& NTNU

Innovation and Creativity

Reusing External Library Components
In the Creek CBR System

Erik Stiklestad

Master of Science in Computer Science
Submission date: June 2007

Supervisor: Agnar Aamodt, IDI
Co-supervisor: Frode Sgrmo, Volve AS

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

The Creek system has an architecture that facilitates combined case-based and model-based
reasoning. jColibri, developed in the CBR group of Universidad Complutense in Madrid, contains a
library of CBR system components intended for sharing and reuse, and an ontology (CBROnto) of
CBR methods for explicit modelling of a CBR system’s operation. In this master degree project,
the Creek framework and the jColibri structure shall be compared with the aim of developing a
mechanism for importing jColibri components into Creek, so that they can be integrated into a
running Creek system. The mechanism shall be exemplified through selection of a few (two or
more) specific components, and integration of these components into an implemented
demonstrator system.

Assignment given: 20. January 2007
Supervisor: Agnar Aamodt, IDI

Abstract

The Creek system has an architecture that facilitates combined case-based
and model-based reasoning. The jColibri system, developed by the CBR
group of Universidad Complutense in Madrid, contains a library of CBR
system components intended for sharing and reuse. The system also con-
tains an ontology (CBROnto) of CBR tasks and methods for explicit mod-
elling of a CBR systems, in addition to general CBR terminology. In this
master degree project, Creek and jColibri are compared with the aim of de-
veloping a mechanism for importing jColibri components to Creek, so that
they can be integrated into a running Creek system. The mechanism is ex-
emplified through selection of a few specific components, and integration of
these components into an implemented demonstrator system. In addition,
efforts needed to bring Creek into the jColibri framework are identified.

Preface

This document presents the work by Erik Stiklestad in TDT4900, which is
a Master’s thesis in Computer Science (Datateknikk). It is written for the
Artificial Intelligence and Learning Group (AIL) at the Norwegian Univer-
sity of Science and Technology (NTNU), and the software company Volve
AS.

The goal is to analyze and compare Creek and jColibri with the aim of
developing a mechansim for importing jColibri components into Creek, so
that they can be integrated into a running Creek system. In addition, efforts
needed to bring Creek into the jColibri framework shall be identified.

I would like to thank my supervisor Agnar Aamodt from NTNU and co-
advisor Frode Sgrmo from Volve AS for their good and patient guidance.
Thanks also to the employees of Volve AS, for letting me work in their of-
fices during the most technical period.

Trondheim, 2007-06-17.

Erik Stiklestad

Contents

1 Introduction
1.1 Background and Motivation
1.2 Goals.
1.3 Methodologyo
1.4 Structure of the Report
1.5 Summaryo
2 Research Focus
2.1 Case-Based Reasoning
2.2 Ontologies e
23 COLIBRI
24 Creek
25 SUmMmary . o.o.o. ..o e
3 Software Analysis
3.1 jColibri
3.1.1 Representation
3.1.2 TheCore
3.1.3 DataTypes oL
314 Cases.
3.1.5 Connectors and Case Bases
3.1.6 Helper Functions
3.1.7 Tasksand PSMs
3.1.8 Creating and Executing an Application
3.2 VolveCreek
3.2.1 Ontologies
3.2.2 Entities
323 Cases.
3.24 Relations
3.25 Reasoning Lo
3.2.6 Comparison Controller
3.2.7 Creating and Running a VolveCreek Application . . .

il

3.3 Comparing VolveCreek and jColibri

3.3.1 Representation
332 Model
333 Cases.
3.3.4 Comparison Components
3.3.5 Problem Solving Methods
3.3.6 Transforms
337 Reuse
3.4 Summaryo
Construction
4.1 Helper Functions,
4.2 Data Types
4.3 Problem Solving Methods,
4.3.1 Import Focus
4.3.2 UsageFocus
4.3.3 Method Construction with Usage Focus.
4.4 Demonstrator System
4.5 Summary ...
Implementation
5.1 Helper Functions
5.2 Data Types
5.3 Problem Solving Methods
5.4 Demonstrator System
5.4.1 Using the New Data Type
5.4.2 Using the new Similarity Functions
5.4.3 Invoking a Method
5.5 Summary
Testing
6.1 Similarities
6.2 The Method and the Data Type
6.3 Summary

Evaluation and Discussion

7.1 Importing jColibri Components to VolveCreek
7.1.1 Helper Functions
7.1.2 DataTypes Lo
713 Methods oL

7.2 VolveCreek Extending jColibri
721 Models
7.2.2 VolveCreek Components in jColibri

iv

41
42
43
44
44
45
46
48
49

51
ol
23
99
o6
26
57
o8
29

61
61
62
64

7.2.3 Example Application 70

8 Conclusion and Further Work 75
8.1 Further Work 75
8.1.1 VolveCreek View 75

8.1.2 jColibri View 76

8.2 Conclusion 77
Bibliography 77

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

6.1
6.2

7.1

The four-step CBR cycle
Integrating domain ontologies and CBR processes

The jColibri Core
The jColibri connector architecture
The CBR task and method structure
Creating the Case Structure
An overview of the jColibri architecture

An example semantic net from VolveCreek, and a frame . . .
The VolveCreek domain

Results from the similarity functions
Screen shot from the VolveCreek Knowledge Editor with the
demonstrator system loaded

Configuring the CreekExample in jColibri

vii

13
17
19
22
24
26

Chapter 1

Introduction

The introduction chapter describes the background and motivation for the
project, before defining its goals. The methodology is also described, and a
structural overview of the project report is provided.

1.1 Background and Motivation

One of the main research areas for the Artificial Intelligence and Learning
Group (AIL) at NTNU is Case-Based Reasoning (CBR). The research has
a focus on knowledge-intensive approaches, and the Creek system has been
developed. Creek facilitates combined CBR and Model-Based Reasoning
(MBR). The model contains knowledge about a domain in general, while a
collection of cases describe specific problem situations.

Recent development of Creek by Volve AS! customizes the system to be used
while drilling for oil. The system will help avoid unwanted events by giving
a warning when real-time data is getting dangerously similar to problem
situations. The problem situations are based on both historical data and
the experience of domain experts. To reason within this domain there is
built a general domain model, while the problem situations are represented
as cases. Combining the two, we have CBR and MBR in one system.

jColibri, developed by the Group for Artificial Intelligence Applications
(GATA?) at the Universidad Complutense de Madrid, contains a library of
CBR system components intended for sharing and reuse. In addition, it has

thttp://www.volve.no/
2http://gaia.fdi.ucm.es/

2 1. Introduction

an ontology (CBROnto) containing general CBR terminology and knowl-
edge about tasks and Problem Solving Methods (PSMs). jColibri attempts
to formalize CBR and become the standard for CBR system development.

The Creek developers became interested in jColibri after learning about
its goals. They would like to see if the two systems are able to cooperate
on some level, since that would be positive for both systems. In addition,
because of jColibri’s goal to formalize CBR, it is also interesting to see if
Creek can adapt to jColibri’s framework.

1.2 Goals

In this project, Creek and jColibri will be analyzed and compared with the
goal of developing a mechanism for importing jColibri components to Creek.
The mechanism will be exemplified through the selection of a few specific
components, and integration of these components into a demonstrator sys-
tem. In addition, efforts needed to bring Creek into the jColibri framework
will be identified.

e Analyze Creek and jColibri, and identify their similarities and differ-
ences;

e Construct a mechanism able to import jColibri components into the
existing Creek implementation;

e Create and test a demonstrator system featuring a few selected com-
ponents;

e Discuss efforts needed to bring the Creek system into jColibri.

1.3 Methodology

This project will be based on analytical and experimental methods, with
some general background theory covered at the start. A lot of time will be
used to analyze Creek and jColibri. The analysis will be both conceptual
and close to the implementation, and will result in a comparison essential
to the project. Based on the comparison, the rest of the project will consist
of looking at various solutions to accomplish the project goals.

Reusing External Library Components in the Creek CBR System

1.4. Structure of the Report 3

1.4 Structure of the Report

The first chapter of the project report is this introduction, which defines
the project goals and describes how and why we want to accomplish them.
Chapter two describes and introduces the main research areas. This in-
cludes the two systems that are thoroughly analyzed in the third chapter,
in addition to a short introduction to CBR and ontologies. Chapter three
is closed with a system comparison, which is used by the fourth chapter
to construct a possible solution and a demonstrator system. This solution
is implemented in chapter five. The demonstrator system is used to test
the solution in the sixth chapter. The report continues with a discussion
in chapter seven, before being closed with further work and a conclusion in
the eighth and final chapter.

1.5 Summary

This project is motivated by NTNU’s focus on CBR, and the recent interest
in the jColibri system. The goals are to import components from jColibri
to Creek, and to identify efforts needed to bring Creek into jColibri. To
accomplish these goals, the two systems will be analyzed and compared. A
demonstrator system will be implemented to test a possible solution.

Erik Stiklestad

1. Introduction

Reusing External Library Components in the Creek CBR System

Chapter 2

Research Focus

This chapter presents the research focus for the project. Although readers
are assumed familiar with CBR and ontologies, we will start by introducing
them. The rest of the chapter is devoted to the background, history and
motivations of the two systems COLIBRI and Creek.

2.1 Case-Based Reasoning

Case-Based Reasoning (CBR) is an approach to problem solving and learn-
ing. When solving a new problem, this approach makes use of previously
solved problems when reasoning. The previously solved problems are also
referred to as experiences. After the new problem has been solved, it is
retained in the system as additional experience. The latter step represents
learning.

A problem is what we refer to as a case in CBR, and both new problems
and old experiences are cases. A case is described by a set of features which
in sum defines the problem. A feature can be anything giving relevant
information about the case.

CBR is typically done in a four-step cycle as shown in figure 2.1 taken from
|AP94|. First, we retrieve all learned cases (experiences) that are relevant
for solving a new problem that entered the system. To find out which cases
are relevant, we compare the new problem to the learned cases by comparing
their features. The best matching case or cases are chosen, which finalizes
the retrieval step. Second, we reuse the chosen case’s solution by copying it
or adapting it to fit our needs. If several cases were retrieved then we adapt
a solution by combining parts of the retrieved cases. Third, we revise how

6 2. Research Focus

Problem

Leamed
Case

. Retrieved
P Case
/ Previous
z| Cases \
X “
g ‘ General
\ Knowledge > Y &
/S
— W
Tested/ &
Repaire
Ca;): ¢ I v 4
S Solved
REV/SE— - Case
Confirmed Suggested
Solution Solution

Figure 2.1: The four-step CBR cycle

well the new problem was solved with the solution we just reused. This is
done by testing it in the real world or some kind of test scenario. Finally,
we retain this new experience as a case in our system for future problem
solving.

This approach is very similar to how humans reason when solving problems.

2.2 Ontologies

A common definition of an ontology states that it is "a specification of a
conceptualization” |Gru93|. Related to computer science, an ontology can
be seen as a data model representing a set of concepts within a domain,
and the relationships between them. We can use ontologies as a form of
knowledge representation for our domain, and use its components when
reasoning.

An ontology generally describes individuals, classes, attributes and rela-
tions. The individuals are the basic components of the ontology and may
include concrete objects such as specific cars, or abstract things like words.

Reusing External Library Components in the Creek CBR System

2.3. COLIBRI 7

An ontology does not necessary have any individuals, since an ontology
may be created to provide a way to classify individuals in several systems
sharing the same model (a general purpose ontology). The classes collect
individuals and other classes. E.g., a class car can collect individuals car#i1
and car#2, while the class vehicle can collect classes car and truck. This
would make car and truck subclasses of vehicle. Attributes are character-
istics of an individual. E.g., car#1 can have the attribute red to describe
its color. Relationships describe how things relate to each other. A possible
relationship between car#1 and car#2 could be that one is the successor of
the other.

If we create general ontologies about a domain, we can reuse the ontologies
in all systems reasoning within that domain. Application specific ontologies
can later be mapped to the more general ontologies, creating several layers of
specificity. Reasoning mechanisms defined for a general concept or relation
of an ontology can then automatically be used for more specific ones because
of inheritance.

If we want to integrate several systems, or simply make them work with
each other at some level, it is a huge benefit if they are based on the same
ontology. This is the essential motivation behind CBROnto in the COLIBRI
system which will be presented in the next section.

2.3 COLIBRI

In 2002, Belén Diaz-Agudo proposed a domain independent architecture
called COLIBRI' in her PhD thesis directed by Pedro Gonzélez-Calero.
COLIBRI tries to formalize CBR, and provide design assistance when cre-
ating KI-CBR systems. A system may combine domain specific knowledge
with various knowledge types and reasoning methods common to all do-
mains.

Very important to the COLIBRI system is CBROnto, which is an ontology
containing general CBR terminology. It is also a task and method ontology.
The root of CBROnto is CBRTerm, which all concepts of the ontology are
specialized from.

The idea is that COLIBRI should be based on Knowledge Acquisition (KA)
from a library of application independent ontologies, and that these ontolo-
gies should be mapped to CBROnto by the system designer. More specif-
ically, the designer should classify the domain knowledge’s concepts and

LCases and Ontology Libraries Integration for Building Reasoning Infrastructures

Erik Stiklestad

8 2. Research Focus

Instances
T
ems CBR PROCESSES
=
_/
CASE
BASE
HNG BINARY-TUPLE
CBROnNto
v oo Vv J
"""" 'z /\V ONTOLOGY
DOMAIN KNOWLEDGE SERVES
_’/

Figure 2.2: Integrating domain ontologies and CBR processes

relations to CBROnto. Since we are dealing with a hierarchical structure,
only the top level concepts and relations of the domain knowledge need to
be classified. The rest is solved automatically through inheritance.

Since CBROnto describes both tasks and methods, there are no gaps be-
tween the system’s goals (tasks) and the Problem Solving Methods (PSMs)
used to accomplish them. This has been an issue with older systems. The
tasks define the structure of an application, and how it will be executed. A
PSM can either decompose a task into subtasks, or solve it directly. Sub-
tasks are in turn solved by other PSMs, and this process continues until all
tasks are solved. This means that we need a resolution PSM for all tasks
that are not decomposed, or the system will not be able to execute success-
fully. The approach is inspired by the Components of Frpertise methodology
[Ste90].

Further, the gap between the PSMs described by CBROnto and the domain
knowledge is removed by the classification done by the system designer. See
Figure 2.2 taken from [Dia00|. This solves another important issue with
earlier CBR systems.

It is also important to address a PSM’s dependency on knowledge. If a
resolution PSM with the competence to accomplish a certain task does not
have the knowledge necessary to do so, we have a problem. This is solved
using the classification mechanism, checking if the necessary knowledge is
available when a certain PSM will be executed. We know what knowledge

Reusing External Library Components in the Creek CBR System

2.4. Creek 9

is needed since each PSM is defined with a set of conditions.

The idea behind CBROnto is to create a common data model which is
able to represent all CBR systems. This way, CBROnto is an attempt to
generalize and formalize CBR by making a domain independent ontology.
CBROnto tries to contain all general CBR terminology, and support the se-
mantic needs for all CBR systems. When creating a CBR system, CBROnto
will guide the case representation, and help describe flexible, generic and
reusable PSMs. At the top level are the four well known CBR steps which
can be seen in Figure 2.1: Retrieve, Reuse, Revise and Retain. Each task
can be decomposed or solved directly like mentioned earlier.

CBR concepts from CBROnto are implemented as abstract classes or in-
terfaces in the COLIBRI framework. Typically, the is-a relations from
the ontology are implemented using inheritance between classes, and the
part-of relations are implemented as a composition of classes. By doing
this, we have an implementation which represents concepts from the ontol-
ogy, providing two main things. First off they give us an abstract interface
for CBR methods and tasks. They can be developed independently from
the actual CBR components such as case structure, similarity functions and
so forth. Second, they serve as hooks where new types of building blocks
can be added.

COLIBRI’s implementation is based on the reasoning capabilities of De-
scription Logics (DL). Originally, it was implemented with LOOM? which
is a knowledge representation language developed specifically for artificial
intelligence. It contains a set of advanced tools for knowledge representation
and reasoning. The LOOM implementation assumed rather advanced users,
and that is why a new implementation was started. The new implementa-
tion was given the name jColibri®, and it has a distributed architecture, a
DL engine, a GUI for non-technical users and an object-oriented framework
in Java. The ontologies are represented using the Web Ontology Language
(OWL). This implementation will be analyzed in the next chapter.

2.4 Creek

In 1991, Agnar Aamodt developed the CREEK* architecture in his PhD
thesis, normally written "Creek". It is an architecture for knowledge inten-

Zhttp:/ /www.isi.edu/isd/LOOM/

3Should be written jJCOLIBRI, but for improved readability we will write jColibri in
this project report

*Case-based Reasoning through Extensive Explicit Knowledge

Erik Stiklestad

10 2. Research Focus

sive problem solving and sustained learning [Creek|. Since the Creek system
is well known to the readers of this project report, it will be given less focus
than the COLIBRI system.

The basis of the Creek knowledge representation is a graph. A graph is
a pure mathematical model with a set of objects (called nodes, points or
vertices) connected by links (called edges or lines). If we give meaning to
the objects and links, we get a semantic network which is what Creek is
using. Henceforth, objects will be referred to as entities and the links as
relations. If we collect all relations connected to a certain entity, we have a
frame. In short, Creek’s frame based knowledge model is a semantic net of
entities interconnected by relations.

Creek is also using ontologies in an attempt to generalize certain domains.
At the very top level, we have the Thing concept. Everything in the world
is a Thing, meaning that it is the most general term in the model. The
knowledge located in the ontologies can be about CBR in general, or well
established knowledge about a specific domain. This knowledge may be
application independent, and can potentially be reused.

Recently, it has been created a case model for Creek. This model contains
general CBR terminology. The model is important to this project, since it
contains knowledge needed to use recently developed packages for Creek.
This involves general CBR things like cases, attributes and so forth.

The version of Creek which will be used in this project, is a development
snapshot from Volve AS and will be called VolveCreek in this report. Some
components of the system are not fully developed. VolveCreek will be ana-
lyzed in the next chapter.

2.5 Summary

CBR and ontologies are important research areas to this project. CBR is an
approach to problem solving and learning, while ontologies are used to create
knowledge models. The two systems which will be analyzed both concep-
tually and close to their implementation in the next chapter are COLIBRI
and Creek. COLIBRI uses the reasoning capabilities of DL, and is based on
the use of CBROnto which is an ontology with general CBR terminology,
in addition to being a task and method ontology. OWL is used to represent
the ontologies. Creek uses a frame based knowledge representation which is
a semantic net of entities interconnected by relations.

Reusing External Library Components in the Creek CBR System

Chapter 3

Software Analysis

The software analysis chapter analyzes jColibri and VolveCreek, which are
Java implementations of the COLIBRI and Creek systems, respectively. The
analysis is rather close to their implementation, while their background was
presented in chapter 2. A more practical introduction of the systems can be
found in [RSDGO5|, [BSABO04| and |Bra04]. These were used to learn how
to use the systems.

3.1 jColibri

jColibri is a Java implementation of the COLIBRI system introduced in
section 2.3, and is intended for a large audience. Anyone from new students
to technically advanced users should be able to use it on some level. It is
possible to prototype and test CBR systems very quickly using jColibri’s
GUI, which makes it significantly more user friendly than its predecessor
implemented in LOOM. Tt is also designed to support anything from the
simplest CBR systems to the large and complex ones. With its focus on
reuse, jColibri makes it easy to take advantage of past designs when creating
a new system. It is semi-complete and ready to be extended for custom
applications.

This chapter will analyze all major components of the jColibri framework,
and describe how they work together when creating and running a CBR
application. Components that are particularly important to this project will
be analyzed in greater detail. These are tasks (CBRTask), PSMs (CBRMethod)
and similarity functions (CBRSimilarity). They all implement the CBRTerm
interface which represents the most general concept of CBROnto. Data
types are also important.

11

12 3. Software Analysis

We will start by explaining how the representation is supported, before
moving on to the specific components.

3.1.1 Representation

The jColibri system is based on Description Logics (DL) [NB03], which can
be translated to first-order predicate logic. It is, in other words, a represen-
tation with logic-based semantics. This type of representation works best

in domains with a strong domain theory. This is typically domains that can
be modelled in a formally well-understood way [DINS96] [GGDF99].

To support the representation (see section 2.3), and as a parallel to the use
of ontologies, jColibri has an interface called Individual. An individual has
a collection of relationships to other individuals in addition to parents and
a value.

A class SimpleIndividual has been implemented and is currently being used
by the example applications, but new individuals can of course be imple-
mented.

The class IndividualRelation implements the relation concept between in-
dividuals. A relation has a description, target and a weight. When, e.g.,
giving a case a set of attributes, we create a relation from the case to its
attributes. Both the case and the attributes are Individual objects, and
their relationships between them are IndividualRelation objects.

This is a very general way to support the representation. How the individ-
uals are used will be described further in later sections, and in particular
section 3.1.4 about cases and section 3.1.6 where their comparison functions
are described.

The OWL DL reasoner used by jColibri is called PELLET [SPGKYO07].

3.1.2 The Core

The core of jColibri is called CBRCore, and can be seen in figure 3.1 taken
from [jColibri]. It is the most important component of the framework.
The core is in charge of the application, and must always be present for
an application to run. It handles the configuration, and also executes the
application. To do all this, the core is divided into three main components
which will be described in turn: state, context and packages.

Reusing External Library Components in the Creek CBR System

3.1. jColibri 13

Data Types Task
' Structure

Helper
Functions

PSMs I
Library

Tasks
Library

afeififi

Figure 3.1: The jColibri Core

State

The state, which is called CBRState, handles the configuration of tasks and
methods. It will always have the current configuration status of the CBR
application.

Context

The context, called CBRContext, acts as a communication blackboard where
methods can share data during the execution of an application. The context
will have the case base and the working cases. What the working cases are
depends on the execution step, but they can, e.g., be newly retrieved cases,
adapted cases, and so forth.

jColibri also features a context checker, which ensures that the components
configured for an application are compatible with the context at every mo-
ment during development. The final application configuration is sure to
satisfy each component’s conditions because of the context checker. E.g., a
PSM may be given preconditions and postconditions, defining which condi-
tions the PSM is dependent on before and after its execution. This is part
of the solution for an issues that was introduced in section 2.3: a PSM’s
dependency on knowledge to accomplish a task.

Packages

The remaining components of the system are located in packages. Examples
of components located in these packages are data types, similarity functions,
case structures, PSMs and so forth. Since these components are rather

Erik Stiklestad

14 3. Software Analysis

complex and important to this project, they will be described in further
detail in the following sections.

Each package may contain a set of one or more components. jColibri comes
with a few rather stable packages at this time: core, textual, description
logics and web. The core package should always be enabled for an appli-
cation, and the GUI does this by default and in addition lets the system
designer enabled others as the first step.

An essential goal of this project is to import parts of these packages to the
VolveCreek system.

3.1.3 Data Types

Data types are important in any computer system. Knowing the data type
of something enables us to make assumptions, and this is important also
in CBR. One obvious example is when we want to compare two cases by
applying a similarity function to two values. Which function to use is highly
dependent on the data type. To define which data type each attribute is,
we specify them already when we create the case structure.

jColibri comes with a set of data types in the core package which cov-
ers all common data types, and in addition the DL extensions provides a
ConceptType data type. The system designer is able to configure new data
types using the GUI, or by writing the XML configuration file manually. A
data type is configured with a name, Java object and the identity of a GUI
editor. The name can be anything, the Java object must exist and hold
this specific type of data, and a GUI editor should be chosen to let users
enter values when this data type is asked for. Example XML configuration
format for two data types follows. The data types are Boolean and String,
provided by the core package.

<DataTypes>
<DataType>
<Name >Boolean </Name >
<Class>java.lang.Boolean</Class>
<GUIEditor>jcolibri.gui.editor.BooleanEditor </GUIEditor >
</DataType >
<DataType>
<Name >String </Name >
<Class>java.lang.String</Class>
<GUIEditor>jcolibri.gui.editor.StringEditor </GUIEditor >
</DataType >

</DataTypes >
_

Reusing External Library Components in the Creek CBR System

3.1. jColibri 15

3.1.4 Cases

The most important thing in any CBR system is the cases, and hence it
is also important how they are represented. With jColibri it is possible to
create anything from simple plain cases to the most complex hierarchical
structures with attributes connected. This case structure is important. It is
for example used when loading cases into the system from a case persistency
(see section 3.1.5), and when obtaining a query' from the user before the
retrieve CBR step.

Following the definition provided by CBROnto, a case has a Description,
a Solution and a Result. Description describes the problem by using a set
of attributes. Solution is also a set of attributes, but describes the solution
of the problem. Result stores the consequence of applying the solution in
the real world or a test scenario. The result may be good or bad, depending
on if the solution actually solved the problem, or if it did not. We can see
how this definition of a case makes sense if comparing it to the description
of CBR in section 2.1.

An attribute can be either simple or compound. The case structure can be
compared to a tree structure, where leaf-nodes are simple attributes, inter-
nal nodes are compound attributes and the Description and the Solution
are the root nodes.

Simple attributes have a name, type, weight and local similarity function.
The name can be anything, type is a data type, weight says how important
the attribute is relative to the others, and finally the local similarity func-
tion refers to a similarity function used to compare two instances of this
attribute.

Compound attributes collect simple attributes, and has a name and global
similarity function. The name can again be anything, while the global
similarity function is a function calculating the collected similarity of all
simple and compound attributes below it in the case structure.

jColibri stores the case structure in an XML file, which can be written
manually or generated by a GUI tool. The GUI makes it easy by listing
only the available data types and similarity functions, and it will also load
ontologies and let the system designer select concepts directly when building
the case structure. An example case structure from [Sti06] follows.

I'The query has the same structure as a case, and will be compared to the other cases
as if it was a case.

Erik Stiklestad

ol W N e

e e =
B W N = O © o O

15

SR RN
W N = O

16 3. Software Analysis

<Case concept="carCase">
<Description globalSim="Average">
<SimpleAttributeConcept localSim="Equal" name="colour"
relation="hasColour" type="Concept" weight="0.1"/>
<SimpleAttributeConcept localSim="Equal" name="batteryStatus"
relation="hasBatteryStatus" type="Concept" weight="0.8"/>
<SimpleAttributeConcept localSim="Equal" name="engineStatus"
relation="hasEngineStatus" type="Concept" weight="0.5"/>
</Description>
<8olution globalSim="Average">
<SimpleAttributeConcept localSim="Equal" name="ignorelt"
relation="solution0f" type="Concept" weight="1.0"/>
<SimpleAttributeConcept localSim="Equal" name="rechargeBattery"
relation="solution0f" type="Concept" weight="1.0"/>
</Solution>
<Result/>
<Reasoner>
<Type >PELLET </ Type >
<Source>
src/jcolibri/application/CreekExample/Ontology.owl
</Source>
</Reasoner>
</Case>

The case structure is for a car being described with attributes colour,
batteryStatus and engineStatus. The solution can either be ignoreIt or

rechargeBattery. The case structure is created to retrieve car cases directly
from an OWL file by using the PELLET reasoner.

[SRDGO5]| provides more details about the case structures in jColibri.

3.1.5 Connectors and Case Bases

When loading cases into the system, jColibri uses a two-layer model which
can be seen in figure 3.2 taken from [jColibri]. A connector is an object which
has the ability to access and retrieve cases from a specific case persistency
when given the case structure, and give those cases to the CBR system
in a standardized way. Because of this, jColibri can deal with any case
persistency as long as a connector is provided.

The first layer is the case persistency and can be plain text, XML, ontologies,
a relational databases or anything else we have a connector for. Since all
connectors feed cases into the system in the same way, it does not matter
to the CBR system which case persistency is used. The second layer is the
in-memory organization.

Reusing External Library Components in the Creek CBR System

3.1. jColibri 17

——— —|
—— —,J

S -

& —a

Figure 3.2: The jColibri connector architecture

3.1.6 Helper Functions

Helper functions assist the PSMs when they try to accomplish tasks, and
may be domain dependent although they do not have to be. Similarity
functions are the most important helper functions, but there may also be
others. Although jColibri does not include any other helper functions than
the similarity functions at this time, an example could be adaption func-
tions.

Similarity Functions

When comparing two cases, the PSMs use the similarity functions to com-
pare each attribute. The local similarity functions are used for simple at-
tributes, and global similarity functions are used for compound attributes.
The local similarity and global similarity values given to attributes in the
case structure like explained in the previous section, must refer to the name
of an implemented similarity function. When using the GUI tool to create
the case structure, this constraint is taken care of by only letting the user
select similarity functions that are available and implemented. Implemented
similarity functions may be unavailable to a certain application if the func-
tion is part of a package that is not enabled. E.g., a textual similarity
function like TokensContained is not available unless the textual extension
is enabled.

Following CBROnto, jColibri has a CBRSimilarity abstract class which im-
plements CBRTerm. It represents the similarity concept inside the Java frame-
work. A CBRSimilarity has a name and a class name which refers to the

Erik Stiklestad

18 3. Software Analysis

class implementing the similarity function. There are two classes extend-
ing CBRSimilarity, and those classes are of course CBRGlobalSimilarity and
CBRLocalSimilarity.

The actual similarity functions are imported by the global or local simi-
larities, and they are implementations of the interface SimilarityFunction.
This interface does not exist in CBROnto, but is part of jColibri to ensure
that the similarity functions are implemented in a consistent way. Each
similarity function must have a compute method taking two individuals as
parameters, and then returning the similarity between the two individuals
as the data type double.

The similarities also have parameters, and they are implemented a class
called CBRSimilarityParam. The similarity parameters simply have a name
and the value. These parameters are imported by CBRSimilarity to make
them available to both global and local similarities. It is typically used to
set variables in functions that depend on, e.g., the size of the case base or
anything else that may be used to compute the similarity.

3.1.7 Tasks and PSMs

This section describes the tasks and methods on a conceptual level, before
looking at the implementation. These components describe the structure
of the CBR system, and hence also the behavior. They are very important
and centralized in the jColibri system.

Conceptual

CBROnto has a task decomposition structure like mentioned in section 2.3.
Everything starts with a root task which is decomposed into the four well
known CBR tasks from [AP94]: retrieve, reuse, revise and retain. FEach of
these are decomposed or solved directly by PSMs, and this process does not

stop until all tasks are either decomposed or have been assigned a resolution
PSM. See Figure 3.3 from [Cha90| and [Dia02].

The CBR system’s designer will do this process manually, and again the
GUI is of great help. When selecting a task, the designer is given a list of
methods with the competence to solve the task. The competence is defined
in the ontologies, and decomposition methods also have the new subtasks
defined here. If a decomposition method is selected, the new subtasks will
appear immediately in the GUI.

Reusing External Library Components in the Creek CBR System

3.1. jColibri 19

Main Task to Resolve <'> Problem Solving and
—1— Leaming from Experience

CBR as a decomposition method
to resolve the main task

The four CBR tasks agreed
by the CBR community
[Aamodt&Plaza?4]

Altemative methods to
resolve each one of the ‘ I | ’ | ‘ ’ ’ ‘

e A| DD 2N /\/\‘

Subtasks derived fr _

cachmatod 2O <|_..> OO OO
‘ 1 | ‘ | |

Resolufion Methodsthat |] ||]] | .
solve the tasks.

Figure 3.3: The CBR task and method structure

Normally, a method is divided into three main parts: competence, oper-
ational specification and requirements. The competence says which tasks
the method is able to accomplish (what can be solved). The operational
specification describes the method’s way of delivering a specific competence
(how something can be solved). Finally, the requirements describes which
knowledge is needed to achieve the given competence by going through its
reasoning process.

The competence and requirements of a method are described using ontolo-
gies, which provide two advantages. A formal description giving precise
meaning combined with reasoning support is the first advantage. The sec-
ond, which is also a general focus in jColibri, is that it enables reuse since
they can be used by different systems.

In CBROnto there is a method concept, and each method is an instance of
it. The internal reasoning process of the methods are not formalized in the
ontologies, but each method has an associated Java class which implements
it. The methods have a name, informal description, type and a relationship
to a number of other concept instances.

In jColibri, the name is equal to the class implementing the method. This
creates an association between the ontology and the Java implementation.
How it is implemented will be discussed in the following section. The infor-
mal description can be anything.

The method type can be either resolution or decomposition. In the case of
decomposition, it will also have a set of subtasks, which will be solved but
other methods later. To represent a method’s competence, it has a relation

Erik Stiklestad

20 3. Software Analysis

to an instance of the task concept it is able to solve.

The methods may also have several parameters, which may typically be a
case structure, a connector or simply an attribute from the Description or
Solution concepts of the case (see section 3.1.4).

Instances of the task concept only has a name and a description. They are
identified by their name.

Implementation

Again following CBROnto, the classes CBRTask (tasks) and CBRMethod (meth-
ods) implements the CBRTerm (terms) interface.

A task object is really a prototype task which cannot be used directly in
an application. Instead, a new instance must be created by cloning the
prototype. A task object has a task name, description and name of the task
instance. Optionally, it has a reference to a method assigned to solve the
task. This reference is kept up to date at all times.

A method object has a name, informal description, instance name, type
and a boolean value saying whether or not the method’s implementation is
available. Similarly to the tasks, also methods are prototypes and needs to
be cloned before being used. Every method must have an execute method
with the context as a parameter, and also the context as return type.

A method has a set of parameters. These parameters are implemented in an
own class called MethodParameter, and imported to a method through class
methods. A parameter has a name, description, data type and an object
with its value. Parameters also have some restrictions implemented in a
class called MethodRestrictions. This class will typically make sure that a
specific parameter does not have more than a certain amount of maximum
occurrences, and not less than a minimum amount of occurrences.

As discussed earlier, there are two types of methods: resolution and decom-
position. This is implement in a simple class called MethodType, which says
whether a certain method solves a task directly or if it decomposes it into
subtasks.

When solving a task, the task’s solve method should be executed and given
the current context. What happens next is that the method instance as-
signed to the task is executed and given the context (if no PSM is assigned
to solve the task, the context is returned unchanged). The method returns
the updated context which the task further returns to the core. Since an ap-
plication is configured to handle everything through the core like discussed

Reusing External Library Components in the Creek CBR System

3.1. jColibri 21

in section 3.1.2, it is easy to see that a task is solved by a method, and that
the effects it has is applied to the application’s context and kept up to date
at all times.

3.1.8 Creating and Executing an Application

Finally, as both a summary and to improve the understanding, we will look
at how a simple application is created and executed step by step. Specific
details about the code logic are left out.

To create a parallel to later chapters of this report, the following example
will be based on a previous project [Sti06] which used the same domain
as this project. It is a car domain created in the main example of the
VolveCreek system, which will be studied later. In [Sti06], the car model
was exported as ontologies which jColibri is able to import, but the export
mechanism in VolveCreek simplified the original model. This simplification
was necessary because of a fundamental issue related to representation.
Nevertheless, the project ended up with an application which will be used
in this section.

Creating the Application

The first thing we have to do, is to give the application a name, and specify
which packages it will be using. The name can be anything, and the selected
packages must of course exist. The GUI provides a list of existing packages
we can chose from.

Second, we have to create the case structure. This structure is essential and
will be used several times throughout the application’s execution. Since
we have a file with ontologies exported from the VolveCreek example, we
will create a case structure based on the ontology. jColibri can read the
OWL file and present the hierarchical structure to the user. From here, it
is possible to map a concept from the ontologies to an attribute in the case
structure. Figure 3.4 shows how this was done in [Sti06]. The case structure
is exported and saved in an XML file.

To be able to load the cases into the system from a case persistency (see
section 3.1.5), we normally need to configure a connector as the next step.
This is a mapping between attributes in the case structure and the fields in
the case persistency. When using ontologies, however, we do not need a con-
nector. Instead, the case structure does the same job since we have already
mapped each attribute of the case to a concept found in the ontologies.

Erik Stiklestad

22 3. Software Analysis

066 JCOLIBRI 1.1
File CBR Evaluation Help

YRR E) CBF E
aYala) CBR -creekExample

Eﬂ 06 &% Manage Case Structures
Ta)
Type: ONTOLOGY | &3 Load case structure Save case structure
rCase structure rProperties
Case & Select Concept
¥ | Description
Concept: batteryStatus
colour =
batteryStatus Relation: hasBatteryStatus =)
engineStatus .
v (7 Solution Weight: 0.8
lgnorelt Local similarity: 7= N
rechargeBattery SiblingSimilarity

Resul [ty

CousinSimilarity | .
Nami EdgeDistanceSimilarity
CosineSimilarity

DetailSimilarity

DeepSimilarity

CreekSimilarity

(Add simple) (Add compound) ("Remove) @Apply changes

LUNLOBrIage] INFUI LOAUING ONoIogy. 1101s mdy dKe d winlit.
[OntoBridge] INFO: Using PELLET reasoner
[OntoBridge] INFO: Ontology loaded successfully into reasoner

Figure 3.4: Creating the Case Structure

Configuring the application mainly consists of creating the task structure,
and assign methods to solve them. Adding new tasks to the tree structure
is done by having a decomposition method for one of the tasks, creating any
number of subtasks. The GUI makes this simple by listing methods for each
task, and it is then given that they are available and have the competence
to solve the task. The system designer can then create instances of the
methods, and continue this process until all tasks and subtasks are solved.
Depending on the type of method, it may also be necessary to provide the
value of some parameters. A typical parameter may be the case structure
or the connector, but it can also be anything else.

In this example we have 5 resolution tasks. The first is in the precycle
task list that loads cases into the system from the ontologies like described
in section 3.1.5. This method needs the location of the case structure as
a parameter. The second resolution task, and the first task of the CBR
cycle, is to obtain a query from the user. This query also needs the case
structure as a parameter, as the query looks exactly like a case, and will
be compared to other cases later in the retrieval process. The query should
typically look like the problem we wish to solve. Retrieve was the only step

Reusing External Library Components in the Creek CBR System

3.1. jColibri 23

of the four well known CBR steps configured for this application, and consist
of three subtasks. First, all the working cases are selected to be used for
comparisons. The second subtask of retrieve is to compute the similarity
between the query and each of the working cases that were loaded into
memory. Finally, the last subtask is to select the best task which will be
the retrieved case, which could be used further in a reuse step had the
application not been a pure retrieval system. It would also be possible to
select several of the best cases, as that is up to the selection method and
the later adaption methods.

Assigning methods to solve a task is done through the core instance. Al-
though the GUI has made sure that chosen methods have the required com-
petence and are given the parameter values they need, this instance does a
final check. A GUI should always help the user with such constraints, but
it should not be responsible for their satisfaction. It is also possible to write
an application without using the GUI, so this final check is necessary. The
core first checks if the method is compatible with the task, then adds the
method instance to the context for execution, and finally updates the state.
These components were explained in section 3.1.2.

Once the configuration is completed, jColibri generates the application.
This is based on an application template, and the result will be a Java
class which is completely separated from the jColibri framework. The ap-
plication will communicate with jColibri only through its core instance as
we will learn in the next step where the application is executed.

Executing the application

The first thing which happens when an application created with jColibri
is executed, is that a new core is created and initialized. As mentioned in
section 3.1.2, the core consist of a state, a context and a some packages.
The initialization of the core does four main things which are listed below.

e Load all wanted packages by using the package manager. Loading
a package consist of first flushing all the registries, and then loading
them with everything available in the wanted packages. There are five
registries, each having one type of component: prototype method reg-
istry, prototype task registry, local similarity registry, global similarity
registry and data type registry.

e Creates a new state which only has one task, and that task is the
concept type root task. The instance of state will be kept up to date
as new tasks are added later on.

Erik Stiklestad

24 3. Software Analysis

Lighweight Java m J2EE

Clients

Case
Structure |l

Data Sources

T I T

Figure 3.5: An overview of the jColibri architecture

e (Creates a new context which will be used by the methods later when
they accomplish the tasks. Each method will return the updated
context when their execution process has completed. This means that
it will always will be up to date at any moment during the application’s
execution.

e BEach application has three lists of tasks which are given a root task.
The three lists are as follows:

1. The precycle task list contains tasks to be accomplished before
the CBR can commence. Typically involves loading cases from
the case persistency and other tasks preparing the system.

2. The CBR cycle task list will typically have the three well known
CBR reasoning steps: retrieve, reuse, revise and retain.

3. The postcycle task list has tasks that are done after the CBR
reasoning is completed.

Since the application is fully configured, the task structure can be traversed
and each method can be executed. The traversal behaves like a Depth First
Search (DPS). Each PSM’s execute method will be invoked as each task is
being solved, and this method must return the updated context. When all

Reusing External Library Components in the Creek CBR System

3.2. VolveCreek 25

tasks are resolved, the application is finished. Depending on the configured
tasks we will end up with some kind of result. In this example, the case
most similar to the query will be selected.

A model of the entire jColibri architecture can be seen in figure 3.5 taken
from [jColibri].

3.2 VolveCreek

VolveCreek is the Java implementation of the Creek system introduced in
chapter 2.4. Since VolveCreek is well known to the readers of this report,
the analysis will be less extensive than that of jColibri. The VolveCreek
version used in this project is incomplete, as it is a development snapshot
from Volve AS.

As already introduced in section 2.4, the representation of VolveCreek is a
semantic net consisting of entities and relations. They are defined by the
ontologies, and implemented in the VolveCreek framework in interfaces and
classes.

Figure 3.6 shows an example of a semantic net and one of its frames. The
semantic net is in the background, partly covered by the frame. The colour
entity which is used for this example frame, is highlighted in the semantic
net (red dot). As we can see in both the semantic net and the frame, colour
is an instance of the top level Symbol entity, and it has two instances called
red and blue.

In this chapter, the case will be given extra attention in an own section,
as its representation has changed recently. Cases are no longer nodes in
the semantic net. Specific components will also be given extra attention
as they are important to reach the project goals, and some are very recent
development. Finally, we will create an run an example application.

We will first look at the ontologies, and then describe the implementation
of entities and relations in the following sections.

3.2.1 Ontologies

VolveCreek has a top level ontology which defines our view of the world
in which our application will be executed. The model contains knowledge
about what exists, and how those things relate to each other. At the very

Erik Stiklestad

26 3. Software Analysis

o006 The 'colour' entity

Name:
colour

Entity Object Class

<None> v
engine will run
Description: 8
the color of something & erzgine not starting
¥
O
D
Relation-type Value Strength 5 ,'\‘\r7
has instance blue s 0.9 W low battery
has instance red RS 0.9 W (\&o
L instance of Symbol o 0.9 T ..«\e\zs\a(\geempty battery

CRE ¢ Al v o5

) %, % & q,o instance of
solution %, 4, T 8 &
S
% B\ B é}"’ &@uery status OK battery
OF a3 \'b(\
L A\(\:D
instance of has instance
/]aS/' blue

Symbol colour /’Sla,,%

red

Figure 3.6: An example semantic net from VolveCreek, and a frame

top level, we have the Thing concept. Everything in the world is a Thing,
meaning that it is the most general term in the model.

VolveCreek has implemented an interface which can be used by the knowl-
edge model, and it contains the top level ontology. Typically, a new knowl-
edge model is the first thing to be created in an application, and it is
initialized with such an ontology. The ontology used in this initialization
is either the aforementioned top level ontology, or an extension of it. This
ensures that the ontology includes everything that is completely necessary.
Necessary things are the establishment of entities, relations and other things
needed by the representation and basic inference system.

The model which will initialize the knowledge models in this project is a
case model. This model establishes things like as cases and other things
common to all CBR applications.

Below the top level, VolveCreek currently has a mid-level which is specific
to a certain type of usage. It can be a specific domain, but it will be rather
general concepts from the domain if so. The concepts are of course mapped
to the top level. Further, there is a lower level which is mapped to the
middle level. This is a domain specific vocabulary, which is used when
defining cases and other domain specific entities and relations.

Reusing External Library Components in the Creek CBR System

3.2. VolveCreek 27

3.2.2 Entities

The entities are nodes in the semantic network. They have references to all
relations coming to and from it, and that collection will define a frame. All
data for an entity is accessed through an entity data interface. It specifies
that each entity data can be encapsulated by several entity objects, and
that all manipulations must be done from the entity object or a knowledge
model.

There are several types of entities defined in the ontology, such as numbers,
strings, and URLs.

3.2.3 Cases

In earlier versions of VolveCreek, cases used to be nodes in the semantic
network, and they were implemented as a type of entity. Recent changes
has taken the cases out of the semantic network, and they are now separate
objects. The case structure has recently been defined by a DTD?, as a
formal description of their structure is needed when using XML to deal
with the cases.

Looking at the XML tree structure, the case element can have any number
of entries and sections. Entries can be seen as leaf-nodes in the tree, and
sections collect the entries by being internal nodes. The root node is simply
case.

A case element has two required attributes: name and status. The status
can either be solved, unsolved or processed. The sections of a case, which
may contain more entries or sections, only has one required attribute which
is its name. An entry may contain a symbol value or a data value.. A
symbol value is typically taken from ontologies, while a data value can be,
e.g., letters and numbers.

Entries have six attributes of whom two are required: parameter and source.
The parameter identifies which which part of the case the entry is repre-
senting a value for, and the source is from where the value was obtained.
An example can be the color of a car with value red found by a human
observer, as we will see in an example in section 3.2.7. The remaining four
attributes of an entry are all implied: data confidence, statistical weight,
expert relevance and learned relevance. Symbol value which an entry may
contain, is simply some parsed character data originating from the model.

2Document Type Definition

Erik Stiklestad

28 3. Software Analysis

Data value which the entry may also contain is parsed character data as
well, but must in addition have a value type saying what kind of data we
are dealing with (data type).

3.2.4 Relations

Relations are the links between nodes, and defines what the relationship is
between them. Each relation has an associated relation type defining what
kind of relation it is. The relation type also has an inverse so the relationship
can be interpreted in both directions. The relations are extremely important
to the system.

Similarly to the entities, all data for a relation is accessed through a relation
data interface. Each relation data can be encapsulated by several relation
objects, and all manipulation must be done from the relation object or the
knowledge model.

Examples of relations existing in the case model are has section, causes,
implies, has similarity to and so forth. The inverse relations would be, e.g.,
caused by and implied by. Example usage could be that an empty battery
attribute of a case may have a relation causes linking it to an engine that will
not start. Because of this, it is possible to assume with a certain probability,
that this car case will not start because of its battery state. If we already
know that it does not start, which is probably why it is a problem case, we
can go the other way and use it to assume that the battery is the reason for
the car not starting if it is indeed a flat battery.

3.2.5 Reasoning

Reasoning in VolveCreek is a three-step process which could potentially be
done for each of the four steps in the CBR cycle. Only retrieve and partly
reuse are implemented at this stage, so the rest would have to be done by
domain experts at this point, but that is likely to change. Since there are
not many new changes to this model, some of the below is taken from [Sti06]
which was written by the same author as this report.

1. Activate relevant parts of the semantic network (knowledge struc-
tures);

2. FEzplain the hypothesis (candidate facts);

3. Focus (select) one of them and make it the conclusion.

Reusing External Library Components in the Creek CBR System

3.2. VolveCreek 29

There are several good reasoning mechanisms in VolveCreek, and they work
particularly well in open and weak theory domains. VolveCreek uses abduc-
tive reasoning (inference to the best explanation) which is a process where
the explanation which makes most sense (based on the known facts) is cho-
sen. Such reasoning can never be monotonic, as that would fail to adjust
the explanation when new knowledge enters the system.

VolveCreek supports inheritance and even plausible inheritance. With plau-
sible inheritance, we can have inheritance without having one concept de-
fined as a subclass or instance or the other. VolveCreek adds up and com-
pares the weights assigned to relations transferring other relations, and con-
cludes whether it is plausible or not to inherit a given relation. Causes is
typically a relation which can lead to plausible inheritance.

With default reasoning, which is support in VolveCreek, it is also possible
to draw conclusions from the lack of contradicting evidence. This may
happen unless there is a local value overriding an inherited value. Since it is
all non-monotonic, such a conclusion will be invalidated once contradicting
evidence enters the system.

What happens during each of the three steps will be described more in
section 3.2.7, which presents a complete example with the retrieve CBR
step.

3.2.6 Comparison Controller

The comparison controller is an important component in VolveCreek. It de-
cides which similarity measure, transformation method and attribute weight
metric we will use in comparison operations. These three components are
described below.

Similarity Measure

Similarity measures are functions used to compare two case entries. A case
entry may have symbol or data values like described in section 3.2.3. Which
attribute of the entry that should be compared is given as a parameter
together with the two case entries.

The similarity function will return a value between 0 and 1, ranging from
no similarity to completely equal.

Erik Stiklestad

30 3. Software Analysis

Transformation Method

A transformation method will transform the structure of a case. Typically,
it may expand the section of a case by adding entries found through plausible
inheritance. Like mentioned earlier, this can be done by following the causal
relation and its inverse. The degree of belief to the new entry is equal to
the strongest path supporting it.

Attribute Weight Metric

The attribute weight metric defines the relative importance of a case entry
or section. The weight range from 0 to 1, where 0 means irrelevant, and 1
is very important (essential).

The scale is linear, meaning an entry with weight 0.2 is twice as important
as an entry with 0.1.

3.2.7 Creating and Running a VolveCreek Application

We will now describe how an example application can be created, and what
happens during execution. VolveCreek has a nice editor which makes it
significantly more user friendly. The system designer can use this editor to
create most of the below, however it will be described closer to the code
level for understanding. [BSABO04] contains a good introduction where the
Creek Knowledge Editor is used.

Creating a Model

Creating a knowledge model is the first thing to do. The new model is
not completely empty, but contains a top level ontology. It will establish
entities, relations and relation types which the representation and the rest
of the system is implemented to use. The model which will be used in this
project is the case model. It is a rather simple model extending the basic
model, which has only the minimum requirements. Like mentioned earlier,
the case model adds all kinds of CBR components.

Adding a Vocabulary

Now that we have a model with some top-level terms, it is time to create
a domain. Before describing the domain, we need a vocabulary to do so.

Reusing External Library Components in the Creek CBR System

3.2. VolveCreek 31

These new components will be mapped to the already existing top-level
model. One example could be colour which we have looked at earlier, and
which can be seen highlighted in the semantic net in figure 3.6.

To accomplish this, we first create a new entity called colour, and add it
to our model. We map it to our top-level model by adding an instance-of
relation between colour and Symbol. The latter is one of the most general
things in our model. In addition, we set colour to be a subclass of attribute,
so it can be used to describe cases (see 3.2.3). The relation used here is
subclass-of.

Finally, we need some instances of the new entity colour. This is also done
by adding instance-of relations between colour and other entities such as
red or blue. The two colors must be added to the model in the same way
we added colour itself, before we create the new relations.

This process is repeated for everything we want to have in our domain. In
this project the vocabulary also includes an engine status, battery status,
age and several others which are used to describe the car domain.

Adding a Causal Model

We now use our new vocabulary to describe some domain specific behavior,
before adding cases. This is the causal model. One example is that an
empty battery will prevent the engine from start. In other words, it will
cause the engine not to start. This is done by creating a relation between a
new entity representing the event that the engine will not start, and empty
battery which exists in the model already as an instance of battery status.
The special relation type causes is defined by our model.

This is done for all parts of our model that may cause a specific type of
behavior. The causal relations also have a weight like other relations, de-
scribing how likely it is to cause the given effect.

Adding Cases

When adding cases to the model, we first create a type of case which will
generalize all our specific cases. It may simply be called car case which
suits this example. We could create many types of cases like that, and use
it to categorize our more specific cases. As usual, we map it to our top-
level model by creating an instance-of relation between the newly created
component, and this time case which is defined by our case model as an

Erik Stiklestad

32 3. Software Analysis

essential component of CBR. Several cases are now created by added them
to the model, given the type car case plus a unique name.

Further, we want to describe each case in details. Recently developed is an
own class taking care of this, and we can use it in combination with the
case model. This is basically sections and entries described in section 3.2.3.
To create an entry for a case, we simply use what we need from our existing
model, and sections collect several entries. An example may be that we give
car case 1 an entry colour with the value red.

Configuring the CBR Reasoning

Reasoning in VolveCreek is well developed, but only the retrieve step of
the CBR cycle is fully implemented. Currently, the reasoning can be done
by giving the retrieve reasoning step an unsolved case. This case will be
used during execution to find cases of the same type from the model, and
compute similarities between them. There is no configuring of the reasoning
besides making sure that the retrieve step is invoked and that it is given
the unsolved case. The rest is already coded into VolveCreek, but is likely
to become more dynamic as the software evolves.

Running the Application

When an application is executed, the first thing which happens is the addi-
tion of a vocabulary, causal model and cases. This is already explained, so
we will skip to the reasoning in the retrieve step.

When the retrieve step is created, it is given an unsolved case as a parameter.
This unsolved case should be solved using solution already existing in the
case base. The case being most similar to the unsolved case has the solution
we are looking for, and hence the unsolved case is compared to all cases being
of the same type as itself.

When each case is compared to the unsolved case, a new case comparison
is created and given the two cases as input parameters. In addition, it will
also be given a comparison controller, which is basically a set of rules saying
which components of the cases should be using which similarity functions.
All components of the two cases are then compared using various similarity
functions, and their collected similarity is used as the final similarity value
between the two cases. All results are stored in a vector collecting all
similarities, and they are sorted by similarity value with the most similar
case first.

Reusing External Library Components in the Creek CBR System

3.3. Comparing VolveCreek and jColibri 33

Finally, the focus step shrinks the number of case comparisons in the vector
by leaving only those that are found to be relevant. This is done by using a
threshold. The case or cases producing the highest similarity and hence not
being filtered out by the focus step will form the retrieved case. This case’s
solution may be reused in the next step, which is not yet implemented.

3.3 Comparing VolveCreek and jColibri

Because of the project goals, it is essential to compare VolveCreek and
jColibri. The comparison will shed light on possibilities for reuse of jCol-
ibri’s components in the VolveCreek system. The comparison will, like the
previous chapters, look at one component of the system at a time. After
an overview in this chapter, the next will construct a possible solution to
accomplish the project goals.

A rough estimate of how difficult or easy each component will be to import
is also provided.

3.3.1 Representation

The representation is a fundamental issue, and there is no easy solution
to this problem. A big part of this is the type of domains the systems
are intended for. jColibri is intended for strong domain theories, where
everything is logic-oriented. VolveCreek is intended for weaker and more
open domain theories, where default reasoning® may be used.

Description Logics (DL) is the knowledge representation language used by
jColibri, and it can be translated to first-order predicate logic. The devel-
opment of DL emerged from the lack of clear semantic rules in semantic
networks. jColibri does not have default reasoning, which is the oposite
of VolveCreek which uses default reasoning. VolveCreek’s representation
language is called Creekl. [Aam94Nov|, which uses frames to describe the
nodes in a semantic network.

A knowledge model from VolveCreek was imported into jColibri in [Sti06].
The first step was to export the model as ontologies represented by the
Web Ontology Language (OWL). Unfortunately, this export mechanism is
forced to exclude certain things from the original model. After every export,

3Default reasoning is to assume something because of the lack of contradicting evi-
dence. Systems using default reasoning should never use monotonic logic, as the system
must change when new evidence is discovered.

Erik Stiklestad

34 3. Software Analysis

the resulting model represented using OWL will be a simplification if the
original VolveCreek model.

This simplification does not have to be extensive, however, and certain
domain models may not lose anything at all. As mentioned about the
VolveCreek system earlier, its strengths are within open and weak theory
domains. It is models from such domains that will suffer the most if ex-
ported.

There are several things that can be done to improve this, but they are not
strictly related to the fundamental representation, so they are described in
later sections. Solving the representational issues directly seems improbable.
Both representations have their strengths, and they both cover their own
arenas much better than the other. Perhaps the best alternative is to have
both representations available in one system.

3.3.2 Model

Both systems are using a top-level ontology, and attaches more and more
specific terms to the top-level terms. jColibri has CBROnto, while Volve-
Creek has a case model. These two serve much of the same purpose, and
they have many common terms.

The approach of jColibri is to use CBROnto to describe everything related to
CBR, and use other ontologies to describe the rest of the world. CBROnto
is represented using OWL, and this is an advantage. This means that it
will be able to share knowledge with other projects related to the Semantic
Web?, which is a result of international efforts to create a standards for web
content which can be interpreted and used by software agents. Ontologies
that are domain independent are mapped to CBROnto. Further, it is pos-
sible to create domain specific ontologies and extend this hierarchy any way
necessary.

VolveCreek may not be able to cooperate with Semantic Net projects quite
as easily because of the representation, but it can cooperate with many
projects. We call jColibri’s approach an advantage because the Semantic
Web effort includes W3C recommendations [W3C01] [DGGGO05|. Volve-
Creek’s ontology has many of the qualities found in CBROnto, but it is not
as mature yet. VolveCreek’s approach can most likely match CBROnto,
and potentially use some of the possibilities with its representation to offer
something unique that is not possible with CBROnto.

4Specifications included under Semantic Web is the Resource Description Framework
(RDF), RDF Schema, Web Ontology Language (OWL) and others.

Reusing External Library Components in the Creek CBR System

3.3. Comparing VolveCreek and jColibri 35

3.3.3 Cases

The case structures are rather similar. They can both be seen as a tree
structure, getting a similarity function assigned to each node at some point.
jColibri has local similarity functions for leaf-nodes, and global similarity
functions for the root and internal nodes. VolveCreek has an entry com-
parison for leaf-nodes, section comparison for internal nodes and a case
comparison for the root nodes. Which similarity function will be used in
VolveCreek is decided by the comparison controller.

If not used directly, the case structures can certainly be translated from one
system to the other. CBROnto guides the case representation in jColibri,
and the structure is stored in an XML file. VolveCreek is using a DTD to
define how cases may be constructed.

The value of each case component is a symbol value or a data value in
VolveCreek. Symbol values are taken from the model, while the data values
can be of any known data type. jColibri is not very different, and although
using a slightly different approach, the attribute values should be quite easy
to work with if both systems have the data types used to represent them.
VolveCreek does not divide the case into a description, solution and result
like jColibri, but something equivalent can be done. The case has constants
defining if it is solved, unsolved or currently processed, and the description,
solution and result can be given in the case’s data. How all of this will
be solved is not completely certain at the time of writing this report. The
new version of VolveCreek is making quite dramatic changes to the case
representation, and the changes are not completed.

3.3.4 Comparison Components

jColibri’s distributed architecture makes it very pleasant to work with. It
is easy to get an overview of how the system will execute, and which com-
parison component will be used. The similarity function is specified in the
case structure, attached to each attribute and the Description concept.

jColibri’s GUI makes it easy to chose from a list of available and imple-
mented functions, assuming the user knows which one should be used. It
could be an advantage if jColibri also filtered out similarity functions that
does not work with the values of certain attributes, but in all fairness this
is something the system designer should be able to sort out.

VolveCreek was earlier not quite as well organized, but has come a long way
with the recent development. The new comparison controller takes care of

Erik Stiklestad

36 3. Software Analysis

assigning similarity measures to entries based on their attribute type. This
is a more flexible system than that of jColibri, since we have the potential
to implement a number of controllers and not specify the similarity measure
explicitly like done in the jColibri case structures. On the other hand, we
could use several case structures to do the same thing in jColibri.

Although it is too early to see the full potential of the comparison controller
this early in its development, it does appear to be a very good idea which
perhaps also jColibri could benefit from. All in all, however, this does not
represent any problems for the import of components, as the assignment of
similarity functions are not tangled within the rest of the code.

The interfaces for similarity measures in the two systems are also very simi-
lar. jColibri’s similarity function interface has a compute method returning
the data type double based on the input of two individuals. VolveCreek’s
similarity measure interface has a similarity method also returning a double
based on two case entries and an attribute saying which attribute of the two
case entries should be compared. If VolveCreek simply sent the attribute
values instead of the entries, it would be the same as that of jColibri.

It is rather safe to already now conclude that we can quite easily make the
jColibri similarity functions work in VolveCreek.

3.3.5 Problem Solving Methods

VolveCreek does not facilitate a lot of PSMs. It is not obvious how, e.g.,
jColibri’s textual extension would be implemented for VolveCreek. It could
surely be done, but there is no organization set up for it at this stage in
the development. The closest thing would be the abstract class CBRRea-
soningStep being extended by RetrieveResult.

VolveCreek does not have a task hierarchy like jColibri, so there is no task
versus method competence. VolveCreek developers are likely to create some
kind of organization for methods as they come further in the development
process. Some of the advantages VolveCreek could gain from this is dis-
cussed later in this project report.

jColibri on the other hand, has several problem solving methods, and they
are well integrated into the system as extensions of the abstract class
CBRMethod. New methods, like other components, can be added to the sys-
tem by placing them in packages as discussed in section 3.1.2.

The methods also have a standard way of communicating with the rest
of the system in jColibri, but again VolveCreek has not come that far in

Reusing External Library Components in the Creek CBR System

3.3. Comparing VolveCreek and jColibri 37

thing

generic concepts

general
domain concepts

/
[/N7 VNV / \\ \

case case case
039 76 112

cases

Figure 3.7: The VolveCreek domain

development which makes it hard to compare them. jColibri methods are
described in section 3.1.7.

Importing methods to VolveCreek may be require some efforts since they are
very centralized in jColibri and communicate with many other components.
At the same time, the VolveCreek system is not well prepared to welcome
the new components.

3.3.6 Transforms

VolveCreek has a big advantage supporting plausible inheritance. Practi-
cally, this is done by transforming cases before comparing them using a
transformation method. The transformation uses the causal relations and
its inverse, which is found in the case model. When such a relationship is
found between two symbols, an inferred entry is added with a weight equal
to the strongest path supporting it. This is not available in jColibri.

3.3.7 Reuse

Reuse is an important focus in jColibri, but it is also possible with several
parts of VolveCreek. Figure 3.7 is a figure of VolveCreek’s domain taken

Erik Stiklestad

38 3. Software Analysis

from [Aam04|. The three levels, like described in section 3.2.1, are the
top level concepts, the general domain concepts mapped to the top level,
and finally the cases describing specific problems which are mapped to the
general domain knowledge.

If we look at what is implemented in each system, we can argue that Volve-
Creek has a focus in a branch rather low in that figure although being
present over the whole scale. It does have very general concepts in place
in the ontologies, but the implementation is for now focused a bit domain
specific, or at least towards specific types of systems. The implementa-
tion is generalized as much as possible, however, without slowing down the
development process significantly. jColibri on the other hand has focused
on the the top level. This enables a broader reuse of both knowledge and
code. jColibri’s textual and web extensions are examples of things that are
a bit lower on the figure. Both systems has the potential to be a complete
solution over the whole board.

Both systems are able to reuse its own knowledge and code, but because
of the representational issues, jColibri has problems reusing things from
VolveCreek. This was studied in [Sti06], and it is clear that we lose some
information or knowledge in the transition. The other way around may be
a bit harder to do in a general way, but we should not have the same loss of
information or knowledge. jColibri’s distributed architecture should make
it much easier for VolveCreek to reuse its components. This is something
which will come clear in later chapters, as the key goals of this project is to
do just that.

3.4 Summary

jColibri is the Java implementation of the COLIBRI system. Major com-
ponents are:

e The core consisting of a state, context and packages;

Data types such as numbers and strings;

Connectors and case bases;

Helper functions such as the similarity functions;

Tasks and methods which together configure and guide the execution
of a jColibri application.

Reusing External Library Components in the Creek CBR System

3.4. Summary 39

VolveCreek is the Java implementation of the Creek system. The implemen-
tation used in this project is a development snapshot from Volve AS, and is
incomplete. The most important aspects of VolveCreek to this project are
the ontologies, entities, relations, reasoning capabilities and the comparison
controller.

A comparison between the two systems shows that the main issue is repre-
sentation, while several of the major components are fairly similar. jColibri
has come further in its development, and some its components does not
vet exist in VolveCreek. It is likely that VolveCreek will be developed in a
direction which will eventually cover most of what jColibri offers.

Reuse is a huge focus in jColibri, and hopefully this will make it easier for
VolveCreek to reuse its components. The other way around is harder, and
some things are lost in the transition [Sti06].

Erik Stiklestad

40

3. Software Analysis

Reusing External Library Components in the Creek CBR System

Chapter 4

Construction

This chapter describes how jColibri components can be imported to Volve-
Creek, and how we can create an application to demonstrate our results. It
will be implemented and evaluated in the next chapters.

The components should be usable inside the existing VolveCreek system, so
tasks will not be imported. VolveCreek would benefit from having a task
hierarchy like jColibri, and this will be discussed later. The following three
components are the focus in addition to the demonstrator system itself:

e Helper functions
e Data types
e Methods

From the comparison in chapter 3.3, we concluded that the systems are quite
similar in many ways, but they are also built on different foundations. Using
the components directly is not possible without some kind of bridge between
the two systems. The bridge will have to take care of the representational
issues somehow. The more general the solution is, the more useful it will
be.

We will start each section by identifying the requirements for the compo-
nent, before constructing a possible solution. To construct a mechanism
which enables VolveCreek to use jColibri components, we must look at
what the components are dependent on to be able to execute successfully.
Finally, we will look at the construction of the demonstrator system where
these components will be used.

Requirements from the VolveCreek system will be taken care of once the
components are available to the system. Note that the solution attempts to

41

42 4. Construction

import already existing components from jColibri. Some restrictions may
not necessarily be with the jColibri system itself, but with the existing
components.

4.1 Helper Functions

Similarity functions are the only helper functions we can import since there
are no other helper functions in jColibri yet. The functions are implemented
almost the same way in both systems, so it should be fairly easy to import
them. We will need a way to represent the VolveCreek symbol and data
values as jColibri individuals. This can be done by using a wrapper.

This wrapper should wrap the VolveCreek component, and implement jCol-
ibri’s Individual interface. If this new implementation of the Individual
interface is able to access the VolveCreek values, then the similarity func-
tions should be possible to use directly.

Each jColibri similarity function implements the SimilarityFunction inter-
face, which means that it will have a compute method taking two individuals
are parameters. At the end of its execution, it will return a double data
type which indicates the similarity between the two individuals. This value
is between 0 (no similarity) and 1 (equal).

The implemented similarity functions are naturally implemented to compare
two values of data types existing in jColibri. This means that we must make
sure that the data type from VolveCreek is in the same format and that it
is compatible with the similarity function. Much of this is also taken care of
in the similarity function itself, by returning 0.0 similarity if the data types
cannot be compared by that specific similarity function. This is only a way
to make the code error-tolerant however, and we should still make sure that
we are using the right data type.

To make all jColibri similarity functions available, we can implement a new
similarity measure for VolveCreek. The similarity measure constructor can
get the name of the jColibri similarity function as a parameter, and use
it to create an instance of it (provided that it exists). jColibri similarity
functions also use parameters as described in section 3.1.6. To use them, we
should also be able to send a list of parameters to the similarity measure.
The parameters can then be used when creating an instance of the jColibri
similarity function.

A lot of this is very similar to what jColibri does when using its own sim-
ilarity functions. The class CBRSimilarity has a method getSimilFunction

Reusing External Library Components in the Creek CBR System

4.2. Data Types 43

which does much of what we desire to do in our new VolveCreek similarity
measure. This can be used as an inspiration also in the implementation
phase.

4.2 Data Types

We will try to import the data type Text from jColibri’s textual extension.

Data types are implemented as own classes in jColibri, and they can be
accessed directly. To use jColibri’s data types in VolveCreek, we have to
create a new entity type, and also add it to the ontologies. The configu-
ration files explained in section 3.1.3 can not be used in VolveCreek. The
implementation should be fairly straight forward, but must be done to each
data type in a similar fashion to what is already done with native Java data
types used in VolveCreek.

jColibri has a DataFilter data type which is located in the textual extension.
This data type stores data in a general way using hash-tables instead of
class attributes. A type of data filter is Text. It is composed by a collection
of Paragraph instances. Each paragraph contains a collection of Sentence
instances, and each sentence by a collection of Token instances. Fach of
these are implemented in separate classes. The textual extension will be
used several times in this project, and it is described in further detail in
[RDGWO05].

When creating the new entity type for Text, the most important method is
matches in addition to some constructors. This method is used to check if
a given entity matches the representation to this entity type. This can be
checked by making sure that a value exists, and that it is an instance-of
the jColibri Text data type.

After constructing the entity type and defining how it should be matched,
the Text data type class in jColibri can be accessed directly.

One problem which is related to saving the model once a text entity type is
used, is that it needs to be serializable. The data types are not serializable
in jColibri, but have to be if we want to save the model as a binary file
which is what VolveCreek does. A simple modification of the Text class in
jColibri solves this issue. We let the class implement Serializable. We do
not want to change anything in jColibri since the components should be
imported like they are implemented, but this is the only change to jColibri
in this project and it is a trivial matter.

Erik Stiklestad

44 4. Construction

4.3 Problem Solving Methods

PSMs require more consideration than other components because of their
centralized location within the jColibri system. See section 3.1 for more
details on the methods. Their operations cooperate with several other com-
ponents, and this complicates the import.

We will first look at two different approaches, and then describe the con-
struction in greater detail for one of them. The first approach focuses on
a strict import of the methods, while the second focuses on making them
usable within VolveCreek.

4.3.1 Import Focus

Following the kind of approach done with other components, we can try to
import methods from jColibri into VolveCreek directly. Since the methods
use several other components, we also have to import those components for
the methods to execute successfully.

The most important component is the context, which in turn contains the
equally important collections of cases. Both can be specialized by extending
existing jColibri classes and interfaces to make them work with the Volve-
Creek system. Omnce we have a context, a case base and perhaps a case
evaluation list, we can actually start to execute the methods. None of these
components are difficult to specialize (extend) or wrap in some way.

When looking at specific methods, however, a serious problem arise. All
methods are implemented to use very specific aspects of the jColibri system
directly during execution. Although we can provide all methods with what
they need to execute, their execution will only be partial unless we continue
to import almost everything from the jColibri system. Most likely, it is also
necessary to modify the methods, which is not something we want to do
unless it is a very small and trivial matter. This includes the individuals
and other things implemented to support jColibri’s representation, and it is
also soon obvious that we are running into a representational issues sooner
or later. These issues will have to be solved rather specifically for each type
of method or application, and some cannot be solved. This is a well known
issue with these two systems, and it was also the major difference in section
3.3.1. Future extension packages are also likely to be difficult to import
using this approach.

While this is still interesting for many applications, we basically have to
import the whole jColibri system before we are done. It does not seem like

Reusing External Library Components in the Creek CBR System

4.3. Problem Solving Methods 45

an attractive option to first wrap and specialize many components, and not
end up with something that can be used. At least not when knowing that
we can deal with the representation right away, and then use the jColibri
components as they are. This is covered by the remaining sections of this
chapter, which attempts to use the jColibri system in a small temporary
jColibri environment without strictly importing them.

4.3.2 Usage Focus

The essence of this solution is that we can create a minimal native envi-
ronment for the jColibri methods to execute in, and apply the result back
to VolveCreek once the execution has finished. In other words, instead of
importing almost everything from the jColibri system to VolveCreek, we
rather move some data over to a small jColibri application which executes
and returns the result.

A typical method will be modifying parts of the context somehow, and
return the updated context. Normally, since this is CBR, the cases are either
modified, transformed or we could even end up with completely new cases.
After a method has finished executing, the resulting cases can be found in
the context as working cases, i.e., the cases we are currently working on.
These cases may be used to update the original cases that are located in
the case base or a case persistency.

A method may also simply retrieve a few cases based on some filter, and this
collection of cases may be used for further processing. In fact, most methods
are using the working cases instead of the case base directly, because they
assume some kind of retrieval method to filter out unnecessary cases that
does not need that method’s type of processing. The retrieval methods will
of course use the case base directly.

To get cases into the case base from the case persistency, a method using a
connector will typically be executed before the retrieval method to fill the
case base with cases if they is not already there. This is normally done in the
precycle, which happens before the CBR cycle (see sections 3.1.8 and 3.1.8
where the precycle task list is used and accomplished by such methods).

This means that we need to create an environment with a context and
cases. The context and the cases should be easy to work with for the
jColibri methods, while they should also reflect the current situation of the
VolveCreek application. The jColibri representation should be used.

Since a VolveCreek application will be trying to use a jColibri component at

Erik Stiklestad

46 4. Construction

some time during execution, we need some way of having an updated context
at that time. Since the cases and the state of a VolveCreek application
changes continuously during execution, there is no reason to initialize or
keep the context updated at all times. Instead, it would be better to load
the cases into the context when we need them, and use the result after the
method has executed. This way, we can also minimize the amount of cases
we have to transfer to the case base. This can be compared to some kind
of retrieval function, but it will go both ways and we can use the jColibri
Connector interface to achieve what we want.

Connectors can work with any case persistency like explained in section
3.1.5. Implementing a custom connector for VolveCreek is the best solution,
and once a connector is in place, the jColibri methods can work with the
normal context using the connector as a bridge between the two systems.

Note that this is because the specific jColibri methods themselves use the
cases. It would not be necessary to do all of this if we just wanted to invoke
a jColibri method from VolveCreek in a general way and not worry about
what it actually does.

Inspired by jColibri’s application template, we can create a class to deal
with the execution of a jColibri method from the VolveCreek system. Such
a class would have the following requirements.

e Have a constructor taking at least two parameters: an instance of the
jColibri method we wish to execute and some kind of filter (an entity
type or something else we can use as a filter);

e Use a special VolveCreek connector to retrieve the wanted cases;

e (Create a context where the cases will be kept during execution, and
initialize it with the cases we want to apply the method on;

e Execute the method affecting the context;

e Use the VolveCreek connector to transfer the affected cases back to
the VolveCreek model;

4.3.3 Method Construction with Usage Focus

First we must create the custom connector which can import VolveCreek
cases into the jColibri context. This new connector should extend jColibri’s
Connector interface. The most important methods of this new connector
class are the ones fetching cases from VolveCreek and translating them to

Reusing External Library Components in the Creek CBR System

4.3. Problem Solving Methods 47

jColibri cases, and others taking jColibri cases and storing them in a Volve-
Creek format. The method first will be used before the method execution,
and the second will be used after the execution to let VolveCreek know about
the results. To lighten this operation we only send a minimum amount of
cases. Most of the time the system designer should be able to limit the
number of cases quite a lot. This filter may, e.g., be an entity type, which
is frequently used as a filter in VolveCreek.

For each VolveCreek case, we can construct a new jColibri case with an
identification equal to the case’s name. We may then continue by iterating
through all entries and section of the case, and transform them into jColibri
attributes (described in section 3.1.4). This can be done using a recursive
method since both systems’ case structures are basically the same (trees).

The case attributes may have two different types of values: symbol value
(from the model) or data value (any data type). We must deal with the two
types a bit different, but it is unlikely that it will be a significant problem.
VolveCreek stores cases in XML structures, but they are also available di-
rectly from the application during execution. Where the connector fetches
the cases does not really matter, and we can create several connectors to
suit different requirements.

Once the cases are in the context, we can execute the method instance
and give it the context as a parameter. The method should now execute
successfully and affect the cases in our context.

The selected method which will be used in this project is called Stemmer-
Method. The stemmer method takes a Text data type, and transforms each
word (token) to its stem (base/root form). The stemmer is actually another
project called SnowBall!, which jColibri uses through its textual extension.
A definition of SnowBall from its website reads:

Snowball is a small string-handling language, and its name was
chosen as a tribute to SNOBOL, with which it shares the concept
of string patterns delivering signals that are used to control the
flow of the program.

Practically for this project, we will, e.g., see the words like "writing” be
stemmed to "write”, and the same will happen to "writes” and other vari-
ation. To do this, we can use the new data type imported in the previous
section. A case can be given an entry with a text value, and later go through
the stemmer method. Here we also have the possibility to filter cases based
on their entries, as we obviously do not have to transfer cases without a

thttp://snowball.tartarus.org/

Erik Stiklestad

48 4. Construction

text entry if we want to use the stemmer.

After the method has been executed, the cases in our context have been
changed. We will need a method to update our VolveCreek knowledge. This
method should take the values from the jColibri individuals, and place them
in VolveCreek components. It is likely that we will need many variations of
this method. It really depends on the method used to affect the cases.

An important issues which surfaces when we are about to transfer the up-
dated values back to VolveCreek, is to make sure that data types and symbol
types are created appropriately. There are many things to worry about here,
but this project will not solve everything. The most important thing in this
project is to see if we can do this at all, and these issues are mostly practical
and their solutions are fairly obvious.

It is also a question whether or not we want the changes in our model, or
if we just wanted to see the result of it as a temporary calculation. Some
custom work is likely to be necessary for each new type of application, but
it should not be extensive.

4.4 Demonstrator System

The demonstration is based on the example application which is included
in VolveCreek. This example has been used throughout this project and
[Sti06], and section 3.2.7 provides a description of how it is build. We will
be extending this application with our new components:

e A method called StemmerMethod:;
e Similarity functions called Equal, Interval, TokensContained;
e A data type called Text.

Since the example application already has some cars with attributes, we
can extend these cases with more attributes. First off we need to apply the
similarity functions on some values of the correct data types. The Equal
similarity function simply checks if two individuals are equal or not, and
returns either 1 (equal) or 0 (not equal). The function uses the method java.
lang.0Object.equals to do this, unless a value is a StringEnum in which case
java.lang.String.equals will be used instead. We can test any data type
using this similarity function, so we do not have to add any new attributes.

The Interval similarity function works with numbers, and the example
application already has an attribute for that as well. The age attribute

Reusing External Library Components in the Creek CBR System

4.5. Summary 49

_ ==yl
can be used. Interval computes 1 — ;7 7iar, Where x and y are the two

numbers being compared, and INTERVAL is a number defining how large the
interval in which they are compared is. Some difference between x and y
may not mean a whole lot if INTERVAL is large.

TokensContained should be tested on a String value having several words
(tokens). Since we want to check how many words two attributes have in
common, we must make sure that at least one word can be found in all
attributes of this kind. The similarity value is computed by checking how
many tokens they have in common, and dividing that number by the total
number of tokens.

One attribute should also use the new Text data type. This is needed to
both test the stemmer and the data type itself. A stemmer can potentially
improve the case matching by making two words be recognized as the same
words even though they are written in different times or in plural. To test
this we can run a similarity function before the stemming, and then another
after the stemming. If we chose words for this attribute that are not the
same before stemming, but become the same after the stemming, we have
proven a point. If this can be done, we have also shown that the text data
type itself is working in Creek.

By running the resulting application, we will be able to evaluate whether
the imported components are working as they should or not.

4.5 Summary

We look at the construction of three components: helper functions, data
types and methods. Tasks are not included because we want to use the
components in existing VolveCreek applications, and we are not able to use
tasks there.

The only helper functions we can import are the similarity functions. We
are able to construct a general solution which will enable us to use any
similarity function of jColibri through one similarity measure implemented
in VolveCreek. A wrapper is used to represent case entries as individuals
before they are compared by the similarity function.

There are no general solution for data types, so we must implement one at
a time. The jColibri data type classes can be used directly, but we must
add a new entity type in VolveCreek. We must also add the new data type
to the ontologies and edit some other VolveCreek components.

Erik Stiklestad

50 4. Construction

The methods require more work than the other components because of
their centralized position within the jColibri system. We look at two ways
of solving it. First, we have a solution which focuses on the import. This
is possible, but when looking at specific methods it is clear that they are
not very useful after having been imported. Instead, we go for the second
solution which has a usage focus. This solution creates a minimal jColibri
environment in which the method can be executed, before applying the
changes back to VolveCreek. To achieve this, we create a connector to
transfer cases, and a class inspired by the jColibri application template to
create the environment.

A demonstrator system will be based on the VolveCreek example. Two
similarity functions can tested on existing attributes, while the rest requires
that we extend the application a little bit. The new data type and method
also requires some work, but can be tested fairly easily.

Reusing External Library Components in the Creek CBR System

ENECCRN R

Chapter 5

Implementation

The implementation chapter describes how the steps outlined in the con-
struction chapter was implemented to create a demonstration. Code snip-
pets introduced by explanations are provided.

5.1 Helper Functions

The construction phase describes a very general solution to import all jCol-
ibri similarity function through one VolveCreek similarity measure. The
class implemented to take care of this extends VolveCreek’s SimilarityMeasure
interface. First of all, we will look at the constructor and the class variables.

In the code snippet below, we assume that the name is equal to a Java
class name with full path. If it does not exist, it will be caught in an
exception later. The parameters are also assumed valid, and of the type
CBRSimilarityParam which is implemented in jColibri. This is all we need,
and the constructor is shown below.

protected String name;
protected List<CBRSimilarityParam> parameters;

public JColibriSimilarityMeasure(String name, ArraylList params) {
this.name = name;
this.parameters = params;

}

Each similarity measure has a similarity method, and it is here that we
have to be careful. This is where the actual similarity is being computed.
This method must get two case entries and an attribute as parameters.
The case entries have the values we want to give to the jColibri similarity

o1

—

[V NI
SN

52 5. Implementation

functions, so we need to put them in Individual objects. This is done in a
class called CaseEntryIndividual, which implements the jColibri Individual
interface and wraps a VolveCreek CaseEntry.

The implementation of the wrapper is not complicated. It is very similar to
SimpleIndividual which is implemented in jColibri. The main difference is
the constructors, which are specialized to deal with VolveCreek case entries.
The value of the individual is set to either the symbol value or the data value
of the case entry, depending on which of the two is provided. Only one will
be provided for each entry. The rest of this new individual is the same as
the original jColibri SimpleIndividual.

Now that we have two individuals, we are almost ready to invoke a jColibri
similarity function. Before we do that, we must create an instance of the
wanted similarity function, and we must give it the list of parameters. The
below code takes care of this. Note that this approach is very similar to
that of jColibri itself, and the code below is similar to a method in jColibri’s
CBRSimilarity, which also has the same functionality.

public SimilarityFunction getSimilarityFuncion() {
Class cl;
SimilarityFunction similFunc;
Iterator it;
HashMap<String, Object> map;
CBRSimilarityParam param;
try {
cl = Class.forName(this.name);
similFunc = (SimilarityFunction) cl.newInstance();
if (parameters != null) {
it = parameters.iterator();
map = new HashMap<String, Object>();
while (it.hasNext()) {
param = (CBRSimilarityParam) it.next();
map .put (param.getName (), param.getValue());
}
similFunc.setParameters (map);
}
return similFunc;
}
catch (java.lang.ClassNotFoundException cnfe) { }
catch (java.lang.InstantiationException ine) { }
catch (java.lang.IllegalAccessException ile) { }
return null;

}

-

The above method creates a new instance of the similarity function, adds
the wanted parameters, and catches all possible exceptions which may be
thrown. The catch blocks could be used to write to the log or something.
Now that we have a similarity function and the two individuals that are
needed, the similarity method can be completed. The method is shown
below.

Reusing External Library Components in the Creek CBR System

SIS R

e
O U A W N~ O ©® N O

-
<

e8]

5.2. Data Types 53

public double similarity(
Entity attribute, CaseEntry entryA, CaseEntry entryB) {
if (entryA == null || entryB == null)
return 0.0;
CaseEntryIndividual a = new CaseEntryIndividual (entryA, attribute);
CaseEntryIndividual b = new CaseEntryIndividual (entryB, attribute);

SimilarityFunction simFunc = getSimilarityFuncion();
double eval = 0.0;
if (simFunc !'= null){
eval = simFunc.compute(a, b);
¥
return eval;

If all goes well, a double value representing the similarity between the two
entries is returned. If not, the similarity is assumed to be zero (irrelevant).

5.2 Data Types

Following are code snippets and explanations which covers the import of
the new data type Text from jColibri to VolveCreek. A new entity type is
implemented.

In the new entity type we need a constructor. The constructor will take the
knowledge model, the text value and a description as parameters. It will
create the new entity and add it to the knowledge model. The entity will be
given the identification "TextEntity#" followed by a unique number. The
description will be attached to the entity. In addition, it will be associated
with the Text object as its entity data.

public TextEntity(KnowledgeModel model, Text text, String description) {
super (makeEntity (model, description), true);
setEntityObject (text);

¥

private static Entity makeEntity(KnowledgeModel model, String description) {
Entity entity = null;
int i = model.entitySize ()+1;

while(entity == null)A{
try {
entity = new Entity(model, "TextEntity#"+i, description);
}
catch(NameAlreadyExistException e) {
i++;
}
}
return entity;

We also need a constructor to be used when we want to create a new entity
value of an already existing entity type. Parameters are the knowledge

Erik Stiklestad

w N

54 5. Implementation

model, the text object and the entity type it will belong to. An instance-of
relation is used in the model to associate the entity with its type.

public TextEntity(KnowledgeModel model, Text text, Entity type) {
this (model, text, "");
try {
addRelation(BasicModel.INSTANCE_OF, type);
¥
catch(NoSuchRelationTypeException e) {
e.printStackTrace ();
¥
}

Although the code is short, the following method is very important. It will
define how entities are matched before defined and treated as a text entity
type. We simply make sure that the value exists and that it is an instance
of the Text class.

public static boolean matches (Entity ent) {
return (ent.getEntityObject() != null)
&& (ent.getEntityObject () instanceof Text);

In order to make the VolveCreek system display the new entity type in the
GUI elements both in results after execution and in the CKE!, we need to
add some code supporting it several places. It is not very flexible that we
have to add this directly, and it should be some kind of configuration files
in XML for this, but that is likely to improve as the VolveCreek software
matures. The case writer and parser also needs to recognize the new data
type. Following is a list of places where changes were made during imple-
mentation. The changes are minor, and some are just for convenience. We
will not go into further detail regarding these changes in the report.

The case model and associated constants

The case parser

The case writer

e A new constructor for case entry to take the new data type as a
parameter

The new data type will be tested in the next chapter.

WolveCreek Knowledge Editor

Reusing External Library Components in the Creek CBR System

S N O

TR W N

[CSIEN SN

WO NN NN NN NN NN

o

w

—

SR W N

W W W W w

5.3. Problem Solving Methods 55

5.3 Problem Solving Methods

We will start by creating the environment in which our methods will be
executed. It is called JColibriApp, and it is much like a jColibri application.
The difference is that it does not use tasks, and hence we are not using a core
object either. The implementation is not fully developed, but it illustrates
its points. A few simplifications have been made compared to the solution
explained in the construction phase.

First off, we create the constructor. It takes two parameters, which are an
instance of the jColibri method and a case. The case represents the filter,
as we can use this case to only fetch cases of its type. This also ensures
that they are possible to compare, which may often be a very important
point. The constructor then initializes the three main variables we will be
using: context, knowledge model and the connector. The cases are retrieved
by the connector in retrieveAllCases (also shown in the code below), and
then put into the context by setCases. The method is then executed.

public JColibriApp (CBRMethod method, SeparatedCase casel) {
this.context = new CBRContext ();
this.connector = new VolveCreekConnector ();
this.km = casel.getKnowledgeModel ();
SeparatedCase[] cases = this.km.getCases();
try {
this.connector.init2(cases);
this.context.setCases((List<CBRCase>)this.connector.retrieveAllCases());
} catch (InitializingException el) {
el.printStackTrace();
3
executeMethod (method) ;
¥
public Collection<CBRCase> retrieveAllCases () {
ArrayList <CBRCase> list = new ArraylList();
for (int i = 0; i < cases.length; i++){
CBRCaseRecord cbrcase = new CBRCaseRecord(cases[i].getName());
CaseEntry[] entries = cases[i].getEntries();
for (int j = 0; j < entries.length; j++){
// if symbol wvalue
if (entries[j].getSymbolValueAttribute() != null){
cbrcase.addAttribute("" + entries[j].getID(), entries[j]
.getSymbolValueAttribute (), entries[j]
.getStatisticalWeight (), null);

¥
// if data wvalue
if (entries[j].getDataValue() != null){
Object value = entries[j].getDataValue();
cbrcase.addAttribute("" + entries[j].getValueType().getName(),
value, entries[j].getStatisticalWeight(), null);
¥
}
list.add(cbrcase);
¥
return list;

}

Erik Stiklestad

56 5. Implementation

Before we execute the method, we need to set some parameters. This im-
plementation will only set the necessary parameters. It is possible to go
further and let each method define its own parameters, but this was not
given any attention in this project. It will always process the cases. If a
specific method should be given some other parameters from the user, it
would not be a lot of work to create a way to let the system designer send
an array with values and have them added to the parameter hash map.

public void executeMethod (CBRMethod method){
HashMap parameters = new HashMap();
parameters.put ("Process Cases", true);
parameters .put("Process Query", false);
method.setParameters (parameters);
try{
method.execute(this.context);
} catch (ExecutionException e) {
e.printStackTrace ();
¥

}
U

Once the method has executed, we can use the result to update our cases.
As mentioned earlier, time did not allow for implementation both ways here.

5.4 Demonstrator System

We will look at one component at a time as we place them in the demon-
strator system.

5.4.1 Using the New Data Type

To use the new data type, we add an attribute desc, just like we added
colour in section 3.2.7. This is an abbreviation for description, but we will
just use it to attach some text to each car. The text will contain words
that can be stemmed by the StemmerMethod later and become identical. It
does not really matter what this text is, as we are just testing it. The code
below shows that desc will be an instance of Text which was added to the
case model in section 3.2.7, and it is an attribute.

Entity text = new Entity(km, "desc", "the description of the car");
text.addRelation(SeparatedCaseModel . INSTANCE_OF,
SeparatedCaseModel . TEXT);

text.addRelation(SeparatedCaseModel .SUBCLASS_OF, attribute);

Reusing External Library Components in the Creek CBR System

w N

5.4. Demonstrator System 57

The first car is given the text "run”, the second car is given "runs” and the
third car is given "running”. These text values are added to desc entries,
like shown below. The text variable contains "run” since this is Car Case
1, while "Human Observation” is a value describing how the value was
obtained. The latter is not important here.

casel.addEntry(km.getEntity("desc"”), "Human Observation", text);

We will not add this attribute to the causal model. If it had been added,
however, it would not have affected this demonstration in any way.

5.4.2 Using the new Similarity Functions

To use our new similarity functions, we implement a new comparison con-
troller. This is a very convenient way to make sure that our attributes will
be compared using a jColibri similarity function.

The new comparison controller will be called DemoComparisonController,
and the only thing we will change from the default controller is the
getSimilarityMeasure method. We explicitly find attributes of the car, and
assign a similarity function to them. Below is one example which is assigning
the jColibri Interval similarity function to the age attribute. Notice that
we are also sending this function a parameter.

if (attribute.getName () .equals("age")){
CBRSimilarityParam param = new CBRSimilarityParam("INTERVAL", "15");
Arraylist arraylList = new ArrayList();
arraylist.add(param);
// This function computes: sim(z,y) = 1 - (lz-yl//interval)
simMeasure = new JColibriSimilarityMeasure(
"jcolibri.similarity.local.Interval", arraylist);

Matching the name of an attribute directly is OK in this demonstration,
but normally it would be smarter to match something a bit more general
like an entity type. We can apply any similarity function we want, although
we should of course consider the data type of an attribute before we apply
it. If the data type is not right, then we will typically just end up with a
similarity of 0.0.

Following is a list of case entries and which similarity function they have
assigned in this demonstration. All similarity functions are implemented
for jColibri, but now used by VolveCreek.

Erik Stiklestad

w N e

58 5. Implementation

e age is a number, and has the Interval similarity function assigned;

e words is a collection of words, and has the TokensContained similarity
measure assigned;

e desc, and all other attributes already in the application, will be using
the Equal similarity measure.

5.4.3 Invoking a Method

To invoke the method, we only have to create a new JColibriApp (see section
5.3), and give it an instance of StemmerMethod and a case. The case was
only chosen as a way to filter which cases we will be transferring through
the connector.

new JColibriApp(new StemmerMethod(), km.getCase("Car Case 3"));

Like discussed earlier, the implementation is missing a way to affect the
VolveCreek cases after the jColibri method has been executed. It is not
necessarily difficult to implement it, but the implementation phase ran out
of time. To cover this hole, we create a method printing the results instead.
The method printing the results will be invoked right after the stemming is
completed. Code for this method follows.

public void outputResults (){
ArrayList <CBRCase> cases = (ArraylList<CBRCase>) context.getCases ();
Iterator iter = cases.iterator();
int i = 0;
while(iter.hasNext ()){
CBRCase casel = (CBRCase) iter.next();
Text val = (Text) casel.getDescription().getRelation("Text").
getTarget () .getValue ();
Collection tokens = val.getTokensList ();

Iterator itern = tokens.iterator();
while(itern.hasNext ()){
Token token = (Token) itern.next();

System.out.println("The original token was: "

+ token.getData(Token.COMPLETEWORD));
System.out.println("The stemmed token is: "
+ token.getData(Token.STEMMEDWORD));

The code simply loops through the list of cases, and then through the token
list for each case. For each token it prints both the complete (original)
word and the stemmed word. The idea is that all stemmed words should
be identical if the complete word is the same.

Reusing External Library Components in the Creek CBR System

5.5. Summary 59

5.5 Summary

Following the construction phase, we implement the import the three com-
ponents we are interested in: helper functions, data types and methods.
Helper functions are implemented as planned. The Text data type is also
implemented as planned, with some unforeseen work in the case writer and
parser. The method is also imported, but with some simplifications. The
connector only works one way, and the evaluation phase will have to use a
rather basic method which prints the results instead of applying them back
to the VolveCreek application.

In addition we implement the demonstrator system, which is the VolveCreek
example application extended to use the imported components.

Erik Stiklestad

60

5. Implementation

Reusing External Library Components in the Creek CBR System

Chapter 6

Testing

The code produced during the implementation phase will now be evaluated
by running the demonstrator system. This chapter present and evaluates
its results. A further discussion about the solution in general is provided in
the next chapter.

First off are the results from the comparisons performed by the similarity
functions.

6.1 Similarities

Figure 6.1 shows the similarities computed by the similarity functions. words
is the first attribute in the list, and it is given a similarity value of 0.6 using
the TokensContained similarity function. The description of the first case
(called A in the figure) is "five siz two four”, while the second case (called
B in the figure) has "one two three four five”. Of the five tokens in the
second case’s attribute, the first case contains three. Since % = 0.6, we can
conclude that the similarity functions is working as it should.

There are several attributes using the Equal similarity function: solution,
battery status, colour, starter engine won’t turn, engine status, desc and
starter engine turns slowly. These needs to be identical for the similarity
function to give a similarity value of 1, or else they will be given 0. We
could call this a boolean function, but the return value is a double. As we
can see in Figure 6.1, some of them are equal, and some are not. The results
are correct.

A gspecial case is desc, which is using our new Text data type. The values
should have been stemmed and the results applied back to the cases, but

61

62 6. Testing

Entry-comparisons:

Parameter Similar... Description A Description B

words 0.6 words: five six two four null words: one two three four five null
solution 0 N/A solution: recharge battery

battery status 0 battery status: empty battery battery status: low battery

colour 0 colour: blue colour: red

starter engine wo... 1 starter engine won't turn: starter engin... starter engine won't turn: starter engin...
engine status 1 engine status: engine not starting engine status: engine not starting

desc 0 desc: running null desc: run null

age 0.133 age: 16 null age: 3 null

starter engine tur... 1 starter engine turns slowly: starter eng... starter engine turns slowly: starter eng...

Figure 6.1: Results from the similarity functions

as we already know, the implementation phase ran out of time and did not
complete this. Since a method was created to at least print the results,
we will evaluate what the results would have been in section 6.2 where the
method is tested and evaluated.

Finally, we have the age attribute. Its similarity function is Interval, and
the value are 16 and 3. This function also uses a INTERVAL number, which
was set to 15 which can be seen in the section 5.4.2. Placing these numbers
in the formula, we get 1 — ‘1(1;3' = (0.133... This is the same as shown in
Figure 6.1, so we now know that all similarity functions have produced the

desired results.

6.2 The Method and the Data Type

The StemmerMethod was selected as our method component, and it is sup-
posed to stem words stored in the Text data type. We created a case at-
tribute called desc to store such a value, and although the implementation
is only partial, the method printing the results produce the following:

INFO: StemmerMethod BEGIN

INFO: StemmerMethod END

The original token was: run

The stemmed token is: run

The original token was: runs
The stemmed token is: run

The original token was: running
The stemmed token is: run

The code printing this is presented in section 5.4.3. Above, we can see that
the method begins stemming, and then ends before the results are printed.
The first case had the value "run", which was already stemmed. The second

Reusing External Library Components in the Creek CBR System

6.2. The Method and the Data Type 63

File Edit VYiew Model Options Windows Help

BB &&F 5 RK (WY

Car Case 1 - Case 4]
View | Tree Editor | Text Editor | Case Match | Transformed View

Car Case 1 (solved)

. 3 Learned
Parameter Value Confidence Relevance Weight Source
relevance
colour red desc Frame View 3q (Human
5 Observation
ame:
battery low battery e Human .
status Observation
Description: Human
engine status engine not startin e description of a car :
g g e} the description of a car Observation,
hge 3 Hurnan
9 Observation
words one two three four five & All Relations Local Only ALl
Observation
d Relation-type Value Strength Human
€sc run instance of Text S 0.9/ lobservation
o subclass of Attribute 0.9
solution recharge battery : S

Figure 6.2: Screen shot from the VolveCreek Knowledge Editor with the
demonstrator system loaded

case had "runs", and we can see that it was stemmed to "run". The same
happened to the third case’s "running" value. All stemmed tokens are
identical, which is what we wanted.

If we had used the Equal similarity function on the stemmed values of desc,
it would have returned 1 instead of 0. The VolveCreek GUI could still
have shown the original tokens as each Token has both an original and a
stemmed version, but assuming some work on the GUI, the line showing
the desc attribute in figure 6.1 could then be as follows:

desc 1 desc: run [running] desc: run [run]

This would mean a match between "running” and "run”, both stemmed to
"run", for the attribute desc.

Since the values were added in VolveCreek and treated by the code of both
systems without incidents, the Text data type must also be working prop-
erly. The model is also saved successfully because of the serialization fix
applied in section 4.2. If we open the model generated and saved during the
execution of this demonstration, we can, e.g., view Car Case 1 like in Figure
6.2. The Creek Knowledge Editor is used to view the model. The columns
covered by the "desc Frame View" are not set in the demonstration.

Erik Stiklestad

64 6. Testing

6.3 Summary

We expand the example application with our three new components to
form a demonstration. The new components are the new data type Text,
the method StemmerMethod and the similarity functions TokensContained,
Interval and Equal. To test them, we add a new entry to the car cases
with a Text value. In addition, some other entries are added to test the
similarity functions.

The similarity functions are computing the right similarities on our old and
new case entries. The new method and data type is also working as the
Text values are stemmed by the method and giving the correct output.

Reusing External Library Components in the Creek CBR System

Chapter 7

Evaluation and Discussion

This chapter will discuss two solutions. The first solution has been the focus
of this report so far. The second solution addresses the last goal presented
in the introduction chapter, related to bringing VolveCreek to jColibri as an
extension. As mentioned earlier, the latter solution is interesting because
of jColibri’s goal of formalizing CBR and becoming a standard for CBR
system development.

7.1 Importing jColibri Components to Volve-
Creek

In this project it has been shown that it is possible to import several of
the major components of jColibri into VolveCreek. The outstanding and
essential issue is representation, but this was not part of the goal in this
project, although it has been discussed throughout this report and [Sti06].
A perfect solution to the representation problem is unlikely to exist. We
can argue that the representational issues are addressed at some level, but
a complete solution was not attempted. Perhaps it is not even necessary or
wanted to merge the representations either. Maybe we are better off having
one system with both representations, giving us the best of both worlds.
The second part of this chapter will to some degree end up with such a
hybrid system, after the VolveCreek system is placed as an extension in
jColibri and brings its own representation. More about this in section 7.1.

The connector in this project is translating from one representation to the
other, and we are also using some wrappers. In [Sti06], a simplified model
was exported as OWL, and the export of methods was also explained (some

65

66 7. Evaluation and Discussion

of that work influenced section 7.1). In both cases we have the situation
where everything is not necessarily possible to translate, wrap or export.
However, the solutions are still good enough to be very practical in several
areas. An obvious example is that we can use this approach to test various
aspects of jColibri from VolveCreek in a very cheap way, which is interest-
ing in itself because it gives the developers information that may be very
valuable and expensive to obtain otherwise.

We will now discuss the import of each component.

7.1.1 Helper Functions

The similarity functions are probably the most successfully imported com-
ponents in this project, and they were also a very high priority. It is possible
to improve the solution quite a bit, but the demonstration shows the im-
portant points.

Since these functions are using values directly in both systems, they are
much easier to work with compared to other components. A similarity
function is rarely concerned with anything but the value itself, although it
can sometimes be interesting to scale the results or otherwise influence the
values based on the application in general or its state.

With jColibri similarity functions you can sent parameters to affect the
similarity measures, while in VolveCreek the comparison between two values
will always be the same. An example could be seen in the Interval similarity
function imported from jColibri in this project, where a variable was used to
scale the similarities. It would be a good idea for VolveCreek to implement
something equivalent.

The comparison controller plays an important role in VolveCreek, and as
mentioned earlier it appears to be a good idea with such a component. This
component may have a lot of potential, and could work as an important layer
between the case components and the similarity functions. If it is not there,
we are more dependent on the similarity functions than if we had a layer
to control it. With jColibri defining which similarity functions that should
be used in the case structures, it does appear to be less flexible. jColibri
does gain a lot of flexibility by having implemented classes to take care of
parameters, and although it has a very thorough distributed architecture,
it could potentially become better by adapting some of VolveCreek’s recent
development.

Reusing External Library Components in the Creek CBR System

7.1. Importing jColibri Components to VolveCreek 67

7.1.2 Data Types

Data types are implemented in a very straight-forward way in both systems.
We showed that importing the Text data type was possible, and that we
had to implement a new entity type before using it. When the entity type
was implemented, the new data type could be used directly.

It would be preferable to have a general way to import all data types, and
it may actually be possible. It really depends on the data types, as some
aspects like serialization might become problematic. We can conclude that
it is not a lot of work to import them, however.

The VolveCreek system is not well organized when it comes to some com-
ponents, and the data types are perhaps the most obvious case. VolveCreek
would benefit from organizing components in different packages and mak-
ing them available to the rest of the system through some kind of interface.
Right now, adding new data types requires editing the source several places.
This is something which is normally solved when the software matures, how-
ever, and it is not important in the beginning.

7.1.3 Methods

The methods were harder to import than other components because of their
centralized position in the software. The solution chosen, which had a focus
on usage, has both positive and negative sides.

A method may do anything to any part of a system, and hence it is hard
to create a general solution to import them. The solution implemented in
this project works well with many methods, but not everyone. Those that
cannot be used with this kind of approach are not interesting for VolveCreek
at this point, however.

Methods assigned to tasks just to configure the execution while doing noth-
ing to the context are not interesting, and they only exist to guide the
application execution in jColibri as well. Methods using helper functions
may be interesting, but since the helper functions can be used directly, they
are not really necessary although often convenient. Methods accomplishing
various tasks in specific extensions are very interesting on the other hand.
The stemmer method imported in this project is a good example of such as
method, an as we saw, we often have to import other components like data
types and similarity measures to really make use of it.

It is not necessarily just methods created for jColibri that are interesting for

Erik Stiklestad

68 7. Evaluation and Discussion

VolveCreek, but methods that enable jColibri to use external projects. The
stemmer is yet again a good example. jColibri is able to use an external
stemmer in its system, and VolveCreek would like to do that as well. By
reusing jColibri’s code, VolveCreek can use the stemmer without having to
implement everything. It is of course an advantage to be able to use external
projects directly instead of going through jColibri, but at least for testing
purposes and comparison of solutions, this is a very cost effective solution.

By enabling reuse of jColibri components, VolveCreek gains access not only
to jColibri components but also to all other projects which jColibri can work
with. Because of jColibri’s focus on standardization and close relation to
efforts such as the Semantic Web, we may be looking at quite a few projects
as development continues. This is a very important motivation.

Finally, there has been some progress during the last period of this project,
which did not make it into this report nor the implementation. It appears
that it would in fact be possible to import methods in a more direct way,
and that it would not have caused us to modify existing methods directly.
This has not been implemented or tested, but the conceptual idea does seem
to work. That said, the solution used in this project is not bad, and it does
serve its purpose as a possible solution. The conclusion that a strict import
was not usable, however, may not have been completely accurate. The fact
that another solution would require more work was accurate, however the
amount of additional efforts may not be as big as previously estimated.
Time did unfortunately not allow for a thorough investigation, and further
details are left to future projects.

7.2 VolveCreek Extending jColibri

We will now look at an alternative solution, which is to move VolveCreek
into jColibri as an extension. Since jColibri has come further in its devel-
opment, this seems like an attractive alternative in a possible integration or
cooperation between the two systems. This approach seems very logical in
many ways because of jColibri’s focus.

Because of the earlier project [Sti06] and the way jColibri was explored and
studied in preparation for this project, some of the ideas regarding having
VolveCreek as a jColibri extension is partly tested with experimental code.
This section will attempt to explain this approach by describing how a
possible implementation could be done. This is based on conceptual ideas,
but explained by going through an approach that was attempted.

Reusing External Library Components in the Creek CBR System

7.2. VolveCreek Extending jColibri 69

7.2.1 Models

The efforts related to the models are strictly representational, and this was
worked on in [Sti06]. The solution presented was good, but not complete
since the model was slightly simplified. Since the representation is unlikely
to be completely solved like mentioned in the beginning of this section, it
is important to see if they can somehow live side by side.

The jColibri context could potentially have a VolveCreek knowledge model,
and the VolveCreek extension could use that model for its strengths. A
specialization of the CBRContext would be necessary, and some translation
between the two representations would also become necessary. This is a
similar functionality to the connector implementated in the previous solu-
tion.

7.2.2 VolveCreek Components in jColibri

We will check how well VolveCreek can function as an extension of jColibri
by looking at one component at a time. There are not many of each compo-
nent in VolveCreek, so possible changes to them would not be a huge effort,
but we will go through them to see what is needed.

Similarity Measures

The VolveCreek similarity measures will have to become helper functions,
and more specifically they must implement the SimilarityFunction inter-
face. In section 3.3.4 we found out that jColibri and VolveCreek are very
similar when it comes to these functions, so all we need is to merge the
two interfaces SimiliarityFunction and SimilarityMeasure which is not a
major operation.

A good solution would be to have both compute and similarity methods
in each, so they could be called with both VolveCreek entries from the
knowledge model now in the context, and with jColibri individuals.

Some other comparison components in VolveCreek could still be used like
they are today, but they would have to be moved into methods. This is
explained later.

Erik Stiklestad

70 7. Evaluation and Discussion

Data Types

Data types would have to be configured like other data types in jColibri,
and they also need an editor. VolveCreek does not have any data types
that are custom to the system, so this is not an issue. KE.g. we could
have configured the URL data type with the following XML code located
in /config/creek/datatypes.xml:

<DataType>
<Name>URL</Name>
<Class>java.net.URL</Class>
<GUIEditor>jcolibri.gui.editor.URLEditor</GUIEditor>
</DataType>

The class jcolibri.gui.editor.URLEditor would have to be implemented.

Methods

We would like to have the VolveCreek methods defined through CBROnto,
and we would like to give them competencies to solve certain tasks. The
definition is not a problem, but we must change the implementation. Each
method must implement the CBRMethod interface, which basically means
that it must have an execute method. VolveCreek does not have a lot of
methods either, so we do not have any serious issues with many existing
components. The next section will exemplify how it can be done and also

defines the methods through CBROnto.

All in all, we do not have any major issues with components, as they are
few and can be changed slightly to work with jColibri. The challenge is
to make the idea behind the VolveCreek system work in jColibri, not its
system components.

7.2.3 Example Application

This example does exactly the same as the original VolveCreek example.
The first thing we have to do, is to place the entire VolveCreek source in
/src/jcolibri/extensions/creek, refactor all paths and create a configura-
tion file for the extension. The configuration follows:

<jCOLIBRIPackage>
<name>VolveCreek Components</name>
<description>Contains components from VolveCreek</description>

Reusing External Library Components in the Creek CBR System

7.2. VolveCreek Extending jColibri 71

<path>creek</path>

<methods>methods.xml</methods>

<tasks>tasks.xml</tasks>

<datatypes>datatypes.xml</datatypes>
</jCOLIBRIPackage>

When this is present, we will get an option to enable the extension when
we open the jColibri GUI and start making a new system.

We will separate the code from the VolveCreek example application and put
them into methods implementing CBRMethod to illustrate how this can be
done since we do not have any such methods in VolveCreek. There are
others we could have used, but it would have been the same operation. The
code for the methods are copied directly from the VolveCreek example file,
and placed in execute. This is necessary, and it is the main effort needing
to be completed outside the definitions. Following is a list of methods and
a description of what they do.

e CreekPreCycleMethod does nothing by returning the unchanged con-
text;

e AddAttributesMethods adds the attributes to our model;

e AddCausalModelMethod adds the causal model as defined by the Volve-
Creek example;

e AddCasesMethod adds the car cases;

e SolveCreekCBRMethod executes the RetrievelResults reasoning step
implemented for VolveCreek;

e CreekPostCycleMethod does nothing by returning the unchanged con-
text.

Since we have now implemented several methods, we want to define them
through CBROnto, give them competencies and hence we also need some
tasks which they can solve. Following is one task followed by a method which
has the competence to solve it. This is defined in /config/creek/tasks.xml
and /config/creek/methods.xml.

<Task>
<Name>AddCases</Name>
<Description>Add cases</Description>
</Task>

<Method>
<Name>jcolibri.extensions.creek.method.AddCasesMethod</Name>

Erik Stiklestad

72 7. Evaluation and Discussion

<Description>Adds the cases</Description>
<Type>Resolution</Type>
<Competencies>
<Competence>AddCases</Competence>
</Competencies>
</Method>

An important point is that the earlier description of the methods are only
their implementation. The CreekPreCycleMethod is actually a decomposi-
tion method, and that is why it is only returning the unchanged context.
Its definition contains the following, which configures the application to use
the other methods in the precycle.

<SubTasks>
<SubTask>AddAttributes</SubTask>
<SubTask>AddCausalModel</SubTask>
<SubTask>AddCases</SubTask>
</SubTasks>

Once the precycle task has been configured to be solved by CreekPreCycle-
Task, these three subtasks will appear. When configuring them, only one
method will show up as available for each, and the methods showing up are
those we just added. This is a very basic use of the jColibri system, but
illustrates how easy one can migrate from VolveCreek to jColibri without
reimplementing everything.

Figure 7.1 shows that the application is configured in jColibri, with some
custom methods that were created just to test. If we generate this applica-
tion and execute it, we get exactly the same result as the CreekExample,
which should not be a surprise. We have not done anything big.

The question now is if we can make this work as easy with other types of
applications, and how these would be developed. Which representation they
would use and other similar questions would have to be answered.

The idea that was suggested earlier where both representations live in the
same system appear to be very interesting. This is solved by specializing
some of the jColibri components in a similar way to what was done in the
previous solution earlier in this project. Creating a new case base which
can work with a VolveCreek knowledge model is possible, and it is not a
whole lot of work either. In fact, if we specialize the major components of
jColibri to work with VolveCreek’s knowledge model, we have solved almost
everything except the situations where we want to actually use jColibri’s
representation and reasoning mechanisms. This can also be done, but like
in the previous solution, it does require that we translate from one to the

Reusing External Library Components in the Creek CBR System

7.2. VolveCreek Extending jColibri 73

000 JCOLIBRI 1.1

File CBR Evaluation Help

5

Mv El CBR System (006 Task - AddCases1479
v 2 PreCycle Task

AddAttributes
AddCausalModel
AddCases Task description: 'Add cases
DisplayModel
CBR Cycle
PostCycle

Task name: AddCases1479

Methods
[__Qs Instance
Method name Method type Method description Availa... Applic...
1 jeolibri.extensions.jcree... Execution Adds the cases
0606 Manage Methods
Package: Creek Components | 3 B A @
Name Description Available

jcolibri.exten... Adds the attributes V! |
jeolibri.exten... Displays the Creek model Method name Chosen
jeolibri.exten... Adds the causal model colibri.extensions.jcreek.method.... @

jeolibri.exten... Adds the cases
jcolibri.exten... The Creek pre-cycle which ad...
icolibri.exten... Solves CBR Creek-stvle

A

v

RI(EIIRIEI(E]

[Close

Close)

Figure 7.1: Configuring the CreekExample in jColibri

other, and then back again if we want to apply the results.

Although this attempt seemed to work very nicely, it is clear that it has a
lot to do with the VolveCreek system not having a lot of components ready.
The architecture is there, but since they can also be defined in jColibri
without a lot of work, we are not looking at any major issues. jColibri’s
architecture is written in such a general way that it is actually about to
formalize CBR, should we believe our experiences with the system.

For VolveCreek as a comercial product, this may not be quite as interesting
as the former solution, and that is why the former solution was given more
attention in this project. For academic purposes, it seems like a good idea
to start using the jColibri framework.

Erik Stiklestad

74

7. Evaluation and Discussion

Reusing External Library Components in the Creek CBR System

Chapter 8

Conclusion and Further Work

This final chapter describes further work, and concludes the project.

8.1 Further Work

There are many issues touched by this project that should be further inves-
tigated. They can be logically divided into a VolveCreek view and a jColibri
view. The VolveCreek view contains work having VolveCreek in focus, as-
suming a continued development of VolveCreek in the current direction.
The jColibri view contains work where the focus is to make VolveCreek a
part of jColibri which was discussed in section 7.1. These two views will be
addressed in the following subsections.

8.1.1 VolveCreek View

It is clear that a lot of work is yet to be done, and this project is merely a
start. The goals of this project was not to finalize a solution, but to identity
efforts and exemplify some of the things that are possible. This means that
the code produced in this project is not necessarily meant to be used for
anything else than exemplification, although generally good solutions have
of course been attempted.

Some of the implementation done in this project is rather specific towards
the demonstrator system. The systems are large and the components many,
so a project like this does not have enough time to work thoroughly through
everything. It is perhaps not best to continue development on top of this

75

76 8. Conclusion and Further Work

project, but rather use it to get started quickly should the results of this
project be interesting for further development.

Each component can be improved quite a lot, and perhaps most of all the
methods. Very important in this regard is the task component. A consider-
able amount of time should be used to analyze how this component can be
a part of VolveCreek. Even if that is not possible, VolveCreek should still
consider implementing something with a similar functionality. VolveCreek
does have the CBRReasoningStep abstract class with variables such as state
which can be compared to some things found in jColibri, but it does not
provide enough to compensate for the tasks which are more general. A task
and method hierarchy with competencies is a very powerful approach. If
they are also defined by ontologies in the model then that is even better.
jColibri has developed a very good solution here, which VolveCreek could
use as an inspiration.

Other components, namely data types and similarity functions, are im-
ported rather well in this project. The solutions should get better error-
handling and other things making them easier to use, but other than that
we have shown that they can be imported without a lot of problems.

Regarding the representation, there has been suggested several ideas both in
this project and other projects. None of these projects have had the repre-
sentation as its main focus, so perhaps that is what needs to be done. Such
a representation-focused project should look at the problem from several
different angles, including some kind of integration between them, hybrid
solutions or some way of using them all together with an interface to trans-
late between them. The representation has become increasingly advanced
lately because of the focus on specific knowledge in addition to general
knowledge which has been a focus for a long time. This representation issue
should be given a thorough investigation.

8.1.2 jColibri View

The solution where VolveCreek tries to become an extension of jColibri
seems to be something that is very possible with what we have today, but it
does require a lot of work if we want a flawless integration. First of all, the
VolveCreek system must be slightly changed to easier fit within the jColibri
framework, but this is not going to cost VolveCreek any functionality. This
is strictly a code design issue, and can be worked through fairly easily since
VolveCreek has not been finished and is not being used extensively in a lot
of projects. In fact, now is a good time to work on it, if we want to do it.

Reusing External Library Components in the Creek CBR System

8.2. Conclusion 77

It is very likely that the developers of VolveCreek have plans that go past
what this project has discovered, and that this complicates things quite a
lot. This solution is mostly interesting for an academic version of Creek.

8.2 Conclusion

This project has analyzed jColibri and VolveCreek, and compared them to
find similarities and differences. Based on the comparison, it was shown that
it is possible to reuse external library components in the VolveCreek CBR
system. The import of three different jColibri components was constructed,
implemented and evaluated. One data type, one PSM and three similarity
functions.

The construction shows that it is possible to create fairly general solutions
for importing components, and that they will work with the existing Volve-
Creek system. Later chapters, which slightly simplifies what was outlined in
the construction, shows that the implementation is not extensive, and that
the components can be imported and tested which can give VolveCreek
developers valuable information.

The data types and similarity functions are imported in a clean way, while
the methods are more painful. The methods would be easier to import had
they not been implemented been so centralized in jColibri. It was later
realized, however, that the best solution for the methods was perhaps not
used in this project.

The evaluation shows that the project goals were accomplished, and that
the demonstrator system brings the expected results. In the demonstration,
the new data type Text is used when adding a new entry to several cases,
and the data type is later stemmed by an imported method. Several jCol-
ibri similarity functions were applied to VolveCreek case entries, and they
returned the correct similarity value.

The final goal of the project was accomplished in section 7.1, where the
alternative approach was discussed and partly tested. It was shown that
such a solution is possible, and that the cost is not very high. In fact, from
an academic point of view, it may even be preferable to use this approach
rather than the one having a focus in this report. The approach used in
this project is more interesting for VolveCreek as a commercial product,
however.

Erik Stiklestad

78

8. Conclusion and Further Work

Reusing External Library Components in the Creek CBR System

Bibliography

|[Aam94Nov| Agnar Aamodt
A Knowledge Representation System for Integration of General and
Case-Specific Knowledge.
Proceedings from IEEE TAI-94, International Conference on Tools with
Artificial Intelligence. New Orleans, November 5-12, 1994. 4 pages.

[Aam04]| Agnar Aamodt
Knowledge-intensive case-based reasoning in Creek.
ECCBR 2004. LNAI 3155, Spinger, 2004. pgs. 1-16.

|AP94] A. Aamodt and E. Plaza
Case-based reasoning; Foundational issues, methodological variations,
and system approaches.
Al Communications, 1994, pages 39 - 59.

|Bra04] Stein Erlend Brandser The jCreek Programmer’s Guide
URL: http://creek.idi.ntnu.no/docs/jCreek-ProgrammersGuide.doc

|IBSABO4| Tore Brede, Frode Sgrmo, Agnar Aamodt, Ketil B¢ A Knowledge
Modeling FEditor and Testing Environment for Knowledge-Intensive
Case-Based Reasoning
URL: http://creek.idi.ntnu.no/docs/TrollCreek-tutorial.doc

|[Cha90] Chandrasekaran, B
Design problem solving: A task analysis.
AT Magazine, 11:59-71. 1990

|Creek| Homepage of Creek
http://creek.idi.ntnu.no/
Last wvisit: June 7th, 2007.

[IDGGGO5| Belen Diaz-Agudo, Pedro A. Gonzélez-Calero, Pedro Pablo
Gomez-Martin and Marco Antonio Gomez-Martin
On Developing a Distributed CBR Framework through Semantic Web
Services

79

80 BIBLIOGRAPHY

Proceedings of Workshop OWL: Experiences and Directions, at In-
ternational Conference on Rules and Rule Markup Languages for the
Semantic Web, 2005

|Dia00| Diaz-Agudo, P. Gonzalez-Calero
An architecture for knowledge-intensive CBR systems
Proceedings of the 5th European Workshop on Advances in Case-Based
Reasoning, 2000

|Dia02| Belen Diaz-Agudo and Pedro A. Gonzalez-Calero
CBROnto: A Task/Method Ontology For CBR
In S. Haller and G. Simmons, editors, Proc. Of the 15 the International
FLAIRS?02 Conference. AAAI Press, 2002.

[DINS96| Donini, F. M., lenzerini, M., Nardi, D., and Schaerf, A.
Reasoning in description logics
Pages 191 - 236.
URL: http://www8.informatik.uni-erlangen.de/IMMD8/Lectures/KRR/
reasoning-in-DL.ps.gz.

|GGDF99| Gomez-Albarran, M., Gonzalez-Calero, P. A., Diaz-Agudo, B.,
and Fernandez-Conde, C.
Modelling the cbr life cycle using description logics
URL: http://gaia.fdi.ucm.es/people/pedro/papers/1999_iccbr_
mercedes.pdf.

|Gru93] T.R. Gruber.
A translation approach to portable ontology specifications.
Knowledge Acquisition, 1993, Vol. 5, No. 2, pp. 199 - 220.

[iColibri] Homepage of jColibri
http://gaia.fdi.ucm.es/projects/jcolibri/
Last visit: June 7th, 2007.

INBO3] Nardi, D. and Brachman, R. J.
An introduction to description logics
2003. URL: bhttp://www.inf.unibz.it/~franconi/dl/course/dlhb/
d1hb-01.pdf

[RDGWO05] Juan Antonio Recio, Belén Diaz-Agudo, Marco Antonio
Gomez-Martin and Nirmalie Wiratunga
Extending jCOLIBRI for Textual CBR
Proceedings of Case-Based Reasoning Research and Development,
6th International Conference on Case-Based Reasoning, ICCBR, 2005,
pages 421-435.

Reusing External Library Components in the Creek CBR System

BIBLIOGRAPHY 81

[RSDGO5| Juan A. Recio-Garia, Antonio Sanchez, Belén Diaz-Agudo, and
Pedro A. Gonzalez-Calero.
JCOLIBRI 1.0 in a nutshell. A software tool for designing CBR sys-
tems.
In M. Petridis, editor, Proccedings of the 10th UK Workshop on Case
Based Reasoning, pages 20-28. CMS Press, University of Greenwich,
2005.

[SRDGO5] Antonio Sanchez, Juan A. Recio, Belén Diaz-Agudo, and Pedro
Gonzalez-Calero
Case structures in jJCOLIBRI
Best Poster Award. Twenty-fith SGAI Int. Conf. on Innovative Tech-
niques and Applications of Artificial Intelligence, AT 2005. Cambridge,
UK.

[Ste90] Luc Steels
Components of expertise
AT Magazine Volume 11 , Issue 2 (Summer 1990) Pages: 30 - 49

[Sti06] Erik Stiklestad
Sharing Models between TrollCreek and jCOLIBRI
TDT4745 Knowledge Based Systems, Autumn 2006

[SPGKYO07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur and Yarden Katz
Pellet: A practical OWL-DL reasoner
Journal of Web Semantics, 5(2), 2007.

[Ser00] Frode Sgrmo
Plausible inheritance; semantic network inference for case-based rea-
soning
Master’s thesis, Norwegian University of Science and Technology, De-
partment of Computer and Information Science.

[W3C01] W3C Semantic Web Activity
URL: http://www.w3.0rg/2001/sw/

Erik Stiklestad

