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Abstract

In this thesis, we address major challenges in searching temporal document collections.
In such collections, documents are created and/or edited over time. Examples of tem-
poral document collections are web archives, news archives, blogs, personal emails and
enterprise documents. Unfortunately, traditional IR approaches based on term-matching
only can give unsatisfactory results when searching temporal document collections. The
reason for this is twofold: the contents of documents are strongly time-dependent, i.c.,
documents are about events happened at particular time periods, and a query representing
an information need can be time-dependent as well, i.e., a temporal query.

Our contributions in this thesis are different time-aware approaches within three topics
in IR: content analysis, query analysis, and retrieval and ranking models. In particular,
we aim at improving the retrieval effectiveness by 1) analyzing the contents of temporal
document collections, 2) performing an analysis of temporal queries, and 3) explicitly
modeling the time dimension into retrieval and ranking.

Leveraging the time dimension in ranking can improve the retrieval effectiveness if in-
formation about the creation or publication time of documents is available. In this thesis,
we analyze the contents of documents in order to determine the time of non-timestamped
documents using temporal language models. We subsequently employ the temporal lan-
guage models for determining the time of implicit temporal queries, and the determined
time is used for re-ranking search results in order to improve the retrieval effectiveness.

We study the effect of terminology changes over time and propose an approach to han-
dling terminology changes using time-based synonyms. In addition, we propose different
methods for predicting the effectiveness of temporal queries, so that a particular query
enhancement technique can be performed to improve the overall performance. When the
time dimension is incorporated into ranking, documents will be ranked according to both
textual and temporal similarity. In this case, time uncertainty should also be taken into ac-
count. Thus, we propose a ranking model that considers the time uncertainty, and improve
ranking by combining multiple features using learning-to-rank techniques.

Through extensive evaluation, we show that our proposed time-aware approaches out-
perform traditional retrieval methods and improve the retrieval effectiveness in searching
temporal document collections.
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Overview and Background






Chapter 1

Introduction

This PhD thesis addresses different challenges in searching temporal document col-
lections, where documents are created and/or edited over time, and the contents of docu-
ments are strongly time-dependent. Examples of temporal document collections are web
archives, news archives, blogs, personal emails and enterprise documents. The main focus
of the PhD thesis is how to exploit temporal information provided in documents, queries,
and external sources of data in order to improve the effectiveness in searching temporal
document collections.

This chapter describes the motivation and research questions addressed in the thesis.
In addition, we explain our research context and methods in conducting the PhD work.
Our contributions to this thesis are composed of different approaches to solving the ad-
dressed research questions. In the end of this chapter, we present the organization of the
rest of the thesis.

1.1 Motivation

In this thesis, we address major challenges in searching temporal document collections.
In such collections, documents are created and/or edited over time. Examples of tem-
poral document collections are web archives, news archives, blogs, personal emails and
enterprise documents. Unfortunately, traditional IR approaches based on term-matching
only can give unsatisfactory results when searching temporal document collections. The
reason for this is twofold: the contents of documents are strongly time-dependent, i.e.,
documents are about events happened at particular time periods, and a query representing
an information need can be time-dependent as well, i.e., a temporal query.

One problem faced when searching temporal document collections is the large number
of documents possibly accumulated over time, which could result in the large number of
irrelevant documents in a set of retrieved documents. Therefore, a user might have to
spend more time in exploring retrieved documents in order to find documents satisfying
his/her information need. A possible solution for this problem is to take into account
the time dimension, i.e. extending keyword search with the creation or published date of
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documents. In that way, a search system will narrow down search results by retrieving
documents according to both text and temporal criteria, e.g., temporal text-containment
search [93].

In the rest of this section, we will explain our motivation by presenting some short-
comings of existing document archive search systems, i.e., the Wayback Machine [127]
and Google News Archive Search [37].

Wayback Machine

The Wayback Machine [127] is a web archive search tool that is provided by the Internet
Archive [49]. The Internet Archive is a non-profit organization with the goal of preserving
digital document collections as cultural heritage and making them freely accessible on-
line. The Wayback Machine provides the ability to retrieve and access web pages stored
in a web archive, and it requires a user to represent his/her information need by specifying
the URL of a web page to be retrieved.

For example, given the query URL http://www.ntnu.no, the results of retrieval
are displayed in a calendar view as depicted in Figure 1.1, which displays the number
of times the URL http://www.ntnu.no was crawled by the Wayback Machine (not
how many times the site was actually updated). Two major problems of using the Way-
back Machine are observable. First, it is inconvenient for a user to specify a URL as a
query. Second, there is no easy way to sort search results returned by the tool because the
results displayed in a timeline according to their crawled dates.

INTERNET ARCHIVE http:/iwww.ntnu.no Go Wayback!
mau"ﬂﬂ“mg“"l!lﬂ,‘ hitp-ifwww ntnu.no has been crawled 588 times going all the way back to June 16, 1997

A crawl can be a duplicate of the last one. It happens about 25% of the fime across 420,000,000 websites. FAQ

W .

Sl 1997
JAN FEB MAR APR
1 2 3 4 1 1 1 2 3 4
6 7 8 9 0 1" 2 3 4 6 7 8 2 3 4 6 7 8 6 7 8 9 0 11 12
12 13 14 1 16 17 18 9 10 11 12 13 14 15 9 0 11 12 13 14 1 123 14 1 16 17 18 19
19 20 21 22 23 24 2 16 17 18 19 20 21 22 16 17 18 19 20 21 22 20 21 22 23 24 2 26
26 27 28 29 30 M 23 24 25 26 27 28 23 24 25 26 2T 28 29 27 28 29 30
30 n
MAY JUN JuL AUG
1 2 3 1 2 3 4 8 7 1 2 3 4 1 2
4 6 7 8 9 10 8 9 0 11 12 13 14 6 7 8 9 0 11 12 3 4 6 7 8 9
1 12 13 14 1 16 17 1 16 17 13 19 20 21 13 14 1 16 17 18 19 10 11 12 13 14 1 16

18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 29 22 23

25 26 27 28 29 30 A 29 30 27 28 29 30 H 24 25 26 27 28 29 30

Figure 1.1: Search results of the query URL http://www.ntnu.no are displayed in
a calendar view (retrieved 2011/08/29).
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Google News Archive Search

The Google News Archive Search [37] tool allows a user to search a news archive us-
ing a keyword query and a date range. In addition, the tool provides the ability to rank
search results by relevance or date. However, there is a problem that has not been ad-
dressed by this tool yet, e.g., the effect of terminology changes over time. Consider the
following example, a user wants to search for news about Pope Benedict XVI that are
written between 2005. So, the user issues the query Pope Benedict XVI and specifies
the temporal criteria 2002/01/01 to 2004/31/12. As shown in Figure 1.2, only a small
number of documents are returned by the tool where most of them are not relevant to the
Pope Benedict XVI. In other words, this problem can be viewed as vocabulary mismatch,
which is caused by the fact that the term Pope Benedict XVI was not widely used before
2005/04/19 (the date which his papacy began).

GO\ JSIC Pope Benedict XVI “
Absut 3T resulls (3 1T seconda) Advanced aearch
Q, Everything Soted by date » Jan 1, 2003-Dac 34, 2004 =
@& Images Add "Pope Benedict XVI" section 1o my Google News homepage
W videos Vaucan Ends Probe of Lemonanes - CBS News
3 Hews AP PhotoFinio qu] As the Vatican defends the institution of the priesthood aganst the sex abuse
& Shopping scandal. Pope Benedict XV nxprrlldln ielease a .
Standal-plagued Legonanes accect | Fs

More

Pope calls for cownrallon between Christians and Musims -

Popc Dmedml I\I‘I ﬁpeamng at a mosgqué in Amman, Joedan, also N\pﬂsiei concem ... Pope
Benedict XV1 on Saturday cafled on Chiistians and Muslims to sene .

Higena: Brits asked to influence Shell - Norwegian Council..

-R!.ad mnre 1:i..igm: {Nigeria) - Pope Denedict XV has advsed the Nigenian govemment to take
deciswe steps to,. Read mare > Abeokuts (Nigens) — Senate ...

|gena; G nment char 1nree wilh 1[0}l

Ijiead n;;ré.‘v-uéol {Migeria) - Pope Benedict XVI has sdwsed the Nigenan govemmant to take
decrsve steps 1o, Read more > Abeokuts (Nigena) — Senate ...

Nmerm R reect fuel price increase and

Read moee > !.Dgos {Migeria) - Pope Benedict XV has sdwsed the Nigenan povemmant 1o take
decrsrve steps to.. Read mone > N:eniul-l ﬂllq«un.ﬂ Senate ..
Cathobc church's goti-atuse

qua:rm Pm‘;ld"l"t woes a "true national pary” - Moswegian,

Rud more l.ms (Nigenia) - Pope Benedict XVI has advsed the Nigeran govemment Lo take
decisve steps to... Rzad mare > Absokuta (Migeria) — Senate ..

Search
e t Cmﬂ 3 lcgal '1!uc1w: is key to resohution

. the panah llaﬂ has uem hmluud from the Catholic Church and its renegade pastor was returned
Io the status of a lsyman by Pope Banadict XV1 .

Figure 1.2: Results of the query Pope Benedict XVI and the temporal criteria
2002/01/01 TO 2004/31/12 (retrieved 2011/08/29).

As illustrated by the two examples, it is clear that there is a need for highly efficient
and practical approaches to searching temporal document collections. Thus, the goal of
this thesis is to identify and study problems in searching temporal document collections,
as well as propose approaches as solutions to the problems. In the next section, we will
present research problems that are addressed in this thesis.
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1.2 Research Questions

Based on the motivation stated in the previous section, the main research question is: sow
to exploit temporal information provided in documents, queries, and external sources
of data in order to improve the retrieval effectiveness in searching temporal document
collections? Intuitively, we want to solve the main research question by 1) analyzing the
contents of temporal document collections, 2) performing an analysis of temporal queries,
and 3) explicitly modeling the time dimension into retrieval and ranking. Hence, the
research questions we address are corresponding to three topics in information retrieval:
content analysis, query analysis, and retrieval and ranking models. More specific research
questions are presented below.

1.2.1 Content Analysis

Incorporating the time dimension into search can increase the retrieval effectiveness if
information about the creation or publication time of documents is available. However,
it is not always easy to find an accurate and trustworthy timestamp of a document for
some reasons. First, the time metadata of documents preserved in the past might not be
readable and interpretable today. Second, it is difficult to find an accurate and trustworthy
timestamp for a web document because of the decentralized nature of the web, where the
document can be relocated and its time metadata made unreliable. Moreover, in a web
warehouse or a web archive there is no guarantee that a document’s creation date and the
time of retrieval by the crawler are related. In this thesis, we want to analyze documents’
contents in order to estimate the time of publication of documents/contents or the time of
the topic of documents’ contents. Thus, the first research question we address is:

RQI. How to determine the time of non-timestamped documents in order to
improve the effectiveness in searching temporal document collections?

1.2.2  Query Analysis

Several studies of real-world user query logs have shown that temporal queries comprises
a significant fraction of web search queries [87, 95, 141]. For example, Zhang et al. [141]
showed that 13.8% of queries contain explicit time and 17.1% of queries have tempo-
ral intent implicitly provided. An example of a query with time explicitly provided is
U.S. Presidential election 2008, while Germany FIFA World Cup is a query without
temporal criteria provided. However, for the latter example, a user’s temporal intent is
implicitly provided, i.e., referring to the World Cup event in 2006. In this thesis, we want
to determine the time of a query when time is implicitly provided. Note that, this search
scenario happens when users have no knowledge regarding all relevant time periods for a
query, so that no time can be explicitly provided in the query. Hence, the second research
question we address is:

RQ2. How to determine the time of an implicit temporal query and use the
determined time for re-ranking search results?
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The effect of terminology changes over time can cause a problem in searching tem-
poral document collections. In fact, the definition, meaning or name of terms can alter.
Moreover, terms can be obsolete, i.e., no longer used. For example, the term “Siam” was
used as a name for “Thailand” before 1939, but it is rarely used nowadays. This causes
a problem for a temporal search if a query and documents are represented in different
forms, i.e., historical or modern forms. Given the query Thailand before 1939, docu-
ments about Thailand that were written using the term “Siam” and published before 1939
will not be retrieved. Therefore, the third research question we address in this thesis is:

RQ3. How to handle terminology changes in searching temporal document
collections?

The research questions presented above are related to query expansion and query ref-
ormation. In addition to that, we also want to analyze the retrieval effectiveness of tem-
poral queries with respect to a specific retrieval model. In particular, we will study query
performance prediction [20] for temporal queries.

Query performance prediction refers to the task of predicting the retrieval effective-
ness that queries will achieve with respect to a particular ranking model in advance of, or
during the retrieval stage, so that particular actions can be taken to improve the overall per-
formance [43]. Query performance prediction is useful for choosing between alternative
query enhancement techniques, e.g., query expansion and query suggestion. In this thesis,
we want to investigate different methods for predicting the query performance or retrieval
effectiveness of temporal queries. Hence, the fourth research question we address in this
thesis is:

RQ4. How to predict the retrieval effectiveness of temporal queries?

Two time dimensions commonly exploited in time-aware ranking are 1) publication
time, and 2) content time (temporal expressions mentioned in documents’ contents). As
shown later in the thesis, it makes a difference in retrieval effectiveness for temporal
queries when ranking using publication time or content time. By determining whether a
temporal query is sensitive to publication time or content time, the most suitable retrieval
model can be employed. Consider the following examples: given the query Japan quake
869 AD, relevant documents should be those containing the temporal expression 869 AD,
but not those created or published in 869 AD. On the other hand, when searching for a
current event, such as, academy award rumors, temporal expressions in documents
should be more important in consideration than the publication time of documents. Thus,
the fifth research question we address is:

RQ5. How to predict the suitable time-aware ranking model for a temporal
query?
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1.2.3 Retrieval and Ranking Models

In many cases, when searching temporal document collections, search results are dis-
played in chronological order where recently created documents are ranked higher than
older documents. However, chronological ordering is not always effective. Therefore, a
retrieval model should rank documents by the degree of relevance with respect to time.
More precisely, documents must be ranked according to both textual and temporal sim-
ilarity. In addition, a time-aware ranking model should also take into account time un-
certainty, which captures the fact that the relevance of documents may change over time.
Thus, the sixth research question we address is:

RQ6. How to explicitly model the time dimension into retrieval and ranking?

In general, a time-aware ranking model gives scores to documents with respect to
textual and temporal similarity. However, we want to study whether exploiting other
features together with time can help improving the retrieval effectiveness in searching
temporal document collections. Specifically, we set up a new task called ranking related
news predictions, which is aimed at retrieving predictions related to a news story being
read, and ranking them according to their relevance to the news story. The challenges
of this task are related to various aspects of IR problems: time-aware ranking, sentence
retrieval, entity ranking, and domain-specific predictions. In this case, we need to find
features used for capturing the similarity between an information need and predictions
of future-related events, and combine such features for relevance ranking. Thus, the last
research question we address in this thesis is:

RQ7. How to combine different features with time in order to improve rele-
vance ranking?

1.3 Research Context

The PhD work is carried out as a part of four-year PhD program at the Department of
Computer and Information Science, Norwegian University of Science and Technology
(NTNU) under the main supervision by Professor Kjetil Norvéag, and the co-supervision
by Professor Jon Atle Gulla and Associate Professor Heri Ramampiaro.

The PhD work is a formal part of LongRec - Records Management over Decades [80].
LongRec is a joint-industry project focusing on the challenges of persistent, reliable, and
trustworthy long-term storage of digital records. LongRec is organized as a consortium
led by DNV and partially funded by the Norwegian Research Council. It emphasizes
on the availability and use of information. Problems associated with digital preservation
typically emerge when the lifetime of digital documents exceeds 10 years and digital
documents are expected to undergo several changes during their lifetime.
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1.4 Research Method

We have already explained our motivation and mentioned specific research questions in
the previous section. This section presents the research method for doing the PhD work.

We begin our research work by doing a literature study of state-of-the-art of research
topics including information retrieval techniques, machine learning, text mining, and in-
formation extraction. We aim at analyzing advantages and disadvantages of existing ap-
proaches as well as looking for a possibility for improvement.

In order to answer our research questions, we implement an approach for solving a
particular research question either as an independent module or as a complete prototype.
Then, we evaluate performance of the approach by conducting experiments using test
data. Test data used in the experiments can be standard test collections (TREC, CLEF,
etc.), or synthetic collections created by us. For the latter, we manually collect queries for
evaluation, and obtain relevance judgment using expert judges or crowdsourcing. Several
metrics are used for measuring the effectiveness of our proposed approaches, for example,
standard IR measures like precision, recall and F-measure.

1.5 Contributions

The work on time-aware approaches to information retrieval is a relatively new field of
research. Hence, our contributions are a combination of novel approaches and improve-
ments on existing techniques. In the following, we will give a brief summary of our con-
tributions, and indicate the corresponding research questions as well as the subsequent
chapters where detailed contributions can be found. In summary, our contributions to the
PhD work accomplish all research questions, which are listed below:

I. Content Analysis

C1. We propose different techniques for determining the time of non-timestamped
documents by improving temporal language models (originally proposed by de
Jong et al. [29]). The improved techniques that are proposed include semantic-
based preprocessing, and incorporating internal and external knowledge into
the language models. In addition, we present a tool for determining the time of
a non-timestamped document using the proposed techniques.

[These contributions are solutions to RQ1, which will be discussed in Chapter 3.

II. Query Analysis

C2. We perform the first study on how to determine the time of queries without
temporal criteria provided, and propose techniques for determining time. In
addition, we propose an approach to re-ranking search results by incorporating
the determined time of queries.

[These contributions are solutions to RQ2, which will be discussed in Chapter 4.]
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C3.

C4.

Cs.

We model Wikipedia as a temporal resource and use it for discovering time-
based synonyms. Moreover, we propose a query expansion technique using the
discovered time-based synonyms. Finally, we present a news archive search
tool that exploits changing synonyms over time.

[These contributions are solutions to RQ3, which will be discussed in Chapter 5.

We perform the first study and analysis of query performance prediction of
temporal queries. In particular, we propose different time-based predictors and
techniques for combining multiple predictors in order to improve query perfor-
mance prediction.

[These contributions are solutions to RQ4, which will be discussed in Chapter 6.

We perform the first study on the impact on retrieval effectiveness of two differ-
ent ranking models that exploit two time dimensions. We propose an approach
to predicting the suitable time-aware ranking model based on machine learning
techniques, using three classes of features.

[These contributions are solutions to RQS5, which will be discussed in Chapter 7.]

III. Retrieval and Ranking Models:

Cé6.

C7.

We analyze different time-aware ranking methods concerning two main as-
pects: 1) whether or not time uncertainty is concerned, and 2) whether the
publication time or the content time of a document is used in ranking. By
conducting extensive experiments, we evaluate the retrieval effectiveness of
different time-aware ranking methods.

[These contributions are solutions to RQ6, which will be discussed in Chapter 8.

The first formalization of the ranking related news predictions task is given.
Moreover, we propose a learned ranking model incorporating four classes of
features including term similarity, entity-based similarity, topic similarity, and
temporal similarity.

[These contributions are solutions to RQ7, which will be discussed in Chapter 9.)

1.6 Publications

Our contributions to this PhD work have been published in several international con-
ferences. Below is given a list of publications and the corresponding chapters where
publications are included.

P1. Nattiya Kanhabua and Kjetil Nervag, Improving Temporal Language Models For

P2.

Determining Time of Non-Timestamped Documents [58], Proceedings of the 12th
European Conference on Research and Advanced Technology for Digital Libraries
2008 (ECDL’2008), Aarhus, Denmark, September 2008.

[This publication is included in Chapter 3.

Nattiya Kanhabua and Kjetil Norvag, Using Temporal Language Models for Doc-
ument Dating (demo) [59], Proceedings of the European Conference on Machine



Chapter 1. Introduction 11

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD’2009), Bled, Slovenia, September 2009.
[This publication is included in Chapter 3.]

P3. Nattiya Kanhabua and Kjetil Norvag, Exploiting Time-based Synonyms in Searching
Document Archives [61], Proceedings of the ACM/IEEE Conference on Digital Li-
braries (JCDL’2010), Brisbane, Australia, June 2010.

[This publication is included in Chapter 5.]

P4. Nattiya Kanhabua and Kjetil Norvag, Determining Time of Queries for Re-ranking
Search Results [60], Proceedings of the 14th European Conference on Research and
Advanced Technology for Digital Libraries 2010 (ECDL’2010), Glasgow, Scotland,
UK, September 2010.

[This publication is included in Chapter 4.]

P5. Nattiya Kanhabua and Kjetil Norvag, QUEST: Query Expansion using Synonyms
over Time (demo) [62], Proceedings of the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’2010),
Barcelona, Spain, September 2010.
[This publication is included in Chapter 5.]

P6. Nattiya Kanhabua and Kjetil Nervag, 4 Comparison of Time-aware Ranking Meth-
ods (poster) [63], Proceedings of the 34th Annual ACM SIGIR Conference (SI-
GIR’2011), Beijing, China, July 2011.

[This publication is included in Chapter 8.]

P7. Nattiya Kanhabua and Kjetil Nervag, Time-based Query Performance Predictors
(poster) [64], Proceedings of the 34th Annual ACM SIGIR Conference (SIGIR’2011),
Beijing, China, July 2011.

[This publication is included in Chapter 6.]

P8. Nattiya Kanhabua, Roi Blanco and Michael Matthews, Ranking Related News Pre-
dictions [57], Proceedings of the 34th Annual ACM SIGIR Conference (SIGIR’2011),
Beijing, China, July 2011.

[This publication is included in Chapter 9.]

P9. Nattiya Kanhabua, Klaus Berberich and Kjetil Nervéag, Time-aware Ranking Predic-
tion, (under submission).
[This publication is included in Chapter 7.]

1.7 Thesis Organization

The thesis is divided into four main parts. Part I presents motivations, research questions,
technical background and the state-of-the-art. Part II-VI presents our proposed time-
aware approaches to searching temporal document collections. The detailed organization
of the thesis is outlined below.
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Part I - Overview and Background

Chapter 1 includes this introduction, which states our motivation of this PhD the-
sis. Research questions and methodology for conducting the thesis are also
discussed in this chapter.

Chapter 2 describes technical background composed of fundamental techniques
useful for understanding the work in this thesis. In addition, the state-of-the-
art relevant to the PhD thesis is also explained.

Part II - Content Analysis

Chapter 3 presents and evaluates our proposed approach to determining the time
of non-timestamped documents.

Part III - Query Analysis
Chapter 4 describes approaches to determining the time of queries without tem-

poral criteria provided and evaluate our proposed approaches.

Chapter 5 presents the effect of terminology changes over time, an approach to
solving the problem and the evaluation of the proposed approach.

Chapter 6 discusses query performance prediction for temporal queries, and presents
time-based predictors as well as the evaluation of the proposed methods.

Chapter 7 presents and evaluates an approach to predicting the suitable time-aware
ranking model based on machine learning techniques, using three classes of
features.

Part VI - Retrieval and Ranking Models

Chapter 8 describes an empirical comparison of different time-aware ranking meth-
ods.

Chapter 9 presents and evaluates a learned ranking model that combines multiple
evidences with time for relevance ranking.

Finally, in Chapter 10, we give conclusions, outline future work, and discuss possible
research topics beyond what have been addressed in the thesis.



Chapter 2

Background and State-of-the-art

In this chapter, we briefly describe fundamental techniques in the research area of in-
formation retrieval, which are useful for understanding our contributions in the following
chapters. Then, we describe temporal information retrieval explaining how time can be
represented and exploited in IR, and giving an overview of the state-of-the-art techniques
in temporal information retrieval.

2.1 Information Retrieval

Information retrieval (IR) provides a user with the ability to access information about
his/her topics of interest, called an information need. A document collection refers to
a data repository containing different types of documents, such as textual documents or
multimedia documents. A typical IR system allows a user to formulate his/her information
need using one or more keywords, called a guery. Then, the system retrieves documents
related to the query and ranks the results according to relevance before returning them to
the user. For example, given the query UEFA Euro 2008, the user interfaces and results
returned by two different IR systems are shown in Figure 2.1.

In general, the process of information retrieval consists of three main components:
document indexing, query processing and document retrieval, as illustrated in Figure 2.2.
Another important issue critical to IR is retrieval evaluation, which is not a part of the
online retrieval process. We will now describe each IR component in more detail.

2.1.1 Document Indexing

One major concern when building an IR system is efficiency, that is, the system should
process a query and return a result list to the user as fast as possible. In order to increase
the speed of search, documents must be indexed. In this way, an IR system avoids linearly
scanning the document collection to find the documents matching the query.

The process of transforming documents into index is called document indexing, which
basically includes two main steps: 1) document acquisition and 2) text preprocessing.

13
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Figure 2.2: Main components of a typical IR system.

Document acquisition refers to the process of obtaining documents, e.g., scanning books
into digital documents or crawling web pages. Before a document can be indexed, a text
preprocessing step must be performed. For unstructured textual documents, the prepro-
cessing step can include tokenization, part-of-speech tagging, stopword removal, stem-
ming and lemmatization.

1. Tokenization splits a document into a list of words or tokens. In English, a period,
a question mark, an exclamation mark, or a comma are used as sentence delimiters.

2. Tagging is the process of labeling each token with its part-of-speech (POS) in the
sentence, such as, a noun, a proper noun, an adjective, a verb, a determiner, or
a number. POS tagging helps in removal of irrelevant words (e.g., adjectives, or
determiners) and also can reduce ambiguity of word senses with several meanings (a
noun or a verb). Moreover, tagged tokens are also useful for the stemming process.

3. Stopword removal aims at eliminating less informative or useless words before
indexing. Highly frequent words like articles, prepositions, and conjunctions are
stopwords which are not necessarily useful in distinguish among documents.

4. The stemming process reduces syntactic variations of words by transforming them
into a common form (a root of word, or stem) for example, ‘cars’ becomes ‘car’.
In addition, stemming helps in reducing the vocabulary size. An easy and efficient
method for stemming is to do affix removal by writing rules.

5. Lemmatization is the lexicon approach mapping inflections of words into one canon-
ical representation or lemma, such as, mapping various verb forms to infinite, map-
ping plural noun to singular form, or mapping comparative forms of an adjective to
the normal form.
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After text preprocessing, terms as well as the information about documents and posi-
tions will be stored in the document index.

2.1.2 Query Processing

A user expresses his/her information need by formulating a query typically consisting of
one or more keywords. The results of a query in an IR system can partly match a given
query. In other words, it retrieves documents containing information relevant to the query.
A document is considered relevant if it is one that the user perceives as containing infor-
mation of value with respect to their personal information need [84]. Given a query ¢
and a document d, the degree of relevance of d with respect to ¢ is determined by the IR
system and depends on the retrieval model that the system employs. Different retrieval
models will be described in the next section. The basic components for query processing
are 1) query preprocessing and 2) query refinement. Note that, query refinement is op-
tional, and it is dependent on an IR application. A query must be preprocessed in the same
way as the documents in order to be able to match the query with index terms. For in-
stance, a query can be tokenized, stop-word removal, stemmed or lemmatized. In general,
a query is not preprocessed extensively because it only consists of a few keywords. After
representing both a query and a document using the same format, the matching process
will be performed during retrieval.

Consider two example queries: the query car is unable to match a document contain-
ing “automobile”, and similarly the query plane is unable to match a document contain-
ing “aircraft” because documents do not exactly contain the query queries. This is one
of two classic problems in natural languages: synonymy and polysemy. Synonymy refers
to a case where two different words have the same meaning, e.g., car and “automobile”,
or plane and “aircraft”. On the contrary, polysemy refers to the case where a term has
multiple meanings. For instance, the term “java” can refer to programming language,
coffee, or an island in Indonesia. In order to overcome the problems, query refinement
or the process of reformulating the query using semantically similar terms, can be per-
formed either manually by a user or automatically by a system. Two main approaches
can be applied to tackle with the problems [84]: 1) global methods and 2) local methods.
Global methods reformulate the original query by expanding it with other semantically
similar terms, which can be done independently of the initial retrieved results. Examples
of global methods are query expansion/reformulation with a thesaurus, spelling correc-
tion, and query suggestion. Local methods reformulate the original query by analyzing
the initial results returned. The local methods include relevance feedback and pseudo
relevance feedback (also known as blind relevance feedback).

In this work, we employ two techniques: query expansion using a thesaurus and
pseudo relevance feedback. Query expansion is aimed at improving the retrieval ef-
fectiveness, especially recall, by expanding the query using synonyms or related terms
from a thesaurus (or a controlled vocabulary). Generally, a thesaurus is composed of
synonymous names for concepts and can be manually created by human editors, semi-
automatically created using machine learning, or fully automated using word co-occurrence
statistics or query log analysis. Note that, applying query expansion can decrease preci-
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Table 2.1: A term-document matrix represents a document using binary weighting {1,0}.

Documents
d 1 d2 d3 d4
UEFA 1 0 0 1
Europe I 1 0 1
Terms football 1 1 1 1
championship 0 1 1 0

sion significantly when a query contains ambiguous terms.

Relevance feedback is the process of involving a user in improving the final results of
retrieval. First, a user issues a query and the system returns the initial results of retrieval.
Then, the user is able to provide feedbacks by labeling each document in the initial result
set as relevant or non-relevance. Finally, the system will employ the feedback to refor-
mulate the original query and return the final results, which are retrieved with respect to
the modified query. Pseudo relevance feedback on the other hand does not require in-
volvement from the user. It assumes that the top-k retrieved documents are relevant to
the query without asking for an additional input from the user. Both relevance feedback
and pseudo relevance feedback have been shown to improve the retrieval effectiveness.
However, they can lead to query drift for some queries with too few relevant documents
in the top-k retrieved results.

2.1.3 Document Retrieval

Document retrieval is the core process of IR, and a retrieval model is a major component
of document retrieval. Several retrieval models have been proposed, for example, Boolean
retrieval model, vector space model, probabilistic model, language modeling approaches
and learning-to-rank. Retrieval models differ from each other in many aspects including
query interpretation, document representation, and document scoring and ranking algo-
rithms employed. In the following, we will explain each of the retrieval models.

Boolean Retrieval Model

The Boolean retrieval model is the simplest IR model. A query is a combination of terms
and Boolean operators AND, OR and NOT. A document is modeled as bag of words (an
unordered list of terms). Each term in the document is represented using binary weighting
{1,0} (1 for term presence and 0 for term absence) as illustrated using a term-document
matrix in Table 2.1.

The Boolean retrieval model ignores the degree of relevance since it assumes two
outcomes of relevance, i.e., relevant or non-relevant. Let sim(d, ¢) be a function giving
a relevance score, a document score is either 1 (relevant) or 0 (non-relevant), that is,
sim(q,d) € {1,0}. Given the Boolean query (UEFA AND championship) NOT league,
the results are those documents containing both terms “UEFA” and “championship” but
not the term “league”, as illustrated using a Venn diagram in Figure 2.3. Intuitively, the
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league
{d3,d4}

UEFA
{d1, d2 ,d3}

championship
{d2,d3,d4}

Figure 2.3: Result of the query (UEFA AND championship) NOT league is the shaded
area, or ds.

model returns all documents “exactly matched” with the query terms without ordering the
documents.

Despite its simplicity, the retrieval effectiveness of a Boolean query depends entirely
on the user. In order to gain high effectiveness, the user can issue a complex query, but
it is quite difficult to formulate. If a simple query is used, there might be too few or too
many documents retrieved. If a large number of documents are retrieved, this poses a
problem for the user because he/she has to spend time looking for those satisfying the
information needs.

Vector Space Model

The vector space model is a ranked retrieval model. That is, documents are retrieved and
ranked descendingly by the degree of relevance, which can be measured as the similarity
between a query and a document. First, a query and documents are represented as vectors
of term weights by using a term weighting scheme, e.g., #/~idf. Given a term w and a
document d, ¢f is the term frequency of w, which is normalized by the total term frequency
in d. Thus, #f can be computed as:

freq(w, d)
Z?Lﬁ’e‘ﬂwjv d)

where freq(w, d) is the term frequency of w in d and ng is the number of distinct terms
in d. tf captures the importance of a term w in a document by assuming that the higher #
score of w, the more importance of w with respect to d. Intuitively, terms that convey the
topics of a document should have high values of #f.

idf is the inverse document frequency weight of a term w. It measures the importance
of w with respect to a document collection. idf can be seen as a discriminating property,
where a term that appears in many documents is /ess discriminative than a term appears

flw, d) = @.1)
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in a few documents. For example, the term “football” occurring in all documents. Thus,
it is less discriminative compared to the term “UEFA” occurring in only two documents.
idf can be computed as:

idflw) = log N (2.2)

w
where NV is the total number of documents in a collection, and n,, is the number of docu-
ments in which a term w occurs. Finally, a #f-idf weight of a term w in a document d can
be computed using the function #f~idf(w,d) given as:

Finally, a query ¢ and a document d can be represented as vectors of ¢/-idf weights of
all terms in the vocabulary as:

= <w1,qa CIEa >’¢n,q>
= <w1,da e 7’(/)n,d>
where 1); 4 is tf~idf weight of a term w; in ¢ and v 4 is tf-idf weight of a term w; in d.

The similarity of the term-weight vectors of ¢ and d can be computed using the cosine
similarity as:

7
d

ged

g1 < |d]

_ Do hig X g
\/Z?:l 12(1 X Yy i2,d

The advantages of the vector space model over the Boolean retrieval model are: 1) it
employs term weighting which improves the retrieval effectiveness, 2) the degree of sim-
ilarity allows partially matching documents to be retrieved, and 3) it is fast and easy for
implementing. However, there are some disadvantages of the vector space model. First,
it makes no assumption about term dependency, which might lead to poor results [8]. In
addition, the vector space model makes no explicit definition of relevance. In other words,
there is no assumption about whether relevance is binary or mutivalued, which can impact
the effectiveness of ranking models.

sim(q,d) =
2.4)

Probabilistic Model

The probabilistic model was first proposed by Robertson and Jones [103]. The model
exploits probabilistic theory to capture the uncertainty in the IR process. That is, docu-
ments are ranked according to the probability of relevance. There are two assumptions
in this model: 1) relevance is a binary property, that is, a document is either relevant or
non-relevant, and 2) the relevance of a document does not depend on other documents.
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Given a query ¢, let R and R be the set of relevant documents and the set of non-relevant
documents with respect to g respectively. A basic task is to gather all possible evidences
in order to describe the properties of the sets of relevant documents and non-relevant doc-
uments. The similarity of ¢ and a document d can be computed using the odd ratio of
relevance as:
, P(R|d)

sim(d, q) = PRI (2.5)
In order to simplify the calculation, Bayes’ theorem is applied yielding the following
formula:

2.6)

where P(R) is the a prior probability of a relevant document, and P(R) is the a prior
probability of a non-relevant document. For a given query g, it is assumed that both prior
probabilities are the same for all documents, so they can be ignored from the calculation.
P(d|R) and P(d|R) are probabilities of randomly selecting a document d from the set of
relevant documents R and the set of non-relevant documents R respectively.

In the probabilistic model, a document d is represented as a vector of terms with binary
weighting, which indicates term occurrence or non-occurrence.

(I: <¢1,da e 71/}n¢d>

where ;4 is the weight of a term w; in a document d, and v, 4 € {0,1}. In order to
compute P(d|R) and P(d|R), it assumes the Naive Bayes conditional independence [84],
that is, the presence or absence of a term in a document is independent of the presence
or absence of other terms in the given query. Thus, the computation of similarity can be
simplified as:

P(d|R)

P(d|R)

I Pl R)
[T, P(wi|R)

where P(w;|R) is the probability that a term w; occurs in relevant documents, and P(w;| R)
is the probability that a term w; occurs in non-relevant documents. By modeling relevance
using probability theory makes the probabilistic model theoretically sound compared to
the Boolean retrieval model and the vector space model. However, a drawback is an in-
dependence assumption of terms, which is contrary to the fact that any two terms can

sim(d, q) =
.7)
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Table 2.2: Example of a language model or a probability distribution over terms in the
language.

Term Probability
UEFA 0.18
Europe 0.27
championship 0.36
football 0.18

be semantically related. In addition, the probabilistic model is difficult to implement be-
cause the complete sets of relevant documents and non-relevant documents are not easy
to obtain. Thus, in order to compute P(w;|R) and P(w;|R), it is needed to guess prior
probabilities of a term w; by retrieving top-n relevant documents and then perform itera-
tive retrieval in order to recalculate probabilities. This makes it difficult to implement the
model. In addition, the probabilistic model ignores the frequency of terms in a document.

Language Modeling

Originally, language modeling was employed in speech recognition for recognizing or
generating a sequence of terms. In recent years, language model approaches have gained
interests from the IR community and been applied for IR. A language model M, is es-
timated from a set of documents D, which is viewed as the probability distribution for
generating a sequence of terms in a language. An example of a language model is shown
in Table 2.2. The probability of generating a sequence of terms can be computed by multi-
plying the probability of generating each term in the sequence (called a unigram language
model), which can be computed as:

P(wl,wg,w3|ZWD) = P(’UJ”A{D) . P(w2|A{D) . P(w5|]WD) (28)

The original language modeling approach to IR is called the query likelihood model [84].
In this model, a document d is ranked by the probability of a document d as the likelihood
that it is relevant to a query ¢, or P(d|¢). By applying Bayes’ theorem, P(d|q) can be
computed as:

q|d) - P(d)

P(dlg) = il () (2.9)

where P(q) is the probability of a query ¢, and P(d) is a document’s prior probability.
Both P(¢) and P(d) are in general ignored from the calculation because they have the
same values for all documents. The core of the query likelihood model is to compute
P(g|d) or the probability of generating ¢ given the language model of d, Mp. P(q|d) can
be computed using maximum likelihood estimation (MLE) and the unigram assumption
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as:

P(q|My) = P(wy, ws, w3|My)

= ﬂ P(w;|My) (2-10)
i=1

where n, is the number of terms in ¢g. The equation above is prone to zero-probability,
which means that one or more terms in ¢ may be absent from a document d. In order
to avoid zero-probability, a smoothing technique can be applied in order to add a small
(non-zero) probability to terms that are absent from a document. Such a small probability
is generally taken from the background document collection. For each query term w, a
smoothing technique is applied yielding the estimated probability P (w|d) of generating
each query term w from d as:

P(wld) = X - P(w|My) + (1= \) - P(w|Mg) (2.11)

where the smoothing parameter A € [0, 1]. C is the background document collection. M
is the language model generated from the background collection.

Learning to Rank

Many researchers have applied machine learning algorithms in order to optimize the qual-
ity of ranking, called learning-to-rank approaches. In general, there are three main steps
for modeling a ranking function using learning-to-rank approaches [77]:

1. Identify features. A set of features {x1,xs,...,x,,} are defined as sources of the
relevance of a document d; with respect to a query ¢;. Normally, a value of each
feature x; is a real number between [0, 1]. The same notation will be used for both
feature and its value, that is x;. Given a query ¢;, a document d; can be represented
as a vector of feature values, d; = (21, 2s,...,x,) indicating the relevance of d;
with respect to g;.

2. Learn a ranking model. Machine learning is used for learning a ranking function
h(q, d) based on training data, called supervised learning. Training data is a set of
triples of labeled or judged query/document pairs {(g;, d;, yx)}, where each docu-
ment d; is represented by its feature values, ¢ € {1,...,n}and j € {1,...,m}. A
judgment or label y;, can be either relevant or non-relevant y;, € {1, —1}, or a rank
representing by natural numbers y;, € IN.

3. Rank documents using models. The ranking function h(q, d) learned in the previous
step will be used for ranking test data, or a set of unseen query/document pairs
{(gj,d;)} where i ¢ {1,...,n}and j ¢ {1,...,m}. The result is a judgment or
label y;, for each query/document pair.
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A ranking model h(d, ¢) is obtained by training a set of labeled query/document pairs
using a learning algorithm. A learned ranking model is essentially a weighted coefficient
w; of a feature x;. An unseen document/query pair (d’, ¢') will be ranked according to a
weighted sum of feature scores:

N
score(d',q') = sz X :L'?/ (2.12)
i—1

where N is the number of features. Many existing learning algorithms have been pro-
posed, and can be categorized into three approaches: pointwise, pairwise, and listwise
approaches [77]. The pointwise approach assumes that retrieved documents are indepen-
dent, so it predicts a relevance judgment for each document and ignores the positions of
documents in a ranked list. The pairwise approach considers a pair of documents, and rel-
evance prediction is given as the relative order between them (i.e., pairwise preference).
The listwise approach considers a whole set of retrieved documents, and predicts the rel-
evance degrees among documents. For a more detailed description of each approach,
please refer to [77].

2.1.4 Retrieval Evaluation

In the IR research community, it is common to evaluate an IR system using a test col-
lection, which is composed of various document collections, a set of queries, and rele-
vance judgments for queries. For example, the Text Retrieval Conference (TREC) and
Cross Language Evaluation Forum (CLEF) provide test collections and evaluation data
for different IR tasks, such as, ad hoc search, enterprise search, question answering, cross
language retrieval, etc. Building each test collection involves evaluating all documents in
a collection, which is a time-consuming process for human assessors and not feasible in
practice. In general, a pooling technique is used in TREC for creating a pool of relevance
judgments [24]. Top-k documents (between 50 and 200) from the rankings obtained by
different search engines (or retrieval algorithms) are merged into a pool, and duplicates are
removed. Then, documents are presented in some random order to assessors for making
relevance judgments. Hence, the final output of pooling is a set of relevance judgments
for the queries.

Basically, there are two aspects of evaluating an IR system: 1) efficiency and 2) ef-
fectiveness. Efficiency measures a system’s response time and space usage, while ef-
fectiveness measures the quality of the system’s relevance ranking. In this work, we
only consider the retrieval effectiveness aspect. Two metrics that are commonly used for
evaluating the retrieval effectiveness are precision and recall. Precision is the fraction of
retrieved documents that are relevant. Recall is the fraction of relevant documents that are
retrieved. Let R be the set of relevant documents and A be the set of retrieved documents
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(answer set) of ¢. Precision and recall can be computed as:

RNA
precision = | a1 |
(2.13)
recall = B0 A
R

F-measure is a single measure that combines precision and recall, and it is computed

as the weighted harmonic mean of precision and recall:
F= 2P R (2.14)
(P+R)

where P is precision and R is recall. In this work, we also use other metrics for measuring
the retrieval effectiveness. Precision at top-k documents, so-called P@k, focuses on only
top documents and it is easy to compute. For example, precision at top-5, 10 and 15 are
denoted as P@5, P@10 and P@15 respectively. Mean Average Precision (MAP) provides
a summarization of rankings from multiple queries by averaging the precision values from
the rank positions where a relevant document was retrieved, or average precision. Mean
Reciprocal Rank (MRR) is the average of the reciprocal ranks over a set of queries, where
reciprocal rank is the rank at which the first relevant document is retrieved.

More thorough description on retrieval evaluation can be found in [8, 24, 84].

2.2 Temporal Information Retrieval

Temporal information retrieval refers to IR tasks that analyze and exploit the time dimen-
sion embedded in documents to provide alternative search features and user experience.
Examples of interesting applications of temporal IR are document exploration, similarity
search, summarization, and clustering.

As mentioned previously, we want to exploit temporal information in document col-
lections, queries or external sources of data in order to improve the quality of search
or the retrieval effectiveness. Basically, two types of temporal information particularly
useful for temporal IR: 1) the publication or creation time of a document, and 2) tempo-
ral expressions mentioned in a document or a query. In the following, we first give an
overview of different types of temporal expressions. Then, we present time models de-
fined in two previous work [10, 29], which later are used as time models also in our work.
Finally, we present state-of-the-art in temporal IR.

2.2.1 Temporal Expressions

As explained in [2], there are three types of temporal expressions: explicit, implicit and
relative. An explicit temporal expression mentioned in a document can be mapped directly
to a time point or interval, such as, dates or years on the Gregorian calendar. For example,
“July 04, 2010” or “January 01, 2011” are explicit temporal expressions. An implicit
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temporal expression is given in a document as an imprecise time point or interval. For
example, “Independence Day 2010” or “New Year Day’s 2011” are implicit expressions
that can be mapped to “July 04, 2010” or “January 01, 2011 respectively. A relative
temporal expression occurring in a document can be resolved to a time point or interval
using a time reference - either an explicit or implicit temporal expressions mentioned in
a document or the publication date of the document itself. For example, the expressions
“this Monday” or “next month” are relative expressions which we map to exact dates
using the publication date of the document.

2.2.2 Models for Time, Documents and Queries

In temporal IR, the time dimension must be explicitly modeled in documents and queries.
In the following, we outline models for time, documents and queries that are employed in
temporal IR tasks.

Time Models

In [29], de Jong et al. modeled time as a time partition, that is, a document collection
is partitioned into smaller time periods with respect to a time granularity of interests,
e.g. day, week, month, or year. A document collection C' contains a number of corpus
documents, such as, C' = {d;,...,d,}. A document d; is composed of bag-of-words,
and the publication time of d; is represented as Time(d;). Thus, d; can be represented as
d; = {{w, ..., w,}, Time(d;)}. Given a time granularity of interest and C' is partitioned
into smaller time periods, the associated time partition of d; is a time period [ty, t51]
that contains the publication time of d;, that is Time(d;) € [ty,tx11]. For example, if
the time granularity of year is used, the associated time interval for 2011/08/22 will be
[2011/01/01,2010/12/31]. Two data structures for storing terms and associated time are
proposed [29] as shown in Table 2.3. Both data structures have different advantages and
disadvantages. A table is good when data is sparse, and it is efficient in sorting. On the
other hand, a matrix gives a direct access to data which can improve access time.

In [10], Berberich et al. represented a temporal expression extracted from a document
or the publication time of a document as a quadruple: (tby, t,, te;, te,) where tb; and
tb, are the lower bound and upper bound for the begin boundary of the time interval
respectively, which underline the time interval’s earliest and latest possible begin time.
Similarly, te; and te,, are the lower bound and upper bound for the end boundary of the
time interval respectively, which underline the time intervalSs earliest and latest possible
end time. Since the time interval is not necessarily known exactly, the time model of
Berberich et al. is proposed to capture lower and upper bounds for the interval boundaries.
To interpret the time uncertainty in this model, consider the following example given
n [10]. The temporal expression “in 1998 is represented as (1998/01/01, 1998/12/31,
1998/01/01, 1998/12/31), which can refer to any time interval [b, e] having a begin point
b € [th,tb,] and an end point e € [te;, te,] where b < e. Note that, the actual value
of any time point, e.g., tb;, tb,, te;, or te,, is an integer or the number of time units (e.g.,
milliseconds or days) passed (or to pass) a reference point of time (e.g., the UNIX epoch).
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Table 2.3: Data Models: Table vs. Matrix

(a) Table (b) Matrix
Word Partition | Frequency 2002 | 2003 | 2004
terrorist 2002 9478 terrorist | 9478 | 7750 | 5212
terrorist 2003 7750 tsunami 101 56 | 26905
terrorist 2004 5212 | | world cup | 19273 | 6069 448
tsunami 2002 101
tsunami 2003 56
tsunami 2004 26905
world cup | 2002 19273
world cup | 2003 6069
world cup | 2004 448

These time units are referred as chronons and a temporal expression ¢ is denoted as the
set of time intervals that ¢ can refer to.

Document Model

A document d consists of a textual part d.,, (an unordered list of terms) and a temporal part
dyime composed of the publication date and a set of temporal expression {t1, ...t }. The
publication date of d can be obtained from the function PubTime(d). Temporal expres-
sions mentioned in the contents of d can be obtained from the function ContentTime(d).
Both the publication date and temporal expressions can be represented using the time
models defined above.

Temporal Query Model

A temporal query ¢ refers to a query representing temporal information needs, which is
composed of two parts: keywords g, and a temporal expression g, In other words,
a user wants to know about documents that are relevant to both the topic of interest and
temporal intent. Temporal queries can be categorized into two types: 1) those with time
explicitly specified, and 2) those with implicit temporal intents. An example of a query
with time explicitly specified is the eruptions of volcanoes in Iceland before 2010.
In this case, a temporal intent is represented by the temporal expression “before 2010”
indicating that a user wants to know about volcanic events in Iceland during the years
before 2010. A query of the latter type is, for instance, Europe flight disruptions from
ash cloud that contains an implicit temporal intent referring to the Europe air travel
disruption caused by the Iceland volcano ash problem in “April 2010” or “May 2011”.
Similarly, the temporal part of a query or ¢, can be represented using any time models
defined above.

Note that, there is no standard terminology for referring a query in this research area.
Previous work [71, 87, 93, 126] mainly uses the term temporal queries, however, the term
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time-sensitive queries has been used recently in some work [27, 32, 140]. We will use
these two terms interchangeably throughout this thesis.

2.2.3 State-of-the-art in Temporal Information Retrieval

In this section, we will give a brief overview of related work in temporal IR: determining
time for non-timestamped documents, time-aware ranking, temporal indexing, visualiza-
tion using a timeline, and searching with the awareness of terminology changes.

Determining Time for Non-timestamped Documents

Determining the time of a document can be done using two methods: learning-based
and non-learning methods. The difference between these two methods is that the former
determines time of a document by learning from a set of training documents, while the
latter does not require a corpus for training. Learning-based methods are presented in [29,
116, 117]. In[116, 117], they use a statistical method (hypothesis testing) on a group
of terms having an overlapped time period in order to determine if they are statistically
related. If the computed values from testing are above a threshold, those features are
coalesced into a single topic, and the time of the topic is estimated from a common time
period associated to each term. Other previous work on this topic is the work by de Jong,
Rode, and Hiemstra [29] based on a temporal language model, which will be explained in
more detail in Chapter 3.

Non-learning methods are presented in [78, 82]. In order to determine time of a doc-
ument, temporal expressions in the document are annotated and resolved into concrete
dates. A relevancy of each date is computed using the frequency of which the date ap-
pears in the document. The most relevant date is used as a reference date for the document,
however, if all dates are similar relevant, the publication date will be used instead. In the
end, the event-time period of the document is generated by assembling all nearly dates to
the reference date where their relevancy must be greater than a threshold.

Comparing the non-learning to learning-based methods, both of them return two dif-
ferent aspects of time. The first method gives a summary of time of events appeared in the
document content, or time of topic of contents. The second method gives the most likely
originated time of the document, or time of document creation.

Time-aware Ranking

Time-aware ranking techniques can be classified into two categories: techniques based
on 1) link-based analysis and 2) content-based analysis. Approaches of the first category
exploit the link structures of documents in a ranking process, whereas the latter approach
leverages the contents of documents instead of links. In our research context, we will
focus on analyzing contents only, because information about links is #ot available in all
application domains, and content-based analysis seems to be more practical for search in
general.
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Previous work on time-aware ranking that exploits link structures is presented in [14,
26, 135]. In[135], Yu et al. pointed out that traditional link-based algorithms (i.e., PageR-
ank and HITS) simply ignore the temporal dimension in ranking. Thus, they modified the
PageRank algorithm by taking into account the date of a citation in order to improve the
quality of publication search. A publication obtains a ranking score by accumulating the
weights of its citations, where each citation receives a weight exponentially decreased
by its age. In [14], Berberich et al. also extended PageRank to rank documents with re-
spect to freshness. The difference is that this work defines freshness as a linear function
that will give a maximum score when the date of document or link occur within the user
specified period and decrease a score linearly if it occurs outside the interval. In more
recent work [26], Dai and Davison studied the dynamics of web documents and links that
can affect relevance ranking, and proposed a link-based ranking method incorporating
the freshness of web documents. Intuitively, features used for ranking were captured by
considering two temporal aspects: 1) how fresh the page content is, referred to as page
freshness, and 2) how much other pages care about the target page, referred as in-link
freshness.

Ranking methods based on an analysis of document content are presented in [31, 51,
74,100, 111]. In [74], Li and Croft proposed to incorporate time into a language model-
ing framework [73, 101], called a time-based language model. In the previous language
model [73, 101], it is assumed uniform prior probabilities, but in the new model, they as-
signed prior probabilities with an exponential function of the created date of a document
where a document with a more recent creation date obtains high probability. In this work,
they did not explicitly use the contents of documents, but only date metadata. Jatowt et
al. presented in [51] an approach to rank a document by its freshness and relevance. The
method analyzed changed contents between a current version with archived versions, and
find a similarity score of changes to a query topic. It is assumed that a document is likely
to have fresh contents if it is frequently changed and on-topic. Thus, documents are ranked
with respect to the relevance of changed contents to the topic, the size of changes and the
time difference between consecutive changes. In other words, a document is ranked high
if it is modified significantly and recently. In [31], Diaz and Jones used timestamp from
document metadata to measure the distribution of retrieved documents and create the tem-
poral profile of a query. They showed that the temporal profile together with contents of
retrieved documents improve average precision for the query by using a set of different
features for discriminating between temporal profiles: KL divergence, autocorrelation,
the kurtosis order, and three factors from the burst model.

Another work on content-based analysis is presented in [100]. Perkid et al. introduced
a process of automatically detecting a topical trend (the strength of a topic over time)
within a document corpus by analyzing temporal behavior of documents using a statistic
topic model. Then, it is possible to use topical trends on top of any traditional ranking
like tf-idf to improve the effectiveness of retrieval. In [111], Shaparenko et al. proposed
a method that does not require link information. The proposed method is appropriate for
various types of documents, for example, emails or blogs, lacking meaningful citation
data. The idea is to identify the most influent document by defining the impact of a
document as the amount of follow-up work it generates represented as lead/lag index. The
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index measures if a document is more leader or more follower by comparing similarities
of two documents and time lag.

Temporal Indexing

Also related is work on temporal indexing for supporting temporal text-containment queries.
Norvag presented in [93] an approach to manage documents and index structures in tem-
poral document databases. Using a web warechouse containing historical web pages as
a testing environment, the author showed that different indexing methods proposed im-
prove the performance of temporal text-containment queries. In [12], Berberich et al.
presented a method for text search over temporally versioned documents. They proposed
the temporal coalescing technique for reducing the index size, and proposed the sublist
materialization technique to improve index performance concerning space and time. Doc-
uments are retrieved according to a query and user’s specified time, and are ranked based
on tf-idf.

Visualization using a Timeline

Recent work also consider visualization of search results using temporal information to
place retrieved documents on a timeline, which is useful for document browsing [1, 2, 37].
When a user enters only keywords as a query, retrieved results are too broad without
giving temporal context. To narrow down a set of documents retrieved, it is necessary to
give an overview of possible time periods relevant to the query and suggest that as a hint
to the user. In [11], they display a histogram of a distribution of the size of estimated
results over a timeline. The intention is to draw tentative time periods for the query, and
then the user can refine the query with the new temporal context he/she is interested in.

Searching with the Awareness of Terminology Changes

Search results can be affected by the terminology changes over time, for instance, changes
of words related to their definitions, semantics, and names (people, location, etc.). It is
important to note that language changes is an continuous process that can be observable
also in a short term period. The variation in languages causes two problems in text re-
trieval; 1) spelling variation or a difference in spelling between the modern and historic
language, and 2) semantics variation or terminology evolution over time (new words are
introduced, others disappears, or the meaning of words changes).

Previous work [35, 36, 69] addressed the spelling variation problem using techniques
from cross language information retrieval (CLIR). In [69], Koolen et al. proposed a cross-
language approach to historic document retrieval. A rule-based method for modernizing
historic languages, and the retrieval of historic documents using cross-language informa-
tion retrieval techniques are proposed. In [35, 36], Ernst-Gerlach and Fuhr used proba-
bilistic rule-based approaches to handling term variants when searching historic texts. In
this case, a user can search using queries in contemporary language and the issued queries
are translated into an old spelling possibly unknown to the user, which is similar to query
expansion. As explained in [35], there are two ways to perform query expansion: an
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expansion of query and an expansion of index. In the first case, a set of rules is automati-
cally constructed for mapping historic terms into modern terms. In the latter case, based
on a lexical database, terms are indexed together with their synonyms and holonyms as
additional indices.

The affect of terminology evolution over time is addressed in [13, 28, 55, 56, 118].
In [13], Berberich et al. proposed a method based on a hidden Markov model for re-
formulating a query into terminology prevalent in the past. Kaluarachchi et al. [55, 56]
studied the problem of concepts (or entities) whose names can change over time. They
proposed to discover concepts that evolve over time using association rule mining, and
used the discovered concepts to translate time-sensitive queries and answered appropri-
ately. In [28], de Boer et al. presented a method for automatically extracting event time
periods related to concepts from web documents. In their approach, event time periods
are extracted from different documents using regular expressions, such as, numerical no-
tations for years. Tahmasebi et al. [118] proposed to automatically detecting terminology
evolution within large, historic document collections by using clustering techniques and
analyzing co-occurrence graph.
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Chapter 3

Determining Time of Non-timestamped
Documents

In order to incorporate the time dimension into search, a document should be assigned
to its time of creation or published date. However, it is difficult to find an accurate and
trustworthy timestamp for a document. This chapter addresses the research problem: Zow
to determine the time of non-timestamped documents in order to improve the effectiveness
in searching temporal document collections?

3.1 Motivation

When searching temporal document collections, it is difficult to achieve high effective-
ness using only a keyword query because the contents of documents are strongly time-
dependent. Possible solutions to increase the retrieval effectiveness are, for instance,
extending keyword search with the publication time of documents (called temporal crite-
ria), or automatically re-ranking retrieved documents using time. Incorporating the time
dimension into search will increase the retrieval effectiveness if a document is assigned
to its time of creation or published date. However, due to its decentralized nature and
the lack of standards for date and time, it is difficult to find an accurate and trustwor-
thy timestamp for a web document. In a web warehouse or a web archive, there is no
guarantee that the creation time and the time of retrieval by a web crawler are related.
Similarly, a document can be relocated and its metadata made unreliable. The purpose
of determining time for non-timestamped documents is to estimate the time of publica-
tion of document/contents or the time of topic of documents’ contents. The process of
determining the time of documents is called document dating.

Contributions
Our main contributions in this chapter are:

e We propose different techniques for improving temporal language models (origi-
nally proposed by de Jong et al. [29]) used for determining the creation time of

33
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non-timestamped documents. The proposed approaches include different semantic-
based preprocessing. In addition, we aim at improving the quality of document
dating by incorporating internal and external knowledge into the temporal language
models.

e We present a system prototype for dating documents using the proposed extension
approaches. The system prototype can take different formats of input: a file, the
contents of a given URL, or directly entered text. As output, it will present an
estimation of possible time periods associated with the document, with confidence
of each of the estimated time periods.

Organization

The organization of the rest of this chapter is as follows. In Section 3.2, we give an
overview of related work. In Section 3.3, we outline preliminaries that will be used as
the basis of our approach. In Section 3.4, we explain semantic-based techniques used in
data preprocessing. In Section 3.5, we propose three new approaches that improve the
previous work: word interpolation, temporal entropy and using external search statistics.
In Section 3.6, we evaluate our proposed techniques. In Section 3.7 we describe our
document dating prototype, and we demonstrate the usage of the document dating system.
Finally, in Section 3.8, we give conclusions.

3.2 Related Work

Previous work on determining the time of a document can be categorized into 2 ap-
proaches: learning-based and non-learning methods. The difference between the two
methods is that the former determines the time of a document by learning from a set of
training documents, while the latter does not require a corpus collection. Learning-based
methods are presented in [29, 116, 117]. In [116, 117], they use a statistical method
called hypothesis testing on a group of terms having an overlapped time period in order to
determine if they are statistically related. If the computed values from testing are above a
threshold, those features are coalesced into a single topic, and the time of the topic is es-
timated from a common time period associated to each term. Another method presented
by de Jong et al. in [29] is based on a temporal language model where the time of the
document is assigned with a certain probability. We will discuss in details the temporal
language model in the next section.

Non-learning methods are presented in [78, 82, 94]. They require an explicit time-
tagged document. In order to determine the time of a document, each time-tagged word
is resolved into a concrete date and a relevancy of the date is computed using the fre-
quency of which the date appears in the document. The most relevant date is used as
a reference date for the document, however, if all dates are similar relevant, the publi-
cation date will be used instead. In the end, the event-time period of the document is
generated by assembling all nearly dates to the reference date where their relevancy must
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be greater than a threshold. Nunes et al. [94] propose an alternative approach to dat-
ing a non-timestamped document using its neighbors, such as 1) documents containing
links to the non-timestamped document (incoming links), 2) documents pointed to the
non-timestamped document (outgoing links) and 3) the media assets (e.g., images) asso-
ciated with the non-timestamped document. They compute the average of last-modified
dates extracted from neighbor documents and use it as the time for the non-timestamped
document.

More recent work on document dating is the work by Chen et al. [21]. They propose
a hybrid approach, i.e., extracting and inferring the timestamp of a web document using
a machine learning technique. Different features are used including linguistic features,
position-based features and the page format and tag information of web documents. In
addition, the links and contents of a web document and its neighbors are also exploited.

Comparing the non-learning to learning-based methods, both of them return two dif-
ferent aspects of time. The first method gives a summary of the time of events appeared
in the document content, while the latter one gives the most likely originated time which
is similar to written the time of the document. In this chapter, we focus on analyzing con-
tents only because information about links is not available in all domains, and content-
based analysis seems to be more practical for a general search application.

3.3 Preliminaries

In this section, we briefly outline our document model and the statistic language model
presented by de Jong, Rode and Hiemstra [29]. For short we will in the following denote
their approach as the JRH approach.

3.3.1 Document Model

In our context, a document collection contains a number of corpus documents defined
as C' = {dy,ds,ds,...,d,}. A document has two views: a logical view and a temporal
view. The logical view of each document can be seen as bag-of-words (an unordered
list of terms, or features), while the temporal view represents trustworthy timestamps. A
simple method of modeling the temporal view is partitioning time spans into a smaller
time granularity. A document model is defined as d; = {{wy, wa, ws, ..., wp}, (L, tiv1)}
where t; < t;y1, t; < PubTime(d;) < t;11, and (t;,¢;41) is the temporal view of the doc-
ument which can be represented by a time partition. PubTime(d;) is a function that gives
trustworthy timestamp of the document and must be valid within in the time partition.

3.3.2 Temporal Language Models

The JRH approach is based on temporal language models, which incorporates the time
dimension into language modeling [101]. The temporal language models assign a prob-
ability to a document according to word usage statistics over time. The JRH approach
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employs a normalized log-likelihood ratio (NLLR) [70] for computing the similarity be-
tween two language models. Given a partitioned corpus, it is possible to determine the
time of a non-timestamped document d; by comparing the language model of d; with each
corpus partition p; using the following equation:

P(w|p;)

NLLR(d;, pj) =Y P(wl|d;) x log P@lO) (3.1)
wed;
_ U{(wv d7)
P =" 33
(w|pj) Zw’épj Zf(wl7pJ) ( )
Plwjc) = <0 (3.4)

Zw’EC (f(w/’ O)

where #f{w, d;) is the frequency of a term w in a non-timestamped document d;. #{w, p;)
is the frequency of w in a time partition p;. #f{w, C) is the frequency of w in the entire
collection C'. In other word, C'is the background model estimated on the entire collection.
The timestamp of the document is the time partition which maximizes the score according
to the equation above. The intuition behind the described method is that given a document
with unknown timestamp, it is possible to find the time interval that mostly overlaps in
term usage with the document. For example, if the document contains the word “tsunami”
and corpus statistic shows this word was very frequently used in 2004/2005, it can be
assumed that this time period is a good candidate for the document timestamp.

As can be seen from the equation, words with zero probability are problematic, and
smoothing (linear interpolation [70] and Dirichlet smoothing [139]) is used to solve the
problem by giving a small (non-zero) probability to words absent from a time partition.
In the next section, we will present out approach to determining the time of a document,
which basically extends the JRH approach.

3.4 Semantic-based Preprocessing

Determining the time of a document from a direct comparison between extracted words
and corpus partitions has limited accuracy. In order to improve the performance, we
propose to integrate semantic-based techniques into document preprocessing. We have in
our work used the following techniques:

e Part-of-Speech Tagging: Part-of-speech (POS) tagging is the process of labeling
a word with a syntactic class. In our work, we use POS tagging to select only the
most interesting classes of words, for example, nouns, verb, and adjectives.

e Collocation Extraction: Collocations [83] are common in natural languages, and a
word cannot be classified only on the basis of its meaning, sometimes co-occurrence
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with other words may alter the meaning dramatically. An example is “United
States” as one term compared to the two independent terms “united” and “states”,
which illustrates the importance of collocations compared to single-word terms
when they can be detected.

e Word Sense Disambiguation: The idea of word sense disambiguation (WSD) is
to identify the correct sense of word (for example, two of the senses of “bank” are
“river bank” and “money bank”) by analyzing context within a sentence.

e Concept Extraction: Since a timestamp-determination task relies on statistics of
words, it is difficult to determine the timestamp of a document with only a few
words in common with a corpus. A possibility is to instead compare concepts in
two language models in order to solve the problem of less frequent words.

e Word Filtering: A filtering process is needed to select the most informative words
and also decrease the vocabulary size. In our work, we apply the #/~idf weighting
scheme to each term and only the top-ranked N, terms will be selected as represen-
tative terms for a document.

3.5 Improving Temporal Language Models

In this section, we propose three new methods for improving the JRH approach: 1) word
interpolation, 2) temporal entropy, and 3) external search statistics from Google Zeit-
geist [38]. Each method will be described in more details below.

3.5.1 Word Interpolation

When a word has zero probability for a time partition according to the training corpus,
this does not necessarily mean the word was not used in documents outside the training
corpus in that time period. It just reflects a shortcoming of having a training corpus of
limited size. As described in Section 3.3.2, smoothing can be used to model that a word
also exists in other time partitions.

In the following we present more elaborate ways of word frequency interpolation
for partitions where a word does not occur. In this process, a word is categorized into
one of two classes depending on characteristics occurring in time: recurring or non-
recurring. Recurring words are words related to periodic events, for example, “French
Open”, “Christmas”, “Olympic Games”, and “World Cup”, and are supposed to appear
periodically in time, for example December every year, or every four years. On the other
hand, non-recurring words do not appear periodically (but might still appear in many time
periods, and as such can be also classified as aperiodic).

How to interpolate depends on which category a word belongs to. All words that are
not recurring are non-recurring, and thus it suffices to identifying the recurring words.
This can be done in a number of ways, we initially use a simple technique just looking at
overlap of words distribution at endpoints of intervals, for example when detecting yearly
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Figure 3.1: Interpolation of a recurring word.

events look at all possible 12 month intervals (i.e., words on January 2000 and January
2001, February 2000 and February 2001. Note that the endpoints should actually be a bit
flexible/wide, due to the fact that many events do not occur at the exact same date each
year (Easter and Olympics are two typical examples).

Our interpolation approach is based on two methods: for recurring words, if they exist
in a number of event periods those that are missing are automatically “filled in”, for non-
recurring words interpolation is applied on periods adjacent to periods where the words
exist.

Recurring Words: Assume a word w, that has been determined to be recurring,
for example “Olympic Games”. If the frequency of w, in a partition p;, represented as
tflw,, p;), is equal to zero, we interpolate #f{w,, p;) with the minimum value of adjacent
partitions as:

lﬂwrapj) = min (tjf(wrapjfl)a tf(U)r):ijrl) (35)

As depicted in Figure 3.1(a), the frequency is zero in the year 2000 (i.e., the word
does not occur in any documents with timestamp within year 2000). After interpolating,
Figure 3.1(b) shows how the frequency in the year 2000 is assigned with that of 1996
because it is the minimum value of 1996 and 2004.

Non-Recurring Words: Assume a word w,, that has been determined to be non-
recurring, for example “terrorism”. Figure 3.2(a) illustrates that a frequency is missing
in the year 2000 because there is no event (occurrence of word) on “terrorism” in this
year. On the other hand, in the year 2001 and 2002, “terrorism” becomes popular as
terrorists attacked on 11" of September 2001. Once again, information about “terrorism”
is absent in the year 2003. However, “terrorism” becomes popular in the year 2004 and
2005 because of bombing in Madrid and London. Supposed, there is no major event on
“terrorism” after the year 2005, so the frequency is zero in the year 2006, 2007 and 2008.
Although the word does not occur in the corpus it is quite certain that the word still has
been used in “the real world”. We interpolate #/{w,,., p;) in three ways.

1. In the case of a period p; where w,, has never been seen before, it is possible to
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Figure 3.2: Interpolation of a non-recurring word.

observe w,, in that period. We interpolate #{w,,,, p,) as:

tf(wnrapj) = Q- tf(wnr:ijrl) (3.6)

where « is a constant and 0 < « < 1. pj;4q is the first partition w,, occurs. For
example, the year 2000 is interpolated based on a fraction of the frequency in the
year 2001. The interpolation method for this case is shown as NR/ in Figure 3.2(b).

. In the case that p; is a period that w,, is supposed to be normally used, but is absent

due to missing data, we interpolate #f{w,,, p;) with the average frequency of two
adjacent partitions as:

HWny, Pj— +t Wy Py
U((IU'rL’I",pj) = f( ! 1> ) f( J+1) (37)

For example, the year 2003 is interpolated with the average frequency of 2004 and
2005. The interpolation method of this case is shown as NR2 in Figure 3.2(b).

. If p; is a period where w,,, is absent because of decreasing popularity of the word,

it can still be expected that w,, is used afterward, but not as much as before. We
interpolate #f{w,,,., p;) as:

tf(/wnrvpj) == /3 : U{(u’nnpj—l) (38)

where (3 is a constant and 0 < 3 < 1. p;_; is the last partition w,, appears. In
this case, the frequency of the years 2006, 2007 and 2008 are interpolated with a
frequency of the year 2005 in a decreasing proportion. The interpolation method
for this case is shown as NR3 in Figure 3.2(b).
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3.5.2 Temporal Entropy

In this section we present a term weighting scheme concerning temporality called fempo-
ral entropy (TE). The basic idea comes from the term selection method presented in [79].
Terms are selected based on their entropy or noise measure. Entropy of a word w; is
defined as follows:

1

Entropy(w;) =1+ g Vg Z P(dw;) x log P(d|w;) 3.9
deD
Wi ds
P(djlw;) = i, dy) (3.10)

2[:]71 tflw;, dy,)

where Np is the total number of documents in a collection D and f{w;,d;) is the
frequency of w; in a document d;. It measures how well a term is suited for separating
a document from other documents in a document collection, and also it captures the im-
portance of the term within the document. A term occurring in few documents has higher
entropy compared to one appearing in many documents. Therefore, the term with high
entropy, is a good candidate for distinguishing a document from others.

Similar to #f-idf but more complicated, term entropy underline the importance of a
term in the given document collection whereas #/-idf weights a term in a particular docu-
ment only. Empirical results showing that term entropy is good for index term selection
can be found in [68]. Thus, we use term entropy as a term weighting method for high-
lighting appropriate terms in representing a time partition.

We define temporal entropy as a measure of how well a term is suitable for separating
a time partition among overall time partitions and also indicates how important a term is
in a specific time partition. Temporal entropy of a term w; is given as follows:

TE(w;) = 1+ —— 3" P(plu) x log P(plw;) G.11)
cP

logﬁh:p
N
kjlﬁhﬂhpk)

where Np is the total number of partitions in a corpus P, and #f{w;, p;) is the frequency

of w; in partition p;. Modifying the score in Equation (3.1), each term w can be weighted
with temporal entropy TE(w) as follows:

P(pjlw;) = (3.12)

NLLR,(ds,p;) = 3 TE(w) x P(w]ds) x log m (3.13)

wed;

A term that occurs in few partitions is weighted high by its temporal entropy. This
results in a higher score for those partitions in which the term appears.
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Figure 3.3: Search statistics and trends obtained from Google Zeitgeist.

3.5.3 Search Statistics

In our work, we have also studied how to use external knowledge, and in this section
we describe how to make use of search statistics provided by a search engine. The only
public available statistics that suits our purpose are those from Google Zeitgeist, which is
given on different time granularities, such as week, month and year. We have employed
the finest granularity available, i.e., weekly data. Figure 3.3(a) shows a snapshot of search
statistics which is composed of the top-10 rank for two types of queries. In the statistics,
a query can be gaining or declining.

A gaining query is a keyword that is growing in interest and becomes an emerging
trend at a particular time. Figure 3.3(b) shows the trend graph of the keywords “Tsunami”
and “Earthquake”. Both words are gaining queries in December 2004 because they gain
very high frequencies compared to a normal distribution and slightly decrease their popu-
larity over the time line. In March 2005, the word “Earthquake” becomes a gaining query
again because of an earthquake in Sumatra. On the other hand, a declining query is a
keyword where its interest drops noticeably from one period to another.

By analyzing search statistics, we are able to increase the probability for a particular
partition which contains a top-ranked query. The higher probability the partition acquires,
the more potential candidate it becomes. To give an additional score to a word w; and a
partition p;, we check if (w;,p;) exist as a top-ranked query. After that, we retrieve from
statistics information about a query type (gaining or declining), query ranking and the
number of partitions in which w; appears. Finally, a GZ score of w; given p; can be
computed as:

GZ(py,w) - (Pcwi) - f(Ri,n) < ipf, (3.14)

where ipf; is defined as an inverse partition frequency and is equal to log % Npis
the total number of partitions and n; is the number of partitions containing w;. P (w;) is
the probability that w; occurs; P(w;) = 1.0 if w; is a gaining query word and P(w;) =
0.5 if w; is a declining query word. This reflects the fact that a gaining query is more
important than a declining one. The function f(R; ;) takes a ranked number and converts
into a weight for each word. A high ranked query is more important in this case.
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We now integrate GZ as an additional score into Equation (3.1) in order to increase
the probability of partition p;:

Pwlpy)
NLLR,.(d;, p;) = u% <P(’w|p]') x log ij) + BGZ(p;, w) (3.15)

where [ is the weight for the GZ function which is obtained from an experiment and
represented by a real number between 0 and 1.

3.6 Evaluation

Our proposed enhancements were evaluated by comparing their performance in determin-
ing the timestamp with experimental results from using the JRH approach as baseline. In
this section, we will describe experimental setting, experiments and results.

3.6.1 Setting

In order to assign timestamp to a document, a reference corpus consisting of documents
with known dates was required for comparison. A temporal language model was then
created from the reference corpus. In fact, the temporal language model is intended to
capture word usage within a certain time period. Two mandatory properties of the refer-
ence corpus are:

e A reference corpus should consist of documents from various domains.

e A reference corpus has to cover the time period of a document to be dated.

We created a corpus collection from the Internet Archive [49] by downloading the
history of web pages, mostly web versions of newspapers (e.g., ABC News, CNN, New
York Post, etc., in total 15 sources). The corpus collection covers on average 8§ years for
each source and the total number of web pages is about 9000 documents, i.e., the web
pages in the corpus collection have on average been retrieved once every five day by the
Internet Archive crawler.

3.6.2 Experiments

In order to evaluate the performance of the enhanced temporal language models, the doc-
uments in the corpus collection were partitioned into two sets (Cyrain, Crest)- Chrain Was
used as a training set and to create a temporal language model. C'.; was used as a test-
ing set and to estimate timestamps of documents (note that we actually have the correct
timestamps of these documents so that the precision of estimation can be calculated).
The training set Cj,..;;, must meet the two properties mentioned above. This can be
achieved by creating it based on news sources of various genres that cover the time period
of documents to be dated. We chosen 10 news sources from the corpus collection to
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build the training set. To create Cy.s, we randomly selected 1000 documents from the
remaining 5 news sources as a testing set.

In our experiments, we used two performance measures: precision and recall. Preci-
sion in our context means the fraction of processed documents that are correctly dated,
while recall indicates the fraction of correctly dated documents that are processed. A
recall lower than 100% is essentially the result of using confidence of timestamping to
increase precision.

The experiments were conducted in order to study three aspects: 1) semantic-based
preprocessing, 2) temporal entropy (TE) and Google Zeitgeist (GZ), and 3) confidence in
the timestamp-estimation task. Unfortunately, we were unable to evaluate our proposed
interpolation because of a too short time span (only 8 years) in the corpus collection.
However, we used linear interpolation as proposed by Kraaij [70] in our experiments, and
the smoothing parameter A is set to 0.1.

We evaluated the performance of the techniques repeating each experiment 10 times
on different testing sets, which all were created based on random sampling. Averaged
precision and recall were measured for each experiment.

Experiment A: In this experiment, we evaluated the performance of semantic-based
preprocessing. The experiment was conducted on different combinations of semantic
methods. In A.1, we studied the effect of concept extraction. CY,..;, was created as a
training language model with the preprocessing steps: POS tagging, WSD, concept ex-
traction and word filtering. In A.2, we studied the effect of collocation extraction. Clqin
was created as a training language model with the preprocessing steps: POS tagging, col-
location, WSD and word filtering. In A.3, C},..;, Was created as a training language model
with the preprocessing steps: POS tagging, collocation extraction, WSD, concept extrac-
tion and word filtering. In all experiments, timestamp was determined for documents in
Ciest- Precision was measured for each combination of semantic-based techniques.

Experiment B: In order to evaluate the performance of temporal entropy and use of
Google Zeitgeist statistics, we created a training language model on Cj,..;, in two ways:
using the semantic-based preprocessing in A.3 and without semantic-based preprocessing.
For each document in Cj., the timestamp was determined using Equations (3.13) and
(3.15). Precision was measured for each scoring technique.

Experiment C: Similar to a classification task, it is necessary to know how much
confidence the system has in assigning a timestamp to a document. This can for example
be used as feedback to a user, or as part of a subsequent query process where we want to
retrieve documents from a particular time only of the confidence of the timestamp is over
a certain threshold. Confidence was measured by the distance of scores of the first and
the second ranked partitions and it is given as follows.

NLLR(d;; pm)
NLLR(d;, py,)

where ty, = PubTime(d;). p,, and p, are the first two partitions that give the highest
scores to a document d; computed by Equation (3.1). A language model was created for
Clrain and, for each document in Cy.;, timestamp was determined by varying a confidence
threshold. We measured precision and recall for each level of confidence.

Conf(ty) = log (3.16)



44 Section 3.6. Evaluation

Table 3.1: Results of the experiment A.

Granularities . Precision
Baseline  A.l A2 A3
1-w 53.430 55873 47.072 48.365
1-m 56.066 62.873 59.728 61.152
3-m 53.470 62.076 65.069 66.360
6-m 53.971 62.051 66.065 68.712
12-m 53.620 58.307 69.005 68.216

3.6.3 Results

Figure 3.4(a) (also presented in Table 3.1) presents precision of results from determin-
ing timestamp for different granularities using the baseline technique (the JRH approach)
and combinations of different preprocessing techniques (A.1/A.2/A.3). As can be seen,
by adding semantic-based preprocessing higher precision can be obtained in almost all
granularities except for 1-week (where only using concept extraction outperforms the
baseline). The observation indicates that using a 1-week granularity, the frequency of a
collocation in each week is not so different. For example, news related to “tsunami” were
reported for about 6 weeks (during December 2004 and January 2005) and each week
had almost the same frequency of collocations such as “tsunami victim” and “tsunami
survivor”. Thus the probability of a collocation is distributed in the case of a small granu-
larity and it is hard to gain a high accuracy for any particular partition. On the other hand,
as soon as the granularity becomes more coarse, usage of collocations are quite distinct,
as can be seen from the results of 1-month, 3-month, 6-month and 12-month.

Figure 3.4(b) (also presented in Table 3.2) illustrates precision of results from de-
termining timestamp when using temporal entropy (TE) without semantic-based prepro-
cessing, Google Zeitgeist statistics without semantic-based preprocessing (GZ), temporal
entropy with semantic-based preprocessing (S-TE), and Google Zeitgeist statistics with
semantic-based preprocessing (S-GZ). As can be seen, without semantic-based prepro-
cessing, TE only improves accuracy greatly in 12-month while in other granularities its
results are not so different to those of the baseline, and GZ does not improve accuracy in
all granularities. In contrast, by applying semantic-based preprocessing first, TE and GZ
obtain high improvement compared to the baseline in almost all granularities except for
I-week which is too small granularity to gain high probabilities in distinguishing parti-
tions.

From our observation, semantic-based preprocessing generates collocations as well
as concept terms which are better in separating time partitions than single words. Those
terms are weighted high by its temporal entropy. Similarly, most of the keywords in
Google Zeitgeist statistics are noun phrases, thus collocations and concepts gains better
GZ scores. This results in a high probability in determining timestamp.

Figure 3.4(c) shows how the confidence level affects the accuracy of document dating.
If the confidence level is 0, recall is 100% but precision is only 54.13%. On the other hand,
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Table 3.2: Results of the experiment B.

Granularities . Precision
Baseline TE GZ S-TE S-GZ
1-w 53.430 55.725 53.050 49.126 48.423
1-m 56.066 54.629 56.026 61.196 61.540
3-m 53.470 55.751 54.030 64.525 67.008
6-m 53.971 54797 54271 69.605 69.824
12-m 53.620 63.104 53.947 71.564 68.366

if the confidence level is 1.0, precision is up to 91.35% but recall decreases to 33%. As
shown in the figure, a high confidence threshold gives a high precision in determining
time, whereas a document with a correctly estimated date might be discarded. Thus the
confidence level can be used to provide more reliable results.

3.7 Document Dating Prototype

In order to demonstrate the usefulness of our research we have implemented a proof-
of-concept prototype for document dating. We built the system prototype based on the
proposed techniques for improving temporal language models. The prototype uses a web-
based interface, and allows estimating the date of documents in different input formats
(i.e. a file, contents from an URL, or text entered directly) as shown by Figure 3.5(a).
Example inputs can be: 1) URL: http://tsunami-thailand.blogspot.com,
or 2) text: the president Obama. In addition, a user can select different parameters for
perform document dating.

e Preprocessing: POS, COLL, WSD, or CON
e Similarity score: NLLR, GZ or TE

e Time granularity: 1-month, 3-months, 6-months, or 12-months

Given an input to be dated, the system computes similarity scores between a given
document/text and temporal language models. The document is then associated with
tentative time partitions or its likely originated timestamps. As output it will present an
estimation of possible creation time/periods with confidence of each of the estimated time
periods, that is, a rank list of partitions ordered descendingly according to their scores as
shown in Figure 3.5(b). Besides, each tentative time partition is drawn in a timeline with
its score as a height as depicted in Figure 3.5(¢c).

3.8 Conclusions

In this chapter, we have described several methods that increase the quality of determining
the time of non-timestamped documents. Extensive experiments show that our approaches
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(b) Rank list (c¢) Timeline

Figure 3.5: Input and output interfaces of the document dating system.

considerably increases quality compared to the baseline based on the previous approach
by de Jong et al. Note that, although using our approach shows improvement, the quality
of the actual document dating processing is still limited when aiming at further increase
in effectiveness. Finally, we have presented a system prototype for document dating.
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Chapter 4

Determining Temporal Profiles of
Queries

In the previous chapter, we proposed an approach for improving the temporal language
model for determining the time of non-timestamped documents. In this chapter, we ad-
dress the research question: sow to determine the time of an implicit temporal query and
use the determined time for re-ranking search results? We propose novel approaches for
determining the time of a temporal query where time is not explicitly provided by a user
and use the determined time for re-ranking search results.

4.1 Motivation

In previous work [12, 93], searching temporal document collections has been performed
by issuing temporal queries composed of keywords, and the publication time of docu-
ments (called temporal criteria). In that way, a system narrows down search results by
retrieving documents with respect to both textual and temporal criteria. As explained in
Chapter 2, temporal queries can be divided into two categories: 1) those with tempo-
ral criteria explicitly provided by users [12, 93], and 2) those with no temporal criteria
provided. An example of a query with temporal criteria explicitly provided is U.S. Pres-
idential election 2008, while a query without temporal criteria provided is, for instance,
Germany FIFA World Cup. However, for the latter example, a user’s temporal intent is
implicitly provided, i.e., referring to the world cup event in 2006.

More precisely, we want to determine the time of a query that is composed of only
keywords where its relevant documents are associated to particular time periods that are
not given by the query. We propose to leverage the determined time of queries, the so-
called temporal profiles of queries, for re-ranking search results in order to increase the
retrieval effectiveness. To the best of our knowledge, dating short queries and employing
the determined time in ranking has not been done before.

51
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Contributions
Our main contributions in this chapter are as follows.

e We perform the first study on how to determine the temporal profiles of queries
without temporal criteria provided, and we propose techniques for determining the
time of implicit temporal queries.

e We propose an approach to re-ranking search results by incorporating the deter-
mined time of queries.

Organization

In Section 4.2, we give an overview of related work. In Section 4.3, we outline the doc-
ument and query models used in this chapter. In Section 4.4, we present our approaches
to determining temporal profiles of queries without temporal criteria provided. In Sec-
tion 4.5, we describe how to use the determined time to improve the retrieval effective-
ness. In Section 4.6, we evaluate our proposed query dating, and re-ranking methods.
Finally, in Section 4.7, we conclude the chapter.

4.2 Related Work

Recently, a number of papers have described issues of temporal search [12, 93, 106]. In
the approaches described in [12, 93], a user explicitly specifies time as a part of query.
Typically, such a temporal query is composed of query keywords and temporal criteria,
which can be a point in time or a time interval. In general, temporal ranking can be divided
into two types: approaches based on link-based analysis and content-based analysis. The
first approach studies link structures of a document and uses this information in a ranking
process, whereas the second approach examines the contents of a document instead of
links. In our context, we will focus on analyzing contents only because information about
links is not available in all domains, and content-based analysis seems to be more practical
for a general search application. Temporal ranking exploiting document contents and
temporal information are presented in [31, 51, 74, 100, 106].

In [74], Li and Croft incorporated time into language models, called time-based lan-
guage models, by assigning a document prior using an exponential decay function of a
document creation date. They focused on recency queries, such that the more recent doc-
uments obtain the higher probabilities of relevance. In [31], Diaz and Jones also used
document creation dates to measure the distribution of retrieved documents and create
the temporal profile of a query. They showed that the temporal profile together with the
contents of retrieved documents can improve average precision for the query by using a
set of different features for discriminating between temporal profiles. In [106], Sato et
al. defined a temporal query and proposed ranking taking into account time for fresh in-
formation retrieval. In [51] an approach to rank documents by freshness and relevance
is presented. In [100], Perkio et al. introduced a process of automatically detecting a
topical trend (the strength of a topic over time) within a document corpus by analyzing
the temporal behavior of documents using a statistic topic model.
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Berberich et al. [10] integrated temporal expressions into query-likelihood language
modeling, which considers uncertainty inherent to temporal expressions in a query and
documents, i.e., temporal expressions can refer to the same time interval even they are
not exactly equal. The work by Berberich et al. and our work is similar in the sense
that both incorporate time into a ranking in order to improve the retrieval effectiveness
for temporal search, however, in their work, the temporal criteria are explicitly provided
for a query. Metzler et al. [87] also consider implicit temporal needs in queries. They
proposed mining query logs and analyze query frequencies over time in order to identify
strongly time-related queries. In addition, they presented a ranking concerning implicit
temporal needs, and the experimental results showed that their approach improved the
retrieval effectiveness of temporal queries for web search. Keikha et al. [65, 66] proposed
a time-based query expansion technique that selects terms for expansion from different
times. Then, the technique was used for retrieving and ranking blogs, which also captures
the dynamics of the topic both in aspects and vocabulary usage over time.

4.3 Models for Documents and Queries

In this section, we present models for documents and queries used in this chapter.

4.3.1 Document Model

In this chapter, a document collection contains a number of corpus documents defined
as C' = {dj,...,d,}. A document d; can be seen as bag-of-words (an unordered list
of terms), and the publication time. Note that, d; can also be associated to temporal
expressions containing in the contents. However, temporal expressions will not be studied
in this chapter. Let PubTime(d;) be a function that gives the publication time of d;, so
d; can be represented as d; = {{wi,...,w,},PubTime(d;)}. If C is partitioned with
respect to a time granularity of interest, the associated time partition of d; is a time interval
[tr, try1] containing PubTime(d;), that is PubTime(d;) € [ty,tx+1]. For example, if we
partition C' using the /-month granularity and PubTime(d;) is 2010/03/05, the associated
time partition of d; will be [2010/03/01,2010/03/31].

4.3.2 Temporal Query Model

We define a temporal query ¢ as composed of two parts: keywords ¢, and temporal cri-
teria Grme, Where qrer = {w1, ..., Wi}, and qume = {1, . .., ¢} } Where t'. is a time interval,
or t’; = [t;,t;41]. In this work, we model time using a time interval only because of its
simple representation. However, we note that a fine-grained time representation, such as
a point in time, should also be employed in order to capture the real-world meanings of
time.

In other words, ¢ contains uncertain temporal intent that can be represented by one or
more time intervals. We can refer to g, as topical features and ¢y;,,. as temporal features
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of q. Hence, our aim is to retrieve documents about the topic of query where their creation
dates are corresponding to time criteria.

Definition 1 (Temporal Queries). Temporal queries can be divided into two types with
respect to given temporal criteria:

(i) A query with temporal criteria explicitly provided by a user is called an explicit
temporal query.

(ii) A query without temporal criteria explicitly provided is called an implicit temporal
query.

An example of an explicit temporal query is Summer Olympics 2008 where a user is
interested in documents about Summer Olympics written in 2008. Because we represent
the time of a query by a time interval, for a given query, using the /-year time granularity
Qrime 18 TEpresented as:

Implicit temporal queries are strongly related to particular time periods although time
is not given in the queries as such. An example of an implicit temporal query is Box-
ing Day tsunami, which is implicitly associated with the year 2004, thus ¢;;,. can be
represented as:

Qime = {]2004/01/01,2004/12/31]}

Another example is the query the U.S. presidential election, which can be associ-
ated with the years 2000, 2004, and 2008. So that, g, is equal to:

Gime = {[2000/01/01,2000/12/31], ..., [2008/01/01,2008/12/31]}

When the time ¢;,,. is not given explicitly by the user, it has to be determined by the
system, as will be described later in this chapter.

4.4 Determining Time of Queries using Temporal Lan-
guage Models

In this section, we describe three approaches to determining the time of queries when
no temporal criteria are provided. The first two approaches use the temporal language
models (cf. Section 3.3) as basis, and the last approach uses no language models.

In order to build temporal language models, a temporal corpus is needed. The tem-
poral corpus can be any document collection where 1) the documents are timestamped
with creation time, 2) covering a certain time period (at least the period of the queries
collections), and 3) containing enough documents to make robust models. A good basis
for such a corpus is a news archive. We will use the New York Times Annotated Cor-
pus [96] since it is readily available for research purposes. However, any corpus with
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Table 4.1: Example of the contents of the temporal language models.

Time Term Frequency
2001 World Trade Center 1545
2002 Terrorism 2236
2003 Iraq 1510
2004 Euro 2004 750
2004 Athens 1213
2005 Terrorism 1990
2005 Tsunami 3528
2005 Hurricane Katrina 1012
2008 Obama 2030

similar characteristics can be employed, including non-English corpora for performing
dating of non-English texts. We will in the following denote a temporal corpus as Dys.

The first approach performs dating queries using keywords only. The second approach
takes into account the fact that in general queries are short, and aims at solving this prob-
lem with a technique inspired by pseudo-relevance feedback (PRF) that uses the fop-k
retrieved documents in dating queries. The third approach also uses the top-k retrieved
documents by PRF and assumes their creation dates as temporal profiles of queries.

All approaches will return a set of determined time intervals and their weights, which
will be used in re-ranking documents in order to improve the retrieval effectiveness as
described in more detail in Section 4.5.

4.4.1 Dating Queries using Keywords

Our basic technique for query dating is based on using keywords only, and it is described
formally in Algorithm 1.

The first step is to build temporal language models 7}, from the temporal document
corpus (line 5), which essentially is the statistics of word usage (raw frequencies) in all
time intervals, which are partitioned with respect to the selected time granularity g. Ta-
ble 4.1 illustrates a subset of the temporal language models. Creating the temporal lan-
guage models (basically aggregating statistics grouped on time periods) is obviously a
costly process, and will be done just once as an off-line process and then only the statis-
tics have to be retrieved at query time.

For each time partition p; in 1}, the similarity score between g, and p; is computed
(line 7). The similarity score is calculated using a normalized log-likelihood ratio accord-
ing to Equation 3.1. Each time partition p; and its computed score will be stored in C,
or the set of time intervals and scores (line 8). After computing the scores for all time
partitions, the contents of C' will be sorted by similarity score, and then the top-m time
intervals are selected as the output set A (line 10).

Finally, the determined time intervals resulting from Algorithm 1 will be assigned
weights indicating their importance. In our approach, we simply give a weight to each
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Algorithm 1 DateQueryKeywords(qiey, g, m, Dar)
1: INPUT: Query ¢, time granularity g, number of time intervals m, and temporal

corpus Dy,

2: OUTPUT: Set of time intervals associated to ¢

3 A+ 0 // Set of time intervals
4: C+ 0 // Set of time intervals and scores
5: Ty < BuildTemporalLM(g, Dyr)

6: for each {p,; € T;)} do

7. scorey, — CalSimScore (e, Dj) // Compute similarity score of Gy and p
8: O+ CU{(pj,scorey,)} // Store p; and its similarity score
9: end for '
10: A < C.selectTopMIntervals(m) // Select top-m intervals ranked by scores
11: return A

time interval using its reverse ranked number. For example, if the output set A contains
top-5 ranked time intervals, the intervals ranked 1, 2, 3, 4, and 5 will have the weights 5,
4, 3,2, and 1 respectively.

4.4.2 Dating Queries using Top-k Documents

In our second approach to query dating, the idea is that instead of dating query keywords
Grext directly, we will instead date the fop-k retrieved documents of the (non-temporal)
query giext- Lhe resulting time of the query will be the combination of determined times
of each top-k document.

The algorithm for dating a query using top-k retrieved documents is given in Algo-
rithm 2. First, we retrieve documents by issuing a (non-temporal) query g, and retrieve
only the top-k result documents (line 5). Then, temporal language models 7}, are built
as described previously (line 6). For each document d; in Dy,,x, compute its similarity
score with each time partition p; in 17, (lines 10-13). After computing scores for d; for
all time partitions, sort the contents of C' by similarity score, and select only top-m time
intervals as the results of d; (line 14).

The next step is to update the set B with a set of time results C,,, obtained from dating
d;. This is performed as follows: For each time interval py in C,,, check if B already
contains py (line 16). If py exists in B, get a frequency of pj;, and increase the frequency
by 1 (lines 17-18). If p; does not exist in B, add p; into B as a new time interval and set
its frequency to 1 (line 20). After dating all documents in Dy, sort the contents of B by
frequency, and select only the fop-m time intervals as the output set A (line 25).

The weights of time intervals will be their reverse ranked number. Note that it can be
only one time interval in each rank of an output obtained from Algorithm 1, while it can
be more than one time interval in each rank in case of Algorithm 2.
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Algorithm 2 DateQueryWithTopkDoc(Gyexs, g, M, k, Dar)
1: INPUT: Query ¢y , time granularity g, number of intervals and documents m, k,
temporal corpus Dy

2: OUTPUT: Set of time intervals associated to ey
3 A0 // Set of time intervals
4: B+ 0 // Set of time intervals and their frequencies
5: Drpypi < RetrieveTopKDoc(qrext, k) // Retrieve top-k documents
6: Ty < BuildTemporalLM(g, Dyr)
7. for each {d; € Dy} do
80 C+ 0 // Set of time intervals and scores
90 Chpp <0 // Set of time intervals
10:  for each {p; € T} do
11: score,, < CalSimScore(d;, p;) // Compute similarity score of d; and p;
12: C « C U{(pj,scorey,)} // Store p; and its similarity score
13:  end for
14: Cyyp < C.selectTopMintervals(m) // Select top-m intervals by scores
15:  for each {p; € C,,,} do
16: if B has p;, then
17: freq < B.getFreqForTInterval(py,) // Get frequency of py,
18: B + B.updateFreqForTInterval(py, freq + 1) // Increase frequency by 1
19: else
20: B < B.addTlInterval(py, 1) // Add a new time interval and set its frequency
to 1
21: end if
22:  end for
23: end for
24: A <+ B.selectTop Mintervals(m) // Select top-m intervals ranked by frequency

25: return A

4.4.3 Dating Queries using Publication Time

The last approach is a variant of the dating using fop-k documents described above. The
idea is similar in the use of the top-k retrieved documents of the (non-temporal) query
Grext- The resulting time of the query will be the creation date (or timestamps) of each
top-k document. In this case, no temporal language models are used.

4.5 Re-ranking Documents Using Query Temporal Pro-
files

In this section, we will describe how to use temporal profiles of queries determined by our
approaches to improve the retrieval effectiveness. The idea is that, in addition to the doc-
uments’ scores with respect to keywords, we will also take into account the documents’
scores with respect to the implicit time of queries. Intuitively, documents with creation
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dates that closely match with temporal profiles of queries are more relevant and should be
ranked higher.

There are a number of methods to combine a time score with existing text-based
weighting models. For example, a time score can be combined with tf-idf weighting
using a linear combination, or it can be integrated into language modeling using a docu-
ment prior probability as in [74]. In this chapter, we propose to use a mixture model of a
keyword score and a time score. Given a temporal query ¢ with the determined time g;;e,
the score of a document d can be computed as follows:

S(q7 d) = (1 - O[) : S/(Qtexh dtext) +a- S”(qn'mm dtime) (41)

where « is a parameter underlining the importance of a keyword score S”(qex, drerr) and a
time score S”(Gime dyime)- A keyword score S’ (Grens, drers) can be implemented using any
of existing text-based weighting models, and it can be normalized as:

S ! (qtexta dtext )
max S’ (Qrext, drext,i)

S:mrm (Qtexta dtext) = (4.2)

where max S’ (Grexr; drexr,i) 18 the maximum keyword score among all documents.
For a time score S”(ime, dsime), we formulate the probability of generating temporal
profiles of query ¢, given the associated time partition of document d,,. as:

S”(Qtimev dtime) = P(qrime‘dtime)
=Pt ..., U0} |diime)

) / (4.3)
= > P(t)|dine)
el 11 € gune
where g is a set of time intervals {¢}, ..., ¢}, such that:

i nthn...Nnt)=0

S0, P(Qime|dime) is an average of the probability of generating a time interval, or
P(t;|dt,~me), over all the number of time intervals in Gipe, OF |Grime|-

The probability of generating a time interval ¢/, given the time partition of document
dime can be defined in two ways as proposed in [10]: 1) ignoring uncertainty, and 2) taking
uncertainty into account. By ignoring uncertainty, P(t’|d.) is defined as:

0 ifdunme # 1,

4.4
1 if dye = 1. @9

P(t;“dtime) = {
In this case, the probability of generating query time will be equal to 1 only if dy. is
exactly the same as ¢/,. By taking into account a weight of each time interval ¢, P(¢|dyin.)
with uncertainty-ignorant becomes:

0 if dtime 7& tl'
/ _ , 77
P(tj‘dtlme) = w(t].) i if d”-me _ t;

Zt% €aime W)

(4.5)
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where w(t}) is a function giving a weight for a time interval ¢/, which is normalized by the
sum of all w§ights Zt; Came w(z‘;) In the case where uncertainty is concerned, P(t}|din.)
is defined using an exponential decay function:

P(t}|dyne) = DecayRate! ! (4.6)

where DecayRate and X are constant, 0 < DecayRate < 1 and A > 0. Intuitively, this
function gives a probability that decreases proportional to the difference between a time
interval t; and the time partition of document d;;,,.. A document with its time partition
closer to t; will receive a higher probability than a document with its time partition farther
from . By incorporating a weight of each time interval ¢/, P(t}|d;in.) With uncertainty-
aware becomes

w(ty)

kg w(t)

(Qrime, diime) are computed in two ways:

P(t; |dsime) X DecayRate’\"tg ~dine] 4.7

The normalization of S”

norm
1. uncertainty-ignorant using P(t}|d,,.) defined in Equation 4.5.

2. uncertainty-aware using P(t; |djime) defined in Equation 4.7.

Finally, the normalized value of S (Guime, dsime) Will be substituted S” (qrime, diime) in
Equation 4.1 yielding the normalized score of a document d given a temporal query g with
determined time ¢;;,,. as follows:

Snurm(Q7 d) = (1 - Oé) : S;,yrm(qfextv diext) +a- S,{,/grm(qtimev dtime) (48)

4.6 Evaluation

In this section, we will perform two experiments in order to evaluate our proposed ap-
proaches: 1) determining temporal profiles of queries using temporal language models,
and 2) re-ranking search results using the determined time. In this section, we will de-
scribe the setting for each of the experiments, and then the results.

4.6.1 Setting

As mentioned earlier, we can use any news archive collection to create temporal language
models. In this chapter, we used the New York Times Annotated Corpus as the temporal
corpus. This collection contains over 1.8 million articles covering a period of January
1987 to June 2007. The temporal language models were created and stored in databases
using Oracle Berkeley DB version 4.7.25.

To evaluate the query dating approaches, we obtained queries from Robust2004, which
is a standard test collection for the TREC Robust Track containing 250 topics (topics 301-
450 and topics 601-700). As reported in [74], some TREC queries favor documents in
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particular time periods. Similarly, we analyzed a distribution of relevant documents of the
Robust2004 queries over time, and we randomly selected 30 strongly time-related queries
(with the topic number: 302, 306, 315, 321, 324, 330, 335, 337, 340, 352, 355, 357, 404,
415, 428, 435, 439, 446, 450, 628, 648, 649, 652, 653, 656, 667, 670, 676, 683, 695).
Time intervals of relevant documents were assumed as the correct time of queries.

We measured the performance using precision, recall and F-score. Precision is the
fraction of determined time intervals that are correct, while recall indicates the fraction
of correct time intervals that are determined. F-score is the weighted harmonic mean of
precision and recall, where we set 5 = 2 in order to emphasize recall. For query dating
parameters, we used the top-m interval with m = 5, and the time granularity g and the
top-k documents were variable in the experiments.

To evaluate the re-ranking approaches, the Terrier search engine [120] was employed,
and we used the BM25 probabilistic model with Generic Divergence From Randomness
(DFR) weighting as our retrieval model. For the simplicity, we used default parameter
settings for the weighting function. Terrier provides a mechanism to alter scores for re-
trieved documents by giving prior scores to the documents. In this way, we re-ranked
search results at the end of retrieval by combining a keyword score S’(gex, dierr) and a
time score S”(Qime, dyime) as defined in Equation 4.8. We conducted re-ranking experi-
ments using two collections: 1) the Robust2004 collection, and 2) the New York Times
Annotated Corpus.

For the Robust2004 collection, we used the 30 queries as temporal queries without
time explicitly provided. The retrieval effectiveness of temporal search using the Ro-
bust2004 collection is measured by Mean Average Precision (MAP), and R-precision.
For the New York Times Annotated Corpus, we selected 24 queries from a historical
collection of aggregated search queries, or the Google zeitgeist [38]. An example of tem-
poral queries are shown in Table 4.2. The temporal searches were conducted by human
judgment. Performance measures are the precision at 5, 10, and 15 documents, or P@5,
P@10, and P@15 respectively. For re-ranking parameters, we used an exponential decay
rate DecayRate = 0.5, and A = 0.5. A mixture model parameter was obtained from the
experiments, where o« = 0.05 and 0.10 for uncertainty-ignorant and uncertainty-aware
methods respectively.

Table 4.2: Example of the Google zeitgeist queries and associated time intervals.

| Query | Time || Query | Time |
diana car crash 1997 || madrid bombing 2005
world trade center 2001 | pope john paul ii 2005
osama bin laden 2001 || tsunami 2005
london congestion charges | 2003 || germany soccer world cup 2006
john kerry 2004 | torino games 2006
tsa guidelines liquids 2004 | subprime crisis 2007
athens olympics games 2004 || obama presidential campaign | 2008

The description of different approaches is given in Table 4.3. Top-k documents were
retrieved using pseudo relevance feedback, i.e., the result documents after performing
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query expansion using Rocchio algorithm.

Table 4.3: Different re-ranking approaches for comparison.

Method Description

QW determines time using keywords plus uncertainty-ignorant re-ranking

QW-U  determines time using keywords p/us uncertainty-aware re-ranking

PRF determines time using top-k retrieved documents p/us uncertainty-ignorant re-ranking

PRF-U  determines time using top-k retrieved documents plus uncertainty-aware re-ranking
NLM assumes creation dates of top-k retrieved documents as temporal profiles of queries
(no language models used) p/us uncertainty-ignorant re-ranking

assumes creation dates of top-k retrieved documents as temporal profiles of queries

NLM-U

(no language models used) pl/us uncertainty-aware re-ranking

4.6.2 Results

The performance of query dating methods is shown in Table 4.4. NLM performs best
in precision for all time granularities whereas PRF performs best in recall (only for
12-month). NLM and PRF give the best F-score results for 6-month and 12-month re-
spectively. In general, the smaller % tends to give the better results, while /2-month yields
higher performance compared to 6-month. Finally, the performance of QW seems to be
robust for 12-month regardless of dating solely short keywords.

Table 4.4: Query dating performance using precision, recall and F-score.

Method Precision Recall F-score(f = 2)

6-month ‘ 12-month || 6-month | 12-month || 6-month ‘ 12-month
QW .56 .67 34 .64 .37 .65
PRF (k=5) .55 .63 47 .79 48 75
PRF (k=10) .56 .60 46 74 A48 71
PRF (k=15) .54 .60 42 .70 44 .68
NLM (k=5) .92 .97 .35 44 40 .49
NLM (k=10) .90 95 48 .56 .53 .61
NLM (k=15) .89 93 .56 .63 .61 .67

To evaluate re-ranking, the baseline of our experiments is a retrieval model with-
out taking into account temporal profiles of queries, i.e., pseudo relevance feedback
using Rocchio algorithm. For the Robust2004 queries, the baseline performance are
MAP=0.3568 and R-precision=0.3909. Experimental results of MAP and R-precision
are shown in Table 4.5. The results show that QW, QW-U, PRF and PRF-U outperformed
the baseline in both MAP and R-precision for /2-month, and NLM and NLM-U outper-
formed the baseline in all cases. PRF-U always performed better than PRF in both MAP
and R-precision for /2-month, while QW-U performed better than QW in R-precision for
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12-month only. NLM and NLM-U always outperformed the baseline and the other pro-
posed approaches because using the creation dates of documents is more accurate than
those obtained from the dating process. This depicts that taking time into re-ranking can
better the retrieval effectiveness. Hence, if query dating is improved with a high accuracy,
the retrieval effectiveness will be improved significantly.

Table 4.5: Re-ranking performance using MAP and R-precision with the baseline perfor-
mance 0.3568 and 0.3909 respectively (the Robust2004 collection).

MAP R-precision

Method 6-month ‘ 12-month || 6-month ‘ 12-month
QW .3565 .3576 3897 .3924
QW-U .3556 3573 3925 .3943
PRF (k=5) 3564 .3570 .3885 .3926
PRF (k=10) 3568 .3570 3913 .3919
PRF (k=15) .3566 3567 3912 3921
PRF-U (k=5) 3548 3574 .3903 .3950
PRF-U (k=10) 3538 3576 .3904 .3935
PRF-U (k=15) .3538 3572 .3893 .3940
NLM (k=5) .3585 .3589 3924 3917
NLM (k=10) .3586 3591 3918 .3925
NLM (k=15) .3584 .3596 .3898 .3934
NLM-U (k=5) .3604 .3608 3975 3978
NLM-U (k=10) .3604 3610 3953 .3961
NLM-U (k=15) .3606 3620 3943 .3967

Table 4.6: Re-ranking performance using P@5, P@10, and P@15 with the baseline per-
formance 0.35, 0.30 and 0.27 respectively * indicates statistically improvement over the
baselines using t-test with significant at p < 0.05 (the NYT collection).

P@5 P@10 P@15

Method 6—%071[/1 ‘ 12-month 6—%0111‘}1 ‘ 12-month 6—Ci?wnth ‘ 12-month
QW 42 45 .37 .39 32 33
QW-U 40 42 .35 .36 .30 32
PRF (k=15) 42 46 .38 42 35 .39
PRF-U (k=135) 41 45 .36 40 33 .37
NLM (k=15) .50 .52 47 .49 42 44
NLM-U (k=15) .53 55% A48 50* 45 46*

The results of evaluate the Google zeitgeist queries are shows in Table 4.6. In this
case, we fix the number of fop-k to 15 only. Table 4.6 illustrated the precision at 5, 10 and
15 documents. The baseline performance is P@5=0.35, P@10=0.30 and P@15=0.27.
The results show that our proposed approaches perform better than the baseline in all
cases. NLM and NLM-U performs the best among all proposed approaches.
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4.7 Conclusions

In this chapter, we have studied implicit temporal queries where no temporal criteria is
provided, and how to increase retrieval effectiveness for such queries. The effectiveness
has been improved by determining the implicit time of the queries and employing this
to re-rank the query results. Through extensive experiments we have shown that our
proposed approach improves retrieval effectiveness. We note that the quality of the actual
query dating processing is a limitation when aiming at further increase in the retrieval
effectiveness.
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Chapter 5

Handling Terminology Changes over
Time

A language can change over time, which includes changes of words related to their
definitions, semantics, and names (people, location, etc.). Particularly, words can be ob-
solete, for example, before the year 1939, the name “Siam” was used for “Thailand” and
it is rarely used nowadays. This causes a problem when a user is unable to formulate
a query equivalent to a term used in the collection, that is, both query and documents
are represented in different forms (historical or modern forms). In this chapter, the re-
search question we address is how fo handle terminology changes in searching temporal
document collections?

5.1 Motivation

This chapter focuses on the problem of terminology changes over time. In particular,
we deal with the changes of named entities (i.e., name of people, organizations, loca-
tions, etc.) because a peculiarity of named entities compared to other vocabulary terms is
that they are very dynamic in appearance, e.g., changes of roles or alterations of names.
Moreover, we are interested in named entities because they constitute a major fraction of
queries [18, 105]. To illustrate the problem, we give as examples two search scenarios.
First, a student studying the history of the Roman Catholic Church wants to know
about the Pope Benedict XVI during the years before he became the Pope (i.e., before
2005). Using only the query Pope Benedict XVI and temporal criteria “before 2005”
is not sufficient to retrieve documents about “Joseph Alois Ratzinger”, which is the birth
name of the current Pope. Second, a journalist wants to search for information about the
past career of Hillary Rodham Clinton before becoming the 67" United States Secretary
of State in January 2009. When searching with the query Hillary R. Clinton and tempo-
ral criteria “before 2008, documents about “United States Senator from New York™ and
“First Lady of the United States” are also relevant as her roles during the years before
2008. The given examples indicate an inability of retrieving relevant documents com-

65
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posed of the synonyms of query terms in the past. This can be considered as semantic
gaps in searching document archives, i.e., a lack of knowledge about a query and its syn-
onyms', which are semantically equivalent/related to a query with respect to time. We
denote those synonyms as time-dependent synonyms.

This problem will be handled during query time by using a dictionary linking concepts
and entities based on time, such as, by performing query expansion. Thus, for the query
Thailand, the query might be expanded to Thailand or Siam. For the query Thailand
and a temporal constraint before 1939, the query can be rewritten from Thailand to
Siam. To improve the quality of searching historical documents by expansion, it has been
done before in two manners: an expansion of query and an expansion of index. In the first
case, a set of rules is automatically constructed for mapping historic terms into modern
terms. In the latter case, based on a lexical database, terms are indexed together with their
synonyms and holonyms as additional indices. In order to handle changing languages,
we will expand a query with terms that are semantically equal with respect to temporal
criteria. This we achieve by building a time-concept dictionary from the well-known and
freely available encyclopedia Wikipedia.

In this chapter, we describe an approach to automatically creating entity-synonym
relationships based on the contents of Wikipedia. Evolving relationships are detected
using the most current version of Wikipedia, while relationships for particular time in
the past are discovered through the use of snapshots of previous Wikipedia versions. In
this way, we can provide a source of time-based entity-synonym relationships from 2001
until today, and using our approach also future relationships with new named entities
can be discovered simply by processing Wikipedia as new contents are added. Further,
we employ the New York Times Annotated Corpus in order to extend the covered time
range as well as improve the accuracy of time of synonyms. Finally, we present a system
prototype for searching news archives that takes into account terminology changes over
time.

Contributions
Our contributions in this chapter are as follows.

e We formally model Wikipedia viewed as a temporal resource for classification of
time-based synonyms.

e We propose an approach to discovering time-based synonyms using Wikipedia and
improving the time of synonyms. In addition, we propose query expansion tech-
niques that exploit time-based synonyms.

e A system prototype for searching news archives taking into account terminology
changes over time is present.

'In general, synonyms are different words with very similar meanings. However, in this work, synonyms are words used as

another name for an entity.
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Organization

The organization of the rest of the chapter is as follows. In Section 5.2, we give an
overview of related work. In Section 5.3, we briefly describe the assumed document
model and Wikipedia features. In Section 5.4, we introduce formal models for Wikipedia
viewed as a temporal resource and for time-based synonyms. In Section 5.5, we de-
scribe our approach to discovering time-based synonyms from Wikipedia. In Section 5.6,
we describe how to use time-based synonyms to improve the retrieval effectiveness. In
Section 5.7, we evaluate our proposed synonym detection and query expansion. In Sec-
tion 5.8, we present our news search system prototype. Finally, in Section 5.9, we con-
clude this chapter.

5.2 Related Work

Several attempts have been made in using the semi-structured contents of Wikipedia for
information retrieval purposes. The ones most relevant to our work are [18, 76, 88, 107,
134, 138]. For a thorough overview of the area of Wikipedia mining, we refer to the
survey by Medelyan et al. [86].

In [138], Zesch et al. evaluate the usefulness of Wikipedia as a lexical semantic re-
source, and compare it to more traditional resources, such as dictionaries, thesauri and
WordNet. In [18], Bunescu and Pasca study how to use Wikipedia for detecting and
disambiguating named entities in open domain texts in order to improve search quality.
By recognizing entities in the indexed text, and disambiguating between multiple entities
sharing the same proper name, the users can access to a wider range of results as today’s
search engines may easily favor the most common sense of an entity, making it difficult
to get a good overview of the available information for a lesser known entity.

An initial approach for synonym detection based on [18] in a non-temporal context
was described in [17]. As far as we know, all previous approaches to synonym detection
from Wikipedia have been based on redirects only (i.e., [48, 124, 133]) and no temporal
aspects are considered. There is some work that exploits Wikipedia for query expansion.
In [76], they proposed to improve the retrieval effectiveness of ad-hoc queries using a local
repository of Wikipedia as an external corpus. They analyzed the categorical information
in each Wikipedia article, and select terms from top-k articles to expand a query. Then,
a second retrieval on the target corpus is performed. Results show that Wikipedia can
improve the effectiveness of weak queries while pseudo relevance feedback is unable to
improve.

Milne et al. [88] proposed an approach to help users to evolve queries interactively,
and automatically expand queries with synonyms using Wikipedia. The experiments show
an improvement in recall. The recent work by Xu et al. [134] tackled with a problem of
pseudo-relevance feedback that one or more of the top retrieved documents may be non-
relevant, which can introduce noise into the feedback process. The proposed approach
in [134] classifies queries into 3 categories (entity, ambiguous, and broader queries) based
on Wikipedia, and use a different query expansion method for each query category. Their
experiments show that Wikipedia based pseudo-relevance feedback improves the retrieval



68 Section 5.3. Preliminaries

effectiveness, i.e., Mean Average Precision.

The affect of terminology evolution over time is addressed in [13, 28, 55, 56, 118].
We are unable to compare the performance of different methods because many of them
were published at the same time or later as this work. Thus, we leave a comparison of
different approaches for future work.

5.3 Preliminaries

In this section, we briefly outline models for queries and documents. In addition, we
introduce temporal document collections employed in this chapter, that is, Wikipedia and
the New York Time Annotated Corpus.

5.3.1 Temporal Query Model

We define a temporal query ¢ as composed of two parts: keywords ¢, and temporal
criteria Gime, Where @y = {w1,...,wn}, and ¢ue = {t},...,1;} where t’ is a time
interval, or ¢} = [t;,;,1]. In this work, we model time using a time interval only because
of its simple representation and we aim at retrieving documents about the topic of query
where their creation dates are corresponding to the time interval.

5.3.2 Document Model

In our work, we employ a temporal document collection, which contains documents
that are temporally-ordered and it can be modeled as C' = {dy,...,d,}. A document
can be seen as bag-of-words (an unordered list of terms, or features) with its associ-
ated time interval (from it was created until replaced by a new version or deleted): d; =
{{w1, wo, ws, ..., w,}, [t;, tiy1]} where [t;, ¢;41] is a time interval of the document, i.e., a
time period that d; exists, and ¢; < t;,1. PubTime(d;) is a function that gives the publica-
tion date of the document and must be valid within the time interval, and PubTime(d;) €
[ti,tia).

5.3.3 Temporal Document Collections

Generally, temporal document collections are document collections where their contents
appear in a temporal order, such as, web archives, news archives, blogs, personal emails
and enterprise documents. In such domains, terms in the text streams are temporally
dynamic in pattern, e.g., rising sharply in frequency, growing in intensity for a period
of time, and then fading away. In the following, we present two temporal document
collections that are used in this chapter.

Wikipedia

Wikipedia is a freely available source of knowledge. Each editable article in Wikipedia
has associated revisions, i.e., all previous versions of its contents. Each revision (or a
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version) of an article is also associated with a time period that it was in use before being
replaced by the succeeding version. In other words, the time of a revision is a time period
when it was a current version.

There are four Wikipedia features that are particularly attractive as a mining source
when building a large collection of named entities: article links (internal links in one
Wikipedia article to another article), redirect pages (send a reader to another article),
disambiguation pages > (used by Wikipedia to resolve conflicts between terms having
multiple senses by either listing all the senses for which articles exist), and categories
(used to group one or more articles together, and every article should preferably be a
member of at least one category although this is not enforced).

New York Time Annotated Corpus

The New York Times Annotated Corpus is used in the synonym time improvement task.
This collection contains over 1.8 million articles covering a period of January 1987 to
June 2007. 1.5 million articles are manually tagged of vocabulary of people, organizations
and locations using a controlled vocabulary that is applied consistently across the collec-
tions. For instance, if one article mentions “Bill Clinton” and another refers to ‘“President
William Jefferson Clinton”, both articles will be tagged with “CLINTON, BILL”. Some
statistics of tagged documents are given in Table 5.1.

Table 5.1: NYT collection statistics of tagged vocabulary.

Tagged Vocabulary #Documents Tagged

People 1,328,045 (71.6%)
Locations 600,114 (32.3%)
Organizations 596,890 (32.2%)

5.4 Temporal Models of Wikipedia

In this section, we will present temporal models of Wikipedia, i.e., synonym snapshots.
The models will be later used for detecting synonyms over time. Finally, we will give a
formal definition of four different classes of synonyms, and how to classify them using
temporal patterns of occurrence as a feature.

5.4.1 Synonym Snapshots

In our context, a document collection is Wikipedia }V that consists of a set of articles or
pages, P = {p1,...,pn}. A page p; € P consists of a set of terms and a time interval:
pi = {{wi,...,wn},[ta,ts]}, where w; € V and V is the complete set of terms or a

Note that the meaning of the term disambiguation in Wikipedia context is slightly different from how it is used in computational

linguistics.
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vocabulary in the collection. A time interval [t,, ;] is a time period that p; exists in the
collection. Wikipedia pages P can be categorized into two types: those that describe a
named entity, e.g., a concept about people, companies, organizations, etc., and those not
referring to a named entity, e.g., user talk pages and category pages.

We call a page in the first type a named entity page. For simplicity, we will use
the term “entity” and “named entity” interchangeably. A named entity obtained from
Wikipedia can be defined as:

Definition 2 (Named Entity). 4 named entity e; is represented by terms constituting the
title of an entity page p, that can be obtained using the function Entity(p,).

Let « be any object, e.g., a page p;, or a named entity e;. We define T/nterval(x) as a
function that gives a time interval associated to z, i.e., a time period of existence [t,, t.].
We define TStart(x) as a function that gives the starting time point of , i.e., the smallest
time point ¢, from the time interval [¢,, t.] of z, and TEnd(x) as a function that gives the
ending time point of z, i.e., the largest time point ¢, from the time interval [t,, t.] of x.

A page p; is associated to a set of its revisions {r;|r; € R;}. A revision 7; consists of
two components: 1) a set of terms {wy, ..., w,,}, and 2) a time interval [{,, t,4), which can
be obtained as TInterval(r;). Thus, a revision r; = {{w1,...,wn},[tc, tq)}. Note that a
time interval of any r; excludes its last time point, [t., tq) = [t, ta] — {ta}. Let R; is a set
of revisions {ry,...,r,} of a page p;,. The time interval of a revision r; € R, overlaps
with the time interval of p;, that is, TInterval(r;) C TInterval(p;).

The intersection of the time intervals of all revisions in R, can be computed as:

Definition 3 (Intersection of Revisions). The intersection of the time of all revisions in
R is an empty set. It is because at any time point t in TInterval(p;), only one revision r;
can exist for p;, that is:

TInterval(ry) N TInterval(ry) N ... N Tinterval(r, 1) N Tinterval(r,) = 0 3.1

Time intervals of two adjacent revisions can be defined in term of each other as the
follows.

Definition 4 (Two Adjacent Revisions). Let rj and ;1 be any two adjacent revisions,
we can define the time intervals of these two revisions as:

1. Tnterval(r;) = [TStart(r;), TStart(r;.1))

2. TInterval(rji1) = [TEnd(r;), TEnd(r;i1))

By partitioning WV with respect to a time granularity g, we will have a set of snapshots
of Wikipedia W = {W,,,...,W,.}. In our work, we only use the /-month granularity.
Hence, if we have the history of Wikipedia for 8 years and g = month, the number of
snapshots will be |[W| = 8 12 = 96, i.e., W = {Wo3/2001, - - ., Wosz/2000 }. A Wikipedia
snapshot can be defined as:
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Figure 5.1: Wikipedia snapshot at time ¢, and its current revisions.

Definition 5 (Wikipedia Snapshot). 4 snapshot W, consists of the current revision r. of
every page p; at time ty:

Wi, = {r|Vpi : 7. € Ri Aty € Tlnterval(r.) A NTInterval(r.) # 0} (5.2)

Because all revisions are current at time ¢, the intersection of the time intervals of all
revisions in W;, is not an empty set. Figure 5.1 depicts a snapshot 17}, of Wikipedia and
current revisions at time ¢ = ;.

Let S be a set of synonyms {s1, ..., s,,} of all entities in W, where each synonym
s; € V. An entity e; is associated to a set of synonyms {s1,...,s,}. An entity-synonym
relationship can be defined as:

Definition 6 (Entity-synonym Relationship). We define an entity-synonym relationship
&ij s a pair of an entity e; and its associated synonym s;, that is:

&y = (€, 55) (5.3)

Instead of referring to a synonym s; alone, we must always refer to an entity-synonym
relationship &; ;, because s; can be a synonym of one or more entities. An entity-synonym
relationship ; ; has an associated time interval [tasts), i.e., a time period that 55 1s a
synonym of e;.

The time points ¢, and tg can be obtained using Tlnterval(¢; ;), TStart(¢; ;), and
TEnd(¢; ;) respectively. We define a synonym snapshot as:

Definition 7 (Synonym Snapshot). A synonym snapshot S,, is defined as a set of entity-
synonym relationships at a particular time t = ty, that is:

Sy =&, &am} te € Tinterval(&; ;) (5.4)
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5.4.2 Time-based Classes of Synonyms

In this section, we give the definition of time-based classes of synonyms. The intuition
behind the synonyms classes is that, synonyms occur differently over time, so they should
be employed differently as well. Consequently, we will classify synonyms into different
classes based on their occurrence patterns over time.

Let ¢ be the starting time point and ¢ be the last time point of the document col-
lection, i.e., Wikipedia. Hence, t¥ = TStart(VV) and t% = TEnd(W). For every entity-
synonym relationship & ;, let #5 be the first time point we observe &.; and tg” be the

last time point we observe &; ;, so tod = TStart(¢; ;) and t?j’j = TEnd(¢; ;). Figure 5.2
depicts occurrence patterns of different synonym classes over time.
The first class of synonyms is called time-independent, and it is defined as:

Definition 8 (Time-independent Synonyms). An entity-synonym relationship &, ; is clas-
sified as “time-independent” (Class A) if all of the following conditions hold:
(i) 54 € [t2 t2 + 6,] where 6, > 0

(R
(i) 157 =1y
5" =1t

The idea of Class A is to detect synonyms that exist for a long time interval, as long
as that of Wikipedia. These synonyms are robust to change over time and can represent
good candidates of synonyms. For example, the synonym “Barack Hussein Obama II”’ is a
time-independent synonym of the entity “Barack Obama”. We use d; to relax a condition
of starting time because there are not many pages created at the beginning of Wikipedia.
For example, §; can be 24 months after Wikipedia was created.

The second class of synonyms is called time-dependent, and it is defined as:

Definition 9 (Time-dependent Synonyms). An entity-synonym relationship &, ; is classi-
fied as “time-dependent” (Class B) if all of the following conditions hold:

(i) tii"’,tg"j € [tg’ + 01,1 — (52] where 0y > 07t§i"’ > t?‘j
(i) M S t57 —ta7 < Ay where A, da > 0, Mg > Ay

The idea of Class B is to detect synonyms that are highly related to time, for example,
“Cardinal Joseph Ratzinger” is a synonym of “Pope Benedict XVI” before 2005. We
interest in using this synonym class for query expansion to handle the effect of rapidly
changing synonyms over time as explained in Section 5.1. J, indicates that synonyms are
no longer in use, and it can be 12 months. A;, \s represents minimum, maximum values
of a time interval of synonym respectively. For example, A\; and )\, can be 2 months and
24 months. If a time interval is less than 2 months, it is a noise or junk synonym, and if it
is greater than 24 months, it is less specific to time.

In addition to Class A and B, we observe some synonyms cannot be classified into
the two classes above because of their temporal characteristics. Thus, we introduce two
fuzzy-membership classes, and the first class called gaining synonymy is defined as:
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Definition 10 (Gaining Synonyms). An entity-synonym relationship &; ; is classified as
“gaining synonymy” (Class C) if all of the following conditions hold:

(i) 157 € [tY + 81,0 + 01 + €] where e > 0
.. f,, _ )
(ii) tﬁ 7= t%

The idea of Class C is to detect synonyms that exist for a long time interval, but not
as long as that of Wikipedia. These synonyms can be considered good candidates of
synonyms as they are tentative to robust to change over time. However, it is not confident
to judge if they are time-independent or not. This class of synonyms is actually a special
type of Class A that lacks of data in early years. For example, the synonym “Pope”
has occurred as a synonym of the entity “Pope Benedict XVI” in 04/2005. Hence, this
synonym will be classified to Class C instead of Class A because of its time interval. e is
a parameter for the missing data of early years, e.g., € can be 24 months.

The final fuzzy-membership class called declining synonymy is defined as:

Definition 11 (Declining Synonyms). An entity-synonym relationship &, ; is classified as
“declining synonymy” (Class D) if all of the following conditions hold:

(i) t57 € [te, 12 + )]
(ii) tg’j € [tgj — 0 — g, 1 — 52] where 6 > 0

The idea of Class D is to detect synonyms that are stopped using as synonyms for
some time ago, i.e., not in use at the moment. We can consider this class of synonym as
out-of-date synonyms. For example, for the entity “Bill Clinton”, the synonym “President
Clinton” is less popular nowadays and it is very rare to be used. Thus, this synonym will
belong to Class D. Synonyms in this class can be viewed as a special type of Class B.
They are equivalent to synonyms in the past, but their time intervals are not too specific to
particular time, i.e., greater than a certain period of time. The period of time is determined
by 6 that can be 12 months.

5.5 Time-based Synonym Detection

In this section, we will present our approach to find time-based entity-synonym relation-
ships. The approach is divided into three main steps: 1) named entity recognition and
synonym extractions, 2) improving time of synonyms using a model for temporal dynam-
ics of text streams, and 3) synonym classification.

5.5.1 Named Entity Recognition and Synonym Extraction

First, we partition the Wikipedia collection according to the time granularity g = month
in order to obtain a set of Wikipedia snapshots W = {W, ..., W, }.
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Figure 5.2: Temporal patterns of time-based classes of synonyms.

For each Wikipedia snapshot W, , we identify all entities in a snapshot W, . A result
from this step will be a set of entities I, at a particular time ¢;. After that, we determine
a set of synonyms for each entity e; € Fy, in this snapshot W;, . A result from this process
is a set of entity-synonym relations, that is a synonym snapshot S;, = {&11,...,&um}-
We repeat this process for every Wikipedia snapshot 1, in W. The final result will be the
union of all synonym snapshots S = {S;, U...US,_}. S will be input of the time-based
synonym classification step.

Step 1: Recognizing named entities. Given a Wikipedia snapshot 1V, , we have a set
of pages existing at time ¢, that is Wi, = {p;|Vp; : tx € TInterval(p;)}. In this step, we
only interest in an entity page p.. In order to identify an entity page, we use the approach
described by Bunescu and Pasca in [18] which is based on the following heuristics:

e If multi-word title with all words capitalized, except prepositions, determiners, con-
junctions, relative pronouns or negations, consider it an entity.

e If the title is a single word, with multiple capital letters, consider it an entity.

e Ifatleast 75% of the occurrences of the title in the article text itself are capitalized,
consider it an entity.

After identifying an entity page p. from a snapshot W, , we will have a set of entity
pages P, = {pe|pe € Wi, }. From this set, we will create a set of entities F;, at time ¢y,
by simply extracting a title from each entity page p. € P.,,. A result from this step is a
set of entities £y, = {ey,..., e}, which will be used in step 2.

Step 2: Extracting synonyms. After identifying a set of entities £}, , we want to
find synonyms for each entity e; € E;,. Owing to its richness of semantics structure,
it is possible to use article links and redirect pages in Wikipedia for finding synonyms.
However, we will not use redirect pages in this chapter because it is problematic to define
a temporal model of redirect pages. Hence, we will find synonyms by extracting anchor
texts from article links. For a page p; € W,,, we list all internal links in p; but only those
links that point to an entity page p. € P.;, are interesting. In other words, the system



Chapter 5. Handling Terminology Changes over Time 75

extracts as synonyms all anchor texts for the associated entity, and these synonyms are
weighted by their frequencies of occurrence. We then obtain a set of entity-synonym
relationships. By accumulating a set of entity-synonym relationships from every page
p; € Wy,, we will have a set of entity-synonym relationships at time #;, i.e., a synonym
snapshot Sy, = {&11,. .., &um}-

Step 1 and 2 are processed for every snapshot W, € W. Finally, we will obtain a
set of entity-synonym relationships from all snapshots S = {S,,...,S;.}, and a set of
synonyms for all entities S = {s1,. .., s,}. Table 5.2 depicts examples of entity-synonym
relationships and their time periods extracted from Wikipedia. Note that, time periods of
some relationships in Table 5.2 are incorrect. For example, the synonym “Cardinal Joseph
Ratzinger” of the entity “Pope Benedict XVI” should associates with a time period before
2005. Consequently, in order to improve time periods, the results from this step will be
input to the next subsection.

Table 5.2: Entity-synonym relationships and time periods.

Named Entity Synonym Time Period

Cardinal Joseph Ratzinger 05/2005 - 03/2009

Cardinal Ratzinger 05/2005 - 03/2009

Pope Benedict XVI Joseph Cardinal Ratzinger 05/2005 - 03/2009
Joseph Ratzinger 05/2005 - 03/2009

Pope Benedict XVI 05/2005 - 03/2009

Barack Hussein Obama II 02/2007 - 03/2009

Barack Obama 02/2007 - 03/2009

Barack Obama Obama 04/2006 - 03/2009
Sen. Barack Obama 07/2007 - 03/2009

Senator Barack Obama 05/2006 - 03/2009

Hillary Clinton 08/2003 - 03/2009

Hillary Rodham 10/2002 - 03/2009

. . Hillary 07/2004 - 03/2009
Hillary Rodham Clinton y p/ "6 inon 07/2005 - 03/2009
Sen. Hillary Clinton 03/2007 - 03/2009

Senator Clinton 11/2007 - 03/2009

5.5.2 Improving Time of Entity-synonym Relationships

The time periods of entity-synonym relationships do not always have the desired accuracy.
The main reason for this is that the Wikipedia history has a very short timespan of only 8
years. That is, the time periods of synonyms are timestamps of Wikipedia articles in which
they appear, not the time extracted from the contents of Wikipedia articles. Consequently,
the maximum timespan of synonyms has been limited by the time of Wikipedia. In order
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to discover the more accurate time, we need to analyze a document corpus with the longer
time period, i.e., the New York Time Annotated Corpus.

There are a number of methods for extracting the more accurate time of synonyms.
The easiest method is to find the starting time and the ending time, or the first point and
the last point in the corpus, at which a synonym is observed with its frequency greater
than a threshold. However, the problems with this method are that:

1. It cannot deal with sparse/noisy data.
2. It cannot find multiple, discontinuous time intervals of a synonym.

Alternatively, we can apply the method called “burst detection”, proposed in [67]
for detecting the time periods of synonyms from the corpus. Bursts are defined as points
where a frequency of term increases sharply, and the frequency may oscillate above and
below the threshold, resulting in a single long interval of burst or a sequence of shorter
ones. Consequently, burst periods can formally represent periods that synonyms are “in
use” over time.

The advantage of this method is that it is formally modeled and capable of handling
sparse/noisy data. In addition, it can identify multiple, discontinuous time intervals for all
terms in the document corpus. Readers can refer to Chapter 2 for detailed description of
the algorithm for burst detection.

We propose to improve the time period of each entity-synonym relationship ; ; € S by
analyzing the NYT corpus (with the longer timespan of 20 years) using the burst detection
algorithm. The process of detecting entity-synonym relationships from the NYT corpus
is as follows. First, we have to identify a synonym s; from document streams. Note the
difference between an entity-synonym relationship ¢; ; and a synonym s;, the first one
refers to a tuple of synonym s; and its associated named entity e;, while the latter one
refers to a synonym s; only.

Second, we have to find a named entity e; associated to the identified synonym s;
because s; can be a synonym of more than one named entity. We call this process synonym
disambiguation. Finally, after we disambiguate synonyms, we will then obtain bursty
periods of each entity-synonym relationship &; ; that can be represented more accurate
time periods of & ;.

Identifying and Disambiguating Synonyms using the NYT corpus

To identify a synonym s; from the text streams of the NYT corpus is not straightforward,
because a synonym s; can be ambiguous (i.e., a synonym may be associated with more
than one named entities as Table 5.3 shows the number of synonyms associated with the
different number of named entities). For example, there are more than 19,000 synonyms
associating with more than one named entities, while 2.5 million synonyms associate with
only one named entities. In order to disambiguate a named entity e; for a synonym s;, we
can make use of a controlled vocabulary of the NYT corpus described in Section 5.3.
Recall that input of this step is a set of all synonyms of all entities S obtained from
Subsection 5.5.1. The algorithm for identifying a synonym s; from the text streams is
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Table 5.3: Synonyms and corresponding named entities.

#Named Entity #Synonym

1 2,524,170
2 14,356
3 2,797
4 994
5 442
6
7
8
9

259

155

94

58

0 37

—_

given in Algorithm 3 and Algorithm 4. An explanation is as follows. Algorithm 3 finds a
synonym s; from each document d,, where s; can have the maximum size of n-grams of,
or w called the window size of synonym. In this case, a synonym that its size is greater
than w is not interesting. Table 5.4 shows synonyms with different n-grams.

Table 5.4: Examples of Synonyms with different n-grams.

N-gram Synonym

2 Jospeh Ratzinger

3 Senator Barack Obama

5 George III of Great Britain

6 United Nations Commission on Human Rights

8 Society for the Prevention of Cruelty to Animals

13 Queen Elizabeth II of the United Kingdom of Great Britain and Northern Ireland

First, read a term s; with the maximum size w from a document d,, starting at the index
pointer ptr = 0 as in Algorithm 4 (line 7). Check whether s; is a synonym (s; € §), and
retrieve all associated named entities for s; as in Algorithm 4 (line 9). Next, check if s;
has only one associated named entity, then s; is not ambiguous, as in Algorithm 4 (line 10-
11). If 5; is associated with more than one named entities, disambiguate its named entities
as in Algorithm 4 (line 13-15). After disambiguating the named entities for s;, insert an
entity-synonym relationship (e;, s;) plus the publication time of d,,, i.e., PubTime(d,,), in
the output set and move the index pointer by the size of s, that is ptr = (ptr + w) in
Algorithm 3(line 11-12).

If s; cannot be disambiguated, s; will be ignored and we continue identifying another
synonym, i.e., reading a term with the maximum size w from d,, by increasing the index
pointer to the next word ptr = (ptr + 1) as in Algorithm 3 (line 14). On the contrary,
if a term s; is not a synonym (s; ¢ S), decrease a window size by 1 as in Algorithm 3
(line 20), and consider a prefix string of s; with a size of (w — 1), or s;41. If 5544



78 Section 5.5. Time-based Synonym Detection

is not a synonym, repeat the same process until a window size w is equal to 0 as in
Algorithm 4 (line 4). This means, if no any prefix substring of s; has been recognized as
a synonym, continue to read the next term with the maximum size w from the text streams
by increasing the index pointer to the next word ptr = (ptr + 1) as in Algorithm 3 (line
14).

Algorithm 3 IdentifyEntitySynonymInNYT(Dy)
1: INPUT: Dy is a set of documents in the NYT corpus.
2: OUTPUT: A sequence of ; ; or (e;, s;) and its timestamp.

3:C« 0 // A set of entity-synonyms relationships and a time point.
4: for each {d, € Dy} do
50 leng + |d,| // leng is the number of words in d,,.
6: ptr<«0 // ptr is an index pointer in d,,, default is 0.
7. wé—c // w is the window size of synonym, default is c.
8:  while ptr < leny do
9: (i, ;) <= FindSynonym(d,,, ptr, w)
10: if (e;, s;) # null then
11: C <« CU{(e;,s;), Time(d,)} // Output (e;, s;) and publication time of d,,
12: ptr < (ptr + CountWords(s;))  // Move ptr by the number of words in s;.
13: else
14: ptr < (ptr + 1) // Move ptr to the next word.
15: end if
16:  end while
17: end for

18: return C

After identifying s; as a synonym, it is necessary to determine whether s; is am-
biguous or not. Note that we retrieve the set of all entities F; associated with s; as in
Algorithm 4 (line 9). If there is only one entity in F;, s; is not ambiguous and that entity
will be assigned to s; as in Algorithm 4 (line 10-11). However, if there are more than
one entity, s; have to be disambiguated by using controlled vocabulary V,, tagged in the
document d,, as in Algorithm 4 (line 13).

The algorithm for disambiguating named entities for a synonym is given in Algo-
rithm 5. For each entity e, € ), if e, is in a set of tagged vocabulary V,, of d,,, add e;,
into a list of disambiguated entities £, as in Algorithm 5 (line 7-8). Continue for all
entities in F,. If E,,, contains only one entity, s; is disambiguated. If £, has more than
one entity, s; cannot be disambiguated.

The final results will be tuples of disambiguated entity-synonym relationships associ-
ated with timestamps of documents where they occur. Table 5.5 illustrates results from
this step of the synonyms “President Reagan™ and “Senator Clinton” of the named entities
“Ronald Reagan” and “Hillary Rodham Clinton” respectively. Each tuple is composed of
an entity-synonym relationship, the publication time of a document where it occurs, and
its frequency. Note that, one entity-synonym relationship can be associated to different
timestamps. This is equivalent to the statistics of a entity-synonym relationship over time
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Algorithm 4 FindSynonym(d,, ptr, w)
1: INPUT: A document d,,, a pointer ptr, a size of synonym w.

2: OUTPUT: An entity-synonym relationship (e;, s;) or &; ;.
3: (e;,s5) < null // Set a tuple result to null.
4: if w = 0 then
5:  return (e;,s;)
6: else
7. s; < ReadString(d,,, ptr, w) // Read s; from d,, at index ptr.
8: ifs; € S then
9: E; < GetAssocEntities(s;) // All entities associated to s;.
10: if |E;| = 1 then
11: e; < I firstElement()
12: else
13: ey, < Disambiguate(d,,, E;) // Disambiguate E;.
14: if e;, # null then
15: €; < €
16: end if
17: end if
18: return (e;, s;)
19:  else
20: FindSynonym(d,,, ptr, (w — 1)) // Find a synonym with a size (w — 1).
21:  endif
22: end if

extracted from text streams of documents. The results from this step will be input to the
next subsection.

Improving Time of Synonyms using Burst Detection

In this step, we will find the correct time of a entity-synonym relationship &; ; by using
the burst detection algorithm described in [67]. The algorithm takes the results from
the previous step as input, and generates bursty periods of &; ; by computing a rate of
occurrence from document streams. An output produced in this step is bursty intervals
and bursty weight, which are corresponding to periods of occurrence and the intensity of
occurrence respectively, as showed in Table 5.6.

Detected bursty periods are mostly composed of discontinuous intervals because the
algorithm depends heavily on a frequency of ; ; in the text streams. A gap in time in-
tervals prevents us from classifying &; ; as time-independent since a time-independent
synonym should have a long and continuous time interval. A solution to this problem is
to combine two adjacent intervals and interpolate their bursty weight. However, interpo-
lation for &; ; will be performed only if a synonym of &; ; has no other candidate named
entities according to the fact that the relationship of a named entity and its synonym can
change over time. A result from this step is a set of entity-synonym relationships, that is
S={&n1,...,&,m} and more accurate time.
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Algorithm 5 Disambiguate(d,, E;)
1: INPUT: A document d,,, and a set of associated entities F;.

2: OUTPUT: A disambiguated entity.
3: By < 0 /] A temporary list of entities.
4: e; < null // An output entity.
5: 'V, < GetVocabulary(d,) // Tagged vocabulary of d,,.
6: for each ¢, ¢ E; do
7. if e, € V,, then
8: Etmp — Etmp U {ek}
9:  endif
10: end for
11: if [Eyyp| = 1 then
12: ;< By firstElement()
13: end if
14: return e;
Table 5.5: Tuples of entity-synonym relationships.
Timestamp Entity Synonym Frequency
01/1987  President Reagan Ronald Reagan 54
03/1987  President Reagan Ronald Reagan 23
11/1988  President Reagan Ronald Reagan 11
01/1989  President Reagan Ronald Reagan 34
10/1990  President Reagan Ronald Reagan 12
04/2001  Senator Clinton  Hillary Rodham Clinton 67
05/2002  Senator Clinton  Hillary Rodham Clinton 121
05/2003  Senator Clinton  Hillary Rodham Clinton 33
11/2004  Senator Clinton  Hillary Rodham Clinton 61
01/2005  Senator Clinton  Hillary Rodham Clinton 359

5.5.3 Time-based Synonym Classification

To classify an entity-synonym relationship &; ; based on time is straightforward. The
starting time point £5” and the ending time point t%’j of & ; will be used to determine
synonym classes as defined in Subsection 5.4.2. In this work, we are only interested
in using time-independent and time-dependent synonyms for query expansion because
synonyms from the other two classes might not be useful in this task. In the next section,
we will explain how can we actually make use of time-based synonyms in improving the

retrieval effectiveness.
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Table 5.6: Results from burst-detection algorithm.

. . Time
Synonym Entity Burst Weight Start End
President Reagan Ronald Reagan 5506.858 01/1987 02/1989
President Ronald Ronald Reagan 100.401 01/1989 03/1990
President Ronald Ronald Reagan 67.208 07/1990 02/1993
Senator Clinton  Hillary Rodham Clinton 18.214 01/2001 10/2001
Senator Clinton  Hillary Rodham Clinton 17.732  05/2002 01/2003
Senator Clinton ~ Hillary Rodham Clinton 172.356  06/2003 11/2004

5.6 Query Expansion

In this section, we will describe how to use time-based synonyms (time-independent and
time-dependent synonyms) to improve the retrieval effectiveness. The use of synonyms
will be divided into two different search scenarios.

The first scenario is to use time-independent class of synonyms in an ordinary search,
for example, searching with keywords only (no temporal criteria explicitly provided). The
usefulness of time-independent synonyms is that they can be viewed as good candidate
synonyms for a named entity. For example, the synonym “Barack Hussein Obama II” is
better than “Senator Barack Obama” as a synonym for the named entity “Barack Obama”
in this case. Consequently, a query containing named entities can be expanded with their
time-independent synonyms before performing a search.

Another case is when performing a temporal search, we must take into account changes
in semantics. For example, searching documents about “Pope Benedict XVI” written “be-
fore 20057, documents written about “Joseph Alois Ratzinger” should also be considered
as relevant because it is a synonym of the named entity “Pope Benedict XVI” at the years
“before 2005”. In this case, a time-dependent synonym with respect to temporal criteria
can be used to expand a query before searching.

In the rest of this section, we will describe how we actually expand a query with
time-based synonyms.

5.6.1 Using Time-independent Synonyms

Before expanding a query and performing an ordinary search, synonyms must be ranked
according to their weights. We define a weighting function of time-independent synonyms
as a mixture model of a temporal feature and a frequency feature as follows:

TIDP(s;) = ju-pf(s;) + (1 — ) - tf(s;) (5.5)

where pf(s;) is a time partition frequency or the number of time partitions (or time snap-
shots) in which a synonym s; occurs. tf(s;) is an averaged term frequency of s; in all
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time partitions:

Zi tf(sj ) pl)
pf(s;)
where p underlines the importance of a temporal feature and a frequency feature. In
our experiments, 0.5 is a good value for f.

Intuitively, this function measures how popular synonyms are over time. The popular-
ity of synonym over time is measured using two factors. First, synonyms should be robust
to change over time as defined in 5.4.2. Hence, the more partitions synonyms occur, the
more robust to time they are. Second, synonyms should have high usages over time. This
corresponds to having a high value of averaged frequencies over time.

We intend to use time-independent synonyms in order to improve the effectiveness of
an ordinary search, i.e., search without temporal criteria. In this chapter, we will perform
an ordinary search using Terrier search engine developed by University of Glasgow.

Given a query g, first we have to identify a named entity in query. Note that, we
could not rely on state-of-the-art named entity recognition because queries are usually
very short (i.e., 2-3 words on average), and lacked of standard form, e.g., all words are
lower case. In addition, we need to identify a named entity corresponding to a title of
Wikipedia article since our named entities and synonyms are extracted from Wikipedia.

We do this by searching Wikipedia with a query ¢, and ¢ is a named entity if its search
result exactly matches with a Wikipedia page. Besides, a more relax method is to select
the top-k related Wikipedia pages instead. Now, we obtain a set of named entities I, =

tf(s;) = (5.6)

corresponding to a named entity e,; € ;. Next, we will rank those synonyms by their
TIDP scores and select only top-k synonyms with highest scores for expansion. Query
expansion of time-independent synonyms can be performed in three ways as follows:

1. Add the top-k synonyms to an original query ¢, and search.

2. Add the top-k synonyms to an original query ¢, and search with pseudo relevance
feedback.

3. Add the top-k synonyms to an original query ¢ plus 7IDP scores as boosting weight,
and search with pseudo relevance feedback.

Boosting weight is a weight of term as defined in Terrier’s query language. Note that, if
synonyms are duplicated with an original query ¢, we will remain the original query ¢
unchanged, and add those duplicated synonyms with 7IDP scores as boosting weight.

5.6.2 Using Time-dependent Synonyms

In order to rank time-dependent synonyms, we first have obtain a set of synonyms from
time ¢, and weight them differently according to the following weighting function.

TDP(Sj,tk) = tf(Sj,tk) (57)
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where #/{s;, t;,) is a term frequency of a synonym s; at time ¢;. Note that, a time partition
frequency is not counted because synonyms from the same time period should be equal
with respect to time. Thus, only a term frequency will be used to measure the importance
of synonym. Time-dependent synonyms will be used for a temporal search, or a search
taking into account a temporal dimension, i.e. extending keyword search with the publi-
cation time of documents. In that way, a search system will retrieve documents according
to both textual and temporal criteria, e.g., temporal text-containment search [93].

Given a temporal query (g, t;,), we will recognize named entities in a query ¢ using
the same method as explained in Section 5.6.1. After obtaining a set of named entities
E,={eq1,-..,e4n} of aquery g, we will perform two steps of filtering synonyms. First,
only synonyms which their time overlaps with time ¢, will be processed, that is:

{s;j|Time(s;) Nty # 0}

Second, those synonyms will be ranked by their 7DP scores and select only top-k
synonyms with highest scores for expansion. Using time-dependent synonyms in a tem-
poral search is straightforward. A set of synonyms will be add into an original temporal
query (g, tx). In the following subsection, we will explain how to automatically generate
temporal queries that will be later used in temporal search experiments.

5.7 Evaluation

In this section, we will evaluate our proposed approaches (extracting and improving time
of synonyms, and query expansion using time-based synonyms). Our experimental eval-
uation is divided into three main parts: 1) extracting entity-synonym relationships from
Wikipedia, and improving time of synonyms using the NYT corpus, 2) query expansion
using time-independent synonyms, and 3) query expansion using time-dependent syn-
onyms. In this section, we will describe the setting for each of the main experiments,
and then the results.

5.7.1 Setting

We will now describe in detail the experimental setting of each of the experiments.

Extracting and Improving Time of Synonyms

To extract synonyms from Wikipedia, we downloaded the complete dump of English
Wikipedia from the Internet Archive [129]. The dump contains all pages and revisions
from 03/2001 to 03/2008 in XML format, and the decompressed size is approximately 2.8
Terabytes. A snapshot was created for every month resulting in 85 snapshots (03/2001,
04/2001, ..., 03/2008). In addition, we obtained 4 more snapshots (05/2008, 07/2008,
10/2008, 03/2009), where 2 of them were downloaded [130]. So, we have 89 (85+4)
snapshots in total.
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We used the tool called MWDumper [91] to extract pages from the dump file, and
stored the pages and revisions of 89 snapshots in databases using Oracle Berkeley DB
version 4.7.25. We then created temporal models of Wikipedia from all of these snapshots.

To improve time of synonyms, we used the burst detection algorithm implemented by
the author in [67] and the NYT corpus described in Section 5.3.3. An advantage of this
implementation is that no preprocessing is performed on the documents. Parameter for
burst detection algorithm were set as follows: the number of states was 2, the ratio of rate
of second state to base state was 2, the ratio of rate of each subsequent state to previous
state (for states > 2) was 2, and gamma parameter of the HMM was 1. We use accuracy
to measure the performance of our method for improving time of synonyms.

Query Expansion using Time-independent Synonyms

To perform an ordinary search, the experiments were carried out using the Terrier search
engine. Terrier provides different retrieval models, such as divergence from randomness
models, probabilistic models, and language models. In our experiments, documents were
retrieved for a given query by the BM25 probabilistic model with Generic Divergence
From Randomness (DFR) weighting. In addition, it provides flexible query language that
allows us to specify a boosting weight for a term in query. Given an initial query gog,
an expanded query ¢.,, with top-k synonyms {si, ..., s;} plus TIDP scores as boosting
weight can be represented in Terrier’s query language as follows.

— A A A
Qexp = Gorg S1 W1 Sz W2 ... S Wg

where wy, is a time-independent weight of a synonym s, and computed using the function
TIDP(sy,) defined in Equation 5.5.

We conducted an ordinary search using the standard Text Retrieval Conference (TREC)
collection Robust2004. Robust2004 is the test collection for the TREC Robust Track
containing 250 topics (topics 301-450 and topics 601-700). The Robust2004 collection
statistics are given in Table 5.8. The retrieval effectiveness of query expansion using time-
independent of synonyms is measured by Mean Average Precision (MAP), R-precision
and recall. Recall in our experiments is the fraction of relevant documents Terrier re-
trieves and all relevant documents for a test query.

Query Expansion using Time-dependent Synonyms

To perform a temporal search, we must identify temporal queries used for a search task.
We do this in an automatic way by detecting named entities that can represent temporal
queries for performing temporal search experiments. Thus, named entities of interest-
ing should have many time-dependent synonyms associated to them. To automatically
generate temporal queries is composed of two steps as follows.

Given entity-synonym relationships S = {&1,...,&,m}. First, we find temporal
query candidates by searching for any named entity e; which the number of its synonyms
is greater than a threshold ¢. Nevertheless, in this case, most of synonyms may be time-
independent, and named entities become less appropriate to represent temporal queries.
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Then, we must take into account a 7/DP of each synonym. The intuition is that the
lower TIDP weight a synonym has, the better time-dependent it is. So, named entities
with an average of TIDP weight less than a threshold ¢ probably associate with many
time-dependent synonyms. This makes them good candidate for temporal queries. In our
experiment, the threshold of the number of synonyms ¢ and a threshold of the average of
TIDP weight ¢ are 30 and 0.2 respectively.

Table 5.7: Examples of temporal queries and synonyms.

Temporal Que

Named Enﬁty > Time Period Synonym
American Broadcasting Company  1995-2000  Disney/ABC
Barack Obama 2005-2007  Senator Obama
Eminem 1999-2004  Slim Shady
Eminem 2000-2002  Marshall Mathers
George H. W. Bush 1988-1992  President George H.W. Bush
George H. W. Bush 2000-2003  George Bush Sr.
George W. Bush 2000-2007  President George W. Bush
George W. Bush 2002-2005 Bush 43
Hillary Rodham Clinton 2001-2007  Senator Clinton
Kmart 1987-1992  Kmart Corporation
Kmart 1987-1987  Kresge
Pope Benedict XVI 1988-2005  Cardinal Ratzinger
Ronald Reagan 1987-1989  Reagan Revolution
Ronald Reagan 1987-1989  President Reagan
Rudy Giuliani 1994-2001  Mayor Rudolph Giuliani
Tony Blair 1998-2007  Prime Minister Tony Blair
Virgin Media 1999-2002  Telewest Communications

The temporal searches were conducted by human judgment using 3 users. Some ex-
amples of temporal queries are shown in Table 5.7. Each tuple contains a temporal query
(a named entity and time criteria), and its synonym with respect to time criteria. We
performed a temporal search by submitting a temporal query to the news archive search
engine [92]. We compared the results of top-k retrieved documents of each query without
synonym expansion, and those of the same query with synonym expansion. A retrieved
document can be either relevant or irrelevant with respect to temporal criteria. According
to the lacking of a standard test set (with all relevant judgments available), we could not
evaluate temporal search using recall as we intended. Thus, performance measures are
the precision at 10, 20 and 30 documents, or P@10, P@20, and P@30 respectively.

5.7.2 Results

First, we will show the results of extracting synonyms, and improving time of synonyms.
Then, the results of query expansion using time-independent synonyms and the results of



86 Section 5.7. Evaluation

Table 5.8: Robust2004 collection statistics.
Document Collection  #Docs  Size (GB) Time Period

Financial Times 210,158 0.56 1991-1994
Federal Register 55,630 0.40 1994

FBIS 130,471 0.47 1996

Los Angeles Times 131,896 0.48 1989-1990
All 528,155 1.9 1989-1994, 1996

query expansion using time-dependent synonyms will be presented respectively.

Extracting and Improving Time of Synonyms

Different named entity recognition methods is described in Table 5.9. Note that, filter-
ing criteria for synonyms of BPF-NERW are including: 1) the number of time intervals
is less than 6 months, and 2) the average frequency (the sum of frequencies over all in-
tervals divided by the number of intervals) is less than 2. The filtering aims to remove
noise synonyms. For BPC-NERW, uninteresting categories are those none of “people”,
“organization” or “company’’.

Table 5.9: Different named entity recognition methods.

NER Method Description

BP-NERW Bunescu and Pagca’s named entity recognition of Wikipedia (cf. Section 5.5.1)
BPF-NERW  BP-NERW with filtering criteria for synonyms

BPC-NERW  BP-NERW filtered out named entities in uninteresting categories
BPCF-NERW  BPC-NERW with filtering criteria for synonyms

The statistics obtained from extracting synonyms from Wikipedia are in Table 5.10.

Table 5.10: Statistics of entity-synonym relationships extracted from Wikipedia.
NER Method #NE #NE-Syn. Max. Syn. per NE Avg. Syn. per NE

BP-NERW 2,574,319 7,820,412 631 3.0
BPF-NERW 2,574,319 3,199,115 162 1.2
BPC-NERW 473,829 1,503,142 564 32
BPCF-NERW 473,829 488,383 148 1.0

In Table 5.10, Columns 2-3 are the total number of named entities recognized, and
the total number of entity-synonym relationships extracted from Wikipedia, respectively.
Column 4 is the maximum number of synonyms per named entity. Column 5 is the
average number of synonyms per named entity.
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The results from improving time of synonyms using the NYT corpus are in Table 5.11.
Note that, only entity-synonym relationships without noise synonyms are interesting, i.e.,
recognized by the methods BPF-NERW and BPCF-NERW. In Table 5.11, Column 2 is
the number of entity-synonym relationships that can be identified and assigned time from
the NYT corpus using the method in Section 5.5.2. The percentage of the number of
entity-synonym relationships identified and assigned time is shown in Column 3.

In order to evaluate the accuracy of the method for improving time of entity-synonym
relationships, we randomly selected 500 entity-synonym relationships and manually as-
sessed the accuracy of time periods assigned to those entity-synonym relationships. The
accuracy of the method for improving time of entity-synonym relationships is shown in
Column 4. The accuracy of the method for improving time of entity-synonym relation-
ships in a case of BPCF-NERW is better than that of BPF-NERW because named entities
recognized by BPF-NERW is too generic, and it is rare to gain high frequencies in the
NYT corpus.

Table 5.11: Accuracy of improving time using the NYT corpus.
NER Method #NE-Syn. Disambiguated Accuracy (%)

BPF-NERW 393,491 (12.3%) 51
BPCF-NERW 73,257 (15.0%) 73

Query Expansion using Time-independent Synonyms

We evaluate our proposed query expansion by comparing different methods described in
Table 5.12. Note that, Pseudo relevance feedback was performed by selecting 40 terms
from top-10 retrieved documents, and those expansion terms were weighted by DFR term
weighting model, i.e., Bose-Einstein 1.

Table 5.12: Different query expansion methods for comparison.

Method Description
PM (Baselinel) the probabilistic model without query expansion
RQ (Baseline2) query expanding by re-weighting the original query
PRF (Baseline3) query expanding by pseudo relevance feedback (Rocchio algorithm)
SQE (Approachl) add the top-k synonyms to an original query before search

SQE-PRF (Approach2) add the top-k synonyms to an original query and search with PRF
(Approach3) add the top-k synonyms to an original query plus their 7/DP
SWQE-PRF scores as boosting weight, and search with PRF

Test queries were selected from the Robust2004 test set using named entities in a query
described in Section 5.6.1. Note the difference between Bunescu and Pasca’s named
entity recognition for Wikipedia page (BP-NERW), and named entity recognition in a
query (NERQ). The first method recognizes whether a Wikipedia document is a named
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entity or not, and it needs to analyze the content of the Wikipedia document. For the
second method, we have only a set of short queries (without a document) and we need to
identify named entities in those queries. Recall that there are two methods for recognizing
named entities in queries described in Section 5.6.1: 1) exactly matched Wikipedia page
(MW-NERQ), and 2) exactly matched Wikipedia page and top-k related Wikipedia pages
(MRW-NERQ). We used k& = 2 in our experiments because & greater than 2 can introduce
noise to the NERQ process.

The number of queries from the Robust2004 test set recognized using two methods
are shown in Table 5.13. There are total 250 queries from Robust2004. MW-NERQ can
recognize 42 named entity queries while MRW-NERQ can recognize 149 named entity
queries. Note that, 42 and 149 queries are the number of queries found as Wikipedia
article, and recognized as named entities. For example, there are actually 58 queries from
Robust2004 found as Wikipedia article, but only 42 are named entity queries.

Table 5.13: Number of queries using two different NER.

Type MW-NERQ MRW-NERQ
Named entity 42 149
Not named entity 208 101
Total 250 250

Named-entity queries recognized using two NER methods are shown in Table 5.14.
Each row represents different retrieval results of each retrieval method, and two main col-
umn represents two different methods for NERQ. Different retrieval results are composed
of Mean Average Precision (MAP), R-precision and recall. As seen in Table 5.14, our
proposed query expansion methods SQE-PRF and SWQE-PRF performs better than the
baselines PM, RQ and PRF in both MAP and recall for MW-NERQ. However, there is
only SWQE-PRF outperforming the baselines in R-precision. Also note that, SQE-PRF
has better recall than SWQE-PRF, while the opposite seems to hold for precision. In the
case of MRW-NERQ), our proposed query expansion methods have really worse perfor-
mance than in the case of MW-NERQ due to the accuracy of the recognition method.

Query Expansion using Time-dependent Synonyms

The baseline of our experiments is to search using a temporal query (TQ), i.e., a keyword
w, and time ¢,. Our propose method is to expand an original query with synonyms with
respect to time ¢, and search (TSQ). Experimental results of P@10, P@20 and P@30 of
20 of temporal query topics are shown in Table 5.15. The results show that our query
expansion using time-dependent synonyms TSQ performed significantly better than tem-
poral searches without expansion TQ. Our observation is that TQ retrieved zero to a few
relevant documents (less than 10) for most of temporal queries, while TSQ could retrieve
more relevant documents as a result of expanding temporal queries with time-dependent
synonyms.
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Table 5.14: Performance comparisons using MAP, R-precision, and recall for named en-
tity queries, * indicates statistically improvement over the baselines using t-test with sig-
nificant at p < 0.05.

Method MW-NERQ MRW-NERQ

MAP R-precision Recall ~MAP  R-precision Recall
PM 0.2889  0.3309 0.6185  0.2455 0.2904 0.5629
RQ 0.2951  0.3266 0.6294  0.2531 0.2912 0.5749
PRF 0.3469  0.3711 0.6944  0.3002 0.3227 0.6761
SQE 0.3046  0.3360 0.6574  0.2123 0.2499 0.5385
SWQE 0.3054  0.3399 0.6475  0.2399 0.2820 0.5735
SQE-PRF 0.3608* 0.3652 0.7405* 0.2507 0.2665 0.5932
SWQE-PRF 0.3653* 0.3861* 0.7388* 0.2885 0.3080 0.6504

Table 5.15: Performance comparisons using P@10, P@20 and P@30 for temporal queries
* indicates statistically improvement over the baseline using t-test with significant at p <
0.05.

Method P@10 P@20 P@30

TQ 0.1000  0.0500 0.0333
TSQ 0.5200* 0.3800* 0.2800*

5.8 News Archives Search System Prototype

In this section, we present a system prototype for search news archives that takes into
account terminology changes over time. Our system consists of two parts: 1) the offline
module for extracting time-based synonyms by using our proposed approach, as depicted
in Figure 5.3, and 2) the online module for searching news archive as illustrated in Fig-
ure 5.4. With a web-based interface, the system can take as input a named entity query.
It automatically determines time-based synonyms for a given named entity, and ranks the
synonyms by their time-based scores. Then, a user can expand the named entity with the
synonyms in order to improve the retrieval effectiveness.

Consider an example of search as also illustrated in Figure 5.4. A student studying the
history of the Roman Catholic Church wants to know about the Pope Benedict X VI during
the years before he became the Pope (i.e. before 2005). The student searches using the
query Pope Benedict XVI and the publication dates 1987/01 and 2005/04. The system
retrieves documents for the query Pope Benedict XVI, and also determines synonyms
for the query with respect to time criteria. The student then selects the synonyms “Car-
dinal Joseph Ratzinger” to expand the query. The new query becomes Pope Benedict
XVI OR Cardinal Joseph Ratzinger. He performs search again, and the system re-
trieves documents which are relevant to both “Pope Benedict XVI” and “Cardinal Joseph
Ratzinger”.
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For every Wikipedia
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Figure 5.3: System architecture of the module for extracting time-based synonyms.
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Figure 5.4: User interface of the news archives search system prototype.
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5.9 Conclusions

In this chapter, we have described how to use Wikipedia to discover time-dependent and
time-independent synonyms. These classified synonyms can be employed in a number of
application areas, and in this chapter we have described how to perform query expansion
using the time-based synonyms. The usefulness of this approach has been demonstrated
through an extensive evaluation, which have showed significant increase in retrieval ef-
fectiveness. Finally, we presented a system prototype for searching news archives taking
into account terminology changes over time.
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Chapter 6

Time-based Query Performance
Predictors

Query performance prediction is aimed at predicting the retrieval effectiveness that a
query will achieve with respect to a particular ranking model. In this chapter, we study
query performance prediction for temporal queries when the time dimension is explicitly
modeled into ranking. This chapter addresses the research question how fo predict the
retrieval effectiveness of temporal queries?

6.1 Motivation

Retrieval effectiveness can be increased by employing pseudo-relevance feedback (PRF),
which can be done in two steps. First, the initial search is performed for a given query,
where a set of top-k retrieved documents are assumed to be relevant. Second, terms are
extracted from those top-k documents and the query is automatically expanded with ex-
tracted terms for performing the second search that delivers the final results. For temporal
search, time-based pseudo-relevance feedback (T-PRF) proposed in Chapter 4 can be em-
ployed, where the time of initial top-k retrieved documents are assumed to be relevant
and the query is automatically expanded with the relevant time before the second search.
However, the performance of using PRF and T-PRF depends on the quality of the initial
results: with less relevant documents expanding the query can lead to query drift and pos-
sibly lower retrieval effectiveness. In that case, the search system should instead help the
user to manually reformulate the query by performing query suggestion of terms and/or
time relevant to the query, for example, giving a list of all volcanic mountains and time
periods of major eruptions in Iceland for the query given above.

In this chapter, we aim at improving retrieval effectiveness for temporal search by
studying temporal query performance prediction, i.c., predicting the retrieval effective-
ness that temporal queries will achieve with respect to a particular ranking model in
advance of, or during the retrieval stage in order that particular actions can be taken to
improve the overall performance. In other words, query performance prediction can be
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useful in order to choose between alternative query enhancement techniques described
above, such as, query expansion and query suggestion. To the best of our knowledge,
query performance prediction for temporal search has never been done before.

Contributions
The main contributions of this chapter are:

e We perform the first study and analysis of performance prediction methods for tem-
poral queries.

e We propose different time-based predictors and techniques for improving query
performance prediction by combining multiple predictors.

Organization

The organization of the rest of the chapter is as follows. In Section 6.2, we give an
overview of related work. In Section 6.3, we first outline models for time, queries and
documents. Then, we explain a temporal ranking method and define the problem of tem-
poral query performance prediction. In Section 6.4, we present existing predictors pro-
posed in previous work. In Section 6.5, we propose different time-based predictors and
explain methods for combining different predictors. In Section 6.6, we describe how to
combine different prediction in order to improve predicting performance using two meth-
ods: linear regression and neural networks. In Section 6.7, we evaluate different single
predictors and the combined methods. Then, we discuss the results and conclude our
findings. Finally, in Section 6.8, we summarize our work in this chapter.

6.2 Related Work

The problem of query performance prediction has recently gained a lot of attention [25,
31, 44, 42, 45, 46, 47, 108, 123, 143, 144]. Different approaches to predicting query
performance can be categorized according to two aspects [44]: 1) time of predicting
(pre/post-retrieval) and 2) an objective of task (difficulty, query rank, effectiveness). Pre-
retrieval based approaches predict query performance independently from a ranking method
and the ranked list of results. Typically, pre-retrieval based methods are preferred to
post-retrieval based methods because they are based solely on query terms, the collection
statistics and possibly external sources, e.g., WordNet or Wikipedia. On the contrary,
post-retrieval based approaches are dependent on the ranked list of results. Pre-retrieval
predictors can be classified into four different categories based on the predictor taxonomy
defined by Hauff et al. [42]: 1) specificity, 2) ambiguity, 3) ranking sensitivity, and 4) term
relatedness.

The first group of pre-retrieval predictors estimates the effectiveness of a query by
measuring the specific