
Master of Science in Computer Science
Januar 2012
Anders Kofod-Petersen, IDI

Submission date:
Supervisor: 

Norwegian University of Science and Technology
Department of Computer and Information Science

Intelligent Sliding Doors

Håvar Aambø Fosstveit





i
i

“master” — 2012/1/22 — 14:17 — page 1 — #1 i
i

i
i

i
i

H̊avar Aambø Fosstveit

Intelligent Sliding Doors

Intelligent systems, master thesis, fall 2011

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science



i
i

“master” — 2012/1/22 — 14:17 — page 2 — #2 i
i

i
i

i
i



i
i

“master” — 2012/1/22 — 14:17 — page i — #3 i
i

i
i

i
i

i

Problem Description
Truly smart systems need to interface with the behaviour of human and non-human actors in
their surroundings and on their terms

This project aims to develop an intelligent sliding door, which responds to user intentions.
The system is to be developed on a physical door using artificial vision.

Assignment given by: Anders Kofod-Petersen (supervisor)
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Abstract
You can see sliding doors everywhere, be it at the grocery store or the hospital. These doors
are today mostly based on naive, motion sensing, and hence not very intelligent in deciding to
open or not. I propose a solution by replacing the traditional sensor with the more sophisticated
Microsoft Kinect depth mapping sensor allowing for skeletal tracking and feature extraction.
I have applied hidden markov models to the behavioural features to understand the human
intentions. Combined with a few simple rules, this solution proved to be accurate in 4 out of 5
times in understanding the user’s intention in a controlled laboratory test.

Keywords: Sliding door, computer vision, Microsoft Kinect, behavioural features, hidden
markov model, behaviour recognition, artificial intelligence.
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Preface
This thesis document outlines the work done in my master’s project. The project continues
from a specialization project done in cooperation with a fellow student, John-Sverre Solem. As
such, some of the material in this thesis originates from the report delivered in the specialization
project. Section 2.3 is in special written together with John-Sverre Solem. At delivery, this thesis
will conclude my degree in Computer Science at the Department of Computer and Information
Science at the Norwegian University of Science and Technology.
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Chapter 1

Introduction

In the following sections I describe the background and motivation for doing the masters thesis.
I define the goals and research questions for the work. I also provide a description of the research
method used in the thesis work, including the literature survey and documentation method.
Finally I give an overview of the report structure, the chapters and their content.

1.1 Background and Motivation
The background for this project is the extention of a specialization project, and the completion of
my masters degree at the Norwegian University of Science and Technology. The main motivation
for the work is given in the article by Kofod-Petersen and Cassens (2009). This article points
out the weaknesses of today’s automated sliding doors in the context of ambient intelligent
systems, and outlines the challenges of interpreting human intentions. The work of feature
extraction within the computer vision field is, although not trivial, a well-known task. The
connection between these features and human intentions, however, is not. It requires a complete
domain model of human behaviour, composed of different movements, together with an inference
mechanism for intentions.

This challenge is now lifted from a sub-symbolic to a symbolic level. Making this lift, gener-
alizes the process, giving a result that can easier be transferred to other similar tasks. Another
motivational factor for this work is to lay down foundations, by exploring the possibilities within
the challenge, for applying the methods in other fields like pedestrian surveillance. This will
possibly allow the methods researched here to be applied in pedestrian crossings and in under-
standing the intentions of pedestrians.

1.2 Goals and Research Questions
Goal 1 Design a model of features, human behaviour and intentions.

Define a set of features needed in order to describe human behaviour in the context of a door.
Quantify the features, in a manner that the model is suitable both for feature extraction and
intentional reasoning.

Goal 2 Design a mechanism for capturing and extracting features according to the model.
Do a study in Computer Vision in order to find the required components and suitable tools

for capturing and extracting the features as described in Goal 1.
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2 Research Method

Goal 3 Design a reasoning mechanism for inference of intention.
Do a study within artificial intelligence theory in order to find a mechanism able to make

the decision about opening a door based on the type of features as described in Goal 1. The
mechanism must be able to conclude about the intentions of the person in front of the door.

Goal 4 Implement the reasoning mechanism from Goal 3
Develop an application able to make the door reason about a humans intentions.

Research question 1 What set of computer vision algorithms will meet Goal 2 efficiently?
Test the different algorithms in order to find a combination that performs well enough for

real-time performance.

Research question 2 What is a well suited reasoning mechanism for this task?
Test the different mechanisms found in Goal 3, in order to find the one with best accuracy
regarding the actual intentions of a person in front of a door.

1.3 Research Method
The work done in this project can be divided into stages. The stages are described in the following
list.

Problem overview In this stage I worked on the problem description, defining the problem
area, what would and would not be included. I had meetings with my supervisor Anders Kofod-
Petersen to find out where to focus my attention according to work previously done in the
specialization project and work done by John Sverre Solem in his masters thesis.

Literature survey This stage was mainly performed in the specialization project, where I did
research on similar problems, existing works and projects. For this purpose I made a table of
search terms (see Table 1.2) relevant to the project, dividing it into categories corresponding to
the parts as defined in the previous stage. I ran different combinations of these search terms
in several digital libraries (listed in Table 1.1). Different combinations gave different levels of
quality and relevancy in search results. The searches made in the work with the masters thesis
can be seen below the line in the table.

Table 1.1: Search engines used for literature survey

Search engine URL
IEEE Xplore http://ieeexplore.ieee.org
SpringerLink http://www.springerlink.com

ISI Web of Knowledge http://www.isiknowledge.com
ScienceDirect http://www.sciencedirect.com

Component research and evaluation Researching the different parts of the respective fields
and evaluate according to the research goals.

http://ieeexplore.ieee.org
http://www.springerlink.com
http://www.isiknowledge.com
http://www.sciencedirect.com
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Introduction 3

Table 1.2: Search terms used in literature survey

Sensor Computer Vision Model/Reasoning Human Behaviour
stereo vision stereo vision knowledge base intention

camera motion detection learning movement
motion sensor segmentation reasoning anatomy
sensor fusion kalman filter retrieval body language

facial recognition decision posture
vector semiotics hip

proximity syntax pose
marker-less semantic body alignment

motion tracking gaze
gaze direction

human behaviour
kinect depth mapping hidden markov model behaviour recognition

Development This stage consisted of expanding on the framework laid out by Solem (2010).
Later I had to try and develop a better reasoning mechanism.

Testing This included gathering data to train a hidden markov model and after gathering
data from interactions with the door, testing had to be done to evaluate the performance of the
reasoning mechanism.

Thesis writing This stage was done throughout the entire project. This consisted of refining
documentation already attained from the specialization project and processing new documenta-
tion and research.

Meetings Meetings with my supervisor, Anders Kofod-Petersen discussing and planning cur-
rent and future work.

1.4 Report Structure
This report documents the progress through my master’s project. It first introduces the main
problem with computers understanding human intentions, in this case sliding doors. It goes on
to cover the theory and background of the research fields in question. Further it goes on to
describe my solution and at last the evaluation of the solution.

The report goes through the general research in the fields of computer vision and artificial
intelligence in Chapter 2 according to the goals and research questions. It goes on to describe
the results of the research in Chapter 3 giving reasons for the choices made. It concludes with
the evaluation of performance and discussion and future work in Chapters 4 and 5 respectively.
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Chapter 2

Theory and Background

The project can roughly be divided into two parts. The first part is the data collection in the
form of computer vision discussed in Section 2.2. Further, the second part is the reasoning and
decision making from the collected data as explained in Section 2.3. For the two parts to work
together, they need to agree on a basic understanding of the domain. This is the model that we
elaborate in Section 2.1 as a basis for the two parts.

These parts come together to form the building blocks for a more intelligent sliding door.
By more intelligent, we mean more intelligent than traditional sliding doors that rely purely on
motion sensing.

2.1 Modeling Human Behaviour
An intelligent door must understand the intentions of human beings in order to know if it should
open or not. Understanding the intentions of humans is by no means a trivial task. Human
behaviour can be complex, and sometimes even irrational. A person walking towards a door can
suddenly change to standing still, reading the newspaper in the stand beside the door. Perhaps
the newspaper was the intended destination all along and not the door. Then again, the door
could have been the initial target, but the front page of the newspaper made the person change
his mind.

Martinec (2001) has done research on resources of movement focusing on interpersonal re-
lations. He describes a model for actions, using parameters like body angle and distance. He
also describes sign functions, mapping movements to meaning. His work can be used for de-
veloping a framework for interpreting body language. The work is based on previous work by
Hall, following concepts posed by Halliday. Moore (2008) extends the works of Martinec by
describing a context dependency, stating that the values (like distance and angle) valid for one
context may not be valid for another context, using surgery as a point of reference. Guerra-Filho
and Aloimonos (2006) take another approach, presenting a Human Activity Language (HAL) for
symbolic non-arbitrary representation of visual and motor information. This language is based
on the empirical discovery of a linguistic framework for the human action space. The described
space has its own phonemes, morphemes and sentences. This approach uses learning algorithms
for the different actions. Yet another approach is proposed by Amano et al. (2005). Here we
are presented with a linguistic representation of human motion, based on the knowledge repre-
sentation scheme proposed in The Mental Image Directed Semantic Theory (MIDST). A formal
language is defined, with syntax and semantics. The suggested application is interpretation of
human motion data from a motion capture system. The movements in this approach is described
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6 Computer Vision

with Locus formulas. The approaches made by Guerra-Filho and Aloimonos and Amano et al.
are similar, but while the latter one initially requires a full description of the modeled actions,
the first one uses learning algorithms.

2.1.1 Model
One of the goals for the project is to lift the reasoning process from a sub-symbolic to a symbolic
level. This implies the abstraction of the pixel stream from the cameras into symbols like position
and speed. The symbols to use in this case are features extracted from the video stream.

The features that can be extracted from one single video stream are numerous. Adding
an additional camera gives even more possibilities. Some of the features are more suited than
others, and Kofod-Petersen and Cassens (2009) suggests the use of body alignment, proximity
and visual target as features of human behaviour suited for modeling intention. The latter one
is later discarded as being of low value concerning intention.

The body alignment feature is divided into two features, the orientation of the shoulders
(shoulder angle) and the hips (hip angle), where the measured angles are relative to a point of
origin. This point will be the door in most of the cases, but can also include other people, when
more than one person is captured by the cameras.

The proximity feature gives a measure of closeness to the door. When adding the perspective
of time, this feature can be used to extract another feature, motion. This is useful in distinguish-
ing between people moving towards the door and moving away from the door. We now have the
full model of features suggested by Kofod-Petersen and Cassens (2009) as shown in Figure 2.1.

Go through door

Hanging around

Body alignment

Proximity

Visual target

Motion Shoulder angle

Hips angle

Intention

Meronomy (part-of)
Taxonomy (Is-a)

Figure 2.1: Features for modeling intention (from Kofod-Petersen and Cassens (2009))

2.2 Computer Vision
There has been much research into the low-level processing of image data. As a result of this,
there are several different ways of segmenting and extract features from various image sources.
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Computer vision is the science and technology of machines that see, where see in this case
means that the machine is able to extract information from an image that is necessary to solve
some task (Sonka et al., 2008).

The detection and tracking of humans are easy tasks for humans, but is difficult for a computer
for a variety of reasons. The human body can be morphed into many different poses, be clothed
in a myriad of different clothes and carry accessories. All this comes in addition to the problem
with the scenery, weather and lighting conditions in which to do the detection.

In Giosan et al. (2009) we can see the use of stereo vision in marker-less pedestrian detection.
This system uses full body contours when detecting humans. A result of this is that the human
model used for comparison is a library of contours derived from many different poses. The use
of stereo vision enables it to extract 3D information from the captured data, and this informa-
tion is used in combination with simple 2D edge detection to provide better results regarding
foreground/background separation.

Caillette and Howard (2004) uses a different strategy in which 3D models are extracted.
This is achieved using several cameras capturing an object, in this case a human, and running
calculations on the captured images. It produces a 3D voxel representation which is then matched
to a kinematic representation in the same 3D space. Because of this kinematic model that has to
fit to the object, the tracking can be very accurate, but requires the system to know the model
beforehand.

A 3D representation is also used by Corazza et al. (2007). In this system they create the 3D
representation by using the technique visual hull.

2.2.1 Computer Vision Theory
Early research suggested stereo vision as a valuable tool for data capturing. Stereo vision employs
the use of two cameras placed above the door and slightly separated to simulate two eyes. This
would give us a rough three dimensional representation similar to that which a human sees using
stereopsis (Sonka et al., 2008).

Stereo vision requires the use of epipolar geometry to calculate the relation between points
in the respective images. When two cameras view a 3D scene from two distinct positions, there
are a number of geometric relations between the 3D points and their projections onto the 2D
images that lead to constraints between the image points. These relations are derived based
on the assumption that the cameras can be approximated by the pinhole camera model (Sonka
et al., 2008).

As an alternative to stereo vision, a new opportunity opened with the release of the Kinect
depth mapping camera. This approach uses an infrared laser grid to extract 3D information in
front of the sensor.

There are several stages in the data collection pipeline. The first being the actual image
capturing. Second, some sort of algorithm has to be applied to segment the image. Following
this, features has to be extracted and finally converted to symbols. This is as we can see, a task
of getting from a sub-symbolic level to a symbolic level which is non-trivial (Sonka et al., 2008).

Segmentation

The main goal of the segmentation process is to divide an image into parts containing information
of interest. To do this, several methods and algorithms may be used depending on the problem
at hand. Taken what we know about the problem domain in the case of sliding doors, we see that
we have some potentially very noisy data and difficult objects to track. This makes segmenting
the image very hard to do in a consistent way.



i
i

“master” — 2012/1/22 — 14:17 — page 8 — #24 i
i

i
i

i
i

8 Computer Vision

The simplest form of segmentation is by applying a threshold, and examples of this include
the widely used Otsu algorithm. Applying a threshold works well when there is a clear difference
in contrast between the foreground and background. If this is not the case, you can have a hard
time getting consistent areas of interest if any at all as seen in Figure 2.2. In the case of a camera
pointing at an entrance from above a door there will in many cases be a cluttered background.
As such, a threshold in its own will not suffice and must in any case be combined with another
form of processing to be effective (Sonka et al., 2008). Shadings and lighting conditions further
challenge the threshold application. One way to overcome situations like this, is to use an
adaptive threshold. In this case, the threshold value can vary over the image. The variation can
be achieved either by using a function of local image characteristics, or simply by dividing the
image into smaller images, thresholding each one separately.

Figure 2.2: Application of Otsu: From left to right, original, gray scale and Otsu applied (Original
image: Matt Banks / FreeDigitalPhotos.net)

Another form of widely used and easily implemented segmentation is edge based segmentation.
Two of the most used methods are Sobel and Canny edge detection. These methods share much
of the same shortcomings regarding the sliding door as applying a threshold as can be seen in
Figure 2.3.

In Oral and Deniz (2007) we see the use of image subtraction. There are several methods
of doing image subtraction, the most simple being simple background subtraction. This is done
by comparing two frames, pixel by pixel, and marking the pixels with an absolute difference
higher than a given threshold as shown in Figure 2.4. This method can be quite good in finding
movements, and Oral and Deniz (2007) compares several image subtraction methods.

There are also other alternatives to the segmentation problem, and one of the candidates to
run is some sort of object recognizer. By using a HOG descriptor1 we can train the system to
detect people in a given frame. This provides us with bounding boxes in which there ideally will
be one person. We can then separate the image into these boxes for further analysis.

1Histogram of oriented gradient (HOG) descriptors are feature descriptors used in computer vision and image
processing for the purpose of object detection.
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Figure 2.3: Application of Canny

Figure 2.4: Application of image subtraction
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Histogram of Oriented Gradients Descriptors

Histogram of Oriented Gradients (HOG) descriptors are general feature descriptors used pri-
marily for object recognition purposes. When trained correctly, HOG descriptors give a good
detection rate for frames containing full body images of humans as can be seen in Figure 2.5.
The algorithm laid out by Dalal and Triggs (2005), uses several steps to compare images to
the HOG descriptors as can be seen in Figure 2.6. In general, this algorithm divides the image
window into small spatial regions, called cells. For each cell it accumulates a local 1D histogram
of gradient directions or edge orientations over the pixels of the cell. The combined histogram
entries of all the cells form the representation. As can be seen in the first step in Figure 2.6
contrast-normalization can be useful to obtain better invariance to illumination, shadowing, etc.
on the local responses before using them. The normalization can be done by finding a measure
of local histogram ”energy” over somewhat larger spatial regions called blocks, and using the
results to normalize all the cells in the block. It is these normalized descriptor blocks that are
called Histogram of Oriented Gradient (HOG) descriptors.

Figure 2.5: Application of HOG descriptor

Figure 2.6: The steps from left to right in the HOG descriptor algorithm (Dalal and Triggs,
2005)
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Depth Mapping

Depth mapping is the use of lasers or other ranging equipment to get a 3D representation of the
space in front of the sensor. Microsoft released an affordable solution for depth mapping with
their Kinect sensor for the Xbox 360 gaming platform in November 2010. This sensor projects
an infrared laser grid, and compares the resulting returned image with a base image to give
a 3D representation of what is in front of the sensor as can be seen in Figure 2.7. This 3D
representation is returned to the user in the form of a depth map ready for feature extraction.

Figure 2.7: Example of a depth image. Lighter gray means closer to camera.

Feature Extraction

The segmentation process reduces the raw image data into a more manageable amount of relevant
data. The ratio of information to data is still too low, the input data must be transformed into
a reduced representation set of features, a process called feature extraction (Sonka et al., 2008).

Horaud et al. (2009) does this by first obtaining 3D data from several cameras pointed at
the same spot. The images from these cameras are then segmented to subtract the background
from the human. These segmented images showing silhouettes are then compared to an already
constructed kinematic model of a human, consisting of connected ellipsoids. The best match
then represents the pose made by the human.

In this project, the information computed in the segmentation step is not sufficient to have
a complete system. Without feature extraction we would not be able to supply the features
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required by the model described in Section 3.1. The reasoning process is dependent on these
features, and as a result feature extraction is necessary for making a decision through reasoning.

2.3 Reasoning
When the wanted feature data has been collected, there are still some work to be done. The door
must be given a command open, or simply ignore the activities in front of the door. Reasoning
over the collected feature data gives us the possibility to automate the decision making process
and thereby the power to control the door. The model contains sufficient information about the
features for the reasoning process to conclude about intention enabling the system to send the
command.

The reasoning process must be able to take some input parameters, validate them against the
model, and output a response needed for a command to be sent to the door. There are several
techniques that can be suited for this kind of work. We will discuss the ones most relevant for
this project in the following sections.

2.3.1 Bayesian Network
A Bayesian network or belief network is a network of variables and their dependencies. It is
constructed as a directed acyclic graph. The Bayesian network is a probabilistic model in the
sense that each node is associated with a probability function. The inputs to this functions come
from the parent nodes, representing observed events, and in case of missing observations, the
probabilities of these events.

Headache (H)

Lack of sleep (S)
Lack of water (W)

P(W)

f

0.60

0.40

t
P(S)

f

0.60

0.40

t

0.25tt

0.15ft

0.10tf

0.02ff

P(H)SW

Figure 2.8: A simple Bayesian network

Figure 2.8 illustrates a simple Bayesian network with three nodes. The network models
headache as an effect of lack water and/or lacking sleep. The probability distributions for each
of the nodes are given. This model can answer questions like ”What is the probability of getting
a headache if I make sure I get enough sleep?” or ”Why do I have a headache?”.

Using a Bayesian Network for this project could model the features (see Table 3.1) as nodes,
with possible dependencies between them, related to a child node Intention. The intention is
then a probabilistic evaluation of all the features. This value is in other words the probability
of a person wanting to go through the door. If it is higher than a set threshold we can open the
door, if not, leave the door unopened.
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A challenge related to this approach would be to set up accurate possibilities for each event.
It is crucial to get a correct and close-to-reality model when dealing with the hard-to-observe
intentions of human beings.

2.3.2 Decision Network

When making decisions, a useful tool can be decision networks2. This is a general mechanism
for making rational decisions, following the principle of maximum expected utility (Russell and
Norvig, 2010). The decision network is similar to a Bayesian network, but includes extra nodes
for actions and utilities. The chance nodes (oval) represent the random variables, like in the
Bayesian network. The decision nodes (rectangle) represents the choices to be made. The utility
nodes (diamond) represents the utility function that describes the value of the results from a
decision. The choices made can influence different parts of the network. By describing the utility
of different states, it is possible to choose the decision that maximizes the utility.

Figure 2.9 shows how the choice of an Airport Site influences deaths, noise and cost. This
influence is based on the nodes Air Traffic, Litigation and Construction. The utility node takes
the deaths, noise and cost in consideration to conclude about the best Airport Site.

For this project the network would be the same as the Bayesian network, the only difference
being the addition of a decision node OpenDoor and a utility node. The utility function must
then evaluate the usefulness of the door opening or not in the different settings. This extension
might not be useful as the value of the decisions would only reflect the probability of the intention,
and most likely give the same answers as the plain Bayesian network would.

Air Traffic

Litigation

Construction

Deaths

Noise

Cost

Airport Site

U

Figure 2.9: A decision network (recreated from Russell and Norvig (2010))

2Also known as influence diagrams
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2.3.3 Hidden Markov Model
A Hidden Markov model (HMM) is a temporal probabilistic model in which the state of the
process is described by a single discrete random variable (Russell and Norvig, 2010). HMMs
are useful when working with an environment that changes over time. The model can utilize
transition models and sensor models to predict future states based on current observations.
Figure 2.10 illustrates an HMM with E as the evidence variable, and X as the hidden state
variable.

X(t)

E(t)

X(t+1)

E(t+1)

X(t+2)

E(t+2)

Figure 2.10: A general Hidden Markov model

Following this project, an HMM can model the intentions of people picked up by the sensors
above the door. The intention can be seen as the future position of a person. If a person is
outside but the model shows that the future position is inside, the intention is to go inside. The
Hidden Markov model requires a single variable, but can model more complex environments by
combining several variables into one big variable. Following this procedure, the features can be
combined into one variable in order to model the intention.

2.3.4 Rule Based Reasoning
Rule based reasoning utilizes a set of predefined rules in a knowledge base combined with some
input facts to find the solution to a problem. The approach is simple, but effective. It requires
a set of rules to be formed that model the problem domain. When facts are given, the system
can run through the rule base looking for rules that match the given conditions. On match the
system performs the appropriate actions.

Rules are typically of the form IF [condition] THEN [action]. The system loops over the
rules, or a subset of the rules until some condition is met, thus giving a control flow for execution
of the different parts of the program. Figure 2.11 lists a set of example rules that could have
been used for this project.

Working with rule based systems leaves little room for situations not captured by any rule
at all. This again might lead to either an exhausting set of rules, capturing most parts of every
thinkable situation, or fewer rules but with one or more all consuming rules that capture the
situations not expected. For this project it is easy to define that when no intention is shown
to go through the door, no opening of the door is necessary. This captures all the situations
that are not defined by the rule base. The challenge, however, is to define rules that are good
enough for all the situations where the door should open. Figure 2.11 demonstrates a small set
of primitive rules that involve features for the door opening.
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WHILE(RUNNING){
IF d e t e c t = humanDetect ( ) != TRUE
THEN BREAK

IF d e t e c t = TRUE
THEN trackHuman ( )

IF hipAngle + shoulderAngle = 0
THEN o r i e n t a t i o n = door

IF proximity < t h r e s h o l d
THEN closeToDoor = TRUE

IF speed > 0 && o r i e n t a t i o n == door
THEN heading = door

IF heading == door && closeToDoor
THEN i n t e n t i o n = walkThroughDoor

IF speed == 0 && o r i e n t a t i o n == door && headAngle == 0
THEN i n t e n t i o n = walkThroughDoor

IF i n t e n t i o n == walkThroughDoor
THEN openDoor ( )

IF i n t e n t i o n != walkThroughDoor
THEN closeDoor ( )

}

Figure 2.11: Example of a rule base for this project

2.3.5 Machine Learning
Machine learning is an approach to reasoning where a complete model of the domain is not
required. This approach aims at automatically building a knowledge base substituting the pre-
requisite of an omniscient model. The techniques described in this section is not what is primarily
aimed for in the goals of the project, but will serve as a perspective of alternative approaches
subject to future work for the reason of comparison. Machine learning can be divided into three
cases: supervised, unsupervised and reinforcement learning (Russell and Norvig, 2010). Super-
vised learning requires someone or something giving feedback about the outcome of a choice.
Unsupervised learning is learning in the case of lacking output, hence no feedback. Reinforce-
ment learning is learning based on reinforcements rather than being told what to do. The
reinforcements can be seen as rewards of different sizes given according to the choices made.

In this case, we have some domain knowledge, and the possibility of telling the agent what
is right and wrong. The task of learning from scratch without feedback, would be impossible,
since the doors only action is to open or not. No knowledge about when to open, results in the
door always being closed3. Since the door must be automated, the learning is better done in a
training process, where the cases are classified by intentions (want to enter, does not want to
enter).

Decision Tree Learning

A decision takes objects with a set of attributes, and returns a decision. Decisions are made by
feeding the attributes to the non-leaf nodes of the tree, following the branches corresponding to

3The feedback in a case like this could have been provided by a door opening switch, letting the door know
that it should have opened, when it did not. Perhaps an idea for future work.
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the value of the attribute, ending in a leaf node that gives the result of the decision. A simple
and illustrative decision tree is shown in Figure 2.12. The tree takes attributes that correspond
to the features of interest.

Distance

remote

No Body alignment

close

No

outside threshold within threshold

Heading

away towards

No Yes

Figure 2.12: A simple decision tree for this decision problem; Leaf nodes annotate decisions. The
Yes-node is the open door decision, No-node is the decision to leave the door closed.

Learning in the decision tree is mainly a classification problem. A set of training data must
be used where the correct decision is supplied. Then following a decision tree learning algorithm,
a tree can be built that classifies the training data.

The challenges in this approach is handling noise (decisions based on irrelevant attributes)
and over-fitting (over-specified tree not addressing new cases). Good, representative training
data, together with a well developed decision tree learning algorithm provide a robust decision
tree, allowing for qualified decisions.

Case-Based Reasoning

Case-based reasoning (CBR) is a method for problem solving and learning. According to Aamodt
and Plaza (1994) CBR is ”to solve a new problem by remembering a previous similar situation
and by reusing information and knowledge of that situation”. The method can be divided into
four main steps: Retrieve, Reuse, Revise and Retain (Aamodt and Plaza, 1994).

The four steps of CBR:

• Retrieve the most similar problems from the case-base

• Reuse the solutions that are applicable
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• Revise the suggested solution

• Retain the new problem/solution for later use

This is a strong and adaptive technique, with its strength in the continuous build of a growing
knowledge base. For this reasoning problem, this might not be the best approach. With few
methods of providing continuous feedback, we are better off left with a more static learning
phase.
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Chapter 3

Research Results

3.1 Modeling Human Behaviour
To be able to detect differences in behaviour, we need a model to describe it. This model will aid
us in the capturing of data, and later, the processing of it. This basic building block is essential
to the reasoning engine to be able to observe human intentions.

The model mapping the features to intentions is based on the model suggested by Kofod-
Petersen and Cassens (2009) and described in Section 2.1.1, and the further work by Solem
(2010).

3.1.1 Behavioural Features

Human motion comprises several features interesting for understanding human behaviour. First
we have the pure motion vector that determines the speed and current heading of the person.
In addition we have acceleration and angular velocity to determine future motion. Speed and
heading will tell us if a person is moving towards the door at all. Acceleration and angular
velocity can tell us something about the near future if the person is turning towards the door,
or starting to move from a stand still close to the door.

Motion as a feature requires observation over time as a single frame will only give us one
observation which is not enough to get a motion vector. To measure speed and heading we need
at least two observations. Acceleration and angular velocity will need at least three observations
as they measure the change in speed and heading. Because of this need for sequential data, the
system needs to identify a person, and keep track of him or her as long as it is relevant for the
door to make a decision.

Another feature not directly connected to human behaviour in this sense is proximity. This
is simply the distance from the person to the door, and it gives us a measure of how much time
we have to decide to open or not. A person far from the door is less important than a user
close to the door. Although a person have all intentions of going through the door when he is
10 meters away, that can change as the person gets closer, and the proximity measure gives us
time to postpone the decision. Proximity is divided into three regions: close, nearby and distant
as seen in Figure 3.1.

The last two features as defined by Kofod-Petersen and Cassens (2009) are related to a persons
body alignment. More precisely, we measure the angle of the shoulder and hip in relation to the
door.
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Figure 3.1: The different levels of proximity (from Solem (2010))

Table 3.1: Features, ranges and units

Main feature Feature Range/Unit
Motion Speed [−10, 10]m/s

Acceleration [−5, 5]m/s2

Heading [0, 360〉 ◦

Angular velocity [−π2 ,
π
2 ]rad/s

Proximity Distance [0, 10]m
Body alignment Shoulder angle [0, 360〉 ◦

Hip angle [0, 360〉 ◦
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3.1.2 Intention
All these behavioural features can be analyzed in order to try and understand human intentions.
The features have certain range values based on what a human is capable1 of doing as seen in
Table 3.1. The different combinations of values for each of these features will be fed into the
reasoning engine to try and decide to open the door or not.

3.2 Computer Vision
We have found the features we need to know about a person in front of the door. This presents
us with a list of requirements for what the computer needs to be able to detect. This being in a
real environment and operating on real-time data requires the sensor and computer to be able to
handle the incoming data in real-time. It needs to be able to recognize and keep track of a person
over time in three dimensional space to be able to get the various motion and angular vectors
required. Based on these requirements we can test the various computer vision tools presented
in Section 2.2.

Figure 3.2: A model of a human skeleton simplified to have only the features of interest namely
hip angle, shoulder angle and gaze direction

3.2.1 Evaluation of Segmentation Methods
All testing was done on a dedicated computer with an Intel Core 2 Duo 3.0 GHz processor and
4 GB of RAM. As this is going to be placed at a door, it may at a later stage have to be tested
on other hardware more suited to be permanently placed in a real world environment. These are

1Values are a little exaggerated to be able to handle the odd drunk trying to ram the door.
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also fairly powerful specifications compared to smaller and more mobile computational solutions.
It should however provide the best possible scenario for the algorithms to be tested under in
regards to real-time performance.

Threshold and Edge Detection

These simple and quick algorithms as described in Section 2.2 are well suited for detecting
changes in contrast in an image. This works well for statically lit environments, and can in those
cases give good results. This however is not the case in situations where the edges between the
foreground and background are not easily discernible, as they can be in real environments.

As seen in Table 3.2 these algorithms can be applied in real-time using OpenCV2. They do
however neither detect humans in an image by themselves, nor give us a way of getting motion
vectors for the respective humans, and have to be combined with other methods to complete
these tasks.

Table 3.2: Segmentation performance

Image size Segmentation Average time
640x480 Sobel edge detection 1 ms
640x480 Canny edge detection 7 ms
640x480 Otsu threshold 2 ms
640x480 Image subtraction 1 ms
640x480 HOG detector 517 ms

Histogram of Oriented Gradients

OpenCV provides the basic HOG descriptor algorithm described by Dalal and Triggs (2005). It
also has a default human detector for testing performance. This algorithm works well, but is in
its original form not fast enough for real-time application as can be seen in Table 3.2. In order
to get the performance up to at least 15 frames per second, the image must be kept to a very
low resolution. There has been later work in improving the HOG algorithm (Zhu et al., 2006; Jia
and Zhang, 2007) for use in real-time applications showing promise. The HOG algorithm does
however not provide any depth data, nor any tracking of features within a human. Because of
this it does not fulfill the requirements for the computer vision.

Depth Mapping

Depth mapping can be tested using the Kinect sensor provided by Microsoft. This sensor provides
depth data in the form of 640x480 pixel depth maps at a rate of 30 frames per second. This
satisfies the need for both depth data and real-time performance without any need to calculate
anything on the computer. This leaves the processor free to perform feature extraction on the
incoming data.

It seems based on this that depth mapping is the best alternative to the task of segmenting
the data before the feature extraction.

2OpenCV is a library aimed mainly at real time computer vision. It was developed by Intel, but is now
supported by Willow Garage. It is free under the open source BSD license.
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3.2.2 Kinect
The kinect provides, in combination with third party libraries, the opportunity to track people
in front of it. Work done by Solem (2010) gives a framework for using the kinect in this regard,
and provides us with almost all the features we need.

In addition to the features provided by the framework laid out by Solem (2010) we need to
find the angular velocity. This is done by taking the difference in two consecutive headings and
gives us the rate of change in direction relative to the door.

h0: initial heading, h: current heading, t0: initial time, t: current time

ω = h− h0

t− t0

3.3 Reasoning
The computer vision provides the data needed to reason about the behaviour observed. As
described in Section 2.3 we have several alternatives to reasoning methods. Solem (2010) sug-
gested rule-based reasoning as a well suited mechanism for inferring intentions. This method
however is very static, and dependent on a set of rules that may have to be changed for different
environments.

Further research pointed at hidden markov models as a potential improvement on the rule-
based approach. HMMs have been used extensively in the fields of gesture and speech recognition
(Tanguay Jr, 1995; Juang and Rabiner, 1991), as well as human behavioural detection (Uddin
and Kim, 2011).

The framework by Solem (2010) can provide the data to test, and if applicable, train and
implement a reasoning mechanism using HMMs.

3.3.1 Hidden Markov Model
A HMM can be seen as a variant of a finite state machine. It has a set of hidden states denoted
by Q. An output alphabet or observations denoted by O. Transition and output probabilities
expressed with A and B respectively, and last, the initial state probabilities denoted by Π. The
definitions of these properties can be seen in Equation 3.1, 3.2, 3.3, 3.4, 3.5.

Q = {qi}, i = 1, ..., N (3.1)

A = {aij = P (qj at t+ 1|qj at t)} (3.2)

B = {bik = bi(ok) = P (ok|qj)} (3.3)

O = {ok}, k = 1, ...,M (3.4)

Π = {pi = P (qj at t = 1)} (3.5)

There are three tasks to solve in the use of HMMs. One has to calculate the probability of
a certain output sequence, i.e. find the probability for a sequence of observations belonging to
the particular HMM. This task is done with the forward-backward algorithm Viterbi. Next one
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has to find the most likely chain of hidden states that could generate a given observation chain.
This too is solved by using the Viterbi algorithm. Last, one has to calculate the most likely set
of state transitions and output probabilities. This last problem is solved using the Baum-Welch
algorithm (Russell and Norvig, 2010).

3.3.2 Setting up the Model

The HMM must operate on one or more of the features described in Section 3.1.1. To do this
we have to adapt the feature output from the framework by Solem (2010) to be able to use it.
From the framework we get the raw data for each of the features for each time step as can be
seen in Figure 3.4.

To be able to put this data into a HMM we have to combine all variables into one variable as
described in Section 2.3.3. In the case of location data, where we originally have two variables3

in the form of x and z coordinates, we have to combine these into one variable. To do this we
divide the area in front of the door into a grid with each cell given a number as can be seen
in Figure 3.3. This will give us the path of a person as a number of discrete observations (e.g.
10→18→19→27→35→43→51→59). This can also be seen as a form of smoothing, as we decrease
the resolution of the data, or the alphabet to 64 possible observations.

If we are to add further features to the model we have to multiply the number of possible
values of each of the features to get the number of possible discrete observations. After gathering
a lot of data from interactions with the door, we can train a HMM using this data and an example
of this training can be seen in Figure 3.5.

3.3.3 Data Analysis

An example output of location data can be seen in Figure 3.4. The data output from the feature
extraction proved to be very prone to noise. Figure 3.6 is an example output from the body
alignment feature. This proved to be the problem in all features but the location data, and
reasons for this are discussed further in Chapter 5. Because of this, the pure location of a person
was chosen as the feature to learn from and predict.

As described in Section 3.3.2, to further smooth the data from the location feature, the
location was put into a 8x8 grid as seen in Figure 3.3. This gave us a series of discrete observations
from each of the interactions with the door. From all of this data a HMM could be trained.

Before we use this trained HMM we must first lay down some rules that will be triggered to
make the door open, i.e. the door will have to make an absolute decision when the person is a
certain distance away in order to open in time. If we combine Figure 3.1 with Figure 3.3, we find
that some of the grid cells are inside the area defined as close to the door. From this we define
a rule that says if the next predicted state places the person inside this area the door shall open
as it is most probable that the person has the intention of walking through.

From this we can see that if a person decides to change his mind inside this close area, we
are passed the point of no return, and the door will open no matter what. This has to do with
limitations in the form of accuracy in the data as well as mechanical limitations and is further
discussed in Chapter 5.

3We ignore the y axis as we are only interested in the motion in the x and y plane.
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Figure 3.3: The location grid in front of the door. 8x8 cells with the door located at the bottom
edge.
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Figure 3.4: An example of the output of location data based on detected coordinates. The door
is at the bottom here, and this is an example of four people walking through the door, and one
person not going through.
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Figure 3.5: An example of a trained hidden markov model using location data from interactions
with the door. The red circles are the states, which are 16 in this case, and the arrows with
corresponding values are the transitional probabilities of the states.
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Figure 3.6: An example of the noisy data generated from the feature extraction, in this case the
body alignment feature in a particular case.
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Figure 3.7: A 16 state, trained hidden markov model defining most probable state changes in
front of the door.
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3.4 A Sliding Door
Work done by Solem (2010) provided hardware to test on. The door can be seen in Figure 3.8.
Solem (2010) made an application framework for operating the door which had to be modified
in order to use it with HMM. This door has some limitations discussed further in Chapter 5.

Figure 3.8: The automatic sliding door built by Solem (2010)

3.5 Application
After modifying the framework by Solem (2010) to output sequences of data containing the
features described in Section 3.1.1 and described further in Section 3.3.3, I chose to develop an
application in the Java programming language. This was chosen because of ease of programming,
and availability of good libraries. The application was built around Jahmm4 in order to analyze
and test the data.

4A library for training and testing hidden markov models
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3.5.1 Application Structure
A general description of the structure of the application can be seen in Figure 3.9. This is
of course the structure of the components working after we are done getting and applying the
training data. The structure for training the system can be seen in Figure 3.10.

This application runs like a loop and keeps track of people and their respective paths in the
grid. For each change in grid location the path of the person is updated. On each update of
location a look-up is made to see if there is a high probability of the next state being withing the
threshold for opening the door. If the probability is high, the door opens, or else the location is
just updated.

Figure 3.9: A diagram showing the structure of the application.

Figure 3.10: A diagram showing the structure of the training application.
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Chapter 4

Evaluation

In order to test the usage of HMMs as a reasoning mechanism, we need a way of measuring how
well it performs and why. To do this we can compare it to existing solutions and do tests under
controlled conditions.

Solem (2010) proposed the usage of manuscripts for interacting with the door. This will
give clear defined sets of data that we know should lead to the door opening or not. The raw
data from these sets may also be tested to find out if the reasoning problem is solvable using
HMMs before moving on to actually using it. Further, these manuscripts will let the results
from this testing be compared to the original results obtained by Solem (2010). The manuscripts
describe how a person should interact with the door, and the intended goal of the interaction.
The manuscripts can be seen in Appendix A. Each manuscript was played out several times in
order to get a good sample size to analyze.

4.1 Testing
The testing had to be done in three successive stages. First, all the manuscripts would have to
be played out to first analyze the data to see if HMMs could be applied. After the first stage, if
successful, the data would be used to train a hidden markov model. Last, a new round of playing
out manuscripts to test against the trained reasoning engine and evaluate the final results.

Each of the 15 manuscripts were played out 20 times, resulting in 300 sets of data labeled
either open or not open denoting the intended action of the manuscript. This data was then used
to train the HMM, and the final trained HMM can be seen in Figure 3.7. Several combinations
of number of states and observations were tried, and it was settled on a 16 state HMM with an
alphabet with a total of 64 values.

After the HMM was done and trained, a new round of 20 runs for each of the manuscripts
were done, and the results of this can be seen in Table 4.1.

4.1.1 Performance Measure
The tests give us result states with two possible outputs, namely correct or incorrect. In a case
like this, it is most common to use the following terms:

True positive (TP) The door opened when the user intended to walk through.

False positive (FP) The door opened when the user did not intend to walk through.
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Table 4.1: Test results

Class Manus. Intention Opened ¬Opened Total

Simple

1 Positive 20 0 20
2 Positive 17 3 20
3 Positive 7 13 20
4 Negative 0 20 20
5 Negative 3 17 20

SUM 47 53 100

Intermediate

6 Positive 19 1 20
7 Positive 16 4 20
8 Positive 17 3 20
9 Positive 17 3 20
10 Negative 3 17 20
11 Negative 4 16 20

SUM 76 44 120

Complicated

12 Positive 17 3 20
13 Positive 18 2 20
14 Positive 10 10 20
15 Negative 12 8 20

SUM 57 23 80
TOTAL 180 120 300
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True negative (TN) The door stayed closed when the user did not intend to walk through.

False negative (FN) The door stayed closed when the user intended to walk through.

The results can also be seen in Table 4.2 grouped by these classifications.

Table 4.2: Rates of the different result classes

Class Manus. TP TN FP FN

Simple

1 20 - - 0
2 17 - - 3
3 7 - - 13
4 - 20 0 -
5 - 17 3 -

SUM 44 37 3 16

Intermediate

6 19 - - 1
7 16 - - 4
8 17 - - 3
9 17 - - 3
10 - 17 3 -
11 - 16 4 -

SUM 69 33 7 11

Complicated

12 17 - - 3
13 18 - - 2
14 10 - - 10
15 - 8 12 -

SUM 45 8 12 15
TOTAL 158 78 22 42

These different classifications can be used to evaluate different statistical measures relevant
to determining the performance of the door (Guda et al., 2004). This will let us compare the
performance to the original work by Solem (2010) as well as traditional sliding doors.

Sensitivity (ST) This value tells us the ability to identify positive results.

ST = TP

TP + FN
(4.1)

Specificity (SP) This value tells us the ability to identify negative results.

SP = TN

TN + FP
(4.2)



i
i

“master” — 2012/1/22 — 14:17 — page 36 — #52 i
i

i
i

i
i

36 Testing

Positive predictive value (PPV) This value tells us how accurate the system is at recog-
nizing positive intentions.

PPV = TP

TP + FP
(4.3)

Negative predictive value (NPV) This tells us how accurate the system is at recognizing
negative intentions.

NPV = TN

TN + FN
(4.4)

Accuracy (A) The rate of true results compared to all the results.

A = TP + TN

TP + TN + FP + FN
(4.5)

The statistical measures give us an indication of how good the door is at identifying the
correct intention. The results can be seen in Table 4.3. Equal to the findings by Solem (2010)
the different difficulties of the manuscripts were almost correct, meaning that from the system’s
standpoint, classes simple and intermediate were simplest and class complicated was most difficult
to handle.

Table 4.3: Statistical measures for results in percent.

Class Sensitivity Specificity PPV NPV Accuracy
Simple 73.3 92.5 93.6 69.8 81

Intermediate 86.3 82.5 90.8 75 85
Complicated 75 40 78.9 34.8 66.3

TOTAL 79 78 87.8 65 78.7

From Table 4.3 we see that the accuracy for class complicated is as low as 66.3 %. If we
compare this to the traditional sliding door as seen in Table 4.4, we see that the accuracy of the
intelligent sliding door is actually lower. This does not mean that the traditional door is better
globally, but in that particular composition of cases. This can be explained by looking at the
statistical measures. A traditional sliding door will always open if someone moves in its field of
view. This means it can not measure negative intentions. The equations then collapse to only
give a percent value of the ratio of positive and negative tests.

After all the testing is done, the door gets an accuracy of 78.7 % meaning it reads the user’s
intention correctly close to 4 out of 5 times. Like Solem (2010), the accuracy suffers because of
the high rate of false negatives. As can be seen in Table 4.5, the accuracy is marginally better
than the results obtained by Solem (2010). We also see that the sensitivity is higher, meaning
that the door is opening when it should at a higher rate. The specificity is lower though, meaning
that the door is opening to much when it shouldn’t.

As we have a different sample size of positive and negative intention cases we do not get a
good comparison with traditional doors in regards to accuracy. To address this we calculate the
mean square contingency coefficient or the phi coefficient of the 2x2 contingency table of possible
cases, i.e. TP, TN, FP and FN. The coefficient if given by the equation:
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Table 4.4: Statistical measures for traditional sliding door (modified from Solem (2010)).

Class Sensitivity Specificity PPV NPV Accuracy
Simple 100 0 60 0 60

Intermediate 100 0 66.7 0 66.7
Complicated 100 0 75 0 75

TOTAL 100 0 66.7 0 66.7

Table 4.5: Comparing performances of different doors.

Door Sensitivity Specificity PPV NPV Accuracy
Intelligent door 79 78 87.8 65 78.7

Solem (2010) door 70.4 90 92.6 63 77.4
Traditional door 100 0 66.7 0 66.7

φ2 = X2

n
(4.6)

Where n denotes the number of cases. This value will tell us how good the door’s performance
is compared to the real intentions of the people doing the tests. It ranges from -1 to 1, meaning
total disagreement and total agreement respectively.

From Table 4.6 we see that the traditional sliding doors have a 0 phi coefficient meaning it is
equal to a random prediction. In contrast we see that the intelligent door has 0.55 compared to
the results found by Solem (2010) at 0.58. From this we see that the my proposed solution was
a little less able to predict the true intention of people.

Table 4.6: Comparing phi coefficient.

Door φ

Intelligent door 0.55
Solem (2010) door 0.58
Traditional door 0
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Chapter 5

Conclusion and Future Work

This project has made an automatic sliding door more intelligent by better understanding human
intentions.

We have taken the raw data from a captured image stream and extracted the features of
interest. In the context of the chosen decision mechanism, we have evaluated the feature extracted
data to find the usable features. We have further adapted the output to make it fit into the
framework of hidden markov models. A large set of data samples were gathered using manuscripts
and fed into the learning algorithm of the HMM to generate the state and transition probabilities.
Using the trained HMM, we ran all the manuscripts again, and evaluated the performance of the
door using standard statistical tools.

5.1 Discussion
Through the results found in this project we see that doors can be made more intelligent. By this
is meant that the door can be made better at understanding the intention of humans interacting
with it.

From the results we can see some things of interest. A traditional door will always open if
there are people moving within its field of view. This means that for all cases where the person
did not intent to walk through the door, the door will still open, creating a false positive. From
this we understand that the door will always open when a person has the intention of walking
through1 and always makes mistakes when the person has negative intentions. This means that
as it now stands, a traditional door may be better in certain environments. If the door is placed
at a location with almost exclusively interactions with positive intentions, a traditional door may
actually perform better.

This project has focused on understanding a person’s intention when interacting with a door.
In doing so we have sacrificed the perfect positive intention reading of the traditional door with
the lower ability of the intelligent door at doing the same. This sacrifice however, has made
us able to better read negative intentions. One can argue if this is worth it. If we look at the
different manuscripts we see that the door is very good at predicting the correct intention in the
simplest cases.

The setup used in this project have some limitations that affected the results and design
decisions. In several of the test cases the system was not able to detect the person in time or at
all. These cases were then of course registered as false positives or true negatives and if removed

1In a best case scenario.
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from the calculations would present a better result. In addition to the difficulties in detecting
people, the data extracted was very prone to noise.

The decision to only use location data was made because of this problem with noisy data.
There would have been problems in using the data extracted from the e.g. body alignment in an
HMM as this would only teach the HMM the small movements made to generate the motion on
a bigger scale. By this we mean the subtle changes in the features as a person moves e.g. one
leg instead of the general motion in walking.

The location data was further reduced in complexity by dividing the area in front of the door
into cells with designated numbers to be able to make it work with the HMM. This however
did not preserve any good data about the motion, only current state or path and probable next
state. In spite of this it worked very well.

5.2 Future Work
This project proves that it is possible to better understand human intentions using hidden markov
models. In the previous discussion we looked at the relationship between traditional doors and
the new intelligent door. From this we see that it could be interesting to change the view of
when to open and not to preserve the true positives. By this we mean that the door should open
unless there is a negative intention predicted instead of the other way around like it was made
in this project.

It could prove beneficial to combine the findings in this project with the findings made by
Solem (2010) to make a more robust reasoning mechanism. It could also be good to look into
filtering and smoothing of the feature data to learn from the general motion instead of the small
motions in between.

There are news about a new Kinect sensor that is more sensitive and accurate that, when it
arrives, could be useful in getting more accurate and less noisy feature data.

The findings in this project could be transferred to other areas like pedestrian movement and
understanding. This could be very beneficial in the case of pedestrian crossings to better handle
the lights in the crossing. This could possibly ease traffic congestion and make the crossings safer
by being able to adapt to both the traffic and person trying to cross.
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Appendix A

Manuscripts

The manuscripts are based on work done by Solem (2010), and provides a systematic way of
testing the sliding door. The manuscripts cover both the intention of walking through the door
and not, and give instructions on how to accomplish this task. Each manuscript contains the
following parameters:

Category The difficulty of the case for the system.

Actors The number of persons in the case.

Intention The intended goal of the interaction.

Speed The walking speed.

Acceleration Rate of change in speed of the person.

Path The persons heading.

Description Detailed description.

Manuscript 1

Category Actors Intention

Simple 1 Positive

Speed Acceleration Path

Normal None Straight
Description: A person walks with normal speed straight towards the door, intending to

walk through it.
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Manuscript 2

Category Actors Intention

Simple 1 Positive

Speed Acceleration Path

Normal None Straight

Description: A person is standing at the side of the scene. He faces the door and heads
straight towards the door, intending to walk through it. The incoming path is straight but angled
about 30◦ off the z-axis.

Manuscript 3

Category Actors Intention

Simple 1 Positive

Speed Acceleration Path

Normal None Straight

Description: A person is standing at the side of the scene. He faces the door and heads
straight towards the door, intending to walk through it. The incoming path is straight but angled
about 45◦ off the z-axis.

Manuscript 4

Category Actors Intention

Simple 1 Negative

Speed Acceleration Path

Normal None Straight

Description: A person is standing at the side of the scene. He walks in a straight line in
parallel with the door. Distance between the door and the person is about 2 meters.
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Manuscript 5

Category Actors Intention

Simple 1 Negative

Speed Acceleration Path

Normal None Straight

Description: A person is standing next to the door. He walks diagonally across the scene,
away from the door.

Manuscript 6

Category Actors Intention

Intermediate 1 Positive

Speed Acceleration Path

Fast None Straight

Description: A person walks quickly straight towards the door, intending to walk through
it.

Manuscript 7

Category Actors Intention

Intermediate 1 Positive

Speed Acceleration Path

Normal Changing Changing

Description: A person walks parallel to the door and is suddenly told to walk through the
door, simulating changing one’s mind.
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Manuscript 8

Category Actors Intention

Intermediate 2 Positive

Speed Acceleration Path

Normal None Straight

Description: A pair walks together in a straight line, at normal speed, along the z-axis,
both intending to walk through the door.

Manuscript 9

Category Actors Intention

Intermediate 2 Positive

Speed Acceleration Path

Normal Mixed Mixed

Description: A pair walks together in a straight line, at normal speed, along the z-axis,
both intending to walk through the door. One person is then told to exit the scene to the side.

Manuscript 10

Category Actors Intention

Intermediate 2 Negative

Speed Acceleration Path

None None Standing

Description: Two people are standing in front of the door, facing each other. They are not
moving in any direction. They are talking together, gesticulating and moving at the spot. This
scenario simulates a casual talk in front of a door.
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Manuscript 11

Category Actors Intention

Intermediate 1 Negative

Speed Acceleration Path

Normal None Straight

Description: A person is standing at the side of the scene. He walks in a straight line,
diagonally across the scene, aiming at the opposite side of the door, at a point about 1 m away
from the door.

Manuscript 12

Category Actors Intention

Complicated 1 Positive

Speed Acceleration Path

Normal None Straight

Description: A person walks sideways in a straight line, along the z-axis, with the intention
of walking through the door.

Manuscript 13

Category Actors Intention

Complicated 1 Positive

Speed Acceleration Path

Normal None Straight

Description: A person walks backwards in a straight line, along the z-axis, with the inten-
tion of walking through the door.
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Manuscript 14

Category Actors Intention

Complicated 1 Positive

Speed Acceleration Path

Low None Changing
Description: A person is standing close to the door. He is standing with his back to the

door. He wants to go back inside again, and turns around.

Manuscript 15

Category Actors Intention

Complicated 1 Negative

Speed Acceleration Path

Normal Changing Changing
Description: A person is told to walk through the door. Walking along the z-axis, he is

suddenly ordered to turn left and go to the side.
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