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Abstract

Counting and classifying fish moving upstream in rivers to spawn is a useful
way of monitoring the population of different species. Today, there exist some
commercial solutions, along with some research that addresses the area. Case-
based reasoning is a process that can be used to solve new problems based
on previous problems. This thesis studies the possibilities of combining im-
age processing techniques and case-based reasoning to classify species of fish
which are similar to each other in both shape, size and color. Methods for im-
age preprocessing are discussed, and tested. Methods for feature extraction and
a case-based reasoning prototype are proposed, implemented and tested with
promising results.

Sammendrag

Telling og klassifisering av fisk som svømmer oppstrøms i elver for å gyte er
en nyttig måte å overvåke bestanden av ulike arter på. I dag eksisterer det
noen kommersielle løsninger, sammen med noe forskning som tar for seg prob-
lemområdet. Case-based reasoning er en prosess som kan brukes til å løse
nye problemer basert på tidligere problemer. Denne oppgaven studerer mu-
lighetene for å kombinere bildebehandlingsteknikker og case-based reasoning
for å klassifisere arter av fisk som er lik hverandre i både form, størrelse og
farge. Metoder for bildebehandling diskuteres, og testes. Metoder for egen-
skapsuttrekking og en prototype for case-based reasoning blir foreslått, imple-
mentert og testet med lovende resultater.
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Chapter 1

Introduction

Counting and classifying fish can be useful for several settings. One of which
is the monitoring of volume and species of fish going upriver to spawn dur-
ing spring and summer. This monitoring can provide useful overview of the
population of each species in the area.

Today, there exist few commercial solutions to automatically count and classify
species. The VAKI Riverwatcher 1 is the market leader. The Riverwatcher uses
infrared scanning to count fish but the classification has to be done manually
based on images that are saved for each fish counted. The system depends on
very specialized and expensive equipment in the form of infrared sensors and
digital video.

The goal for this thesis is to study the use of image processing and case-based
reasoning for automatically determining species of fish based solely on digital
video. The three species addressed for classification are among the most com-
mon species in Norwegian rivers and streams: Arctic Salmon, Brown Trout and
Arctic Char.

A set of fish videos has been provided by the fisherman’s association of the
Laksådal river in Gildeskål, Norway. These videos are captured in a closed
environment, where the fish swim trough a magnetic gate which activates a
camera, recording a clip of the passing fish. As can be seen in Figure 1.3, the
quality of the videos is not sufficient separate fish which are similar in shape
and color. Regardless, these videos has been used for testing the preprocess-
ing, but for testing the classification an ad-hoc dataset is used. However, the

1http://www.vaki.is/Products/RiverwatcherFishCounter/
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closed-environment in which these videos are captured is used to define a set
of constraints for the type of videos on which the classification should be able
to operate:

• There should be only one fish in the image.

• The entire fish should be visible in the image.

• The fish should be captured from the side.

• The vertical rotation of the fish should be limited to ∼ 45 degrees.

• The distance from the camera to the fish should be no greater that one
meter.

• The background should be uniform and static.

Figure 1.1: Poor quality image. Figure 1.2: Good quality image a.

aImage by Morten Harangen (reprinted
with permission)

Figure 1.3: A poor quality image from the set of fish videos, and a good quality
image for reference (except for the background not being uniform).

Separating the three species from each other is not always trivial, even for a
trained human eye. Char is the easiest to distinguish as its pattern is inverted
compared to the pattern on the other two species, with spots that are brighter
than the rest of the body. Additionally, its belly turns red during the spawning
period. Salmon and trout are not as easy to separate from each other, but there
exist features that can be used to distinguish them. The caudal peduncle tends
to be fuller on the trout, while it is more lean on the salmon. The caudal fin is
often concave in salmon, while it is usually straight or convex in trout. Also,
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while the salmon and trout are quite similar in colors, the trout often has dark
spots all the way down to the abdominal region, while the salmon’s spots end
at the lateral line.

A human expert is likely to use a combination of features to distinguish be-
tween the species, based on knowledge gained from previous experience with
the species. One way to replicate this expert behavior is to use case-based rea-
soning (CBR). CBR uses past problems to solve new problems, much like the
way the human expert will use previous experience to distinguish the species.

Case-based reasoning has the advantage of adapting to the available data and
learning from previous experience, as opposed to e.g. a decision tree that relies
only on the knowledge of the programmer. While the decision tree will always
use the same rules, case-based reasoning will adapt over time to make use of
the features that are most important when separating classes from each other.

The remainder of this thesis is structured as follows. In Chapter 2, a survey of
related research in the field of automatic fish classification and other relevant
fields is given. Chapter 3 present the tools used, while Chapter 4 explains the
methods used for the proposed system. Chapter 4 is split in three parts, prepro-
cessing, feature extraction and case-based reasoning. In Chapter 5 the results
are presented, and Chapter 6 discusses them. Chapter 7 is devoted to future
work.
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Chapter 2

Related research

No previous work in the area of fish classification using case based reasoning
has been found. Therefore, this chapter has been separated in two sections,
Section 2.1 addresses fish classification in general, while Section 2.2 addresses
image interpretation with case-based reasoning.

2.1 Fish classification

There are several existing works which address the problem of automatic fish
classification in general. Common for most of them are that they extract sym-
bolic or numerical features, which are then used in a reasoning process to clas-
sify the fish. Following is a description of some of the previous work done in
this area.

Saue [2003] proposes a way to separate salmon and trout using the euclidean
distance from a set of quantified features. The features are the width of the cau-
dal peduncle, curve of the caudal fin and the pattern below the lateral line. How
the features are extracted is only vaguely described in the report. The extracted
feature values are compared to the mean value for each species, calculated by
a training set, and the species with the smallest euclidean distance is the found
class. The proposed solution is only tested on the 10 images in the training set,
along with one salmon, but all images tested are classified correctly.

Akgül [2003] propose a system based on eigenspaces. The proposed system is
invariant to rotation, and is able to correctly separate nine different species with
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a success rate of 76% on a dataset containing five images per fish.

Rodrigues et al. [2010] propose a system based on two robust feature extraction
techniques: Scale-Invariant Feature Transform (SIFT) and Principal Component
Analysis (PCA), and two immunological algorithms: Artificial Immune Net-
work and Adaptive Radius Immune Algorithm. The system achieves a 92%
success rate for six species of dead fish. The dataset used contains three fish per
species with six images per fish. The system is also tested on four live fish where
it achieves a 92% with a dataset containing one fish per species and twelve im-
ages per fish.

Lee et al. [2003] propose a classification technique based on six shape descrip-
tors. These are the adipose fin, anal fin, caudal fin, head and body shape, size
and length/depth ratio of the body. Testing shows a 100% success rate for seven
species, but the test data is very limited with only 22 images that together rep-
resent nine species.

Zion et.al. present a shape based classification system for separating three
species, in Zion et al. [2000] the system is tested on dead fish, while it is tested on
live fish in Zion [1999]. For dead fish, the accuracy is 96-100% for three species
represented by a dataset containing 143 images, almost evenly distributed among
the species. For live fish, the accuracy is 91-100% for three datasets containing
96, 140 and 146 images. The method used in both papers is based on Hu invari-
ant moments for the whole body, the head and the tail.

In Zion et al. [2007] the same authors propose a continuation of the system,
as the original system proved to be to sensitive to water opaqueness and fish
motion. The improved system uses contour landmarks, which are significant
points along the contour, and the relation between them. The improved system
shows a success rate of 98-99% with two datasets of 1701 and 2164 images.

Rova et al. [2007] propose a system based on deformable templates for separat-
ing two species with similar shape. The system uses shape contexts (Belongie
et al. [2002]), distance transforms, iterative warping (P.F.Felzenszwalb and Hut-
tenlocher [2005]) and a support vector machine(Cortes and Vapnik [1995]) for
texture classification to classify the two species. A success rate of 90% is achieved
with cross-validation testing on a dataset containing 320 images, 160 for each
species.

What differentiates the specific problem addressed in this thesis from most of
the problems above, is the visual similarity between the species to classify. Two
of the problems does resemble the problem at hand, Saue [2003] proposes a way
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to separate salmon and trout, which are two of the species addressed in this
thesis. Rova et al. [2007] separate two other species, that have similar shapes to
eachother. Both achieve good results, but none of them have been thoroughly
tested.

2.2 Case-based reasoning and image interpretaion

Perner [2001] argues for the use of case-based reasoning in image interpreta-
tion. The use of CBR in image interpretation is far from widespread despite
that, according to this paper, it has several advantages over traditional image
interpretation techniques. Among the advantages is the ability overcome prob-
lems regarding limited number of observations, environmental influence and
noise. As CBR does not rely deeply on a well-formulated domain theory, it can
be a good approach for image interpretation systems.

In Perner et al. [2006], a summary of the use of case-based reasoning in image
processing and interpretation is made. Below is a short description of some of
the papers, which are considered most relevant for this thesis.

Grimnes and Aamodt [1996] propose a system for medical image interpreta-
tion containing two case-based reasoners. One for segment identification, the
Segment ImageCreek (SICT). The other for interpretation of the entire image, the
Wholistic ImageCreek (WICT). The cases in the segment case-base SICT are used
as indexes for the image interpreting reasoner WICT.

Micharelli et al. [2000] use wavelet transforms (Charles [1992]) to find image
properties, which are stored as cases in a case-base. The proposed architecture
is applied to mobile robots, making them capable of classifying objects in order
to navigate.

Perner and Bühring [2004] propose a case-based object recognition for detecting
objects of interest in a complex background where several objects are present.
Because the object to be recognized can vary greatly in appearance, a gener-
alization of the object is impossible, a problem which can be overcome with a
large amount of cases for each object.

Aasen [2006] proposes a CBR surveillance system that interprets video and
raises an alarm if necessary. The system consists of two separate modules, one
for image processing, including feature extraction, and one case-based reason-
ing module. It’s programmed in C++ for the surveillance system TrollEye by
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Trollhetta AS1. For the case-based reasoner proposed in this thesis, all of Aasens
functionality has been used as a staring point, based on the source code and
pseudo code from his thesis.

1http://www.trollhetta.com
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Chapter 3

Tools

OpenCV 2.0 with Python bindings is used for the feature extraction along with
most of the preprocessing methods and the CBR prototype. The background
subtraction is implemented in OpenCV with C++ bindings.

3.0.1 Python

Python 1 is an open-source, high-level programming language. It allows for
use of multiple programming paradigms, ranging from object-oriented to func-
tional programming. In addition to OpenCV, two libraries for Python have been
utilized, NumPy and Matplotlib. NumPy 2 is an open-source math library. It
includes support for arrays, matrices and a large set of mathematical functions
for these. Matplotlib is a 2D/3D plotting library 3.

The reason for using Python is its large standard library and, because it is a
scripting language, it is very well suited for rapid prototyping. It is not as fast
as C++ and Java, but the advantage of quick developing is considered more
important the disadvantage of slower processing.

1http://www.python.org/
2http://numpy.scipy.org
3http://matplotlib.sourceforge.net/
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3.0.2 OpenCV

The Open Source Computer Vision Library (OpenCV) 4 is an image processing
library originally developed by Intel, now maintained by Willow Garage 5. It
is open-source, multi-platform and while originally supported only by C and
C++, there are wrappers available for several languages including: C#, Python,
Ruby and Java.

4http://opencv.willowgarage.com
5http://willowgarage.com
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Chapter 4

Method

To interpret images using case-based reasoning, a three stage process as seen in
Figure 4.1 is proposed. First, the images have to preprocessed and segmented
to separate the fish to be classified from the rest of the image. The preprocess-
ing and segmentation stage is discussed in Section 4.1. When the fish has been
separated, features that can be used to classify the fish have to be extracted. The
feature extraction stage is discussed in Section 4.2. The last stage is the classifi-
cation itself, through case-based reasoning. The CBR is discussed in Section 4.3.

Figure 4.1: Proposed three stage process for classifying fish.

4.1 Preprocessing

The preprocessing stages proposed has not been implemented from scratch for
this thesis. For the background subtraction algorithms, the implementations
from Fauske et al. [2009] have been used. The implementation of the codebook
algorithm (Kim et al. [2005]) has been adapted to create a graphical application



i
i

“template” — 2012/6/5 — 17:37 — page 12 — #28 i
i

i
i

i
i

12 Preprocessing

using Qt 1 for the graphical user interface and for reading and writing images.
With this application, the parameters can be tuned with sliders, and the result
is shown in real-time. A screenshot from the application can be seen in Figure
4.2.

Figure 4.2: Screenshot from the codebook application.

The rest of preprocessing methods are parts of the OpenCV library, so this sec-
tion describes the general theory behind them. Active contour models, border
following and Hu moments are based on the original papers. For the morphol-
ogy and the raw and central moments, Gonzalez and Woods [2008] is used for
reference.

4.1.1 Background subtraction

In background subtraction, the foreground and background of an image are
separated from each other using a background model. Everything in the image

1http://qt.nokia.com
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that cannot be classified as background in accordance to the background model
is classified as foreground. Fauske et al. [2009] compare three learning based
background subtraction techniques with respect to shadow and noise. Two of
these three techniques have been tested on the available video data to see how
well they perform in an underwater environment.

Codebook algorithm The background model in the Codebook algorithm (Kim
et al. [2005]) consists of a codebook for each pixel, each codebook has a num-
ber of codewords. A codeword is a valid color-area for the corresponding pixel
being part of the background. If a pixel in the subtraction is inside one of its
codewords boundaries it is part of the background. Each codeword consists of
the following values:

• The mean of the R,G and B values: R̄,Ḡ, B̄.

• The minimum and maximum brightness: Î, Ǐ

• The longest interval between two occurrences: λ

• The first and last access times: p, q

Figure 4.3: Codebook formation. The colored boxes represent codewords, the
black line represent the pixel value at a given time. As a given pixel changes
value over time the codewords grow, and new codewords are created.
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During learning, a codeword is updated if its corresponding pixel value in the
current frame is within its interval. If no matching codeword is found, a new
codeword is created (Figure 4.3).

After the learning process, all stale entries are removed. A stale entry is a code-
word that is accessed for a given period of time, e.g. half of the learning run-
time. When the stale entries has been removed, the model is complete, and the
subtraction can begin. The subtraction works in the same way as the learning,
but instead of making a new codeword when none is found, the pixel is marked
as foreground.

A advantage with the codebook model for underwater images is its adaptability
to noise. The fact that it can have different intervals of color values for the
background helps coping with underwater noise, such as air bubbles.

Horprasert et al.’s statistical approach. Horprasert et al. [2000] introduce a
color model in the three-dimensional RGB color space. Each pixel in a frame
is classified as either "Foreground", "Background", "Shadowed Background" or
"Highlighted Background" depending on where it is located in the color space.

For each pixel, the following values are stored in the background model:

• The expected value for the i’th pixel: Ei = {µR
i ,µG

i ,µB
i }.

• The brightness distortion: α.

• The cromaticity distortion: CD.

The expected pixel value Ei is a point in the 3D-space, as shown in Figure 4.4.
The brightness distortionαEiis the intersection between the cromaticity line OE
and the orthogonal from new pixel value Ii to the line. Chromaticity distortion
is the distance from Ii to OE. The values are calculated for each frame in the
training process, and then normalized to find a single threshold value. The
threshold is found by building a histogram of the normalized values.

For the subtraction itself, new normalized brightness and chromaticity distor-
tion values are calculated for each pixel in the captured frame. A pixel is classi-
fied by the following taxonomy:

• Background if both α̂i and ˆCDi are within a threshold compared to the
background model.
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Figure 4.4: The RGB color model proposed by Horprasert et al.

• Shaded background if ˆCDi is within the threshold and α̂i is below.

• Highlighted background if ˆCDi is within the threshold and α̂i is above.

• Foreground if ˆCDi is outside the threshold.

4.1.2 Morphological cleanup

Morphological transformations have several applications in image processing,
two of which are noise removal and joining or separating image elements. Mor-
phology contains two basic transformations, erosion and dilation. Erosion will,
as the name implies, erode bright areas in the image, making them smaller,
while dilation does the opposite, dilate bright areas, making them larger.

Both use kernels with an anchor point. The kernels can be any geometrical
shape and the anchor point does not have to be the center, it can be anywhere
in the kernel. Erosion will replace the anchor value with the minimum intensity
value under the kernel, while dilation replaces the anchor value with the max-
imum intensity value under the kernel. The effects of erosion and dilation on a
binary image can be seen in Figure 4.5.

Morphological opening (Equation 4.1) and closing (Equation 4.2) are composite
transformations using the erosion and dilation operators. Opening will remove
small objects, which usually represent noise, from the image. Closing will fill
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(a) Erosion (b) Dilation

Figure 4.5: The effects of applying erosion and dilation to a binary image.

holes in the foreground objects, making them more complete. The effects of
performing opening and closing can be seen in Figure 4.6

A ◦ B = (A	 B)⊕ B (4.1)

A • B = (A⊕ B)	 B (4.2)

Where A is the image, B is the kernel, 	 is the erosion and and ⊕ the dilation.

(a) Opening (b) Closing

Figure 4.6: The effects of applying opening and closing to a binary image.

4.1.3 Finding contours by border following

To extract contours from a binary image, a border following algorithm is used.
The algorithm which is part of OpenCV’s image processing algorithms, is an
implementation of Suzuki and Abe [1985]. There are two versions of the algo-
rithm, one for topological analysis, and one for extracting only the outermost
contour. Both exist in OpenCV, but only the latter is utilized in this thesis. The
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Figure 4.7: Border points

algorithm works by raster scanning the image until an outer border point (x, y)
is found. A border point is, in the 4-connected case, defined as a 1-pixel hav-
ing a 0-pixel in its 8-connected neighborhood. In the 8-connected case, it is
defined as a 1-pixel having a 0-pixel in its 4-connected neighborhood (See Fig-
ure 4.7 for examples). A border point (i, j) belongs to the outer border if all the
pixels (i, 1), (i, 2), ..., (i, j− 1) are 0-pixels, or the most recently scanned border
point (i, h) is on the outer border and (i, h + 1) is part of the background. The
background of the image are all pixels (4-/8-)connected to the frame, where the
frame is defined as the top-/bottom rows, and left-/right columns of the image.

4.1.4 Active contour models

Active contour models, also known as Snakes (Kass et al. [1988]), is a technique
that can be used to find or improve contours in an image. The model needs an
external constraint as a starting point. It then attempts to minimize the sum of
internal and external energy to fit the contour to an image feature as illustrated
in Figure 4.8. The energy is minimized by iterative gradient descent. The image
energy moves the model towards intensity changes (edges) using a regularized
gradient, while the internal constraints keep the model smooth and continuous,
and reduce the presence of sharp corners. The total energy of the snake can be
defined as:

Etotal = Eimage + Einternal (4.3)

If the image intensity in (x, y) is denoted I(x, y), the image energy Eimage can,
in its simplest form, be defined as the gradient intensity at each contour point:

Eimage = −||∇I(xi, yi)|| (4.4)

Einternal is the internal energy of the spline due to bending and Eimage is the
image forces on the spline. If the snake contour is represented parametrically
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Figure 4.8: Applying a snake to an image. 2.

as c(s) = (x(s), y(s)), where x(s) and y(s) are coordinates along the contour, the
internal energy Einternal, can be defined as:

Einternal = Econt + Ecurv (4.5)

where Econt is the continuity energy, defined as the first derivative:

Econt = ||
dc
ds
||2 (4.6)

or, in discrete form, where i is the i’t contour point, as:

Econt =
n

∑
i=0

(xi − xi−1)
2 + (yi − yi−1)

2 (4.7)

and Ecurv is the curvature energy, defined as the second derivative:

Ecurv = ||d
2c

d2s
||2 (4.8)

or, in discrete form, where i is the i’t contour point, as:

Ecurv =
n

∑
i=0

(xi−1 − 2xi + xi+1)
2 + (yi−1 − 2yi + yi+1)

2 (4.9)

2Original image by Jürgen Howaldt, via Wikimedia Commons
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4.1.5 Image moments

4.1.5.1 Raw Moments - Finding the centroid of a binary image

For binary images the area and center of gravity (centroid) can be found using
raw moments. Raw moments in a digital image ,where I(x, y) is the image
function, are defined as :

Mi j = ∑
x

∑
y

xi y j I(x, y) (4.10)

If the object pixels in a binary image are represented by 1, it can be observed
from Equation 4.10 that the raw moment M00 will represent the area of the ob-
ject, as i = 0 and j = 0 will simply sum the object pixels. The raw moment M10
represents the sum of all the object’s x-values, and the moment M01 the sum of
all the objects y-values. The mean x and y, which give the centroid of the object,
can be calculated by dividing M10 and M01 by the area M00 (Equation 4.11).

Centroid : (x̄, ȳ) = (M10/M00, M01/M00) (4.11)

4.1.5.2 Central Moments - Finding the rotation of a binary image

Raw moments are not translation invariant, so the location of the image objects
will affect the values of the raw moments. Central moments on the other hand
are translation invariant, so the location of the image objects will not affect the
moments values. Central moments in a digital image, where I(x, y) is the image
function, are defined as:

µi j = ∑
x

∑
y
(x− x̄)i(y− ȳ) j I(x, y) (4.12)

As can be observed from Equation 4.12, the central moment µ00 for digital im-
ages represent the area of the object as it will ,similar to M00, simply sum the
object pixels. The central moments µ20 and µ02, which represent variance, can
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be calculated from the raw moments (Equations 4.13 and 4.14).

µ20 = M20 − x̄M10 (4.13)

µ02 = M02 − ȳM01 (4.14)

The rotation of the binary shape (φ) can be found using the formula:

φ =
1
2

arctan
(

2µ′11
µ′20 −µ′02

)
(4.15)

where: µ′11 = µ11
µ00

, µ′20 = µ20
µ00

and µ′02 = µ02
µ00

4.1.5.3 Hu Set of Invariant Moments

The Hu set of invariant moments (Hu [1962]) is invariant to translation,rotation
and scale. Hu moments are therefore well suited to extract shape information
and coarsely separate different shapes.

The seven Hu moments are calculated as follows:

1. I1 = η20 + η02

2. I2 = (η20 − η02)
2 + (2η11)

2

3. I3 = (η30 − 3η12)
2 + (3η21 − η03)2

4. I4 = (η30 + η12)
2 + (η21 + η03)

2

5. I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η

2
03] +

(3η21− η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

6. I6 = (η20− η02)[(η30 + η12)
2− (η21 + η03)2] + 4η11(η30 + η12)(η21 + η03)

7. I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)2]−

(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]
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The scale invariant moment of order i j , ηi j is defined as:

ηi j =
µi j

µ
(1+ i+ j

2 )
00

(4.16)

where µi j is the central moment of order i j.

For comparing the moments of two shapes, Equation 4.17 is used. The equation
is found in the MatchShapes function in OpenCV 3.

D(A, B) = ∑
i=1...7

|mA
i −mB

i |
|mA

i |
(4.17)

where mA
i = sign(IA

i ) · log hA
i and mB

i = sign(IB
i ) · log IB

i , and IA
i , IB

i is the i’th
Hu moment for shapes A and B.

4.2 Feature extraction

In order to use case-based reasoning for image classification, a set of numer-
ical features have to be extracted. Five features of the fish are quantified, and
their numerical values are used in the case-based reasoning to separate the three
species. The selected features are based on shape, pattern and color informa-
tion.

4.2.1 Locating and measuring the caudal peduncle

The ratio between the width of the caudal peduncle and the length of the fish
is the first feature extracted. According to Penthon [2005], the salmon has a
thinner caudal peduncle than trout and char (Figure 4.12).

To locate the caudal peduncle(Figure 4.13), the binary fish image acquired through
preprocessing is rotated to a horizontal position using the rotation angle ac-
quired trough central image moments (Equation 4.15).

3The OpenCV 2.3 Python Reference Manual, page 104
4Image by Morten Harangen (reprinted with permission)
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Figure 4.9: Salmon Figure 4.10: Trout Figure 4.11: Char

Figure 4.12: A salmon, a trout and a char with their caudal peduncle indicated
by a red line

Figure 4.13: Position of the caudal peduncle for a salmon 4.

After rotating the binary fish-shape, the caudal peduncle is found by starting
at x = 0 and iterating to x = xcentroid, then for each x, iterate from y = 0 and
y = ymax to ycentroid. This results in the distance from the top of the image to the
uppermost object pixel, and the distance from the bottom of the image to the
lowermost object pixel for the current x value (Figure 4.16). The complete func-
tion for locating and measuring the caudal peduncle can be seen in Algorithm
1.

Figure 4.14: Locating the caudal peduncle
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Algorithm 1 Locating the caudal peduncle

for x from 0 to xcentroid do

yup ← image.height
ydown ← image.height

for y from 0 to ycentroid do
if binaryimage[y, x]! = 0 then

yup ← x
end if

end for

for z from ymax to ycentroid do
if binaryimage[z, x]! = 0 then

ydown ← x.
end if

end for

if 2max(ydown, yup) < min.height then
min.height← 2max(ydown, yup)
min.x← x
min.down← ydown
min.up← yup

end if
end for
min.height← min.down + min.up
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4.2.2 Estimating the curve of the caudal fin

Salmon tend to have a more concave caudal fin than both trout and char. To
estimate the curvature, the caudal fin is sampled from the binary image of the
fish. In the same way as for finding the width of the caudal peduncle, the fish is
rotated to a horizontal position before sampling. The sampling is done similarly
as for the caudal peduncle. Starting at x = 0 y = 0 and iterating in the x-
direction until a object pixel is found or the location of the peduncle if no object
pixel is found (see Figure4.15 and Algorithm 2). The sampled values are fitted
to a second-degree polynomial, which will represent the caudal fin in the case-
based reasoning. The fitting is done by ordinary least squares (Rao [1973]).

Figure 4.15: Sampled caudal fin for a salmon5.

By sampling and fitting the curvature to a polynomial, the representation of the
shape is not dependent on the shape’s size or the caudal fin in the binary image
being complete.

Algorithm 2 Sample caudal fin

for y from 0 to image.height do
for x from 0 to peduncle.x do

if binaryimage[y, x]! = (0, 0, 0) then
sampledpoints← x.

end for
end for

5Image by Morten Harangen (reprinted with permission)
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Figure 4.16: Sampling the caudal fin. Sampled points and iteration lines (black),
estimated curve (red).

4.2.3 Quantifying the belly pattern

One feature that distinguishes trout from salmon is the presence of dark spots
below the lateral line. Saue [2003] use standard deviation in an isolated area
below the lateral line to measure the amount of spots. The presence of spots
will produce a high standard deviation in the area. The method proposed by
Saue is used for quantifying the pattern, but with some modifications regarding
isolating the measure area.

Figure 4.17: Pattern area. The green and blue squares indicates the two areas
used for the histograms, the red dot is the center of gravity. 6

Using the centroid, as found by Equation 4.15, as anchor point, two rectangular

6Original image by: Morten Harangen
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areas are isolated from below the lateral line of the fish (Figure 4.17). The areas
are defined as:

1. Left area:

Bottom left corner:xcentroid − (w
2 ), ycentroid − w w

2
Top right corner: xcentroid, ycentroid

2. Right area:

Bottom right corner:xcentroid + (w
2 ), ycentroid − w w

2
Top left corner: xcentroid, ycentroid

4.2.4 Quantifying the redness of the fish

As stated in Chapter 1 one of the easiest ways to separate char from salmon
and trout is the redness of the fish, especially below the lateral line. A simple
approach for quantification of the redness is to count the number of red pixels
and the total number of pixels, to get a relation between red and non-red pixels
(Figure 4.18.

(a) Original (b) Red areas

Figure 4.18: The red area in a partial image of a char 7. The blue area in 4.18b
show the pixels from 4.18a that are defined as red.

To count the number of red pixels the following definition for a red pixel is used:

7Original image by: Petr Broz̆, via Wikimedia Commons
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Definition Let P be a pixel in the RGB color-space. For a pixel to be considered
red, it’s R component’s value has to be more than 10% greater than the averaged
value of the B and G components.

When the pixels are counted, the binary image acquired trough segmentation is
used as a mask so that no background pixels are counted. A pixel in the color
image is only counted if the corresponding pixel in the mask image is present.
Algorithm 3 shows the redness quantification.

Algorithm 3 Find redness

for (x, y) in image do
if mask (x, y) ! = 0 then

if red > 1.1 ∗ avg(green, blue) then
red← +1

num← +1
end for
redness = red/num

4.2.5 Quantifying spots

In addition to the red color below the lateral line, the color of the spots can
be used to separate char from salmon and trout. The char has spots that are
brighter than the rest of the body, while salmon and trout have spots that is
darker than the rest of the body. One way to quantify this feature is by using
median filtering, difference image, and Otsu thresholding to locate the spots,
then use the result as a mask to find the color of the spots.

Median filtering. The median filter replaces each pixel’s value with the me-
dian of the neighboring pixels. The neighborhood can be of any shape (e.g
square, circle or cross) and size.

y[m, n] = median{y[i, j], (i, j) ∈ w} (4.18)

where w represents a neighborhood centered around location (m, n) in the im-
age y.
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(a) Grayscale (b) Median

(c) Differenced image (d) Spots

Figure 4.19: The three stages of locating spots in a image of a salmon.8

Otsus method Otsu’s method (Otsu [1979]) is a method for finding an optimal
threshold value assuming the image to be thresholded contains two classes of
pixels. It does this by minimizing intra-class variance in two classes of pixels,
making their combined spread minimal. The intra-class variance is defined as a
weighted sum of variances of the two classes.

σ2
w(t) = ω1(t)σ2

1 (t) +ω2(t)σ2
2 (t) (4.19)

Whereωn is the probabilities and σ2
n the variances of the two classes separated

by the threshold t.

Finding spot colors. Differencing the median filtered image with the original
image will result in the spots represented by the largest difference values. This
is a result of the median filter removing them as they have more non-spot neigh-
bors than spot neighbors due to the neighborhood being larger than the spots.
Also, as the median filter uses the "new" values during processing, the spots
will be eroded, having their edge removed as the filter processes the image.

The median image will have the spots removed, unless they are considerably
larger than the median kernel. When the original image is differenced from

8Original image by: Morten Harangen (reprinted with permission).
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Algorithm 4 Otsu’s method.

1. Compute histogram and probabilities of each intensity level

2. Set up initialωi(0) and µi(0)

3. Step through all possible thresholds t = 1... maximum intensity

Updateωi and µi

Compute σ2
b (t)

4. Desired threshold corresponds to the maximum σ2
b (t)

the median image, the spots in the original image will have a relatively large
difference value, as their values are distant from the "background" color.

Algorithm 5 Quantify spots

1. Smooth image using median filtering(kernel size = 5× 5).

2. Difference smoothed image with original image.

3. Threshold difference image using Otsu’s method.

4. Find spot and background color in original image using thresholded im-
age as a mask.
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4.3 Case-based reasoning

Case-based reasoning reuses and adapts solutions from previously experienced
problems to solve new problems (Aamodt and Plaza [1994]). In contrast to other
AI approaches for reasoning, it relies not only on domain specific knowledge,
but also case specific knowledge from earlier experiences. The problems and
solutions are stored in data structures called cases, where each case consists of
a set of features representing the situation or problem. When a new problem
is experienced, the most similar cases from the case-base are used to propose a
solution.

The case-base can vary in both size and how cases are created and indexed. For
some domains, it can be beneficial to have a large case base which can include
a number of similar cases. The cases can have only a slight variance in feature
values, where each case represent a very specific situation or problem, or each
situation or problem is represented by a number of cases. For other domains it
may be better generalizing the cases and having a fewer number of cases with
larger ranges for their values.

Building the case-base can be a automated process, or it may be highly depen-
dent on user interaction. There are several ways of indexing the case-base. One
way is to use the feature considered most important as the index, only compar-
ing the problem with the cases which have a similar value for the most impor-
tant feature. The goal of indexing is to make the case-base able to locate the
previous cases which are most similar to the problem it is trying to solve.

The features are very domain specific, and can be represented symbolically or
numerically. The only requirement is that they are comparable either directly or
indirectly. Case-based reasoning can be described as a four-step cycle (Figure
4.20):

1. Retrieve relevant cases from the case-base. Relevant cases can be cases
that are similar to the target problem, or in other ways useful for solving
it.

2. Reuse the information in the retrieved cases to propose a solution to the
target problem. The information can be used directly, or might need to be
adapted to fit the new problem.

3. Revise the solution by applying it to the target problem. This can be done
by testing it on the problem itself, a simulation of the problem, or by su-
pervision of an human expert.
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Figure 4.20: The CBR cycle 9.

4. Retain the solution to the case-database, either as a new case, or by in-
cluding it to case representing the proposed solution.

One of the things that separate case-based reasoning and other learning based
methods, from more traditional reasoning methods like decision trees, is the
fact that it makes and adapts its own rules for how to reason. In decision trees,
the developer has the full responsibility to manage how the system will reason.
This is done by rules that are final and does not change throughout the run-time
of the reasoner. In case-based reasoning, the rules for reasoning are dynamic,
and will change over time, making it able to cope with changes in the basis of
the problem it reasons about.

Perner [2001] argues for the use of case-based reasoning in image interpretation.
Among the disadvantages of more traditional image interpretation techniques
is the lack of robustness, accuracy and flexibility, all of which can be overcome
with case-based reasoning strategies.

9Figure from: Aamodt and Plaza [1994]
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4.3.1 Case-based learning

Aha [1991] describes a subset of CBR algorithms referred to as case-based learn-
ing (CBL). Aamodt and Plaza [1994] refer to the same subset as instance-based
reasoning. What differentiates CBL from more general CBR algorithms is that
they do not perform case adaption, limits the features to values 10 and does
not necessarily use indexing schemes for the case base. Two of the most well-
known CBL-systems are Protos (Bareiss and Porter [1987]) and MBRtalk (Stan-
fill [1987]). The CBR system proposed by Aasen [2006] can be said to fall into
this subset. Only numerical feature values are used, the cases in the case-base
does not use indexing schemes and as no case adaption is performed, the solu-
tion is used directly.

Case-based learning seems well suited for the classification of fish. The distin-
guishing features are can be quantified, and represented with numerical values,
and as it is a classification problem, the solution needs no adaption as it can
only be one of three species.

4.3.2 Implementation

There exist frameworks that enable fast prototyping of CBR solutions such as
jCOLIBRI 11 and myCBR 12. The advantage of using such pre-made systems is
that most general CBR related methods are pre-implemented, making it pos-
sible to test different approaches quickly. Both the jCOLIBRI framework and
myCBR was considered for the CBR part of this thesis.

There were several reasons for implementing a CBR module in Python instead
of using a pre-made framework. The main reason is the integration with the
feature extraction modules. As these are prototyped in Python, transferring
data from them to a stand-alone CBR system like myCBR will require extra
work and has to be done every time the test-data or feature extraction methods
are changed. As the CBR system proposed by Aasen [2006] is made for image
interpretation, reimplementing and adapting it is considered as a better solution
than using myCBR or jCOLIBRI.

As stated in Section 2.2, Aasens CBR system is made as a module for the Troll-

10Symbolic, binary or numerical values
11http://gaia.fdi.ucm.es/research/colibri/jcolibri
12http://www.mycbr-project.net/
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Eye software by Trollhetta AS. All the source code is therefore in C++. As the
feature extraction methods for this thesis have been implemented in Python,
the CBR has been reimplemented in Python as well. This is considered a better
solution than reimplementing the feature extraction methods to C++, as Aasens
CBR system can not be used directly, but need a large amount of modification,
as it is not very generalized. Aasens system is used as a skeleton for the imple-
mented CBR, and most methods have been modified.

4.3.3 Features

Features are implemented as classes, with value and weight as variables, and a
method for comparing with other features of the same type. As all the features
are numerical, a general feature class has been implemented. The feature class
consists of: "raw" input value, normalized value, mean, standard deviation,
weight and name. The name is used to give a warning if two different features
are being compared. Table 4.1 shows an example feature.

Table 4.1: A feature instance

Variable value raw value mean stdev weight name
Value 0.555 0.153 0.145 0.015 1.0 "peduncle"

4.3.4 Cases

Cases are also implemented as classes, consisting of a set of features, the species
and the filename for the corresponding color image. The features are organized
in an array, the species is added when the case has been classified. There is
also an extra variable called solution used for automatic revision during testing,
which is found from the file-name of the image used to create the case. It is not
to be confused with the species variable which is the ordinary solution for the
case. Table 4.2 shows an example case.
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Table 4.2: A case instance

Variable features species solution color image
Value [F1,F2,F3,F4] "salmon" "salmon" "salmon1.jpg"

4.3.5 Retrieve

As all features are numerical values, the retrieval is done is by using a similarity
measure for calculating the numerical difference between the input case and
each case in the case base. Before the retrieve stage can be executed, the problem
has to be represented as a case. A case consists of a set of extracted features and
a solution. A flowchart for the retrieve function can be seen in Figure 4.21.

Figure 4.21: Flowchart for the retrieve method for best matching-case and k-
nearest neighbor(in parentheses).

4.3.5.1 Filter out noisy feature values

Aasens CBR system does not address problems regarding feature values with
values far from the expected range. These “extreme” values can be caused by ir-
regularities in the captured images that are not taken care of by the preprocess-
ing and feature extraction. To reduce the influence of these “extremes” noisy
feature values are reduced and the range of all features are normalized. This is
done by using standard score and hyperbolic tangent on all features. The stan-
dard score normalizes their range, while the hyperbolic tangent removes values
that are far from the feature’s normal range.

Standard score To equalize the ranges of the different features, standard score
is used (Equation 4.20). It indicates the number of standard deviations the fea-
ture’s value is above or below the mean value for that feature. Standard score is
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not only to reduce the effect of noisy feature values. If will also ensure that all
features has the same influence in the similarity measurement.

z =
x−µ
σ

(4.20)

where: x is a raw value, µ is the mean value and σ is the standard deviation.

Hyperbolic tangent The hyperbolic tangent (Equation 4.21) is used to limit
feature values to the range -1,1.

tanh x =
sinh x
cosh x

=
ex − e−x

ex + e−x =
e2x − 1
e2x + 1

(4.21)

Figure 4.22: A graph showing the hyperbolic tangent

4.3.5.2 Initial matching

Usually, the case matching in CBR is done in two phases. The initial matching
process, which selects a number of candidate cases, and then a more elabo-
rate process of selecting the best match. As no abstract of hierarchical indexing
is done on the case-base, the difference from the problem and all cases in the
database is calculated.



i
i

“template” — 2012/6/5 — 17:37 — page 36 — #52 i
i

i
i

i
i

36 Case-based reasoning

Similarity measures The difference between features are found by a compar-
ison method. As all features are numerical, euclidean difference is used. For
one-dimension, this is the absolute value of their numerical difference (Equa-
tion 4.22).

|a− b| =
√
(a− b)2 (4.22)

4.3.5.3 Select

Two methods for selecting the best matching class have been implemented. The
first selects the best matching case, based on similarity measures between fea-
tures and the feature weights. The second finds the n best matching cases and
selects the class most frequent among these cases. Both methods use the Algo-
rithm 6 for computing the difference between two cases.

Algorithm 6 Computing difference between two cases. (new and old)

1: Di f f erence = 0
2: for i = 0 to i = number o f f eatures do
3: Di f f erence+ =

√
old[i].value− new[i].value

2 · old[i].weight

Best matching case As the difference from the problem to all cases in the
database is calculated in the initial matching, this method simply propose the
case with the lowest difference to the problem as the solution. The best match-
ing case is the selection method used in Aasen [2006].

k-nearest neighbour The k-nearest neighbor algorithm is used for classifica-
tion of problems based on closest examples with regards to features. k denotes
the number of neighbors used for classifying a new problem. If k = 1, the algo-
rithm will give the same result as the best-matching case as the nearest neighbor
will be the best matching case.

The neighbors are scored based on their difference from the case to classify, this
means that the closest neighbors will be weighed higher than neighbors further
away. The class most frequent in the k most similar cases is selected as the class
of the new problem. A larger k will generally reduce the amount of noise in the
selection, but if the value for k is set too high, it will result in classes with few
instances in the test-set never being selected as the best match.
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Figure 4.23: k-NN classification of a new case. The new case is indicated by
the diamond. If k=3, the new case is classified as class 1 (triangle). If k=5, it is
classified as class 2 (square).

4.3.6 Reuse

Aamodt and Plaza [1994] describe two ways of doing case reuse. By copying the
solution or by adapting the solution. Copying is done by abstracting away all
differences, and using the solution of the retrieved case as a solution to the new
case. Adaption is not as trivial and can be done in two ways, by transforming
the solution by transformational operators (transformational reuse) or by using
the method that constructed the solution (derivational reuse). As only solution
copying is used, case adaption will not be explained in more detail.

As stated in Section 4.3.1, no case-adaption is made due to the nature of the
problem. The reuse stage is used for deciding if the solution proposed is close
enough to the problem to be automatically approved, or if revision is needed.
To decide if it is close enough, different measures is used for the two selec-
tion methods. For the best-matching case, the weighted difference between the
problem case and the solution case is used. For k-nearest neighbor, the score
for the proposed class is used. A flowchart of the reuse method can be seen in
Figure 4.24.
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Algorithm 7 k-NN scoring.

1: Forall case in casessorted
2: if species = salmon then
3: salmon← 1.0

(di f f erence+1)
4: else if species = trout then
5: trout← 1.0

(di f f erence+1)
6: else if species = char then
7: char← 1.0

(di f f erence+1)
8: end if

Figure 4.24: Flowchart for the reuse method for best matching-case and k-
nearest neighbor(in parentheses).

The reuse method is a is based on the method proposed by Aasen [2006] with
one exception. In Aasens method the feature weights is not used for determin-
ing if the case can be automatically reused, meaning that features considered
unimportant by the system is given as much weight as features considered im-
portant. For the reimplemented method, the same case difference function is
the same as the one used for comparing cases in Retrieval (Algorithm 6).

4.3.7 Revise

Revise is the third stage of the CBR-cycle, where the found solution is evaluated.
This can be done automatically by applying it to the problem (or a simulation
of the problem) or it can be done with the assistance of a human supervisor.
The revise step is only triggered if the best matching case is not automatically
reused. Both an automatic and a user-interaction based revision method have



i
i

“template” — 2012/6/5 — 17:37 — page 39 — #55 i
i

i
i

i
i

Method 39

been implemented.

Figure 4.25: Flowchart for the revise method.

The automatic revision method is intended for testing purposes, as it depends
on the species being included in the filename. The supervised method is based
on simple user interaction. Except for the difference in how they approve a solu-
tion they work similarly. What they do is to approve or disapprove a suggested
solution from the system, the automatic one compares the suggested solution
to the correct answer, found by trimming the filename of the new case. The
user interaction version displays the image for the new case along with the sug-
gested solution, and waits for the user to approve or disapprove the solution
via the command line. This procedure is repeated for the three best matching
cases or until a suggested solution is approved (Figure 4.25).

4.3.8 Retain

Retain is the last stage. In this stage the new case is retained as a case in the case
base, in this way it can be used to solve later problems. Another way to retain
can be to merge it with an existing case in the case-base, or not to modify the
case-base at all if the new case is very close to the best matching case.

The implemented retain method can be seen in Figure 4.26. There are three
outcomes of the retain stage: (1) there are no similar cases in the case-base -
the new case is added to the case-base, (2) a solution has been found that has
been automatically accepted - weights of the closest cases are adjusted, (3) the
solution found has been revised - weights of the closest cases are adjusted and
the new case is added to the case-base.
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Figure 4.26: Flowchart for the retain method.

4.3.8.1 Weight adjustment

Individual weights are applied to each feature in a case. These weights are
updated in the retain phase. The purpose of these weights is to learn the impor-
tance of the feature and tolerate irrelevant features (Aha [1991]). Weight adjust-
ment is performed on the three best matching cases regardless of any of them
being accepted as a solution. For cases which are of the correct class (the same
class as the new case), feature weights are increased according to the distance
to feature values of the new case. For cases of the incorrect class the weights are
decreased by the same criteria.

The weight adjustment is based on the one from Aasen [2006], with some mod-
ifications. In Aasens system, the implemented weights were adjusted based on
a threshold. This gives a very static behavior, as two features with very similar
differences can have their weights adjusted in opposite ways if one happens to
be directly above and one directly below the threshold. The weight adjustment
in Aasens system is shown in Algorithm 8.

To achieve a more dynamic behavior, the weight adjustment uses the feature
differences directly when modifying the weights. The weights adjustment can
be seen in Algorithm 9. The modifier can be any floating point number, and
controls the general amount of weight-change. The weights are normalized
after the adjustment to make sure that all the cases are compared equally in the
retrieve stage.
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Algorithm 8 Aasens weight adjustment

1: if correct = true then
2: if di f f erence < threshold then
3: weight← weight ·modi f ier
4: else
5: weight← weight

modi f ier
6: end if
7: else if correct = f alse then
8: if di f f erence > threshold then
9: weight← weight

modi f ier
10: else
11: weight← weight ·modi f ier
12: end if
13: end if

Algorithm 9 New weight adjustment

1: if correct = true then
2: weight← weight ·modi f ier(1− |di f f erence|)
3: else if correct = f alse then
4: weight← weight

modi f ier(1−|di f f erence|)
5: end if
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4.3.9 Implementing Database Support

To enable monitoring of the case-base, database support has been implemented
with sqlite 13. The case-base is not saved to the database automatically, but
methods for writing and reading the database have been implemented. The
methods writes all cases and their features to the database. This way, a footprint
of the case-base can be viewed when needed. This also provides the possibil-
ity of saving the case-base to disk, and retaining it at a later time. Also, cases
that have to be revised can be saved in a database, and revised by a human
supervisor at any time.

13www.sqlite.org
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Testing and results

5.1 Leave-one-out cross-validation

Cross-validation is usually applied to estimate how accurately a predictive model
will perform in practice. It involves separating subsets in a larger test set. The
model is built with one subset (training set) and validated with another (vali-
dation set).

Leave-one-out cross-validation(LOOCV) is one form of cross-validation. As the
name implies, one of the instances in a test-set is left out of the set during train-
ing. Then the instance left out is used to validate the training. By rotating which
instance is left out, the testing will give a reasonable estimation of the models
predictive accuracy.

Since all but one instance are used for training, LOOCV is well suited for val-
idating small datasets compared to e.g. 2-fold validation. In 2-fold validation
the test-set is split in two equally sized sets and one is used for training and one
for validation. With few cases in the test set, it is probable that there will not be
enough cases representing each class to produce an accurate model.

The downside with LOOCV is that it is computationally expensive. The model
has to be re-trained for each instance, which for case-based reasoning may be
an extensive process.
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5.2 Goals of testing

As stated in the introduction, the main focus of this thesis has been feature
extraction and classification of fish. The preprocessing has been tested, but not
to the same extent as the other parts of the solution. Thus, this chapter contains
only a short overview of the results of the preprocessing. The testing of the
preprocessing stage shows what can be achieved for relatively poor data, to give
an indication on how good the data has to be in order for the feature extraction
and case-based reasoning to perform properly.

For feature extraction and classification, the goals for testing is to see if the case-
based reasoning is a feasible approach to fish classification. The reliability of the
CBR is also tested to see if it produces the same results over time. This is done
by shuffling the training data and observing if the CBR reasons similarly for a
large number of test runs.

5.3 Preprocessing

The preprocessing has not been thoroughly tested as there was a lack of appro-
priate test data. A few of the best frames from the existing videos were used to
see what the preprocessing stage could accomplish.

As the results from Horprasert et al. [2000] algorithm were very poor, they are
not included. It seems that the algorithm does not handle the noise present in
underwater images very well. The codebook algorithm Kim et al. [2005] on the
other hand gave much better results, and was therefore chosen for testing.

The resulting binary images from the background subtraction were cleaned up
using morphological closing, before the contours were found. Contours of con-
siderable size were then improved using snakes on a greyscale version of the
image. Then each contour was compared to a template contour using Hu’s mo-
ments to find its degree of resemblance to a fish.

As can be seen in Figure 5.3 the results of the preprocessing are decent, but far
from perfect. The fish are recognized, but the low quality of the images does
not make the results suitable for testing on the CBR stage.

One challenge using snakes is to find a good external constraint in the form of
a starting snake. For testing, the contour found by Suzuki and Abe [1985] is
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used as this constraint. As the snake will not expand, only retract, the resulting
contour will lie inside the external constraint. This can be seen in Figure 5.2e
where the tail fin is left out of the contour. The tail fin is disconnected from the
rest of the fish during background subtraction, and is not reconnected trough
morphological closing. This leads it to be excluded from the initial contour, and
therefore its outside the external constraint when the snake is applied.

Morphological 
Closing

Gaussian 
Smoothing

Morphological 
Opening

Background 
subtracted 

image

Median 
Smoothing

Find contoursSnake

Grayscale 
Image

Final contour

Figure 5.1: The preprocessing procedure.
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(a) Original (b) Subtracted (c) Cleaned

(d) Contours (e) Snaked contours

Figure 5.2: The stages of preprocessing a frame. Green contours indicate fish.

(a) Frame1 (b) Frame2 (c) Frame3

Figure 5.3: Three preprocessed frames.

5.3.1 Coarse sorting with Hu moments

The results of the testing of fish-shape recognition using Hu moments can be
seen in Table 5.1 and Figure 5.4. As can be observed, the sorting works well for
separating fish-like shapes from other objects. The fish shapes are segmented
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with the proposed preprocessing routine, except for Image which is the tem-
plate shape with half of its caudal fin removed.

The non fish objects are far from the fish with regards to shape, but the results
shown in Figure 5.2 and 5.3 indicate that the methods works also less defined
shapes.

Table 5.1: The calculated distances from the shapes to the template shape using
Equation. 4.17 .

Image Fish 1 Fish 2 Fish 3 Fish 4 Branch Bag Blob
Diff. 0.0744 0.1514 0.1271 0.1234 0.5132 0.7111 1.6432

(a) Fish 1 (b) Fish 2 (c) Fish 3 (d) Fish 4

(e) Branch (f) Bag (g) Blob (h) Template

Figure 5.4: Binary shapes used for testing comparison using Hu’s moments and
Equation. 4.17

5.4 Feature extraction

The largest challenge in this thesis has been the lack of good test data, as the
few available videos from the existing system was the only data available and
of very low quality. This was solved by using regular images found on the
internet for testing the case-based module. Most of the images are not taken
under water, but comparing the ones that are with those that are not, colors and
patterns are equally good in both types of images. The images taken on land
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are therefore considered to be adequate replacements for underwater images.
A total of 28 fish images: 11 salmon, 9 char and 8 trout is used during testing.

For testing, the supervision for the case-based reasoning was made automatic
by using the file-names of the cases as guidance. The test script takes a folder
containing the test images as input. The images have to be arranged in two
folders. One containing the original images as jpg, and one containing the mask
images as png. The mask images were drawn manually. The matching files
need to have the same file-name and be of the same spatial resolution.

The results of the feature extraction in seen in Tables 5.2, 5.3 and 5.4.

(a) Color image (b) Mask image

Figure 5.5: A test image and its corresponding mask image.
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Table 5.2: The average values of the five features in salmon.

Average Std. dev Min Max Range
Peduncle 0.145 0.014 0.125 0.179 0.053

Tail fin -0.020 0.051 -0.168 0.000 0.168
Belly pattern 11.785 3.850 4.981 17.536 12.554

Redness 0.020 0.012 0.010 0.052 0.041
Spots 0.812 0.097 0.645 0.990 0.345

Table 5.3: The average values of the five features in trout.

Average Std. dev Min Max Range
Peduncle 0.167 0.009 0.154 0.180 0.027

Tail fin -0.006 0.037 -0.047 0.068 0.114
Belly pattern 27.088 7.103 18.441 42.920 24.479

Redness 0.045 0.040 0.011 0.113 0.102
Spots 0.733 0.182 0.576 1.159 0.582

Table 5.4: The average values of the five features in char.

Average Std. dev Min Max Range
Peduncle 0.177 0.010 0.163 0.197 0.034

Tail fin -0.006 0.013 -0.029 0.019 0.049
Belly pattern 22.063 12.350 6.597 42.020 35.42

Redness 0.0237 0.150 0.033 0.380 0.346
Spots 1.198 0.244 1.002 1.795 0.793
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(a) Belly pattern / Peduncle width (b) Spots / Redness

Figure 5.6: Clustering for some of the feature values.

Figure 5.7: 3D plot showing clustering for three of the features.
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5.4.1 Peduncle width

The peduncle width extraction has been tested on the same test-set as the CBR.
The results can be seen in Table 5.5 and Figure 5.9. As expected, salmon has the
thinnest average peduncle width 16% thinner than the average Trout, and 22%
thinner than the char. There is especially one value that is significantly larger
than the average, 0.179. The fish with these values can be seen in Figure 5.8a.
As can be seen in the image, the fish is lying in a curved posture, leading the
peduncle to be measured as thicker than it actually is. This posture is unnatural,
and very unlikely to be present in underwater images, as the fish moves its tail
fin from side to side when swimming, not up and down. The problem with the
peduncle being measured incorrectly can occur in other situations, as when the
fish is moving towards or away from the camera. This is not likely to occur in
the very controlled environment in which the fish are to be captured, and is also
difficult to avoid using only one camera, the problem is not addressed in this
thesis.

(a) Curved (b) Normal

Figure 5.8: 5.8a shows a salmon in a curved posure, while 5.8b shows a salmon
in "normal" posure.
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Figure 5.9: Extracted peduncle values

Table 5.5: Extracted pedun-
cle values

Species Mean Std.Dev.
Salmon 0.1449 0.0146
Trout 0.1678 0.009
Char 0.1766 0.0101

5.4.2 Curvature of the caudal fin

Of the features extracted, the caudal fin is the least reliable, while it is possible
to detect some trends in the data, it is questionable if it is consistent enough to
use for the CBR. The results from the extraction can be seen in Table 5.6 and
Figure 5.10. There are a few "extreme" values that seemingly disturb the mea-
suring, and by removing these, the data becomes somewhat more consistent.
Salmon has an average curve that is twice the size of the trout but only 10%
larger than char. This indicates that the tail fin curve can be used to separate
trout from salmon and char. On the other hand, the standard deviation is very
large, indicating that there is a large amount of variation. In the images used
for testing, the tail fin is the feature that is most likely to be obscured as the fish
is lying on a rock or in grass. Table 5.7 show extracted values for some fish not
in the training set, but with more normal tailfins.
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Table 5.7: Some caudal fins and their extracted values.

Img Salmon 1 Salmon 2 Salmon 3 Trout 1 Trout 2 Char
x2 -4.60e-3 -4.40e-3 -8.13e-3 -1.07e-3 0.97e-3 -1.67e-3
x 0.62 0.56 0.70 0.19 -0.13 0.29
c -0.93 -1.66 4.93 -0.96 6.25 4.26

Figure 5.10: Extracted caudal fin values

Table 5.6: Extracted caudal
fin values

Species Mean Std. Dev.
Salmon -0.0045 0.0032
Trout -0.002 0.0020
Char -0.0039 0.0017

5.4.3 Belly pattern

As can be seen in Table 5.8 and Figure 5.11, the extraction of the belly pattern
as standard deviation works well. The salmon is separable from trout with a
simple threshold value, and the difference between the two classes is 33%, this
indicates, that at least for this test set, the belly pattern is a useful feature to
separate salmon and trout. Char has an average value significantly higher than
the salmon (21.42 vs 11.90), but the standard deviation is very high (9.83) so dif-
ference between the two species in general is too low to conclude if this feature
is good for distinguishing.
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Figure 5.11: Extracted belly pattern values

Table 5.8: Extracted belly
pattern values

Species Mean Std. Dev.
Salmon 11.90 2.93
Trout 26.67 2.43
Char 21.42 9.83

5.4.4 Redness

The extracted values for redness are shown in Table 5.9 and Figure 5.12. From
the results it appears to be a good feature of separating trout and char. There are
only three char with less than 20% red pixels, and only three trout with more
than 5% red pixels. All salmon have less than 5% red pixels. So more than
20% red pixels will be a very good indication of a char, less that 5% is a good
indication of a salmon or trout, while between 5% and 20% red pixels will leave
a degree of uncertainty.

Figure 5.12: Extracted redness values

Table 5.9: Extracted redness
values

Species Mean Std. Dev.
Salmon 0.0096 0.0125
Trout 0.0400 0.0492
Char 0.2304 0.1532
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5.4.5 Spots

As explained in Section 4.2.5, the spots are quantified as the ratio between spot
color and the color of the rest of the fish. From Table 5.10 and Figure 5.13 it
can be observed that the extracted value can separate the char from the trout
and salmon. Except for one trout, the ratio for all trout and salmon is below
1.0,the ratio for all char is above 1.0. This indicates that this is a good feature
for distinguishing char from the two other fish. Also it shows that the feature
extraction works well for the test set.

Figure 5.13: Extracted spots values

Table 5.10: Extracted spots
values

Species Mean Std. Dev.
Salmon 0.8122 0.0968
Trout 0.7328 0.1816
Char 1.1978 0.244
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5.5 Classification

As stated in Section 5.4, fish images found on the internet have been used for
testing both the feature extraction and the case-based reasoning. The prototype
CBR use the feature extraction methods to extract features and make cases from
these images.

The case base is trained trough a number of training iterations. For each itera-
tion all cases, except the one that should be left out for validation, is retrieved
by the CBR. The cases outside the threshold for automatic reuse are revised us-
ing the automatic revise method described in Section 4.3.7. A flowchart of the
training process can be seen in Figure 5.14.

Figure 5.14: A flowchart for the training process.

5.5.1 Training noise

To increase the number of training cases, noise was added to the training cases.
By adding a random amount of 0− 10% noise, with a probability of 10%, the
amount of training cases was increased drastically. The noise simulates a larger
amount of training data, and is therefore considered to give a more realistic
indication of how the classification will perform in real-life. The noise affects
the best-matching case method negatively, and the k-nearest neighbor algo-
rithm positively (see Table 5.11). This indicate that the k-nearest neighbor algo-
rithm works better for large dataset, and is more robust to noise. If the random
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amounts is large enough, it will make some features which have normal values
for species move out of the natural range. This will introduce some noisy cases
into the training set which are better handled by the nature of the k-nearest
neighbor. Training noise is applied for most of the tests below (if stated in the
caption).

Table 5.11: Table showing the effects of training noise.

Training noise Best-matching case k-nearest neighbor Avg. num. cases
0% 0.854 0.802 26

10% 0.792 0.854 80

5.5.2 Influence of parameters

Various values have been tested for the parameters in the CBR. This is to give
an indication on how they influence the behavior of the reasoning. The parame-
ters tested is the weight adjustment modifier, threshold for automatic reuse and
number of nearest neighbors.

5.5.2.1 Weight adjustment modifier

The modifier value used in the weight adjustment influences the rate of learn-
ing. The higher the value, the more the weights are adjusted and the faster
the reasoner learns. Figure 5.15 shows the results with different values for the
weight modifier. As can be observed from the figure, the system is more robust
with a lower learning rate. If the weight modification is too rapid, the first cases
will be of much higher significance than later cases, as the weight adjustment
is not linear. Therefore, the higher the modifier, the less cases the reasoner uses
for learning.

5.5.2.2 Reuse threshold

The reuse threshold value for deciding when a case should be automatically
classified, and when it should be revised. Automatically classified cases are not
added to the case base. The value will therefore control the number of cases in
the case-base, as can be seen in Table 5.12, the table shows the total number of
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Figure 5.15: Plot of results with various weight modifier values (100 runs, num-
ber of neighbors = 4, reuse threshold = 0.2, training noise = 0.1).

Table 5.12: Average number of cases in the case-base for various reuse threshold
values. (50 runs, weight modifier = 0.2)

Reuse threshold Average number of cases
0.050 25.6
0.075 24.5
0.100 20.9
0.150 14.3

cases in the case-base after five iterations of training. Low values will result in
a large amount of cases in the case-base, while a high value will result in few
cases in the case-base. The results for various threshold values can be seen in
Figure 5.16.
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Figure 5.16: Plot of results with various reuse threshold values (50 runs, number
of neighbors = 4, weight modifier = 0.2, training noise = 0.1).

5.5.2.3 Number of nearest neighbors

The number of neighbors is used for the k-nearest neighbors (kNN) selection
of the retrieve stage. As can be seen in Figure 5.17, the parameter has a good
amount of influence on the precision of the classification. The figure show the
best-matching case despite the fact that it is not affected by the parameter. It
is merely show as an indication of the general performance of the trained case-
base, as it is trained differently for every run as the cases are shuffled.

The two methods perform equally for one and two neighbors, this is no surprise
as the nearest neighbor will be chosen as a solution for both methods in for
these values of k. For three neighbors, the kNN starts to perform better, this is
because it is able to correctly classify species where the very nearest neighbor is
not of the correct class, but the majority of the neighbors are. The performance
of the kNN starts to drop at around seven neighbors. This is likely caused by
the correct class not being represented by enough cases in the case base, and the
amount of a wrong class getting so high that it equalizes the difference scoring,
a parameter for the kNN can be introduced to adjust the scoring, but this has not
been done, as selecting a reasonable number of neighbors yields good results.
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Figure 5.17: Plot of results with various number of nearest neighbors (50 runs,
reuse threshold = 0.05, weight modifier = 0.2, training noise = 0.1).

5.5.3 Comparing with a decision tree

The case-based reasoning system has been tested on the same data as the feature
extraction. The caudal fin is left out as the extracted values are very ambiguous.
A simple decision tree is used as reference for the testing. The implemented
decision tree can be seen in Figure 5.18.

Figure 5.18: Decision tree used for comparison.
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5.5.3.1 First comparison

The results from a test run with relatively optimal parameters can be seen in
Table 5.13. The results show the amount of correct classification for each image
in the test-set. For salmon and trout, the decision tree performs best, classifying
all images correctly. For char, the both CBR methods perform 10% better than
the decision tree.

5.5.3.2 Second comparison

One of the advantages for the CBR in image interpretation is it’s ability to han-
dle noise (Perner [2001]). The CBR and the decision tree has therefore been
tested with different amounts of noise. The amount of noise consist of two fac-
tors, the size of the noise in accordance to its feature and the probability of the
noise being present.

The noise is introduced gradually; for each noise level a random amount of
noise between 0− 100% is added with a probability increasing by 2,5% for each
level, this means that all probabilities from 0− 50% have been covered in 2.5%
intervals. The noise is applied to the features before the reasoning, so all three
methods have exactly the same noisy features to reason with.

For the case-based reasoning, the case order is randomized for this first test. The
parameters are set to: reuse threshold = 0.2, weight modificator = 0.2, number
of nearest neighbors = 4. As can be seen from Figure 5.19, the decision tree
starts out with ∼ 92% correct classification while the k-nearest neighbor and
best-matching case starts with ∼ 82.5% and ∼ 80% respectively. This shows
that with absolutely no noise present, the simple decision tree performs better
than the CBR.

As the noise level rises, the robustness of the CBR regarding noise is starting to
show. At 20% noise probability, the decision tree accuracy drops from ∼ 92%
to ∼ 80%. while the k-nearest neighbor and best-matching case only drop a
few percent to ∼ 81% and ∼ 78% respectively. This means that with a 20%
probability for random amounts of noise in a feature, the k-nearest neighbor
classification is performing as well as the decision tree. At 40% noise probabil-
ity, both CBR methods are still getting ∼ 75% correct classification while the
decision tree drops down to < 65%.
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Table 5.13: Results for the 28 test images. Parameter values: reuse threshold =
0.05, weight modifier = 0.2, nearest neighbors = 5, training noise amount = 0.1,
training noise probability = 0.1

Image Best-matching case k-nearest neighbor Decision tree
Trout1 48% 100% 100%
Trout2 0% 8% 100%
Trout3 100% 100% 100%
Trout4 0 % 0% 100%
Trout5 100% 100% 100%
Trout6 100% 100% 100%
Trout7 100% 100% 100%
Trout8 100% 100% 100%

Trout total 68.5% 76% 100%

Salmon1 100% 100% 100%
Salmon2 98% 100% 100%
Salmon3 98% 100% 100%
Salmon4 54% 100% 100%
Salmon5 100% 100% 100%
Salmon6 0 % 16% 100%
Salmon7 86% 100% 100%
Salmon8 100% 100% 100%
Salmon9 100% 100% 100%

Salmon10 80% 98% 100%
Salmon11 100% 100% 100%

Salmon total 83.3% 92.2% 100%

Char1 100% 100% 100%
Char2 100% 100% 100%
Char3 84% 86% 100%
Char4 100% 90% 0%
Char5 0% 12% 0%
Char6 100% 100% 100%
Char7 100% 100% 100%
Char8 100% 100% 100%
Char9 100% 100 % 100%

Char total 87.1% 87.6% 77.1%

Total 80.3% 86.1% 92.9%
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Figure 5.19: Results of the second comparison (100 runs, number of neighbors
= 4, weight modifier = 0.2, reuse threshold = 0.2, training noise = 0.1)

5.5.3.3 Third comparison

The previous test runs force the system to classify each test image regardless of
how secure the classification is. For this test run, threshold values are used for
classification using the k-nearest neighbor algorithm. The threshold indicates
how many percent the classification has to score to be classified. The images
below this value are arranged in two categories, correct and unclassified and
incorrect and unclassified. All other parameters is identical to the first test run.
The results of this run can be seen in Table 5.14.

With the threshold value set to 0.7, the number of incorrectly classified cases is
10.4%, this is ∼ 8% less than when classification is forced. The total amount of
unclassified cases is 14.3%. At 0.75, 8.8% of the images are incorrectly classified,
but the amount of unclassified cases is 20.6%, meaning only 4/5 images are
classified by the reasoner. At 0.8, only 4% of the cases are classified incorrectly,
but only half (44.1%) of the images are classified.
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Table 5.14: Results for third comparison.(100 runs, number of neighbors = 4,
weight modifier = 0.2, reuse threshold = 0.2, training noise = 0.1)

Unclassified Classified
Threshold Correct Incorrect Correct Incorrect

0.7 6.4% 7.9% 75.3% 10.4%
0.75 10.7% 9.9% 71.4% 8.8%
0.8 30.1% 14.0% 51.9% 4.0%

5.6 Processing time

Neither the feature extraction nor the case-based reasoning have been imple-
mented with consideration to processing time. Regardless, a few notes on the
performance will me made. Extracting features for the 28 test cases takes ap-
proximately 16 seconds all together, this gives an feature extraction time of 0.6
seconds for each case. The full testing routine takes six minutes for 100 runs.
One run involves five training iterations per case in the test-set, or 140 training
iterations all together. So the retrieval of 14000 cases takes six minutes, or 25
milliseconds per case.

For the testing, a MacBook Pro notebook computer has been used. The com-
puter has the following specifications:

• CPU: 2,66 GHz Intel Core 2 Duo

• Memory: 8 GB 1333 MHz DDR3

• Hard drive: solid state drive
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Chapter 6

Discussion

The goal for this thesis has been to study the combination of image processing
methods and CBR for classifying fish in digital images. This involves prepro-
cessing, feature extraction and reasoning. The main focus has been on the fea-
ture extraction and reasoning parts. The study has resulted in a experimental
prototype case-based reasoner, able to classify fish with reasonably high accu-
racy. The prototype does not involve the preprocessing stage, but segmentation
methods have been tested.

6.1 Preprocessing and segmentation

Due to the lack of appropriate test data and limited time, preprocessing and
segmentation has not been integrated in the prototype. The methods have been
tested separately, resulting in an indication as to what might work for under-
water footage. Of the two background subtraction techniques tested, only the
Codebook algorithm appears to work well under water. The results from this
technique show promising results, even for the poor quality video used for test-
ing.

Using the Hu set of variant moments for separating fish from other objects also
shows good results. By using it to coarsely sort the segments of the image,
processing time can be saved as only the segments containing fish have to be
processed by the reasoner.
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6.2 Feature extraction

As stated in Section 5.4, the results from preprocessing and segmentation have
not been used for the feature extraction. The combination of limited amount of
time and low quality of the available video was the reason for this. The testing
data used is of much better quality, as this was considered necessary in order
to be able to properly test the extraction methods. The gap between the results
will have to be lessened in order for the preprocessing to be integrated into the
case-based reasoning in order to create a fully automatic solution.

The feature extraction methods show very good results. The exception is the
caudal fin extraction which does not give unambiguous values, but the nature
of the test images is likely to be the cause. The method itself gives a good esti-
mation of the curve, but as most of the images are taken on land with unnatural
postures for the fish the caudal fin is often obscured.

The remaining four features give good values with significant clustering. This
makes it possible to separate the species with more than 90% accuracy using
only threshold values as shown in the tests with the decision tree. The extraction
methods have been tested on still images only, not live video. But with good
quality capturing equipment it should be possible to achieve similar resolution
and clarity from video. Also, most of the images used for testing not taken
underwater. The main problem with underwater footage is the loss of colors,
but by placing the camera at low depths this can be avoided.

6.3 Case-based reasoner

Case-based reasoning has been applied to the extracted features to successfully
classify the species. The CBR does not perform as well as a decision tree using
the same feature values. The CBR is on the other hand much more robust to
noise, and at 20% noise probability the two reasoning methods perform equally
well. The implemented CBR system is not very advanced, and more advanced
methods for the reasoner might increase the accuracy while retaining the ro-
bustness to noise.

The parameters of the CBR have been tested thoroughly, but not all combina-
tions of them as testing takes an extensive amount of time. Untested combina-
tions of the values might still improve the performance of the system, but based
on the tests done this unlikely to improve the results radically.
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During testing, all images are classified, regardless of how good the classifica-
tion is. For the k-nearest neighbor method, a percentage is given to each species,
the higher it is, the more likely that the classification is correct. For the tests
where images are not classified if the certainty is below a given threshold, the
amount of incorrectly classified cases decrease. On the other hand, the amount
of images which are correctly classified also decrease, as some of these will also
be below the threshold. The threshold should therefore be chosen based on cor-
rect classification versus the amount of supervision. A higher amount of auto-
matically classified images will result in a higher amount of wrongly classified
images.

Overall, case-based reasoning seems to be an interesting approach to the prob-
lem of fish classification. The results of this study are not directly comparable to
all the previous approaches discussed in Section 2.1. Rova et al. [2007] address
the most similar problem, where two species with similar shapes are classified
with a success rate of 90%. As the case-based reasoning achieves at best 86%
during testing, the results must be said to be approximately equal.
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Chapter 7

Future work

There are many possible improvements and extensions that can be made to the
solution proposed in this thesis. The preprocessing stage has large room for im-
provement, and need to be properly tested on appropriate data. Other prepro-
cessing and segmentation methods can also be studied. The goal here should
be to produce results that are similar to the testing data used for the feature
extraction.

One part of the preprocessing which has not been addressed at all is how to
select the best image frame to use, as the fish is likely to be captured on video.
A way to do this, is to use the proposed preprocessing on all frames, and then
use the frame which has the object with most resemblance to a fish in it. It
can also be possible to extract features from several frames, and calculate mean
values for the feature values from each frame.

As goal of this thesis has not been to create a fully functional system for fish
classification, the case-based reasoning is only a prototype. A natural continua-
tion will be to further test and improve it, and to implement it in a programming
language with better processing capabilities. No user interface exist, except for
in the revision method, where a image of the fish to classify is shown, along
with input and output provided from the command line.

The redness feature depends highly on color information in the image. This
puts some limitations on the capturing equipment, black and white cameras can
not be used and neither can infrared cameras. This can be solved with control-
ling the capture environment by adding strobe lights, or by finding alternative
features to use for distinguishing the char.
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The case-based reasoning uses only numeric feature values; replacing them
with fuzzy-sets is another extension that can be interesting. Fuzzy sets allows
elements to have degrees of membership to classes, e.g. the peduncle can be
very thin, thin, normal, thick or very thick.

Lack of test-data has been a large challenge in this study. The creation of a
proper data-set for fish is something that would be very useful for comparing
fish-classification methods. Naturally, most classification methods will be spe-
cialized for some species, and the preliminaries for the images might be differ-
ent. But a online repository for fish data would make the acquiring of testing
data far easier.
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