
Using open vs. proprietary standards
when developing applications for mobile
devices

Jon Freberg

Master of Science in Computer Science

Supervisor: Terje Rydland, IDI

Department of Computer and Information Science

Submission date: May 2012

Norwegian University of Science and Technology

I

Abstract
This thesis discusses the possibilities and limitations when developing mobile ap-
plications natively vs. HTML5. Research has been carried out to understand how
mobile devices can be utilized to its fullest when running applications, and a native
iPad application was developed to help in discovering unforeseen challenges. It was
developed with a client-server architecture to decrease the amount of work it would
take to implement the application natively as a client for all the different mobile
platforms.

The native approach combined with the client-server architecture is not cross
platform by nature, but the study shows that its benefits outweighs the limitations
in many cases. It is also shown that time- and cost of the development of an appli-
cation favours the HTML5 approach. HTML5 was concluded to be a solution that
solves the cross platform problem, but it lacks both performance and API access.
However, the type of application developed should be the deciding factor of what
solution to choose.

Keywords: Cross platform mobile applications, HTML5 applications, Native
applications, Objective-C, iPad

II

Sammendrag
Denne oppgaven drøfter muligheter og begrensninger ved utvikling av native mo-
bile applikasjoner kontra HTML5. Videre har det blitt undersøkt hvordan mobile
enheter kan utnyttes best mulig når disse kjører. En native iPad applikasjon er
utviklet for å være bedre rustet til å oppdage uforutsette utfordringer. iPad app-
likasjonen ble utviklet med en klient-server arkitektur for å redusere implementer-
ingsmengden nødvendig for å utvikle applikasjonen til flere mobile plattformer.

Den native fremgangsmåten kombinert med klient-server arkitektur vil ikke
være kryss-plattform av natur, men i mange tilfeller er mulighetene og fordelene
av hva løsningen gir tyngre vektet enn begrensningene. Med tanke på tid og kost-
nader ved utvikling av en applikasjon, er det nesten alltid billigere å utvikle i
HTML5. HTML5 ble konkludert med å være en fremgangsmåte som løser kryss-
plattform problemet på en god måte, men den har redusert ytelse og API tilgang.
I et hvert utviklingsprosjekt av mobile applikasjoner er det applikasjonens opp-
gave og funksjonalitet som bør være den avgjørende faktor for hvilken av de to
utviklingsmetodene som burde brukes.

Stikkord: Kryss-plattform mobile applikasjoner, HTML5 applikasjoner, Native
applikasjoner, Objective-C, iPad

III

Preface
This work is carried out as the master thesis in my Master of Technology degree
at the Norwegian University of Science and Technology. Personal interest in the
field of mobile application development brought my advisor Terje Rydland from
the Department of Computer and Information Science and me together. I would
like to thank him for the guidance throughout the project.

I also owe my sister Hanne a great thanks for proofreading the report so that
the final result became even better. A big thanks also goes out to my friends, in
particular my roommates.

Last but not least, I want to thank my family, especially mom and dad, for
all the support and help you have given me throughout 19 years of school. Your
encouragement and contributions are very much appreciated.

Trondheim, May 31st, 2012 - Jon Freberg

IV

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Question . 2
1.3 Project Goal . 2

2 Background Research 5
2.1 HTML5 applications . 5
2.2 Native iPad applications . 7
2.3 Native vs. HTML5 . 8

2.3.1 Multithreading vs. web workers 8
2.3.2 Application runtime environments 9

2.4 Application design . 9
Challenges with the client-server model 11

2.5 Interviewing software developers . 12

3 From Research to Prototype 15
3.1 Wanted functionality . 16
3.2 Technical Research . 17

3.2.1 The iPad application . 17
3.2.2 The web server . 19
3.2.3 Web services . 19

RESTful architecture . 20
JSON- JavaScript Object Notation 21

4 Education+ Overview 23
4.1 Education+ . 23

4.1.1 Education+ - The web server 24
4.1.2 Education+ - The administrator panel 24
4.1.3 Education+ - The iPad application 25

5 Implementation - The web server 27
5.1 The Spring Framework . 27

5.1.1 Model view controller . 28
5.1.2 Dependency Injection . 31

V

VI CONTENTS

5.1.3 Java Persistence API . 31
5.1.4 Security . 31

5.2 Glassfish vs. Tomcat . 32
5.3 Architecture . 33

5.3.1 Model classes . 36
5.3.2 Data Access Object classes 39
5.3.3 Service classes . 41
5.3.4 Controller classes . 42
5.3.5 Spring configuration . 44

Web.xml . 44
servlet-context.xml . 46
Security-context.xml . 47
Persistence.xml . 49

5.3.6 WEB-INF/views . 49

6 The Concepts of Programming in Objective-C 53
6.1 The four layers in iOS . 53

6.1.1 Core OS . 54
6.1.2 Core Services . 54
6.1.3 Media . 54
6.1.4 Cocoa Touch . 55

6.2 Design Strategies . 55
6.3 Syntax . 59

6.3.1 Header and Message files . 59
6.3.2 Protocols and delegates . 63

7 Implementation - The iPad application 65
7.1 Architecture . 65

7.1.1 The Views . 67
1 - The initial view controller 67
2 - A view . 70
3 - Setting the views class . 70
4 - The object palette . 71
5 - Segues . 71
6 - The view controller scenes 72

7.1.2 The Controllers . 72
7.1.3 The Models . 73

7.2 Handling threads . 76
7.2.1 Multithreading and blocks . 76
7.2.2 Core Data . 78

8 Results 81
8.1 Testing . 81

8.1.1 Timing of web service calls 81
8.2 Challenges . 84

8.2.1 The web server . 84

CONTENTS VII

Configurating the Spring framework 84
Design bugs . 85

8.2.2 The iPad application . 86
Getting started . 86
Going outside Apples design guidelines 87

8.3 New features . 88
8.3.1 Messaging system . 88
8.3.2 Quiz system . 89
8.3.3 Sharing of documents . 89

8.4 Improvements . 89
8.4.1 Push Notification Center . 90
8.4.2 Asynchronous web service calls 90
8.4.3 iPhone compatible . 91
8.4.4 General improvements . 91

9 Conclusion 93
9.1 Further work . 94

APPENDIXES 100

A Education+ user manual 101
A.1 Adminstrator panel . 101
A.2 iPad application . 102

B Interview results 105
B.1 Interviewee 1 . 105
B.2 Interviewee 2 . 108
B.3 Interviewee 3 . 111
B.4 Interviewee 4 . 114

C General information 117
C.1 Tools and IDE’s used . 117
C.2 Creating admin and school objects 118

VIII CONTENTS

List of Figures

2.1 Coverage ratio of the 3G and EDGE networks in Norway[1] 6
2.2 The Model View Controller Design Pattern 10
2.3 Client-Server architectural pattern . 11

3.1 iTunes U - CS193P course overview . 18
3.2 iTunes U - Screenshot from a lecture video 18
3.3 XML vs. JSON - Parsed twitter search results[2] 22

4.1 The Education+ administrator panel 24
4.2 The Education+ iPad application . 25
4.3 Education+ course and news overview 26

5.1 Spring Framework Overview . 28
5.2 The Model View Controller Architectural Pattern 29
5.3 Request flow in the Spring MVC Framework - Administrator Panel 29
5.4 Request flow in the Spring MVC Framework - Web Services 30
5.5 Education+ web server architecture . 33
5.6 Education+ structure . 34
5.7 Education+ Web Server Class Diagram 35

6.1 The four layers of iOS . 54
6.2 MVC - iOS specific part 1 . 56
6.3 An Objective-C outlet . 57
6.4 MVC - iOS specific part 2 . 57
6.5 Example delegation between objects . 58
6.6 Some methods implemented by the UISearchBar protocol 64

7.1 The Xcode storyboard . 67
7.2 Education+ with swipe-enabled menu 70
7.3 Different objects from the object palette 71
7.4 A cutout from the storyboard where a segue is created 72
7.5 Core Data data model user interface . 74
7.6 Graph view of the Education+ entities 74
7.7 Persistence Store Stack . 78

IX

X LIST OF FIGURES

8.1 Chrome Inspector showing the web service call /getUsersInCours/1 82
8.2 All dependencies needed for the web server 84
8.3 The .NET Framework Stack . 85
8.4 News overview problem . 87
8.5 Increase communication with the Jabber chat client 88
8.6 Notification badge on the application icon 90

A.1 The Education+ icon . 102

C.1 HTTP client web service call . 119

List of Tables

2.1 3G coverage worldwide . 7
2.2 The MVC design pattern[3] . 10

3.1 Web server functionality . 16
3.2 iPad application functionality . 17
3.3 Guiding principles of the REST uniform interface constraint[4] . . . 20
3.4 CRUD functions . 21

4.1 Overview of Education+ administrator panel 25

5.1 Model objects located in no.ntnu.jf.model package 36
5.2 Database entity creation annotations 38
5.3 Model objects located in no.ntnu.jf.dao package 39
5.4 Data access annotations . 40
5.5 Model objects located in no.ntnu.jf.service package 41
5.6 Service layer annotations . 42
5.7 Model objects located in no.ntnu.jf.controller package 42
5.8 Service layer annotations . 44

6.1 MVC Architectural Pattern - iOS specific 55
6.2 Property declaration attributes - setter semantics 60
6.3 Property declaration attributes - writability 61
6.4 Property declaration attributes - atomicity 61

7.1 Folder contents overview . 66
7.2 The different view controller options [5] 69

8.1 Timing of web service calls in milliseconds 83
8.2 General improvements . 91

9.1 Possibilities and limitations when developing mobile applications . . 93

A.1 Education+ Administrator Panel information 101
A.2 List of available administrators . 102
A.3 List of available student . 103

XI

XII LIST OF TABLES

C.1 Web server tools . 117
C.2 iPad tools . 117

Listings

3.1 Security annotated Java method . 19
5.1 Snippet of no.ntnu.jf.model.Course.java object implementation . . . 37
5.2 Snippet of no.ntnu.jf.dao.CourseDAOImpl.java object implementation 39
5.3 Snippet of no.ntnu.jf.service.CourseServiceImpl.java object imple-

mentation . 41
5.4 Snippet of no.ntnu.jf.controller.CourseController.java object imple-

mentation . 43
5.5 web.xml file . 45
5.6 servlet-context.xml file . 46
5.7 security-context.xml . 47
5.8 method from no.ntnu.jf.service.SpringLoginService.java class 48
5.9 persistence.xml . 49
5.10 ModelAndView method used to delegate data to the views 49
5.11 Example HTML code to access model objects 50
5.12 Snippet of getJSON JQuery method 50
6.1 Dummy implementation of an Objective-C header file 60
6.2 Dummy implementation of an Objective-C message file 62
6.3 Example creation of Java object . 62
6.4 Example creation of Objective-C object 62
6.5 Example Java method . 63
6.6 Example Objective-C method . 63
6.7 SearchViewController.h source file 63
6.8 Example implementation of an optional protocol method 64
7.1 LoginViewController.h - Header file 72
7.2 Example IBAction method implementation 73
7.3 User+Create.m category implementation 75
7.4 Stripped down version of LoginButtonAction method 76
7.5 LoginButtonAction method with thread 77
7.6 LoginButtonAction method with main thread 77
8.1 Entity description of the text instance variable 85
8.2 Entity description annotations used for the MySQL text data type . 86
C.1 Example JSON objects . 118

XIII

XIV LISTINGS

Abbreviations

3G 3rd Generation mobile network

AOP Aspect Oriented Programming

API Application Programming Interface

ARC Automatic Reference Counting

DAO Data Access Objects

DoS Denial of Service attacks

EDGE Enhanced Data rates for GSM Evolution

GCD Grand Central Dispatcher

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

IRC Internet Relay Chat

Java EE Java Enterprise Edition

JDBC Java DataBase Connectivity

JPQL Java Persistence Query Language

JSON JavaScript Object Notation

MB Megabyte

MVC Model View Controller

NTNU Norwegian University of Science and Technology

ORM Object Relation Mapper

XV

XVI LISTINGS

OS Operating System

POJO Plain Old Java Object

REST Representational State Transfer

SHA-1 Secure Hash Algorithm 1

SQL Structured Query Language

UI User Interface

W3C World-Wide Web Consortium

WAR Web application ARchive

XML eXtensible Markup Language

Chapter 1

Introduction

Being able to develop cross platform software applications has always been an im-
portant undertaking for developers. Given the frameworks that has been available,
the task hasn’t always been that easy. When Java was introduced in 1995 a so-
lution to the problem had finally arrived. Java solved this problem by compiling
the source code to an intermediate representation called Java byte code instead of
directly to platform-specific machine code, which made any operating system being
able to interpret a Java application. Software development companies in partic-
ular, were very satisfied with the Java solution due to a drastic decrease in both
implementation cost and time in cross platform development projects. In recent
years, smart phones and tablets has become very popular. With these "post-pc"
devices, almost any application or data can be accessed at any given time or place,
which makes them very useful for both private use, as well as in businesses. These
new devices are used interchangeably together with both desktop and laptop com-
puters, which makes it desirable that any application should work on any of these
devices. To achieve this, Java does not do the job anymore. The different smart
phones and tablets use different operating systems that are customized specifically
to run on these devices so that the limited resources available can be utilized to its
fullest. The different mobile operating systems that are used today are Google’s
Android, Apple’s iOS, Microsoft’s Windows Phone, Nokia’s Symbian and RIM’s
BlackBerry. As of February 2012, there were approximately 300 million activated
Android devices[6] and approximately 318 million activated iOS devices[7]. The
user mass of the post-pc devices are enormous, which makes it important that
any application that is being developed can be deployed to as many platforms
as possible. All these operating systems are based off of different kernels, which
means that there are no cross platform development solution available that makes
an application run natively on every device, like Java does for PC applications.
A solution to make an application run on both a PC or Mac, as well as on any
smart phone or tablet, is to implement it in HTML5. Any application developed
in HTML5 will be cross platform, since it is ran from the web browser in stead of
natively. However, the issue with a HTML5 application is the performance. Since
it is not run natively, it can not utilize its device resources to its fullest, and these

Chapter 1. Introduction 2

applications tend to be slower than native applications. This chapter will introduce
the motivation behind the thesis and present the research question together with
what goals are trying to be achieved.

1.1 Motivation

As a computer engineering student for almost five years, I have grown to be a big
fan of software development. The two recent years, my focus has become more and
more on work related software development problems. The transition from software
development as a student, to a work situation is huge, which is something I got
to experience myself at an internship the summer of 2011. When you develop an
application as a student, the main focus is often to "get it to work", while developing
as an employee for an IT company has a much broader scope, such as architecture
and following specific design and architectural patterns. To make an application
that other software developers can continue to develop without your expertise is
something that is much more emphasized when developing an application in a
work situation. Personally, I value this way of building applications, and I try to
incorporate as much good programming practice into every project I embark upon.

Together with my genuine interest for programming, I am also very interested
in development for mobile devices, and the huge progress that has happened the
last couple of years. The app stores for the different platforms makes it easy to
download any kind of application, which is one of the reasons why these mobile
devices has become so popular. Stunning and innovative new applications are
released into the app stores every day, and these applications has changed the way
we communicate with each other, and they make any mobile device inspiring to
use.

To see how far the technology in terms of both hardware and software has come
makes me eager to be a part of this innovative development process, and is the main
factor why I choose a master thesis that will dive into problems on how to make
cross platform mobile development easier, and to get a peak of what possibilities
that exist.

1.2 Research Question

The following research question was defined

1. What are the possibilities and limitations when developing a mobile applica-
tion native vs. HTML5?

1.3 Project Goal

The main goal with this thesis is to find possibilities and limitations when devel-
oping mobile applications natively vs. HTML5. To be better fitted to answer the
research question, a prototype of a learning portal implemented natively for an

Chapter 1. Introduction 3

iPad will be developed. Moreover, the implementation phase will be used to find
unforeseen pitfalls to the native approach to better define what kind of technology
or functionality to exclude to make cross platform mobile applications as good as
possible.

Chapter 1. Introduction 4

Chapter 2

Background Research

Developing cross platform mobile applications in a good way is difficult, and at the
same time to choose the best development approach for an application is critical
to be able to achieve a seamless experience for the end user. The two choices
available is to implement applications with HTML5 or to build it natively, however
the best approach to use will be different for every application. This chapter will
introduce the topics that has been researched to be better fitted to carry out the
implementation of the iPad application as well as answering the research questions
stated in 1.2 - Research Question.

2.1 HTML5 applications

Developing HTML5 applications is very popular today. They are instantaneously
accessible from any platform or mobile device because the application itself is run
through the web browser, in stead of as a native application. To sell HTML5
applications in any app store is not possible unless a framework like PhoneGap1

is used. PhoneGap automatically wraps a HTML5 application into each platforms
native web view, which results in what is called a hybrid application. By using the
PhoneGap framework, the application would appear as an application icon, just as
any other mobile application, instead of having to access the application through
the web browser. Even though a hybrid application might appear to be a native
application externally, it is actually just showing the application in a web browser
with a stripped down UI Where the toolbars are removed.

A downside with any HTML5 application is that they are dependent on network
connection to function. Since its runtime environment is a web view, and it basically
is a web site, the application would need to communicate with a remote server every
time a user performs some operation. Early in 2010, W3C released the HTML5
offline mode feature that made it possible for the web browser to download all
the files needed to be able to work without any Internet connection. This is done

1Framework that lets users develop cross platform applications with HTML5, CSS3 and
JavaScript instead of lower-level languages such as Objective-C. http://phonegap.com/

http://phonegap.com/

Chapter 2. Background Research 6

through what is called a manifest file, and all the offline dependent files, such as
background images, would be listed here. These files would be stored in the web
browser itself, and it would also be the web browsers job to distribute the saved
files when the application asked for them.[8]

However, for a HTML5 application to function in offline mode, it would need
to be connected to the Internet to download the different files needed at least ones.
Smart phones or tablets are used a lot outside of the users home or workplace,
which makes it important to have some kind of Internet connection available when
using a HTML5 application. Besides from WiFi, the possibilities for connecting a
device to the Internet is through 3G or EDGE, which has a fairly good coverage
ratio in Norway as shown in figure 2.1.

(a) 3G coverage (b) EDGE coverage

Figure 2.1: Coverage ratio of the 3G and EDGE networks in Norway[1]

As shown in figure 2.1(a) and 2.1(b), about 70% of Norway has 3G coverage,
and almost 100% has EDGE coverage. However, the average download speed is 0,5
- 1,5 Mbit/sec for 3G networks, and 0,1 - 0,2 Mbit/sec for EDGE. To put that in
perspective, in a best case scenario, 1 MB of data will be downloaded in 5 seconds
with 3G, and in 40 seconds with EDGE. Even though there is network coverage
almost everywhere in Norway, the speed is to slow to handle large data files. Out-
side of Norway, which actually has some of the best 3G and EDGE coverage in the
world, you see that in general the mobile network coverage is not very good, as
shown in table 2.1.

Chapter 2. Background Research 7

Good coverage Belgium, Denmark, Ireland, Italy, Luxembourg, Mon-
tenegro, Netherlands, Norway, Portugal, Slovenia,
Great Brittain, Switzerland, Sweden, Germany, Aus-
tria, Bahrain, Brunei, Israel, Japan, Malaysia, South-
Korea, Taiwan, Puerto Rico

Medium coverage France, Greece, Croatia, Lithuania, Poland, Romania,
Serbia, Spain, Hungary

Low coverage Bulgary, Georgia, Finland, Cyprus, Latvia, Czech Re-
public, Australia, Philippines, China, Sri Lanka, Tajik-
istan, South-Africa, USA

Very low coverage Estonia, Russia, Slovakia

No coverage Other countries

Table 2.1: 3G coverage worldwide

This shows that even though the 3G and EDGE network coverage ratio seems to
be fairly acceptable in Norway, it is not good at all in general. There is a long way
to go when it comes to creating applications that are reliable on network connection
to function. Even with the offline feature available, a HTML5 application is still
not completely network independent, which some people might see as a design flaw
for an application.

2.2 Native iPad applications
The biggest advantage when it comes to making a native application is how every
feature from UI to functionality would be customized specifically for the iPad. It
would follow the design paradigm intended for the iPad, which makes the user be
familiar with how multitouch gestures works, as well as the layout of an application
will be somewhat similar to others. This makes the interaction with an iPad much
more personal than what it does with a PC or a Mac, which is one of the reasons
why the tablet is now seen as the post-pc device, and people prefer to use an iPad
instead of a PC or Mac to check email, surf the web, or read articles.2

From a more technical point of view, the biggest advantage of implementing
an application natively for an iPad would be to have access to the full API. With
a pixel resolution of 2048-by-1536, dual core CPU’s and quad core graphics, the
new iPad can handle advanced 3D graphics. To achieve this, external libraries like
Open GL ES3 has to be used as well. Native development makes it possible to

2This was stated by Apple CEO Tim Cook in a keynote speech, and is not possible to source.
3A 3D graphics API designed for embedded systems such as iOS. http://www.khronos.org/

opengles/

http://www.khronos.org/opengles/
http://www.khronos.org/opengles/

Chapter 2. Background Research 8

create applications that utilizes the devices full potential, which will be reflected
in the applications performance in terms of being fast and responsive when a user
performs different tasks

Native applications are made to run without any Internet connection, and be-
cause of this, making an application rely on data to be fetched from remote servers
are an option, and not mandatory. Even though many native iPad applications
chooses to fetch application specific data from a remote server, it can still run at
any time without Internet connectivity. To fetch data remotely in any type of ap-
plication is important that it is done as efficient as possible. Since any UI files, such
as background images is fetched from the application itself, these often large files
doesn’t need to be fetched remotely. This decreases the applications need of gen-
erating lots of data traffic to function, which is very resource- and time consuming
tasks to perform.

By using the Core Data API, data can be stored locally on the iPad, and can
be worked with in form of objects, which is desirable in terms of both efficiency
and keeping the object oriented programming style in tact. The Core Data API
uses SQLite to keep track of any stored objects locally. SQLite is a small C-library
that implements a stand-alone SQL database engine, and is a very popular choice
for local storage on mobile devices.[9]

Building a native application also has a its drawback. It won’t have the possi-
bility to be deployed to other platforms than the one it was intended for. From a
business perspective, this would mean multiple code bases to reach out to all the
different platforms, which is both costly as well as time-consuming.

2.3 Native vs. HTML5

The two different approaches brings its own possibilities and limitations, and differ-
ent general- and technological features are solved in different ways. Some features
are better applied to native applications, while others to HTML5 applications. To
get a better understanding of how both specific and well known problems are solved
in the two approaches, some of them was compared to each other.

2.3.1 Multithreading vs. web workers

There are certain parts of the different devices API that HTML5 applications does
not have access to. One in particular, which is used a lot when developing for
mobile devices, is multithreading. Any touch from an user will result in some
kind of work for the device. The work can be fast and easy, like updating some
predefined text, or it can be more complex tasks like fetching data from a remote
server when a user tries to log in to an application. For the latter case, any network
based work needs to be performed in a separate thread, so that the applications
UI will be responsive to the user, while the work is performed in the background.

When developing HTML5 applications, it is not possible to use threads as it is
when developing with Objective-C. HTML5 applications use web workers instead,
which are javascripts that are executed in the background, independently from

Chapter 2. Background Research 9

other scripts. This makes it possible for a web worker to continuously perform
its job while the applications UI stays responsive. In theory, these two different
approaches seems to be equally good, but there are very different design principles
behind them. Web workers are relatively heavy-weight, they are expected to be
long-lived, have a high start-up performance cost, and a high per-instance mem-
ory cost[10]. Because of their design, they are not intended to be used in large
numbers as they very likely will end up hogging system resources. This last part
is especially concerning when developing for mobile devices since these devices has
limited resources available, and requires extra attention.

To execute certain operations in separate threads is built in to the very core
of how iPad applications are built in Objective-C. Any code that needs their own
thread to execute in, are put inside a block. Since the native development envi-
ronment for the iPad has a full overview of the devices resources, and are built to
take care of memory and resource allocations, using threads in Objective-C can be
used without as much precautions as HTML5 would need.

Developers might think that it is easy to develop an application without having
to use multiple threads or web workers, but it is not. Handling operations in the
background is done in almost every application, since it should never be unrespon-
sive for the user no matter how much work that needs to be done. Developing
applications for mobile devices are very different from developing desktop appli-
cations, and it needs a much larger focus on efficiency and resource use. Due to
this, to be able to use multithreading over web workers in an mobile application is
desirable.

2.3.2 Application runtime environments

When an applications starts, it is launched in its own runtime environment. A
HTML5 application is run inside the devices web browser, which means that all
layout rendering is done by the web browser instead of iOS’ native UI framework.
The same is done when a HTML5 application is created with PhoneGap so it
becomes a hybrid application. Layout rendering will still be done by the web view,
but since the application is wrapped in Objective-C source code it will gain access
to parts of the devices native API.[11] When a HTML5 application needs a lot of
resources, it might not get all that it needs since it is the web browser that gets
allocated memory and resources by the operating system, and not the application
itself.

A native iPad applications layout rendering will be done by the iOS UI frame-
work. A native application will also be given its own space in memory, which
makes allocating resources to it happens on demand. This makes the native iPad
applications run smoothly, and will act more responsive to the user.

2.4 Application design

When developing any software application, it is seen as good programming practice
to follow specific architectural- and design patterns so that the application can

Chapter 2. Background Research 10

easily be further developed by others in the future.
A design pattern are descriptions of communicating objects and classes that

are customized to solve a general design problem in a particual context[12]. These
patterns are followed to provide good delegation of tasks and to reuse already
existing implementation specific application designs. Architectural patterns has a
bit broader scope than a design pattern, and its function is to divide an application
into subsystems to delegate tasks and doesn’t provide any implementation specific
details.

There are a lot of design patterns to choose from, but when developing an appli-
cation that revolves so much around its user interface, the Model View Controller
(MVC) design pattern4 was a clear choice to investigate further. This pattern is
used in almost any mobile application, and will help generalize the structure of the
classes used in an implementation. The MVC pattern divides an application into
three areas of responsibility, and defines how they should communicate with each
other as shown in figure 2.2.

Figure 2.2: The Model View Controller Design Pattern

The three areas of responsibility shown can further be explained as following:

The Model The domain objects or data structures that represent the
application’s state

The View Observes the state and generates output to the users

The Controller Translates user input into operations on the model

Table 2.2: The MVC design pattern[3]

(Further explanation about the different domains of the MVC pattern will be

4The MVC pattern has actually divided opinions about if it is an architectural- or a design
pattern. Different programming languages also defines their own version of this pattern. In this
chapters context, it is seen as a design pattern.

Chapter 2. Background Research 11

given in chapter 5 and 7.)

The well known architectural patterns has been developed to solve very spe-
cific application design problems, which doesn’t present with that many different
options. Keeping in mind that a prototype of a learning portal was going to be de-
veloped, to presume that users and professors would communicate with each other
could be done at an early stage. The client-server architectural pattern proved to
be a reasonable choice. The idea behind the pattern is that an applications logic
should be located at a server, and that all users of the application would fetch any
data needed from here, as shown in figure 2.3.

Figure 2.3: Client-Server architectural pattern

To decide to use the client-server architectural pattern would mean to create
an application that could be completely network dependent, but it could be a
good alternative depending on what features the learning portal application would
contain.

Challenges with the client-server model

The client-server architectural pattern can experience a bottleneck as the server
can be challenged beyond its capabilities. Due to this widely used application
architecture, the option to store data with cloud service providers like Amazon and
Google, has become more and more common. To use the cloud is a great way of
solving server capability problems because the resources needed by a server is given
by demand. The cloud solution makes the amount of traffic to the server be the
factor of how much resources it will have allocated. This means that the cost of
renting the web server also will be affected by the traffic it generates.

Chapter 2. Background Research 12

Another aspect to pay attention to when distributing an applications logic at a
server, is the threat of being attacked by i.e. DoS attacks5 that is one of the most
common ways of attacking a server. Since the applications functionality is actually
stored at the server, it is important to be able to resist attacks like this. When
renting a server with one of the big cloud service providers, the security regarding
any server are in most cases taken care of in a very good way. The way to protect
a server would then be in terms of building secure web services that the clients call
upon. This to make sure that human- or application sensitive data doesn’t get in
the wrong hands, or that attackers can access your server through the web service
API.

2.5 Interviewing software developers
A handful of software developers from Statoil ASA6 and Visma Consulting AS7

were interviewed to get an opinion from people with hands on experience in the
field. They were all developing applications in HTML5 that made it possible to
have only one code base, that results in both less work as well as lower project costs.
A lot of the same responses came up when the interviewees were asked to give three
positive and negative opinions about developing applications with HTML5- it is
cross platform, but the lack of browser support and access to APIs sets a restriction
to what can be achieved.

A senior consultant at Visma Consulting Denmark presented the native vs.
HTML5 issue in a good way, which will be quoted below:

"I like the idea of an open standard language that is not financially
beholden to any interest group. This is how the web was intended, and
indeed what has made the web so ubiquitous. I am firmly opposed to
the "walled garden" approach that seems to be prevailing at the mo-
ment. As I have personally stated on numerous occasions, I would like
to have only one program on my phone, a browser.

Developing HTML5 apps is at the cutting edge right now. It’s nei-
ther mature nor planned. It is an approach that has arisen from a
fundamental need and desire that is currently lacking in most mobile
OS vendors approach to app development. Many customers "bet on
one horse" (usually Apple), but more and more are not accepting the
fleeting dominance of a single OS vendor, and possible customer alien-
ation that is inherent when snubbing other OS systems.

With many projects in all camps (Google, Apple, Microsoft..) being
stunted due to the ongoing patent wars, I see no better approach than

5Short for denial-of-service attack, a type of attack on a network that is designed to bring the
network to its knees by flooding it with useless traffic.

6A norwegian oil company. http://www.statoil.com/en/Pages/default.aspx
7A norwegian IT company. http://www.visma.no/Prosjekt-og-konsulenttjenester/

http://www.statoil.com/en/Pages/default.aspx
http://www.visma.no/Prosjekt-og-konsulenttjenester/

Chapter 2. Background Research 13

using a common, open, free and standardized programming approach
to push forward application development.

Content should be free from technology. An app should not only
be available on a single OS. My dvd should not only play on a Sony
machine, my CD only on a Philips stereo, my book only on a Kindle,
my App only on an iPhone. The web showed us that there was an alter-
native method for distribution of content and I can think of no better
way to serve content on mobile devices than using the same language
that powers the web.

From a technological angle, I hope that the OS vendors see HTML5
as an opportunity and not a threat. I hope that the use of exclusive
content to power device popularity is removed from the equation and
that a true cross platform programming interface is standardized and
promoted."

From a business perspective, what is said here, are makes sense. Imagine de-
veloping an application with a single code base, and yet manage to utilize every
different mobile device to its fullest. That would solve all the problems as they are
today, but there is still a very long way to go before Garys, and so many others
thoughts will come through. The one place where actually everything should be
able to run, no matter what platform, is the web browser, but not even here does
every HTML5 app or website run the same way, or even run at all. The web browser
is the very backbone itself, where HTML5 and CSS3 was made to run in the first
place, and there isn’t even a common standard of how the browsers interpret the
code. Many people argue that this is the heart of the problem, and to be able to
step forward in this field, the foundation of it all needs to work flawless, so that it
can be a stepping stone for others to see how it can work. Apple does contribute
with the focus on further developing the HTML5 standard with its iBooks Author8
application that was launched January 12th, 2012. The iBooks Author application
is mostly drag and drop based, but it is possible to incorporate HTML5 widgets
inside a book, which makes it possible to have animations, videos and all the other
effects that can be created with HTML5 and CSS3. The initiative that Apple has
taken here is a very good one. It shows that even though they are holding on to
making iOS applications natively for the iPad, iPhone and iPod Touch, they do
see the opportunities that HTML5 offers, and it is a true call out to everyone that
this technology needs to be used for what it is worth.

8A framework for creating digital books for the iPad.

Chapter 2. Background Research 14

Chapter 3

From Research to Prototype

Taking the research done in chapter 2 into consideration, the structure and archi-
tecture of the prototype iPad application could be done. To be able to develop
a mobile application natively has so many benefits, which makes it the desirable
choice. The native approach brings many upsides, but it also brings some problems
that needs to be justified. To decrease the workload of having to implement the
application specifically for each mobile platform, the client-server model was cho-
sen. With this application architecture, the amount of code needed for each native
implementation would be drastically reduced since the business logic of the appli-
cation would be kept at a remote server. This makes it only necessary to implement
a GUI, with a public interface that will handle communication and fetching the re-
motely stored data. The application would fall under the category of being network
dependent, but in a much less nature than a HTML5 application. Natively, large
files such as background images will be implemented into the application, which
reduces the amount of data needed to be fetched remotely. The only data that
would need to be fetched would be in the form of small text represented objects,
which hopefully would make the amount of data needed to be fetched acceptable
to be downloaded from both 3G or EDGE network connections. With access to the
iPad’s API, any fetched data would be stored and handled locally, which makes the
application function even without a network connection. When new data is stored
at the web server, only the recent updates would be downloaded to the application
when it is online. This approach wouldn’t be a true cross platform application,
but the upsides of being able to implement natively would justify the increase in
workload to deploy the application at multiple platforms, based on the decisions
made.

Since the prototype application is a learning portal, the name of the application
was chosen to be Education+, and this chapter will go further in detail on what
technologies and choices that has to be made, to make it as easy as possible to
implement different native versions of it.

Chapter 3. From Research to Prototype 16

3.1 Wanted functionality
To be able to test some of the theories stated in this thesis, some basic functionality
will be added to the Education+ application. The web server will contain all the
business logic of the learning portal, and the iPad application will mainly be front-
end implementation together with an interface to handle communication with the
web server. Another emphasized focus area for the web server is that it should be
easy to add new features to it, as well as it should be scalable so that the work
with this application can continue later on. The wanted features and functionality
of the web server and the iPad application is shown in table 3.1 and 3.2.

Web Server

Modifiable The web server should be dynamic and modifiable in
a way that there should be easy to add new features,
as well as update existing features

Creating objects The web server should be able to create user, admin,
school, course and news objects

Communication An admin should be able to communicate with its
users/students by posting news to the iPad applica-
tion

Functionality An admin is going to be able to create new courses and
add existing students to a course. An admin should
also be able to post news to the different courses he
or she is administrating

Table 3.1: Web server functionality

Chapter 3. From Research to Prototype 17

iPad application

Modifiable The iPad application should be dynamic and modifi-
able in a way that there should be easy to add new
features, as well as update existing features

Creating objects Users of the iPad application should be able to register
and create new user objects

Functionality A user should be able to login, and also get an
overview over what courses he or she is attending,
and see the courses corresponding news entries

Design principles The iPad application should follow the iOS develop-
ment design principles by using built in view con-
trollers

Table 3.2: iPad application functionality

3.2 Technical Research
The technical research required was divided in two parts; web server- and iOS
development related. The first part was going to be written in Java and could be
approached from different angles, while the latter involved learning Objective-C,
which seemed to be an extensive job. Much narrower research had to be done
regarding the choices made, so that the implementation specific choices could be
utilized to its fullest.

3.2.1 The iPad application

Since there are no courses at NTNU that teaches iPhone and iPad development,
knowledge and competence had to be acquired on our own initiative.

To find good literature about how to learn Objective-C was important to be able
to be introduced to the new programming language in a satisfying way. A much
used resource regarding Objective-C specific problems, were IRC. A chat room
made specifically for implementing native applications for the iOS platform called
#iphonedev1 was found to be an educational resource, with a genuine interest in
the topic.

After discussions in the #iphonedev chat room, there were unanimously answers
that the best way to gain knowledge about iPad and iPhone development was
through iTunes U2 and the CS193P: iPad and iPhone App Development course
from Stanford University, California.

1Any chat room at an IRC server are prefixed with a # sign. The #iphonedev channel
is located at the irc.freenode.net server. It is a free and open source software-focused IRC
network, encompassing more than 70,000 users and 40,000 channels.

2iTunes University - http://www.apple.com/education/itunes-u/

irc.freenode.net
http://www.apple.com/education/itunes-u/

Chapter 3. From Research to Prototype 18

Every lecture from that course is filmed, and lecture notes and assignments are
posted at the iTunes U application that you can download to your iPhone, iPad or
Mac as shown in figure 3.1 and 3.2.

Figure 3.1: iTunes U - CS193P course overview

Figure 3.2: iTunes U - Screenshot from a lecture video

This course is taught to students that has never developed iOS applications
before, so the lectures starts out with an introduction to the language with corre-
sponding assignments that can be worked with to get a basic understanding of how

Chapter 3. From Research to Prototype 19

things work in Objective-C. The first lectures covered the basic concepts of pro-
gramming in Objective-C, as well as a short introduction to the Objective-C IDE
Xcode. The introduction to Objective-C and a more comprehensive walkthrough
of how things work will be given in chapter 6 - The Concepts of Programming in
Objective-C.

3.2.2 The web server
With the structure chosen for the learning portal, there were a couple of crucial
aspects of the web server that needed to be thoroughly thought through, and some
of these aspects are presented in this section.

The web server needs to be modifiable with regards to easily adding new func-
tionality to it, and since the iPad application somewhat relies on fetching data from
it, the server needs to be both efficient and available. To be able to make the web
server modifiable, the underlying architecture needs to allow it, which is why the
web server will follow the MVC architectural pattern3. In any software develop-
ment project, to identify any pitfall as early as possible will help writing as little
redundant code as possible, and also help avoid discovering to many unplanned
items along the way.

The Java Spring framework4 is a well known and continuously updated frame-
work, which makes it reliable for developing a fast and available web server. It has
a very good API when it comes to making different web technologies work together,
as well as trusted security features. The security part is especially important since
all of the data for the whole application is seemingly accessible to the public. With
the Spring framework, annotations can be made at method-level, as shown in list-
ing 3.1.

@PreAuthorize("hasRole(’ROLE_ADMIN ’)")
@RequestMapping(value="/user/{email :.+}", method = RequestMethod.GET)
@ResponseBody
public User getUser(@PathVariable String email) {

User u = (User)userService.getUserByEmail(email);
return (u != null) ? u : null;

}

Listing 3.1: Security annotated Java method

Security annotation makes sure that only people with the right privileges can
access the web services, and it prevents that sensitive data becomes accessible to
the public.

3.2.3 Web services
A web service is a method of communication between two electronic devices over
the web. W3C defines a web service as "a software system designed to support
interoperable machine-to-machine interaction over a network". It has an interface
described in a machine-processable format, such as XML or JSON[13].

3The Spring framework has created their own version of the MVC pattern. In terms of the
web server, MVC will be referred to as an architectural pattern.

4http://www.springsource.com/

http://www.springsource.com/

Chapter 3. From Research to Prototype 20

When building an application that is dependent on communicating with a re-
mote server, and created to target mobile platforms, it is very important to be
careful with both what amount of data is sent, as well as what format it is sent in.
Any data that is sent needs to be shrunk as much as possible, both to be efficient,
and to allow a good user experience for users with limited network connections.
The web service architecture and the data format the web services will use will be
presented in the following two subchapters.

RESTful architecture

REST is a style of software architecture that was defined by Roy Fielding in 2000.
The REST architecture is based on the client-server model, which makes it fit very
well into the Education+ application. The key goals of REST are:

• Scalability of component interactions
• Generality of interfaces
• Independent deployment of components
• Intermediary components to reduce latency, enforce security and encapsulate

legacy systems.

The REST architecture has six constraints[4]. The most important part is the
restriction of a uniform interface. The three constraints most applicable to the
Education+ application are stated in table 3.3.

Identification of re-
sources

Individual resources are identified in requests, for
example using URIs in web-based REST systems.
The resources themselves are conceptually sepa-
rate from the representations that are returned to
the client. For example, the server does not send
its database, but rather, perhaps, some HTML,
XML or JSON that represents some database
records expressed.

Manipulation of re-
sources through these
representations

When a client holds a representation of a resource,
including any metadata attached, it has enough
information to modify or delete the resource on
the server, provided it has permission to do so.

Self-descriptive mes-
sages

Each message includes enough information to de-
scribe how to process the message. For exam-
ple, which parser to invoke may be specified by
an Internet media type (previously known as a
MIME type). Responses also explicitly indicate
their cacheability.

Table 3.3: Guiding principles of the REST uniform interface constraint[4]

Chapter 3. From Research to Prototype 21

REST is a complicated architecture, and it is really all about using the true
potential of HTTP. The HTTP protocol is oriented around verbs and resources,
like the two most common- GET and POST. But HTTP defines more verbs, like
PUT and DELETE, and with these four verbs it is possible to achieve all the
basic functions when it comes to persistent storage. In general these functions are
together called CRUD- Create, Read, Update and Delete. A comparison of these
functions can be seen in table 3.4.

Operation SQL HTTP
Create INSERT PUT
Read SELECT GET
Upate UPDATE POST
Delete DELETE DELETE

Table 3.4: CRUD functions

A good example of "Identification of resources" would be that the Education+
application uses a database that holds all the users, and that these users are going
to be created, fetched, updated and deleted through web service calls. With a
non-restful approach the call to the web services could look something like this:
/user_create
/user?id=xxx
/user_edit?id=xxx
/user_delete?id=xxx

while a RESTful approach would expose the public API with a single base
resource:
/user
/user/xxx

With the RESTful approach a POST or PUT request is sent to a URL with the
data it wants to create or modify in the HTTP body. To retrieve a user, a GET
request is sent to /user/xxx, and to delete a user, a DELETE request is sent. An
example is that a GET request would never modify any data, this is what PUT,
POST and DELETE are for. This shows that the individual resource is identified
by its request, and not by the way the URL is built up.

JSON- JavaScript Object Notation

JSON was developed in 1999 and has recently been more and more used due to the
transition to the post-pc era. With the massive use of mobile devices and the need
of being online everywhere JSON has an advantage over XML- it is lightweight and
easy for devices to both parse and generate. For the human eye, JSON differs from
XML mainly in notation. A key/value pair in JSON would look like:
{"key" : "value"}

where the equivalent XML would be:
<node ><key >value </key ></node >

Chapter 3. From Research to Prototype 22

This shows that XML needs to name the node for each instance, as well as
each key/value pair can be defined as either an attribute, or an object. This is
almost always not worth the extra notation, and it will end up costing a lot of
bandwidth and processing time when the files get bigger, which is demonstrated in
figure 3.3[14].

Figure 3.3: XML vs. JSON - Parsed twitter search results[2]

In the raw bytes diagram in the lower left corner, the two graphs increase linearly
in bytes as the number of search results increase. After only 100 returned results,
the XML file is almost three times as big as the corresponding JSON file. XML
also needs to have a schema supplied so that it will know whether the values are
objects or attributes, as well an XML parser. With JSON, no additional schema or
external parser is needed. Almost every language has either a built-in or 3rd party
JSON library which makes it easy to use at any platform[2], and is why JSON will
be used to communicate data between the server and its clients in the Education+
application.

Chapter 4

Education+ Overview

The majority of students in Norway uses It’s Learning1 which has split opinions
when it comes to both user experience and usability. With todays technology, a
web portals like It’s Learning should be available at several platforms and handheld
devices. The user experience and benefits of using a web portal would be much
better when it is more reachable.

This chapter will give a brief introduction to the Education+ application and
its features to give a better overview before specific implementation details are
introduced in chapter 5, 6 and 7. General information about the application such
as URL and login credentials are given in appendix A - Education+ user manual.

4.1 Education+

The Education+ portal is made up by three parts, a web server with the applica-
tions logic, an administrator panel, and an iPad application. The administrator
panel is implemented as a web site so the professors can interact with the Edu-
cation+ users and system. The iPad application will be used by students to get
information about courses they attend and to receive news and updates from their
professors. The two front-end parts of the system, both the administrator panel,
and the iPad application, communicates with the same web server, and with the
same public API that the web server exposes. The web server is responsible for
keeping track of all the users, and also to provide its clients with the data they
request. There is no problem to communicate with the web server to request or
receive data no matter what platform you are on. The only criteria to communicate
with the web server is the need to send its requests in form of JSON objects, which
is possible in almost every programming language used today.

1https://www.itslearning.com

https://www.itslearning.com

Chapter 4. Education+ Overview 24

4.1.1 Education+ - The web server

The web server is what handles all the data requested to be created or fetched,
and all other business logic. The Education+ applications logic is exposed through
a public API, so that any device or any platform can communicate with it. The
prototype implements web services for creating and fetching information about
administrators, users, courses and news entries are created.

4.1.2 Education+ - The administrator panel

Professors using the application will have an administrator account where they can
perform tasks such as creating courses, add students to a course, and create news
entries. The layout of the administrator panel is shown in figure 4.1.

Figure 4.1: The Education+ administrator panel

The menu at the left hand side incorporates the following functionality:

Chapter 4. Education+ Overview 25

Home The welcome screen where you are taken after a successful login.

Admin Displays the other administrators at the school.

User Displays all the users/students at the school. All these users are
created with the iPad application.

Course Gives an overview of the courses an administrator teaches, as well as
the possibility to see what students are taking the different courses,
create new courses, and add new students to a course.

News Gives an overview of the different news that belongs to the different
courses. An administrator can create news entries for the courses he
or she teaches.

Table 4.1: Overview of Education+ administrator panel

4.1.3 Education+ - The iPad application

Students will use the Education+ on an iPad. This is where students register
their accounts and where they will receive news and course information. Both the
administrator panel and the iPad application has the same GUI, which is shown in
figure 4.2 and 4.3.

Figure 4.2: The Education+ iPad application

Chapter 4. Education+ Overview 26

Figure 4.3: Education+ course and news overview

A students course list will be updated when a professor has added a student to
its course in the administrator panel. If a professor adds a student to its course, or
creates a new news entry for a course when a student is using the iPad application,
the student will have to press the refresh button in the top right corner of the
application to fetch the latest updates from the web server. If not, an updated list
of both courses and news are presented to the student after he or she has logged
in.

Chapter 5

Implementation - The web
server

The web server will have two main functions; exposing the web services through
a public API, and host the administrator panel where administrators can update
and create data and information for the users of the iPad application. All commu-
nication with the Education+ application happens here, no matter what type of
client.

This chapter will give a technical summary of how the web server was imple-
mented by using the Spring framework, and it will describe how the MVC design
pattern was used in the Spring context.

5.1 The Spring Framework

Spring is a very powerful framework that solves many common problems when it
comes to developing web applications. Spring’s goal is to provide infrastructural
support to developers so that they can have their main focus on the business logic
of the application. To separate configuration and code is something Spring does
very well, which helps the developer to achieve a well structured application.The
Spring framework works solely with POJO’s. The idea is that these classes sewed
together with the configuration instructions creates an application system ready to
use.

The Spring framework consists of powerful modules, and it is very modular so
that it is easy to add new Spring features that is needed along the way of any
project. The different features are organized into about 20 modules, which again
are grouped into the categories core container, data access/integration, web, AOP,
Instrumentation and Test. Figure 5.1 illustrates how these features are organized.

Chapter 5. Implementation - The web server 28

Figure 5.1: Spring Framework Overview

For the purpose of the Education+ web server, the following Spring features
are emphasized:

• Model View Controller (Web)
• Beans and Dependency Injection (Core Container)
• ORM and Java Persistence API (Data Access/Integration)
• Security

5.1.1 Model view controller

Spring MVC helps in building flexible and loosely coupled web applications. This
architectural pattern helps in separating the model (business logic), view (user
interface) and the controller (user input)[3], as shown in figure 5.21.

1The Spring frameworks version of the MVC pattern is by Spring referred to as an architectural
pattern. MVC will be therefor be referred to as this in the context of the web server

Chapter 5. Implementation - The web server 29

Figure 5.2: The Model View Controller Architectural Pattern

In the heart of Spring MVC, is the dispatcher servlet as displayed in figure
5.3[15][16] [17]. The dispatcher servlet is what manages the entire request-handling
process. Since the web server serves two different purposes; exposing web services
through a public API, and also implementing a web interface that acts as the
administrator panel, the view part of this pattern is not used in the same way
in both situations. The original purpose of the MVC pattern is retained for the
administrator panel, while it is slightly modified for the part that exposes the web
services. When a request is sent to the dispatcher servlet, it delegates the job by
invoking the appropriate controllers to process the request.

Figure 5.3: Request flow in the Spring MVC Framework - Administrator Panel

Chapter 5. Implementation - The web server 30

The Spring MVC framework handles a request in the following order:

1. The DispatcherServlet first receives the request
2. The DispatcherServlet consults the HandlerMapping and invokes the Con-

troller associated with the request
3. The Controller process the request by calling the appropriate service methods

and returns a ModeAndView object to the DispatcherServlet. The ModeAnd-
View object contains the model data and the view name

4. The DispatcherServlet sends the view name to a ViewResolver to find the
actual View to invoke

5. Now the DispatcherServlet will pass the model object to the View to render
the result

6. The View with the help of the model data will render the result back to the
user.

Further explanation of the segments mentioned will be done in section 5.3.

As mentioned earlier, there are fewer sequences to the dispatcher servlets action
when a web service is requested. After the dispatcher servlet invokes the controller
associated with the request, the actual model gets returned as the response. This
model is turned into a JSON object so that it can communicate with whatever
client that is requesting it, as shown in figure 5.4.

Figure 5.4: Request flow in the Spring MVC Framework - Web Services

Chapter 5. Implementation - The web server 31

5.1.2 Dependency Injection

Dependency Injection is a design pattern that is used to define the object depen-
dencies. It is sometimes called Inversion of Control, and widely known as the
Hollywood Principle- "Don’t call us, we’ll call you". With respect to the architec-
ture, the idea is that the Service layer is given instances of DAO objects, instead
of being responsible for looking them up. An example is provided to give a better
understanding of it.

Imagine two friends, and one of them asks the other to drive him to the super-
market. Not a very hard task, the driver gets his car, and drives his friend to the
supermarket. But what if suddenly 5 people where coming along, then a bigger car
would be needed. In Java terms, the good news is that most cars implement the
same interface (steering wheel, accelerator, barker etc.), and any person can drive
any car. At the root of it, thats what dependency injection is all about. Instead of
having to ask for a car with more than five seats, it is automatically given, without
having to be responsible for getting the right kind of car.[18]

Dependency injection comes primarily in two different forms- Constructor or
setter-based. Spring recommends to use the setter-based variant, and that is what
is used at the Education+ web server. This means that there are no-argument
constructors, and the setters are used to wire up dependencies between the different
objects.

5.1.3 Java Persistence API

JPA is a standard for Java object-relational mapping. It specifies a set of an-
notations and an interface to perform persistence operations with any mapped
objects. The Spring ORM enables the communication between the database and
the Java objects. Due to this, a programmer won’t need to think about MySQL
and database configuration. A persistence entity is a lightweight Java class whose
state is typically persisted to a table in a relational database, and the persistence
entities corresponds to rows in a database table. Now java objects can be saved as
a row in a database table with just a few lines of code, and just as easy create new
Java objects from a table row.

5.1.4 Security

Security is an important feature of the Spring framework. The Spring security
makes it possible to secure a complete web application with just a couple of lines
of code in a XML file. Spring security works with filter chains, which tells what
permissions a user should have to access certain URLs. With the use of wild cards,
applications are easily secured, as the example below shows.
<intercept -url pattern="/navigation /**" access="hasRole(’ROLE_ADMIN ’)" />

With this single line of code, every URL with this structure can only be accessed
by admins. If someone that does have an admin role assigned to them, the user
gets redirected to a login page.

Chapter 5. Implementation - The web server 32

Security can also be applied to methods directly in Java. This makes it possible
to set restrictions to who can call these methods, which covers the problem of
unwanted users that tries to access the web server without using the web interface.

5.2 Glassfish vs. Tomcat
When making the decision of what kind of web server to use, there was a couple of
different options presented, mainly with respect to how broad support they have to
different features. The two obvious options to deploy the Education+ Java server
was GlassFish or Tomcat. The main difference between these two servers are that
GlassFish is an application server2, while Tomcat is a web server with a servlet con-
tainer, which makes it feasible to use with a Spring web application. Both servers
are written in Java, made specifically for the Java Runtime Environment and de-
ployment of Java applications. When it comes to administration tools and options,
GlassFish has a broader specter of choices made available to the administrators,
which is a feature that is always good to have, especially since the web server is
made in a way so that further development should be easy. Performance wise, the
two servers are pretty much the same. The only difference worth mentioning is
that Tomcat is a little bit faster to load, while GlassFish is a little bit faster to
reload. Since both servers have integrated support of deploying WAR files directly
from Eclipse, to be able to reload the application as fast as possible is desirable
to decrease deployment time as much as possible. The actual deployment of the
WAR file with GlassFish takes about a second, while with Tomcat it takes about
3 seconds. In large software development projects, an application gets deployed
and tested hundreds, maybe thousands of times, which will sum up to quite the
difference.

With these results in mind, the GlassFish server was chosen to decrease de-
ployment time, as well as achieve a wide specter of configuration possibilities for
further development.

2http://en.wikipedia.org/wiki/Application_server

http://en.wikipedia.org/wiki/Application_server

Chapter 5. Implementation - The web server 33

5.3 Architecture

One of the great guidelines to follow when using the Spring framework is how it
encourages to use Java interfaces through out the layers of the architecture, so that
communication happens through these. The benefit of Java Interfaces is that it
allows multiple inheritance of an interface, but not of implementation. The imple-
mentation that includes instance variables and method implementations is always
singly inherited and because of this, confusion will never arise over what inherited
instance variable or method implementation to use[19]. The MVC architectural
pattern made the classes communicate with each other in the following way:

Figure 5.5: Education+ web server architecture

The figure also shows how the layered architecture of the web server hides

Chapter 5. Implementation - The web server 34

the functionality of the public API deeper into the application and makes it less
available for the public. A better look at the project structure is given in figure
5.7:

Figure 5.6: Education+ structure

There are a total of five types of objects that together creates the functionality
necessary for this prototype implementation. These five objects are Admin, User,
School, Course and News, as the class diagram in figure 5.7 explains.

Chapter 5. Implementation - The web server 35

Figure 5.7: Education+ Web Server Class Diagram

The following parts of this chapter will go in detail about where the different
objects are located, and what their tasks are.

Chapter 5. Implementation - The web server 36

5.3.1 Model classes
The different model classes implemented for the Education+ application is shown
in table 5.1.

Contains

Admin Admin.java
AdminInterface.java

User User.java
UserInterface.java

School School.java
SchoolInterface.java

Course Course.java
CourseInterface.java

News News.java
NewsInterface.java

Table 5.1: Model objects located in no.ntnu.jf.model package

The src/main/java package contains the sub package no.ntnu.jf.model which is
where all the object interfaces and implementations are located. This is where the
different objects gets their instance variables assigned to them, and it is also the
class that creates the database entities, and the relationships between them. To
achieve this, Spring plays an important role by using what is called annotations.
Annotations are used by annotating certain parts of the java code so that Spring
can collect information about the object and its relationships, and from this turn
the representation of the java object into a database entity. To create a new entity
in the database, a model class is annotated as follows in listing 5.1.

Chapter 5. Implementation - The web server 37

@Entity
@Table(name = "t_course")
@NamedQueries ({

@NamedQuery(name = QueryNames.FIND_ALL_COURSES , query = Queries.
FIND_ALL_COURSES_QUERY),

@NamedQuery(name = QueryNames.FIND_ALL_COURSES_FOR_SCHOOL , query = Queries.
FIND_ALL_COURSES_FOR_SCHOOL_QUERY),

@NamedQuery(name = QueryNames.FIND_ALL_USERS_IN_COURSE , query = Queries.
FIND_ALL_USERS_IN_COURSE_QUERY)

})
public class Course implements CourseInterface , Serializable {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "course_id")
public long courseId;

@Column(name = "course_code")
public String courseCode;

@Column(name = "course_name")
public String courseName;

@Column(name = "course_description")
public String courseDescription;

@ManyToOne(cascade = {CascadeType.MERGE})
@JoinColumn(name = "school_id", nullable = false)
private School school;

@ManyToOne(cascade = {CascadeType.MERGE})
@JoinColumn(name = "admin_id", nullable = false)
private Admin admin;

@ManyToMany(cascade = {CascadeType.MERGE}, fetch = FetchType.EAGER)
@JoinTable(
name = "t_user_course",
joinColumns = {@JoinColumn(name = "course_id", referencedColumnName = "

course_id")},
inverseJoinColumns = {@JoinColumn(name = "user_id", referencedColumnName = "

user_id")})
private List <User > users;

public Course (){}

...

/* Getter and Setters */
}

Listing 5.1: Snippet of no.ntnu.jf.model.Course.java object implementation

This is just a normal java class that defines an object. The different annotations
here tells Spring what kind of type and relationship the entity will have in the
database. An overview over the function of the different annotations are given in
table 5.2 below.

Chapter 5. Implementation - The web server 38

@Entity Creates a database entity of a Java class

@Table Gives a specific name to a database table. Default name
will be classname unless this annotation is given

@NamedQuery- ies Defines the queries that will fetch data from the
database. All queries are written in JPQL. All queries
defined will return java objects of the specific class they
are annotated in.

@Id Assigns primary key

@GeneratedValue With parameter GenerationType.IDENTITY set, this
primary key will be an auto incremental BigInt, starting
with the value 1

@Column Gives a specific name to the database column. Default
name will be instance variable name unless this anno-
tation is given

@ManyToOne Defines a many to one relationship where the source ob-
ject references another object. This will create a foreign
key relationship in the MySQL table. CascadeType tells
how the relationship is handled. CascadeType.MERGE
tells in this case that if a course is deleted, do not delete
its referenced objects.

@JoinColumn Describes what row name that the foreign key should
reference.

@ManyToMany Defines a many to many relationship between two ob-
jects. To oblige 1st normal form of database normaliza-
tion, this annotation creates an additional table so that
repeated values are not present in the same database
table.

@JoinTable Defines what database rows the relationship will be
joined with.

Table 5.2: Database entity creation annotations

Chapter 5. Implementation - The web server 39

5.3.2 Data Access Object classes

The different data access object classes implemented for the Education+ applica-
tion is shown in table 5.3.

Contains

Admin AdminDAO.java
AdminDAOImpl.java

User UserDAO.java
UserDAOImpl.java

School SchoolDAO.java
SchoolDAOImpl.java

Course CourseDAO.java
CourseDAOImpl.java

News NewsDAO.java
NewsDAOImpl.java

Table 5.3: Model objects located in no.ntnu.jf.dao package

The no.ntnu.jf.dao package is where the classes that are used for data access
are stored. These are the classes that handles the actual persisting of java objects
to the database. A partial implementation of the CourseDAO object is shown in
listing 5.2 as an example.

@Repository
public class CourseDAOImpl implements CourseDAO {

@PersistenceContext
EntityManager entityManager;
@Autowired
private SchoolDAOImpl schoolRepository;
@Autowired
private UserDAOImpl userRepository;
@Autowired
private AdminDAOImpl adminRepository;

...

public Course saveCourse(Course c) {
List <User > tempUserList = new ArrayList <User >();
for(User user : c.getUsers ()) {

User tempUser = (User)userRepository.getUserByEmail(user.getEmail ());
tempUserList.add(tempUser);

}

c.setUser(tempUserList);
try {

if(c.getCourseId () > 0) {
return entityManager.merge(c);

} else {
if(c.getSchool () == null) {

Chapter 5. Implementation - The web server 40

School school = schoolRepository.getSchoolByShortName(c.getSchool ().
getSchoolShortName ());

c.setSchool(school);
}
if(c.getAdmin () == null) {

Admin admin = (Admin)adminRepository.getAdminByEmail(c.getAdmin ().
getEmail ());

c.setAdmin(admin);
}
entityManager.persist(c);
return c;

}
} catch (Exception e) {

System.err.println("Something went wrong when trying to save course.");
return null;

}
}

public List <Course > findAllCoursesForSchool(String shortName) {
TypedQuery <Course > query = entityManager.createNamedQuery(QueryNames.

FIND_ALL_COURSES_FOR_SCHOOL , Course.class);
query.setParameter (1, shortName);
return query.getResultList ();

}
}

Listing 5.2: Snippet of no.ntnu.jf.dao.CourseDAOImpl.java object implementation

There are three types of annotations used; @Repositiory, @PersistenceContext
and @Autowired. Also worth mentioning is the EntityManager, and how this ob-
ject works. The EntityManager is the object that handles the actual persisting of
objects to the database. It is created by an EntityManagerFactory which is de-
clared in a configuration xml file. As presented in the source code above, both the
EntityManager object, and the objects that are annotated with @Autowired, are
never actually instantiated. They are all objects that are created by Dependency
Injection, so they are created and handled by Spring when they are needed. An
overview over the function of the different annotations used are given in table 5.4
below.

@Repository Class used as data access class

@PersistenceContext Creates the EntityManager object when needed. Cre-
ated by the EntityManagerFactory

@Autowired Spring automatically tries to "wire" all objects that are
annotated like this. The Spring container handles cre-
ation of the object itself

Table 5.4: Data access annotations

Chapter 5. Implementation - The web server 41

5.3.3 Service classes
The different service classes implemented for the Education+ application is shown
in table 5.5.

Contains

Admin AdminService.java
AdminServiceImpl.java

User UserService.java
UserServiceImpl.java

School SchoolService.java
SchoolServiceImpl.java

Course CourseService.java
CourseServiceImpl.java

News NewsService.java
NewsServiceImpl.java

Table 5.5: Model objects located in no.ntnu.jf.service package

The no.ntnu.jf.service package acts as the service layer in the application. The
service layers job is to invoke the DAO objects and to perform the task wanted.
This layer works as a "middle-layer" and is helping abstracting away the DAO
classes. The CourseService class implemented is given in listing 5.3 as an example
below.

@Service
public class CourseServiceImpl implements CourseService {

@Autowired
private CourseDAO courseDAO;

@Transactional
public Course saveCourse(Course c) {

return courseDAO.saveCourse(c);
}

@Transactional
public boolean removeCourse(Course c) {

return courseDAO.removeCourse(c);
}

public List <Course > findAllCourses () {
return courseDAO.findAllCourses ();

}

public List <Course > findAllCoursesForSchool(String shortName) {
return courseDAO.findAllCoursesForSchool(shortName);

}

public List <User > findAllUsersInCourse(String courseId) {
return courseDAO.findAllUsersInCourse(courseId);

Chapter 5. Implementation - The web server 42

}
}

Listing 5.3: Snippet of no.ntnu.jf.service.CourseServiceImpl.java object
implementation

An overview over the function of the different annotations used are given in
table 5.6.
.

@Service Class used as a service class. A service class is seen as
a facade for the business logic

@Transactional Any method annotated with @Transactional means
that this method will perform persisting of a Java ob-
ject to the database. A common pitfall is to forget this
annotation which will result in that no new database
entities will appear in the actual database.

Table 5.6: Service layer annotations

5.3.4 Controller classes
The different controller classes implemented for the Education+ application is
shown in table 5.7.

Contains

Admin AdminController.java

User UserController.java

School SchoolController.java

Course CourseController.java

News NewsController.java

Table 5.7: Model objects located in no.ntnu.jf.controller package

The no.ntnu.jf.controller sub package contains the files that actually exposes
all the web services through a public API. How this works is that the Java class
itself is annotated with @Controller, which tells the dispatcher servlet that this
class is not implementing a specific controller interface, but that it is rather using
different annotations to express request mappings for specific handler methods.
The CourseController class is shown in listing 5.4 below.

Chapter 5. Implementation - The web server 43

@Controller
public class CourseController {

@Autowired
private CourseService courseService;
@Autowired
private AdminService adminService;
@Autowired
private SchoolService schoolService;
private SpringLoginService loginService = new SpringLoginService ();

@RequestMapping(value = "/navigation/course", method = RequestMethod.GET)
public ModelAndView listCourses(HttpServletRequest request) {

ModelAndView mv = new ModelAndView ();
mv.setViewName("courses");
mv.addObject("courselist", courseService.findAllCourses ());
return mv;

}

@RequestMapping(value = "/course", method = RequestMethod.POST)
@ResponseBody
public Course saveCourse(@RequestBody Course course) {

courseService.saveCourse(course);
return course;

}

@RequestMapping(value = "/course", method = RequestMethod.DELETE)
@ResponseBody
public Course deleteCourse(@RequestBody Course course) {

courseService.removeCourse(course);
return course;

}

@RequestMapping(value = "/navigation/addOrEditCourse", method = RequestMethod.
GET)

public ModelAndView addOrEditCourse(HttpServletRequest request) {
ModelAndView mv = new ModelAndView ();
mv.setViewName("addOrEditCourse");

UserDetails user = loginService.currentUserDetails ();
Admin admin = (Admin)adminService.getAdminByEmail(user.getUsername ());
School school = schoolService.getSchoolByShortName(admin.getSchool ().

getSchoolShortName ());

mv.addObject("admin", admin);
mv.addObject("school", school);

return mv;
}

}

Listing 5.4: Snippet of no.ntnu.jf.controller.CourseController.java object
implementation

A few new annotations are introduced in the controller classes that tells the dis-
patcher servlet what kind of controller that will be used, and what kind of datatype
that is expected from them. These are explained further in table 5.8.

Chapter 5. Implementation - The web server 44

@Controller Tells the dispatcher servlet that this class acts as a con-
troller. Indicates that the classes methods should be
scanned for request mappings

@RequestMapping Given at method level. Each mapping binds to a specific
HTTP path within the containing dispatcher servlet.
This is where the type of HTTP request also is set

@ResponseBody Instructs Spring MVC to serialize the return type object
to the client. In our case, the course object gets auto-
matically serialized to JSON because the client accepts
that content type

@RequestBody Instructs Spring MVC to map the body of the HTTP
request to the specified object. In our case, the course
object gets mapped to JSON because the client set the
request Content-Type to application/json

Table 5.8: Service layer annotations

It is in the controller classes where most of the measures are taken to make
the web services comply to a RESTful standard. The @RequestMapping will bind
the same HTTP path to several web services, and the HTTP request type is what
decides if an object should be fetched or saved from the web server. The Edu-
cation+ web server has two different RESTful interfaces. One is for all the web
services used for views and are prefixed /navigation, which will show actual data
returned by a web service in the web browser, and the other is all the web services
that either persists, deletes or updates entities in the database. The web server is
implemented with two RESTful interfaces to make it easier to apply security to
the application.

5.3.5 Spring configuration
Spring configuration is seen as a separate task. The five different XML files contains
information about how the dispatcher servlet, security, database connectivity and
third party dependencies are configured. Most of the xml configuration files are
located inside the WEB-INF folder. The WEB-INF folder works as a private area
for the web application so that any files under the WEB-INF directory cannot be
accessed directly from the browser. The WEB-INF directory is accessible by the
classes within the application so that files and classes can communicate.

Web.xml

The web.xml file implemented is shown in listing 5.5.

Chapter 5. Implementation - The web server 45

<?xml version="1.0" encoding="UTF -8"?>
<web -app>

<listener >
<listener -class >org.springframework.web.context.ContextLoaderListener </

listener -class>
</listener >

<servlet >
<servlet -name>appServlet </servlet -name>
<servlet -class >org.springframework.web.servlet.DispatcherServlet </

servlet -class>
<init -param >

<param -name>contextConfigLocation </param -name>
</init -param>
<load -on-startup >1</load -on-startup >

</servlet >

<context -param >
<param -name>contextConfigLocation </param -name>
<param -value>

/WEB -INF/spring/appServlet/servlet -context.xml
/WEB -INF/spring/root -context.xml
/WEB -INF/security -context.xml

</param -value>
</context -param >

<filter >
<filter -name>springSecurityFilterChain </filter -name>
<filter -class>org.springframework.web.filter.DelegatingFilterProxy </filter -

class >
</filter >

<filter -mapping >
<filter -name>springSecurityFilterChain </filter -name>
<url -pattern >/*</url -pattern >

</filter -mapping >

<servlet -mapping >
<servlet -name>appServlet </servlet -name>
<url -pattern >/</url -pattern >
<url -pattern >*.html</url -pattern >
<url -pattern >*.json</url -pattern >
<url -pattern >*.xml</url -pattern >

</servlet -mapping >

<persistence -unit -ref>
<persistence -unit -ref -name>persistence/application </persistence -unit -ref

-name>
<persistence -unit -name>application </persistence -unit -name>

</persistence -unit -ref>

</web -app>

Listing 5.5: web.xml file

All incoming requests flow through a DispatcherServet. The Java EE container
is told to load this servlet at the web applications startup in the web.xml file.
The DispatcherServlet is defined at the top, inside a servlet element. It is the
DispatcherServlets responsibility to load the Spring Application Context that is
used to perform wiring and dependency injection. To do this, a set of initialization
parameters are specified to the DispatcherServet that configures the Application
Context. Some bullet points will help to clarify the job of the web.xml file[20]:

• Register the DispatcherServlet as a Servlet called appServlet
• Map this servlet to handle incoming requests (relative to the app path) start-

ing with "/"
• Use the ContextConfigLocation initialization parameter to customize the lo-

cation for the base configuration XML files that is loaded by the Dispatch-
erServlet

Chapter 5. Implementation - The web server 46

• A filter and its FilterMapping is declared to be able to use the Spring Security
framework. Again to handle different paths, just like the servlet mapping

• A persistence unit reference is added to be able to persist objects to a database

servlet-context.xml

The Spring Application Context is in the project called servlet-context.xml. This
files job is mainly to wire up objects, and configuration with regards to dependency
injection. To be able to use the @Autowire annotation in the Controller classes,
these classes needs to be defined as Java Beans, so that the EntityManagerFactory
can handle them, as shown in listing 5.6.

<?xml version="1.0" encoding="UTF -8"?>
<beans:beans xmlns="http://www.springframework.org/schema/mvc">

<annotation -driven/>
<mvc:annotation -driven />
<context:component -scan base -package="no.ntnu.jf.controller"/>

<mvc:resources location="/resources/" mapping="/resources /**"/>

<beans:bean class="org.springframework.beans.factory.annotation.
AutowiredAnnotationBeanPostProcessor"/>

<beans:bean class="org.springframework.web.servlet.view.
InternalResourceViewResolver">

<beans:property name="prefix" value="/WEB -INF/views/" />
<beans:property name="suffix" value=".jsp" />

</beans:bean >

<beans:bean id="transactionManager" class="org.springframework.orm.jpa.
JpaTransactionManager">

<beans:property name="entityManagerFactory" ref="entityManagerFactory" />
</beans:bean >

<beans:bean id="datasource" class="org.springframework.jdbc.datasource.
DriverManagerDataSource">

<beans:property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<beans:property name="url" value="jdbc:mysql: // mysql.stud.ntnu.no"/>
<beans:property name="username" value="jonfr_master"/>
<beans:property name="password" value="lokeper2"/>

</beans:bean >

<jee:jndi -lookup id="entityManagerFactory" jndi -name="persistence/application"
/>

<tx:jta -transaction -manager/>

<context:annotation -config />
<tx:annotation -driven />

<context:load -time -weaver />

<beans:bean id="userDAO" class="no.ntnu.jf.dao.UserDAOImpl"/>
<beans:bean id="userService" class="no.ntnu.jf.service.UserServiceImpl"/>

<beans:bean id="schoolDAO" class="no.ntnu.jf.dao.SchoolDAOImpl"/>
<beans:bean id="schoolService" class="no.ntnu.jf.service.SchoolServiceImpl"/>

<beans:bean id="adminDAO" class="no.ntnu.jf.dao.AdminDAOImpl" />
<beans:bean id="adminService" class="no.ntnu.jf.service.AdminServiceImpl" />

<beans:bean id="courseDAO" class="no.ntnu.jf.dao.CourseDAOImpl" />
<beans:bean id="courseService" class="no.ntnu.jf.service.CourseServiceImpl" />

<beans:bean id="customUserDetailsService" class="no.ntnu.jf.service.
SpringLoginService" />

Chapter 5. Implementation - The web server 47

</beans:beans >

Listing 5.6: servlet-context.xml file

To clarify what is done in this xml file, some bullet points are presented[20]:

• The <annotation-driven> elements ensures that Spring MVC is setup with
support for routing requests done to the @Controller classes. It also handles
conversion, formatting and validation between objects

• The <component-scan> element ensures that the Spring container performs
component scanning, so that any class with @Controller annotations will be
automatically discovered

• The <mvc: resources> element makes sure that files that are located inside
the /resources folder in our structure can be referenced directly in the jsp and
html files. This needs to be done to refer to stylesheets, images and other
resources that are located outside the WEB-INF directory

• To be able to use the @Autowire annotation, a spring autowire bean needs
to be declared

• The InternalResourceViewResolver handles mapping to the view files that are
located inside the WEB-INF directory

• The TransactionManager bean is the bean that handles all the transactions
towards the database. Used by the EntityManager and JPA in general

• The datasource bean handles the database configuration
• All the classes that use the @Autowire annotation when declaring instance

variables needs to be referred to as a Java Bean so that the EntityManager
can work with them.

Security-context.xml

The security.context.xml is where all the security configuration are done. Spring
handles all the technical tasks concerning security, and the only thing needed to
do is to tell Spring what URLs that needs to be secured, and what kind of authen-
tication is needed. The security-context.xml file is shown in listing 5.7 below:
<?xml version="1.0" encoding="UTF -8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security">

<global -method -security pre -post -annotations="enabled" />

<http use -expressions="true">
<intercept -url pattern="/resources /**" access="permitAll"/>
<intercept -url pattern="/navigation /**" access="hasRole(’ROLE_ADMIN ’)" />
<intercept -url pattern="/welcome" access="hasRole(’ROLE_ADMIN ’)"/>
<intercept -url pattern="/static /**" access="permitAll"/>
<intercept -url pattern="/course" access="permitAll"/>

<form -login login -page="/login" default -target -url="/welcome" authentication
-failure -url="/" />

<logout />
</http>

<authentication -manager >
<authentication -provider user -service -ref="customUserDetailsService"

>
<password -encoder hash="sha" />

</authentication -provider >
</authentication -manager >

Chapter 5. Implementation - The web server 48

</beans:beans >

Listing 5.7: security-context.xml

• First the <global-method-security> elements pre-post-annotation variable is
enabled. This is done so that methods can be secured at Java level with
annotations.

• The <html> element is considered self explanatory, a specific URL path and
access level is given. Wildcards can be used, so /navigation/** means every
URL that starts with /navigation is secured. Spring Security also handles
logging in and out of a web application by just declaring the <form-login>
and <logout> elements.

• The <authentication-manager> element refers to a Java implementation that
sets the actual roles of the objects that are logging into the web application.
It also tells Spring Security that log in credentials should be compared with
entities in a database, and that passwords are hashed with the SHA-1 algo-
rithm.

For the authentication manager to be able to use a database for a user lookup,
a login service class needs to be created that implements Springs UserDetailSer-
vice class. This way, authentication roles can be set to each object that is trying
to login, and can easily check if users or administrators exists as entities in the
database. The UserDetail method in this project looks like this:

public UserDetails loadUserByUsername(String email) throws
UsernameNotFoundException , DataAccessException {

UserDetails userDetails = null;
List <GrantedAuthority > authList = new ArrayList <GrantedAuthority >(1);
authList.add(new GrantedAuthorityImpl("ROLE_ADMIN"));
try {

List <AdminInterface > adminList = checkIfAdminsExist ();
if(adminList.isEmpty ()) {

AdminInterface standardAdmin = (AdminInterface)adminService.
getAdminByEmail(email);

if(standardAdmin != null) {
userDetails = new User(standardAdmin.getEmail (), standardAdmin.

getPassword (), true , true , true , true , authList);
}

} else {
AdminInterface admin = (AdminInterface)adminService.getAdminByEmail(email)

;
userDetails = new User(admin.getEmail (), admin.getPassword (), true , true ,

true , true , authList);
}

} catch(Exception e) {
e.printStackTrace ();

}
return userDetails;

}

Listing 5.8: method from no.ntnu.jf.service.SpringLoginService.java class

The method first creates a GrantedAuthority list which contains ROLE_ADMIN.
This is the role that can refered to in the security-context.xml. The method returns
a UserDetail object that is an admin object with a GrantedAuthority list linked to
it.

Chapter 5. Implementation - The web server 49

Persistence.xml

For JPA to work, a persistence unit needs to be defined. This is defined in META-
INF/persistence.xml as shown in listing 5.9. This makes Spring search java classes
for the @Entity annotation so that these can be made into database entities.

<?xml version="1.0" encoding="UTF -8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="2.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://

java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
>

<!-- Glassfish server -->
<persistence -unit name="application" transaction -type="JTA">

<jta -data -source >jdbc/mysql </jta -data -source >

<!-- To autocreate tables at deployment - drop -and -create -tables can also be
used -->

<properties >
<property name="eclipselink.ddl -generation" value="create -tables" />

</properties >
</persistence -unit>

</persistence >

Listing 5.9: persistence.xml

The datasource gets set to a JDBC mysql version which complies to the JDBC
pool that is configured at the glassfish server. A property is also set that automati-
cally tries to create all tables in the database every time the application is deployed
to the server. This is done so that it is certain that all Java classes annotated with
@Entity will have a corresponding database table linked to it when the application
is deployed.

5.3.6 WEB-INF/views

Every jsp file are located in the view folder, which is a sub folder of the WEB-
INF directory. Every file that is a child of the WEB-INF directory will be hidden
from any clients browser. It is the DispatcherServlet job to invoke the InternalRe-
sourceViewResolver so that these view files are dispatched correctly so they become
visible for the user. A JSP file is a Java Server Page file, and is a server side lan-
guage made for dynamic webpages written in Java. When using JSP, Java code
can be used directly in a HTML file. But to comply the MVC pattern to its fullest,
this is not good programming practice. Every line of code that is inside the <%@
tags, are considered JSP code, and the only time these tags are used is to include
other JSP files. Since the views job in a MVC web application is only to show data
to the end user, it is the controllers job to delegate what data the views will need,
as shown in listing 5.10.

@RequestMapping(value = "/navigation/addOrEditCourse", method = RequestMethod.
GET)

public ModelAndView addOrEditCourse(HttpServletRequest request) {
ModelAndView mv = new ModelAndView ();
mv.setViewName("addOrEditCourse");

UserDetails user = loginService.currentUserDetails ();
Admin admin = (Admin)adminService.getAdminByEmail(user.getUsername ());

Chapter 5. Implementation - The web server 50

School school = schoolService.getSchoolByShortName(admin.getSchool ().
getSchoolShortName ());

mv.addObject("admin", admin);
mv.addObject("school", school);

return mv;
}

Listing 5.10: ModelAndView method used to delegate data to the views

Here both an admin and a school object are created from data fetched from
a UserDetail object. The user that calls this method will now actually be an
administrator with the ROLE_ADMIN authority. The ModelAndView object is
created, and given a view name. This view name corresponds to a JSP file located
in the view directory. As the name of the methods reveal, both models and views
can be added to this object, and this is where the views gets the data needed to
display the correct information. The addObject method gets called, and both an
admin, and a school object are wired up to the ModelAndView object. The string
that is given as the first parameter, is the name that will be used in the JSP files
so that information about the model that are passed through to, can be fetched.
<h2>Welcome ${admin.email}</h2>
<p>Your a professor at ${school.schoolShortName}</p>

Listing 5.11: Example HTML code to access model objects

All public instance variables can be accessed through the familiar dot notation
inside the JSP files, without mixing pure Java code into any of the view files. This
way of separating the different parts of your web application is crucial to follow the
principals of the MVC architectural pattern.

The administrator panel is built up by these views. Since the content at the
different parts of the administrator panel is dynamic, the views needs to commu-
nicate with the database so that it can show additional information. To do this,
JQuery’s getJSON and postJSON are used, as shown in listing 5.12.

$.getJSON("/abc/getUsersAvailableForCourse/" + courseId , function(
returnedList) {

usersAvailableArray = returnedList;

if(usersAvailableArray.length == 0) {
$("#addUsersButton").hide();
$("#notAvailable").html("No users are available for adding.");

} else {
$("#addUsersButton").show();
$("#notAvailable").html("");
var userTable = document.getElementById("apTable");

/* Create table Headers */

$(usersAvailableArray).each(function (){
var userTable = document.getElementById("apTable");

/* Append rows to table */

});

Chapter 5. Implementation - The web server 51

}
});

Listing 5.12: Snippet of getJSON JQuery method

These JQuery methods use something called a javascript callback method. A
callback method is a reference to executable code that is passed as an argument
to other code. This happens in the first line, where a function is passed as an
argument to the getJSON method. This function has its own parameter, and this
parameter is where the return value of the web service call gets stored. This way
it is possible to check what was returned from the web service, and perform the
necessary operations given the contents of the return value.

Chapter 5. Implementation - The web server 52

Chapter 6

The Concepts of Programming
in Objective-C

Objective-C is the primary language used to implement Mac OS X, iPhone, iPad
and iPod Touch applications. It was originally created as the main language for
the NeXT1 operating system, but didn’t become a big success until Apple used
the language for their first Mac OS X operating system in 1996. Objective-C is
as the name reveals an object oriented language. It is a thin layer on top of the
C language, and moreover a strict superset of C. Because of this it is possible to
compile and easily include both C and C++ source code in to Objective-C projects
that is often done when building graphical applications using external frameworks
as OpenGL ES2 or Cocos2D3.

This chapter will give an introduction to the basic concepts of how to program
in Objective-C for iOS devices. There are a lot of different elements that needs
to be considered when developing for mobile devices, and Objective-C works a
bit different from other programming languages. This will be an introduction to
chapter 7 where a detailed overview of how the Education+ iPad application has
been implemented will be given.

6.1 The four layers in iOS

The iOS operating system can be divided into four layers as illustrated in figure
6.1. The bottom layer is closest to the hardware, while the top is the layer that
the end user interact with.

1http://en.wikipedia.org/wiki/NeXT
2http://en.wikipedia.org/wiki/OpenGL_ES
3http://en.wikipedia.org/wiki/Cocos2d

http://en.wikipedia.org/wiki/NeXT
http://en.wikipedia.org/wiki/OpenGL_ES
http://en.wikipedia.org/wiki/Cocos2d

Chapter 6. The Concepts of Programming in Objective-C 54

Figure 6.1: The four layers of iOS

6.1.1 Core OS

The iOS operating system is at the very bottom made from a Mach 3.0 UNIX
kernel, and it derives from the Mac OS X implementation. Most of the public
API to this layer is actually a C API because of the UNIX kernel, while some of
these features can also be reached from the Core Service layer that will give access
through an Objective-C API. The Education+ application uses the Core OS layers
Keychain Access interface. This part is a widely used part of the layer, and is used
for storing login credentials locally at an iOS device, and is therefore available with
an Objective-C style API.

6.1.2 Core Services

The Core Services abstraction layer is a lot more object oriented than the Core
OS layer. It provides a lot of the same functionality as the Core OS layer, but
with an Objective-C API. A lot of the functionality from this layer is used in the
Education+ application. To communicate with the Education+ web server, the
network interface is used, and to store data fetched from the server locally at the
iPad SQLite together with Core Data is used. Collection is where data structures
such as arrays and dictionaries are located, which is widely used in any kind of iOS
application. It is also the Core Services layer that provides you with the ability to
program with the use of threads.

6.1.3 Media

The media layer is somewhat more vague than the other layers since any iOS
device such as an iPhone or an iPad is fundamentally built for running multimedia
applications. This makes it hard to pin down exactly where this belongs since
multimedia code runs everywhere in iOS. Any application like iTunes that plays
music, audio sent from a phone call or FaceTime uses this layer to interact with
the specific part needed in the operating system.

Chapter 6. The Concepts of Programming in Objective-C 55

6.1.4 Cocoa Touch

Cocoa Touch is the UI framework that is used in all of the iOS applications. Cocoa
is the name of the application development environment for Mac OS 10, while it
is called Cocoa Touch in the iOS environment. Everything at the screen of an
iOS device is from this layer; buttons, sliders, views, alerts, navigation mechanisms
alerts and so on. The cocoa touch layer is probably "the most" object oriented part
of all the four layers. Not in terms of actually calling methods to access objects
instance variables, but because this layer is made with a design paradigm that
fundamentally uses object oriented mechanisms to make the different parts of the
application able to talk to each other. The way the MVC architectural pattern is
implemented into the heart of any iOS application is crucial to understand, and
will be further explained in the next chapter, Design Strategies. [21]

6.2 Design Strategies

For the web server, the MVC pattern is followed because the Spring framework
encourages us to do so. The way objects communicate with each other in iOS are
restricted, and this is why it is crucial to get a good understanding of how this
design paradigm is implemented into the platform.

This paradigm is the heart of any software development project done for the
iOS platform. As mentioned before, the MVC pattern often comes in different
versions in different environments. The basic idea behind the pattern is still the
same as shown in table 6.1, but an introduction to how it is used specifically for
the iOS environment is given to stress the importance of the role the MVC pattern
plays.

Model The model part are all the objects that defines
what your application is. For example a user ob-
ject in the Education+ application

Controller The controllers job is to tell the views how the
model should be presented. Ie. User Interface
logic

View The view is the controllers minions, and its job is
solely to display User Interface components and
whatever data the controller tells it to show. The
views doesn’t have any application specific knowl-
edge.

Table 6.1: MVC Architectural Pattern - iOS specific

Every object in an iOS application will belong to one of the three "camps"

Chapter 6. The Concepts of Programming in Objective-C 56

presented above. By designing an application this way, good object oriented pro-
gramming practice will be applied. Besides from what is written above, there
are a few other design principles Apple follows when implementing applications in
Objective-C. Both the model and the view objects should be generic.

In the Education+ application it means that an user object, should be created
in a way that this object can be used in any other application that also needs a
user object, without having to rewrite any code at all. The same applies for the
corresponding user view. This view should also be able to be used in any other
application. The only objects that are completely application specific is the objects
that belong in the "controller camp". It is the controllers job to take the model’s
data, and present it in a view.

Figure 6.2: MVC - iOS specific part 1

To supplement figure 6.2 above, the controller works as the boss. The two red
lines indicate that the model and the view never talk to each other. The key is to
manage the communication between the objects in these three camps. A controller
object can always talk to its model, and it knows everything there is to know about
it. However, the model cannot directly communicate with its controller, and this
is not the purpose either. The model objects should be reusable, and since the
controller object is specifically made for each application, the model object will
not be reusable if it has some kind of direct link to its controller. Because of this,
the controller will know what kind of data that should be given to the view, so the
controller can tell the view what to display on the screen.

Communication between the controller and the view is done through outlets as
figure 6.3 outlines.

Chapter 6. The Concepts of Programming in Objective-C 57

Figure 6.3: An Objective-C outlet

An example is provided of a label that should have some text updated. For the
controller to know where to update the text, it needs to be connected to all the
different elements that appears on the screen, and update the correct one, and this
is done through outlets that are hooked up to each other in Xcode.

How the controller and the view communicates with each other is very impor-
tant, and is illustrated graphically in figure 6.4.

Figure 6.4: MVC - iOS specific part 2

The way this happens is a fundamental key of how objects communicates in
Objective-C. The controller can only talk to the model, but the model can never
directly talk to its controller. With the controller and the view its a bit different,
because often the view needs to tell the controller that something happened on
the screen that the controller needs to know about. Someone drags on a slider or
touches a button, so the view has to be able to "talk" to the controller.

As figure 6.4 shows, there are two different ways this communication can hap-
pen, either through what is called a target/action, or through a delegate. The

Chapter 6. The Concepts of Programming in Objective-C 58

first form of communication is target/action. What happens here is that from the
controller object, an action is hooked up to an element that is present in a view.
Lets say this element is a button, so when a button is touched in the view, the
action for that button that is located in the view object, will have a corresponding
target in the controller object that will tell the controller that someone touched
my button- "please handle this for me". The view doesn’t know much about the
controller so the view doesn’t know what kind of action that should be performed
when the button is pressed, it just sends the message, with no further concerns.
This way of communicating is in Objective-C called blind communication and are
used in any iOS application.

The other form for the communication from the view to the controller is called
delegation, which is also a very important term to understand when developing for
the iOS platform. Delegation is used in other contexts than just this, but this is
a good place to explain how it works. What happens is that the controller sets
itself as the views delegate through protocols, which will be explained further in
the Syntax chapter. When a controller object is set to be some views delegate,
it declares, without implementing, one or more methods from the given protocol,
kind of like subclassing, but there is no need to override all the methods. These
methods are often referred to as will, should or did methods, which means that
these methods are run when the controller object wants an answer if something
will happen, should happen or did happen in a view. Figure 6.5 makes it easier to
understand.

Figure 6.5: Example delegation between objects

The delegating object sends a message only if the delegate implements the
method, which in this example is the windowShouldClose: method. From this
method name, the delegating object waits for a response that might be if the close
button to a new window has been pushed, should I really close the window? The

Chapter 6. The Concepts of Programming in Objective-C 59

view figures out if the user wants to save or discard any recent updates from that
view, and tells its controller, which is its delegate, either yes or no. In this example
it tells its controller, yes, close this view, which is me, but first be sure to save all
the data inside me to the correct model object.[22]

One last thing to as also mentioned earlier is that the model cannot be directly
linked to its controller due to the idea of all the model objects should be completely
reusable. Most of the time, a model objects data will be updated because some
user performed some action in a view. When this is the case, how the MVC
pattern works so that the model objects data will be updated should be clear. But
lets think of a scenario of an application where multiple users access and use the
same model objects, so that another user might have updated or changed some
data in a model object. Since the model object can’t communicate directly to its
controller, it has no way of telling the controller that something has changed, and
the controller wont know that it actually should update some view. This is solved
with notifications. Notifications can be thought of as a radio station, every model
is a radio station that broadcasts if something is changed. It doesn’t say what has
changed, it just says that something has changed. A controller object can be "tuned
into" their models radio station, and this way when the controller object receives a
broadcasted message, it will go and ask its model what has been changed. Keep in
mind that this notification feature must not be confused with the push notification
center that handles all those red bubbles that appears at an applications icon at
the iOS device home screen, these are two completely different things. This is
extremely important to understand completely to be able to develop applications
for the iOS platform. When learning Objective-C, a lot of new things is introduced
and can easily be very overwhelming. It takes some time to understand all the
different concepts and to get over the first "bump", but as they are, things start
to flow more naturally, and the learning curve starts to get steeper.

6.3 Syntax

People that are familiar with programming in C or C++ will draw a lot of similar-
ities in terms of the Objective-C syntax. There are some differences that are worth
mentioning to both people that are new to the C family language, and those who
aren’t, and these will be highlighted in the next sections.

6.3.1 Header and Message files

A main difference from languages that most software developers know about, like
Java, is that an interface of a class and the actual implementation has to be declared
in two separate code blocks. By convention, the interface and implementation are
always separated into two different files. The interface is declared in a header file,
and are suffixed with .h. The implementation of the interface is implemented in a
message file, suffixed with .m. Below is an example of a dummy header file imple-
mented in Objective-C.

Chapter 6. The Concepts of Programming in Objective-C 60

@interface classname : superclassname {
// instance variables

}

@property (nonatomic) double someValue;
@property (strong, nonatomic) someOtherClass *someClass;
@property (weak, nonatomic) IBOutlet UILabel *someLabel;

+ classMethod1;
+ (return_type)classMethod2;
+ (return_type)classMethod3:(param1_type)param1_varName;

- (return_type)instanceMethod1 : (param1_type)param1_varName : (param2_type)param2_varName;
- (return_type)instanceMethod2 : (param1_type)param1_varName andOtherParameter:(param2_type)

param2_varName;
@end

Listing 6.1: Dummy implementation of an Objective-C header file

Worth mentioning here is the difference between the methods that are prefixed
with + and -, and also the @property declarations. The methods prefixed with a
+ sign are class methods, and can be called on the class itself, while the methods
prefixed with the - sign are instance methods, which has to be called on a particular
instance of the class.

The @property declarations, can be thought of as being an instance variable
that also automatically declares the two accessor methods get and set. For most
properties some property declaration attributes are given, which tells the compiler
something about the property. The different property declaration attributes are as
follows in table 6.2, 6.3 and 6.4[23]:

Setter Semantics

strong Specifies that there is a strong (owning) relation-
ship to the destination object.

weak Specifies that there is a weak (non-owning) rela-
tionship to the destination object. If the destina-
tion object is deallocated, the property value is
automatically set to nil.

copy Specifies that a copy of the object should be used
for assignment.

assign Specifies that the setter uses simple assignment.
This attribute is the default. You use this at-
tribute for scalar types such as NSInteger and
CGRect.

retain Specifies that retain should be invoked on the ob-
ject upon assignment.

Table 6.2: Property declaration attributes - setter semantics

Chapter 6. The Concepts of Programming in Objective-C 61

Writability

readwrite Indicates that the property should be treated as
read/write. This attribute is the default. Both a
getter and setter method are required in the @im-
plementation block. If you use the @synthesize
directive in the implementation block, the getter
and setter methods are synthesized.

readonly Indicates that the property is read-only. If you
specify readonly, only a getter method is re-
quired in the @implementation block. If you
use the @synthesize directive in the implementa-
tion block, only the getter method is synthesized.
Moreover, if you attempt to assign a value using
the dot syntax, you get a compiler error.

Table 6.3: Property declaration attributes - writability

Atomicity

nonatomic Specifies that accessors are nonatomic, this means
that its setter and getter are not thread-safe. By
default, accessors are atomic.

Table 6.4: Property declaration attributes - atomicity

Most of the time the setter semantic strong or weak are used. However, some-
times it is important to think about the different options available, so they are
important to mention. Strong means that the memory used for the object will
stay around for as long as needed, while weak means that as soon as there is no
pointer pointing to the object memory location in the heap, it will be released.
These types of measures are done because developing for a mobile device requires
the programmer to use the limited resources available in a good way, so objects
will be kept for as little time as possible. Garbage collection and the actual job
of releasing the different objects from memory are done automatically by ARC4,
which was an added feature with iOS 5.

The last thing to mention about the header file is that every method or variable
that is declared will be publicly available through that classes public API. If meth-
ods or instance variables needs to be private to the class, the correct convention is
to declare them inside an interface at the top of the .m file. The .m5 file where the

4Automatic Reference Counting: - https://developer.apple.com/technologies/ios5/
5The .m suffix stands for messages

https://developer.apple.com/technologies/ios5/

Chapter 6. The Concepts of Programming in Objective-C 62

interface is implemented looks like this:

#import "classname.h"

@interface classname()
- (void)foo:(int)bar;
@end

@implementation classname

@synthesize someValue = _someValue;
@synthesize someLabel = _someLabel;
@synthesize someClass = _someClass;

+ (return_type)classMethod {
// implementation

}
- (return_type)instanceMethod {

// implementation
}

// This method will be private
- (void)foo:(int) {

// implementation
}

@end

Listing 6.2: Dummy implementation of an Objective-C message file

From listing 6.2 the @synthesize variables is worth mentioning. @synthesize
does all the work of creating setters and getters in correspondence to the proper-
ties that is declared in the header file. The synthesized variable is declared to be
equal to the same name as the instance variable, just with an underscore prefix.
This is done to give the memory storage location of the property a name, which is
a common naming convention when synthesizing variables. An important thing to
remember, which is a very common pitfall, is that when synthesizing an instance
variable, storage is not allocated for the object that the pointer points to, it just
allocates room for the pointer. All objects created in Objective-C are always allo-
cated on the heap, and because of this they are always accessed through a pointer.
This might sound complex, but the only thing to remember is to actually allocate
and initialize the objects themselves at some other time before you use them. In
Java you would create a new object like listed below:

Foo someObject = new Foo();

Listing 6.3: Example creation of Java object

While in Objective-C you have to allocate and initialize an object like in listing
6.4:

[[someClass alloc] init];

Listing 6.4: Example creation of Objective-C object

As we are used to in languages like Java or C++, methods and its parameters
are created with the following syntax:

Chapter 6. The Concepts of Programming in Objective-C 63

public int squareRoot(int i) {
return Math.SquareRoot(i);

}

Listing 6.5: Example Java method

Parameters are passed inside parentheses, and dot notations are used to per-
form method or function calls. In Objective-C it is done in a different way, as
listing 6.6 shows:

- (int)calculateSquareRoot : (int)i {
return [self squareRoot:i];

}

Listing 6.6: Example Objective-C method

The type of the parameter is annotated inside a set of parentheses while the
parameter name is written after it. Objective-C uses dot notation as well, but are
only used when calling getters or setters. For every other call to some method or
function, it is called inside a set of square brackets. The return statement in the
calculateSquareRoot instance method tells us to execute the method squareRoot,
which is another instance method in the same class, since the method is called with
the self keyword, which is equivalent to this in Java[24].

6.3.2 Protocols and delegates
A protocol is exactly similar to in implementation as an @interface, which is what
is defined in the header files, except someone else does the implementing. The
primary use of protocols in iOS is through delegates, so these two are naturally
combined. Even though specific iOS classes hasn’t been talked about yet, a shal-
low implementation of something with an example of how a protocol works will be
introduced. When a view is created in Xcode, that view will automatically be a
subclass of some preexisting Objective-C class. A view that has a search field in it
where some arbitrary data can be searched for, can have a header file implemented
as follows:

@interface SearchViewController : UIViewController<UISearchBarDelegate>

@property (nonatomic, retain) NSMutableArray *searchResults;
@property (strong, nonatomic) IBOutlet UITableView *tableView;
@property (weak, nonatomic) IBOutlet UISearchBar *searchDisplayController;

@end

Listing 6.7: SearchViewController.h source file

Here it is shown that the view that is called SearchViewController is a subclass of
a UIViewController class. This makes the class inherit different necessary features
from the view controller class. Whats inside the angle brackets is where it is
stated that the SearchViewController class, will be the UISearchBars delegate.
The UISearchBar object is just a textfield where the user can enter some text.
If there is going to be searched for entries stored in a database, it would be nice
for the controller class to know when a user starts and stops typing in the text

Chapter 6. The Concepts of Programming in Objective-C 64

field. The methods for achieving this are whats implemented in a protocol. Since
this protocol is already implemented in the standard iOS UISearchBar class, it
can easily be seen what methods the protocol are able to provide us through the
documentation:

Figure 6.6: Some methods implemented by the UISearchBar protocol

In the SearchViewController.m implementation file, these methods can be over-
ridden as shown in listing 6.8:

- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
self.tableView.hidden = NO;

}

- (void)searchBarTextDidEndEditing:(UISearchBar *)searchBar {
self.tableView.hidden = YES;

}

Listing 6.8: Example implementation of an optional protocol method

These two methods says that when someone starts typing in the search bar, set
the tableViews property hidden to NO so that the results that corresponds to what
is typed will be shown in this table view. The other method does the opposite, it
hides the tableView when a user stops typing, and the search bar becomes inactive.
Since it is the controllers job to search for whats typed into a search field and then
display it back to the view, this is a great example of how the controller and the
view works together by using the MVC pattern, and how protocols and delegation
helps to separate the code into the file where it belongs.

Chapter 7

Implementation - The iPad
application

Implementing applications natively for the iOS platform has become more and
more popular over the last couple of years. Developing natively gives complete
access to the devices full API, and there are no limitations. The way Apple has
made it so easy to distribute an application through the App Store has made the
whole iOS application industry to take off. Since the App Store opened on July
10th 2008, there has been downloaded over 25 billion applications, which describes
how big the scope of the application industry has become. When an application
has been released into the App Store, the application is available for download
to any iOS device user world wide. The market that is reached with little to
none advertising or marketing costs are outstanding compared to other solutions
of software distribution.

This chapter will go into detail about how to develop an iOS application with
Objective-C. The different features of the Xcode IDE1 will be presented as well
as what should be thought how when developing mobile applications for the iOS
platform.

7.1 Architecture

The architecture of the application is following the MVC architectural pattern,
which separates all classes into the three categories model, view and controller.
The structure of the Education+ workspace is given in table 7.1.

1A suite of software development tools developed by Apple for developing software for OS X
and iOS https://developer.apple.com/technologies/tools/

https://developer.apple.com/technologies/tools/

Chapter 7. Implementation - The iPad application 66

Classes

MainStoryboard This is where all the views are created. The sto-
ryboard is a new function in the Xcode IDE that
makes it possible to create and connect all views
in a drag and drop visual environment

Images Images used in the application, such as back-
ground images and application icons are stored
here

Webservices These classes are the ones that communicates with
the web server through web service calls

View Controllers All the views created in the storyboard has a cor-
responding controller class.

Core Data This folder contains both the SQLite data model
as well as an implementation of the database en-
tities that makes them the model objects

Supporting Files Auto generated files created by Xcode when cre-
ating a new project. Contains the main method
as well as some configuration files.

Frameworks All additional frameworks needed for things like
security, core data etc. are located here.

Rest of classes The two classes that are not located inside a
folder are the KeychainItemWrapper.h/m and Ed-
ucationPlusLib.h/m. The KeychainItemWrapper
class is copied from Apples documentation to be
able to store login credentials locally in the key-
chain. The EducationPlusLib is a helper class
that contains class methods that are used several
places in the project

Table 7.1: Folder contents overview

When developing in Xcode, there are a lot of great features available that are
important for developers to utilize. The following sections will give an introduc-
tion to how to use these features, and how they where used in the Education+
application.

Chapter 7. Implementation - The iPad application 67

7.1.1 The Views

The first thing a developer is presented with when creating a new project in Xcode,
are the views. All the applications views are located inside a storyboard, as illus-
trated in figure 7.1.

Figure 7.1: The Xcode storyboard

The storyboard is a great feature that makes it easy to create all the different
views needed for an application. All the views are created without any code, and
they are connected to each other by the lines that goes between the views- these are
called segues. By creating all the views and connections first, it will automatically
give knowledge about the application, and it helps any developer to think about
what classes should be created for the different views.

The red numbers shown in figure 7.1 will be presented in the next subsections
to show how to utilize the storyboard to its fullest.

1 - The initial view controller

In most cases, one of the view controllers will be set to be the initial view controller.
This view controller will be the root view of the application, and will both be the
view that decides what should be the start view, as well as it decides what type
of view controller the application will use. The correct choice of view controller
depends on what kind of application is created, and there are a number of different
choices, as shown in table 7.2. However, the choice of root view controller isn’t

Chapter 7. Implementation - The iPad application 68

always easy to change during implementation, so it is important to decide what
type to use at an early stage.

Chapter 7. Implementation - The iPad application 69

View Controllers

Split View Controller A composite view controller that manages left and
right view controllers. The Split View Controller
splits the view into two pieces, the master and the
detail view, where the master view is used as the
menu, and the detail view are used as the presen-
tation for a view. The split view controllerÕs view
should always be installed as the root view of your
application window. You should never present a
split view inside of a navigation or tab bar inter-
face, which will make your application crash

Navigation Controller Manages a stack of view controllers, each of which
represents information about a view, such as its
title and the navigation item associated with the
view. When view controllers are pushed onto and
popped off the stack, the navigation controller up-
dates the navigation bar and view appropriately.
The Navigation Controller automatically creates
the navigation bar at the top and keeps track of
going back to the previous views

Tab Bar Controller Manages a set of view controllers, each of which
represents a tab bar item. Each view controller
provides information about its tab bar item and
supplies the view to be displayed when the item is
selected. Applications that use the Tab Bar Con-
troller as their root view will have the menu of
the application always presented to you as differ-
ent tabs at the bottom of the screen

Table View Controller Manages a UITableView, automatically creating
an instance with the correct dimensions and re-
sizing mask, and acting as the table view’s dele-
gate and data source. The UITableViewController
class also provides toggling of editing modes. Ap-
plications like the Mail or Music application uses
only table views to navigate back and forth

Page View Controller Presents a sequence of view controllers as pages,
via coordination with a data source and delegate.
Swipe navigation between the pages is automat-
ically handled with a page curl transition that
tracks the user’s finger. The navigation orienta-
tion can be horizontal, like pages in a book, or
vertical, like pages in a wall calendar.

Table 7.2: The different view controller options [5]

Chapter 7. Implementation - The iPad application 70

These are all different types of view controllers that will give different choices
for how to navigate through the different views, as well as automatically adding
different menu and/or navigation features. For the Education+ application, the
Split View Controller are chosen. For the purpose of the prototype, there is no
need to actually use a menu, since the information presented in the application
can be done in one single view. However, since it is mandatory to have a Split
View Controller as a root view, and use this view controller style throughout the
application, it is used so that when someone wants to add additional features to
the application, the possibility of using a menu will be built in to the core of the
application, as illustrated in figure 7.2.

Figure 7.2: Education+ with swipe-enabled menu

2 - A view

To create a new view, drag a view controller from the object palette, and onto
the storyboard canvas. If a normal view controller is dragged out, it view will
automatically become a generic view controller. Any view needs to be a subclass
of some implemented controller class, it is important to remember to set its views
class to the controller implemented for it.

3 - Setting the views class

In figure 7.1 the class of the view is a LoginViewController class. Any class created
that is a subclass of the UIView class will appear here so it can find any custom

Chapter 7. Implementation - The iPad application 71

controller implementation. It is very important to remember to go back to the
storyboard and set all the views classes when they are created, since this is how
controllers are connected to its views.

4 - The object palette

The object palette is where all the different objects to use in a storyboard is found.
As seen in figure 7.1, some different view controllers are shown. All the different
elements used in an application will be found in the object palette, as shown in
figure 7.3:

Figure 7.3: Different objects from the object palette

5 - Segues

A segue represents a triggered transition that brings a new view controller into the
applications user interface, and it also instantiates the new view. A segue contains
a lot of information, that are not going to go be discussed in detail now. However,
a segue is created in the storyboard as follows:

Chapter 7. Implementation - The iPad application 72

Figure 7.4: A cutout from the storyboard where a segue is created

If a button should take the user to another view, control-drag with the mouse
from the button, and to the view that should appear for the user. There are a
couple of different segueing options, that are used for the different types of view
controllers an application can use. The Education+ segues needs to be a replace
segue since its root view controller is Split View Controller. This makes it possible
to handle the master (menu) and the detail (main view) views separately.

6 - The view controller scenes

The View Controller Scene is an overview where all the objects and segues that
are inside the different views are listed in an hierarchical view. Sometimes some
elements on the screen needs to be hidden until some event occurs, and these
elements will actually be hidden in the storyboard as well, so this is a great place
to keep track of every object in a view.

7.1.2 The Controllers

In the controllers folder are all the controller classes that are implemented to handle
the different views. As shown in the figure 7.1 in the last chapter, there are three
views; the login view, the register view, and the welcome view. This means that
there will be three view controllers as well, the LoginViewController.h/m, the Reg-
isterViewController.h/m and the UserViewController.h/m. The controllers com-
municates with their views through outlets, which are created as shown in listing
7.1
// LoginViewController.h
// EducationPlus
//
// Created by Jon Freberg on 3/7/12.
// Copyright (c) 2012 FrebergWeb. All rights reserved.

#import <UIKit/UIKit.h>
#import "SplitViewBarButtonItemPresenter.h"
#import "CoreDataSingleton.h"

@interface LoginViewController : UIViewController <SplitViewBarButtonItemPresenter> {
NSManagedObjectContext *managedObjectContext;

}

@property (strong, nonatomic) IBOutlet UIActivityIndicatorView *activityIndicator;
@property (weak, nonatomic) IBOutlet UITextField *UserNameTextField;
@property (weak, nonatomic) IBOutlet UITextField *PasswordTextField;
@property (weak, nonatomic) IBOutlet UILabel *ResponseTextLabel;
@property (weak, nonatomic) IBOutlet UIButton *LoginButton;
@property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;

Chapter 7. Implementation - The iPad application 73

- (IBAction)LogInButtonAction:(id)sender;

@end

Listing 7.1: LoginViewController.h - Header file

The LoginViewController is a subclass of the UIViewController, which is what
was dragged out from the object palette to the storyboard to create the view.
When a custom subclass of the UIViewController is created, any objects that are
in the actual view can be connected to the controller so it can handle any events
that should occur when objects are touched.

After the custom controller class is created, it is important to remember to go
back to the storyboard to set the views class as mentioned in subsection 7.1.1, and
a custom class will appear in the drop-down menu once it is created.

The outlets declared in listing 7.1 are what connects the different objects in
the view, programmatically to the controller file. For every object that needs to be
handled, an IBOutlet is needed. For demonstration purposes, there is implemented
a target/action method that programmatically fires off a segue when someone tries
to log in to the application, and it is shown how this IBAction is declared as an
instance method in listing 7.2.
- (IBAction)LogInButtonAction:(id)sender {

NSString *username = UserNameTextField.text;
NSString *pass = PasswordTextField.text;
NSArray *user = [UserWS tryLogin ...]

if(!user) {
ResponseTextLabel.text = @"Wrong username and/or password.";

} else {
[self performSegueWithIdentifier:@"LoginSegue" sender:self];

}
}

Listing 7.2: Example IBAction method implementation

Now the LoginViewController object has a target at itself so that the Login View
can tell the controller that someone wants to try to login. Since the UITextField
objects UserNameTextField and PasswordTextField are declared as IBOutlets, the
controller class will use the content of these two textfields to check with its cor-
responding model class if this user exists or not when someone presses the login
button, and then pass the user to the correct view.

7.1.3 The Models
The application is going to store all information about the user, the courses a user
are attending, as well as the news for the different courses. The models are some-
what more complicated than just to create a regular user object, because they are
also going to be stored locally once they are fetched from the server. To do this,
the iOS Core Data API is used, which is a part of the Core Service layer. This is
a great feature for storing data locally, and it is very well integrated with making
Objective-C objects into SQLite entities. To store objects locally, a Core Data
data model file is created. This data model file has a UI where all the entities are
created, as shown in figure 7.5.

Chapter 7. Implementation - The iPad application 74

Figure 7.5: Core Data data model user interface

After the creation of an entity, attributes and relationships with other entities
are given to it, if it has some. The relationships between the entities are created in
a UI where all entities gets represented in a class diagram as shown in figure 7.6.

Figure 7.6: Graph view of the Education+ entities

Control-drag from one entity to another to create the relationship between
them. A nice Xcode feature is how easy it is to create Objective-C objects from
SQLite entities. Simply mark the entities to create objects of, go to editor, and
choose "Create NSManagedObject subclass". To be able to store something locally
using core data, the objects need to be a subclass of the NSManagedObject class,
and this is done automatically by Xcode.

As good programming practice, auto generated files shouldn’t be tampered
with, but some additional functionality needs to be added to the different objects
so that they can be created and stored at the iPad. This is where the Objective-C
category comes into play.

Chapter 7. Implementation - The iPad application 75

There is very little difference between a category file, and a regular class. The
only difference is that a category gets an extended name to show that this is not a
complete implementation of a class. The user category is called User+Create.h/m,
since the only functionality that needs to be added to the user class is being able
to create objects. Below is the implementation of the category created on the user
class:

//
// User+Create.m
// EducationPlus
//
// Created by Jon Freberg on 3/22/12.
// Copyright (c) 2012 FrebergWeb. All rights reserved.
//

#import "User+Create.h"
#import "UserWS.h"
#import "School+Create.h"

@implementation User (Create)

+ (User *)userWithEmail:(NSArray *)userArray
inManagedObjectContext:(NSManagedObjectContext *)context {

User *user = nil;

NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@"User"];
request.predicate = [NSPredicate predicateWithFormat:@"email = %@", [userArray valueForKey:@
"email"]];

NSSortDescriptor *sortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@"email"
ascending:YES];

request.sortDescriptors = [NSArray arrayWithObject:sortDescriptor];

NSError *error = nil;
NSArray *users = [context executeFetchRequest:request error:&error];

if([users count] > 1) {
NSLog(@"Same email registered multiple times. Should not be possible.");

} else if(!users) {
NSLog(@"Users are nil");

} else if (![users count]) {
user = (User *)[NSEntityDescription insertNewObjectForEntityForName:@"User"

inManagedObjectContext:context];
user.firstName = [userArray valueForKey:@"firstName"];
user.lastName = [userArray valueForKey:@"lastName"];
user.graduationYear = [[NSNumber alloc] initWithInt:[[userArray valueForKey:@"

graduationYear"] integerValue]];;
user.email = [userArray valueForKey:@"email"];
School *school = [School schoolsWithWSInfo:userArray inManagedObjectContext:context];
user.goesTo = school;
user.school = school.shortName;
user.password = [userArray valueForKey:@"password"];
user.unique = [[NSNumber alloc] initWithInt:[[userArray valueForKey:@"id"] integerValue

]];
} else {

user = [users lastObject];
}
return user;

}

@end

Listing 7.3: User+Create.m category implementation

Listing 7.3 shows how a new object is created. It is checked to see if that same
object is already stored in the SQLite database, because multiple occurrences of
any objects shouldn’t be stored. To query the SQLite database, a NSFetchRequest
is used. If the request returns something, it is stored in an array, and checked if
this array is nil or not. If it is not nil, then it means that this user doesn’t need

Chapter 7. Implementation - The iPad application 76

to be stored, because it is already there. If the array is nil, the user object needs
to be created, and its relationships needs to be set. Since the array is an array
of user objects, and a user is saved in a NSDictionary, all the valueForKeys that
are fetched are key/value pairs inside a NSDictionary. As shown in figure 7.6, a
relationship between a user and a school called goesTo is created. This relationship
is also set inside the user object so that every user belongs to a school.

The NSManagedObjectContext is the object that works with the Core Data to
store and fetch objects, and is actually a pretty complicated object where thread
programming is needed. It is important to be careful with how certain problems
regarding saving objects locally are solved. The next chapter will discuss how this
is done in a good way.

7.2 Handling threads

Handling threads is something that is done quite often when developing iOS appli-
cations. For the Education+ application, threads and objects that are not thread
safe has to be handled with care. This is because the UI needs to be responsive
while some other task is running in the background. The following subsections will
first show how to create and run a thread, and then introduce Core Data.

7.2.1 Multithreading and blocks

To perform a task in its own thread, it needs to run inside something called a block.
Blocks aren’t just used when threads are created, they are used in enumeration,
view animations, sorting, notifications and error- or completion handlers. However,
the most important use of a block is when threads are created. Threads are cre-
ated with the Grand Central Dispatch API, or the GCD API which it is commonly
referred to as. The GCD API is a C API, and the basic idea behind it is that it has
queues of operations. An operation is specified with a block, and every operation
from a queue will run in a separate thread. This comes in handy when blocking
activity like networking needs to be performed outside of a UI thread, which is
always the main thread of an application. The following example will show how a
new thread is created to perform a network task:

- (IBAction)LogInButtonAction:(id)sender {
NSString *username = UserNameTextField.text;
NSString *pass = PasswordTextField.text;
// Tries to login by calling a web service
NSArray *user = [UserWS tryLogin ...]

if(!user) {
ResponseTextLabel.text = @"Wrong username and/or password.";

} else {
[CoreDataSingleton saveUserToCoreData:username inManagedObjectContext:

managedObjectContext];
[self performSegueWithIdentifier:@"LoginSegue" sender:self];

}
}

Listing 7.4: Stripped down version of LoginButtonAction method

Chapter 7. Implementation - The iPad application 77

This is a stripped down version of the method that gets run when someone tries
to login to the Eduaction+ application, but it serves it purpose to demonstrate how
to create threads. A class method with the name tryLogin gets called, and this is
the method that asks the web server if a user exists so that it can log in or not.
It returns a user object if the login was successful, or nil if the user didn’t exist.
When a user is connected through high speed wifi, this method could be executed
without making the UI become unresponsive, but an iPad user can be connected
to the Internet with either 3G or EDGE, so its always good programming practice
in the iOS environment to not execute any networking task in the main thread. To
run the tryLogin method in a separate thread a block is created as shown in listing
7.5:

- (IBAction)LogInButtonAction:(id)sender {
NSString *username = UserNameTextField.text;
NSString *pass = PasswordTextField.text;

// Creates a queue which is called "check login"
dispatch_queue_t checkLoginQueue = dispatch_queue_create("check login", NULL);
// Executes the queue in a block who’s operations will be executed in a separate thread
dispatch_async(checkLoginQueue, ^{

// Tries to login by calling a web service
NSArray *user = [UserWS tryLogin ...]

if(!user) {
ResponseTextLabel.text = @"Wrong username and/or password.";

} else {
[CoreDataSingleton saveUserToCoreData:username inManagedObjectContext:

managedObjectContext];
[self performSegueWithIdentifier:@"LoginSegue" sender:self];

}
});
dispatch_release(checkLoginQueue);

}

Listing 7.5: LoginButtonAction method with thread

Everything that is inside the dispatch_async block will be performed in its
own thread, which means that no matter how much time this networking task will
take, the user can still interact with the applications UI. After a queue has been
executed, it is important to remember to release it, so that it doesn’t leak memory
in the queue by "hanging around" too long.

There is one more problem with this method, which would make the application
crash if someone tried to login. The reason for that is that calls to the UIKit, which
is every operation that updates or involves some UI component, can only happen in
the main thread. The ResponseTextLabel.text call is telling a label that is located
at the login screen to be updated to "Wrong username and/or password" if the
login operation was not successful, so this is something that needs to be executed
in the main thread, and not in the new thread was just created.

- (IBAction)LogInButtonAction:(id)sender {
NSString *username = UserNameTextField.text;
NSString *pass = PasswordTextField.text;

// Creates a queue which is called "check login"
dispatch_queue_t checkLoginQueue = dispatch_queue_create("check login", NULL);
// Executes the queue in a block who’s operations will be executed in a separate thread
dispatch_async(checkLoginQueue, ^{

// Tries to login by calling a web service
NSArray *user = [UserWS tryLogin ...]

Chapter 7. Implementation - The iPad application 78

// Get the main thread to perform UIKit operations
dispatch_async(dispatch_get_main_queue(), ^{

if(!user) {
ResponseTextLabel.text = @"Wrong username and/or password.";

} else {
[CoreDataSingleton saveUserToCoreData:username inManagedObjectContext:

managedObjectContext];
[self performSegueWithIdentifier:@"LoginSegue" sender:self];

}
});

});
dispatch_release(checkLoginQueue);

}

Listing 7.6: LoginButtonAction method with main thread

This is a very common problem, so the GCD has a method to get the main
queue right away, so UIKit updates can be performed as wanted. The code example
given in listing 7.6 is how most threads are created and executed, and is crucial to
understand when developing iOS applications.

7.2.2 Core Data
Core Data is what makes it possible to store objects locally, and its NSManage-
dObjectContext is the hub around which all Core Data activity turns, as shown in
figure 7.7.

Figure 7.7: Persistence Store Stack

Whats important to know about the NSManagedObjectContext is that it is not
thread safe. That means that all operations that revolves around the NSManage-
dObjectContext, like storing or retrieving data, has to happen in the same thread
that the NSManagedObjectContext was created.

However, it is not possible at any time to ask for what thread a certain object is
a part of. There are a couple of ways to implement the NSManagedObjectContext
so that every interaction with it always happens in the same thread. The way it is

Chapter 7. Implementation - The iPad application 79

solved in the Education+ application is with a Singleton class that instantiates the
NSManagedObjectContext. The name Singleton comes from the Singleton design
pattern, and is a pattern that restricts the instantiation of a class to exactly one
object. This singleton object is shared throughout all classes of the application
so that communication with it will always happen in the same thread, hence no
sudden crash due to trying to access a NSManagedObjectContext in the wrong
thread will occur.

Chapter 7. Implementation - The iPad application 80

Chapter 8

Results

This chapter will describe the results of this thesis, with regards to the assumptions
made after the initial background research phase. Results from specific tests con-
cerning the effectiveness of the application architecture, as well as challenges that
has been met along the way will be stated together with proposals to how they can
be avoided in similar projects. Some possible new features for the application for
further work with this thesis and application, will also be presented.

8.1 Testing

The usual way of testing a prototype of an application, is to give it to a certain
number of people, and let them use it. This way, cumbersome design choices, lack
of functionality and bugs are easily discovered. Due to time constraint, this form for
testing was not possible to perform. However, to see if the choices made concerning
efficiency and speed when communicating with the server was acceptable could be
tested by timing the web service calls.

8.1.1 Timing of web service calls

One of the main reasons for developing the iPad application the way it has been
done, was to be able to develop the application natively. The only data needed to
be fetched over network would then be small JSON objects, since every large file
such as a background image would be handled locally on the iPad. To time the
different web service calls, the Google Chrome Inspector was used to get a nice
overview of all the different elements that gets loaded in a web page. The timing
was done from the administrator panel, where features like fetching courses, news
and users are done, as shown in figure 8.1.

Chapter 8. Results 82

Figure 8.1: Chrome Inspector showing the web service call /getUsersInCours/1

To perform some test cases of how much time it would take when connected
to either 3G or EDGE, simulations was done with a desktop application called
Network Link Conditioner, which is available through Mac OS X Lion, and is used
a lot by developers for testing their applications that rely on network connectivity.

Seven different timing tests were performed. Six of them were GET requests
where a JSON object is returned of varied sizes, and the last was a POST request.
Some of the same web services were called with different parameters that know-
ingly would give a return response from the web server of different lengths, so the
returned JSON objects could be evaluated together with its execution time. This
made it possible to see the difference in time when different sized JSON objects
was returned from the web server.

Chapter 8. Results 83

Web service Type Wait Response Total

Get all admins WiFi 41 1 42
3G 279 12 291
EDGE 973 40 1013

Get all users WiFi 51 3 54
3G 288 35 323
EDGE 1007 113 1120

Get all courses WiFi 46 1 47
3G 273 17 290
EDGE 986 37 1023

Get 2 users in course WiFi 69 1 70
3G 287 41 328
EDGE 969 137 1106

Get 4 users in course WiFi 60 6 66
3G 291 75 366
EDGE 974 249 1223

Get 6 users in course WiFi 53 3 56
3G 295 92 387
EDGE 976 251 1227

Create course WiFi 53 1 54
3G 295 1 296
EDGE 976 2 978

Table 8.1: Timing of web service calls in milliseconds

The tests referred to in table 8.1 confirms that the Education+ application has
a reasonable response time when it communicates with its web server. The "get
all users" web service calls return a JSON object that contains 12 user objects,
which gave approximately the same total time as fetching JSON objects that only
contained 2, 4 or 6 user objects. This shows that the JSON object data type is as
lightweight as originally stated, as well as it is the best choice of format when it
comes to client-server based applications for mobile devices.

When users of an application knows that he or she is connected with either
3G or EDGE, a response time of about one second is acceptable. Moreover, as
long as the user gets notified with an activity indicator of some sort, to wait up
to three seconds are seen as reasonable within the community for developing for
mobile devices.

Chapter 8. Results 84

8.2 Challenges

As the implementation of the web server and iPad application started, unforeseen
challenges where discovered. The ones that was the most time consuming will be
presented in subsection 8.2.1 and 8.2.2.

8.2.1 The web server

One of the best features of the Spring framework is how it helps separating con-
figuration and code. The configuration part was however what brought the most
challenges. The frameworks open source nature makes it rely on many different
third party libraries, that quickly can cause problems.

Configurating the Spring framework

The Spring framework seemed to be the best framework to use for building the
Education+ web server, with regards to the research done. It proved to contain
extensive documentation as well as it is continuously maintained and updated due
to its large user base. However, the framework showed that it was dependent on
a large amount of third party libraries to function. For the Education+ server, 30
different dependencies was needed, as shown in figure 8.2.

Figure 8.2: All dependencies needed for the web server

The challenge that presented itself was to find the correct version for all these
dependencies so that they where compatible with each other. Even though the
Spring framework had an extensive documentation, a lot of the external libraries
did not. This resulted in having to try and fail until the correct version was found.
However, the incompatible version errors didn’t occur when the dependencies was
added to the projects class path. The application had to be deployed, and certain

Chapter 8. Results 85

aspects of the web servers functionality had to be used to force the error. The
result of this was a cumbersome path to making all the pieces fit together.

As long as a Java driven web server is chosen, compatibility issues are most
likely to appear due to its open source nature. A solution to achieve a more
streamlined configuration phase would be to use Microsoft’s ASP.NET framework.
ASP.NET is a web application framework and is an integrated part of Microsoft’s
.NET framework stack as illustrated in figure 8.3.

Figure 8.3: The .NET Framework Stack

Since the whole .NET framework is developed by Microsoft, the need of using
third party libraries are rarely needed. This leaves out the challenge of keeping
external dependencies compatible with each other, since Microsoft will always make
sure that compatibility issues never occurs in its own framework stack.

Design bugs

An implementation specific Spring JPA problem was in particular demanding to
try to solve. JPA is what handles the transformation of taking a Java object, and
storing it as an entity in the database, where every Java instance variable will be
represented as a row in the database. The news object has an instance variable
called text, which job is to hold the String representation of the news entry created
by the administrators. The text instance variable was created as shown in listing
8.1.

@Column(name = "newsText", nullable = false , unique = true)

Chapter 8. Results 86

private String text;

Listing 8.1: Entity description of the text instance variable

In Java, text is always represented with a String datatype1, while a MySQL
database has several different string datatype options. The most common is var-
char, which is what JPA by default transforms a Java String object into. The
problem with the varchar datatype is that it can only hold 255 characters, which
is not a sufficient length for a news entry. The correct MySQL datatype to use is
text, that can store news entries up to 32 768 characters2. To achieve this, it had
to be specified as a parameter to the @Column annotation as shown in listing 8.2.

@Column(name = "newsText", nullable = false , columnDefinition = "TEXT")
private String text;

Listing 8.2: Entity description annotations used for the MySQL text data type

The problem with specifying the column definition to be text was that it was
no longer possible to set this column as unique. After a discussion at the #spring
chat room at IRC, it showed that this was a Spring bug, which they where working
on to fix. Due to this bug, the topic of a news entity in the database is set to be
unique instead of the news entry itself, which isn’t a very good way of implementing
the design of the news object, but had to be done this way as no other solution
currently exist.

8.2.2 The iPad application

The implementation of the iPad application had mainly two obstacles that took
some time to overcome. These obstacles didn’t occur because of bugs or implemen-
tation errors, but they arose due to lack of experience with Objective-C.

Getting started

When implementing for the first time in Objective-C, there is a lot of information
and many design strategies that needs to be understood. A lot of time was spent on
researching the design strategies and ideas of how to make iPad applications, but
the only way to see if something was understood correctly was to start implementing
the application, and learning along the way. In particular, the way the different
views and controller classes talk to each other through delegates was challenging to
understand completely from the start. After thoroughly working with some of the
most basic assignments given in the Stanford course to get a better understanding
of how to implement in Objective-C, the Objective-C programming style came
more natural.

1The char datatype is seen as a single character, where a text is defined as one or more words,
so the String datatype must be used

2The MySQL TEXT datatypes maximum storage is L+ 2, L < 216 where L is in bytes.[25] A
single Java character is 2 bytes[26], hence 216+1

2
= 32768, 5 number of characters can be stored.

Chapter 8. Results 87

Going outside Apples design guidelines

As many iOS developers advises, to start off any iOS development project by mak-
ing its GUI is a good thing to do. This makes it easier to understand what data
and information that should be given in what views, and it gives a better under-
standing about what needs to be implemented. Since the experience in developing
iPad applications were slim to none, there was especially one design choice that
was made that gave some troubles later in the implementation process.

The design choice of having only one view, and from here give information
about the students courses and news proved to be a bad choice of design. If this
was to be done after "Apples book", the application would have two different views,
one for the students courses, and one for its news. Since this application has two
tableviews that are going to be populated with data from two different objects
that are stored locally with Core Data, two separate controller classes for the two
tableviews would have to be created. Each of these then handles the fetching of
the correct objects and the population in the correct table. To figure out how to
create the course and news controller classes, tutorials written by iOS developers
had to be followed instead of figuring out how to solve such a problem by reading
Apples documentation. The population of the two tables seemed to work just fine,
but after some testing it was noticed that only the news of the last course a student
was enrolled in, was the news that got populated into the news table, as shown in
figure 8.4.

Figure 8.4: News overview problem

Chapter 8. Results 88

The reason behind this problem was that there was no way of passing the
data from these controller classes back to the view so that it could work with the
objects inside the two tables as wanted, and this was because of the tutorial that
was followed had some design flaws in it, which wasn’t caught until it was too late.

The solution to this problem would be to make the two controller classes that
handles the course and news tableviews be a subclass of NSObject, instead of
UITableViewController that they are today. To do this, some refactoring has to
be done, and has been chosen to be left as a bug in the prototype due to the time
that the error was caught at, and the workload it would take to fix it.

8.3 New features

For further work with the application, some ideas for new features will be presented.
These new features could make the Educaiton+ application a good resource for
both professors and students.

8.3.1 Messaging system

To ask questions to a fellow student, or to ask a more complex question to a pro-
fessor about a topic from class is something that a lot of students are hesitant of
doing because they are afraid of sounding stupid. But very often, there are a lot
of students that are wondering about the exact same thing. By incorporating a
messaging system to the Education+ application, it would help making this pro-
cess a little bit less formal, and to lower the bar for asking questions. A chat that
could be divided into different class chat rooms, as well as the opportunity to send
private messages to both other students and professors could be used.

Figure 8.5: Increase communication with the Jabber chat client

Chapter 8. Results 89

This could be implemented by using the open source messaging client called
Jabber. Jabber can communicate with the chat server through JSON objects that
minimizes the amount of data that needs to be sent, as well as it can be implemented
into any kind of platform. To have a messaging system isn’t new or groundbreak-
ing, in fact it exists in most modern learning portals like Its Learning3. However,
Its Learning only has the opportunity to send private messages, or to communicate
with classmates through a forum. What makes this feature so much better at a
mobile device, such as the iPad or the iPhone is that this is a device that people
carry with them everywhere, and can get notified right away when something hap-
pens through the the new iOS5 Push Notification Center feature. Not having to
log onto your Mac or PC to check for updates lowers the bar of generating quick
responses which makes the message feature more tempting to use.

8.3.2 Quiz system

To find good learning resources besides from the text book, isn’t always that easy.
Many students wants to gain more knowledge about certain topics in their curricu-
lum to get a better understanding of them.

With a quiz system incorporated into the Education+ application, the professor
can create relevant multiple choice quizzes about the topics of the curriculum. This
will make the students feel confident that their knowledge about topics are correct,
and will help create a better learning experience for the students.

8.3.3 Sharing of documents

A possibility that can only be achieved if implementing natively for iOS is the
ability to easily share documents among the users of the application through the
iOS iCloud sharing API. This makes it easy for users of the application to share
notes and thoughts on different topics from a course so that it is available for
others. To make the students collaborate, and to make them discuss different
topics with fellow students can help students learn and to get a more fun and
work-like experience of learning, rather than sitting one by one and memorizing
the curriculum.

8.4 Improvements

Implementation specific improvements can be done with the prototype as it is to-
day. As the implementation phase was ongoing, a lot of new ideas and design
improvements came to mind, but where not possible to pursue due to time con-
straints. These improvements concern both new features to the application, as well
as some proposals of how to enhance some of the functionality that is present today.
The improvements are covered in the following subsections, and are recommended
to be included in a new version of the Education+ application.

3A norwegian Internet-based virtual learning environment - http://en.wikipedia.org/wiki/
It’s_learning

http://en.wikipedia.org/wiki/It's_learning
http://en.wikipedia.org/wiki/It's_learning

Chapter 8. Results 90

8.4.1 Push Notification Center

To handle course or news updates in the prototype, the user would have to login
to the iPad application, or press the refresh button if the user is already logged
in. This is acceptable for a prototype, but for a working application, it should be
implemented in a different way. By using the built-in iOS Push Notification Cen-
ter4, updates can be handled by keeping users informed whether the Education+
application is running in the background or is inactive.

Figure 8.6: Notification badge on the application icon

Every time there is an update at the web server, a notification will be given to
all its users in form of either a sound, an update badge on the application icon, or
both.

8.4.2 Asynchronous web service calls

All web service calls made from the iPad are synchronous calls. The synchronous
calls are made in a separate thread, so that the UI will be responsive no matter how
much time the web service will use to return with a response. In most cases, this
would work just fine, and the UI will be updated with the new data fetched from
the server. But there are a couple of cases where the synchronous web service call
does not work as wanted. Imagine a scenario where a user uses the Education+
application when traveling, and it is connected to the Internet through 3G or
EDGE. If the user presses the refresh button to fetch updates from the server, and
the user looses its network connection, the web service call will be aborted. To
fetch the intended updates, the user would have to press the refresh button again,
once he or she has restored Internet connection. If the web service is implemented
asynchronously, the user wouldn’t have to press the refresh button again, because
the response part of the web service call will automatically wait for the device to
get back online, and continue the web service call where it left off, and present the
user with its data once it is fetched. After researching the topic, Apple encourages
everyone to only send asynchronous HTTP URL requests, so that an application
always will handle scenarios like this the appropriate way.

4Introduction to the Push Notification Center: https://developer.apple.com/appstore/
push-notifications/index.html

https://developer.apple.com/appstore/push-notifications/index.html
https://developer.apple.com/appstore/push-notifications/index.html

Chapter 8. Results 91

8.4.3 iPhone compatible
The classes created are all reusable, so that they can be reused in other applications
in the future. As long as the MVC pattern is followed, so that all model and
controller classes are implemented correctly, it should be able to easily create an
iPhone UI for the application as well. Simply create a new iPhone storyboard,
create its views, and set the views controller classes. The Education+ doesn’t use
any elements that are only possible to use in an iPad application, so that internally
in the Education+ application, the controller classes should be reusable as well.

8.4.4 General improvements
Some general improvements to apply to the Education+ application are given below
in table 8.2.

Deleting objects The ability to delete objects stored locally at the
iPad is not possible. Information about locally
deleted objects should be sent to the server reg-
ularly to keep the remote database in sync with
the iPad.

Validation When a user registers, no validation of what the
user types in are done. To achieve this, the Regis-
terViewController needs to be the TextFields del-
egate, and the method textFieldDidEndEditing
should perform validation of the different fields.

Searching for schools When a user registers, the table view that appears
when a user search for a school, behaves somewhat
strange. Handle these bugs in the UISearchBar
delegate methods.

Refreshing tables When a user touches the refresh button, the news
and course tables needs to be touched with a fin-
ger for the newly fetched objects to appear. This
bug appears due to the nature of how the two ta-
ble views are implemented. The setNeedsDisplay
property set to YES should fix the problem if the
tableviews are implemented differently.

Messages Not implemented.

Table 8.2: General improvements

Chapter 8. Results 92

Chapter 9

Conclusion

The final chapter will answer the research question stated in section 1.2 - Research
Question. A conclusion based on the work done will be presented together with
contributions and prospects of further work.

The possibilities and limitations when developing mobile applications natively
vs. HTML5 can be distinctively concluded with, as shown in table 9.1 below.

Native HTML5

Possibilities Performance Cross platform
Full access to APIs Single codebase/Write once
More control Open coding standards
Good debugging possibilites Easy to implement
Device specific UI Cost- and Time efficient
Richer functionality Easy to update versions
Sellable JavaScript libraries

Limitations Not cross platform Bad performance
Complicated Poor browser support
Time-consuming Lack of general support
Hard to update versions Unfinished standards

Limited device APIs
Hard to debug at mobile device

Table 9.1: Possibilities and limitations when developing mobile applications

With the client-server architecture, the applications business logic will be kept
at the server so the workload of implementing the clients natively for any platform
would be significantly reduced. The application would be dependent on communi-
cating with a web server to be able to receive updates, however the amount of data

Chapter 9. Conclusion 94

to be sent back and forth are minimized. The data sent are JSON objects, and
they are extremely light-weight. This data format makes it possible to slim down
the data size to its minimum, which makes it adequate to make an application rely
on network connectivity.

What differentiates a network reliable native application from a HTML5 appli-
cation, is that together with the client-server architecture, the native application
has access to the devices full API. Because of this, the Education+ prototype is
able to efficiently store any updates from the server locally to the iPad through the
Core Data API. This feature makes it possible to use the application and interact
with its locally stored objects even though it is not connected to any network.

To create applications that are dynamic and with an architecture that sets as
few limitations to modifiability as possible, is very important. With concern to
time- and cost of the development of an application, it is almost always cheaper to
choose the HTML5 solution. However, the type of application that will be made
should be the deciding factor of what solution to choose. Proper planning always
benefits any software development project both professional and private, and is the
key to make any good application.

The key findings in the thesis emphasizes that the native approach combined
with the client-server based architecture is a worthy candidate when it comes to
creating mobile applications that needs to be deployed at multiple platforms. The
application wouldn’t be cross platform by nature, but the possibilities and ben-
efits of what the native and client-server architecture brings together are heavier
weighted than the limitations in many cases. What is important to understand is
that the possibilities and limitations of developing applications natively vs. HTML5
will be different in every case. There are no blueprint of what is the correct way to
go, and it shows that every mobile application developer are prone to analyze their
own needs to be able to make the best decision for their type of application. The
importance of planning and identifying an applications features are enormous, and
will in many cases be the deciding factor if the outcome will be successful or not.

9.1 Further work

There are some key points to improve to make cross platform mobile application
development an easier task. First of all, the need of having both desktop- and
mobile browsers that interpret HTML5 and CSS3 code in the same way is the one
of the key problems today. With this fundamental problem still in place, it is hard
to focus the work on a specific topic like making HTML5 better fitted for mobile
application development. Many people argue that the HTML5 compatibility in
general will be better in time, and it most certainly will in many aspects.

By taking a look into the past, compatibility issues with HTML4 still exists.
This is a "warning sign" that says that it needs to be a thorough review of how
the web should behave, and how HTML5 should be interpreted.

Chapter 9. Conclusion 95

From a native development point of view, the different mobile device companies
should strive to let as much as their operating systems API be accessible for external
use so todays proprietary standards can be let go of. The reason for why not
everything is accessible, is due to both security and technological reasons. Android
phones has a much more open API than iOS devices, which is reflected in the
amount of attacks made on the two different operating systems[27]. There is almost
always a valid reason for why these companies choose to make some features only
available for native developers, and this is because for every person that will use a
part of an API for its original purpose, there is probably a thousand people that
will use it to cause harm. With the HTML5 standard being in its unfinished state
as it is today, the different mobile device companies are probably reluctant to open
up to much in fear of being a popular platform to attack and exploit.

More and more new features and possibilities appears in the field of mobile
application development, and both developers as well as mobile device companies
are continuously working to make progress in this revolutionary new way of incor-
porating technology into our every day lives.

Chapter 9. Conclusion 96

Bibliography

[1] Telenor ASA. 3G and EDGE coverage in Norway. http://www.telenor.no/
privat/dekning/, 2012. [Online; accessed 16-March-2012].

[2] Scott OConner. JSON and SOAP in Web Application
Services. http://igoesolutions.com/blog/2010/07/07/
json-and-soap-xml-in-web-application-services/, July 7th, 2010.
[Online; accessed 04-February-2012].

[3] Martin Fowler. Model View Controller. http://en.wikipedia.org/
wiki/Model-view-controller - http://martinfowler.com/eaaCatalog/
modelViewController.html, March, 2012. [Online; accessed 20-May-2012].

[4] Restful contstraints. http://en.wikipedia.org/wiki/Representational_
state_transfer#Constraints, March, 2012.

[5] Apple Inc. View Controller Catalog for iOS. http://developer.
apple.com/library/ios/#documentation/WindowsViews/Conceptual/
ViewControllerCatalog/Chapters/SplitViewControllers.html, Febru-
ary 16th, 2012. [Online; accessed 10-May-2012].

[6] Andy Rubin. Google plus public post. https://plus.google.com/u/0/
112599748506977857728/posts/Btey7rJBaLF, February 27th, 2012. [Online;
accessed 26-May-2012].

[7] Steffen Itterheim. ios sales statistics including q1 2012: Split by
model and opengl es 2.0 support. http://www.learn-cocos2d.
com/2012/03/ios-sales-statistics-q1-2012-split-by_
model-opengl-es-2-0-support/, March 22nd, 2012. [Online; accessed
04-May-2012].

[8] W3Schools. HTML5 Aplacation Cache. http://www.w3schools.com/html5/
html5_app_cache.asp, April, 2012. [Online; accessed 02-May-2012].

[9] The SQLite Consortium. SQLite. http://www.sqlite.org/, May, 2012. [On-
line; accesses 09-March-2012].

[10] Web workers. http://en.wikipedia.org/wiki/Web_worker, March, 2012.

http://www.telenor.no/privat/dekning/
http://www.telenor.no/privat/dekning/
http://igoesolutions.com/blog/2010/07/07/json-and-soap-xml-in-web-application-services/
http://igoesolutions.com/blog/2010/07/07/json-and-soap-xml-in-web-application-services/
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://martinfowler.com/eaaCatalog/modelViewController.html
http://martinfowler.com/eaaCatalog/modelViewController.html
http://en.wikipedia.org/wiki/Representational_state_transfer#Constraints
http://en.wikipedia.org/wiki/Representational_state_transfer#Constraints
http://developer.apple.com/library/ios/#documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/SplitViewControllers.html
http://developer.apple.com/library/ios/#documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/SplitViewControllers.html
http://developer.apple.com/library/ios/#documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/SplitViewControllers.html
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
http://www.learn-cocos2d.com/2012/03/ios-sales-statistics-q1-2012-split-by_model-opengl-es-2-0-support/
http://www.learn-cocos2d.com/2012/03/ios-sales-statistics-q1-2012-split-by_model-opengl-es-2-0-support/
http://www.learn-cocos2d.com/2012/03/ios-sales-statistics-q1-2012-split-by_model-opengl-es-2-0-support/
http://www.w3schools.com/html5/html5_app_cache.asp
http://www.w3schools.com/html5/html5_app_cache.asp
http://www.sqlite.org/
http://en.wikipedia.org/wiki/Web_worker

Bibliography 98

[11] Jose Fermoso. PhoneGap Seeks to Bridge the Gap Be-
tween Mobile App Platforms. http://gigaom.com/2009/04/05/
phonegap-seeks-to-bridge-the-gap-between-mobile-app-platforms/,
April 5th, 2009. [Online; accessed 04-February-2012].

[12] Jongsoo Park. Design Patterns Elements of Reusable Object-Oriented
Software. http://www.stanford.edu/~jongsoo/cgi-bin/moin.cgi/
Design_Patterns_Elements_of_Reusable_Object-Oriented_Software#
head-339c5a351e5a45acbcdd8ac2fd553301b8b7c6c0. [Online; accessed
26-May-2012].

[13] Web services in general. http://en.wikipedia.org/wiki/Web_service,
May, 2012.

[14] Stackoverflow forum entry. What is RESTful program-
ming. http://stackoverflow.com/questions/671118/
what-exactly-is-restful-programming, March 22nd, 2009. [Online;
accessed 11-April-2012].

[15] Java servlet. http://en.wikipedia.org/wiki/Java_Servlet, January,
2012.

[16] Vaan Nile. Spring MVC. http://www.vaannila.com/spring/
spring-mvc-tutorial-1.html, January, 2009. [Online; accessed 19-
April-2012].

[17] SpringSource. Chapter:13.2 - The DispatcherServlet. http://static.
springsource.org/spring/docs/2.0.x/reference/mvc.html, April, 2012.
[Online; accessed 02-April-2012].

[18] Kevin William Pang. Dependency Injection For Dum-
mies. http://www.kevinwilliampang.com/2009/11/07/
dependency-injection-for-dummies/, November 7th, 2009. [Online;
accessed 14-April-2012].

[19] Bill Venners. Designing with Interfaces. http://www.artima.com/
designtechniques/interfaces.html, November, 1998. [Online; accessed 27-
April-2012].

[20] Colin Sampaleanu. Green Beans: Geating Started with
Sprint MVC. http://blog.springsource.org/2011/01/04/
green-beans-getting-started-with-spring-mvc/, January 4th, 2011.
[Online; accessed 27-April-2012].

[21] ios overview. http://deimos3.apple.com/WebObjects/Core.woa/Feed/
itunes.stanford.edu-dz.11153667080.011153667082, November, 2011.

[22] Apple Inc. Delegates and Data Sources. http://developer.apple.com/
library/ios/#DOCUMENTATION/Cocoa/Conceptual/CocoaFundamentals/
CommunicatingWithObjects/CommunicateWithObjects.html, May, 2012.
[Online; accessed 04-May-2012].

http://gigaom.com/2009/04/05/phonegap-seeks-to-bridge-the-gap-between-mobile-app-platforms/
http://gigaom.com/2009/04/05/phonegap-seeks-to-bridge-the-gap-between-mobile-app-platforms/
http://www.stanford.edu/~jongsoo/cgi-bin/moin.cgi/Design_Patterns_Elements_of_Reusable_Object-Oriented_Software#head-339c5a351e5a45acbcdd8ac2fd553301b8b7c6c0
http://www.stanford.edu/~jongsoo/cgi-bin/moin.cgi/Design_Patterns_Elements_of_Reusable_Object-Oriented_Software#head-339c5a351e5a45acbcdd8ac2fd553301b8b7c6c0
http://www.stanford.edu/~jongsoo/cgi-bin/moin.cgi/Design_Patterns_Elements_of_Reusable_Object-Oriented_Software#head-339c5a351e5a45acbcdd8ac2fd553301b8b7c6c0
http://en.wikipedia.org/wiki/Web_service
http://stackoverflow.com/questions/671118/what-exactly-is-restful-programming
http://stackoverflow.com/questions/671118/what-exactly-is-restful-programming
http://en.wikipedia.org/wiki/Java_Servlet
http://www.vaannila.com/spring/spring-mvc-tutorial-1.html
http://www.vaannila.com/spring/spring-mvc-tutorial-1.html
http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html
http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html
http://www.kevinwilliampang.com/2009/11/07/dependency-injection-for-dummies/
http://www.kevinwilliampang.com/2009/11/07/dependency-injection-for-dummies/
http://www.artima.com/designtechniques/interfaces.html
http://www.artima.com/designtechniques/interfaces.html
http://blog.springsource.org/2011/01/04/green-beans-getting-started-with-spring-mvc/
http://blog.springsource.org/2011/01/04/green-beans-getting-started-with-spring-mvc/
http://deimos3.apple.com/WebObjects/Core.woa/Feed/itunes.stanford.edu-dz.11153667080.011153667082
http://deimos3.apple.com/WebObjects/Core.woa/Feed/itunes.stanford.edu-dz.11153667080.011153667082
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.html

Bibliography 99

[23] Apple Inc. Property Declaration and Implementation. http://
developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
ObjectiveC/Chapters/ocProperties.html, May, 2012. [Online; accessed
04-May-2012].

[24] Objective c wiki. http://en.wikipedia.org/wiki/Objective-C#Syntax,
May, 2012.

[25] Oracle. Data Type Storage Requirements. http://dev.mysql.com/doc/
refman/5.5/en/storage-requirements.html, May 29th, 2012. [Online; ac-
cessed 29-May-2012].

[26] Oracle. Primitive Data Types. http://docs.oracle.com/javase/tutorial/
java/nutsandbolts/datatypes.html, May 29th, 2012. [Online; accessed 29-
May-2012].

[27] Juniper Networks Inc. Malicious Mobile Threats Report 2010/2011. http://
www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf, March
2012. [Online; accessed 29-May-2012] – Pages 6–10.

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html
http://en.wikipedia.org/wiki/Objective-C#Syntax
http://dev.mysql.com/doc/refman/5.5/en/storage-requirements.html
http://dev.mysql.com/doc/refman/5.5/en/storage-requirements.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf

Bibliography 100

Appendix A

Education+ user manual

The Education+ application is set up with an administrator user- Ola Nordmann,
as well as a student user- Jon Freberg. These users are meant to be used for
demonstration purposes.

A.1 Adminstrator panel

Table C.2 gives information about how to access and use the Education+ admin-
istrator panel.

URL http://master.freberg.org

Login Credentials Username: sensor@ntnu.no
Password: 1234
Name: Ola Nordmann

General information The original location to the web server is http://
vm-6115.idi.ntnu.no:8080/abc/login. If the
URL web forward given above doesn’t work, or a
complete URL is desirable to see, use this URL
instead.

Table A.1: Education+ Administrator Panel information

There is not implemented any functionality for creating new administrators,
due to the design of the application. The application is meant to be published with
the administrators needed. The administrators listed in table A.2 are added to the
system so the administrator panel can be tested with administrators from different
schools.

http://master.freberg.org
http://vm-6115.idi.ntnu.no:8080/abc/login
http://vm-6115.idi.ntnu.no:8080/abc/login

Appendix A. Education+ user manual 102

Name Credentials School

Ola Nordmann Username: sensor@ntnu.no NTNU
Password: 1234

Terje Rydland Username: terje@ntnu.no NTNU
Password: 1234

Hans Hansen Username: hans@hib.no HiB
Password: 1234

Nils Nilsen Username: nils@uio.no UiO
Password: 1234

Table A.2: List of available administrators

A.2 iPad application

The Education+ application will be found at the iPad’s springboard, an looks like
this:

Figure A.1: The Education+ icon

The student with the name Jon Freberg is setup to attend courses that Ola
Nordmann administrates. This is meant to be the test account for the iPad. The
users available to login with is listed in table A.3 below.

Appendix A. Education+ user manual 103

Name Credentials School

Jon Freberg Username: jon@stud.ntnu.no NTNU
Password: 1234

Peter Fredriksen Username: peter@stud.stud.no NTNU
Password: 1234

Sjur Hjelle Username: sjur@stud.ntnu.no NTNU
Password: 1234

Tim Ramsey Username: tim@stud.ntnu.no NTNU
Password: 1234

Sigurd Alstad Username: sigurd@stud.stud.no NTNU
Password: 1234

Mads Gjerding Username: mads@stud.ntnu.no NTNU
Password: 1234

Hanne Freberg Username: hanne@stud.ntnu.no NTNU
Password: 1234

Kristine Jensen Username: kristine@stud.stud.no NTNU
Password: 1234

Rita Nilsen Username: rita@stud.ntnu.no NTNU
Password: 1234

Magnus Sandvik Username: nils@stud.uio.no UiO
Password: 1234

Tor Alfsen Username: tor@stud.uio.no UiO
Password: 1234

Nick Tollefsen Username: nick@stud.uio.no UiO
Password: 1234

Jonas Langmo Username: jonas@stud.hib.no HiB
Password: 1234

Nicolai Prytz Username: nicolai@stud.hib.no HiB
Password: 1234

Henrik Tenfjord Username: henrik@stud.hib.no HiB
Password: 1234

Table A.3: List of available students

Appendix A. Education+ user manual 104

To test the iPad application in depth, new users can be created in the registra-
tion view.

Appendix B

Interview results

The interviewees referred to in section 2.5 - Interviewing software developers will
be present as they where answered here.

B.1 Interviewee 1

Age: 40
Company: Visma Consulting AS
Work-title: Senior Consultant

Have you ever developed mobile applications native, with HTML5 or
both?
I have developed mobile applications with HTML5. I have not developed native
apps.

Which one do you prefer, and have you considered trying the "other"?
My primary function is that of an Interface (front-end) developer, using the open
standards of the web. I have no plans on developing in the native languages of each
phoneÕs OS.

What is the reason why you chose the development type you did?
It is my primary focus area and makes sense for the project types involved due to
the smaller budgets and cross-platform requirements.

Do you see any big advantages by implementing applications native?
HTML5?
HTML5, using products such as phonegap, allows for a cross platform solution

Appendix B. Interview results 106

with a single code base. The code is quite easy to understand and there is also an
API that allows utilization of the deviceÕs capabilities. Web apps can easily be
developed from the existing code base when using HTML5.

Do you see any possibilites that are only possible to achieve when an
app is developed native? HTML5?
HTML 5 affords a single code base. This is not possible with native apps.

In earlier projects where you have developed either a HTML5 or a
native application, is there anything you missed during the development
process?
HTML5 apps are generally frowned upon by the device OS makers, as they would
prefer a "closed garden" approach. This leads to a lack of browser support for
many emerging areas of HTML5 and an almost complete lack of comprehensive
documentation.

Do you see any specific things that can be improved when you de-
velop HTML5 applications? (If you have developed HTML5 applications)
Browser support for the emerging standards (HTML5 CSS3).
A standard solution for making cross platform apps (ala phonegap), supported by
all the major OS makers (pure Utopia, IÕm sure)

Have you ever used a HTML application? If so, what do you think
about the user experience?
I have made and used many HTML applications and there are, as with any ap-
plication, good and bad ones. The user experience is a combination of design and
implementation, neither of which can be blamed nor attributed to the use of HTML
in the programming of the application.

As an end-user of an application, what do you think is most impor-
tant when it comes to the user experience?
Efficiency and speed.

With keywords, can you give three positive and three negative things
when developing an application i HTML5 and native?
HTML5
Positive:
- Cross platform
- Open coding standards

Appendix B. Interview results 107

- Code reuse

Negative:
- Poor browser support
- "Walled gardens"
- Lack of support

If you have anything else on your heart about developing applications
native vs. HTML5, please elaborate here.
I like the idea of an open standard language that is not financially beholden to
any interest group. This is how the web was intended, and indeed what has made
the web so ubiquitous. I am firmly opposed to the "walled garden" approach that
seems to be prevailing at the moment. As I have personally stated on numerous
occasions, I would like to have only one program on my phone, a browser.

Developing HTML5 apps is at the cutting edge right now. It is neither mature
nor planned. It is an approach that has arisen from a fundamental need and desire
that is currently lacking in most mobile OS vendors approach to app development.
Many customers "bet on one horse" (usually Apple), but more and more are not
accepting the fleeting dominance of a single OS vendor, and possible customer
alienation that is inherent when snubbing other OS systems.

With many projects in all camps (Google, Apple, Microsoft..) being stunted
due to the ongoing patent wars, I see no better approach than using a common,
open, free and standardized programming approach to push forward application
development.

Content should be free from technology. An app should not only be available
on a single OS. My dvd should not only play on a Sony machine, my CD only on
a Philips stereo, my book only on a Kindle, my App only on an iPhone. The web
showed us that there was an alternative method for distribution of content and I
can think of no better way to serve content on mobile devices than using the same
language that powers the web.

From a technological angle, I hope that the OS vendors see HTML5 as an
opportunity and not a threat. I hope that the use of exclusive content to power
device popularity is removed from the equation and that a true cross platform
programming interface is standardized and promoted.

Appendix B. Interview results 108

B.2 Interviewee 2

Age: 27
Company: Statoil ASA
Work-title: Software developer

Have you ever developed mobile applications native, with HTML5 or
both?
Ive developed one native, and one PhoneGap application.

Which one do you prefer, and have you considered trying the "other"?
As of today, I prefer native application development. In time, I think HTML5 will
take over, but the lack of API to utilize built-in hardware specific things are to big
for it to happen now. Today, you can use built-in camera, GPS, accelerometer as
well as some other stuff, but there are still a lot of things missing here.

Last but not least, I prefer the performance. Native apps are many times faster
then a HTML5 application on a normal device. WIth normal device, I mean some
of the older HTC/Samsung devices that does not run the Android 2.3.X or similar
operating systems. CSS3 animations are extremely slow due to the lack of hard-
ware acceleration. This is said to have become better in Android ICS, but I have
not tested it.

What is the reason why you chose the development type you did?
We started with this at work. We wanted to explore the domain, as well as see
what it could give of values to our organization. Personally, Ive done some mobile
app development based on my curiosity for "the new stuff".

Do you see any big advantages by implementing applications native?
HTML5?
The biggest benefit of native applications are the performance, as well as the pos-
sibility to use all the features that the device has (NFC f.ex.). The big advantage
of HTML5 is that it is a lot easier to write code for, as well as you don’t need to
develop several different apps to make it work on the iPhone, Android, Symbian,
Windows Phone, BlackBerry etc. Personally, I see the web browser as the futures
platform, both for mobile and desktop applications.

Do you see any possibilites that are only possible to achieve when an
app is developed native? HTML5?
With native applications it is much easier to take advantage of all the hardware
possibilities the mobile device comes with, f.ex. NFC, gestures and swiping. You

Appendix B. Interview results 109

can achieve swiping/gestures with HTML5 apps as well, but it is a lot slower than
it is in a native app, thus the user experience would be better for a native app.

In earlier projects where you have developed either a HTML5 or a
native application, is there anything you missed during the development
process?
Better documentation for what is supported, and not. Like a table with a crossing
list over what works, and what doesn’t. It is big differences with what works, and
what doesn’t work for HTML5 apps at different devices.

Do you see any specific things that can be improved when you de-
velop HTML5 applications? (If you have developed HTML5 applications)
For HTML5 apps, I think the performance is the biggest challenge. After that
comes the possibility to, in a larger extent to use the built-in hardware features,
and to easier be able to communicate with other apps (both native and HTML5).

Have you ever used a HTML application? If so, what do you think
about the user experience?
Yes, my impression has been that a HTML5 application is significantly slower than
a native app.

As an end-user of an application, what do you think is most impor-
tant when it comes to the user experience?
It needs to be fast and responsive, and you should be able to use the screens pos-
sibilities as much as possible. With that I mean swiping/gestures.

With keywords, can you give three positive and three negative things
when developing an application i HTML5 and native?
HTML5
Positive:
- Fast development phase
- Many good javascript libraries
- Easy to test

Negative:
- Not as easy to debug from the mobile devices
- Slow
- Cannot utilize the devices hardware features

Appendix B. Interview results 110

NATIVE
Positive:
- Fast
- More controll
- Very good debugging opportunities

Negative:
- More complicated
- Slower development phase
- A little bit harder to test

If you have anything else on your heart about developing applications
native vs. HTML5, please elaborate here.
Not answered.

Appendix B. Interview results 111

B.3 Interviewee 3

Age: 28
Company: Statoil ASA
Work-title: Software developer

Have you ever developed mobile applications native, with HTML5 or
both?
HTML5

Which one do you prefer, and have you considered trying the "other"?
Yes, but until now, I haven’t had a "reason" for it.

What is the reason why you chose the development type you did?
My employer (Statoil) wants to focus on HTML5 because it results in less coding,
as well as a lot of the material we already have can be reused. An existing web-app
can easily be fitted for a mobile device (reactive design seems really interesting as
well). If you need to use the devices API, we use PhoneGap.

Do you see any big advantages by implementing applications native?
HTML5?
HTML5:
It works everywhere, and you only need one codebase. However, you don’t have
access to the devices API. (Unless using PhoneGap or similar hybrid solutions)

Native:
Access to native features, such as camera etc. It is also faster and more stable.

Do you see any possibilites that are only possible to achieve when an
app is developed native? HTML5?
Since HTML5 is still a bit immature, it is a lot easier to create stable applications
native. With a native approach you can also perform background processes such
as push notifications.

In earlier projects where you have developed either a HTML5 or a
native application, is there anything you missed during the development
process?
HTML5:
I missed better javascript/html5 libraries, as well as a more complete standard. I
achieved what I wanted, but the applications are a lot slower on older devices. An-

Appendix B. Interview results 112

other limitation is that the web browsers still interprets the same code in different
ways. Something that works perfect on an iPhone, might not work as perfect on
an Android device.

Do you see any specific things that can be improved when you de-
velop HTML5 applications? (If you have developed HTML5 applications)
Better tools like an IDE with full intellisense for javascript, as well as better sup-
port for meta tags in the different mobile systems like icons, enable/disable tap
zoom etc. More access to mobile features through javascript would also be wanted.

Have you ever used a HTML application? If so, what do you think
about the user experience?
More lag than a native application. The UI is also often much better at a native
app.

As an end-user of an application, what do you think is most impor-
tant when it comes to the user experience?
Responsetime, layout, intuitively, accessability.

With keywords, can you give three positive and three negative things
when developing an application i HTML5 and native?
HTML5
Positive:
- A single code base
- Updates can be done without the need of deploying the update to every device
- No need for OS specific versions
- Works everywhere, PCs, tables etc.
- Can use the same backend with different view to customize the application to any
device

Negative:
- Response time
- Unfinished standards
- To few libraries/widgets available

NATIVE
Positive:
- Apps can be sold through app stores
- Device specific UI
- Richer functionality

Appendix B. Interview results 113

Negative:
- Multiple code bases if you want to support every device
- Objective-C/native languages
- More work to release new versions

If you have anything else on your heart about developing applications
native vs. HTML5, please elaborate here.
I think that HTML5 is the way to go for companies (enterprise apps that doesn’t
need to much access to a devices API), especially since the "bring your own device"
has become more and more popular. Games and other apps like facebook/twitter
will still have better performance as native apps, but this might change when mo-
bile browsers gets better as well as the HTML5 standard is finished.

Appendix B. Interview results 114

B.4 Interviewee 4

Age: 36
Company: Statoil ASA
Work-title: Senior System Analyst Developer

Have you ever developed mobile applications native, with HTML5 or
both?
Ive developed native apps for Android(Fifa 11 Tracker, Fifa 12 Tracker, VG de-
bate) and for iPhone(FifaTracker 12). I haven’t developed any HTML5 mobile
applications yet, but Ive been thinking about it.

Which one do you prefer, and have you considered trying the "other"?
I choose native as long as there are no strong reasons against it.

What is the reason why you chose the development type you did?
My first app was natively for Android devices. I liked it, so that became my pre-
ferred platform.

Do you see any big advantages by implementing applications native?
HTML5?
Native:
- Very good performance
- Access to low-level OS
- Possible to sell the app
- Possible with data updates in the background

HTML5:
- Cross platform
- Code once, run everywhere

Do you see any possibilites that are only possible to achieve when an
app is developed native? HTML5?
Native:
- Push notifications for updates
- Low level OS API. (Android)

In earlier projects where you have developed either a HTML5 or a
native application, is there anything you missed during the development
process?

Appendix B. Interview results 115

Doesn’t miss anything, its like developing an desktop application.

Do you see any specific things that can be improved when you de-
velop HTML5 applications? (If you have developed HTML5 applications)
Not answered.

Have you ever used a HTML application? If so, what do you think
about the user experience?
HTML5 applications seems like they are not finished, like an early alpha version.
Both JQuery and PhoneGap tries to copy the native feeling, but doesn’t achieve it
due to bad performance and the lack of functionality.

As an end-user of an application, what do you think is most impor-
tant when it comes to the user experience?
Good performance. Don’t want to get the feeling of using a website.

With keywords, can you give three positive and three negative things
when developing an application i HTML5 and native?
HTML5
Positive:
- Write once

Negative:
- Bad APIs
- Bad mobile web browsers
- Bad performance

NATIVE
Positive:
- Performance
- API-access
- Sellable

Negative:
- Not cross platform

If you have anything else on your heart about developing applications
native vs. HTML5, please elaborate here.
I feel that mobile web browsers need to get a fully accelerated support for HTML5
before this form of application will be reasonable to use. Third party APIs also

Appendix B. Interview results 116

has to become more stable. HTML5 based websites (not applications) has recently
become more mature, so if I was going to develop a website, the tools/language
would be good enough.

Appendix C

General information

C.1 Tools and IDE’s used

Web Server

IDE SpringSource Tool Suite (STS) version 2.8.1.RE-
LEASE - http://www.springsource.com/
developer/sts

Version control Subclipse. An STS extension plug-in providing
support for subversion (SVN) within the STS IDE

Table C.1: Web server tools

iPad application

IDE Xcode version 4.3.2 - https://developer.
apple.com/xcode/

Version control Built in GIT support within Xcode

Table C.2: iPad tools

http://www.springsource.com/developer/sts
http://www.springsource.com/developer/sts
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Appendix C. General information 118

C.2 Creating admin and school objects

There is no feature to create admin or school objects. This is left out because
no administrator, which is a professor should be able to create these objects.
The school and admin objects present today are created by calling their creation
web services directly from a Mac OS X application called HTTP client. HTTP
client is a tool for debugging, creating and inspecting HTTP messages. HTTP
Client can be downloaded from the Mac OS X app store, and its web site is
http://ditchnet.org/httpclient/. A similar client for the Windows operat-
ing system is Fiddler - http://www.fiddler2.com/fiddler2/.

The web service URL to create a school object is:
http://vm-6115.idi.ntnu.no:8080/abc/school

and for an admin object:
http://vm-6115.idi.ntnu.no:8080/abc/admin

The school object needs to be created before the admin object, since an admin
object belongs to a school. It is important to remember to set the Content-Type
to application/json, and to pass the JSON object to be created as the body of the
HTTP message. Below is an example of how a school and admin JSON object
looks like, and a screenshot of how the call to the create school web service from
the HTTP client application:

/* School object in JSON format: */
{"schoolShortName": "UiO", "schoolFullName": "University of Oslo","

active": true , "schoolID":0}

/* Admin object in JSON format: */
{

"id": "0",
"email": "sensor@ntnu.no",
"firstName": "Ola",
"lastName": "Nordmann",
"password": "7110 eda4d09e062aa5e4a390b0a572ac0d2c0220",
"school": {

"schoolID": "1",
"schoolShortName": "NTNU",
"active": "true",
"schoolFullName": "Norwegian University of Science and

Technology"
}

}

Listing C.1: Example JSON objects

http://ditchnet.org/httpclient/
http://www.fiddler2.com/fiddler2/
http://vm-6115.idi.ntnu.no:8080/abc/school
http://vm-6115.idi.ntnu.no:8080/abc/admin

Appendix C. General information 119

Figure C.1: HTTP client web service call

	Title Page
	Introduction
	Motivation
	Research Question
	Project Goal

	Background Research
	HTML5 applications
	Native iPad applications
	Native vs. HTML5
	Multithreading vs. web workers
	Application runtime environments

	Application design
	Challenges with the client-server model

	Interviewing software developers

	From Research to Prototype
	Wanted functionality
	Technical Research
	The iPad application
	The web server
	Web services
	RESTful architecture
	JSON- JavaScript Object Notation

	Education+ Overview
	Education+
	Education+ - The web server
	Education+ - The administrator panel
	Education+ - The iPad application

	Implementation - The web server
	The Spring Framework
	Model view controller
	Dependency Injection
	Java Persistence API
	Security

	Glassfish vs. Tomcat
	Architecture
	Model classes
	Data Access Object classes
	Service classes
	Controller classes
	Spring configuration
	Web.xml
	servlet-context.xml
	Security-context.xml
	Persistence.xml

	WEB-INF/views

	The Concepts of Programming in Objective-C
	The four layers in iOS
	Core OS
	Core Services
	Media
	Cocoa Touch

	Design Strategies
	Syntax
	Header and Message files
	Protocols and delegates

	Implementation - The iPad application
	Architecture
	The Views
	1 - The initial view controller
	2 - A view
	3 - Setting the views class
	4 - The object palette
	5 - Segues
	6 - The view controller scenes

	The Controllers
	The Models

	Handling threads
	Multithreading and blocks
	Core Data

	Results
	Testing
	Timing of web service calls

	Challenges
	The web server
	Configurating the Spring framework
	Design bugs

	The iPad application
	Getting started
	Going outside Apples design guidelines

	New features
	Messaging system
	Quiz system
	Sharing of documents

	Improvements
	Push Notification Center
	Asynchronous web service calls
	iPhone compatible
	General improvements

	Conclusion
	Further work

	APPENDIXES
	Education+ user manual
	Adminstrator panel
	iPad application

	Interview results
	Interviewee 1
	Interviewee 2
	Interviewee 3
	Interviewee 4

	General information
	Tools and IDE's used
	Creating admin and school objects

