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Abstract

Lung cancer is one of the deadliest and most common types of cancer in
Norway. Early and precise diagnosis is crucial for improving the survival
rate. Diagnosis is often done by extracting a tissue sample in the lung through
the mouth and throat. It is difficult to navigate to the tissue because of the
complexity of the airways inside the lung and the reduced visibility. Our goal
is to make a program that can automatically extract a map of the Airways
directly from X-ray Computer Tomography(CT) images of the patient. This
is a complex task and requires time consuming processing.

In this thesis we explore different methods for extracting the Airways from
CT images. We also investigate parallel processing and the usage of modern
graphic processing units for speeding up the computations. We rate several
methods in terms of reported performance and the possibility of parallel
processing. The best rated method is implemented in a parallel framework
called Open Computing Language.

The results shows that our implementation is able to extract large parts of
the Airway Tree, but struggles with the smaller airways and airways that
deviate from a perfect circular cross-section. Our implementation is able
to process a full CT scan using less than a minute with a modern graphic
processing units. The implementation is very general and is able to extract
other tubular structures as well. To show this we also run our implementation
on a Magnetic Resonance Angio dataset for finding blood vessels in the brain
and achieve good results.

We see a lot of potential in this method for extracting tubular structures. The
method struggles the most with noise handling and tubes that deviate from
a circular cross-sectional shape. We believe that this can be improved by
using another method than ridge traversal for the centerline extraction step.
Because this is a local greedy algorithm, it often terminates prematurely due
to noise and other image artifacts.
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Chapter 1

Introduction

1.1 Background and Motivation

Lung cancer has one of the highest mortality rates in Norway and is also
one of the most common types of cancer [10]. Early and precise diagnosis is
crucial for improving the mortality rate. Currently, at St. Olavs Hospital in
Trondheim, Norway, diagnosis is done by taking a tissue sample of the tumor
using a bronchoscope. With a bronchoscope, tissue samples are extracted
through the airways that conduct air in and out of the lungs. One of the
major challenges with doing such a biopsy with a bronchoscope is to actually
find the tumor inside the lung. The Airways of the lungs form a complex tree
structure with many branches. The bronchoscope has a camera and light for
visual guidance, but physicians still find it difficult to navigate using this
camera. Also, the airways become very small in the periphery of the lungs.
And in these small airways there is no visibility. This makes it very hard to
find tumors that are located in the periphery of the lungs.

SINTEF Medical Technology, St. Olavs Hospital and the Norwegian Univer-
sity of Science and Technology (NTNU) in Trondheim, Norway has a joint
project on image guided bronchoscopy. Image Guided Surgery is the field of
using images, such as those acquired through Computer Tomography scans,
for planning and navigation before and during surgical procedures such as
bronchoscopy. The goal of this joint project is to develop new methods by
combining the clinical bronchoscopic expertise of the lung department at
St. Olavs Hospital with SINTEF and NTNUs experience in Image Guided
Surgery. This master thesis is part of this joint project. The goal of this
master thesis is to develop a method for automatically creating maps of the
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CHAPTER 1. INTRODUCTION

airways from CT images. These maps are needed to plan a route before the
procedure to the region of interest such as a tumor site and to navigate dur-
ing surgery. The location of the bronchoscope can be set on the airway map
by combining the airway map and electromagnetic tracking of the tip of the
bronchoscope. Much like using a GPS in a car to find the path from A to B.
Before navigation is possible, the map has to be registered to the patient. A
set of coordinates that are known to be inside the airway can be established
by moving the bronchoscope through the airways. These coordinates are
then used to register the patient to the map.

The map of the Airway Tree will consist of a segmentation and a centerline.
Many different methods for extracting the Airway Tree exists in the litera-
ture. Most of these methods are very computationally expensive and require
a long time to finish processing. Also, many of the methods require several
runs with different parameters before a satisfactory results is achieved. We
wish to create an implementation of Airway Tree segmentation and center-
line extraction that is fast so that the physicians does not have to wait for
the result needed to do the planning and the guidance during bronchoscopy.
We also believe that increased speed can be traded off to do additional pro-
cessing that can increase the accuracy and quality of the segmentation. To
increase the speed of our implementation we will to investigate parallel pro-
cessing and especially the use of modern graphic processing units (GPUs).
GPUs are ideal for data parallel computations where several elements in a
collection of data need to be processed with the same instructions. Generally,
image processing tasks are data parallel because they work on large datasets
and often run the same instructions on each pixel/voxel. We will use Open
Computing Language (OpenCL) for the implementation. OpenCL is a new
and popular framework for parallel programming on different processors from
different manufactures.

1.2 Project Goals

The purpose of this project is to explore Airway Tree segmentation and
centerline extraction and implement a program that performs these tasks
and utilizes the computational power of modern graphic processing units
(GPUs) to speed up the calculations. Thus the main goals of this project
are:

• Explore state-of-the-art methods for Airway Tree segmentation and
centerline extraction
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• Evaluate each method in terms of accuracy, performance and the po-
tential for improving speed by utilizing a GPU

• Implement one of these methods using OpenCL and document the re-
sults

1.3 Outline

The following is an outline for the remainder of this thesis.

Chapter 2 - Background
In the next chapter a background study will be conducted. This study will
include an introduction to the anatomy and terminology of the lungs, how
images of the lungs are created, image guided bronchoscopy, parallel and
GPU computing and a review of different Airway Tree Segmentation and
Centerline extraction methods. The last section in this chapter contains some
conclusions drawn from the background study which lay the foundations to
the methods that will be used to create our implementation.

Chapter 3 - Methodology
The Methodology chapter discusses our implementation in further detail with
pseudocode for each step. This chapter also contains details on how the
implementation was adapted and optimized for parallel processing on the
GPU.

Chapter 4 - Results
Chapter 4 presents images of the extracted centerlines and segmentation
result of our implementation as well as runtime measurements on different
datasets and processors.

Chapter 5 - Discussion
Chapter 5 discusses the quality of the extracted Airway Tree and the runtime
performance of our implementation.

Chapter 6 - Conclusions
The last chapter contains conclusions on this project and suggestions for
future work.
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Chapter 2

Background

In this chapter a background study will be conducted. This study will include
an introduction to the anatomy and terminology of the lungs, how images of
the lungs are created, image guided bronchoscopy, parallel and GPU com-
puting and a review of different Airway Tree Segmentation and Centerline
extraction methods. The last section in this chapter contains some conclu-
sions drawn from the background study which lay the foundations to the
methods that will be used to create our implementation.

2.1 The Lungs and Airways

We start by giving a short introduction to the lung anatomy and terminology.
Then we proceed to describing how images of the lungs and airways are
created using Computer Tomography.

2.1.1 Anatomy and Terminology

The pulmonary airway tree, also called bronchial tree, is a large tree that
distributes air flowing in and out from the nose and mouth down into the
lungs and to the respiratory membranes where air and blood exchange gases
like oxygen and carbon dioxide. From the nose and mouth the air is con-
ducted through trachea, a wide tube that is reinforced with cartilage. Tra-
chea goes down into the chest and divides into two smaller tubes called
the primarybronchi. These two tubes proceeds in to the left and right lung
respectively. Inside both lungs the primary bronchi divide again into the
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secondary bronchi and then again to the tertiary bronchi. The bronchi con-
tinues to branch out many times as shown in figure 2.1. The final destination
is the alveoli, which are small air sacs. It is in these air sacs that the oxygen
is diffused into the blood. Blood vessels run along these branches all the way
to the alveoli where the blood receives the oxygen and then continues back
to the heart.

Figure 2.1: The lungs and the pulmonary airway tree. Image is
public domain and taken from the U.S. National Cancer Institute
(http://upload.wikimedia.org/wikipedia/commons/d/db/Illu bronchi lungs.jpg).

2.1.2 Lung Cancer

According to the Cancer Registry of Norway [10], cancer in the lung and
trachea is one of the most common types of cancers in Norway. For men it
is the second most common type of cancer and for women the third most
common type with around 2500 new cases per year. This type of cancer is
most common for people above 50 and has one of the highest mortality rates
of up to 60-65% mortality 1 year after diagnosis.

2.1.3 Imaging of the Lungs

Chest X-ray and Computer Tomography (CT) are the primary tools for cre-
ating images of the lungs. Ultrasound is not used, because the ribs make it
difficult to send and receive ultrasound waves. Also, the air inside the lung
reflect large amounts of the waves thus making it very difficult to see far in-
side the lungs. Magnetic Resonance Imaging (MRI) is also not used to image

6



CHAPTER 2. BACKGROUND

the lungs because MRI is very dependent on water in the tissue and the lung
consist mostly of air and not water as the rest of the body. Nevertheless,
Lewis et al. [20] has shown that it is possible to image the airways of the
lung using MRI and a hyperpolarized helium gas which the patient inhales.

X-ray is one of the oldest image modalities used in the clinic. X-rays are
created by bombarding a plate of metal with electrons. The electrons will
interact with the atoms in the metal plate and photons with a very high
frequency are emitted. These photons are directed toward the body. Some
of the photons will pass through the entire body while others will be absorbed
by the tissue in the body. The photons that pass through the body hits a
plate. Locations where photons hit this plate will become darker, and the
more photons hitting at a specific location the darker the plate becomes at
that location. This plate becomes the X-ray image such as the one in figure
2.2.

Figure 2.2: Chest X-ray. Public domain image from
(http://en.wikipedia.org/wiki/File:Chest Xray PA 3-8-2010.png)

The amount of photons that are absorbed depends on the density of the
tissue. Bone and teeth absorbs the most, and regions where bones are present
becomes white in the final image. X-rays creates shadows or silhouettes of
parts inside the body. The resulting brightness is the sum of absorption
through the body at a specific direction. X-rays are most often used to
display teeth and bone fractures. This is because X-rays don’t provide much
contrast for soft-tissue, but instead provides a large contrast between soft-
tissue and hard-tissue like bone.

Computer Tomography (CT) is a technique which gives the ability to create
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images that display more than just shadows and thus better at creating
contrasts between different soft-tissue. CT can image the absorption of each
location in a 2D slice of the body and not just the sum of all absorptions at
a specific direction through the body. CT achieves this by sending several
X-ray beams through the body at different angles. By interpolating all these
signals in the frequency domain, a 2D frequency image can be created. The
actual image can then be retrieved by applying the inverse fourier transform
on the frequency image.

The output of the CT scanner is a set of 2D slices forming a 3D volume. Each
element in a 3D volume is called a voxel. Each voxel in a CT volume has a
number indicating the amount of X-ray absorption at that specific location
in the body. This number is usually stored in the form of Hounsefield Units
(HU). The HU scale is a linear transformation of the original absorption value
α and is defined so that distilled water at standard pressure and temperature
has 0 HU. The equation below is the transformation formula for the HU scale
and table 2.1 shows a list of different substances in the body and their HU
value.

HU = 1000α− αwater

αwater
(2.1)

Substance Air Lung Soft Tissue Water Blood Muscle Bone
HU -1000 -700 -300 to -100 0 30 to 45 40 700 to 3000

Table 2.1: Table of different substances and their HU value

The main disadvantage of using X-rays and CT to create images of patients is
that the high frequency waves are dangerous to the patient. The X-rays are
categorized as ionizing radiation, meaning that it can knock electrons out of
molecules making them ions. This injures the tissue. This type of radiation
can lead to cancer. The advantages of X-ray and CT imaging is that it is
a fast imaging technique that provides good resolution and intensity values
that can be mapped to physical tissue types.

Imaging The Airways

Because the airways contains air which absorbs very little x-ray radiation it
will appear as black on CT images. The airways will thus appear as black
tubes surrounded by white blood vessels and cartilage. Figures 2.3 and 2.4
shows two CT images of the lung from different orientations. Figure 2.3

8



CHAPTER 2. BACKGROUND

clearly shows the main bronchi as a black tube that divides in two and goes
to the left and right. Figure 2.4 shows some smaller airways in the form of
black circles surrounded by a grey border.

Figure 2.3: Parts of many CT slices put together to create an image from
another orientation than the slice angle.

Figure 2.4: One CT slice image of the lungs. Note the small airways depicted
as black circular objects with a grey border.
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2.2 Image Guided Bronchoscopy

Figure 2.5: Figure of the bronchoscope
and how it used to reach the air-
ways. Image taken with permission from
www.patient.co.uk/health/Bronchoscopy.htm

Bronchoscopy is a minimal-invasive
diagnostic and surgical procedure.
It allows the physician to reach
into the airways through the
mouth or nose as depicted in fig-
ure 2.5. A bronchoscope is a
flexible tube with fiberoptic ca-
bles that transmit light both ways
so that the physician can see in-
side the airways through the bron-
choscope. The bronchoscope also
contains a small shaft that can be
used for inserting instruments and
extracting tissue samples or re-
move tumors and other unwanted
tissue/objects.

SINTEF Medical Technology, St.
Olavs Hospital and the Norwegian
University of Science and Technol-
ogy (NTNU) in Trondheim, Nor-
way has a joint project on image
guided bronchoscopy. The goal is
to develop new methods by com-
bining the clinical bronchoscopic
expertise of the lung department
at St. Olavs Hospital with SIN-
TEF and NTNUs experience in
Image Guided Surgery.

This master thesis is part of this
joint project. The goal of this master thesis is to develop a method for
automatically creating maps of the airways from CT images. These maps
are needed to plan a route before the procedure to the region of interest such
as a tumor site and to navigate during surgery. To enable navigation during
surgery, electromagnetic tracking of the bronchoscope and registration of the
map to the patient is needed. A set of coordinates that are known to be
inside the airway can be established by moving the bronchoscope through
the airways. These coordinates are then used to register the patient to the

10



CHAPTER 2. BACKGROUND

map for instance by using the Iterative Closest Point algorithm.

Due to the complex branching structure of the airway tree it is hard to find
the correct path to the site of interest inside the lung. And the fact that the
branches becomes very narrow after a few branches makes it impossible to
use the camera on the bronchoscope in the small airways. By using image
guided bronchoscopy we hope to improve the success of navigation during
bronchoscopic procedures.

Image Guided Surgery is the field of using images, such as the ones acquired
through Computer Tomography scans, for planning and navigation before
and during surgical procedures. Image Guided Surgery enables minimal-
invasive surgery and the overall goal is to improve patient treatment by:

• Reducing the risk of complications

• Avoiding large surgical scars

• Removing more of tumor/unwanted tissue

• Shortening recovery time

2.3 Parallel and GPU Computing

Many image processing operations, such as segmentation, are very compu-
tationally demanding. This is mainly due to the large size of the datasets.
A volume of size 512x512x512 will have more than 132 million individual
elements, called voxels. If the image processing operation has to run a com-
plex routine on each of these voxels it will be very time consuming. But
image processing often performs the same set of operations on each pixel.
When this is the case, parallel processing can be used to process each pixel
in parallel. In this section we will go through the basic concepts of paral-
lel execution, different parallel architectures and programming models that
enables parallel execution.

2.3.1 Parallel Execution

Originally, programs were executed in a serial manner. Each instruction was
executed in order, one after one. Speedup of these programs was achieved by
running on a CPU with a higher clock speed. Around 2004, when Intel’s clock
speeds reached about 4 GHz, the power consumption and heat dissipation
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made a physical limit to how much the clock speed could be increased with
conventional cooling technology. This power wall turned the focus towards
parallel computing for speedup. Parallel computing entails dividing a task
into smaller subtask that can be executed in parallel. Several different forms
of parallelism exists, but they are usually grouped into two main categories:
Task and data parallelism.

Task parallelism

Task parallelism is based on the idea of dividing your program into separate
tasks and then running them at the same time on different processing ele-
ments. According to Flynn’s taxonomy task parallelism is the equivalent of
multiple instruction, multiple data (MIMD) computation. It is usually nec-
essary for the tasks to communicate and synchronize with each other, and
there exists two main schemes of doing this: through message passing and
through a shared region in memory.

The message passing model is often used on distributed memory machines
such as large supercomputers where there typically is several thousand nodes
/ computers each with their own processors and memory connected through
some high speed link. As the name indicates, communication and synchro-
nization amongst processing elements is done by sending and receiving mes-
sages. A popular Application Programming Interface (API) that use this
message passing scheme for parallel computing is the Message Passing In-
terface (MPI). McCool et al. [24] concluded that this scheme scales well to
large parallel computers such as supercomputers, but is generally harder to
program.

With the shared memory scheme, the different processing elements commu-
nicate trough a region in memory that all the processing elements have access
to. Locks and barriers are two very important mechanisms for the shared
memory scheme. Locks in the memory system enforce that only one task
at a time can modify an element in memory. Barriers block tasks until all
tasks have reached a certain point. OpenMP is one popular API that uses
the shared memory scheme together with threads for parallel computing.
McCool et al. [24] argued that the shared memory scheme is simpler to
program and reason with than the message passing scheme, but is more diffi-
cult to implement in hardware, especially with a growing number of different
processing elements.
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Data parallelism

Data parallelism is a less general form of parallelism than task parallelism.
With data parallelism the same task is performed on different parts of the
data in parallel. For instance if you want a program that multiplies each
element in a list with 2. Each element in the list can be multiplied with 2 in
parallel. This type of parallelism is often present in image processing tasks
where each pixel or voxel is processed using the same instructions.

Single instruction, multiple data, or SIMD, is a term from Flynn’s taxonomy
that is often referred to with data parallelism. SIMD is the simplest form
of data parallelism where a single instruction is performed on each element
in a collection of data. Stream processing takes this principle further and
instead of performing just one instruction, performs several instructions in a
SIMD manner. This gives the possibility to increase the arithmetic intensity
compared to vector processing where data is read and stored per instruction.
Stream processing is a more efficient data parallel scheme because memory
operations generally takes up more time than arithmetic. The set of instruc-
tion that is applied to each element in the stream processing model is often
referred to in literature as a kernel.

Sometimes it is not necessary, or wanted, to perform all the instructions on
each element in the stream processing model. With serial processing this is
done by the use of branching, typically in the form of if-else sentences. With
the SIMD stream processing model all the instructions in the kernel has to
be performed on all the elements which makes branching difficult. To this
purpose an extended model exists called SPMD: single program, multiple
data. This model is similar to the SIMD processing model, but also allows
branching.

2.3.2 Parallel architectures

Parallel execution of code requires hardware architectures that enables such
execution. Brodtkorb et al. [9] identified 4 layers of parallelism exposed in
modern hardware:

• Multi-chip parallelism: several physical processor chips

• Multi-core parallelism: similar to multi-chip, but the cores are all
inside the same chip.
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• Multi-thread parallelism: several execution threads, or contexts,
that can be switched amongst with very little overhead. This enables
the processor to reduce idle time. For example if one thread need to
perform some I/O operation that takes time, the processor can switch
to another thread that then can perform some arithmetic while the
other thread is waiting.

• Instruction parallelism: a processor that can execute more than one
instruction per cycle using multiple instruction units.

Today, processors use a combination of these types of architectural paral-
lelism. Different types of processors give different weight to different types
of architectural parallelism depending on the tasks the processor is meant to
perform. In the following sections the 4 main processor architectures, CPUs,
GPUs, FPGAs and Cell BE will be discussed with emphasis on how they
embrace parallel computations.

Central Processing Unit (CPU)

The CPU is the traditional processor found in computers. It is the main
processing unit of computers. Originally, programs were executed on the
CPU in a serial manner. Each instruction was executed in order, one after
one. An internal clock in the CPU is used to control the rate in which
instructions are executed and synchronize the various components in the
computer. CPUs were made faster by increasing the clock frequency and the
amount of transistors. To increase the clock frequency the input voltage has
to be increased. Increased voltage allows transistors to charge and discharge
more quickly thus allowing a higher clock frequency. The problem with
increasing the voltage is that processor’s power consumption also increases.
Around 2004, when Intel’s clock speeds reached about 4 GHz the power
consumption and heat dissipation made a physical limit to how much the
clock speed could be increased with conventional cooling technology.

This power wall turned the focus towards increasing processing speeds by us-
ing parallelism in a much larger extent than before. Early approaches to par-
allelism had been using Multi-thread and Instruction parallelism. Also, large
supercomputers embraced parallel execution by connecting several comput-
ers together creating multi-chip parallelism. But this was not good enough
and thus the power wall introduced multi-core processors which is the con-
cept of replicating the processor and putting several of them on the same
chip. This made the processor able to processes several completely different
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programs simultaneously on the same chip. At the time of writing, CPUs
typically have two, four or six cores.

Most CPUs thus embrace parallelism with the focus on being a fast general
purpose MIMD processor making it most suitable for task parallelism.

Graphic Processing Unit (GPU)

The GPU is a specialized processor compared to the more general purpose
CPU. Originally made to speed up the memory-intensive calculations needed
in demanding 3D computer games, these devices are now increasingly being
used to accelerate numerical computations in science. The calculations it was
intended for was texture mapping, rendering polygons and transformation of
coordinates. All of these types of calculations were very memory intensive,
but the calculations to be performed was the same for the entire collection of
data. Hence the GPU is a type of SIMD processor, it can perform the same
instruction on each element in a collection of data in parallel. The GPUs
achieve this by having several hundred functional units. These are usually
not called ”cores” in the same sense as the multi-core CPUs. McCool et
al. [24] defined a core as a processing element with an independent flow of
control. All of the functional units on a GPU does not have an independent
flow of control as they are grouped together in a SIMD manner, meaning that
the functional units in one group has to perform the exact same instruction
in a clock cycle. These SIMD groups can thus be referred to as cores with
the above definition.

Most GPUs today are SPMD processors, meaning that they also allow branch-
ing. The code flow is convergent if all execution threads in one SIMD group
follow the same path in a set of branches. When the code flow is convergent,
no special treatment is needed and only the code needed is run in a SIMD
manner. On the other hand, if the code flow is divergent in a SIMD group
the GPU will run the instructions from all the code paths that were used for
all of the execution threads. The result is that no time is saved and instead
more time is used. To ensure the correct answer produced by each processing
element the GPU will use masking techniques.

Modern GPUs are usually located on a graphics/video card connected to the
motherboard through a AGP or PCI-express slot. Some motherboards also
come with integrated GPUs, but these are not nearly as fast as dedicated
graphic cards. At the time of writing this report, both Intel and ARM, two
large processor manufactures, have created hybrid processors with both a
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CPU core and a GPU core on the same chip.

Field-Programmable Gate Array (FPGA)

An FPGA is a set of configurable logic blocks, signal processing blocks and
optional CPU cores that are all connected through a configurable intercon-
nect. By configuring these blocks and the interconnect, the FPGA can be
tailored to do a certain task. Brodtkorb et al. [9] argues that the FPGA
can be much harder to set up and program than other devices, but as it is
tailored for a specific task, it can be made very power efficient and fast. Also
they are generally more expensive.

Cell Broadband Engine

The Cell Broadband Engine was created by IBM and can be found in the
Playstation 3 gaming console. Cell BE uses a heterogeneous architecture
consisting of one traditional CPU core and 8 specialized accelerator cores.
All of them are connect through a high speed ring bus called the Element
Interconnect Bus. This special architecture makes the Cell BE excellent at
task parallel problems where the tasks need to communicate.

2.3.3 Parallel programming

In order for programs to exploit parallel execution, the processor(s) has to
know what it can run in parallel. For a long time compiler and processor
designers have struggled to automatically extract Instruction Level Paral-
lelism (ILP) from serial code. But as noted by McCool et al. [24] automatic
extraction without help from the programmer has provided limited results.
To properly run parallel code on parallel architectures, explicit parallel lan-
guages and APIs are needed.

This section goes through some of the most important languages and APIs
for parallel programming. Note that there exists many parallel languages
and APIs, this is only a small subset.

POSIX Threads, or Pthreads, is a simple API used for spawning and manag-
ing software threads run on the CPU. All synchronization and data handling
is left to the programmer. OpenMP is a more extensive API with a set of
directives and library routines that allows the programmer to easily express
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parallelism in serial code on shared memory system. Message Passing Inter-
face (MPI) is one of the main APIs for writing parallel code on distributed
memory machines, such as supercomputers. Todays most popular languages
like C and Fortran were not made with parallel computing in mind and so
many believe that new languages, and not just APIs, are needed to allow the
programmer to write efficient parallel code. Many new languages, such as
Chapel, are being developed with this goal.

Programming the GPU has originally been done with shader programming,
which refers to programming certain parts of the GPU’s rendering pipeline.
These shader languages includes OpenGL Shading Language (GLSL), High
Level Shader Language (HLSL) and C for Graphics (Cg). The problem of
doing general-purpose computations on GPUs using these shading languages
is that the problem has to be transformed into a graphics rendering problem.
CUDA is a newer language / API that can be used to program NVIDIA’s
GPUs without transforming the problem to a rendering problem. Performing
such general-purpose calculations on the GPU has been termed GPGPU.
Inspired by CUDA, a new language / API called Open Computing Language
(OpenCL) was developed that could be used to program GPUs, CPUs and
other types of processors from different vendors.

The Cell BE engine has traditionally been programmed using the IBM Cell
SDK API, though it has also been shown by Breitbart et al. [8] that OpenCL
can be used to program the Cell BE. FPGAs are usually programmed us-
ing circuit design languages such as VHDL and Verilog. The problem with
using such languages is that it requires the knowledge of a logic designer to
program.

Because of OpenCLs possibilities to program all these different parallel ar-
chitectures we decided to use this framework in our implementation and in
the next section we will discuss OpenCL in further detail.

2.3.4 Open Computing Language - OpenCL

Brodtkorb et al. [9] defined node-level heterogeneous computing as ”the use
of different processing cores to maximize performance”. In the previous sec-
tion we saw that some types of computations can be more efficiently executed
on one type of processing core and less efficient on another. For instance a
large data parallel task can run much more faster and efficiently on a GPU
than on a CPU. Heterogeneous computing implies using the devices which
are best suited for the computation at hand. This can maximize perfor-
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mance and minimize power usage, but it creates new challenges in terms of
programming. OpenCL (Open Computing Language) is a new framework
for writing programs that can execute on heterogeneous platforms. With
this framework the programmer is able to easily write code that can execute
on different types of devices, as well as synchronize and share data between
them.

The OpenCL framework standard is ratified by the Khronos group, an in-
dustry consortium. But it is up to the vendors themselves to make compilers
and drivers for OpenCL so that the code can run as specified in the standard
on the vendors hardware. For a more detailed description of the OpenCL
framework the reader is referred to the OpenCL website [16] and the book
by Tsuchiyama et al. [28].

OpenCL consists of two separate parts:

• OpenCL C Language - Extended version of C used to write kernels
which will execute on the compute devices

• OpenCL Runtime API - An API used to control and synchronize
the different devices available on the machine

Platform model

OpenCL’s platform model consists of one host and several devices. The host
is usually a thread running on the CPU. The devices act as accelerators, or
co-processors, to the host. The devices are subdivided, as figure 2.6 depicts,
into multiple compute units which are subdivided again into processing ele-
ments. Which devices are available on the system can be queried through the
OpenCL API as well as their properties, such as number of compute units,
max clock frequency etc. How the concepts of compute units and processing
elements map to the physical device differs for different types of devices.

Execution model

The host creates, using the OpenCL API, a context and a set of command
queues for each device. It also compiles kernels, written in the OpenCL C
language, for each specific device. The kernels are the programs that will
run on the devices. The command queues can be filled with instructions by
the host. These instructions include transfer of data, synchronization and
execution of different kernels.
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Figure 2.6: OpenCL’s platform model

Figure 2.7: OpenCL’s execution model
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OpenCL supports both task and data parallel execution. The data parallel
model used is the SPMD, single-program multiple-data, model. This allows
control flow in the kernels.

As figure 2.7 depicts, OpenCL divides the data-parallel tasks into a NDRange
hierarchy. An NDRange can be in 1,2 or 3 dimensions and sizes in all dimen-
sions can be set. The NDRange is further divided into work-groups of either
1,2 or 3 dimensions. The works-groups are further divided into work-items.
The work-items are run on the processing elements and run the actual con-
tents of the kernels. Each kernel gets a global id, group id and local id which
is an N-vector, where N is the number of dimensions. All of the work-items
in a work-group are guaranteed to run on the same compute unit.

Memory model

The kernels written in the OpenCL C language has access to 4 different levels
of memory. These levels differ in speed, size, physical location and how they
are shared. All of the four memory levels reside on the device itself. Figure
2.8 depicts this memory model and how the different levels relate to the
different parts of the device. The largest and slowest memory is the global
memory. It can be both read from and written to and is the device main
memory, usually located off-chip. The constant memory is the same as the
global memory, but is read-only and smaller. This memory can therefor be
cached for faster access. The local memory is local to a compute unit and
often found on-chip and therefor quite fast. The private memory is local to
the individual processing elements and is the fastest, but very limited in size.

• Global memory is the device main memory. It can be accessed by all
work-items.

• Constant memory is a read-only memory that can be accessed by all
work-items.

• Local memory is a read/write memory local to a work-group and is
shared by all the work-items in that work-group.

• Private memory is a read/write memory local to each processing ele-
ment.
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Figure 2.8: OpenCL’s memory model

2.4 Airway Tree Segmentation and Center-
line Extraction

Our map of the Airway Tree will consist of two things: A segmentation and
a centerline. The segmentation is a labeling of each voxel in the CT scan
that determines whether the voxel is part of an airway or not. The centerline
is a line that runs through the center of each airway. The centerline can be
both represented as a graph, with nodes and edges, or as a set of voxels.
Thus the centerline represents the Airway Tree on a structural level while
the segmentation describes the size and area of the airways.

Note that centerlines can always be extracted from a valid segmentation
result with methods called skeletonization. A segmentation result may not
necessarily be extracted from a centerline. Still, several methods start by
finding a centerline and then the segmentation from the centerline.

The airways are part of a more general structure which is a network of tubu-
lar structures. Tubular structures are elongated structures and has often a
near circular cross-sectional profile. Blood vessels and neural pathways are
two examples of other tubular networks. Methods for creating Airway Tree
segmentations and centerlines can often be used on other tubular structures
as well and visa versa. In this thesis we will use the terms airways and
tubular structures interchangeably.

Two notable reviews on Airway Tree segmentation and centerline extraction
from CT images can be found in the works by Sluimer et al. [26] and a newer
one by Lo et al. [21].
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A larger and more general review on vessel segmentation was done in Lesage
et al. [19]. In the next section of this thesis we provide a brief review of
tubular structure segmentation and centerline extraction methods based on
the categorization of Lesage et al. [19].

2.4.1 Tubular Models, Features and Extraction Schemes

Many different image processing methods have been used for segmentation of
tubular structures. Lesage et al. [19] provided a categorization of several of
these different methods into three schemes: Models, Features and Extraction.
Usually methods from all three schemes are needed. In this section we will
go through each scheme and look at some of the most common methods in
that scheme.

Tubular Models

Models are used to represent a priori knowledge about tubular structures.
These models can use image and/or geometric knowledge. Image knowledge
can for instance be information about the image intensity values of a tubular
structure. E.g. we know that airways in CT images appear as dark tubes
surrounded by a white wall. Geometric knowledge is information about the
shape of the tubes. E.g. size, radius, shape of cross-section, branching etc.
For instance it is very common to assume that the cross-section of the tubes
are circular.

Tubular Features

Features are used to detect possible tubular structures in an image or vol-
ume. Image knowledge from the tubular model is often used for the tubular
features. Image knowledge used for tubular features are often based on in-
tensity and first- and second-order derivate information. The most plausible
detected tubular structures can be used as input to an extraction method
such as region growing. For instance van Ginneken et al. [30] detected tra-
chea by looking for large dark circular regions in each slice. The center of
this circular region was then used as the seed for a region growing procedure.
Aykac et al. [1] used a similar approach with morphological operations to
detect the smaller airways in each 2D slice.
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A filter runs a set of operations on each voxel and its neighborhood. Filters
for detecting tubular structures are often called Tubular Detection Filters
(TDFs). One of the most common TDF methods use second-order derivative
information in the form of the eigenanalysis of the Hessian matrix. Frangi
et al. [11] created a very popular vessel-enhancement filter based on the
eigenanalysis of this matrix. Bauer et al. [5] showed how a centerline could
be extracted directly from the output of the TDF of Frangi et al. [11].
Another popular TDF based on the eigenanalysis of the Hessian matrix is
the Circle Fitting TDF by Krissian et al. [17]. This method was applied on
airways in two different works by Bauer et al. [6] and [7].

Tubular Extraction Methods

The extraction methods does the actual segmentation and finds the center-
lines. They are based on the assumptions in the tubular model and is guided
by the tubular features. The most common method to extract tubular struc-
tures is region growing.

Region growing starts with a set of seed voxels. From these seed voxels the
regions will expand to the neighboring voxels if they satisfy some predefined
properties compared to the seed, for instance specific ranges of intensity or
color. The region will continue to expand to the neighbors of the seed’s
neighboring voxels if they also satisfy the predefined property of the regions.
This continues until no more new voxels can be added to the regions. For
Airway segmentation the regions can be allowed to continue to grow as long
as the intensity remains low. The region growing will then stop at the airway
wall which is white. This works fine for the main bronchi and trachea where
the airway is surrounded by a solid white wall. But for the smaller airways
the contrast between the wall and lumen can become very small and because
of partial volume effects the wall itself can disappear. Using region growing
on these smaller airways will lead to what is called segmentation leakage.
The leakage occurs because region growing will grow outside of the airway
and fill the entire lung. This problem can be addressed by adding additional
constraints to the growing procedure or by detecting leakages and stopping
them when they occur as introduced by Mori et al. [25]. Another approach
is to do a conservative region growing on the trachea and main bronchi and
then use another method for the smaller airways such as done by Graham et
al. [13] and many others. Region growing provides a segmentation and a cen-
terline can be extracted from the segmentation by means of skeletonization
methods.
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Another method of extracting tubular structures is to directly extract their
centerlines and then finding the segmentation from the extracted centerlines
for instance by region growing. Direct centerline extraction is usually done
by some sort of ridge traversal. Aylward et al. [2] provides a review of
different centerline extraction methods and propose an improved method for
traversing ridges in the TDF result. Bauer et al. [5] presented a similar
ridge traversal method that used Gradient Vector Flow (GVF). Instead of
traversing the ridges created by the TDF, Bauer et al. [5] proposed to follow
the valleys created by the GVF method. This is based on the fact that the
magnitude of the vector field from GVF will decrease towards the center of
any closed object as noted earlier by Hassouna et al. [14]. Similar to region
growing these ridge/valley traversal methods need seed voxels and thus are
all highly dependent on identifying these properly.

Disadvantages of both ridge traversal and region growing is that they are
very sensitive to noise and initialization. Ridge traversal is quite fast, while
region growing can be slow, depending on the complexity of the growing
constraints. Also, both methods have very little parallelity.

2.4.2 Evaluation of different methods

Evaluation of segmentation results of tubular structures is considered to
be very hard and time consuming. Automatic methods need a set of pre-
segmented datasets which acts as ground truth segmentations. This has to
made by experts and this work is very time consuming and thus expensive.
Also, because of the complex structure it is hard to calculate metrics that
are fair and accurate. Due to the difficulty of automatic evaluation, semi-
automatic methods are often used. The evaluation of Lo et al. [21] was
part of the Extraction of airways from CT (EXACT) 2009 competition at
the Second International Workshop on Pulmonary Analysis. They used a
set of 20 chest CT datasets that were segmented manually using about 750
hours. An additional 20 chest CT datasets were used as a training dataset.
The main conclusion from the study was that no method was able to extract
more than 77% on average of the entire manually segmented reference tree.
Thus the problem of Airway Tree segmentation is far from solved. Note that
in this comparison study, only the segmentation results were compared and
not the centerlines.

In this thesis we selected the Airway Tree method to implement based on
this evaluation study. Figure 2.9 is taken from the evaluation paper by Lo
et al. [21] and shows each method tree length vs. false positives. The goal is
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to have has high tree length as possible with few false positives. There is of
course a trade-off in these two measures as can be seen on the method that
has the largest tree detected (method 4), but also the largest amount of false
positives. Based on our project goals, the criteria for select the Airway Tree
Segmentation and Centerline extraction method was the following:

• How fast is the method and how much can be gained by running the
method in parallel on a GPU (level of data parallelism)

• Large tree length detected

• Small false positive rate

• Method should be fully automatic

Note that having an exact segmentation for all airways detected is not that
important for our project. This is because the physicians know, with their
expertise in anatomy, approximately how large each airway segment is. The
ultimate goal is to detect as many correct airway segments as possible so that
the best route from trachea to the target site can be established. Thus, some
false positives that are the result of inaccurate tube borders can be tolerated,
while entire fake airway sections can not.

Figure 2.9: Figure from Lo et al. [21] that graphs tree length vs. false
positives for each method evaluated in their study. The red methods re-
quires user interaction while the black methods are completely automatic.
We investigated each method inside the circle except the semi-automatic one
(15).

From figure 2.9 we selected the top-left cluster (the best performing methods)
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and did an evualation of the potential of each method. This evaluation is
summed up in table 2.2. From this short evaluation we see that methods that
use the Hessian-based eigenanalysis as tubular features perform quite well (5,
7 and 13). And from those methods that perform well, the ones that don’t
use seeded region growing, but instead a ridge traversal on a TDF result has
the most parallelism (methods 7 and 13). Based on these observations and
the fact that method nr. 7 only provides an approximate segmentation we
decided to use method nr. 13 by Bauer et al. [6]. In the next section of this
chapter we explain Hessian-based Tubular Detection Filters in more detail.
We also go trough the methods that Bauer et al. [6] use to extract centerlines
and segmentation from the Tubular Detection Filter result.

Nr. Ref. Description Parallelism Comments
2 [15] Region growing

+ Morphological
operators for
detecting smaller
airways

Medium paral-
lelism on morpho-
logical operators
and low for region
growing part

Centerline has to
be extracted in
addition to seg-
mentation

5 [22] Region growing +
Hessian-based re-
gion growing for
smaller airways

Low parallelism
due to extensive
use of seeded
region growing

Seed has to be
selected manually
+ Needs training
which is very slow
+ Centerline has
to be extracted in
addition

13 [6] Circle Fitting
method (Hessian-
based TDF)
followed by a
ridge traversal
for centerline and
then a growing
from this

Very high paral-
lelism, both TDF
and GVF is em-
barissingly paral-
lel, but centerline
extraction is se-
rial

Provides center-
line and segmen-
tation. Centerline
extractions is
serial, but fast.

7 [7] Simular to 13.
Circle Fitting
method(Hessian-
based TDF) +
ridge traversal

Very high paral-
lelism for every-
thing except cen-
terline extraction

Segmentation is
approximated as
a set of circles

Table 2.2: Summary of the potential of the four best methods from the
evaluation study by Lo et al. [21].
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Figure 2.10: Maximum Intensity Projection of the TDF result on CT images
of the lungs. The brighter the voxels, the more likely it is that a tube exist
in that voxel.

2.4.3 Hessian-based Tubular Detection Filters (TDFs)

Tube Detection Filters (TDFs) are used to detect tubular structures, such
as airways, in 3D images. TDFs perform a shape analysis on each voxel
and return a value indicating the probability of the voxel belonging to a
tubular structure. The output of a TDF is often referred to as its response.
Figure 2.10 shows an example of a TDF response on a CT image of the lungs
displayed using maximum intensity projection (MIP).

The eigenanalysis of the Hessian matrix is one of the most common meth-
ods to determine whether a voxel is part of a tube. The Hessian matrix
is a set of variables that represents the second-order derivative information
at a specific voxel position ~v. First-order derivative image information in
each direction is often called the gradient. These image gradients, denoted
∇I(~v) = (∂I(~v)

∂x
, ∂I(~v)

∂y
, ∂I(~v)

∂z
), are vectors that says something about the change

in intensity values in all three directions at position ~v. The magnitude, or
length, of the gradient |∇I(~v)| describes how strong the intensity change is at
a specific voxel and the gradient vector points in the direction of the strongest
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Figure 2.11: Image gradients of 2D slice of a tube

intensity change. Figure 2.11 shows the gradient for each pixel superimposed
on an image of a tube’s cross-section.

Second-order derivative information can be extracted from the first-order
derivate information by calculating the gradients of each component in the
image gradient. For instance the second-order derivative information in the x
direction is∇(∇I(~v)x). The Hessian H(~v) is a matrix of these three gradients
as shown in Eq. 2.2.

H(~v) =
[∇(∇I(~v)x)
∇(∇I(~v)y)
∇(∇I(~v)z)

]
=


∂2I(~v)
∂xx

∂2I(~v)
∂xy

∂2I(~v)
∂xz

∂2I(~v)
∂xy

∂2I(~v)
∂yy

∂2I(~v)
∂yz

∂2I(~v)
∂xz

∂2I(~v)
∂yz

∂2I(~v)
∂zz

 (2.2)

The second-order derivative information describes how the first-order deriva-
tives change in the image. Thus it describes the change of the change of
intensity values in all three directions.

For an ideal small cylindrical tube this information is as shown in figure 2.12.
Graphs of the intensity, first and second-order derivative for two lines through
this tube are depicted in figures 2.13 and 2.14. One line goes through the
cross-sectional plane (green) and the other one goes inside the middle of the
tube (red).

From these figures, we can conclude with the following four observation for
tubular structures:

1. The smallest intensity change is in the direction of the tube (see figure
2.14)
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Figure 2.12: Two slice views of an ideal tube with a Gaussian intensity profile

Figure 2.13: Graphs of intensity, first derivative (change in intensity) and
second derivative of the green line in figure 2.12. Note that the second
derivative is highest at the tube’s center

Figure 2.14: Graphs of intensity, first derivative (change in intensity) and
second derivative of the red line in figure 2.12
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2. The highest intensity change is in the cross-sectional plane of the tube
(see figure 2.13)

3. The gradient vector field creates a sink or a source at the center of the
tube depending on the tube’s intensity (see figure 2.12)

4. The highest change of change in intensity ∂2I(~v) is in the center of the
tube because the gradients here change direction (see figure 2.13)

Shape analysis by eigenanalysis of the Hessian

The four previous observations about the derivative information of tubes can
be used to detect them. This can be done by checking all possible tube direc-
tions and checking the derivatives, but this would be very computationally
inefficient. Frangi et al. [11] showed how to use the eigenvalues of the Hessian
(Eq. 2.2) to efficiently determine locally the likelihood that a tube is present
at the current position.

The N eigenvectors of a NxN matrix are non-zero vectors with N components.
These eigenvectors have the property that when multiplied with the matrix
they remain parallel to that matrix. Each eigenvector ~ei has a corresponding
eigenvalue λi that is the factor it is scaled by when multiplied with the matrix
as shown in Eq. 2.3.

H~ei = λi~ei (2.3)

Because the Hessian matrix is a 3x3 symmetric matrix it has 3 eigenvectors
that are orthonormal, meaning that they are all normal to each other. The
eigenvectors of the Hessian also has a geometric interpretation: The eigen-
vectors corresponds to the principal directions of the second-order derivatives
which are the directions in the volume where the curvature is the maximum
and minimum. Recall from the previous section that:

1. The smallest intensity change is in the direction of the tube (see figure
2.14)

2. The highest intensity change is in the cross-sectional plane of the tube
(see figure 2.13)

Thus one of the three eigenvectors will be associated with the direction of the
tube, and the other two will lay in the cross-sectional plane of the tube. In
order to find out which eigenvector this is, one can look at the eigenvalues λi.
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To do this we sort the three eigenvalues and their corresponding eigenvectors
so that we have to following relation: |λ1| < |λ2| < |λ3|. The direction of
the tube will then be given by ~e1 which is the eigenvector with the eigen-
value of smallest magnitude |λ1|. The reason for this is that the eigenvalues
corresponds to the principal curvature which means that they represent the
amount of curvature, or in our case: change in intensity change. And since
we know that the smallest intensity change is in the direction of the tube, the
eigenvector with the smallest eigenvalue magnitude will also point in the di-
rection of the tube. The two other eigenvectors will lay in the cross-sectional
plane of the tube and have high corresponding eigenvalues. This is because
the highest intensity change is in the cross-sectional plane of the tube and
because all the eigenvectors have to be orthonormal. Figure 2.15 shows how
these different eigenvectors relate to a tube and its orientation.

Cross-section

Gradients

Gradients

Tube e⃗1

e⃗2

e⃗3

Figure 2.15: Diagram of an ideal tube and its eigenvectors

The reason why we look at the absolute value of the eigenvalues is that the
sign of the eigenvalues only indicate the direction of the gradient. In other
words: if the tube is white and the background is black the eigenvalues λ2
and λ3 will be negative. And if the tube is black and the background white
they will be positive.

Thus for an ideal tube the following relations of the eigenvalues should hold,
and can be used to detect tubular structures:

|λ1| ≈ 0 (2.4)

|λ1| << |λ2| (2.5)
λ2 ≈ λ3 (2.6)

Table 2.3 show which type of structures different value configurations of
eigenvalues of the Hessian correspond to.
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λ1 λ2 λ3 Structure
L L -H Plate (bright)
L L +H Plate (dark)
L -H -H Tubular (bright)
L +H +H Tubular (dark)

+H +H +H Blob (dark)
-H -H -H Blob (dark)

Table 2.3: Different value configurations of eigenvalues and their correspond-
ing structure/shape. H means high value and L low value.

Scale Invariance and TDFs

Note that in larger tubes, such as the one in figure 2.11 the gradients does not
exist in the center, because there is only intensity change at the border. Thus
it is not possible to calculate the Hessian at the center. For smaller tubes,
where the center is right next to the border, the gradients will exist in the
center. Solving this problem for larger tubes can be done by propagating the
gradient information from the border to the center. In the literature there
exist two main methods of doing this: Gaussian Scale-Space and Gradient
Vector Flow. The next two sections discusses these two methods in further
detail.

Gaussian Scale-Space

Gaussian Scale-Space uses Gaussian smoothing of the image at different
scales to propagate the gradient information to the center. Gaussian smooth-
ing will spread the gradient information in all directions. Different scales are
processed by using different standard deviations σ for the Gaussian smooth-
ing filter G. Thus for each scale the image is smoothed by convolution with
a Gaussian filter G with standard deviation σ. After each smoothing, the
TDF is run on the result and the final TDF result is the maximum TDF
response of each scale as shown in equation 2.7. Figure 2.16 depicts a cross-
section of tubes with two different sizes and the same tubes smoothed with
one scale for each of the two sizes. The vector field in figure 2.17 shows how
the gradient information is propagated to the center of each tube for each of
the two scales.

T (~v) = max
σ∈S

TDF(I(~v) ∗Gσ) (2.7)
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Figure 2.16: From left to right: Original image of tube cross-section; original
image with a low scale smoothing; original image with a high scale smoothing.
Note how the two small tubes to the left diffuse together when a high scale
smoothing is used.

Figure 2.17: Gradient vector field of image in figure 2.16 after Gaussian
smoothing of two different scales. To the left low scale and to the right high
scale smoothing.

Gradient Vector Flow

Opposite to Gaussian smoothing which diffuses the intensity of the original
image, Gradient Vector Flow (GVF) diffuses the image gradients instead.
GVF was originally introduced by Xu and Prince [31] as a new external force
field for active contours. The resulting gradient vector field ~V of GVF aims
to minimize the energy function E(~V ):

E(~V ) =
∫
µ|∇~V (~x)|2 + |~V0(~x)|2|~V (~x)− ~V0(~x)|2d~x (2.8)

where ~V0 is the initial gradient vector field. Figure 2.18 depicts how the GVF
work when run iteratively on a simple image of the letter A. The top row
shows the image and the magnitude of the vector field after a set of iterations.
The bottom row depicts the vector field superimposed on the image. Notice
how the gradients spread in the gradients direction for each iteration.

Bauer and Bischof [4] were the first to point out that GVF could be used
to create scale-invariance of TDFs and serve as a replacement to the Gaus-
sian Scale-Space method. This is possible because GVF will propagate the
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Figure 2.18: Example of GVF execution. From left to right: Top: 1)
Smoothed image. 2) Magnitude of image gradients ~V0 3) Magnitude of GVF
after 10 iterations, 4) Magnitude of GVF after 400 iterations. Bottom:
1)Zoomed area of smoothed image 2, 3 and 4) Image gradients superimposed
on zoomed image after 0, 10 and 400 iterations.

gradient information from the tube border to the center just as Gaussian
smoothing.

Also, GVF addresses an important problem of Gaussian Scale-Space: Gaus-
sian smoothing is not feature-, or structure-preserving which can lead to two
or more structures diffusing into each other. This can give the impression of
a false tube of a larger scale as shown in the high-scale smoothing images to
the right in figures 2.16 and 2.17.

GVF is a feature-preserving spatial diffusion of gradients and thus solves this
problem. Also, GVF does not have to be run for a set of scales such as with
Gaussian Scale-Space. Instead a single GVF result can be used and thus it
is not needed to know which tube scales are present in the data. Figures
2.19 and 2.20 shows the result of GVF when run on an image of tubes with
different sizes.

However, calculating the GVF field is very slow due to the need for many
iterations of the algorithm to reach convergence. This has limited its practical
usage for large volumes such as CT scans of the lung, but our previous work
[27] shows how GVF can be efficiently computed in only a few seconds by
running the calculations in parallel on a GPU.
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Figure 2.19: From left to right: Original image of tube cross-section; original
image with a low scale smoothing to remove image noise and used as input
~V0; magnitude of GVF vector field.

Figure 2.20: Vector field after GVF has been run on the smoothed image in
figure 2.19. Note how the gradient information has been propagated to the
center on the large tube cross section but still kept the small tubes to the
left.

Central TDFs

Unfortunately, determining whether the eigenvalues are high/low and nega-
tive/positive is not enough to accurately determine whether a voxel is part
of a tubular structure. More information and criterias are needed to increase
the accuracy of the TDFs.

Central TDFs are a class of TDFs that only use information at or close to
the current voxel, such as the eigenvalues. Frangi et al. [11] designed a very
popular central TDF that use two geometric criterias RA and RB and one
structureness S criteria to deal with noise. The geometric model is based on
the expected second order derivative information. This is done by considering
an ellipsoid where the length of each of the ellipsoids axis’ are defined as the
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λ1

λ2

λ3

Figure 2.21: Second order ellipsoid

magnitude of the eigenvalues as shown in figure 2.21. For a perfect tubular
structure this second order ellipsoid would look like a pancake because |λ1|
is very small and |λ2| and |λ3| are large.

The first measure RA is the largest cross section’s area divided by the largest
axis’ semi length. This ratio will be very small for plate like structures and
larger for blob and tubular structures.

RA = Largest cross section’s area/π
(Largest Axis Semi-length)2 = |λ2||λ3|π/π

|λ3|2
= |λ2|
|λ3|

(2.9)

The second measure RB is the volume of the second order ellipsoid divided
by the largest cross section’s area. This ratio should be highest for a blob
like structure because there is a change in intensity in all directions creating
a large ellipsoid. On the other hand, for a tubular structure the second
order ellipsoid would be very small, because there is very little change in the
direction of the tube.

RB = Volume/(4π/3)
(Largest cross section’s area/π)3/2 = (4π|λ1||λ2||λ3|/3)/(4π/3)

((π|λ2||λ3|)/π)3/2 = |λ1|√
|λ2||λ3|

(2.10)

The last measure is used to distinguish from background noise. With this
Frangi et al. [11] assumes that background noise have low contrast with the
actual background and thus the squared sum of all the eigenvalues should be
low. They called this the structureness measure S:

S =
√∑

i

λ2
i (2.11)
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To sum up: A tubular structure should have a high RA, a low RB and a high
structureness S. Frangi et al. [11] combined this in the following exponential
expression:

V = (1− exp
(
−R

2
A

2α2

)
) exp

(
−R

2
B

2β2

)
(1− exp

(
− S

2

2c2

)
) (2.12)

Central TDFs such as the methods presented by Frangi et al. above has
the advantage that they are fast to compute because they only use local
information. But using only local information may not always be enough to
differentiate between noise/non-tubular and tubular structures.

Offset TDFs

Offset TDFs use information at specific offsets from the center as well as
at the center. This can give a greater accuracy to the TDFs because they
use more information, but it also increases execution time because more
information has to be gathered and calculated from the image.

One simple offset TDF is the Circle Fitting (CF) method by Krissian et al.
[17]. With this method a circle is constructed in the cross-sectional plane
defined by the two eigenvectors ~e2 and ~e3. First a very small radius is used.
For a defined number of evenly spaced points on this circle the gradient vector
field is sampled using trilinear interpolation. The position of each point i on
the circle is found by first calculating the angle as α = 2πi

N
and the direction

from the center to the point as ~di = ~e2 sinα+~e3 cosα. The position of point
i on a circle with radius r and center ~v is then equal to ~v + r~di. As shown
in equation 2.13, the average dot product between the sampled gradient and
the inward normal (−~di) of the circle at each point is calculated for the
given radius. This radius is then increased and the average dot product is
calculated again. This is done as long as the average increases. The gradients
will continue to increase in length until the border is reached. After the tube
border, the gradients will decrease in length. Thus this method tries to fit a
circle to the gradient information such as shown in figure 2.22.

K(~v, r,N) = 1
N

N−1∑
i=0

~V (~v + r~di) · −~di (2.13)

The resulting TDF response of the CF method is the largest average dot
product. This offset TDF is more selective than Frangi et al. [11] central
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TDF, but is slower to compute because it has to sample many points using
trilinear interpolation. Nevertheless, this method also outputs a radius for
each voxel that can guide further processing and be used to create a soft-
segmentation result.

Figure 2.22: Krissian et al. [17] Circle Fitting method: A circle is inflated
from the center in the cross-sectional plane. The average dot product between
the gradient vector field and the best fit circle normals are used as TDF
response.

2.4.4 Centerline Extraction by Ridge Traversal

A common way to perform centerline extraction after tube detection is to
perform a ridge traversal on the result of the tube detection filters (TDFs).
This is possible when the TDF have the medialness property. Medialness is a
measure of how ”in the center” a position is inside an object such as a tube.
The response from a TDF with this property will be largest in the center
of the tube and decreasing from the center to the boundary. Both Frangi
et al. [11] and Krissian et al. [17] circle fitting method from the previous
section has this property. A ridge traversal procedure can then extract the
tube centerline by jumping from point to point inside the tube looking for
the next large TDF value. Figure 2.23 shows the extracted centerlines in
green superimposed on the TDF result on CT images of the lungs.

Aylward et al. [2] provides a review of different centerline extraction methods
and proposed an improved method based on a set of ridge criteria and dif-
ferent methods for handling noise. Bauer et al. [5] presented a similar ridge
traversal method with the GVF method. Instead of traversing the ridges
created by the TDF, Bauer et al. [5] proposed to follow the valleys created
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Figure 2.23: Maximum Intensity Projection of the TDF result on CT images
of the lungs. The green lines are the centerlines extracted from the underlying
TDF using ridge traversal.

by the GVF method. This is based on the fact that the magnitude of the
vector field from GVF will decrease towards the center of any closed object
as noted earlier by Hassouna et al. [14]. The TDF was used by Bauer et al.
[5] to automatically create seed points.

The ridge traversal method we decided to use is based on the method of
Aylward et al. [2]. The method starts with a seed voxel ~v0. For each voxel
~vi we know a tube likeliness value T (~vi) provided by a tube detection filter
such as the ones in the previous section. Also, for each voxel, we have an
estimate of the tube’s direction ~ti. This direction estimate is based on the
eigenvector associated with the smallest eigenvalue ~e1 of the Hessian matrix.
The direction of the seed voxel is set to this eigenvalue ~t0 = ~e1. From this
voxel a new voxel is selected as the next point on the centerline. This is done
by selecting the neighboring voxel in the direction ~t0 that has the largest TDF
value. This procedure is repeated until the TDF value of the next maximum
neighboring voxel drops below a certain threshold. During the traversal the
tube directions are updated as shown in equation 2.14 by taking the average
of the previous direction and the new voxel’s estimate ~e1. The average is used
so that the sensitivity to noise that will corrupt the eigenvector ~e1 is reduced.
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Also, the sign of the dot product between these two are multiplied with the
average to maintain the same direction. This is necessary because the sign
of the direction estimate ~e1 is not guaranteed to be equal for neighboring
voxels.

~ti = sign(~ti−1 · ~e1)
~ti−1 + ~e1

|~ti−1 + ~e1|
(2.14)

When the traversal stops, the method returns to the seed voxel ~v0 and con-
tinues traversing in the opposite direction −~t0.

Several seed points are necessary to extract the centerline for complex tubular
networks such as the Airway Tree. When a traversal procedure hits a voxel
that has already been extracted as part of another centerline the traversal
stops.

Multiple seed points can be retrieved by selecting all voxels that have a TDF
value above a high threshold and has the highest TDF value amongst its
neighbors. But this method requires some way to throw away invalid or
unnecessary centerlines as not all seed points will be valid and thus create
invalid centerlines. This can be done by rejecting very small centerlines and
requiring that the average TDF value of each voxel on the centerline is above
a given threshold.

This centerline extraction method has the advantages that it is simple and
quite fast. But the method can also easily stop prematurely due to noise or
local artifacts. Also this method is very sensitive to its initialization, the seed
points. If one tube segment has a low TDF value and there is no seed point
on the isolated tube segment its centerline will not be extracted. As this
method is completely serial its speed cannot be increased by parallelization,
but as the method is so fast compared to the TDF calculations this is not
an issue.

2.4.5 Segmentation by Inverse Gradient Flow Tracking

From the extracted centerlines a segmentation result will be created. A soft
segmentation can be provided by using the circles for each centerline point
from Krissian et al. circle fitting method. But in this work we will create a
segmentation result that for each voxel in the volume determine whether the
voxel is part of the airway tree or not. Bauer et al. [6] proposed a method
for performing such a segmentation from the centerline using the already
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Figure 2.24: Maximum Intensity Projection of the TDF result on CT images
of the lungs. The yellow area is the voxels that have been segmented as part
of the airways using Inverse Gradient Flow Tracking.

computed GVF vector field. They named this method Inverse Gradient Flow
Tracking Segmentation because it for each voxel tracks the centerline using
the directions of the GVF vector field, but in the inverse direction.

Basically, the method works by growing the segmentation from the centerlines
in the inverse direction of the GVF field as long as the length of the gradient
vectors are larger than the previous ones. This makes sense because the
magnitude of the gradient vectors should be largest at the border of the
tubes/airways. A segmentation result of using this method can be seen in
figure 2.24.

2.5 Conclusions from background study

In this chapter we concluded that many image processing tasks are data par-
allel because each image element can often be processed by the same instruc-
tions. We saw that modern graphic processing units (GPUs) are excellent at
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performing large data parallel tasks. We reviewed several methods for Air-
way Segmentation and Centerline extraction and concluded that the Hessian-
based methods perform very well and are very data parallel. We chose the
Hessian-based method by Bauer et al. [6] and explained this method in fur-
ther detail. In the next chapter we will go through our implementation of
this method step by step.
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Methodology

This chapter describes our implementation of Airway Segmentation and Cen-
terline Extraction. As explained in the previous chapter, we choose, based on
our extensive background study, to base our implementation on the methods
of Bauer et al. (see [6] and Bauer’s PhD thesis [3]). Figure 3.1 depicts the
pipeline of our implementation. The numbers indicates which section in this
chapter that describes the corresponding part of the pipeline.

One of the goals of this project was to exploit data parallelism and the
parallel processing power of Graphic Processing Units. For this purpose we
chose to program our implementation in C++ and OpenCL. OpenCL is, as
described in the previous chapter, a framework for parallel programming on
heterogeneous systems.

The pipeline of our implementation starts with some pre-processing which
involves some Gaussian smoothing and normalization of the data. This step is
explained in section 3.1. The next section, 3.2, explains how we implemented
the Circle Fitting tubular detection filter (TDF) introduced by Krissian et
al. [17]. Because the Airway Tree are tubular structures with various radius
a method to provide scale-invariance is needed. For this we choose to use
the Gradient Vector Flow method which was introduced by Xu and Prince
[31] and first used for scale-invariant TDFs by Bauer and Bischof [4]. Our
GPU implementation of this method is based on our previous work [27] and
is desribed in section 3.3. Note that in the pipeline the TDF is run two
times, once for small airways and once for large airways. The reason for this
is as explained in [6], that small airways with very little contrast will have
a tendency to dissapear in in the GVF process. Thus it is necessary to run
the TDF on the output of the pre-processing without GVF.

43



CHAPTER 3. METHODOLOGY

3.2 Pre-processing
Dataset cropping and Gaussian smoothing ++

3.3 Tubular Detection Filter
For Small Airways. Circle Fitting method

3.3 Tubular Detection Filter
For Large Airways. Circle Fitting method

3.4 Gradient Vector Flow

3.3 Combine TDF results

3.5 Centerline extraction
Ridge traversal method

3.6 Segmentation
Inverse Gradient Flow Tracking method

Pre-processed dataset

GVF vector field

TDF (small)

TDF (large)

TDF (combined)

Centerlines

Segmentation

Figure 3.1: Block diagram of the implementation. The number indicates
which section in this chapter describes that part.

The next two sections, 3.4 and 3.5, describe how we implemented a ridge
traversal and inverse gradient flow tracking method for the centerline extrac-
tion and segmentation respectively. These two steps are based on the works
by Bauer et al. [6], [3] and Aylward et al. [2].

In section 3.6, we discuss how our implementation was parallelized using
OpenCL and optimized for running on a GPU.

Throughout this chapter we will use the notation that I denotes the volume
or dataset and that ~v is a specific voxel position.
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Figure 3.2: One slice from a CT volume and an appropriate cropping shown
in red.

3.1 Pre-processing

3.1.1 Dataset cropping

The first step is to crop the dataset so that all of the air and fat surrounding
the lungs is removed from the dataset. This cropping saves a lot of processing
time because the rest of the pre-processing, the TDF and Gradient Vector
Flow all work on all voxels in the dataset. If we are able to prune half of the
voxels as not part of the lung, then the processing time can be twice as fast.
Figure 3.2 shows one slice from a CT volume and the cropping region in red.
Everything outside of the red border is removed and deleted.

In this thesis a novel lung cropping method was created. The cropping
method works by scanning one slice at a time in all three directions: x,
y and z. Each line in these slices are scanned sequentially. And for each slice
the method tries to determine whether the scan line went through the lung
or not. The number of scan lines that went through the lung is recorded
for each slice. If the number of scan lines that went through the lung is
above a threshold called minScanLines, we know that that slice has to be
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part of the dataset. The reason for this threshold is that noise can give false
reponses and thus we need a lower limit before we conclude that the scanned
slice is inside the lung. For each direction we look for the first and last slice
that has the minimum required scan lines inside the lung. These two slices
determines the border of the cropping. Algorithm 1 gives a more detailed
pseudocode for our cropping method. An advantage of this cropping method
is that each scan line can be processed entirly in parallel.

3.1.2 Gaussian smoothing

Gaussian smoothing of the dataset is necessary because of noise in the CT
images. If the data is not smoothed Gradient Vector Flow will have problems
with propagating the gradient information from the edge of the airways to
the center. Recall that this information is necessary at the center to calculate
the eigenvectors needed to perform the TDF. Smoothing to much can also
be a problem because important edge information might be lost. Smoothing
is executed by convolution of the dataset with a small Gaussian kernel of
scale/standard deviation σ.

In practice, discrete convolution is performed by calculating a new value of
each voxel based on a weighted sum of the neighboring voxels. The size
of the neighborhood is chosen so that it increases with increasing σ. We
chose to use a neighborhood NxNxN, where N = 2d3σe + 1. The weight
for each neighbor voxel and the current voxel is calculated using a Gaussian
distribution as

(I ∗Gσ)(~v) = 1
Z

d3σe∑
x=−d3σe

d3σe∑
y=−d3σe

d3σe∑
z=−d3σe

I(~v)e−
x2+y2+z2

2σ2 (3.1)

where Z is a normalization constant that is equal to the sum of all the
weights. Figure 3.3 shows the effect of the Gaussian smoothing on one CT
image slice with σ = 1.0.

3.1.3 Hounsefield Units Conversion

Recall from the previous chapter that the intensity values of X-ray/CT im-
ages are measured in Hounsefield Units that are directly related to the ra-
diation absorption amount of the tissue at a specific position. Since the
absorption amount varies for different types of tissue, the Hounsefield Unit
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Algorithm 1 Pseudocode of cropping procedure
for each slice direction (x,y and z) do

for each slice in current direction do
for each scan line do

for each scan line element do
if volume[position] > HUthreshold then

if whiteCount = Wlimit then
detectedWhite ← detectedWhite + 1
blackCount ← 0

end if
whiteCount ← whiteCount + 1

else
if blackCount = Blimit then

detectedBlack ← detectedBlack + 1
whiteCount ← 0

end if
blackCount ← blackCount + 1

end if
end for
if (detectedWhite = 2 and detectedBlack = 1) or (detectedBlack
> 1 and detectedWhite > 1) then

scanLinesInside[sliceNr] ← scanLinesInside[sliceNr] + 1
end if

end for
end for
for each slice in increasing order do

if scanLinesInside[sliceNr] > minLinesInside then
first cropping border for this direction is sliceNr
break

end if
end for
for each slice in decreasing order do

if scanLinesInside[sliceNr] > minLinesInside then
second cropping border for this direction is sliceNr
break

end if
end for

end for
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Figure 3.3: The effect of Gaussian smoothing. The image to the left is one CT
slice before Gaussian smoothing and the one to the right is after smoothing.

measure can be roughly mapped to the types of tissue or density of the tissue.
On the bottom of the scale is air which is around -1000 HU and on the other
end is bone with 700 to 3000 HU. Since we only care about differentiating
between the air that is inside the airways and all other types of tissue we use
a threshold HUmax of around -100 HU. All voxels with intensity above this
threshold is set to the threshold. The other voxels are scaled according to the
minimum HU, HUmin, so that the range of intensity values is converted to
floating point numbers from 0.0 to 1.0 as shown in equation 3.2. Note that the
minimum HU value for X-ray/CT images is almost always HUmin = −1024.
Figure 3.4 depicts the effect of this HU scaling and thresholding.

I(~v) =
{

1.0 if I(~v) ≥ HUmax
I(~v)−HUmin

HUmax−HUmin
else (3.2)

3.1.4 Initialize gradient vector field

The next step in the pre-processing stage is to calculate the initial gradient
vector field and normalize it. Recall that the gradient of an image ∇I(~v) is a
vector that describes the intensity change (derivatives of the image intensity)
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Figure 3.4: The effect of HU threshold. The image to the left is one CT slice
after Guassian smoothing and the one to the right is the same image after
HU thresholding by equation 3.2 has been performed.

at a specific point ~v in the image. The angle of the vectors will describe the
direction of the maximum intensity change and the magnitude of the gradient
vector describes how big the change is.

Calculating the derivatives numerically is usually done by using finite differ-
ence methods. We used a central difference scheme which takes two neigh-
boring voxel values in each direction and calculates the difference as shown
below:

∇I(~v)x = I(~v + (1, 0, 0))− I(~v − (1, 0, 0))
2

∇I(~v)y = I(~v + (0, 1, 0))− I(~v − (0, 1, 0))
2

∇I(~v)z = I(~v + (0, 0, 1))− I(~v − (0, 0, 1))
2

After the gradient vector field, ~V (~v) = ∇I(~v), has been calculated it has to
be normalized. The normalization is necessary to ensure contrast-invariance
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Figure 3.5: Gradient vector field normalization. To the left is the magnitude
of the image gradients after the image has been smoothed. To the right is
the same magnitude of gradients image after normalization by equation 3.3.

of the TDF. With contrast-invariance we mean that if an airway has low
contrast from the lumen to the wall it should get just as good TDF result
as an airway with a high contrast. The normalization is also necessary for
making sure that the important gradient information is maintained in the
GVF process. The normalization uses a parameter Fmax and all gradient
vectors with magnitude above this value should be scaled so that it has unit
length. All gradients vectors below this parameter will be scaled according
to this parameter. The reason for not normalizing all vectors to unit length
is that this would make GVF impossible and would increase the sensitivity
of noise. Equation 3.3 shows how the normalized gradient vector field ~V n is
created. Figure 3.5 depicts the normalization on a CT image.

~V n(~v) =


~V (~v)
|~V (~v)| if |~V (~v)| ≥ Fmax
~V (~v)
Fmax

else
(3.3)

3.2 Tubular Detection Filter

Recall from the previous chapter that a tubular detection filter (TDF) per-
forms a shape analysis on each voxel and return a value indicating the prob-
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ability of the voxel belonging to a tubular structure. We decided to use the
Circle Fitting TDF by Krissian et al. [17]. This method constructs a circle
in the cross-sectional plane of the tube and increase the radius until a best-fit
is found.

The cross-sectional plane is defined by the two eigenvectors ~e2 and ~e3 of the
Hessian matrix. First, the Hessian matrix H is determined by calculating
the gradient of the derivatives ~V in each direction (~V (~v)x, ~V (~v)y and ~V (~v)z)
as shown in equation 3.4. This is done with the central difference method as
explained in the previous section. Note that the TDF is run two times with
different input for the gradient ~V as shown in the pipeline diagram 3.1. For
the small airways the image gradient is used, thus ~V (~v) = ∇(I ∗G)(~v). While
for larger airways GVF has to be used to propagate the gradient information
from the tube border to the center. Hence for larger airways ~V is equal to
the output of the resulting vector field of GVF.

H(~v) =
[
∇(~V (~v)x)
∇(~V (~v)y)
∇(~V (~v)z)

]
=


∂~V (~v)x
∂x

∂~V (~v)x
∂y

∂~V (~v)x
∂z

∂~V (~v)y
∂x

∂~V (~v)y
∂y

∂~V (~v)y
∂z

∂~V (~v)z
∂x

∂~V (~v)z
∂y

∂~V (~v)z
∂z

 (3.4)

After the Hessian matrix has been determined the eigenvectors of this matrix
has to be calculated.

3.2.1 Calculating Eigenvalues and Eigenvectors

Two of the most common algorithms for calculating eigenvalues and eigen-
vectors of a matrix is the QR and QL algorithms, which are very similar.
In our work we decided to use the QL algorithm. The basic idea of this
algorithm is that any real matrix can be decomposed to the form:

H = Q · L (3.5)

where Q is an orthogonal matrix and L is the lower triangle of the H matrix.
The Householder transformation is used to find this decomposition. Recall
that an orthogonal matrix is a square matrix where each column contains
orthogonal unit vectors.

The QL algorithm is an iterative method that performs a sequence of trans-
formations that will eventually lead to the eigenvalues and vectors. We start
with H0 = H. Then for each iteration s we find the orthogonal and lower
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triangle matrix of the current matrix Hs and create the next matrix Hs+1
using the following equation:

Hs+1 = Ls ·Qs (3.6)

A theorem says that when this is repeated for several iterations, the eigen-
values will appear on the diagonal of the Ls matrix and the eigenvectors at
the columns of the orthogonal matrix Qs. The proof of this theorem is quite
complex and thus will not be repeated here. The time complexity for the QL
algorithm on a nxn matrix is O(n3) per iteration. We used an implicit QL
implementation adapted from the tql2 subroutine from the Fortran library
EISPACK.

After convergence, the eigenvectors and their eigenvalues are sorted according
to their magnitude so that |λ1| < |λ2| < |λ3|.

3.2.2 Circle Fitting

The eigenvectors ~e2 and ~e3 associated with the two largest eigenvalues are
used to construct the cross-sectional plane of the tube. In this plane we will
sample N points on a circle with radius r. The direction ~d to each point i
from 0 to N-1 on the circle is calculated in the following manner:

~di = ~e2 sin 2πi
N

+ ~e3 cos 2πi
N

(3.7)

Point i on the circle with radius r that lays on the cross-sectional plane with
center located at ~v is ~v + r~di.

The TDF value T is calculated as the average dot product between all the
sampled gradients ~V and the inward normals ~n of the circle at each point
for a given radius (see equation 3.8). Note that the inward normal ~ni of the
circle is at point i equal to the inverted directions vector −~di. The gradient
is sampled using trilinear interpolation. First, a small radius of 0.5 is used.
Then the radius is increased and the average dot product is calculated again.
The radius is increased as long as the TDF value increases or a maximum
radius is reached.

T (~v, r,N) = 1
N

N−1∑
i=0

~V (~v + r~di) · (−~di) (3.8)
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The pseudocode below shows step by step how the TDF value is calculated
for a given voxel ~v:

Algorithm 2 Pseucode of Circle Fitting TDF at position ~v
Calculate eigenvectors ~e1, ~e2 and ~e3 of the Hessian matrix at position ~v
maxSum ← 0
for r from 0.5 to maxRadius do

sum ← 0
for i from 0 to N-1 do
~di ← ~e2 sin 2πi

N
+ ~e3 cos 2πi

N

sum ← sum + ~V (~v + r~di) · (−~di)
end for
if sum > maxSum then

maxSum ← sum
else

break
end if

end for
return maxSum

3.3 Gradient Vector Flow

In the previous chapter, we explained that a method for propagating gradient
information from the airway wall to the center was necessary for being able
to calculate the Hessian and its eigenvectors at the center of the airway. We
chose to use Gradient Vector Flow (GVF) to do this.

The goal of GVF is to find the vector field ~V that minimizes the energy
function E defined as:

E(~V ) =
∫
µ|∇~V (~x)|2 + |~V0(~x)|2|~V (~x)− ~V0(~x)|2d~x (3.9)

where ~V0 is the input vector field. In our case of tubular detection this is set
to the normalized gradients of the volume that is smoothed by a Gaussian
(~V0 = ~V n from equation 3.3). Figure 3.6 shows the result of GVF after
applied on the normalized gradient vector field of a CT image.

The creators of GVF, Xu and Prince [31], explained how this vector field
could be found by iteratively solving the following Euler equation for each
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Figure 3.6: To the left is the magnitude of the normalized gradient vector
field. To the right is the same image after Gradient Vector Flow has been
performed.

vector component independently:

µ∇2~V − (~V − ~V0)|~V0|2 = ~0 (3.10)

This equations is solved by treating ~V as a function of time and solving the
resulting diffusion equations with the numerical scheme shown in algorithm 3.
The lapacian ∇2~V (~v) is approximated using a 7 point stencil finite difference
scheme.

Algorithm 3 3D Gradient Vector Flow
for a predefined number of iterations do

for all points ~v = (x, y, z) in volume do
laplacian← −6~V (~v) + ~V (x+ 1, y, z) + ~V (x− 1, y, z) + ~V (x, y+ 1, z) +
~V (x, y − 1, z) + ~V (x, y, z + 1) + ~V (x, y, z − 1)
~V (~v)← ~V (~v) + µ∗ laplacian −(~V (~v)− ~V0(~v))|~V0(~v)|2

end for
end for
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3.4 Centerline Extraction

Our program will extract the centerlines from the TDF result using a ridge
traversal method. This step is based on the works by Bauer et al. [6], [3]
and Aylward et al. [2].

The Centerline Extraction method starts by automatically creating a stack
of candidate seed voxels C. The candidate seeds are all voxels that have a
TDF value above a certain threshold called Thigh. Also, the voxel has to have
the highest TDF value of all of its closest 26 neighboring voxels. After all
voxels that satisfy these criteria have been added to this stack it is sorted
according to their TDF value so that the voxel with the highest TDF value is
located at the top of the stack C. This is done to ensure that the centerlines
of the extracted seeds are in the center of the airway.

Centerlines are then extracted from these candidate seed points as explained
earlier in section 2.4.4. The candidate seed points are handled in order,
starting with the one with highest TDF value. The traversal procedure con-
tinues as long as the TDF value of the next point don’t drop below Tlow or
an already extracted centerline is hit. The new centerline is accepted if the
following conditions hold:

1. The centerline length is above Dmin

2. The average TDF value of each point on the centerline is above Tmean

3. The centerline is not connected to any other centerline OR connected
to one other centerline OR connected to two different previously ex-
tracted centerlines

If the new centerline hit some previously found centerlines, they are all con-
nected. The output is the largest connected centerline.

The pseudocode in algorithm 4 gives a detailed description of how our im-
plementation works.

3.5 Segmentation

The segmentation method works by growing out from the extracted center-
lines and is based on the Inverse Gradient Flow Tracking method by Bauer
et al. [6], [3]. The method starts by dilating the centerline and adding it to
the segmentation result. This is done because the centerline might not be
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Algorithm 4 Pseudocode of centerline extraction by ridge traversal
input: a set of candidate seed points C, sorted on TDF value
for each seed point ~x0 ∈ C do
~t0 ← ~e1(~x0)
for each direction ~t0 and −~t0 do

while current point ~xi is not in existing centerline and T (~xi) > Tlow
do

max ← 0
L← ∅
for each neighbor pixel ~y of ~xi do

if ~y−~xi
|~y−~xi| · ~ti > 0 and |~V (~y)| > max then
max← |~V (~y)|
~xi+1 ← ~y

end if
end for
~ti+1 ← sign(~ti · ~e1(~xi+1)) ~ti+~e1(~xi+1)

|~ti+~e1(~xi+1)|
L← L ∪ ~xi+1

end while
end for
if |L| > Dmin and T (L) > Tmean then

if an existing centerline(s) was found then
connect current centerline to that centerline(s)

end if
end if

end for
output: the largest connected centerline
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exactly at the center. And for this method to work, the center voxels where
the gradient vectors change direction has to be part of the initial segmenta-
tion. The next step is to create a queue and add the neighbors of the intial
segmentation to this queue. Then this queue is processed one voxel at the
time.

A voxel ~x is added to the segmentation if there exists a neighbor voxel ~y that
is not part of the segmentation, has a larger GVF magnitude than ~x and its
GVF vector points towards voxel ~x.

Centerlines that are far away from the actual center of the tube may produce
holes and gaps in the segmentation result. We implemented a morphological
closing procedure to remove these holes. Morphological closing is dilation
followed by erosion. We used a simple 3x3 box structering element for this
operation.

Algorithm 5 Pseudocode of segmentation method
input: set of dilated centerline points C and the GVF vector field ~V
set S ← C
queue Q ← C
while Q 6= ∅ do
~x ← Q.pop()
for each voxel ~y ∈ Adj(~x) do

if ~y /∈ S and |~V (~y)| > |~V (~x)| and argmax~z∈Adj26(~y)
(~z−~y)·~V (~y)
|(~z−~y)||~V (~y)| = ~x

then
S ← S ∪ {~x}
Q.push(~y)

end if
end for

end while
output: segmentation S

3.6 Parallelization and GPU Optimizations

In this section, we present the details of how OpenCL was used to acceler-
ate our implementation on the GPU. All steps of our implementation was
implemented in OpenCL to run on the GPU except the actual centerline
extraction and segmentation step. These steps were not implemented using
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OpenCL because they are serial in nature and thus these steps are run on
the CPU serially using C++.

The Gaussian smoothing, Hounsefield Unit Conversion, vector field initial-
ization, TDF, morphological closing and GVF calculations are all completely
data parallel on the voxel level. An OpenCL kernel was made for each of
these steps that process one voxel each. The position of the voxel that each
kernel should process is found by using the get global id function in OpenCL.
For the dataset cropping method each scan line can be run in parallel in all
three directions.

3.6.1 Texture Cache Optimizations

Caching is a mechanism of storing data in a memory closer to the processor,
usually on the chip itself, so that future requests for that data can be serviced
faster. Most caching algorithms use the two following principles:

• Temporal locality: Data requested now is likely to be requested again
soon.

• Spatial locality: Data located near the requested data is likely to be
requested soon.

Most modern GPUs have a separate texture cache. These texture caches
exists on GPUs because a lot of video games and 3D applications use tex-
ture mapping to map an image to 3D objects to create a realistic 3D scene.
Textures are simply images, either 1, 2 or 3 dimensional.

When a specific pixel in the texture is requested, the GPU will store the data
and the neighboring data in a special buffer that is located near to where
the actual calculations are performed. Unlike regular linear storage buffers
which only have caching in one dimension, textures can cache neighboring
data in 2 or 3 dimensions. Thus when a pixel is requested, the neighboring
pixels above and below as well as those to the left and right are cached.

In our implementation, we have many 3-dimensional structures such as the
dataset itself, the vector fields and the TDF result. We store all of these
structures in textures, or images as they are called in OpenCL. A texture
can also have up to four channels. These channels exists to support color
textures and transparency. These channels are perfect for packing the x, y
and z components of the vector fields.
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Note that writing to 3D textures inside a kernel is not enabled by default in
OpenCL. To support writing to 3D textures, the OpenCL implementation
has to have the extension cl khr 3d image writes. At the time of writing,
only AMD support this extension. Because of this restrictions, 3D data is
written to regular 1-dimensional buffers inside the kernels. After the kernels
are finished the content of the buffers are copied into 3D textures so that
they can be cached in the next kernel.

3.6.2 Trilinear Interpolation

3D textures on the GPU have another big advantage. Data from textures
are fetched with a specific unit that can also perform datatype conversion
and interpolation in hardware which is much faster than doing it in software.
For our TDF we have to sample very many points on a circle. This sampling
is done with trilinear interpolation which is a technique to approximate a
continuous point in a discrete grid by using the 8 closest neighboring points
in the grid. Thus this requires access to 8 points in the texture and many
arithmetic operations to compute the sample. Using the texture interpolation
sampler in OpenCL removes the burden of doing this explicitly in software
and utilizes the caching mechanisms making sampling of continuous points
much faster.

3.6.3 Work-group Optimization

Recall that in OpenCL, work-items are an instance of a kernel and that the
work-items are executed on the GPU in groups. AMD calls these units of
execution wavefronts while NVIDIA calls them warps. The units are executed
atomically and has at the time of writing the size of 32 or 64 work-items for
NVIDIA and AMD respectively. If the work-group sizes are not a multiple
of this size some of the GPUs stream processors will be idle for each work-
group that is executed. There is also a maximum number of how many
work-items that can exists in one work-group. On AMD GPUs this limit is
currently 256 and on NVIDIA higher. Also the total number of work-items
in one dimension has to be dividable by the size of the work-group in that
dimension. So, if we have a volume of size 400 in the x direction, the work-
group can have the size 2 or 4 in the x direction, but not 3, because 400 is
not dividable by 3.

To summarize we have the following constraints for optimal work-group size:
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• The number of work-items should be a multiple of 64 (which is also a
multiple of 32)

• The number of work-items must be equal or lower than 256

• The number of work-items in each dimension must be dividable by the
size of the work-group in each dimension

The optimal work-group size can vary a lot from device to device so we
decided to use the fixed work-group size 4x4x4 (=64 total work-items in a
group) which satisfies all of the constraints above. To make sure that the
cropped volume is dividable by 4 in each direction we increase the size of the
cropping until the new size is dividable by 4.

3.7 Parameters

In this last section we provide a short summary of all the parameters that
are present in our implementation and the values that was used.

Symbol Description Values
Fmax Gradient Scaling parameter 0.2
µ GVF regularization parameter 0.05
σ Standard deviation of Gaussian Smoothing 0.5
HUmax Maximum HU value -100
HUmin Minimum HU value -1024
Dmin Min centerline distance 7
Tmean Mean TDF value to accept centerline 0.6
Thigh Threshold TDF to check as candidate seed points 0.6
Tlow Treshold for how low the TDF can be on centerline 0.4
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Results

Six anonymized Computer Tomography datasets of the lungs were provided
by St. Olavs Hostpital and SINTEF Medical Technology. In this chapter our
implementation is run on each of these six datasets.

Each of the next pages will present results of the tubular detection filter step,
centerline extraction and segmentation for each patient. The TDF response
and centerlines are depicted using maximum intensity projection (MIP). MIP
sends one ray for each pixel in the image through the volume and sets its
value equal to the maximum intensity on the ray’s path through the volume.
The viewer3d plugin for Matlab was used to create these MIP images. To
illustrate the segmentation we used our own Marching Cubes implementation
together with OpenGL. Marching Cubes is an isosurface extraction method
by Lorensen and Cline [23].

The method we have implemented is a general method for segmenting and
extracting centerlines from tubular structres and not just airways. To illus-
trate this we also provide results of extracting blood vessels from a Magnetic
Resonance Angio image and an Ultrasound Doppler image of a patient’s
head.
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4.1 Airway Results

Figure 4.1: Patient 1: Tubular Detection Filter

Figure 4.2: Patient 1: Centerlines
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Figure 4.3: Patient 1: Segmentation
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Figure 4.4: Patient 2: Tubular Detection Filter

Figure 4.5: Patient 2: Centerlines
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Figure 4.6: Patient 2: Segmentation
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Figure 4.7: Patient 3: Tubular Detection Filter

Figure 4.8: Patient 3: Centerlines
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Figure 4.9: Patient 3: Segmentation
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Figure 4.10: Patient 4: Tubular Detection Filter

Figure 4.11: Patient 4: Centerlines
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Figure 4.12: Patient 4: Segmentation
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Figure 4.13: Patient 5: Tubular Detection Filter

Figure 4.14: Patient 5: Centerlines
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Figure 4.15: Patient 5: Segmentation
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Figure 4.16: Patient 6: Tubular Detection Filter

Figure 4.17: Patient 6: Centerlines
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Figure 4.18: Patient 6: Segmentation
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4.2 Blood Vessel Results

Figure 4.19: The MR Angio dataset depicted with MIP
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Figure 4.20: Tubular Detection Filter

Figure 4.21: Centerlines
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Figure 4.22: Segmentation
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Figure 4.23: The Ultrasound Doppler dataset depicted with MIP

Figure 4.24: Tubular Detection Filter
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Figure 4.25: Centerlines

Figure 4.26: Segmentation
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4.3 Speed

To analyze the speed of our implementation the six airway datasets were run
on two different processors, one NVIDIA Tesla C2070 GPU and one Intel i7
720 CPU with 4 cores. For each dataset and processor we ran it 10 times and
calculated the average runtime. Note that the runtime includes everything
including loading the dataset from disk and storing all the results (centerline
and segmentation) on disk. The results are summarized in table 4.1. The six
airway datasets were run with the same parameters.

We also measured the runtime for each part of our implementation on the
NVIDIA Tesla C2070 GPU. Figure 4.27 depicts the runtime in seconds of
each step when performed on patient 1. The runtime for the different steps
varies from patient to patient, but the calculation of the GVF is always the
most time demanding step. Reading the dataset (I/O) uses much less time
if it has been read recently, due to caching.

Dataset Size after cropping GPU runtime CPU runtime
Patient 1 376x280x496 46 secs 12 min 52 secs
Patient 2 400x288x456 49 secs 14 min 43 secs
Patient 3 432x264x392 49 secs 10 min 44 secs
Patient 4 392x256x472 45 secs 14 min 4 secs
Patient 5 376x264x360 33 secs 10 min 5 secs
Patient 6 448x312x424 60 secs 17 min 25 secs

Table 4.1: Speed measurements
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I/O
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Create vector field

TDF
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Figure 4.27: Runtime for the different steps of the implementation in seconds
when run on Pasient 1. GVF is run with 250 iterations and Rmax is 15.
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Discussion

In this chapter, the performance and speed of the TDF, centerline extraction
and segmentation will be discussed based on the results presented in the
previous chapter.

5.1 Tube Detection Filter

The Circle Fitting TDF that was implemented has the ability to detect large
parts of the airway tree from the largest part, trachea to the smaller bronchi-
oles. But the TDF also gives a lot of false responses inside the entire lung.
Still, these responses have generally a lower value than correctly identified
airways. The main challenge with this TDF is that it has problems with
detecting tubes that deviates from a perfect circular cross-section. This is
very clear in branch points, especially in the larger branches such as the one
in figure 5.1. This drop in the TDF response creates problems for the cen-
terline extraction method because the ridge that it is supposed to traverse
disappears.

5.2 Extracted Centerlines

The centerline extraction method that uses ridge traversal is probably the
weakest method in this implementation. The ridge traversal method has
large problems dealing with noise and local artifacts. And this is due to the
local greedy nature of the ridge traversal algorithm. Branches that are not
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Figure 5.1: TDF response created with the Circle Fitting method. Note the
low TDF response in the primary left bronchi inside the red circle. This low
TDF response is because this branch has a shape that deviates a lot from a
circle.

detected properly by the TDF thus presents a big challenge for this method
and may lead to gaps and lines that are not in the center of the airway.
Also, small branches at the end of the detected tree from the TDF are often
discarded. This is because very short centerlines must be discarded due to
noise. Patient 4 and 5 in figures 4.10, 4.11, 4.13 and 4.14 clearly show several
centerlines that are not detected on the lower left side. In the TDF we can
see that this is due to gaps in the TDF of the airways.

5.3 Segmentation Results

The quality of the segmentation is very dependent on the extracted center-
lines. If a centerline on the smaller airways go outside of the actual airway
the segmentation may create a small leakage. Also when the centerline is not
exactly in the center of the airway the growing procedure may not be able to
segment the entire airway in the cross-sectional at that point. Most of these
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”holes” in the segmentation are fixed using morphological closing, but if the
gap is to big it might not be able to fix it. Such a gap is present on the left
main bronchi in the segmentation of patient 4 in figure 4.12.

5.4 Speed

Our implementation uses about 45 to 60 seconds on a full CT scan when
run on a NVIDIA Tesla GPU. This is a major improvement from the 3-6
minutes reported by Bauer et al. [6] that only used a GPU for the GVF cal-
culations. Though less than a minute is fast, an even faster implementation
would be preferable. We also ran our implementation on a multi-core CPU
which clearly shows that this application benefits a lot from the GPUs data
parallel processing power. The OpenCL/C++ implementation is an enor-
mous improvement over the serial Matlab implementation that was made in
the early stages of this thesis. The runtime of the Matlab implementation
was many hours.

Runtime analysis of each step of our implementation showed that the Gra-
dient Vector Flow calculation was the most expensive step and was very
dependent on the dataset size and number of iteration. The runtime of the
segmentation and centerline extraction steps are highly dependent on how
large the detected airway tree is, but generally they and the TDF calculation
are the three most expensive steps after the GVF. The I/O part is dependent
on whether the dataset has been read recently. Reading is much faster if the
dataset was recently read, due to caching.

We were not able to exploit the GPU’s texture system in the Gradient Vector
Flow computation because NVIDIA’s GPUs doesn’t support writing to a 3D
texture. AMD GPUs, on the other hand, support writing to 3D textures
and may thus be able to run the implementation even faster. Our previous
work [27] showed that AMD GPUs could calculate the 3D GVF several times
faster than NVIDIA GPUs. Unfortunately we did not have an AMD GPU
with enough memory to test this.
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Conclusions

6.1 Goal achievement

The purpose of this project was to create a system for Airway Tree Seg-
mentation and Centerline Extraction that exploits the computational power
of modern graphic processing units (GPUs) to speed up the processing of
the large CT scans. We did a wide background study to identify the best
methods for achieving this goal. We also investigated how GPUs could be
used to speed up these methods. We chose the most promising method and
implemented it using OpenCL and C++. We have shown that our imple-
mentation uses less than a minute on GPUs and is able to extract large parts
of the Airway Tree from CT scans. We also showed that our implementation
is very general and can extract other tubular structures from other imag-
ing modalities, such as blood vessels from a MR Angio scan and Ultrasound
Doppler image of the brain.

6.2 Future work

In the previous chapter we identified several problems with the implementa-
tion. The TDFs problems of identifying tubes with non-circular cross-section
and the centerline extractions lack of robustness to noise were two of the main
problems identified in the previous chapter. In this section we present the
identified problems and suggest how they can be improved.
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6.2.1 Pre-processing

In our implementation the dataset is first smoothed by a Gaussian filter.
Gaussian smoothing has the ability to reduce the effect of noise in the dataset,
but it also destroys important edge information in the image. For small low-
contrast airways the Gaussian smoothing can have the effect of reducing the
contrast even further or eliminate the airway entirely.

A possible solution to this problem can be to replace the Gaussian smoothing
with some sort of anisotropic smoothing instead as suggested by Bauer in
his thesis [3]. An anisotropic smoothing filter will vary the smoothing for
different directions. Thus an anisotropic smoothing filter can smooth more
in the direction of the tube where there should be none or very small intensity
change and smooth less or nothing in the cross-sectional plane of the airway
where there should be higher intensity change. Krissian [18] suggested a
smoothing filter that does exactly this.

6.2.2 Tubular Detection Filter

The main problem of the Tubular Detection Filter used in our implementa-
tion is that it creates a lot of false positives and gives a lower response to
airways that don’t have circular cross-section. This is quite evident around
each branch point and especially in the left primary bronchi as shown in
figure 5.1. We suggest to remove the assumption from the Circle Fitting
method of Krissian et al. [17] that the cross-sectional profile is circular. A
more appropriate assumption is that the profile of the airway is a closed
smooth bright border with black inside. Such as profile can be modeled with
a spline and its control points found using line searches in different directions
in the cross-sectional plane as shown in figure 6.1.

6.2.3 Centerline extraction

Inaccuracies in the eigenanalysis of the Hessian, Gradient Vector Flow and
TDF create problems for the centerline extraction method. If any part of the
airway has a very low TDF response, the centerline extraction can easily just
stop there. Also if the airway directions that are based on the eigenvectors
are very inaccurate the extraction can stray of from the airway. Generally
speaking, centerline extraction by ridge traversal is a greedy local search
algorithm that is not very robust. Thus we believe that this method is not
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Figure 6.1: To the left the Circle Fitting model and to the right the suggested
spline model with a set of control points in the cross-sectional plane.

well suited for this problem. The only real advantage of this method is
that it is fast. One very interesting alternative is tree reconstruction with
Ant Colony Optimization (ACO). ACO is a type of evolutionary algorithm
for graphs. Two recent articles (2011) by Türetken and González et al.
([29], [12]) shows very promising results in extracting centerlines from tree
structures like neural pathways and retinal blood vessels. We believe that
because this method tries to find the global optimal tree in the dataset instead
of finding a local greedy tree it will work better than ridge traversal. Still,
this method is very complex and not very fast, but may benefit a lot from
parallel processing.

6.2.4 Segmentation

We explained earlier how inaccurate centerlines can create small segmenta-
tion leaks and gaps when using the inverse gradient flow tracking method. A
valid segmentation can be created by collecting all the splines of the proposed
TDF in section 6.2.2 from the extracted centerline points and displaying a
surface from these. This is possible because the spline TDF can model the
tube’s cross-sections more accurately than the circle fitting TDF we used in
this thesis. This should also be faster as it avoids the processing necessary
for the growing procedure. Graham et al. [13] developed a method where
they established links between many candidate airway points and then grew,
using regular region growing, the segmentation inside the surface defined by
the best-fit circles at the two points. Such a method avoids segmentation
leakage and can be run in parallel on a GPU.
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6.2.5 Parallelization and Optimization

The calculation of the Gradient Vector Flow was the most expensive step
of our implementation. Textures were not used in this step, since NVIDIA
GPUs doesn’t support writing to 3D textures. A solution to this problem can
be to pack the 3D texture in a 2D texture. This might improve speed due to
caching of the textures, but address calculations has to be done to map the
3D coordinates to 2D. Also, after each kernel the result of the kernel has to
be copied into a new 3D texture. This can be avoided using the packed 3D
to 2D texture method.

The two serial steps of our implementation: centerline extraction and inverse
gradient flow tracking segmentation limits the speed of our implementation.
They might be improved by transforming them into data parallel algorithms
that can benefit from the computationally power of the GPUs. Doing all the
calculations on the GPU also brings the benefit of avoiding to transfer the
large amounts of data back to the main memory of the CPU.

GVF is necessary for the larger airways, but the large airways have a lot of
contrast and is very easy to extract with other methods such as a conser-
vative region growing with explosion control. Such a region growing can be
faster even when run serially. But without GVF ridge traversal for centerline
extraction becomes difficult. A hybrid solution where the large airways are
extracted by a simple region growing and the smaller airways with Hessian-
based techniques was used by Graham et al. [13] with great success.
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