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Abstract

The theory of Connectology sets forth three psychologically founded synaptic learning
mechanisms that may describe all aspects of animal learning. Of particular interest to this
thesis is the learning of animal motion behavior, or, more specifically, the development of
synchronized and repetitive movement patterns - gaits.

Computer simulations are performed according to the methodology of computational
neuroethology: Artificial neural networks are simulated operating in a tight feedback loop
with a structurally simple but mechanically realistic body and a physically realistic envi-
ronment. Neural network learning is purely synaptical and is performed solely within the
lifetime of one such ANN-controlled system. Additionally, the configuration parameter space
is searched by means of genetic algorithms.

Simulation results show examples of synchronized and repetitive movement patterns
developing when neuronal and mechanical model parameters are appropriately specified.
These simulations thereby provide the first examples known to us of a fully unsupervised and
self-organized artificial neural system that synaptically learns synchronized and repetitive
motor control. In spite of limited mechanical model complexity, the most efficient movement
patterns to some degree resemble the gaits seen in nature.
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Introduction

1 Introduction

This Master’s Thesis is a simulation study on artificial neural networks (ANNs) incorporating
synaptic learning based on the principles and mechanisms described by J. Hokland in Con-
nectology: Research Programme for Brain-Psychology [Hok06]. Connectology is a complete
neuronal theory containing a potentially complete set of synaptic learning mechanisms that
may describe all aspects of synaptic learning in biological systems. In a previous simulation
study [Axe06], I examined ANNs based on only one of the synaptic learning mechanisms of
Connectology, mainly operating in simple outer environments described by multi-dimensional
mathematical functions. Although incorporating a highly different ANN-environmental con-
text, this thesis builds on the results and experience obtained there, and can in that respect be
regarded as a continuation of [Axe06].

The neuronal theory of Connectology aims at being biologically realistic. This implies that
the networks used herein in some important respects differ from most of the neural network
types examined in the literature concerning ANN simulations. Many network types are based on
supervised learning meaning that, during simulation, there is an external entity evaluating ANN
performance. The network is thereby heavily assisted in learning to solve the problem at hand.
The most familiar example is, perhaps, networks based on backpropagation learning; there, the
output of the network is compared directly to some prespecified correct output, and the error
is propagated back through the network. Such types of learning are, of course, not biologically
realistic, and the networks examined herein are therefore unsupervised : Rather than having
an external entity providing “error correction”, the networks must learn to internally evaluate
the sensory feedback they receive from the environment, and thereby adjust their output, i.e.
behavior.

The latter is closely related to the principle of self-organization. A self-organizing system is
a system where a collection of units coordinate with each other to form a system that adapts
to achieve a goal more efficiently [CT03]. In connection with neural networks, this means that
networks are capable of adaptively organizing their internal structures to solve the task at hand
in a best possible way. Adaption is a key principle. In the same way that all biological nervous
systems are thought to be self-organizing, the neural networks of Connectology are aimed at
being self-organizing. The ability for self-organization is believed to be an essential property
that networks must possess for unsupervised learning of systematic and efficient behavioral
patterns to take place.

The models defining the simulations of this thesis are founded on the assumption that it is
pointless to study and simulate models of biological neuronal systems in isolation; only when
such models are coupled with, and operate in tight connection with, an outer environment
incorporating a physical, or physically simulated, body, may the capabilities of the neuronal
models at hand be evaluated properly.

The methodology used for the simulations of this thesis, then, is that of computational
neuroethology [Bee90, CB97]. Hillel J. Chiel and Randall D. Beer define the term as follows:

Computational neuroethology involves creating joint models of the relevant parts of
an animal’s nervous system, body and environment. [...] Using these models, one
can study the contributions of the components to adaptive behavior, and the new
phenomena that may emerge from their interactions. ([CB97] p. 556)

Based on the above, this thesis concerns ANNs operating in tight connection with outer
environments described by physically and mechanically realistic bodies. The two model compo-
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nents, the neuronal model (ANN) and the mechanical model (body), operate in a tight feedback
loop where the neuronal model provides muscular activation signals to control the limbs of the
mechanical model, and where the mechanical model provides the neuronal model with sensory
feedback upon which behavior can be adjusted. The goal of the thesis is to examine the ability
for sensible ANN-controlled movement behavior to emerge in such systems when challenged
with different system level goals, such as rising up or moving forward. The latter - forward
movement - is the main experimental area of focus herein. More specifically, thereof, this thesis
investigates the possibility for (partly) synchronized motional control patterns to develop in
ANNs based on unsupervised and hopefully self-organized synaptic learning.

Of this it becomes evident that animal motion behavior is relevant to this thesis. Animal
motion behavior is characterized by repetitive and partly synchronized movement patterns such
as crawling, walking, jumping, galloping, and so on. Collectively, such systematic movement
patterns are termed gaits. A central task in the evaluation and inspection of the simulation
experiments of this thesis, then, is to look for such gait-like movement patterns, or, perhaps
more realistically, to look for tendencies indicating that such synchronized movement patterns
may develop.

I personally believe the modeling and simulation of motion behavior is the right place to
start in evaluating and developing a biologically realistic neuronal model of animal learning. As
Roger Sperry, Nobel Prize winner 1981, said in 1952 [Kol06]:

The brain is the organ that moves the muscles. It does many other things, but all of
them are secondary to making our bodies move. (p. 280)

To me, therefore, when considering a reasonable time horizon, the modeling and simulation
of animal motion behavior is the most exciting goal of Connectology, and the possibility for
“intelligent” motion behavior to emerge in a virtual creature operating in a (simulated) physical
environment summarizes the essence of my motivation for working with the theory.

1.1 Final problem description

The theory of Connectology (J. Hokland, 2006) sets forth three psychologically founded synaptic
learning mechanisms that may describe all aspects of animal learning. The task is to perform
a simulation study on artificial neural networks (ANNs) based on this theory, of which the
main goal is to investigate the possibility for synchronized and repetitive movement patterns
to develop in ANN-controlled mechanically realistic virtual creatures operating in a physically
realistic outer environment. Synaptic learning should be by means of the three synaptic learning
mechanisms of Connectology: the Skinner, Pavlov and Hume mechanisms. The configuration
parameter space should be searched by means of genetic algorithms (GAs). Performance eval-
uation should be by means of visualization of creature behavior.

The main project tasks can be summarized as follows:

• Development of program system for ANN simulations, incorporating neuronal and me-
chanical model calculations, GA parameter search and 3D visualization of creature be-
havior.

• Investigation of the possibility for synchronized and repetitive movement patterns to de-
velop in ANN-controlled virtual creatures by means of computer simulations.

10



Introduction 1.2 Outline

1.2 Outline

Section 2 gives basic background information on biological and artificial neural networks, includ-
ing a short historical overview of ANNs. Additionally, a short introduction to the theoretical
context of this thesis, the Connectology research programme, is given. Finally, a short review
of previous work is provided.

Section 3 presents the model constituting the theoretical and executional basis for the com-
puter simulations of this thesis. The model is comprised of two main parts: A neuronal model
specifying the structure and semantics of ANN calculations, and a mechanical model describ-
ing the environment in which the ANNs operate. The section introductorily gives a structural
overview of the entire model, whereafter the neuronal and mechanical models are described in
greater detail. Finally, the use of GAs to search the parameter space of neuronal and mechanical
model parameters is described and justified.

Section 4 presents the simulations constituting the experimental work of this thesis. Sim-
ulation results are measured by means of the level of goal achievement, and goals vary among
different experiments. The section is organized such that experiments are ordered according to
increasing system goal difficulty.

Section 5 provides a discussion on the findings and results obtained throughout the work with
this thesis. Theoretical contributions are listed, and concluding remarks are drawn. Finally, it
marks out the course for further experimental work on motion behavior utilizing ANNs with
synaptic learning based on the mechanisms of Connectology.

11
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Background

2 Background

This section gives basic background information on biological and artificial neural networks,
including a short historical overview of ANNs. Additionally, a short introduction to the theo-
retical context of this thesis, the Connectology research programme, is given. Finally, a short
review of previous work is provided.

2.1 Neural networks

A neuron is a cell that is capable of generating electromagnetic nervous impulses (termed action
potentials or spikes). When a neuron generates an impulse, it is said to fire. The level of
activity of a neuron is measured by how frequently it fires. More specifically, a neuron’s level
of activity is measured by an instantaneous firing rate, here termed drive. In principle, neurons
are functionally simple; they give output (i.e. fire with some frequency) as a function of total
input from other neurons. Neurons are the main actors in central nervous systems (CNSs) and
spinal cords of animals; every nervous system consists of large amounts of neurons.

Neurons are interconnected by synapses. Synapses are connection points between axons of
presynaptic neurons and dendrites of postsynaptic neurons, which are capable of transferring
neural signals by means of electromagnetic impulses. Neurons can have thousands of such
synaptic connections to other neurons, and thereby have a means of affecting and driving each
other. A synapse is a one-to-one directed connection, i.e. it transmits impulses from the
presynaptic neuron to the postsynaptic neuron. There are two kinds of synapses: excitatory and
inhibitory. Action potentials transmitted through an excitatory synapse contribute to increasing
the activity of the postsynaptic neuron. An inhibitory synapse is converse, in that the action
potentials it transmits contribute to decreasing the activity of the postsynaptic neuron.

Synapses are characterized by their synaptic efficacy. This property represents the strength
of synaptic connections, i.e. how good they are at transmitting action potentials from the
presynaptic neuron to the postsynaptic neuron. Synapses are plastic in that their efficacy can
vary over time.

A neural network is a complex system of synaptically interconnected neurons. Examples
of neural networks include the central nervous system (CNS) of animals. As an example, the
human brain is a large neural network that contains roughly 100 billion neurons, each of which
has 1000-10000 synaptic connections to other neurons [CS92, Kan00].

2.2 Artificial Neural Networks

Neural networks are imitated by means of artificial neural networks. Artificial neural networks
are comprised of artificial neurons and artificial synapses. These units are usually modeled
to mimic the functional behavior of their biological counterparts; artificial neurons are simple
functional units that give output as a function of total input, and artificial synapses are connec-
tions between neurons that propagate neuronal signals. ANNs are generally realized through
computer modeling and simulation.

Due to the inherent complexity of biological neural networks, some simplifications are usually
made when ANNs are modeled for computer simulation. Most importantly, neuronal activity
(i.e. the firing of electromagnetic impulses, or action potentials) is simply represented by the
firing rate, or drive for short. In other words, no explicit concept of an impulse or spike is
implemented; artificial neurons and synapses do not explicitly generate and transmit impulses.

13
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Rather, drive solely represents neuronal activity, and all calculations are done using drive values.
Drive is usually represented by a floating-point number between 0 and 1, where a drive value
of 0 corresponds to the minimum firing rate (no activity) and a drive value of 1 corresponds to
the maximum firing rate (full activity).1

The efficacy of a synapse is represented by a single floating-point number. Combining this
with the floating-point representation of neuronal drive, the effective drive contribution from the
presynaptic neuron to the postsynaptic neuron over a synapse can be calculated as the product
of the presynaptic drive and the synaptic efficacy. This yields a simple and computationally
efficient model of drive (i.e. action potential) propagation through synaptic connections.

2.3 Short historical overview

In 1895, Sigmund Freud wrote his Project for a Scientific Psychology [Fre95], where he proposed
several psychological principles that have become widespread today. Firstly, Freud proposed
the principle of neuronal inertia, suggesting that nervous systems function so as to minimize
stimuli from the environment. As will be seen later on, this principle is fundamental to the
theory investigated in this thesis. Secondly, Freud proposed what has erroneously, one must
say, become known as the Hebb rule, suggesting that if two synaptically connected neurons have
simultaneous high activity, the synapse between them will grow so as to make one neuron (the
presynaptic) more easily excite the other neuron (the postsynaptic).2

In 1949, Donald O. Hebb wrote The Organization of Behaviour [Heb49], where he proposed
the Hebb rule (which, as mentioned, is very similar to the above principle of synaptic growth
proposed by Freud in 1895). Hebbian learning has become extensively popular, and variants of
the Hebb rule as synaptic learning mechanisms substantiate the greater part of connectionist
research on neural networks claiming biological plausibility.

In 1982, John J. Hopfield showed that recurrent artificial neural networks with binary thresh-
old neurons and Hebbian-based synaptic learning could serve as a content-addressable memory
[Hop82]. Hopfield’s model renewed general interest in neural networks considerably. The net-
works are often termed associative neural networks because of their abilities for associative
memory. In 1984, Hopfield extended the results to neurons with graded response [Hop84].
A year later, Ackley, Hinton and Sejnowski showed that a similar type of network based on
stochastic units, the Boltzmann machine, when paired with simulated annealing procedures
could develop efficient internal representations of the environment [AHS85].

In 1986, McClelland, Rumelhart and the PDP Research Group presented a new learning al-
gorithm for multi-layered feedforward networks called backpropagation [MRtPRG86], and once
again renewed general interest in neural networks. A neural network trained with backpropaga-
tion could solve problems that are not linearly separable, thereby overcoming earlier problems
related to nonlinearity. Feedforward networks with backpropagation learning have been shown
to solve several complex, often engineering-related, tasks. Backpropagation learning is, however,
not considered biologically plausible, and is therefore of little relevance in the context of this
thesis.

In 1988, A. Harry Klopf presented a neuronal model for classical conditioning called the
drive-reinforcement model [Klo88]. The model included a synaptic learning mechanism based
on local changes in presynaptic and postsynaptic cells, as did the Freud-Hebb rule mentioned

1In biological neurons, the maximum firing rate is approximately 300 Hz [Kan00].
2Freud used the concept “contact barrier” which is highly reminiscent to what is known today as a synapse.
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above, but that differed in some other respects (discussed later). The model was shown to
predict several empirically established properties of classical conditioning. This work by Klopf
lays the structural foundation on which the synaptic learning mechanisms of Connectology are
based, and is therefore of great importance.

2.4 Theoretical context - the Connectology research programme

This thesis is a project within the Connectology research programme for brain-psychology pro-
posed by J. Hokland [Hok06]. Connectology is a complete psychological theory, based on the
principles of connectionism and aimed at being biologically plausible. As expressed in [Hok06]:

Connectology is my will to, and fantasy of a beautifully connected science of psychol-
ogy, linking all major principles of neural science to every peak insight in the history
of psychology. (p. 8)

Or in the words of Freud, in his Project for a Scientific Psychology [Fre95], to which Con-
nectology is strongly related:

The intention is to furnish a psychology that shall be a natural science: that is, to
represent psychical processes as quantitatively determinate states of specifiable mate-
rial particles, thus making those processes perspicuous and free from contradiction.
(p. 265)

Connectology sets forth three different synaptic learning mechanisms in the form of three
basic principles: Hedonism, Anticipation and Reason. The following brief explanation of these
principles and their respective synaptic learning mechanisms is largely adopted from [Hok06].

Hedonism is the first principle, based on Freud’s principle of neuronal inertia [Fre95]:

The endeavour of the nervous system, maintained through every modification, is to
avoid being burdened by Qή or to keep the burden as small as possible. (p. 301)

In current psychological or physiological terms, this translates into the hypothesis that nervous
systems try to keep themselves free from stimulus, or to keep stimulus as low as possible.
Consequently, low signal levels are assumed favorable (“pleasure”), while high signal levels are
assumed unfavorable (“pain”). The above gives rise to the Skinner mechanism,3 which takes
operant conditioning to the neuronal level.4

Anticipation is the second principle, based on the work of A. Harry Klopf [Klo88]:

The efficacy of a synapse changes in a direction such that the neuron comes to antic-
ipate the unconditioned response; that is, the conditioned stimulus comes to produce
the conditioned response prior to the occurrence of the unconditioned stimulus and
the unconditioned response. (p. 88)

This gives rise to the Pavlov mechanism, which takes classical conditioning to the neuronal
level.5 This learning mechanism is due to Klopf; the definition of the Pavlov mechanism given
in [Hok97, Hok06] is basically identical to the learning mechanism proposed in [Klo88].

3Although not identical to [Hok06], the mechanism was first proposed in [Hok97].
4[All07] defines operant conditioning as: “Learning that occurs due to the manipulation of the possible conse-

quences”.
5[All07] defines classical conditioning as: “The behavioral technique of pairing a naturally occurring stimulus

and response chain with a different stimulus in order to produce a response which is not naturally occurring”.
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Reason is the third principle, based on the work of Piaget [Pia71] and Hume [Hum88]. The
corresponding mechanism is called the Hume mechanism,6 which takes the assimilation and
accommodation of concepts to the neuronal level.

The three principles introduced above (Hedonism, Anticipation and Reason) and their cor-
responding synaptic learning mechanisms (Skinner, Pavlov, Hume) are described in detail with
a view to modeling and simulation in Sections 3.2.3 and 3.2.5. For psychological foundations for
the theory of Connectology, the reader is referred to [Hok06], where each principle and synaptic
mechanism is explained in psychological terms and reasonings.

As regards neural components, and in addition to neurons and synapses discussed above,
Connectology introduces the concept of clusters. A cluster is a collection of adjacent neurons
with similar properties and connectivity [Hok06];7 the cluster concept is thus quite resemblant
to the more frequently used concept of neuronal layers. Connectology states that clusters are
the basic building block of large neural systems, and that neuronal connectivity, i.e. which
neurons connect synaptically onto each other, is to be specified at the level of clusters rather
than at the level of single neurons.8 When a cluster A is said to connect onto a cluster B, then,
what is meant is that neurons inside cluster A connect onto neurons inside cluster B.

2.5 Previous work

In a previous simulation study [Axe06] the Hedonism principle of Connectology and the corre-
sponding Skinner synaptic learning mechanism was examined in detail. The study dealt with
small ANNs used to detect minima in simple outer environments modeled as multi-dimensional
mathematical functions. Learning in these ANNs was based on Skinner type synaptic learning
only, meaning that the other two learning mechanisms of Connectology, Pavlov and Hume, were
not included.

The study resulted in some interesting findings, the most important being:

• Conflict cases, where several synapses (with their presynaptic neurons) compete in
driving and inhibiting a common postsynaptic neuron, elucidated problems with diverg-
ing synaptic efficacies which are inherent in the synaptic learning mechanisms of Con-
nectology. Two modifications to the synaptic learning mechanisms were suggested, and
simulations were performed that demonstrated their abilities with respect to solving diver-
gence related problems. These modifications and the background for why they are needed
are revisited in Section 3.2.3 of this thesis.

• Multi-layer learning proved to be difficult in ANNs with synaptic learning based solely
on the Skinner mechanism. Multi-layer networks as simple as two-layer chains gave highly
unstable ANN behavior, even for simple one-dimensional unimodal minimization problems
which were easily and efficiently solved in corresponding single-layer networks.

• An important property of the Skinner mechanism of Connectology is that reward (i.e.
decrease of presynaptic drive) induces learning, while punishment (i.e. increase of presy-

6Although not identical to [Hok06], the mechanism was first proposed in [Hok98].
7According to [Hok06], intra-cluster synapses always learn by the Hume mechanism. This thesis further

examines the possibility for intra-cluster learning by the Pavlov mechanism, see Section 3.2.6. For both cases,
however, all intra-cluster synapses are of the same type, maintaining the similar connectivity property within
clusters.

8Connectology uses the term Cluster Diamond Matrix when referring to the matrix that specifies which
clusters connect onto each other.

16



Background 2.5 Previous work

naptic drive) does not. This assumption was challenged through a comparison of simula-
tions differing only in the inclusion (i.e. modified Skinner mechanism) or exclusion (i.e.
original Skinner mechanism) of punishment learning. For simple non-conflict simulation
cases, punishment learning had no significant effect. However, for conflict cases which
were solved sensibly without punishment learning, the inclusion of punishment learning
gave divergence on synaptic efficacies and no sensible results.

Conflict cases are seemingly inevitable in connectological simulations with ANNs of non-
trivial size; for instance, the simulations presented herein may include systems with potentially
conflicting needs. The findings in [Axe06] on conflict cases, and the problems they pose, are
therefore of high relevance to this thesis. The fact that the ANNs of this thesis have all three
types of connectological synapses (Skinner, Pavlov and Hume) should not change this; on the
contrary, more complex network structures and combinations of different learning mechanisms
should only make the matter even more important.

The findings in [Axe06] on multi-layer networks are important when designing network
topologies, because series of Skinner-synapses cannot be expected to behave in the way intended.
When dealing with multi-layer networks in this thesis, Skinner synapses should probably be used
only in connecting needs to the internal network, i.e. as connections between need inputs and the
first layer.9 Pavlov and Hume synapses can then be used when building multi-layer extensions
of this basic structure.

The findings in [Axe06] on punishment learning provide significant indications in favor of the
hypothesis that is fundamental to the Skinner mechanism, that reward induces learning, while
punishment does not. As for the relevance of this thesis, this simply confirms that this property
of the Skinner mechanism most probably is “correct”, or at least propitious with respect to the
simulations of this thesis, and that one can settle for the exclusion of punishment learning for
the simulations performed herein.

9The exception is when affect systems (Section 3.2.6.1) are used, where Skinner synapses connect the affect
cluster to the internal network.
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3 Model

The model used for the simulations of this thesis is comprised of two main parts: A neuronal
model specifying the structure and semantics of ANN calculations, and a mechanical model
describing the environment in which the ANNs operate. This section introductorily gives a
structural overview of the entire model, whereafter the neuronal and mechanical models are
described in greater detail. Finally, the use of GAs to search the parameter space of neuronal
and mechanical model parameters is described and justified.

3.1 Model overview

The modeling approach taken for the simulations of this thesis can be summarized in the words
of Chiel and Beer:

[A]daptive behavior can best be understood within the context of the biomechanics of
the body, the structure of an organism’s environment, and the continuous feedback
between the nervous system, the body and the environment. ([CB97] p. 553)

The two main system components are the ANN (as in neuronal model) and the creature body
and environment (as in mechanical model). These are shown in Figure 1, which further depicts
the tight feedback loop in which they operate. Communication between the neuronal model
and the mechanical model is defined by means of needs, senses and motor activation:

• Needs: The mechanical model provides the ANN with need signals. Needs represent
unwanted neural values (“pain”) which the ANN will try to minimize.

• Senses: The mechanical model further provides the ANN with sense signals. Senses
represent neutralized neural values which are not subjected to minimization (or any other
value preference).

• Motor activation: The ANN provides the mechanical model with motor activation
signals. Motors determine the force developed in the muscles of the virtual creature, and
thus provide the ANN with the ability to control and steer the mechanical model.

With the above definitions of needs, senses and motor activation, the system goal can be specified
as follows:

The ANN should steer motor output values so as to minimize need input values
utilizing neutralized sense input values as appropriate.

This further implies that the behavioral goal specification for the system as a whole is directly
and wholly determined by the set of needs provided by the mechanical model as inputs to the
ANN. As an example, a need provided as inverse body height (such that greater height yields a
lower need value) translates into a system level goal of getting the creature body as high up as
possible. Correspondingly, a need provided as inverse body forward velocity represents a system
level goal of achieving and maintaining a high creature body forward velocity.
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Figure 1: Model overview: neuronal model synapse types as depicted in color (dotted arrows are op-
tional)
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(a) Artificial neuron (b) A small ANN

Figure 2: Structural Overview

3.2 Neuronal model

This section describes the neuronal model in detail, including some empirical findings that are
relevant to modeling. The model is made precise through a thorough mathematical specification.
The description is partly adopted from [Axe06], with some modifications based on the findings
therein (see Section 2.5). Further, the description has been extended to cover Pavlov and Hume
type synaptic learning in addition to the Skinner type synaptic learning dealt with in [Axe06].

3.2.1 Structural overview

The main structural element of the ANN is the artificial neuron, as shown schematically in
Figure 2(a). Artificial neurons are interconnected by means of artificial synapses. A small
network of such artificial neurons and synapses is shown schematically in Figure 2(b). The
diagram structures used there are standardized throughout this thesis: Inputs are represented
by filled triangles, neurons are represented by filled circles, and synapses are represented by
arrows. Also, as mentioned earlier, neurons with similar properties and connectivity are grouped
into neuronal clusters.

The neurons of the ANN are divided into three sets: input, internal, and output. Input
neurons get their drives from the outer environment, modeled thorough environment functions.
Output neurons give their drives as input to environment functions. Finally, internal neurons
exist on paths between input neurons and output neurons.

3.2.2 Neuronal activation function

The neuronal activation function describes the output (drive, i.e. firing rate) behavior of neu-
rons. Much research has been carried out with respect to modeling the activation function
for biological neurons mathematically, and as biologically plausible as possible. Several models
exist, but variants of mathematical sigmoid functions are most frequently used, particularly for
ANN computer simulations. However, some modifications and extensions to a basic sigmoid
model of neuronal activation are seemingly propitious with respect to biological plausibility.

Lanthorn, Storm and Andersen [LSA84] demonstrated that when net input to a neuron is
high, and remains high for some time interval, its output firing rate declines rapidly, in spite
of constant net input. This is the concept of firing rate adaption. With respect to neuronal
activation these empirical findings suggest that a purely static activation function is too simple
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a model; it is apparently necessary to make the model more dynamic with respect to letting
time and previous activity history affect neuronal output behavior.

Random bursting is another well-known concept of neurobiology, describing the tendency
that the probability of a neuron exhibiting random firing behavior increases when neuronal ac-
tivity has been low for some time [CS92]. In other words, one should expect that the probability
of a neuron firing increases with sustained low activity. Pairing this with the above-mentioned
empirical findings on decline of firing frequency for sustained high input, it is reasonable to as-
sume that neuronal activity at average should decrease for sustained high activity and increase
for sustained low activity. Mathematically, these two properties can be represented jointly by
keeping a trace of neuronal activity.

Another matter is whether some kind of stochastic element should be included in the model
for neuronal activity, and how large it should be compared to the deterministic elements dis-
cussed above. In spite of the dynamic character of the outer environments that the ANNs of this
thesis operate in, some kind of stochastic element proves necessary to get the ANN-dynamics
going.

3.2.3 Synaptic plasticity

Learning in neural networks is achieved through changes of synaptic efficacies. Modeling these
changes is thus one the most important tasks in neural network theory, and there exist several
different approaches to explaining how synaptic learning mechanisms operate, a few of which
were mentioned in Section 2.3. As explained in Section 2.4, this thesis is based on the three
learning mechanisms of Connectology, the Skinner, Pavlov and Hume synaptic learning mecha-
nisms, as proposed by Hokland [Hok97, Hok98], and later in his Connectology research program
[Hok06].

An important aspect of these learning mechanism is their temporal characteristics; changes
in synaptic efficacies are based on particular sequences of changes in the drives of pre- and
postsynaptic neurons [Hok06].

3.2.3.1 Skinner mechanism
The semantics of the Skinner mechanism are as follows:

• Postsynaptically increased drive followed by presynaptically decreased drive yields in-
creased efficacy for excitatory synapses and decreased efficacy for inhibitory synapses.

• Postsynaptically decreased drive followed by presynaptically decreased drive yields de-
creased efficacy for excitatory synapses and increased efficacy for inhibitory synapses.

Figure 3 gives a schematic overview for excitatory synapses. The mechanism is built on the
assumption that neurons try to keep themselves free from stimulus, a principle proposed by
Freud [Fre95], and later Hokland [Hok97, Hok06]. According to this, increased stimuli (i.e.
drive) corresponds to punishment, while decreased stimuli corresponds to reward.

By analyzing the two rules stated above, one can quite easily see that they adhere to this
minimization principle, in that the rules always alter the synaptic efficacy so as to reduce the
drive of the presynaptic neuron:

• If increased drive in the postsynaptic neuron resulted in decreased drive in the presynaptic
neuron, the presynaptic neuron will want the drive of the postsynaptic neuron to be higher
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Figure 3: Schematic overview of the Skinner mechanism

(this tendency seems favorable). Therefore, the synaptic efficacy should increase if the
synapse is excitatory (presynaptic drive should contribute more to driving the postsynaptic
neuron), or decrease if it is inhibitory (presynaptic drive should contribute less to inhibiting
the drive of the postsynaptic neuron).

• Similarly, if decreased drive in the postsynaptic neuron resulted in decreased drive in
the presynaptic neuron, the presynaptic neuron will want the drive of the postsynaptic
neuron to be lower (again, a favorable tendency). Therefore, the synaptic efficacy should
decrease if the synapse is excitatory (presynaptic drive should contribute less to driving the
postsynaptic neuron), or increase if it is inhibitory (presynaptic drive should contribute
more to inhibiting the drive of the postsynaptic neuron).

An important property of the Skinner mechanism is that only decreases in presynaptic drive
induce learning (i.e. changes of synaptic efficacies). This agrees with the empirical findings of
such psychologists as B. F. Skinner and E. L. Thorndike, that reward leads to learning, while
punishment does not [Hok06]. ANN synapses learning by the Skinner mechanism are termed
Skinner synapses. These synapses exist as connections between needs and internal clusters (or,
alternatively, as direct connections between needs and motors).

3.2.3.2 Pavlov mechanism

The semantics of the Pavlov mechanism are as follows:

• Presynaptically increased drive followed by postsynaptically increased drive yields in-
creased efficacy for excitatory synapses and decreased efficacy for inhibitory synapses.

• Presynaptically increased drive followed by postsynaptically decreased drive yields de-
creased efficacy for excitatory synapses and increased efficacy for inhibitory synapses.
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Figure 4: Schematic overview of the Pavlov mechanism

Figure 4 gives a schematic overview for excitatory synapses. The mechanism is built on the
principles of classical conditioning, in that the efficacy of a synapse is changed in a direction
such that the (postsynaptic) neuron becomes anticipative, i.e. it comes to anticipate the uncon-
ditioned response. These principles were suggested by Pavlov [Pav28] at the system level, and
later taken to the neuronal level by Klopf [Klo88] and Hokland [Hok97, Hok06].

By analyzing the two rules stated above, one can quite easily see that they adhere to this
anticipation principle, in that the rules always alter the synaptic efficacy so as to anticipate the
drive of the postsynaptic neuron:

• If increased drive in the presynaptic neuron is followed by increased drive in the postsy-
naptic neuron, to make the postsynaptic neuron anticipative, the synaptic efficacy should
increase if the synapse is excitatory (presynaptic drive should contribute more to driv-
ing the postsynaptic neuron) and decrease if it is inhibitory (presynaptic drive should
contribute less to inhibiting the postsynaptic neuron). Later, then, if this tendency is
repetitive, increases of presynaptic drive will induce increases of postsynaptic drive, and
the postsynaptic neuron has become anticipative.

• If increased drive in the presynaptic neuron is followed by decreased drive in the postsy-
naptic neuron, to make the postsynaptic neuron anticipative, the synaptic efficacy should
decrease if the synapse is excitatory (presynaptic drive should contribute less to driving the
postsynaptic neuron) and increase if it is inhibitory (presynaptic drive should contribute
more to inhibiting the postsynaptic neuron). Once again, if this tendency is repetitive,
subsequent increases of presynaptic drive will induce decreases of postsynaptic drive, and
the postsynaptic neuron has become anticipative.

An important property of the Pavlov mechanism is that only increases of presynaptic drive
induce learning (i.e. changes of synaptic efficacies).10 ANN synapses learning by the Pavlov

10Klopf argues why this positivity requirement is appropriate: “A negative change in presynaptic signal level
means that the presynaptic signal is falling away - that it is headed toward zero. If such a negative change in
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mechanism are termed Pavlov synapses. These synapses exist as connections between senses
and internal clusters (or, alternatively, as direct connections between senses and motors). Ad-
ditionally, Pavlov synapses exist as connections between internal clusters, both directed from
inputs to outputs (forming habit paths) and from outputs to inputs (forming attention paths).

3.2.3.3 Hume mechanism
The semantics of the Hume mechanism are as follows:11

• Presynaptically increased drive followed by postsynaptically decreased drive yields in-
creased efficacy for excitatory synapses and decreased efficacy for inhibitory synapses.

• Presynaptically increased drive followed by postsynaptically increased drive yields de-
creased efficacy for excitatory synapses and increased efficacy for inhibitory synapses.

Figure 5 gives a schematic overview for excitatory synapses. The mechanism is built on the as-
sumption that living creatures know the objects of the external world through their contours.12

The neural representation of concrete objects and abstract phenomena are collectively termed
concepts, and the two rules stated above are termed concept assimilation and concept accom-
modation, respectively. Concepts arise within neural clusters. The workings of the concept
assimilation mechanism are to extract contours of concrete objects or, correspondingly, borders
of abstract phenomena. Concept assimilation, on the other hand, separates different (kinds of)
concepts by making them inhibit each other.

By analyzing the two rules stated above, one can see that the first (concept assimilation) ad-
heres to the contour extraction principle and that the second (concept accommodation) adheres
to the concept differentiation principle, as follows:

• Concept assimilation: Consider two synaptically connected neurons spaced to cover op-
posite sides of the border of some concept. If this concept is moving across the neuronal
surface in the direction from the postsynaptic to the presynaptic neuron, there will at
some time be an increase of drive in the presynaptic neuron (the concept just reached
the presynaptic neuron) shortly followed by a decrease of drive in the postsynaptic neuron
(the concept just left the postsynaptic neuron). To assimilate the concept, the presynaptic
neuron should learn to drive the postsynaptic neuron. Consequently, the synaptic efficacy
should increase if the synapse is excitatory (presynaptic drive should contribute more to
driving the postsynaptic neuron) or decrease if it is inhibitory (presynaptic drive should
contribute less to inhibiting the postsynaptic neuron). Over time, one can expect that
the concept will move across the neuronal surface in all directions, thus allowing for a full
concept border representation to emerge.

• Concept accommodation: When two neurons inside a cluster represent different (poten-
tially competing) concepts, they should be expected to inhibit each other [Hok06]. Hok-
land further proposes that neurons inside clusters compete for earliest warning [Hok06],

presynaptic signal level were to trigger the neuronal learning mechanism and possible cause a synaptic weight
change, then a synaptic weight would have changed for a synapse that had just ceased to carry the signal that
caused the change. That is to say, the relevant part of the signal on which the synaptic weight should operate
would no longer be present.” ([Klo88], p. 89)

11For ease of recollection, notice that the Hume mechanism is identical to Pavlov mechanism except that the
direction of efficacy changes are inverted.

12Quoting [Kan00], on the primary visual cortex: “In fact, contour information may be sufficient to recognize
an object. Monotonous interior or background surfaces contain no critical visual information!” (p. 537)
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Figure 5: Schematic overview of the Hume mechanism

i.e. they compete to be first to represent a concept. Now, consider a presynaptic and a
postsynaptic neuron within the same cluster. If increased drive in the presynaptic neuron
is followed by increased drive in the postsynaptic neuron, this can be regarded as the
two neurons competing to represent the same concept. By letting this sequence of drive
changes induce synaptic change such that the efficacy is decreased for excitatory synapses
(presynaptic drive contributes less to driving the postsynaptic neuron) and increased for
inhibitory synapses (presynaptic drive contributes more to inhibiting the postsynaptic
neuron), this hopefully should encourage the passified postsynaptic neuron to take on
new purposes and functions [Hok06].

Note that, as for the Pavlov mechanism, only increases of presynaptic drive induce learning.
ANN synapses learning by the Hume mechanism are termed Hume synapses. These synapses
only exist as connections inside clusters, i.e. between neurons belonging to the same cluster.

3.2.3.4 Summary

The connectological mechanisms described above contrast the still extensively popular Hebbian
rule for animal learning, proposed by Hebb [Heb49]. The Hebbian rule states that synaptic
efficacies change as a result of simultaneous activity in presynaptic and postsynaptic neurons.13

To summarize the above, it can be noted that Hokland adopts two fundamental modifications
to the Hebbian model, based on the work of Klopf [Klo88]: Firstly, changes in levels of activity
induce learning, not levels of activity. Secondly, rather than simultaneity, the temporal order of
presynaptic and postsynaptic activity changes is what induces learning. For ease of comparison
and recollection, Figure 6 provides an overview of the three synaptic learning mechanisms
discussed above.

13Hebb proposed that “When an axion of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.” ([Heb49], p. 50)
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Figure 6: Schematic overview of the synaptic learning mechanisms of Connectology
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3.2.4 Neuronal classification

For the neural simulations of this thesis, where ANNs control and receive feedback from a
biologically inspired mechanical model operating in a physically realistic outer environment, it
is natural to relate the different classes of neurons to their biological counterparts. This section
discusses three well-defined classes of neurons which are highly relevant for connectological
modeling and simulation: needs, senses and motors. In addition to these three classes which
are either inputs or outputs, there are general purpose internal neurons.

3.2.4.1 Needs

Quoting [Hok06]:

A need is a type of receptor system on which a push is instinctively, i.e. innately,
transformed along drive paths into behavioral pressure to remove that push. (p. 103)

Needs represent unpleasant or unwanted signals, and biological systems behave so as to remove
them (or make them as low as possible). For the ANNs simulated in this thesis, needs are
represented by input neurons. A few examples of needs in biological systems are [Kan00]:
glucoreceptors pushed by low glucose levels (hunger), osmoreceptors and baroreceptors pushed
by low levels of liquids (thirst), nocireceptors pushed by painful objects against the skin (tissue
damage) and thermoreceptors pushed by non-ideal skin and blood temperatures (cold, heat).

For the simulation purposes of this thesis, needs have a strong and direct connection to the
Skinner synapse: A need is by current definition the presynaptic neuron of a Skinner synapse
continuously receiving its drive value directly from the mechanical model.14 As explained in
Section 3.2.3.1, Skinner synapses function so as to minimize the drive of their presynaptic
neuron. Consequently, in our simulations, needs are subjected to minimization. Further, as
explained in Section 3.1, the set of need sources provided by the mechanical model as need
inputs to the ANN fully and wholly determines the behavioral goal specification for the simulated
system.

3.2.4.2 Senses

Senses are similar to needs, in that they are represented by input neurons in the ANNs. Further,
as for need inputs, sense inputs continuously receive their drive values directly from the me-
chanical model. There is, however, one significant distinction between needs and senses: senses
represent neutralized environmental signals and are therefore not subjected to minimization. As
a consequence of this, instead of Skinner synapses, Pavlov synapses are used to connect sense
inputs to the first network layer, providing the ANN with potential capabilities at anticipat-
ing postsynaptic drives based on presynaptic sense values (for details on Pavlov synapses, see
Section 3.2.3.2). The connection between senses and Pavlov synapses is not as strong as the
connection between needs and Skinner synapses; Pavlov synapses also exist on internal paths
in the ANN, linking the first network layer to other layers including the output layer.

14Recall from Section 2.5 that Skinner synapses are normally only used for connecting need input values (i.e.
one type of environmental feedback) to the first layer of the ANN. An exception is, however, made herein in
connection with affect systems (Section 3.2.6.1), allowing the presynaptic neuron of a Skinner synapse to be an
affect neuron.
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3.2.4.3 Motors

Motors are inherently different from both needs and senses because they are represented by the
output neurons of the ANN; all output neurons are motors. Motor neurons control behavior; the
behavior of a neural network at any instant is defined by the momentaneous drive values of motor
neurons, and behavior during some time interval is thereby determined by the course of motor
drive values over the interval. For the simulations of this thesis, motors are tightly connected to
the mechanical model (virtual creature): they dictate the force generated at creature muscles.
Hence, motors control the creature body, and the time-dimensional patterns generated at motors
thus constitute what ultimately becomes the measurement of system performance.

Summarizing the above, and incorporating the intuition provided on synaptic learning, the
overall goal of the neural system specified in Section 3.1 can be refined further as follows:

The ANN should steer motor output values so as to minimize need input values
utilizing neutralized sense input values for anticipation and concept learning.

3.2.5 Mathematical specification

The strategies that dictate how the calculations in the computer simulations are to be performed
are of highest importance. This section makes them formal by defining them in a precise
mathematical language.

3.2.5.1 Notational remarks

The drive of a neuron j is represented symbolically as Dj , and synaptic efficacy for a synapse
from a (presynaptic) neuron i to a (postsynaptic) neuron j is represented as eij . Additionally,
the trace (history) of neuronal drive for a neuron j will be termed accj , alluding the accumulating
character of mathematical traces.

Each neuron is connected to a number of other neurons through incoming and outgoing
synapses. For a neuron j, the set of presynaptic neurons on incoming synapses is termed I∗

j ,
and the set of postsynaptic neurons on outgoing synapses is termed O∗

j .
The mathematical specification will be based on discrete time steps, such that Dt

j and et
ij

represent drive and synaptic efficacy at time t, respectively. More, the changes in drive and
efficacy between two consecutive time steps t − 1 and t are represented as

ΔDt
j = Dt

j − Dt−1
j

and

Δet
ij = et

ij − et−1
ij ,

respectively. Yet another value is important in connection with changes in synaptic efficacy,
namely the synaptic trace of presynaptic or postsynaptic drive differentials. For a synapse be-
tween neuron i and neuron j, this trace value is represented by Tij . For the Skinner mechanism
this trace is postsynaptic, whereas for the Pavlov and Hume mechanisms the traces are presy-
naptic. The same symbol Tij will be used to represent this synaptic trace of drive differentials
for all learning mechanisms. Hence, the exact meaning of Tij is context sensitive.
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Figure 7: Sigmoid neuronal activation function for x0 = 0.15

3.2.5.2 Neuronal drive
Neuronal drive (i.e. the output of a neuron) is calculated using the following sigmoid function
(Figure 7):

g(x) =
1

1 + e−(x−ln((1−x0)/x0))
, (1)

where x0 is the y-axis crossing point. For the simulations of this thesis, x0 = 0.15.

Activation function Three elements affect the neuronal activation function: net drive
input net, neuronal drive trace acc and stochastic perturbation stoc. The complete neuronal
activation function can then be specified as follows (for neuron j at time t):

Dt
j = g

(
nettj − acct

j + stoct
j

)
=

1

1 + e−(nettj−acct
j+stoct

j−ln((1−x0)/x0))
(2)

The signs of the elements in the sum of the exponential (i.e. the input argument to the sigmoid
function) are important. High values of net drive input net should give high output, and vice
versa, and net must therefore have a positive sign. The neuronal trace element acc, on the other
hand, is converse, in that a high value should lower the output, and vice versa; it must therefore
be preceded by a minus sign. For the stochastic element stoc, the sign is of no importance, as
the distribution of the samples will be symmetric with respect to the vertical zero-axis.

The following describes the three elements of the neuronal activation function in detail.

Net drive input The net drive input to a neuron is calculated as a weighted sum over
all incoming synapses and their presynaptic neurons. Considering neuron j at time t,

nettj =
∑
i∈I∗

j

et
ijD

t
i . (3)
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Figure 8: Gaussian probability distribution with σ = 1 compared to Cauchy probability distribution
with γ = 1

Neuronal trace As discussed in Section 3.2.2, the neuronal drive should be dynamic with
respect to time and previous drive history (sustained high input should lower the probability of
firing, and vice versa). This can be accomplished by incorporating the neuronal trace acc into
the activation function. The trace for neuron j at time t is defined as

acct
j = (1 − αj)acct−1

j + αj(Dt
j − 0.5), (4)

where αj is a number between 0 and 1 that controls the shape of the trace function; the larger
αj is, the more sensitive the trace is to recent changes, and vice versa. By subtracting 0.5
from the drive value D, acc is made symmetric with respect to zero, such that sustained low
drive values give a negative neuronal trace, while sustained high drive values give a positive
trace. The neuronal trace specified above will range between −0.5 and 0.5. When used in the
neuronal activation function, as specified in Eq. (2), the neuronal trace acts as a contrast term
that contributes to letting neurons utilize the range of drive values more uniformly.

Stochastic perturbations Section 3.2.2 also mentions the necessity of stochastic pertur-
bation in the activation function. A few approaches to sampling stochastic perturbations have
been considered in this thesis. The first, and simplest, is sampling from the Gaussian probability
distribution G(μ, σ2) (Figure 8):

G(x; μ, σ2) =
1√
2πσ

e−
(x−μ)2

2σ2 (5)

where μ is the mean, and σ2 is the variance. For direct sampling purposes, μ = 0, which yields
a symmetric distribution around zero, as desired. Sampling from the Gaussian distribution is
performed using the Box Muller algorithm [Rip87] (Algorithm 1).
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Algorithm 1 Box Muller
Let U1, U2 be uniformly distributed random variables on (0, 1)
Let X ← √−2 ln U1

Let Y ← 2πU2

Then
N1 ← μ + σX cos(Y ) and
N2 ← μ + σX sin(Y ) and
are independent Gaussian variables with mean μ and variance σ2

Another alternative is based on sampling from the Cauchy probability distribution (Fig-
ure 8):

f(x; x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2
] (6)

Here, x0 is the location parameter that specifies the location of the peak of the distribution.
For the purpose of sampling stochastic perturbations, we use x0 = 0 (which is analogous to
using μ = 0 for the Gaussian). The parameter γ is the scale parameter, specifying the half-
width at half-maximum (similar to the standard deviation parameter σ of the Gaussian). A
reason for using the Cauchy probability distribution instead of, say, a Gaussian probability
distribution, might be the assumed favorable (and easily controllable) large-tail property of the
Cauchy, allowing for occasional large stochastic perturbations, while still retaining the stability
achieved from most of the samples being from within a small interval (chosen by setting the γ
parameter). See Figure 8 for a visual comparison of the two.

Instead of sampling values directly from either the Cauchy distribution or the Gaussian
distribution, Metropolis sampling [Tan06] can be used (Algorithm 2).

Algorithm 2 Metropolis sampling
Let X1, X2, ... be a chain of random variables
Let π denote a base density function
Let f denote a symmetric transition probability function

If the chain is currently at Xn = x, generate candidate value y∗ for next location Xn+1 from
f(x)
With probability α(x, y∗) = min

{
π(y∗)
π(x) , 1

}
accept the candidate value and move the chain

by letting Xn+1 ← y∗

Otherwise, reject and let Xn+1 ← x

Relating our sampling to the algorithmic specification, π is the Cauchy or the Gaussian,
and f is some symmetric transition function, such as the uniform distribution or the Gaussian
distribution. This sampling strategy introduces inertia to the stochastic perturbation, in that
a sample normally will be in the vicinity of the previous sample. In other words, the distance
between successive samples is reduced at average. Still, the Metropolis sampling algorithm
guarantees that the distribution of the samples will approach the distribution of the base density
function π as more and more samples are generated (i.e. when the number of samples tends to
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infinity). The inertia property of the Metropolis sampling algorithm might be favorable with
respect to simulation stability, because the average distance between samples is reduced.

To summarize, sampling stochastic perturbations can be done by sampling directly from
the Gaussian or the Cauchy,15 or Metropolis sampling can be used with a Cauchy or Gaussian
as the base density and a symmetric transition function. For the latter, in accordance with
Algorithm 2, the mean of the symmetric transition function is always the previous sample.
Thus, programmatically, each neuron must keep track of its stochastic perturbation, so that the
previous value can be used to generate the next value.

3.2.5.3 Synaptic plasticity
The three synaptic learning mechanisms presented in 3.2.3 are all based on the same basic
structure of temporally ordered drive changes in the presynaptic (ΔDi) and postsynaptic (ΔDj)
neurons. The general equation describing changes of synaptic efficacies is as follows:

Δet
ij = ψβijfi(ΔDt

i)fj(ΔDt
j), (7)

where ψ is the sign (+ or −). fi and fj represent functions (discussed below) on presynaptic and
postsynaptic delta drives, respectively. The requirements on temporal ordering do not appear
from the equation itself.

As discussed earlier, synapses can be excitatory or inhibitory. We let negative synaptic
efficacies define inhibitory synapses.16 Recall that for all three learning mechanisms presented
in Section 3.2.3 inhibitory and excitatory synapses always change in an opposite manner. Thus,
by letting negative synaptic efficacies define inhibitory synapses, the two cases (excitatory and
inhibitory) of a synaptic mechanism can be expressed using one equation only. Note also that
the equations of the form in Eq. (7) allow for synapses to change between being excitatory and
inhibitory, there is no restriction on zero-crossings. By allowing efficacies to vary freely, there is
no need to prespecify synapses as excitatory or inhibitory; hopefully, synapses will self-organize
into excitatory and inhibitory, as needed. The latter is supported by the findings in [Axe06],
where it is shown that for simple networks of limited size, synapses appropriately stabilize as
excitatory or inhibitory.

Going back to fi and fj , these will either be the identity function or some mathematical
trace function representing the history of presynaptic or postsynaptic drive differentials, both
possibly excluding negative or positive delta drive contributions (not shown below). For the
presynaptic neuron i:

fi(ΔDt
i) = Dt

i or (8)

fi(ΔDt
i) = T t

ij = (1 − αij)T t−1
ij + αijΔDt

i (9)

The parameter αij of Eq. (9) is important, as it determines the shape of the trace function. The
larger αij , the more sensitive the trace is to recent changes, and vice versa.

Inspecting Eq. (7), changes in synaptic efficacies are proportional to the change of both
presynaptic drive and postsynaptic drive (or their corresponding differential traces). The pa-
rameter βij is a learning rate parameter, allowing for adjustments with respect to the trade-off
between rate of learning on one hand, and accuracy and stability on the other. A small βij

15Direct Cauchy sampling, not yet discussed, can easily be performed using e.g. inversion sampling [Rip87].
16Mathematically, that is. The biological separation between inhibitory and excitatory synapses is more intri-

cate. For computer simulation purposes, however, this definition is the most common.
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will give slow learning with high stability and accuracy, and increasing the βij parameter gives
increased rate of learning at the cost of decreased stability and accuracy.

The ij-subscripts on α and β denote that the parameters potentially are specific to a single
synapse, allowing for varying values of α and β for different synapses.

Skinner mechanism The Skinner synaptic learning mechanism was first presented in
[Hok97] and later in the Connectology research programme [Hok06]. The two rules describing
Skinner synapses, as specified in Section 3.2.3.1, can be composed into the following equations
(at time step t):

Δet
ij = −βij min

(
ΔDt

i , 0
)
T t

ij (10)

T t
ij = (1 − αij)T t−1

ij + αijΔDt
j , (11)

where the Skinner trace of postsynaptic drive differentials represents recent delta drive history
at the postsynaptic neuron.

Pavlov mechanism The Pavlov synaptic learning mechanism is basically identical to the
learning mechanism introduced by A. Harry Klopf in [Klo88]. Hokland adopted this classically
conditioned mechanism in [Hok97] and later in the Connectology research programme [Hok06].
The two rules describing Pavlov synapses, as specified in Section 3.2.3.2, can be composed into
the following equations (at time step t):

Δet
ij = βijT

t
ijΔDt

j (12)

T t
ij = (1 − αij)T t−1

ij + αij max
(
ΔDt

i , 0
)
, (13)

where the Pavlov trace of presynaptic drive differentials represents recent delta drive history at
the presynaptic neuron. Note that in the above specification of the Pavlov mechanism (which
is equivalent to the one given in [Klo88]) the positivity check for the presynaptic delta drive
is provided in the trace function. Alternatively, and in a manner more similar to the above
Skinner mechanism, the positivity check on presynaptic delta drive can be provided directly in
the learning mechanism equation:

Δet
ij = βij max

(
T t

ij , 0
)
ΔDt

j (14)

T t
ij = (1 − αij)T t−1

ij + αijΔDt
i (15)

Both of these alternative specifications of the Pavlov mechanism will be examined experimentally
in this thesis.

Hume mechanism The Hume synaptic learning mechanism was first presented in [Hok98]
and later in the Connectology research programme [Hok06]. The two rules describing Hume
synapses, as specified in Section 3.2.3.3, can be composed into the following equations (at time
step t):

Δet
ij = −βijT

t
ijΔDt

j (16)

T t
ij = (1 − αij)T t−1

ij + αij max
(
ΔDt

i , 0
)
, (17)

where the Hume trace of presynaptic drive differentials represents recent delta drive history
at the presynaptic neuron. Alternatively, as for the Pavlov mechanism described above, the
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positivity check for the presynaptic delta drive can be done directly in the learning mechanism
equation:

Δet
ij = −βij max

(
T t

ij , 0
)
ΔDt

j (18)

T t
ij = (1 − αij)T t−1

ij + αijΔDt
i (19)

3.2.5.4 Divergence preventing modifications
Considering first the Skinner mechanism, it is necessary to make one modification to the basic
specification of its trace of postsynaptic drive differentials Tij . The trace function stated in
Eq. (11) could lead to problems with self-reinforcement: If the change in postsynaptic drive ΔDj

was caused (partly or exclusively) by a change in presynaptic drive ΔDi, the resulting efficacy
change (Eq. (10)) could potentially lead to a similar change in ΔDi, causing a similar change
in ΔDj , and so on. The potential for divergence of synaptic efficacies is evident. Excluding
the contribution from the presynaptic drive change ΔDi to the postsynaptic drive change ΔDj

solves this problem, by removing the premises for self-reinforcement. This problem is also
pointed out in [Hok06]:

[T]o avoid i from keep reducing eij we may speculate that a change in [T t
ij] depends

only on that contribution of change to [ΔDt
j] that is driven, not by neuron i, but by

all presynaptic neurons other than neuron i. Thus, to the extent that the change in
[ΔDt

j] is due to a drive change in [ΔDt
i], this leaves no trace in [T t

ij] at that synapse,
to prevent i through j and behavior from keep reinforcing itself. (p. 110, footnote
207)

Considering Eq. (11), the ΔDj factor must be altered to exclude the contribution from ΔDi

to ΔDj . Mathematically, this can be specified as (for time step t):

Δ∗
i D

t
j = g

⎛
⎜⎜⎜⎝

∑
k∈I∗j
k �=i

et
kjD

t
k + et−1

ij Dt−1
i − acct

j + stoct
j

⎞
⎟⎟⎟⎠ − g

(
nett−1

j − acct−1
j + stoct−1

j

)
(20)

where g denotes the neuronal activation function from Eq. (2). The second term of Eq. (20)
is simply Dt−1

j . It can be seen that the only difference from the normal computation for drive
change (ΔDt

j = Dt
j − Dt−1

j ) is that the term et
ijD

t
i in the net input to neuron j at time t has

been replaced with et−1
ij Dt−1

i , i.e. the same term from the previous time step. Hence, the most
recent presynaptic contribution to postsynaptic change is given zero influence.

Using Eq. (20), the modified mathematical specification for the Skinner trace of postsynaptic
drive differentials is then:

T t
ij = (1 − αij)T t−1

ij + αijΔ∗
i D

t
j . (21)

For later reference, the divergence preventing learning mechanism described above is termed
MOD1.

Another modification, which is independent of the underlying learning mechanism, proves to
be necessary to prevent divergence on synaptic efficacies. Consider a synapse with its presynap-
tic and postsynaptic neurons, and where keeping the postsynaptic drive at a given level leads to
drive reduction in presynaptic drive (e.g. when satisfying a need). Then, the lower the presy-
naptic drive gets, the higher the synaptic efficacy must be in order for the presynaptic neuron
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to drive the postsynaptic neuron to its optimal drive value.17 Hence, this situation will lead
to diverging synaptic efficacies. Divergence can be prevented by introducing an upper limit on
the sum of efficacies for the incoming synapses of a neuron. Based on discussions at supervisor
meetings concerning simulation cases showing diverging behavior of the type outlined above,
Hokland has suggested the following restriction on synaptic weights:

∑
i∈I∗

j

|eij | ≤
∣∣I∗

j

∣∣ emax, (22)

where |I∗
j | is the number of neurons on incoming synapses for neuron j, and emax is a constant

specifying how large the efficacy of a synapse may become, at average.
Experiments carried out in [Axe06] indicate that the above limit, which is linear in |I∗

j |, is
too simple a model when networks become larger, and the average number of incoming synapses
grows significantly.18 As an alternative, therefore, I suggest that the right side of Eq. (22) is
replaced by a function which is nonlinear in |I∗

j |. Therefore, throughout this thesis, the following
limit function is used:

h(
∣∣I∗

j

∣∣) = Aυ

⎛
⎝1 − exp

⎡
⎣1 −

∣∣∣I∗
j

∣∣∣
υ

⎤
⎦

⎞
⎠ + υ, (23)

where A controls the steepness of h (i.e. how fast the limit grows with |I∗
j |), and υ is the limit

when |I∗
j | = 1, i.e. when a neuron has only one incoming synapse. For the experiments of this

thesis, A = 10 is used, and υ is a free parameter that may vary among different simulations.
The effect of Eq. (22) is, of course, that the average maximum absolute efficacy a synapse may
obtain gets smaller as the number of incoming synapses to a neuron gets larger. Figure 9 shows
h(

∣∣∣I∗
j

∣∣∣) plotted for two different values of υ.
Formally, then, the restriction on synaptic weights can be expressed as:

∑
i∈I∗

j

|eij | ≤ h(
∣∣I∗

j

∣∣), (24)

Algorithmically, this can be enforced as specified in Algorithm 3. If the maximum limit is
exceeded for some postsynaptic neuron j, all incoming synapses ij are scaled geometrically
such that the new sum of efficacies equals the exact limit. Scaling is done once per iteration,
meaning that all synaptic efficacies are updated before limits are checked.19 Geometric scaling
also guarantees that the operation never causes the efficacy to cross zero (i.e. it will not go from
excitatory to inhibitory, or vice versa). For later reference, the divergence preventing learning
mechanism described above is termed MOD2.

17Recall from Eq. (3) that input from one (presynaptic) neuron to another (postsynaptic) neuron is given by
the product of the presynaptic drive and the efficacy of the synapse connecting them.

18The problem, as pointed out in [Axe06], is that when |I∗
j | grows large and the limit is linear in |I∗

j |, synapses
with high effective learning rates (“fast learners”) typically obtain inordinately large efficacies.

19An alternative approach would be to perform the limit checks after each efficacy update. The latter has
somewhat different semantics, in that if two synapses compete to drive/inhibit the same postsynaptic neuron, the
one that is updated first has a greater chance of growing at the expense of the other. The chosen strategy, where
synaptic update order is irrelevant, is in a sense fairer, in that all synapses have equal growth opportunities. Also,
by doing the limit checking and efficacy scaling once per iteration, the asymptotic running time is reduced by a
factor of |E| (see Section 3.2.7.1 for a detailed ANN run time analysis).
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(a) A = 10, υ = 3 (b) A = 10, υ = 7

Figure 9: Efficacy limit function h(|I∗
j |) for MOD2 divergence preventing mechanism (Eq. (23))

Algorithm 3 Maximum summed synaptic efficacies (MOD2)
{Consider neuron j}
Let Σ ← 0
for each i ∈ I∗

j do
Σ ← Σ + |eij |

end for
if Σ > h(|I∗

j |) then
for each i ∈ I∗

j do

eij = eij
h(|I∗

j |)
Σ

end for
end if

3.2.6 Neural network topology

As pointed out earlier, ANN topology is to be defined at the clustral level; network connectivity
is not specified directly as synaptic connections between presynaptic and postsynaptic neurons,
but as cluster-to-cluster connections indicating that neurons of some presynaptic cluster connect
onto neurons of some postsynaptic cluster according to predefined rules, and by a given synaptic
learning mechanism.

The cluster connection strategies used for the simulations of this thesis are simple and based
on the all-to-all principle. In later simulations more complex connection strategies may be
needed, but at this point all-to-all connections between and within clusters are believed to be
adequate. Two profound arguments support this choice: Firstly, a more fine-grained control
over neuron-to-neuron synaptic connections requires more complex programmatic connection
semantics, and as a result the initial manual setting up of topology specifications would be
much more time consuming.20 Secondly, and perhaps most importantly, at the present point

20This argument also applies when ANN topologies are searched by means of genetic algorithms (Section 3.4);
a more fine-grained control over synaptic connections vastly increases the size of the search space, making the
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of time one usually does not know which specific synaptic connections are needed for some
wanted behavior to emerge. By including all possible connections between the neurons of two
clusters, no possibilities are ruled out. Hopefully, connections that are in effect not needed
should self-organize to cancel out (with close to zero synaptic efficacy).21

The rule for inter-cluster connections used for the simulations of this thesis is simple: Every
neuron of the presynaptic cluster connects onto every neuron of the postsynaptic cluster. All
inter-cluster synapses are Skinner or Pavlov synapses, and within the set of synapses constituting
an inter-cluster connection, all synapses are of the same type.

In addition to inter-cluster connections, there may be intra-cluster connections, i.e. synaptic
connections between neurons inside the same cluster. The rule for intra-cluster connections is
similar to the above: Every neuron connects onto every other neuron inside the same cluster
(i.e. not itself). All intra-cluster synapses are Pavlov or Hume synapses.22 Further, as for
inter-cluster connections, all synapses within one cluster are of the same type.

3.2.6.1 Affect systems

One extension to the topological building blocks discussed thus far is the use of affect systems
in connection with need inputs. Affect systems are closely related to need inputs; one can say
that an affect cluster is an ANN-internal representation of the corresponding need input cluster
to which other clusters relate and connect. The topology of an affect system is depicted in
Figure 10.

Figure 10 introduces a new type of connections termed constant. These are not synaptic
connections, but merely constant and unalterable transmitters of neuronal signals from need
inputs to affect clusters. The affect cluster has exactly as many neurons as there are need
inputs, and there is a one-to-one connection mapping between need inputs and affect neurons.
Each neuron of the affect cluster can be regarded as a neuronal representation of one specific
need input. Because of this, affect neurons are not subjected to stochastic perturbations in the
calculation of drive values.

When not considering other synaptic inputs, need values are mapped directly onto drive val-
ues of corresponding affect neurons. Other neurons may, however, connect onto affect neurons,
and thus influence drive values. Need input contributions to affect neuron drives are calculated
by inversion of the need values. This value is included in the standard summed synaptic input,
and the total net input dictates the final drive value, as calculated by the standard sigmoid

GA process correspondingly more time consuming.
21There is, of course, a possibility that superfluous synapses can disturb the ANN in its workings toward some

goal; indications of this were indeed seen in the simulations of [Axe06]. These potential disadvantages of using
all-to-all connections are, however, considered to be of considerably less importance than the disadvantages of
possibly excluding connections that are essential to the goal at hand.

22According to [Hok06] intra-cluster synapses are always Hume synapses. As a result of discussions at supervisor
meetings, however, the use of Pavlov type intra-cluster synaptic connections is also included as an option for the
simulations herein. For instance, when considering an intraconnected motor cluster, one can imagine that the
ability for some motor neurons to anticipate their drive based on the activity in other motor neurons could be
useful in developing efficient motion behavior. When Pavlov synapses are used to intra-connect motor clusters,
however, the same learning rate as the one used for Hume synapses is used (Pavlov learning rates are typically
an order of magnitude higher than Hume learning rates, and are hence inappropriately high for intra-cluster
learning). For completeness, recall from Section 2.5 that Skinner synapses don’t seem to be suitable for multi-
layer learning; they are thus not included as an option for intra-cluster synaptic connections.
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Figure 10: Affect system topology overview

activation function (Eq. (2)). Inverting the activation function gives:

x = g−1(y) = ln
(

1 − x0

x0

)
− ln

(
1 − y

y

)
, (25)

where x is the synaptic input value, y is the need value and x0 is the y-axis crossing point for
the sigmoid function. The x calculated from Eq. (25) is used in place of the corresponding
et
ijD

t
i element of the net input calculations (Eq. (3)). If the affect neuron has only incoming

connection - the constant connection from the need input - the affect neuron drive value will, of
course, be the exact same as the need value. For equation (25) to be valid, however, we must
require y ∈ (0, 1). If y occasionally is below or above this range, the drive value contribution
from the need input is set to 0 or 1, respectively.

An alternative approach to the above affect neuron drive calculations, which also was the
original approach for this thesis, is to consider constant connections as synapses with constant
efficacies, thus allowing net synaptic input and drive values to be calculated in a normal fashion.
The efficacies would be set such that, when not considering drive contributions from other
neurons, need values map roughly equally onto drive values at corresponding affect cluster
neurons. An optimal efficacy value could e.g. be calculated based on the sigmoid y-axis zero
point x0 from Eq. (2); for our simulations, this value would be approximately 8.0. The problem
with this approach, however, is the nonlinearity of the sigmoid function, making the effective
learning rate for Skinner synapses highly dependent on the current need value range; because
need values are transformed through the activation function, learning would be very slow when
needs are close to 1.23 Simulations have, indeed, shown that the latter approach can make early
learning difficult, because, initially, need values are high (often > 0.9). The reason for the latter

23Recall that efficacy changes in the Skinner learning mechanism (Eq. (10)) are proportional to presynaptic
drive changes ΔDi.
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Figure 11: Comparison of sigmoid and linear need transforms, scaled to range within [0, 1]

becomes evident by studying Figure 11, where a comparison of the sigmoid and linear need
transforms is shown.24

As suggested by the topology depicted in Figure 10, affect systems allow need signals (repre-
sented as neuronal drives in the affect cluster) to be anticipated by Pavlovian synaptic learning
based on input signals from neutralized senses. More, affect systems are not expected to restrict
the capabilities of the ANNs in any way; when using the above inversion based mapping of need
values to affect neuron drives, no disadvantages have been seen nor are expected to be seen from
the inclusion of affect systems. In fact, by appropriate connectivity specifications, topologies
incorporating an affect cluster can be made completely equivalent to similar topologies exclud-
ing the affect cluster. Thus, in the search for optimal ANN topologies (discussed next), affect
systems can be bypassed. Based on discussions at supervisor meetings, affect systems are used
in connection with need inputs for all simulations performed throughout this thesis.

3.2.6.2 Topology specification

Connectology depicts how neural network topology can be specified using a cluster connection
matrix called the Cluster Diamond Matrix. The matrix based specification is adopted for the
topology specifications herein; ANN topology is defined at the clustral level by means of a cluster
connection matrix M with elements mij where the row index i represents the presynaptic cluster
and the column index j represents the postsynaptic cluster. Matrix elements mij are given values
based on the connection status between clusters i and j, of which there are several possibilities:

24The effective learning rate will be proportional to the derivative of these transforms, given by the current
need value range.

40



Model 3.2 Neuronal model

N S A I1 I2 · · · In M
N X X C X X · · · X X
S X X (P) (P) (P) · · · (P) (P)
A X X X (S) (S) · · · (S) (S)
I1 X X (P) (H) (P) · · · (P) (P)
I2 X X (P) (P) (H) · · · (P) (P)
...

...
...

...
...

...
. . .

...
...

In X X (P) (P) (P) · · · (H) (P)
M X X (P) (P) (P) · · · (P) (P/H)

Table 1: Generalized ANN topology specification

Entry Description
X Connection not possible (blocked) (-1)
0 Not connected
S Connected by Skinner synapses (1)
P Connected by Pavlov synapses (2)
H Connected by Hume synapses (3)
C Connected by Constant connections (4)

The topology of the ANN, including the type and learning mechanism of all connections, is
thus completely specified by the integral matrix M (integral values shown in parentheses). For
instance, the entry m1,3 = P specifies that every neuron of the cluster represented by index 1
connects onto every neuron of the cluster represented by index 3 by means of Pavlov synapses.
Similarly, the entry m3,3 = H specifies that the cluster represented by index 3 is intraconnected
by means of Hume synapses, i.e. every neuron of cluster 3 connects onto every other neuron of
the same cluster by means of Hume synapses.

Table 1 shows a generalized matrix of which the set of specific instances covers the entire
space of allowed ANN topologies. Matrix entries in parentheses are optional, and we let Eij

define the set of entry options for element mij .25 The clusters are indexed by N (need inputs), S
(sense inputs), A (affect cluster), Ii (internal cluster i) and M (motor cluster). Two additional
requirements for a topology to be valid do not appear from Table 1: Firstly, we require that there
exists a path N→ · · · →M from needs to motors and at the same time a path S→ · · · →M from
senses to motors. Secondly, we require that each cluster has at least one incoming connection
(except N and S) and one outgoing connection (except M).26 An example of one specific valid
ANN topology specification is given in Table 2, and the corresponding structural ANN topology
diagram is given in Figure 12. The topology has need inputs, sense inputs, an affect cluster,
two internal clusters and a motor cluster.

25For instance, mij = (P) means that the element may be P or 0, i.e. Eij = {P, 0}. Similarly, mij = (P/H)
means that the element may be P, H or 0, i.e. Eij = {P, H, 0}

26In the context of genetic algorithms (Section 3.4), this validity checking is merely a matter of running
time/performance. ANN topologies that are invalid according to the two requirements stated above are considered
meaningless, and are not expected to produce any good or interesting results. By refraining from performing
simulations on ANNs incorporating topologies that are known to be incapable of producing good results, instead
of letting the GA process prune such topologies, considerable amounts of running time can be spared.
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N S A I1 I2 M
N X X C X X X
S X X P P 0 0
A X X X 0 S S
I1 X X 0 H P P
I2 X X 0 P H P
M X X 0 P P 0

Table 2: Example ANN topology specification

Figure 12: Example ANN topology structure
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3.2.7 Simulating the neural network

As described earlier, the simulations are based on discrete time steps. At one time step, the
drive value for each neuron j is calculated as a function of weighted input netj , neuronal trace
accj , and stochastic perturbation stocj . A change of neuronal drive gives rise to changes in
the synapses adjacent to neuron j, including traces of postsynaptic drive differentials Tij , and
synaptic efficacies eij .

Synchronous vs. asynchronous updates Neural networks are inherently highly par-
allel, while most computers are purely sequential. Hence, when doing computer simulations of
ANNs, parallelism (and continuous time) must be simulated, and the sequence of operations
must be considered. With a synchronous update strategy, updates are equivalent to the entire
vector of ANN values (neuronal drives and synaptic efficacies) being updated simultaneously.
More specifically, when updating ANN values for one time step, the values of elements that
constitute parts of the calculations are always taken from the previous times step, and newly
calculated values are not put to use until all values are ready and the next time step can be
commenced. With an asynchronous update strategy, however, when an ANN value is updated,
the newest available values are always used, and the network-level notion of a time-step thus
becomes vague. Further, using a deterministic sequential order of neuron updates throughout
the simulation could influence simulation results, while, ideally, the update order should have
no influence whatsoever on the simulation results. Therefore, in order to simulate parallelism in
the best possible way using asynchronous updates, a random update strategy should be used,
implying that a new neuron update order is generated randomly for each iteration.

There are both advantages and disadvantages with both synchronous and asynchronous up-
date strategies. For the simulations in this thesis, synchronous updates are used. This choice of
update strategy is mainly based on the findings in [Axe06]; there, an asynchronous update strat-
egy was chosen, but both asynchronous and synchronous strategies were investigated. Through
the experimental work performed therein, it became clear that for ANNs with synaptic learning
of the type considered, where the temporal order of events (drive changes) is critical, asyn-
chronous updates pose a few challenges that become considerable for larger networks; semantics
are easily cluttered when updates are asynchronous, in that the aspect of a time step becomes
vague. When neurons in a large network are updated asynchronously and in random order, it
becomes difficult to analyze the course and correctness of events inducing synaptic learning. A
synchronous update strategy is far cleaner in this respect, with well defined temporal properties
through step (i.e. iteration) based time discretization.

Algorithm 4 gives an algorithmic overview of how an ANN iteration, i.e. one complete
update of all neurons and synapses, is carried out.

3.2.7.1 Run time analysis*

The run time of an ANN iteration is dependent on two important quantities: The number of
neurons |V | and the number of synapses |E|. The loop of lines 1-3 is bounded by the number of
input neurons, which is bounded by |V |, and is thus executed O(|V |) times. Line 2 is trivially
O(1), and the loop of lines 1-3 is therefore O(|V |). Equivalently, the loop of lines 4-6 is O(|V |).

The loop of lines 7-11 is also bounded by |V | and is thus executed O(|V |) times. Referring to
Eq. (3), we see that netj is calculated as a sum over all incoming synapses to neuron j. Line 8
by itself is therefore O(|E|). Line 9 implies an execution of Algorithm 1 and Algorithm 2,
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Algorithm 4 Simulating the ANN (one complete update, i.e. one time step)
1: for each need input neuron i do
2: set Di from associated need value
3: end for
4: for each sense input neuron i do
5: set Di from associated sense value
6: end for
7: for each neuron j, excluding inputs do
8: calculate weighted input netj (Eq. (3))
9: generate stochastic perturbation stocj (Alg. 2)

10: calculate new drive value D
′
j (Eq. (2))

11: end for
12: for each neuron j, excluding inputs do
13: let Dj ← D

′
j

14: update accj (Eq. (4))
15: end for
16: for each synapse ij do
17: update eij (Eq. (10), (12)/(14) or (16)/(18))
18: update Tij (Eq. (11)/(21), (13)/(15) or (17)/(19))
19: end for
20: for each neuron j, excluding inputs do
21: scale incoming synaptic efficacies eij (Alg. 3 (MOD2))
22: end for

both of which can easily be seen to be O(1), and line 9 is therefore O(1). Line 10 is also
trivially O(1). Therefore, lines 8-10 are O(|E|). This gives an upper bound for the loop of
lines 7-11 of O(|V | |E|). This bound is, however, not tight. This can be seen by amortized
analysis, as follows: Every synapse is connected to exactly one presynaptic neuron and exactly
one postsynaptic neuron. Line 8, where the implicit loop ranges over the incoming synapses
of a neuron, will therefore contribute with O(|E|) in total. With that, an asymptotically tight
upper bound for the loop of lines 7-11 can be established as O(|V | + |E|).

The loop of lines 12-15 is bounded by |V |. Lines 13 and 14 are trivially O(1), and the entire
loop is therefore O(|V |).

Moving to the loop of lines 16-19, we see that it iterates each synapse in the ANN and is
thus executed exactly |E| times. Line 17 only involves basic arithmetic operations, and is O(1).
The running time of line 18, however, is somewhat more intricate: For Skinner synapses using
the MOD1 divergence preventing modification the running time is not immediately obvious.
As can be seen from Eq. (20), the mathematics involved contain computing the weighted input
over all incoming synapses at two different time steps. Normally, these calculations would be
O(|E|). The second activation function term is simply the previous drive of the postsynaptic
neuron, which has already been calculated. It can therefore be stored, and recalled in O(1) time.
Similarly, most of the input to the first activation function in Eq. (20) is already computed; the
only modifications that must be made are subtracting the et

ijD
t
i term from the nettj and adding

et−1
ij Dt−1

i . All of this can be done in O(1) by storing previous drive and previous efficacy for all
neurons and synapses, respectively. Now the call to the activation function can be made, which
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is also O(1), and with that, the entire calculation of Δ∗
i D

t
j can be done in O(1) time. Δ∗

i D
t
j is

specific to single synapses, so calculating these values is O(|E|) in total. However, by including
the Δ∗

i D
t
j calculations in the loop of lines 7-11, which is already O(|V | + |E|), this causes no

increase in the asymptotic running time of the algorithm, and line 18 can be regarded as O(1).
From this, it can be seen from Eq. (21) that the calculations of Tij can be done in O(1) time.
With that, the body of the loop of lines 16-19 is O(1), and the loop is therefore O(|E|).

The loop of lines 20-22 is bounded by |V |. Line 21 is calculated over all incoming synapses to
neuron j, and is therefore O(|E|). However, by amortized analysis, realizing that each synapse
will be visited only once, the entire loop only contributes with O(|E|) in total.

Based on the above arguments, the total running time for one complete ANN update can
be established as O(|V | + |E|). Note that any ANN update algorithm must visit every neuron
and every synapse in the network at least once (for drive and efficacy updates, respectively),
such that the running time must be Ω(|V | + |E|). With that, Algorithm 4 is Θ(|V | + |E|).

45



3.3 Mechanical model Model

Figure 13: Structural overview of mechanical model

3.3 Mechanical model

The mechanical model represents the body of the virtual creature and therein the environment
that the ANN operates in. The structural design of the creature’s body is based on generic
structural properties found in biological insects, examples including ants and spiders. Such
biological creatures are, however, way too complex for (close to) exact mechanical modeling,
and several simplifications have therefore been made in the design of the mechanical model. The
resulting initial simplified insect-like mechanical structure has further been adjusted based on
the recommendations received at meetings with scientific experts Gertjan Ettema and Beatrix
Vereijken [EV07].

The mechanical model is based on rigid-body dynamics. The use of rigid-body dynamics
imply that the shape and size of each component in the mechanical system is unchangeable
and strictly constant; each limb of the simulated virtual creature is rigid and by all means
non-deformable. This, of course, is strictly not optimal with respect to biological plausibility
and physical realism, but it significantly simplifies the mechanical model and the mathematics
and numerical calculations needed to obtain physically realistic system behavior. The choice of
using rigid-body dynamics is also heavily influenced by the functionality offered by the range of
commercially and freely available physics engines; most of these simulate rigid-body dynamics
and have limited or no support for non-rigid bodies.

Open Dynamics Engine (ODE) is the physics engine of choice for this thesis. ODE is purely
rigid-body based, and is well suited for simulating virtual creatures of the type investigated here.
The reasons for choosing ODE are numerous; it is quite widely used, richly featured, seemingly
very stable, mature, and platform independent with an easy to use C/C++ API. Furthermore,
ODE is open source, allowing for modifications and extensions, as needed.27 The use of ODE
for the simulations of this thesis is detailed in Appendix B.

27Another advantage of using an open source library such as ODE compared to other free but closed source
libraries is the lower probability for commercialization in the near future.
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Figure 14: Leg ground contact: A) square contact surface B) line contact surface C) single point contact
surface D) orientation independent single point contact surface.

3.3.1 Limbs and joints

The mechanical model is built using two simple primitives: cuboids (boxes) and spheres (balls).
A virtual creature consists of the following parts:

• Head: 1 cube

• Torso: 1 cuboid

• Legs: 1 cuboid (thigh) and 1 sphere (foot) per leg

Figure 13 gives a structural overview of a virtual creature with six legs. The number of legs is
variable, and is specified by the number of leg pairs L. The length of the torso grows linearly
with L, implying that a creature’s torso approaches the shape of a stick as the number of leg
pairs grows. All body parts have equal and uniform mass density.

The use of spheres to model the feet of the creature is a compromise solution introduced
in order to overcome the greatest disadvantages of using as simple body part primitives as
cuboids: Purely box shaped legs makes the contact surface between a creature’s leg and the
ground heavily dependent on the exact orientation of the leg, see Figure 14. With sphere shaped
feet the contact surface between a leg and the ground becomes independent of leg orientation,
which is closer to the relative orientation independence obtained in diverse biological systems
having flexible and non-rigid feet.

Joints are used to connect different body parts, and to constrain their movement relative to
each other. The mechanical model used herein implements two different joint types: fixed and
universal.

Fixed joints maintain a fixed relative position and orientation between the two parts they
connect, making these physically equivalent to one composite body part. Relative position and
orientation is specified at model initialization, and these two properties thus remain constant
throughout an entire simulation. The neck-joint between the torso and the head and the ankle
joints between the thighs and the feet are of fixed type, implying that these connected body
parts will never move or rotate relative to each other.

The other joint type used is the universal joint, as depicted in Figure 15. Universal joints
have two degrees of rotational freedom: rotation about a horizontal axis (Axis 1) and about
a vertical axis (Axis 2). The third degree of rotational freedom is constrained such that the
rotation of the two body parts about the direction perpendicular to the two axes will be equal;
the effect of this is that if you grab one body part and rotate it, the other will twist as well.
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Figure 15: Universal joint (image courtesy of ODE Manual/Russel Smith)

The crossing point between the two rotational axes is the anchor point which constrains the
relative position between the two body parts; the two body parts are hinged together at the
anchor point. The hip-joints between the torso and the thighs (i.e. legs) are of universal type,
implying that legs can be raised/sunken and moved forth/back, but not rotated about their
own axis. Further, the anchor point ensures that the legs are always tightly connected to the
torso.

Figure 16 provides an overview of the joint type structure of the mechanical model, showing
joint positioning and type specification.

For simulation purposes, joint angles for universal (i.e. hip) joints must be constrained to
some minimum and maximum values. The model used herein utilizes the approach of specifying
joint angle range by two parameters for each dimension: base (equilibrium) angle and maximum
angle of deflection, as depicted in Figure 17. These parameters are global and apply equally to
all legs, giving rise to a total of four joint angle parameters (two for each dimension) for the
entire mechanical systems.

Figure 16: Joint type overview
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Figure 17: Joint angle specification: base and deflection

3.3.2 Motors and muscles

As discussed in Section 3.1, and more thoroughly in Section 3.2.4, the ANN controls the me-
chanical model by means of motor activation signals, which are simply neuronal drive values
at motor output neurons. Motor activation signals, in turn, control mechanical model muscles.
Muscles act upon limbs by generating torques at non-fixed joints. As specified in the previous
section, the only applicable joints are the universal hip-joints connecting the thighs (i.e. legs)
to the torso. These universal joints have two rotational degrees of freedom which translate into
moving the legs up/down and forth/back.

From this, each leg must be controlled by four muscles: two vertical for moving the leg up
and down, and two horizontal for moving the leg forth and back, as depicted in Figure 18.28 Of
considerable importance at this point is that the muscles of the mechanical model are purely
logical constructs; they do not constitute any concrete part of the physically simulated creature,
they are simply mathematical functors through which instantaneous joint torque is calculated
based on motor activation history, maximum muscle force etc. (details discussed below). In-

28The two respective muscle pairs correspond closely to what is termed antagonistic muscle pairs in biological
systems; two muscles working over the same joint and pulling in opposite directions [EV07].

Figure 18: Creature muscles: A) Vertical moving leg up/down B) Horizontal moving leg forth/back.
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evitably, this also implies that our muscle concept has no spatial attributes such as base length
or limb anchoring points; the spatial properties depicted in Figure 18 have no purpose other
than specifying in what direction the different muscles pull.

Some comments are appropriate as regards the adequacy of this approach; a more biologically
realistic model would have incorporated spatially dependent and physically simulated muscles
that stretch and contract and thereby interact mechanically with the limbs of the creature’s
body by pulling jointed limbs together. Our model, as suggested earlier, makes one protrudent
simplification in that an entire step in the sequence of actions constituting neurally controlled
mechanical motion in biological systems is skipped: the logical muscles used here give joint
torques directly instead of indirectly by pulling body parts together. This omission of spatially
dependent muscles is equivalent with joint torque as a function of muscle force being represented
by the identity function for all muscles.

However, the entire mechanical model, as it is described in the preceding, is already a
crude simplification compared to the real biological systems it is meant to describe. Great
simplifications, such as that of having very few geometrically simple and pure rigid body parts
with few non-fixed joints, are necessary to make manageable the amount of work required to
stably, consistently and realistically simulate the mechanical system. With this in mind, the
muscle model simplification mentioned above is presumably not too restrictive.

3.3.2.1 Muscle model overview
The muscle model adapted herein is heavily inspired by the functioning of muscles in biological
systems, as described in [Kan00]. Muscle force at any time is composed of two types of force
with different basis:

• Active muscle force dependent on motor activation signals (i.e. neurally controlled)

• Passive muscle force not dependent on motor activation signals (i.e. purely mechani-
cally originate)

Active muscle force, controlled by neuronal activation, is dependent on three variables:29

• Level of neuronal motor activation

• Muscle length

• Muscle length rate

Passive muscle force depends only on the latter two of these; muscle length and muscle length
rate. For the mechanical model described above, where muscles are purely logical constructs
without mechanical or spatial properties, muscle length and muscle length rate are approximated
by joint angle θ and joint angular velocity θ̇, respectively.

Active muscle force is described mathematically by the relative contributions induced by
neuronal activation, muscle length and muscle length rate as fa1(D), fa2(θ) and fa3(θ̇), re-
spectively. Each muscle is associated with one motor neuron giving neuronal activation level
D. Correspondingly, passive muscle force is described by the relative contributions induced by
muscle length and muscle length rate as fp2(θ) and fp3(θ̇), respectively.

29[Kan00]: “Contractile force depends on the level of activation of each muscle fiber and its length and velocity.”
(p. 680)
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(a) X-axis: neuronal activation (b) X-axis: muscle length (c) X-axis: muscle length rate

Figure 19: Muscle force dependency functions (active, passive)

The shapes of these five relative dependency functions are adopted from the description
of biological muscles given in [Kan00]. All five (three active and two passive) are plotted in
Figure 19 (the mathematical specifications are given in the next section), normalized for input
range [0, 1]. For fa2 and fp2, this implies that minimum length equals 0 and maximum length
equals 1. For fa3 and fp3, muscle shortening is represented by values less than 0.5 and muscle
lengthening is represented by values greater than 0.5.30

Active and passive muscle forces are additive. Furthermore, the functions describing the
different dependencies within the active or passive type are multiplicative [Kan00]. Thus, if we
denote by Fmax the maximum muscle force for a specific muscle, current force contribution is
given by:

F
′
= f(D, θ, θ̇) = Fmax

(
fa1(D) · fa2(θ) · fa3(θ̇) + fp2(θ) · fp3(θ̇)

)
(26)

Further, to take time dependence into account, effective muscle force should also be dependent
on previous force history. A very simple and yet quite effective approach is the use of a simple
mathematical trace function:

F = (1 − αm)F + αmF
′
, (27)

where αm ∈ (0, 1). Such a trace will introduce inertia to the force generated at the muscle based
on previous force history; the length of the trace and thus the impact of the inertia is controlled
by the αm parameter. An immediate consequence of the introduction of a muscular trace is
that, with an appropriately sized αm, very rapid muscle force fluctuations are eliminated, thus
heavily suppressing the possibility for fast-paced vibratory legs in the mechanical model. In the
words of Chiel and Beer:

Muscle acts as a low pass filter of motor neuronal outputs, that is, it filters out the
high frequency components of the neural outputs. ([CB97] p. 553)

30In addition, since muscle length rates have no real limits on minimum and maximum values, the source range
is restricted to [−6, 6] rad/s, which by trial and inspection is seen to cover the range of interest. Occasional values
outside this range are truncated.
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3.3.2.2 Muscle model details
Biological muscles have several types of muscle fibers, and the functioning of an entire biolog-
ical muscle is the result of the force generated at several different muscle fibers [Kan00]. The
muscle model used herein, however, is based on only one type of muscle fiber, thus making the
qualitative functioning of an entire muscle equivalent to that of a single fiber. An initial guess is
that the muscle fiber modeled should be most resemblant to type I slow-twitch muscle fibers.31

Anyhow, variable parameters such as the α in Eq. (27) introduces flexibility in allowing for the
properties of the muscle fiber to be changed easily; for instance, a higher α gives a faster (as in
more quickly responding) muscle fiber.

Active dependence on neuronal activation is given by:

fa1(D) = D (28)

The function is shown in Figure 19(a). Active muscle force thus increases linearly with neuronal
activation.32

Active dependence on muscle length is given by:

fa2(θ) = −(1.4θ − 0.9)2 + 1 (29)

The function is plotted in red in Figure 19(b). The shape indicates that the potential for active
muscle force is greatest when the muscle is of medium length; active muscle force declines both
when the muscle is longer (i.e. stretched) and when the muscle is shorter (i.e. compressed),
indicating that the optimal muscular area of operation is around the middle of the joint angular
deflection range.

Active dependence on muscle length rate is given by:

fa3(θ̇) =

⎧⎨
⎩

exp(θ̇ − 0.572975)7, if θ̇ < 0.5
−10(θ̇ − 0.7)2 + 1, if 0.5 ≤ θ̇ < 0.7
1, if θ̇ ≥ 0.7

(30)

The function is plotted in red in Figure 19(c). Its shape indicates that the potential for ac-
tive muscle force is considerably greater when the muscle is being stretched than when it is
being compressed. The functional consequence of this is that muscles can be said to possess
implicit movement dampening characteristics; they are more probable of counteracting their
current direction of movement than reinforcing it.33 The S-shape of fa3 further intensifies this

31[Kan00]: “The red muscles of the legs are specialized for standing and walking[...] Red muscles are composed
mostly of slow-twitch fibers, also called type I fibers. The force produced by type I fibers rises and falls relatively
slowly in response to an action potential.” (p. 684)

32The function is probably not biologically exact; the relationship between neuronal activation and muscle
force is assumed to be nonlinear. Based on expert recommendations received at discussion meetings [EV07],
however, indicating that the importance of the exact shape of fa1 is limited, the simple linear model of activation
dependence given in Eq. (28) is used.

33The force generated by a muscle always contributes to shortening the muscle. When a muscle is being
lengthened, the relative force is large, making the muscle highly capable of stopping the movement causing
muscle lengthening, while when a muscle is shortened, the relative force is small, making the muscle less capable
of reinforcing the movement. Now considering a joint with a corresponding antagonistic muscle pair. When there
is limb movement over this joint, then, the muscle lengthening in one muscle is easily counteracted, while the
muscle shortening in the other muscle is not as easily reinforced. Hence, the consequence of active muscle length
rate dependence as given by Eq. (30) is dampening of movement.
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tendency, increasing the relative difference between stretching and compression compared to a
linear model.

Passive dependence on muscle length is given by:

fp2(θ) = (θ − 0.25)6 (31)

The function is plotted in green in Figure 19(b). The shape of the function shows that muscles
generate passive force when extensively stretched. The functional consequence is that muscles
automatically counteract extensive stretching, making antagonistic muscle pairs probable of
passively forcing joints away from of the outermost extreme parts of their range. Immediately
evident, also, is that the absolute size of passive muscle force is considerably smaller than that
of active muscle force. The latter should also be expected; the forces that biological muscles are
capable of generating actively are of greater magnitude than the corresponding passive muscle
forces [EV07].

Passive dependence on muscle length rate is given by:

fp3(θ̇) = 0.5θ̇ + 0.25 (32)

The function is plotted in green in Figure 19(c). The functional consequence is similar to that
of the corresponding active dependence on muscle length rate; fp3 contributes to dampening
passive movement.

All these equations are based on rough approximations of corresponding functions plotted in
[Kan00], which are approximations of what has been found empirically in biological muscles,
and should therefore be of high relevance with respect to biological plausibility. The functions
have further been adjusted to better fit the recommendations given by scientific experts Gertjan
Ettema and Beatrix Vereijken [EV07].34

3.3.3 Needs

As discussed in Section 3.1, and further in Section 3.2.4, the mechanical model provides the
ANN with need signals. These needs, which constitute the goal specification for the entire
simulated system, are subjected to minimization by the ANN. The set of need values chosen to
be fed back from the mechanical model to the ANN is therefore of great importance.

Many different types of needs are conceivable, and a sensible non-empty set must be chosen
among these to reflect the wanted system behavior. The following sections discuss different
needs examined throughout this thesis.

34Also important in adjusting the model were preliminary simulations that made evident the need to decrease
the magnitude of passive forces in the Kandel [Kan00] model compared to active forces: For specific settings of
mechanical model parameters, the original model allowed repetitive movement patterns to emerge based solely
on passive muscle forces.
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3.3.3.1 Torso height need

Figure 20: Multiplicative weighting
of upper torso corner
points.

The torso height need is based on inverse torso height
above ground, and the need thus translates into the goal
of standing up. Several configurations are possible giving
rise to one or several need values; different points on the
torso could for instance represent different needs, possibly
with unequal weights. For the purpose of getting up on
all feet, however, a multiplicative weighting of the four
upper corners of the torso cuboid giving one single need
is most suitable, because such a configuration yields a
minimized need value when the entire torso is lifted as
high up as possible while simultaneously being stabilized
horizontally.

Mathematically, this need can be implemented as:

need = 1 − y0 · y1 · y2 · y3, (33)

where y0, y1, y2 and y3 are the current heights of the four upper corners of the torso, as depicted
in Figure 20, and scaled to range within [0, 1].

3.3.3.2 Head height need
The head height need is based on inverse head height above ground, and is thus similar to the
torso height need discussed above. As opposed to the latter, however, the head height need
does not incorporate multiplicative averaging of several point heights favoring horizontally and
vertically balanced head orientation. The mathematics are straightforward:

need = 1 − y, (34)

where y is the height component of the head’s current position, scaled to range within [0, 1].

3.3.3.3 Belly pain sensor needs

Figure 21: Four belly pain sensors (3
is painful, 2 is close, 1 and
0 are safe).

The belly pain sensor needs are based on monitoring the
position of the four lower corners of the torso cuboid, and
seeing if they touch (are very close to) the ground, see Fig-
ure 21. Thus, these four needs translate into the goal of
getting up or, equivalently, not lying on the ground. If one
corner touches (is very close to) the ground, this almost
instantaneously gives a very high need value. Thus, the
semantics of the belly pain sensor needs are very similar
to those of the torso height need described above, except
that the height interval of interest is very much shorter.
As for the corresponding goals, the torso height need re-
quests getting the torso as high as possible, whereas the belly pain sensor needs merely request
getting the torso above (as in not touching) the ground. The mathematics are equivalent to
those presented above for the head height need.
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3.3.3.4 Velocity need

Figure 22: Creature relative forward
velocity.

The velocity need is based on inverse torso speed in
creature-relative forward direction. It translates into the
goal of achieving as high forward velocity as possible
or, equivalently, moving forward (crawling, walking etc.)
at maximum speed; the higher the forward velocity, the
lower the need.

The velocity need is based on a mathematical trace
function, such that the value of the need is affected by
previous need history. The mathematics are as follows:

needt = (1 − αv)needt−1 + αv
max(A − νt, 0)

A
, (35)

where αv ∈ (0, 1] controls the shape (i.e. length vs. re-
sponsiveness) of the trace, ν is the velocity in creature
relative forward direction (Figure 22) and A represents
some maximum and assumed unattainable velocity. For the simulations herein, A = 6.0m/s.

Considering the trace parameter αv, note that a large αv makes the need value responsive
to rapid changes of velocity,35 while a small αv makes the need represent the general tendency
of motion (is the creature doing the right thing?) in a better way.36 Ideally, therefore, to
utilize both these advantages, αv should be both small and large, which is impossible. Initial
assessments indicate that the advantages of having a large αv overshadow those of a small αv;
the ability to quickly respond to and learn from rapid changes of velocity is assumed to be
crucial in learning successful motion behavior. Thus, for the simulations herein, αv = 1.

3.3.3.5 Extreme joint angle needs

Figure 23: Extreme an-
gle sensors.

The extreme joint angle needs are based on monitoring the joint an-
gles at the creature’s hip-joints, and inducing pain (i.e. high need
values) when the angles are at or close to their extremes. The biolog-
ical foundation for these needs is that muscles and tendons become
heavily stretched at extreme joint angles, or joints may be in awk-
ward positions, and this may cause some degree of pain. Extreme
angle needs do not map as directly as the others onto a specific goal,
but they are connected to the above goal of moving forward through
the hypothesis that such pain signals at joint extrema may be neces-
sary for the creature to move its limbs in a pattern so as to develop
walking-resemblant gaits. For each leg there are two rotational axes
with minimum and maximum angles; thus, extreme joint angle needs
give rise to four needs per leg.

35For large values of αv, a rapid and perhaps short-lived positive change of forward directed movement will
affect the need almost instantaneously, allowing the system to learn what motor behavior caused the reduction
in need value.

36For relatively small values of αv, seemingly random jiggling forth and back will cancel out and hence not
induce any learning. This is, indeed, propitious because such behavior is unwanted and should not make the
basis for synaptic learning.
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(a) a = 1 (b) a = 3 (c) a = 10

Figure 24: Extreme joint angle need functions xa and (1 − x)a.

Extreme joint angle needs are calculated from the following simple
mathematical functions:

n1(x) = xa (36)
n2(x) = (1 − x)a, (37)

where a is a variable parameter. The given equation pair represents the two needs associated
with a leg’s movement in either horizontal or vertical direction. Joint angles used as input x to
these functions are normalized to range within the interval [0, 1]. The functions are plotted for
three different values of a in Figure 24.

3.3.3.6 Muscle force needs

The muscle force needs are based on feeding back as pain signals the muscle force generated
at each muscle relative to the corresponding maximum force, thus giving rise to one need per
muscle or, equivalently, four needs per leg. Biologically, this need is related to the energy
optimization found in many biological systems [EV07], and these needs therefore translate into
the goal of behaving or moving in a manner which is optimal with respect to energy efficiency.
In connection with this, however, it is of severe importance to be aware of the potential for
need conflicts with the inclusion of muscle force needs; there is for instance an inherent conflict
between the velocity need and the muscle force needs, in that achieving and maintaining forward
velocity requires muscle activity. For this reason, muscle force needs should be used with great
care, as they may contribute to suppressing otherwise promising motion behavior.37

Since the muscle force need values simply are scaled versions of effective muscle forces, as
presented in Section 3.3.2, the mathematics are not repeated here. Important to note, however,
is that need values are normalized with respect to the maximum muscle forces of particular
muscles; stronger muscles do not in general induce higher need values than weaker muscles.

37Previous but simpler ANN simulations [Axe06] have showed that the inclusion of force based needs similar
to those discussed here may lead to more energy efficient and still successful ANN behavior.
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3.3.3.7 Foot friction needs
The foot friction needs are based on inducing pain signals when the creature’s feet slide along
the ground; the physical or biological analogy being the potentially painful heat production or
tissue pressure caused by sliding friction. These needs do not translate into a specific end goal,
but are thought to make the creature more probable of lifting its feet above ground instead of
sliding them along the ground when moving. The latter is assumed to be favorable in connection
with the above velocity need, in that movement patterns based on lifting and setting the feet
down should be more efficient than those based on dragging the feet along the ground.

The semantics of the foot friction needs are straightforward: If a foot is on the ground,38 and
also was on the ground at the previous time step, calculate foot friction need value as follows:

need =
√

x2
m + z2

m, (38)

where xm and zm represent the distance between the previous position and the current position
in the x and z direction, respectively. Obviously, from this definition, if the distance traveled
between two consecutive time steps is zero, the foot friction need value is also zero, which is
equal to the foot being above ground.

3.3.4 Neutralized senses

As discussed in Section 3.1, and further in Section 3.2.4, in addition to need signals, the me-
chanical model provides the ANN with neutralized sense signals. As opposed to needs, senses
are not subjected to minimization by the ANN. Senses are anyhow assumed important in pro-
viding neutralized signals describing the current mechanical (bodily) and environmental state
on which the ANN can steer behavior.

Several different types of senses are possible. Kandel et al. [Kan00] and Hokland [Hok06]
discuss senses originating from muscle spindle endings that are assumed important in the de-
velopment of motion behavior in biological systems:39 Most importantly, the group Ia spindle
endings are sensitive to muscle length, whereas the group II spindle endings are sensitive to
muscle velocity. The senses included in the simulations of this thesis are therefore described by
muscle length and muscle length rate, respectively.

3.3.4.1 Muscle length senses
Muscle length is, as mentioned earlier, approximated by joint angle. Hence, in the mechanical
model of this thesis, the muscle length senses are given by a linear transformation of joint angles,
such that values range within [0, 1].

3.3.4.2 Muscle length rate senses
In correspondence with the above muscle length senses, muscle length rate is approximated by
joint angular velocity. Hence, in the mechanical model of this thesis, muscle length rate senses
are given by a linear transformation of joint angular velocities, such that values range within
[0, 1]

38Meaning that the hight component of the position vector is lower than some prespecified low value very close
to the ground

39[Kan00]: “Muscle spindles are small encapsulated sensory receptors that have a spindle-like or fusiform shape
and are located within the fleshy part of the muscle.” (p. 718)
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Both joint angle and joint angular velocity senses are specified using the exact same equations as
those used for extreme joint angle needs, i.e. Eqs. (36)-(37) (Figure 24), with possibly different
values for the a parameter. Empirical findings do indeed indicate that the transformations de-
scribed by Eqs. (36)-(37) are linear or close to linear [EV07], while the more provisional extreme
joint angle needs seem more reasonable using considerably higher a-values for Eqs. (36)-(37).
For muscle length senses and muscle length rate senses, therefore, a ∈ [1, 2].

3.3.5 Reciprocal scaling of need and sense values

As mentioned earlier, the simulated system will normally implement several of the need and
sense types described above. A readily occurring question is then how strong the different types
of needs and senses should be compared to each other. This question is not easily answered, but
it is obvious that some reciprocal scaling may be necessary. Thus, for each need and sense type
included in the model, a corresponding variable scaling parameter is also included to describe
its relative intensity.
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3.4 Genetic algorithms

The preceding pages have made evident the large number of model parameters that the neu-
ronal and mechanical computer simulations depend on. Setting these parameters manually is
extremely time consuming, and, most importantly, it is very hard to discover the optimal set of
parameter values with such an approach. Further, the dimensionality of the parameter space
is so high that an exhaustive search is far out of reach, even with very coarse discretization of
floating-point parameter ranges.

Furthermore, when considering the biological inspiration inherent in the systems simulated,
a natural choice is to search the parameter space by means of genetic algorithms (GAs). The GA
process is an imitation of the evolutionary processes found in nature, using terms like individual,
generation, fitness, mutation and recombination. GAs can be used to find approximate solutions
to optimization and search problems, and are commonly used when the problem size leaves non-
heuristic approaches such as exhaustive search intractable.

Key aspects of the GA process are as follows:

• Individuals are represented by a specific complete setting of GA parameter values.

• A generation is a collection of individuals.

• Individuals of a generation are compared by means of fitness evaluation. A fitness value
is obtained by monitoring the individual’s performance throughout it’s lifetime according
to some prespecified criteria, termed the fitness function.

• The fittest individuals (i.e. those with highest fitness values) are chosen for recombina-
tion:

– The offspring’s parameter values (genes) are chosen from the mother or father with
equal probability.

– Offspring parameter values may mutate, i.e. change stochastically with a given
probability.

Algorithmically, the GA semantics are as specified in Algorithm 5. In Line 6 of Algorithm 5,

Algorithm 5 GA
1: create the mother of all individuals from an initial (hopefully qualified) guess
2: generate a set of new individuals from the above by mutation
3: {the individuals from lines 1-2 constitute the first generation}
4: for each generation do
5: evaluate the fitness of each individual
6: let the fittest individuals survive (live on to the next generation)
7: generate a set of new individuals from the above by mutation and recombination
8: {the individuals from lines 6-7 constitute the next generation}
9: end for

the fittest individuals are allowed to live on into the next generation, assuring that the genetic
combinations which made these individuals proficient are not lost during recombination and
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mutation. This principle is termed elitism.40. It can further be noted that the group of
individuals used as source for recombination (the parents) coincides exactly with the elitism
group.

3.4.1 GA configuration details

When searching a parameter space using GAs, two things must be defined: 1) a genetic repre-
sentation of the solution domain, and 2) a fitness function to evaluate the solution domain.

3.4.1.1 Genetic representation

As mentioned above, the genetic representation of an individual in the GA process is a specific
complete setting of all GA parameters. There are three single value parameter types in the
simulations of this thesis:

• Integral parameters take on integral values and are limited by a specified minimum
and maximum integral value: parami ∈ {mini, . . . , maxi} | parami, mini, maxi ∈ N.

– Example: number of leg pairs L ∈ {2, 3, 4}.

• Floating-point parameters take on any real value between a specified minimum and
maximum value: paramf ∈ [minf , maxf ] | paramf , minf , maxf ∈ Z.

– Example: synaptic learning rate βij ∈ [1, 20].

• Boolean parameters take on the boolean values true or false: paramb ∈ {true, false}.

– Example: use of modified Pavlov synaptic learning mechanism (i.e. use of Eqs. (14)-
(15) instead of Eqs. (12)-(13)).

In addition to the three single value parameter types listed above, the genetic representation also
incorporates an ANN topology specification, which is implemented as a cluster connection
matrix where each matrix entry specifies whether some cluster A connects synaptically onto
some cluster B, and what type of connection, if any, is to be used.

In summary, a valid specification of an individual in the GA process is a complete mapping
of legitimate values to all integral, floating-point and boolean parameters, such that every value
is within the prespecified value range for the corresponding parameter, and a complete and
valid setting of the cluster connection matrix (for details on ANN topology specifications see
Section 3.2.6).

3.4.1.2 Fitness function

The fitness function, which is used to select the best individuals from a genetic simulation,
must be tailored to reflect wanted system behavior and is therefore closely connected to the
need specification of the simulation at hand.41 Hence, because the set of needs, and with that

40For GA simulations of purely deterministic systems, the use of the elitism principle assures that maximum
fitness as a function of generation number is a monotonically increasing function. The simulations herein are not
deterministic, but the tendency is anyhow assumed favorable.

41Recall from Section 3.3.3 that the set of needs implemented in the mechanical model fully represents the goal
specification for the system as a whole.
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the definition of wanted system behavior, may vary, it is not possible to define a general fitness
function for all simulation cases.

Although no universally suitable fitness function can be specified, the basic structure is
general and applicable to all goal specifications. For the simulations herein, a fitness value is
updated once every iteration, based on the following structure:

fitness0 = 0 (39)

fitnesst = fitnesst−1 +
t

N
· f(state), (40)

where t is the current iteration number, N is the total number of iterations and f(state) is
some function of the current state giving instantaneous performance. Fitness is consequently
accumulated for each iteration, and each contribution is weighted such that the significance of
the creature’s behavioral performance with respect to fitness evaluation increases linearly with
simulation time passed. As opposed to an unweighted accumulative model, the above structure
makes the initial period of trial and error (before any recognizable behavior has emerged) less
influential.

When fitness is measured by the torso height above ground, f(state) could simply be the
inverse height value, equivalent to the mathematical specification given in Section 3.3.3.1. Sim-
ilarly, when fitness is measured by the creature forward velocity, f(state) could be the inverse
forward velocity value, equivalent to the mathematical specification given in Section 3.3.3.4.

Some quantitative properties of the GA process have not yet been discussed, namely popu-
lation size, size of the elitism group, mutation probability and mutation amount. Also, the
precise semantics of the mutation process have not been specified.

3.4.1.3 Population size and size of elitism group
There exists a multitude of opinions as regards the optimal size of populations when using
genetic algorithms to search parameter spaces. By optimal is normally meant the population
size that requires the least number of individuals (which translates into minimum running time)
before genetic convergence (best available solution has been found to the problem); if running
time is not considered, the larger the population size the better [Ala92], but that is of theoretical
interest only. In practice, the number of generations needed to obtain genetic convergence is
normally inversely proportional to the size of populations. The matter of finding the optimal
population size then comes down to finding the crossing point that minimizes the total number
of individuals simulated before genetic convergence is obtained.

Much of the work that has been done on the subject seems to be concentrated around GA
configurations where the genetic representations are simple bit strings, i.e. strings of 0’s and 1’s
(e.g. [Ala92, GR00]).42 For such representations, the problem size is the number of bits, which
is equivalent to the number of parameters in our representation. A clear tendency leveraged
by many is that the optimal population size grows sub-linearly with the size of the solution
space; [Ala92] states that the optimal population size as a function of the solution space size is
logarithmic:

It seems that for moderate problem complexity the optimal population size for prob-
lems coded as bitstrings is approximately the length of the string in bits[...] (p. 1)

42Relating to the GA configuration described above, this would correspond to all parameters being of boolean
type.
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In mathematical terms, this can be expressed as (adopted from [Ala92]):

log(N) ≤ Sopt(N) ≤ 2 log(N) (41)

where N =
n∏

i=1
ni is the size of the solution space. Correspondingly, as a function of the number

of parameters n, the optimal population size can be expressed as:

n ≤ Sopt(n) ≤ 2n (42)

At this point it is important to recall that in addition to the boolean type parameters on which
the above sizing model is based, our genetic representation is comprised of integral and floating-
point parameters, as well. Thus, the problem size cannot be described combinatorially by the
number of possible combinations. The logarithmic (or sub-linear) tendency is, however, still
relevant, and the above model, together with other similar findings [GR00], is still regarded as
providing important indications on population size for more general parameter spaces.

The GA simulations performed herein search a parameter space with approximately 30
variables.43 To take the increased complexity of using integral and floating-point parameters
in addition to boolean parameters into account, a population size of 50 is used. No analysis of
population size optimality has been performed, as the focus of this thesis lies elsewhere. The
choice made is, however, supported by the fact that the GA process does indeed seem to find
good solutions to the problems presented.44

The size of the combined parent and elitism group is another matter that must be considered.
For the simulations of this thesis, the parent/elitism rate is 0.2, meaning that the members of
the fittest fifth of each generation both are used as sources for recombination and survive onto
the next generation.

3.4.1.4 Recombination

Recombination is a process where a pair of parent individuals are combined to create an off-
spring, such that the offspring’s genes typically share many characteristics with the genes of its
predecessors.

Single value parameters

For the simulations herein, the semantics for recombination of single value GA parameters
are simple. Consider an individual C whose single value parameter set is to be created by
recombination of two parent individuals A and B. Then, for each of C’s parameters, the
parameter value is adopted as the value of the corresponding parameter from either A or B, with
equal probability. After recombination is complete, then, C represents a random combination
of A and B, where, at average, A and B have had equally large influence on the result.

43The number of free parameters varies among experiments according to which needs are set as optional, i.e.
whose inclusion or exclusion is determined by the GA process.

44One can, of course, speculate that another population size would have been better, but it is believed that the
disadvantage brought about by the potentially non-optimal population size of 50 is merely a matter of increased
convergence time, and not of worsened actual simulation end results.
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ANN topology specifications
The semantics for recombination of ANN topology specifications are largely equivalent to the
straightforward semantics presented above, only adjusted for matrix representations. Consider
an individual C whose topology specification is to be created by recombination of two parent
individuals A and B. Then, for each entry mij of C’s cluster connection matrix M, the matrix
entry is adopted as the value of the corresponding matrix entry from either A or B, with equal
probability. A’s and B’s cluster connection matrices may, however, be of unequal size. For
such cases, the size of C’s matrix is chosen as the size of either A’s or B’s matrix, with equal
probability. Further, if the larger of these is chosen as the size of C’s matrix, the latter will
contain some matrix elements having only one valid parental source; for these, the single valid
source entry is adopted.

3.4.1.5 Mutation
Mutation implies stochastic perturbation of simulation parameters, the extent of which depends
on the mutation probability P and mutation amount A. For the simulations of this thesis, P =
0.1 and A = 0.2 is used. The former implies that, at average, in the making of a generation every
tenth parameter is mutated. The latter implies that, at average, the size of the mutation is one
fifth of the entire value range.45 The choice of P = 0.1 may, perhaps, seem high compared to the
general recommendations on mutation rates of 1-5% presented elsewhere.46 There is, however,
one important argument support having such a high mutation rate: The initial generation of
the simulations herein is based on seeding an individual and mutating it to generate the rest
of the individuals, whereas most other GA simulations create the first generation by random
selection.47 The latter approach will, naturally, span a greater range of the entire solution
domain than the approach taken here. Therefore, a higher mutation rate is needed to make the
search explore areas of the parameter space that are distant from the initial seed.

Single value parameters
To simulate randomness in the size of the mutation for single value parameters, Box Muller
Gaussian sampling (Algorithm 1) with μ = 0 and variable σ2 is used. With that, the semantics
of the mutation process can be specified as in Algorithm 6, where val(pi), min(pi) and max(pi)
represent the value, minimum and maximum of parameter pi, respectively.

ANN topology specifications
ANN topology specifications are mutated according to a few simple rules. Let |C| represent the
number of clusters, M represent the cluster connection matrix, and mij represent the matrix
element at row i and column j. The mutation process is simple:

45For integral and floating-point parameters, that is; boolean parameters and ANN topology specifications are
not affected by the value of A.

46A mutation rate of 1/l is often suggested when individuals are represented by bit strings, where l denotes
the length of the bit string [Bäc93]. For the simulations performed herein, this would roughly translate into a
mutation rate of 2-3%.

47This choice was made based on discussions at supervisor meetings: The potential advantage of having a
highly diverse first generation (random selection) was considered to be outweighed by the advantage of allowing
known capable individuals to be seeded. The latter allows parts of the search space to be explored manually,
based on trial and error. The experience gained thereof, combined with whatever intuition one might have on the
variables in use, can then aid the GA search process in that the starting point is known to be favorable according
to some specified criteria.
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Algorithm 6 Mutation of single value parameters
1: {a new generation has been generated by recombination}
2: for each individual i in the generation do
3: {every individual is subjected to mutation}
4: for each parameter pi of i do
5: with probability P mutate pi:
6: if pi is integral then
7: sample U0 from N(0, (max(pi) − min(pi)) · A)
8: calculate ν = val(pi) + round(U0)
9: let val(pi) ← min(max(ν, min(pi)), max(pi)) (truncate)

10: end if
11: if pi is floating-point then
12: sample U0 from N(0, (max(pi) − min(pi)) · A)
13: calculate ν = val(pi) + U0

14: let val(pi) ← min(max(ν, min(pi)), max(pi)) (truncate)
15: end if
16: if pi is boolean then
17: if val(pi) = false then
18: let val(pi) ← true
19: else
20: let val(pi) ← false
21: end if
22: end if
23: end for
24: end for

• With probability P , the number of clusters is changed by one:

– With equal probability, |C| ← |C| + 1

– or |C| ← |C| − 1

• With probability P , each matrix element mij is mutated:

– Let Eij represent the set of mij entry options, as specified by Table 1 in Section 3.2.6

– With equal probability, mij gets one of the values in Eij

As described in Section 3.2.6.2, there are some criteria that must be fulfilled for a topology
specification to be valid, and the above mutation (and recombination) semantics may very well
violate these criteria. As a part of the mutation process, therefore, ANN topology specifications
are mutated until they are valid according to the criteria of Section 3.2.6.2.

3.4.2 GA parameters overview

This section provides a complete list of all parameters used throughout the neuronal and me-
chanical model simulations, including constant single value parameters (CONST), GA single
value parameters (GA) and ANN topology specifications (TOP). In addition, for some param-
eters the status varies among different experiments between begin CONST and GA; these are

64



Model 3.4 Genetic algorithms

termed VAR. The list gives an overview of the simulation parameter space, and thereby provides
important indications as regards the complexity of the GA search process. The list further acts
as a reference to the use of simulation parameters in the source code; all single value parameters
have names by means of strings of seven characters, and these are the exact same names that
are used in the code to look up simulation parameter values.48 Actual parameter properties are
provided in the specification of each experiment of the results part of this thesis (Section 4);
for constant single value parameters the actual chosen value is stated (Section 4.1), whereas for
GA single value parameters the minimum and maximum values, which define the range within
which the parameter is allowed to vary, are provided.49

3.4.2.1 Neuronal model parameters
Table 3 lists all parameters used within the neuronal model simulations of this thesis.

Type Value
type

Name Description Model ele-
ment

CONST FLOAT zero_sg Y-axis zero point for the sigmoid neuronal
activation function

x0 in
Eq. (1)

GA FLOAT std_stc Standard deviation parameter for Gaus-
sian or Cauchy base probability distribu-
tion used in stochastic perturbations

γ in Eq. (6)
or σ in
Eq. (5)

CONST BOOL stc_dec Linear decrease with lifetime in size of
stochastic perturbations

N/A

GA BOOL in_ntrc Inclusion of neuronal trace element in neu-
ronal activation function

accj in
Eq. (2)

GA FLOAT alph_ne Trace controlling parameter for neuronal
trace function

αj in
Eq. (4)

GA BOOL in_dtrc Inclusion of trace at neuronal drive values N/A
CONST BOOL metropo Use of Metropolis sampling for neuronal

stochastic perturbations
Alg. 2

GA FLOAT lr_skin Learning rate for Skinner synapses βij in
Eq. (10)

GA FLOAT lr_pavl Learning rate for Pavlov synapses βij in
Eq. (12)/(14)

GA FLOAT lr_hume Learning rate for Hume synapses βij in
Eq. (16)/(18)

GA FLOAT alph_sk Trace controlling parameter for Skinner
synapses

αij in
Eq. (11)

GA FLOAT alph_pa Trace controlling parameter for Pavlov
synapses

αij in
Eq. (13)/(15)

GA FLOAT alph_hu Trace controlling parameter for Hume
synapses

αij in
Eq. (17)/(19)

Continued on next page

48The reason for using strings of exactly seven characters as parameter names is presented in Appendix C.
49Note that the size of the GA parameter space is dictated by this setting of value ranges; each parameter

represents a dimension in parameter space, and the value range limits the extension of the space along this
dimension.
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Table 3 :: Continued
Type Value

type
Name Description Model ele-

ment

GA BOOL newpavl Use of modified Pavlov synaptic learning
mechanism

Eq. (14)-
(15)

GA BOOL newhume Use of modified Hume synaptic learning
mechanism

Eq. (18)-
(19)

CONST BOOL in_mod1 Inclusion of MOD1 synaptic efficacy diver-
gence preventing modification

Eq. (20)-
(21)

CONST BOOL in_mod2 Inclusion of MOD2 synaptic efficacy diver-
gence preventing modification

Alg. 3

GA FLOAT mod2val Parameter controlling the function describ-
ing MOD2 efficacy limit as a function of the
number of synapses

υ in
Eq. (23)

GA INT num_cns Number of neurons in internal clusters N/A
GA MAT N/A ANN topology specification; cluster con-

nection matrix
M, Table 1

Table 3: Neuronal model parameters

Comments
Considering the number of parameters used in these simulations, the importance of limiting the
number of free (GA) parameters becomes evident. Recall that the size of the GA parameter
space grows exponentially with the number of parameters (a.k.a. dimensions); the expected
time for GA convergence is therefore heavily dependent on the number of free parameters.

The parameter zero_sg, which controls the positioning of the sigmoid neuronal activation
function zero-point, is set constant. The chosen value 0.15 is based on what is known of biological
neurons; there is some low (possibly random) activity in neurons when the synaptic input is
zero, and 0.15 is believed to be an appropriate level [EV07].

The parameter stc_dec, not yet discussed, denotes whether or not the standard deviation
of stochastic drive perturbations (i.e. the average perturbation size) decreases linearly with
time.50 Preliminary simulations have indicated that such a decrease in randomness is, indeed,
favorable. Intuitively, also, this property seems appealing; after initial learning, the creature
is hoped to exercise continually increasing determinism in its behavior. Therefore, stc_dec is
constant, and the value is true.

The parameter in_dtrc, not yet discussed, denotes whether or not neuronal drives are
transformed through a trace function.51 The idea of using trace functions for neuronal drives
is to calm down rapid muscular oscillations, thus hopefully arranging for the slower oscillating
movements that are needed for gaits to emerge. It is not known whether the use of trace
functions for neuronal drives is propitious or not, and the parameter is therefore free.

50The mathematics are straightforward: γ′ = N−t
N

· γ, where γ is the standard deviation parameter, t is the
current iteration number and N is the total number of iterations. The strategy was suggested by J. Hokland,
based on discussions at supervisor meetings.

51The mathematics are as follows: D′ = (1 − αD) · D′ + αD · D where D′ is the traced drive value, D is the
instantaneous drive value calculated by the activation function, and αD is a trace-controlling parameter. For
the simulations herein, when drive tracing is included, the value for αD is five times that of the corresponding
muscular alpha (αm of Section 3.3.2).
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The parameter metropo is set constant and the value is true, denoting that Metropolis
sampling is used as the basis for all neuronal drive stochastic perturbations. As discussed in
Section 3.2.5.2, Metropolis sampling introduces inertia to the sampling procedure. Thereby,
occasional trails of large perturbations, which may be needed for propitious behavior to be
discovered, are allowed while still retaining simulation stability and a sufficiently large degree
of neuronal determinism. For the symmetric transition function, a Gaussian with standard
deviation one tenth of std_stc is used.

The parameters in_mod1 and in_mod2 are both constant and true, denoting that both of
the divergence preventing learning mechanism modifications of Section 3.2.5.4 are included.
The decision of including these modifications is based on previous experience: In a previous
simulation study [Axe06], for some cases (conflicts) both MOD1 and MOD2 were found to be
necessary for sensible synaptic learning to take place.

The parameter num_cns, not yet discussed, denotes how many neurons each internal ANN
cluster has. The importance of this number is not known, and the parameter is therefore free.
The range, which is adjusted based on the average number of needs and senses, has been set
based on discussions at supervisor meetings.

3.4.2.2 Mechanical model parameters
Table 4 lists all parameters used within the mechanical model simulations of this thesis. De-
nominations are given in description parentheses.

Type Value
type

Name Description Section

GA INT num_lps Number of leg pairs 3.3.1
CONST FLOAT len_lgs Leg length, excluding diameter of spherical

feet (m)
3.3.1

GA FLOAT b_l_ver Leg vertical base angle (◦) 3.3.1
GA FLOAT b_l_hor Leg horizontal base angle (◦) 3.3.1
GA FLOAT maxdefv Maximum vertical angle of deflection (◦) 3.3.1
GA FLOAT maxdefh Maximum horizontal angle of deflection (◦) 3.3.1
CONST FLOAT mx_l_up Absolute maximum upward leg angle (◦) 3.3.1
CONST FLOAT mx_l_dw Absolute maximum downward leg angle (◦) 3.3.1
CONST FLOAT mx_l_fo Absolute maximum forward leg angle (◦) 3.3.1
CONST FLOAT mx_l_ba Absolute maximum backward leg angle (◦) 3.3.1
CONST FLOAT maxf_mu Maximum muscle force (N) 3.3.2
CONST FLOAT m_up_cf Maximum force scaling coefficient for mus-

cle pulling leg up
3.3.2

CONST FLOAT m_dw_cf Maximum force scaling coefficient for mus-
cle pulling leg down

3.3.2

CONST FLOAT m_fo_cf Maximum force scaling coefficient for mus-
cle pulling leg forth

3.3.2

CONST FLOAT m_ba_cf Maximum force scaling coefficient for mus-
cle pulling leg back

3.3.2

GA FLOAT alph_mu Trace controlling parameter for muscle
force trace function

3.3.2

Continued on next page
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Table 4 :: Continued
Type Value

type
Name Description Section

CONST FLOAT frc_tor Friction coefficient for torso against ground N/A
CONST FLOAT frc_leg Friction coefficient for feet against ground N/A
GA FLOAT ex_angn Exponent in functions describing extreme

angle needs
3.3.3

VAR BOOL in_hein Inclusion of torso height need 3.3.3
VAR BOOL in_hedn Inclusion of head height need 3.3.3
VAR BOOL in_beln Inclusion of belly pain sensor needs 3.3.3
VAR BOOL in_veln Inclusion of velocity need 3.3.3
VAR BOOL in_angn Inclusion of extreme joint angle needs 3.3.3
VAR BOOL in_mufn Inclusion of muscle force needs 3.3.3
VAR BOOL in_lfrn Inclusion of foot friction need 3.3.3
GA BOOL f_hei_n Scaling factor for torso height need 3.3.3
GA BOOL f_hed_n Scaling factor for head height need 3.3.3
GA BOOL f_bel_n Scaling factor for belly pain sensor needs 3.3.3
GA BOOL f_vel_n Scaling factor for velocity need 3.3.3
GA BOOL f_ang_n Scaling factor for extreme joint angle needs 3.3.3
GA BOOL f_muf_n Scaling factor for muscle force needs 3.3.3
GA BOOL f_lfr_n Scaling factor for foot friction need 3.3.3
GA FLOAT ex_angs Exponent in functions describing muscle

length senses
3.3.4

GA FLOAT ex_aves Exponent in functions describing muscle
length rate senses

3.3.4

GA BOOL in_angs Inclusion of muscle length senses 3.3.4
GA BOOL in_aves Inclusion of muscle length rate senses 3.3.4
GA BOOL f_ang_s Scaling factor for muscle length senses 3.3.4
GA BOOL f_ave_s Scaling factor for muscle length rate senses 3.3.4
CONST INT fitfunc Integral code (enumeration) specifying

which GA fitness function to use
3.4.1.2

CONST FLOAT timstep ODE simulation step size (s) B.2
Table 4: Mechanical model parameters

Comments

The parameter num_lps, which denotes how many leg pairs a creature has, is a free parameter
that may take on the values 2, 3 and 4. The decision of using such a limited range of values
is based on recommendations received at meetings with experts in the field [EV07]; with very
few exceptions, the biological systems we wish to imitate (animals/insects/spiders) have four,
six or eight legs.

The parameter len_lgs, which controls the length of the creature’s legs, is set constant.
Preliminary simulations have been performed with variable leg length, and the inspection and
analysis of these led to the conclusion that the potential advantage of letting the GA process
search for an optimal length is by far outweighed by the disadvantages introduced: Firstly, the
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length of the legs is crucial in determining how large muscle forces are appropriate for developing
sensible behavior, and this would complicate some aspects of the muscle model. Secondly, the
length of the legs may affect the creature’s innate fitness potential in an unwanted fashion; for
instance, when a creature’s fitness is measured by how high it manages to elevate its torso,
increasing the leg length would be an easy way for the GA process to discover fit individuals.
To comment on the latter, it is important to keep in mind that the purpose of the GA search
process is to arrange for self-organized ANN learning, not to solve the problem at hand by
tuning parameters.

The absolute maximum upward, downward, forward and backward leg angles (mx_l_up,
mx_l_dw, mx_l_fo, and mx_l_ba, respectively) are included as constants to limit the allowed
joint angles within sensible ranges. For instance, the absolute limit on maximum downward
angle ensures that creatures never will be able to cross their legs beneath the torso.

The maximum muscle force parameter maxf_mu is set constant; the value is based on a
combination of trial and error (inspection of real-time simulations) and expert recommendations
[EV07]. The reason for keeping it constant is simple: Allowing muscle force to vary freely is not
compatible with the above-mentioned principle that it should be the ANN that solves the task,
not the GA search process. As an example, this became evident in a preliminary simulation
with fitness measured by a creature’s average forward velocity: The GA process would vastly
increase the creatures’ maximum muscle force, resulting in the behavior of fit creatures being
characterized by huge erratic and seemingly random jumps around the scene. Such behavior is,
of course, detrimental to the development of gaits.

The four scaling coefficients m_up_cf, m_dw_cf, m_fo_cf and m_ba_cf denote the size of the
maximum muscle force of the four joint muscles relative to the value given by maxf_mu. These
are constant, and their values are set based on intuition (e.g. that greater force is needed in the
downward than in the upward direction) and expert recommendations [EV07].

The parameters frc_tor and frc_leg denote the friction coefficients between the torso and
the ground and between the feet and the ground, respectively. These are set constant for the
same reasons discussed earlier; an exceedingly low value for frc_tor would, for instance, make
the goal of achieving forward velocity much more easily attainable. Preliminary simulations
have, indeed, confirmed the above: When frc_tor is a free parameter, the GA search process
would set this value very low, resulting in creatures sliding on their torso as if the ground were
made of ice. An important principle we come upon here is that the GA process should be
limited to selected changes in the creature itself (neuronal or mechanical), and not modify the
environment in which the creature operates.

The parameter timstep which denotes the time step size of an iteration in the mechanical
simulation is set constant. Implicitly, the value of this parameter defines the interval with which
the ANN is provided with feedback from the mechanical model, and with which the mechanical
model is provided with motor activation signals from the ANN. It is far from certain that
the chosen value of 10ms, which means that the ANN and mechanical model state is sampled
100 times per second, is optimal.52 The problem is, however, that a large portion of the other
simulation parameters depend on this value. For instance, to obtain similar results, a larger value
for timstep would require synaptic learning rates to be lower, standard deviations for stochastic
perturbations to be larger, trace-controlling parameters to be higher, and so on. Consequently,
the parameter is set constant, and a believed appropriate value of 10ms is chosen.

52Although theoretical and empirical findings indicate that the value is, at least, sensible [Hok97, Hok98].

69



3.5 Simulation loop: Executional semantics and run time analysis Model

3.5 Simulation loop: Executional semantics and run time analysis

With the model components presented in preceding sections in place, the details as regards simu-
lating the entire model on a computer can be summarized. Algorithm 7 provides an algorithmic
overview of the simulation loop, depicting the main executional semantics.

Algorithm 7 Main simulation loop
1: provide an initial creature (complete parameter specification, seed)
2: generate the first GA generation by mutation of the seed (Section 3.4)
3: while true do
4: for each creature 1 → G in the current generation do
5: initialize mechanical model with current creature parameters
6: initialize neuronal model with current creature parameters
7: for iteration 1 → N do
8: perform update of mechanical model (Appendix B)
9: perform update of neuronal model (Alg. 4, Section 3.2.7)

10: perform accumulative fitness evaluation (Section 3.4.1.2)
11: end for
12: end for
13: output lifetime visualization data for the fittest creature of this generation to file
14: output best, average, and worst fitness statistics for this generation to file
15: generate next generation by elitism, recombination and mutation (Section 3.4)
16: end while

As regards total running time, important quantities are, of course, the generation size G
and the number of iterations (creature lifetime steps) N . Section 3.2.7 argued that the running
time of one neuronal model update is O(|V | + |E|),53 where |V | and |E| are determined by the
current ANN topology. Further, the ODE manual [Smi06] states that the running time of one
mechanical model update is O(m3),54 where m is the total number of constraint rows. For the
simulations herein, m is linear in the number of limbs, which is linear in the number of leg pairs
L. Thus, an approximate upper bound on the running time of a mechanical model update is
O(L3). Neuronal and mechanical model updates are performed a total of N times per creature
simulation, and with G creatures per generation, the upper bound on the running time for one
complete generation can be established as O(GN(|V |+ |E|+ L3)). Total running time is linear
in the number of generations simulated. The number of generations is not specified at startup;
rather, the simulations are stopped manually based on inspection of GA fitness statistics.

53The bound Θ(|V | + |E|), of course, implies O(|V | + |E|).
54This is the running time of the dWorldStep() update function. The dWorldQuickStep() function provided

by ODE is considerably faster, but not accurate enough for our purposes.
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4 Results

This section describes the simulations constituting the experimental work of this thesis.

4.1 Preliminaries

The description of a specific experiment consist of two main parts: a complete system config-
uration defining all startup conditions, and the experimental results.

A system configuration, which specifies the executional properties of an experiment and all
its parameters, includes the following:

• An overview of which needs are included for the experiment

• A specification of the function used for GA fitness evaluation

• Initial values and value ranges for all GA parameters

• Initial ANN topology specification

– The initial topology (Table 5) is equal for the first three experiments,55 and is there-
fore not described separately for each.

– Topologies change throughout the simulation according to the semantics of the GA
recombination and mutation processes (Section 3.4)

N S A M
N X X C X
S X X P 0
A X X X S
M X X 0 0

Table 5: Default ANN topology specification

Figure 25: Default topology structure

55The remaining two experiments utilize different initial topologies which are described later.
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The experimental results are twofold. Firstly, genetic algorithms are used to search a large
parameter space and, hopefully, some propitious (according to some prespecified criteria) solu-
tions are found. These resulting GA parameter settings constitute an important part of the
results, as they indicate what type of configurations are likely to produce good or interesting
results.

Secondly, and most importantly, the simulations produce creature lifetime visualizations
that allow for visual inspection of the creature behavior that emerged as a combination of GA
parameter settings and neural network learning.

When considering these two aspects of the experimental results, it is important to keep the
following in mind: The use of genetic algorithms to search for propitious parameter configu-
rations is simply a matter of supporting the principal objective of this thesis: performing and
analyzing neural network simulations.

Constant simulation parameters

Section 3.4.2 presented all constant (CONST) and variable (GA) parameters used in the sim-
ulations of this thesis. For constants, the exact same value is used for every experiment. As a
collective reference, Table 6 provides a complete overview specifying the values of all neuronal
and mechanical model constant parameters.

Value
type

Name Description Value

Neuronal model constants
FLOAT zero_sg Y-axis zero point for the sigmoid neuronal activation func-

tion
0.15

BOOL stc_dec Linear decrease with lifetime in size of stochastic pertur-
bations

true

BOOL metropo Use of Metropolis sampling for neuronal stochastic per-
turbations

true

BOOL in_mod1 Inclusion of MOD1 synaptic efficacy divergence prevent-
ing modification

true

BOOL in_mod2 Inclusion of MOD2 synaptic efficacy divergence prevent-
ing modification

true

Mechanical model constants
FLOAT len_lgs Leg length, excluding diameter of spherical feet (m) 1.2
FLOAT mx_l_up Absolute maximum upward leg angle (◦) 50
FLOAT mx_l_dw Absolute maximum downward leg angle (◦) -90
FLOAT mx_l_fo Absolute maximum forward leg angle (◦) 80
FLOAT mx_l_ba Absolute maximum backward leg angle (◦) -80
FLOAT maxf_mu Maximum muscle force (N) 5
FLOAT m_up_cf Maximum force scaling coefficient for muscle pulling leg

up
1/3

FLOAT m_dw_cf Maximum force scaling coefficient for muscle pulling leg
down

1

Continued on next page
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Table 6 :: Continued
Value
type

Name Description Value

FLOAT m_fo_cf Maximum force scaling coefficient for muscle pulling leg
forth

1/3

FLOAT m_ba_cf Maximum force scaling coefficient for muscle pulling leg
back

1

FLOAT frc_tor Friction coefficient for torso against ground 0.3
FLOAT frc_leg Friction coefficient for feet against ground 1
FLOAT timstep ODE simulation step size (s) 0.01

Table 6: Constant simulation parameters

The initial setting of variable (GA) parameters, i.e. initial (seed) values and value ranges,
varies among simulation experiments. Consequently, all such settings are specified separately
for each specific experiment.

Neural network initialization

At simulation startup, ANN values are initialized as follows:

• Need input and affect neuron drives are set from the mechanical model startup state.

• Sense inputs are set from the mechanical model startup state.

• Neuronal drives Dj = 0.15 for all neurons except needs, senses and affects (because the
activation function is centered at zero_sg = 0.15).

• Neuronal traces accj = −0.35 for all neurons except needs, senses and affects (in accor-
dance with the above drive value).

• Synaptic efficacies eij = 0 for all synapses (nothing has been learnt).

• Synaptic trace of postsynaptic drive differentials Tij = 0 for all synapses (no changes of
synaptic drive differentials have taken place).

Mechanical model initialization

At simulation startup, the mechanical model is initialized such that the torso is lying flat on
the ground, with all legs pointing straight out from the torso and resting on the ground.

4.1.1 Outline

Actual simulation results are organized as follows: Sections 4.2-4.3 (Experiments 1 and 2)
present the results obtained from early simulations where the system goal was based on torso
or head height. Sections 4.4-4.7 (Experiments 3, 4 and 5) present the results obtained from
simulations investigating the development of movement patterns for forward velocity.

Experiments 1 and 2 principally establish the validity and stability of the model and simu-
lation system as a whole; compared to later experiments, the actual simulation results obtained
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are of limited importance. In the thoroughness of their description, however, these experiments
contain a good introduction to the simulation system and experimental setup.

Experiments 3, 4 and 5 constitute the main empirical value of the experimental work of this
thesis. These experiments focus on the main experimental goal of this thesis: the development
of synchronized and repetitive movement patterns for forward velocity.

The time-pressured reader may skip Sections 4.2-4.3 and concentrate on the last experiments.
To get a thorough overview of the simulation system and experimental setup, and for a full
understanding of the progress in simulation results, however, it is recommended that all sections
be read.
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4.2 Experiment 1: Torso height

This section describes the system configuration and simulation results constituting Experiment
1: Torso height. This experiment is considered a natural starting point for the neural network
simulations of this thesis; raising and balancing the torso requires the ANN to perform simple
yet determined and partly synchronized muscular control, and the experiment can thereby be
used to verify the system’s basic abilities.

4.2.1 Goal specification, needs and fitness function

For this experiment, the system goal is based on torso height: The creature is rewarded, both
in terms of need values and in terms of fitness evaluation, for keeping its torso as high above
ground as possible. The actual value used in these need and fitness calculations is based on a
multiplicative average of the four upper corners of the creature’s torso, as follows:56

heightvalue = y0 · y1 · y2 · y3,

where y0, y1, y2, and y3 are the world coordinate vertical height components of the four upper
torso corners, scaled to range within [0, 1]. Due to the multiplicative height averaging, the
optimal torso orientation is when the torso is flat and fully balanced horizontally, and as high
as possible. More specifically, this means that the creature is more heavily rewarded when
its torso is held relatively high and balanced than when the torso is correspondingly high and
unbalanced. An example of the latter is when the front of the torso is elevated very high at the
expense of the back of the torso.

For this experiment, the configuration of needs is as follows:

Need Configuration Included
Torso height need CONST Yes
Head height need CONST No
Belly pain sensor needs GA Optional
Velocity need CONST No
Extreme joint angle needs CONST No
Muscle force needs CONST No
Foot friction needs CONST No

As indicated, the most important need for this experiment is the torso height need (as partially
stated above and described in detail in Section 3.3.3.1), which wholly and fully incorporates the
system goal of achieving maximum balanced torso height. The other needs are less important,
or conflict the goal specification. The head height need conflicts the goal of keeping the torso
horizontally balanced, and is thus excluded. The belly pain sensor needs may be helpful in
the initial phase of getting the torso up from the ground, and the inclusion of this need type
is therefore a free parameter in the GA process. The velocity need conflicts the goal, because
if the creature is to be moving forward, its torso must be lower than it can be when standing
still and fully stretched upward; it is therefore excluded. The same goes for the 1) extreme
joint angle needs, 2) muscle force needs and 3) foot friction needs, all of these are excluded;
1) maximum torso height is most likely achieved when vertical joint angles are near their an
extreme, 2) considerable muscle force is needed to lift and hold the torso highly elevated, and

56The torso height need, as described by Eq. (33) of Section 3.3.3.1, is simply the additive inverse of this value.
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3) since the creature’s legs are not articulated, the only way to lift the torso is by sliding the
feet toward the center beneath the torso.

With the above inverted height value, the fitness function can be specified as follows:

fitness0 = 0 (43)

fitnesst = fitnesst−1 +
t

N
· heightvalue, (44)

This fitness evaluation function should ensure that, in the selection of a small number of in-
dividuals for survival and recombination from a large and possibly diverse generation, those
individuals whose parameter settings are propitious for achieving and retaining maximum torso
height are chosen. To summarize, the desired simulation result is that the creature synaptically
learns the behavior of getting up on its feet, lifting its torso high above ground, and stably and
consistently maintaining a highly elevated and horizontally balanced torso orientation.

4.2.2 Parameters and settings

This section specifies the initial setting of all variable (GA) parameters for Experiment 1. The
complete configuration of these parameters, which represents the input to the GA process, de-
fines both the size of the GA parameter space and the seed, i.e. starting point, of the GA search.
It is therefore of considerable importance, both with respect to performance (GA convergence
time) and as regards what configurations are at all possible and discoverable. Table 7 lists the
parameters together with their initial (seed) values and value ranges.

Value
type

Name Description Seed
value

Range

Neuronal model GA parameters
FLOAT std_stc Standard deviation parameter for Cauchy

probability distribution used in stochastic
perturbations

1 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace element in neu-
ronal activation function

true

FLOAT alph_ne Trace controlling parameter for neuronal
trace function

0.5 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal drive values false
FLOAT lr_skin Learning rate for Skinner synapses 2000 [100,

10000]
FLOAT lr_pavl Learning rate for Pavlov synapses 500 [25,

2500]
FLOAT lr_hume Learning rate for Hume synapses 50 [1, 200]
FLOAT alph_sk Trace controlling parameter for Skinner

synapses
0.1 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for Pavlov
synapses

0.1 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for Hume
synapses

0.1 [0.01, 1]

Continued on next page
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Table 7 :: Continued
Value
type

Name Description Seed
value

Range

BOOL newpavl Use of modified Pavlov synaptic learning
mechanism

false

BOOL newhume Use of modified Hume synaptic learning
mechanism

false

FLOAT mod2val Parameter controlling the function describing
MOD2 efficacy limit as a function of the num-
ber of synapses

7 [5, 100]

INT num_cns Number of neurons in internal clusters 20 [10, 50]
Mechanical model GA parameters

INT num_lps Number of leg pairs 3 {2, 3, 4}
FLOAT b_l_ver Leg vertical base angle (◦) -20 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 [-20, 20]
FLOAT maxdefv Maximum vertical angle of deflection (◦) 45 [20, 70]
FLOAT maxdefh Maximum horizontal angle of deflection (◦) 45 [20, 70]
FLOAT alph_mu Trace controlling parameter for muscle force

trace function
0.01 [0.001,

0.2]
BOOL in_beln Inclusion of belly pain sensor needs false
BOOL f_hei_n Scaling factor for torso height need 1 [0.1, 1]
BOOL f_bel_n Scaling factor for belly pain sensor needs 1 [0.1, 1]
FLOAT ex_angs Exponent in functions describing muscle

length senses
1 [1, 2]

FLOAT ex_aves Exponent in functions describing muscle
length rate senses

1 [1, 2]

BOOL in_angs Inclusion of muscle length senses false
BOOL in_aves Inclusion of muscle length rate senses false
BOOL f_ang_s Scaling factor for muscle length senses 1 [0.1, 1]
BOOL f_ave_s Scaling factor for muscle length rate senses 0.1 [0.01, 1]

Table 7: Experiment 1 - GA parameter settings

4.2.3 Experiment results

This section presents a representative selection of the results obtained from Experiment 1: Torso
height. The GA process was run with the standard settings described in Section 3.4: mutation
rate P = 10%, mutation amount A = 20%, and 50 individuals per generation. Each creature was
simulated for 50000 iterations, which translates into a real-time lifetime of 8.33 minutes. The
simulations were stopped after 41 generations, implying that a total of 2050 virtual creatures
were simulated for this experiment.

4.2.3.1 Results overview

Figure 26 shows the progress in fitness values over the first 35 generations (numbered 0-34),
depicting the best, average, and worst fitness values for each generation. There was no further
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Figure 26: Fitness progress for Experiment 1: Torso height

development in fitness or behavior for the last six generations, and the corresponding fitness
data are consequently not shown in the chart.

For a reference as regards torso height fitness values, to get a grip of what values to expect,
the following should be noted: If the creature lies completely still on the ground without lifting
its torso throughout its entire lifetime (as if it were dead), the lifetime fitness will be close to
zero. At the opposite, if the creature stands perfectly still and balanced with its feet straight
down, the instantaneous fitness value is approximately 0.732. Thus, over a lifetime of 50000
iterations, and with an average time-weighting of 0.5 (see Section 3.4.1.2), the lifetime fitness
would be approximately 18300.

It is evident from the chart that the best fitness grows remarkably over the first six gener-
ations; the growth is from 7013 at generation 0 to 18040 at generation 5. Over the next four
generations, the fitness continues to grow slowly toward the theoretical optimum of 18300; at
generation 9 the fitness is 18265. From this point on, the best fitness values stabilize and never
fall below 18200. For some generations, the best fitness even exceeds the theoretical optimum
of 18300. With a view to the above reference on torso height fitness values, this is considered
to be a very good result; despite of the fact that the creature uses some time to learn how to
lift its torso, the value is very close to, and sometimes even above, the calculated theoretical
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optimum. To summarize, this progress in best fitness tells us that the task at hand, i.e. lifting
the torso as high and stably above ground as possible, is solved efficiently and successfully.

A very similar tendency is seen for average fitness; the value grows from 1483 to 9576 over
the first six generations. Over the next six generations, the trend continues, and the average
fitness for generation 11 is 13013. The value never stabilizes to the extent that the value for
best fitness does - the graph is prominently jagged - but it is clearly concentrated around 13000,
with most values ranging within [12000, 14000].

There is not much progress in the values representing worst fitness per generation; with a
few exceptions, this value remains quite stable at close to zero. This result should be seen in
relation to the GA process at hand, and the way it is configured; both the mutation probability
and the mutation amount are relatively large (10% and 20%, respectively), and the probability
that some individual in a generation ends up having one or a few highly unfavorable parameter
settings is rather large. Thus, it is not unexpected that the worst fitness per generation remains
very low throughout the entire simulation; this is the price to pay for having a GA process
where diversity within generations is favored.

4.2.3.2 Analysis of specific creatures - GA output and qualitative descriptions
This section presents the lifetime visualizations (i.e. observable behavior) of the best creatures
from a few selected generations, together with the corresponding GA output, i.e. GA parameter
values. The selection has been made with the purpose of demonstrating the main developmental
steps seen in the progress toward successful goal achievement. Corresponding lifetime fitness
values are shown in the headings below.

Generation 0: 7013
The best creature from generation 0 achieved a lifetime fitness of 7013. The ANN topology of
this creature, shown in Table 8, is identical to the default topology. The remaining GA output
is shown in Table 9, where only those parameters whose values have changed compared to the
initial GA input specification (Table 7) are listed.

Value
type

Name Description Seed
value

Value Range

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 36.5 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.04 [0.001,
0.2]

Table 9: GA output GEN0

Because the first generation is generated merely by mutation of the initial seed, the chances
for parametric changes are limited. As regards the specific parameters changed, a reduction in
maxdefh is not unexpected as it makes the creature less probable of falling back or forth. Also,
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Figure 27: 3D visualization screenshots GEN0

N S A M
N X X C X
S X X P 0
A X X X S
M X X 0 0

Table 8: Topology specification GEN0

Figure 28: Topology structure GEN0
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a reduced maximum horizontal angle of deflection should make the torso more highly elevated
if the creature is resting its weight on the maximum horizontal joint angles. The positive effect
of the other three parameter changes is not immediately evident, and the fact that the fittest
creature of generation 0 had these changes may be incidental.

The lifetime visualization (Figure 27) shows that the creature initially learns to lift the back
of the torso using the muscles at hindmost leg pair. Gradually, after this, the creature lifts
the front of its torso using its two front legs. Coincidentally with lifting the front of its torso,
however, the creature accidentally lifts one of the hindmost legs too, and thus falls backward.
Soon after this, the creature once again lifts the back of its torso, and thus manages to elevate
the entire torso in a quite balanced fashion. The creature now gradually learns to stabilize
this body position, although two legs remain lifted toward the maximum upward joint angle.
Because the creature has six legs, it can easily balance its torso in an upright position using in
effect only four legs. The creature remains in this state for the rest of its lifetime: Four legs
support the weight of the torso, while the two remaining legs are jiggled forth and back in a
seemingly random fashion. The creature can be seen to rest some of the weight of its torso on
the rather large maximum horizontal leg angles, and never learns to straighten its legs.

Generation 4: 16585
The best creature from generation 4 achieved a lifetime fitness of 16585, which is more than twice
the fitness obtained at generation 0. The ANN topology is slightly changed compared to the
default topology: An internal cluster has been introduced, to which the affect cluster connects
by means of Skinner synapses, and which connects onto the motor cluster. Further, the motor
cluster is intraconnected by means of Hume synapses, and the senses connect directly onto the
motor cluster instead of going through the affect cluster. The resulting topology specification
is shown in Table 10. The remaining GA output is shown in Table 11, where only those
parameters whose values have changed compared to the initial GA input specification (Table 7)
are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.70 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

FLOAT lr_hume Learning rate for Hume synapses 50 77.7 [1, 200]
FLOAT alph_sk Trace controlling parameter for

Skinner synapses
0.1 0.24 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.24 [0.01, 1]

Continued on next page
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Table 11 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 5 [5, 100]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -42.8 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 20 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 48.6 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 36.4 [20, 70]

BOOL in_beln Inclusion of belly pain sensor
needs

false true

Table 11: GA output GEN4

To summarize the above, we see that over the first five generations, there has been a con-
siderable number of changes in the GA parameters. The most important are as follows: In
the neuronal model, the average size of stochastic drive perturbations has increased. Such an
increase of randomness should make initial learning faster, although behavioral stability over
time may be adversely affected. In the mechanical model, the vertical and horizontal base an-
gles, together with the corresponding maximum angles of deflection, have changed. Presumably,
the new configuration on allowed joint angles is more suitable with respect to the torso height
goal. Finally, the belly pain sensor needs have been included; as indicated earlier, they may be
favorable in helping the creature to learn the initial behavior of getting the torso up from the
ground.

When considering the lifetime visualization (Figure 29), the creature from generation 4
performs considerably better than the one from generation 0 discussed above; the creature
rather quickly manages to get up from the ground, and soon achieves a quite good torso height.
In this process of raising its torso, the creature must overcome opposing forces due to friction
between its feet and the ground. Most importantly, static frictional forces must be overcome
before the feet can slide toward the middle.57 Interestingly, the creature seems to be taking
advantage of the fact that static frictional forces are more easily overcome if, when pulling
the feet inwards, the torso is simultaneously rocked slightly back and forth. This behavior is
also interesting with respect to the emerging of synchronized oscillating patterns; some sort of
oscillatory muscular control is probably needed for such synchronized leg movements to take
place.

At the early stage of standing up, the creature does not distribute the weight of its torso
equally among its six legs; the front of the torso is held lower than the back, making the hindmost
pair of legs dangle freely in the air. With time, the creature learns to balance the torso in a
better way, such that all six legs support the torso weight. The creature ends up in a propitious

57Static frictional force will increase to prevent relative motion up until some limit where motion occurs. Once
the limit is exceeded, frictional forces drop, because the coefficient of static friction typically is larger than the
coefficient of kinetic friction [TM03].
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Figure 29: 3D visualization screenshots GEN4

N S A I1 M
N X X C X X
S X X 0 0 P
A X X X S S
I1 X X 0 0 P
M X X 0 0 H

Table 10: Topology specification GEN4

Figure 30: Topology structure GEN4
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state where all six legs are held fairly straight downward, making the torso remain prominently
elevated above ground. The creature never settles completely, however; throughout the rest of
its lifetime, the creature seems to attempt to straighten its legs perfectly, but it never manages
to stabilize any further. This tottering actually causes the creature to move slowly forward.
Recalling that the only need implemented for this creature is the torso height need and belly
pain sensor needs, this forward moving behavior is, of course, merely a matter of coincidence.58

Generation 9: 18265
The best creature from generation 9 achieved a lifetime fitness of 18265, which is within a 2%
margin of the theoretical optimum of 18300 calculated earlier. The ANN topology is slightly
changed compared to the default topology: The topology has one intraconnected internal clus-
ter to which the affect cluster connects, and that connects onto the motor cluster. Further, the
motor cluster is now intraconnected by means of Pavlov synapses. Finally, the senses now con-
nect directly onto the motor cluster. The resulting topology specification is shown in Table 12.

The remaining GA output is shown in Table 13, where only those parameters whose values
have changed compared to the initial GA input specification (Table 7) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.66 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.19 [0.01, 1]

FLOAT lr_skin Learning rate for Skinner
synapses

2000 3016 [100,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

500 719 [25,
2500]

FLOAT lr_hume Learning rate for Hume synapses 50 75 [1, 200]
FLOAT alph_sk Trace controlling parameter for

Skinner synapses
0.1 0.24 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.42 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.24 [0.01, 1]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -42.8 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 20 [-20, 20]

Continued on next page

58The behavior might, however, be an after-effect of the way the creature learnt to raise its torso.
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Table 13 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT maxdefv Maximum vertical angle of de-
flection (◦)

45 48.6 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 20 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.02 [0.001,
0.2]

BOOL in_beln Inclusion of belly pain sensor
needs

false true

BOOL in_aves Inclusion of muscle length rate
senses

false true

BOOL f_ave_s Scaling factor for muscle length
rate senses

0.1 0.29 [0.01, 1]

Table 13: GA output GEN9

At generation 9, a considerable number of parameters have changed, where the most im-
portant are as follows: For the neuronal model, the randomness in neuronal drives has in-
creased, making initial learning faster. Further, all three learning rates and corresponding
trace-controlling parameters have been adjusted. For the mechanical model, the maximum hor-
izontal angle of deflection has been minimized. The latter would be expected, because large
horizontal joint angle deflections are not favorable with respect to the torso height goal. Also,
the muscle length rate senses have been included, and their relative influence and intensity has
been increased.

When considering the lifetime visualization (Figure 31), the creature from generation 9
performs very well. It quickly gets up on all six feet, learns to stabilize its torso, and never
loses balance. The creature manages to keep its legs much straighter than what was seen for
the creature of generation 4, thus causing the torso to be elevated considerably higher. Shortly
after getting up, two of the creature’s legs are dangling freely and randomly outwards. After
some time, however, the creature learns to utilize one of these, the middle left leg, to support
the torso weight, thereby allowing even better torso stabilization. The front right leg never
settles, and keeps moving randomly outwards for the rest of the creature’s lifetime.

Generation 18: 18603
At generation 18, there is a prominent peak in the graph for best fitness; the best creature from
this generation achieved a lifetime fitness of 18603, which is exceedingly high considering the
previously calculated approximate theoretical optimum of 18300. The ANN topology is only
slightly different from the default topology: A direct Pavlov connection has been introduced
from the senses to the motor cluster; other than that, the topology is unaltered. The resulting
topology specification is shown in Table 14.

The remaining GA output is shown in Table 15, where only those parameters whose values
have changed compared to the initial GA input specification (Table 7) are listed.
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Figure 31: 3D visualization screenshots GEN9
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Table 12: Topology specification GEN9

Figure 32: Topology structure GEN9
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Figure 33: 3D visualization screenshots GEN18
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Table 14: Topology specification GEN18

Figure 34: Topology structure GEN18
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Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.19 [0.1, 2]

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.48 [0.01, 1]

FLOAT lr_skin Learning rate for Skinner
synapses

2000 1082 [100,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

500 725 [25,
2500]

FLOAT alph_sk Trace controlling parameter for
Skinner synapses

0.1 0.16 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.01 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 19.6 [5, 100]

INT num_cns Number of neurons in internal
clusters

20 26 [10, 50]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -44.1 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 16.8 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 49.2 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 20 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.02 [0.001,
0.2]

BOOL f_hei_n Scaling factor for torso height
need

1 0.79 [0.1, 1]

BOOL in_angs Inclusion of muscle length senses false true
BOOL f_ang_s Scaling factor for muscle length

senses
1 0.86 [0.1, 1]

Table 15: GA output GEN18

As opposed to the only slightly changed topology specification, at generation 18 a consid-
erable number of parameters have changed, where the most important are as follows: For the
neuronal model, there has been a slight increase in randomness, making initial learning faster.
Both active learning rates and the corresponding trace-controlling parameters have also been
adjusted. Further, the value describing the shape of the function dictating summed incoming
synaptic efficacy (MOD2) has increased considerably, thus raising the average maximum value
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on synaptic efficacy vastly. For the mechanical model, the joint angle specifiers have been ad-
justed; most prominently, and not unexpectedly, the maximum horizontal angle of deflection has
been minimized. Also, the muscle length senses have been included, and their relative influence
and intensity have been decreased slightly.

As mentioned above, this best creature of generation 18 achieved an exceedingly high fitness
value of 18603. The lifetime visualization (Figure 33) reveals how this is possible: The early
learning phase for this creature is much more chaotic than what has been seen up until now;
the early behavior seems random and erratic. As indicated in the previous paragraph, such
chaotic behavior at an early stage may be regarded as trying out several behavioral options
before settling at one specific pattern of movement.

After the creature in a quite chaotic way manages to get up on its feet and elevate its torso
high up, at the point where previously described creatures have calmed down and stabilized
their movement patterns, this creature simply continues its erratic behavior. Inspection of
the lifetime visualization reveals that the creature continually performs seemingly random but
vigorous leg movements that can best be described as small jumps.

The apparent randomness in these movements can, however, be questioned: The creature
never falls, and almost every significant event of movement causes the torso to rise above what
is normally regarded as maximum height. Had these movements been principally random in
character, the creature never would have achieved the exceedingly high lifetime fitness of 18603.
Hence, we must assume that, for this specific instance, the behavior, which at times resembles
jumping, is at least partly caused by chiefly deterministic neural activity. The fact that this
specific behavior emerged in this specific creature’s lifetime, however, is probably due to ran-
domness in the neuronal model (i.e. stochastic drive perturbations). The following supports the
latter: When running identically specified creature simulations (i.e. such that all model param-
eters are equal), the set of observed behaviors is quite diverse; some creatures exercise behavior
that is quite resemblant to what is described above, while other creatures are total failures that
e.g. end up on their backs, wriggling their legs in despair. All creatures do show similar erratic
tendencies, but the final behavioral results are, as indicated, of quite random character. The
only thing differing between these simulations is the differences of neuronal drive perturbations
due to randomness in the neuronal model. Consequently, we can conclude that this must be the
cause for divergence. It can further be noted that the behavior of creatures with this specific
configuration are seen to be particularly sensitive to and dependent on the actual course of
stochastic perturbations, which is, of course, not optimal.

The behavior described above is anyhow highly interesting. Although chaotic, it exhibits
prominent signs of synchronized behavior; when inspecting the creature’s lifetime visualization,
there are clear signs of ANN-controlled synchronization between pairs of legs. For instance,
the two legs constituting the middle of the three leg pairs can recurringly be seen to be lifted
outwards and subsequently and simultaneously thrown inwards at great speed, causing the torso
to bump slightly above the normal maximum height. Another example is that the two front
legs are repeatedly seen to be thrown forward, causing the front of the torso to elevate to the
extent that the front legs are dangling freely above ground. For both these cases, similar but
unsynchronized behavior would probably not have caused the creature to “jump” (i.e. cause
an increase of torso height). The key aspect here is, of course, simultaneity; when two legs
repeatedly perform simultaneous movement patterns that consistently cause the torso to elevate
above normal maximum height, it is natural to assume that this synchronization of limbs must
be caused by corresponding synchronization in ANN muscular control.
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Generation 34: 18276
The best creature from generation 34 achieved a lifetime fitness of 18276. The ANN topology is
somewhat modified compared to the default topology: An internal cluster has been added, and
a direct Pavlov connection from senses to this cluster has been introduced. The affect cluster
also connects onto the internal cluster by means of Skinner synapses. The internal cluster is
intraconnected by means of Hume synapses, and it has a Pavlov connection to the motor cluster.
The resulting topology specification is shown in Table 16.

The remaining GA output is shown in Table 17, where only those parameters whose values
have changed compared to the initial GA input specification (Table 7) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 0.6 [0.1, 2]

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 1 [0.01, 1]

FLOAT lr_pavl Learning rate for Pavlov
synapses

500 1033 [25,
2500]

FLOAT lr_hume Learning rate for Hume synapses 50 52.7 [1, 200]
FLOAT alph_sk Trace controlling parameter for

Skinner synapses
0.1 0.33 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.08 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.33 [0.01, 1]

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 68.3 [5, 100]

INT num_cns Number of neurons in internal
clusters

20 26 [10, 50]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -43.4 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 17.7 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 49.2 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 20 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.03 [0.001,
0.2]

BOOL f_hei_n Scaling factor for torso height
need

1 0.95 [0.1, 1]

Table 17: GA output GEN34
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Figure 35: 3D visualization screenshots GEN34
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Table 16: Topology specification GEN34

Figure 36: Topology structure GEN34
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The changes in GA single value parameters are similar to those seen earlier; most impor-
tantly, neuronal model learning rates and mechanical model joint angle specifiers are adjusted to
better suit the torso height need. Also, note that for this creature, the mod2val controlling the
summed synaptic efficacy limit (MOD2) has been increased vastly, in effect virtually disabling
the MOD2 divergence preventing learning mechanism modification, and thus allowing very high
synaptic efficacies.

When considering the lifetime visualization (Figure 35), the creature from generation 34
exercises what prior to executing this experiment was considered perfect behavior. Early in its
lifetime, the creature learns to lift its torso cleanly and stably using the back-and-forth rocking
strategy (described above for generation 4), presumably to more easily overcome static frictional
forces. Thence, it soon learns to stabilize the weight perfectly, with all legs pointing straight
down. For the rest of its lifetime, it stands maximally upright, with virtually no movement.

4.2.3.3 Summary
As indicated by the fitness plots of Figure 26, the torso height need is solved successfully. The
creature from generation 34 exercised perfect behavior, a behavior that characterized most of
the creature from generation 24 and outwards. A few creatures even exceeded the calculated
theoretical optimum fitness value of 18300; the absolute maximum fitness value of 18603 was
achieved at generation 18: This creature exercised quite erratic but at the same time quite
repetitive behavior that could best be described as jumping.

To further investigate the behavior of the creature from generation 18, identically specified
creatures were simulated to see if the behavior seen was reproducible. Repeated simulations
showed that results were partly random, in that some creatures were total failures, while others
showed behavior that resembled the behavior seen for the creature that achieved the exceedingly
high lifetime fitness of 18603. The latter indicates that, for this specific GA configuration, results
are heavily dependent on the specific course of random samples for stochastic perturbations.

Table 18 gives an overview of the development in GA parameter values over the generations
discussed above.

Name Seed
value

GEN0 GEN4 GEN9 GEN18 GEN34 Range

Neuronal model GA parameters
std_stc 1 1 1.7 1.7 1.2 0.6 [0.1, 2]
in_ntrc true false false false true true
alph_ne 0.5 0.5 0.5 0.19 0.48 1 [0.01, 1]
in_dtrc false true false false false false
lr_skin 2000 2000 2000 3016 1082 2000 [100,

10000]
lr_pavl 500 500 500 719 725 1033 [25,

2500]
lr_hume 50 50 77.7 75 50 52.7 [1, 200]
alph_sk 0.1 0.1 0.24 0.24 0.16 0.33 [0.01, 1]
alph_pa 0.1 0.1 0.1 0.42 0.01 0.08 [0.01, 1]
alph_hu 0.1 0.1 0.24 0.1 0.24 0.33 [0.01, 1]
newpavl false false false false true false

Continued on next page
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Table 18 :: Continued
Name Seed

value
GEN0 GEN4 GEN9 GEN18 GEN34 Range

newhume false false false false false false
mod2val 7 7 5 7 19.6 68.3 [5, 100]
num_cns 20 20 20 20 26 26 [10, 50]

Mechanical model GA parameters
num_lps 3 3 3 3 3 3 {2, 3, 4}
b_l_ver -20 -20 -42.8 -42.8 -44.1 -43.4 [-70, 0]
b_l_hor 0 0 20 20 16.8 17.7 [-20, 20]
maxdefv 45 45 48.6 48.6 49.2 49.2 [20, 70]
maxdefh 45 36.4 36.4 20 20 20 [20, 70]
alph_mu 0.01 0.04 0.01 0.02 0.02 0.03 [0.001,

0.2]
in_beln false false true true false false
f_hei_n 1 1 1 1 0.79 0.95 [0.1, 1]
f_bel_n 1 1 1 1 1 1 [0.1, 1]
ex_angs 1 1 1 1 1 1 [1, 2]
ex_aves 1 1 1 1 1 1 [1, 2]
in_angs false false false false true false
in_aves false false false true false false
f_ang_s 1 1 1 1 0.86 1 [0.1, 1]
f_ave_s 0.1 0.1 0.1 0.29 0.1 0.1 [0.01, 1]

Table 18: GA parameter development

Immediately emanating from the above is the fact that all of the best creatures had three
leg pairs, i.e. six legs. Although creatures with four and eight legs have been evaluated, it
is evident that six legs consistently proves to be the best configuration for solving the task at
hand.

The most prominent and consistent changes are at the specifiers for joint angle ranges.
Not unexpectedly, the maximum horizontal angle of deflection is minimized to 20◦. Also, the
increases of both vertical base angle and vertical maximum angle of deflection were expected.

The initial choice of letting the inclusion of belly pain sensor needs be optional seems to
have been appropriate; some of the best creatures have utilized these needs, while others have
not. For the last two creatures discussed (generation 18 and 34), the belly pain sensor needs
are disabled.

Also evident from Table 18 is the fact that muscle length and muscle length rate senses sel-
dom are included for the fittest creatures. This is as expected; the torso height need is probably
adequate for learning the behavior of raising and stabilizing the torso. For later experiments
incorporating more complex goal specifications, such as forward velocity, the inclusion of neu-
tralized senses is expected to be necessary for appropriate and behaviorally efficient learning to
take place.
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4.3 Experiment 2: Head height

This section describes the system configuration and simulation results constituting Experiment
2: Head height. This experiment is a slightly modified variant of Experiment 1: Torso height;
here, the goal is based on head height instead of torso height. The reason for including this
experiment is that the head height goal of this experiment to a greater extent than the torso
height goal discussed earlier requires the ANN to control leg pairs differently; to achieve maxi-
mum head height, the creature must learn to position its torso such that the front is pointing
upward.

4.3.1 Goal specification, needs and fitness function

As indicated above, the system goal of this experiment is based on head height: The creature is
rewarded, both in terms of need values and in terms of fitness evaluation, for keeping its head
as high above ground as possible. The actual value used in these need and fitness calculations
is based on the height of the creature’s head, as follows:59

heightvalue = y,

where y is the world coordinate vertical height component of the head position, scaled to range
within [0, 1]. As opposed to the experiment on torso height, as described in Section 4.2, the
calculations on head height do not incorporate averaging of different points on the creature’s
head; the goal is simply for the creature to hold its head as high up as possible, regardless of
head orientation.

For this experiment, the configuration of needs is as follows:

Need Configuration Included
Torso height need CONST No
Head height need CONST Yes
Belly pain sensor needs GA Optional
Velocity need CONST No
Extreme joint angle needs CONST No
Muscle force needs CONST No
Foot friction needs CONST No

As indicated, the most important need for this experiment is the head height need (as partially
stated above and described in detail in Section 3.3.3.2), which wholly and fully incorporates the
system goal of achieving maximum head height. In a similar manner to what was explained
for the previous experiment (Experiment 1: Torso height, Section 4.2), the other needs are
less important, or conflict the goal specification. The torso height need conflicts the goal of
achieving maximum head height, because it favors a horizontally balanced torso; it is therefore
excluded. The belly pain sensor needs may be helpful in the initial phase of getting the torso up
from the ground. On the other hand, it may be necessary to keep some part of the creature’s
belly in contact with the ground to stably achieve and retain maximum head height. Therefore,
because the suitability of belly pain sensor needs for the goal at hand is not immediately clear,
the inclusion of this need type is a free parameter in the GA process. The rest of the needs are
considered to conflict the main goal, and are therefore excluded from this experiment.60

59The head height need, as described by Eq. (34) of Section 3.3.3.2, is simply the additive inverse of this value.
60The same arguments as those given in Section 4.2 for Experiment 1 apply.
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With the above inverted head height value, the fitness function can be specified as follows:

fitness0 = 0 (45)

fitnesst = fitnesst−1 +
t

N
· heightvalue, (46)

This fitness evaluation function should ensure that, in the selection of a small number of indi-
viduals for survival and recombination from a large and diverse generation, those individuals
whose parameter settings are propitious for achieving and retaining maximum head height are
chosen. To summarize, the desired simulation result is that the creature synaptically learns
the behavior of appropriately positioning its body (torso and legs), lifting its head high above
ground, and stably, and in a balanced fashion, maintaining this body position.

4.3.2 Parameters and settings

This section specifies the initial setting of all variable parameters for Experiment 2, i.e. the
input to the GA process defining both the size of the GA parameter space and the seed of the
GA search. Table 19 lists the parameters together with their initial (seed) values and value
ranges. The settings are equivalent to those of the previous experiment.

Value
type

Name Description Seed
value

Range

Neuronal model GA parameters
FLOAT std_stc Standard deviation parameter for Cauchy

probability distribution used in stochastic
perturbations

1 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace element in neu-
ronal activation function

true

FLOAT alph_ne Trace controlling parameter for neuronal
trace function

0.5 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal drive values false
FLOAT lr_skin Learning rate for Skinner synapses 2000 [100,

10000]
FLOAT lr_pavl Learning rate for Pavlov synapses 500 [25,

2500]
FLOAT lr_hume Learning rate for Hume synapses 50 [1, 200]
FLOAT alph_sk Trace controlling parameter for Skinner

synapses
0.1 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for Pavlov
synapses

0.1 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for Hume
synapses

0.1 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic learning
mechanism

false

BOOL newhume Use of modified Hume synaptic learning
mechanism

false

Continued on next page
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Table 19 :: Continued
Value
type

Name Description Seed
value

Range

FLOAT mod2val Parameter controlling the function describing
MOD2 efficacy limit as a function of the num-
ber of synapses

7 [5, 100]

INT num_cns Number of neurons in internal clusters 20 [10, 50]
Mechanical model GA parameters

INT num_lps Number of leg pairs 3 {2, 3, 4}
FLOAT b_l_ver Leg vertical base angle (◦) -20 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 [-20, 20]
FLOAT maxdefv Maximum vertical angle of deflection (◦) 45 [20, 70]
FLOAT maxdefh Maximum horizontal angle of deflection (◦) 45 [20, 70]
FLOAT alph_mu Trace controlling parameter for muscle force

trace function
0.01 [0.001,

0.2]
BOOL in_beln Inclusion of belly pain sensor needs false
BOOL f_hed_n Scaling factor for head height need 1 [0.1, 1]
BOOL f_bel_n Scaling factor for belly pain sensor needs 1 [0.1, 1]
FLOAT ex_angs Exponent in functions describing muscle

length senses
1 [1, 2]

FLOAT ex_aves Exponent in functions describing muscle
length rate senses

1 [1, 2]

BOOL in_angs Inclusion of muscle length senses false
BOOL in_aves Inclusion of muscle length rate senses false
BOOL f_ang_s Scaling factor for muscle length senses 1 [0.1, 1]
BOOL f_ave_s Scaling factor for muscle length rate senses 0.1 [0.01, 1]

Table 19: Experiment 2 - GA parameter settings

4.3.3 Experiment results

This section presents a representative selection of the results obtained from Experiment 2: Head
height. The GA process was run with the standard settings described in Section 3.4: mutation
rate P = 10%, mutation amount A = 20%, and 50 individuals per generation. Each creature was
simulated for 50000 iterations, which translates into a real-time lifetime of 8.33 minutes. The
simulations were stopped after 30 generations, implying that a total of 1500 virtual creatures
were simulated.

4.3.3.1 Results overview
Figure 37 shows the progress in fitness over the first 55 generations (numbered 0-54), depicting
the best, average, and worst fitness for each generation. The last seven generations showed no
further development in fitness or behavior, and the corresponding fitness data are consequently
not shown in the chart.

For a reference as regards head height fitness values, it can be noted that when the creature
lies flat on the ground, the instantaneous fitness value is 0.125. Thus, over a lifetime of 50000
iterations, and with an average time-weighting of 0.5 (see Section 3.4.1.2), the lifetime fitness
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Figure 37: Fitness progress for Experiment 2: Head height

would be 3125. Similarly, when the creature stands maximally upright with its torso perfectly
balanced horizontally (equivalent to what was regarded as “perfect” behavior for Experiment
1: Head height), the lifetime fitness value is 11563. Still, the creature should be capable of
achieving even greater lifetime fitness values than this, by positioning its torso such that the
front, where the head is attached, is pointing upward.61

The graph for best fitness shows that the head height goal is, indeed, successfully solved.
There is a consistent improvement over the first six generations, with best fitness increasing
from 8786 at generation 0 to 13085 at generation 5. After this point, the progress of best
fitness becomes severely less deterministic. Although the graph is prominently jagged, there
is a positive tendency over the next 10-15 generations. The absolute maximum fitness for the
experiment is achieved at generation 19, where the fitness reaches 18797, clearly indicating that
the head height goal is solved successfully.

The graph for average fitness shows a similar tendency, although the progress is somewhat
less prominent. Finally, in a similar manner to the previous experiment, the progress in val-
ues for worst fitness is non-existent; the values are concentrated around 2000-3000, and never

61Calculating a theoretical optimum on lifetime fitness for this body positioning, similar to what was done for
Experiment 1: Head height, would be guesswork, and is not attempted here.
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consistently improve above this.

4.3.3.2 Analysis of specific creatures - GA output and qualitative descriptions
This section presents the lifetime visualizations (i.e. observable behavior) of the best creatures
from a few selected generations. The selection has been made with the purpose of demon-
strating the main developmental steps seen in the progress toward successful goal achievement.
Corresponding lifetime fitness values are shown in the headings below.

Generation 0: 8786
The best creature from generation 0 achieved a lifetime fitness of 8786. The ANN topology of
this creature, shown in Table 20, is identical to the default topology.

The GA single parameter output is shown in Table 21, where only those parameters whose
values have changed compared to the initial GA input specification (Table 19) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT b_l_ver Leg vertical base angle (◦) -20 -45.1 [-70, 0]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 50.8 [20, 70]

Table 21: GA output GEN0

As was seen for the best creature of the first generation from Experiment 1: Torso height,
the changes compared to the initial seed are far from comprehensive, and probably not decisive
as regards the level of goal achievement. Worth noting, however, is that the vertical joint angle
deflection range has been modified; both the base angle has been lowered and the maximum
deflection has been increased, effectively making the creature able to keep its legs straighter
downward.

The lifetime visualization (Figure 38) shows that the creature initially lifts the back of its
torso using its hindmost legs. This is in a way the opposite of what would be expected; by
lifting the front of the torso instead, the head height need value would be considerably lower.
Anyhow, the creature soon tries to raise the front of its torso too, thereby causing the head to
elevate considerably higher. Throughout its lifetime, by trial and error, the creature gradually
gets better at stabilizing its torso. Late in its lifetime, from time to time, the creature manages
to stabilize its body such that the front of the torso and the head is pointing upwards. The
creature does, however, never settle in this favorable position; it recurringly loses balance and
falls or sinks toward the ground.

Generation 4: 12753
The best creature from generation 4 achieved a lifetime fitness of 12753. The ANN topology of
this creature is considerably altered compared to the initial topology: Three internal clusters
have been introduced, bringing along ten new clustral connections. The resulting topology
specification is shown in Table 22.

The GA single parameter output is shown in Table 23, where only those parameters whose
values have changed compared to the initial GA input specification (Table 19) are listed.
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Figure 38: 3D visualization screenshots GEN0

N S A M
N X X C X
S X X P 0
A X X X S
M X X 0 0

Table 20: Topology specification GEN0

Figure 39: Topology structure GEN0
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Figure 40: 3D visualization screenshots GEN4

N S A I1 I2 I3 M
N X X C X X X X
S X X P P 0 0 0
A X X X S 0 0 S
I1 X X 0 H P 0 0
I2 X X 0 P 0 0 P
I3 X X 0 0 P H 0
M X X 0 P 0 P 0

Table 22: Topology specification GEN4

Figure 41: Topology structure GEN4
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Value
type

Name Description Seed
value

Value Range

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.57 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT lr_skin Learning rate for Skinner
synapses

2000 1057 [100,
10000]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

FLOAT b_l_ver Leg vertical base angle (◦) -20 -34.6 [-70, 0]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 45.4 [20, 70]

BOOL in_beln Inclusion of belly pain sensor
needs

false true

Table 23: GA output GEN4

The most prominent changes compared to the initial seed are that the learning rate for
Skinner synapses has been halved and that the modified version of the Pavlov and Hume synaptic
learning rates are used. For the mechanical model, note that the belly pain sensor needs are
included.

The lifetime visualization (Figure 40) shows that the creature almost instantly raises the
front of its torso, making the head elevate considerably above ground. Throughout the rest of its
lifetime, however, there is not very much progress. The only improvement seen is that the front
right leg, which provides the main support for the torso weight, is additionally straightened,
thereby optimizing the current body position with respect to head height. Anyhow, because
the body position obtained initially is favorable with respect to head height, and because the
creature learns to maintain this position stably throughout its lifetime, the achieved fitness is
considerably (≈ 45%) higher than for the best creature of generation 0.

Generation 19: 18779
The best creature from generation 19 achieved a lifetime fitness of 18779, which was the maxi-
mum fitness obtained for the entire experiment. The ANN topology of this creature is slightly
altered compared to topology shown for generation 4: The three internal clusters are retained,
but there have been some changes in connectivity. The topology specification is shown in Ta-
ble 22.

The GA single parameter output is shown in Table 25, where only those parameters whose
values have changed compared to the initial GA input specification (Table 19) are listed.
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Figure 42: 3D visualization screenshots GEN19

N S A I1 I2 I3 M
N X X C X X X X
S X X P 0 P 0 P
A X X X S 0 S 0
I1 X X 0 0 0 P P
I2 X X P P H 0 P
I3 X X 0 P P H 0
M X X P P 0 0 P

Table 24: Topology specification GEN19

Figure 43: Topology structure GEN19
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Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.40 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.21 [0.01, 1]

FLOAT lr_skin Learning rate for Skinner
synapses

2000 100 [100,
10000]

FLOAT lr_hume Learning rate for Hume synapses 50 85.4 [1, 200]
FLOAT alph_sk Trace controlling parameter for

Skinner synapses
0.1 0.28 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.12 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 9.9 [5, 100]

INT num_cns Number of neurons in internal
clusters

20 10 [10, 50]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -41.4 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 13.5 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 47.2 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 20 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.04 [0.001,
0.2]

FLOAT ex_aves Exponent in functions describing
muscle length rate senses

1 1.15 [1, 2]

BOOL in_aves Inclusion of muscle length rate
senses

false true

BOOL f_ave_s Scaling factor for muscle length
rate senses

0.1 0.03 [0.01, 1]

Table 25: GA output GEN19

The most prominent changes compared to the initial seed are that the learning rate for
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Skinner synapses has been minimized and that the modified version of the Pavlov and Hume
synaptic learning mechanisms are still used. Also, the length rate senses have been included,
and their intensity has been somewhat reduced.

The lifetime visualization (Figure 42) shows that the creature starts by synchronously using
its two middle legs to elevate the torso. For a short time interval, these two legs are the only
support for the torso weight. Soon, therefore, the torso falls backward while the middle legs
remain straightened, causing the head to elevate high above ground. This body position is
stabilized and optimized such that, for the rest of the creature’s lifetime, the head remains
prominently elevated above ground. Further, the position obtained seems to be very close to
the optimal position; there is seemingly little room for improvements as regards head height.

Interestingly, there seems to be synchronized movement at the two hindmost legs; these are
dangling freely in the air and not touching the ground, but they exercise seemingly deterministic
and synchronized movement patterns that affect the balance of the torso. It is not known
whether or not it is this muscular activity at the hindmost leg pair that keeps the torso from
falling forward,62 but the determinism and synchronization in the movement of the two hindmost
legs seem apparent.

4.3.3.3 Summary
As indicated by the fitness plots of Figure 37, although performance as measured by best fitness
is convergent to a lesser degree than what was seen for the Experiment 1, the head height need
is solved successfully. The best creature from generation 19 achieved a lifetime fitness of 18779,
which presumably is very close to the maximum of what is possible.

Table 26 gives an overview of the development in GA parameter values over the few gener-
ations discussed above.

Name Seed value GEN0 GEN4 GEN19 Range

Neuronal model GA parameters
std_stc 1 1 1 1.40 [0.1, 2]
in_ntrc true true true false
alph_ne 0.5 0.5 0.57 0.21 [0.01, 1]
in_dtrc false false true false
lr_skin 2000 2000 1057 100 [100,

10000]
lr_pavl 500 500 500 500 [25,

2500]
lr_hume 50 50 50 85.4 [1, 200]
alph_sk 0.1 0.1 0.1 0.28 [0.01, 1]
alph_pa 0.1 0.1 0.1 0.12 [0.01, 1]
alph_hu 0.1 0.1 0.1 0.1 [0.01, 1]
newpavl false false true true
newhume false false true true
mod2val 7 7 7 9.9 [5, 100]
num_cns 20 20 20 10 [10, 50]

Continued on next page

62The head, which is connected to the front of the torso, causes the creature to be nose-heavy.

104



Results 4.3 Experiment 2: Head height

Table 26 :: Continued
Name Seed value GEN0 GEN4 GEN19 Range

Mechanical model GA parameters
num_lps 3 3 3 3 {2, 3, 4}
b_l_ver -20 -45.1 -34.6 -41.4 [-70, 0]
b_l_hor 0 0 0 13.5 [-20, 20]
maxdefv 45 50.8 45.4 47.2 [20, 70]
maxdefh 45 45 45 20 [20, 70]
alph_mu 0.01 0.01 0.01 0.04 [0.001,

0.2]
in_beln false false true false
f_hed_n 1 1 1 1 [0.1, 1]
f_bel_n 1 1 1 1 [0.1, 1]
ex_angs 1 1 1 1 [1, 2]
ex_aves 1 1 1 1.15 [1, 2]
in_angs false false false false
in_aves false false false true
f_ang_s 1 1 1 1 [0.1, 1]
f_ave_s 0.1 0.1 0.1 0.03 [0.01, 1]

Table 26: GA parameter development

The most prominent change made to the neuronal model is that the learning rate for Skinner
synapses has been minimized. It is not clear why such an extreme reduction in learning rate
has provided favorable results. The increase in alph_sk cancels some of the decrease of effective
learning rate, but still the Skinner effective learning rate seems remarkably low. Further worth
noting is the use of the modified Pavlov and Hume learning mechanisms; both of the two last
creatures, which were the best ones examined, learn by these modified mechanisms.

As for the mechanical model, similarly to the previous experiment, all the best creatures
examined had six legs. For the head height goal, this would be expected: with six legs, the back
of the torso can rest at the ground while the middle leg pair is supporting the torso weight,
thus allowing the head to elevate high above ground. Creatures with four or eight legs cannot
as easily or efficiently maintain such body positioning stably. Apart from this, vertical and
horizontal base angles and maximum angles of deflection have been adjusted to better suit the
head height goal.
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4.4 Experiment 3: Forward velocity Results

4.4 Experiment 3: Forward velocity

This section describes the system configuration and simulation results constituting Experiment
3: Forward velocity, which incorporates a system goal of achieving maximum forward velocity.
For this task to be solved successfully, the creatures will have to develop (partly) synchronized
and oscillatory walking patterns - gaits. As described in the introduction to this thesis, the main
experimental goal of this thesis is to investigate the possibilities for such gait-like movement
patterns to develop, i.e. to look for tendencies of repetitive, synchronized and oscillatory motor
control. The two previous experiments, Experiment 1: Torso height and Experiment 2: Head
height, have established the validity of the model and simulation system as a whole, and demon-
strated that such ANN-controlled creatures are capable of solving simple mechanically originate
problems. The principal theoretical and experimental interest, however, lies with the current
forward velocity goal and the desired development of dynamic gait-like movement patterns.

4.4.1 Goal specification, needs and fitness function

As indicated above, the system goal of this experiment is based on forward velocity: The creature
is rewarded, both in terms of need values and in terms of fitness evaluation, when the creature
is moving forward relative to its own orientation. The value used in the fitness calculations is
based on the relative forward velocity of the torso, as follows:63

velocityvalue = ν,

where ν is the velocity in creature relative forward direction.
For this experiment, the configuration of needs is as follows:

Need Configuration Included
Torso height need GA Optional
Head height need CONST No
Belly pain sensor needs GA Optional
Velocity need CONST Yes
Extreme joint angle needs GA Optional
Muscle force needs GA Optional
Foot friction needs GA Optional

As indicated, the most important need for this experiment is the velocity need (as stated above
and described in detail in Section 3.3.3.4), which wholly and fully incorporates the system goal
of achieving maximum forward velocity. The head height need is excluded, as it is thought
to provide nothing of value with respect to the system goal. As regards the other needs, the
appropriateness is uncertain: The torso height need may help in keeping the torso elevated, the
belly pain sensor needs may be propitious for getting the torso up from the ground, the extreme
joint angle needs may assist in the development of oscillatory leg movements, muscle force needs
may help in favorizing energy efficient movement patterns,64 and the foot friction needs may
contribute in learning to lift the feet instead of sliding them along the ground.

63Qualitatively, the velocity need, as described by Eq. (35) of Section 3.3.3.4, is equivalent to the additive
inverse of this value.

64This need would be useful in the fine-tuning of gait-like movement patterns, should such patterns develop.
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With the above velocity value, the fitness function can be specified as follows:

fitness0 = 0 (47)

fitnesst = fitnesst−1 +
t

N
· velocityvalue, (48)

This fitness evaluation function should ensure that, in the selection of a small number of individ-
uals for survival and recombination from a large and diverse generation, those individuals whose
parameter settings are propitious for achieving forward velocity are chosen. To summarize, the
desired simulation result is that the creature develops gait-like movement patterns such that it
moves forward in a repetitive and (partly) synchronized fashion.

4.4.2 Parameters and settings

This section specifies the initial setting of all variable parameters for Experiment 3, i.e. the
input to the GA process defining both the size of the GA parameter space and the seed of the
GA search. Table 27 lists the parameters together with their initial (seed) values and value
ranges.

Value
type

Name Description Seed
value

Range

Neuronal model GA parameters
FLOAT std_stc Standard deviation parameter for Cauchy

probability distribution used in stochastic
perturbations

1 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace element in neu-
ronal activation function

true

FLOAT alph_ne Trace controlling parameter for neuronal
trace function

0.5 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal drive values false
FLOAT lr_skin Learning rate for Skinner synapses 200 [1, 1000]
FLOAT lr_pavl Learning rate for Pavlov synapses 20 [1, 100]
FLOAT lr_hume Learning rate for Hume synapses 20 [1, 100]
FLOAT alph_sk Trace controlling parameter for Skinner

synapses
0.1 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for Pavlov
synapses

0.1 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for Hume
synapses

0.1 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic learning
mechanism

false

BOOL newhume Use of modified Hume synaptic learning
mechanism

false

FLOAT mod2val Parameter controlling the function describing
MOD2 efficacy limit as a function of the num-
ber of synapses

7 [5, 100]

Continued on next page
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Table 27 :: Continued
Value
type

Name Description Seed
value

Range

INT num_cns Number of neurons in internal clusters 20 [10, 50]
Mechanical model GA parameters

INT num_lps Number of leg pairs 3 {2, 3, 4}
FLOAT b_l_ver Leg vertical base angle (◦) -20 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 [-20, 20]
FLOAT maxdefv Maximum vertical angle of deflection (◦) 45 [20, 70]
FLOAT maxdefh Maximum horizontal angle of deflection (◦) 45 [20, 70]
FLOAT alph_mu Trace controlling parameter for muscle force

trace function
0.01 [0.001,

0.2]
BOOL in_hein Inclusion of torso height need false
BOOL in_beln Inclusion of belly pain sensor needs false
BOOL in_angn Inclusion of extreme joint angle needs true
BOOL in_mufn Inclusion of muscle force needs false
BOOL in_lfrn Inclusion of foot friction need false
BOOL f_hei_n Scaling factor for torso height need 1 [0.1, 1]
BOOL f_bel_n Scaling factor for belly pain sensor needs 0.1 [0.01, 1]
BOOL f_vel_n Scaling factor for velocity need 1 [0.1, 1]
BOOL f_ang_n Scaling factor for extreme joint angle needs 0.1 [0.01, 1]
BOOL f_muf_n Scaling factor for muscle force needs 1 [0.1, 1]
BOOL f_lfr_n Scaling factor for foot friction need 0.2 [0.1, 1]
FLOAT ex_angs Exponent in functions describing muscle

length senses
1 [1, 2]

FLOAT ex_aves Exponent in functions describing muscle
length rate senses

1.0 [1, 2]

BOOL in_angs Inclusion of muscle length senses true
BOOL in_aves Inclusion of muscle length rate senses false
BOOL f_ang_s Scaling factor for muscle length senses 1 [0.1, 1]
BOOL f_ave_s Scaling factor for muscle length rate senses 0.1 [0.01, 1]

Table 27: Experiment 3 - GA parameter settings

The seed values for the scaling factors have been set by trial and error: The effective growth
in synaptic efficacies has been monitored in real-time simulations where different combinations
of needs and senses are enabled, and scaling factor values have been adjusted to the level where
rate of synaptic growth seems sensible.

4.4.3 Experiment results

This section presents a representative selection of the results obtained from Experiment 3:
Forward velocity. The GA process was run with the standard settings described in Section 3.4:
mutation rate P = 10%, mutation amount A = 20%, and 50 individuals per generation. Each
creature was simulated for 50000 iterations, which translates into a real-time lifetime of 8.33
minutes. The simulations were stopped after 46 generations, implying that a total of 2300

108



Results 4.4 Experiment 3: Forward velocity

Figure 44: Fitness progress for Experiment 3: Forward velocity

virtual creatures were simulated.

4.4.3.1 Results overview
Figure 44 shows the progress in fitness over the 46 generations simulated (numbered 0-45),
depicting the best, average, and worst fitness for each generation.

For a reference as regards forward velocity fitness values, note that if the torso is not moving
in the horizontal plane (e.g. when lying absolutely still on the ground), the instantaneous
fitness is 0. When the torso velocity is non-zero, if the forward component of the velocity
vector in creature relative forward direction is positive, the instantaneous fitness is positive.
Correspondingly, if this velocity component is negative, the instantaneous fitness is negative.
Thus, a creature that, at average, is moving forward (backward) will obtain a positive (negative)
lifetime fitness. Estimating the size that may be expected on lifetime fitness values is not at all
trivial, but the following can be noted: If the creature learns a gait-like movement pattern such
that the creature maintains an average forward velocity of 1.0 m/s (which is well within reach,
should gaits develop), the lifetime fitness would be 25000.

As the chart clearly depicts, fitness values of such magnitudes do in fact occur. The maxi-
mum fitness of 35532, achieved at generation 42, is actually considerably higher than the above
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approximate value expected for reasonably efficient gaits. When inspecting the lifetime visual-
izations of these fit creatures, however, the following behavior is seen: The creatures position
all legs pointing backward and start moving them slightly back and forth. Leg deflections are
very slight and leg movement soon becomes very fast, in effect making the legs vibratory. Such
behavior is both biologically unrealistic and of very limited interest in the search for signs of
gait development.

4.4.3.2 Analysis of specific creatures - GA output and qualitative descriptions
As described above, the behavior developed for the fittest creatures is far from what was hoped
for. Although only achieving a fitness value one third of the absolute best fitness, the most
promising behavior as regards the development of gaits was seen at generation 28. Consequently,
this is the only creature examined in detail.

Generation 28: 11166
The best creature from generation 28 achieved a lifetime fitness of 11166. The ANN topology
used is shown in Table 28.

The GA single parameter output is shown in Table 29, where only those parameters whose
values have changed compared to the initial GA input specification (Table 27) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.40 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.39 [0.01, 1]

FLOAT lr_skin Learning rate for Skinner
synapses

200 1 [1, 1000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

20 65 [1, 100]

FLOAT lr_hume Learning rate for Hume synapses 20 37 [1, 100]
FLOAT alph_pa Trace controlling parameter for

Pavlov synapses
0.1 0.13 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.11 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

Continued on next page
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Table 29 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 18.1 [5, 100]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -35.3 [-70, 0]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 39.2 [20, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 43.8 [20, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.11 [0.001,
0.2]

BOOL in_beln Inclusion of belly pain sensor
needs

false true

BOOL in_lfrn Inclusion of foot friction need false true
BOOL f_bel_n Scaling factor for belly pain sen-

sor needs
0.1 0.1 [0.01, 1]

BOOL f_lfr_n Scaling factor for foot friction
need

0.2 0.42 [0.1, 1]

BOOL in_angs Inclusion of muscle length senses true true
BOOL f_ang_s Scaling factor for muscle length

senses
1 0.73 [0.1, 1]

Table 29: GA output GEN28

The most prominent change to the set of GA parameters is that the Skinner learning rate
has been minimized to the value 1. Such a low Skinner learning rate implies that needs will
have very little influence on behavior. This is unexpected, because need values are what steer
behavior according to the system goal at hand. It might be that the small influence from need
values is sufficient to produce forward movement. On the other hand, with such a low Skinner
learning rate, the fact that the creature ends up moving forward may also be purely incidental.

The lifetime visualization (Figure 45) shows the following behavior: After an initial phase of
chaotic and random behavior (approximately one fifth of the creature’s lifetime), the creature
positions all its legs such that they point slightly backward. Shortly thereafter, it starts moving
some of its legs back/up and forth/down, at relatively high speed and in a quite fast-paced
manner. The leg movements are energetic; the feet consistently hit the ground with high
velocity, causing the creature to bump slightly forward. The creature retains this behavior
throughout the rest of its lifetime.

Although the movement pattern developed to no considerable extent resembles the gaits seen
in biological systems, there seems to be some synchronization going on between the different legs
performing such movements: The two hindmost legs consistently hit the ground simultaneously,
and are thus synchronized. Further, the front left leg and the middle right leg are synchronized
in the same fashion, they move and hit the ground simultaneously. Finally, there is anti-
synchronization between the internally synchronized pairs of legs just described; the front-
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Figure 45: 3D visualization screenshots GEN28

N S A I1 I2 M
N X X C X X X
S X X 0 0 P P
A X X X S S S
I1 X X 0 0 0 P
I2 X X 0 0 0 P
M X X 0 0 0 0

Table 28: Topology specification GEN28

Figure 46: Topology structure GEN28
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middle leg pair consistently and invariably hits the ground just before the hindmost leg pair
does. This latter temporally shifted cross-synchronization is probably what is causing most of
the propulsion; forward drive would presumably have been significantly lower had, for instance,
all four legs been hitting the ground simultaneously.

4.4.3.3 Summary
To summarize the results from Experiment 3: Forward velocity, we can conclude that the system
as a whole finds a rather good solution to the task at hand. The fittest creatures consistently
achieve reasonably high forward velocities. These creatures do, however, seem to be taking
advantage of a weakness in the mechanical model; legs are allowed to move forth and back in
a vibratory manner. The latter is, of course, not biologically realistic, and thus far from what
was hoped for.

In relation to the GA search process, the creatures exercising behavior characterized by
vibratory leg movements may be regarded as being positioned in or near a local maximum in
the GA search space. Further, it seems that the search is incapable of escaping this presumably
suboptimal local maximum once it is discovered. To avoid such suboptimal convergence in the
next experiments, therefore, it will be necessary to make some changes in the mechanical model.
More specifically, vibratory leg movements should be disallowed.

Although no biologically resemblant gaits are seen, at generation 28 a movement pattern is
discovered that is reasonably efficient for moving forward. Also, the evident synchronization is
interesting, providing light indications that ANNs based on the mechanisms of Connectology
may self-organize into synchronized movement patterns, and eventually into gaits. The ex-
ceedingly low value seen for the Skinner learning rate for this creature, however, questions the
determinism in the development of this movement pattern; with such a low learning rate, the
fact that the pattern causes the creature to move forward may be incidental.

Finally, therefore, to investigate the degree of determinism in the movement patterns devel-
oped, repeated simulations have been performed with creatures that are configured identically
to the creature from generation 28. Results show that similar patterns do, in fact, develop quite
deterministically in these creatures; all creatures investigated learnt partly synchronized and
repetitive patterns of movement similar to that described earlier for the creature from gener-
ation 28. The degree of goal achievement as regards forward velocity, however, is fluctuating;
the efficiency of the patterns developed as regards forward movement is highly variable.
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4.5 Reassessment of model and simulation settings

The results from the previous experiment on forward velocity showed only few signs of syn-
chronized movement patterns. The resulting behavior was far from what was hoped for; it
appears that the problem was solved mainly by the GA process instead of by ANN synaptic
learning during a creature’s lifetime. Based on this, as a second attempt for gaits to develop,
the configuration of the simulation system has been reassessed.

4.5.1 Neuronal model

Based on discussions at supervisor meetings, J. Hokland has suggested two changes to the model
for synaptic learning. The original model of learning mechanisms was based on the following
generic structure:

Δet
ij = ψβijfi(ΔDt

i)fj(ΔDt
j), (49)

where fi and fj represent the identity function or a synaptic trace of the presynaptic and
postsynaptic delta drives, respectively.

The first change introduces a new element of nonlinearity by performing a nonlinear trans-
formation on delta drives before including them as multiplicative contributions to the learning
mechanisms:

Δet
ij = ψβijfi

(
sgn(ΔDt

i) ·
∣∣ΔDt

i

∣∣k) · fj

(
sgn(ΔDt

j) ·
∣∣ΔDt

j

∣∣k) | k ≥ 1 ∈ Z, (50)

where sgn(x) is the sign function. The effect of the above modification is that, when k > 1,
small drive changes are suppressed and large drive changes are favorized. The purpose is to
increase the impact that significant events have on learning compared to insignificant events.
Thus, the larger k, the more prominent the favorizing of large delta drives. E.g. for the Skinner
mechanism:

Δet
ij = −βij min

(
sgn(ΔDt

i) ·
∣∣ΔDt

i

∣∣k , 0
)
T t

ij (51)

T t
ij = (1 − αij)T t−1

ij + αij · sgn(ΔDt
j) ·

∣∣ΔDt
j

∣∣k (52)

The corresponding changes in the Pavlov and Hume mechanisms are completely analogous, and
consequently not shown here.

A second modification introduces a qualitative change to the synaptic trace functions. A
new multiplicative element is included in the trace, as follows (for the Skinner synaptic trace):65

T t
ij = (1 − αij)T t−1

ij + αij

(
1 −

∣∣∣T t−1
ij

∣∣∣) ΔDt
j , (53)

The effect of this modification is that the trace of significant changes becomes more persistent:
If the trace value at some point has become large, let us assume that it is close to 1 or -1, then
the (1 − |T t−1

ij |) element will cause subsequent delta drives to have significantly lower influence
on the trace value, i.e. it becomes more persistent. If the trace is close to zero, however, the
new element will cancel out (approach one), thus allowing future delta drives to influence the
trace value normally.

65An alternative formulation is T t
ij = (1− αij) T t−1

ij T t−1
ij + αij 1 − T t−1

ij ΔDt
j , i.e. such that the equation

is symmetric in T t−1
ij . Because the magnitude of trace values is small for the simulations of this thesis, however,

T t−1
ij is left out for the first term of the equation, avoiding potential problems when T t−1

ij approaches zero.
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4.5.2 Topology specification

Some of the creature instances described earlier had quite complex topologies with up to six
internal clusters and many clustral connections. For the experiments performed henceforth,
greater restrictions are put on ANN topology, meaning that the GA topology search is heav-
ily constrained. Two prominent arguments support this choice: 1) Such large topologies are
presumably not needed for sensible gaits to develop,66 and 2) allowing such large topologies po-
tentially puts heavy strain on computer simulations, causing running time to increase vastly.67

For the last two experiments, therefore, only two types of topologies are simulated. The
topology specification matrices are shown in Tables 30-31, and the corresponding topology
structures are shown in Figures 47-48. These two topology variants define two different search
spaces for GA topology searches. Variant 1 has two optional connections, and thereby allows
22 = 4 specific topologies, which is the space of allowed topologies for Experiment 4: Forward ve-
locity v2. Variant 2 has six optional connections, and thereby allows 26 = 64 specific topologies,
which is the space of allowed topologies for Experiment 5: Forward velocity v3. The number of
clusters is constant for both variants, meaning that the GA mutation process (Section 3.4.1.5)
may no longer add or remove clusters.

4.5.3 GA parameter configuration

Section 4.5.1 discussed two optional modifications to the neuronal model that are included
in the last two experiments. For the simulations performed henceforth, the use of these two
modifications is determined by two additional GA parameters. The first modification, which
specifies delta drive transformations, is described by the floating-point parameter k, where k = 1
is equivalent to excluding the modification. The second modification, which slightly modifies
the synaptic trace function, is simply described by a boolean parameter denoting whether or
not the new trace element is included in the corresponding equation. The two parameters are
termed ddexpon and mod_trc, respectively:

Value
type

Name Description Seed
value

Range

FLOAT ddexpon Exponent in function transforming synaptic
learning mechanism delta drives

1 [1, 3]

BOOL mod_trc Use of modified synaptic trace function with
new persistence increasing element

false

Both of the neuronal model modifications discussed above, and particularly the first, may
require synaptic learning rates to be higher. Based on this, the maximum limits have been
expanded for all three learning rate variables. Further, to restrict the GA process from sup-
pressing one mechanism any other way than by topological modifications, the corresponding
minimum limits have been increased:

66J. A. Scott Kelso provides several examples of small neuron-like systems capable of producing self-oscillating
patterns [Kel95].

67Recall from Section 3.2.7 that the running time of ANN updates is linear in the number of neurons and
synapses.
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N S A M
N X X C X
S X X (P) P
A X X X S
M X X X (H)

Table 30: Constrained topology specification 1

Figure 47: Constrained topology structure 1 (dotted connections are optional)

N S A I1 M
N X X C X X
S X X (P) P (P)
A X X X S (S)
I1 X X X (H) P
M X X X (P) (H)

Table 31: Constrained topology specification 2

Figure 48: Constrained topology structure 2 (dotted connections are optional)
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Value
type

Name Description Old range New
range

FLOAT lr_skin Learning rate for Skinner synapses [1, 1000] [50, 10000]
FLOAT lr_pavl Learning rate for Pavlov synapses [1, 100] [5, 1000]
FLOAT lr_hume Learning rate for Hume synapses [1, 100] [5, 1000]

The experience gained from Experiment 3 indicates that the mechanical model needs some
modifications; the vibratory leg movements characterizing the fittest creatures from Experiment
3 should not be allowed. Finally, therefore, to reduce the possibility for such movement patterns
to emerge, the following changes have been made:
Value
type

Name Description Old range New
Range

FLOAT maxdefv Maximum vertical angle of deflection (◦) [20, 70] [45, 70]
FLOAT maxdefh Maximum horizontal angle of deflection

(◦)
[20, 70] [45, 70]

FLOAT alph_mu Trace controlling parameter for muscle
force trace function

[0.001, 0.2] [0.001, 0.05]

The decrease in the maximum limit for alph_mu considerably lowers the maximum muscle
rapidness, effectively implying that the maximum frequency with which muscle force may change
from high to low is decreased. This should ensure that creatures not as easily will be able to
perform vibratory leg movements by muscular control. The increase in minimum limits for both
the vertical and horizontal maximum angles of deflection further ensure that creatures not as
rapidly can bounce their legs back and forth off joint angle limits.

4.5.4 Outline

For the experiments performed henceforth, greater restrictions are put on ANN topologies: Only
two types of topologies are used, one having no internal clusters, and the other having a single
internal cluster. The GA process may no longer introduce new clusters, but can enable or
disable selected clustral connections.

The two final experiments of this thesis are presented next. These are identically specified,
except for ANN topologies, as follows:.

• Experiment 4: Forward velocity v2 uses topology variant 1 (Table 30, Figure 47)

• Experiment 5: Forward velocity v3 uses topology variant 2 (Table 31, Figure 48)

For both of the above, the seed topology has none of the optional connections activated. Further,
the two neuronal model modifications are included as GA parameters, and GA parameter seeds
are updated according to the parameter range modifications described above. Finally, for the
last two experiments, the number of iterations has been reduced from 50000 to 15000, implying
that the creatures’ lifetime has been reduced from 8.33 to 2.50 minutes. This decision has been
made based on discussions at supervisor meetings, and is justified as follows: For the simple
topologies used henceforth, if a system configuration (ANN topology and GA parameter values)
is discovered that allows some gait to develop, this gait is expected to emerge quickly, and well
within the 15000 iterations simulated. The purpose of lowering the iteration count, of course,
is to allow more creatures to be simulated within a reasonable time-interval, thereby arranging
for a larger portion of the space of allowable system configurations to be explored.
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4.6 Experiment 4: Forward velocity v2

This section describes the system configuration and simulation results constituting Experiment
4: Forward velocity v2. The goal specification, need configuration and fitness function are equal
to those described for Experiment 3, and are consequently not discussed here.

4.6.1 Parameters and settings

This section specifies the initial setting of all variable parameters for Experiment 4, i.e. the
input to the GA process defining both the size of the GA parameter space and the seed of
the GA search. The settings are identical to those presented for Experiment 3, except for the
modifications discussed in Section 4.5. Table 32 lists the parameters together with their initial
(seed) values and value ranges. Changes compared to the input configuration of the previous
experiment on forward velocity are shown in red.

Value
type

Name Description Seed
value

Range

Neuronal model GA parameters
FLOAT std_stc Standard deviation parameter for Cauchy

probability distribution used in stochastic
perturbations

1 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace element in neu-
ronal activation function

true

FLOAT alph_ne Trace controlling parameter for neuronal
trace function

0.5 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal drive values false
FLOAT lr_skin Learning rate for Skinner synapses 200 [50, 10000]
FLOAT lr_pavl Learning rate for Pavlov synapses 20 [5, 1000]
FLOAT lr_hume Learning rate for Hume synapses 20 [5, 1000]
FLOAT alph_sk Trace controlling parameter for Skinner

synapses
0.1 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for Pavlov
synapses

0.1 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for Hume
synapses

0.1 [0.01, 1]

FLOAT ddexpon Exponent in function transforming synaptic
learning mechanism delta drives

1 [1, 3]

BOOL newpavl Use of modified Pavlov synaptic learning
mechanism

false

BOOL newhume Use of modified Hume synaptic learning
mechanism

false

BOOL mod_trc Use of modified synaptic trace function with
new persistence increasing element

false

FLOAT mod2val Parameter controlling the function describ-
ing MOD2 efficacy limit as a function of the
number of synapses

7 [5, 100]

Continued on next page

118



Results 4.6 Experiment 4: Forward velocity v2

Table 32 :: Continued
Value
type

Name Description Seed
value

Range

Mechanical model GA parameters
INT num_lps Number of leg pairs 3 {2, 3, 4}
FLOAT b_l_ver Leg vertical base angle (◦) -20 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 [-20, 20]
FLOAT maxdefv Maximum vertical angle of deflection (◦) 45 [45, 70]
FLOAT maxdefh Maximum horizontal angle of deflection (◦) 45 [45, 70]
FLOAT alph_mu Trace controlling parameter for muscle force

trace function
0.01 [0.001, 0.05]

BOOL in_hein Inclusion of torso height need false
BOOL in_beln Inclusion of belly pain sensor needs false
BOOL in_angn Inclusion of extreme joint angle needs true
BOOL in_mufn Inclusion of muscle force needs false
BOOL in_lfrn Inclusion of foot friction need false
BOOL f_hei_n Scaling factor for torso height need 1 [0.1, 1]
BOOL f_bel_n Scaling factor for belly pain sensor needs 0.1 [0.01, 1]
BOOL f_vel_n Scaling factor for velocity need 1 [0.1, 1]
BOOL f_ang_n Scaling factor for extreme joint angle needs 0.1 [0.01, 1]
BOOL f_muf_n Scaling factor for muscle force needs 1 [0.1, 1]
BOOL f_lfr_n Scaling factor for foot friction need 0.2 [0.1, 1]
FLOAT ex_angs Exponent in functions describing muscle

length senses
1 [1, 2]

FLOAT ex_aves Exponent in functions describing muscle
length rate senses

1.0 [1, 2]

BOOL in_angs Inclusion of muscle length senses true
BOOL in_aves Inclusion of muscle length rate senses false
BOOL f_ang_s Scaling factor for muscle length senses 1 [0.1, 1]
BOOL f_ave_s Scaling factor for muscle length rate senses 0.1 [0.01, 1]

Table 32: Experiment 4 - GA parameter settings

4.6.2 Experiment results

This section presents a representative selection of the results obtained from Experiment 4: For-
ward velocity v2. The GA process was run with the standard settings described in Section 3.4:
mutation rate P = 10%, mutation amount A = 20%, and 50 individuals per generation. Each
creature was simulated for 15000 iterations, which translates into a real-time lifetime of 2.50
minutes. The simulations were stopped after 202 generations, implying that a total of 10100
virtual creatures were simulated.

4.6.2.1 Results overview

Figure 49 shows the progress in fitness over the first 150 generations simulated (numbered 0-
149), depicting the best, average, and worst fitness for each generation. Since the creatures
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Figure 49: Fitness progress for Experiment 4: Forward velocity v2

of this experiments only live for 15000 generations (as compared to previous lifetime of 50000
generations), expectations on fitness values must be adjusted correspondingly.

The graph for best fitness shows that there is a quite consistently positive tendency in fitness
values over the first third of the simulation; at generation 0 the best fitness value is 469, whereas
at generation 48 the best fitness value has increased to 4233. In the middle third of the genera-
tions, there are three prominent peaks in the graph for best fitness, indicating that the behavior
developed for the best creatures from generations 50, 55 and 78 was particularly favorable. The
corresponding fitness values are 6482 (GEN50), 8323 (GEN55) and 7782 (GEN78). For the last
third of the simulation performance degrades, and fitness values stabilize around 3000.

As regards average fitness, values increase slightly over the simulation period, indicating
that behavior at average is somewhat better than the indifferent behavior of lying completely
still on the ground.

The graph for worst fitness is quite similar to the graph for best fitness, only opposite,
indicating that the spread in performance among the creatures of a generation is large. Further,
as for the best fitness, there are a few prominent negative peaks in the graph for worst fitness.
The latter is interesting, as it indicates that some creatures have developed behavior that is
opposite of what would be expected according to the needs implemented in the model, i.e. they
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are quite good at moving backward.
Worth noting in this respect as regards fitness values is that the time that creatures spend

in the initial learning phase, i.e. the time elapsed before creatures discover the movement
pattern that characterizes the rest of their lifetimes, may influence the fitness results obtained
significantly. Thus, when analyzing fitness values, it is not necessarily the creature that obtained
the absolute highest fitness value that developed the most efficient movement pattern.

4.6.2.2 Analysis of specific creatures - GA output and qualitative descriptions
This section presents the lifetime visualizations (i.e. observable behavior) of the best creatures
from a few selected generations. The selection has been made with the purpose of showing
the best movement patterns developed; in other words, the creatures represented by the best
fitness peaks from the chart of Figure 49 are inspected. The creatures examined below do in fact
develop gaits; after the initial learning phase, they consistently move forward with a permanent,
synchronized and repetitive movement pattern. Screenshots are provided that attempt to show
the gaits developed. To really get the idea of how the creatures are moving, however, the
lifetime visualizations should be inspected.68 Corresponding lifetime fitness values are shown in
the headings below.

Generation 50: 6482
The best creature from generation 50 achieved a lifetime fitness of 6482. The ANN topology
was identical to the seed topology (Figure 47), and is therefore not shown.

The GA single parameter output is shown in Table 33, where only those parameters whose
values have changed compared to the initial GA input specification (Table 32) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.74 [0.1, 2]

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.81 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT lr_skin Learning rate for Skinner
synapses

200 50 [50,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

20 109 [5, 1000]

FLOAT alph_sk Trace controlling parameter for
Skinner synapses

0.1 0.19 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.32 [0.01, 1]

Continued on next page

68They should be worth the effort. See Appendix A for instructions.
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Table 33 :: Continued
Value
type

Name Description Seed
value

Value Range

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 25.7 [5, 100]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -30.2 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 17.6 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 47.9 [45, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 48.9 [45, 70]

FLOAT alph_mu Trace-controlling parameter for
muscle trace function

0.01 0.05 [0.001,
0.05]

BOOL in_beln Inclusion of belly pain sensor
needs

false true

BOOL in_angn Inclusion of extreme joint angle
needs

true false

BOOL f_vel_n Scaling factor for velocity need 1 0.49 [0.1, 1]
FLOAT ex_angs Exponent in functions describing

muscle length senses
1 1.30 [1, 2]

BOOL f_ang_s Scaling factor for muscle length
senses

1 0.95 [0.1, 1]

Table 33: GA output GEN50

The most prominent change to the set of GA parameters is the minimization of the Skinner
learning rate and the exclusion of the extreme joint angle needs combined with the inclusion of
the belly pain sensor needs.

The lifetime visualization (Figure 50) shows that, after exercising chaotic behavior for almost
half of its lifetime, approximately at iteration 7000 the creature discovers a movement pattern
that it retains throughout the rest of its lifetime.

Initially, this pattern may seem random and chaotic, but by inspection it soon becomes clear
that the pattern clearly is repetitive. By further inspection, several aspects of synchronism can
be seen: For instance, the right middle leg consistently hits the ground just before the hindmost
leg pair does. Further, the two middle legs move very similarly: They are consistently lifted up
and forward to subsequently be put down on the ground and dragged backward, thereby causing
propulsion. The (anti-)synchronism for the latter is seen in the fact that the right middle leg
consistently performs this movement just before the left middle leg.

The gait is not perfectly executed, meaning that the creature from time to time falls out
of the repetitive pattern of movement, thus intercepting propulsion. After each such failure,
however, the creature almost immediately restarts and continues to move according to the gait
it has learnt.
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(a) 1 (b) 2

(c) 3 (d) 4

Figure 50: 3D visualization screenshots GEN50

The gait can be seen to improve a little in the time following its discovery (iteration 7000);
based on subjective assessments average forward velocity seems to increase slightly and stably
up until convergence at approximately iteration 11000.

Generation 55: 8232
The best creature from generation 55 achieved a lifetime fitness of 8232. The ANN topology
was identical to the seed topology (Figure 47), and is therefore not shown.

The GA single parameter output is shown in Table 34, where only those parameters whose
values have changed compared to the initial GA input specification (Table 32) are listed.
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Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.74 [0.1, 2]

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.82 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT lr_skin Learning rate for Skinner
synapses

200 50 [50,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

20 109 [5, 1000]

FLOAT alph_sk Trace controlling parameter for
Skinner synapses

0.1 0.39 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.32 0, 1]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 26.4 [5, 100]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -30.6 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 19.8 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 47.9 [45, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.03 [0.001,
0.05]

BOOL in_hein Inclusion of torso height need false true
BOOL in_beln Inclusion of belly pain sensor

needs
false true

BOOL in_angn Inclusion of extreme joint angle
needs

true false

BOOL f_hei_n Scaling factor for torso height
need

1 0.71 [0.1, 1]

BOOL f_vel_n Scaling factor for velocity need 1 0.49 [0.1, 1]
FLOAT ex_angs Exponent in functions describing

muscle length senses
1 1.30 [1, 2]

Table 34: GA output GEN55

The most prominent change to the set of GA parameters is the minimization of the Skinner
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learning rate and the exclusion of the extreme joint angle needs combined with the inclusion of
the torso height need and belly pain sensor needs.

The lifetime visualization (Figure 51) shows that, in a completely analogous manner to the
creature from generation 50, after exercising chaotic behavior for almost half of its lifetime
(approximately at iteration 7000), this creature discovers a movement pattern that it retains
throughout the rest of its lifetime.

(a) 1 (b) 2

(c) 3 (d) 4

Figure 51: 3D visualization screenshots GEN55

Compared to the pattern developed at generation 50, this movement pattern is far cleaner
and less chaotic. The gait is based on repetitive jumps mainly caused by simultaneous thrusts
at the two hindmost legs. Further, the front legs are used in a similar manner to produce jumps,
and are further raised and thrown forward while airborne such that the creature lands on its
feet without falling all the way down to the ground at landing.

The synchronism inherent in the gait developed is much more easily seen than what was the
case for the previous creature discussed. Most importantly, the hindmost legs are synchronized
in the thrusts causing the creature to jump forward. The front legs, which thrust and move in
a circular manner, are synchronized similarly. The behavior seen at the middle leg pair seems
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less deterministic; in fact, it would seem like the gait developed had been even more efficient
had the creature had only four legs.

As for the creature from generation 50 discussed above, the creature from generation 55 also
does not execute the gait developed perfectly. From time to time, the creature falls out of the
repetitive movement pattern, thus intercepting propulsion. Further, as was seen for generation
50, after each such failure, the creature almost immediately restarts and continues to move
according to the gait it has learnt.

The gait can be seen to improve somewhat over the course of the creatures lifetime; move-
ments become increasingly synchronized, and, by and large, jumps become more efficient.

Generation 78: 7782
The best creature from generation 78 achieved a lifetime fitness of 7782. The ANN topology
was identical to the seed topology (Figure 47), and is therefore not shown.

The GA single parameter output is shown in Table 35, where only those parameters whose
values have changed compared to the initial GA input specification (Table 32) are listed.

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 1.65 [0.1, 2]

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.01 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT lr_skin Learning rate for Skinner
synapses

200 50 [50,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

20 109 [5, 1000]

FLOAT alph_sk Trace controlling parameter for
Skinner synapses

0.1 0.19 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.32 [0.01, 1]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 27.4 [5, 100]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -39.9 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 6.75 [-20, 20]

Continued on next page
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Table 35 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT maxdefv Maximum vertical angle of de-
flection (◦)

45 50.1 [45, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.05 [0.001,
0.05]

BOOL in_hein Inclusion of torso height need false true
BOOL in_angn Inclusion of extreme joint angle

needs
true false

BOOL in_mufn Inclusion of muscle force needs false true
BOOL in_lfrn Inclusion of foot friction need false true
BOOL f_hei_n Scaling factor for torso height

need
1 0.50 [0.1, 1]

BOOL f_muf_n Scaling factor for muscle force
needs

1 0.73 [0.1, 1]

BOOL f_lfr_n Scaling factor for foot friction
need

0.2 0.1 [0.1, 1]

FLOAT ex_angs Exponent in functions describing
muscle length senses

1 1.30 [1, 2]

BOOL f_ang_s Scaling factor for muscle length
senses

1 0.95 [0.1, 1]

Table 35: GA output GEN78

The parameter value changes are similar to those presented for the two creatures discussed
previously. Interesting, however, is the inclusion of several optional needs: torso height, muscle
force and foot friction.

The lifetime visualization (Figure 52) shows that, as opposed to the creatures discussed
previously, this creature very early in its lifetime discovers an efficient movement pattern, ap-
proximately at iteration 1700.69

The gait that this creature develops is the least chaotic and most biologically resemblant
seen: Four of the six legs perform circular movements, resulting in a gait that, although being a
bit awkward, most closely can be described as walking. The two remaining legs contribute little
to propulsion; in fact, it appears that they are slowing the creature down. Their function as
regards balance and stability may, however, be important in allowing the creature to maintain
a reasonably steady forward velocity.

The synchronism inherent in the gait developed is easily seen: The two front legs, performing
equal and repetitive circular movements, alternate in thrusting the ground, ensuring fairly
smooth and continuous propulsion. More specifically, the two front legs can be said to be
phase-inverted, meaning that when one leg is low and thrusting the ground the other is lifted
high and is on its way forward. It appears that this highly deterministic alternation is important
in maintaining both stability and forward velocity.

Continuing the analysis on synchronization, the hindmost left leg can be seen to contribute

69Recall that the creatures from generation 50 and 55 used almost half of their lifetime to discover efficient
movement patterns (approximately at iteration 7000).

127



4.6 Experiment 4: Forward velocity v2 Results

(a) 1 (b) 2

(c) 3 (d) 4

Figure 52: 3D visualization screenshots GEN78

to increasing and maintaining forward velocity by repetitively thrusting toward the ground.
By further inspection, it is evident that this hindmost left leg consistently performs this move-
ment at the exact same time as the front right leg performs the same movement. This latter
synchronism seems to be crucial and dominant as regards obtaining forward velocity.

Finally, once again, the movement of the middle leg pair seems considerably less determinis-
tic, and obviously contributes less to the creature’s propulsion. As noted earlier, however, these
middle legs may be important for keeping the creature from losing balance and falling to the
ground.

Although performance is a little varying, the creature never falls out of the gait it has learnt;
from approximately iteration 1700 and throughout the rest of its lifetime, the creature moves
forward with the same repetitive movement pattern. Over the first few thousand iterations after
gait discovery, the movement pattern can be seen to steadily increase in efficiency, whereafter
behavior converges at a fairly propitious pattern resulting in a steady and reasonably high
forward velocity.
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4.6.2.3 Summary
To summarize the results from Experiment 4: Forward velocity v2, we conclude that some
creatures did indeed develop gaits, i.e. repetitive, synchronized and deterministic movement
patterns. Reasonably efficient gaits were, however, only seen for very few of the 10100 creatures
simulated: A large part of the creatures showed promising tendencies, but only a few managed
to develop fully functional gaits resulting in high fitness values.

When re-running the creatures that exercised the best behavior, i.e. when simulating crea-
tures with identical configurations as those given by the creatures from generations 50, 55 and
78 discussed above, results are fluctuating. There is, indeed, a clear tendency that chiefly de-
terministic movement patterns develop, but the efficiency of these patterns is highly varying:
Identically specified creatures vary from developing quite efficient behavior resemblant to that
seen earlier, to developing behavior that causes no forward velocity worth mentioning, or even
move backward. At average, behavior seems a little better than indifferent behavior (lifetime fit-
ness values are usually greater than zero), but only few runs result in fitness values approaching
those obtained earlier.

Considering the fact that groups of simulated creatures are identically specified internally,
these findings show that the behavior developed heavily depends on the specific course of random
samples encountered in the calculations on neuronal drive values.

Table 36 gives an overview of the development in GA parameter values over the few gener-
ations discussed above.

Name Seed value GEN50 GEN55 GEN78 Range

Neuronal model GA parameters
std_stc 1 1.74 1.74 1.65 [0.1, 2]
in_ntrc true true true true
alph_ne 0.5 0.81 0.82 0.5 [0.01, 1]
in_dtrc false true true true
lr_skin 200 50 50 50 [50,

10000]
lr_pavl 20 109 109 109 [5, 1000]
lr_hume 20 215 215 145 [5, 1000]
alph_sk 0.1 0.19 0.39 0.19 [0.01, 1]
alph_pa 0.1 0.32 0.32 0.32 [0.01, 1]
alph_hu 0.1 0.01 0.01 0.35 [0.01, 1]
ddexpon 1 1 1 1 [1, 3]
newpavl false true true true
newhume false false true true
mod_trc false false false false
mod2val 7 25.7 26.4 27.4 [5, 100]

Mechanical model GA parameters
num_lps 3 3 3 3 {2, 3, 4}
b_l_ver -20 -30.2 -30.6 -39.9 [-70, 0]
b_l_hor 0 17.6 19.8 6.75 [-20, 20]
maxdefv 45 47.9 47.9 50.1 [45, 70]
maxdefh 45 48.9 45 45 [45, 70]

Continued on next page
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Table 36 :: Continued
Name Seed value GEN50 GEN55 GEN78 Range

alph_mu 0.01 0.05 0.03 0.05 [0.001,
0.05]

in_hein false false true true
in_beln false true true false
in_angn true false false false
in_mufn false false false true
in_lfrn false false false true
f_hei_n 1 1 0.71 0.50 [0.1, 1]
f_bel_n 0.1 0.1 0.1 0.1 [0.01, 1]
f_vel_n 1 0.49 0.49 1 [0.1, 1]
f_ang_n 0.1 0.1 0.1 0.1 [0.01, 1]
f_muf_n 1 1 1 0.73 [0.1, 1]
f_lfr_n 0.2 0.2 0.2 0.1 [0.1, 1]
ex_angs 1 1.30 1.30 1.30 [1, 2]
ex_aves 1 1 1 1 [1, 2]
in_angs true true true true
in_aves false false false false
f_ang_s 1 0.95 1 0.95 [0.1, 1]
f_ave_s 0.1 0.1 0.1 0.1 [0.01, 1]

Table 36: GA parameter development

Consider first the neuronal model. The randomness in neuronal drive is consistently in-
creased compared to the seed, causing initial learning to be faster, while at the same time
decreasing the level of determinism. Further, the trace function at neuronal drives is activated
for all of the three best creatures. All synaptic learning rates and the corresponding trace-
controlling parameters have been adjusted; most prominently, the Skinner learning rate has
been minimized.

An interesting thing worth noting is that the modified Pavlov learning mechanism is used in
all of the three best creatures, and the modified Hume learning mechanism is used in two of these
three. This might indicate that these variants on the Pavlov and Hume learning mechanisms
are propitious with respect the development of gaits. Further worth noting is that the new
parameters introduced in Section 4.5 remain at their default values, meaning that none of the
qualitative modifications made to the neuronal model were included for any of the three best
creatures.

As for the mechanical model, customary adjustments on joint angle range specifiers have
been made. Further, the muscular alpha controlling the rapidness of muscles is consistently
increased, and for two of the three creatures it has been maximized to the upper limit of 0.05.

Further worth studying is the exclusion or inclusion of the different types of needs. Most
prominently, the extreme joint angle needs are excluded from all three creatures. Both the
height need and the belly pain sensor needs are included for two of three creatures, whereas the
muscle force needs and the foot friction needs are included for the last one.

Lastly as regards the parameter changes, it should be noted that all three creatures continued
the default settings as regards the inclusion of senses: For all three creatures, the muscle length
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senses are included, whereas the muscle length rate senses are excluded. These results, together
with the corresponding above results on needs, provide clear indications as regards what needs
and senses are favorable with respect to the development of gaits for forward velocity.
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4.7 Experiment 5: Forward velocity v3

This section describes the system configuration and simulation results constituting Experiment
5: Forward velocity v3. The goal specification, need configuration and fitness function are
equal to those used in previous experiments on forward velocity (Experiments 3 and 4), and are
therefore not discussed here.

Further, the GA input configuration is identical to the previous experiment, and is conse-
quently not repeated here. In summary, the only thing separating this experiment from the
previous is the topology specification i.e. the seed topology and the set of allowed topologies
(as described in Section 4.5.2).

4.7.1 Experiment results

This section presents an overview of the results obtained from Experiment 5: Forward velocity
v3. The GA process was run with the standard settings described in Section 3.4: mutation rate
P = 10%, mutation amount A = 20%, and 50 individuals per generation. Each creature was
simulated for 15000 iterations, which translates into a real-time lifetime of 2.50 minutes. The
simulations were stopped after 125 generations, implying that a total of 6250 virtual creatures
were simulated.

4.7.1.1 Results overview
Figure 53 shows the progress in fitness over the 125 generations simulated (numbered 0-124),
depicting the best, average, and worst fitness for each generation.

The graphs for best, average, and worst fitness throughout the experiment show similar
tendencies as those described for Experiment 4: Forward velocity v2. For best fitness, there is a
consistent increase over approximately the first 50 generations. At generation 0 the best fitness
is 772, whereas at generation 50 this value has increased to 3634. Although the graph remains
jagged for the rest of the generations simulated, values chiefly stabilize above 2500, and they
never drop to the levels seen at the early generations. The absolute maximum fitness value of
5279 is achieved at generation 74. Although reasonably high, this value is considerably lower
than the maximum value of 8323 seen for the previous experiment.

As regards average fitness, values increase slightly over the simulation period, indicating
that, at average, behavior is somewhat better than the indifferent behavior of lying completely
still on the ground. This is fully equivalent to what was seen for Experiment 4.

Finally, as was also seen for Experiment 4, the graph for worst fitness is similar to the
graph for best fitness, only opposite. This indicates that the spread in performance among the
creatures of a generation is large, in effect implying that some creatures developed quite efficient
patterns for moving backward.

In summary, then, fitness graphs indicate that the forward velocity goal is solved reasonably
successfully, although the best creatures from this experiment achieved considerably lower fitness
values than those seen for the previous experiment.

4.7.1.2 Analysis of specific creatures - GA output and qualitative descriptions
As depicted by the fitness chart of Figure 53, the creatures of this experiment never obtain as
high fitness values as those that were obtained for the previous experiment. Not unexpectedly,
visual inspection shows that the movement patterns developed are not efficient to the extent
seen for the previous experiment. Anyhow, similar tendencies of deterministic and propitious
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Figure 53: Fitness progress for Experiment 5: Forward velocity v3

movement patterns are clearly visible. The creature that achieved the absolute maximum fitness
is discussed below.

Screenshots are provided that attempt to show the gait developed. However, as was also
pointed out for the previous experiment, to really get the idea of how the creature is moving,
the lifetime visualization should be inspected.70 The creature’s lifetime fitness value is shown
in the heading below.

Generation 74: 5279

The best creature from generation 74 achieved a lifetime fitness of 5279. The ANN topology
is slightly changed compared to the seed topology; three new clustral connections have been
introduced: The senses now additionally connect directly onto the affect cluster, the affect
cluster additionally connects directly onto the motor cluster, and the motor cluster is now
intraconnected. The resulting topology is shown in Figure 54.

The GA single parameter output is shown in Table 38, where only those parameters whose
values have changed compared to the initial GA input specification (Table 32) are listed.

70See Appendix A for instructions.

133



4.7 Experiment 5: Forward velocity v3 Results
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Table 37: Topology specification GEN74

Figure 54: Topology structure GEN74

Value
type

Name Description Seed
value

Value Range

FLOAT std_stc Standard deviation parameter
for Cauchy probability distribu-
tion used in stochastic perturba-
tions

1 2 [0.1, 2]

BOOL in_ntrc Inclusion of neuronal trace ele-
ment in neuronal activation func-
tion

true false

FLOAT alph_ne Trace controlling parameter for
neuronal trace function

0.5 0.35 [0.01, 1]

BOOL in_dtrc Inclusion of trace at neuronal
drive values

false true

FLOAT lr_skin Learning rate for Skinner
synapses

200 50 [50,
10000]

FLOAT lr_pavl Learning rate for Pavlov
synapses

20 101 [5, 1000]

FLOAT lr_hume Learning rate for Hume synapses 20 5 [5, 1000]
Continued on next page
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Table 38 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT alph_sk Trace controlling parameter for
Skinner synapses

0.1 0.01 [0.01, 1]

FLOAT alph_pa Trace controlling parameter for
Pavlov synapses

0.1 0.19 [0.01, 1]

FLOAT alph_hu Trace controlling parameter for
Hume synapses

0.1 0.08 [0.01, 1]

FLOAT ddexpon Exponent in function transform-
ing synaptic learning mechanism
delta drives

1 1.02 [1, 3]

BOOL newpavl Use of modified Pavlov synaptic
learning mechanism

false true

BOOL newhume Use of modified Hume synaptic
learning mechanism

false true

BOOL mod_trc Use of modified synaptic trace
function with new persistence in-
creasing element

false true

FLOAT mod2val Parameter controlling the func-
tion describing MOD2 efficacy
limit as a function of the number
of synapses

7 41.8 [5, 100]

INT num_cns Number of neurons in internal
clusters

20 18 [10, 50]

FLOAT b_l_ver Leg vertical base angle (◦) -20 -39.1 [-70, 0]
FLOAT b_l_hor Leg horizontal base angle (◦) 0 20 [-20, 20]
FLOAT maxdefv Maximum vertical angle of de-

flection (◦)
45 40.9 [45, 70]

FLOAT maxdefh Maximum horizontal angle of de-
flection (◦)

45 54 [45, 70]

FLOAT alph_mu Trace controlling parameter for
muscle force trace function

0.01 0.04 [0.001,
0.05]

BOOL in_hein Inclusion of torso height need false true
BOOL in_beln Inclusion of belly pain sensor

needs
false true

BOOL in_lfrn Inclusion of foot friction need false true
BOOL f_hei_n Scaling factor for torso height

need
1 0.56 [0.1, 1]

BOOL f_vel_n Scaling factor for velocity need 1 0.44 [0.1, 1]
BOOL f_ang_n Scaling factor for extreme joint

angle needs
0.1 0.29 [0.01, 1]

BOOL f_lfr_n Scaling factor for foot friction
need

0.2 0.21 [0.1, 1]

Continued on next page
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Table 38 :: Continued
Value
type

Name Description Seed
value

Value Range

FLOAT ex_angs Exponent in functions describing
muscle length senses

1 1.18 [1, 2]

BOOL f_ang_s Scaling factor for muscle length
senses

1 0.76 [0.1, 1]

Table 38: GA output GEN74

Most importantly, both the Skinner learning rate and the Hume learning rate have been
minimized. Further worth noting is that all needs except the muscle force needs are included
in the model.

The lifetime visualization (Figure 55) shows that the creature gradually develops a repetitive
movement pattern, starting at approximately iteration 3000 and improving throughout the
creature’s lifetime.

The pattern developed is not as efficient as any of the three gaits that were discussed for
the previous experiment. Behavior is based on vigorous thrusts performed by three, and at
times four, of the legs from the hindmost and middle leg pairs causing the creature to jump
forward. Performance is degraded by the fact these movements are not consistently successful;
only from time to time does the creature succeed in performing jumps that brings it forward
at any considerable velocity. Sometimes, on the other hand, the creature performs a series of
successful jumps in a row; when this happens, the creature seemingly moves faster than any of
the creatures seen earlier.

The synchronism in the movement pattern is mainly visible in the simultaneous thrusts
performed at the three or four back legs. Other than this, behavior is partly chaotic; especially
the two front legs are moving in a more random manner that does not seem to contribute much
to the forward velocity goal.

4.7.1.3 Summary

To summarize the results from Experiment 5: Forward velocity v3, we can conclude that the
increase of topological complexity has not been favorable as regards the crude level of goal
achievement: The best creatures from the previous experiment, where the topologies had no
internal clusters, performed considerably better than all creatures from the present experiment,
where the topology had one internal cluster.

Anyhow, the results obtained are important in another respect: They show tendencies not
previously seen of gait-like movement patterns developing in ANNs incorporating more complex
recurrent topologies. For the best creature from this experiment (GEN74), the motor cluster
was intraconnected by means of Hume synapses. At the opposite, none of the best creatures
from Experiment 4 incorporated Hume synapses at all; in fact, all their topologies were purely
feedforward, meaning that all synaptic connections were directed from inputs to outputs.

In conclusion, therefore, Experiment 5 has provided important positive indications on the
suitability of recurrent networks in general, and of the Hume learning mechanism in particular,
as regards the development of sensible goal-oriented patterns of movement.

To investigate the degree of determinism in the development of this behavioral pattern,
identically specified creatures as that of generation 74 have been run. Analogous to what
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(a) 1 (b) 2

(c) 3 (d) 4

Figure 55: 3D visualization screenshots GEN74

was seen for the previous experiment, these re-runs result in similar tendencies as regards the
development of partly deterministic movement patterns, but the efficiency of these patterns as
regards the forward velocity goal is highly variable. Thus, even with the increase of network size
and complexity, actual behavioral results depend heavily on the randomness in the calculations
on neuronal drive values.
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5 Discussion

5.1 Results

This section discusses the results obtained throughout the experimental work with this thesis.

5.1.1 Results summary

Experiment 1 of Section 4.2 showed that the torso height goal, which involved the raising
and stabilization of the creature’s torso, was successfully solved. Results on best fitness were
convergent, with final behavior characterized by creatures that raised and stabilized their torso
perfectly. A few creatures achieved even better fitness values by performing seemingly quite
random but yet effective behavior characterized by repetitive jumps causing the torso to elevate
above the normal maximum height. The synchronism and repetitiveness inherent in the behavior
of these creatures provided the first indications on the development of partly synchronized and
repetitive movement patterns.

Experiment 2 of Section 4.3 examined the head height goal, which was a variant on the torso
height goal involving maximum elevation of the creature’s head. Although in a less convergent
manner than what was seen for the previous experiment, the head height goal was solved
successfully. Successful creatures were characterized by supporting the weight of their body
at the middle legs while stably and consistently keeping their head as high above ground as
possible.

Experiment 3 of Section 4.4 concerned the main experimental goal of this thesis: the devel-
opment of gaits for forward velocity. As expected, this goal proved to be far more difficult to
fulfill, and no sensible or efficient gaits developed. The experiment revealed an evident weak-
ness in the mechanical model: Toward the end of the experiment results had stabilized at a
type of behavior characterized by vibratory leg movements causing creatures to move forward
in an unrealistic manner. Earlier in the simulations, however, promising tendencies were seen
of creatures developing partly synchronized and repetitive movement patterns, thus indicating
the potential for gaits to develop.

Based on the weaknesses seen in Experiment 3, the model and simulation settings were
reassessed (Section 4.5): Two optional qualitative modifications were introduced to the neuronal
model, heavier restrictions were put on the set of allowed topologies, and some quantitative
changes were made to the mechanical model to disallow the vibratory behavior seen earlier.

Experiment 4 of Section 4.6 continued investigating the forward velocity goal. With the new
restrictions on the mechanical model, the GA search process proceeded differently, and several
examples of reasonably efficient movement patterns were seen: The best creatures determinis-
tically moved according to synchronized and repetitive gaits, causing them to obtain forward
velocity in a quite consistent and continuous manner. Repeated simulations on identically
specified creatures did, however, reveal that the efficiency in the movement patterns developed
depended heavily on the specific course of random samples encountered in the calculations on
neuronal drive values.

Experiment 5 of Section 4.7 was identical to Experiment 4, except that a more complex type
of network topology was used. Results showed that, also for this configuration, synchronized
and repetitive movement patterns developed, causing some creatures to successfully move for-
ward in a reasonably efficient manner. With a crude view to forward movement, behavior was
never successful to the degree seen for the best creatures of Experiment 4. The experiment did,
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however, provide new and important findings, in that the best creatures incorporated recurrent
networks with Hume-based learning at the motor cluster. Whilst all the best creatures from
Experiment 4 incorporated ANNs based on the feedforward structure, the best creatures from
this experiment showed that gait-like movement patterns could develop in multi-layer recurrent
networks. Dependence on the course of random samples seemed similar to that seen for Exper-
iment 4; in simulating identically specified creatures repetitive movement patterns consistently
developed, but the degree of efficiency as regards forward velocity was highly variable.

5.1.2 Methods of analysis

The results of this thesis have been analyzed in three ways: 1) inspection of progress in fitness
values by means of fitness graphs, 2) comparisons of GA input and output parameter values,
and 3) inspection of creature lifetime visualizations. All of these have provided important
information on different aspects of the simulation results.

One important aspect is, however, missing: The analysis of ANN drive and efficacy values.
Because of the nature of the simulations performed herein, with creatures being simulated batch-
wise and inspected at a later time, decent analysis of the course in ANN drive and efficacy values
has been out of reach. Consider first the amount of data that must be stored continually for
post-analysis of ANN dynamics to be possible: For a six-legged creature incorporating a small
sized ANN with three needs, one sense and one internal cluster, over a single lifetime of 50000
iterations the storage requirements for neuronal drive values and synaptic efficacy values alone
would exceed 100 megabytes. When further considering the effort required in decently time-
analyzing such amounts of data, it soon becomes evident that attempting such an approach for
this thesis would have heavily affected the width of experimental coverage.

5.2 Neuronal model

This section discusses selected properties of the neuronal model.

5.2.1 Randomness in neuronal drives

The stochastic perturbations on neuronal drives were presented in Section 3.2.5.2, and have
been used throughout the simulations of this thesis. Since all synaptic efficacies are initialized
to zero, this randomness is absolutely necessary for initial learning to take place.

Such randomness does, however, pose some difficulties. When running identically specified
creature simulations, i.e. such that all parameters describing the simulation system are set
identically, the actual results obtained may at times be divergent. For instance, when GA fitness
statistics depict that some specific creature achieved a high fitness value, running the exact same
creature again may provide very different results. Decreasing the size of stochastic perturbations
does, of course, reduce this problem. However, because the extent of initial behavioral deflections
is determined by the amount of randomness, the decrease of randomness simultaneously causes
initial learning to be slower. The trade-off between behavioral determinism and rate of initial
learning thus becomes evident. The introduction of linear decline in randomness with lifetime
seeks to overcome this trade-off. Still experiments show that the course of behavior is partly,
and at times heavily, dependent on the actual stochastic samples encountered.71

71This lack of determinism between identical simulation runs was the main reason for implementing the post-
visualization program provided with this thesis, that allows the actual behavior of the fittest creatures to be
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5.2.2 Mapping need values to affect neurons

Affect systems, as presented in Section 3.2.6.1, allow needs, and thus potentially the behavior
required to reduce them, to be anticipated in a more direct fashion based on senses. Originally,
need values were mapped roughly onto corresponding affect neuron drives by synaptic transmis-
sion and subsequent transformation through the neuronal activation function. The nonlinearity
introduced by this transformation has proved to be highly unfavorable, because the effective
learning rates of the Skinner synapses connecting affect neurons to the internal network structure
become dependent on the corresponding current need value ranges. More specifically, prelim-
inary experiments have shown that the transformation causes the initial rate of learning, i.e.
when need values typically are high, to be reduced considerably, in effect significantly increasing
the time spent in the early learning phase.

To overcome this unwanted dependence on need value ranges, the following strategy has
been suggested: Need values are transformed through an inverse activation function, such that
the synaptic input to the affect neuron that, when considered in isolation, would have caused
the exact same drive value is found. This value is then included in the customary calculations
on synaptic drive, i.e. included in the summed synaptic input and transformed through the
neuronal activation function. In that way, changes in affect neuron drives will mirror changes
in need values exactly, while still allowing other neurons (e.g. sense inputs) to synaptically
influence activity at affect neurons.

5.2.3 Neuronal model parameter granularity

Important in determining the effective learning rate are the learning rate parameters βij . For
the simulations herein, these have been specified at the level of learning mechanisms, giving rise
to a total of three different learning rates (lr_skin, lr_pavl and lr_hume).

An inherent property of the learning mechanisms of Connectology is that the size of synaptic
change is proportional to the size of changes in presynaptic and postsynaptic drive values. In
connection with ANN inputs, presynaptic drive changes are dictated by changes of need or sense
values. In the experimental context of this thesis, the following difficulty has been experienced:
The values of different types of needs and senses often tend to change at highly different rates,
thus causing effective learning rates to vary considerably among the set of needs or senses
providing feedback to the ANN. For instance, the values representing the forward velocity need
used herein tend to change much more rapidly than the corresponding positional needs such as
the torso height or head height needs. Similarly, muscle length rate senses, which are based on
joint angular velocity, tend to change more rapidly than muscle length senses, which are based
on joint angle.

For both of the examples just mentioned, one of the needs/senses is based on the derivative
of the measure on which the other is based. Rate of change necessarily increases with the degree
of the derivative. Had then, in addition, a need or sense based on acceleration (i.e. the second
derivative of some measure) been included in the model, the problem would have been even
more prominent.

For the simulations of this thesis, the problem has been addressed by the introduction of
scaling factors on needs and senses. These describe the relative reciprocal intensities, and
thereby allow overly dominant need or sense values to be toned down. A side effect, however,

inspected properly.
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is that the actual value range also is modified, meaning that the actual need and sense values
that drive behavior are reduced correspondingly.

A possible solution might be to introduce separate learning rates for each need and sense
type. The Skinner synapses connecting the forward velocity need input could, for instance,
learn by a different learning rate than the Skinner synapses connecting the torso height need
input. Analogously, the Pavlov learning rates for the muscle length rate and muscle length
senses could be different. Such a configuration could solve the problem of inherently different
rates of change in different types of needs and senses quite elegantly.

The potential drawbacks would, however, have to be considered: Such a separation on
specific synapses with regard to the type of needs or senses particular input values originate from
would require a more complex programmatic neuronal model, incorporating a finer granularity
on synaptic learning rates.72 Further, in connection with affect systems, this would require one
need input cluster for each need type, and a corresponding affect cluster for each of these. Also,
if separate Skinner and Pavlov learning rates were to be used for the different need and sense
types implemented, one could argue that it would be natural to, in general, specify learning rates
at the level of specific clustral connections. Another disadvantage is therefore the introduction of
even more simulation parameters.73 Taking this chain of thought even further, one can imagine
a learning rate granularity at the level of single synapses. Such a strategy would, however, make
manual or GA-determined value specification intractable, and would require some automatic
approach to tuning these parameters, e.g. based on the characteristics of the presynaptic and
postsynaptic drive dynamics.

When considering a finer granularity on synaptic learning rates, it is natural to also consider
a similar change with respect to the trace controlling parameters for the synaptic traces of drive
differentials. In a similar manner to the learning rates discussed above, for the simulations
herein, these are separated only by means of synapse type, i.e. such that a total of three values
are required for a complete specification (alph_sk, alph_pa, alph_hu). Similar to the above,
parameter granularity could be at the level of clustral connections, or possibly at the level of
single synapses. As argued above, the last strategy would require automatic mechanisms for
tuning of parameter values.

In a broader view, neuronal model parameters such as the size of stochastic perturbations
in neuronal drives (std_stc), the trace controlling parameters for the neuronal trace element in
the activation function (alph_ne) and the trace controlling parameter for the trace at neuronal
drives (implicitly 5· alph_mu) could also be considered with respect to finer parameter granular-
ity, e.g. such that different groups of neurons could incorporate different degrees of randomness
or different lengths of neuronal drive traces. Considering the increase of complexity, however,
the potential benefits from such an approach should be assessed carefully before simulations are
attempted.

The strategy of finer granularity on synaptic or neuronal parameters depicted above has not
been attempted for the simulations of this thesis; time-limitations, combined with the necessary
increase of model and simulation system complexity, has made it intractable.

72Although of limited theoretical importance, this would in addition suggest an engineerably unfavorable cou-
pling of neuronal model and mechanical model concepts.

73If only need and sense related learning rates are specified specifically and scaling factors of the type discussed
above are in use, however, the latter drawback disappears; there is no need for both separate learning rates and
scaling factors, in effect making the number of parameters unaltered.
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5.2.4 Divergence preventing modifications

The MOD1 and MOD2 divergence preventing learning mechanism modifications of Section 3.2.5.4,
also examined in a previous simulation study [Axe06], have been used throughout the simula-
tions of this thesis. Different from previous simulations, however, is the function describing
the limit on maximum summed synaptic efficacies in MOD2. In [Axe06], a function that was
linear in the number incoming synapses was used, but this function proved incapable of sensi-
bly limiting rapidly growing synapses when networks grew large. Consequently, an alternative
logarithmically shaped limit function has been suggested for this thesis. As far as analysis of
ANN values has been possible, this new function seems to appropriately limit synaptic growth,
also for larger networks.

5.2.5 Modified Pavlov and Hume synaptic learning mechanisms

Section 3.2.5.3 presented variants on the original equational specifications for the Pavlov and
Hume synaptic learning mechanisms, which implied moving the positivity check on the presy-
naptic trace of drive differentials from the trace equation to the learning mechanism equation.
The use of these modified Pavlov and Hume mechanisms has been optional for all simulations
performed, implying that the GA search process has been free to determine whether or not to
use the modified versions of the equations.

Interestingly, a large majority of the best creatures simulated have incorporated these new
equations: The best creature from Experiment 1: Torso height used the new Pavlov variant, the
best creature from Experiment 2: Head height used both the new Pavlov and Hume variants,
the best creature from Experiment 3: Forward velocity used both the new Pavlov and Hume
variants, all of the three best creatures from Experiment 4: Forward velocity v2 used the
new Pavlov variant whereas two of these also used the new Hume variant, and, finally, the
best creature from Experiment 5: Forward velocity v3 used both the new Pavlov and Hume
variants. To summarize, almost all of the most successful creatures utilized the new variants on
the Pavlov and Hume mechanisms, providing strong indications that these new equations may
be superior to the original ones.

5.2.6 Model reassessments

Section 4.5 presented two possible modifications to the equations describing synaptic learning,
designed to 1) favorize significant events by nonlinearly transforming delta drives and 2) increase
the persistence of (early) trace changes by including in the trace function an additive inverse
of the trace itself. For Experiment 4: Forward velocity v2, none of the three best creatures
incorporated any of these last modifications. For Experiment 5: Forward velocity v3, the best
creature incorporated both of these modifications, although the delta drive transformation was
only marginally nonlinear (i.e. very slight inclusion of modification 1) above).

The appropriateness of these model reassessments is therefore uncertain; no conclusion can
be drawn based on present results. Intuitively, both modifications seem favorable, and it would
therefore be unwise to write them off entirely without further investigating their impact on
learning.

5.3 Mechanical model

This section discusses selected properties of the mechanical model.
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5.3.1 Rigid-body dynamics

The mechanical model of this thesis is based on rigid-body dynamics, and creatures based
on such purely rigid body parts are not biologically realistic. Ideally, one would have fully
biologically realistic mechanical models on which neuronal theories could be tested, but for now
that remains impracticable. The question whether fairly simple mechanical models of the type
used herein are adequate for the task at hand can of course be raised. Chiel and Beer argue
that behavior emerges from close interactions of nervous system and body, and that specific
mechanical properties of the body are crucial in the development of adaptive behavior [CB97].
For our purposes, the most important such mechanical property seems to be the filtering of
neuronal signals inherent in muscles,74 which was addressed in Section 3.3.2. Based on the
promising tendencies seen thus far, it is believed that the realism inherent in the mechanical
model used herein is sufficient for gaits to develop. It is, however, probable that results could
improve with increasing body realism and complexity.

5.3.2 Muscle model

Initially, the muscle model of this thesis was adopted directly from the presumably incomplete
model provided in [Kan00]. Preliminary simulations showed that, using this muscle model,
creatures could exercise oscillating movement patterns governed solely by passive muscle forces.
Based on meetings with science experts Gertjan Ettema and Beatrix Vereijken [EV07], therefore,
the model was revised such that, most importantly, the size of the passive components consti-
tuting a part of the muscle force calculations were reduced considerably. This revised muscle
model has provided creature behavior that, by visual inspection, seems much more plausible.

The time-dependence introduced by letting effective muscle force be determined by a trace
function has proved to be necessary: Calculating muscle forces directly by the active and passive
instantaneous components allow muscularly controlled limbs to move in an unrealistically fast-
paced manner. Further, it has been shown that the value of the trace-controlling parameter
alph_mu should be in a quite limited range (approximately (0, 0.05]) for sensible movement
patterns to emerge. It was just this tightening of the upper limit on alph_mu that allowed
gait-like movement patterns to develop for the last two experiments.

5.4 Genetic algorithms

This section discusses selected properties as regards the use of genetic algorithms to search the
simulation parameter space.

5.4.1 Input configuration

The input configuration, which specifies the set of parameters with respect to parameter types
(constants or variable/GA), value types (integral, floating-point or boolean) and value ranges
(minimum and maximum limits), wholly and fully defines the space within which favorable
settings are searched for. Specifying this configuration properly is therefore of greatest im-
portance, as it determines which settings are at all discoverable. To assure that potentially
favorable parameter settings are not precluded, value ranges must be large enough for all po-
tentially propitious parameter values to be explored. At the same time, experiments contained

74Quoting [CB97]: “Muscle acts as low pass filter of motor neuronal outputs, that is, it filters out the high
frequency components of the neural outputs.” (p. 553)
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herein have proved that restricting and tightening these same limits can be necessary to obtain
the results searched for. The latter is related to the disallowing of certain parameter settings
that in an unwanted manner ease the task at hand, or, more formally, to remove certain local
maxima in the parameter space that represent unrealistic or otherwise unwanted system states.
For instance, for gait-like movement patterns to develop for the forward velocity goal of this
thesis, the lower limits on vertical and horizontal leg deflection angles had to be raised and the
upper limit on the parameter controlling the rapidness of muscular movements had to be low-
ered. In summary, the setting of the GA input configuration must be considered very carefully;
value ranges must be set such that all potentially favorable settings are allowed while, at the
same time, restricting unrealistic or otherwise unfavorable system states by tightening specific
limits on the same value ranges. Finding (close to) optimal values for such initial configurations
is difficult, and the uncertainty inherent in this manually specified input configuration is thus
considered one of the most prominent weaknesses and difficulties with using the GA search
approach.

5.4.2 Seed

The approach taken for the GA search process of this thesis is to initialize the GA search
by means of specifying a starting point, the seed.75 The specifying of this seed denoting the
initial values of all variable parameters is of highest importance with respect to GA search
results. The parameter space within which favorable solutions is searched can be considered
to contain a multitude of local maxima, where each represents a locally optimal setting of GA
parameters with respect to the goal at hand. Implicitly, therefore, the seed, which represents an
entry point in parameter space, heavily influences the probability for discovering different local
maxima, because, in general, local maxima that are close to the seed are more probable of being
discovered.76 In summary, the specification of the seed is therefore of highest importance with
respect to the results that can be expected, and the inherent uncertainty in the appropriateness
of its specification is another weakness and difficulty with using the GA search approach.

5.4.3 Searching ANN topologies

Also included in the GA search process of this thesis is the search for ANN topologies. The
original approach taken was to allow networks to grow freely, letting the GA mutation process
add or remove clusters at will. For some simulations this topology search resulted in inappro-
priately large networks with up to six internal clusters. Such large topologies are unwanted for
two reasons: Firstly, the different goal specifications of the experiments contained herein are all
of limited complexity, and such large networks are not expected to be necessary for the tasks
to be solved successfully. Secondly, extensively large networks put heavy strain on computer
simulations, causing running times to increase vastly. For the last experiments performed, ANN

75This choice has been made based on discussions at supervisor meetings; the traditional approach of generating
the first GA generation by random selection is not considered appropriate with respect to the nature of the search
task at hand.

76The GA search process implemented herein in principle allows relatively large leaps in parameter space,
potentially allowing comparingly small local maxima to be escaped. Anyhow, in practice the positioning of
the seed seems to be heavily decisive as regards what solutions are discovered. Distance in such spaces can be
measured by means of LP -norms, such as the L2-norm (Euclidean distance, denoting by dx,y the distance between

two points x and y in space, and by D the set of dimensions): dx,y =
i∈D

(xi − yi)2.
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topologies were therefore restricted to two simple variants with maximally one internal clus-
ter. These last experiments also provided the best results, and thereby strongly suggest that
topologies of relatively limited complexity are adequate for the system goals examined herein.

5.4.4 Method suitability

The above made evident a few noteworthy difficulties with using the GA process in search of
propitious parameter settings. In spite of these drawbacks, however, the GA search is still
considered the best alternative. The most basic approach would be to search the parameter
space manually, i.e. by trial and error. The size of the parameter space, however, makes manual
search overly time-consuming and, most importantly, makes the probability of discovering truly
propitious parameter settings small. When considering automated approaches, due to the high
dimensionality of the parameter space, non-heuristic approaches such as exhaustive search are
left intractable. In comparing different heuristic approaches to search, then, when considering
the degree of biological inspiration in the systems simulated, the GA search process seems like a
natural choice: The ultimate goal of the type of work performed herein is to be able to simulate
neurally controlled systems that as closely as possible resemble the biological systems they
imitate. In the process of adjusting and fine-tuning these systems themselves, then, it seems
very natural to adopt the biological principles of the corresponding evolutionary processes that
take place in nature.

In summary, the GA search process is considered the most suitable for simulations of the
type performed herein. The process has indeed provided much better results than those obtained
by manual setting of parameter values.77 The above difficulties must however be considered,
implying that the specifying of the GA input configuration and seed must be carefully addressed
and accommodated to the task at hand. As regards the specifying of the seed, manual search
by trial and error seems sensible. In conclusion, therefore, a combined strategy is recommended
such that the seed from which the automatic GA search process is initiated is searched for by
trial and error based on manual inspection of simulation results.

5.5 Program system

This section discusses selected properties of the computer simulations system developed for
the experimental work of this thesis. For complete structural specifications and programmatic
details, the reader is referred to Appendix C: Program Structure.

5.5.1 Parameter model and parametrization

The parameter model is built to be entirely extensible and flexible. For flexibility, if a decision
is made to change a parameter from free (GA) to constant (CONST), or to change its seed
value and/or value range, only one line of code needs to be changed. As regards extensibility, if
some new parameter is needed to accommodate future changes to the neuronal or mechanical
model, the only code changes necessary as regards the handling of simulation parameters are to
add the parameter of interest to the generic and dynamic set of simulation parameters (specify
name, value and possibly value ranges, one line of code), and to fetch the parameter in the
portion of source code where it is needed (by lookup on parameter name, one line of code). All

77Compare generation 0 (which includes the seed) to the best results obtained for an experiment, and the
progress due to the GA process becomes evident.
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structures handling parameters are dynamic, implying that no changes need to be made to the
static program structure as far as the handling of simulation parameters is concerned.

Further, the programmatic neuronal and mechanical models currently implemented are fully
parametrized, allowing most properties to be changed, manually or dynamically during simu-
lation. For instance, ANN topologies including clusters, neurons and synaptic connections,
are built programmatically based on a generic topology specification matrix that can be freely
specified. Other examples include the structure and appearance of the creature’s body; the
number of legs and the size of all body parts can very easily be changed, arranging for free
experimentation with different types of creatures.

5.5.2 Extensibility and flexibility in general

Due to the degree of uncertainty in the underlying field of research, the program system has
been built with extensibility and flexibility in mind. For instance, in spite of the fact that the
creatures of this thesis only have one type of joints - the universal joints connecting the legs to
the torso - a separate structure is included in the program system that allow new joint types,
such as knee-joints, a.k.a. hinge joints, to be added as needed.78

5.5.3 Simulating multiple creatures simultaneously

Should it be of interest to simulate multiple creature simultaneously in future experiments, a
very limited amount of changes would be needed in the program system. With simultaneous is
meant experiments where multiple creatures coexist in the same dynamics world at the same
time, effectively making creatures able to physically affect each other. A creature’s behavior
could then possibly become adaptive with respect to the behavior of other coexisting creatures.

5.6 Theoretical contributions

This section gives a short summary of the theoretical contributions made to the theory of
Connectology through the work with this thesis. These are given in bullets below:

• A new function describing the limit on summed synaptic efficacies for the MOD2 di-
vergence preventing learning mechanism modification has been suggested and validated.
When networks grow large, this new logarithmically shaped function seems to limit synap-
tic efficacies more appropriately than the original limit function did.

• A new strategy for mapping need values onto affect neuron drives has been suggested
and validated. This strategy removes the originally inherent dependence on need value
range in the effective learning rates for Skinner synapses connecting affect neurons to the
internal network structure.

5.7 Conclusion

The experimental work of this thesis has demonstrated the potential of ANNs based on the
synaptic learning mechanisms of Connectology to perform determined muscular control on

78New joint types must, however, map onto one of the ODE joint types (Appendix B), but the latter are
numerous and probably cover all types of interest.
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structurally simple but mechanically realistic bodies acting in a physically realistic environ-
ment. Introductory simulations incorporating simple goals based on torso height and head
height proved the validity of the theoretical and executional model. Later simulations incor-
porated the forward velocity goal, which required entirely different and much more complex
behavioral patterns to emerge. These latter simulations clearly demonstrated the potential for
gait-like movement patterns to develop: Several different variants of synchronized and repetitive
movement patterns were seen, some of which were quite efficient with respect to the forward ve-
locity goal. Sensible movement patterns emerged in both simple feedforward networks and more
complex recurrent networks. For both, however, performance was degraded by the randomness
inherent in the calculations on neuronal drives; for some system configurations, identically spec-
ified simulations gave highly divergent results, making evident the need to increase the level of
determinism in the neuronal model.

In spite of this relative lack of determinism, the above results obtained on gait development
are considered to be of great importance; they represent the only examples known to us of a fully
unsupervised and self-organized artificial neural system that synaptically learns synchronized
and repetitive motor control. The results are naturally also very important to the theory of
Connectology as such, as they provide significant positive indications on the appropriateness
and suitability of the contained learning mechanisms for biologically realistic learning.

The parameter space has been searched by means of genetic algorithms, an approach that
has provided considerably better results than those obtained from manually specifying parame-
ter values. Important to address carefully, however, is the specifying of GA input configuration
(parameter types and ranges) and seed values (initial values for all parameters). These specifi-
cations have been seen to heavily affect simulation results, and must be addressed carefully and
accommodated to the system goal at hand.

The GA output results obtained for the best creatures on forward velocity show clear ten-
dencies as regards favorable values on selected model parameters for synchronized and repetitive
movement patterns to develop. Of greatest interest are the tendencies on the setting of neuronal
model parameters for the four creatures that developed the most efficient gaits; these settings
provide indications on propitious parameter values that may be valid in general, i.e. also when
other environmental contexts are involved. The most prominent among these tendencies are
summarized below:

• There is a consistent and prominent increase of randomness of neuronal drive for all four
creatures. Such an increase makes initial learning faster, but is also seen to reduce the
degree of behavioral determinism.

• The tracing on neuronal drive values, which effectively introduces inertia into neuronal
drives, is included for all four creatures. The averaging effect on neuronal drives may be
important in the development of oscillatory patterns of neuronal activity.

• Opposite of the seed specification, the Skinner learning rate is consistently set considerably
lower than the Pavlov learning rate. Further, with the inclusion of Hume synapses for the
last experiment, the Hume learning rate is minimized to one tenth of the Skinner learning
rate.

• The trace controlling parameter for the Skinner synapse is consistently set lower than the
corresponding Pavlov and Hume parameters, in effect making the Skinner synapse react
more slowly to changes of postsynaptic drive values.
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• The alternative specifications of the Pavlov and Hume learning mechanism equations,
where the positivity check on presynaptic delta drives is moved from the trace equation to
the actual learning mechanism equation, are included for almost all of the best creatures
seen. This indicates that these new formulations are superior to the old ones.

• The new persistence increasing element introduced for the synaptic trace equations was
not included for any of the best creatures seen. Intuitively, however, this modification
seems favorable, and further experimental work should be carried out before concluding
on its appropriateness.

• The exponent in the function transforming delta drives is consistently minimized to one,
in effect removing the transformation. Similar to the above, however, a nonlinear transfor-
mation intuitively makes sense, and the matter should thus be looked into more carefully
before conclusions are drawn.

Finally, a flexible and extensible program system has been built that allows freely specified
simulations of ANN-controlled mechanical creatures to be carried out. Simulations can be run
in real-time, with real-time 3D visualization of creature behavior, or in batch-mode incorpo-
rating the GA search process. For the latter, behavior can be inspected carefully by means
of post-visualization of creature lifetimes. The program system is designed for extensibility
and flexibility, and should thereby serve as a solid foundation on which further connectological
simulations on animal motion behavior can be based.

5.8 Further work

This thesis has demonstrated the potential for sensible movement patterns to develop in neural
networks with synaptic learning based on the mechanisms of Connectology. As a general remark,
however, the space of possible simulation configurations has not been fully covered, and it is
most certainly possible that future simulations may provide better results, e.g. in terms of more
efficient gaits. Thus, to thoroughly investigate the potential for motion behavior inherent in
ANNs based on the theory of Connectology, a general recommendation is to perform further
mechanically based ANN simulations of the type examined herein. In addition to increasing the
knowledge as regards the development of gaits, such simulations could provide further general
knowledge on connectological ANNs - knowledge that could be useful in later simulations using
the ANNs of Connectology in other contexts and for other purposes.

Simulation results have showed that the behavior developed often is heavily dependent on
the actual course of random samples encountered in the calculations on neuronal drive values.
This tendency is unfavorable; equally specified simulations should to a greater extent provide
equal or equivalent results. For future experiments, therefore, effort should be put on reducing
the degree of randomness in the model, thus hopefully increasing determinism in the results
obtained. Such a reduction of randomness would also be highly propitious in connection with
the use of genetic algorithms for parameter search; the non-determinism seen for the simulations
performed herein implies that the landscape in which fitness maxima are sought undergoes
continuous transformation, causing the search for optimal parameter settings to become more
difficult and less reliable.

One difficulty that has become evident through the simulations of this thesis is the lack
of ability to analyze the course in neuronal drives and synaptic efficacies. The only means by
which the performance of simulated creatures has been evaluated are: 1) the quantitative and
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objective fitness measure and 2) the qualitative and subjective inspection of creature lifetime
visualizations. To better understand the neural network dynamics that cause favorable behavior,
and to better understand what kind of neural network dynamics hinder even more favorable
behavior to emerge, it would have been highly useful to be able to perform real-time or post-
simulation analysis and inspection of neural network time-series data.

For future simulation experiments of the type performed herein, effort should be placed
at developing tools for analysis and inspection of neural network data. Such tools should
ideally provide the user with a superior overview of current ANN state and values, and at the
same time allow for specific details to be inspected at will. A considerable amount of work is
probably needed to develop such tools of high quality. Their potential value in the analysis and
understanding of ANN dynamics and quantitative as well as qualitative manner of operation
should, however, be worth the effort.

Through the work with this thesis, making qualitative changes to the three learning mech-
anisms of Connectology has been considered. Such changes may e.g. assert themselves in the
temporal ordering of presynaptic and postsynaptic events or in the direction of synaptic change.
Based on the promising tendencies seen for the current set of learning mechanisms, however,
it is recommended to further investigate the present learning model before reconsidering the
qualitative properties of the mechanisms. It is also important to keep in mind that the qualita-
tive properties of the current mechanisms of Connectology are based on well-known observable
psychological principles, and the intuition behind each mechanism is easily available and re-
examinable by means of simple analysis. By altering the qualitative functioning of the learning
mechanisms, parts of this aspect on intuition and psychological foundation would disappear,
thus undermining one of the most appealing qualities of Connectology. To summarize, further
experimental work is recommended before any form of comprehensive qualitative change to any
of the learning mechanisms is considered.

The mechanical model used for the simulations of this thesis is of limited complexity. Most
importantly, all body parts are purely rigid, and legs are non-articulated. Although this thesis
has assumed and to some degree proved articulated leg structures not to be necessary for gaits to
develop, such leg structures most certainly dominate in nature; presumably, they allow gaits to
be more efficient. For future experiments, therefore, increasing the mechanical model complexity
and realism may provide better results than those obtained here. A natural first step would be
to make legs articulated by introducing knee-joints. Chances are that, as the biological realism
of the mechanical model increases, gaits may develop that more prominently resemble the gaits
seen in biological systems.
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A System user guide

Two separate program systems are delivered with this thesis, the Creatures simulation system
and the CreatureVisualizer post-visualization system. This appendix provides basic user
guides for both. The CreatureVisualizer system, which is used for inspection of simulation
results, is considered first.

A.1 The CreatureVisualizer system

The CreatureVisualizer program system is used to inspect the behavior of the creatures
described in Section 4; it allows 3D post-visualization of creature lifetimes. It is a pure vi-
sualization system, and contains no semantics for performing neuronal or mechanical model
simulations.

A.1.1 Startup

Visualizations are started as follows:

CreatureVisualizer.exe <path and name of file containing visualization data>

The example below shows how to start the lifetime visualization of the best creature from
generation 55 of experiment Forward Velocity v2.

CreatureVisualizer.exe forwardvelocity_v2\visdata_gen55.dat

A.1.2 User interface

During visualization, the user can move the camera freely around in the 3D scene. Additionally,
the animation speed can be altered, and the user can jump to the beginning or end of the
simulation. All available user inputs are listed below.

Simulation positioning and animation speed
-----------------------------------------------
Go to start of simulation: Home
Go to end of simulation: End
Increase animation speed: PageUp
Decrease animation speed: PageDown
Set animation speed to 0: Del

3D scene navigation
-----------------------------------------------
Look around: Mouse movement
Increase camera forward speed: W
Decrease camera forward speed: S
Stop camera: Space
Roll left: A
Roll right: D

Auxiliaries
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-----------------------------------------------
Toggle wire frame rendering: V

A.2 The Creatures system

The Creatures system is the actual program system that performs the neuronal and mechan-
ical model simulations within a GA search process. The program structure for this system is
described in Appendix C. The system has two modes: With and without real-time visualization.
In addition to generation fitness statistics and, simulation runs output complete simulation con-
figurations and complete visualization data for the best creatures of each generation. The latter
allows creature lifetimes to be inspected later using the CreatureVisualizer program system
presented above.

A.2.1 Startup

Based on recommendations given at supervisor meetings, and considering the limited amount of
time available, no user interface has been built for this system. Thus, simulations are configured
directly in the source code. An example of a creature configuration files is shown below:

//###TOPOLOGY###
int numClusters = 4;
int** matrix = new int*[numClusters];
for (int i = 0; i < numClusters; ++i)

matrix[i] = new int[numClusters];
matrix[0][0] = -1;
matrix[0][1] = -1;
matrix[0][2] = 4;
matrix[0][3] = -1;
matrix[1][0] = -1;
matrix[1][1] = -1;
matrix[1][2] = 0;
matrix[1][3] = 2;
matrix[2][0] = -1;
matrix[2][1] = -1;
matrix[2][2] = -1;
matrix[2][3] = 1;
matrix[3][0] = -1;
matrix[3][1] = -1;
matrix[3][2] = -1;
matrix[3][3] = 0;
startindividual->setTopology(numClusters, matrix);
//###GA PARAMETERS###
startindividual->addGAInt("num_cns", 41, 10, 50);
startindividual->addGAInt("num_lps", 3, 2, 4);
startindividual->addGAFloat("alph_pa", 0.319311, 0.01, 1);
startindividual->addGAFloat("std_stc", 1.74763, 0.1, 2);
startindividual->addGAFloat("lr_hume", 214.759, 5, 1000);
startindividual->addGAFloat("alph_ne", 0.816079, 0.01, 1);
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startindividual->addGAFloat("maxdefh", 0.78534, 0.78534, 1.22173);
startindividual->addGAFloat("alph_sk", 0.39212, 0.01, 1);
startindividual->addGAFloat("mod2val", 26.4114, 5, 100);
startindividual->addGAFloat("lr_pavl", 108.878, 5, 1000);
startindividual->addGAFloat("f_hed_n", 0.954172, 0.1, 1);
startindividual->addGAFloat("f_muf_n", 0.805587, 0.1, 1);
startindividual->addGAFloat("f_ang_n", 0.537023, 0.01, 1);
startindividual->addGAFloat("f_hei_n", 0.71009, 0.1, 1);
startindividual->addGAFloat("f_bel_n", 0.1, 0.1, 1);
startindividual->addGAFloat("f_vel_n", 0.491545, 0.1, 1);
startindividual->addGAFloat("f_lfr_n", 0.146021, 0.1, 1);
startindividual->addGAFloat("ex_angn", 18.1457, 3, 20);
startindividual->addGAFloat("lr_skin", 50, 50, 10000);
startindividual->addGAFloat("ddexpon", 1, 1, 3);
startindividual->addGAFloat("b_l_ver", -0.534272, -1.22173, 0);
startindividual->addGAFloat("b_l_hor", 0.34572, -0.34907, 0.34907);
startindividual->addGAFloat("f_ave_s", 0.954624, 0.1, 1);
startindividual->addGAFloat("f_ang_s", 1, 0.1, 1);
startindividual->addGAFloat("ex_aves", 1.333, 1, 2);
startindividual->addGAFloat("ex_angs", 1.30243, 1, 2);
startindividual->addGAFloat("alph_hu", 0.01, 0.01, 1);
startindividual->addGAFloat("alph_mu", 0.0334141, 0.001, 0.05);
startindividual->addGAFloat("maxdefv", 0.836598, 0.78534, 1.22173);
startindividual->addGABool("mod_trc", 0);
startindividual->addGABool("in_dtrc", 1);
startindividual->addGABool("in_ntrc", 1);
startindividual->addGABool("newhume", 1);
startindividual->addGABool("newpavl", 1);
startindividual->addGABool("in_mufn", 0);
startindividual->addGABool("in_angn", 0);
startindividual->addGABool("in_hein", 1);
startindividual->addGABool("in_beln", 1);
startindividual->addGABool("in_lfrn", 0);
startindividual->addGABool("in_aves", 0);
startindividual->addGABool("in_angs", 1);
//###CONST PARAMETERS###
startindividual->addCONSTInt("fitfunc", 1);
startindividual->addCONSTFloat("mx_l_ba", -1.39626);
startindividual->addCONSTFloat("m_ba_cf", 1);
startindividual->addCONSTFloat("m_fo_cf", 0.333333);
startindividual->addCONSTFloat("m_up_cf", 0.333333);
startindividual->addCONSTFloat("m_dw_cf", 1);
startindividual->addCONSTFloat("frc_leg", 1);
startindividual->addCONSTFloat("zero_sg", 0.15);
startindividual->addCONSTFloat("mx_l_fo", 1.39626);
startindividual->addCONSTFloat("timstep", 0.01);
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startindividual->addCONSTFloat("mx_l_up", 0.87266);
startindividual->addCONSTFloat("frc_tor", 0.3);
startindividual->addCONSTFloat("len_lgs", 1.2);
startindividual->addCONSTFloat("maxf_mu", 5);
startindividual->addCONSTFloat("mx_l_dw", -1.39626);
startindividual->addCONSTBool("in_mod1", 1);
startindividual->addCONSTBool("in_mod2", 1);
startindividual->addCONSTBool("stc_dec", 1);
startindividual->addCONSTBool("in_hedn", 0);
startindividual->addCONSTBool("in_veln", 1);
startindividual->addCONSTBool("metropo", 1);

To start a simulation based on such a specification, the entire block of code is pasted into the
right spot in the runGA() method of the Controller class, replacing the current simulation
configuration, as shown below:

void Controller::runGA()
{
[...]
Individual* startindividual = new Inidividual();

// REPLACE ALL OF THIS
...
<current simulation configuration>
...
// END REPLACE

Individual::setInstance(startindividual);
[...]
}

A.2.2 User interface

The user interface in real-time visualization mode is the same as that described in Section A.1.2
above; except for the part on simulation positioning and animation speed, the user interface for
Creatures is identical to that of CreatureVisualizer.79

79Additionally, s a quick demonstration of the capabilities of ODE, random sized cuboids and spheres can be
dropped into the scene at real-time using the 1 and 2 keys, respectively. Dropping a multitude of such objects
that collide with the creature and each other nicely demonstrates the realism in the ODE mechanics simulation.
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B Open Dynamics Engine

Open Dynamics Engine (ODE) is the physics engine of choice for this thesis.

ODE is an open source, high performance library for simulating rigid body dynamics.
It is fully featured, stable, mature and platform independent with an easy to use
C/C++ API. It has advanced joint types and integrated collision detection with
friction. ODE is useful for simulating vehicles, objects in virtual reality environments
and virtual creatures. It is currently used in many computer games, 3D authoring
tools and simulation tools. [Smi07]

This appendix covers the basics of using ODE for simulating rigid-body virtual creatures of the
type described in Section 3.3. The information contained herein is based on the official ODE
manual [Smi06]. A lot of ODE details are, naturally, excluded from the description given here;
for a complete specification of the workings of ODE, the reader is referred to the official manual.

B.1 ODE concepts and initialization

ODE is based on the following basic logical concepts:

• Body: represents a rigid-body object in the dynamics simulation

• Joint: connects two bodies and restrains their relative movement

• World: is a container for bodies and joints

• Geom: represents a collision object in the dynamics simulation

• Space: is similar to the world concept, except that it applies to collisions instead of
dynamics (i.e. contains geoms)

As indicated by the above list, the dynamics simulations and the collision detection/response
functionality are clearly separated concepts in ODE, allowing users to build and use their own
collision models instead of the one provided with ODE. For the simulations herein, however,
the default collision system included with ODE is used.

ODE supports a number of body types, of which two are used herein: Box and Sphere.80

From these, composite objects can be built by attaching pairs of simple bodies by means of
joints. There are several joint types in ODE, and the simulations of this thesis use two: Fixed
and Universal.81 The specific use of the two body types and the two joint types used was
discussed in Section 3.3.1, and is not repeated here. All bodies and joints are contained in a

80Other body types implemented by ODE include Capsule, Cylinder and Trimesh.
81Other joint types implemented by ODE include Ball and Socket, Prismatic and Rotoide, Hinge, Slider and

Hinge-2.
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world. For our purposes, there is only one world containing all objects that are part of the
dynamics simulation.

For collision detection, each body must be associated with a corresponding geom. Geom
types correspond closely to the body types listed above, such that a body of one type is associated
with a geom of the corresponding type. All geoms are contained in a collision space. For our
purposes, there is only one space containing all objects that are subjected to collision detection
and response.

B.1.1 World and space initialization

The dynamics and collision simulations are initialized as follows:

worldID = dWorldCreate();
dWorldSetGravity(worldID, 0.0f, -9.81f, 0.0f);
spaceID = dSimpleSpaceCreate(0);
contactGroup = dJointGroupCreate(0);

Here, a dynamics world is created with earthly gravity. Further, a collision space is created
together with a contact group used in the collision detection routine.82 ODE is pervaded by
global ID’s such as the world ID worldID and space IDspaceID which are saved for later
reference above.

For the virtual creature simulations of this thesis, something representing the ground is
needed for the virtual creature to be on. The ground is modeled as a mathematical plane (i.e.
entirely and perfectly flat, and of infinite extent), as follows:

dCreatePlane(spaceID, 0.0f, 1.0f, 0.0f, 0.0f);

making the ground plane coincident with the XZ-plane.

B.1.2 Adding bodies and geoms

A box-shaped body with an associated box-geom is created as follows:

dMass mass;
bodyID = dBodyCreate(worldID);
dMassSetBox(&mass, density, lx, ly, lz);
dBodySetMass(bodyID, &mass);
dBodySetPosition(bodyID, posx, posy, posz);
geomID = dCreateBox(spaceID, lx, ly, lz);
dGeomSetBody(geomID, bodyID);

where density is the mass density of the box and lx, ly and lz are the width, height and
depth, respectively. The mass concept, which has not yet been discussed, is simply a detaching
of the geometric properties of rigid-body objects from the body concept.

A sphere-shaped body is created in the same fashion, except that lines three and six above
are replaced by

dMassSetSphere(&mass, density, radius);
geomID = dCreateSphere(spaceID, radius);

respectively, where radius is the radius of the sphere.
82This contact group contains the contact points between pairs of bodies that are currently (i.e. at the current

time step) colliding.
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Figure 56: Universal joint (image courtesy of ODE Manual/Russel Smith)

B.1.3 Connecting bodies by joints

When creating fixed joints, the two bodies are fixed to the position and orientation they had at
the moment of attachment. For instance, in connecting the head of our virtual creature to the
torso:

dJointID torsoHeadJointID = dJointCreateFixed(worldID, 0);
dJointAttach(torsoHeadJointID, torsoBodyID, headBodyID);
dJointSetFixed(torsoHeadJointID);

After this, the relative position and orientation between the head and the torso will remain
fixed throughout the entire simulation.

Universal joints are a bit more complex, see Figure 56. When connecting a leg of our virtual
creature to the torso using a universal joint, the following is performed:

dJointID torsoLegJointID = dJointCreateUniversal(worldID, 0);
dJointAttach(torsoLegJointID, torsoBodyID, legBodyID);
dJointSetUniversalAnchor(torsoLegJointID, anchorX, anchorY, anchorZ);

where anchorX, anchorY and anchorZ are the X, Y and Z components of the anchoring point in
world (absolute) coordinates. In addition to the anchoring point, the following must be specified
for universal joints:

dJointSetUniversalAxis1(torsoLegJointID, axis1X, axis1Y, axis1Z);
dJointSetUniversalAxis2(torsoLegJointID, axis2X, axis2Y, axis2Z);
dJointSetUniversalParam(torsoLegJointID, dParamLoStop, loStop1);
dJointSetUniversalParam(torsoLegJointID, dParamHiStop, hiStop1);
dJointSetUniversalParam(torsoLegJointID, dParamLoStop2, loStop2);
dJointSetUniversalParam(torsoLegJointID, dParamHiStop2, hiStop2);

Here, axis1 and axis2 specify the two axes of the universal joint, as shown in Figure 56.
Further, loStop1 and hiStop1 specify minimum and maximum angles of deflection for rotation
about Axis1, and loStop2 and hiStop2 specify minimum and maximum angles of deflection for
rotation about Axis2. All angles are given in radians, and are relative to the initial anchoring
positions and orientations.

B.2 Simulating dynamics, collisions and movement

As mentioned in the previous section, the dynamics simulations and the collision detection/response
functionality are isolated concepts in ODE, and they are thus handled separately at runtime, as
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well. Additionally, our simulations involve the control of objects through applying torques/forces
at joints.

B.2.1 Performing dynamics and collision calculations

ODE approximates real world dynamics by means of time step discretization. For each time
step, the entire dynamics world is updated according to the laws of physics or, more specifically,
Newtonian dynamics. One such update is calculated by the following routine:

dWorldStep(worldID, timestepsize);

where worldID is the ID of the world to calculate (as mentioned above, for our simulations
there is only one world containing all objects), and timestepsize is the size of the time step
in seconds. For the simulations performed herein, the time step size is 0.01s = 10ms.

ODE also implements another alternative to the above dynamics step function termed
dWorldQuickStep. QuickStep uses another type of mathematical solver, and is quite a bit
faster, but not as accurate as dWorldStep. Specifically, for singular or close to singular systems
the use of dWorldQuickStep instead of dWorldStep is not recommended.

For large systems this is a lot faster than dWorldStep(), but it is less accurate.
QuickStep is great for stacks of objects especially when the auto-disable feature is
used as well. However, it has poor accuracy for near-singular systems. Near-singular
systems can occur when using high-friction contacts, motors, or certain articulated
structures. For example, a robot with multiple legs sitting on the ground may be
near-singular. ([Smi06] p. 17)

The point of the above quote, strongly suggesting not to use dWorldQuickStep for simulating
the virtual creatures of this thesis, has in fact been confirmed experimentally: For certain
configurations, the use of dWorldQuickStep introduces clearly visible instability and inexplicable
creature-wide oscillations. Consequently, dWorldQuickStep is not used herein.

As mentioned earlier, collision detection and response is detached from the dynamics simu-
lation, and must be initiated explicitly:

dSpaceCollide(spaceID, 0, &collideCallback);

The collision callback function collideCallback provided as an argument to dSpaceCollide is
the one discussed in Section B.2.2 below. Also, equivalently to the above worldID in the above
world stepping function, there is only one collision space containing all geoms, here represented
by spaceID.

Finally, for each iteration, the contact group containing the contacts between objects that
were colliding at the now finished time step must be cleared:

dJointGroupEmpty(contactGroup);

B.2.2 Collision callback

ODE requires the user to provide a collision callback function where diverse properties of the
contacts between colliding bodies is specified, and these are listed in the global contact group
for the collision system. The entire function is too verbose for appropriate inclusion here; it is
provided in its entirety in the source code provided with this thesis.
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B.2.3 Applying muscle forces

As described in Section 3.3.2, the legs of the virtual creature move as a result of torques applied
at universal joints. The torques are calculated in logical muscle functors, and are applied in the
following manner:

dJointAddUniversalTorques(torsoLegJointID, torque1, torque2);

Here, torque1 and torque2 are the torques applied for rotation about axis1 and axis2 (Fig-
ure 56), respectively, as calculated from current and recent activity at the corresponding verti-
cally and horizontally oriented antagonistic muscle pairs.

B.3 Support functions

ODE provides a great amount of information about the current simulation state including the
state of all bodies and joints. This information can, of course, be used for various purposes as
the user finds appropriate. For our simulations, as described in Sections 3.3.3-3.3.4, the need
and sense values providing the ANN with feedback from the mechanical model are based on
information about the current and/or recent state of simulation bodies and joints. Examples
follow: The torso height need is based on the world coordinates of four different points on
the creature’s torso; the velocity need is based on torso velocity in creature relative forward
direction; the muscle length rate senses are based on joint angular velocities at torso-thigh
joints.

The most important support functions used for this thesis giving information about bodies
are:

dBodyGetPosition(bodyID);
dBodyGetRotation(bodyID);
dBodyGetLinearVel(bodyID);

which return the world coordinate position, the world coordinate rotation, and the world coor-
dinate linear velocity of the given body, respectively.

Correspondingly, the most important support functions used giving information about joints
are:

dJointGetUniversalAngle1(jointID);
dJointGetUniversalAngle2(jointID);
dJointGetUniversalAngle1Rate(jointID);
dJointGetUniversalAngle2Rate(jointID);

which return the joint angle for the two universal axes, and the joint angular velocity for the
two universal axes, respectively.

B.4 Deinitialization and cleanup

When the lifespan of a virtual creature ends, some cleanup operations must be performed to
remove all ODE objects and corresponding data structures from memory before a new creature is
initialized. ODE provides some convenience functions for this purpose; at the end of a creature’s
lifespan the following is performed:
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dJointGroupEmpty(contactGroup);
dSpaceDestroy(spaceID);
dWorldDestroy(worldID);
dCloseODE();

Here, the contact group for collisions is emptied, the collision space with all contained geoms
is destroyed, the dynamics world with all contained bodies and joints is destroyed and ODE is
closed, inducing potential additional cleanups.
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C Program structure

This appendix reviews the static structure of the entire program system developed for the
simulations of this thesis. Program structure is diagrammed by means of simplified UML class
diagrams. By simplified is meant that a considerable amount of detail is left out in the diagrams,
such as constructors and destructors, getters and setters, selected attributes, and function argu-
ments. The reason for lowering the level of detail in the diagrams presented here is that reduced
size diagrams are believed to communicate the important aspects of the program structure in
a better way than semantically and syntactically complete diagrams can; too much detail can
overshadow important parts, making valuable information hard to discover. Further, instead of
having a full UML class diagram of the entire system, something that would be too large and
overwhelming for sensible presentation on paper, several smaller diagrams depicting the struc-
ture of different logical modules are presented. To begin with, an overview diagram showing the
main classes of the system is presented. Every diagram presented thereafter contains within it
some class to be found in the overview diagram.

C.1 System overview

The UML class diagram providing an overview of the program system is given in Figure 57.

C.1.1 Summary

As described in Section 3, there are two main model components in the simulation system:
the neuronal model and the mechanical model. These are interfaced by the NNSimulator and
Creature classes, respectively. The Controller class controls the main simulation loop, acting
as a mediator between the two model classes; it initiates the neuronal and mechanical step func-
tions which update the model states, and controls the data flow of need and sense signals from
Creature to NNSimulator and of motor activation signals from NNSimulator to Creature. Fi-
nally, the Individual class provides the NNSimulator and Creature with all parameters needed
for simulation, including GA parameters, constant parameters and ANN topology specifications.

C.1.2 Class details

C.1.2.1 Controller
The Controller class contains the executional semantics of the main simulation loop; as de-
scribed in the summary above, it initiates update calls and performs data flow management.
Simulations are initialized and deinitialized by the functions initializeSimulation() and
clearSimulation(), respectively. Additionally, it contains the GA semantics, i.e. the genetic
algorithm itself, and thereby controls selection, recombination and mutation. Further, some
ODE specific properties are to be found here, including the collision callback function and
global world, space and floor IDs (see Appendix B for ODE details). The semantics for 3D
visualization are also to be found here, including the drawScene() function which controls the
actual 3D rendering. The details of the graphics model are presented in Section C.5.

C.1.2.2 NNSimulator
The NNSimulator class represents an interface toward the neuronal model of Section 3.2, and
contains vectors of references to all clusters, neurons and synapses constituting the ANN of
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Figure 57: UML class diagram: system overview
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a simulation run. It contains the semantics for setting up the ANN of a simulation based on
the topology specification provided in Individual (contained in the constructor, not showed in
Figure 57), and performing the neuronal and synaptic updates for one time step (contained in
the performStep() function). The programmatic structure of the neuronal model is presented
in more detail in Section C.2.

C.1.2.3 Creature
The Creature class is an abstract base class acting as an interface toward the mechanical model
of Section 3.3.83 Similarly to the NNSimulator class, the Creature class has a performStep()
function which performs the mechanical updates for one time step. The specifics of this update
function are left to subclasses of the Creature class containing the actual implementation of
some creature. The programmatic structure of the mechanical model is presented in more detail
in Section C.3.

C.1.2.4 Individual
The Individual class represents and interface toward the parameter model; it contains within
it all variable and constant parameters used in the neuronal and mechanical model simulations,
including GA parameters, constant parameters and ANN topology specifications. There is only
one Individual object instance available to the rest of the program at any time, accessible
through the static function getInstance(). The mutate() function performs mutation on GA
parameters and topology specifications. Finally, the output() function prints the complete
contents of an individual (i.e. the values and limits of all GA parameters, the values of all
constant parameters, and the specification of the ANN topology) to a text file which can be
used later to visualize a simulation with the exact same settings. The programmatic structure
of the parameter model is presented in more detail in Section C.4.

83The term abstract implies that the class cannot be instantiated, i.e. that there can never exist run-time
object instances of the class.
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C.2 Neuronal model

The UML class diagram depicting the static structure of the programmatic neuronal model is
given in Figure 58.

C.2.1 Summary

The main functional components of the neuronal model of Section 3.2, clusters, neurons and
synapses, are realized through the three classes Cluster, Neuron and Synapse. In addition,
there is the NNSimulator class, which acts as an interface toward the rest of the program system.
The NNSimulator holds vectors of references to different groups of neurons and synapses, and
through these controls ANN initialization and neuronal and synaptic updates. The Neuron
class is subclassed by the InNeuron and AffectNeuron classes, which provide functionality
specific to need and sense inputs and affect neurons, respectively. The Synapse class, which is
abstract, is subclassed into the three synaptic learning mechanisms Skinner, Pavlov and Hume,
as presented in Section 3.2, plus the constant neuronal connection type, realized through the
classes SynSkinner, SynPavlov, SynHume and SynConstant, respectively.

C.2.2 Class details

C.2.2.1 NNSimulator
The NNSimulator class has already been briefly described in Section C.1; it acts as the interface
of the neuronal model toward the rest of the program system. The semantics for generating the
ANN topology (creating clusters and connecting them based on the current topology specifica-
tion) are contained programmatically in the constructor of this class (not shown in the diagram).
The class contains several vectors holding references to the clusters, neurons and synapses consti-
tuting the ANN: clusters holds all clusters, needNeurons holds all need inputs, senseNeurons
holds all sense inputs, outNeurons holds all motor outputs, notInNeurons holds all neurons
except inputs (needs and senses), neurons holds all neurons and inputs, and synapses holds
all synapses. These lists are used when performing ANN updates; as described earlier, updates
are performed in a sense that is equivalent to updating all neurons and synapses simultaneously
(synchronous ANN updates, see Section 3.2.7), but programmatically, every neuron and every
synapse is iterated and updated explicitly and sequentially. As described in Section C.1, the
neuronal model (NNSimulator) receives need and sense input values from and provides motor
activation signals to the mechanical model (Creature), all of which is communicated through
the Controller class.

C.2.2.2 Cluster
The Cluster class represents artificial neuronal clusters, and holds a vector of the neurons it
contains. It further contains semantics for producing intra-cluster connections among its own
neurons, along with semantics for producing inter-cluster synaptic connections between its own
neurons and the neurons of some destination cluster. This collective functionality is exposed
through the interconnect() method.

C.2.2.3 Neuron
The Neuron class represents artificial neurons. It contains attributes that are important in
the neuronal simulations performed herein, including drive values (drive, previousDrive and
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Figure 58: UML class diagram: neuronal model
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newDrive), neuronal traces (trace and alpha_n) and stochastic samples (previousStoc and
probPreviousStoc). Further, it offers basic neuronal functionality; the update() function
performs neuronal updates based on synaptic inputs and stochastic perturbations, as calcu-
lated by the neuronal sigmoid activation function implemented in activation(). The function
scaleIncomingEfficacies() is the implementation of the MOD2 synaptic learning mechanism
modification presented in Section 3.2.5.4. The neuron also provides the functionality needed
in setting up the ANN at initialization; the incoming and outgoing synapses to a neuron are
kept track of by the vectors inSynapses and outSynapses, respectively, and the functions
addInSynapse() and addOutSynapse() allow for synapses to be registered one by one.

C.2.2.4 InNeuron
The InNeuron class is a subclass of the Neuron class which overloads the update() function
with an alternative implementation that allows the drive value to be set directly instead of
being calculated through the activation() function. This functionality is necessary for need
and sense inputs, whose drive values are set directly from the corresponding need or sense values
provided by the mechanical model.

C.2.2.5 AffectNeuron
The AffectNeuron class is a subclass of the Neuron class which overrides the update() function
with an alternative implementation specific to affect neurons (see Section 3.2.6.1). The function
inverseActivation(), which is used in connection with update(), is simply an inverted version
of the sigmoid neuronal activation function.

C.2.2.6 Synapse
The Synapse class is an abstract class representing the generic properties of artificial synapses.
It contains important attributes that characterize the synapses of this thesis, including synap-
tic efficacies (eff and previousEff), synaptic traces (trace and alpha_s), learning rates
(learningRate) and references to presynaptic and postsynaptic neurons (pre and post). The
function getWeightedPreDrive() is a convenience function used when calculating the weighted
synaptic incoming drives to a neuron, and the function scaleEfficacy() is used to scale the
synaptic efficacy as of MOD2 (Section 3.2.5.4). The function update() is the most important
synaptic function, as it determines how changes of synaptic efficacies (i.e. synaptic learning) are
performed. The function is pure virtual in Synapse, meaning that each subclass must implement
its own update semantics.

C.2.2.7 SynSkinner
The SynSkinner class is a subclass of Synapse representing Skinner synapses. The function
update() contains a programmatic implementation of the Skinner synaptic learning mechanism.
Further, the attribute myDeltaPostDrive and the functions getPreviousWeightedPreDrive()
and setMyDeltaPostDrive() are used in connection with the MOD1 synaptic learning mecha-
nism modification presented in Section 3.2.5.4, which only applies to Skinner synapses.

C.2.2.8 SynPavlov
The SynPavlov class is a subclass of Synapse representing Pavlov synapses. The function
update() contains a programmatic implementation of the Pavlov synaptic learning mechanism.
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C.2.2.9 SynHume
The SynHume class is a subclass of Synapse representing Hume synapses. The function update()
contains a programmatic implementation of the Hume synaptic learning mechanism.

C.2.2.10 SynConstant
The SynConstant class is a subclass of Synapse representing constant neuronal connections. The
function update() is empty, coinciding with the agreed property of constant neuron connections
that they transfer the exact presynaptic values by means of activation function inversion instead
of by synaptic transmission (i.e. learning is irrelevant).
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C.3 Mechanical model

The UML class diagram depicting the static structure of the programmatic mechanical model
is given in Figure 59.

C.3.1 Summary

The main components of the programmatic mechanical model are the Creature abstract class
defining the module’s interface toward the rest of the program system, and the Nlegged subclass
of Creature defining the actual structure of one type of creatures. Additionally, the classes
Muscle and MusclePair define the biologically inspired muscle model put to use throughout
this thesis.

C.3.2 Class details

C.3.2.1 Creature
The Creature class is an abstract class defining the interface of the mechanical model toward the
rest of the program system. It contains the attribute fitness which represents the fitness of the
creature,84 and the function performStep() which is aimed at containing semantics for applying
muscle forces, calculating need and sense values, and performing fitness evaluation. The function
is pure virtual in Creature, meaning that any subclass of Creature must implement its own
motion, feedback and fitness evaluation semantics.

C.3.2.2 Nlegged
The Nlegged class is a subclass of Creature implementing the mechanical model of Section 3.3.
The constructor (not shown in the diagram) specifies how a virtual creature consisting of a torso,
a head and an arbitrary number of leg pairs (represented implicitly by numLegs) is built using
ODE primitives and joints (see Appendix B for details on ODE). The function performStep()
overrides the corresponding virtual function in Creature, and specifies how muscle forces are
applied, how need and sense values are calculated, and how fitness evaluation is performed.
The class contains within it references to the creature’s torso (torsoID), feet (feet) and joints
(joints); these are i.a. used in calculating need and sense values. It further contains data
structures for keeping track of the feet’s positions in the XZ-plane (feetXpos, feetZpos and
feetOnGround); these are used in calculating the values for foot friction needs, as described
in Section 3.3.3.7. Finally, the Nlegged class has a vector with references to objects of the
MusclePair class, two for each leg.85 Muscle pairs are used for determining what forces to
apply at different joints in the performStep() function.

C.3.2.3 MusclePair
The MusclePair class represents a muscle pair, i.e. a pair of Muscle objects (detailed below).
The two Muscle references are termed agonist and antagonist, alluding the agonist-antagonist
naming of opposite muscles in biological systems. It further has a reference jointID to the joint
over which its two muscles operate, making it possible for the MusclePair class to internally

84Instantaneous fitnesses are accumulated in this attribute; recall from Section 3.4.1.2 that the fitness function
is accumulative.

85As described in Section 3.3.2, there are four muscles controlling each leg; two horizontally oriented and two
vertically oriented. Consequently, two muscle pairs are needed for muscular control along these two dimensions.
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fetch the ODE joint state parameters needed for muscle force calculations. For the latter,
the axis of rotation about the universal joint must be known; the MuscleType attribute type
specifies this directionality. Note also that extensions of this principle allow for muscle pairs to
be put to use in other joint types as well, such as in hinge joints having a single axis of rotation.

C.3.2.4 Muscle
The Muscle class represents the biologically inspired muscle constructs presented in Section 3.3.2
and used throughout this thesis. The attributes maxF and traceF represent the maximum
force this muscle can generate and the traced effective muscle force returned as instanta-
neous force, respectively. The function getForce() is the actual programmatic implementa-
tion of the muscle model presented in Section 3.3.2; it calculates and returns effective muscle
force based on current and previous motor activation and mechanical state. The function
getCurrentNormalizedForce() returns instantaneous effective muscle force as calculated by
getForce(), but normalized to range within the interval [0, 1]. In other words, it provides the
instantaneous degree of force generation at a muscle relative to its maximum muscle force, which
coincides with the value of the muscle force needs described in Section 3.3.3.6.

Figure 59: UML class diagram: mechanical model
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C.4 Parameter model

The UML class diagram depicting the static structure of the programmatic parameter model is
given in Figure 60.

C.4.1 Summary

The parameter model provides the rest of the program system with values for the numer-
ous parameters needed in the simulations. The interface toward the rest of the system is the
Individual class. It provides functionality for accessing all parameters needed: constant pa-
rameters, GA parameters and ANN topology specification. Constant parameters are simply
represented by their values, while the somewhat more complex GA parameters are represented
generically by the abstract class GAparam. The latter is inherited by three different types of GA
parameter classes: BoolGAparam, IntGAparam and FloatGAparam, representing boolean, inte-
gral and floating-point GA parameters, respectively. Finally, the ANN topology specifications
are represented by the TopologyMatrix class, to which an Individual object has one single
reference.

C.4.2 Class details

C.4.2.1 Individual
At any time in the simulation, only one instance of the Individual class is active, providing
the rest of the program system with the parameter values constituting the current simulation
settings. This single instance, held in the static attribute inst, is accessed through the function
getInstance(), which is public and static, and therefore globally available.86 The actual
parameters are represented by the two hash maps constParams and gaParams, holding constant
parameters and GA parameters, respectively. Both hash maps use short strings as keys, meaning
that any parameter can be looked up by specifying a keyword/parameter name. In addition
to these, the ANN topology specification is represented by the attribute topology, which is a
reference to an object of the TopologyMatrix class.

The first individual - the mother of all individuals - is initialized at simulation start-up
by specifying all simulation parameters manually, one by one: The Individual class provides
functionality for adding constant and GA parameters to the hash maps discussed above, as
well as functionality for setting the topology specification matrix (none of these are shown in
the diagram). After this initialization procedure, all parameters remain constant throughout
the lifespan of one virtual creature (i.e. one simulation “instance”). Subsequent individuals are
generated by means GA recombination and mutation (see Section 3.4) based on these initial
parameters. The set of parameters (total number and names) and their properties, including
their parameter type (GA or constant), value type (boolean, integral or floating-point) and
range (minimum and maximum values), never change after initialization; it is only the value of
each parameter that is subject to change. Thus, the setting up of the first individual not only
determines the initial value of each parameter; it does in effect specify the contents and static
properties of the entire parameter set for all subsequent individuals and generations.

Parameters are accessed through the functions getBool(), getInt() and getFloat(). All
these functions implement the following semantics: a keyword/parameter name is provided as
an argument, and the value of corresponding parameter is returned, regardless of whether the

86This structure incorporates central elements from the widely used singleton design pattern.
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Figure 60: UML class diagram: parameter model

175



C.4 Parameter model Program structure

provided keyword pointed to a constant or GA parameter. This implies that the rest of the pro-
gram system only needs to know the name (short string hash key) and type (boolean, integral or
floating-point) of the parameters needed, and does not need to care whether specific parameters
are constant or not. The latter also implies that parameters very easily can be changed between
being constant and GA parameters; no changes are needed elsewhere in the program system.
Also, new parameters can very easily be added, because their static structure including their
number, names or types, is not represented anywhere except in the initialization of the first
individual. The topology specification is accessed through the function getTopology().

A call to the function mutate() initiates a mutation of the entire individual, including all
GA parameters and the ANN topology specification, based on a given mutation probability
and amount. The output() function outputs the entire contents of the individual, including all
constant and GA parameters and the entire ANN topology specification, to a text file for later
reference, insertion and visualization.

C.4.2.2 GAparam
The class GAparam is an abstract class representing the generic properties of GA value parame-
ters. It specifies a pure virtual function mutate() which must be overridden by each inheriting
base class.

C.4.2.3 BoolGAparam
The class BoolGAparam represents boolean GA parameters. It has an attribute val holding the
boolean value of the parameter. The function mutate() specifies how boolean parameters are
mutated in the context of genetic algorithms.

C.4.2.4 IntGAparam
The class IntGAparam represents integral GA parameters. It has an attribute val holding
the integral value of the parameter, plus the attributes min and max holding the minimum and
maximum allowed values, respectively. The function mutate() specifies how integral parameters
are mutated in the context of genetic algorithms.

C.4.2.5 FloatGAparam
The class FloatGAparam represents floating-point GA parameters. It has an attribute val
holding the floating-point value of the parameter, plus the attributes min and max holding the
minimum and maximum allowed values, respectively. The function mutate() specifies how
floating-point parameters are mutated in the context of genetic algorithms.

C.4.2.6 TopologyMatrix
The class TopologyMatrix represents an ANN topology specification in the context of genetic
algorithms. It has two attributes: numClusters specifying the number of clusters in this topol-
ogy, and matrix specifying the synaptic connections between clusters.87 For each entry in the
matrix, the row index represents the presynaptic cluster, and the column index represents the
postsynaptic cluster. A matrix entry of zero indicates no connection, whereas positive values
represent the different connection types through which clusters may connect: Skinner synapses

87The connectivity matrix is equivalent to the cluster diamond of Connectology [Hok06], which specifies synap-
tic connections between the clusters of (biological) neural systems.
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(1), Pavlov synapses (2), Hume synapses (3) and constant connections (4). Finally, a negative
entry (-1) states that such a connection is invalid (e.g. between from the affect cluster to the
need input cluster).

TopologyMatrix has two important functions. The function mutate() performs a mutation
on the topology specification, which may involve 1) an increase or decrease of the number of
clusters and 2) changes of connectivity. The semantics for the mutate() function are described
in Section 3.4.1.5. The function isValid() checks whether the current topology specification
is valid. The criteria dictating the semantics of isValid() functions are described in Sec-
tion 3.2.6.2.
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C.5 Graphics model

The UML class diagram depicting the static structure of the graphics model is given in Figure 61.

C.5.1 Summary

The graphics model is a basic Open Graphics Library (OpenGL) based 3D graphics system
capable of rendering and handling simple graphics primitives and navigating a camera through
the scene in real-time. Object3D is the abstract base class representing the generic properties
of graphics objects, and the subclasses Ball (representing a sphere) and Box (representing a
cuboid) are the two object types currently implemented in the model. A graphics object consists
of vertices and quad-shaped faces, represented by the structs Vertex and Face, respectively.
The Camera class represents the camera from which the scene rendering viewpoint is calculated.
Camera rotation is based on mathematical quaternions, represented by the class Quaternion.
Quaternions are appropriate for free flight navigation through the scene, which is the least
restrictive form of navigation, and the most suitable for our purposes. Finally, the Controller
class controls the actual rendering, and updates the camera position and rotation based on
interactive user input (mouse and keyboard). The Controller also gathers visualization data
for all 3D objects (i.e. combined positional and rotational matrices) and outputs these to file.

In connection with the latter, in addition to the real-time visualization system discussed
here, a stand-alone program system for post-visualizing the lifetime of a virtual creature is
included with this thesis. This latter system, which reads the above-mentioned visualization
data from file, is simply a cleaned and purged version of the graphics model presented here, and
it is thus not discussed separately.

C.5.2 Class details

C.5.2.1 Controller

The Controller class, as described earlier, plays several important roles in the program sys-
tem. In the context of the graphics model, it controls the graphics rendering. Controller
holds a vector objects of references to Object3D graphics objects which is used in the func-
tion drawScene() to initiate the actual rendering of 3D objects. The Controller also holds
a reference cam to the scene Camera, which is used in drawScene() to perform the geomet-
ric transformations needed to obtain a camera relative rendering viewpoint. The state of the
camera, including its rotation and speed, can be changed by means of interactive user input
(mouse and keyboard), and the actual callbacks that cover this functionality are found in the
Controller class. The drawScene() function thus performs a complete camera relative ren-
dering of all graphics objects, and is called once for each frame. In addition to the objects
and camera discussed above, the Controller holds some some less important scene elements,
including two stationary light sources and lines depicting world coordinate axes.

C.5.2.2 Object3D

The Object3D class represents the generic properties of graphics objects. It has three attributes
colr, colg and colb depicting the object’s RGB color, and arrays of vertices and faces de-
scribing its geometric properties. Additionally, each graphics object has a reference by means of
a global ODE ID bodyID to its corresponding ODE body (see Appendix B for ODE details). This

178



Program structure C.5 Graphics model

Figure 61: UML class diagram: graphics
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reference can be used to fetch the object’s position and rotation, which are, of course, needed
in the rendering procedures, from the ODE physics engine.88 The Object3D class contains a
function render(), which is a generic rendering function that, using basic OpenGL functions,
draws every quad face contained in faces with vertex positions adjusted to match the position
and rotation of the corresponding ODE body. Finally, the class has a function getGLMatrix(),
which gathers positional and rotational data, and returns a 4-by-4 matrix which can be used
directly as an OpenGL matrix in post-visualization to specify this object’s position and rotation.

C.5.2.3 Ball

The Ball class is a subclass of Object3D representing spherical graphics objects. It has an
attribute radius which is the radius of the sphere. The Ball object is not rendered using the
generic rendering function found in its base class; instead it overrides the render() function,
and draws a sphere using convenience functions for drawing quadrics found in the OpenGL
Utility Library (GLU, see [Khr07]).89

C.5.2.4 Box

The Box class is a subclass of Object3D representing cuboidal graphics objects. It has no
attributes or functions in addition to those found in the base class, except its constructor (not
shown in the diagram) where its entire geometric structure (vertices and faces) is set up based
on given length, width and depth. Box objects are rendered by the generic rendering function
found in the base class.

C.5.2.5 Camera

The Camera class represents the camera which depicts the user’s viewpoint into the graphics
scene. The camera has a position (posx, posy and posz), a rotation (rot) and a speed value
(speed). These three quantities determine the current camera viewpoint and can be used to
calculate subsequent viewpoints. The function setOrientation(), which is called from within
the drawScene() function in Controller, performs the actual OpenGL geometric transforma-
tions that set the current orientational viewpoint based on position and rotation. The rotation
of the camera rot is held in a Quaternion object. The Camera further provides functions for
altering its position and rotation: changeYaw(), changePitch() and changeRoll() accumu-
late incremental changes of rotation along the three rotational axes, while changeSpeed() and
Stop() change the camera speed incrementally and sets the speed to zero, respectively.

88One could at this point argue that, ideally, the graphics model should be completely detached from and
independent of the physics engine, e.g. such that positional and rotational information is provided from elsewhere
as arguments to the rendering procedures. The latter configuration would, however, in addition to introducing
data flow overhead, require another global data structure holding the mappings between ODE objects and graphics
objects. Alternatively, each creature could be responsible for rendering its own graphics objects, but this implies
a mixing of mechanical model semantics and 3D visualization procedures, which is unfavorable considering the
fact that most of the time the simulation system is run without visualization of creature behavior. To summarize,
therefore, the chosen solution is considered to incorporate a propitious combination of structural and semantical
simplicity and high performance.

89The sphere could, of course, have been implemented using the default face structure, and rendered using
the generic rendering function in the base class, but 3D graphics and visualization are not the challenging or
interesting parts of this thesis, and the use of utility library functions saves some development time.

180



Program structure C.5 Graphics model

C.5.2.6 Quaternion
The Quaternion class represent mathematical quaternions. Quaternions are four element vec-
tors {q0, q1, q2, q3}. Quaternion mathematics needed for our purpose include multiplication
(operator*()), inversion (invert()) and normalization (normalize()). Finally, an OpenGL
rotation matrix can be generated from the quaternion using the createMatrix() function.
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C.6 Utilities and auxiliaries

This section describes utilities and auxiliary structures used in the program system. A UML
class diagram depicting the static structure of the utility classes, unions and enumerations is
shown in Figure 62.

C.6.1 Summary

Utility classes and auxiliary structures such as unions and enumerations are used in the program
system for clearness and convenience. They are not an important part of the program structure
or architecture.

C.6.2 Class/union/enumeration details

C.6.2.1 ODEMath

The class ODEMath provides a static convenience function getGLMatrix() for converting the
ODE-internal rotation matrices to the standard column major OpenGL format. The function
is used in the rendering procedures of the graphics model, where ODE object rotations must be
mirrored in OpenGL object rotations.

C.6.2.2 RandomSampler

The class RandomSampler provides three static convenience functions used in connection with
randomness in the program system (i.e. for stochastic drive perturbations in neurons and for GA
parameter mutations). The functions Gaussian() and Cauchy() are simply implementations of
the Gaussian and Cauchy probability distributions, respectively. The function BoxMuller() is
an implementation of the Box Muller Algorithm for sampling random values from the Gaussian
probability distribution (Algorithm 1 of Section 3.2.5.2).

C.6.2.3 mstring

The union mstring is used for speedup in hash map lookups where strings are used as keys, as
is the case the Individual class of the parameter model (type is map<mstring, GAparam>, see
Section C.4). The use of a union with types char[8] and ULONGLONG as the key type in hash
maps allows lookups to be based on integer comparisons instead of string comparisons, which
is, of course, way faster. The implementation of mstring is due to Wu Yongwei [Yon02].

C.6.2.4 ifb

The union ifb has types int, float and bool, making it possible to keep all constant single
value parameters in a single hash map of type map<mstring, ifb>.

C.6.2.5 MuscleTypes

The enumeration MucleTypes lists the joint types (with axes) to which muscles in the mechan-
ical model of the program system can be connected. At the moment, there are only two types:
UNIVERSAL1 representing muscles acting at axis1 of universal joints, and UNIVERSAL2 represent-
ing muscles acting at axis2 of universal joints. The enumeration can, of course, very easily be
extended to cover other joint types, such as the hinge.
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C.6.2.6 ClusterIndices
The enumeration ClusterIndices lists the cluster connection matrix row/column indices for
need inputs, sense inputs, affect cluster and motor cluster, i.e. for the clusters types that are
always contained in ANN topology specifications. The use of an enumeration for this purpose
makes source code dealing with the ANN topology specifications (TopologyMatrix) less error
prone and more readable.

C.6.2.7 EntryTypes
The enumeration EntryTypes lists all possibilities for entries into the cluster connection matrix
used as ANN topology specifications. The use of an enumeration for this purpose ensures
increased source code readability, consistency and reliability.

Figure 62: UML class diagram: utilities and auxiliaries
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