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Problem Description

In a research project working within fundamental questions regarding growth and
growth processes the grand challenge is to grow a skyscraper. The project is in the
area of unconventional computation.

As part of the project growth based on cellular structures is to be investigated. As
a preliminary approach multidimensional non-uniform Cellular Automata (CA)
is a candidate that includes a possibility to explore cellular rules as the growth
process and the growing cellular automata as a physical structure.

In this project the aim is to investigate the possibility to define a 3-dimensional
cellular space where building-like structures can grow. This task includes defini-
tion of cellular neighborhood and cell states, as to be able to express structures
with sought properties. Further, a multi scale approach is to be investigated, i.e.
multiple CAs growing together to grow the building structure with secondary
sub-structures.

The growing structures are to be evaluated by visualization. The visualization
of the growing structure, with sub-structures, should be able to handle visualiza-
tion at different detail levels. At the basic levels the growth process should be
visualized using only the underlying cellular structure. At higher detail level a vi-
sualization should be able to represent the growing structure by include graphical
elements that resemble actual building materials.

The ultimate goal of this project is to present a demonstrator that illustrates a first
attempt to grow a virtual skyscraper.

Assignment given: 9. January 2012
Adviser: Gunnar Tufte, IDI, NTNU
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Abstract

A dream about evolvable structures that change to fit its environment could be a
peak into the future.

Cellular automata (CA) being a simple discrete model, it has the ability to simulate
biology by growing, reproducing and dying. Along with genetic algorithms, they
both simulates biological systems that can be used to realize this dream.

In this thesis, a skyscraper is grown using multiple cellular automata. The skyscraper
is grown in a CA simulator and visualizer made for this thesis. The result is a sta-
ble structure containing floors, walls, windows and ceilings with lights.

Genetic algorithms have been used to grow electrical wiring from a power source
in the basement up to power outlets on each floor, powering the lights.

The dream is a house that covers all your needs.

This thesis is a proof of concept, that it is possible to grow a stable skyscraper
using a CA with multiple sub-CAs growing lights and electrical wiring inside.

The project is in the area of unconventional computation, done at NTNU Trond-
heim.
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Abstrakt (Abstract in Norwegian)

En drøm om en evolverende struktur som forandrer seg for å passe med miljøet,
kan være et syn inn i framtiden.

Cellulære automater (CA) er en enkle diskret modell, som har evnen til å simulere
biologi ved å gro, reprodusere og dø. Sammens med genetiske algoritmer, simulerer
begge biologiske systemer som kan bli brukt for å realisere drømmen.

I denne avhandlingen vil en skyskraper bli grodd fram ved hjelp av flere cellulære
automater. Skyskraperen er grodd fram i en CA simulator og visualiserer lagd for
dette prosjektet. Resultatet er en stabil byggning med gluv, vegger, vinduer og tak
med lys.

Genetiske algoritmer er brukt for å gro elektriske ledninger fra en strømkilde i
kjelleren, opp til strømuttak i hver etasje, for å gi lysene strøm.

Drømmen er et hus som utvikler seg etter dine behov.

Denne avhandlingen er et konseptbevis på at det er mulig å gro stabile byggninger
i en CA og ved hjelp av flere del-CAer gro lys og elektrisk anlegg inni veggene.

Dette prosjektet er en del av forskningen på ukonvensjonelle beregning, gjort ved
NTNU Trondheim.
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Chapter 1

Introduction

The field of Cellular Automata (CA) has been around for 40 year. Over these
years a lot of research has gone into patterns, classifications and growth control.
The topic of growth control is in focus in this thesis, as a proof of concept, if it is
possible to grow a stable skyscraper structure using a CA with multiple sub-CAs
growing lights and electrical wiring inside.

A skyscraper is grown using multiple Cellular Automata. The skyscraper is grown
in a CA simulator and visualizer made for this thesis (see Chapter 7). The result
is a stable structure containing floors, walls, windows and ceilings with lights.

Cellular Automata (CA, see Chapter 2) is a simple discrete model, modeling a grid
of cells. Each cell has a state and are only influenced by their neighbors, creating
interesting patterns and structures when viewed over multiple time steps.

CAs can be used to simulate biological functions, such as growing, reproducing
and dying. Another type of algorithms simulating biology is Genetic Algorithms
(see Chapter 3) selecting, crossing and mutating offspring. In this project, genetic
algorithms have been used to grow electrical wiring from a power source in the
basement up to power outlets on each floor, powering the lights. See Chapter 8.

1



2 CHAPTER 1. INTRODUCTION

1.1 Report organization

The report is divided into 4 parts. Theory, Technology, Results and Appendices.

1.1.1 Theory

• Cellular Automata - What is a CA?

• Genetic Algorithms - How does a genetic algorithm work?

• Searching - Theory behind the search algorithms used

1.1.2 Theory

• Technology - Which technology used in the simulator / visualizer.

1.1.3 Results

• The Cellular Automata - How the CA was implemented

• The structure - How the structure was build and results

• Genetic Algorithms - How the GA was used and the results

• Optimizations - What optimizations were done in the visualizer.

• Conclusions and future work

1.1.4 Appendices

• A - Python code of how the GA works
How to run the visualizer?
And Java code for The Genetic Algorithm

• B - Rules - The finished rules used by the visualizer



Part I

Theory
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Chapter 2

Cellular automata

A Cellular Automaton[1][2][3][4][5][6] (plural cellular automata, abbreviation CA)
is a discrete model found in mathematics, physics, computability theory, theoret-
ical biology and micro-structure modeling. Consisting of a n-dimensional gird of
cells, each with a finite number of states, where n is a finite number. A cell evolves
deterministically in discrete time steps accordingly to the given rule set[4]. The
rules can be defined as a mathematical function or a boolean expression, using
the cells current states and the states of the nearest neighbors (the neighborhood) to
determine which rule to apply. A state is a integer in the range 0 to k − 1, where
k is the number of colors[4] (states). The neighborhood is defined by the range
r, the number of cells included in the neighborhood each direction. All cells are
updated before stepping to the next time step.

Other names used are "cellular spaces", "cellular structures", "homogeneous struc-
tures", and "iterative arrays". [4]

CA can be generalized into 3 parameters:

• k = colors / states

• d = dimensions

• r = neighborhood range

2.1 One-dimensional Cellular Automata

Using the same notation as Wolfram in [1], cell i can be denoted as a(t)i , where t
is the time step. One-dimensional CA can be seen as a regular uniform lattice (or
array) of discrete variables (states)[4].

a
(t)
i = F [a

(t−1)
i−r , a

(t−1)
i−r+1, ..., a

(t−1)
i , ..., a

(t−1)
i+r ] (2.1)

5



6 CHAPTER 2. CELLULAR AUTOMATA

In Equation 2.1 the arrays of a(t−1)
i and the neighborhood is sent to F , the rule

function, determining the next state of a(t)i . F can be a boolean expression, math-
ematical function or any other type of function, as long as it returns the next state.

Called "elementary" CA by Wolfram[1], the simplest type of CA is a binary (k = 2

states), one-dimensional (d = 1), nearest neighbor (r = 1) CA. Because of the
limited number of states (k = 2) and dimensions (d = 1) the maximum number of
rules is shown in Equation 2.2, read more in Section 2.3.1

kk
(2∗r+1)

= 22
(2∗1+1)

= 256 (2.2)

The rules for these "elementary" CAs was named Rule 0 to Rule 255 by Wol-
fram[1]. Different characteristics and deeper studied of some of these rules can
be found in [1][4][7].

Figure 2.1: Wolfram’s Rule 30, Top row is t = 0, displaying one row per time step.
Picture is owned by Wolfram Research, Inc.[8]



2.2. NEIGHBORHOOD 7

2.2 Neighborhood

The neighborhood of a cell is the surrounding cells in a range r in all directions1.
In a one-dimensional CA with range 1 the neighborhood would simply be the cell
to the left and to the right, as seen in Figure 2.2.

[ 0, 0, 4, c, 2, 0, 0]

Figure 2.2: The neighborhood for c is [4, 2] (range = 1)

An example of a 3-dimensional neighborhood can be seen in Figure 2.3, where
a pink cell is surrounded by cells in another state. The neighborhood includes
vertical, horizontal and diagonal cells, creating a neighborhood of 26 cells.

2.3 Rules

CA rules can be boolean expressions, sets or as in Conway’s "Game of Life" (Sec-
tion 2.6.1) mathematical functions. "Don’t care" rules can be defined, decreasing
the rule space and number of possible rules.

If no rules match the neighborhood, a cell must either remain its current state, or
change back to a default state.

2.3.1 Number of possible rules in a d-dimensional CA

In Wolfram’s Universality and Complexity in Cellular Automata[1], he presents
the Equation (2.2) describing the total number of possible rules for a one-dimensional
CA. In need of a d-dimensional equation, the following calculations were made.

Known from statistics, given k possible states, and length x, the total number of
possible combinations will be kx. In the case of a CA the x would be the neigh-
borhood, making it k(2∗r+1) for one dimension. (2 ∗ r + 1) describes the width
of the line made by the neighborhood. In two dimensions the line becomes a
square, and a cube in tree dimensions. (2 ∗ r + 1)

d describes the number of cells
in the neighborhood, making x = k(2∗r+1)d the maximum numbers of patterns
for a neighborhood. Hence the maximum number of rules becomes kx, as seen in
Equation 2.3.

kk
(2∗r+1)d

(2.3)

1Vertical, Horizontal, Diagonal - The choice is yours



8 CHAPTER 2. CELLULAR AUTOMATA

Figure 2.3: Neighborhood of pink cell visualized in the Visualizer(Section 6.6)

2.4 Classification

In "A new kind of science"[5] Stephen Wolfram presented a classification[9][10] for
Cellular Automata. Like in biology, classification is a way to organize and placing
everything into a system, making further studies easier and more structured. The
order of the classifications is sorted by increasing complexity.

Wolfram’s 4 classifications as defined by J.S. Hallinan in [9]:

1. Evolution leads to a homogeneous state (fixed point)

2. Evolution leads to a set of separated simple stable or periodic
structures

3. Evolution leads to a chaotic pattern
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4. Evolution leads to complex localized structures, sometimes long-
lived

Other classifications do exist. In [11] 6 classes are described. These are specializa-
tions of Wolfram’s classes, where class 6 is the same as Wolfram’s class 4.

2.4.1 Class 4

Listed last as the most complex, class 4 may also be places between class 2 and
3, ordering by activity levels[5]. Class 4 is where you find the complex structures
and most of the CA computations in [1][5][9][10][12][13]. The structure created in
Chapter 7 would be placed in this class.

2.5 Macro CA

A macro (from the Greek µακρó for "big" or "far") CA[14] contains one or multiple
micro CA. By diving the CAs into hierarchies, the fine details in the micro CA
can be abstracted away, simplifying the problem in the macro CA(s). Complex
problems can also be divide into simpler solvable problems, using multiple CA,
one or more for each problem.

The use of a macro CA can be read about in Section 6.4.

2.6 Two-dimensional Cellular Automata

Adding an additional dimension, only increases the number of possible rules
drastically (see Equation 2.4). All mechanics of the one-dimensional CA applies
for the two-dimensional CA.

kk
(2∗r+1)d

= 22
(2∗1+1)2

= 1.4078079 ∗ 10154 (2.4)

Growing in two dimensions can, produce some interesting patterns and effects.
Repeating patterns, data storage, CA Machines[15] with processing abilities, traf-
fic[16] and crowd[17] simulation are just some of the possibilities.

In Figure 2.5 a simple 2-dimensional CA time step is shown. The different colors
represent different states. The gray cell is the current active cell being compared
with the rules. The number beneath each rule is the next state of the cell, if the cell
matches the rule. The arrow represents the time step. The active cell does match
the first rule, changing the active cell from state 0 to state 1. Whether the rest of
the cells will stay unaffected or return to state 0 (or empty), is up to the specific
implementation.
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Figure 2.4: Macro CA with multiple micro CAs building a skyscraper

Figure 2.5: A simple CA
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2.6.1 Game of Life

John Conway’s "Game of life" [18][9] is a binary, two-dimensional, nearest neigh-
bor CA. "Game of Life" simulates organisms reproducing and dying by starving
or by overpopulation, where each cells either are alive or dead. The "game" is a
study of evolution and self-replication, and the four rules provided in Figure 2.6.

1. Any live cell with fewer than two live neighbors dies, as if caused by starva-
tion.

2. Any live cell with two or three live neighbors lives on to the next generation.

3. Any live cell with more than three live neighbors dies, as if by overpopula-
tion.

4. Any dead cell with exactly three live neighbors becomes a live cell, as if by
reproduction.

Figure 2.6: The 4 rules of "Game of Life"

Patterns

Interesting patterns were early discovered, making it possible for stable patterns,
oscillators and spaceships flying around! On May 18. 2010, Andrew J. Wade
announced "Gemini"[19], a self-replication pattern, duplicating itself while de-
stroying its predecessor. Only using 34 million generations, the finding came a
decade[20] earlier than expected.

2.7 Three-dimensional Cellular Automata and usage

When adding the third dimension the CA becomes really interesting. Complexity
skyrockets and the possibilities unlimited. Growing brain tumors[21], simulating
recrystallization[22] or growing a building automatically (as done in Chapter 7),
are just some few examples.

2.7.1 Stopping growth

In a nearest neighbor CA, the only way to stop growth is by "colliding" into an-
other cell. Using temporary states the CA can make temporary structures to stop
growth or to make new structures not connected to the starting structure. Read
more about the use of temporary states and growth stopping in Sections 77.2 and
7.3.





Chapter 3

Genetic algorithms

A Genetic Algorithm (GA)[12][23] is a search heuristic mimicking natural evolu-
tion, used to solve optimization and search problems. New generations of genomes[24]
are created through selection(3.1) and reproduction(3.2). Genomes are candidate
solutions tested to find a more optimal solution. The candidate solutions with
the highest score are sent to the next generation. Genomes consists of multiple
chromosomes, much like chromosomes in an individual’s DNA, controlling the
behavior of the system.

All genomes are testes against a "fitness function", a function measuring the qual-
ity of a genome.

3.1 Selection

During each generation a fitness function selects the "fittest" genomes to succeed
to the next generation, much like Darwin’s "survival of the fittest". Some algo-
rithms also use random selections; too increase the search scope in the solution
space.

3.2 Reproduction

After a selection is done, a new series of genomes are produced through mutation
or crossover.

3.2.1 Crossover

Crossover (Figure 3.1b) is the process of joining chromosomes from two parents.
In this case the parents would be two selected genomes from the last genera-

13
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tion. By taking chromosomes from both parents a new and hopefully better, fitter,
genome is created.

(a) Mutation (b) Crossover

Figure 3.1: Types of reproduction

3.2.2 Mutation

Mutation (Figure 3.1a) is when taking chromosomes from one parent and ran-
domly changing them.

A crossover can be viewed as a mutation, a mutation of two selected genomes into
one. Since the crossover is based on two genomes, the new genome will be closer
to its parents in the solution space, than a mutation would be to its parents. While
the crossovers function is to move locally, the mutations are used to jump out of
local optima in the solution space, trying new and different types of genomes.

Often a mixture of both is required to find a good solution.

3.3 Fitness function

The design of a fitness function may be the hardest part of making a successful
GA. Measuring the GAs performance and filtering away "bad" genomes, the fit-
ness functions has to be correct, but often more important, fast. Complex problems
with 21000 of solutions could take thousands of years finding an optimal solu-
tion. However, with a smart fitness function, a sufficiently good solution could be
found in a fraction of the time.

Starting wide, the fitness function will gradually narrow the search space as gen-
erations go. A bad fitness function can get stuck in local optimal solutions or just
perform a tedious search through the whole solution space.
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3.4 Usage

In 2006 NASA used an evolutionary algorithm to "grow" an antenna design[25]
for use in outer space. With complex magnetic fields and no gravitation, a straight
forward solution made by a human was not the most optimal. After 4 weeks of
evolving the design, NASA had their final design, the ST5-33.142.7 antenna which
can be seen in Figure 3.2.

Figure 3.2: ST5-33.142.7 antenna developed through evolutionary design. U.S.
NASA. (Public domain)

3.5 Criticisms

GAs are far from the answer to every problem. Over-usage has become a problem
later years because of genetic algorithms are viewed as "hip". While it is tempting
to go use a genetic algorithm when the number of possible solutions increases
exponentially, it’s easy to get stuck in local optimal solutions, not optimal for the
global solution. Using random mutation can solve this, but it will increase the
need for computation as well. Local optimal solutions are created by limitation
and presumptions in fitness function to speed up the search. By limiting the search
space, a global optimal solution may be lost. However if a non-optimal solution
is good enough, a genetic algorithm will always be preferred above brute forcing
the solution.





Chapter 4

Searching

A searching algorithm was required to find the shortest path between two cells
CA. These are the search algorithms used

4.1 Euclidean distance

In mathematics the Euclidean distance (see Equation 4.1) is the "ordinary" distance
between two points given by the Pythagorean formula.

d(p, q) = d(q, p) =

√
(p1 − q1)

2
+ (p2 − q2)

2
+ ...+ (pn − qn)

2 (4.1)

4.2 A* search

Pronounced "A star", the A* search[26] is a search algorithm used to find a least-
cost1 path between to points with one or more obstacles. A* is a modified version
of Dijkstra’s algorithm[27], using heuristics to increase the performance (with re-
spect to time). It is a best-first2 search, using a distance-plus-cost heuristic function
(f(x)) to determine the search order for the nodes not yet visited.

The distance-plus-cost heuristic is given by f(x) = g(x) + h(x), where:
g(x) is the path-cost function, the cost from the start node to the current node, and
h(x) is the admissible heuristic estimate of the distance to the goal. h(x) must be
admissible, in other words not overestimate the distance to the goal.

1Cost on all nodes = 1, gives distance
2Uses most promising paths first, determined by a rule
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4.2.1 Concept

While traversing the graph, the A* search always chooses the path with the lowest
known cost, keeping a sorting priority queue of alternative sub paths.

4.2.2 Example

Figure 4.1: Example of A* search

In Figure 4.1 a simple example can be viewed. The green cell is the start position,
the red cell is the goal, and the red arrows are the shortest path. The number in
the left top corner is f(x), the distance-plus-cost heuristic. In the left bottom corner
g(x) is shown and h(x) is shown in the bottom right corner of every cell. Note
that the shortest path to each cell diagonally out from the start is the Euclidean
distance, making g(x) =

√
102 + 102 = 14.142... ≈ 14.
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Chapter 5

Technology

5.1 Java

Java[28] is a object oriented, multi-paradigm, Just in Time (JIT)-compiled pro-
gramming language widely used. All code used for making results in this project
is written in Java, a programming language supporting:

1. All major operating systems (Windows, Mac OSX and Linux)

2. Fast and easy to build and compile

3. Support heavy graphic operations for viewing 3D models

The reason for choosing Java is more a choice of habits and flavor. Nearly all
courses on NTNU focus on Java, and the rest focuses on Python or C. Graphic
intense applications are usually written in C++, since it offers a wider variety of
libraries and are much faster since it is compiled before used. Java’s JIT-compiling
does shorten the build time, but increases the work while running the program.

In C++ nearly all memory usage must be allocated and freed when finished, while
Java has a automated garbage collection, using even more resources. Another
reason for using Java was the portability1, since I used both Windows and Mac
under this thesis. Also supporting OpenGL (Open Graphic Library), one of the
computer industry’s most widely used graphic library[29].

1Portability - support on multiple operating systems
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Is Java fast enough for games? The answer is yes. Minecraft[30]2 has a smooth
game-play with thousands of blocks simultaneously shown, making Java more
than sufficient for this project.

5.2 Renderer

To visualize the CA a renderer has to be used. There are many ways to render3 a
screen image, but only a handful can be done in real time. Since this thesis focuses
on growing a skyscraper, a real time environment enhances the experience by
giving continues visual feedback, making it possible to inspect every cell from
every angle while growing. Voxel renders is often used for discrete data models
such as points and boxes. Finding a voxel renderer with good documentation
proved to be harder than expected.

5.2.1 LWJGL

LWJGL (LightWeight Java Game Library)[31] offers access to high performance
libraries such as OpenGL and OpenCL(Open Computing Library). It is available
under the BSD license, which makes it free to use. The documentation for the
solution is really good, with multiple example projects. With OpenGL-like func-
tion calls, it is easy to use for someone with OpenGL experience. The most used
functions send function calls directly to the OpenGL driver, making it fast.

Not being a game engine, like "jMonkey Engine"[32] or "GLApp"[33], it gives you
direct access to low level resources and is not cluttered with plug-ins and extra
content.

For my usage it was nearly perfect, only missing some few functions. Loading of
models, cameras and lighting.

5.2.2 GLApp

GLApp[33] is a small library written by Mark Napier in 2009. It is based on LWJGL
and adds cameras, lighting, shadows, models, textures, dynamic fonts and many
more functions. It is still lightweight, making it easy to start up. While other
alternatives (jMonkey Engine, Jake2 and Ardor3D) have a lot of stuff, GLApp was
sufficient for my usage, making it perfect.

Another bonus was good (well good enough) documentation and project exam-
ples, making implementation really easy and quick.

In less than a day I had the basic flat terrain and could show the blocks from the
CA. Supporting model loading, each cell type could have a 3D-model loaded and

2A sandbox video game in Java, made popular in 2010
3Converting 3D models and lines into the picture seen on the screen
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viewed, showing 130 000 models without any problems. However, the final result
only uses blocks with texture. This is because my skills as a 3D artist are horrible.
However, with some help the skyscraper would have look magnificent.
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Results
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Chapter 6

The Cellular Automata

Figure 6.1: Two 8 floor skyscraper with lights and electrical wiring. Both stable,
multi-scale CA structure grown from two cells.

27
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This thesis is a proof of concept, that it is possible to grow a stable skyscraper in a
CA with multiple sub-CAs growing lights and electrical wiring inside. This is not
the most optimal way, nor the faster, but a different approach not tried before (as
to my knowledge).

6.1 The simple CA

Early on a simple 2-dimensional CA was made (Figure 6.2, implementing a rule
system to simulate "Game of Life"(Section 2.6.1). While being simple, it made the
foundations for the final 3-dimensional non-uniform multi-scale version.

Figure 6.2: First CA with "Game of Life", with the oscillator pattern "Beacon"
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6.2 Making of the cell grid

Although obvious, the CA contains a n-dimensional cell grid. At first the cell
grid was a n-dimensional array of Cell objects, in true Object Oriented style, but
this had a massive drain of memory and performance. Instead the cell grid was
replaced with a n-dimensional Integer array, where the state of the cell was saved,
and empty cells where set to Java’s "null" value. Strictly speaking, the cell state
is the only information needed. However traversing the whole array for each
generation is a waste of computation if the array is less than half full. Thus a list
of all active cells was added. More on this in the optimization section, in Section
9.1.

6.3 Rulebook

Rulebook is my fancy name for the CAs set of rules. The rulebooks functionality
mostly consists of saving, loading, adding and removing rules. It also contains
the function getNextState(), discussed in Section 6.3.1.

6.3.1 Hash Rules

A lot of effort was put into the rulebook, and especially the hash rule. The need for
lightning fast rule checking drove the result into a simple and fast way to check
hundreds of rules towards thousands of cells in just milliseconds.

The "Hash rule" consists of a text string representing the neighborhood, the next
state and a description. The neighborhood text string has a variable length, con-
sisting of 27 states separated by a "-" character. The next state is placed between
two "@" characters, with a description at the end. An example can be viewed in
Figure 6.3.

0-1-2-3-4-x-6-7-8-9-10-10-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-
@3@Description

Figure 6.3: Neighborhood text string from a hash rule

The neighborhood string consists of 27 states, the 26 neighbor cell’s states, and the
current cell’s state. The x seen in Figure 6.3 is a "don’t care" state, meaning the
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rulebook will allow any state when checking that particular cell. The format is not
human friendly, so a rule editor was made (Section 6.5).

The name "Hash Rule", describes the way the rules are stored and check. By using
a HashMap, the next state can be found by looking up the neighborhood string,
without search through every rule. However, the HashMap does not support
"don’t care" strings. A simple Algorithm 6.1 solved this.

Listing 6.1: Function for finding a matching rule for cell
1 def getNextSta te ( x , y , z ) :
2 neighborhoodString = getCellNeighborhoodString ( x , y , z )
3
4 i f hashRules . has ( neighborhoodString ) :
5 return hashRules . g e t S t a t e ( neighborhoodString )
6
7 e lse :
8 for r u l e in dontCareHashRules :
9 i f r u l e . matches ( neighborhoodString ) :

10 return r u l e . n e x t S t a t e
11 # No matching r u l e s , r e t u r n c u r r e n t s t a t e
12 return g e t C e l l S t a t e ( x , y , z )

6.3.2 Don’t care states

The use of "don’t care" states in rule drastically decreases the number of needed
rules. If used 10 times in one rule, the rule can match 1510 = 576650390625 neigh-
borhoods (see Equation 6.1). To handle "don’t care" states, a regular expression is
made along the rule object. Regular expressions are costly to make, but super fast
to match against.

total number of statesnumber of don’t cares (6.1)

6.4 Macro CA

Designing a fast multi-scale CA for Object Oriented Java was harder than antici-
pated. The result was a more C procedure approach. The implementation is good,
but the overall design does not support multiple micro CAs (from a Object Ori-
ented perspective).

Only one macro CA and one micro CA is available. However, practically speak-
ing, the micro CA can act like multiple CA if given multiple sets of rules. In other
words, the results are as wanted, but a Java architect would cry.
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The relationship between the macro CA and the micro CA is 1 : 27. Each macro
cell contains 27 cells (3x3x3) sub-cells controlled by the micro CA. The difference
between the macro and the micro structure can be viewed in Figure 6.4 One nifty
function is that when a macro cell changes, the corresponding 27 micro cells gets
updated to the same state, this way the sub grid is a finer detailed version of the
main grid. This makes the structure a dynamic structure able to change drastically
if wanted.

(a) Macro structure (b) Micro structure

Figure 6.4: The visual difference between the macro and the micro structure. Cam-
era is in the same position in both pictures. The glass windows have a window
ledge in the micro structure. Also, in every ceiling, electrical wiring and lights are
installed

6.5 Rule editor

Writing the rules as >54 character strings became a tedious job and led to many
sources of error. A rule editor was designed and integrated with the CA and later,
the visualizer (Section 6.6). As seen in Figure 6.5, the design is simple, easy to
understand and fast to use. Keyboard shortcuts for jumping between cells do
exist.
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Figure 6.5: Rule editor - On the left a neighborhood is visualized. The center text
box represents the next state if the rule is a match. At the top left the description
of the rule can be written. The top right corner has a drop-down menu to choose
which rulebook to use. On the right side all rules in the rulebook are sorted by
"next state". Clicking on a rule here loads the rule into the neighborhood on the
left. Legal states are all numbers and x, x being the "don’t care"-state

6.6 Visualizer

The visualizer is written in Java, using the GLApp(Section 5.2.2) library. Working
with GLApp was like a walk in the park, on a sunny warm day. Good docu-
mentation, example projects and good coding standard (relatively), everything a
programmer could want. The visualizer scale is 1:1 with the cell blocks. Meaning
every block is 1 wide, 1 high and 1 deep. This makes debugging a real ease. When
started, it loading the texture for every state (Section 6.8). It then loops through
the active cells1 placing them on the grass plane.

The visualizer uses the same rulebook as the rule editor, keeping all rules up to
dates. It also has a revision system for each cell, making it possible to jump be-
tween generations, a really nice feature when trying out new rules. A generation
lock is also implemented, making it easy to jump back to a specific state again and
again.

For debugging purposes, it is possible to hide all cells of a given type, either by

1See Section 6.2 for the definition of a active cell
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pressing a button, or by flying close to the building. This way it is possible to
work with the micro CAs cell, while ignoring the macro CA. Both functions are
demonstrated in Figure 6.6.

(a) Hide all macro cells (b) Hide close macro cells

Figure 6.6: Hiding uninteresting cells when working

6.7 Design choices

• To minimize computation, I’ve chosen to set r = 1 (see Section 2.2), meaning
only nearest neighbors are checked.

• Cells not matching any rules will remain it’s current state. Reasons for this
choice is discussed in Section 9.1.

6.8 States

In Figure 6.7 all states used in the final structure are discussed.
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(a) State 0 - The
empty state, nor-
mally hidden

(b) State 1 - Temp.
state used when
growing floors

(c) State 2 - Temp.
state used when
growing floors

(d) State 3 - Final
floor state

(e) State 4 - Wall
state, often replaced
by 14

(f) State 5 - Temp.
state used to make
new levels

(g) State 6 - Temp.
state used to make
new levels

(h) State 7 - Room
state, normally hid-
den

(i) State 8 - Inactive
light state

(j) State 9 - Active
light state

(k) State 10 - Inac-
tive wire state

(l) State 11 - Active
wire state

(m) State 12 - Power
outlet state

(n) State 14 - Glass
window state

(o) Missing texture

Figure 6.7: Cell states used in the final structure



Chapter 7

The structure

Figure 7.1: Two skyscrapers growing
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7.1 The Square

After a lot of coding the first version of the CA was finished and I was finally able
to start working on the structure. Using the the Rule Editor (Section 6.5), I played
around with lots of concepts. The first one was making a square, representing the
ground floor.

Being a simple geometrical figure, consisting of 4 lines, the square is easy to draw.
However making one in a CA is some what more complicated.

Since the CA only sees it’s neighbor, it has no concepts of stopping after n steps.
The only way to stop is by "colliding" with another cell.

Starting with two cells in the state 1, the first attempt(Figure 7.2a) had 4 rules.

• Go north
(if cell state is 0, south cell on same plane is 1. Then become 1)

• Go south

• Go west

• Go east

It did create a square, plus some unwanted lines going out in each direction, as
seen in Figre 7.2a.

(a) First attempt of square (b) Quadratic square consisting of 2 types of cells
and 2 rules each. The darker cells in the top left
corner is in state 1, while the cells in the bottom
right are of state 2
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The problem is, all 4 rules apply for both cells, being the same cell type. Instead,
start with two different types of cells. This way you get a perfect quadratic square,
as seen in Figure 7.2b.

7.2 Floor

Having a quadratic floor with a big hole in the middle does not make a good floor.
To fill the hole, you can use a rule like: "If cell north for current cell is of type 1,
current state is 0. Then become state 1". If you take a look at Figure 7.2b again,
and try to execute the rule you would find a problem. The cells going downwards
at the west border won’t stop, as seen in Figure 7.2.

Figure 7.2: Making too generic rules may end with unwanted structures

A floor existing of two different states is not ideal. Instead of making lots of rules
to convert one of the states into the other, you simple pick a new state that both
of them should become. When both cells meet at the middle, start making the
third type of cell, consuming the old cells. Figure 7.3 shows the growth patterns
of making the floor, over 11 generations.

7.3 Levels

Starting on the levels (stories / floors) the first thought was sending a vertical
diagonal beam, like a support beam, from one corner to the other, while making
both corners grow upwards. This would make the level height the same the width,
only making quadratic rooms. This solution was there for scraped.

The final chosen growth sequence for levels are shown in Figure 7.4 and 7.5. By
constructing a temporary structure, 4 cells high, the growth are limited and a new
floor is created.
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(a) Generation 1 (b) Generation 3

(c) Generation 5 (d) Generation 6

(e) Generation 8 (f) Generation 11

Figure 7.3: Growing a floor using 3 cell types over 11 generations
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(a) Start new level (b) Make a temp. structure

(c) Continue growing the temp. structure (d) Make a new temp. state to finish the growth

(e) Start a new floor, just like the first generation
of the floor

(f) Floor continues

Figure 7.4: Growing levels/floors. Figure continues in 7.5
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(a) Floor finished, start growing walls (b) Start growing windows

(c) Continue growing windows and walls (d) Continue growing windows and walls

(e) Continue growing windows and walls (f) Finished growing level

Figure 7.5: Continue growing levels/floors.
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7.3.1 Sub-structures

Growing the structure is in it self pretty cool, but it has no practical use alone.
Adding additional sub-structures opens new areas of usage. Windows, chairs,
desktops, toilets, lights and electrical wiring makes the simulator useful for real
life usage. Imaging adding physical rules to the simulating, growing skyscraper
instead of a architecture designing them.

Lights

In the roof lights will be grown, first as inactive lights. Lights will then change to
an active state if the cell above is a active electrical wire. The difference visually
can be seen in Figure 7.6. I did not want the whole roof to consist of lights, so
I made a rule creating a "snow crystal"-like pattern. This is because the rule for
creating a light: "if cell is of state 3(floor), all neighbors on the same plane is 3, all
cells beneath are 7(room), and all over is 3(floor), then become 8 (inactive light)".
If you look back at Figure 7.3, the making of the floor, the lights will be inserted in
waves, making the pattern.

(a) Inactive lights (b) Active lights

Figure 7.6: Difference between active and inactive lights

Wiring

To simulate electrical wires, a wire is either active or inactive. Inactive lights will
only become active when a neighbor, vertically or horizontally, is an active light.
Only active wires can power lights. A complex structure of wires can be seen in
Figure 7.7.
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Figure 7.7: Electric wiring in a early version. Inactive wires are pink, while active
are red

7.4 Rules

All rules used in the final building is listed in the appendix.
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Genetic Algorithms

With lights in the roof and the ability to add other electrical devices, wiring is
needed all over the building. A simple rule for solving this problem would be
"if current cell is 3(floor) or 4(wall), and no neighbors are of state 0, 7 (room) or
14 (windows), then become 10 (inactive light)". Solving the problem, it produces
more wiring than needed.

A better solution is wanted, making genetic algorithms a fun and interesting
choice. CA being evolvable in nature, GA fits nicely making the building more
or less an organism. Instead of moving electrical devices to the outlet, a outlet
could be grown where it’s needed. Just set the device into the wall, and seconds
later the device is active.

8.1 First try

Before this project, I had never implemented a GA. I did know the basics about
GA and how human cell reproduction worked, but not how to design one. My
first try was a really naive implementation where I took a rule, a 27 number array,
and more or less brute forced a solution, with a fitness function giving points if a
light came active. Shockingly, after one hour of calculation, nothing had happened.
Calculating the number of possible rules with the Equation 2.3, a worst case sce-
nario would take over 500 000 years. The brute force way of solving was quickly
abandoned.

8.2 Second try

Having too many possible rules in my first try, I tried a twist. Waiting until the
structure became stable, I looped through all floor and wall cells saving the neigh-
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borhood strings in a set. Only choosing neighborhood string containing the wall
and floor state, I got all the cells "inside" the walls and floors1. What I discovered
was that there were only 8 types of neighborhoods. By making a rule for each one
of these neighborhoods a worst case solution was found.

I then used mutation on these generic rules, hoping for a more specific rule, reduc-
ing the wire length and maintaining the number of active lights. After calculating
the number of possible mutations, I quickly gave up this method.

8.3 First results

Instead of using the GA to "guess" random rules, I placed the GA inside the CA.
Making the GA traverse through the CA search for lights and building electrical
wiring on its way. Much like the video game "snake", crawling its way through
the CA, either going vertically or horizontally. This narrows down the number
of possibilities to 6 ways per step (using elitism). The fitness function sums the
distance to every light and uses it as it’s score.

Figure 8.1: First results

1By inside I mean cells concealed by other floor or wall cells
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After some few minutes I had my first results. In Figure 8.1 you can see the first
solution activating any lights. It did have unnecessary wiring and did not cover
every light, but it was something.

8.4 Divide and conquer

Having a too simple fitness function the "snake" can easily get confused and stuck
in a local optima. Instead of making the GA grow toward every light, I added a
outlet on each floor, decreasing the noise in the fitness function, and dividing the
problem into sub-problems. The snake then went directly to the first outlet, and
got stuck, going around and around the outlet (Figure 8.2).

Figure 8.2: GA getting stuck at the first outlet. Red is the "snake", blue is the
outlets and the gray being the Euclidean distance

The problem with using the Euclidean distance (Section 4.1) in a fitness function,
is that it does not handle obstacles. The shortest path is always through the ob-
ject, making it stuck at the wrong side, trying to go through. The solution was
making the fitness function more sophisticated, using a shortest path algorithm
supporting obstacles. The choice fell on the A* star algorithm (Section 4.2).

8.5 Sophisticated fitness function

You may ask "Why use the A* start search inside the fitness function, when you
can used it to find the shortest path, and therefore solving the problem?". The
answer is, we are not interested in the shortest path and the optimal solution, we
want to see if a GA could find all outlets in a CA.
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By running the A* search first, on the finished building without wiring, you get
the shortest path to every outlet by running the algorithm n times, where n is the
number of outlets. Later using the heuristics in the fitness function. This way a
the GA finds all outlets in the CA.

The fitness function must also punish genomes adding extra wiring, keeping the
total of wiring to a minimum.

The implementation of the A* fitness function unfortunately fell short, not giving
any usable results, making it future work.

8.6 Activating the lights

Dividing the problem in Section 8.4 solved the problem of finding and powering
the outlets, but the lights still lacked power. A "brute force" GA would probably
find a small2 enough solution in some hours, but it would be against the purpose
of this thesis.

Looking at the initial structure, a touch crossed my mind. No matter how you
design the GA, a light has to have a wire above to work. By adding a wire above
each light, the search space was decreased from 48 possible rules to just 24 (In a
18x18 structure). The initial structure can be seen in Figure 8.3.

Filling the holes between the inactive wires, the worst case scenario is "just" 24!, a
much smaller number than my first brute force solution. Using a fitness function
counting the number of active lights and giving penalties for extra wiring, the first
solution came after 10 minutes. Having just 2 unnecessary wires, the solution was
as good as hoped. The result can be viewed in Figure 8.4.

Using elitism, the GA always picked the same rules, this was a problem. While
giving a good solution, the optimal solution was scraped. Always picking the last
rule if multiple rules had the same amount of points. Instead, a random rule was
chosen.

Being late in the thesis, I did not have the time to run the GA enough times to find
a more optimal solution. However, these 5 rules kept coming, in different orders.

The algorithm used can be seen in Appendix A.2.2, or as simplified python code
in Listing A.1.

2Using minimal wiring
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Figure 8.3: Inactive wiring over inactive lights, electrical outlet as blue
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Figure 8.4: The final light configuration, all lights connected to the power outlet
(blue). Numbers corresponding with Figure 8.5

1. 3-3-3-8-3-8-8-3-8-3-3-3-10-3-10-10-3-10-3-3-3-3-3-3-3-3-3-@10@GA made in
generation 28 with p261

2. 3-8-3-3-3-3-8-8-3-3-10-3-3-3-3-10-10-3-3-3-3-3-3-3-3-3-3-@10@GA made in
generation 29 with p583

3. 8-8-8-3-3-3-8-8-8-10-10-10-3-3-3-10-10-10-3-3-3-3-3-3-3-3-3-@10@GA made in
generation 30 with p537

4. 8-3-3-8-3-8-8-3-8-10-3-3-10-3-10-10-3-10-3-3-3-3-3-3-3-3-3-@10@GA made in
generation 31 with p576

5. 3-8-8-3-3-3-3-8-3-3-10-10-3-3-3-3-10-3-3-3-3-3-3-3-3-3-3-@10@GA made in
generation 32 with p585

Figure 8.5: The final rules for the light wiring, best of 1000 solutions. Number
corresponds with Figure 8.4



Chapter 9

Optimizations

9.1 Optimizations

The focus in this thesis was not optimizations; however some optimizations had
to be done to get results in time.

9.2 Hashing

In a naive implementation to find the next state of a cell, would be to check ev-
ery active cell, and compare the cell’s neighborhood against all the rules. The
neighborhood string presented in Section 6.3.1, is a string representation of a cell’s
neighborhood, and can be represented as "String" class in Java. Instead of compare
every rule’s neighborhood string against the neighborhood string of each cell, a
hashing function can be used. In Java the HashMap class can make objects with
a specified lookup key and a value for that specific key. By using the neighbor-
hood string as a key, and the "next state" as a value, you can have instant lookup,
speeding up the CA significantly.

9.3 Active cells

Depending on the structure, a CA can have clustered cells. For nearest neighbor
CA, a new cell may only spawn next to an existing one. By storing a list of active
cells and only calculating the next state for those, increase the performance dras-
tically. Finding the fill limit when it stops being beneficial would be a interesting
result for future work.

The observant soul would point out that only storing cells with a state would lead
to no growth. That is correct. By storing all cells with state 0 in the neighborhood
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of active cells with states other than 0, a membrane is created around the active
ones.

9.4 Caching

Caching, temporarily storing information used often, is often used to increase per-
formance. Calculation of the neighborhood string is done in a triple for loop, loop-
ing through the 27 cells in the neighborhood (included itself). When the structure
becomes stable, only some hundred cells will change from generation to genera-
tion, leaving half a million unchanging cells recalculating and exhausting the sys-
tem in vain. By caching the neighborhood string and checking against a boolean
if the string has changed, a boost in performance is gained.

Each time a cell changes its state, all neighbors are alerted and the boolean is set
to true. The next time the getNeighborhoodString() function is called, the string is
recalculated and the boolean set to false.

This way a neighborhood string is only calculated when changed, saving millions
of operations.

9.5 Reversion system for cells

Saving a state history for a cell makes jumping backwards and forwards faster.
Especially practical when testing GAs, starting at a selected generation each time
a genome is tested, instead of starting at generation 0 each time.



Chapter 10

Conclusions and future work

10.1 Conclusions

Cellular automata still has a lot of uncharted territory.

In recent years the interest have grown, researching traffic simulations, city plan-
ing, brain tumor simulations and recrystallization. Not able to find any other pa-
per studying growth of buildings using multiple CA, one can assume this paper
has a new angle on the usage of CAs.

As a proof of concept, I have shown that it possible to grow a stable skyscraper
using multiple CA. The skyscraper has windows, floors, walls and automatically
grows lights and electrical wiring to power the lights.

Whatever the future holds, more research will be put into CA.

10.2 Future work

In this chapter, possible future work is presented.

10.2.1 A* search in fitness function

Finishing the A* search used in the fitness function is Section 8.5. Then growing
wires from the starting outlet in the basement up to all the other outlets in the
structure.

10.2.2 Add models

Instead of using boxes with textures, add a model for each state. The building
would look much more realistic. The support is there, only the models are miss-
ing.
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10.2.3 Light distribution system

A system for placing lights and windows could be made, adapting the light to the
content of the room.

10.2.4 Ventilation system

Growing a ventilation system to each room, making the wiring grow beside it,
would be one vital step closer to realism.

10.2.5 Extend CA support

The simulation only supports one sub-CA. Rewriting the code to support a finite
number of sub-CA and studying sub-CAs working together would be an interest-
ing thesis.

10.2.6 Power outlets

Growing power outlets in the near vicinity of electrical devices, making the outlets
appear where needed instead of moving the devices to the outlet.

10.2.7 Fill limit of the active cell list

In Section 9.3 , the problem of finding the optimal fill limit of the active cell list
is described. A future project could find the fill limit and implement a system for
turning on and off the usage of the active cell list. This would make the CA much
faster when working on filled cell grid.

10.2.8 Fixing the revision system

The revision system worked nicely up to one week before delivery. I could not
find the error in time.

10.3 The dream

An evolvable building, evolving itself to solve any problem occurring.

Instead of searching for a power outlet, you could hold the cable next to the wall.
The building would then grow a power outlet with the additional required wiring.

A fire breaks out in the stairs, making it impossible to escape. At once, the building
grows a new staircase or grow a fire hose.

Think about having an apartment with just one room. When something is needed,
it is grown. The possibilities would be endless.
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Appendix A

Source Code

The following chapter includes the most important source code files. Instructions
for running the Java application can also be found in Section A.2.1. The rules for
the final structure can be found in Section B.

A.1 Genetic Algorithm as a simplified Python script

Listing A.1: GA for powering lights from outlet
1 def power_l ights_from_out le t ( ) :
2 game . goToGeneration ( 2 8 ) # F i n s i h e d s t r u c t u r e
3
4 # Find y c o o r d i n a t e o f o u t l e t
5 s t a r t Y = findCellType ( CellType . Out le t ) . y
6
7 rulesToCheck = [ ]
8
9 for c e l l in c e l l s I n S u b g r i d :

10 i f c e l l . y == s t a r t Y :
11 # s k i p e x i s t i n g i n a c t i v e w i r e s
12 i f c e l l . s t a t e != CellType . Inact iveWire :
13 rulesToCheck . add ( c . neighborhoodString )
14
15 # B e s t r u l e s f o r e a c h g e n e r a t i o n i s added h e r e
16 chosenRules = [ ]
17
18 while not f i n i s h e d :
19 generat ion++
20
21
22 for r u l e in rulesToCheck :
23 game . rulebook . add ( r u l e ) # Add r u l e t e m p o r a r i l y
24
25 # T e s t r u l e , grow 30 more s t a t e s
26 game . goToGeneration (28 + 30)
27
28 points . add ( rule , f i t n e s s F u n c t i o n ( ) )
29
30 game . rulebook . remove ( r u l e ) # remove t e m p o r a r i l y r u l e
31
32 game . goToGeneration ( 2 8 ) # Jump b a c k b e f o r e nex t t e s t
33
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34
35 bestRule = points . getRuleWithMostPoints ( )
36
37 game . rulebook . add ( bestRule )
38
39 i f g e t I n a c t i v e L i g h t s ( ) == 0 :
40 f i n i s h e d = true
41
42 def f i t n e s s F u n c t i o n ( ) :
43 # Encourage a c t i v a t i n g l i g h t s and punish e x t r a wi r i ng
44 return getAct iveLights ( ) ∗ 10 − getLengthOfWires ( )
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A.2 Java code

A.2.1 Running the CA

The application can be found in the attached zip file. On windows, unzip the
file "Visualizer.zip" to a folder. Then starting the visualizer and the rule editor by
double click the Master.jar file.

For Linux and Mac, try double clicking. If it does not work, the following com-
mand seen in Figure A.1 or A.2

java -jar Master.jar -Djava.library.path=drivers/native/linux

Figure A.1: Command for starting visualizer on linux

java -jar Master.jar -Djava.library.path=drivers/native/macosx

Figure A.2: Command for starting visualizer on Mac

A.2.2 Genetic algorithm for wiring the lights

The GeneticAlgorithms class (Listing A.2) contains the algorithm for running mul-
tiple instances of the GAInstance (Listing A.3), picking out the best one and send-
ing it to the next generation. The Game class in "GeneticAlgorithms" is just a con-
tainer for the CellGrid class (Listing A.6). The step function calls the step function
in CellGrid, and some other calls to the visualizer. To make it simple, all infor-
mation needed to be passed from generation to generation is put in a StateInfor-
mation object (Listing A.4). The OrderCell used in the GeneticAlgorithms class
and the GAInstance class can be found in Listing A.5. At last the HashRule class
(Listing A.8) is included, showing how a rule was structured.

Listing A.2: The overall genetic algorithm, starting up GAInstances and counting
points

1 package g e n e t i c ;
2
3 import glmodel . GL_Vector ;
4
5 import j ava . io . BufferedWriter ;
6 import j ava . io . F i l e W r i t e r ;
7 import j ava . t e x t . SimpleDateFormat ;
8 import j ava . u t i l . ArrayList ;
9 import j ava . u t i l . Date ;

10 import j ava . u t i l . HashMap ;
11 import j ava . u t i l . Random ;
12
13 import mechanics . Cel lGrid ;
14 import mechanics . Game ;
15 import ca . C e l l ;
16 import ca . C e l l S t r u c t u r e s ;
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17 import ca . RuleBook ;
18 import ca . r u l e s . HashRule ;
19
20
21 public c l a s s GeneticAlgorithms {
22
23 private RuleBook rulebook ;
24 private SimpleDateFormat sdf ;
25 private Random rand ;
26 private ArrayList <CellOrder > f ina lOrder ;
27
28
29 public GeneticAlgorithms ( ) {
30 sdf = new SimpleDateFormat ( " yyyy−MM−dd HH−mm−ss " ) ;
31 rulebook = new RuleBook ( ) ;
32 rand = new Random ( ) ;
33 f ina lOrder = new ArrayList <CellOrder > ( ) ;
34
35 spreadTest ( ) ;
36
37 /∗
38 f o r ( i n t i =0 ; i <100; i ++){
39 System . out . p r i n t l n (" T e s t "+ i ) ;
40 s p r e a d T e s t ( ) ;
41 System . out . p r i n t l n ( ) ;
42 System . out . p r i n t l n ( ) ;
43 }
44 ∗/
45 / / c l i m b T e s t ( ) ;
46 System . out . p r i n t l n ( " Al l f i n i s h e d " ) ;
47 }
48
49 private void spreadTest ( ) {
50
51 i n t s t a r t G e n e r a t i o n = 2 8 ;
52 / / Only grow one f l o o r
53 Game game = new Game( null , C e l l S t r u c t u r e s . BUILDNING_START, 6 , 5 , 6 ) ;
54 / / Jump t o f i n i s h e d b u i l d n i n g
55 game . goForwardToGeneration ( s t a r t G e n e r a t i o n ) ;
56
57 i n t s t a r t Y = ( i n t ) GAInstance . f i n d S t a r t C e l l ( game , 1 2 ) . y ;
58
59 Cel lGrid subGrid = game . getCel lGr id ( ) . getSubGrid ( ) ;
60 i f ( subGrid == null ) {
61 System . out . p r i n t l n ( " Subgrid Null ! " ) ;
62 return ;
63 }
64
65 / / Find max / min v a l u e s f o r l i g h t s in X and Z d i r e c t i o n
66 i n t maxX = 0 , maxZ = 0 , minX = subGrid . getGridWidth ( ) , minZ = subGrid . getGridDepth ( ) ;
67 for ( C e l l c : game . getCel ls InSubGrid ( ) ) {
68 / / I f c e l l o f t y p e i n a c t i v e l i g h t
69 i f ( c . g e t S t a t e ( ) == 8 ) {
70 i f ( c . getX ( ) > maxX ) {
71 maxX = c . getX ( ) ;
72 } e lse i f ( c . getX ( ) < minX ) {
73 minX = c . getX ( ) ;
74 }
75 i f ( c . getZ ( ) > maxZ ) {
76 maxZ = c . getZ ( ) ;
77 } e lse i f ( c . getZ ( ) < minZ ) {
78 minZ = c . getZ ( ) ;
79 }
80 }
81 }
82
83 / / A l l l i g h t s s t a r t s wi th i n a c t i v e wi r e above , t h e r f o r a l l c e l l s in s t a t e 3
84 / / on y l e v e l g i v e n by s t a r t C e l l , and be tween minX / maxX and minZ / maxZ i s p o t e n s i a l
85 / / c a n d i d a t e s f o r a HashRule . TEST THEM ALL!
86 / / measure them by a f i t n e s s f u n c t i o n , and send t h e b e s t through t o t h e nex t g e n e r a t i o n
87 HashMap<Str ing , GL_Vector> hashesToCheck = new HashMap<Str ing , GL_Vector > ( ) ;
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88
89 for ( C e l l c : game . getCel ls InSubGrid ( ) ) {
90 i f ( c . getY ( ) == s t a r t Y ) {
91 i f ( c . getX ( ) <= maxX && c . getX ( ) >= minX && c . getZ ( ) <= maxZ && c . getZ ( ) >= minZ ) {
92 i f ( c . g e t S t a t e ( ) != 10) hashesToCheck . put ( c . getHash ( ) , c . g e t P o s i t i o n ( ) ) ;
93 }
94 }
95 }
96
97 System . out . p r i n t l n ( hashesToCheck . s i z e ( ) ) ;
98
99 i f ( hashesToCheck . s i z e ( ) == 0 ) {

100 System . out . p r i n t l n ( "NO CELLS" ) ;
101 return ;
102 }
103
104 boolean f i n i s h e d = f a l s e ;
105 ArrayList <HashRule> chosenRules = new ArrayList <HashRule > ( ) ;
106
107 HashMap<Str ing , Integer > points = new HashMap<Str ing , Integer > ( ) ;
108 i n t generat ion = s t a r t G e n e r a t i o n ;
109
110 long s tar tTime = System . currentTimeMil l i s ( ) ;
111 I n t e g e r h i g h e s t P o i n t s = 0 ;
112 S t r i n g bestHash = " " ;
113
114 while ( f i n i s h e d == f a l s e ) {
115 generat ion ++;
116 System . out . p r i n t l n ( "NEW GENERATION ===== "+generat ion ) ;
117
118 / / For a l l p o s s i b l e h a s h e s
119 for ( S t r i n g hash : hashesToCheck . keySet ( ) ) {
120 game = new Game( null , C e l l S t r u c t u r e s . BUILDNING_START, 6 , 5 , 6 ) ;
121 / / Jump t o f i n i s h e d b u i l d n i n g
122 game . goForwardToGeneration ( s t a r t G e n e r a t i o n ) ;
123
124 / / Add a l r e a d y c h o s e n r u l e s
125 for ( HashRule cs : chosenRules ) {
126 game . getSubRuleBook ( ) . addHashRule ( cs , f a l s e ) ;
127 }
128
129 System . out . p r i n t l n ( " a c t i v e r u l e s : "+game . getSubRuleBook ( ) . getHashRules ( ) . s i z e ( ) ) ;
130
131 / / Get hash and add i t t o r u l e b o o k
132 HashRule hashRule = new HashRule ( hash , 10 , "GA generated in generat ion "+ s t a r t G e n e r a t i o n ) ;
133 game . getSubRuleBook ( ) . addHashRule ( hashRule , f a l s e ) ;
134
135
136 / / Try t h e r u l e f o r 30 g e n e r a t i o n s
137 for ( i n t i =0 ; i <30; i ++){
138 / / T e s t how s u c c e s s f u l l t h e r u l e was , s a v e r e s u l t in HashMap with p o s i t i o n
139 i n t i n a c t i v e L i g h t s = game . getStateCount ( 8 ) ;
140 i n t a c t i v e L i g h t s = game . getStateCount ( 9 ) ;
141 double percent = a c t i v e L i g h t s / ( double ) ( a c t i v e L i g h t s + i n a c t i v e L i g h t s ) ;
142
143 / / System . out . p r i n t l n (" t e s t : "+ i +" | P e r c e n t c o m p l e t e d : "+ p e r c e n t ) ;
144 game . s tep ( ) ;
145 }
146
147 / / T e s t how s u c c e s s f u l l t h e r u l e was , s a v e r e s u l t in HashMap with p o s i t i o n
148 i n t i n a c t i v e L i g h t s = game . getStateCount ( 8 ) ;
149 i n t a c t i v e L i g h t s = game . getStateCount ( 9 ) ;
150 i n t wireLength = game . getStateCount ( 1 0 ) + game . getStateCount ( 1 1 ) ;
151 double percent = a c t i v e L i g h t s / ( double ) ( a c t i v e L i g h t s + i n a c t i v e L i g h t s ) ;
152
153 System . out . p r i n t l n ( "G: "+generat ion+" | "+hash ) ;
154 System . out . p r i n t l n ( " Lights : "+ a c t i v e L i g h t s +"/"+ i n a c t i v e L i g h t s ) ;
155 System . out . p r i n t l n ( " Wire length : "+wireLength ) ;
156 System . out . p r i n t l n ( " Percent completed : "+percent ) ;
157
158 / / I f f i n i s h e d , s t o p
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159 i f ( ( i n t ) percent == 1) f i n i s h e d = t rue ;
160 i f ( f i n i s h e d ) System . out . p r i n t l n ( "FINISHED" ) ;
161
162 / / C a l c u l a t e s c o r e
163 I n t e g e r score = a c t i v e L i g h t s∗10 − wireLength ;
164 System . out . p r i n t l n ( " Points : "+score ) ;
165 / / Save s c o r e
166 points . put ( hash , score ) ;
167
168 / / remove t h e r u l e from t e s t g a m e
169 game . getSubRuleBook ( ) . removeHashRule ( hashRule , f a l s e ) ;
170
171 / / Always s t a r t from t h e f i n i s h e d b u i l d i n g
172 / / d o e s not work : ( make new game e a c h t ime then . . .
173 / / game . r e v e r t T o G e n e r a t i o n ( s t a r t G e n e r a t i o n ) ;
174 }
175
176
177 / / Find c e l l wi th h i g h e s t p o i n t s
178
179 for ( S t r i n g hash : hashesToCheck . keySet ( ) ) {
180 i f ( points . get ( hash ) > h i g h e s t P o i n t s ) {
181 h i g h e s t P o i n t s = points . get ( hash ) ;
182 bestHash = hash ;
183
184 / / Th i s j u s t makes i t some random , making i t more l i k e l y t o p i c one o f t h e two l a s t a l i k e s c o r e s
185 } e lse i f ( points . get ( hash ) == h i g h e s t P o i n t s && rand . nextBoolean ( ) ) {
186 h i g h e s t P o i n t s = points . get ( hash ) ;
187 bestHash = hash ;
188 }
189
190 }
191
192 / / C l e a r p o i n t s
193 points . c l e a r ( ) ;
194
195 / / Make r u l e f o r b e s t c e l l , and remove i t from c h e c k i n g in t h e f u t u r e
196 HashRule bestRule = new HashRule ( bestHash , 10 ,
197 "GA made in generat ion "+generat ion+" with p"+h i g h e s t P o i n t s ) ;
198 chosenRules . add ( bestRule ) ;
199 hashesToCheck . remove ( bestHash ) ;
200 game . getSubRuleBook ( ) . addHashRule ( bestRule , f a l s e ) ;
201 rulebook . addHashRule ( bestRule , f a l s e ) ;
202
203 }
204
205 rulebook . saveRules ( " genet icAlgori thms/F " +h i g h e s t P o i n t s +
206 " − "+sdf . format (new Date ( ) ) + " gen "+generat ion+" . t x t " ) ;
207 System . out . p r i n t l n ( " So lut ion found a f t e r "+
208 ( System . currentTimeMil l i s ( ) − s tar tTime ) + " ms" ) ;
209
210 }
211
212 private void cl imbTest ( ) {
213
214 GAInstance [ ] i n s t a n c e s = new GAInstance [ CellOrder . values ( ) . length ] ;
215
216 rulebook = new RuleBook ( ) ;
217
218 i n t s t a r t G e n e r a t i o n = 5 8 ;
219 boolean i s F i n i s h e d = f a l s e ;
220
221 for ( i n t i =0 ; i < i n s t a n c e s . length ; i ++){
222 i n s t a n c e s [ i ] = new GAInstance ( i , s ta r tGenera t ion , 12 , rulebook , 6 , 13 , 6 ) ;
223 }
224
225 for ( i n t gen =0; gen <150; gen ++){
226 System . out . p r i n t l n ( "New generat ion : "+gen ) ;
227
228 / / Try a l l d i r e c t i o n s
229 for ( i n t i =0 ; i < i n s t a n c e s . length ; i ++){
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230 i n s t a n c e s [ i ] . t r y D i r e c t i o n ( ) ;
231 }
232
233 / / Find b e s t d i r e c t i o n
234 Sta te In format ion b e s t S t a t e = i n s t a n c e s [ 0 ] . s t a t e ;
235 i n t bestIndex = 0 ;
236 for ( i n t i =1 ; i < i n s t a n c e s . length ; i ++){
237 i f ( i n s t a n c e s [ i ] . s t a t e . points > b e s t S t a t e . points ) {
238 b e s t S t a t e = i n s t a n c e s [ i ] . s t a t e ;
239 bestIndex = i ;
240 / / F a v o r i t i s e s e q u e n c e
241 } /∗ e l s e i f ( i n s t a n c e s [ i ] . s t a t e . p o i n t s == b e s t S t a t e . p o i n t s && rand . n e x t B o o l e a n ( ) ) {
242 b e s t S t a t e = i n s t a n c e s [ i ] . s t a t e ;
243 b e s t I n d e x = i ;
244 } ∗/
245 }
246 i f ( i n s t a n c e s [ best Index ] . getRule ( ) != null ) {
247 System . out . p r i n t l n ( ) ;
248 System . out . p r i n t l n ( " Chose : " + CellOrder . values ( ) [ best Index ] +
249 " ( "+ i n s t a n c e s [ best Index ] . s t a t e . p o s i t i o n +" ) " ) ;
250 System . out . p r i n t l n ( ) ;
251
252 f ina lOrder . add ( CellOrder . values ( ) [ best Index ] ) ;
253
254
255 / / Make a r u l e o f t h e b e s t d i r e c t i o n
256 rulebook . addHashRule ( i n s t a n c e s [ best Index ] . getRule ( ) , f a l s e ) ;
257 rulebook . saveRules ( " genet icAlgori thms/p" + b e s t S t a t e . points + " − " +
258 sdf . format (new Date ( ) ) + " "+bestIndex+" gen "+gen+" . t x t " ) ;
259 for ( i n t j =0 ; j < i n s t a n c e s . length ; j ++){
260 i n s t a n c e s [ j ] . getGame ( ) . getSubRuleBook ( ) . addHashRule ( i n s t a n c e s [ best Index ] . getRule ( ) , f a l s e ) ;
261 }
262 }
263
264 / / Copy b e s t s t a t e t o a l l and run one s t e p
265 for ( i n t k =0; k< i n s t a n c e s . length ; k ++){
266 i n s t a n c e s [ k ] . s e t S t a t e (new Sta te In format ion ( b e s t S t a t e ) ) ;
267 i n s t a n c e s [ k ] . s tep ( ) ;
268
269 i f ( i n s t a n c e s [ k ] . i s F i n i s h e d ( ) ) {
270 rulebook . saveRules ( " genet icAlgori thms/F " + b e s t S t a t e . points +
271 " − "+sdf . format (new Date ( ) ) + " "+bestIndex+" gen "+gen+" . t x t " ) ;
272 t r y {
273 / / C r e a t e f i l e
274 F i l e W r i t e r fstream = new F i l e W r i t e r ( " genet icAlgori thms/p" +
275 b e s t S t a t e . points + " − "+sdf . format (new Date ( ) ) +
276 " "+bestIndex+" gen "+gen+"−order . t x t " ) ;
277 BufferedWriter out = new BufferedWriter ( fstream ) ;
278 for ( CellOrder co : f ina lOrder ) {
279 out . wri te ( co+"\n" ) ;
280 }
281 / / C l o s e t h e ou tp ut s t r e am
282 out . c l o s e ( ) ;
283 } catch ( Exception e ) { / / Catch e x c e p t i o n i f any
284 System . e r r . p r i n t l n ( " Error : " + e . getMessage ( ) ) ;
285 }
286 i s F i n i s h e d = t rue ;
287 }
288
289
290 i f ( i s F i n i s h e d ) break ;
291 }
292 }
293 }
294
295 public s t a t i c void main ( S t r i n g [ ] args ) {
296 new GeneticAlgorithms ( ) ;
297
298 }
299
300
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301 }

Listing A.3: GA instance crawling around like a snake
1 package g e n e t i c ;
2
3 import mechanics . Game ;
4
5 import org . l w j g l . u t i l . vec tor . Vector3f ;
6
7 import ca . C e l l ;
8 import ca . C e l l S t r u c t u r e s ;
9 import ca . RuleBook ;

10 import ca . r u l e s . HashRule ;
11
12 public c l a s s GAInstance {
13
14 public CellOrder l a s t D i r e c t i o n ;
15 public i n t id ;
16 private Game game ;
17
18 public Sta te In format ion s t a t e ;
19
20 private f i n a l i n t [ ] l ega lNeighborS ta tes = { 3 , 4 , 8 , 9 , 10 , 11 , 1 2 } ;
21 private f i n a l i n t [ ] l e g a l T a k e o v e r S t a t e s = { 3 , 4 } ;
22 private HashRule newestRule ;
23 private boolean i s F i n i s h e d ;
24 private i n t cellTypeToFind ;
25
26 public GAInstance ( i n t id , i n t generat ion , i n t cellTypeToFind , RuleBook rulebook ,
27 i n t gridWidth , i n t gridHeight , i n t gridDepth ) {
28 t h i s . id = id ;
29
30 s t a t e = new Sta te In format ion ( ) ;
31
32 s t a t e . generat ion = generat ion ;
33 t h i s . cel lTypeToFind = cellTypeToFind ;
34
35 game = new Game( null , C e l l S t r u c t u r e s . BUILDNING_START, gridWidth , gridHeight , gridDepth ) ;
36 game . goForwardToGeneration ( generat ion ) ;
37 s t a t e . p o s i t i o n = f i n d S t a r t C e l l ( game , 1 1 ) ;
38
39 }
40
41
42 public s t a t i c Vector3f f i n d S t a r t C e l l (Game game , i n t s t a r t C e l l S t a t e ) {
43
44 Vector3f s t a r t = new Vector3f ( ) ;
45
46 for ( C e l l c : game . getCel ls InSubGrid ( ) ) {
47 i f ( c . g e t S t a t e ( ) == s t a r t C e l l S t a t e ) {
48 s t a r t . x = c . getX ( ) ;
49 s t a r t . y = c . getY ( ) ;
50 s t a r t . z = c . getZ ( ) ;
51
52 System . out . p r i n t l n ( " S t a r t : ( "+ s t a r t . x+" , "+ s t a r t . y+" , "+ s t a r t . z+" ) " ) ;
53 return s t a r t ;
54 }
55 }
56 return s t a r t ;
57 }
58
59 private CellOrder g e t D i r e c t i o n ( ) {
60 return CellOrder . values ( ) [ id ] ;
61 }
62
63
64 private void moveDirection ( CellOrder newDirection ) {
65 switch ( newDirection ) {
66 case UP:
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67 s t a t e . p o s i t i o n . y++;
68 break ;
69 case DOWN:
70 s t a t e . p o s i t i o n . y−−;
71 break ;
72 case NORTH:
73 s t a t e . p o s i t i o n . z−−;
74 break ;
75 case SOUTH:
76 s t a t e . p o s i t i o n . z ++;
77 break ;
78 case EAST :
79 s t a t e . p o s i t i o n . x ++;
80 break ;
81 case WEST:
82 s t a t e . p o s i t i o n . x−−;
83 break ;
84 }
85 }
86
87 / / Checks i f c u r r e n t s t a t e . p o s i t i o n i s l e g a l
88 private boolean l e g a l P o s i t i o n ( i n t x , i n t y , i n t z ) {
89 i f ( x < 0 || x >= game . getCel lGr id ( ) . getSubGrid ( ) . getGridWidth ( ) ||
90 y < 0 || y >= game . getCel lGr id ( ) . getSubGrid ( ) . getGridHeight ( ) ||
91 z < 0 || z >= game . getCel lGr id ( ) . getSubGrid ( ) . getGridDepth ( )
92 ) {
93 return f a l s e ;
94 }
95
96
97 S t r i n g hash = game . getCel lGr id ( ) . getSubGrid ( ) . getCellHash ( x , y , z ) ;
98 S t r i n g [ ] hashArray = hash . s p l i t ( "−" ) ;
99

100 / / Check i f c e l l in s t a t e . p o s i t i o n s i s in a s t a t e l e g a l t o t a k e o v e r
101 boolean foundState = f a l s e ;
102 for ( i n t s t a t e : l e g a l T a k e o v e r S t a t e s ) {
103 i f ( I n t e g e r . p a r s e I n t ( hashArray [ hashArray . length / 2 ] ) == s t a t e ) {
104 foundState = t rue ;
105 }
106 }
107
108 i f ( ! foundState ) {
109 return f a l s e ;
110 }
111
112 S t r i n g replacedHash = hash ;
113 for ( i n t s t a t e : l ega lNeighborSta tes ) {
114 replacedHash = replacedHash . r e p l a c e ( s t a t e +"−" , " " ) ;
115 }
116 i f ( replacedHash . length ( ) > 0 ) {
117 return f a l s e ;
118 }
119
120 i f ( hash . conta ins ( "10−" ) || hash . conta ins ( "11−" ) ) {
121 return true ;
122 }
123
124 return f a l s e ;
125 }
126
127 private boolean l e g a l P o s i t i o n ( ) {
128 return l e g a l P o s i t i o n ( ( i n t ) s t a t e . p o s i t i o n . x , ( i n t ) s t a t e . p o s i t i o n . y , ( i n t ) s t a t e . p o s i t i o n . z ) ;
129 }
130
131 public i n t g e t P o i n t s ( i n t f a i l e d P o i n t s ) {
132 i n t p o s i t i o n P o i n t s = 0 ;
133 i n t inact iveWireLength = game . getStateCount ( 1 0 ) ;
134 i n t activeWireLength = game . getStateCount ( 1 1 ) ;
135
136 i n t e x t r a P o i n t s = 0 ;
137 double x =0 , y=0 , z =0;
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138 C e l l lowestCel l = null ;
139
140 / / d i s t a n c e t o a l l i n a c t i v e l i g h t s
141 for ( C e l l c : game . getCel ls InSubGrid ( ) ) {
142 i f ( c . g e t S t a t e ( ) == cellTypeToFind ) {
143 i f ( lowestCel l == null ) {
144 lowestCel l = c ;
145 } e lse {
146 i f ( lowestCel l . getY ( ) > c . getY ( ) ) {
147 lowestCel l = c ;
148 }
149 }
150 }
151 }
152
153 / / Implement A∗ s e a r c h h e r e
154
155
156 x = Math . abs ( lowestCel l . getX()− s t a t e . p o s i t i o n . x ) ;
157 y = Math . abs ( lowestCel l . getY()− s t a t e . p o s i t i o n . y ) ;
158 z = Math . abs ( lowestCel l . getZ()− s t a t e . p o s i t i o n . z ) ;
159 System . out . p r i n t l n ( " ( "+x+" , "+y+" , "+z+" ) " ) ;
160
161 e x t r a P o i n t s += x∗x ;
162 e x t r a P o i n t s += y∗y∗y ;
163 e x t r a P o i n t s += z+z ;
164
165 p o s i t i o n P o i n t s += e x t r a P o i n t s ;
166 e x t r a P o i n t s = 0 ;
167
168 return −inact iveWireLength − activeWireLength − p o s i t i o n P o i n t s − f a i l e d P o i n t s ;
169 }
170
171
172 public boolean t r y D i r e c t i o n ( ) {
173 s t a t e . generat ion ++;
174 CellOrder d i r e c t i o n = g e t D i r e c t i o n ( ) ;
175
176 f l o a t o r i g i n a l X = s t a t e . p o s i t i o n . x ;
177 f l o a t o r i g i n a l Y = s t a t e . p o s i t i o n . y ;
178 f l o a t o r i g i n a l Z = s t a t e . p o s i t i o n . z ;
179
180 moveDirection ( d i r e c t i o n ) ;
181
182 boolean wasLegal = f a l s e ;
183 i n t f a i l e d P o i n t s = 0 ;
184
185 i f ( l e g a l P o s i t i o n ( ) ) {
186
187 S t r i n g hash = game . getCel lGr id ( ) . getSubGrid ( ) . getCellHash (
188 ( i n t ) s t a t e . p o s i t i o n . x ,
189 ( i n t ) s t a t e . p o s i t i o n . y ,
190 ( i n t ) s t a t e . p o s i t i o n . z
191 ) ;
192
193 HashRule newRule = new HashRule ( hash , 10 , " Generation : "+
194 s t a t e . generat ion+" D i r e c t i o n : "+ d i r e c t i o n ) ;
195
196 newestRule = newRule ;
197
198 wasLegal = t rue ;
199 } e lse {
200 / / r e s e t , no t v a l i d d i r e c t i o n
201 s t a t e . p o s i t i o n . x = o r i g i n a l X ;
202 s t a t e . p o s i t i o n . y = o r i g i n a l Y ;
203 s t a t e . p o s i t i o n . z = o r i g i n a l Z ;
204
205 System . out . p r i n t l n ( " Not l e g a l "+ d i r e c t i o n ) ;
206 newestRule = null ;
207 f a i l e d P o i n t s = 10000 ;
208 }
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209
210
211 s t a t e . points = g e t P o i n t s ( f a i l e d P o i n t s ) ;
212 System . out . p r i n t l n ( " Points : "+ s t a t e . points ) ;
213 / / s t a t e . p o i n t s = g e t P o i n t s ( wasLegal , d i r e c t i o n , f a i l e d P o i n t s ) ;
214
215 return wasLegal ;
216 }
217
218
219 public void s tep ( ) {
220 game . s tep ( ) ;
221 }
222
223
224 public void s e t S t a t e ( S ta te In format ion s t a t e ) {
225 t h i s . s t a t e = s t a t e ;
226 }
227
228
229 public HashRule getRule ( ) {
230 return newestRule ;
231 }
232
233
234 public Game getGame ( ) {
235 return game ;
236 }
237
238
239 public boolean i s F i n i s h e d ( ) {
240 return i s F i n i s h e d ;
241 }
242 }

Listing A.4: Information class for storing data between generations
1 package g e n e t i c ;
2 import j ava . u t i l . ArrayList ;
3 import org . l w j g l . u t i l . vec tor . Vector3f ;
4 import ca . r u l e s . HashRule ;
5
6 public c l a s s Sta te In format ion {
7
8 public i n t points ;
9 public i n t generat ion ;

10 public Vector3f p o s i t i o n ;
11
12 public Sta te In format ion ( S ta te In format ion s t a t e ) {
13 points = s t a t e . points ;
14 generat ion = s t a t e . generat ion ;
15 p o s i t i o n = new Vector3f ( s t a t e . p o s i t i o n . x , s t a t e . p o s i t i o n . y , s t a t e . p o s i t i o n . z ) ;
16 }
17
18 public Sta te In format ion ( ) {
19 points = 0 ;
20 generat ion = 0 ;
21 p o s i t i o n = new Vector3f ( ) ;
22 }
23 }

Listing A.5: Enum for valid directions
1 package g e n e t i c ;
2
3 public enum CellOrder {
4 UP,
5 DOWN,
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6 NORTH,
7 SOUTH,
8 EAST ,
9 WEST;

10 }

Listing A.6: CellGrid class containing all cells and operations done on them
1 package mechanics ;
2
3 import j ava . u t i l . C o l l e c t i o n ;
4 import j ava . u t i l . HashMap ;
5 import j ava . u t i l .Map;
6
7 import ca . C e l l ;
8 import ca . RuleBook ;
9 import ca . gui . V i s u a l i z e r ;

10
11 public c l a s s CellGrid {
12
13 private CellGrid subGrid ;
14 private I n t e g e r [ ] [ ] [ ] c e l l G r i d ;
15 private Map<Str ing , Cel l > a c t i v e C e l l s ;
16 private RuleBook rulebook ;
17 private i n t gridWidth = 0 ;
18 private i n t gridHeight = 0 ;
19 private i n t gridDepth = 0 ;
20 private boolean i sSubgr id = f a l s e ;
21 private i n t subCel l sPerCe l l = 1 ;
22
23 public CellGrid ( RuleBook rulebook , i n t gridWidth , i n t gridHeight ,
24 i n t gridDepth , i n t c e l l s P e r C e l l , boolean i sSubgr id ) {
25 c e l l G r i d = new I n t e g e r [ gridWidth ] [ gridHeight ] [ gridDepth ] ;
26 a c t i v e C e l l s = new HashMap<Str ing , Cel l > ( ) ;
27 t h i s . rulebook = rulebook ;
28
29 setGridWidth ( gridWidth ) ;
30 setGridHeight ( gridHeight ) ;
31 setGridDepth ( gridDepth ) ;
32 t h i s . i sSubgr id = isSubgr id ;
33
34 t h i s . subCel l sPerCe l l = c e l l s P e r C e l l ;
35
36 i f ( i sSubgr id ) {
37 / / P l a c e out s t a r t b l o c k f o r t h e a c t i v e e l e c t r i c a l sys t em
38 / / s e t C e l l ( gr idWidth −1, 1 , g r idDepth / 2 , 1 1 ) ;
39 }
40
41 }
42
43 public CellGrid ( RuleBook rulebook , i n t gridWidth , i n t gridHeight , i n t gridDepth ) {
44 t h i s ( rulebook , gridWidth , gridHeight , gridDepth , 1 , f a l s e ) ;
45 }
46
47
48 public void createSubGrid ( V i s u a l i z e r v i s u a l i z e r , i n t subCel l sPerCel l ,
49 i n t gridWidth , i n t gridHeight , i n t gridDepth ) {
50 RuleBook subRules = new RuleBook ( v i s u a l i z e r , " subrules . t x t " ) ;
51 subRules . loadRules ( ) ;
52
53 / / Ext ra width t o p l a c e e l e c t r i c s y s t e m s
54 subGrid = new CellGrid ( subRules , gridWidth∗subCel l sPerCe l l +1 ,
55 gridHeight∗subCel lsPerCel l , gridDepth∗subCel l sPerCel l , subCel l sPerCel l , t rue ) ;
56 }
57
58 public void populateNeighbourCells ( i n t x , i n t y , i n t z ) {
59 I n t e g e r c = g e t C e l l S t a t e ( x , y , z ) ;
60 i f ( c == null || c == 0) return ;
61
62 for ( i n t loca lX=x−1; localX <=x +1; loca lX ++){
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63 for ( i n t loca lY=y−1; localY <=y +1; loca lY ++){
64 for ( i n t loca lZ=z−1; localZ <=z +1; loca lZ ++){
65 i f ( loca lX >= 0 && loca lY >= 0 && loca lZ >= 0 && loca lX < getGridWidth ( )
66 && loca lY < getGridHeight ( ) && loca lZ < getGridDepth ( ) ) {
67 I n t e g e r c e l l = g e t C e l l S t a t e ( localX , localY , loca lZ ) ;
68 i f ( c e l l == null ) {
69 s e t C e l l ( localX , localY , localZ , 0 , t rue ) ;
70 }
71 }
72 }
73 }
74 }
75 }
76
77 public I n t e g e r g e t C e l l S t a t e ( i n t x , i n t y , i n t z ) {
78 i f (Game .DEBUG) System . out . p r i n t l n ( " g e t C e l l ( "+x+" , "+y+" , "+z+" ) " ) ;
79 i f ( x >= 0 && y >= 0 && z >= 0 && x < getGridWidth ( ) &&
80 y < getGridHeight ( ) && z < getGridDepth ( ) ) {
81 return c e l l G r i d [ x ] [ y ] [ z ] ;
82 }
83 return null ;
84 }
85
86 public void s tep ( ) {
87
88 i f (Game .DEBUG) System . out . p r i n t l n ( "Number of c e l l s : "+ a c t i v e C e l l s . s i z e ( ) ) ;
89
90 S t r i n g [ ] keys = new S t r i n g [ a c t i v e C e l l s . s i z e ( ) ] ;
91 a c t i v e C e l l s . keySet ( ) . toArray ( keys ) ;
92 for ( i n t index = 0 ; index <keys . length ; index ++){
93 C e l l c = a c t i v e C e l l s . get ( keys [ index ] ) ;
94 populateNeighbourCells ( c . getX ( ) , c . getY ( ) , c . getZ ( ) ) ;
95 }
96
97 for ( C e l l c : a c t i v e C e l l s . values ( ) ) {
98 / / Update t o nex t s t a t e
99 c . updateNextState ( ) ;

100 }
101
102 / / A l l c e l l s have c a l c u l a t e d nex t s t a t e , now up da t e them !
103 for ( C e l l c : a c t i v e C e l l s . values ( ) ) {
104 / / Update t o nex t s t a t e
105 c . updateState ( ) ;
106 c e l l G r i d [ c . getX ( ) ] [ c . getY ( ) ] [ c . getZ ( ) ] = c . g e t S t a t e ( ) ;
107
108 i f ( subGrid != null && isSubgr id == f a l s e && c . hasChangedState ( ) ) {
109 subGrid . s e t C e l l C l u s t e r ( c . getX ( ) , c . getY ( ) , c . getZ ( ) , c . g e t S t a t e ( ) ) ;
110 }
111 }
112
113 / / Las t , up da t e s u b g r i d
114 i f ( subGrid != null ) {
115 subGrid . s tep ( ) ;
116 }
117 }
118
119 / / Updates a c l u s t e r o f c e l l s ( change o f s t a t e in g r i d u p d a t e s c o r e s p o n d i n g sub−c e l l s )
120 private void s e t C e l l C l u s t e r ( i n t x , i n t y , i n t z , i n t s t a t e ) {
121 i f ( i sSubgr id == f a l s e ) return ;
122 x = x ∗ subCel l sPerCe l l ;
123 y = y ∗ subCel l sPerCe l l ;
124 z = z ∗ subCel l sPerCe l l ;
125
126 i f (Game .DEBUG) System . out . p r i n t l n ( " S e t t i n g "+subCel l sPerCe l l+" s u b c e l l s f o r x : "+x+" y : "+y+" z : "+z ) ;
127
128 i f ( x >= 0 && y >= 0 && z >= 0 && x < getGridWidth ( ) &&
129 y < getGridHeight ( ) && z < getGridDepth ( ) ) {
130 for ( i n t loca lX=x ; localX <x+subCel l sPerCe l l ; loca lX ++){
131 for ( i n t loca lY=y ; localY <y+subCel l sPerCe l l ; loca lY ++){
132 for ( i n t loca lZ=z ; localZ <z+subCel l sPerCe l l ; loca lZ ++){
133 i f ( loca lX >= 0 && loca lY >= 0 && loca lZ >= 0 &&
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134 loca lX < getGridWidth ( ) &&
135 loca lY < getGridHeight ( ) && loca lZ < getGridDepth ( ) ) {
136 s e t C e l l ( localX , localY , localZ , s t a t e ) ;
137 }
138 }
139 }
140 }
141 }
142 }
143
144 private S t r i n g planeAsString ( i n t yValue ) {
145 S t r i n g plane = " " ;
146 for ( i n t tempZ = 0 ; tempZ<getGridDepth ( ) ; tempZ++){
147 for ( i n t tempX = 0 ; tempX<getGridWidth ( ) ; tempX++){
148 I n t e g e r c = g e t C e l l S t a t e ( tempX , yValue , tempZ ) ;
149 i f ( c != null ) {
150 plane += c+" " ;
151 } e lse {
152 plane += "X " ;
153 }
154 }
155 plane += "\n" ;
156 }
157 return plane ;
158 }
159
160 public void printOutPlane ( i n t yValue ) {
161 System . out . p r i n t l n ( planeAsString ( yValue ) ) ;
162 }
163
164 public Col lec t ion <Cell > g e t A c t i v e C e l l s ( ) {
165 return a c t i v e C e l l s . values ( ) ;
166 }
167
168
169 public CellGrid getSubGrid ( ) {
170 return subGrid ;
171 }
172
173 public boolean s e t C e l l ( i n t x , i n t y , i n t z , I n t e g e r s t a t e , boolean updateSubgrid ) {
174 i f ( x >= 0 && y >= 0 && z >= 0 && x < getGridWidth ( ) &&
175 y < getGridHeight ( ) && z < getGridDepth ( ) ) {
176 c e l l G r i d [ x ] [ y ] [ z ] = s t a t e ;
177 i f ( s t a t e != null )
178 a c t i v e C e l l s . put ( x+" , "+y+" , "+z , new C e l l ( this , rulebook , x , y , z , s t a t e ) ) ;
179 i f ( updateSubgrid && getSubGrid ( ) != null )
180 getSubGrid ( ) . s e t C e l l C l u s t e r ( x , y , z , s t a t e ) ;
181 return true ;
182 }
183 return f a l s e ;
184 }
185
186 public boolean s e t C e l l ( i n t x , i n t y , i n t z , I n t e g e r s t a t e ) {
187 return s e t C e l l ( x , y , z , s t a t e , f a l s e ) ;
188 }
189
190
191 public void c l e a r C e l l s ( ) {
192 for ( C e l l c : g e t A c t i v e C e l l s ( ) ) {
193 s e t C e l l ( c . getX ( ) , c . getY ( ) , c . getZ ( ) , null , f a l s e ) ;
194 }
195
196 g e t A c t i v e C e l l s ( ) . c l e a r ( ) ;
197
198 i f ( subGrid != null ) {
199 subGrid . c l e a r C e l l s ( ) ;
200 }
201 }
202
203
204 public RuleBook getRuleBook ( ) {



A.2. JAVA CODE 73

205 return rulebook ;
206 }
207
208
209 public boolean i sSubgr id ( ) {
210 return i sSubgr id ;
211 }
212
213 public void setGridWidth ( i n t gridWidth ) {
214 t h i s . gridWidth = gridWidth ;
215 }
216
217 public i n t getGridWidth ( ) {
218 return gridWidth ;
219 }
220
221 public void setGridHeight ( i n t gridHeight ) {
222 t h i s . gridHeight = gridHeight ;
223 }
224
225 public i n t getGridHeight ( ) {
226 return gridHeight ;
227 }
228
229 public void setGridDepth ( i n t gridDepth ) {
230 t h i s . gridDepth = gridDepth ;
231 }
232
233 public i n t getGridDepth ( ) {
234 return gridDepth ;
235 }
236
237 public S t r i n g getCellHash ( i n t x , i n t y , i n t z ) {
238 return a c t i v e C e l l s . get ( x+" , "+y+" , "+z ) . getHash ( ) ;
239 }
240
241 public void r e v e r t ( i n t stopGeneraiton ) {
242
243 for ( C e l l c : g e t A c t i v e C e l l s ( ) ) {
244 s e t C e l l ( c . getX ( ) , c . getY ( ) , c . getZ ( ) , c . rever tS ta teToGenera t ion ( stopGeneraiton ) ) ;
245 c . updateState ( ) ;
246
247 i f ( subGrid != null && isSubgr id == f a l s e && c . hasChangedState ( ) ) {
248 subGrid . s e t C e l l C l u s t e r ( c . getX ( ) , c . getY ( ) , c . getZ ( ) , c . g e t S t a t e ( ) ) ;
249 }
250 }
251
252 i f ( ! i sSubgr id ( ) ) subGrid . r e v e r t ( stopGeneraiton ) ;
253 }
254
255
256 }

Listing A.7: Cell class, showing information stored about each cell
1 package ca ;
2
3 import glmodel . GL_Vector ;
4
5 import j ava . u t i l . ArrayList ;
6
7 import mechanics . Cel lGrid ;
8 import mechanics . Game ;
9

10
11 public c l a s s C e l l {
12
13 private i n t posX ;
14 private i n t posY ;
15 private i n t posZ ;
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16
17 private i n t c u r r e n t S t a t e ;
18 private i n t n e x t S t a t e ;
19 private RuleBook rulebook ;
20 private CellGrid c e l l g r i d ;
21 private boolean hasChangedState = t rue ;
22
23 private i n t currentGenerat ion = 0 ;
24
25 private ArrayList <Integer > s t a t e H i s t o r y ;
26 private S t r i n g neighbourhoodHash = " " ;
27
28 public C e l l ( Cel lGrid c e l l g r i d , RuleBook rulebook , i n t posX , i n t posY , i n t posZ , i n t s t a t e ) {
29 t h i s . c u r r e n t S t a t e = s t a t e ;
30 setX ( posX ) ;
31 setY ( posY ) ;
32 setZ ( posZ ) ;
33
34 t h i s . rulebook = rulebook ;
35 t h i s . n e x t S t a t e = s t a t e ;
36 t h i s . c e l l g r i d = c e l l g r i d ;
37
38 s t a t e H i s t o r y = new ArrayList <Integer > ( ) ;
39 }
40
41 public C e l l ( Cel lGrid c e l l g r i d , RuleBook rulebook , i n t posX , i n t posY , i n t posZ ) {
42 t h i s ( c e l l g r i d , rulebook , posX , posY , posZ , 0 ) ;
43 }
44
45
46 /∗∗
47 ∗ S e t s t h e nex t s t a t e a s c u r r e n t s t a t e
48 ∗/
49 public synchronized void updateState ( ) {
50 s t a t e H i s t o r y . s e t ( currentGenerat ion , c u r r e n t S t a t e ) ;
51
52 c u r r e n t S t a t e = n e x t S t a t e ;
53
54 neighbourhoodHash = " " ;
55
56 currentGenerat ion ++;
57 }
58
59 public i n t getX ( ) {
60 return posX ;
61 }
62
63 public i n t getY ( ) {
64 return posY ;
65 }
66
67 public boolean hasChangedState ( ) {
68 return hasChangedState ;
69 }
70
71 public i n t getZ ( ) {
72 return posZ ;
73 }
74
75 private void setX ( i n t posX ) {
76 t h i s . posX = posX ;
77 }
78 private void setY ( i n t posY ) {
79 t h i s . posY = posY ;
80 }
81
82 private void setZ ( i n t posZ ) {
83 t h i s . posZ = posZ ;
84 }
85
86 @Override
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87 public S t r i n g t o S t r i n g ( ) {
88 return " C e l l ( "+getX ( ) + " , "+getY ( ) + " , "+getZ ( ) + " ) S t a t e : "+ g e t S t a t e ( ) ;
89 }
90
91 public i n t g e t S t a t e ( ) {
92 return c u r r e n t S t a t e ;
93 }
94
95 public void updateNextState ( ) {
96 / / I f s t a t e in h i s t o r y , use i t
97 i f ( currentGenerat ion < s t a t e H i s t o r y . s i z e ( ) ) {
98 System . out . p r i n t l n ( " Gets h i s t o r y from gen "+currentGenerat ion ) ;
99 n e x t S t a t e = s t a t e H i s t o r y . get ( currentGenerat ion ) ;

100 } e lse {
101 / / e l s e c a l c u l a t e new
102 n e x t S t a t e = rulebook . getNextSta te ( c e l l g r i d , posX , posY , posZ ) ;
103 s t a t e H i s t o r y . add ( n e x t S t a t e ) ;
104 }
105
106
107 hasChangedState = ( c u r r e n t S t a t e != n e x t S t a t e ) ;
108
109 i f (Game .DEBUG) System . out . p r i n t l n ( " Next s t a t e "+ n e x t S t a t e + " x : "+posX + " y : "+posY + " z : " +posZ ) ;
110 }
111
112 public void s e t S t a t e ( i n t s t a t e ) {
113 c u r r e n t S t a t e = s t a t e ;
114 }
115
116 public I n t e g e r rever tS ta teToGenera t ion ( i n t generat ion ) {
117 i f ( generat ion >= currentGenerat ion ) return c u r r e n t S t a t e ;
118
119 currentGenerat ion = generat ion ;
120 /∗
121 / / R e v e r t i n g more than p o s s i b l e , r e v e r t max
122 i f ( c u r r e n t G e n e r a t i o n < g e n e r a t i o n s ) {
123 g e n e r a t i o n s = c u r r e n t G e n e r a t i o n ;
124 }
125
126 i n t s t a t e T o R e v e r t T o = c u r r e n t G e n e r a t i o n−g e n e r a t i o n s ;
127 ∗/
128 n e x t S t a t e = s t a t e H i s t o r y . get ( generat ion ) ;
129
130 return n e x t S t a t e ;
131 }
132
133 public S t r i n g getHash ( ) {
134 / / I f no t changed , r e t u r n
135 i f ( ! neighbourhoodHash . isEmpty ( ) ) {
136 return neighbourhoodHash ;
137 }
138
139 / / E l s e c a l c u l a t e hash
140 S t r i n g r e t = " " ;
141
142 for ( i n t tempY = posY−1; tempY<=posY +1; tempY++){
143 for ( i n t tempZ = posZ−1; tempZ<=posZ +1; tempZ++){
144 for ( i n t tempX = posX−1; tempX<=posX +1; tempX++){
145 i f ( tempX >= 0 && tempY >= 0 && tempZ >= 0 && tempX < c e l l g r i d . getGridWidth ( ) &&
146 tempY < c e l l g r i d . getGridHeight ( ) && tempZ < c e l l g r i d . getGridDepth ( ) ) {
147 I n t e g e r c = c e l l g r i d . g e t C e l l S t a t e ( tempX , tempY , tempZ ) ;
148 i f ( c != null ) {
149 r e t += c+"−" ;
150 } e lse {
151 r e t += "0−" ;
152 }
153 } e lse {
154 r e t += "0−" ;
155 }
156 }
157 }
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158 }
159
160 neighbourhoodHash = r e t ;
161 return r e t ;
162 }
163
164 public GL_Vector g e t P o s i t i o n ( ) {
165 return new GL_Vector ( posX , posY , posZ ) ;
166 }
167
168
169
170
171 }

Listing A.8: HashRule class, shows how the rule system works
1 package ca . r u l e s ;
2
3 import j ava . u t i l . regex . Matcher ;
4 import j ava . u t i l . regex . Pat te rn ;
5
6 public c l a s s HashRule extends Rule {
7
8 private S t r i n g neighbourhood ;
9 private Pat te rn pat te rn ;

10
11 public HashRule ( S t r i n g neighbourhood , i n t nextS ta te , S t r i n g d e s c r i p t i o n ) {
12 super ( nextS ta te , d e s c r i p t i o n ) ;
13 t h i s . neighbourhood = neighbourhood ;
14
15 S t r i n g replaced = neighbourhood . r e p l a c e ( " x " , "\\d+" ) ;
16 pat te rn = Pat te rn . compile ( replaced ) ;
17 }
18
19 @Override
20 public boolean checkCel l ( S t r i n g hashFromCell ) {
21
22 Matcher matcher = pat te rn . matcher ( hashFromCell ) ;
23 return matcher . matches ( ) ;
24
25 }
26
27 public S t r i n g getNeighbourhood ( ) {
28 return neighbourhood ;
29 }
30
31 @Override
32 public S t r i n g t o S t r i n g ( ) {
33 return " HashRule : "+g e tD e s cr i p t i o n ( ) ;
34 }
35
36 public s t a t i c boolean i s I n t e g e r ( char c )
37 {
38 t r y
39 {
40 I n t e g e r . p a r s e I n t ( c + " " ) ;
41 return true ;
42 }
43 catch ( NumberFormatException e )
44 {
45 return f a l s e ;
46 }
47 }
48
49 public void setNeighbourhood ( S t r i n g neighbourhood ) {
50 t h i s . neighbourhood = neighbourhood ;
51 }
52
53 }
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Rules

In the next sections the rules used in the final structure is listed.

B.1 Macro CA rules

Rules for growing floors, walls and windows.

Listing B.1: Function for finding a matching rule for cell
1 3−3−3−3−3−3−3−3−3−4−0−0−0−0−0−0−0−0−x−0−0−0−0−0−0−0−0−@5@New f l o o r helper NW
2 0−0−6−0−0−4−0−0−0−3−2−2−3−2−2−0−0−0−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
3 0−4−0−0−6−0−0−0−0−0−1−1−0−1−1−0−3−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
4 0−0−0−0−0−0−0−0−0−0−0−0−0−0−2−0−2−2−0−0−0−0−0−0−0−0−0−@2@New diagonal ly
5 0−0−0−0−6−0−0−4−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−4−0−@2@New f l o o r 2 North
6 0−0−0−0−0−0−0−0−0−0−1−1−0−1−3−0−3−2−0−0−0−0−0−0−0−0−0−@3@New south edge west
7 0−4−0−0−6−0−0−0−0−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r 1 South
8 0−0−0−0−0−0−0−0−0−1−1−1−1−1−3−1−3−2−0−0−0−0−0−0−0−0−0−@3@New middle going west
9 0−6−0−0−0−0−0−0−0−0−1−1−0−1−1−0−3−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper

10 0−0−0−0−0−0−0−6−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−0−0−@2@New f l o o r 2 North cont
11 0−0−0−x−0−x−x−x−x−0−0−0−x−0−x−x−x−x−0−0−0−3−3−3−3−3−3−@4@New Walls north
12 0−0−0−0−0−0−0−0−0−0−0−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r 1 East cont
13 4−0−0−6−0−0−0−0−0−1−1−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r diagonal ly
14 0−4−0−0−5−5−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−0−0−0−0−0−0−@5@Diagonal beams NW
15 0−4−14−0−5−7−0−14−7−0−4−14−0−6−7−0−14−7−0−3−3−0−3−3−0−3−3−@14@Remove f l o o r making supports west
16 0−0−0−0−0−0−0−6−0−3−3−0−2−2−0−2−2−0−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
17 0−0−0−x−0−0−x−x−0−0−0−0−x−0−0−x−x−0−0−0−0−3−3−0−3−3−0−@4@Corner north e a s t
18 0−0−0−x−x−x−x−x−x−0−0−0−x−4−x−x−7−x−0−0−0−x−x−x−x−x−x−@14@Make windows north corner
19 0−6−0−0−0−0−0−0−0−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r 1 South cont
20 0−0−0−0−0−0−0−0−0−1−3−0−3−2−0−2−2−0−0−0−0−0−0−0−0−0−0−@3@New north edge e a s t
21 3−3−3−3−3−3−3−3−3−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−@5@New f l o o r helper SE
22 0−0−0−0−0−0−0−0−0−1−1−1−1−1−3−1−3−3−0−0−0−0−0−0−0−0−0−@3@New middle going west
23 0−0−0−0−4−0−0−6−0−0−0−0−0−1−3−0−3−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over g l a s s edge
24 0−0−0−0−0−0−0−0−0−1−3−2−3−2−2−0−0−0−0−0−0−0−0−0−0−0−0−@3@New south edge e a s t
25 0−0−0−0−4−0−0−6−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−0−0−0−@1@Start new f l o o r NE
26 4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−3−3−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
27 0−0−6−0−0−4−0−0−0−3−2−2−3−2−2−0−0−0−0−0−0−0−0−4−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
28 4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−3−3−3−4−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
29 0−0−0−0−0−6−0−0−4−3−3−3−3−2−2−3−2−2−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
30 4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−1−1−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
31 0−0−0−0−6−0−0−4−0−3−3−0−2−2−0−2−2−0−0−0−0−0−0−0−0−4−0−@3@Make s o l i d f l o o r over f l o o r helper
32 0−x−x−0−x−x−0−x−x−0−x−x−0−4−7−0−x−x−0−x−x−0−x−x−0−x−x−@14@Make windows west corner
33 0−3−3−0−3−3−0−3−3−0−4−0−0−0−0−0−0−0−0−x−0−0−0−0−0−0−0−@5@New f l o o r helper NW
34 0−4−0−0−6−0−0−0−0−0−1−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−@1@New f l o o r 1 South
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35 0−0−0−4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−0−0−0−4−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
36 x−x−x−x−x−x−0−0−0−x−7−x−x−4−x−0−0−0−x−x−x−x−x−x−0−0−0−@14@Make windows south corner
37 3−3−0−3−3−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@4@New from bottom south e a s t
38 0−0−0−0−0−0−0−0−0−0−0−0−1−1−3−1−3−2−0−0−0−0−0−0−0−0−0−@3@New north edge west
39 0−0−0−0−0−0−0−0−0−0−0−0−1−0−0−0−2−0−0−0−0−0−0−0−0−0−0−@3@New middle north edge
40 0−0−0−0−4−0−0−6−0−0−0−0−0−1−3−0−3−3−0−0−0−0−4−0−0−0−0−@3@Make s o l i d f l o o r over g l a s s edge
41 x−x−x−x−x−x−x−x−x−x−x−x−x−0−x−x−x−x−3−3−3−3−3−3−3−3−3−@7@New room
42 0−0−0−0−3−3−0−3−3−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@4@New from bottom north west
43 0−0−0−0−0−6−0−0−4−3−2−2−3−2−2−3−2−2−0−0−0−0−0−0−0−0−4−@3@Make s o l i d f l o o r over f l o o r helper
44 x−x−x−x−0−x−0−0−0−x−x−x−x−0−x−0−0−0−3−3−3−3−3−3−0−0−0−@4@New Walls south
45 0−0−0−0−6−0−0−4−0−3−3−0−2−2−0−2−2−0−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
46 x−x−0−x−x−0−x−x−0−x−x−0−7−4−0−x−x−0−x−x−0−x−x−0−x−x−0−@14@Make windows e a s t corner
47 0−x−x−0−0−x−0−0−0−0−x−x−0−0−x−0−0−0−0−3−3−0−3−3−0−0−0−@4@Corner south west
48 0−0−6−0−0−4−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−0−0−0−0−@2@New f l o o r 2 West
49 0−0−0−0−0−0−0−0−0−3−3−2−3−2−2−2−2−2−0−0−0−0−0−0−0−0−0−@3@New middle going e a s t
50 0−0−0−0−0−0−0−0−6−0−0−0−0−0−2−0−2−2−0−0−0−0−0−0−0−0−0−@2@New f l o o r diagonal ly over f l o o r helper
51 7−14−0−7−5−0−14−4−0−7−14−0−7−6−0−14−4−0−3−3−0−3−3−0−3−3−0−@14@Remove f l o o r making supports e a s t
52 0−0−0−5−5−0−0−4−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−@5@Diagonal beams SE
53 0−0−0−0−0−0−0−0−0−1−1−0−1−0−2−0−2−2−0−0−0−0−0−0−0−0−0−@3@New middle
54 0−0−0−4−0−0−6−0−0−0−0−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r 1 East
55 0−0−0−0−0−0−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−0−0−0−0−@2@New f l o o r 2 West cont
56 0−0−0−0−0−0−0−0−0−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New down
57 0−0−0−0−0−0−0−0−6−3−3−3−3−2−2−3−2−2−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
58 x−x−0−x−0−0−x−x−0−x−x−x−x−0−x−x−x−x−3−3−0−3−3−0−3−3−0−@4@New Walls e a s t
59 x−x−x−x−x−x−x−x−x−x−x−x−x−0−x−x−x−x−x−x−x−x−4−x−x−x−x−@4@Downwards continue
60 0−0−6−0−0−4−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−4−0−0−0−@2@New f l o o r 2 West
61 0−0−0−0−0−6−0−0−4−0−0−0−0−0−2−0−2−2−0−0−0−0−0−0−0−0−0−@2@New f l o o r diagonal ly
62 0−0−0−0−6−0−0−4−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−0−0−@2@New f l o o r 2 North
63 6−0−0−0−0−0−0−0−0−1−1−3−1−1−3−3−3−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
64 0−0−0−4−0−0−6−0−0−0−0−0−1−0−0−0−0−0−0−0−0−4−0−0−0−0−0−@1@New f l o o r 1 East
65 4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−1−1−3−4−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
66 0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−2−0−0−0−0−0−0−0−0−0−0−@2@New up
67 x−6−x−0−4−0−x−0−x−x−0−x−0−4−0−x−0−x−x−0−x−0−4−0−x−0−x−@1@Grow upwards s t a r t W
68 0−6−0−0−4−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−0−0−0−@2@Start new f l o o r SW
69 0−0−0−0−0−0−0−0−0−1−3−2−3−2−2−2−2−2−0−0−0−0−0−0−0−0−0−@3@New middle going e a s t
70 3−3−0−3−3−0−3−3−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−@5@New f l o o r helper SE
71 0−0−0−0−0−0−0−0−0−2−2−2−2−H−2−0−0−0−0−0−0−0−0−0−0−0−0−@2@Stay a l i v e lower corner
72 0−0−0−0−0−6−0−0−4−3−3−3−3−2−2−3−2−2−0−0−0−0−0−0−0−0−4−@3@Make s o l i d f l o o r over f l o o r helper
73 0−4−0−0−6−0−0−0−0−0−1−1−0−1−1−0−3−3−0−4−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
74 0−6−0−0−4−0−0−0−0−3−3−0−3−2−0−0−0−0−0−0−0−0−4−0−0−0−0−@3@Make s o l i d f l o o r over g l a s s edge
75 0−6−0−0−4−0−0−0−0−3−3−0−3−2−0−0−0−0−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over g l a s s edge
76 0−0−0−0−0−0−0−0−0−0−1−0−0−0−2−0−0−0−0−0−0−0−0−0−0−0−0−@3@New middle south edge
77 3−3−3−3−3−3−3−3−3−x−x−x−x−5−x−x−x−x−x−x−x−x−x−x−x−x−x−@7@New room from f l o o r helper
78 x−x−x−x−4−x−x−x−x−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@4@Long wall grouth
79 0−0−0−0−0−6−0−0−4−0−0−0−0−0−2−0−2−2−0−0−0−0−0−0−0−0−4−@2@New f l o o r diagonal ly
80 x−x−x−x−x−x−x−x−x−x−x−x−x−0−x−x−x−x−x−x−x−x−7−x−x−x−x−@7@New room downwards
81 0−0−0−0−0−0−0−0−0−0−0−0−1−1−3−1−3−3−0−0−0−0−0−0−0−0−0−@3@New north edge west
82 x−x−x−x−x−x−x−x−x−x−x−x−x−5−x−x−x−x−x−x−x−x−14−x−x−x−x−@14@Remove support gener ic
83 0−4−0−0−5−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−0−0−0−0−0−0−@6@Before new f l o o r NW
84 0−0−0−0−5−0−0−4−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−x−0−@6@Before new f l o o r SE
85 0−0−0−4−0−0−6−0−0−0−0−0−1−1−3−1−1−3−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
86 0−0−0−0−0−0−0−0−0−3−3−2−3−2−2−0−0−0−0−0−0−0−0−0−0−0−0−@3@New south edge
87 0−0−0−0−0−0−0−0−0−1−1−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New diagonal ly
88 6−0−0−0−0−0−0−0−0−1−1−0−1−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@1@New f l o o r diagonal ly over f l o o r helper
89 4−0−0−6−0−0−0−0−0−1−1−0−1−0−0−0−0−0−4−0−0−0−0−0−0−0−0−@1@New f l o o r diagonal ly
90 0−6−0−0−4−0−0−0−0−0−0−0−0−4−0−0−0−0−0−0−0−0−4−0−0−0−0−@2@New f l o o r with l o t s of g l a s s
91 0−0−0−0−0−0−0−0−0−3−3−0−3−2−0−0−0−0−0−0−0−0−0−0−0−0−0−@3@Finish south e a s t
92 0−0−0−0−0−0−0−0−0−3−3−0−3−2−0−2−2−0−0−0−0−0−0−0−0−0−0−@3@New north edge e a s t
93 0−0−0−0−0−6−0−0−4−3−2−2−3−2−2−3−2−2−0−0−0−0−0−0−0−0−0−@3@Make s o l i d f l o o r over f l o o r helper
94 0−0−0−0−0−0−0−0−0−0−0−0−0−1−3−0−3−3−0−0−0−0−0−0−0−0−0−@3@Finish north west
95 0−x−x−0−0−x−0−x−x−0−x−x−0−0−x−0−x−x−0−3−3−0−3−3−0−3−3−@4@New Walls west
96 0−0−0−0−0−0−0−0−0−0−1−1−0−1−3−0−3−3−0−0−0−0−0−0−0−0−0−@3@New south edge west
97 0−4−0−0−5−5−0−0−0−0−4−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−0−@5@Diagonal beams NW
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B.2 Micro CA rules

Rules for adding details to windows, growing lights and some of the electrical
wiring.

Listing B.2: Function for finding a matching rule for cell
1 x−x−x−x−x−x−x−x−x−x−x−x−11−10−x−x−x−x−x−x−x−x−x−x−x−x−x−@11@West wire a c t i v e
2 x−x−x−x−x−x−x−x−x−x−14−x−x−14−x−x−7−x−x−x−x−x−x−x−x−x−x−@0@Remove inner g l a s s south
3 x−x−x−x−x−x−x−x−x−x−x−x−x−10−x−x−x−x−x−x−x−x−11−x−x−x−x−@11@Above wire a c t i v e
4 0−0−0−x−x−x−x−x−x−0−0−0−x−14−x−x−14−x−0−0−0−x−x−x−x−x−x−@0@Remove outer g l a s s north
5 x−x−x−x−x−x−x−x−x−x−x−x−7−14−14−x−x−x−x−x−x−x−x−x−x−x−x−@0@Remove inner g l a s s e a s t
6 x−x−x−x−x−x−x−x−x−x−x−x−x−12−x−x−10−x−x−x−x−x−x−x−x−x−x−@10@Power o u t l e t for f l o o r too f l o o r
7 x−x−x−x−x−x−x−x−x−x−x−x−14−14−7−x−x−x−x−x−x−x−x−x−x−x−x−@0@Remove inner g l a s s west
8 x−x−x−x−x−x−x−x−x−x−x−x−x−10−11−x−x−x−x−x−x−x−x−x−x−x−x−@11@East wire a c t i v e
9 x−x−x−x−11−x−x−x−x−x−x−x−x−10−x−x−x−x−x−x−x−x−x−x−x−x−x−@11@Below wire a c t i v e

10 3−0−0−3−0−0−3−0−0−3−0−0−11−11−0−3−0−0−3−0−0−3−0−0−3−0−0−@0@Remove s t a r t wire
11 x−x−0−x−x−0−x−x−0−x−x−0−14−14−0−x−x−0−x−x−0−x−x−0−x−x−0−@0@Remove outer g l a s s e a s t
12 x−x−x−x−x−x−x−x−x−x−x−x−x−10−x−x−11−x−x−x−x−x−x−x−x−x−x−@11@South wire a c t i v e
13 x−x−x−x−x−x−x−x−x−x−7−x−x−14−x−x−14−x−x−x−x−x−x−x−x−x−x−@0@Remove inner g l a s s south
14 x−x−x−x−x−x−x−x−x−x−x−x−x−12−10−x−x−x−x−x−x−x−x−x−x−x−x−@10@Power o u t l e t for f l o o r too f l o o r
15 x−x−x−x−x−x−x−x−x−x−x−x−x−3−x−x−12−x−3−3−3−3−3−3−3−3−3−@10@Connect power o u t l e t with l i g h t s
16 x−x−x−x−x−x−0−0−0−x−14−x−x−14−x−0−0−0−x−x−x−x−x−x−0−0−0−@0@Remove outer g l a s s south
17 0−x−x−0−x−x−0−x−x−0−x−x−0−14−14−0−x−x−0−x−x−0−x−x−0−x−x−@0@Remove outer g l a s s west
18 7−7−7−7−7−7−7−7−7−3−3−3−3−3−3−3−3−3−x−x−x−x−x−x−x−x−x−@8@Make l i g h t s
19 x−x−x−x−x−x−x−x−x−x−x−x−x−8−x−x−x−x−x−x−x−x−11−x−x−x−x−@9@Make l i g h t s a c t i v e when a c t i v e wire above
20 x−x−x−x−x−x−x−x−x−x−x−x−10−12−x−x−x−x−x−x−x−x−x−x−x−x−x−@10@Power o u t l e t for f l o o r too f l o o r
21 3−3−0−3−3−0−3−3−0−3−3−0−3−3−11−3−3−0−3−3−0−3−3−0−3−3−0−@11@Active wire enter ing f l o o r
22 8−3−3−3−3−3−3−3−3−10−3−3−3−3−3−3−3−3−3−3−3−3−3−3−3−3−3−@12@Make o u t l e t in south e a s t corner
23 x−x−x−x−x−x−x−x−x−x−11−x−x−10−x−x−x−x−x−x−x−x−x−x−x−x−x−@11@North wire a c t i v e
24 x−x−x−x−8−x−x−x−x−x−x−x−x−3−x−x−x−x−3−3−3−3−3−3−3−3−3−@10@Active wire enter ing f l o o r

B.3 Rules produced by genetic algorithm

Read more in Section 8.6.

Listing B.3: Function for finding a matching rule for cell
1 3−3−3−8−3−8−8−3−8−3−3−3−10−3−10−10−3−10−3−3−3−3−3−3−3−3−3−@10@GA made in generat ion 28 with p261
2 3−8−3−3−3−3−8−8−3−3−10−3−3−3−3−10−10−3−3−3−3−3−3−3−3−3−3−@10@GA made in generat ion 29 with p583
3 8−8−8−3−3−3−8−8−8−10−10−10−3−3−3−10−10−10−3−3−3−3−3−3−3−3−3−@10@GA made in generat ion 30 with p537
4 8−3−3−8−3−8−8−3−8−10−3−3−10−3−10−10−3−10−3−3−3−3−3−3−3−3−3−@10@GA made in generat ion 31 with p576
5 3−8−8−3−3−3−3−8−3−3−10−10−3−3−3−3−10−3−3−3−3−3−3−3−3−3−3−@10@GA made in generat ion 32 with p585
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