. <return> :)

170 APPENDIX D. SURVEY RESULTS

Company E
Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

All. In general terms, the management always have the last say. Still,
the example provided gives me an idea that it has been decided that
this shall be done. So the creatives and the devs will be charged
with finding the solution. The management needs to sign off on any
budgets, and preferably get some alternatives to select from.

D.4. COMPANY H 171

D.4 Company H

Table D.4: Company H’s Questionnaire Results

Company H

Game Engine
Which game engine do you use? Various

Did you use any middleware or third party modules in your game?

Yes (please specify): Native mobile apps = Unity Mobile browser
apps = HTML5 internal engine with a few smaller javascript shims
and libraries Facebook pc = Flash Including a wide variety of li-
braries, ranging from 3D with away 3d, physics with box2d and
smaller tweening engines and similar.

Do you have any thoughts regarding the evolution of game engines
in the future?

My main focus when it comes to game engines is related to the cross
platform and cross domain nature of game development. Future
engines, as the trend seems to be proving, should run across mo-
bile/desktop/console and seamlessly be able to run logic on client
or server in same language to gain effeciences in production. Im-
portant that a game engine these days is no longer just render-
ing/scengraph/scripting with tools, it needs to provide, or be a com-
ponent of, a more complete set of infrastructure given the more online
and persisent nature of games

Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

The creative team works with the techincal team to find the best way
for the content to fit with the architechture of the software. Be it
what level of flexibility should be exposed to the tools, how the tools
should interact with development/integration or live versions of the
game service. To simple things like finding the optimal workflow and
matching that with choices in technology.

172 APPENDIX D. SURVEY RESULTS

Company H
Which features in particular do your software suite provide to help
the creative team do their job?

at the most high level the software suites that manage to expose
usable tools to create assets and content that allow the designers to
directly work with the runtime and game experience are very helpful.
a simple example for smaller flash games is the ability to create
animations and UIs indenpendat from changing any line of code in
a way where the artist is in control and can work autonomously
and effeciently without needing to go throuh any hoops to test out
features.

To what extent do the creative team use the game engine and its
features to try out new ideas?

We aim as much as possible to allow the creative team to use the
game engine, or subparts of the engine to allow them to do rapid
prototypes, having the games quest/scripting engine as flexible as
possible so they can mix and match various triggers, events and
data to create new types of experiences they want. Naturally, the
more data and tools driven we can be the more the creative team
can exerpiment.

Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

yes, however we do tend to create ”Feature oriented teams” of 3
people, 1 coder, 1 artist and 1 designer, that work in union centered
around a feature so that all disciplines are represented as a single
unit rather than splitting creative/tech teams too much. This works
well as our teams as small and relatively low techincal complexity

Implementing Changes

How would your company reason about implementing the above
mentioned change?

1. Why are we doing this? What is in it for the player? What
metrics will this drive for us if any? 2. How long time will it take?
Will it cause any knock on effect or future work other than this single
change? Will it distract from other critical features? 3. Do we think
it will be awesome fun? ps. as a note, i would be dissapointed if
this type of feature change became a big discussion. If the engine is
written well, and if i understand the underlying example this should
not be a major issue to do. (having done something exactly like this
in [one of our games] using Box2D). I would just imagine the static
game world still being a polygon geometry that could be modified.

D.4. COMPANY H 173

Company H
Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

We strive to have features and design be as bottom up driven as
possible, if work added to the project is large and more than 2 weeks
of work we need to have a discussion as a team to consider how
it fits in with overall priorities. If the team itself cannot reach a
conclusion together it is up to the Producer to make final decision.
The Producer can go to management and explain the rationale and
get a more executive decision back if it is a major shift in time or
budget. However in this case, like i said, i would preferr the team
just to go ahead and hopefully have made good enough engine/tech
and be fast enough team to execute on that without much further
ado

174 APPENDIX D. SURVEY RESULTS

D.5 Company M

Table D.5: Company M’s Questionnaire Results

Company M

Game Engine
Which game engine do you use? Corona

Did you use any middleware or third party modules in your game?

No

Do you have any thoughts regarding the evolution of game engines
in the future?

More GUI based engines for ”standard”game types, where the visuals
and the story is more important. But there will also be a need
for open engines that will let the creative and talented create new
and innovative games. Looking at the increase in Game developers
worldwide, more engines will evolve into ”easy to use” products as
more money is invested in them. Example of this is unity 3d engine.

Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

In our experience quite a lot, as we have always been a small team,
and that in turn demands us to focus on streamlining the produc-
tion flow, enabling the creatives to actively use the softwares most
effectively.

Which features in particular do your software suite provide to help
the creative team do their job?

Our internally created programs used in production, lets the cre-
atives plug them directly into their commercial tools, in order to
test and view assets directly in the game. And that is a feature that
we fin vey effective, as what you see if what you actually get, and
any problems can be addressed directly.

To what extent do the creative team use the game engine and its
features to try out new ideas?

See above.

Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

Yes indeed, see above again please :)

D.5. COMPANY M 175

Company M
Implementing Changes

How would your company reason about implementing the above
mentioned change?

No response

Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

No response

176 APPENDIX D. SURVEY RESULTS

D.6 Company Z

Table D.6: Company Z’s Questionnaire Results

Company Z

Game Engine
Which game engine do you use? Our own

Did you use any middleware or third party modules in your game?

Yes (please specify): libvorbis DirectX 9

Do you have any thoughts regarding the evolution of game engines
in the future?

No.

Software Architecture and the Creative Team

In what ways are the creative team allowed to contribute to the
design of the software architecture?

No response

Which features in particular do your software suite provide to help
the creative team do their job?

No response

To what extent do the creative team use the game engine and its
features to try out new ideas?

No response

Is using the features of the game engine part of the creative team’s
routine, as in doing a sort of rapid prototyping?

No response

Implementing Changes

How would your company reason about implementing the above
mentioned change?

Look, if we decide to make a game, it is because we find the experi-
ence to be had in that game meaningful and/or important. Therefore
we execute whatever technology is required to make the game work.
Sometimes compromises are made because the amount of work re-
quired to make things happen would be disproportionate, but these
compromises never strike to the heart of the game.

Between the creative team, the technical team, and management,
who will be involved in this decision, and how important will their
opinions be?

I make all major decisions like this. It’s pretty much unilateral.

	Title Page
	I Introduction
	Project Introduction
	Project Context
	Project Motivation
	Problem Definition
	Creative Team versus Technical Team

	Research Questions
	Structure
	Related Work

	Research Method
	The Scientific Method for Software Engineering
	Goal Question Metric
	Research Paradigms
	Empirical Strategies
	Survey
	Case Study
	Experiments

	Literature Review
	Measurements in Software Engineering
	Objective and Subjective Measure
	Direct or Indirect Measure

	Validation of Results
	Application of Research Methods
	Research Method and Paradigm
	Problem Definition
	Empirical Strategies and Measurements

	II Pre-Study
	Software Architecture
	What is Software Architecture?
	The chosen Definition of Software Architecture
	Implications of this Definition
	Views of Software Architecture

	Goals of a Software Architecture
	Designing a Software Architecture
	Domain-Driven Design
	Responsibility-Driven Design

	Software Architecture in Games
	Does Games need a Software Architecture
	Game Engine Architecture
	What is a Game Engine
	Modules
	Develop or Buy

	Middleware
	Supporting the Creative Team

	Game Development
	History of Game Development
	Requirements Engineering
	Evolution of Game Development
	Research Quality
	The use of External Game Engines
	Increased use of Middleware
	Tools

	Web Surveys
	Challenges with Questionnaire Design
	Limitations of Web Surveys
	Types of Nonresponse
	Survey Characteristics that Affect Nonresponse

	SurveyMonkey
	Designing Web Questionnaires
	Analyzing the Results

	III Research
	Questionnaire
	Design of the Web Questionnaire
	Limitations of Web Surveys
	General Structure
	Length
	Disclosure of Survey Progress
	Visual Presentation
	Interactivity
	Question and Response Format

	Design of the Paper Questionnaire
	Analysis
	Question Numbering
	Presentation

	Questionnaire Results and Analysis
	Design of Software Architecture
	Changes to the Software Architecture during Development
	Supporting the Creative Processes
	Changes over Time

	Survey
	Survey Design
	Introduction
	Game Engine
	Software Architecture and the Creative Team
	Implementing Changes
	Relation between the Survey and the RQs

	Analysis of Responses
	Game Engine
	Software Architecture and the Creative Team
	Implementing Changes

	Experiences
	Previous Experience with Game Developers
	Questionnaire Experiences
	Design
	Distribution
	Collection

	Survey
	Design
	Feedback
	Collection

	Summary

	Evaluation
	Research Method
	Research Performed
	Strengths and Weaknesses

	IV Conclusions
	Research Conclusions
	Validity of Results
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4
	Research Question 5

	Future Studies
	High-Level Third Party Game Engines
	Cost-Benefit Trade-Off
	Feature Availability in Game Engines
	Reference Architectures

	Bibliography
	Questionnaire
	Paper Questionnaire
	E-Mail sent to Game Developers
	Web Questionnaire

	Questionnaire Results
	Company A's Questionnaire Response
	Company B's Questionnaire Response
	Company C's Questionnaire Response
	Company D's Questionnaire Response
	Company E's Questionnaire Response
	Company F's Questionnaire Response
	Company G's Questionnaire Response
	Company H's Questionnaire Response
	Company I's Questionnaire Response
	Company J's Questionnaire Response
	Company K's Questionnaire Response
	Company L's Questionnaire Response
	Company M's Questionnaire Response

	Survey
	E-Mail sent to Game Developers
	Web Survey

	Survey Results
	Company B
	Company D
	Company E
	Company H
	Company M
	Company Z

