
June 2007
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Rule Engine

Øystein Eriksen
Andreas Smogeli Leite

Problem Description

A prototype of the Rule Engine was developed during the In-Depth Study, autumn 2006. It is now
going to be developed further with more controls, both logical and validation rules. The rules have
its background in the rule set "Kontroll og validering i ny EPD" (Control and validation in new
EPD). The rules operates on product data. These are products with many properties of different
kind, and are connected in different ways.

The project is to develop the Rule Engine further. The Rule Engine is a validation system, With the
Control and validation in new EPD rule set as background, where you can build and change both
logical controls and valiadtion rules without having any programming skills. The system must
include a validation page where a user can validate the product data with rules. The users of the
system must be able to build rules and validate products by using the rules they have built,
without making a new version of the system. The system must use AJAX to give the user an
immediate feedback on the validation. The system must be tested on a selection of users to check
that the robustness and user-friendliness is satisfied. This applies for administrators and regulare
users.

Focus area: robustness, user-friendliness
Technical requirements: ASP.NET, C#, AJAX, SQL Server 2005

Assignment given: 15. January 2007
Supervisor: Tor Stålhane, IDI

Abstract

This project is a study of the development of the Rule Engine, which is a
validation system for quality assurance of product data used in the grocery
business. The authors was asked by Cogitare AS to develop the Rule Engine.
A system where users without programming skills can build rules and validate
product data. The main quality attribute focus is robustness and user-
friendliness. A survey has been used by the authors to be able to explore if our
objectives have been achieved and to identify further work. The questionnaire
has been conducted on students and software developers.

II

Preface

This report is a result of our study in TDT4900 Master thesis. This is a part
of the 10th semester at the Norwegian University of Science and Technology
(NTNU)

We would like to thank our university supervisor, Tor Stålhane for guidance
and feedback. We also would like to thank our employees at Cogitare AS,
Rune Kvisten and Geir Aakvik, and fellow students for their participation in
the survey, which was valuable to our project.

Trondheim, June 11, 2007

Øystein Eriksen Andreas Smogeli Leite

III

IV

CONTENTS

Contents
List of Figures VIII

List of Tables IX

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 1
1.3 Report outline . 2

2 Prestudy 5
2.1 Tradesolution . 5
2.2 Existing system . 6
2.3 Control and validations in new EPD 8
2.4 Rule Engine based on XML 11

2.4.1 Structure of the prototype rule.xml 11
2.5 Survey . 14

3 Method 15
3.1 Software Development Methodologies 15

3.1.1 Development tools . 17
3.1.2 ASP.NET AJAX in the Rule Engine 18

3.2 Survey method . 19
3.2.1 Questionnaire . 19
3.2.2 Test of the questionnaire 20

4 The Rule Engine 23
4.1 The Rule Engine overview . 24

4.1.1 The Rule Engine UML class diagram 24
4.1.2 Database model . 25
4.1.3 Overview of the new Rule Engine system 26

4.2 Validation . 29
4.3 Administration . 34
4.4 Create rules . 37

5 Development method 53
5.1 Development of the Rule Engine 53
5.2 AJAX in the Rule Engine . 55

V

CONTENTS

6 Software system test 57
6.1 Software testing and quality attributes 57
6.2 White-box testing . 58

6.2.1 Test plan . 59
6.2.2 Test case specification 60
6.2.3 Test results and supplementary work 60

7 Possible hazards 63

8 Survey 65
8.1 Survey method . 65
8.2 Results . 67

8.2.1 Questionnaire . 68
8.2.2 Survey results . 72

9 Evaluation 75
9.1 The software system . 75
9.2 Survey . 76

10 Our contribution 77
10.1 The Rule Engine . 77
10.2 Survey and tests of the Rule Engine 77

11 Conclusion and further work 79
11.1 Conclusion . 79
11.2 Further work . 79

References 81

A Classical phases i

B Software development methodologies advantages ii

C Test cases iv
C.1 Wizard steps . iv
C.2 Get data from database . iv
C.3 Save user data to XML . v
C.4 Edit rule . v
C.5 Copy rule . vi

VI

CONTENTS

C.6 Delete rule . vi
C.7 Server settings . vii
C.8 Display rule . vii
C.9 Display product . viii
C.10 Compare rule validation . viii
C.11 Format rule validation . ix
C.12 Validation of products . ix
C.13 Log . x

D Survey xi
D.1 Questionnaire . xi
D.2 Answers . xiv

E Detail view in Log xix

VII

LIST OF FIGURES

List of Figures
1 This is an overview over the existing system. 7
2 The different pack levels in a product set 9
3 A overview over the prototype. 10
4 Example XML-file from the prototype Rule Engine 12
5 Waterfall development . 16
6 The Web server is responsible for processing the server-side

code and presenting the output to the user (client) 18
7 The Rule Engine class diagram. 24
8 New database tables created. 27
9 An overview of the new system. 28
10 The left hand side of the validation site (Choose rules). 29
11 The right hand side of the validation site (Choose products). . 29
12 Rules displayed. 30
13 Products displayed. 31
14 Sets displayed in log. 33
15 Overview of rules and product. 34
16 Details of what has been done in the validation. 35
17 Overview of Compare rules. 36
18 Overview of Format rules. 36
19 Step 1: The introduction to create a rule. 37
20 Step 1: Overview of the rule. 38
21 Step 2: Choose pack level and pack type. 39
22 Step 2: Overview of the rule. 39
23 Compare rule, step 3: Make expression. 40
24 Compare rule, step 3: The steps on making an expression. . . 41
25 Compare rule, step 3: Overview of the rule. 42
26 Compare rule, step 4: Make validation expression. 43
27 Compare rule, step 4: Overview of the rule. 43
28 Compare rule, step 5: Decide the relation between the expression

and the validation expression. 44
29 Compare rule, step 5: Overview of the rule. 44
30 Compare rule, step 6: Tolerance. 45
31 Compare rule, step 6: Overview of the rule. 46
32 Step 7: Failure message. 46
33 Step 8: Overview of the rule you just have made. 47
34 Format rule, step 3: Select a database field. 48

VIII

LIST OF TABLES

35 Format rule, step 3: Overview of the rule. 48
36 Format rule, step 4: Select format. 49
37 Format rule, step 4: Overview of the rule. 50
38 Format rule, step 5: Overview of the rule. 50
39 Format rule, step 6: Overview of the rule. 51
40 Result question 1 . 68
41 Result question 2 . 69
42 Result question 7 . 71
43 Questionnaire: question 1 - 4 xii
44 Questionnaire: question 5 - 10 xiii
45 Details of what has been done in the validation. xx

List of Tables
1 Table over system test goals 59
2 Test of wizards . iv
3 Test of database queries . iv
4 Test of user data saved to XML v
5 Test of editing rules . v
6 Test of copying rules . vi
7 Test of deletion of rules . vi
8 Test of server settings . vii
9 Test of displaying rules . vii
10 Test of displaying products . viii
11 Test of compare rule validation viii
12 Test of format rule validation ix
13 Test of validation of products ix
14 Test of validation log . x
15 Explanation of Log detail, see figure 45. xix

IX

LIST OF TABLES

X

1 INTRODUCTION

1 Introduction

This chapter is an introduction to our project work. Here we elaborate the

motivation, problem definition of the project and a short summary of the

rest of the chapters in this report.

1.1 Motivation

In the summer of 2006 the authors worked with the consulting engineering

company, Cogitare AS1. This project is a further development of the prototype

Rule Engine we developed in the in depth study [1]. For our master thesis

at NTNU the management at Cogitare AS, Rune Kvisten and Geir Aakvik,

made an assignment for us. The assignment was to develop a rule engine, for

validating products in an existing production system. The task is to develop

a website which easily register new rules, administer rules and validate

products. The existing system is covered in Chapter 2.2.

To know that our project can be used by Tradesolution gives us an extra

motivation to deliver a system of as high quality as possible.

1.2 Problem definition

To create a software system of high quality you have to fulfill the quality

attributes given by the stakeholders. The project requirements is based

on "Control and validations in new EPD" (2.3). This implies that the

system must cover logic controls and validation rules. Robustness and user-
1http://www.cogitare.no/

Page 1 of 82

1 INTRODUCTION

friendliness are the main quality attributes. When the development of this

software system is completed, it must be tested on real users. A survey

will provide us with important information pertaining to whether the main

quality attributes have been fulfilled. It will also give answers to positive and

negative aspects of the system.

1.3 Report outline

This section describes an outline of the rest of the report, a short summary

of the contents of each chapter will be given.

Chapter 2 - Prestudy

Chapter 2 gives a short introduction to the company Tradesolution which

uses the current validation system. The chapter also describes the existing

validation system, the use of XML and survey.

Chapter 3 - Method

Chapter 3 describes the methods behind developing the Rule Engine and the

user survey.

Chapter 4 - Rule Engine

Chapter 4 describes the Rule Engine. Focus is on how the system is build

up and how it works from the users point of view.

Chapter 5 - Development method

Chapter 5 describes the method used to develop the Rule Engine and some

Page 2 of 82

1 INTRODUCTION

examples to achieve a satisfactory level of user-friendliness by using AJAX.

Chapter 6 - Software system test

Chapter 6 presents the software system testing and the results of the test.

Chapter 7 - Possible hazards

Chapter 7 presents a risk analysis on what can go wrong and which consequences

this have when using the Rule Engine.

Chapter 8 - Survey

Chapter 8 presents the results of the survey. We describe our interpretation

of the result and how we will use the results.

Chapter 9 - Evaluation

Chapter 9 gives an evaluation of this work and what we have achieved.

Chapter 10 - Our contribution

Chapter 10 describes our contribution to the system. The chapter consist of

a description of the Rule Engine. In addition it describes how the system is

tested.

Chapter 11 - Conclusion and further work

Chapter 11 presents conclusion and further work.

Page 3 of 82

1 INTRODUCTION

Page 4 of 82

2 PRESTUDY

2 Prestudy

The prestudy uses the result of the prototype Rule Engine [1]. This chapter

gives a short introduction to the company Tradesolution which uses the

current validation system. The chapter also describes the existing validation

system, the use of XML and survey.

2.1 Tradesolution

The Rule Engine is developed for Tradesolution. Tradesolution is owned

by the industry. Their purpose is to maintain and manage central register

and databases in Norway. Their customers and collaborating partners are

considerable actors within industry, trade and service.

The major type of business for Tradesolution is to maintain the EPD-

base, which contains information about products distributed by the grocery

industry, and manage EPD Sjekkpunkt, which is a measure and control

service [2].

The EPD-base is a product database for exchange and quality assurance of

information about products which is distributed and sold between suppliers

and convenience chains in Norway. The convenience chain is fast moving

costumer goods, kiosk, gas and service business, hotel, restaurants and

catering [2].

Page 5 of 82

2 PRESTUDY

2.2 Existing system

Tradesolution has a system that control data that exists in their database.

This system is based on Visual Basic code. Figure 1 illustrates an overview

of the existing system.

The existing system is working fine but it need to be more flexible regarding

rules that are used to control data. Each time a new rule is made, someone

have to code this in Visual Basic and make a new version of the system before

the rule can be used. This is not efficient and takes a lot of time and the

need of programming expertise is large since you are dependent on someone

who knows the programme.

The rules control that all the data is correct. For instance, the maximum

temperature of a product cannot be lower than the minimum temperature

of the same product. This is a rule that is used when the data is being

controlled. The main object of this master thesis is to make a system

where the rules are not hard coded into the code, but are inserted by an

administrator. The rules must be saved so they are easy to access and edit.

Page 6 of 82

2 PRESTUDY

Figure 1: This is an overview over the existing system.
Page 7 of 82

2 PRESTUDY

2.3 Control and validations in new EPD

Control and validations in new EPD, from now on CVE, is a document

which contains all the rules that the Rule Engine is based on. Tradesolution

has developed this document to have an overview of all the rules. These

rules validate the data in their database before they are transmitted into the

internal database. The CVE consist of 168 rules.

The rules in the document are divided into two groups, validations and logical

controls. Each group is divided into the four pack levels shown in Figure 2.

The rules in CVE is based on fields in the database. E.g the GLN owner2 has

to be the same for all pack levels, and there also has to exist a customer which

has an active subscription. This control is in the validation group. Another

example is the width of the product package. This field has both validation

controls and logical controls. The validation controls that if a product is

registered, this field must be filled with a number. This rule applies to all

pack levels. There are several logical controls on the width field. One that

applies for consumer packaging (Figure 2), says that the value cannot be

greater than the greatest of height/width/depth of the retailer packaging

(Figure 2).

To make a rule engine based on the rules in CVE, we had to find what the

rules had in common and then group the rules. We concluded that the rules

could be divided into two groups. The groups are compare and format.

2GLN owner is a number which is connected to the company who owns the product

Page 8 of 82

2 PRESTUDY

Figure 2: The different pack levels in a product set

The compare group consists of rules that have the expression ’the value

cannot be greater than’, ’the value cannot be greater or equal than’, ’the

value must be greater than’, ’the value must be greater or equal than’, ’the

value must be the same as’ and ’the value must different’. This group is

always connected to fields with numbers and expression like ’net_weight *

numbers_of_consumer packaging_in_retailer_packaging cannot be greater

than gross_weight_to_retailer_packaging’.

The format group consists of rules that has something to do with the format

of the value. This can be ’the value must contain 8 numbers’.

Page 9 of 82

2 PRESTUDY

The Rule Engine prototype

A prototype of Rule Engine was developed in a depth study project done by

us [1]. The prototype was made to see if it is possible to make a rule engine

based on rules that exists in an xml-file. The system that was made is shown

in Figure 3. The goal in the depth study was to execute the rules on the

Figure 3: A overview over the prototype.

website where the users register their products. By doing this you can be

sure that the data that is added to the external database are correct and the

control between external and internal database is unnecessary. For the new

Rule Engine the focus has changed. As shown in Figure 1, we have been

made aware of a new method to register products. Users that do not use

the website to register their products can send their data to Tradesolution

which add the data to a pricat-file3 and the system read the data from the
3Pricat is a file type which can be opened by using Excel, contains information about

Page 10 of 82

2 PRESTUDY

pricat and add them to the external database. This leads to insecure data

and introduce the need for better control.

The prototype was limited to control that an expression is equal to another

expression. The new Rule Engine have to be more flexible in declaring

different rules. It have to handle that an expression can be more or less

to another expression. It also have to control the format on the data.

2.4 Rule Engine based on XML

In the depth study of the prototype Rule Engine, the authors made an

conclusion on whether to use XML or not:

"XML provides far better user friendliness and you do not need programming

skills to make and understand XML files. The depth study shows that stored

procedures are more difficult to develop and less intelligible than Extensible

Markup Language" [1].

The Rule Engine creates rule tags in the rule.xml, declared from user input.

Figure 4 shows an example of a declared rule. The prototype only covered

numerical and integer fields with mathematical operations.

2.4.1 Structure of the prototype rule.xml

<Rules>

This is the start element of the XML-file. The file may contain many

rules, between the root element <Rules> and the end of the root element

products.

Page 11 of 82

2 PRESTUDY

Figure 4: Example XML-file from the prototype Rule Engine

</Rules>.

<Rule>

This tag contains all the information about one rule and has four attribute

values and two sub elements.

- Activated - tells the programme whether the rule is active (true), or not

(false).

- Id - unique identification of the rule.

- PackLevel - level of packaging the rule has an expression for.

- PackType - type of packaging we has an expression for. This can be empty

if we want it to pass for all pack types.

<Expression>

This element contains the expression of the rule, and contains the following

elements:

- <SubExpression> This element can contain many fields.

Page 12 of 82

2 PRESTUDY

- <Field> This element contain a numeric- or integer field from the database

product table. The MathematicalOperation attribute contain the selected

numeric operator the user selects. This attribute is logically always empty

in the last field.

<ValidateValue>

This element defines the rules validation value. The element has three

attributes:

- ToleranceM - if the rule has a measured limit of tolerance.

- ToleranceP - if the rule has a percentage limit of tolerance.

One rule can only have either a measure- or percentage limit of tolerance, or

no tolerance at all.

- PackLevel - pack level of where the rule will validate the expression.

<FieldValidate>

This element has the same structure as the <Field> element. The FieldValidate

is the element to validate the Field expression.

<Message>

This element specifies the error message of the rule.

The main challenge for the extended Rule Engine is to cover more types

of rules. For instance, more and less comparison for validation, declaring

different formats to validate. To achieve this the XML-file must be extended.

The content to modify will be the <Expression> and <ValidateValue> tags.

The content of these tags will be different between different rules.

Page 13 of 82

2 PRESTUDY

2.5 Survey

One of the objectives to this master thesis is to carry out a survey. The

reason to do this is to get important answers for the quality of finished

system. Important questions are for instance: Has the system achieved good

robustness and user-friendliness? What could be different and better? This

is done with a survey on the real users of the system, in our case students

and software developers.

A survey was also carried out in the depth study of the Rule Engine. This

was conducted as interview and the result of it can be summed up as follows:

"The mutual agreement about the system is that it is incomplete. The system

cover implementation and realizes the main purpose of this product but it

has a long way to go before it is completed. When it comes to robustness the

interviewee was very satisfied. They could not save a rule that is not valid

and the rules that were made act just like expected. The user-friendliness

was not so good. It was easy to understand how to make a rule but the

system gave little feedback. When making a rule they got no feedback when

it was saved, and when saving values of a new product you cannot see if the

rule was executed. The system has to cover more so the administrator can

do more, like removing and editing rules."[1]

We gained much experience from this survey. One important answer was

that user-friendliness must be in focus this time. The preparation of the

new interview is important, including the follow-up questions. One object to

improve this time is a wider selection range of subjects to get more opinions.

Page 14 of 82

3 METHOD

3 Method

This master thesis consist of developing the Rule Engine and carry out a

survey on subjects. This chapter will describe the methods used in this

work.

3.1 Software Development Methodologies

The Rule Engine is the software system that was developed in this master

thesis. When developing a system like this, it is important to use good

software development methodologies. For more information about advantages

by using a software development methodology see Appendix B. The methodology

that is used in this study is the waterfall development, see Figure 5. The

waterfall methodology is just one of many methodologies. The reason for

using the waterfall instead of others is that we think that this is a good way

to develop a system. This is because we have stable requirements and the

technology is known. We also wanted to see if it is actually possible to make

a good system using this methodology.

The waterfall methodology flows smoothly over the classical phases4 and it

is the most common methodology. It is nice idea to do development in this

way but it is unrealistic to follow this method throughout the project. When

doing the waterfall methodology you do one phase at the time and when you

are finished with that phase you do not look back.

From the beginning of this study we have used a plan based on the waterfall
4For information about the classical phases see Appendix A

Page 15 of 82

3 METHOD

Figure 5: Waterfall development

methodology. We have worked through every step and followed the time scale

all the way to the testing phase. After the testing phase we depart from the

waterfall methodology. We wanted to use our test results to improve our

system. To achieve this we had to do the implementation phase over again.

After this we did the rest of the waterfall methodology phases. This worked

well and the result is good because of the method we have used.

When coding the system we have used both paired programming and

programming alone. Paired programming is when two people sit together

and programme, one is typing and they are discussing with each other. In

this way we think the programming is easier and the code is better. We have

not measured it, but when coding gets complex we feel the code is better

and faster because of the paired programming. Also the programming alone

method is used. The system have been divided into a number of parts and

Page 16 of 82

3 METHOD

when the parts are smaller and not complex to develop, the programming

alone method works just fine.

3.1.1 Development tools

In this section the development tools used in the project will be described.

The choice of development tool was never an issue between us because both

of us have been working with the same tools and they are well-known to us.

ASP.NET

ASP.NET is a server-side technology for developing Web applications based

on the Microsoft .NET Framework. Instead of being interpreted by the client,

server-side code (for example, the code in an ASP.NET page) is interpreted by

the Web server. In the case of ASP.NET, the code in the page is read by the

server and used dynamically to generate standard HTML/JavaScript/CSS

that is then sent to the browser. As all processing of ASP.NET code occurs

on the server, it is called a server-side technology. As Figure 6 shows, the

user(client) only sees the HTML, JavaScript, and CSS within the browser.

The server (and server-side technology) is entirely responsible for processing

the dynamic portions of the page. [3]

C#

C# is an object-oriented programming language on the .NET platform and

designed for improving productivity in the development of Web applications.

C# boasts type-safety, garbage collection, simplified type declarations, versioning

and scalability support, and other features that make developing solutions

Page 17 of 82

3 METHOD

Figure 6: The Web server is responsible for processing the server-side code
and presenting the output to the user (client)

faster and easier. [3]

SQL Server 2005

SQL Server 2005 is a comprehensive database software platform providing

enterprise-class data management and integrated business intelligence (BI)

tools. The SQL Server 2005 database engine provides more secure, reliable

storage for a relational database format or XML.

3.1.2 ASP.NET AJAX in the Rule Engine

"Microsoft ASP.NET AJAX enables developers to create Web pages that

include a rich user experience with responsive and familiar user interface

elements. ASP.NET AJAX provides client-script libraries that incorporate

cross-browser ECMAScript (JavaScript) and dynamic HTML technologies,

and it integrates them with the ASP.NET 2.0 server-based development

platform. By using ASP.NET AJAX, developers can improve the user

Page 18 of 82

3 METHOD

experience and the efficiency of Web applications" [4].

3.2 Survey method

As mentioned in Chapter 2.5, one of the objectives of this master thesis is to

carry out a survey on students and software developers. "Survey is a set of

standardized questions about a theme on a selection of people. The objective

is to gather data through interviews or questionnaire. Surveys are used in

public as well as the private industry" [5].

We have experience with conducting interview in the depth study at NTNU [1].

The strength of an interview is its flexibility. The interviewer can quickly

clear up misunderstandings and it is also more motivating for the participants.

The interviewer can make follow-up questions to get more information for

participants.

For our master thesis there will be 11 subjects to survey. These subjects are

located in different areas and this makes it difficult to carry out interviews.

Therefore, a questionnaire will be used this time.

3.2.1 Questionnaire

"Questionnaires is the most structured of the survey techniques. It can be

done in many ways: postal surveys, e-mail surveys, questionnaires that is

handed out and picked up, group filling in and questionnaire in combination

of interview" [5].

Page 19 of 82

3 METHOD

Postal surveys are used most often. The form is sent to a selection of subjects.

The participants receive the questionnaire and a letter which describe the

purpose of the questionnaire and how to fill it in. When the questionnaire is

finished the respondent return the questionnaire [5].

The Internet is used as a medium to spread questionnaires, and will be used

by us. The questions is sent by e-mail and the respondent return the answers

by e-mail. The e-mail contains a link to the questionnaire and you can answer

directly on the homepage. Doing it in this way it is easy and quick to answer

the questionnaire. The answer is registered directly to a computer and the

results can be analyzed quickly [5]. For more on how we conducted our survey

see Chapter 8.

Strength and weakness of questionnaire

The most important strength of the questionnaire is that it is cheap to use.

Big investigations can be managed by few persons. The interviewees can

answer the questionnaire when it is convenient. In addition problems and

misunderstandings are difficult to sort out. The main disadvantage is that

the motivation for the respondent is little and this leads to fewer answers to

the questionnaire.

3.2.2 Test of the questionnaire

We developed a questionnaire based on the requirements of the system. To

make sure that this questionnaire was intelligible it was tested on some

fellow students. We interviewed them about how they understood the

Page 20 of 82

3 METHOD

questionnaire. Some small adjustments on formulations were done after the

test.

Page 21 of 82

3 METHOD

Page 22 of 82

4 THE RULE ENGINE

4 The Rule Engine

In this chapter we describe the Rule Engine. Focus is on how the system is

build up and how it works in practice from the users point of view. The

purpose of the Rule Engine for Tradesolution is bipartite. Primarily it

is to validate product data between an external database and an internal

database. The reason for this is to make sure that all product data is

correct when customers and suppliers insert their product data. In this Rule

Engine project we confined to only one server. So there will not be any data

transmission done between servers, only validation of data on one server.

Secondary, there is a great amount of data attached to each product, and

new products are inserted all the time. A software used to maintain this, has

to be user-friendly and robust. The Rule Engine makes it possible to add

new-, modify- and delete validation rules without having any knowledge of

programming.

The Rule Engine is divided into three main parts:

• Validation - This is the main page. Here the user can select rules to

validate selected products in the database.

• Administration - An administrator user can activate or deactivate rules,

copy and modify rules and choose server connection.

• Create rules - Contains wizard to guide the user through the steps

needed to create a new rule, with help texts.

In the following sections the Rule Engine and its tasks will be described in

more details.

Page 23 of 82

4 THE RULE ENGINE

4.1 The Rule Engine overview

In this section the UML class diagram, database model and an overview of

the new Rule Engine system is described.

4.1.1 The Rule Engine UML class diagram

In this section we cover the class diagram for the Rule Engine. The class

diagram is illustrated in Figure 7.

Figure 7: The Rule Engine class diagram.

The software system consist of the following classes:

• ValidateData - see Section 4.2 for more information.

• AdministrateRule - see Section 4.3 for more information.

Page 24 of 82

4 THE RULE ENGINE

• CreateRule - see Section 4.4 for more information.

– Compare

– Format

• DatabaseContact - Responsible for establishing connection to a database,

and return SQL queries.

• AdministratorXML - Responsible for modifications done to the App_Data

XML-files (Rule.xml and Server.xml).

• CryptorEngine - Responsible for encrypting and decrypting passwords

for database connection.

• App_Data - contains the declared rules in an XML-file and a declared

server connection in another XML-file.

• UserControls - folder which the "Format" and "Compare" classes uses,

contains several "Web User Control" classes. These classes contains

the contents to the wizard steps for creation of rules.

4.1.2 Database model

An intro to the EPD-base was given in Section 2.1. This is the product

database used for exchange and quality assurance of information about

products which is distributed and sold to suppliers and convenience chains

in Norway.

Since the development of the prototype Rule Engine in autumn 2006, the

stakeholders was not pleased with the feedback given when rules where

Page 25 of 82

4 THE RULE ENGINE

executed. The system lacked a complete overview of tasks performed by

the software system. To solve this problem we decided to develop a log of

what has been done to the system. The log contains the rules that has been

executed, and the products that passed the rule, and those that did not. To

achieve this we had to create new tables to the database to store the log. The

table "RuleEngineValidateSet" stores data from one validation execution.

One validation execution may contain many rules and many products. We

developed a table "RuleEngineValidateData" where we store this data, see

Figure 8. Now the software system can give the user feedback and a complete

overview of all validations done in the system.

4.1.3 Overview of the new Rule Engine system

Figure 9 illustrates the new system. The Rule Engine is now installed on a

server. The Rule Engine can be operated by a user through the Internet and

perform all the tasks described in this chapter. As the diagram indicates,

the Rule Engine is connected to the database. The Rule Engine use product

data from the database and validates the data. The results of the validation

is stored in the database, see Figure 8.

Let us take a look back at the old system found in Figure 1. The main

difference is the way data validation is done. In the old system the rules were

hard coded into the system. In the new system the Rule Engine replaces the

hard coded rules and thus makes the system more user-friendly and flexible.

In addition, it eases the maintenance of the system.

Page 26 of 82

4 THE RULE ENGINE

Figure 8: New database tables created.

Page 27 of 82

4 THE RULE ENGINE

Figure 9: An overview of the new system.
Page 28 of 82

4 THE RULE ENGINE

4.2 Validation

Validation is the first page that is shown when you enter the Rule Engine

web site after log in. This page is where you run the validation and can

see everything that have been done earlier. You have two choices under the

"Validering"-tab, "Validering" and "Logg".

Under "Validering" you can run the rules that are made towards data in

the database. On the left hand side you choose the rule(s) you want to run,

and on the right hand side you choose the products you want to run the rules

on. Figure 10 shows the left hand side and in Figure 11 the right hand side

is shown.

Figure 10: The left hand side of the validation site (Choose rules).

Figure 11: The right hand side of the validation site (Choose products).

Page 29 of 82

4 THE RULE ENGINE

When there is a lot of rules it is not always practical to display all rules that

have been made. When choosing rules you have three alternatives: "Alle

regler" (All rules), "Sammenligning" (Compare) and "Format" (Format).

When the rules are displayed (see Figure 12) you have the possibility to

choose all the rules that are displayed, or just some of the rules. This can be

done by using the check box and check the rules you want to use.

Figure 12: Rules displayed.

In the database there will be many thousand products and it is not necessary

to show all of them. We can choose between "Alle produkt" (All products),

"GTIN" (Product number in database), "Pakningsnivå" (Pack level) and

"Produktsett" (Product set), see Figure 2. You can choose from date and to

date5. When choosing "GTIN" a text box for the product number will pop

up. This will display the whole product set for this product. If you choose

"Pakningsnivå" you get four more options. These options are the four pack

levels, see Figure 2, and just the pack level you choose will be displayed.

"Produktsett" is an option to display the product that has the highest level

in a set. When choosing "Produktsett" all products in the set you choose
5Date in this context is the product registration date.

Page 30 of 82

4 THE RULE ENGINE

will be validated.

An example of how the product can be displayed is shown in Figure 13.

Figure 13: Products displayed.

After choosing rules and products you want to validate, you click the button

"Kjør validering" to validate the products. The system will then validate all

the rules that are checked toward all products that are checked and make a

log in the database. After the validation is done you will be redirected to

Page 31 of 82

4 THE RULE ENGINE

where you can see the log that was generated.

Under the "Logg"-tab you can see all information about the validation that

has been made. Every time you validate products a new validate set will

be inserted into the database. The first thing you have to do on this page

is to choose what to display. You can choose between "Alle sett" (All set),

"Sammenlignings-regler" (Compare rules), "Format-regler" (Format rules),

"Antall Ok" (Number Ok) and "Antall feil" (Number mistake). Like the

validation page this page has "from" and "to" date. These dates indicate

when the validation was done. "Sammenlignings-regler" and "Format-regler"

displays sets where these rules are used. When choosing "Antall Ok" and

"Antall feil" two boxes will pop up. You have the possibility to insert a

number and choose if approved number or failure number is higher, less or

equal to your number. For instance, display sets where number mistakes is

higher than 0. This will display all the sets where something is wrong.

When you have made your choice and the validation sets are displayed, you

can click on "Detaljer", see Figure 14. You will then be redirected to a new

page which contains an overview of the combination of rules and product that

was validated in this set, see Figure 15. The information is rule name and

product name plus set id, rule id, gtin, pack level and pack type. The purpose

of this page is to get an overview over rules and products. The overview will

contain one row for each record in the database since the validation of each

product must be done for all the rules that was selected for validation. As

you can see in Figure 15 the column "Godkjent" (Approved) will have one of

Page 32 of 82

4 THE RULE ENGINE

two colours, red or green. This indicates whether the validation was approved

(green), or rejected (red).

Figure 14: Sets displayed in log.

The Figure 16 will be shown when you click on "Detaljer" in Figure 15.

Here all the information related to the validation between rule and product

will be displayed. The seven rows at the top, from "Id" to "Pakningstype"

will always contain information. The rows that come after this are split

into two groups, - one for compare rules and one for format rules. The

fields "Uttrykk", "Uttrykk med data", "Forhold", "Valideringsuttrykk",

"Valideringsuttrykk med data", "Toleransemål", "Toleranseprosent" and

Page 33 of 82

4 THE RULE ENGINE

Figure 15: Overview of rules and product.

"Valideringspakningsnivå" will be used when the rule is a compare rule.

The rest of the fields belongs to the format rules, except "Godkjent", which

indicates if the validation is approved or not, and "Melding" which contains

the error message if validation was rejected. Information about each field

can be found in Appendix E.

4.3 Administration

On the Administration page you have the possibility to change, delete and

copy rules. You will also get an overview of all the rules that are available.

Information about the server you want to connect to can also be changed here.

You can choose between "Regler" (Rules) and "Server" in the administration

page.

"Regler" gives you the possibility to see all rules that are available. You have

to choose between "Sammenligning" (Compare) and "Format" since we have

two types of rules, see Figure 17 to see the overview. In every text box that

are displayed, you can change the rule. In this way, when you have become

a more experienced user, you do not have to go through all the steps in the

Page 34 of 82

4 THE RULE ENGINE

Figure 16: Details of what has been done in the validation.

Page 35 of 82

4 THE RULE ENGINE

wizard, shown in Section 4.4. Users can copy and change the rules directly.

This require knowledge about the Rule Engine and about the database.

Another possibility in the Administration page is to enable and disable rules.

By clicking on the check box under "Aktiv" (Activated). When a change has

been done by the user, the button "Utfør endringer" (Execute changes) must

be activated. Also, when removing and copying rules you have to push this

button to execute the changes.

Figure 17: Overview of Compare rules.

Administration of format rules works in the same way as compare rules.

Figure 18 depicts the Format rule.

Figure 18: Overview of Format rules.

Page 36 of 82

4 THE RULE ENGINE

4.4 Create rules

Under the "Lage regel" tab you have two choices, you can create "compare

rules" or "format rules". To build a rule you have to go through a wizard.

Both types of rules are based on the same wizard. The introduction is the

first step in both wizard, see Figure 19. Below we show a simple explanation,

of how to create a rule. In the first step you can type a name for the rule,

see Figure 19. At the bottom of Figure 19 there is two buttons. "Avbryt"

(Abort) is used to abort and go to the first step in the wizard, which is

introduction. This button will be present in all the steps so you can abort

at any time. The "Neste" (Next) button is used to get to the next step in

the wizard, after typing a name for the rule.

Figure 19: Step 1: The introduction to create a rule.

On the right hand side of step 1 in the wizard, you will see the same as in

Figure 20. This is an overview of what you have done earlier in the wizard.

It is empty in the first step since we have not done anything yet.

Page 37 of 82

4 THE RULE ENGINE

Figure 20: Step 1: Overview of the rule.

Step 2 in the wizard is to choose pack level and pack type for this rule, see

Figure 21. You must decide if the rule is for all levels or just one level. If you

want the rule to available for all pack types in a pack level you do not need

to choose a pack type. At the bottom of step 2, see Figure 21, a new button

is shown. The "Tilbake" (Back) button goes back one step in the wizard.

This step is the same for both compare rule and format rule.

In the overview we can see that the rule name is shown, see Figure 22. In

this step you select a field or fields from the database, see Figure 23.

If you want to make an expression you can select more than one field, but

you must have mathematical signs between the fields.

Page 38 of 82

4 THE RULE ENGINE

Figure 21: Step 2: Choose pack level and pack type.

Figure 22: Step 2: Overview of the rule.

Page 39 of 82

4 THE RULE ENGINE

Figure 23: Compare rule, step 3: Make expression.

Page 40 of 82

4 THE RULE ENGINE

All the steps that will be shown here can be seen in Figure 24. All the

columns in the "Eanprodukt" table is displayed in the text box on the left

hand side. When choosing a column the table name and column name will

be displayed in the expression box. If you want more than one field you can

add mathematical signs from the appropriate box. In this way you can build

your own rules based on the columns in the database. If you want to delete

something that you have chosen, you can use the "Slett" (Delete) button.

This will delete the last inserted field in the expression box.

Figure 24: Compare rule, step 3: The steps on making an expression.

In the overview on the right hand side we see that pack level and pack type

have been added, see Figure 25.

Page 41 of 82

4 THE RULE ENGINE

Figure 25: Compare rule, step 3: Overview of the rule.

Step 4 is like step 3, see Figure 26. This is the validation expression. This

step works just like step 3. The only ting that is different is that you can

select a table you want and the pack level of the validation expression. In this

example we will choose table "EanProdukt" and the column "MinTempC".

Pack level is "F-pak".

In the overview on the right hand side, we see that the expression has been

added, see Figure 27.

In step 5 you have to decide the relation between the expression and the

validation expression. In Figure 28 you can see that the expression is

displayed in the box on the left hand side and the validation expression

is displayed in the box on the right hand side. Between them is a combo

box which consist of six values: "more than", "more than or equal", "less

than", "less than or equal", "equal" and "different". In our example we

want "MaxTempC", which is the maximum temperature, to be higher than

"MinTempC", which is the minimum temperature.

Page 42 of 82

4 THE RULE ENGINE

Figure 26: Compare rule, step 4: Make validation expression.

Figure 27: Compare rule, step 4: Overview of the rule.

Page 43 of 82

4 THE RULE ENGINE

Figure 28: Compare rule, step 5: Decide the relation between the expression
and the validation expression.

In the overview on the right hand side we see that the validation expression

and validation pack level have been added, see Figure 29.

Figure 29: Compare rule, step 5: Overview of the rule.

If the rule should be accepted by a variance, a tolerance value can be added

in step 6. You have the possibility to add either measure or percentage

tolerance, see Figure 30. In our example we do not add any tolerance

Page 44 of 82

4 THE RULE ENGINE

because we never want the maximum temperature to be less than minimum

temperature.

Figure 30: Compare rule, step 6: Tolerance.

In the overview on the right hand side we see that the relation have been

added, see Figure 31.

In step 7 you add the failure message that will be displayed when this rule is

rejected, see Figure 32. The rule definition is now finished and the last thing

to do is to save it in XML format. Clicking the "Lagre regel" (Save rule)

button will save the rule.

When the rule is saved, an overview on the right hand side of the rule is

displayed in step 8, see Figure 33.

Page 45 of 82

4 THE RULE ENGINE

Figure 31: Compare rule, step 6: Overview of the rule.

Figure 32: Step 7: Failure message.

Page 46 of 82

4 THE RULE ENGINE

Figure 33: Step 8: Overview of the rule you just have made.

Now lets have a look at the Format rule. The two first step is the same as in

Compare rule, see Figure 19 and 21. The third step are different and shown

in Figure 34. In this step you have to select a database field which going to

be controlled. The database field that are shown is from table "EanProdukt"

in EPD-basen (2.1).

In the overview on the right hand side we see that the name and tack level

and pack type have been added to the rule, see Figure 35.

Step 4 in the Format rule is where you decide the format of the rule, see

Figure 36. You can choose between "J/N" (Y/N) and "Selvlaget" (User

defined). "J/N" means that if the database field is something it has to be

either "J", "N" or "NULL". "J" and "N" indicates yes and no. "NULL"

Page 47 of 82

4 THE RULE ENGINE

Figure 34: Format rule, step 3: Select a database field.

Figure 35: Format rule, step 3: Overview of the rule.

Page 48 of 82

4 THE RULE ENGINE

means that it is empty. If you choose "Selvlaget" you can define you own

rule by using length and/or start values. E.g. "EanProduktNr" has to have

the length 8, 12, 13 or 14 to be correct. In the length text box we type

"8,12,13,14". The same is for the start value. Some rules require that the

database field must begin with e.g. two specified numbers. We then type

this numbers into the start value text box in the same way we did for the

length.

Figure 36: Format rule, step 4: Select format.

In the overview on the right hand side displays the database field chosen, see

Figure 37.

Page 49 of 82

4 THE RULE ENGINE

Figure 37: Format rule, step 4: Overview of the rule.

Step 5 is the same as step 7 for Compare rule, see Figure 32. Here you can

type in the error message. In the overview on the right hand side we see

what the format of the rule have been, see Figure 38.

Figure 38: Format rule, step 5: Overview of the rule.

Step 6 is the last step where you can see the rule you have build, see Figure

39.

Page 50 of 82

4 THE RULE ENGINE

Figure 39: Format rule, step 6: Overview of the rule.

Page 51 of 82

4 THE RULE ENGINE

Page 52 of 82

5 DEVELOPMENT METHOD

5 Development method

In this chapter we describe the method used to develop the Rule Engine and

some examples to achieve a satisfactory level of user-friendliness by using

AJAX.

5.1 Development of the Rule Engine

In the beginning of the development of the new Rule Engine, we used CVE,

see Section 2.3. All the rules in CVE was divided into groups. The developers

could place the rules into two groups, comparison and format rules. This

made the development much easier when we generalized the rules. The new

system was based on two main groups and the development started.

One of our main objective was to develop a system with good user-friendliness.

With that in mind the developers made a wizard the user could use when

a rule is made. This wizard take one step at a time and explain what each

step implies. For more information about the steps see Section 4.4.

It is important for users of the system to have an overview over what kind

of rules that are made. The developers created an administration page, see

Section 4.3, where users can see and edit the rules that are built. In order to

make the system user-friendly we introduced the "copy rule" functionality.

For more experienced users this will be a a good method. You can drop the

wizard and copy a rule and edit the new rule in any way you like. In this way

you save a lot of time and frustration when the wizard steps are superfluous.

Page 53 of 82

5 DEVELOPMENT METHOD

The most important and new development is the rule validation part. The

user can select rules and products he want to validate, see Section 4.2. The

validation get information about tables and columns in the rule.xml file. The

data in the database are controlled with other data in the database. We can

also control the format, such as the length and start values of a database field.

When developing the Rule Engine we have focused on user-friendliness and

robustness. To reach the robustness objective we have connected the system

to database field in the EPD-base (2.1). In this way the rules made from the

wizard must be correct. Further we have tested each method that have been

developed. If there have been any problems with a method, the problem

have been fixed before a new part of the system was developed. In this way

the robustness has been a main objective for the developers.

When the Rule Engine was finished, we wanted to test the system on the

real users to get feedback on the system’s functionality. The users used some

time to test the system and gave us feedback by using a survey we made,

see Section 8. It is important to get information about what can be done

different and what we can do better in the future. We used this information

to improve the system. The aspects we did not complete we have added as

aspects to do in the next version of the Rule Engine.

Page 54 of 82

5 DEVELOPMENT METHOD

5.2 AJAX in the Rule Engine

To achieve a satisfactory level of user-friendliness in our project we decided

to use ASP.NET AJAX. We used the following AJAX controls:

UpdatePanel Control

"ASP.NET UpdatePanel controls enable developers to build rich, client-

centric Web applications. By using UpdatePanel controls, you can refresh

selected parts of the page instead of refreshing the whole page with a post

back. This is referred to as performing a partial-page update" [4]. This

control is used in almost every page. For example it is used in the wizards.

When users click on "Back" or "Next" only the area of the wizard is updated,

nothing else on the page. Also used in Administration and Validate page.

UpdateProgress Control

"The UpdateProgress control provides status information about partial-page

updates in UpdatePanel controls" [4]. This control is used in the Validation

page. If the users requests a lot of products in the Validation page, the user

can see the update progress and it is a indication that the system is working.

Also used when getting rules in the Validation page.

Calendar

"Calendar is an ASP.NET AJAX extender that can be attached to any

ASP.NET text box control. It provides client-side date-picking functionality

with customizable date format and UI in a pop up control. Users can interact

with the calendar by clicking on a day to set the date. In addition, the left

Page 55 of 82

5 DEVELOPMENT METHOD

and right arrows can be used to move forward or back a month. By clicking

on the title of the calendar you can change the view from Days in the current

month, to Months in the current year. Another click will switch to Years in

the current Decade. This action allows you to easily jump to dates in the

past or the future from within the calendar control" [4]. This control is used

in the Validation page, where users can select "to" and "from" date, date in

this context is product creation date.

FilteredTextBox

"FilteredTextBox is an extender which prevents a user from entering invalid

characters into a text box" [4]. This control is used in the wizard step where

the user can specify a tolerance value. The text box only allows a numeric

value.

Page 56 of 82

6 SOFTWARE SYSTEM TEST

6 Software system test

An important step when developing a software system is the system test.

This chapter presents the software system testing and the results of the test.

6.1 Software testing and quality attributes

Software testing is the process used to help identify the correctness, completeness,

security, and quality of developed computer software. Testing is a process

of technical investigation, performed on behalf of all stakeholders, that is

intended to reveal quality-related information about the product with respect

to the context in which it is intended to operate. This includes the process of

executing the program with the intent of finding errors. In this context it is

the debugging on the software system to find errors, not gaining confidence

in the system, this will be done in the survey.

We comprehend quality an absolute value, it is value to some person. In

our project user-friendliness and robustness are the most important quality

attributes for the stakeholders. ISO 9126 [6], define then quality attributes

as follows:

• Usability - A set of attributes that bear on the effort needed for use,

and on the individual assessment of such use, by a stated or implied

set of users. The attributes are:

– Learnability

– Understandability

Page 57 of 82

6 SOFTWARE SYSTEM TEST

– Operability

• Robustness - A quality of being able to withstand stresses, pressures,

or changes in procedure or circumstance. A system, organism or design

may be said to be "robust" if it is capable of coping well with variations

in its operating environment with minimal damage, alteration or loss

of functionality.

6.2 White-box testing

The method used for software system testing in this project is white-box

testing. White-box or logic-driven testing, permits us to examine the

internal structure of the program. This strategy derives test data from an

examination of the program’s logic. White box testing includes analyzing

data flow, control flow, information flow, coding practices, and exception and

error handling within the system, to test intended and unintended software

behavior. White box testing can be performed to validate whether code

implementation follows intended design, to validate implemented security

functionality, and to uncover exploitable vulnerabilities [7].

White box testing requires access to the source code. Testing of the software

system has been executed in parallel with the development of the system.

When one system part has been finished developed, it has been tested. The

system has been divided into parts that can be tested individually. Based on

the test results, further work may be required to reach an acceptable level

for each part to reach the wanted system quality.

Page 58 of 82

6 SOFTWARE SYSTEM TEST

6.2.1 Test plan

Before the development of the system started, we defined a test plan, see

Table 1. In this test plan we divided the system into parts and the goals to

be achieved for each part of the system.

System parts Goals Description
Create rule Save to XML Save the right values and

structure
Get data from database Get right information from

the database
Wizard steps Show selected values when

navigating the wizard
Administrate
rule

Edit rule Change saved rule data

Copy rule Copy existing rule data to a
new rule

Delete rule Delete existing rule

Server settings Configure server data
Validation Display rule Show selected rules from

XML
Display product Show selected products

from the database
Validate compare rule Control that validation is

done correctly
Validate format rule Control that validation is

done correctly
Validation of product Validate correct product

Log Show validation data

Table 1: Table over system test goals

Page 59 of 82

6 SOFTWARE SYSTEM TEST

6.2.2 Test case specification

For each of the goals in the test plan we specified a test case. The cases are

listed below. For a detailed description of each case, see Appendix C. Below

we also give an indication of whether the test was a success or a failure the

first time tested.

We choosed these parts to test because they are critical for the system to

work properly.

6.2.3 Test results and supplementary work

The tests here will only be shortly described, for more information see the

Appendix C. In the following we will look at the tests that failed and describe

the supplementary work done after the tests.

C.1 Wizard steps - Failed

When the ’Back’ button in the wizard was pressed some of the data was lost.

The reason for this was some unfinished coding. To fix this, we had to save

data in variables.

C.2 Get data from database - Success

Getting data from the database was a success each time we tested.

C.3 Save user data to XML - Failed

The problem occurred when we tried to save expressions as ’less then - <’ or

’greater then - >’ in the XML file. These symbols are interpreted as start-

Page 60 of 82

6 SOFTWARE SYSTEM TEST

and end tags in XML. All XML files has certain by-passing code for these

symbols, ’<’ is ’<’ and ’>’ is ’>’. This was not a direct problem, we

just had to include these special symbols in the validation logic.

C.4 Edit rule - Success

Editing rules saved the right values each time we tested.

C.5 Copy rule - Success

Copying rules copied the right rule each time we tested.

C.6 Delete rule - Success

Deleting rules deleted the right rule each time we tested.

C.7 Server settings - Success

Changing the server setting connected correctly to defined server each time

we tested.

C.8 Display rule - Failed

When the user get all the rules listed, we also got the rules that were inactive.

This problem was easy to solve in the code, we now check whether the rule

is active or not before it is displayed.

C.9 Display product - Failed

The problem was that the stakeholder wanted the highest level in a product

set in the data grid. This made it a bit difficult since all products in the

Page 61 of 82

6 SOFTWARE SYSTEM TEST

set should be validated, when a product set is chosen. This was solved by

adding the whole product set to the grid view where we set the underlying

products not visible to the user.

C.10 Validate compare rule - Failed

The initial ’greater then’ and ’less then’ symbol did confuse us a bit. Did

we mean ’greater then or equal to’ or only ’greater than’? This failed when

we have two equal values. The solution was to bring inn new symbols, now

we have: ’<’, ’=<’, ’>’. ’=>’, ’<>’, ’=’. Now there is no doubt what these

symbols means.

C.11 Validate format rule - Success

The validation results was correct each time we tested.

C.12 Validation of products - Success

When validating, only selected products was validated each time we tested.

C.13 Log - Success

The log displayed the validation results each time we tested.

Page 62 of 82

7 POSSIBLE HAZARDS

7 Possible hazards

In this chapter we will present all the elements that can go wrong and which

consequences this have when using the Rule Engine.

A problem could be that the system stores all the rules in one XML file.

The system depends on this file and if it is removed in any way you have

to create another file from scratch. To avoid this problem we made sure

that the system takes a backup of the XML file. The backup file is updated

each time a rule is build or changed. In this way we have a correct backup

all the time and if the original XML file should be removed, the system just

copy the backup file and you got a new original file without loosing any rules.

Another problem that has been discovered is that you can make a rule that

will make no meaning at all. There are actually two ways of doing that. One

way is to select wrong database fields when creating rules. You select what

ever you want even if the database fields have nothing to do with each other

at all. This is a problem when a user do not know the EPD-base (2.1). The

consequence is that you get some strange result in the Log that make no

sense to the users.

The other way to make a rule with no meaning is when you change the rules.

In all the text boxes in the Administration page you can write what you

want. It is no control that check that e.g. the database fields is correct. By

saving field names that not exist in the database you have a rule that will

be rejected all the time. Also here the consequences is that you get some

Page 63 of 82

7 POSSIBLE HAZARDS

strange results in the Log.

The Rule Engine is a web page and one or more users can be logged on at

the same time. This will not be a problem since we use a common XML file

and database. The only problem that could appear is that you create the

same rule. This is not a big problem since you can delete one of the rules in

the Administration page.

Since this edition of the Rule Engine does not involve writing data to the

EPD-base, there is nothing of value that could be lost. The only thing we

are writing to database is the Log, and this data is never removed from the

database.

Other things than what we have mentioned here is no concern when using

the Rule Engine.

Page 64 of 82

8 SURVEY

8 Survey

In this chapter we present the results of the survey. We describe our

interpretation of the result and how we will use the results.

8.1 Survey method

When we started to plan the survey we made some choices about important

factors like selection of people, when the survey should be complete and what

kind of survey that should be done.

We will use the survey to get feedback of possible issues about the system.

Also we like to get feedback of the system’s user-friendliness and robustness.

The results from the survey will be used to improve the system, and

suggestions for further work.

We selected students and software developers to their survey since we believed

that we would get most correct feedback by using people that have knowledge

about software developing and systems. For each participant we gave an

introduction to the Tradesolution and the EPD-base (2.1). It is easier to give

this introduction to people who know the basics about developing software

and databases than if they do not. The selection consist of nine students and

two software developers.

To get feedback on the whole system the authors waited until the system was

finished before they completed the survey, see Chapter 3.2. The questionnaire

Page 65 of 82

8 SURVEY

can be found in Appendix D.1.

Before the survey was complete the authors made some assumptions. The

participants should have knowledge about the EPD-base, pack levels and

pack types of products, how the Rule Engine works and what kind of

information that is registered about products. To meet this assumptions, the

authors used 30 minutes before the survey to give the participants a short

introduction to Tradesolution and the EPD-base. After the introduction the

participants got 60 minutes to test the system and answer the question in

the questionnaire. The authors was accessible the whole time in case the

participants had any further questions.

Page 66 of 82

8 SURVEY

8.2 Results

The complete collection of results of the survey can be found in Appendix

D.2. To achieve the quality requirements of the system, the following must

be fulfilled:

Question 1,2 and 7 belongs to user-friendliness. Our requirement is that

if 7 out of 11 have average or higher rating on a question, the question is

fulfilled. In order to achieve sufficient user-friendliness all the questions must

be fulfilled.

The rest of the questions belongs to both user-friendliness and robustness,

this depends on the participant’s answers. If 7 out of 11 answers are positive

for a quality requirement on a question, then the requirement for this question

is fulfilled. Below is a summary of the participant’s answers.

The survey had, all in all, 11 persons participating. The participants asked

a lot of questions, especially after the introduction. Questions like ’What it

pack levels’, ’What it pack types’ and ’Which field from the database can I

choose’ were asked by 4 of 11 participants. It seems that the introduction we

gave was not good enough. The person who is going to use Rule Engine has

to know the answers to this questions. The person also has to know what

Tradesolution (2.1) is, and have knowledge about the EPD-base (2.1). We

experienced that there is need for good knowledge about the EPD-base. We

recommend about 6 months of experience with registration of products and

administrative work to the EPD-base before using the Rule Engine.

Page 67 of 82

8 SURVEY

8.2.1 Questionnaire

Below the questions with a summary of the answers is presented. See the

Appendix D.1 for a complete overview of the answers.

Question 1 - Was it easy to understand the wizard for "compare rules"?

The participant’s answers are shown in Figure 40. Most of the participants

thought that the wizard for compare rules was easy or very easy to understand.

We can see that one person had problems with the wizard but the rest thought

it was good. The interpretation of this is that the wizard is a good way to

build a compare rule.

Figure 40: Result question 1

Question 2 - Was it easy to understand the wizard for format rules?

Page 68 of 82

8 SURVEY

Also here most of the participants liked the wizard steps. Only one person

did not like it at all.

Figure 41: Result question 2

Question 3 - Is there something missing from the wizards?

The answers show that the subjects wanted more descriptions, explanations

and help options in the wizards. There seems to be a gap between this

question and question 1 and 2. In question 1 and 2 subjects seems to like

the wizard. We think this is because the answers to the oral questions we

received, at the beginning of the survey, cleared up some of the unclear

elements. If the subjects shall use the system alone they need more guidance.

Question 4 - Did you manage to edit a rule in the administration window?

Page 69 of 82

8 SURVEY

The main impression here is that editing a rule can be a unsafe process, 5 of

11 subjects pointed this out. There is no control that the rule actually works

after editing a rule. Some pointed out that it is difficult to get an overview

of expressions when they are long. Apart from this problem, 6 of 11 thinks

that editing a rule went well.

Question 5 - Did you manage to copy a rule in the administration window

of your own?

All of the 11 subjects managed to copy one or more rules, and this was easy-

to-understand and worked as expected.

Question 6 - Did you manage to delete a rule in the administration window

of your own?

Everybody managed to delete a rule. One of the subjects pointed out that

copy has its own button, but for delete there is a button ’Perform editing’.

Functionality of copying and deleting should be done in the same way.

Question 7 - Do you think that the validation window gives you a good

overview of how the validation is done?

The majority of the subjects thinks the validation window is easy-to-understand

or very easy-to-understand 10 out of 11. 2 subjects felt that it has average

understandable and one person thinks it is below average, see Figure 42. The

interpretation is that we achieve our goal of user-friendliness.

Question 8 - Did you manage to run a rule on selected products?

Page 70 of 82

8 SURVEY

Figure 42: Result question 7

Some subjects had start up problems, and some had difficulties understanding

pack levels and pack types. One subject pointed out we have different

descriptions on pack levels for rules and products. When displaying products

we use the symbols ’TU’, ’DU’ and ’CU’. For rules we describe the pack levels

with words. We will fix this by changing the symbols with words to describe

pack levels.

The problem with editing rules described from question 4 with no control

when editing a rule, strikes again when validating a rule that contains error.

Question 9 - Was the result of validation as expected?

There seem to be no complaints from the subjects on this question, since the

Page 71 of 82

8 SURVEY

log sums up the results from the validation.

Question 10 - Was the log generated from the validation simple and easy to

understand?

The subject was pleased with the way the log was build, with details from

each validation. 2 subjects pointed out that this log might get big when we

for example validate 1000 products at once. We might therefore split up the

log in page tabs when a large amount of products is validated at once.

8.2.2 Survey results

Results from the survey gave us important information about the system’s

strengths and weaknesses. This was used to make the system better and also

as suggestions for further work. The elements to improve in our system was:

• Effective use of the system is dependent on good user knowledge. We

may therefore need better help functions.

• After editing rules there should be a control or validation to confirm

that the rule is correct and that it makes logical sense.

• Editing and copying should be done the same way, not with two

different buttons.

• The pack level should be presented in the same way in both grid views

when displaying rules and products. Now there is two different ways

to display pack level.

Page 72 of 82

8 SURVEY

• When there is a lot of products validated, there should be a page

counter to give the user a better overview of validations.

Below is a short summarize of success or failure of the two quality requirements.

For more information see Appendix D.2.

Quality requirements achieved for user-friendliness:

Question 1) 10 out of 11 - success.

Question 2) 10 out of 11 - success.

Question 3) 7 out of 11 - success.

Question 4) 10 out of 11 - success.

Question 5) 11 out of 11 - success.

Question 6) 10 out of 11 - success.

Question 7) 10 out of 11 - success.

Question 8) 9 out of 11 - success.

Question 9) 11 out of 11 - success.

Question 10) 8 out of 11 - success.

Quality requirements achieved for robustness:

Question 3) 11 out of 11 - success.

Question 4) 6 out of 11 - failed.

Question 5) 11 out of 11 - success.

Question 6) 11 out of 11 - success.

Question 8) 8 out of 11 - success.

Question 9) 10 out of 11 - success.

Page 73 of 82

8 SURVEY

Question 10) 11 out of 11 - success.

Robustness failed in one area, and this requirement is not met. The user-

friendliness requirement is met.

Page 74 of 82

9 EVALUATION

9 Evaluation

In this chapter we will give an evaluation of this work and what we have

achieved.

9.1 The software system

The quality focus for this project has been user-friendliness and robustness.

Below we sum up what is good and what is not so good with this system.

We have developed a rule engine where you can build and edit rules and

validate product data. The Rule Engine function correctly and in the way

it was planned. The system is user-friendly because you can use the wizard

step to build rules. When the user get more experience, he or she can use

the copy/edit function to do this faster. To achieve user-friendliness we also

used AJAX, which gives a better user experience.

Robustness is achieved through different functions. We created a backup

function which saves the rule.xml file each time a change has been done in

the file. If the system discover that the file is missing, the backup is restored

and no data is missing. Another function is that we require inputs in all

important steps in the wizard. This way the structure and the data of the

XML file will always be correct. In addition all the tables and fields a user

can select comes from the database. To achieve the robustness requirement in

the Administration page, we added a function that controls all the important

fields when you edit values to a rule.

Page 75 of 82

9 EVALUATION

User-friendliness is a difficult goal to measure. We used a survey to check

if the users found the system to be user-friendly or not. There are opinions

of this, but most of the participant in the survey meant that this goal was

achieved, see Section 8.

For further development we suggest that the use of prolog is introduced to

avoid the problem that could appear when users build rules where the fields

do not have any connections. Also another server should be integrated to the

system for transmitting data between the external and the internal database.

9.2 Survey

A survey was completed for this project (8) to get feedback from potential

users. When the Rule Engine prototype was developed, a visiting interview

was completed [1]. In this project we decided that a questionnaire (3.2)

was better than a visiting interview, since we wanted to include many more

persons this time.

When the questions for the questionnaire were made, we tested the questions

on students and software developers. We did this because we wanted to check

if our test persons interpreted the questions in the same way we did, and that

everybody had the same understanding of the questions.

The questionnaire has given us important feedback and we used the information

to improve the Rule Engine, see Appendix D.2.

Page 76 of 82

10 OUR CONTRIBUTION

10 Our contribution

This chapter describes our own contribution to the project. The chapter

consists of a description of the Rule Engine plus how the system is tested

with white-box testing and a survey in form of a questionnaire.

10.1 The Rule Engine

The development of the Rule Engine has been the main result of our project.

The ideas and development started with the basis work of the Rule Engine

prototype in the autumn 2006 [1]. In our master thesis we have used the

prototype as a basis and developed it further. We decided to give the Rule

Engine a completely new look to make it more user-friendly. The idea of

XML based rules was used and developed further from the prototype. We

have increased the number of types of rules a user can declare. The idea to

produce a log after validation was also realized.

The EPD-base used by the Rule Engine was not developed by us. This is an

existing database for product information, see Chapter 2.1. We developed

some new database tables in three different areas of the system, see Figure

8.

10.2 Survey and tests of the Rule Engine

After commissioning the Rule Engine, we used white box test to test the

software system. This was done after completion of each of the system parts.

Page 77 of 82

10 OUR CONTRIBUTION

The test results can be found in Chapter 6.

Further testing was done through client participation and a survey. We used

questionnaire as survey method. 11 people participated on our survey and

the results gave us important answers of the system quality and suggestions

of improvements. See the results in Chapter 8.

We improved the following areas of the system:

• Copying rule button was removed and the function is moved to the

"Execute changes" button, the same as the delete function works.

• We added a control function which controls all important fields when

a user edit a rule.

Page 78 of 82

11 CONCLUSION AND FURTHER WORK

11 Conclusion and further work

11.1 Conclusion

In this project we have developed a Rule Engine, a software system for

validation of products. Users can build their own rules in the system without

having any programming skills. After the system was developed, we carried

out a survey. According to the participants of the survey the system was

a partial success. User-friendliness was good but the robustness can not

be classified as a complete success. The results was used to improve the

system. The finished system works as expected and has achieved sufficient

user-friendliness and robustness.

11.2 Further work

The following is a list with aspects that has come to our knowledge, through

the development and the survey, that should be included in the next version

of the Rule Engine:

• The system is dependent on good user knowledge. We therefore need

better help functions.

• The pack level should be presented in the same way both when

displaying rules and products. Now there is two different ways to do

this.

• When there is a lot of products validated, there should be a page tabs

in the Log to give the user a better overview of the validations.

Page 79 of 82

11 CONCLUSION AND FURTHER WORK

• Prolog should be introduced to avoid the problem that could appear

when users build rules where the fields do not have any connections.

• Integration with a new server to transmit data between the external

and the internal database.

Page 80 of 82

REFERENCES

References
[1] Andreas Smoglie Leite and Øystein Eriksen. TDT 4735 Software

Engineering Depth Study - Rule Engine. 2006.

[2] Tradesolution. http://www.tradesolution.no/.

[3] Zak Ruvalcaba. Build Your Own ASP.NET Website using C# & VB
.NET. SitePoint, 2004. ISBN:0957921861.

[4] The Official Microsoft ASP.NET AJAX Site. http://ajax.asp.net.

[5] Kristen Ringdal. Enhet og mangfold. Fagbokforlaget, 2001.
ISBN:9788276745696.

[6] ISO 9126 - International Standard For The Evaluation Of Software.

[7] Glenford J. Myers. The Art of Software Testing, Second Edition. John
Wiley & Sons, 2004. ISBN:0471469122.

[8] Mike O’Docherty. Object-Oriented Analysis and Design: Understanding
System Development with UML 2.0. Professional Engineering
Publications, 2005. ISBN:0470092408.

Page 81 of 82

REFERENCES

Page 82 of 82

A CLASSICAL PHASES

A Classical phases
The software development consist of many phases, according to [8]. The
phases are requirements, analysis, design, specification, implementation,
testing, deployment and maintaince.

Requirements is about discovering what we are going to achieve with the
new software and has two aspects, business modeling and system requirements
modeling.Business modeling is about understanding the context in which our
software will operate and system requirements modeling means deciding what
capabilities the new software will have and writing down those capabilities.

Analysis means understanding what we are dealing with. It is important
to know about relevant entities, their properties and their inter-relationships
before we can design the solution.

Design phase is where we work out how to solve the problem. The system
is broken down to logical subsystems and physical subsystems. In this
phase you also decides how machines will communicate, chooses the right
technologies for the job and other things that is important for the system.

Specification is a clear, unambiguous description of the way the components
of our software should be used and how they will behave if used properly.
The sort of statement we make during the specification phase is ŚIf the shop
assistant object is logged on, it can ask the store object for today’s special
offers; in return, it receives a list of products, sorted in alphabetical orderŠ.

Implementation phase is where the code is made.

Testing phase is when the hole system is developed and it is ready to be
tested. We test against the system requirements.

Deployment is the phase where we install the new software with the end
users and give them the training they need so they can use the system.

Maintaince is after the deployment is done and the end users start to use
the system. There will be a lot of bugs and things to take care of.

i

B SOFTWARE DEVELOPMENT METHODOLOGIES ADVANTAGES

B Software development methodologies advantages
According to [8] there are many advantages by using software development
methodologies:

• A methodology can help to impose discipline on the coding effort.

• Going through even the basic steps of a methodology increases our
understanding of the problem, improving the quality of our solution.

• Writing lines of code is only one of the many activities in software
development: performing some of the other activities helps us to spot
conceptual and practical mistakes before we commit them to source
code.

• At every stage, a methodology specifies what we should do next, so
we’re not left scratching our heads, thinking ŚOkay, what now?Š

• A methodology helps us to produce code that is more extensible (easier
to change), more reusable (applicable to other problems) and easier to
debug (because it has more documentation).

• Improved chances of delivery on time and within budget.

• Better communication between users, sales people, managers and developers:
A good methodology is based on logic and common sense, so it will be
easy for all participants to grasp the basics; thus, we have a more
orderly development, with less scope for misunderstanding and wasted
effort.

A good methodology will address at least the following issues:

• Planning: Deciding what needs to be done.

• Scheduling: Mapping out when things will be done.

• Resourcing: Estimating and acquiring the human, software, hardware
and other resources that are needed.

ii

B SOFTWARE DEVELOPMENT METHODOLOGIES ADVANTAGES

• Work flows: The subprocesses within the wider development effort
(for example, designing the system architecture, modeling the problem
domain and planning the development effort).

• Activities: Individual tasks within a work flow, such as testing a
component, drawing a class diagram or detailing a use case, too small
or indefinable to be a work flow in their own right.

• Roles: The parts played by personnel within the methodology (developer,
tester or sales person).

• Artifacts: The products of the development effort: pieces of software,
design documents, training plans and manuals.

• Education: Deciding how to train personnel, if necessary, to fulfill their
required roles; deciding how end users (staff, customers, sales people)
will learn how to use the new system.

iii

C TEST CASES

C Test cases

C.1 Wizard steps

Wizard steps Results
Executor Øystein - format wizard, and Andreas

- compare wizard
Date 13.04.2007
Stimuli Users should be able to navigate the

wizard and see earlier steps
Expected response None of the data specified in the steps

should be lost
Observed response When the ’Back’ button is pressed in

the wizard, some of the chosen data in
no longer there

Evaluation Failed

Table 2: Test of wizards

C.2 Get data from database

Get data from
database

Results

Executor Øystein and Andreas
Date 07.03.2007
Stimuli The system should get the right data

from the database
Expected response Displaying the right data from the

database when navigating the wizard
Observed response Success in 10 of 10 executions
Evaluation Success

Table 3: Test of database queries

iv

C TEST CASES

C.3 Save user data to XML

Save user data to
XML

Results

Executor Øystein and Andreas
Date 20.04.2007
Stimuli The system should save the specified

user data in correct XML structure
Expected response After completing the wizards, data is

saved to XML
Observed response At first this looked like a successful

test, but we later discovered that for
example ’<’ and ’>’ expression values
had to be saved in another was because
of the formatting in XML.

Evaluation Failed

Table 4: Test of user data saved to XML

C.4 Edit rule

Editing rules Results
Executor Øystein
Date 12.04.2007
Stimuli The user should be able to modify and

update rules
Expected response When editing a rule the changes should

be saved
Observed response Success in 10 of 10 executions
Evaluation Success

Table 5: Test of editing rules

v

C TEST CASES

C.5 Copy rule

Copying rules Results
Executor Øystein
Date 12.04.2007
Stimuli The user should be able to copy a rule
Expected response When copying a rule, the exact same

rule should be copied, only with new
rule id

Observed response Success in 10 of 10 executions
Evaluation Success

Table 6: Test of copying rules

C.6 Delete rule

Copying rules Results
Executor Øystein
Date 12.04.2007
Stimuli The user should be able to delete a rule
Expected response When deleting a rule, it should be

entirely removed from the XML file
Observed response Success in 10 of 10 executions
Evaluation Success

Table 7: Test of deletion of rules

vi

C TEST CASES

C.7 Server settings

Copying rules Results
Executor Øystein
Date 02.05.2007
Stimuli The user should be able to define server

settings
Expected response When changing server setting, the

system should connect to the new
defined server

Observed response Success in 10 of 10 executions
Evaluation Success

Table 8: Test of server settings

C.8 Display rule

Display rules Results
Executor Andreas
Date 04.05.2007
Stimuli The user should be able to display rules

on the validation page
Expected response When selecting ’All’, ’Format’ or

’Compare’ rules, they should be
displayed

Observed response The rules are all displayed, but the test
fails because of rules that are not active
is also displayed

Evaluation Failed

Table 9: Test of displaying rules

vii

C TEST CASES

C.9 Display product

Display products Results
Executor Andreas
Date 04.05.2007
Stimuli The user should be able to display

products on the validation page
Expected response Products should be displayed after

different filtrations
Observed response The products are displayed, but some

problems with product sets
Evaluation Failed

Table 10: Test of displaying products

C.10 Compare rule validation

Validate compare
rules

Results

Executor Andreas
Date 11.05.2007
Stimuli The system should be able to validate

products from compare rules
Expected response Validation results should be after the

logic of rules
Observed response Seems ok, but there is an issue when

there are for example greater than ’>’
and the two values specified in the rules
are equal, the validation fails

Evaluation Failed

Table 11: Test of compare rule validation

viii

C TEST CASES

C.11 Format rule validation

Validate compare
rules

Results

Executor Andreas and Øystein
Date 11.05.2007
Stimuli The system should be able to validate

products from format rules
Expected response Validation results should be after the

rules logic
Observed response Success in 10 of 10 Executions
Evaluation Success

Table 12: Test of format rule validation

C.12 Validation of products

Validate compare
rules

Results

Executor Andreas and Øystein
Date 18.05.2007
Stimuli The system should validate the correct

(selected) products
Expected response Validation is only done to the selected

products
Observed response Success in 10 of 10 Executions
Evaluation Success

Table 13: Test of validation of products

ix

C TEST CASES

C.13 Log

Test of log results Results
Executor Øystein
Date 18.05.2007
Stimuli The system should display the right log

from the validation
Expected response The log shows the user the validation

results
Observed response Success in 10 of 10 Executions
Evaluation Success

Table 14: Test of validation log

x

D SURVEY

D Survey

D.1 Questionnaire

In Figure 43 and 44 you can see the questionnaire which was used for the
survey of the Rule Engine.

xi

D SURVEY

Figure 43: Questionnaire: question 1 - 4

xii

D SURVEY

Figure 44: Questionnaire: question 5 - 10

xiii

D SURVEY

D.2 Answers

Here is the answers from the participants of the survey:

• Question 1
i) Vanskelig
ii) Middels
iii) Lett
iv) Lett
v) Svært lett
vi) Lett
vii) Svært lett
viii) Middels
ix) Lett
x) Lett
xi) Lett

• Question 2
i) Lett
ii) Lett
iii) Svært vanskelig
iv) Svært lett
v) Svært lett
vi) Lett
vii) Svært lett
viii) Middels
ix) Lett
x) Lett
xi) Lett

• Question 3
i) Kan være en bedre beskrivelse av hvordan man skal lage reglene.
Vanskelig å fortså når man ikke kan databasen godt nok fra før.
ii) Nei, dersom jeg skal sette fingeren på noe må det være ekstra
hjelpevindu med eksempler
iii) Den for sammenligningsregel var lett å forstå men forsto ikke
helt hva som var hensikten med formatreglene. Kunne vært litt mer

xiv

D SURVEY

forklaring her.
iv) Kanskje en litt bedre forklaring til hva som menes med toleranse,
selv om jeg fikk dette forklart muntlig.
v) Nei, de var enkle og grei. Gode forklaringer underveis.
vi) Wizarden gir god oversikt og god forklaring på hva som skal gjøres.
Litt vanskelig til å begynne med men når man først forstår hvordan
databasen er bygd opp gikk det bra.
vii) Veiviserene var enkle og grei. Kan bli kjedelig i lengden å lage alle
regler ved å bruke disse stegene.
viii) De var helt ok. Ganske vanskelig til å begynne med men ble bedre
etterhvert. Kan fortsatt ta med litt mer forklaring når man skal velg
felt i databasen.
ix) Ikke i utgangspunktet, fint at regelen vises til høyre.
x) Flere operasjoner, spesielt < og > xi) Fungerte greit

• Question 4
i) Det gikk veldig bra. Hadde ingen problemer med dette.
ii) Det gikk greit.
iii) Endringen gikk bra men er fikk ikke de reglene jeg endret på til å
fungere. Virker som systemet er litt følsomt for hva men skriver når
man skal fylle inn databasetabell og kolonner.
iv) Ja, med det ble noe uoversiktlig når jeg hadde flere felter i det ene
uttrykket mitt
v) Endring gikk fint.
vi) Klarte å endre, men kan være fort å gjøre feil her. Burde vært en
form for sikkerhet så man må skrive noe som er korrekt i hvert fall.
vii) Klarte å endre, men feltene jeg skrev inn var feil. Her bør det være
en kontroll.
viii) Dette klarte jeg, men vet ikke om det jeg skrev var riktig. Kunne
godt vært en kontroll her.
ix) Ja, dette gikk greit. Men her kan jeg også lett ødelegge regelen om
jeg taster inn feil
x) Ja
xi) Ja

• Question 5
i) Kopieringen gikk fint. Fikk også endret reglene til det jeg ville etter

xv

D SURVEY

at jeg hadde kopiert.
ii) Ja, dette var oversiktlig og greit
iii) Kopiering gikk fint.
iv) Ja, uten problemer
v) Kopiering var greit.
vi) Kopiering var greit.
vii) Ja
viii) Det gikk bra.
ix) Ja, kopierte regelen jeg hadde laget
x) Ja
xi) Ja

• Question 6
i) Ja, det gikk fint.
ii) Ja
iii) Sletting gikk også bra.
iv) Ja, uten problemer
v) Sletting gikk fint. Men hvorfor er det slik at for sletting må man
trykke utfør endringer og fro kopier er det en egen knapp. Dette kan
vel gjøres likt.
vi) Sletting var greit.
vii) Ja.
viii) Sletting gikk bra!
ix) Ja.
x) Ja.
xi) Ja.

• Question 7
i) Lite oversiktlig
ii) Oversiktlig
iii) Oversiktlig
iv) Middels oversiktlig
v) Oversiktlig
vi) Middels oversiktlig
vii) Oversiktlig
viii) Oversiktlig

xvi

D SURVEY

ix) Svært oversiktlig
x) Middels oversiktlig
xi) Oversiktlig

• Question 8
i) Først rotet jeg litt med å finne frem til de reglene jeg hadde laget.
Men etterhvert gikk det fint. Når jeg først hadde prøvd et par ganger
fungerte det topp.
ii) Jeg klarte å kjøre validering, skjønte ikke helt pakningsnivå på
produkter, med CU og TU, osv
iii) Synes det var enkelt å finn frem i valideringsvinduet. Fikk kjørt
alle de reglene jeg lagde via wizarden.
iv) Kjørte en regel mot ett produktsett, denne validerte kun ett
produkt som regelen var beregnet på (med tanke på pakningsnivå),
som forventet.
v) Klarte fint å kjøre regel. Men er litt dumt at når man velger å hente
fram produkt og mens man venter på at disse skal vises så prøvde jeg
å hente frem regler og da stoppet systemet å hente produkt. Kan være
litt irriterende.
vi) Fikk kjørt de reglene som jeg laget i wizarden men ikke de jeg
endret på. Kan være fordi jeg laget de feil. Men bør være noe som sier
at reglene er feil. Ellers virket det greit.
vii) Reglene jeg testa gikk ok.
viii) Fikk ikke helt kontroll på hvilke regler jeg hadde laget. Var ganske
mange regler der. Men klarte å kjør de jeg laget i veiviseren.
ix) Kjørte regelen jeg laget mot et par produkter, det gikk greit
x) Ja, men hadde trøbbel med format. Forsøkte å teste lengde på
produktnavn, men den slo bestandig feil.
xi) Ja.

• Question 9
i) Resultatet var som forventet. Lagde regler som var godkjente og ikke
godkjente og Rule Engine oppfattet det korrekt.
ii) Ja, sånn omtrent
iii) Resultatet var helt i tråd med det jeg forventet. Brukte endel tid
på å finne hvilke verdier som ble brukt, men systemet gjorde det riktig.

xvii

D SURVEY

iv) Ja, fikk opp logg som ga meg informasjon om resultatet
v) Resultatene var i tråd med det jeg trodde.
vi) Resultatene jeg fikk var slik jeg forventet.
vii) det ble riktige resultater.
viii) Så ut som det var riktig resultat. Forutsatt at den henter riktig
verdi fra databasen da.
ix) Ja.
x) Nei, ikke på lengde av produktnavn.
xi) Ja.

• Question 10
i) Jeg synes loggen var veldig bra. Gir god oversikt og enkelt å bla seg
frem og tilbake.
ii) Denne var oversiktlig og grei.
iii) Loggen var grei. Vil tro at det er enklere å gjøre om litt dersom
man har f.eks 1000 rader i griden. Da kan det være lurt å endre litt på
hvordan det vises.
iv) Loggen var grei
v) loggen var bra. Kan bli litt mange linjer nedover. Kan kaknskje
deles opp i sider i stedet.
vi) Loggen var vaeldig oversiktlig, bra at man kan se hvor mange som
er feil i et sett. Kult med grønne og røde farge, sier i fra greit.
vii) Loggen var ok. Ble veldig lang liste ettersom jeg kominerte mange
regler og mange produkt.
viii) Loggen var grei. kult at man kan se fler og fler detaljer. Bra at
det starter mer oversiktlig.
ix) Loggen var grei, her får jeg informasjon om hva som har skjedd i
valideringen.
x) Ja.
xi) Ja, ok for de testene jeg kjørte.

xviii

E DETAIL VIEW IN LOG

E Detail view in Log
A explanation of the details view in the log is given in Table 15.

Field Explanation
Id The id if the record in the database
Regel Id Rule id
Regel navn Rule name
GTIN "EanProduktNr", unique number of

the product
Produktnavn Product name
Pakningsnivå Pack level from the rule
Pakningstype Pack type from the rule
Uttrykk The expression from the rule
Uttrykk med data The expression with data from the

database
Forhold Relations
Valideringsuttrykk The validate expression from the rule
Valideringsuttrykk
med data

The validate expression with data from
the database

Toleranse mål Tolerance measure from the rule
Toleranse prosent Tolerance percent from the rule
Valideringspakninsnivå The validate pack level from the rule
Felt The database field which being

controlled
Felt med data The value of the database field
Format The format from the rule
Lengde The length from the rule
Startverdi The start value from the rule
Godkjent Green if approved, red if rejected
Melding The error message

Table 15: Explanation of Log detail, see Figure 45.

xix

E DETAIL VIEW IN LOG

Figure 45: Details of what has been done in the validation.

xx

E DETAIL VIEW IN LOG

xxi

