
Doctoral theses at NTNU, 2012:5

Nattiya Kanhabua
Time-aware Approaches to
Information Retrieval

ISBN 978-82-471-3264-7 (printed ver.)
ISBN 978-82-471-3265-4 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Th

es
is

 fo
r

th
e

de
gr

ee
 o

f
P

hi
lo

so
ph

ia
e

D
oc

to
r

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s
an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

e

N
attiya K

anhabua
D

octoral theses at N
TN

U
, 2012:5

Nattiya Kanhabua

Time-aware Approaches to
Information Retrieval

Thesis for the degree of Philosophiae Doctor

Trondheim, February 2012

Norwegian University of
Science and Technology
Faculty of Information Technology, Mathematics and Electrical
Engineering
Department of Computer and Information Science

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

©Nattiya Kanhabua

ISBN 978-82-471-3264-7 (printed ver.)
ISBN 978-82-471-3265-4 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU, 2012:5

Printed by Tapir Uttrykk

To my family

Abstract
In this thesis, we address major challenges in searching temporal document collections.
In such collections, documents are created and/or edited over time. Examples of tem-
poral document collections are web archives, news archives, blogs, personal emails and
enterprise documents. Unfortunately, traditional IR approaches based on term-matching
only can give unsatisfactory results when searching temporal document collections. The
reason for this is twofold: the contents of documents are strongly time-dependent, i.e.,
documents are about events happened at particular time periods, and a query representing
an information need can be time-dependent as well, i.e., a temporal query.

Our contributions in this thesis are different time-aware approaches within three topics
in IR: content analysis, query analysis, and retrieval and ranking models. In particular,
we aim at improving the retrieval effectiveness by 1) analyzing the contents of temporal
document collections, 2) performing an analysis of temporal queries, and 3) explicitly
modeling the time dimension into retrieval and ranking.

Leveraging the time dimension in ranking can improve the retrieval effectiveness if in-
formation about the creation or publication time of documents is available. In this thesis,
we analyze the contents of documents in order to determine the time of non-timestamped
documents using temporal language models. We subsequently employ the temporal lan-
guage models for determining the time of implicit temporal queries, and the determined
time is used for re-ranking search results in order to improve the retrieval effectiveness.

We study the effect of terminology changes over time and propose an approach to han-
dling terminology changes using time-based synonyms. In addition, we propose different
methods for predicting the effectiveness of temporal queries, so that a particular query
enhancement technique can be performed to improve the overall performance. When the
time dimension is incorporated into ranking, documents will be ranked according to both
textual and temporal similarity. In this case, time uncertainty should also be taken into ac-
count. Thus, we propose a ranking model that considers the time uncertainty, and improve
ranking by combining multiple features using learning-to-rank techniques.

Through extensive evaluation, we show that our proposed time-aware approaches out-
perform traditional retrieval methods and improve the retrieval effectiveness in searching
temporal document collections.

i

ii

Preface
This PhD thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfilment of the requirements for the degree of philosophiae doctor.

The PhD project has been performed at the Department of Computer and Informa-
tion Science, NTNU, Trondheim, with Professor Kjetil Nørvåg and with co-supervisors
Professor Jon Atle Gulla and Associate Professor Heri Ramampiaro.

The PhD project is a formal part of LongRec - Records Management over Decades.
LongRec was a research project on persistent, reliable and trustworthy long-term archival
of digital documents, with emphasis on the availability and use of documents. LongRec
was initiated and coordinated by DNV, and performed in cooperation with NTNU, NR,
and a number of business partners, with partial funding from the Norwegian Research
Council under grant NFR 176818/I40.

iii

iv

Acknowledgements
First of all, I would like to thank my supervisor Professor Kjetil Nørvåg for his excellent
supervision and great support during the 4 years of my PhD study. Not only teaching me
how to conduct research, he has also given me an insight into my future career. I have
enjoyed a lot doing research because of my supervisor and a highly motivating research
topic. I would like also thank Professor Jon Atle Gulla and Associate Professor Heri
Ramampiaro for being co-supervisors.

In addition, I would give a big thank to the partners of the LongRec project, and DNV
in particular, for giving me the opportunity to pursuing my PhD study. Too many names to
mention, but many thanks to my fellow PhD students and colleagues for fun discussions
during coffee breaks, and their support and friendship. The department’s administrations
and technical staffs always kindly assisted me, thank you.

I would like to thank Dr. Ricardo A. Baeza-Yates for giving me the chance for collab-
orating with Yahoo! and thank Yahoo! colleagues for a warm hospitality in Barcelona. A
special thank to Dr. Hugo Zaragoza for his mentoring and valuable research discussions
during my 3-month internship. Many thanks to Dr. Klaus Berberich, Dr. Roi Blanco and
Michael Matthews for kindly collaborating with me. Two mentors from the SIGIR’2009
doctoral consortium, Professor Alistair Moffat and Professor Arjen P. de Vries, also de-
serve my thanks for useful discussions and encouragements.

I could not have survived living here without a great support from the Bangkok Café
team and Thai folks in Trondheim. Finally, I would like to thank my family for their love
and moral support, and especially Víctor for inspiration and always being there when I
needed.

v

vi

Contents

Abstract i

Preface iii

Acknowledgements v

Contents x

I Overview and Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Questions . 6

1.2.1 Content Analysis . 6
1.2.2 Query Analysis . 6
1.2.3 Retrieval and Ranking Models 8

1.3 Research Context . 8
1.4 Research Method . 9
1.5 Contributions . 9
1.6 Publications . 10
1.7 Thesis Organization . 11

2 Background and State-of-the-art 13
2.1 Information Retrieval . 13

2.1.1 Document Indexing . 13
2.1.2 Query Processing . 16
2.1.3 Document Retrieval . 17
2.1.4 Retrieval Evaluation . 23

2.2 Temporal Information Retrieval . 24
2.2.1 Temporal Expressions . 24
2.2.2 Models for Time, Documents and Queries 25
2.2.3 State-of-the-art in Temporal Information Retrieval 27

vii

II Content Analysis 31

3 Determining Time of Non-timestamped Documents 33
3.1 Motivation . 33
3.2 Related Work . 34
3.3 Preliminaries . 35

3.3.1 Document Model . 35
3.3.2 Temporal Language Models . 35

3.4 Semantic-based Preprocessing . 36
3.5 Improving Temporal Language Models 37

3.5.1 Word Interpolation . 37
3.5.2 Temporal Entropy . 40
3.5.3 Search Statistics . 41

3.6 Evaluation . 42
3.6.1 Setting . 42
3.6.2 Experiments . 42
3.6.3 Results . 44

3.7 Document Dating Prototype . 46
3.8 Conclusions . 46

III Query Analysis 49

4 Determining Temporal Profiles of Queries 51
4.1 Motivation . 51
4.2 Related Work . 52
4.3 Models for Documents and Queries . 53

4.3.1 Document Model . 53
4.3.2 Temporal Query Model . 53

4.4 Determining Time of Queries . 54
4.4.1 Using Keywords . 55
4.4.2 Using Top-k Documents . 56
4.4.3 Using Publication Time . 57

4.5 Re-ranking Documents . 57
4.6 Evaluation . 59

4.6.1 Setting . 59
4.6.2 Results . 61

4.7 Conclusions . 63

5 Handling Terminology Changes over Time 65
5.1 Motivation . 65
5.2 Related Work . 67
5.3 Preliminaries . 68

5.3.1 Temporal Query Model . 68

viii

5.3.2 Document Model . 68
5.3.3 Temporal Document Collections 68

5.4 Temporal Models of Wikipedia . 69
5.4.1 Synonym Snapshots . 69
5.4.2 Time-based Classes of Synonyms 72

5.5 Time-based Synonym Detection . 73
5.5.1 Named Entity Recognition and Synonym Extraction 73
5.5.2 Improving Time of Entity-synonym Relationships 75
5.5.3 Time-based Synonym Classification 80

5.6 Query Expansion . 81
5.6.1 Using Time-independent Synonyms 81
5.6.2 Using Time-dependent Synonyms 82

5.7 Evaluation . 83
5.7.1 Setting . 83
5.7.2 Results . 85

5.8 News Archives Search System Prototype 89
5.9 Conclusions . 91

6 Time-based Query Performance Predictors 93
6.1 Motivation . 93
6.2 Related Work . 94
6.3 Problem Definition . 95

6.3.1 Models for Documents and Queries 95
6.3.2 Temporal Query Performance Prediction 96

6.4 Pre-retrieval Predictors . 96
6.5 Time-based Predictors . 98
6.6 Combination of Predictors . 102
6.7 Evaluation . 103

6.7.1 Setting . 103
6.7.2 Results . 104

6.8 Conclusions . 106

7 Time-aware Ranking Prediction 109
7.1 Motivation . 109
7.2 Related Work . 110
7.3 Preliminaries . 111

7.3.1 Classification of Queries . 111
7.3.2 Models for Documents, Queries, and Ranking 112

7.4 Ranking Prediction . 113
7.4.1 Temporal KL-divergence . 113
7.4.2 Content Clarity . 114
7.4.3 Retrieval Scores . 115

7.5 Evaluation . 116
7.5.1 Setting . 116

ix

7.5.2 Results . 117
7.6 Conclusions . 120

IV Retrieval and Ranking Models 121

8 Comparison of Time-aware Ranking Methods 123
8.1 Motivation . 123
8.2 Related Work . 124
8.3 Models for Documents and Queries . 125
8.4 Time-aware Ranking Methods . 125
8.5 Evaluation . 130

8.5.1 Setting . 130
8.5.2 Results . 131

8.6 Conclusions . 131

9 Ranking Related News Predictions 135
9.1 Motivation . 135
9.2 Related Work . 137
9.3 Problem Definition . 138

9.3.1 System Architecture . 138
9.3.2 Annotated Document Model . 139
9.3.3 Prediction Model . 140
9.3.4 Query Model . 141

9.4 Features . 142
9.4.1 Term Similarity . 142
9.4.2 Entity-based Similarity . 143
9.4.3 Topic Similarity . 146
9.4.4 Temporal Similarity . 148

9.5 Ranking Model . 150
9.6 Evaluation . 150

9.6.1 Setting . 150
9.6.2 Results . 153
9.6.3 Feature Analysis . 154

9.7 Conclusions . 156

10 Conclusions 159

References 161

x

Part I

Overview and Background

1

Chapter 1

Introduction

This PhD thesis addresses different challenges in searching temporal document col-
lections, where documents are created and/or edited over time, and the contents of docu-
ments are strongly time-dependent. Examples of temporal document collections are web
archives, news archives, blogs, personal emails and enterprise documents. The main focus
of the PhD thesis is how to exploit temporal information provided in documents, queries,
and external sources of data in order to improve the effectiveness in searching temporal
document collections.

This chapter describes the motivation and research questions addressed in the thesis.
In addition, we explain our research context and methods in conducting the PhD work.
Our contributions to this thesis are composed of different approaches to solving the ad-
dressed research questions. In the end of this chapter, we present the organization of the
rest of the thesis.

1.1 Motivation

In this thesis, we address major challenges in searching temporal document collections.
In such collections, documents are created and/or edited over time. Examples of tem-
poral document collections are web archives, news archives, blogs, personal emails and
enterprise documents. Unfortunately, traditional IR approaches based on term-matching
only can give unsatisfactory results when searching temporal document collections. The
reason for this is twofold: the contents of documents are strongly time-dependent, i.e.,
documents are about events happened at particular time periods, and a query representing
an information need can be time-dependent as well, i.e., a temporal query.

One problem faced when searching temporal document collections is the large number
of documents possibly accumulated over time, which could result in the large number of
irrelevant documents in a set of retrieved documents. Therefore, a user might have to
spend more time in exploring retrieved documents in order to find documents satisfying
his/her information need. A possible solution for this problem is to take into account
the time dimension, i.e. extending keyword search with the creation or published date of

3

4 Section 1.1. Motivation

documents. In that way, a search system will narrow down search results by retrieving
documents according to both text and temporal criteria, e.g., temporal text-containment
search [93].

In the rest of this section, we will explain our motivation by presenting some short-
comings of existing document archive search systems, i.e., the Wayback Machine [127]
and Google News Archive Search [37].

Wayback Machine

The Wayback Machine [127] is a web archive search tool that is provided by the Internet
Archive [49]. The Internet Archive is a non-profit organization with the goal of preserving
digital document collections as cultural heritage and making them freely accessible on-
line. The Wayback Machine provides the ability to retrieve and access web pages stored
in a web archive, and it requires a user to represent his/her information need by specifying
the URL of a web page to be retrieved.

For example, given the query URL http://www.ntnu.no, the results of retrieval
are displayed in a calendar view as depicted in Figure 1.1, which displays the number
of times the URL http://www.ntnu.no was crawled by the Wayback Machine (not
how many times the site was actually updated). Two major problems of using the Way-
back Machine are observable. First, it is inconvenient for a user to specify a URL as a
query. Second, there is no easy way to sort search results returned by the tool because the
results displayed in a timeline according to their crawled dates.

Figure 1.1: Search results of the query URL http://www.ntnu.no are displayed in
a calendar view (retrieved 2011/08/29).

Chapter 1. Introduction 5

Google News Archive Search

The Google News Archive Search [37] tool allows a user to search a news archive us-
ing a keyword query and a date range. In addition, the tool provides the ability to rank
search results by relevance or date. However, there is a problem that has not been ad-
dressed by this tool yet, e.g., the effect of terminology changes over time. Consider the
following example, a user wants to search for news about Pope Benedict XVI that are
written between 2005. So, the user issues the query Pope Benedict XVI and specifies
the temporal criteria 2002/01/01 to 2004/31/12. As shown in Figure 1.2, only a small
number of documents are returned by the tool where most of them are not relevant to the
Pope Benedict XVI. In other words, this problem can be viewed as vocabulary mismatch,
which is caused by the fact that the term Pope Benedict XVI was not widely used before
2005/04/19 (the date which his papacy began).

Figure 1.2: Results of the query Pope Benedict XVI and the temporal criteria
2002/01/01 TO 2004/31/12 (retrieved 2011/08/29).

As illustrated by the two examples, it is clear that there is a need for highly efficient
and practical approaches to searching temporal document collections. Thus, the goal of
this thesis is to identify and study problems in searching temporal document collections,
as well as propose approaches as solutions to the problems. In the next section, we will
present research problems that are addressed in this thesis.

6 Section 1.2. Research Questions

1.2 Research Questions
Based on the motivation stated in the previous section, the main research question is: how
to exploit temporal information provided in documents, queries, and external sources
of data in order to improve the retrieval effectiveness in searching temporal document
collections? Intuitively, we want to solve the main research question by 1) analyzing the
contents of temporal document collections, 2) performing an analysis of temporal queries,
and 3) explicitly modeling the time dimension into retrieval and ranking. Hence, the
research questions we address are corresponding to three topics in information retrieval:
content analysis, query analysis, and retrieval and ranking models. More specific research
questions are presented below.

1.2.1 Content Analysis
Incorporating the time dimension into search can increase the retrieval effectiveness if
information about the creation or publication time of documents is available. However,
it is not always easy to find an accurate and trustworthy timestamp of a document for
some reasons. First, the time metadata of documents preserved in the past might not be
readable and interpretable today. Second, it is difficult to find an accurate and trustworthy
timestamp for a web document because of the decentralized nature of the web, where the
document can be relocated and its time metadata made unreliable. Moreover, in a web
warehouse or a web archive there is no guarantee that a document’s creation date and the
time of retrieval by the crawler are related. In this thesis, we want to analyze documents’
contents in order to estimate the time of publication of documents/contents or the time of
the topic of documents’ contents. Thus, the first research question we address is:

RQ1. How to determine the time of non-timestamped documents in order to
improve the effectiveness in searching temporal document collections?

1.2.2 Query Analysis
Several studies of real-world user query logs have shown that temporal queries comprises
a significant fraction of web search queries [87, 95, 141]. For example, Zhang et al. [141]
showed that 13.8% of queries contain explicit time and 17.1% of queries have tempo-
ral intent implicitly provided. An example of a query with time explicitly provided is
U.S. Presidential election 2008, while Germany FIFA World Cup is a query without
temporal criteria provided. However, for the latter example, a user’s temporal intent is
implicitly provided, i.e., referring to the World Cup event in 2006. In this thesis, we want
to determine the time of a query when time is implicitly provided. Note that, this search
scenario happens when users have no knowledge regarding all relevant time periods for a
query, so that no time can be explicitly provided in the query. Hence, the second research
question we address is:

RQ2. How to determine the time of an implicit temporal query and use the
determined time for re-ranking search results?

Chapter 1. Introduction 7

The effect of terminology changes over time can cause a problem in searching tem-
poral document collections. In fact, the definition, meaning or name of terms can alter.
Moreover, terms can be obsolete, i.e., no longer used. For example, the term “Siam” was
used as a name for “Thailand” before 1939, but it is rarely used nowadays. This causes
a problem for a temporal search if a query and documents are represented in different
forms, i.e., historical or modern forms. Given the query Thailand before 1939, docu-
ments about Thailand that were written using the term “Siam” and published before 1939
will not be retrieved. Therefore, the third research question we address in this thesis is:

RQ3. How to handle terminology changes in searching temporal document
collections?

The research questions presented above are related to query expansion and query ref-
ormation. In addition to that, we also want to analyze the retrieval effectiveness of tem-
poral queries with respect to a specific retrieval model. In particular, we will study query
performance prediction [20] for temporal queries.

Query performance prediction refers to the task of predicting the retrieval effective-
ness that queries will achieve with respect to a particular ranking model in advance of, or
during the retrieval stage, so that particular actions can be taken to improve the overall per-
formance [43]. Query performance prediction is useful for choosing between alternative
query enhancement techniques, e.g., query expansion and query suggestion. In this thesis,
we want to investigate different methods for predicting the query performance or retrieval
effectiveness of temporal queries. Hence, the fourth research question we address in this
thesis is:

RQ4. How to predict the retrieval effectiveness of temporal queries?

Two time dimensions commonly exploited in time-aware ranking are 1) publication
time, and 2) content time (temporal expressions mentioned in documents’ contents). As
shown later in the thesis, it makes a difference in retrieval effectiveness for temporal
queries when ranking using publication time or content time. By determining whether a
temporal query is sensitive to publication time or content time, the most suitable retrieval
model can be employed. Consider the following examples: given the query Japan quake
869 AD, relevant documents should be those containing the temporal expression 869 AD,
but not those created or published in 869 AD. On the other hand, when searching for a
current event, such as, academy award rumors, temporal expressions in documents
should be more important in consideration than the publication time of documents. Thus,
the fifth research question we address is:

RQ5. How to predict the suitable time-aware ranking model for a temporal
query?

8 Section 1.3. Research Context

1.2.3 Retrieval and Ranking Models

In many cases, when searching temporal document collections, search results are dis-
played in chronological order where recently created documents are ranked higher than
older documents. However, chronological ordering is not always effective. Therefore, a
retrieval model should rank documents by the degree of relevance with respect to time.
More precisely, documents must be ranked according to both textual and temporal sim-
ilarity. In addition, a time-aware ranking model should also take into account time un-
certainty, which captures the fact that the relevance of documents may change over time.
Thus, the sixth research question we address is:

RQ6. How to explicitly model the time dimension into retrieval and ranking?

In general, a time-aware ranking model gives scores to documents with respect to
textual and temporal similarity. However, we want to study whether exploiting other
features together with time can help improving the retrieval effectiveness in searching
temporal document collections. Specifically, we set up a new task called ranking related
news predictions, which is aimed at retrieving predictions related to a news story being
read, and ranking them according to their relevance to the news story. The challenges
of this task are related to various aspects of IR problems: time-aware ranking, sentence
retrieval, entity ranking, and domain-specific predictions. In this case, we need to find
features used for capturing the similarity between an information need and predictions
of future-related events, and combine such features for relevance ranking. Thus, the last
research question we address in this thesis is:

RQ7. How to combine different features with time in order to improve rele-
vance ranking?

1.3 Research Context
The PhD work is carried out as a part of four-year PhD program at the Department of
Computer and Information Science, Norwegian University of Science and Technology
(NTNU) under the main supervision by Professor Kjetil Nørvåg, and the co-supervision
by Professor Jon Atle Gulla and Associate Professor Heri Ramampiaro.

The PhD work is a formal part of LongRec - Records Management over Decades [80].
LongRec is a joint-industry project focusing on the challenges of persistent, reliable, and
trustworthy long-term storage of digital records. LongRec is organized as a consortium
led by DNV and partially funded by the Norwegian Research Council. It emphasizes
on the availability and use of information. Problems associated with digital preservation
typically emerge when the lifetime of digital documents exceeds 10 years and digital
documents are expected to undergo several changes during their lifetime.

Chapter 1. Introduction 9

1.4 Research Method
We have already explained our motivation and mentioned specific research questions in
the previous section. This section presents the research method for doing the PhD work.

We begin our research work by doing a literature study of state-of-the-art of research
topics including information retrieval techniques, machine learning, text mining, and in-
formation extraction. We aim at analyzing advantages and disadvantages of existing ap-
proaches as well as looking for a possibility for improvement.

In order to answer our research questions, we implement an approach for solving a
particular research question either as an independent module or as a complete prototype.
Then, we evaluate performance of the approach by conducting experiments using test
data. Test data used in the experiments can be standard test collections (TREC, CLEF,
etc.), or synthetic collections created by us. For the latter, we manually collect queries for
evaluation, and obtain relevance judgment using expert judges or crowdsourcing. Several
metrics are used for measuring the effectiveness of our proposed approaches, for example,
standard IR measures like precision, recall and F-measure.

1.5 Contributions
The work on time-aware approaches to information retrieval is a relatively new field of
research. Hence, our contributions are a combination of novel approaches and improve-
ments on existing techniques. In the following, we will give a brief summary of our con-
tributions, and indicate the corresponding research questions as well as the subsequent
chapters where detailed contributions can be found. In summary, our contributions to the
PhD work accomplish all research questions, which are listed below:

I. Content Analysis

C1. We propose different techniques for determining the time of non-timestamped
documents by improving temporal language models (originally proposed by de
Jong et al. [29]). The improved techniques that are proposed include semantic-
based preprocessing, and incorporating internal and external knowledge into
the language models. In addition, we present a tool for determining the time of
a non-timestamped document using the proposed techniques.
[These contributions are solutions to RQ1, which will be discussed in Chapter 3.]

II. Query Analysis

C2. We perform the first study on how to determine the time of queries without
temporal criteria provided, and propose techniques for determining time. In
addition, we propose an approach to re-ranking search results by incorporating
the determined time of queries.
[These contributions are solutions to RQ2, which will be discussed in Chapter 4.]

10 Section 1.6. Publications

C3. We model Wikipedia as a temporal resource and use it for discovering time-
based synonyms. Moreover, we propose a query expansion technique using the
discovered time-based synonyms. Finally, we present a news archive search
tool that exploits changing synonyms over time.
[These contributions are solutions to RQ3, which will be discussed in Chapter 5.]

C4. We perform the first study and analysis of query performance prediction of
temporal queries. In particular, we propose different time-based predictors and
techniques for combining multiple predictors in order to improve query perfor-
mance prediction.
[These contributions are solutions to RQ4, which will be discussed in Chapter 6.]

C5. We perform the first study on the impact on retrieval effectiveness of two differ-
ent ranking models that exploit two time dimensions. We propose an approach
to predicting the suitable time-aware ranking model based on machine learning
techniques, using three classes of features.
[These contributions are solutions to RQ5, which will be discussed in Chapter 7.]

III. Retrieval and Ranking Models:

C6. We analyze different time-aware ranking methods concerning two main as-
pects: 1) whether or not time uncertainty is concerned, and 2) whether the
publication time or the content time of a document is used in ranking. By
conducting extensive experiments, we evaluate the retrieval effectiveness of
different time-aware ranking methods.
[These contributions are solutions to RQ6, which will be discussed in Chapter 8.]

C7. The first formalization of the ranking related news predictions task is given.
Moreover, we propose a learned ranking model incorporating four classes of
features including term similarity, entity-based similarity, topic similarity, and
temporal similarity.
[These contributions are solutions to RQ7, which will be discussed in Chapter 9.]

1.6 Publications
Our contributions to this PhD work have been published in several international con-
ferences. Below is given a list of publications and the corresponding chapters where
publications are included.

P1. Nattiya Kanhabua and Kjetil Nørvåg, Improving Temporal Language Models For
Determining Time of Non-Timestamped Documents [58], Proceedings of the 12th
European Conference on Research and Advanced Technology for Digital Libraries
2008 (ECDL’2008), Aarhus, Denmark, September 2008.
[This publication is included in Chapter 3.]

P2. Nattiya Kanhabua and Kjetil Nørvåg, Using Temporal Language Models for Doc-
ument Dating (demo) [59], Proceedings of the European Conference on Machine

Chapter 1. Introduction 11

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD’2009), Bled, Slovenia, September 2009.
[This publication is included in Chapter 3.]

P3. Nattiya Kanhabua and Kjetil Nørvåg, Exploiting Time-based Synonyms in Searching
Document Archives [61], Proceedings of the ACM/IEEE Conference on Digital Li-
braries (JCDL’2010), Brisbane, Australia, June 2010.
[This publication is included in Chapter 5.]

P4. Nattiya Kanhabua and Kjetil Nørvåg, Determining Time of Queries for Re-ranking
Search Results [60], Proceedings of the 14th European Conference on Research and
Advanced Technology for Digital Libraries 2010 (ECDL’2010), Glasgow, Scotland,
UK, September 2010.
[This publication is included in Chapter 4.]

P5. Nattiya Kanhabua and Kjetil Nørvåg, QUEST: Query Expansion using Synonyms
over Time (demo) [62], Proceedings of the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD’2010),
Barcelona, Spain, September 2010.
[This publication is included in Chapter 5.]

P6. Nattiya Kanhabua and Kjetil Nørvåg, A Comparison of Time-aware Ranking Meth-
ods (poster) [63], Proceedings of the 34th Annual ACM SIGIR Conference (SI-
GIR’2011), Beijing, China, July 2011.
[This publication is included in Chapter 8.]

P7. Nattiya Kanhabua and Kjetil Nørvåg, Time-based Query Performance Predictors
(poster) [64], Proceedings of the 34th Annual ACM SIGIR Conference (SIGIR’2011),
Beijing, China, July 2011.
[This publication is included in Chapter 6.]

P8. Nattiya Kanhabua, Roi Blanco and Michael Matthews, Ranking Related News Pre-
dictions [57], Proceedings of the 34th Annual ACM SIGIR Conference (SIGIR’2011),
Beijing, China, July 2011.
[This publication is included in Chapter 9.]

P9. Nattiya Kanhabua, Klaus Berberich and Kjetil Nørvåg, Time-aware Ranking Predic-
tion, (under submission).
[This publication is included in Chapter 7.]

1.7 Thesis Organization
The thesis is divided into four main parts. Part I presents motivations, research questions,
technical background and the state-of-the-art. Part II-VI presents our proposed time-
aware approaches to searching temporal document collections. The detailed organization
of the thesis is outlined below.

12 Section 1.7. Thesis Organization

Part I - Overview and Background

Chapter 1 includes this introduction, which states our motivation of this PhD the-
sis. Research questions and methodology for conducting the thesis are also
discussed in this chapter.

Chapter 2 describes technical background composed of fundamental techniques
useful for understanding the work in this thesis. In addition, the state-of-the-
art relevant to the PhD thesis is also explained.

Part II - Content Analysis

Chapter 3 presents and evaluates our proposed approach to determining the time
of non-timestamped documents.

Part III - Query Analysis

Chapter 4 describes approaches to determining the time of queries without tem-
poral criteria provided and evaluate our proposed approaches.

Chapter 5 presents the effect of terminology changes over time, an approach to
solving the problem and the evaluation of the proposed approach.

Chapter 6 discusses query performance prediction for temporal queries, and presents
time-based predictors as well as the evaluation of the proposed methods.

Chapter 7 presents and evaluates an approach to predicting the suitable time-aware
ranking model based on machine learning techniques, using three classes of
features.

Part VI - Retrieval and Ranking Models

Chapter 8 describes an empirical comparison of different time-aware ranking meth-
ods.

Chapter 9 presents and evaluates a learned ranking model that combines multiple
evidences with time for relevance ranking.

Finally, in Chapter 10, we give conclusions, outline future work, and discuss possible
research topics beyond what have been addressed in the thesis.

Chapter 2

Background and State-of-the-art

In this chapter, we briefly describe fundamental techniques in the research area of in-
formation retrieval, which are useful for understanding our contributions in the following
chapters. Then, we describe temporal information retrieval explaining how time can be
represented and exploited in IR, and giving an overview of the state-of-the-art techniques
in temporal information retrieval.

2.1 Information Retrieval
Information retrieval (IR) provides a user with the ability to access information about
his/her topics of interest, called an information need. A document collection refers to
a data repository containing different types of documents, such as textual documents or
multimedia documents. A typical IR system allows a user to formulate his/her information
need using one or more keywords, called a query. Then, the system retrieves documents
related to the query and ranks the results according to relevance before returning them to
the user. For example, given the query UEFA Euro 2008, the user interfaces and results
returned by two different IR systems are shown in Figure 2.1.

In general, the process of information retrieval consists of three main components:
document indexing, query processing and document retrieval, as illustrated in Figure 2.2.
Another important issue critical to IR is retrieval evaluation, which is not a part of the
online retrieval process. We will now describe each IR component in more detail.

2.1.1 Document Indexing
One major concern when building an IR system is efficiency, that is, the system should
process a query and return a result list to the user as fast as possible. In order to increase
the speed of search, documents must be indexed. In this way, an IR system avoids linearly
scanning the document collection to find the documents matching the query.

The process of transforming documents into index is called document indexing, which
basically includes two main steps: 1) document acquisition and 2) text preprocessing.

13

14 Section 2.1. Information Retrieval

(a) User interface and results from www.yahoo.com

(b) User interface and results from www.google.com

Figure 2.1: Examples of the user interfaces and results returned by two search systems.

Chapter 2. Background and State-of-the-art 15

Query refinement

Query preprocessing

Retrieval

Ranking

Query processing Document retrieval Document indexing

Document
collections

Text preprocessingDocument
index

A user A ranked list
of documents

Document
acquisition

query

results

Figure 2.2: Main components of a typical IR system.

Document acquisition refers to the process of obtaining documents, e.g., scanning books
into digital documents or crawling web pages. Before a document can be indexed, a text
preprocessing step must be performed. For unstructured textual documents, the prepro-
cessing step can include tokenization, part-of-speech tagging, stopword removal, stem-
ming and lemmatization.

1. Tokenization splits a document into a list of words or tokens. In English, a period,
a question mark, an exclamation mark, or a comma are used as sentence delimiters.

2. Tagging is the process of labeling each token with its part-of-speech (POS) in the
sentence, such as, a noun, a proper noun, an adjective, a verb, a determiner, or
a number. POS tagging helps in removal of irrelevant words (e.g., adjectives, or
determiners) and also can reduce ambiguity of word senses with several meanings (a
noun or a verb). Moreover, tagged tokens are also useful for the stemming process.

3. Stopword removal aims at eliminating less informative or useless words before
indexing. Highly frequent words like articles, prepositions, and conjunctions are
stopwords which are not necessarily useful in distinguish among documents.

4. The stemming process reduces syntactic variations of words by transforming them
into a common form (a root of word, or stem) for example, ‘cars’ becomes ‘car’.
In addition, stemming helps in reducing the vocabulary size. An easy and efficient
method for stemming is to do affix removal by writing rules.

5. Lemmatization is the lexicon approach mapping inflections of words into one canon-
ical representation or lemma, such as, mapping various verb forms to infinite, map-
ping plural noun to singular form, or mapping comparative forms of an adjective to
the normal form.

16 Section 2.1. Information Retrieval

After text preprocessing, terms as well as the information about documents and posi-
tions will be stored in the document index.

2.1.2 Query Processing
A user expresses his/her information need by formulating a query typically consisting of
one or more keywords. The results of a query in an IR system can partly match a given
query. In other words, it retrieves documents containing information relevant to the query.
A document is considered relevant if it is one that the user perceives as containing infor-
mation of value with respect to their personal information need [84]. Given a query q
and a document d, the degree of relevance of d with respect to q is determined by the IR
system and depends on the retrieval model that the system employs. Different retrieval
models will be described in the next section. The basic components for query processing
are 1) query preprocessing and 2) query refinement. Note that, query refinement is op-
tional, and it is dependent on an IR application. A query must be preprocessed in the same
way as the documents in order to be able to match the query with index terms. For in-
stance, a query can be tokenized, stop-word removal, stemmed or lemmatized. In general,
a query is not preprocessed extensively because it only consists of a few keywords. After
representing both a query and a document using the same format, the matching process
will be performed during retrieval.

Consider two example queries: the query car is unable to match a document contain-
ing “automobile”, and similarly the query plane is unable to match a document contain-
ing “aircraft” because documents do not exactly contain the query queries. This is one
of two classic problems in natural languages: synonymy and polysemy. Synonymy refers
to a case where two different words have the same meaning, e.g., car and “automobile”,
or plane and “aircraft”. On the contrary, polysemy refers to the case where a term has
multiple meanings. For instance, the term “java” can refer to programming language,
coffee, or an island in Indonesia. In order to overcome the problems, query refinement
or the process of reformulating the query using semantically similar terms, can be per-
formed either manually by a user or automatically by a system. Two main approaches
can be applied to tackle with the problems [84]: 1) global methods and 2) local methods.
Global methods reformulate the original query by expanding it with other semantically
similar terms, which can be done independently of the initial retrieved results. Examples
of global methods are query expansion/reformulation with a thesaurus, spelling correc-
tion, and query suggestion. Local methods reformulate the original query by analyzing
the initial results returned. The local methods include relevance feedback and pseudo
relevance feedback (also known as blind relevance feedback).

In this work, we employ two techniques: query expansion using a thesaurus and
pseudo relevance feedback. Query expansion is aimed at improving the retrieval ef-
fectiveness, especially recall, by expanding the query using synonyms or related terms
from a thesaurus (or a controlled vocabulary). Generally, a thesaurus is composed of
synonymous names for concepts and can be manually created by human editors, semi-
automatically created using machine learning, or fully automated using word co-occurrence
statistics or query log analysis. Note that, applying query expansion can decrease preci-

Chapter 2. Background and State-of-the-art 17

Table 2.1: A term-document matrix represents a document using binary weighting {1, 0}.
Documents

d1 d2 d3 d4

Terms

UEFA 1 0 0 1
Europe 1 1 0 1
football 1 1 1 1
championship 0 1 1 0

sion significantly when a query contains ambiguous terms.
Relevance feedback is the process of involving a user in improving the final results of

retrieval. First, a user issues a query and the system returns the initial results of retrieval.
Then, the user is able to provide feedbacks by labeling each document in the initial result
set as relevant or non-relevance. Finally, the system will employ the feedback to refor-
mulate the original query and return the final results, which are retrieved with respect to
the modified query. Pseudo relevance feedback on the other hand does not require in-
volvement from the user. It assumes that the top-k retrieved documents are relevant to
the query without asking for an additional input from the user. Both relevance feedback
and pseudo relevance feedback have been shown to improve the retrieval effectiveness.
However, they can lead to query drift for some queries with too few relevant documents
in the top-k retrieved results.

2.1.3 Document Retrieval
Document retrieval is the core process of IR, and a retrieval model is a major component
of document retrieval. Several retrieval models have been proposed, for example, Boolean
retrieval model, vector space model, probabilistic model, language modeling approaches
and learning-to-rank. Retrieval models differ from each other in many aspects including
query interpretation, document representation, and document scoring and ranking algo-
rithms employed. In the following, we will explain each of the retrieval models.

Boolean Retrieval Model

The Boolean retrieval model is the simplest IR model. A query is a combination of terms
and Boolean operators AND, OR and NOT. A document is modeled as bag of words (an
unordered list of terms). Each term in the document is represented using binary weighting
{1, 0} (1 for term presence and 0 for term absence) as illustrated using a term-document
matrix in Table 2.1.

The Boolean retrieval model ignores the degree of relevance since it assumes two
outcomes of relevance, i.e., relevant or non-relevant. Let sim(d, q) be a function giving
a relevance score, a document score is either 1 (relevant) or 0 (non-relevant), that is,
sim(q, d) ∈ {1, 0}. Given the Boolean query (UEFA AND championship) NOT league,
the results are those documents containing both terms “UEFA” and “championship” but
not the term “league”, as illustrated using a Venn diagram in Figure 2.3. Intuitively, the

18 Section 2.1. Information Retrieval

league
{d3,d4}

championship
{d2,d3,d4}

UEFA
{d1, d2 ,d3}

Figure 2.3: Result of the query (UEFA AND championship) NOT league is the shaded
area, or d2.

model returns all documents “exactly matched” with the query terms without ordering the
documents.

Despite its simplicity, the retrieval effectiveness of a Boolean query depends entirely
on the user. In order to gain high effectiveness, the user can issue a complex query, but
it is quite difficult to formulate. If a simple query is used, there might be too few or too
many documents retrieved. If a large number of documents are retrieved, this poses a
problem for the user because he/she has to spend time looking for those satisfying the
information needs.

Vector Space Model

The vector space model is a ranked retrieval model. That is, documents are retrieved and
ranked descendingly by the degree of relevance, which can be measured as the similarity
between a query and a document. First, a query and documents are represented as vectors
of term weights by using a term weighting scheme, e.g., tf-idf. Given a term w and a
document d, tf is the term frequency of w, which is normalized by the total term frequency
in d. Thus, tf can be computed as:

tf(w, d) =
freq(w, d)∑nd

j=1 freq(wj, d)
(2.1)

where freq(w, d) is the term frequency of w in d and nd is the number of distinct terms
in d. tf captures the importance of a term w in a document by assuming that the higher tf
score of w, the more importance of w with respect to d. Intuitively, terms that convey the
topics of a document should have high values of tf.
idf is the inverse document frequency weight of a term w. It measures the importance

of w with respect to a document collection. idf can be seen as a discriminating property,
where a term that appears in many documents is less discriminative than a term appears

Chapter 2. Background and State-of-the-art 19

in a few documents. For example, the term “football” occurring in all documents. Thus,
it is less discriminative compared to the term “UEFA” occurring in only two documents.
idf can be computed as:

idf(w) = log
N

nw

(2.2)

where N is the total number of documents in a collection, and nw is the number of docu-
ments in which a term w occurs. Finally, a tf-idf weight of a term w in a document d can
be computed using the function tf-idf (w,d) given as:

tf-idf(w, d) = tf(w, d) · idf(w) (2.3)

Finally, a query q and a document d can be represented as vectors of tf-idf weights of
all terms in the vocabulary as:

�q = 〈ψ1,q, . . . , ψn,q〉
�d = 〈ψ1,d, . . . , ψn,d〉

where ψi,q is tf-idf weight of a term wi in q and ψi,d is tf-idf weight of a term wi in d.
The similarity of the term-weight vectors of q and d can be computed using the cosine
similarity as:

sim(�q, �d) =
�q • �d

|�q| × |�d|

=

∑n
i=1 ψi,q × ψi,d√∑n

i=1 ψ
2
i,q ×

∑n
i=1 ψ

2
i,d

(2.4)

The advantages of the vector space model over the Boolean retrieval model are: 1) it
employs term weighting which improves the retrieval effectiveness, 2) the degree of sim-
ilarity allows partially matching documents to be retrieved, and 3) it is fast and easy for
implementing. However, there are some disadvantages of the vector space model. First,
it makes no assumption about term dependency, which might lead to poor results [8]. In
addition, the vector space model makes no explicit definition of relevance. In other words,
there is no assumption about whether relevance is binary or mutivalued, which can impact
the effectiveness of ranking models.

Probabilistic Model

The probabilistic model was first proposed by Robertson and Jones [103]. The model
exploits probabilistic theory to capture the uncertainty in the IR process. That is, docu-
ments are ranked according to the probability of relevance. There are two assumptions
in this model: 1) relevance is a binary property, that is, a document is either relevant or
non-relevant, and 2) the relevance of a document does not depend on other documents.

20 Section 2.1. Information Retrieval

Given a query q, let R and R̄ be the set of relevant documents and the set of non-relevant
documents with respect to q respectively. A basic task is to gather all possible evidences
in order to describe the properties of the sets of relevant documents and non-relevant doc-
uments. The similarity of q and a document d can be computed using the odd ratio of
relevance as:

sim(d, q) =
P (R|d)
P (R̄|d) (2.5)

In order to simplify the calculation, Bayes’ theorem is applied yielding the following
formula:

sim(d, q) =
P (R|d)
P (R̄|d)

=
P (R) · P (d|R)

P (R̄) · P (d|R̄)

≈ P (d|R)

P (d|R̄)

(2.6)

where P (R) is the a prior probability of a relevant document, and P (R̄) is the a prior
probability of a non-relevant document. For a given query q, it is assumed that both prior
probabilities are the same for all documents, so they can be ignored from the calculation.
P (d|R) and P (d|R̄) are probabilities of randomly selecting a document d from the set of
relevant documents R and the set of non-relevant documents R̄ respectively.

In the probabilistic model, a document d is represented as a vector of terms with binary
weighting, which indicates term occurrence or non-occurrence.

�d = 〈ψ1,d, . . . , ψn,d〉
where ψi,d is the weight of a term wi in a document d, and ψi,d ∈ {0, 1}. In order to
compute P (d|R) and P (d|R̄), it assumes the Naive Bayes conditional independence [84],
that is, the presence or absence of a term in a document is independent of the presence
or absence of other terms in the given query. Thus, the computation of similarity can be
simplified as:

sim(d, q) ≈ P (d|R)

P (d|R̄)

≈
∏n

i=1 P (wi|R)∏n
i=1 P (wi|R̄)

(2.7)

where P (wi|R) is the probability that a term wi occurs in relevant documents, and P (wi|R̄)
is the probability that a term wi occurs in non-relevant documents. By modeling relevance
using probability theory makes the probabilistic model theoretically sound compared to
the Boolean retrieval model and the vector space model. However, a drawback is an in-
dependence assumption of terms, which is contrary to the fact that any two terms can

Chapter 2. Background and State-of-the-art 21

Table 2.2: Example of a language model or a probability distribution over terms in the
language.

Term Probability

UEFA 0.18
Europe 0.27
championship 0.36
football 0.18

be semantically related. In addition, the probabilistic model is difficult to implement be-
cause the complete sets of relevant documents and non-relevant documents are not easy
to obtain. Thus, in order to compute P (wi|R) and P (wi|R̄), it is needed to guess prior
probabilities of a term wi by retrieving top-n relevant documents and then perform itera-
tive retrieval in order to recalculate probabilities. This makes it difficult to implement the
model. In addition, the probabilistic model ignores the frequency of terms in a document.

Language Modeling

Originally, language modeling was employed in speech recognition for recognizing or
generating a sequence of terms. In recent years, language model approaches have gained
interests from the IR community and been applied for IR. A language model MD is es-
timated from a set of documents D, which is viewed as the probability distribution for
generating a sequence of terms in a language. An example of a language model is shown
in Table 2.2. The probability of generating a sequence of terms can be computed by multi-
plying the probability of generating each term in the sequence (called a unigram language
model), which can be computed as:

P (w1, w2, w3|MD) = P (w1|MD) · P (w2|MD) · P (w3|MD) (2.8)

The original language modeling approach to IR is called the query likelihood model [84].
In this model, a document d is ranked by the probability of a document d as the likelihood
that it is relevant to a query q, or P (d|q). By applying Bayes’ theorem, P (d|q) can be
computed as:

P (d|q) = P (q|d) · P (d)

P (q)
(2.9)

where P (q) is the probability of a query q, and P (d) is a document’s prior probability.
Both P (q) and P (d) are in general ignored from the calculation because they have the
same values for all documents. The core of the query likelihood model is to compute
P (q|d) or the probability of generating q given the language model of d, MD. P (q|d) can
be computed using maximum likelihood estimation (MLE) and the unigram assumption

22 Section 2.1. Information Retrieval

as:

P (q|Md) = P (w1, w2, w3|Md)

=

nq∏
i=1

P (wi|Md)
(2.10)

where nq is the number of terms in q. The equation above is prone to zero-probability,
which means that one or more terms in q may be absent from a document d. In order
to avoid zero-probability, a smoothing technique can be applied in order to add a small
(non-zero) probability to terms that are absent from a document. Such a small probability
is generally taken from the background document collection. For each query term w, a
smoothing technique is applied yielding the estimated probability P̂ (w|d) of generating
each query term w from d as:

P̂ (w|d) = λ · P (w|Md) + (1− λ) · P (w|MC) (2.11)

where the smoothing parameter λ ∈ [0, 1]. C is the background document collection. MC

is the language model generated from the background collection.

Learning to Rank

Many researchers have applied machine learning algorithms in order to optimize the qual-
ity of ranking, called learning-to-rank approaches. In general, there are three main steps
for modeling a ranking function using learning-to-rank approaches [77]:

1. Identify features. A set of features {x1, x2, . . . , xm} are defined as sources of the
relevance of a document di with respect to a query qj . Normally, a value of each
feature xi is a real number between [0, 1]. The same notation will be used for both
feature and its value, that is xi. Given a query qj , a document di can be represented
as a vector of feature values, di = (x1, x2, . . . , xz) indicating the relevance of di
with respect to qj .

2. Learn a ranking model. Machine learning is used for learning a ranking function
h(q, d) based on training data, called supervised learning. Training data is a set of
triples of labeled or judged query/document pairs {(qj, di, yk)}, where each docu-
ment di is represented by its feature values, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. A
judgment or label yk can be either relevant or non-relevant yk ∈ {1,−1}, or a rank
representing by natural numbers yk ∈ IN.

3. Rank documents using models. The ranking function h(q, d) learned in the previous
step will be used for ranking test data, or a set of unseen query/document pairs
{(qj, di)} where i /∈ {1, . . . , n} and j /∈ {1, . . . ,m}. The result is a judgment or
label y′k for each query/document pair.

Chapter 2. Background and State-of-the-art 23

A ranking model h(d, q) is obtained by training a set of labeled query/document pairs
using a learning algorithm. A learned ranking model is essentially a weighted coefficient
wi of a feature xi. An unseen document/query pair (d′, q′) will be ranked according to a
weighted sum of feature scores:

score(d′, q′) =
N∑
i=1

wi × xq′

i (2.12)

where N is the number of features. Many existing learning algorithms have been pro-
posed, and can be categorized into three approaches: pointwise, pairwise, and listwise
approaches [77]. The pointwise approach assumes that retrieved documents are indepen-
dent, so it predicts a relevance judgment for each document and ignores the positions of
documents in a ranked list. The pairwise approach considers a pair of documents, and rel-
evance prediction is given as the relative order between them (i.e., pairwise preference).
The listwise approach considers a whole set of retrieved documents, and predicts the rel-
evance degrees among documents. For a more detailed description of each approach,
please refer to [77].

2.1.4 Retrieval Evaluation

In the IR research community, it is common to evaluate an IR system using a test col-
lection, which is composed of various document collections, a set of queries, and rele-
vance judgments for queries. For example, the Text Retrieval Conference (TREC) and
Cross Language Evaluation Forum (CLEF) provide test collections and evaluation data
for different IR tasks, such as, ad hoc search, enterprise search, question answering, cross
language retrieval, etc. Building each test collection involves evaluating all documents in
a collection, which is a time-consuming process for human assessors and not feasible in
practice. In general, a pooling technique is used in TREC for creating a pool of relevance
judgments [24]. Top-k documents (between 50 and 200) from the rankings obtained by
different search engines (or retrieval algorithms) are merged into a pool, and duplicates are
removed. Then, documents are presented in some random order to assessors for making
relevance judgments. Hence, the final output of pooling is a set of relevance judgments
for the queries.

Basically, there are two aspects of evaluating an IR system: 1) efficiency and 2) ef-
fectiveness. Efficiency measures a system’s response time and space usage, while ef-
fectiveness measures the quality of the system’s relevance ranking. In this work, we
only consider the retrieval effectiveness aspect. Two metrics that are commonly used for
evaluating the retrieval effectiveness are precision and recall. Precision is the fraction of
retrieved documents that are relevant. Recall is the fraction of relevant documents that are
retrieved. Let R be the set of relevant documents and A be the set of retrieved documents

24 Section 2.2. Temporal Information Retrieval

(answer set) of q. Precision and recall can be computed as:

precision =
|R ∩ A|

A

recall =
|R ∩ A|

R

(2.13)

F-measure is a single measure that combines precision and recall, and it is computed
as the weighted harmonic mean of precision and recall:

F =
2 · P · R
(P +R)

(2.14)

where P is precision and R is recall. In this work, we also use other metrics for measuring
the retrieval effectiveness. Precision at top-k documents, so-called P@k, focuses on only
top documents and it is easy to compute. For example, precision at top-5, 10 and 15 are
denoted as P@5, P@10 and P@15 respectively. Mean Average Precision (MAP) provides
a summarization of rankings from multiple queries by averaging the precision values from
the rank positions where a relevant document was retrieved, or average precision. Mean
Reciprocal Rank (MRR) is the average of the reciprocal ranks over a set of queries, where
reciprocal rank is the rank at which the first relevant document is retrieved.

More thorough description on retrieval evaluation can be found in [8, 24, 84].

2.2 Temporal Information Retrieval
Temporal information retrieval refers to IR tasks that analyze and exploit the time dimen-
sion embedded in documents to provide alternative search features and user experience.
Examples of interesting applications of temporal IR are document exploration, similarity
search, summarization, and clustering.

As mentioned previously, we want to exploit temporal information in document col-
lections, queries or external sources of data in order to improve the quality of search
or the retrieval effectiveness. Basically, two types of temporal information particularly
useful for temporal IR: 1) the publication or creation time of a document, and 2) tempo-
ral expressions mentioned in a document or a query. In the following, we first give an
overview of different types of temporal expressions. Then, we present time models de-
fined in two previous work [10, 29], which later are used as time models also in our work.
Finally, we present state-of-the-art in temporal IR.

2.2.1 Temporal Expressions
As explained in [2], there are three types of temporal expressions: explicit, implicit and
relative. An explicit temporal expression mentioned in a document can be mapped directly
to a time point or interval, such as, dates or years on the Gregorian calendar. For example,
“July 04, 2010” or “January 01, 2011” are explicit temporal expressions. An implicit

Chapter 2. Background and State-of-the-art 25

temporal expression is given in a document as an imprecise time point or interval. For
example, “Independence Day 2010” or “New Year Day’s 2011” are implicit expressions
that can be mapped to “July 04, 2010” or “January 01, 2011” respectively. A relative
temporal expression occurring in a document can be resolved to a time point or interval
using a time reference - either an explicit or implicit temporal expressions mentioned in
a document or the publication date of the document itself. For example, the expressions
“this Monday” or “next month” are relative expressions which we map to exact dates
using the publication date of the document.

2.2.2 Models for Time, Documents and Queries
In temporal IR, the time dimension must be explicitly modeled in documents and queries.
In the following, we outline models for time, documents and queries that are employed in
temporal IR tasks.

Time Models

In [29], de Jong et al. modeled time as a time partition, that is, a document collection
is partitioned into smaller time periods with respect to a time granularity of interests,
e.g. day, week, month, or year. A document collection C contains a number of corpus
documents, such as, C = {d1, . . . , dn}. A document di is composed of bag-of-words,
and the publication time of di is represented as Time(di). Thus, di can be represented as
di = {{w1, . . . , wn} , Time(di)}. Given a time granularity of interest and C is partitioned
into smaller time periods, the associated time partition of di is a time period [tk, tk+1]
that contains the publication time of di, that is Time(di) ∈ [tk, tk+1]. For example, if
the time granularity of year is used, the associated time interval for 2011/08/22 will be
[2011/01/01, 2010/12/31]. Two data structures for storing terms and associated time are
proposed [29] as shown in Table 2.3. Both data structures have different advantages and
disadvantages. A table is good when data is sparse, and it is efficient in sorting. On the
other hand, a matrix gives a direct access to data which can improve access time.

In [10], Berberich et al. represented a temporal expression extracted from a document
or the publication time of a document as a quadruple: (tbl, tbu, tel, teu) where tbl and
tbu are the lower bound and upper bound for the begin boundary of the time interval
respectively, which underline the time interval’s earliest and latest possible begin time.
Similarly, tel and teu are the lower bound and upper bound for the end boundary of the
time interval respectively, which underline the time intervalŠs earliest and latest possible
end time. Since the time interval is not necessarily known exactly, the time model of
Berberich et al. is proposed to capture lower and upper bounds for the interval boundaries.
To interpret the time uncertainty in this model, consider the following example given
in [10]. The temporal expression “in 1998” is represented as (1998/01/01, 1998/12/31,
1998/01/01, 1998/12/31), which can refer to any time interval [b, e] having a begin point
b ∈ [tbl, tbu] and an end point e ∈ [tel, teu] where b ≤ e. Note that, the actual value
of any time point, e.g., tbl, tbu, tel, or teu, is an integer or the number of time units (e.g.,
milliseconds or days) passed (or to pass) a reference point of time (e.g., the UNIX epoch).

26 Section 2.2. Temporal Information Retrieval

Table 2.3: Data Models: Table vs. Matrix

(a) Table
Word Partition Frequency
terrorist 2002 9478
terrorist 2003 7750
terrorist 2004 5212
tsunami 2002 101
tsunami 2003 56
tsunami 2004 26905
world cup 2002 19273
world cup 2003 6069
world cup 2004 448

(b) Matrix
2002 2003 2004

terrorist 9478 7750 5212
tsunami 101 56 26905

world cup 19273 6069 448

These time units are referred as chronons and a temporal expression t is denoted as the
set of time intervals that t can refer to.

Document Model

A document d consists of a textual part dtext (an unordered list of terms) and a temporal part
dtime composed of the publication date and a set of temporal expression {t1, . . . tk}. The
publication date of d can be obtained from the function PubTime(d). Temporal expres-
sions mentioned in the contents of d can be obtained from the function ContentTime(d).
Both the publication date and temporal expressions can be represented using the time
models defined above.

Temporal Query Model

A temporal query q refers to a query representing temporal information needs, which is
composed of two parts: keywords qtext and a temporal expression qtime. In other words,
a user wants to know about documents that are relevant to both the topic of interest and
temporal intent. Temporal queries can be categorized into two types: 1) those with time
explicitly specified, and 2) those with implicit temporal intents. An example of a query
with time explicitly specified is the eruptions of volcanoes in Iceland before 2010.
In this case, a temporal intent is represented by the temporal expression “before 2010”
indicating that a user wants to know about volcanic events in Iceland during the years
before 2010. A query of the latter type is, for instance, Europe flight disruptions from
ash cloud that contains an implicit temporal intent referring to the Europe air travel
disruption caused by the Iceland volcano ash problem in “April 2010” or “May 2011”.
Similarly, the temporal part of a query or qtime can be represented using any time models
defined above.

Note that, there is no standard terminology for referring a query in this research area.
Previous work [71, 87, 93, 126] mainly uses the term temporal queries, however, the term

Chapter 2. Background and State-of-the-art 27

time-sensitive queries has been used recently in some work [27, 32, 140]. We will use
these two terms interchangeably throughout this thesis.

2.2.3 State-of-the-art in Temporal Information Retrieval

In this section, we will give a brief overview of related work in temporal IR: determining
time for non-timestamped documents, time-aware ranking, temporal indexing, visualiza-
tion using a timeline, and searching with the awareness of terminology changes.

Determining Time for Non-timestamped Documents

Determining the time of a document can be done using two methods: learning-based
and non-learning methods. The difference between these two methods is that the former
determines time of a document by learning from a set of training documents, while the
latter does not require a corpus for training. Learning-based methods are presented in [29,
116, 117]. In [116, 117], they use a statistical method (hypothesis testing) on a group
of terms having an overlapped time period in order to determine if they are statistically
related. If the computed values from testing are above a threshold, those features are
coalesced into a single topic, and the time of the topic is estimated from a common time
period associated to each term. Other previous work on this topic is the work by de Jong,
Rode, and Hiemstra [29] based on a temporal language model, which will be explained in
more detail in Chapter 3.

Non-learning methods are presented in [78, 82]. In order to determine time of a doc-
ument, temporal expressions in the document are annotated and resolved into concrete
dates. A relevancy of each date is computed using the frequency of which the date ap-
pears in the document. The most relevant date is used as a reference date for the document,
however, if all dates are similar relevant, the publication date will be used instead. In the
end, the event-time period of the document is generated by assembling all nearly dates to
the reference date where their relevancy must be greater than a threshold.

Comparing the non-learning to learning-based methods, both of them return two dif-
ferent aspects of time. The first method gives a summary of time of events appeared in the
document content, or time of topic of contents. The second method gives the most likely
originated time of the document, or time of document creation.

Time-aware Ranking

Time-aware ranking techniques can be classified into two categories: techniques based
on 1) link-based analysis and 2) content-based analysis. Approaches of the first category
exploit the link structures of documents in a ranking process, whereas the latter approach
leverages the contents of documents instead of links. In our research context, we will
focus on analyzing contents only, because information about links is not available in all
application domains, and content-based analysis seems to be more practical for search in
general.

28 Section 2.2. Temporal Information Retrieval

Previous work on time-aware ranking that exploits link structures is presented in [14,
26, 135]. In [135], Yu et al. pointed out that traditional link-based algorithms (i.e., PageR-
ank and HITS) simply ignore the temporal dimension in ranking. Thus, they modified the
PageRank algorithm by taking into account the date of a citation in order to improve the
quality of publication search. A publication obtains a ranking score by accumulating the
weights of its citations, where each citation receives a weight exponentially decreased
by its age. In [14], Berberich et al. also extended PageRank to rank documents with re-
spect to freshness. The difference is that this work defines freshness as a linear function
that will give a maximum score when the date of document or link occur within the user
specified period and decrease a score linearly if it occurs outside the interval. In more
recent work [26], Dai and Davison studied the dynamics of web documents and links that
can affect relevance ranking, and proposed a link-based ranking method incorporating
the freshness of web documents. Intuitively, features used for ranking were captured by
considering two temporal aspects: 1) how fresh the page content is, referred to as page
freshness, and 2) how much other pages care about the target page, referred as in-link
freshness.

Ranking methods based on an analysis of document content are presented in [31, 51,
74, 100, 111]. In [74], Li and Croft proposed to incorporate time into a language model-
ing framework [73, 101], called a time-based language model. In the previous language
model [73, 101], it is assumed uniform prior probabilities, but in the new model, they as-
signed prior probabilities with an exponential function of the created date of a document
where a document with a more recent creation date obtains high probability. In this work,
they did not explicitly use the contents of documents, but only date metadata. Jatowt et
al. presented in [51] an approach to rank a document by its freshness and relevance. The
method analyzed changed contents between a current version with archived versions, and
find a similarity score of changes to a query topic. It is assumed that a document is likely
to have fresh contents if it is frequently changed and on-topic. Thus, documents are ranked
with respect to the relevance of changed contents to the topic, the size of changes and the
time difference between consecutive changes. In other words, a document is ranked high
if it is modified significantly and recently. In [31], Diaz and Jones used timestamp from
document metadata to measure the distribution of retrieved documents and create the tem-
poral profile of a query. They showed that the temporal profile together with contents of
retrieved documents improve average precision for the query by using a set of different
features for discriminating between temporal profiles: KL divergence, autocorrelation,
the kurtosis order, and three factors from the burst model.

Another work on content-based analysis is presented in [100]. Perkiö et al. introduced
a process of automatically detecting a topical trend (the strength of a topic over time)
within a document corpus by analyzing temporal behavior of documents using a statistic
topic model. Then, it is possible to use topical trends on top of any traditional ranking
like tf-idf to improve the effectiveness of retrieval. In [111], Shaparenko et al. proposed
a method that does not require link information. The proposed method is appropriate for
various types of documents, for example, emails or blogs, lacking meaningful citation
data. The idea is to identify the most influent document by defining the impact of a
document as the amount of follow-up work it generates represented as lead/lag index. The

Chapter 2. Background and State-of-the-art 29

index measures if a document is more leader or more follower by comparing similarities
of two documents and time lag.

Temporal Indexing

Also related is work on temporal indexing for supporting temporal text-containment queries.
Nørvåg presented in [93] an approach to manage documents and index structures in tem-
poral document databases. Using a web warehouse containing historical web pages as
a testing environment, the author showed that different indexing methods proposed im-
prove the performance of temporal text-containment queries. In [12], Berberich et al.
presented a method for text search over temporally versioned documents. They proposed
the temporal coalescing technique for reducing the index size, and proposed the sublist
materialization technique to improve index performance concerning space and time. Doc-
uments are retrieved according to a query and user’s specified time, and are ranked based
on tf-idf.

Visualization using a Timeline

Recent work also consider visualization of search results using temporal information to
place retrieved documents on a timeline, which is useful for document browsing [1, 2, 37].
When a user enters only keywords as a query, retrieved results are too broad without
giving temporal context. To narrow down a set of documents retrieved, it is necessary to
give an overview of possible time periods relevant to the query and suggest that as a hint
to the user. In [11], they display a histogram of a distribution of the size of estimated
results over a timeline. The intention is to draw tentative time periods for the query, and
then the user can refine the query with the new temporal context he/she is interested in.

Searching with the Awareness of Terminology Changes

Search results can be affected by the terminology changes over time, for instance, changes
of words related to their definitions, semantics, and names (people, location, etc.). It is
important to note that language changes is an continuous process that can be observable
also in a short term period. The variation in languages causes two problems in text re-
trieval; 1) spelling variation or a difference in spelling between the modern and historic
language, and 2) semantics variation or terminology evolution over time (new words are
introduced, others disappears, or the meaning of words changes).

Previous work [35, 36, 69] addressed the spelling variation problem using techniques
from cross language information retrieval (CLIR). In [69], Koolen et al. proposed a cross-
language approach to historic document retrieval. A rule-based method for modernizing
historic languages, and the retrieval of historic documents using cross-language informa-
tion retrieval techniques are proposed. In [35, 36], Ernst-Gerlach and Fuhr used proba-
bilistic rule-based approaches to handling term variants when searching historic texts. In
this case, a user can search using queries in contemporary language and the issued queries
are translated into an old spelling possibly unknown to the user, which is similar to query
expansion. As explained in [35], there are two ways to perform query expansion: an

30 Section 2.2. Temporal Information Retrieval

expansion of query and an expansion of index. In the first case, a set of rules is automati-
cally constructed for mapping historic terms into modern terms. In the latter case, based
on a lexical database, terms are indexed together with their synonyms and holonyms as
additional indices.

The affect of terminology evolution over time is addressed in [13, 28, 55, 56, 118].
In [13], Berberich et al. proposed a method based on a hidden Markov model for re-
formulating a query into terminology prevalent in the past. Kaluarachchi et al. [55, 56]
studied the problem of concepts (or entities) whose names can change over time. They
proposed to discover concepts that evolve over time using association rule mining, and
used the discovered concepts to translate time-sensitive queries and answered appropri-
ately. In [28], de Boer et al. presented a method for automatically extracting event time
periods related to concepts from web documents. In their approach, event time periods
are extracted from different documents using regular expressions, such as, numerical no-
tations for years. Tahmasebi et al. [118] proposed to automatically detecting terminology
evolution within large, historic document collections by using clustering techniques and
analyzing co-occurrence graph.

Part II

Content Analysis

31

Chapter 3

Determining Time of Non-timestamped
Documents

In order to incorporate the time dimension into search, a document should be assigned
to its time of creation or published date. However, it is difficult to find an accurate and
trustworthy timestamp for a document. This chapter addresses the research problem: how
to determine the time of non-timestamped documents in order to improve the effectiveness
in searching temporal document collections?

3.1 Motivation
When searching temporal document collections, it is difficult to achieve high effective-
ness using only a keyword query because the contents of documents are strongly time-
dependent. Possible solutions to increase the retrieval effectiveness are, for instance,
extending keyword search with the publication time of documents (called temporal crite-
ria), or automatically re-ranking retrieved documents using time. Incorporating the time
dimension into search will increase the retrieval effectiveness if a document is assigned
to its time of creation or published date. However, due to its decentralized nature and
the lack of standards for date and time, it is difficult to find an accurate and trustwor-
thy timestamp for a web document. In a web warehouse or a web archive, there is no
guarantee that the creation time and the time of retrieval by a web crawler are related.
Similarly, a document can be relocated and its metadata made unreliable. The purpose
of determining time for non-timestamped documents is to estimate the time of publica-
tion of document/contents or the time of topic of documents’ contents. The process of
determining the time of documents is called document dating.

Contributions
Our main contributions in this chapter are:

• We propose different techniques for improving temporal language models (origi-
nally proposed by de Jong et al. [29]) used for determining the creation time of

33

34 Section 3.2. Related Work

non-timestamped documents. The proposed approaches include different semantic-
based preprocessing. In addition, we aim at improving the quality of document
dating by incorporating internal and external knowledge into the temporal language
models.

• We present a system prototype for dating documents using the proposed extension
approaches. The system prototype can take different formats of input: a file, the
contents of a given URL, or directly entered text. As output, it will present an
estimation of possible time periods associated with the document, with confidence
of each of the estimated time periods.

Organization
The organization of the rest of this chapter is as follows. In Section 3.2, we give an
overview of related work. In Section 3.3, we outline preliminaries that will be used as
the basis of our approach. In Section 3.4, we explain semantic-based techniques used in
data preprocessing. In Section 3.5, we propose three new approaches that improve the
previous work: word interpolation, temporal entropy and using external search statistics.
In Section 3.6, we evaluate our proposed techniques. In Section 3.7 we describe our
document dating prototype, and we demonstrate the usage of the document dating system.
Finally, in Section 3.8, we give conclusions.

3.2 Related Work

Previous work on determining the time of a document can be categorized into 2 ap-
proaches: learning-based and non-learning methods. The difference between the two
methods is that the former determines the time of a document by learning from a set of
training documents, while the latter does not require a corpus collection. Learning-based
methods are presented in [29, 116, 117]. In [116, 117], they use a statistical method
called hypothesis testing on a group of terms having an overlapped time period in order to
determine if they are statistically related. If the computed values from testing are above a
threshold, those features are coalesced into a single topic, and the time of the topic is es-
timated from a common time period associated to each term. Another method presented
by de Jong et al. in [29] is based on a temporal language model where the time of the
document is assigned with a certain probability. We will discuss in details the temporal
language model in the next section.

Non-learning methods are presented in [78, 82, 94]. They require an explicit time-
tagged document. In order to determine the time of a document, each time-tagged word
is resolved into a concrete date and a relevancy of the date is computed using the fre-
quency of which the date appears in the document. The most relevant date is used as
a reference date for the document, however, if all dates are similar relevant, the publi-
cation date will be used instead. In the end, the event-time period of the document is
generated by assembling all nearly dates to the reference date where their relevancy must

Chapter 3. Determining Time of Non-timestamped Documents 35

be greater than a threshold. Nunes et al. [94] propose an alternative approach to dat-
ing a non-timestamped document using its neighbors, such as 1) documents containing
links to the non-timestamped document (incoming links), 2) documents pointed to the
non-timestamped document (outgoing links) and 3) the media assets (e.g., images) asso-
ciated with the non-timestamped document. They compute the average of last-modified
dates extracted from neighbor documents and use it as the time for the non-timestamped
document.

More recent work on document dating is the work by Chen et al. [21]. They propose
a hybrid approach, i.e., extracting and inferring the timestamp of a web document using
a machine learning technique. Different features are used including linguistic features,
position-based features and the page format and tag information of web documents. In
addition, the links and contents of a web document and its neighbors are also exploited.

Comparing the non-learning to learning-based methods, both of them return two dif-
ferent aspects of time. The first method gives a summary of the time of events appeared
in the document content, while the latter one gives the most likely originated time which
is similar to written the time of the document. In this chapter, we focus on analyzing con-
tents only because information about links is not available in all domains, and content-
based analysis seems to be more practical for a general search application.

3.3 Preliminaries

In this section, we briefly outline our document model and the statistic language model
presented by de Jong, Rode and Hiemstra [29]. For short we will in the following denote
their approach as the JRH approach.

3.3.1 Document Model

In our context, a document collection contains a number of corpus documents defined
as C = {d1, d2, d3, . . . , dn}. A document has two views: a logical view and a temporal
view. The logical view of each document can be seen as bag-of-words (an unordered
list of terms, or features), while the temporal view represents trustworthy timestamps. A
simple method of modeling the temporal view is partitioning time spans into a smaller
time granularity. A document model is defined as di = {{w1, w2, w3, . . . , wn} , (ti, ti+1)}
where ti < ti+1, ti < PubTime(di) < ti+1, and (ti, ti+1) is the temporal view of the doc-
ument which can be represented by a time partition. PubTime(di) is a function that gives
trustworthy timestamp of the document and must be valid within in the time partition.

3.3.2 Temporal Language Models

The JRH approach is based on temporal language models, which incorporates the time
dimension into language modeling [101]. The temporal language models assign a prob-
ability to a document according to word usage statistics over time. The JRH approach

36 Section 3.4. Semantic-based Preprocessing

employs a normalized log-likelihood ratio (NLLR) [70] for computing the similarity be-
tween two language models. Given a partitioned corpus, it is possible to determine the
time of a non-timestamped document di by comparing the language model of di with each
corpus partition pj using the following equation:

NLLR(di, pj) =
∑
w∈di

P (w|di)× log
P (w|pj)
P (w|C)

(3.1)

P (w|di) =
tf(w, di)∑

w′∈di
tf(w′, di)

(3.2)

P (w|pj) =
tf(w, pj)∑

w′∈pj
tf(w′, pj)

(3.3)

P (w|C) =
tf(w,C)∑

w′∈C tf(w′, C)
(3.4)

where tf(w, di) is the frequency of a term w in a non-timestamped document di. tf(w, pj)
is the frequency of w in a time partition pj . tf(w,C) is the frequency of w in the entire
collection C. In other word, C is the background model estimated on the entire collection.
The timestamp of the document is the time partition which maximizes the score according
to the equation above. The intuition behind the described method is that given a document
with unknown timestamp, it is possible to find the time interval that mostly overlaps in
term usage with the document. For example, if the document contains the word “tsunami”
and corpus statistic shows this word was very frequently used in 2004/2005, it can be
assumed that this time period is a good candidate for the document timestamp.

As can be seen from the equation, words with zero probability are problematic, and
smoothing (linear interpolation [70] and Dirichlet smoothing [139]) is used to solve the
problem by giving a small (non-zero) probability to words absent from a time partition.
In the next section, we will present out approach to determining the time of a document,
which basically extends the JRH approach.

3.4 Semantic-based Preprocessing
Determining the time of a document from a direct comparison between extracted words
and corpus partitions has limited accuracy. In order to improve the performance, we
propose to integrate semantic-based techniques into document preprocessing. We have in
our work used the following techniques:

• Part-of-Speech Tagging: Part-of-speech (POS) tagging is the process of labeling
a word with a syntactic class. In our work, we use POS tagging to select only the
most interesting classes of words, for example, nouns, verb, and adjectives.

• Collocation Extraction: Collocations [83] are common in natural languages, and a
word cannot be classified only on the basis of its meaning, sometimes co-occurrence

Chapter 3. Determining Time of Non-timestamped Documents 37

with other words may alter the meaning dramatically. An example is “United
States” as one term compared to the two independent terms “united” and “states”,
which illustrates the importance of collocations compared to single-word terms
when they can be detected.

• Word Sense Disambiguation: The idea of word sense disambiguation (WSD) is
to identify the correct sense of word (for example, two of the senses of “bank” are
“river bank” and “money bank”) by analyzing context within a sentence.

• Concept Extraction: Since a timestamp-determination task relies on statistics of
words, it is difficult to determine the timestamp of a document with only a few
words in common with a corpus. A possibility is to instead compare concepts in
two language models in order to solve the problem of less frequent words.

• Word Filtering: A filtering process is needed to select the most informative words
and also decrease the vocabulary size. In our work, we apply the tf-idf weighting
scheme to each term and only the top-ranked Nt terms will be selected as represen-
tative terms for a document.

3.5 Improving Temporal Language Models
In this section, we propose three new methods for improving the JRH approach: 1) word
interpolation, 2) temporal entropy, and 3) external search statistics from Google Zeit-
geist [38]. Each method will be described in more details below.

3.5.1 Word Interpolation
When a word has zero probability for a time partition according to the training corpus,
this does not necessarily mean the word was not used in documents outside the training
corpus in that time period. It just reflects a shortcoming of having a training corpus of
limited size. As described in Section 3.3.2, smoothing can be used to model that a word
also exists in other time partitions.

In the following we present more elaborate ways of word frequency interpolation
for partitions where a word does not occur. In this process, a word is categorized into
one of two classes depending on characteristics occurring in time: recurring or non-
recurring. Recurring words are words related to periodic events, for example, “French
Open”, “Christmas”, “Olympic Games”, and “World Cup”, and are supposed to appear
periodically in time, for example December every year, or every four years. On the other
hand, non-recurring words do not appear periodically (but might still appear in many time
periods, and as such can be also classified as aperiodic).

How to interpolate depends on which category a word belongs to. All words that are
not recurring are non-recurring, and thus it suffices to identifying the recurring words.
This can be done in a number of ways, we initially use a simple technique just looking at
overlap of words distribution at endpoints of intervals, for example when detecting yearly

38 Section 3.5. Improving Temporal Language Models

Figure 3.1: Interpolation of a recurring word.

events look at all possible 12 month intervals (i.e., words on January 2000 and January
2001, February 2000 and February 2001. Note that the endpoints should actually be a bit
flexible/wide, due to the fact that many events do not occur at the exact same date each
year (Easter and Olympics are two typical examples).

Our interpolation approach is based on two methods: for recurring words, if they exist
in a number of event periods those that are missing are automatically “filled in”, for non-
recurring words interpolation is applied on periods adjacent to periods where the words
exist.

Recurring Words: Assume a word wr that has been determined to be recurring,
for example “Olympic Games”. If the frequency of wr in a partition pj , represented as
tf(wr, pj), is equal to zero, we interpolate tf(wr, pj) with the minimum value of adjacent
partitions as:

tf(wr, pj) = min (tf(wr, pj−1), tf(wr), pj+1) (3.5)

As depicted in Figure 3.1(a), the frequency is zero in the year 2000 (i.e., the word
does not occur in any documents with timestamp within year 2000). After interpolating,
Figure 3.1(b) shows how the frequency in the year 2000 is assigned with that of 1996
because it is the minimum value of 1996 and 2004.

Non-Recurring Words: Assume a word wnr that has been determined to be non-
recurring, for example “terrorism”. Figure 3.2(a) illustrates that a frequency is missing
in the year 2000 because there is no event (occurrence of word) on “terrorism” in this
year. On the other hand, in the year 2001 and 2002, “terrorism” becomes popular as
terrorists attacked on 11th of September 2001. Once again, information about “terrorism”
is absent in the year 2003. However, “terrorism” becomes popular in the year 2004 and
2005 because of bombing in Madrid and London. Supposed, there is no major event on
“terrorism” after the year 2005, so the frequency is zero in the year 2006, 2007 and 2008.
Although the word does not occur in the corpus it is quite certain that the word still has
been used in “the real world”. We interpolate tf(wnr, pj) in three ways.

1. In the case of a period pj where wnr has never been seen before, it is possible to

Chapter 3. Determining Time of Non-timestamped Documents 39

Figure 3.2: Interpolation of a non-recurring word.

observe wnr in that period. We interpolate tf(wnr, pj) as:

tf(wnr, pj) = α · tf(wnr, pj+1) (3.6)

where α is a constant and 0 < α ≤ 1. pj+1 is the first partition wnr occurs. For
example, the year 2000 is interpolated based on a fraction of the frequency in the
year 2001. The interpolation method for this case is shown as NR1 in Figure 3.2(b).

2. In the case that pj is a period that wnr is supposed to be normally used, but is absent
due to missing data, we interpolate tf(wnr, pj) with the average frequency of two
adjacent partitions as:

tf(wnr, pj) =
tf(wnr, pj−1) + tf(wnr, pj+1)

2
(3.7)

For example, the year 2003 is interpolated with the average frequency of 2004 and
2005. The interpolation method of this case is shown as NR2 in Figure 3.2(b).

3. If pj is a period where wnr is absent because of decreasing popularity of the word,
it can still be expected that wnr is used afterward, but not as much as before. We
interpolate tf(wnr, pj) as:

tf(wnr, pj) = β · tf(wnr, pj−1) (3.8)

where β is a constant and 0 < β ≤ 1. pj−1 is the last partition wnr appears. In
this case, the frequency of the years 2006, 2007 and 2008 are interpolated with a
frequency of the year 2005 in a decreasing proportion. The interpolation method
for this case is shown as NR3 in Figure 3.2(b).

40 Section 3.5. Improving Temporal Language Models

3.5.2 Temporal Entropy

In this section we present a term weighting scheme concerning temporality called tempo-
ral entropy (TE). The basic idea comes from the term selection method presented in [79].
Terms are selected based on their entropy or noise measure. Entropy of a word wi is
defined as follows:

Entropy(wi) = 1 +
1

logND

∑
d∈D

P (d|wi)× logP (d|wi) (3.9)

P (dj|wi) =
tf(wi, dj)∑ND

k=1 tf(wi, dk)
(3.10)

where ND is the total number of documents in a collection D and tf(wi, dj) is the
frequency of wi in a document dj . It measures how well a term is suited for separating
a document from other documents in a document collection, and also it captures the im-
portance of the term within the document. A term occurring in few documents has higher
entropy compared to one appearing in many documents. Therefore, the term with high
entropy, is a good candidate for distinguishing a document from others.

Similar to tf-idf but more complicated, term entropy underline the importance of a
term in the given document collection whereas tf-idf weights a term in a particular docu-
ment only. Empirical results showing that term entropy is good for index term selection
can be found in [68]. Thus, we use term entropy as a term weighting method for high-
lighting appropriate terms in representing a time partition.

We define temporal entropy as a measure of how well a term is suitable for separating
a time partition among overall time partitions and also indicates how important a term is
in a specific time partition. Temporal entropy of a term wi is given as follows:

TE(wi) = 1 +
1

logNP

∑
p∈P

P (p|wi)× logP (p|wi) (3.11)

P (pj|wi) =
tf(wi, pj)∑NP

k=1 tf(wi, pk)
(3.12)

where NP is the total number of partitions in a corpus P, and tf(wi, pj) is the frequency
of wi in partition pj . Modifying the score in Equation (3.1), each term w can be weighted
with temporal entropy TE(w) as follows:

NLLRte(di, pj) =
∑
w∈di

TE(w)× P (w|di)× log
P (w|pj)
P (w|C)

(3.13)

A term that occurs in few partitions is weighted high by its temporal entropy. This
results in a higher score for those partitions in which the term appears.

Chapter 3. Determining Time of Non-timestamped Documents 41

Figure 3.3: Search statistics and trends obtained from Google Zeitgeist.

3.5.3 Search Statistics
In our work, we have also studied how to use external knowledge, and in this section
we describe how to make use of search statistics provided by a search engine. The only
public available statistics that suits our purpose are those from Google Zeitgeist, which is
given on different time granularities, such as week, month and year. We have employed
the finest granularity available, i.e., weekly data. Figure 3.3(a) shows a snapshot of search
statistics which is composed of the top-10 rank for two types of queries. In the statistics,
a query can be gaining or declining.

A gaining query is a keyword that is growing in interest and becomes an emerging
trend at a particular time. Figure 3.3(b) shows the trend graph of the keywords “Tsunami”
and “Earthquake”. Both words are gaining queries in December 2004 because they gain
very high frequencies compared to a normal distribution and slightly decrease their popu-
larity over the time line. In March 2005, the word “Earthquake” becomes a gaining query
again because of an earthquake in Sumatra. On the other hand, a declining query is a
keyword where its interest drops noticeably from one period to another.

By analyzing search statistics, we are able to increase the probability for a particular
partition which contains a top-ranked query. The higher probability the partition acquires,
the more potential candidate it becomes. To give an additional score to a word wi and a
partition pj , we check if (wi,pj) exist as a top-ranked query. After that, we retrieve from
statistics information about a query type (gaining or declining), query ranking and the
number of partitions in which wi appears. Finally, a GZ score of wi given pj can be
computed as:

GZ(pj, wi) =

(
P (wi)− f(Ri,j)

)
× ipfi (3.14)

where ipfi is defined as an inverse partition frequency and is equal to log NP

ni
. NP is

the total number of partitions and ni is the number of partitions containing wi. P (wi) is
the probability that wi occurs; P (wi) = 1.0 if wi is a gaining query word and P (wi) =
0.5 if wi is a declining query word. This reflects the fact that a gaining query is more
important than a declining one. The function f(Ri,j) takes a ranked number and converts
into a weight for each word. A high ranked query is more important in this case.

42 Section 3.6. Evaluation

We now integrate GZ as an additional score into Equation (3.1) in order to increase
the probability of partition pj:

NLLRgz(di, pj) =
∑
w∈di

(
P (w|pj)× log

P (w|pj)
P (w|C)

+ βGZ(pj, w)
)

(3.15)

where β is the weight for the GZ function which is obtained from an experiment and
represented by a real number between 0 and 1.

3.6 Evaluation
Our proposed enhancements were evaluated by comparing their performance in determin-
ing the timestamp with experimental results from using the JRH approach as baseline. In
this section, we will describe experimental setting, experiments and results.

3.6.1 Setting
In order to assign timestamp to a document, a reference corpus consisting of documents
with known dates was required for comparison. A temporal language model was then
created from the reference corpus. In fact, the temporal language model is intended to
capture word usage within a certain time period. Two mandatory properties of the refer-
ence corpus are:

• A reference corpus should consist of documents from various domains.

• A reference corpus has to cover the time period of a document to be dated.

We created a corpus collection from the Internet Archive [49] by downloading the
history of web pages, mostly web versions of newspapers (e.g., ABC News, CNN, New
York Post, etc., in total 15 sources). The corpus collection covers on average 8 years for
each source and the total number of web pages is about 9000 documents, i.e., the web
pages in the corpus collection have on average been retrieved once every five day by the
Internet Archive crawler.

3.6.2 Experiments
In order to evaluate the performance of the enhanced temporal language models, the doc-
uments in the corpus collection were partitioned into two sets (Ctrain, Ctest). Ctrain was
used as a training set and to create a temporal language model. Ctest was used as a test-
ing set and to estimate timestamps of documents (note that we actually have the correct
timestamps of these documents so that the precision of estimation can be calculated).

The training set Ctrain must meet the two properties mentioned above. This can be
achieved by creating it based on news sources of various genres that cover the time period
of documents to be dated. We chosen 10 news sources from the corpus collection to

Chapter 3. Determining Time of Non-timestamped Documents 43

build the training set. To create Ctest, we randomly selected 1000 documents from the
remaining 5 news sources as a testing set.

In our experiments, we used two performance measures: precision and recall. Preci-
sion in our context means the fraction of processed documents that are correctly dated,
while recall indicates the fraction of correctly dated documents that are processed. A
recall lower than 100% is essentially the result of using confidence of timestamping to
increase precision.

The experiments were conducted in order to study three aspects: 1) semantic-based
preprocessing, 2) temporal entropy (TE) and Google Zeitgeist (GZ), and 3) confidence in
the timestamp-estimation task. Unfortunately, we were unable to evaluate our proposed
interpolation because of a too short time span (only 8 years) in the corpus collection.
However, we used linear interpolation as proposed by Kraaij [70] in our experiments, and
the smoothing parameter λ is set to 0.1.

We evaluated the performance of the techniques repeating each experiment 10 times
on different testing sets, which all were created based on random sampling. Averaged
precision and recall were measured for each experiment.

Experiment A: In this experiment, we evaluated the performance of semantic-based
preprocessing. The experiment was conducted on different combinations of semantic
methods. In A.1, we studied the effect of concept extraction. Ctrain was created as a
training language model with the preprocessing steps: POS tagging, WSD, concept ex-
traction and word filtering. In A.2, we studied the effect of collocation extraction. Ctrain

was created as a training language model with the preprocessing steps: POS tagging, col-
location, WSD and word filtering. In A.3, Ctrain was created as a training language model
with the preprocessing steps: POS tagging, collocation extraction, WSD, concept extrac-
tion and word filtering. In all experiments, timestamp was determined for documents in
Ctest. Precision was measured for each combination of semantic-based techniques.

Experiment B: In order to evaluate the performance of temporal entropy and use of
Google Zeitgeist statistics, we created a training language model on Ctrain in two ways:
using the semantic-based preprocessing in A.3 and without semantic-based preprocessing.
For each document in Ctest the timestamp was determined using Equations (3.13) and
(3.15). Precision was measured for each scoring technique.

Experiment C: Similar to a classification task, it is necessary to know how much
confidence the system has in assigning a timestamp to a document. This can for example
be used as feedback to a user, or as part of a subsequent query process where we want to
retrieve documents from a particular time only of the confidence of the timestamp is over
a certain threshold. Confidence was measured by the distance of scores of the first and
the second ranked partitions and it is given as follows.

Conf(tdi) = log
NLLR(di, pm)
NLLR(di, pn)

(3.16)

where tdi = PubTime(di). pm and pn are the first two partitions that give the highest
scores to a document di computed by Equation (3.1). A language model was created for
Ctrain and, for each document in Ctest, timestamp was determined by varying a confidence
threshold. We measured precision and recall for each level of confidence.

44 Section 3.6. Evaluation

Table 3.1: Results of the experiment A.

Granularities Precision
Baseline A.1 A.2 A.3

1-w 53.430 55.873 47.072 48.365
1-m 56.066 62.873 59.728 61.152
3-m 53.470 62.076 65.069 66.360
6-m 53.971 62.051 66.065 68.712
12-m 53.620 58.307 69.005 68.216

3.6.3 Results

Figure 3.4(a) (also presented in Table 3.1) presents precision of results from determin-
ing timestamp for different granularities using the baseline technique (the JRH approach)
and combinations of different preprocessing techniques (A.1/A.2/A.3). As can be seen,
by adding semantic-based preprocessing higher precision can be obtained in almost all
granularities except for 1-week (where only using concept extraction outperforms the
baseline). The observation indicates that using a 1-week granularity, the frequency of a
collocation in each week is not so different. For example, news related to “tsunami” were
reported for about 6 weeks (during December 2004 and January 2005) and each week
had almost the same frequency of collocations such as “tsunami victim” and “tsunami
survivor”. Thus the probability of a collocation is distributed in the case of a small granu-
larity and it is hard to gain a high accuracy for any particular partition. On the other hand,
as soon as the granularity becomes more coarse, usage of collocations are quite distinct,
as can be seen from the results of 1-month, 3-month, 6-month and 12-month.

Figure 3.4(b) (also presented in Table 3.2) illustrates precision of results from de-
termining timestamp when using temporal entropy (TE) without semantic-based prepro-
cessing, Google Zeitgeist statistics without semantic-based preprocessing (GZ), temporal
entropy with semantic-based preprocessing (S-TE), and Google Zeitgeist statistics with
semantic-based preprocessing (S-GZ). As can be seen, without semantic-based prepro-
cessing, TE only improves accuracy greatly in 12-month while in other granularities its
results are not so different to those of the baseline, and GZ does not improve accuracy in
all granularities. In contrast, by applying semantic-based preprocessing first, TE and GZ
obtain high improvement compared to the baseline in almost all granularities except for
1-week which is too small granularity to gain high probabilities in distinguishing parti-
tions.

From our observation, semantic-based preprocessing generates collocations as well
as concept terms which are better in separating time partitions than single words. Those
terms are weighted high by its temporal entropy. Similarly, most of the keywords in
Google Zeitgeist statistics are noun phrases, thus collocations and concepts gains better
GZ scores. This results in a high probability in determining timestamp.

Figure 3.4(c) shows how the confidence level affects the accuracy of document dating.
If the confidence level is 0, recall is 100% but precision is only 54.13%. On the other hand,

Chapter 3. Determining Time of Non-timestamped Documents 45

(a) Results of combining different preprocessing
techniques (A.1/A.2/A.3).

(b) Results of temporal entropy and Google Zeitgeist
with/without semantic-based preprocessing.

(c) Effect of a confidence level to accuracy.

Figure 3.4: Results of experiments A, B and C.

46 Section 3.7. Document Dating Prototype

Table 3.2: Results of the experiment B.

Granularities Precision
Baseline TE GZ S-TE S-GZ

1-w 53.430 55.725 53.050 49.126 48.423
1-m 56.066 54.629 56.026 61.196 61.540
3-m 53.470 55.751 54.030 64.525 67.008
6-m 53.971 54.797 54.271 69.605 69.824
12-m 53.620 63.104 53.947 71.564 68.366

if the confidence level is 1.0, precision is up to 91.35% but recall decreases to 33%. As
shown in the figure, a high confidence threshold gives a high precision in determining
time, whereas a document with a correctly estimated date might be discarded. Thus the
confidence level can be used to provide more reliable results.

3.7 Document Dating Prototype
In order to demonstrate the usefulness of our research we have implemented a proof-
of-concept prototype for document dating. We built the system prototype based on the
proposed techniques for improving temporal language models. The prototype uses a web-
based interface, and allows estimating the date of documents in different input formats
(i.e. a file, contents from an URL, or text entered directly) as shown by Figure 3.5(a).
Example inputs can be: 1) URL: http://tsunami-thailand.blogspot.com,
or 2) text: the president Obama. In addition, a user can select different parameters for
perform document dating.

• Preprocessing: POS, COLL, WSD, or CON

• Similarity score: NLLR, GZ or TE

• Time granularity: 1-month, 3-months, 6-months, or 12-months

Given an input to be dated, the system computes similarity scores between a given
document/text and temporal language models. The document is then associated with
tentative time partitions or its likely originated timestamps. As output it will present an
estimation of possible creation time/periods with confidence of each of the estimated time
periods, that is, a rank list of partitions ordered descendingly according to their scores as
shown in Figure 3.5(b). Besides, each tentative time partition is drawn in a timeline with
its score as a height as depicted in Figure 3.5(c).

3.8 Conclusions
In this chapter, we have described several methods that increase the quality of determining
the time of non-timestamped documents. Extensive experiments show that our approaches

Chapter 3. Determining Time of Non-timestamped Documents 47

(a) Input interface

(b) Rank list (c) Timeline

Figure 3.5: Input and output interfaces of the document dating system.

considerably increases quality compared to the baseline based on the previous approach
by de Jong et al. Note that, although using our approach shows improvement, the quality
of the actual document dating processing is still limited when aiming at further increase
in effectiveness. Finally, we have presented a system prototype for document dating.

48 Section 3.8. Conclusions

Part III

Query Analysis

49

Chapter 4

Determining Temporal Profiles of
Queries

In the previous chapter, we proposed an approach for improving the temporal language
model for determining the time of non-timestamped documents. In this chapter, we ad-
dress the research question: how to determine the time of an implicit temporal query and
use the determined time for re-ranking search results? We propose novel approaches for
determining the time of a temporal query where time is not explicitly provided by a user
and use the determined time for re-ranking search results.

4.1 Motivation

In previous work [12, 93], searching temporal document collections has been performed
by issuing temporal queries composed of keywords, and the publication time of docu-
ments (called temporal criteria). In that way, a system narrows down search results by
retrieving documents with respect to both textual and temporal criteria. As explained in
Chapter 2, temporal queries can be divided into two categories: 1) those with tempo-
ral criteria explicitly provided by users [12, 93], and 2) those with no temporal criteria
provided. An example of a query with temporal criteria explicitly provided is U.S. Pres-
idential election 2008, while a query without temporal criteria provided is, for instance,
Germany FIFA World Cup. However, for the latter example, a user’s temporal intent is
implicitly provided, i.e., referring to the world cup event in 2006.

More precisely, we want to determine the time of a query that is composed of only
keywords where its relevant documents are associated to particular time periods that are
not given by the query. We propose to leverage the determined time of queries, the so-
called temporal profiles of queries, for re-ranking search results in order to increase the
retrieval effectiveness. To the best of our knowledge, dating short queries and employing
the determined time in ranking has not been done before.

51

52 Section 4.2. Related Work

Contributions
Our main contributions in this chapter are as follows.

• We perform the first study on how to determine the temporal profiles of queries
without temporal criteria provided, and we propose techniques for determining the
time of implicit temporal queries.

• We propose an approach to re-ranking search results by incorporating the deter-
mined time of queries.

Organization
In Section 4.2, we give an overview of related work. In Section 4.3, we outline the doc-
ument and query models used in this chapter. In Section 4.4, we present our approaches
to determining temporal profiles of queries without temporal criteria provided. In Sec-
tion 4.5, we describe how to use the determined time to improve the retrieval effective-
ness. In Section 4.6, we evaluate our proposed query dating, and re-ranking methods.
Finally, in Section 4.7, we conclude the chapter.

4.2 Related Work
Recently, a number of papers have described issues of temporal search [12, 93, 106]. In
the approaches described in [12, 93], a user explicitly specifies time as a part of query.
Typically, such a temporal query is composed of query keywords and temporal criteria,
which can be a point in time or a time interval. In general, temporal ranking can be divided
into two types: approaches based on link-based analysis and content-based analysis. The
first approach studies link structures of a document and uses this information in a ranking
process, whereas the second approach examines the contents of a document instead of
links. In our context, we will focus on analyzing contents only because information about
links is not available in all domains, and content-based analysis seems to be more practical
for a general search application. Temporal ranking exploiting document contents and
temporal information are presented in [31, 51, 74, 100, 106].

In [74], Li and Croft incorporated time into language models, called time-based lan-
guage models, by assigning a document prior using an exponential decay function of a
document creation date. They focused on recency queries, such that the more recent doc-
uments obtain the higher probabilities of relevance. In [31], Diaz and Jones also used
document creation dates to measure the distribution of retrieved documents and create
the temporal profile of a query. They showed that the temporal profile together with the
contents of retrieved documents can improve average precision for the query by using a
set of different features for discriminating between temporal profiles. In [106], Sato et
al. defined a temporal query and proposed ranking taking into account time for fresh in-
formation retrieval. In [51] an approach to rank documents by freshness and relevance
is presented. In [100], Perkiö et al. introduced a process of automatically detecting a
topical trend (the strength of a topic over time) within a document corpus by analyzing
the temporal behavior of documents using a statistic topic model.

Chapter 4. Determining Temporal Profiles of Queries 53

Berberich et al. [10] integrated temporal expressions into query-likelihood language
modeling, which considers uncertainty inherent to temporal expressions in a query and
documents, i.e., temporal expressions can refer to the same time interval even they are
not exactly equal. The work by Berberich et al. and our work is similar in the sense
that both incorporate time into a ranking in order to improve the retrieval effectiveness
for temporal search, however, in their work, the temporal criteria are explicitly provided
for a query. Metzler et al. [87] also consider implicit temporal needs in queries. They
proposed mining query logs and analyze query frequencies over time in order to identify
strongly time-related queries. In addition, they presented a ranking concerning implicit
temporal needs, and the experimental results showed that their approach improved the
retrieval effectiveness of temporal queries for web search. Keikha et al. [65, 66] proposed
a time-based query expansion technique that selects terms for expansion from different
times. Then, the technique was used for retrieving and ranking blogs, which also captures
the dynamics of the topic both in aspects and vocabulary usage over time.

4.3 Models for Documents and Queries

In this section, we present models for documents and queries used in this chapter.

4.3.1 Document Model

In this chapter, a document collection contains a number of corpus documents defined
as C = {d1, . . . , dn}. A document di can be seen as bag-of-words (an unordered list
of terms), and the publication time. Note that, di can also be associated to temporal
expressions containing in the contents. However, temporal expressions will not be studied
in this chapter. Let PubTime(di) be a function that gives the publication time of di, so
di can be represented as di = {{w1, . . . , wn} ,PubTime(di)}. If C is partitioned with
respect to a time granularity of interest, the associated time partition of di is a time interval
[tk, tk+1] containing PubTime(di), that is PubTime(di) ∈ [tk, tk+1]. For example, if we
partition C using the 1-month granularity and PubTime(di) is 2010/03/05, the associated
time partition of di will be [2010/03/01, 2010/03/31].

4.3.2 Temporal Query Model

We define a temporal query q as composed of two parts: keywords qtext and temporal cri-
teria qtime, where qtext = {w1, . . . , wm}, and qtime = {t′1, . . . , t′l} where t′j is a time interval,
or t′j = [tj, tj+1]. In this work, we model time using a time interval only because of its
simple representation. However, we note that a fine-grained time representation, such as
a point in time, should also be employed in order to capture the real-world meanings of
time.

In other words, q contains uncertain temporal intent that can be represented by one or
more time intervals. We can refer to qtext as topical features and qtime as temporal features

54 Section 4.4. Determining Time of Queries

of q. Hence, our aim is to retrieve documents about the topic of query where their creation
dates are corresponding to time criteria.

Definition 1 (Temporal Queries). Temporal queries can be divided into two types with
respect to given temporal criteria:

(i) A query with temporal criteria explicitly provided by a user is called an explicit
temporal query.

(ii) A query without temporal criteria explicitly provided is called an implicit temporal
query.

An example of an explicit temporal query is Summer Olympics 2008 where a user is
interested in documents about Summer Olympics written in 2008. Because we represent
the time of a query by a time interval, for a given query, using the 1-year time granularity
qtime is represented as:

qtime = {[2008/01/01, 2008/12/31]}
Implicit temporal queries are strongly related to particular time periods although time

is not given in the queries as such. An example of an implicit temporal query is Box-
ing Day tsunami, which is implicitly associated with the year 2004, thus qtime can be
represented as:

qtime = {[2004/01/01, 2004/12/31]}
Another example is the query the U.S. presidential election, which can be associ-

ated with the years 2000, 2004, and 2008. So that, qtime is equal to:

qtime = {[2000/01/01, 2000/12/31] , . . . , [2008/01/01, 2008/12/31]}

When the time qtime is not given explicitly by the user, it has to be determined by the
system, as will be described later in this chapter.

4.4 Determining Time of Queries using Temporal Lan-
guage Models

In this section, we describe three approaches to determining the time of queries when
no temporal criteria are provided. The first two approaches use the temporal language
models (cf. Section 3.3) as basis, and the last approach uses no language models.

In order to build temporal language models, a temporal corpus is needed. The tem-
poral corpus can be any document collection where 1) the documents are timestamped
with creation time, 2) covering a certain time period (at least the period of the queries
collections), and 3) containing enough documents to make robust models. A good basis
for such a corpus is a news archive. We will use the New York Times Annotated Cor-
pus [96] since it is readily available for research purposes. However, any corpus with

Chapter 4. Determining Temporal Profiles of Queries 55

Table 4.1: Example of the contents of the temporal language models.
Time Term Frequency

2001 World Trade Center 1545
2002 Terrorism 2236
2003 Iraq 1510
2004 Euro 2004 750
2004 Athens 1213
2005 Terrorism 1990
2005 Tsunami 3528
2005 Hurricane Katrina 1012
2008 Obama 2030

similar characteristics can be employed, including non-English corpora for performing
dating of non-English texts. We will in the following denote a temporal corpus as DN .

The first approach performs dating queries using keywords only. The second approach
takes into account the fact that in general queries are short, and aims at solving this prob-
lem with a technique inspired by pseudo-relevance feedback (PRF) that uses the top-k
retrieved documents in dating queries. The third approach also uses the top-k retrieved
documents by PRF and assumes their creation dates as temporal profiles of queries.

All approaches will return a set of determined time intervals and their weights, which
will be used in re-ranking documents in order to improve the retrieval effectiveness as
described in more detail in Section 4.5.

4.4.1 Dating Queries using Keywords
Our basic technique for query dating is based on using keywords only, and it is described
formally in Algorithm 1.

The first step is to build temporal language models TLM from the temporal document
corpus (line 5), which essentially is the statistics of word usage (raw frequencies) in all
time intervals, which are partitioned with respect to the selected time granularity g. Ta-
ble 4.1 illustrates a subset of the temporal language models. Creating the temporal lan-
guage models (basically aggregating statistics grouped on time periods) is obviously a
costly process, and will be done just once as an off-line process and then only the statis-
tics have to be retrieved at query time.

For each time partition pj in TLM, the similarity score between qtext and pj is computed
(line 7). The similarity score is calculated using a normalized log-likelihood ratio accord-
ing to Equation 3.1. Each time partition pj and its computed score will be stored in C,
or the set of time intervals and scores (line 8). After computing the scores for all time
partitions, the contents of C will be sorted by similarity score, and then the top-m time
intervals are selected as the output set A (line 10).

Finally, the determined time intervals resulting from Algorithm 1 will be assigned
weights indicating their importance. In our approach, we simply give a weight to each

56 Section 4.4. Determining Time of Queries

Algorithm 1 DateQueryKeywords(qtext, g,m,DN)
1: INPUT: Query qtext, time granularity g, number of time intervals m, and temporal

corpus DN

2: OUTPUT: Set of time intervals associated to qtext
3: A ← ∅ // Set of time intervals
4: C ← ∅ // Set of time intervals and scores
5: TLM ← BuildTemporalLM(g,DN)
6: for each {pj ∈ TLM} do
7: scorepj ← CalSimScore(qtext, pj) // Compute similarity score of qtext and pj
8: C ← C ∪ {(pj, scorepj)} // Store pj and its similarity score
9: end for

10: A ← C.selectTopMIntervals(m) // Select top-m intervals ranked by scores
11: return A

time interval using its reverse ranked number. For example, if the output set A contains
top-5 ranked time intervals, the intervals ranked 1, 2, 3, 4, and 5 will have the weights 5,
4, 3, 2, and 1 respectively.

4.4.2 Dating Queries using Top-k Documents

In our second approach to query dating, the idea is that instead of dating query keywords
qtext directly, we will instead date the top-k retrieved documents of the (non-temporal)
query qtext. The resulting time of the query will be the combination of determined times
of each top-k document.

The algorithm for dating a query using top-k retrieved documents is given in Algo-
rithm 2. First, we retrieve documents by issuing a (non-temporal) query qtext, and retrieve
only the top-k result documents (line 5). Then, temporal language models TLM are built
as described previously (line 6). For each document di in DTopK, compute its similarity
score with each time partition pj in TLM (lines 10-13). After computing scores for di for
all time partitions, sort the contents of C by similarity score, and select only top-m time
intervals as the results of di (line 14).

The next step is to update the set B with a set of time results Ctmp obtained from dating
di. This is performed as follows: For each time interval pk in Ctmp, check if B already
contains pk (line 16). If pk exists in B, get a frequency of pk and increase the frequency
by 1 (lines 17-18). If pk does not exist in B, add pk into B as a new time interval and set
its frequency to 1 (line 20). After dating all documents in DTopK, sort the contents of B by
frequency, and select only the top-m time intervals as the output set A (line 25).

The weights of time intervals will be their reverse ranked number. Note that it can be
only one time interval in each rank of an output obtained from Algorithm 1, while it can
be more than one time interval in each rank in case of Algorithm 2.

Chapter 4. Determining Temporal Profiles of Queries 57

Algorithm 2 DateQueryWithTopkDoc(qtext, g,m, k,DN)
1: INPUT: Query qtext , time granularity g, number of intervals and documents m, k,

temporal corpus DN

2: OUTPUT: Set of time intervals associated to qtext
3: A ← ∅ // Set of time intervals
4: B ← ∅ // Set of time intervals and their frequencies
5: DTopK ← RetrieveTopKDoc(qtext, k) // Retrieve top-k documents
6: TLM ← BuildTemporalLM(g,DN)
7: for each {di ∈ DTopK} do
8: C ← ∅ // Set of time intervals and scores
9: Ctmp ← ∅ // Set of time intervals

10: for each {pj ∈ TLM} do
11: scorepj ← CalSimScore(di, pj) // Compute similarity score of di and pj
12: C ← C ∪ {(pj, scorepj)} // Store pj and its similarity score
13: end for
14: Ctmp ← C.selectTopMIntervals(m) // Select top-m intervals by scores
15: for each {pk ∈ Ctmp} do
16: if B has pk then
17: freq← B.getFreqForTInterval(pk) // Get frequency of pk
18: B ← B.updateFreqForTInterval(pk, freq+ 1) // Increase frequency by 1
19: else
20: B ← B.addTInterval(pk, 1) // Add a new time interval and set its frequency

to 1
21: end if
22: end for
23: end for
24: A ← B.selectTopMIntervals(m) // Select top-m intervals ranked by frequency
25: return A

4.4.3 Dating Queries using Publication Time
The last approach is a variant of the dating using top-k documents described above. The
idea is similar in the use of the top-k retrieved documents of the (non-temporal) query
qtext. The resulting time of the query will be the creation date (or timestamps) of each
top-k document. In this case, no temporal language models are used.

4.5 Re-ranking Documents Using Query Temporal Pro-
files

In this section, we will describe how to use temporal profiles of queries determined by our
approaches to improve the retrieval effectiveness. The idea is that, in addition to the doc-
uments’ scores with respect to keywords, we will also take into account the documents’
scores with respect to the implicit time of queries. Intuitively, documents with creation

58 Section 4.5. Re-ranking Documents

dates that closely match with temporal profiles of queries are more relevant and should be
ranked higher.

There are a number of methods to combine a time score with existing text-based
weighting models. For example, a time score can be combined with tf-idf weighting
using a linear combination, or it can be integrated into language modeling using a docu-
ment prior probability as in [74]. In this chapter, we propose to use a mixture model of a
keyword score and a time score. Given a temporal query q with the determined time qtime,
the score of a document d can be computed as follows:

S(q, d) = (1− α) · S ′(qtext, dtext) + α · S ′′(qtime, dtime) (4.1)

where α is a parameter underlining the importance of a keyword score S ′(qtext, dtext) and a
time score S ′′(qtime, dtime). A keyword score S ′(qtext, dtext) can be implemented using any
of existing text-based weighting models, and it can be normalized as:

S ′
norm(qtext, dtext) =

S ′(qtext, dtext)

maxS ′(qtext, dtext,i)
(4.2)

where maxS ′(qtext, dtext,i) is the maximum keyword score among all documents.
For a time score S ′′(qtime, dtime), we formulate the probability of generating temporal

profiles of query qtime given the associated time partition of document dtime as:

S ′′(qtime, dtime) = P (qtime|dtime)
= P ({t′1, . . . , t′n} |dtime)

=
1

|qtime|
∑

t′j∈qtime

P (t′j|dtime)
(4.3)

where qtime is a set of time intervals {t′1, . . . , t′n}, such that:

(t′1 ∩ t′2 ∩ . . . ∩ t′n) = ∅
So, P (qtime|dtime) is an average of the probability of generating a time interval, or

P (t′j|dtime), over all the number of time intervals in qtime, or |qtime|.
The probability of generating a time interval t′j given the time partition of document

dtime can be defined in two ways as proposed in [10]: 1) ignoring uncertainty, and 2) taking
uncertainty into account. By ignoring uncertainty, P (t′j|dtime) is defined as:

P (t′j|dtime) =
{
0 if dtime �= t′j,

1 if dtime = t′j.
(4.4)

In this case, the probability of generating query time will be equal to 1 only if dtime is
exactly the same as t′j . By taking into account a weight of each time interval t′j , P (t′j|dtime)
with uncertainty-ignorant becomes:

P (t′j|dtime) =

⎧⎨
⎩
0 if dtime �= t′j,

w(t′j)∑
t′
k
∈qtime

w(t′
k
)

if dtime = t′j.
(4.5)

Chapter 4. Determining Temporal Profiles of Queries 59

where w(t′j) is a function giving a weight for a time interval t′j , which is normalized by the
sum of all weights

∑
t′
k
∈qtime

w(t′k). In the case where uncertainty is concerned, P (t′j|dtime)
is defined using an exponential decay function:

P (t′j|dtime) = DecayRateλ·|t
′
j−dtime| (4.6)

where DecayRate and λ are constant, 0 < DecayRate < 1 and λ > 0. Intuitively, this
function gives a probability that decreases proportional to the difference between a time
interval t′j and the time partition of document dtime. A document with its time partition
closer to t′j will receive a higher probability than a document with its time partition farther
from t′j . By incorporating a weight of each time interval t′j , P (t′j|dtime) with uncertainty-
aware becomes

P (t′j|dtime) =
w(t′j)∑

t′
k
∈qtime

w(t′k)
×DecayRateλ·|t

′
j−dtime| (4.7)

The normalization of S ′′
norm(qtime, dtime) are computed in two ways:

1. uncertainty-ignorant using P (t′j|dtime) defined in Equation 4.5.

2. uncertainty-aware using P (t′j|dtime) defined in Equation 4.7.

Finally, the normalized value of S ′′
norm(qtime, dtime) will be substituted S ′′(qtime, dtime) in

Equation 4.1 yielding the normalized score of a document d given a temporal query q with
determined time qtime as follows:

Snorm(q, d) = (1− α) · S ′
norm(qtext, dtext) + α · S ′′

norm(qtime, dtime) (4.8)

4.6 Evaluation
In this section, we will perform two experiments in order to evaluate our proposed ap-
proaches: 1) determining temporal profiles of queries using temporal language models,
and 2) re-ranking search results using the determined time. In this section, we will de-
scribe the setting for each of the experiments, and then the results.

4.6.1 Setting
As mentioned earlier, we can use any news archive collection to create temporal language
models. In this chapter, we used the New York Times Annotated Corpus as the temporal
corpus. This collection contains over 1.8 million articles covering a period of January
1987 to June 2007. The temporal language models were created and stored in databases
using Oracle Berkeley DB version 4.7.25.

To evaluate the query dating approaches, we obtained queries from Robust2004, which
is a standard test collection for the TREC Robust Track containing 250 topics (topics 301-
450 and topics 601-700). As reported in [74], some TREC queries favor documents in

60 Section 4.6. Evaluation

particular time periods. Similarly, we analyzed a distribution of relevant documents of the
Robust2004 queries over time, and we randomly selected 30 strongly time-related queries
(with the topic number: 302, 306, 315, 321, 324, 330, 335, 337, 340, 352, 355, 357, 404,
415, 428, 435, 439, 446, 450, 628, 648, 649, 652, 653, 656, 667, 670, 676, 683, 695).
Time intervals of relevant documents were assumed as the correct time of queries.

We measured the performance using precision, recall and F-score. Precision is the
fraction of determined time intervals that are correct, while recall indicates the fraction
of correct time intervals that are determined. F-score is the weighted harmonic mean of
precision and recall, where we set β = 2 in order to emphasize recall. For query dating
parameters, we used the top-m interval with m = 5, and the time granularity g and the
top-k documents were variable in the experiments.

To evaluate the re-ranking approaches, the Terrier search engine [120] was employed,
and we used the BM25 probabilistic model with Generic Divergence From Randomness
(DFR) weighting as our retrieval model. For the simplicity, we used default parameter
settings for the weighting function. Terrier provides a mechanism to alter scores for re-
trieved documents by giving prior scores to the documents. In this way, we re-ranked
search results at the end of retrieval by combining a keyword score S ′(qtext, dtext) and a
time score S ′′(qtime, dtime) as defined in Equation 4.8. We conducted re-ranking experi-
ments using two collections: 1) the Robust2004 collection, and 2) the New York Times
Annotated Corpus.

For the Robust2004 collection, we used the 30 queries as temporal queries without
time explicitly provided. The retrieval effectiveness of temporal search using the Ro-
bust2004 collection is measured by Mean Average Precision (MAP), and R-precision.
For the New York Times Annotated Corpus, we selected 24 queries from a historical
collection of aggregated search queries, or the Google zeitgeist [38]. An example of tem-
poral queries are shown in Table 4.2. The temporal searches were conducted by human
judgment. Performance measures are the precision at 5, 10, and 15 documents, or P@5,
P@10, and P@15 respectively. For re-ranking parameters, we used an exponential decay
rate DecayRate = 0.5, and λ = 0.5. A mixture model parameter was obtained from the
experiments, where α = 0.05 and 0.10 for uncertainty-ignorant and uncertainty-aware
methods respectively.

Table 4.2: Example of the Google zeitgeist queries and associated time intervals.
Query Time Query Time

diana car crash 1997 madrid bombing 2005
world trade center 2001 pope john paul ii 2005
osama bin laden 2001 tsunami 2005
london congestion charges 2003 germany soccer world cup 2006
john kerry 2004 torino games 2006
tsa guidelines liquids 2004 subprime crisis 2007
athens olympics games 2004 obama presidential campaign 2008

The description of different approaches is given in Table 4.3. Top-k documents were
retrieved using pseudo relevance feedback, i.e., the result documents after performing

Chapter 4. Determining Temporal Profiles of Queries 61

query expansion using Rocchio algorithm.

Table 4.3: Different re-ranking approaches for comparison.
Method Description

QW determines time using keywords plus uncertainty-ignorant re-ranking
QW-U determines time using keywords plus uncertainty-aware re-ranking
PRF determines time using top-k retrieved documents plus uncertainty-ignorant re-ranking
PRF-U determines time using top-k retrieved documents plus uncertainty-aware re-ranking

NLM assumes creation dates of top-k retrieved documents as temporal profiles of queries
(no language models used) plus uncertainty-ignorant re-ranking

NLM-U assumes creation dates of top-k retrieved documents as temporal profiles of queries
(no language models used) plus uncertainty-aware re-ranking

4.6.2 Results
The performance of query dating methods is shown in Table 4.4. NLM performs best
in precision for all time granularities whereas PRF performs best in recall (only for
12-month). NLM and PRF give the best F-score results for 6-month and 12-month re-
spectively. In general, the smaller k tends to give the better results, while 12-month yields
higher performance compared to 6-month. Finally, the performance of QW seems to be
robust for 12-month regardless of dating solely short keywords.

Table 4.4: Query dating performance using precision, recall and F-score.

Method Precision Recall F-score(β = 2)
6-month 12-month 6-month 12-month 6-month 12-month

QW .56 .67 .34 .64 .37 .65
PRF (k=5) .55 .63 .47 .79 .48 .75
PRF (k=10) .56 .60 .46 .74 .48 .71
PRF (k=15) .54 .60 .42 .70 .44 .68
NLM (k=5) .92 .97 .35 .44 .40 .49
NLM (k=10) .90 .95 .48 .56 .53 .61
NLM (k=15) .89 .93 .56 .63 .61 .67

To evaluate re-ranking, the baseline of our experiments is a retrieval model with-
out taking into account temporal profiles of queries, i.e., pseudo relevance feedback
using Rocchio algorithm. For the Robust2004 queries, the baseline performance are
MAP=0.3568 and R-precision=0.3909. Experimental results of MAP and R-precision
are shown in Table 4.5. The results show that QW, QW-U, PRF and PRF-U outperformed
the baseline in both MAP and R-precision for 12-month, and NLM and NLM-U outper-
formed the baseline in all cases. PRF-U always performed better than PRF in both MAP
and R-precision for 12-month, while QW-U performed better than QW in R-precision for

62 Section 4.6. Evaluation

12-month only. NLM and NLM-U always outperformed the baseline and the other pro-
posed approaches because using the creation dates of documents is more accurate than
those obtained from the dating process. This depicts that taking time into re-ranking can
better the retrieval effectiveness. Hence, if query dating is improved with a high accuracy,
the retrieval effectiveness will be improved significantly.

Table 4.5: Re-ranking performance using MAP and R-precision with the baseline perfor-
mance 0.3568 and 0.3909 respectively (the Robust2004 collection).

Method MAP R-precision
6-month 12-month 6-month 12-month

QW .3565 .3576 .3897 .3924
QW-U .3556 .3573 .3925 .3943
PRF (k=5) .3564 .3570 .3885 .3926
PRF (k=10) .3568 .3570 .3913 .3919
PRF (k=15) .3566 .3567 .3912 .3921
PRF-U (k=5) .3548 .3574 .3903 .3950
PRF-U (k=10) .3538 .3576 .3904 .3935
PRF-U (k=15) .3538 .3572 .3893 .3940
NLM (k=5) .3585 .3589 .3924 .3917
NLM (k=10) .3586 .3591 .3918 .3925
NLM (k=15) .3584 .3596 .3898 .3934
NLM-U (k=5) .3604 .3608 .3975 .3978
NLM-U (k=10) .3604 .3610 .3953 .3961
NLM-U (k=15) .3606 .3620 .3943 .3967

Table 4.6: Re-ranking performance using P@5, P@10, and P@15 with the baseline per-
formance 0.35, 0.30 and 0.27 respectively * indicates statistically improvement over the
baselines using t-test with significant at p < 0.05 (the NYT collection).

Method P@5 P@10 P@15
6-month 12-month 6-month 12-month 6-month 12-month

QW .42 .45 .37 .39 .32 .33
QW-U .40 .42 .35 .36 .30 .32
PRF (k=15) .42 .46 .38 .42 .35 .39
PRF-U (k=15) .41 .45 .36 .40 .33 .37
NLM (k=15) .50 .52 .47 .49 .42 .44
NLM-U (k=15) .53 .55* .48 .50* .45 .46*

The results of evaluate the Google zeitgeist queries are shows in Table 4.6. In this
case, we fix the number of top-k to 15 only. Table 4.6 illustrated the precision at 5, 10 and
15 documents. The baseline performance is P@5=0.35, P@10=0.30 and P@15=0.27.
The results show that our proposed approaches perform better than the baseline in all
cases. NLM and NLM-U performs the best among all proposed approaches.

Chapter 4. Determining Temporal Profiles of Queries 63

4.7 Conclusions
In this chapter, we have studied implicit temporal queries where no temporal criteria is
provided, and how to increase retrieval effectiveness for such queries. The effectiveness
has been improved by determining the implicit time of the queries and employing this
to re-rank the query results. Through extensive experiments we have shown that our
proposed approach improves retrieval effectiveness. We note that the quality of the actual
query dating processing is a limitation when aiming at further increase in the retrieval
effectiveness.

64 Section 4.7. Conclusions

Chapter 5

Handling Terminology Changes over
Time

A language can change over time, which includes changes of words related to their
definitions, semantics, and names (people, location, etc.). Particularly, words can be ob-
solete, for example, before the year 1939, the name “Siam” was used for “Thailand” and
it is rarely used nowadays. This causes a problem when a user is unable to formulate
a query equivalent to a term used in the collection, that is, both query and documents
are represented in different forms (historical or modern forms). In this chapter, the re-
search question we address is how to handle terminology changes in searching temporal
document collections?

5.1 Motivation

This chapter focuses on the problem of terminology changes over time. In particular,
we deal with the changes of named entities (i.e., name of people, organizations, loca-
tions, etc.) because a peculiarity of named entities compared to other vocabulary terms is
that they are very dynamic in appearance, e.g., changes of roles or alterations of names.
Moreover, we are interested in named entities because they constitute a major fraction of
queries [18, 105]. To illustrate the problem, we give as examples two search scenarios.

First, a student studying the history of the Roman Catholic Church wants to know
about the Pope Benedict XVI during the years before he became the Pope (i.e., before
2005). Using only the query Pope Benedict XVI and temporal criteria “before 2005”
is not sufficient to retrieve documents about “Joseph Alois Ratzinger”, which is the birth
name of the current Pope. Second, a journalist wants to search for information about the
past career of Hillary Rodham Clinton before becoming the 67th United States Secretary
of State in January 2009. When searching with the query Hillary R. Clinton and tempo-
ral criteria “before 2008”, documents about “United States Senator from New York” and
“First Lady of the United States” are also relevant as her roles during the years before
2008. The given examples indicate an inability of retrieving relevant documents com-

65

66 Section 5.1. Motivation

posed of the synonyms of query terms in the past. This can be considered as semantic
gaps in searching document archives, i.e., a lack of knowledge about a query and its syn-
onyms1, which are semantically equivalent/related to a query with respect to time. We
denote those synonyms as time-dependent synonyms.

This problem will be handled during query time by using a dictionary linking concepts
and entities based on time, such as, by performing query expansion. Thus, for the query
Thailand, the query might be expanded to Thailand or Siam. For the query Thailand
and a temporal constraint before 1939, the query can be rewritten from Thailand to
Siam. To improve the quality of searching historical documents by expansion, it has been
done before in two manners: an expansion of query and an expansion of index. In the first
case, a set of rules is automatically constructed for mapping historic terms into modern
terms. In the latter case, based on a lexical database, terms are indexed together with their
synonyms and holonyms as additional indices. In order to handle changing languages,
we will expand a query with terms that are semantically equal with respect to temporal
criteria. This we achieve by building a time-concept dictionary from the well-known and
freely available encyclopedia Wikipedia.

In this chapter, we describe an approach to automatically creating entity-synonym
relationships based on the contents of Wikipedia. Evolving relationships are detected
using the most current version of Wikipedia, while relationships for particular time in
the past are discovered through the use of snapshots of previous Wikipedia versions. In
this way, we can provide a source of time-based entity-synonym relationships from 2001
until today, and using our approach also future relationships with new named entities
can be discovered simply by processing Wikipedia as new contents are added. Further,
we employ the New York Times Annotated Corpus in order to extend the covered time
range as well as improve the accuracy of time of synonyms. Finally, we present a system
prototype for searching news archives that takes into account terminology changes over
time.

Contributions
Our contributions in this chapter are as follows.

• We formally model Wikipedia viewed as a temporal resource for classification of
time-based synonyms.

• We propose an approach to discovering time-based synonyms using Wikipedia and
improving the time of synonyms. In addition, we propose query expansion tech-
niques that exploit time-based synonyms.

• A system prototype for searching news archives taking into account terminology
changes over time is present.

1In general, synonyms are different words with very similar meanings. However, in this work, synonyms are words used as
another name for an entity.

Chapter 5. Handling Terminology Changes over Time 67

Organization
The organization of the rest of the chapter is as follows. In Section 5.2, we give an
overview of related work. In Section 5.3, we briefly describe the assumed document
model and Wikipedia features. In Section 5.4, we introduce formal models for Wikipedia
viewed as a temporal resource and for time-based synonyms. In Section 5.5, we de-
scribe our approach to discovering time-based synonyms from Wikipedia. In Section 5.6,
we describe how to use time-based synonyms to improve the retrieval effectiveness. In
Section 5.7, we evaluate our proposed synonym detection and query expansion. In Sec-
tion 5.8, we present our news search system prototype. Finally, in Section 5.9, we con-
clude this chapter.

5.2 Related Work
Several attempts have been made in using the semi-structured contents of Wikipedia for
information retrieval purposes. The ones most relevant to our work are [18, 76, 88, 107,
134, 138]. For a thorough overview of the area of Wikipedia mining, we refer to the
survey by Medelyan et al. [86].

In [138], Zesch et al. evaluate the usefulness of Wikipedia as a lexical semantic re-
source, and compare it to more traditional resources, such as dictionaries, thesauri and
WordNet. In [18], Bunescu and Paşca study how to use Wikipedia for detecting and
disambiguating named entities in open domain texts in order to improve search quality.
By recognizing entities in the indexed text, and disambiguating between multiple entities
sharing the same proper name, the users can access to a wider range of results as today’s
search engines may easily favor the most common sense of an entity, making it difficult
to get a good overview of the available information for a lesser known entity.

An initial approach for synonym detection based on [18] in a non-temporal context
was described in [17]. As far as we know, all previous approaches to synonym detection
from Wikipedia have been based on redirects only (i.e., [48, 124, 133]) and no temporal
aspects are considered. There is some work that exploits Wikipedia for query expansion.
In [76], they proposed to improve the retrieval effectiveness of ad-hoc queries using a local
repository of Wikipedia as an external corpus. They analyzed the categorical information
in each Wikipedia article, and select terms from top-k articles to expand a query. Then,
a second retrieval on the target corpus is performed. Results show that Wikipedia can
improve the effectiveness of weak queries while pseudo relevance feedback is unable to
improve.

Milne et al. [88] proposed an approach to help users to evolve queries interactively,
and automatically expand queries with synonyms using Wikipedia. The experiments show
an improvement in recall. The recent work by Xu et al. [134] tackled with a problem of
pseudo-relevance feedback that one or more of the top retrieved documents may be non-
relevant, which can introduce noise into the feedback process. The proposed approach
in [134] classifies queries into 3 categories (entity, ambiguous, and broader queries) based
on Wikipedia, and use a different query expansion method for each query category. Their
experiments show that Wikipedia based pseudo-relevance feedback improves the retrieval

68 Section 5.3. Preliminaries

effectiveness, i.e., Mean Average Precision.
The affect of terminology evolution over time is addressed in [13, 28, 55, 56, 118].

We are unable to compare the performance of different methods because many of them
were published at the same time or later as this work. Thus, we leave a comparison of
different approaches for future work.

5.3 Preliminaries
In this section, we briefly outline models for queries and documents. In addition, we
introduce temporal document collections employed in this chapter, that is, Wikipedia and
the New York Time Annotated Corpus.

5.3.1 Temporal Query Model
We define a temporal query q as composed of two parts: keywords qtext and temporal
criteria qtime, where qtext = {w1, . . . , wm}, and qtime = {t′1, . . . , t′l} where t′j is a time
interval, or t′j = [tj, tj+1]. In this work, we model time using a time interval only because
of its simple representation and we aim at retrieving documents about the topic of query
where their creation dates are corresponding to the time interval.

5.3.2 Document Model
In our work, we employ a temporal document collection, which contains documents
that are temporally-ordered and it can be modeled as C = {d1, . . . , dn}. A document
can be seen as bag-of-words (an unordered list of terms, or features) with its associ-
ated time interval (from it was created until replaced by a new version or deleted): di =
{{w1, w2, w3, . . . , wn} , [ti, ti+1]} where [ti, ti+1] is a time interval of the document, i.e., a
time period that di exists, and ti < ti+1. PubTime(di) is a function that gives the publica-
tion date of the document and must be valid within the time interval, and PubTime(di) ∈
[ti, ti+1].

5.3.3 Temporal Document Collections
Generally, temporal document collections are document collections where their contents
appear in a temporal order, such as, web archives, news archives, blogs, personal emails
and enterprise documents. In such domains, terms in the text streams are temporally
dynamic in pattern, e.g., rising sharply in frequency, growing in intensity for a period
of time, and then fading away. In the following, we present two temporal document
collections that are used in this chapter.

Wikipedia

Wikipedia is a freely available source of knowledge. Each editable article in Wikipedia
has associated revisions, i.e., all previous versions of its contents. Each revision (or a

Chapter 5. Handling Terminology Changes over Time 69

version) of an article is also associated with a time period that it was in use before being
replaced by the succeeding version. In other words, the time of a revision is a time period
when it was a current version.

There are four Wikipedia features that are particularly attractive as a mining source
when building a large collection of named entities: article links (internal links in one
Wikipedia article to another article), redirect pages (send a reader to another article),
disambiguation pages 2 (used by Wikipedia to resolve conflicts between terms having
multiple senses by either listing all the senses for which articles exist), and categories
(used to group one or more articles together, and every article should preferably be a
member of at least one category although this is not enforced).

New York Time Annotated Corpus

The New York Times Annotated Corpus is used in the synonym time improvement task.
This collection contains over 1.8 million articles covering a period of January 1987 to
June 2007. 1.5 million articles are manually tagged of vocabulary of people, organizations
and locations using a controlled vocabulary that is applied consistently across the collec-
tions. For instance, if one article mentions “Bill Clinton” and another refers to “President
William Jefferson Clinton”, both articles will be tagged with “CLINTON, BILL”. Some
statistics of tagged documents are given in Table 5.1.

Table 5.1: NYT collection statistics of tagged vocabulary.
Tagged Vocabulary #Documents Tagged

People 1,328,045 (71.6%)
Locations 600,114 (32.3%)

Organizations 596,890 (32.2%)

5.4 Temporal Models of Wikipedia
In this section, we will present temporal models of Wikipedia, i.e., synonym snapshots.
The models will be later used for detecting synonyms over time. Finally, we will give a
formal definition of four different classes of synonyms, and how to classify them using
temporal patterns of occurrence as a feature.

5.4.1 Synonym Snapshots
In our context, a document collection is Wikipedia W that consists of a set of articles or
pages, P = {p1, . . . , pn}. A page pi ∈ P consists of a set of terms and a time interval:
pi = {{w1, . . . , wn} , [ta, tb]}, where wi ∈ V and V is the complete set of terms or a

2Note that the meaning of the term disambiguation in Wikipedia context is slightly different from how it is used in computational
linguistics.

70 Section 5.4. Temporal Models of Wikipedia

vocabulary in the collection. A time interval [ta, tb] is a time period that pi exists in the
collection. Wikipedia pages P can be categorized into two types: those that describe a
named entity, e.g., a concept about people, companies, organizations, etc., and those not
referring to a named entity, e.g., user talk pages and category pages.

We call a page in the first type a named entity page. For simplicity, we will use
the term “entity” and “named entity” interchangeably. A named entity obtained from
Wikipedia can be defined as:

Definition 2 (Named Entity). A named entity ei is represented by terms constituting the
title of an entity page pe that can be obtained using the function Entity(pe).

Let x be any object, e.g., a page pi, or a named entity ei. We define TInterval(x) as a
function that gives a time interval associated to x, i.e., a time period of existence [ty, tz].
We define TStart(x) as a function that gives the starting time point of x, i.e., the smallest
time point ty from the time interval [ty, tz] of x, and TEnd(x) as a function that gives the
ending time point of x, i.e., the largest time point tz from the time interval [ty, tz] of x.

A page pi is associated to a set of its revisions {rj|rj ∈ Ri}. A revision rj consists of
two components: 1) a set of terms {w1, . . . , wm}, and 2) a time interval [tc, td), which can
be obtained as TInterval(rj). Thus, a revision rj = {{w1, . . . , wm} , [tc, td)}. Note that a
time interval of any rj excludes its last time point, [tc, td) = [tc, td]−{td}. Let Ri is a set
of revisions {r1, . . . , rn} of a page pi. The time interval of a revision rj ∈ Ri overlaps
with the time interval of pi, that is, TInterval(rj) ⊂ TInterval(pi).

The intersection of the time intervals of all revisions in Ri can be computed as:

Definition 3 (Intersection of Revisions). The intersection of the time of all revisions in
Ri is an empty set. It is because at any time point t in TInterval(pi), only one revision rj
can exist for pi, that is:

TInterval(r1) ∩ TInterval(r2) ∩ . . . ∩ TInterval(rn−1) ∩ TInterval(rn) = ∅ (5.1)

Time intervals of two adjacent revisions can be defined in term of each other as the
follows.

Definition 4 (Two Adjacent Revisions). Let rj and rj+1 be any two adjacent revisions,
we can define the time intervals of these two revisions as:

1. TInterval(rj) = [TStart(rj), TStart(rj+1))

2. TInterval(rj+1) = [TEnd(rj), TEnd(rj+1))

By partitioning W with respect to a time granularity g, we will have a set of snapshots
of Wikipedia W = {Wt1 , . . . ,Wtz}. In our work, we only use the 1-month granularity.
Hence, if we have the history of Wikipedia for 8 years and g = month, the number of
snapshots will be |W| = 8 ∗ 12 = 96, i.e., W =

{
W03/2001, . . . ,W03/2009

}
. A Wikipedia

snapshot can be defined as:

Chapter 5. Handling Terminology Changes over Time 71

Figure 5.1: Wikipedia snapshot at time tk and its current revisions.

Definition 5 (Wikipedia Snapshot). A snapshotWtk consists of the current revision rc of
every page pi at time tk:

Wtk = {rc|∀pi : rc ∈ Ri ∧ tk ∈ TInterval(rc) ∧ ∩TInterval(rc) �= ∅} (5.2)

Because all revisions are current at time tk, the intersection of the time intervals of all
revisions in Wtk is not an empty set. Figure 5.1 depicts a snapshot Wtk of Wikipedia and
current revisions at time t = tk.

Let S be a set of synonyms {s1, . . . , sm} of all entities in W , where each synonym
sj ∈ V . An entity ei is associated to a set of synonyms {s1, . . . , su}. An entity-synonym
relationship can be defined as:

Definition 6 (Entity-synonym Relationship). We define an entity-synonym relationship
ξi,j is a pair of an entity ei and its associated synonym sj , that is:

ξi,j = (ei, sj) (5.3)

Instead of referring to a synonym sj alone, we must always refer to an entity-synonym
relationship ξi,j , because sj can be a synonym of one or more entities. An entity-synonym
relationship ξi,j has an associated time interval [tα, tβ], i.e., a time period that sj is a
synonym of ei.

The time points tα and tβ can be obtained using TInterval(ξi,j), TStart(ξi,j), and
TEnd(ξi,j) respectively. We define a synonym snapshot as:

Definition 7 (Synonym Snapshot). A synonym snapshot Stk is defined as a set of entity-
synonym relationships at a particular time t = tk, that is:

Stk = {ξ1,1, . . . , ξn,m} , tk ∈ TInterval(ξi,j) (5.4)

72 Section 5.4. Temporal Models of Wikipedia

5.4.2 Time-based Classes of Synonyms
In this section, we give the definition of time-based classes of synonyms. The intuition
behind the synonyms classes is that, synonyms occur differently over time, so they should
be employed differently as well. Consequently, we will classify synonyms into different
classes based on their occurrence patterns over time.

Let twα be the starting time point and twβ be the last time point of the document col-
lection, i.e., Wikipedia. Hence, twα = TStart(W) and twβ = TEnd(W). For every entity-
synonym relationship ξi,j , let tξi,jα be the first time point we observe ξi,j and t

ξi,j
β be the

last time point we observe ξi,j , so t
ξi,j
α = TStart(ξi,j) and t

ξi,j
β = TEnd(ξi,j). Figure 5.2

depicts occurrence patterns of different synonym classes over time.
The first class of synonyms is called time-independent, and it is defined as:

Definition 8 (Time-independent Synonyms). An entity-synonym relationship ξi,j is clas-
sified as “time-independent” (Class A) if all of the following conditions hold:

(i) t
ξi,j
α ∈ [twα , t

w
α + δ1] where δ1 > 0

(ii) t
ξi,j
β = twβ

The idea of Class A is to detect synonyms that exist for a long time interval, as long
as that of Wikipedia. These synonyms are robust to change over time and can represent
good candidates of synonyms. For example, the synonym “Barack Hussein Obama II” is a
time-independent synonym of the entity “Barack Obama”. We use δ1 to relax a condition
of starting time because there are not many pages created at the beginning of Wikipedia.
For example, δ1 can be 24 months after Wikipedia was created.

The second class of synonyms is called time-dependent, and it is defined as:

Definition 9 (Time-dependent Synonyms). An entity-synonym relationship ξi,j is classi-
fied as “time-dependent” (Class B) if all of the following conditions hold:

(i) t
ξi,j
α , t

ξi,j
β ∈

[
twα + δ1, t

w
β − δ2

]
where δ2 > 0, t

ξi,j
α > t

ξi,j
β

(ii) λ1 ≤ t
ξi,j
β − t

ξi,j
α ≤ λ2 where λ1, λ2 > 0, λ2 > λ1

The idea of Class B is to detect synonyms that are highly related to time, for example,
“Cardinal Joseph Ratzinger” is a synonym of “Pope Benedict XVI” before 2005. We
interest in using this synonym class for query expansion to handle the effect of rapidly
changing synonyms over time as explained in Section 5.1. δ2 indicates that synonyms are
no longer in use, and it can be 12 months. λ1, λ2 represents minimum, maximum values
of a time interval of synonym respectively. For example, λ1 and λ2 can be 2 months and
24 months. If a time interval is less than 2 months, it is a noise or junk synonym, and if it
is greater than 24 months, it is less specific to time.

In addition to Class A and B, we observe some synonyms cannot be classified into
the two classes above because of their temporal characteristics. Thus, we introduce two
fuzzy-membership classes, and the first class called gaining synonymy is defined as:

Chapter 5. Handling Terminology Changes over Time 73

Definition 10 (Gaining Synonyms). An entity-synonym relationship ξi,j is classified as
“gaining synonymy” (Class C) if all of the following conditions hold:

(i) t
ξi,j
α ∈ [twα + δ1, t

w
α + δ1 + ε] where ε > 0

(ii) t
ξi,j
β = twβ

The idea of Class C is to detect synonyms that exist for a long time interval, but not
as long as that of Wikipedia. These synonyms can be considered good candidates of
synonyms as they are tentative to robust to change over time. However, it is not confident
to judge if they are time-independent or not. This class of synonyms is actually a special
type of Class A that lacks of data in early years. For example, the synonym “Pope”
has occurred as a synonym of the entity “Pope Benedict XVI” in 04/2005. Hence, this
synonym will be classified to Class C instead of Class A because of its time interval. ε is
a parameter for the missing data of early years, e.g., ε can be 24 months.

The final fuzzy-membership class called declining synonymy is defined as:

Definition 11 (Declining Synonyms). An entity-synonym relationship ξi,j is classified as
“declining synonymy” (Class D) if all of the following conditions hold:

(i) t
ξi,j
α ∈ [twα , t

w
α + δ1]

(ii) t
ξi,j
β ∈

[
twβ − θ − δ2, t

w
β − δ2

]
where θ > 0

The idea of Class D is to detect synonyms that are stopped using as synonyms for
some time ago, i.e., not in use at the moment. We can consider this class of synonym as
out-of-date synonyms. For example, for the entity “Bill Clinton”, the synonym “President
Clinton” is less popular nowadays and it is very rare to be used. Thus, this synonym will
belong to Class D. Synonyms in this class can be viewed as a special type of Class B.
They are equivalent to synonyms in the past, but their time intervals are not too specific to
particular time, i.e., greater than a certain period of time. The period of time is determined
by θ that can be 12 months.

5.5 Time-based Synonym Detection
In this section, we will present our approach to find time-based entity-synonym relation-
ships. The approach is divided into three main steps: 1) named entity recognition and
synonym extractions, 2) improving time of synonyms using a model for temporal dynam-
ics of text streams, and 3) synonym classification.

5.5.1 Named Entity Recognition and Synonym Extraction
First, we partition the Wikipedia collection according to the time granularity g = month
in order to obtain a set of Wikipedia snapshots W = {Wt1 , . . . ,Wtz}.

74 Section 5.5. Time-based Synonym Detection

Figure 5.2: Temporal patterns of time-based classes of synonyms.

For each Wikipedia snapshot Wtk , we identify all entities in a snapshot Wtk . A result
from this step will be a set of entities Etk at a particular time tk. After that, we determine
a set of synonyms for each entity ei ∈ Etk in this snapshot Wtk . A result from this process
is a set of entity-synonym relations, that is a synonym snapshot Stk = {ξ1,1, . . . , ξn,m}.
We repeat this process for every Wikipedia snapshot Wtk in W. The final result will be the
union of all synonym snapshots S = {St1 ∪ . . . ∪ Stz}. S will be input of the time-based
synonym classification step.

Step 1: Recognizing named entities. Given a Wikipedia snapshot Wtk , we have a set
of pages existing at time tk, that is Wtk = {pi|∀pi : tk ∈ TInterval(pi)}. In this step, we
only interest in an entity page pe. In order to identify an entity page, we use the approach
described by Bunescu and Paşca in [18] which is based on the following heuristics:

• If multi-word title with all words capitalized, except prepositions, determiners, con-
junctions, relative pronouns or negations, consider it an entity.

• If the title is a single word, with multiple capital letters, consider it an entity.

• If at least 75% of the occurrences of the title in the article text itself are capitalized,
consider it an entity.

After identifying an entity page pe from a snapshot Wtk , we will have a set of entity
pages Pe,tk = {pe|pe ∈ Wtk}. From this set, we will create a set of entities Etk at time tk
by simply extracting a title from each entity page pe ∈ Pe,tk . A result from this step is a
set of entities Etk = {e1, . . . , en}, which will be used in step 2.

Step 2: Extracting synonyms. After identifying a set of entities Etk , we want to
find synonyms for each entity ei ∈ Etk . Owing to its richness of semantics structure,
it is possible to use article links and redirect pages in Wikipedia for finding synonyms.
However, we will not use redirect pages in this chapter because it is problematic to define
a temporal model of redirect pages. Hence, we will find synonyms by extracting anchor
texts from article links. For a page pi ∈ Wtk , we list all internal links in pi but only those
links that point to an entity page pe ∈ Pe,tk are interesting. In other words, the system

Chapter 5. Handling Terminology Changes over Time 75

extracts as synonyms all anchor texts for the associated entity, and these synonyms are
weighted by their frequencies of occurrence. We then obtain a set of entity-synonym
relationships. By accumulating a set of entity-synonym relationships from every page
pi ∈ Wtk , we will have a set of entity-synonym relationships at time tk, i.e., a synonym
snapshot Stk = {ξ1,1, . . . , ξn,m}.

Step 1 and 2 are processed for every snapshot Wtk ∈ W. Finally, we will obtain a
set of entity-synonym relationships from all snapshots S = {St1 , . . . , Stz}, and a set of
synonyms for all entities S = {s1, . . . , sy}. Table 5.2 depicts examples of entity-synonym
relationships and their time periods extracted from Wikipedia. Note that, time periods of
some relationships in Table 5.2 are incorrect. For example, the synonym “Cardinal Joseph
Ratzinger” of the entity “Pope Benedict XVI” should associates with a time period before
2005. Consequently, in order to improve time periods, the results from this step will be
input to the next subsection.

Table 5.2: Entity-synonym relationships and time periods.
Named Entity Synonym Time Period

Pope Benedict XVI

Cardinal Joseph Ratzinger 05/2005 - 03/2009
Cardinal Ratzinger 05/2005 - 03/2009
Joseph Cardinal Ratzinger 05/2005 - 03/2009
Joseph Ratzinger 05/2005 - 03/2009
Pope Benedict XVI 05/2005 - 03/2009

Barack Obama

Barack Hussein Obama II 02/2007 - 03/2009
Barack Obama 02/2007 - 03/2009
Obama 04/2006 - 03/2009
Sen. Barack Obama 07/2007 - 03/2009
Senator Barack Obama 05/2006 - 03/2009

Hillary Rodham Clinton

Hillary Clinton 08/2003 - 03/2009
Hillary Rodham 10/2002 - 03/2009
Hillary 07/2004 - 03/2009
Mrs. Clinton 07/2005 - 03/2009
Sen. Hillary Clinton 03/2007 - 03/2009
Senator Clinton 11/2007 - 03/2009

5.5.2 Improving Time of Entity-synonym Relationships

The time periods of entity-synonym relationships do not always have the desired accuracy.
The main reason for this is that the Wikipedia history has a very short timespan of only 8
years. That is, the time periods of synonyms are timestamps of Wikipedia articles in which
they appear, not the time extracted from the contents of Wikipedia articles. Consequently,
the maximum timespan of synonyms has been limited by the time of Wikipedia. In order

76 Section 5.5. Time-based Synonym Detection

to discover the more accurate time, we need to analyze a document corpus with the longer
time period, i.e., the New York Time Annotated Corpus.

There are a number of methods for extracting the more accurate time of synonyms.
The easiest method is to find the starting time and the ending time, or the first point and
the last point in the corpus, at which a synonym is observed with its frequency greater
than a threshold. However, the problems with this method are that:

1. It cannot deal with sparse/noisy data.

2. It cannot find multiple, discontinuous time intervals of a synonym.

Alternatively, we can apply the method called “burst detection”, proposed in [67]
for detecting the time periods of synonyms from the corpus. Bursts are defined as points
where a frequency of term increases sharply, and the frequency may oscillate above and
below the threshold, resulting in a single long interval of burst or a sequence of shorter
ones. Consequently, burst periods can formally represent periods that synonyms are “in
use” over time.

The advantage of this method is that it is formally modeled and capable of handling
sparse/noisy data. In addition, it can identify multiple, discontinuous time intervals for all
terms in the document corpus. Readers can refer to Chapter 2 for detailed description of
the algorithm for burst detection.

We propose to improve the time period of each entity-synonym relationship ξi,j ∈ S by
analyzing the NYT corpus (with the longer timespan of 20 years) using the burst detection
algorithm. The process of detecting entity-synonym relationships from the NYT corpus
is as follows. First, we have to identify a synonym sj from document streams. Note the
difference between an entity-synonym relationship ξi,j and a synonym sj , the first one
refers to a tuple of synonym sj and its associated named entity ei, while the latter one
refers to a synonym sj only.

Second, we have to find a named entity ei associated to the identified synonym sj
because sj can be a synonym of more than one named entity. We call this process synonym
disambiguation. Finally, after we disambiguate synonyms, we will then obtain bursty
periods of each entity-synonym relationship ξi,j that can be represented more accurate
time periods of ξi,j .

Identifying and Disambiguating Synonyms using the NYT corpus

To identify a synonym sj from the text streams of the NYT corpus is not straightforward,
because a synonym sj can be ambiguous (i.e., a synonym may be associated with more
than one named entities as Table 5.3 shows the number of synonyms associated with the
different number of named entities). For example, there are more than 19,000 synonyms
associating with more than one named entities, while 2.5 million synonyms associate with
only one named entities. In order to disambiguate a named entity ei for a synonym sj , we
can make use of a controlled vocabulary of the NYT corpus described in Section 5.3.

Recall that input of this step is a set of all synonyms of all entities S obtained from
Subsection 5.5.1. The algorithm for identifying a synonym sj from the text streams is

Chapter 5. Handling Terminology Changes over Time 77

Table 5.3: Synonyms and corresponding named entities.
#Named Entity #Synonym

1 2,524,170
2 14,356
3 2,797
4 994
5 442
6 259
7 155
8 94
9 58
10 37

given in Algorithm 3 and Algorithm 4. An explanation is as follows. Algorithm 3 finds a
synonym sj from each document dn where sj can have the maximum size of n-grams of,
or w called the window size of synonym. In this case, a synonym that its size is greater
than w is not interesting. Table 5.4 shows synonyms with different n-grams.

Table 5.4: Examples of Synonyms with different n-grams.
N-gram Synonym

2 Jospeh Ratzinger
3 Senator Barack Obama
5 George III of Great Britain
6 United Nations Commission on Human Rights
8 Society for the Prevention of Cruelty to Animals
13 Queen Elizabeth II of the United Kingdom of Great Britain and Northern Ireland

First, read a term sj with the maximum size w from a document dn starting at the index
pointer ptr = 0 as in Algorithm 4 (line 7). Check whether sj is a synonym (sj ∈ S), and
retrieve all associated named entities for sj as in Algorithm 4 (line 9). Next, check if sj
has only one associated named entity, then sj is not ambiguous, as in Algorithm 4 (line 10-
11). If sj is associated with more than one named entities, disambiguate its named entities
as in Algorithm 4 (line 13-15). After disambiguating the named entities for sj , insert an
entity-synonym relationship (ei, sj) plus the publication time of dn, i.e., PubTime(dn), in
the output set and move the index pointer by the size of sj , that is ptr = (ptr + w) in
Algorithm 3(line 11-12).

If sj cannot be disambiguated, sj will be ignored and we continue identifying another
synonym, i.e., reading a term with the maximum size w from dn by increasing the index
pointer to the next word ptr = (ptr + 1) as in Algorithm 3 (line 14). On the contrary,
if a term sj is not a synonym (sj /∈ S), decrease a window size by 1 as in Algorithm 3
(line 20), and consider a prefix string of sj with a size of (w − 1), or sj+1. If sj+1

78 Section 5.5. Time-based Synonym Detection

is not a synonym, repeat the same process until a window size w is equal to 0 as in
Algorithm 4 (line 4). This means, if no any prefix substring of sj has been recognized as
a synonym, continue to read the next term with the maximum size w from the text streams
by increasing the index pointer to the next word ptr = (ptr + 1) as in Algorithm 3 (line
14).

Algorithm 3 IdentifyEntitySynonymInNYT(DN)
1: INPUT: DN is a set of documents in the NYT corpus.
2: OUTPUT: A sequence of ξi,j or (ei, sj) and its timestamp.
3: C ← ∅ // A set of entity-synonyms relationships and a time point.
4: for each {dn ∈ DN} do
5: lend ← |dn| // lend is the number of words in dn.
6: ptr ← 0 // ptr is an index pointer in dn, default is 0.
7: w ← c // w is the window size of synonym, default is c.
8: while ptr ≤ lend do
9: (ei, sj) ← FindSynonym(dn, ptr, w)

10: if (ei, sj) �= null then
11: C ← C ∪ {(ei, sj), T ime(dn)} // Output (ei, sj) and publication time of dn
12: ptr ← (ptr + CountWords(sj)) // Move ptr by the number of words in sj .
13: else
14: ptr ← (ptr + 1) // Move ptr to the next word.
15: end if
16: end while
17: end for
18: return C

After identifying sj as a synonym, it is necessary to determine whether sj is am-
biguous or not. Note that we retrieve the set of all entities Ej associated with sj as in
Algorithm 4 (line 9). If there is only one entity in Ej , sj is not ambiguous and that entity
will be assigned to sj as in Algorithm 4 (line 10-11). However, if there are more than
one entity, sj have to be disambiguated by using controlled vocabulary Vn tagged in the
document dn as in Algorithm 4 (line 13).

The algorithm for disambiguating named entities for a synonym is given in Algo-
rithm 5. For each entity ek ∈ Ej , if ek is in a set of tagged vocabulary Vn of dn, add ek
into a list of disambiguated entities Etmp as in Algorithm 5 (line 7-8). Continue for all
entities in Ek. If Etmp contains only one entity, sj is disambiguated. If Etmp has more than
one entity, sj cannot be disambiguated.

The final results will be tuples of disambiguated entity-synonym relationships associ-
ated with timestamps of documents where they occur. Table 5.5 illustrates results from
this step of the synonyms “President Reagan” and “Senator Clinton” of the named entities
“Ronald Reagan” and “Hillary Rodham Clinton” respectively. Each tuple is composed of
an entity-synonym relationship, the publication time of a document where it occurs, and
its frequency. Note that, one entity-synonym relationship can be associated to different
timestamps. This is equivalent to the statistics of a entity-synonym relationship over time

Chapter 5. Handling Terminology Changes over Time 79

Algorithm 4 FindSynonym(dn, ptr, w)
1: INPUT: A document dn, a pointer ptr, a size of synonym w.
2: OUTPUT: An entity-synonym relationship (ei, sj) or ξi,j .
3: (ei, sj) ← null // Set a tuple result to null.
4: if w = 0 then
5: return (ei, sj)
6: else
7: sj ← ReadString(dn, ptr, w) // Read sj from dn at index ptr.
8: if sj ∈ S then
9: Ej ← GetAssocEntities(sj) // All entities associated to sj .

10: if |Ej| = 1 then
11: ei ← Ej .firstElement()
12: else
13: ek ← Disambiguate(dn, Ej) // Disambiguate Ej .
14: if ek �= null then
15: ei ← ek
16: end if
17: end if
18: return (ei, sj)
19: else
20: FindSynonym(dn, ptr, (w − 1)) // Find a synonym with a size (w − 1).
21: end if
22: end if

extracted from text streams of documents. The results from this step will be input to the
next subsection.

Improving Time of Synonyms using Burst Detection

In this step, we will find the correct time of a entity-synonym relationship ξi,j by using
the burst detection algorithm described in [67]. The algorithm takes the results from
the previous step as input, and generates bursty periods of ξi,j by computing a rate of
occurrence from document streams. An output produced in this step is bursty intervals
and bursty weight, which are corresponding to periods of occurrence and the intensity of
occurrence respectively, as showed in Table 5.6.

Detected bursty periods are mostly composed of discontinuous intervals because the
algorithm depends heavily on a frequency of ξi,j in the text streams. A gap in time in-
tervals prevents us from classifying ξi,j as time-independent since a time-independent
synonym should have a long and continuous time interval. A solution to this problem is
to combine two adjacent intervals and interpolate their bursty weight. However, interpo-
lation for ξi,j will be performed only if a synonym of ξi,j has no other candidate named
entities according to the fact that the relationship of a named entity and its synonym can
change over time. A result from this step is a set of entity-synonym relationships, that is
S = {ξ1,1, . . . , ξn,m} and more accurate time.

80 Section 5.5. Time-based Synonym Detection

Algorithm 5 Disambiguate(dn, Ej)
1: INPUT: A document dn, and a set of associated entities Ej .
2: OUTPUT: A disambiguated entity.
3: Etmp ← ∅ // A temporary list of entities.
4: ei ← null // An output entity.
5: Vn ← GetVocabulary(dn) // Tagged vocabulary of dn.
6: for each ek ∈ Ej do
7: if ek ∈ Vn then
8: Etmp ← Etmp ∪ {ek}
9: end if

10: end for
11: if |Etmp| = 1 then
12: ei ← Etmp.firstElement()
13: end if
14: return ei

Table 5.5: Tuples of entity-synonym relationships.
Timestamp Entity Synonym Frequency

01/1987 President Reagan Ronald Reagan 54
03/1987 President Reagan Ronald Reagan 23
11/1988 President Reagan Ronald Reagan 11
01/1989 President Reagan Ronald Reagan 34
10/1990 President Reagan Ronald Reagan 12
04/2001 Senator Clinton Hillary Rodham Clinton 67
05/2002 Senator Clinton Hillary Rodham Clinton 121
05/2003 Senator Clinton Hillary Rodham Clinton 33
11/2004 Senator Clinton Hillary Rodham Clinton 61
01/2005 Senator Clinton Hillary Rodham Clinton 359

5.5.3 Time-based Synonym Classification

To classify an entity-synonym relationship ξi,j based on time is straightforward. The
starting time point tξi,jα and the ending time point tξi,jβ of ξi,j will be used to determine
synonym classes as defined in Subsection 5.4.2. In this work, we are only interested
in using time-independent and time-dependent synonyms for query expansion because
synonyms from the other two classes might not be useful in this task. In the next section,
we will explain how can we actually make use of time-based synonyms in improving the
retrieval effectiveness.

Chapter 5. Handling Terminology Changes over Time 81

Table 5.6: Results from burst-detection algorithm.

Synonym Entity Burst Weight Time
Start End

President Reagan Ronald Reagan 5506.858 01/1987 02/1989
President Ronald Ronald Reagan 100.401 01/1989 03/1990
President Ronald Ronald Reagan 67.208 07/1990 02/1993
Senator Clinton Hillary Rodham Clinton 18.214 01/2001 10/2001
Senator Clinton Hillary Rodham Clinton 17.732 05/2002 01/2003
Senator Clinton Hillary Rodham Clinton 172.356 06/2003 11/2004

5.6 Query Expansion

In this section, we will describe how to use time-based synonyms (time-independent and
time-dependent synonyms) to improve the retrieval effectiveness. The use of synonyms
will be divided into two different search scenarios.

The first scenario is to use time-independent class of synonyms in an ordinary search,
for example, searching with keywords only (no temporal criteria explicitly provided). The
usefulness of time-independent synonyms is that they can be viewed as good candidate
synonyms for a named entity. For example, the synonym “Barack Hussein Obama II” is
better than “Senator Barack Obama” as a synonym for the named entity “Barack Obama”
in this case. Consequently, a query containing named entities can be expanded with their
time-independent synonyms before performing a search.

Another case is when performing a temporal search, we must take into account changes
in semantics. For example, searching documents about “Pope Benedict XVI” written “be-
fore 2005”, documents written about “Joseph Alois Ratzinger” should also be considered
as relevant because it is a synonym of the named entity “Pope Benedict XVI” at the years
“before 2005”. In this case, a time-dependent synonym with respect to temporal criteria
can be used to expand a query before searching.

In the rest of this section, we will describe how we actually expand a query with
time-based synonyms.

5.6.1 Using Time-independent Synonyms

Before expanding a query and performing an ordinary search, synonyms must be ranked
according to their weights. We define a weighting function of time-independent synonyms
as a mixture model of a temporal feature and a frequency feature as follows:

TIDP(sj) = μ · pf(sj) + (1− μ) · tf(sj) (5.5)

where pf(sj) is a time partition frequency or the number of time partitions (or time snap-
shots) in which a synonym sj occurs. tf(sj) is an averaged term frequency of sj in all

82 Section 5.6. Query Expansion

time partitions:

tf(sj) =

∑
i tf(sj, pi)
pf(sj)

(5.6)

where μ underlines the importance of a temporal feature and a frequency feature. In
our experiments, 0.5 is a good value for μ.

Intuitively, this function measures how popular synonyms are over time. The popular-
ity of synonym over time is measured using two factors. First, synonyms should be robust
to change over time as defined in 5.4.2. Hence, the more partitions synonyms occur, the
more robust to time they are. Second, synonyms should have high usages over time. This
corresponds to having a high value of averaged frequencies over time.

We intend to use time-independent synonyms in order to improve the effectiveness of
an ordinary search, i.e., search without temporal criteria. In this chapter, we will perform
an ordinary search using Terrier search engine developed by University of Glasgow.

Given a query q, first we have to identify a named entity in query. Note that, we
could not rely on state-of-the-art named entity recognition because queries are usually
very short (i.e., 2-3 words on average), and lacked of standard form, e.g., all words are
lower case. In addition, we need to identify a named entity corresponding to a title of
Wikipedia article since our named entities and synonyms are extracted from Wikipedia.

We do this by searching Wikipedia with a query q, and q is a named entity if its search
result exactly matches with a Wikipedia page. Besides, a more relax method is to select
the top-k related Wikipedia pages instead. Now, we obtain a set of named entities Eq =
{eq,1, . . . , eq,n} of q. Subsequently, time-independent synonyms of q are all synonyms
corresponding to a named entity eq,i ∈ Eq. Next, we will rank those synonyms by their
TIDP scores and select only top-k synonyms with highest scores for expansion. Query
expansion of time-independent synonyms can be performed in three ways as follows:

1. Add the top-k synonyms to an original query q, and search.

2. Add the top-k synonyms to an original query q, and search with pseudo relevance
feedback.

3. Add the top-k synonyms to an original query q plus TIDP scores as boosting weight,
and search with pseudo relevance feedback.

Boosting weight is a weight of term as defined in Terrier’s query language. Note that, if
synonyms are duplicated with an original query q, we will remain the original query q
unchanged, and add those duplicated synonyms with TIDP scores as boosting weight.

5.6.2 Using Time-dependent Synonyms
In order to rank time-dependent synonyms, we first have obtain a set of synonyms from
time tk and weight them differently according to the following weighting function.

TDP(sj, tk) = tf(sj, tk) (5.7)

Chapter 5. Handling Terminology Changes over Time 83

where tf(sj, tk) is a term frequency of a synonym sj at time tk. Note that, a time partition
frequency is not counted because synonyms from the same time period should be equal
with respect to time. Thus, only a term frequency will be used to measure the importance
of synonym. Time-dependent synonyms will be used for a temporal search, or a search
taking into account a temporal dimension, i.e. extending keyword search with the publi-
cation time of documents. In that way, a search system will retrieve documents according
to both textual and temporal criteria, e.g., temporal text-containment search [93].

Given a temporal query (q, tk), we will recognize named entities in a query q using
the same method as explained in Section 5.6.1. After obtaining a set of named entities
Eq = {eq,1, . . . , eq,n} of a query q, we will perform two steps of filtering synonyms. First,
only synonyms which their time overlaps with time tk will be processed, that is:

{sj|Time(sj) ∩ tk �= ∅}

Second, those synonyms will be ranked by their TDP scores and select only top-k
synonyms with highest scores for expansion. Using time-dependent synonyms in a tem-
poral search is straightforward. A set of synonyms will be add into an original temporal
query (q, tk). In the following subsection, we will explain how to automatically generate
temporal queries that will be later used in temporal search experiments.

5.7 Evaluation
In this section, we will evaluate our proposed approaches (extracting and improving time
of synonyms, and query expansion using time-based synonyms). Our experimental eval-
uation is divided into three main parts: 1) extracting entity-synonym relationships from
Wikipedia, and improving time of synonyms using the NYT corpus, 2) query expansion
using time-independent synonyms, and 3) query expansion using time-dependent syn-
onyms. In this section, we will describe the setting for each of the main experiments,
and then the results.

5.7.1 Setting
We will now describe in detail the experimental setting of each of the experiments.

Extracting and Improving Time of Synonyms

To extract synonyms from Wikipedia, we downloaded the complete dump of English
Wikipedia from the Internet Archive [129]. The dump contains all pages and revisions
from 03/2001 to 03/2008 in XML format, and the decompressed size is approximately 2.8
Terabytes. A snapshot was created for every month resulting in 85 snapshots (03/2001,
04/2001, . . ., 03/2008). In addition, we obtained 4 more snapshots (05/2008, 07/2008,
10/2008, 03/2009), where 2 of them were downloaded [130]. So, we have 89 (85+4)
snapshots in total.

84 Section 5.7. Evaluation

We used the tool called MWDumper [91] to extract pages from the dump file, and
stored the pages and revisions of 89 snapshots in databases using Oracle Berkeley DB
version 4.7.25. We then created temporal models of Wikipedia from all of these snapshots.

To improve time of synonyms, we used the burst detection algorithm implemented by
the author in [67] and the NYT corpus described in Section 5.3.3. An advantage of this
implementation is that no preprocessing is performed on the documents. Parameter for
burst detection algorithm were set as follows: the number of states was 2, the ratio of rate
of second state to base state was 2, the ratio of rate of each subsequent state to previous
state (for states > 2) was 2, and gamma parameter of the HMM was 1. We use accuracy
to measure the performance of our method for improving time of synonyms.

Query Expansion using Time-independent Synonyms

To perform an ordinary search, the experiments were carried out using the Terrier search
engine. Terrier provides different retrieval models, such as divergence from randomness
models, probabilistic models, and language models. In our experiments, documents were
retrieved for a given query by the BM25 probabilistic model with Generic Divergence
From Randomness (DFR) weighting. In addition, it provides flexible query language that
allows us to specify a boosting weight for a term in query. Given an initial query qorg,
an expanded query qexp with top-k synonyms {s1, . . . , sk} plus TIDP scores as boosting
weight can be represented in Terrier’s query language as follows.

qexp = qorg s1
∧w1 s2

∧w2 . . . sk
∧wk

where wk is a time-independent weight of a synonym sk, and computed using the function
TIDP(sk) defined in Equation 5.5.

We conducted an ordinary search using the standard Text Retrieval Conference (TREC)
collection Robust2004. Robust2004 is the test collection for the TREC Robust Track
containing 250 topics (topics 301-450 and topics 601-700). The Robust2004 collection
statistics are given in Table 5.8. The retrieval effectiveness of query expansion using time-
independent of synonyms is measured by Mean Average Precision (MAP), R-precision
and recall. Recall in our experiments is the fraction of relevant documents Terrier re-
trieves and all relevant documents for a test query.

Query Expansion using Time-dependent Synonyms

To perform a temporal search, we must identify temporal queries used for a search task.
We do this in an automatic way by detecting named entities that can represent temporal
queries for performing temporal search experiments. Thus, named entities of interest-
ing should have many time-dependent synonyms associated to them. To automatically
generate temporal queries is composed of two steps as follows.

Given entity-synonym relationships S = {ξ1,1, . . . , ξn,m}. First, we find temporal
query candidates by searching for any named entity ei which the number of its synonyms
is greater than a threshold ϕ. Nevertheless, in this case, most of synonyms may be time-
independent, and named entities become less appropriate to represent temporal queries.

Chapter 5. Handling Terminology Changes over Time 85

Then, we must take into account a TIDP of each synonym. The intuition is that the
lower TIDP weight a synonym has, the better time-dependent it is. So, named entities
with an average of TIDP weight less than a threshold φ probably associate with many
time-dependent synonyms. This makes them good candidate for temporal queries. In our
experiment, the threshold of the number of synonyms ϕ and a threshold of the average of
TIDP weight φ are 30 and 0.2 respectively.

Table 5.7: Examples of temporal queries and synonyms.
Temporal Query SynonymNamed Entity Time Period

American Broadcasting Company 1995-2000 Disney/ABC
Barack Obama 2005-2007 Senator Obama
Eminem 1999-2004 Slim Shady
Eminem 2000-2002 Marshall Mathers
George H. W. Bush 1988-1992 President George H.W. Bush
George H. W. Bush 2000-2003 George Bush Sr.
George W. Bush 2000-2007 President George W. Bush
George W. Bush 2002-2005 Bush 43
Hillary Rodham Clinton 2001-2007 Senator Clinton
Kmart 1987-1992 Kmart Corporation
Kmart 1987-1987 Kresge
Pope Benedict XVI 1988-2005 Cardinal Ratzinger
Ronald Reagan 1987-1989 Reagan Revolution
Ronald Reagan 1987-1989 President Reagan
Rudy Giuliani 1994-2001 Mayor Rudolph Giuliani
Tony Blair 1998-2007 Prime Minister Tony Blair
Virgin Media 1999-2002 Telewest Communications

The temporal searches were conducted by human judgment using 3 users. Some ex-
amples of temporal queries are shown in Table 5.7. Each tuple contains a temporal query
(a named entity and time criteria), and its synonym with respect to time criteria. We
performed a temporal search by submitting a temporal query to the news archive search
engine [92]. We compared the results of top-k retrieved documents of each query without
synonym expansion, and those of the same query with synonym expansion. A retrieved
document can be either relevant or irrelevant with respect to temporal criteria. According
to the lacking of a standard test set (with all relevant judgments available), we could not
evaluate temporal search using recall as we intended. Thus, performance measures are
the precision at 10, 20 and 30 documents, or P@10, P@20, and P@30 respectively.

5.7.2 Results
First, we will show the results of extracting synonyms, and improving time of synonyms.
Then, the results of query expansion using time-independent synonyms and the results of

86 Section 5.7. Evaluation

Table 5.8: Robust2004 collection statistics.
Document Collection #Docs Size (GB) Time Period

Financial Times 210,158 0.56 1991-1994
Federal Register 55,630 0.40 1994
FBIS 130,471 0.47 1996
Los Angeles Times 131,896 0.48 1989-1990

All 528,155 1.9 1989-1994, 1996

query expansion using time-dependent synonyms will be presented respectively.

Extracting and Improving Time of Synonyms

Different named entity recognition methods is described in Table 5.9. Note that, filter-
ing criteria for synonyms of BPF-NERW are including: 1) the number of time intervals
is less than 6 months, and 2) the average frequency (the sum of frequencies over all in-
tervals divided by the number of intervals) is less than 2. The filtering aims to remove
noise synonyms. For BPC-NERW, uninteresting categories are those none of “people”,
“organization” or “company”.

Table 5.9: Different named entity recognition methods.
NER Method Description

BP-NERW Bunescu and Paşca’s named entity recognition of Wikipedia (cf. Section 5.5.1)
BPF-NERW BP-NERW with filtering criteria for synonyms
BPC-NERW BP-NERW filtered out named entities in uninteresting categories
BPCF-NERW BPC-NERW with filtering criteria for synonyms

The statistics obtained from extracting synonyms from Wikipedia are in Table 5.10.

Table 5.10: Statistics of entity-synonym relationships extracted from Wikipedia.
NER Method #NE #NE-Syn. Max. Syn. per NE Avg. Syn. per NE

BP-NERW 2,574,319 7,820,412 631 3.0
BPF-NERW 2,574,319 3,199,115 162 1.2
BPC-NERW 473,829 1,503,142 564 3.2
BPCF-NERW 473,829 488,383 148 1.0

In Table 5.10, Columns 2-3 are the total number of named entities recognized, and
the total number of entity-synonym relationships extracted from Wikipedia, respectively.
Column 4 is the maximum number of synonyms per named entity. Column 5 is the
average number of synonyms per named entity.

Chapter 5. Handling Terminology Changes over Time 87

The results from improving time of synonyms using the NYT corpus are in Table 5.11.
Note that, only entity-synonym relationships without noise synonyms are interesting, i.e.,
recognized by the methods BPF-NERW and BPCF-NERW. In Table 5.11, Column 2 is
the number of entity-synonym relationships that can be identified and assigned time from
the NYT corpus using the method in Section 5.5.2. The percentage of the number of
entity-synonym relationships identified and assigned time is shown in Column 3.

In order to evaluate the accuracy of the method for improving time of entity-synonym
relationships, we randomly selected 500 entity-synonym relationships and manually as-
sessed the accuracy of time periods assigned to those entity-synonym relationships. The
accuracy of the method for improving time of entity-synonym relationships is shown in
Column 4. The accuracy of the method for improving time of entity-synonym relation-
ships in a case of BPCF-NERW is better than that of BPF-NERW because named entities
recognized by BPF-NERW is too generic, and it is rare to gain high frequencies in the
NYT corpus.

Table 5.11: Accuracy of improving time using the NYT corpus.
NER Method #NE-Syn. Disambiguated Accuracy (%)

BPF-NERW 393,491 (12.3%) 51
BPCF-NERW 73,257 (15.0%) 73

Query Expansion using Time-independent Synonyms

We evaluate our proposed query expansion by comparing different methods described in
Table 5.12. Note that, Pseudo relevance feedback was performed by selecting 40 terms
from top-10 retrieved documents, and those expansion terms were weighted by DFR term
weighting model, i.e., Bose-Einstein 1.

Table 5.12: Different query expansion methods for comparison.
Method Description

PM (Baseline1) the probabilistic model without query expansion
RQ (Baseline2) query expanding by re-weighting the original query
PRF (Baseline3) query expanding by pseudo relevance feedback (Rocchio algorithm)
SQE (Approach1) add the top-k synonyms to an original query before search
SQE-PRF (Approach2) add the top-k synonyms to an original query and search with PRF

SWQE-PRF (Approach3) add the top-k synonyms to an original query plus their TIDP
scores as boosting weight, and search with PRF

Test queries were selected from the Robust2004 test set using named entities in a query
described in Section 5.6.1. Note the difference between Bunescu and Paşca’s named
entity recognition for Wikipedia page (BP-NERW), and named entity recognition in a
query (NERQ). The first method recognizes whether a Wikipedia document is a named

88 Section 5.7. Evaluation

entity or not, and it needs to analyze the content of the Wikipedia document. For the
second method, we have only a set of short queries (without a document) and we need to
identify named entities in those queries. Recall that there are two methods for recognizing
named entities in queries described in Section 5.6.1: 1) exactly matched Wikipedia page
(MW-NERQ), and 2) exactly matched Wikipedia page and top-k related Wikipedia pages
(MRW-NERQ). We used k = 2 in our experiments because k greater than 2 can introduce
noise to the NERQ process.

The number of queries from the Robust2004 test set recognized using two methods
are shown in Table 5.13. There are total 250 queries from Robust2004. MW-NERQ can
recognize 42 named entity queries while MRW-NERQ can recognize 149 named entity
queries. Note that, 42 and 149 queries are the number of queries found as Wikipedia
article, and recognized as named entities. For example, there are actually 58 queries from
Robust2004 found as Wikipedia article, but only 42 are named entity queries.

Table 5.13: Number of queries using two different NER.
Type MW-NERQ MRW-NERQ

Named entity 42 149
Not named entity 208 101

Total 250 250

Named-entity queries recognized using two NER methods are shown in Table 5.14.
Each row represents different retrieval results of each retrieval method, and two main col-
umn represents two different methods for NERQ. Different retrieval results are composed
of Mean Average Precision (MAP), R-precision and recall. As seen in Table 5.14, our
proposed query expansion methods SQE-PRF and SWQE-PRF performs better than the
baselines PM, RQ and PRF in both MAP and recall for MW-NERQ. However, there is
only SWQE-PRF outperforming the baselines in R-precision. Also note that, SQE-PRF
has better recall than SWQE-PRF, while the opposite seems to hold for precision. In the
case of MRW-NERQ, our proposed query expansion methods have really worse perfor-
mance than in the case of MW-NERQ due to the accuracy of the recognition method.

Query Expansion using Time-dependent Synonyms

The baseline of our experiments is to search using a temporal query (TQ), i.e., a keyword
wq and time tq. Our propose method is to expand an original query with synonyms with
respect to time tq and search (TSQ). Experimental results of P@10, P@20 and P@30 of
20 of temporal query topics are shown in Table 5.15. The results show that our query
expansion using time-dependent synonyms TSQ performed significantly better than tem-
poral searches without expansion TQ. Our observation is that TQ retrieved zero to a few
relevant documents (less than 10) for most of temporal queries, while TSQ could retrieve
more relevant documents as a result of expanding temporal queries with time-dependent
synonyms.

Chapter 5. Handling Terminology Changes over Time 89

Table 5.14: Performance comparisons using MAP, R-precision, and recall for named en-
tity queries, * indicates statistically improvement over the baselines using t-test with sig-
nificant at p < 0.05.

Method MW-NERQ MRW-NERQ
MAP R-precision Recall MAP R-precision Recall

PM 0.2889 0.3309 0.6185 0.2455 0.2904 0.5629
RQ 0.2951 0.3266 0.6294 0.2531 0.2912 0.5749
PRF 0.3469 0.3711 0.6944 0.3002 0.3227 0.6761
SQE 0.3046 0.3360 0.6574 0.2123 0.2499 0.5385
SWQE 0.3054 0.3399 0.6475 0.2399 0.2820 0.5735
SQE-PRF 0.3608* 0.3652 0.7405* 0.2507 0.2665 0.5932
SWQE-PRF 0.3653* 0.3861* 0.7388* 0.2885 0.3080 0.6504

Table 5.15: Performance comparisons using P@10, P@20 and P@30 for temporal queries
* indicates statistically improvement over the baseline using t-test with significant at p <
0.05.

Method P@10 P@20 P@30

TQ 0.1000 0.0500 0.0333
TSQ 0.5200* 0.3800* 0.2800*

5.8 News Archives Search System Prototype

In this section, we present a system prototype for search news archives that takes into
account terminology changes over time. Our system consists of two parts: 1) the offline
module for extracting time-based synonyms by using our proposed approach, as depicted
in Figure 5.3, and 2) the online module for searching news archive as illustrated in Fig-
ure 5.4. With a web-based interface, the system can take as input a named entity query.
It automatically determines time-based synonyms for a given named entity, and ranks the
synonyms by their time-based scores. Then, a user can expand the named entity with the
synonyms in order to improve the retrieval effectiveness.

Consider an example of search as also illustrated in Figure 5.4. A student studying the
history of the Roman Catholic Church wants to know about the Pope Benedict XVI during
the years before he became the Pope (i.e. before 2005). The student searches using the
query Pope Benedict XVI and the publication dates 1987/01 and 2005/04. The system
retrieves documents for the query Pope Benedict XVI, and also determines synonyms
for the query with respect to time criteria. The student then selects the synonyms “Car-
dinal Joseph Ratzinger” to expand the query. The new query becomes Pope Benedict
XVI OR Cardinal Joseph Ratzinger. He performs search again, and the system re-
trieves documents which are relevant to both “Pope Benedict XVI” and “Cardinal Joseph
Ratzinger”.

90 Section 5.8. News Archives Search System Prototype

Figure 5.3: System architecture of the module for extracting time-based synonyms.

Figure 5.4: User interface of the news archives search system prototype.

Chapter 5. Handling Terminology Changes over Time 91

5.9 Conclusions
In this chapter, we have described how to use Wikipedia to discover time-dependent and
time-independent synonyms. These classified synonyms can be employed in a number of
application areas, and in this chapter we have described how to perform query expansion
using the time-based synonyms. The usefulness of this approach has been demonstrated
through an extensive evaluation, which have showed significant increase in retrieval ef-
fectiveness. Finally, we presented a system prototype for searching news archives taking
into account terminology changes over time.

92 Section 5.9. Conclusions

Chapter 6

Time-based Query Performance
Predictors

Query performance prediction is aimed at predicting the retrieval effectiveness that a
query will achieve with respect to a particular ranking model. In this chapter, we study
query performance prediction for temporal queries when the time dimension is explicitly
modeled into ranking. This chapter addresses the research question how to predict the
retrieval effectiveness of temporal queries?

6.1 Motivation

Retrieval effectiveness can be increased by employing pseudo-relevance feedback (PRF),
which can be done in two steps. First, the initial search is performed for a given query,
where a set of top-k retrieved documents are assumed to be relevant. Second, terms are
extracted from those top-k documents and the query is automatically expanded with ex-
tracted terms for performing the second search that delivers the final results. For temporal
search, time-based pseudo-relevance feedback (T-PRF) proposed in Chapter 4 can be em-
ployed, where the time of initial top-k retrieved documents are assumed to be relevant
and the query is automatically expanded with the relevant time before the second search.
However, the performance of using PRF and T-PRF depends on the quality of the initial
results: with less relevant documents expanding the query can lead to query drift and pos-
sibly lower retrieval effectiveness. In that case, the search system should instead help the
user to manually reformulate the query by performing query suggestion of terms and/or
time relevant to the query, for example, giving a list of all volcanic mountains and time
periods of major eruptions in Iceland for the query given above.

In this chapter, we aim at improving retrieval effectiveness for temporal search by
studying temporal query performance prediction, i.e., predicting the retrieval effective-
ness that temporal queries will achieve with respect to a particular ranking model in
advance of, or during the retrieval stage in order that particular actions can be taken to
improve the overall performance. In other words, query performance prediction can be

93

94 Section 6.2. Related Work

useful in order to choose between alternative query enhancement techniques described
above, such as, query expansion and query suggestion. To the best of our knowledge,
query performance prediction for temporal search has never been done before.

Contributions
The main contributions of this chapter are:

• We perform the first study and analysis of performance prediction methods for tem-
poral queries.

• We propose different time-based predictors and techniques for improving query
performance prediction by combining multiple predictors.

Organization
The organization of the rest of the chapter is as follows. In Section 6.2, we give an
overview of related work. In Section 6.3, we first outline models for time, queries and
documents. Then, we explain a temporal ranking method and define the problem of tem-
poral query performance prediction. In Section 6.4, we present existing predictors pro-
posed in previous work. In Section 6.5, we propose different time-based predictors and
explain methods for combining different predictors. In Section 6.6, we describe how to
combine different prediction in order to improve predicting performance using two meth-
ods: linear regression and neural networks. In Section 6.7, we evaluate different single
predictors and the combined methods. Then, we discuss the results and conclude our
findings. Finally, in Section 6.8, we summarize our work in this chapter.

6.2 Related Work
The problem of query performance prediction has recently gained a lot of attention [25,
31, 44, 42, 45, 46, 47, 108, 123, 143, 144]. Different approaches to predicting query
performance can be categorized according to two aspects [44]: 1) time of predicting
(pre/post-retrieval) and 2) an objective of task (difficulty, query rank, effectiveness). Pre-
retrieval based approaches predict query performance independently from a ranking method
and the ranked list of results. Typically, pre-retrieval based methods are preferred to
post-retrieval based methods because they are based solely on query terms, the collection
statistics and possibly external sources, e.g., WordNet or Wikipedia. On the contrary,
post-retrieval based approaches are dependent on the ranked list of results. Pre-retrieval
predictors can be classified into four different categories based on the predictor taxonomy
defined by Hauff et al. [42]: 1) specificity, 2) ambiguity, 3) ranking sensitivity, and 4) term
relatedness.

The first group of pre-retrieval predictors estimates the effectiveness of a query by
measuring the specificity of query terms and assumes that the more specific a query, the
better it will perform. In order to determine the specificity, different heuristics are pro-
posed, for example, the averaged length of a query AvQL [89], the averaged inverse docu-
ment frequency AvIDF [25] and the averaged inverse collection term frequency AvICTF [46].

Chapter 6. Time-based Query Performance Predictors 95

The summed collection query similarity SumSCQ [143] employs both term frequencies
and inverse document frequencies. In addition, the simplified (pre-retrieval) version of
Clarity Score [46] (denoted SCS). SCS measures the maximum likelihood of query terms
to determine the specificity. Note that, the Clarity Score is a post-retrieval method and
originally proposed in [25].

An ambiguity-based predictor is for example a set coherence score [47] measuring
the ambiguity of a query by calculating the similarity between all documents that contain
the query term. Unfortunately, this predictor is computationally expensive although it
is suggested in [47] that a subset of documents used for computing can be randomly
selected. Although pre-retrieval predictors do not perform actual retrieval, we can still
predict query performance by examining term weights of queries (e.g. tf-idf) that will be
used for ranking documents. This will help in estimating how easy/hard it is for a retrieval
system to rank documents containing query terms. An example of ranking-sensitivity
based methods is the sum of query weight deviation SumVAR [143].

The predictors presented previously ignore term relatedness among query terms. Con-
sider the queries wright brothers and right brothers, we can expect that the first one is
the easiest query because wright and brothers have a stronger relationship than right and
brothers. To measure the relationship between two terms, pointwise mutual information
(PMI) can be computed [42]. PMI measures the relationship by observing co-occurrence
statistics of terms in a document collection. Two PMI-based predictors are including the
averaged PMI value of all query term pairs AvPMI [42] and the maximum PMI value of
all query term pairs MaxPMI [42]. We will refer to the predictors presented above as
keyword-based predictors.

A number of ranking models exploiting temporal information have been proposed for
example [10, 31]. In [31], Diaz and Jones measure the distribution of creation dates of
retrieved documents to create the temporal profile of a query, and use the profile to predict
precision. Note that, we have temporal information needs explicitly provided, so we do
not need to estimate a temporal profile. Berberich et al. [10] integrated temporal expres-
sions into query-likelihood language modeling, which considers uncertainty inherent to
temporal expressions in a query and documents, i.e., temporal expressions can refer to the
same time interval even they are not exactly equal.

6.3 Problem Definition
We describe the models for queries, documents and time. Then, we present the problem
of temporal query performance prediction.

6.3.1 Models for Documents and Queries
We define a temporal query q as composed of two parts: keywords qtext and a temporal
expression qtime. A document d consists of a textual part dtext (an unordered list of terms)
and a temporal part dtime composed of the publication date and a set of temporal expression
{t1, . . . tk}. The publication date of d can be obtained from the function PubTime(d).

96 Section 6.4. Pre-retrieval Predictors

Both the publication date and temporal expressions will be represented based on the time
model of Berberich et al. [10] presented in Section 2.2.2.

6.3.2 Temporal Query Performance Prediction

Let q be a temporal query, D be a document collection, T be a set of all temporal expres-
sions in D. ND is the total number of documents in D and NT is the number of all distinct
temporal expressions in T . Temporal query performance prediction is aimed at predicting
the retrieval effectiveness for q. Because q is strongly time-dependent, both the statistics
of the document collection D and the set of temporal expressions T must be taken into
account. Temporal query performance prediction is defined as f(q,D, T) → [0, 1], where
f is a prediction function (so-called a predictor) giving a predicted score that can indicate
the effectiveness of q. We are only interested in pre-retrieval predictors because they pre-
dict query performance independently from a ranking method as opposed to post-retrieval
predictors.

Ultimately, we aim at finding f that can best predict the effectiveness of q, i.e., pre-
dicted scores are highly correlated with actual effectiveness scores. In general, f can be
modeled using simple linear regression, which models the relationship between the effec-
tiveness y with a single predictor variable p. Given N queries, simple linear regression fits
a straight line through the set of N points of effectiveness scores versus predicted scores.
Such that, the sum of squared residuals of the model (or vertical distances between the
points of the data set and the fitted line) is as small as possible.

6.4 Pre-retrieval Predictors

In the following, we will describe existing keyword-based predictors proposed in previous
work. The first predictor is the averaged number of characters in a query AvQL [89]. A
key idea is that the higher the averaged length of a query, the more specific it is. For
instance, World Cup soccer South Africa is more specific than World Cup.

Because of the simplicity of AvQL, they do not take into account the term statistics in
a document collection, which can yield inaccurate prediction. The term statistics that is
commonly used for measuring the specificity of query is the document frequency df and
term frequency tf. The document-frequency based predictor AvIDF [25] determines the
specificity of qtext by measuring the inverse document frequency idf for each query term
and then calculating the averaged value for all query terms.

AvIDF =
1

|qtext|
∑
w∈qtext

log
ND

df(w)
(6.1)

where |qtext| is the number of query terms constituting qtext. ND is the total number of
documents in the collection. df(w) is a document frequency of a query term w. In addi-
tion, the maximum value MaxIDF among all terms will also be used as a predictor. The

Chapter 6. Time-based Query Performance Predictors 97

term-frequency based predictor measures the averaged inverse collection term frequency
or AvICTF [46], which is computed as:

AvICTF =
1

|qtext|
∑
w∈qtext

log
NW

tf(w)
(6.2)

where NW is the total number of term occurrences in the collection. tf(w) is a term
frequency of a query term w in the collection. While the predictors mentioned above use
either term frequencies or document frequencies, the summed collection query similarity
SumSCQ [143] exploits both term frequencies and document frequencies by combing
them together defined as follows:

SumSCQ =
∑
w∈qtext

(1 + ln tf(w))× ln(1 +
ND

df(w)
) (6.3)

Intuitively, SumSCQ is aimed at capturing the similarity between a query and the
collection by summing over all query terms. The Clarity Score is a post-retrieval method
and originally proposed in [25], and the simplified (pre-retrieval) version of Clarity Score
proposed in [46] can be computed as:

SCS =
∑
w∈qtext

P (w|qtext)× log
P (w|qtext)
P (w)

≈
∑
w∈qtext

1

|qtext|
× log

1

|qtext|
· NW

tf(w)

(6.4)

where P (w|qtext) is the maximum likelihood of a query term w in qtext. Next, the sum of
query weight deviation SumVAR is originally proposed in [143]. A term weight can be
any weighting function and we use the Lucene ranking function in this chapter. SumVAR
is given as:

SumVAR =
∑
w∈qtext

√
1

|Dw|
×

∑
d∈Dw

(tfidf(w, d)− tfidf(w))2 (6.5)

where Dw is a set of documents containing a query term w, and the size of Dw, or |Dw|,
is equal to df(w). Besides, the averaged value of the equation above is also used as a
predictor:

AvVAR =
1

|qtext|
× SumVAR (6.6)

While the predictors described previously ignore the relationship among query terms,
AvPMI is the averaged value of pointwise mutual information (PMI), and it represents the
relationship among all terms in a query. PMI can be computed using the statistics of term
co-occurrences as follows:

PMI(wi, wj) = log
P (wi, wi)

P (wi) · P (wj)
(6.7)

98 Section 6.5. Time-based Predictors

where P (wi, wi) is the joint probability of wi and wj or the probability the two terms
co-occur in the same document. P (w) is a probability of a query term w occurring in the
collection. The higher PMI score, the more significant the co-occurrence of two terms is
than by chance. Note that, PMI will be computed for every query term pair (wi, wj), and
then averaged in order to obtain AvPMI.

A query can have high effectiveness even if the averaged PMI is low, but there is at
least one pair of query terms with a high PMI. Thus, we will also use the maximum PMI
scoresMaxPMI of all query term pairs as a predictor. The limitation of this method is that
PMI cannot be determined for a single term query. Thus, a single term will be assigned
the score 0.

6.5 Time-based Predictors
In this section, we propose 10 time-based pre-retrieval predictors: T-AvQL, T-AvIDF,
T-MaxIDF, T-AvICTF, T-SumSCQ, T-SCS, T-SumVAR, T-AvVAR, T-AvPMI and T-MaxPMI.
The first time-based predictor is the averaged time span of a query, or T-AvQL. Intuitively,
the shorter the time span, the better a query will perform. T-AvQL is the averaged time
span of all temporal expressions in qtime and computed as follows:

T-AvQL =
1

|qtime|
∑
t∈qtime

(tbl − tel) + (tbu − teu)

2
(6.8)

where |qtime| is the number of temporal expressions in qtime. For example, the query mac
os x [24 march 2001] is more specific than michael jackson [1982]. As shown in
Figure 6.1, the first query has smaller T-AvQL score and hence it performs better than the
latter query.

In addition to the averaged time span of a query, the specificity of a query can be
measured by the inverse document frequency or idf of a temporal expression t which
indicating the general importance of t with respect to the document collection D. A time-
based predictor employing idf denoted as T-AvIDF is the averaged INQUERY idf value
over all temporal expressions in qtime and computed as follows:

T-AvIDF =
1

|qtime|
∑
t∈qtime

log(ND + 0.5)/df(t)
log(ND + 1)

(6.9)

where ND is the total number of documents in D and df(t) is the number of documents
containing a temporal expression t. The higher T-AvIDF score, the better a query should
perform as illustrated in Figure 6.2.

Besides, the maximum value T-MaxIDF among all temporal expressions in qtime is
also considered. Alternatively, we can determine the specificity of t by measuring the
averaged inverse collection time frequency denoted T-AvICTF that is computed as:

T-AvICTF =
1

|qtime|
∑
t∈qtime

log
NT

tf(t)
(6.10)

Chapter 6. Time-based Query Performance Predictors 99

 0

 0.5

 1

T-AvQL P5 P10 MAP

S
co

re

michael jackson [1982]
mac os x [24 march 2001]

Figure 6.1: Predicted score T-AvQL and the retrieval effectiveness (P5, P10, MAP) of the
query: mac os x [24 march 2001] vs. michael jackson [1982].

 0

 0.5

 1

T-AvIDF P5 P10 MAP

pink floyd [march 1973]
roentgen [1895]

Figure 6.2: Predicted score T-AvIDF and the retrieval effectiveness (P5, P10, MAP) of the
query: roentgen [1895] vs. pink floyd [march 1973].

 0

 0.5

 1

T-AvICTF P5 P10 MAP

george bush [18 january 2001]
voyager [5 september 1977]

Figure 6.3: Predicted score T-AvICTF and the retrieval effectiveness (P5, P10, MAP) of
the query: voyager [5 september 1977] vs. george bush [18 january 2001].

100 Section 6.5. Time-based Predictors

-0.5

 0

 0.5

 1

T-AvPMI P5 P10 MAP

siemens [19th century]
monica lewinsky [1990s]

Figure 6.4: Predicted score T-AvPMI and the retrieval effectiveness (P5, P10, MAP) of
the query: monica lewinsky [1990s] vs. siemens [19th century].

where tf (t) is the total number of occurrences of t in T . Basically, T-AvICTF is similar to
T-AvIDF, but tf is used instead of df. As depicted in Figure 6.3, a query with the higher
score of T-AvICTF gains the better effectiveness.

Similar to SumSCQ [143], we combine both the time frequency and the inverse docu-
ment frequency denoted T-SumSCQ, which results in the following:

T-SumSCQ =
∑
t∈qtime

(1 + ln tf(t))× ln(1 +
ND

df(t)
) (6.11)

In [25], query clarity is defined as the speciality/ambiguity of a query, and the clarity
score is proposed to measure the coherence of the language usage in documents, whose
models are likely to generate the query. Nevertheless, the computation of the clarity score
time-consuming because it depends on the ranked list of results. Thus, the simplified
version of Clarity Score is proposed in [46], where query clarity is only computed with
respect to the query itself without the actual retrieval. We incorporate time into the sim-
plified Clarity Score, which is denoted as T-SCS and computed as follows:

T-SCS =
∑
t∈qtime

P (t|qtime)× log
P (t|qtime)
P (t)

≈
∑
t∈qtime

1

|qtime|
× log

1

|qtime|
· NT

tf(t)

(6.12)

Notice that, when qtime is provided with only one temporal expression, T-SCS will be
actually equivalent to T-AvICTF and temporal Kullback-Leibler divergence (temporalKL)
proposed by Jones and Diaz [53]. Given a query with only one temporal expression

Chapter 6. Time-based Query Performance Predictors 101

provided, temporalKL can be derived as follows:

temporalKL =
∑
t∈T

P (t|qtime)× log
P (t|qtime)
P (t|T)

=
∑
t �=qtime

P (t|qtime)× log
P (t|qtime)
P (t|T) +

∑
t=qtime

P (t|qtime)× log
P (t|qtime)
P (t|T)

= 0.0 + 1.0× log
1.0

P (t|T)

= log
NT

tf(t)
(6.13)

P (t|qtime)
{
0 if t �= qtime,

1 if t = qtime.
(6.14)

The next time-based predictor is T-SumVAR, which is similar to the sum of query
weight deviation [143] where T-SumVAR estimates how difficult it is for the retrieval
model to rank documents containing query terms by examining temporal weights instead
of term weights that can be performed using any temporal similarity function. We use
TSU (cf. Chapter 4) to measure temporal weights. Finally, T-SumVARwhen incorporating
temporal weights can be computed as follows:

T-SumVAR =
∑
t∈qtime

√
1

|Dt|
×

∑
d∈Dt

(TSU(t,PubTime(d))− TSU(t))2 (6.15)

where Dt are documents containing t and |Dt| is the size of Dt, or df(t). The averaged
value T-AvVAR of the sum of query temporal weight deviation is also considered.

While the time-based predictors described previously ignore the relationship between
query terms and time. Consider monica lewinsky [1990s] and siemens [19th century]
in Figure 6.4, the first query should perform better than the latter query because the term
monica lewinsky and the temporal expression 1990s co-occur in a collection more often
than by chance, while siemens and the temporal expression 19th century rarely occur
together. To determine the relationship, the pointwise mutual information (PMI) value
between every query term w ∈ qtext and time t ∈ qtime can be computed as done in [42].
T-AvPMI is the averaged value of the PMI score of a temporal expression and all query
terms, which is computed as:

T-AvPMI =
1

|qtime|
∑
t∈qtime

∑
w∈qtext

log
P (t, w)

P (t) · P (w)
(6.16)

The maximum PMI denoted T-MaxPMI is also considered in a case that the averaged PMI
value is low, but at least one pair of query term and time has a high PMI score.

102 Section 6.6. Combination of Predictors

6.6 Combination of Predictors
Using a single predictor alone might limit the predicting performance. Thus, the combi-
nation of multiple predictors can be performed as described by Jones and Diaz [53] using
two different models:

1. linear regression

2. neural networks

Linear regression. A linear regression model [41] assumes that the regression func-
tion E(Y |X) is linear in the input predictors X1, . . . , Xp. Given a vector of input predic-
tors:

XT = (X1, . . . , Xp) (6.17)

An output value Y (i.e., the retrieval effectiveness) will be predicted. The linear re-
gression model is defined as:

f(X) = β0 +

p∑
j=1

Xjβj (6.18)

where the βj’s are unknown parameters or coefficients. This model assumed linear
relationships among predictors and aimed at predicting linear changes in the retrieval
effectiveness.

A linear regression model and its parameters can be estimated by using a set of training
data {(x1, y1), . . . , (xN , yN)} of N sampled queries and each xi = (xi1, xi2, . . . , xip)

T

is a vector of feature scores of the ith predictor. An approach to estimating the linear
regression model is least squares that the coefficients β = (β0, β1, . . . , βp)

T is chosen to
minimize the residual sum of squares (RSS), or the sum of squared errors of prediction
given as:

RSS(β) =
N∑
i=1

(yi − f(xi))
2 (6.19)

Intuitively, least squares find the best linear fit to the training data.
Neural networks. It is possible that the underlying relationships among multiple

predictors are non-linear. In this case, multiple predictors are combined using neural
networks, which model non-linear relationships from sub-combinations of predictors rep-
resented using hidden layers. A neural network is a two-stage regression or classification
model [41]. For regression, there is only one output for the model, while for classifica-
tion, there can be multiple output units (i.e. different classes). In our case, neural networks
are applied to regression. The important units in the middle of the network (see Figure
11.2 in [41]) are the features Zm, called hidden units. The values of Zm are not directly
observed, but they can be derived from transforming the original input predictors X .

Chapter 6. Time-based Query Performance Predictors 103

Derived features Zm are created from linear combinations of the input predictors X ,
and then a target output Y , i.e., the retrieval effectiveness, is modeled as a function of
linear combinations of Zm as follows.

Zm = σ(α0m + αT
mX),m = 1, . . . ,M

Y = β0 + βTZ,

f(X) = g(Y)

(6.20)

Z = (Z1, . . . , Zm). σ(v) is the activation function that is usually chosen to be the sigmoid
σ(v) = 1/(1 + e−v) and sometimes Gaussian radial basic functions [41]. g(Y) is the
transformation function giving the final output Y . For regression, typically the identity
function g(Y) = Y is selected.

6.7 Evaluation
In this section, we evaluate different single predictors and the combined methods. We
first will describe the setting for evaluation and then discuss the results of evaluation.

6.7.1 Setting
Document collection. We used the New York Times Annotated Corpus as a temporal
document collection. Temporal expressions were extracted by annotating documents with
TimeML using the TARSQI Toolkit [119]. To index documents, the Apache Lucene [5]
search engine version 2.9.3 was used.

Temporal queries. We used the same dataset of queries and relevance assessments as
the work by Berberich et al [10]. The set contains 40 temporal queries obtained using the
Amazon Mechanical Turk. Queries were created with 5 different temporal granularities:
day, month, year, decade and century. Due to the small number of queries for each gran-
ularity, we divided queries into 2 main categories based on their temporal granularities.
The queries with day, month or year were grouped into the category “short period” de-
noted SP, and queries with decade or century as “long period” queries denoted LP. Note
that, year was considered a short period because we found that its predicted scores were
more correlated with (day, month) than (decade, century).

Retrieval model. Our goal of query prediction methods is to predict the retrieval
effectiveness of a query, i.e. mean average precision (MAP) computed with respect to
a particular temporal ranking model. Temporal ranking was performed using two re-
trieval modes as defined by Berberich et al [10]: 1) inclusive and 2) exclusive. For
inclusive, both query terms and a temporal expression comprise the keyword part of a
query qtext. For exclusive, only query terms constitutes the keyword part of a query qtext,
and a temporal expression is excluded from qtext. We denote a retrieval mode as r-mode.
Any temporal ranking method can be employed to retrieve documents. However, in this
chapter, documents are retrieved and ranked using the method TSU (cf. Chapter 4) with

104 Section 6.7. Evaluation

r-mode=inclusive only. Similarly, the predicted scores were computed in two modes:
inclusive and exclusive. We denote a mode of prediction as p-mode.

Parameter setting. We represented the textual similarity in Eq. 4.1 using the Lucene
tf-idf similarity function with default parameters. The parameters used for the temporal
ranking method TSU were: DecayRate = 0.5, λ = 0.5, and μ = 6 months. We used the
mixture parameter α = 0.6, which gave the best results. Most of the predictors explained
in Section 6.5 were parameter-free, except the sum of query temporal weight deviation
T-SumVAR that employs the temporal ranking TSU. The Weka implementation [131] was
used for modeling simple linear regression, linear regression and neural networks, and we
used the recommended values [53] for the parameters. For linear regression, the selection
method was M5 and the ridge parameter was a default (1.0e-8). For neural networks, a
learning rate was 0.3 and a momentum rate for the back propagation algorithm was 0.2.
The network was trained using 500 training epochs. All prediction models were trained
using cross-validation of 5 folds with 10 repetitions.

Metrics. Correlation coefficient and root mean squared error (RMSE) were measured
as the evaluation of predicting performance. Correlation coefficient [131] measures the
statistical correlation between the predicted scores and the MAP scores, which ranges
from 1 for perfectly correlated results, through 0 when there is no correlation, to -1 when
the results are perfectly correlated negatively. RMSE indicates how far the predicted
scores deviate on average from the MAP scores, as done in the previous work [42, 53].
Given Ŷ be the predicted scores and Y be the MAP scores of queries:

RMSE =

√√√√1

p

p∑
i=1

(yi − ŷi)2 (6.21)

The lower the RMSE value, the better a predictor.

6.7.2 Results

The performance of single predictors are shown in Table 6.1. For each predictor, the re-
sults are reported for two prediction modes, i.e., when p-mode=inclusive and p-mode=exclusive.
For each p-mode, the results for “short period” and “long period” are displayed. The per-
formance of each predictor is statistically tested with the worst performed predictor using
paired t-test with significant at p < 0.05. Because each query in the dataset is provided
with only one temporal expression, we omit the results for some predictors. For example,
we do not show the results of T-MaxIDF because they are exactly the same as those of
T-AvIDF. Note that, a negative value of correlation coefficient does not always imply that
a predictor performs worst, but it means that the predictor is highly correlated negatively
(closer to -1) when the absolute value is sufficiently high.

The results in Table 6.1 show that the correlation coefficient of keyword-based pre-
dictors differs between two prediction modes. This is because the predicted scores of
keyword-based predictors with p-mode=inclusive are different from those with p-mode=exclusive,
while only the results of two time-based predictors (T-AvPMI and T-MaxPMI) are changed

Chapter 6. Time-based Query Performance Predictors 105

with a prediction mode. Generally, predictors perform better with p-mode=exclusive, that
is, when a temporal expression is excluded from qtext.

In addition, predicting performance varies according to time granularities. For “short
period” in both p-modes, the best performing keyword-based predictors are AvQL,MaxPMI
and AvPMI, while the best performing timed-based predictors are T-AvICTF, T-AvIDF and
T-AvPMI. For “long period”, among keyword-based predictors, SumSCQ is the best per-
forming predictor with p-mode=exclusive, whileMaxIDF is the best performing predictor
with p-mode=inclusive. In addition, T-SumSCQ outperforms all other predictors signifi-
cantly for “long period” in both modes. Generally, most of predictors perform slightly
better with p-mode=exclusive. For “short period”, the predicting performance of the
keyword-based predictor AvQL and the time-based predictor T-AvICTF is quite similar,
whereas SumSCQ and T-SumSCQ perform quite differently for “long period”.

Table 6.1 shows the predicting performance of single predictors measured in RMSE.
The results indicate that the high values of correlation coefficient do not always imply the
low values of RMSE. Similar to the results of correlation coefficient, AvQL and T-AvICTF
are among the best performing predictors for “short period”. Notice that, T-AvIDF is the
worst predictor for “long period” and its RMSE value is too high (=0.65). We performed
an error analysis and found that the predicted scores of T-AvIDF of queries in the class
“long period” are very small, which yields high difference between the predicted scores
and the actual MAP scores.

Table 6.2 shows the performance of the combined methods using linear regression†
and neural networks∓. The results of the combined predictors are statistically tested with
those of the best performing single predictors, i.e., (AvQL,T-SumSCQ) and (T-ICTF,T-
MaxPMI) as measured by correlation coefficient and RMSE respectively. In Table 6.2,
the predicting performance of the best single predictors are given in parentheses. Each
time-based predictor is combined with its corresponding keyword-based predictor. For
instance, T-AvQL† denotes the combination of T-AvQL and AvQL using linear regression.
The combination of all predictors is denoted ALL. The results of combined methods with
respect to correlation coefficient are as follows. For “short period” and p-mode=inclusive,
the methods T-AvQL† T-AvQL∓, ALL† and T-MaxPMI† outperform the best single pre-
dictor significantly. For “short period” and p-mode=exclusive, only T-AvQL∓ performs
significantly better than the best single method.

In general, for “long period’ we do not gain any improvement for the combined meth-
ods since the correlation coefficient of the best performing predictor T-SCQ is relatively
high (though it is negative). Notice that, combining T-SumSCQ with SumSCQ results in
worse correlation coefficient (=-0.37) when trained using neural network. Consider the
performance measured using RMSE. For “short period”, the combined methods T-AvQL†
and T-MaxPMI† are significantly better than AvQL. For “long period”, all combined meth-
ods do not gain better performance compared to that of T-MaxPMI. We conclude our
findings as follows.

1. Predictors perform better with p-mode=exclusive, that is, when temporal expression
are excluded from qtext.

2. Time-based single predictors are good for predicting the performance of “short pe-

106 Section 6.8. Conclusions

Table 6.1: Performance of single predictors measured using correlation coefficient and
root mean squared error (RMSE); in bold indicates statistically different from the baseline
predictor (as underlined) using t-test with significant at p < 0.05.

Predictor
Correlation coefficient RMSE

inclusive exclusive inclusive exclusive
SP LP SP LP SP LP SP LP

AvQL [89] 0.36 0.27 0.39 -0.02 0.28 0.23 0.29 0.25
AvIDF [25] -0.26 0.04 -0.20 0.12 0.30 0.24 0.29 0.24
MaxIDF [46] 0.04 -0.27 -0.16 -0.27 0.29 0.25 0.30 0.25
AvICTF [46] -0.13 0.19 -0.18 0.24 0.30 0.22 0.29 0.23
SCS [46] -0.14 0.21 -0.14 0.24 0.30 0.22 0.29 0.23

SumSCQ [143] -0.09 -0.05 0.16 -0.45 0.29 0.24 0.29 0.24
SumVAR [143] -0.20 0.07 -0.31 0.19 0.30 0.22 0.31 0.22
AvVAR [143] -0.20 0.23 -0.35 0.00 0.30 0.23 0.30 0.23
AvPMI [42] 0.29 -0.05 0.28 0.02 0.30 0.24 0.28 0.24
MaxPMI [42] 0.32 -0.06 0.35 -0.04 0.28 0.24 0.28 0.24

T-AvQL 0.19 0.05 0.19 0.05 0.28 0.24 0.28 0.24
T-AvIDF 0.27 -0.05 0.27 -0.05 0.29 0.65 0.29 0.65
T-AvICTF 0.35 0.08 0.35 0.08 0.27 0.25 0.27 0.25
T-SumSCQ -0.02 -0.59 -0.02 -0.59 0.29 0.32 0.29 0.32
T-SumVAR 0.21 -0.07 0.21 -0.07 0.28 0.24 0.28 0.24
T-AvPMI 0.15 0.23 0.28 0.20 0.30 0.22 0.27 0.23
T-MaxPMI 0.02 0.08 0.13 0.08 0.29 0.21 0.27 0.21

riod” queries.

3. Some combination methods can improve the predicting performance. However, it
is not clear if our proposed time-based predictors and the combination methods are
good for predicting the performance of “long period” queries.

6.8 Conclusions
In this chapter, we have studied the problem of predicting query performance for temporal
search. We have exploited both textual and temporal information to predict query perfor-
mance more accurately, and proposed time-based predictors as analogous to keyword-
based predictors. In order to improve the predicting performance of single predictors,
we have employed two approaches for combining multiple predictors; linear regression
and neural networks. The proposed predictors and the combination methods have been
evaluated, and the experimental results showed that our time-based predictors are among
the best performing single predictors. In addition, the combination methods significantly
improve the performance of the best single predictors.

Chapter 6. Time-based Query Performance Predictors 107

Table 6.2: Performance of combined predictors measured using correlation coefficient
and root mean squared error (RMSE); in bold indicates statistically different from the
performance of best single predictors (as provided in parentheses) using t-test with sig-
nificant at p < 0.05.

Predictor

Correlation coefficient RMSE
inclusive exclusive inclusive exclusive
SP LP SP LP SP LP SP LP
(0.36) (-0.59) (0.39) (-0.59) (0.27) (0.21) (0.27) (0.21)

T-AvQL† 0.50 -0.07 0.33 -0.10 0.26 0.25 0.28 0.24
T-AvIDF† -0.04 0.01 -0.06 0.02 0.29 0.23 0.29 0.23
T-MaxIDF† -0.10 0.01 -0.05 0.01 0.30 0.23 0.30 0.23
T-AvICTF† -0.02 -0.22 -0.02 -0.19 0.30 0.26 0.29 0.26
T-SCS† -0.02 -0.16 -0.02 -0.19 0.29 0.25 0.29 0.26

T-SumSCQ† -0.04 -0.16 -0.04 -0.19 0.29 0.25 0.29 0.32
T-SumVAR† -0.07 -0.08 -0.07 -0.08 0.29 0.23 0.29 0.23
T-AvVAR† -0.06 -0.07 -0.04 -0.07 0.30 0.23 0.29 0.23
T-AvPMI† -0.10 0.03 0.41 0.03 0.33 0.24 0.27 0.23
T-MaxPMI† 0.36 -0.05 0.30 -0.10 0.26 0.23 0.28 0.23

ALL† 0.43 -0.04 0.29 -0.11 0.34 0.32 0.33 0.26
T-AvQL∓ 0.47 0.13 0.50 -0.06 0.30 0.27 0.30 0.26
T-AvIDF∓ 0.10 -0.32 0.04 -0.26 0.41 0.29 0.34 0.34
T-MaxIDF∓ -0.02 -0.29 -0.05 -0.29 0.36 0.27 0.37 0.27
T-AvICTF∓ 0.12 -0.17 0.22 0.01 0.33 0.26 0.30 0.29
T-SCS∓ 0.13 -0.09 0.24 -0.07 0.33 0.26 0.31 0.30

T-SumSCQ∓ -0.06 -0.09 -0.11 -0.37 0.33 0.26 0.34 0.24
T-SumVAR∓ -0.09 -0.03 -0.14 0.03 0.35 0.23 0.37 0.24
T-AvVAR∓ -0.06 -0.05 -0.02 -0.10 0.34 0.23 0.35 0.24
T-AvPMI∓ 0.11 0.16 0.41 0.16 0.36 0.27 0.30 0.25
T-MaxPMI∓ 0.32 0.18 0.50 0.23 0.31 0.23 0.29 0.23

ALL∓ 0.22 -0.09 0.17 0.00 0.38 0.45 0.44 0.42

108 Section 6.8. Conclusions

Chapter 7

Time-aware Ranking Prediction

Two time dimensions commonly exploited in time-aware ranking are 1) publication
time, and 2) content time (temporal expressions mentioned in documents’ contents). As
shown in the chapter, it makes a difference in retrieval effectiveness for temporal queries
when ranking using publication time or content time. By determining whether a temporal
query is sensitive to publication time or content time, the most suitable retrieval model
can be employed. In this chapter, we address the research question: how to predict the
suitable time-aware ranking model for a temporal query?

7.1 Motivation

Several studies of real-world user query logs have shown that temporal queries comprises
a significant fraction of web search queries [87, 95, 141]. For example, Zhang et al. [141]
showed that 13.8% of queries contain explicit time and 17.1% of queries have tempo-
ral intent implicitly provided. An example of a query with time explicitly provided is
U.S. Presidential election 2008, while Germany FIFA World Cup is a query without
temporal criteria provided. However, for the latter example, a user’s temporal intent is
implicitly provided, i.e., referring to the world cup event in 2006. As has been shown in
previous work [10], incorporating the time dimension into the ranking models can signif-
icantly improve query effectiveness in the case of temporal queries.

Two time dimensions that are commonly exploited in time-aware ranking are 1) pub-
lication time, and 2) content time (temporal expressions mentioned in documents’ con-
tents). We denote a time-aware ranking model that exploits publication time as PT-Rank,
and a time-aware ranking model that exploits content time as CT-Rank. As we will show
in more detail later in this chapter, which ranking model to use has high impact on retrieval
effectiveness for temporal queries. As an example, consider the four queries in Table 7.1.
We find that the queries iraq 2001 and mac os x 24 march 2001 perform better using
PT-Rank, while the queries sound of music 1960s and michael jackson 1982 perform
best using CT-Rank. Therefore, it is important to determine whether a temporal query is
sensitive to publication time, or content time, so that we can choose the suitable ranking

109

110 Section 7.2. Related Work

Table 7.1: Retrieval effectiveness of queries with respect to PT-Rank and CT-Rank.

Query MAP

PT-Rank CT-Rank
iraq 2001 0.60 0.40
sound of music 1960s 0.11 0.29
mac os x 24 march 2001 0.79 0.36
michael jackson 1982 0.56 0.65

model that gives the best results for the query.
In this chapter, we propose an approach to predicting the suitable time-aware rank-

ing model using machine learning techniques. We learn a prediction model using three
classes of features obtained from analyzing top-k retrieved documents, i.e., an analysis of
documents’ contents, time distribution and retrieval scores.

Contributions
Our main contributions in this chapter are:

• We perform the first study on the impact on retrieval effectiveness of ranking models
using the two time dimensions for temporal queries.

• We propose an approach to predicting the suitable time-aware ranking model based
on machine learning techniques, using three classes of features.

Organization
The organization of the rest of the chapter is as follows. In Section 7.2, we give an
overview of related work. In Section 7.3, we discuss classification of queries, documents
and query models, and present the time-aware ranking models used in the subsequent parts
of the chapter. In Section 7.4, we present our proposed features used to learn a ranking
prediction model. In Section 7.5, we evaluate our approach to predicting a ranking model
by conducting extensive experiments. Finally, in Section 7.6, we conclude the chapter.

7.2 Related Work
A number of ranking models exploiting temporal information have been proposed, includ-
ing [7, 10, 33, 54, 74, 87]. In [74], Li and Croft incorporated time into language models,
called time-based language models, by assigning a document prior using an exponential
decay function of the publication time of document, i.e., the creation date. They did not
have temporal information needs explicitly provided, but they focused on recency queries.
The work by Baeza-Yates [7] proposed to extract temporal expressions from news, index
news articles together with temporal expressions, and retrieve temporal information (in
this case, future-related events) by using a probabilistic model. A document score is

Chapter 7. Time-aware Ranking Prediction 111

given by multiplying a keyword similarity and a time confidence, i.e., a probability that
the document’s events will actually happen.

In [54], Kalczynski and Chou proposed a temporal retrieval model for news archives.
In their work, temporal expressions in a query and documents were explicitly modeled
in ranking. A query is defined as a set of precise temporal information needs, i.e., the
finest time chronon, or a day. Thus, they assumed that the uncertainty applied only to
temporal references in documents, and it was represented as a fuzzy set function. Metzler
et al. [87] considered implicit temporal information needs. They proposed mining query
logs and analyze query frequencies over time in order to identify strongly time-related
queries. They presented a ranking model concerning implicit temporal needs, and the
experimental results showed the improvement of the retrieval effectiveness of temporal
queries for web search.

Berberich et al. [10] integrated temporal expressions into query-likelihood language
modeling, which considers uncertainty inherent to temporal expressions in a query and
documents. That is, temporal expressions can refer to the same time interval even they
are not exactly equal. The work by Berberich et al. required explicit temporal informa-
tion needs as a part of query. The most relevant work for us is the work by Jones and
Diaz [53]. They proposed features for classifying queries into three temporal classes, i.e.,
atemporal, temporally unambiguous (recency or historic) and temporally ambiguous (pe-
riodic). They analyzed document collections and proposed four features for classifying
queries: temporal KL-divergence, autocorrelation, statistics of the rank order and burst
model. As opposed to our work, we want to classify a temporal query based the two time
dimensions, rather than using temporal patterns as done by Jones and Diaz [53].

7.3 Preliminaries
In the following, we present a classification of queries based on the two time dimensions.
Finally, we describe the models for documents and queries, and outline the time-aware
ranking models used in this chapter.

7.3.1 Classification of Queries
A query can be categorized into two main classes: temporal and non-temporal. Temporal
queries are those that relevant documents are strongly dependent on time, e.g., World Se-
ries 2004 and NFL Draft. On the contrary, non-temporal queries are those that relevant
documents are not dependent on time, e.g., muffin recipes and Hawaiian dance. Then,
we further classify temporal queries into the two subclasses: publication-time sensitive
(denoted PT-sensitive) and content-time sensitive (denoted CT-sensitive). Our intuition
is to leverage the two most useful time dimensions for relevance ranking. PT-sensitive
queries are those sensitive to the publication time of documents, and CT-sensitive queries
are those sensitive to temporal expressions in documents’ contents.

For example, given the query Japan quake 869 AD, relevant documents are pos-
sibly documents that contains the temporal expression 869 AD, not those dated to 869

112 Section 7.3. Preliminaries

AD. When searching for a current event (breaking news, or popular topics), temporal ex-
pressions might not be necessary because the publication time of documents are highly
correlated with the event. Note that, whether to consider publication time or content time
is also dependent on the time span of a document collection. For instance, when the New
York Times Annotated Corpus [96] with the time span (1987-2007) is used, a query that
its time is not overlapped with the collection time span must be ranked with respect to
temporal expressions instead of publication time.

7.3.2 Models for Documents, Queries, and Ranking
A document d consists of a textual part dtext (an unordered list of terms) and a temporal part
dtime composed of the publication date and a set of temporal expression {t1, . . . tk}. The
publication date of d can be obtained from the function PubTime(d). Temporal expres-
sions mentioned in the contents of d can be obtained from the function ContentTime(d).
A temporal query q is composed of two parts: keywords qtext and a temporal expression
qtime.

The ranking model used for PT-Rank and CT-Rank is based on a mixture model,
which linearly combines textual similarity and temporal similarity for all ranking meth-
ods. Given a temporal query q, a document d will be ranked according to a score computed
as follows:

S(q, d) = (1− α) · S ′(qtext, dtext) + α · S ′′(qtime, dtime) (7.1)

where the mixture parameter α indicates the importance of textual similarity S ′(qtext, dtext)
and temporal similarity S ′′(qtime, dtime). Both similarity scores must be normalized, e.g.,
divided by the maximum scores, in order to the final score S(q, d). S ′(qtext, dtext) can be
measured using any of existing text-based weighting functions. S ′′(qtime, dtime) measure
temporal similarity by assuming that a temporal expression tq ∈ qtime is generated inde-
pendently from each other, and a two-step generative model was used [10]:

S ′′(qtime, dtime) =
∏

tq∈qtime

P (tq|dtime)

=
∏

tq∈qtime

(
1

|dtime|
∑

td∈dtime

P (tq|td)
) (7.2)

Linear interpolation smoothing will be applied to give the probability P (tq|td) for an
unseen query temporal expression tq in d. The probability P (tq|td) will be computed
differently for two time-aware ranking methods, i.e., CT-Rank and PT-Rank.

In this chapter, we use the LMTU ranking function [10] for computing P (tq|td) for
CT-Rank. LMTU is a time-aware language modeling approach, which considers the con-
tent time of documents and time uncertainty. For PT-Rank, we employ the TSU ranking
function (cf. Chapter 4) to compute P (tq|td). TSU is based on the publication time of
documents and it is computed using an exponential decay function to capture time uncer-
tainty.

Chapter 7. Time-aware Ranking Prediction 113

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

P
(t)

Publication Time

iraq 2001

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

15
68

16
40

17
12

17
84

18
56

19
28

20
00

P
(t)

Content Time

iraq 2001

 0

 0.02

 0.04

 0.06

 0.08

 0.1

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

P
(t)

Publication Time

queen victoria 19th century

 0

 0.02

 0.04

 0.06

 0.08

 0.1

15
68

16
40

17
12

17
84

18
56

19
28

20
00

P
(t)

Content Time

queen victoria 19th century

Figure 7.1: Distribution over two time dimensions of top-1000 documents for the queries
iraq 2001 and queen victoria 19th century.

7.4 Ranking Prediction
As mentioned earlier, it does make a difference in retrieval effectiveness when ranking
using two time dimension (as we will show through experiments in more detail). Given a
temporal query, we want to predict the right time-aware ranking model that gives the best
results for the query. We use different machine learning techniques to learn a ranking pre-
diction model. In particular, we propose three classes of features obtained from analyzing
top-k retrieved documents, i.e., an analysis of time distribution, documents’ contents, and
retrieval scores.

7.4.1 Temporal KL-divergence

Temporal KL-divergence [53] was proposed to determine temporal classes of queries,
which is measured as the difference between the distribution over time of top-k retrieved
documents of q and the document collection. We extend this method by using the con-
tent time of top-k documents for measuring temporal KL-divergence, in addition to just
considering publication time as done by Jones and Diaz [53]. As shown in Figure 7.1,
we observe a difference of the distribution of top-k retrieved documents over two time
dimensions. Thus, it is necessary to consider both time dimensions.

114 Section 7.4. Ranking Prediction

We denote to the temporal KL-divergence of the publication time as KLPT and the
temporal KL-divergence of the content time as KLCT . KLPT can be computed as:

KLPT (Dq||C, q) =
∑
t∈TP

P (t|q) · log P (t|q)
P (t|TP)

P (t|q) =
∑
d∈Dq

P (t|d) · P (q|d)∑
d′∈Dq

P (q|d′)

(7.3)

where TP is the set of all publication dates in the document collection. Note that we use
a 1-day granularity for each publication date. P (t|TP) is the probability of a publication
date t in the collection. P (t|q) is the probability of generating a publication date t given q
and Dq is top-k documents retrieved with respect to q. P (t|q) is defined using relevance
language modeling [73], that is, the top-k retrieved documents Dq are considered and
weighed according to the document’s probability of relevance, i.e, P (q|d). In other word,
P (q|d) is a retrieval score of d for a particular ranking model.

P (t|d) =
{
0 if PubTime(d) �= t,

1 if PubTime(d) = t
(7.4)

The temporal KL-divergence of the content time of top-k retrieved documents KLCT can
be computed as follows.

KLCT (Dq||C, q) =
∑
t∈TC

P (t|q) · log P (t|q)
P (t|TC)

P (t|q) =
∑
d∈Dq

P (t|d) · P (q|d)∑
d′∈Dq

P (q|d′)

(7.5)

where TC is a set of all temporal expressions in the document collection. P (t|TC) is the
probability of a temporal expression t in the collection. P (t|d) of KLCT is computed
differently from that of KLPT because a document d can contain with more than one
temporal expression. So, the probability P (t|d) of KLCT can be computed as:

P (t|d) = c(t, d)∑
t′∈d c(t

′, d)
(7.6)

where c(t, d) is the number of occurrence of temporal expression t in a document d, and∑
t′∈d c(t

′, d) is the total number of occurrence of all temporal expressions in d. For both
KLPT and KLCT , a smoothing technique [139] will be applied to P (t|q) in order to avoid
a problem of zero-probability.

7.4.2 Content Clarity
It has been suggested in [53] that temporal features alone could not achieve high accuracy
for query classification. Thus, we also employ a feature based on an analysis of the

Chapter 7. Time-aware Ranking Prediction 115

contents of top-k retrieved documents, such as, the content clarity [25]. A query’s content
clarity, which is widely used in a query performance prediction task [20]. Intuitively,
the content clarity can be used for determining the specificity of a query. Generally,
the more specific a query, the better it will perform. The content clarity is measured
by the Kullback-Leibler (KL) divergence between the distribution of terms of retrieved
documents and the background collection. More precisely, the content clarity is the KL-
divergence between the query language model and the collection language model and it
can be computed as follows:

Clarity =
∑
w∈V

P (w|q) · log P (w|q)
P (w|C)

(7.7)

where w is a term in a vocabulary V , i.e., the set of all distinct terms in the collection,
P (w|q) is the probability of generating w given q and P (w|C) is the probability of w
in the document collection. More detail of the calculation of the content clarity can be
referred to [25]. The higher clarity score indicates that the query is less ambiguous and
the better it will perform.

7.4.3 Retrieval Scores

Features presented above are based on an analysis of time distribution, and contents of
top-k retrieved documents. An alternative method for predicting a ranking model is to
analyze the retrieval scores of top-k retrieved documents [99]. The idea is to measure
the divergence of retrieval scores from the base ranking, e.g., a non time-aware ranking
model, is to determine the extent that a ranking model alters the scores of the initial
ranking. In this chapter, we employ the Jensen-Shannon divergence (JS) for measuring
the divergence of scores obtained from two ranking models. In particular, our features
based on the analysis of retrieval scores are composed of: 1) averaged scores of the base
ranking, 2) averaged scores of PT-Rank, 3) averaged scores of CT-Rank and 4) divergence
from the base ranking model. The base ranking model is the ranking function used in the
initial retrieval.

AVG =
1

k

k∑
d=1

S(q, di) (7.8)

The Jensen-Shannon divergence (JS) of scores obtained from two ranking models can
be computed as.

JS(Sb||Sti , q) =
1

2
· KL(Sb||Sti , q) +

1

2
· KL(Sti ||Sb, q)

=
k∑

d=1

Sb(di, q) · log
Sb(di, q)

1
2
· Sb(di, q) +

1
2
· Sti(di, q)

(7.9)

116 Section 7.5. Evaluation

where Sb(di, q) is the retrieval score of a document d when ranked using the base ranking
Sb, and Sti(di, q) is the retrieval score of a document d when ranked using a candidate
time-aware ranking Sti , i.e., PT-Rank or CT-Rank.

All of features explained above correspond to the two time-aware ranking models.
Thus, there are five different features in total for ranking model prediction, i.e., AVGbase,
AVGPT-Rank, AVGCT-Rank, JSPT-Rank and JSCT-Rank.

7.5 Evaluation
In this section, we evaluate our proposed approach by conducting two experiments. We
first evaluate the ranking prediction model as a classification task, and then we show how
the ranking prediction help improving the retrieval effectiveness. In the following, we de-
scribe the setting of experimental evaluation, as well as explain the results of experiments.

7.5.1 Setting
Document collection. We used the New York Times Annotated Corpus as a temporal
document collection. Temporal expressions were extracted by annotating documents with
TimeML using the TARSQI Toolkit [119] search engine version 2.9.3 was used. We used
40 temporal queries and relevance assessments [10] obtained using crowdsourcing.

Retrieval models. The retrieval of explicit temporal queries were performed using
two retrieval modes as defined in [10]: 1) inclusive and 2) exclusive. For inclusive, both
query terms and a temporal expression comprise the keyword part of a query qtext. For
exclusive, only query terms constitutes the keyword part of a query qtext, and a temporal
expression is excluded from qtext. For the classification experiment, queries were labeled
with two classes, i.e., PT-sensitive or CT-sensitive, by assuming the ranking model that
gives the best MAP score as a query label as shown in Fig. 7.2. Note that, we excluded
the queries that have a small difference of MAP for the two ranking models.

Parameter settings. We used the Lucene tf-idf similarity function [5] for computing
the textual similarity in Eq. 7.1. The parameters used for the TSU ranking function were:
DecayRate = 0.5, λ = 0.5, and μ = 6 months. For the LMTU ranking function, we used
the recommended value 0.75 for the smoothing parameter γ [10]. The mixture parameter
α in Eq. 7.1 were empirically determined by studying the sensitivity of α and MAP as
shown in Fig. 7.3. For inclusive mode, we selected the best performing values: α = 0.5
for PT-Rank and α = 0.6 for CT-Rank, while for exclusive mode, we used α = 0.5 for
PT-Rank and α = 0.1 for CT-Rank.

The smoothing parameter λ for temporal KL divergence was set to 0.1. The Weka im-
plementation [131] was used for training query classifiers and models for ranking predic-
tion. We experimented with several classification algorithms: decision tree (J48), Naive
Bayes (NB), neural network (NN) and SVM. We used the default values for the parame-
ters of classifiers. Both classification and retrieval experiments were trained using cross-
validation of 10 folds with 10 repetitions. A majority classifier was a baseline for the
classification experiment.

Chapter 7. Time-aware Ranking Prediction 117

 0

 0.5

 1

 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M
A

P

Query ID

CT-Rank
PT-Rank

(a) inclusive

 0

 0.5

 1

 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M
A

P

Query ID

CT-Rank
PT-Rank

(b) exclusive

Figure 7.2: Queries are labeled using the ranking model that gives the best MAP score
when retrieved using (a) inclusive mode and (a) exclusive mode.

Metrics. We reported the performance of classification using accuracy. The retrieval
experiment was reported using precision at 1, 5 and 10 (P@1, P@5, and P@10 respec-
tively), and Mean Average Precision (MAP). Note that, we computed the average per-
formance over 10 folds to measure the overall performance, for both classification and
retrieval experiments.

7.5.2 Results
Classification results. We performed query classification by using several classification
algorithms: decision tree (J48), Naive Bayes (NB), neural network (NN) and SVM. The
results of query classification shown in Table 7.2 are conducted with respect to two re-
trieval modes (exclusive and inclusive). For each retrieval mode, we varied the number of
top-k retrieved documents in order to study how a k-value affect the classification perfor-
mance. For each case, the performance of single features and a combination of different
features are shown. The baseline method for query classification is the majority classifier.
The accuracy of the baseline is 0.54 for exclusive and 0.60 for inclusive.

For exclusive, the results of using a small number of top-k documents are in gen-
eral better than a large number of top-k documents. For top-100, JSPT-Rank modeled
using SVM outperforms the baseline classifier and all other features significantly (ac-
curacy=0.72). For top-500, all single features perform worse compared to the baseline
classifier. However, the combination of features (ALL, Clarity+KLPT+KLCT, and Clar-
ity+JSPT-Rank+JSCT-Rank) shows the best performance among other methods, and improve
the baseline classifier significantly (accuracy=0.65). Unfortunately, the classification re-
sults when using k=1000 are not good compared to the baseline classifier.

For inclusive, the results are similar to those of exclusive, that is, the performance of
top-100 is the best among the other k’s values. For top-100, the best performing feature
is the combination of Clarity, JSPT-Rank and JSCT-Rank, which gains the accuracy of 0.75.
JSPT-Rank outperforms the baseline classifier significantly when modeled using J48, NN

118 Section 7.5. Evaluation

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

P

mixture α

inclusive
exclusive

(a) PT-Rank

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

P

mixture α

inclusive
exclusive

(b) CT-Rank

Figure 7.3: Sensitivity of α and MAP for PT-Rank and CT-Rank.

and SVM with the accuracy of 0.74, 0.74 and 0.68 respectively. For top-500, JSPT-Rank
performs best among others with the accuracy of 0.71. For top-100, no method performs
significantly better than the baseline classifier.

To conclude, it is obvious that using a small number of top-k documents achieves
better performance than other k’s values. An explanation can be that the larger number
of top-k documents, the more irrelevant documents are introduced into the analysis. The
performance among different feature classes shows that the retrieval-score feature, i.e.,
JSPT-Rank, performs well in most case, while other feature classes based on Clarity and time
distribution do not perform very well. Thus, our plans for future work include a method
for selecting only important documents from top-k retrieved documents, and conducting
a score analysis of CT-Rank and other temporal features.

Retrieval results. As described earlier, we aim at improving the retrieval effective-
ness by predicting the suitable ranking model. For each query, we perform retrieval
using the predicted ranking model. More precisely, the ranking prediction models are:
1) JSPT-Rank (modeled using top-100 and SVM) for retrieval in exclusive, and 2) Clar-
ity+JSPT-Rank+JSCT-Rank (modeled using top-100 and J48) for retrieval in inclusive. The
retrieval results shown in Table 7.3 are the effectiveness of different ranking models.
Rank-Prediction is the ranking model based on the ranking prediction models. MAX is
the maximum (or optimal) effectiveness that can be achieved, that is, when a prediction
model performs accurately 100%. The retrieval results are compared with the baseline
method, i.e., CT-Rank. The results show that our prediction-based ranking model (Rank-
Prediction) outperforms the baseline significantly in P@1 and MAP. However, we note
that it is difficult for Rank-Prediction to achieve the optimal effectiveness because of the
prediction accuracy as explained previously.

Chapter 7. Time-aware Ranking Prediction 119

Table 7.2: Results of classification measured using accuracy; † indicates statistically dif-
ferent from the baseline majority classifier using t-test with significant at p < 0.05.

Top-k Feature exclusive inclusive
J48 NB NN SVM J48 NB NN SVM

100

Clarity 0.53 0.34 0.44 0.51 0.59 0.45 0.57 0.60
KLPT 0.53 0.40 0.41 0.53 0.60 0.59 0.47 0.60
KLCT 0.53 0.49 0.51 0.53 0.60 0.54 0.54 0.60
AVGBase 0.40 0.55 0.61 0.53 0.63 0.58 0.61 0.60
AVGPT-Rank 0.53 0.47 0.43 0.53 0.60 0.58 0.54 0.60
AVGCT-Rank 0.48 0.50 0.64 0.53 0.60 0.50 0.49 0.60
JSPT-Rank 0.50 0.60 0.57 0.72† 0.74† 0.64 0.74† 0.68†
JSCT-Rank 0.55 0.45 0.45 0.38 0.60 0.58 0.55 0.54
Clarity+KLPT+KLCT 0.54 0.38 0.46 0.54 0.61 0.36 0.43 0.61
Clarity+JSPT-Rank+JSCT-Rank 0.50 0.38 0.46 0.42 0.75† 0.46 0.61 0.64
ALL 0.42 0.36 0.30 0.50 0.58 0.40 0.37 0.63

500

Clarity 0.51 0.36 0.44 0.53 0.60 0.40 0.59 0.60
KLPT 0.53 0.44 0.46 0.53 0.59 0.58 0.49 0.60
KLCT 0.53 0.49 0.44 0.53 0.60 0.53 0.59 0.60
AVGBase 0.53 0.53 0.49 0.53 0.56 0.59 0.62 0.60
AVGPT-Rank 0.53 0.59 0.47 0.53 0.60 0.55 0.55 0.60
AVGCT-Rank 0.53 0.50 0.48 0.53 0.59 0.50 0.49 0.60
JSPT-Rank 0.50 0.50 0.51 0.42 0.64 0.66 0.71† 0.57
JSCT-Rank 0.53 0.44 0.44 0.42 0.60 0.56 0.54 0.57
Clarity+KLPT+KLCT 0.63 0.55 0.63 0.65† 0.61 0.46 0.46 0.61
Clarity+JSPT-Rank+JSCT-Rank 0.65† 0.55 0.60 0.65† 0.61 0.46 0.43 0.61
ALL 0.64 0.59 0.47 0.65† 0.52 0.45 0.41 0.60

1000

Clarity 0.53 0.36 0.46 0.53 0.60 0.42 0.60 0.60
KLPT 0.53 0.43 0.46 0.53 0.60 0.54 0.58 0.60
KLCT 0.50 0.49 0.52 0.53 0.60 0.48 0.58 0.60
AVGBase 0.53 0.52 0.51 0.53 0.56 0.61 0.64 0.60
AVGPT-Rank 0.53 0.62 0.54 0.53 0.60 0.53 0.56 0.60
AVGCT-Rank 0.53 0.50 0.44 0.53 0.60 0.58 0.57 0.60
JSPT-Rank 0.50 0.52 0.47 0.49 0.64 0.67 0.69 0.53
JSCT-Rank 0.51 0.57 0.48 0.46 0.59 0.55 0.60 0.60
Clarity+KLPT+KLCT 0.54 0.42 0.42 0.54 0.61 0.50 0.46 0.61
Clarity+JSPT-Rank+JSCT-Rank 0.58 0.42 0.46 0.54 0.61 0.54 0.57 0.61
ALL 0.51 0.37 0.26 0.53 0.57 0.48 0.30 0.60

120 Section 7.6. Conclusions

Table 7.3: Retrieval effectiveness of different ranking methods measured using P@1,
P@5, P@10 and MAP; * indicates statistically different from CT-Rank using t-test with
significant at p < 0.05.

Method exclusive inclusive
P@1 P@5 P@10 MAP P@1 P@5 P@10 MAP

CT-Rank 0.55 0.50 0.48 0.53 0.58 0.55 0.53 0.56
PT-Rank 0.63* 0.53 0.50 0.55 0.63 0.58 0.55 0.61

Rank-Prediction 0.68* 0.53 0.50 0.59* 0.70* 0.58 0.59 0.64*
MAX 0.83* 0.61* 0.52 0.64* 0.78* 0.62* 0.59 0.67*

7.6 Conclusions
In this chapter, we studied and compared time-aware ranking models based on two time
dimensions: publication time and content time. We demonstrated that temporal queries
can benefit from different ranking models, that is, the retrieval effectiveness differs among
ranking models. According to this, we categorized queries based on two time dimen-
sions, and we proposed to predict the suitable ranking model using supervised machine
learning. In order to evaluate our approach, we conducted extensive experiments using
temporal queries and relevance judgment using crowdsourcing. The results show that our
prediction-based ranking model outperforms the baseline significantly.

It is obvious that when comparing with the optimal case there is still room for further
improvements. In future work we plan to increase the accuracy of ranking prediction by
studying additional features.

Part IV

Retrieval and Ranking Models

121

Chapter 8

Comparison of Time-aware Ranking
Methods

In general, a time-aware ranking method ranks documents that are textually and tem-
porally similar to a query and ranks retrieved documents with respect to both similarities.
Previous work has followed one of two main approaches: 1) a mixture model linearly
combining textual similarity and temporal similarity, or 2) a probabilistic model gener-
ating a query from the textual and temporal part of a document independently. In this
chapter, we address the research question: how to explicitly model the time dimension
into retrieval and ranking?, by performing an empirical study and evaluation of different
time-aware ranking methods using the same dataset.

8.1 Motivation

The previous time-aware ranking methods [10, 31, 54, 74] are based on two main ap-
proaches: 1) a mixture model linearly combining textual and temporal similarity, or 2) a
probabilistic model generating a query from the textual and temporal part of a document
independently. It is shown that time-aware ranking performs better than keyword-based
ranking, e.g., tf-idf and language modeling. To the best of our knowledge, an empirical
comparison of different time-aware ranking methods using the same dataset has never
been done before.

Contributions
Our main contributions in this chapter are as follows.

• We perform the first study and analysis of different time-aware ranking methods.

• By conducting extensive experiments, we compare the performance of different
time-aware ranking methods using the same dataset.

123

124 Section 8.2. Related Work

Organization
The organization of the rest of the chapter is as follows. In Section 8.2, we give an
overview of related work. In Section 8.3, we first outline the models for documents and
queries, and we present a mixture model of time-aware ranking. In Section 8.4, we de-
scribe different time-aware ranking methods, and we conduct extensive experiments in
order to evaluate different time-aware ranking methods in Section 8.5. Finally, in Sec-
tion 8.6, we conclude the chapter.

8.2 Related Work
In this section, we give an overview of ranking methods that incorporate temporal infor-
mation, and point out their underlying aspects including: 1) explicit or implicit temporal
information needs, 2) uncertainty-concern or uncertainty-ignore, and 3) using timestamps
or temporal expressions.

A number of ranking models exploiting temporal information have been proposed,
including [3, 7, 31, 54, 74, 87]. In [74], Li and Croft incorporated time into language
models, called time-based language models, by assigning a document prior using an ex-
ponential decay function of the publication time of document, i.e., the creation date. They
did not have temporal information needs explicitly provided, but they focused on recency
queries. The time uncertainty is captured by the exponential decay function, such that the
more recent documents obtain the higher probabilities of relevance.

In [31], Diaz and Jones measure the distribution of creation dates of retrieved docu-
ments to create the temporal profile of a query. The temporal profile was presented due to
no explicit temporal information needs. Hence, they needed to estimate the time relevant
to a query by analyzing the distribution of creation dates. Their results showed that the
temporal profile together with the contents of retrieved documents can improve averaged
precision for the query by using a set of different features for discriminating between
temporal profiles.

In [54], Kalczynski and Chou proposed a temporal retrieval model for news archives.
In their work, temporal expressions in a query and documents were explicitly modeled in
ranking. A query is defined as a set of precise temporal information needs, i.e., the finest
time chronon, or a day. Thus, they assumed that the uncertainty applied only to temporal
references in documents, and it was represented as a fuzzy set function.

The work by Baeza-Yates [7] proposed to extract temporal expressions from news,
index news articles together with temporal expressions, and retrieve temporal information
(in this case, future-related events) by using a probabilistic model. A document score is
given by multiplying a keyword similarity and a time confidence, i.e., a probability that the
document’s events will actually happen. We can view the confidence as the uncertainty of
time. Besides, this work allowed a user to explicitly specify temporal information needs,
but only on a year-level granularity.

Metzler et al. [87] considered implicit temporal information needs. They proposed
mining query logs and analyze query frequencies over time in order to identify strongly
time-related queries. They did not directly extract temporal expressions from queries and

Chapter 8. Comparison of Time-aware Ranking Methods 125

documents. In addition, they presented a ranking model concerning implicit temporal
needs, and the experimental results showed the improvement of the retrieval effectiveness
of temporal queries for web search.

In more recent work, Berberich et al. [10] integrated temporal expressions into query-
likelihood language modeling, which considers uncertainty inherent to temporal expres-
sions in a query and documents. That is, temporal expressions can refer to the same time
interval even they are not exactly equal. The work by Berberich et al. required explicit
temporal information needs as a part of query.

We will later detail different time-aware ranking methods: LMT [10], LMTU [10],
TS(cf. Chapter 4), TSU(cf. Chapter 4), and FuzzySet [54] that underline different aspects
of time and uncertainty in Section 8.4.

8.3 Models for Documents and Queries
A temporal query q is composed of keywords qtext and temporal expressions qtime. A
document d consists of the textual part dtext, i.e., a bag of words, and the temporal part
dtime composed of the publication date PubTime(d), and temporal expressions {t1, . . . , tk}
mentioned in the document’s contents ContentTime(d). Both the publication date and
temporal expressions will be represented using the time model of Berberich et al. [10]
presented in Section 2.2.2.

8.4 Time-aware Ranking Methods
We study different time-aware ranking methods proposed to measure temporal similarity
between a query and a document including: LMT [10], LMTU [10], TS (cf. Chapter 4),
TSU (cf. Chapter 4), and FuzzySet [54]. Although they are shown the good performance
in the retrieval of temporal needs, those methods have never been compared using the
same dataset and relevance judgments. In the following, we describe in detail each time-
aware ranking method. The summarization of characteristics of the time-aware ranking
methods with respect to two aspects is shown in Table 8.1.

Table 8.1: Characteristics of different time-aware ranking models.

Method Time Uncertainty
Publication Content Ignore Concern

LMT x
√ √

x
LMTU x

√
x

√

TS
√

x
√

x
TSU x

√
x

√

FuzzySet
√

x x
√

To be comparable, we apply a mixture model to linearly combine textual similarity
and temporal similarity for all ranking methods. Given a temporal query q, a document d

126 Section 8.4. Time-aware Ranking Methods

will be ranked according to a score computed as follows:

S(q, d) = (1− α) · S ′(qtext, dtext) + α · S ′′(qtime, dtime) (8.1)

where the mixture parameter α indicates the importance of textual similarity S ′(qtext, dtext)
and temporal similarity S ′′(qtime, dtime). Both similarity scores must be normalized, e.g.,
divided by the maximum scores, in order to the final score S(q, d). S ′(qtext, dtext) can be
measured using any of existing text-based weighting functions. S ′′(qtime, dtime) measure
temporal similarity by assuming that a temporal expression tq ∈ qtime is generated inde-
pendently from each other, and a two-step generative model was used [10]:

S ′′(qtime, dtime) =
∏

tq∈qtime

P (tq|dtime)

=
∏

tq∈qtime

(
1

|dtime|
∑

td∈dtime

P (tq|td)
) (8.2)

Linear interpolation smoothing will be applied to give the probability P (tq|td) for an
unseen query temporal expression tq in d. In the next section, we will explain how to
estimate P (tq|td) for different time-aware ranking methods.

The temporal ranking methods LMT and LMTU are based on a generative model ap-
proach. Similar to a query-likelihood approach, the textual and temporal part of the query
q are generated independently from the corresponding parts of the document d as:

P (q|d) = P (qtext|dtext)× P (qtime|dtime) (8.3)

The textual similarity part P (qtext|dtext) can be determined by an existing text-based query-
likelihood approach, e.g., the original Ponte and Croft model [101].

A temporal expression qtime are assumed to be generated independently from each
other. To generate each temporal expression tq in qtime from d, a two-step generative
model was used. First, a document temporal expression td is drawn at uniform random
from document temporal expressions dtime. Second, a query temporal expression tq in qtime
is generated from a temporal expression td in d.

P (qtime|dtime) =
∏

tq∈qtime

P (tq|dtime)

=
∏

tq∈qtime

(
1

|dtime|
∑

td∈dtime

P (tq|td)
) (8.4)

The probability of generating tq from td or P (tq|td) can be calculated using two differ-
ent methods: LMT and LMTU. The first method ignores the uncertainty, i.e., only temporal

Chapter 8. Comparison of Time-aware Ranking Methods 127

expressions are exactly equal will be considered. Thus, P (tq|td) under LMT can be com-
puted as:

P (tq|td)LMT =
{
0 if tq �= td,

1 if tq = td.
(8.5)

Contrary to LMT, the ranking method LMTU takes the uncertainty into account, i.e, it
assumes equal likelihood for each time interval t′q that tq can refer to. More precisely, a set
of time intervals tq =

{
t′q|t′q ∈ tq

}
that the user may have had in mind when issuing the

query are assumed equally likely. Recall that the number of time intervals in tq, denoted
|tq |, can be very huge. P (tq|td) under LMTU can be calculated as:

P (tq|td)LMTU =
1

|tq|
∑
t′q∈tq

P (t′q|td) (8.6)

P (t′q|td) =
1

|td|

{
0 if t′q /∈ td,

1 if t′q ∈ td.
(8.7)

Finally, the simplified calculation of P (tq|td) is given as follows.

P (tq|td)LMTU =
|tq ∩ td|
|tq| · |td|

(8.8)

As explained in [10], |t| can be computed efficiently for any content time or temporal
expression t in two cases as:
(1) if tbu ≤ tel then |t| can simply be computed as:

|t| = (tbu − tbl + 1) · (teu − tel + 1)

(2) if tbu > tel then |t| can be computed as:

|t| =
tbu∑

tb=tbl

(teu −max(tb, tel) + 1)

= (tel − tbl + 1) · (teu − tel + 1)

+ (tbu − tel) · (teu − tel + 1)− 0.5 · (tbu − tel) · (tbu − tel + 1)

Note that, P (tq|td) for both LMT and LMTU methods is prone to the zero-probability
problem. Thus, Jelinek-Mercer smoothing is applied, and the estimated value P̂ (tq|td)
becomes:

P̂ (tq|td) = (1− λ1) ·
1

|Ctime|
∑

td∈Ctime

P (tq|td) + λ1 ·
1

|dtime|
∑

td∈dtime

P (tq|td) (8.9)

where the smoothing parameter λ1 ∈ [0, 1], and C is the whole document collection.

128 Section 8.4. Time-aware Ranking Methods

In Chapter 4, we proposed to measure the temporal similarity using TS and TSU.
Instead of using a language modeling approach as in [10], we employed a mixture model
approach to combining the time similarity with the textual similarity. The mixture model-
based approach is given as:

S(q, d) = (1− α) · S ′(qtext, dtext) + α · S ′′(qtime, dtime) (8.10)

where α is a parameter underlining the importance of both similarity scores: textual sim-
ilarity S ′(qtext, dtext) and temporal similarity S ′(qtime, dtime). The textual similarity can be
implemented using an existing text-based weighting models, e.g. tf-idf. The value of
textual similarity must be normalized using the maximum keyword score among all doc-
uments as:

S ′
norm(qtext, dtext) =

S ′(qtext, dtext)

maxS ′(qtext, dtext)
(8.11)

S ′′(qtime, dtime) or the temporal similarity part is defined using two methods: TS and
TSU. Both methods ignore temporal expressions in documents, that is, they represented
d using the creation date only, and dtime is referred to PubTime(d).

The probability of generating qtimefrom dtime, or S ′′(qtime, dtime) can be computed as:

S ′′(qtime, dtime) = P (qtime|dtime)

=
1

|qtime|
∑

tq∈qtime

P (tq|dtime) (8.12)

where qtime is a set of query temporal expressions. Hence, P (qtime|dtime) is averaged over
the probability of generating each temporal expression in qtime, or P (tq|dtime).

Similar to LMT and LMTU, the probability of generating a time interval tq given dtime
(i.e., PubTime(d)) can be calculated in two ways: 1) ignoring uncertainty, and 2) taking
uncertainty into account. By ignoring uncertainty, P (tq|dtime) is defined as:

P (tq|dtime)TS =
{
0 if PubTime(d) /∈ tq,

1 if PubTime(d) ∈ tq.
(8.13)

In this case, the probability of generating a query temporal expression is equal to 1 only
if the publication date of d is in a range of tq, or it is equal 0 otherwise. In the case where
uncertainty is concerned, P (tq|dtime) is defined using an exponential decay function:

P (tq|dtime)TSU = DecayRateλ2·|tq−td| (8.14)

|tq − td| =
|tbql − tbdl |+ |tbqu − tbdu|+ |teql − tedl |+ |tequ − tedu|

4
(8.15)

where td = PubTime(d), DecayRate and λ are constant, 0 < DecayRate < 1 and
λ > 0, and μ is a unit of time distance. Intuitively, this function gives a probability that

Chapter 8. Comparison of Time-aware Ranking Methods 129

decreases proportional to the difference between a time interval tq and the publication
date of d. A document with its creation date closer to tq will receive a higher probability
than a document with its creation date farther from tq. Note that, LMTU concerns the
uncertainty by exploiting all possible time interval inherent in a temporal expression into
the calculation, whereas TSU ignore this assumption but TSU concerns the uncertainty
by taking account of a time distance (i.e., measuring by a decay function) between two
time intervals.

The normalization of S ′′
norm(qtime, dtime) can be computed in two ways:

1. uncertainty-ignorant using P (tq|dtime)TS defined in Equation 8.13

2. uncertainty-aware using P (tq|dtime)TSU defined in Equation 8.14

Finally, the normalized value of S ′′
norm(qtime, dtime) will be substituted S ′′(qtime, dtime) in

Equation 8.10 yielding the normalized score of a document d given a temporal query q
with determined time qtime as follows:

Snorm(q, d) = (1− α) · S ′
norm(qtext, dtext) + α · S ′′

norm(qtime, dtime) (8.16)

Kalczynski and Chou [54] measured the temporal similarity between a query and a
document using a fuzzy membership function with t different shapes, so-called t-zoidal.
Rather than assuming all time intervals inherent in a temporal expression, they propose
to capture the uncertainty of time using the fuzzy membership function. In this work, we
only consider the 6-zoidal fuzzy membership function illustrated in Figure 8.1.

The figure depicts a query temporal expression tq = [ta, tb] with the beginning point
ta and the ending point tb equivalent to the points a2 and a3 respectively. The time of
document dtime can be any point on a timeline. The temporal similarity between q and d
will be computed based on the graphical function in this figure. In addition, this method
also ignores temporal expressions in documents, i.e., they represented d using the creation
date only, and dtime is referred to PubTime(d). Thus, FuzzySet is defined as:

FuzzySet =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if td < a1,

f1(td) if td ≥ a1 ∧ td ≤ a2,

1 if td > a2 ∧ td ≤ a3,

f2(td) if td > a3 ∧ td ≤ a4,

0 if td > a4.

(8.17)

f1(td) =

{(
a1−td
a1−a2

)n

if a1 �= a2,

1 if a1 = a2.
(8.18)

f2(td) =

{(
a4−td
a4−a3

)m

if a3 �= a4,

1 if a3 = a4.
(8.19)

where td is equal to dtime. The parameters a1, a4, n,m will be determined empirically.

130 Section 8.5. Evaluation

Figure 8.1: The 6-zoidal membership function from [54].

Finally, we will conclude the similarity/dissimilarity of different temporal ranking
methods we presents. In other words, we want to remark the difference among them
using the following metrics: uncertainty-ignorance or uncertainty-concern, and whether
exploiting temporal expressions in either a query or a document, or both.

8.5 Evaluation
We first describe the settings of experiments. Then, we evaluate different time-aware
ranking methods, and discuss the results.

8.5.1 Setting

Temporal document collection. We used the New York Times Annotated Corpus as a
temporal document collection. Note that, the proposed ranking is not limited this partic-
ular collection, but it can be applied to other temporal collections as well. The Apache
Lucene search engine version 2.9.3 was used for indexing/retrieving documents.

Queries and relevance assessments. In this work, a standard query and relevance
judgment benchmark, such as, TREC, is not useful because queries are not time-related,
and the judgment is not targeted towards temporal information needs. For this reason,
we used the same set of queries and relevance assessments as the work by Berberich et
al [10]. They obtained 40 temporal queries and 6,255 query/document judgments using 5
assessors from the Amazon Mechanical Turk (AMT).

Document annotation. To extract features from the New York Times Annotated
Corpus, a series of language processing tools were used as described in [85], including
OpenNLP [97] (for tokenization, sentence splitting and part-of-speech tagging, and shal-
low parsing), the SuperSense tagger [114] (for named entity recognition) and TARSQI
Toolkit [119] (for annotating documents with TimeML and extracting temporal expres-
sions). The result of this analysis were: 1) entity information, e.g., all of persons, loca-
tions and organizations, 2) temporal expressions, e.g., all of event dates, and 3) sentence
information, e.g., all sentences, entities and event dates occurs in each sentence, as well
as position information.

Chapter 8. Comparison of Time-aware Ranking Methods 131

Parameter setting. The smoothing parameter was set to 0.1. Parameters for TSU
were: DecayRate = 0.5, λ = 0.5, and μ = 6 months. Parameters for FuzzySet were
n = 2, m = 2, a1 = a2 − (0.25× (a3 − a2)), and a4 = a3 + (0.50× (a3 − a2)).

Evaluating an individual ranking method. To compare different methods, we used
a mixture model, where the Lucene’s default weighting function was used to capture the
textual similarity for all ranking methods. In this way, the results of each temporal rank-
ing can be comparable. The mixture parameter α was varied in the experiments. Each
retrieved document is ranked with respect to S(q, d) in Equation 8.16, where S ′(qtext, dtext)
was a score obtained from the Lucene’s default weighting function, and S ′′(qtime, dtime)
was obtained from different time-aware ranking methods described in Section 8.4. The
baseline was the textual similarity S ′(qtext, dtext), i.e., the Lucene’s default weighting func-
tion, using inclusivemode denoted TFIDF-IN. These two retrieval modes were applied to
each temporal ranking method, and the results will be reported accordingly.

Metrics. The retrieval effectiveness of temporal ranking was measured by the pre-
cision at 1, 3, 5 and 10 documents (P@1, P@3, P@5 and P@10 respectively), Mean
Reciprocal Rank (MRR), and Mean Average Precision (MAP). For the learned ranking
method, the average performance over the five folds was used to measure the overall per-
formance of each ranking model.

8.5.2 Results
First, we study the sensitivity of each temporal ranking method to the mixture parame-
ter α. The effectiveness (P@5, P@10, and MAP) of each temporal ranking method when
varying α. For inclusive mode, the sensitivity of each temporal ranking method is shown
in Figure 8.2. For exclusive mode, the sensitivity of each temporal ranking method is
shown in Figure 8.2. Note that, suffixes IN and EX refer to inclusive and exclusive mode
respectively. Next, we will compare different ranking methods using the best performed
results with respect to this sensitivity.

The effectiveness of the baseline (i.e., the Lucene’s default weighting function) and
different temporal ranking methods are displayed in Table 8.2. In general, the exclusive
mode performed better than the inclusive mode for both LMT and LMTU, and LMTU-EX
gained the best performance over the other baselines.

Table 8.2 shows the best performing results of each method. In general, all time-aware
ranking methods outperform the baseline significantly, except LMT. For each time-aware
ranking, the effectiveness when retrieved using exclusive is better than inclusive. TSU
performs best among all methods in both inclusive and exclusive modes, and it outper-
forms all other methods significantly for P@1, MAP and MRR.

8.6 Conclusions
Time-aware ranking methods show better performance compared to methods based on
keywords only. When the time-uncertainty is taken into account, the effectiveness is im-
proved significantly. Even though TSU gains the best performance among other methods,

132 Section 8.6. Conclusions

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
5

α

LMT-IN
LMTU-IN

TS-IN
TSU-IN

FuzzySet-IN

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
10

α

LMT-IN
LMTU-IN

TS-IN
TSU-IN

FuzzySet-IN

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

P

α

LMT-IN
LMTU-IN

TS-IN
TSU-IN

FuzzySet-IN

Figure 8.2: Sensitivity of P@5, P@10 and MAP to the mixture parameter α for inclusive
mode.

the usefulness of TSU is still limited for a document collection with no time metadata, i.e.,
the publication time of documents is not available. On the contrary, LMT and LMTU can
be applied to any document collection without time metadata, but extraction of temporal
expressions is needed.

Chapter 8. Comparison of Time-aware Ranking Methods 133

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
5

α

LMT-EX
LMTU-EX

TS-EX
TSU-EX

FuzzySet-EX

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
10

α

LMT-EX
LMTU-EX

TS-EX
TSU-EX

FuzzySet-EX

 0.4

 0.6

 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

P

α

LMT-EX
LMTU-EX

TS-EX
TSU-EX

FuzzySet-EX

Figure 8.3: Sensitivity of P@5, P@10 and MAP to the mixture parameter α for exclusive
mode.

Table 8.2: Effectiveness of different time-aware ranking methods (suffixes IN and EX
refer to inclusive and exclusive mode respectively), * indicates statistically improvement
over the baselines using t-test with significant at p < 0.05.

Methods P@1 P@3 P@5 P@10 MAP MRR
TFIDF-IN .38 .45 .43 .41 .49 .56

LMT-IN .43 .43 .41 .41 .48 .57
LMTU-IN .48 .49 .47 .45 .52 .68
TS-IN .45 .48 .49 .48 .54 .61
TSU-IN .65 .56 .51 .49 .58 .76
FuzzySet-IN .45 .48 .49 .48 .53 .61

LMT-EX .38 .46 .42 .48 .52 .55
LMTU-EX .48 .52 .48 .50 .55 .68
TS-EX .48 .56 .52 .53 .58 .63
TSU-EX .68 .58 .54 .54 .61 .77
FuzzySet-EX .48 .55 .53 .54 .59 .64

134 Section 8.6. Conclusions

Chapter 9

Ranking Related News Predictions

In the previous chapter, we presented different ranking models that retrieve documents
with respect to textual and temporal similarity. In this chapter, we also want to investi-
gate whether exploiting other features together with time can help improving the retrieval
effectiveness in searching temporal document collections. Specifically, we set up a new
task called ranking related news predictions, which is aimed at retrieving and ranking
sentences that contain mentions to future events. The research question addressed in this
chapter is: how to combine different features with time in order to improve relevance
ranking?

9.1 Motivation

Predicting the future has long been the Holy Grail in the financial world. The leaders of
large organizations need to analyze information related to the future in order to identify
the key challenges that can directly affect their organizations. This information can be
useful for strategies planning to avoid/minimize disruptions, risks, and threats, or to max-
imize new opportunities [19]. For example, a business company usually concerns about
clients’ interests in global competition, innovation and profits, and a government’s chal-
lenges are in areas of education, energy, security and health care. However, it is not just
businesses that care about the future - all people have anticipation and curiosity about the
future. Canton [19] describes the future trends that can influence our lives, our jobs, our
businesses, and even our world. These include the energy crisis, the global financial crisis,
politics, health care, science, securities, globalization, climate changes, and technologies.
When people read news stories on any of these topics whether it is an article about war
in the Middle East or the latest health care plan, they are naturally curious about potential
future events. How long will the war last? How much will it cost? What happens if we
do nothing at all? This obsession with the future is also reflected in the news articles
themselves - our analysis of one year worth of news from over 100 sources indicates that
nearly one third of news articles contain at least one statement made about a future date.

Accessing this information in an intuitive way would greatly improve how people

135

136 Section 9.1. Motivation

read and understand news. In this chapter, we define a new task we call ranking related
news predictions that directly addresses this problem by finding all predictions related to
a news story in a news archive and ranking them according to their relevance to the news
story. This task is motivated by the desire of news sites to increase user engagement by
providing content that directly addresses the information needs of users. By providing
links to relevant content, new sites can keep users on their site longer thus increasing
the likelihood that users will click on revenue generating links and also improving user
satisfaction. For a wide range of news events from natural disasters to political unrest in
the Middle East, the information need - the question most on people’s minds - is what is
going to happen next. This new task is a first step toward helping people answer this very
question by finding and linking to predictions that are relevant to the user.

Our query is extracted from a news article currently read by a user, and is com-
posed of a bag of entities or terms. Using an automatically-generated query, predic-
tions are retrieved, ranked over the time dimension, and presented to the user. Note that
there are a number of future-related information analyzing tools including Recorded Fu-
ture [102], and Time Explorer [85]. Recorded Future extracts predictions from different
sources (news publications, blogs, trade publications, government web sites, and finan-
cial databases). A user creates a query by selecting a topic of interest (e.g. a topic about
“Financial Markets”), and then specifying an entity (people, companies, or organizations)
from a set of “predefined” entities. The system will then retrieve predictions related to
the selected topic and entity. A major difference with our system is that Recorded Future
requires a query specified in advance, while our system automatically creates a query for
the user based on the news article being read and it is not limited to “predefined” entities.
Besides, Recorded Future lacks of the ranking of predictions whereas we rank predic-
tions before presenting them to the user. Time Explorer is a search engine that allows
users to see how topics have evolved over time and how they might continue to evolve in
the future. The system extracts predictions from document collections and allows users
to search for them using ad-hoc queries. However, neither Time Explorer nor Recorded
Future provide details of how predictions are ranked nor do they evaluate performance
in a formal setting as we do here. However, there is no ranking of predictions in Time
Explorer as we will do in this work.

In this chapter, we will propose a ranking model of future information using machine
learning techniques. To learn the ranking model, we define 4 classes of features to mea-
sure different similarities, namely, term similarity, semantic similarity, topic similarity,
and temporal similarity. These features are aimed at capturing the similarity between
an information need and predictions of future-related events. In addition, we explicitly
exploit temporal information of a query and documents (i.e. temporal expressions) in
ranking. The challenges of our ranking related news predictions task are related to var-
ious aspects of IR problems: sentence retrieval, entity ranking, temporal ranking, and
domain-specific predictions.

Contributions
The main contributions of this chapter are as follows.

Chapter 9. Ranking Related News Predictions 137

• We propose the first formalization of the ranking related news predictions task.

• We propose a learned ranking model incorporating four classes of features including
term similarity, entity-based similarity, topic similarity, and temporal similarity.

Organization
The organization of the rest of the chapter is as follows. In Section 9.2, we give an
overview of related work. In Section 9.3, we explain our system architecture, and outline
the models for annotated documents, predictions as well as queries. In Section 9.4, we
propose four classes of features used for learning a ranking model. In Section 9.5, we
describe our ranking model. In Section 9.6, we evaluate the proposed ranking model.
Finally, in Section 9.7, we conclude our work in this chapter.

9.2 Related Work

Our related work includes sentence retrieval, entity ranking, temporal ranking, and domain-
specific predictions.

Sentence retrieval is the task of retrieving a relevant sentence related to a query. Dif-
ferent application areas of sentence retrieval are mentioned in the book of Murdock [90]
and references therein, including, for example, question answering [115], text summariza-
tion, and novelty detection. Surdeanu et al. [115] applied supervised learning to rank a set
of short answers (sentences) matched a given question (query) by using different classes
features. Li and Croft [75] proposed to detect novelty topics by analyzing sentence-level
information (sentence lengths, named entities, and opinion patterns). Generally, because
sentences are much smaller than documents and thus have limited content compared to
documents, the effectiveness of the retrieval of sentences is significantly worse. To ad-
dress this problem, Blanco and Zaragoza [15] proposed to use the context of sentences in
order to improve the effectiveness of sentence retrieval.

There have been a number shared tasks with the goal of furthering research in the
area of entity ranking. For instance, the TREC 2008 Enterprise track was created with
the objective to find experts (or people) related to a given topic of interest. The INEX
Entity Ranking track [30] was launched with the task of finding a list of relevant entities
(represented by Wikipedia articles) for a given topic. Recently, the TREC 2009 Entity
track was introduced, and the task is to find related entities (represented by homepages)
given a topic (called a source entity). The difference between the TREC 2009 Entity
and the previous tracks is that it allows a relation and a target entity type to be explicitly
specified. There are various approaches to ranking entities by using language models [9],
voting models [81], and entity-based graph models [137].

Many ranking models exploiting temporal information have been proposed, including
[10, 31, 74, 87]. Li and Croft [74] experimented with time-based language models by
assigning a document prior using an exponential decay function of its creation date, such
that the more recent documents obtain the higher probabilities of relevance. Diaz and

138 Section 9.3. Problem Definition

Jones [31] build a temporal profile of a query from the distribution of document publica-
tion dates. They use time dependent features derived from these profiles that improve the
ranking of temporal queries. In [40], Gwadera and Crestani proposed a method for mining
and ranking news stories using cross-stream sequential patterns and content similarity.

Berberich et al. [10] integrated temporal expressions into query-likelihood language
modeling, which considers uncertainty inherent to temporal expressions in a query and
in documents, i.e., two temporal expressions can refer to the same time interval even
when they are not exactly equal. Metzler et al. [87] mined query logs to identify implicit
temporal information needs and presented a time-dependent ranking model for certain
types of queries. Elsas and Dumais [33] also take time into retrieval. They demonstrate
that the relevance of a document is strongly correlated with its content change frequency.

There is much research in domain-specific predictions such as stock market predic-
tions [109, 132] and recommender systems [72, 98]. The first aims at predicting stock
price movements by analyzing financial news, while the latter applies collaborative filter-
ing algorithms for recommending books, videos, movie, etc. based on users’ interests.

The future retrieval problem was first presented by Baeza-Yates [7]. He proposed
to extract temporal expressions from news, index news articles together with temporal
expressions, and retrieve future information (composed of text and future dates) by using a
probabilistic model. A document score is given as a multiplication of a keyword similarity
and a time confidence, i.e., a probability that the document’s events will actually happen.
The limitation of this original work is that it is evaluated using a small data set and only a
year granularity is used.

The more recent work on the future-related information retrieval is presented by Ja-
towt et al. [50]. In contrast to our work, they do not focus on relevance and ranking
future-related information retrieval. They presented an analytical tool for extracting, sum-
marizing and aggregating future-related events from news archives, but did not perform
an extensive evaluation, only calculating averaged precision on a small set of generated
results.

9.3 Problem Definition
In this section, we outline the system architecture, and give the formalization of the mod-
els for annotated documents, predictions, and queries.

9.3.1 System Architecture
Figure 9.1 depicts our system which retrieves a set of predictions (sentences containing
future dates) related to a given news article. Predictions can be extracted from a tem-
poral document collection – any collection that contains timestamped documents, e.g.,
personal emails, news archives, company websites and blogs. In this work, we auto-
matically extract predictions from news archives using different annotation tools. Our
document annotation process includes tokenization, sentence extraction, part-of-speech
tagging, named entity recognition, and temporal expression extraction. The result of this

Chapter 9. Ranking Related News Predictions 139

Figure 9.1: Prediction retrieval system architecture.

process is a set of sentences annotated with named entities and temporal expressions,
which will be indexed as predictions for further processing or retrieval.

A key component of the annotation process is the extraction of temporal expressions
using a time and event recognition algorithm. The algorithm extracts temporal expres-
sions mentioned in a document and normalizes them to dates so they can be anchored
on a timeline. Instead of having an explicit information need provided, we automatically
generate a query. In this case, we assume that the user’s information needs lie in the news
article being read by the user, and a query will be extracted from this news article (further
details are given in Section 9.3.4). For a given news article, we retrieve predictions that
are relevant to the news article, that is, relevant sentences containing future dates with
respect to the publication date of the news article being read.

Retrieved predictions are ranked by the degree of relevance, where a prediction is
“relevant” if it is future information about the topics of the news article. Note that we do
not give any specific instructions about how the dates involved are related to relevance.
Nevertheless, we hypothesize that predictions extracted from more recent documents are
more relevant. In this chapter, we use a machine learning approach [77] for learning the
ranking model of predictions. This involves identifying different classes of features (see
Section 9.4) to measure the relevance of a prediction with respect to the news article.

9.3.2 Annotated Document Model
Our document collection contains a number of news articles defined as C = {d1, . . . , dn}.
We treat each news article as a bag-of-words (an unordered list of terms, or features),
d = {w1, . . . , wn}. time(d) is a function given the creation or publication date of d. Some
of our proposed features are extracted from annotated documents, which are defined as

140 Section 9.3. Problem Definition

Table 9.1: Example of a prediction with field/value pairs.
Field Value

ID 1136243_1
PARENT_ID 1136243
TITLE Gore Pledges A Health Plan For Every Child
TEXT Vice PresidentAl Gore proposed today to guar-

antee access to affordable health insurance for
all children by 2005, expanding on a program
enacted two years ago that he conceded had
had limited success so far.

CONTEXT Mr. Gore acknowledged that the number of
Americans without health coverage had in-
creased steadily since he and President Clinton
took office.

ENTITY Al Gore
FUTURE_DATE 2005
PUB_DATE 1999/09/08

follows. Each document d, has an associated annotated document d̂, which will consist
of three sets, d̂e, d̂t, d̂s: a set of named entities d̂e = {e1, . . . , en}, where each entity
ei ∈ E and E is the complete set of entities (typed as person, location, and organization)
in the collection; a set of annotated temporal expressions d̂t = {t1, . . . , tm} and a set of
sentences d̂s = {s1, . . . , sz}

9.3.3 Prediction Model

A prediction p can be viewed as a sentence containing field/value pairs of annotation in-
formation and we define dp as the parent document where p is extracted from. We define
several fields for a prediction including ID, PARENT_ID, TITLE, ENTITY, FUTURE_DATE,
PUB_DATE, TEXT, and CONTEXT. The field ID specifies a prediction’s unique number,
PARENTID and TITLE represent a unique number and the title of dp respectively ENTITY
contains a set of annotated entities pentity ⊂ d̂e, FUTURE_DATE consists of “future” tem-
poral expressions pfuture annotated in p, PUB_DATE is the publication date of the parent
document dp and TEXT is a prediction’s text ptxt or the sentence of p. Note that each
prediction must contain at least one “future” temporal expression, that is, pfuture �= ∅. In
addition, we explicitly model the context of the prediction pctx, represented by the field
CONTEXT and defined as surrounding sentences of the main sentence [15]. In our work,
we define the context pctx as the sentence immediately before and the one immediately
after ptxt. Table 9.1 contains an example of a prediction with its field/value pairs.

Chapter 9. Ranking Related News Predictions 141

9.3.4 Query Model
As mentioned earlier, a query q is automatically generated from a news article being read
dq; q is composed of two parts: keywords qtext, and the time of query qtime. The keywords
qtext are extracted from dq in three ways resulting in three different types of queries.

The first type of query is called “entity query”, and it is defined as follows.

Definition 12 (Entity Query). An entity query is represented by a bag of entities denoted
QE . The keyword part qtext of QE is composed of top-m entities ranked by frequency,
where the entities are extracted from dq.

Intuitively, we want to know whether using only key entities frequently mentioned in
the news article can retrieve relevant predictions with high precision or not. For example,
given an actual document about “President Bush and the Iraq war”, we extract QE with
qtext = 〈George Bush, Iraq,America〉. At retrieval time, qtext will be matched with the
ENTITY field of the predictions. Note that, the frequency of entities will be considered
only for selecting the top-m entities but it will not be used for retrieval.

The second query is called “term query” and it is defined as the following.

Definition 13 (Term Query). A term query is represented by a bag of terms denoted QT .
The keyword part qtext of QT is composed of top-n terms ranked by term weighting, i.e.,
TF-IDF, where the terms are extracted from dq.

QT is considered a bag of terms important to both dq (locally) and the whole collection
(globally). We also ignore the weight of terms (i.e., TF-IDF), that is, all terms are equally
weighted at retrieval time. In contrast to the previous query type, QT aims at retrieving
predictions related to the topics of news article, which can be represented as a set of
informative terms. As an example, the QT with qtext = 〈poll, bush,war, iraq〉 is extracted
from the same document used in the QE example above. In this case, qtext will be matched
with the TEXT field of the predictions.

The last type is called “combined query” and it is defined as follows.

Definition 14 (Combined Query). A combined denoted QC is a combination of an entity
query and a term query. The keyword part of qtext ofQC is composed of both top-m entities
and top-n terms formed by concatenating QE and QT .

In this work, we combine by using the “AND” operator. The idea is that a prediction
should be related to both key entities and important terms extracted from dq. An exam-
ple of QC can be qtext = 〈George Bush, Iraq,America〉 AND 〈poll, bush,war, iraq〉. We
discuss how we select top-m and top-n in Section 9.6.

The last component of the query is the temporal criteria or qtime used for retrieving
predictions on the time dimension; qtime is composed of two different time constraints. The
first constraint is specified in order to retrieve only predictions that are future relative to
the publication date of query’s parent article, or time(dq). The second constraint indicates
that those predictions must belong to news articles published before time(dq).

Definition 15 (Temporal Criteria). Temporal criteria qtime is composed of two different
time constraints and both time constraints can be represented using a time interval as:

142 Section 9.4. Features

(i) (time(dq), tmax]

(ii) [tmin, time(dq)]

where (time(dq), tmax] = [time(dq), tmax]−{time(dq)}, and tmax and tmin are the maximum
time in the future and the minimum time in the past respectively. At retrieval time, the
first constraint will be matched with the field FUTURE_DATE of predictions, whereas the
second constraint will be matched with the field PUB_DATE of predictions.

9.4 Features
In this section, we present features used for learning a ranking model for related news
predictions. The model will be described in Section 9.5. We propose several classes
of features to capture the similarity between a news article query q and a prediction p,
i.e., term similarity, entity-based similarity, topic similarity, and temporal similarity. The
detailed description of each class will be given next.

9.4.1 Term Similarity
Since a prediction is defined with multiple fields, we employ the fielded searching pro-
vided with Apache Lucene search engine. The first term similarity feature retScore is the
default similarity scoring function of Lucene [5], which is a variation of the tf-idf weight-
ing scheme. The feature retScore will be computed with respect to a search field f , which
is different for each query type. Note that, f is equivalent to the field ENTITY for QE , and
the field TEXT for QT . For QC , retScore will be computed separately for each sub-query,
and combine them into a final score. retScore is given as follows.

retScore(q, p, f) = coord(q, p) ·qnorm(q) ·
∑
wi∈q

tf(wi, p) · idf(wi)
2 ·boost(wi) ·norm(wi, p) (9.1)

tf(wi, p) =
√
freq(wi, p) (9.2)

idf(wi) = 1 + log
NP

nwi
+ 1

(9.3)

qnorm(q) =
1√

boost(q)2 ·∑wi∈q
(idf(wi) · boost(wi))2

(9.4)

norm(wi, p) = boost(p) · lenNorm(f) · boost(f) (9.5)

where tf(wi, p) is term frequency, and freq(wi, p) is a raw frequency of wi in the field f
of p. idf(wi) is an inverse prediction frequency. NP is the total number of predictions and
nwi

is the number of prediction containing wi. boost(wi) is the Lucene’s term boosting

Chapter 9. Ranking Related News Predictions 143

parameter for wi in q. coord(q, p) is a score factor based on how many of the query terms
are found in the specified prediction. qnorm(q) is a normalizing factor used to make scores
between queries comparable. Calculating at indexing time, norm(wi, p) encapsulates a
document boost, a field boost, and a length factors or the normalization value for a field f
given the total number of terms contained in f . Finally, retScore(q, p) must be normalized
to have a value between 0 and 1 by dividing by maxPq

retScore(q, p) where Pq is a set of
all retrieved predictions.

A disadvantage of retScore is that it will not retrieve any predictions that do not match
the query terms. This issue is exacerbated in sentence retrieval by the fact that we have
to retrieve short fragments of text which might refer to the query terms using anaphora
or other linguistic phenomena. One technique to overcome this problem is to use query
expansion/reformulation using synonyms or different words with very similar meanings.
It has also been shown that extending a sentence structure by its surrounding context sen-
tences and weighting them using a field aware ranking function like bm25f consistently
improves sentence retrieval [15]. Therefore, rather than reformulating a query, we will
retrieve a prediction by looking at the CONTEXT and TITLE fields, in addition to the TEXT
field. Thus, even if the TEXT field does not match exactly with a query term, p can receive
a score if either the CONTEXT or TITLE field match the query term.

In our case, instead of weighting differently keyword matches in the title or body of a
Web page, we assign a different importance to matches in the sentence itself or its context.
The second term similarity feature bm25f can be computed as follows.

bm25f(q, p, F) =
∑
wi∈q

weight(wi, p)

k1 + weight(wi, p)
· idf(wi) (9.6)

weight(wi, p) =
∑
f∈F

freq(wi, f) · boost(f)
(1− bf) + bf · lf

avlf

(9.7)

idf(wi) = log
NP − nwi

+ 0.5

nwi
+ 0.5

(9.8)

where lf is the field length, avlf is the average length for a field f , bf is a constant related
to the field length, k1 is a free parameter and boost(f) is the boost factor applied to a field
f . NP is the total number of predictions and nwi

is the number of prediction containing
wi, and F = {TEXT, CONTEXT, TITLE}. We discuss parameter settings in Section 9.6.1.

9.4.2 Entity-based Similarity
As mentioned earlier, term matching prevents us to retrieve predictions semantically sim-
ilar to a query but using different terms. For example, a query “George W. Bush” will not
be able to match the following prediction because it does not contain exactly the query
term, but “Mr. Bush”.

Mr. Bush’s plan calls for an immediate start to all personal income tax cuts
now scheduled for 2004 and 2006, with the greatest gains going to the most
well-off Americans.

144 Section 9.4. Features

Thus, we exploit a named entity recognition method with semantically tagging [22]
used during the document annotation process (cf. Section 9.3.1).

This feature class is aimed at measuring the similarity between q and p by measuring
the similarity of the entities they each contain. Note that, this class is only applicable
for a query consisting of entities, that is, QE and QC , and it is ignored for QT . The first
feature entitySim compares a string similarity between the entities of q and pentity using the
Jaccard coefficient, which can be computed as follows.

entitySim(q, p) =
|q ∩ pentity|
|q ∪ pentity|

(9.9)

where pentity is a set of entities, |q ∩ pentity| and |q ∪ pentity| are the size of intersection and
union of entities of q and p.

Thus, the higher the overlap between the entities of a prediction and the query, the
higher the prediction will be ranked for the query. We also want to rank predictions by
using features that are commonly employed in an entity ranking task. For example, an
entity is relevant if it appears in the title of a document, or it always occurs as a subject
of sentence. We will employ entity ranking features by assuming that the more relevant
entities a prediction contains, the more relevant it is. The entity-based features will be
extracted and computed relative to the parent document of a prediction (dp) or on the
prediction itself (p).

Features extracted from documents are title, titleSim, senPos, senLen, cntSenSubj,
cntEvent, cntFuture, cntEventSubj, cntFutureSubj, timeDistEvent, timeDistFuture and
tagSim. Features extracted from predictions are isSubj and timeDist. The value of all
features is normalized to range from 0 to 1, unless otherwise stated. First, the feature title
indicates whether an entity e is in the title of dp.

title(e, dp) = isInTitle(e, dp) (9.10)

A value is 1 if e appears in the title of dp, or 0 if otherwise. titleSim is a string similarity
between e and the title.

titleSim(e, dp) =
|e ∩ title(dp)|
|e ∪ title(dp)| (9.11)

senPos gives the position of the 1st sentence where e occurs in dp.

senPos(e, dp) =
len(dp)− pos(firstSen(e))

len(dp)
(9.12)

where len(dp) gives the length of dp in words. pos(sy) is the position of a sentence sy in
dp. senLen gives the length of the first sentence of d that contains e.

senLen(e, dp) =
len(firstSen(e))
maxsy∈dp len(sy)

(9.13)

Chapter 9. Ranking Related News Predictions 145

cntSenSubj is the number of sentences where e is a subject. We run a dependency parser
over the sentences in order to determine whether an entity is a subject of not.

cntSenSubj(e, dp) =
1

|Se|
∑
sy∈Se

isSubj(e, sy) (9.14)

where Se is a set of all sentences of e in dp. isSubj(e, sy) is 1 if e is a subject of sy.
cntEvent is the number of event sentences (or sentences annotated with dates) of e.

cntEvent(e, dp) =
1

|Ep
d |

∑
sz∈E

p
d

∑
sy∈Se

isEqual(sz, sy) (9.15)

where Ep
d is a set of all event sentences in dp. isEqual(sz, sy) returns 1 if sz equals to sy.

cntFuture is the number of sentences with a mention of a future date. cntEventSubj is the
number of event sentences that e is a subject.

cntEventSubj(e, dp) =
1

|Ep
d |

∑
sz∈E

p
d

isSubj(e, sz) (9.16)

Similarly, cntFutureSubj is the number of future sentences that e is a subject. timeDis-
tEvent is a measure of the distance between e and all dates in dp.

timeDistEvent(e, dp) =
1

|Ee|
∑
sz∈Ee

avg(normist(e, sz)) (9.17)

normDist(e, sz) =
1

|Tsz |
∑

tk∈Tsz

maxDist(sz)− dist(e, tk)
maxDist(sz)

(9.18)

dist(wi, wj) = |pos(wi)− pos(wi)| − 1 (9.19)

where Ee is a set of all event sentences of e, and Tsz is a set of all temporal expressions
in sz. dist(wi, wj) is a distance in words between terms wi and wj . maxDist(sz) is a
maximum distance between terms in sz. timeDistFuture(e, dp) is a distance of e and
all future dates in dp computed similarly to timeDistEvent. tagSim is a string similarity
between e and an entity tagged in dp.

tagSim(e, dp) = max
en∈N

p
d

|e ∩ en|
|e ∪ en|

(9.20)

where N p
d is a set of all entities tagged in dp. tagSim is only applicable for a collection

provided with manually assigned tags (e.g., the New York Times Annotated Corpus).
isSubj(e, p) is 1 if e is a subject with respect to a prediction p, and timeDist(e, p) is a

distance of e and all future dates in p computed similarly to timeDistEvent. All features
in this class are parameter-free.

146 Section 9.4. Features

9.4.3 Topic Similarity
This class of features is aimed to compare the similarity between q and p on a higher level
by representing them using topics. Examples of topics are “health care reform”, “finan-
cial crisis”, and “global warming”. Several works [16, 128] have proposed to model a
document with a low dimensionality, or to use topics rather than terms. We will use latent
Dirichlet allocation (LDA) [16] to model a set of topics. LDA is based on a generative
probabilistic model that models documents as mixtures over an underlying set of topic
distributions. In general, topic modeling consists of two main steps. The first step is to
learn topic models from training data. The output from this step is the probabilistic dis-
tribution over each topic. LDA requires the parameter Nz or the number of topics to be
specified. After a model is trained, the next step is to infer topics from the learned topic
model outputting a topic distribution for the prediction.

Wei and Croft [128] incorporated topic modeling for ad-hoc retrieval, and showed that
linearly combining LDA with the query likelihood model outperformed non-topic models
like the unigram model. We incorporate LDA into the retrieval process differently from
Wei and Croft in two ways. First, instead of combining LDA scores with the original
retrieval score, we represent q and p as vectors of topic distributions and compute the
topic-based similarity using a cosine similarity between two vectors. Second, we explic-
itly take the time dimension into modeling topics because topics distributions can evolve
over time. Intuitively, topics keep changing over time according to different trends.

We apply topic modeling to future retrieval in three main steps:

1. learning a topic model

2. inferring topic models

3. measuring topic similarity

Learning a topic model. We take into account the time dimension for learning topic
models. As shown in Figure 9.2, we create training data by partitioning the document
collection DN into sub-collections (or document snapshots) with respect to time. In other
words, we group documents by year of publication, and randomly select documents as
training data, called a training data snapshot Dtrain,tk at time tk. Note that, we can also
use more sophisticated approaches for modeling topics over time as presented in [125].
However, we will leave this study for future work.

Topic model inference. Using learned models from the previous step, we determine
the topics for q and p from their contents. This process is called topic inference, which
represents a query and a prediction by a distribution of topics (probabilities). For exam-
ple, given a topic model φ, a prediction p can be represented as pφ = p(z1), . . . , p(zn),
where p(z) gives a probability of a topic z obtained from φ. Because our topic models
are learned from different time periods, a question is which model snapshot we use for
inference. Note that, q and p must be inferred from the same model snapshot in order
to be comparable. We select a topic model for inferring in two ways. First, we select
a topic model from a time snapshot time(dq) which corresponds to the publication date
of the news article parent of q. Second, a topic model is selected from a time snapshot

Chapter 9. Ranking Related News Predictions 147

t which corresponds to the publication date of the news article making prediction p, or
the time(dp). Moreover, a prediction p will be inferred in three different ways depending
on the contents used: 1) only text ptxt, 2) both text ptxt and context pctx, and 3) the par-
ent document dp. For a query q, the contents of its parent document dq will be used for
inference.

In addition to using all Nz topics for inference, we will also select only top-k topics
ranked by the importance. The idea is that measuring the topic similarity using too many
topics may not be as accurate as using only the most important topics. We use coverage
and variation proposed in [112] for ranking topics. A topic coverage μ(z) assumes that
topics that cover a significant portion of the corpus content are more important than those
covering little content, while a topic variation σ(z) considers topics that appear in all
the documents to be too generic to be interesting, although they have significant content
coverage. μ(z) and σ(z) are computed using a mean and a standard deviation over topic
distributions, and the final score for ranking topic is a multiply of μ(z) and σ(z). The
calculation μ(z) and σ(z) for a topic z at time tk is given as:

μ(z) =
1∑ND

i=1 len(di)

ND∑
i=1

len(di) · pi(z) (9.21)

σ(z) =

√√√√ 1∑ND

i=1 len(di)

ND∑
i=1

len(di) · (pi(z)− μ(z))2 (9.22)

where ND is the number of documents in a training set at time tk, or |Dtrain,tk |. pi(z) gives
a probability of a topic z in a document di and len(di) is the document length of di. A
final score for ranking a topic z can be computed as:

rank(z) = μ(z)λ1 · σ(z)λ2 (9.23)

where the parameters λ1 and λ2 indicate the importance of μ(z) and σ(z). If λ1 = 1 and
λ2 = 0, the ranking is determined purely by topic coverage. On the contrary, if λ1 = 0
and λ2 = 1, the ranking emphasizes topic variance.

Measuring topic similarity. Given a topic model φ, the topic similarity can be cal-
culated using a cosine similarity between a topic distribution of query qφ and a topic
distribution of prediction pφ as follows.

topicSim(q, p) =
qφ · pφ

||qφ|| · ||pφ||

=

∑
z∈Z qφz

· pφz√∑
z∈Z q2φz

·
√∑

z∈Z p2φz

(9.24)

We denote a topical feature using LDAi,j,k, where i is one of the two different methods
for selecting model snapshot: i = 1 for selecting a topic model from a time snapshot
time(dq), and i = 2 for selecting from a time snapshot time(dp); j is one of the three

148 Section 9.4. Features

Figure 9.2: LDA topic snapshots based on time.

different ways of using the contents for inference: ptxt, pctx, or dp. Finally, k refers to
whether we use all of only top-k of topics for inference. Thus, this results in 12 (=3*2*2)
LDA-based features in total.

9.4.4 Temporal Similarity

As mentioned earlier, we explicitly exploit temporal expressions in ranking. To mea-
sure the temporal similarity between a query and a prediction, we employ two features
proposed in previous work: TSU (cf. Chapter 4) and FS [54].

We will represent our model of time using a time interval [b, e] having a begin point b
and the end point e. The actual value of any time point, e.g., b or e in [b, e], is represented
using the time model of Berberich et al. [10] presented in Section 2.2.2.

The first feature TSU is defined as the probability of generating the time of query qtime
from the document creation date time(d). TSU can be computed as follows.

TSU = DecayRateλ·
|qtime−time(d)|

μ (9.25)

where DecayRate and λ are constants, 0 < DecayRate < 1 and λ > 0. μ is a unit
of time distance. Intuitively, the probability obtained from this function decreases pro-
portional to the distance between qtime and time(d), that is, a document with its creation
date closer to qtime will receive a higher probability than a document with its creation date
farther from qtime.

We apply TSU for measuring the temporal similarity between q and p based on two as-
sumptions. First, we assume that p is more likely to be relevant if its parent time time(dp)
is closer to the time of query article time(dq). Our first temporal feature, denoted TSU1,

Chapter 9. Ranking Related News Predictions 149

will be calculated similarly to Equation 9.25 resulting the following function.

TSU1(q, p) = DecayRateλ·
|time(dq)−time(dp)|

μ (9.26)

The second assumption, denoted TSU2, is that a prediction is more likely to be relevant
if its future dates pfuture are closer to the publication date of query article time(dq). If there
are more than one future dates associated to p, a final score will be averaged over scores
of all future dates pfuture. The temporal distance of TSU2 of q and p is defined as follows.

TSU2(q, p) =
1

Nf

∑
tf∈pfuture

DecayRateλ·
|time(dq)−tf |

μ (9.27)

where tf is a future date in pfuture and Nf is the number of all future dates.
In addition to TSU1 and TSU2, we can measure the temporal similarity between q and

p using a fuzzy membership function, which is originally proposed by Kalczynski and
Chou [54].

We adapt the original fuzzy set function in [54] by using its parent time time(dp) and
the time of query article time(dq). We denote this feature as FS1, and it can be computed
as follows.

FS1(q, p) =

⎧⎪⎨
⎪⎩
0 if time(dp) < α1 ∨ time(dp) > time(dq),
f1(time(dp)) if time(dp) ≥ α1 ∧ time(dp) < time(dq),
1 if time(dp) = time(dq).

(9.28)

f1(time(dp)) =

{(
time(dp)−α1

time(dq)−α1

)n

if time(dp) �= time(dq),
1 if time(dp) = time(dq).

(9.29)

We define the second temporal feature based on a fuzzy set by using the prediction’s
future dates pfuture and the publication date of query article time(dq). Similarly, if a pre-
diction p has more than one future date, a final score will be averaged over scores of all
dates pfuture. The second temporal feature FS2 is defined as follows.

FS2(q, p) =
1

Nf

∑
tf∈pfuture

⎧⎪⎨
⎪⎩
0 if tf < time(dq) ∨ tf > α2,

1 if tf = time(dq),
f2(tf) if tf > time(dq) ∧ tf ≤ α2.

(9.30)

f2(tf) =

{(
α2−tf

α2−time(dq)

)m

if tf �= time(dq),
1 if tf = time(dq).

(9.31)

where Nf is the number of all future dates in pfuture, and tf is a future date, i.e., tf ∈ pfuture.
n and m are constants. α1 and α2 are the minimum and maximum time of reference with
respect to qtime. α1 is calculated by subtracting the time offset smin from from qtime , and
α2 is calculated by adding the offset smax to qtime.

150 Section 9.5. Ranking Model

9.5 Ranking Model
Given a query q, we will rank a prediction p using a ranking model obtained by train-
ing over a set of labeled query/prediction pairs using a learning algorithm. An unseen
query/prediction pair (q, p) will be ranked according to a weighted sum of feature scores:

score(q, p) =
N∑
i=1

wi × xi (9.32)

where xi are the different features extracted from p and q, N is the number of features,
and wi are the weighting coefficients. The goal of the algorithm is to learn the weights
wi using a training set of queries and predictions, in order to minimize a given loss func-
tion. Learning to rank algorithms can be categorized into three approaches: pointwise,
pairwise, and listwise approaches [77]. The pointwise approach assumes that retrieved
documents are independent, so it predicts a relevance judgment for each document and
ignores the positions of documents in a ranked list. The pairwise approach considers a pair
of documents, and relevance prediction is given as the relative order between them (i.e.,
pairwise preference). The listwise approach considers a whole set of retrieved documents,
and predicts the relevance degrees among documents. For a more detailed description of
each approach, please refer to [77].

We employ the listwise learning algorithm SVMMAP [136]. The algorithm trains a
classifier using support vector machines (SVM), and it determines the order of retrieved
documents in order to directly optimize Mean Average Precision (MAP). In addition,
we also experimented with other learned ranking algorithms: RankSVM [52], SGD-
SVM [142], PegasosSVM [110], and PA-Perceptron [23]. However, these algorithms
do not perform as well as SVMMAP in our experiments. Thus, we will only discuss the
results obtained from SVMMAP in the next section.

9.6 Evaluation
In this section, we evaluate the retrieval effectiveness of our proposed ranking model using
three different query formats. We will first describe the experimental settings followed by
an explanation of the results and a detailed discussion.

9.6.1 Setting
Document collection. We used the New York Times Annotated Corpus for our document
collection. In order to extract predictions and features, a series of language processing
tools, including OpenNLP [97] (for tokenization, sentence splitting and part-of-speech
tagging, and shallow parsing), the SuperSense tagger [114] (for named entity recognition)
and TARSQI Toolkit [119] (for extracting temporal expressions from documents). Given
the importance of time to our system, we note that the temporal expression extraction of
TARSQI has a reported performance of 0.81 F1 on the Time Expression Recognition and
Normalization task [121].

Chapter 9. Ranking Related News Predictions 151

Table 9.2: Examples of future-related topics.
POLITICS ENVIRONMENT SPACE
president election global warming Mars
Iraq war energy efficiency Moon
SCIENCE PHYSICS HEALTH
earthquake particle Physics bird flue
tsunami Big Bang influenza
BUSINESS SPORT TECHNOLOGY
subprime Olympics Internet
financial crisis World cup search engine

We employed the Apache Lucene search engine for both indexing and retrieving pre-
dictions. The statistics of extracted data are as follows. There are 44,335,519 sentences
and 548,491 are predictions. There are 939,455 future dates, and an average future date
per prediction is 1.7 and the standard deviation is 0.92. Among 1.8 million documents,
more than 25% of all documents contain at least one prediction (i.e., a reference to the
future). In order to determine this percentage over a broader range of news sources, we
performed the same analysis on 2.5 million documents from over 100 news sources from
Yahoo! News for the one year period from July 2009 to July 2010 and found over 32% of
the documents contained at least one prediction.

Future-related queries. There is no gold standard available to evaluate the task of
ranking related news prediction. We manually selected 42 query news articles from the
New York Times that cover the future-related topics shown in Table 9.2. The actual
queries (QE , QT and QC) used for retrieving predictions are extracted from these news
articles.

Relevance assessments. Human assessors were asked to evaluate query/prediction
pairs (e.g., relevant or non-relevant) using 5 levels of relevance: 4 for excellent (very
relevant prediction), 3 for good (relevant prediction), 2 for fair (related prediction), 1 for
bad (non-relevant prediction), and 0 for non prediction (incorrect tagged date). The last
option was presented because there are predictions incorrectly annotated with time (this is
an error produced by the annotation tools). More precisely, an assessor was asked to give
a relevance score Grade(q, p, t) where (q, p, t) is a triple of a query q, a prediction p, and
a future date t in p. Consider the following prediction about the topic “global warming”
and the publication date of the news article is 2007/02/21:

Formal ratification of the pact – which commits the union to reduce emissions
of “greenhouse gases” by 8 percent of 1990 levels during the five-year period
from 2008 through 2012 – now goes to the European Council of heads of state
and government, which could act as early as this month at the union summit
in Barcelona.

The prediction contains two future dates (as highlighted in bold). Hence, an assessor
has to give judges to two triples corresponding to q, p and both future dates. A triple

152 Section 9.6. Evaluation

(q, p, t) is considered relevant if Grade(q, p, t) ≥ 3, and it is considered non-relevant if
1 ≤ Grade(q, p, t) ≤ 2. Relevance level 0 is not included in the evaluation1. These judg-
ments are normalized by a query/prediction pair (q, p) since we are interested in present-
ing a prediction for all future dates, regardless of their number. That is, a query/prediction
pair (q, p) is relevant if and only if there is at least one relevant triple (q, p, t), and a pre-
diction is non-relevant if all triples are non-relevant. Our assumption is that predictions
extracted from more recent documents are more relevant.

In total, assessors judged 52 queries and for each one of them we retrieved up to 100
sentences that contained predictions. On average 94 sentences with future mentions were
retrieved, with an average of 1.2 future dates per prediction. Finally, assessors evaluated
4,888 query/prediction pairs (approximately 6,032 of triples).

Our machine learning ranking models operate in a supervised manner, and as such,
they need training data for learning. We created training data using cross validation by
randomly partitioned query articles into NF folds. We used NF − 1 query/prediction
from other folds for training a ranking mode and the remaining fold for testing. We
removed queries with zero relevant results, and we obtained NF = 3, 4, 5 for QE , QC ,
QT respectively.

Parameter setting. The boost factors are set on independent experiments: boost(TEXT) =
5.0, boost(CONTEXT) = 1.0, and boost(TITLE) = 2.0. We use the recommended val-
ues [104] for the constants b = 0.75 for all fields, and k1 = 1.2. For LDA-based features,
we trained a yearly model snapshot by selecting 4% of all documents in each year. For
each document, we filtered out terms occurring in less than 15 documents and the 100
most common terms. We learn a topic model for each document snapshot by employing
Stanford Topic Modeling Toolbox [122], and the number of topics for training LDA Nz is
fixed to 500 and the number of topics for inference k is 200. A learning algorithm we use
is the collapsed variational Bayes approximation to the LDA objective (CVB0LDA) [6].
All other parameters are default values of the topic modeling. Using CVB0LDA required
high CPU and memory, but needed fewer iterations and had faster convergence rates than
a collapsed Gibbs sampler [39], which requires less memory during training.

For both TSU1 and TSU2, DecayRate = 0.5, λ = 0.5 and μ = 2y are used where y
the number of years. For both FS1 and FS2, n = 2, m = 2, smin = 4y and smax = 2y are
used. So, α1 = time(dq)− 4y and α2 = time(dq) + 2y.

Methods for comparison. We experiment with the three different ways of construct-
ing the query QE , QT , and QC . The baseline for retrieval is Lucene’s default ranking
function and our queries incorporate two time constraints as explained in Section 9.3.4.
We re-rank the baseline results using SVMMAP yielding Re-QE , Re-QT and Re-QC . For
the application of ranking related news predictions, we prefer top-precision retrieval per-
formance metrics over recall-based metrics: a user will be typically interested in a few top
predictions even though there are many predictions retrieved. Consequently, we envision
a user interface that contains little space for displaying related predictions. Thus, we will
measure the retrieval effectiveness by the precision at 1, 3 and 10 (P@1, P@3, and P@10
respectively), Mean Reciprocal Rank (MRR), and Mean Average Precision (MAP). We

1We are interested in assessing the performance of the ranking algorithm and not the annotation
tools. However, we note the overall system will be impacted by the annotation errors.

Chapter 9. Ranking Related News Predictions 153

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
top-m entities

P10
MAP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
top-n terms

P10
MAP

Figure 9.3: P@10 and MAP performance of QE (left) when varying top-m entities, and
QC (right) when varying top-n terms.

report the average performance over NF folds to measure the overall performance, for
each query type.

9.6.2 Results

The three types of queries (QE ,QT , and QC) are composed of either top-m entities or
top-n terms, or both. We first establish which are good m and n values for each one of
the types. Instead of varying m and n in re-ranking, we select the m and n that give a
reasonable improvement in a hold-out set (where we randomly divided queries into two
folds). Therefore, we will use only one fixed version of m and n for the rest of our
experiments. We select the values of m and n by performing a preliminary analysis as
follows. First, by looking at P@10 and MAP, we select the value of m that yields the
best performance using only QE to retrieve predictions for each varying m. As shown in
Figure 9.3 (left), 9 ≤ m ≤ 12 give almost no difference in terms of P@10. In spite of
that, we choose the number of entities m = 11 because it is slightly better than the other
values. Next, we find the optimal value of n by observing the performance of QC when
m is fixed to 11 and the value of n is varied. As depicted in Figure 9.3(right), there is
very slight difference in P@10 for 9 ≤ n ≤ 11; We choose the number of terms n = 10
because it obtains the best in MAP among them.

The retrieval effectiveness of simple methods and their corresponding re-ranking meth-
ods are displayed in Table 9.3. These results are averaged over queries retrieving at least
one relevant prediction. In general, QT gains the highest effectiveness in all measure-
ments followed by QC and QE and the feature-based re-ranking approach improves the
effectiveness for all query types. In addition, Re-QC has the highest effectiveness over
other re-ranking methods for P@1 and P@3, while Re-QT gains the highest effectiveness
for the rest of all metrics.

QE and QC pose a problem in not retrieving any relevant result of our judged pool
among the first 100 for a large number of queries, which makes it impossible for the
machine learning model to improve the ranking. However, we still want to compare the

154 Section 9.6. Evaluation

Table 9.3: Effectiveness of each method when using all queries; †,∓ indicates statistical
improvement over the corresponding simple methods using t-test with significant at p <
0.1,p < 0.05 respectively.

Method P@1 P@3 P@10 MRR MAP
QE 0.300 0.333 0.290 0.473 0.219
QT 0.643 0.579 0.455 0.760 0.385
QC 0.500 0.561 0.427 0.656 0.231

Re-QE 0.500 0.499 0.360 0.629 0.266
Re-QT 0.738† 0.619 0.462 0.831† 0.387
Re-QC 0.773∓ 0.682∓ 0.455 0.841∓ 0.271

performance between the different variations of the query (QE, QC , QT). Therefore, we
use a subset of queries that contained at least one relevant result among all the different
methods. The results are shown in Table 9.4 where we compare all other methods against
QE because we have observed that QE performs worst among them. As seen from the
results of each re-ranking method, our proposed features improve the effectiveness for
all corresponding simple methods. In particular, the re-ranking method Re-QC outper-
forms the simple method QE significantly. However, Re-QE did not provide a significant
improvement over QE . The results show that, for the same set of queries, using entities
alone are limited while terms alone are able to retrieve most of relevant predictions.

Interestingly, when looking at the same sub-set of queries with relevant predictions,
the re-ranking approach Re-QC outperforms every other method, even if the plain re-
trieval QT is superior to QC . This is an indicator that entity-based features are able to
produce higher quality results but only for a certain type of topics. We performed an er-
ror analysis to determine why QE is unable to retrieve relevant predictions. In general,
QE fails for a topic that cannot be represented using only people, locations, or organiza-
tions. For example, for the topic about “the Europeans agreement of gas emissions”, the
top-5QE is 〈European Union,Brussels,Finland,Germany,Hungary〉 and the top-5QT is
〈european, emission, target, climate, brussels〉. In this case, QE is unable to represent the
key terms “emission” and “climate”, and thus fails to retrieve many relevant predictions
that match those terms.

Similarly, for the query topic about “Clinton health care reform”, QE is represented
using the named entity Clinton (the terms “health care” and “reform” are not annotated as
entities). When matching, all predictions containing the entity Clinton are matched which
will return many documents that are not related to “health care” and “reform”.

9.6.3 Feature Analysis
We analyzed feature weights obtained from the learning algorithm SVMMAP in order to
understand better what is the importance of the different features,. Note that, in order
to compare the weights among different queries, we performed normalization by diving
with the maximum value of all weights for each query. Column wi in Table 9.5 displays

Chapter 9. Ranking Related News Predictions 155

Table 9.4: Effectiveness of each method when using a subset of queries; †,∓,� indicates
statistical improvement over the method QE using t-test with significant at p < 0.1, p <
0.05, p < 0.01 respectively.

Method P@1 P@3 P@10 MRR MAP
QE 0.300 0.333 0.290 0.473 0.219
QT 0.500 0.533 0.430 0.638 0.219
QC 0.600† 0.533† 0.360 0.727† 0.163

Re-QE 0.500 0.499 0.360 0.629 0.266
Re-QT 0.700 0.600 0.410 0.762 0.236
Re-QC 1.000∓ 0.714∓ 0.443 1.000 0.303�

Table 9.5: Top-5 features with highest weights and lowest weights for each query type.
QE QT QC

Feature Wi Feature Wi Feature Wi

tagSim 1.00 bm25f 1.00 LDA1,parent,k 1.00
FS1 0.97 retScore 0.60 retScore 0.99
TSU2 0.88 LDA1,parent,k 0.55 LDA1,parent,all 0.96
LDA1,txt,k 0.87 LDA2,parent,k 0.51 bm25f 0.93
LDA1,txt,all 0.82 LDA1,parent,all 0.49 isSubj 0.87

cntSenSubj 0.01 timeDistEvent -0.03 cntEventSen -0.02
cntEventSubj 0.01 timeDistFuture -0.11 querySim -0.05
isInTitle 0.00 cntEventSen -0.12 cntFutureSen -0.10
cntEventSen 0.00 cntFutureSen -0.12 timeDistFuture -0.14
querySim -0.01 senLen -0.16 senLen -0.18

the top-5 features with highest and lowest weights for each query type.
At least two topic-based features of all query types are in the top-5 features with

highest weight, and therefore topic-based features play an important role in the re-ranking
model. Although retScore and bm25f measure the similarity on a term level, they help
to re-rank predictions when incorporated into the machine learning model. as seen in the
top-5 features for QT and QC . The feature that received the highest importance value
for the QE type is tagSim, which measures the similarity between entities in a prediction
and manually tagged entities. This indicates that tagged entities in a query document can
precisely represent user information needs. The temporal features FS1 and FS1 also play
an important role for QE .

Features in top-5 features with lowest weights are those from the entity-based class.
Recall that these features are extracted in order to measure the importance of entities
annotated in a prediction with respect to their respective parent documents. However, the
results show that these features are not good enough for discriminating between relevant
and non-relevant predictions.

156 9.7. Conclusions

In order to observe the performance of different classes of feature, we conducted
two additional experiments for all query types. First, we trained a ranking model with
SVMMAP using only retScore and selected a class of features at each time to observe how
the selected class contributes to the ranking model. For each query type, a baseline is
the model trained using retScore only. We compare the effectiveness using P@3 and
MRR. Besides, we also show the percentage of improvement compared to the baseline.
The results are depicted in Table 9.6. For QE , the classes term, entity and prediction
improve the baseline slightly or not at all. temporal and topic better the effectiveness, but
not significantly. For QT , adding the class entity decreases the effectiveness as well as
all other classes show the improvement to a small degree. Nevertheless, term performs
better than the baseline significantly in P@3. For QC , all feature classes do not improve
the baseline significantly except topic that outperforms the baseline significantly up to
24% in MRR. In addition to single classes, combining all features yield the improvement
significantly in both P@3 and MRR.

The second experiment is training a ranking model using training data that are con-
sisted of all features, but except one class at each time to see how the ranking model is
depended on that class. We also use P@3 and MRR to compare the effectiveness, and we
report how much the effectiveness is decreased (%) compared to the baseline. For QE ,
all other classes result in decreasing the effectiveness when dropped, while the effective-
ness is slightly increase when temporal is removed. However, we cannot conclude that
temporal has an negative effect to QE , because adding temporal alone can improve the
baseline. For QT , dropping each single feature class alters the effectiveness of the base-
line slightly, whereas dropping a combination of all classes decreases the effectiveness up
to %20 in MRR. Similarly, for QC , dropping each single feature class changes the effec-
tiveness of the baseline to some degree. However, a combination of all classes decreases
the effectiveness significantly in both P@3 and MRR when dropped.

9.7 Conclusions
In this chapter, we demonstrated that future related information is abundant in news stories
and defined the task of ranking related future predictions. The main goal of this task is to
improve user access to this information by selecting the predictions from a news archive
that are most relevant to a given news article. We created an evaluation dataset with over
6000 relevance judgments and addressed this task using a learning to rank methodology
incorporating four classes of features including term similarity, entity-based similarity,
topic similarity, and temporal similarity that outperforms a strong baseline system. Fi-
nally, we performed an in-depth analysis of feature importance.

Chapter 9. Ranking Related News Predictions 157

Table 9.6: Effectiveness of different classes of features, * indicates statistically improve-
ment over the baselines using t-test with significant at p < 0.05.

Type Method Add Drop

P@3 (%) MRR (%) P@3 (%) MRR (%)

QE

baseline .33 - .47 - .50 - .63 -
term .37 4 .50 3 .43 7 .58 5
entity .33 0 .49 2 .43 7 .63 0
prediction .33 0 .52 5 .40 10 .58 5
temporal .40 7 .55 8 .53 -3 .72 -9
topic .43 10 .63 16 .40 10 .60 3
all .50 13 .63 16 .33 17 .47 16

QT

baseline .58 - .76 - .62 - .83 -
term .65* 7 .79 3 .63 -1 .83 0
entity .56 -2 .74 -2 .63 -1 .83 0
prediction .58 0 .78 2 .63 -1 .85 -2
temporal .60 2 .80 4 .63 -1 .84 -1
topic .61 3 .80 4 .60 2 .78 5
all .62 4 .83 7 .58 4 .63 20

QC

baseline .56 - .64 - .68 - .83 -
term .59 3 .67 3 .63 5 .86 -3
entity .56 0 .66 2 .67 1 .88 -5
prediction .60 4 .75 11 .67 1 .88 -5
temporal .60 4 .70 6 .65 3 .85 -2
topic .62 6 .88* 24 .60 8 .72 11
all .68* 12 .83* 19 .56* 12 .64* 19

158 9.7. Conclusions

Chapter 10

Conclusions

This thesis addresses research problems in searching temporal document collections.
We have proposed different approaches to solving the addressed research questions. In
summary, our contributions to this thesis are:

• We proposed different techniques for improving temporal language models used
for determining the creation time of non-timestamped documents. The proposed
approaches included different semantic-based preprocessing. In addition, we im-
proved the quality of document dating by incorporating internal and external knowl-
edge into the temporal language models. By conducting extensive experiments, we
showed the evaluation of our proposed approach and the improvement over the
baseline of our proposed approaches. Finally, we presented a system prototype for
dating documents using the proposed extension approaches.

• We performed the first study on how to determine the temporal profiles of queries
without temporal criteria provided, and we proposed techniques for determining the
time of implicit temporal queries. We proposed an approach to re-ranking search
results by incorporating the determined time of queries. By conducting exten-
sive experiments, we evaluated our approaches for determining temporal profiles
of queries, as well as of re-ranking search results using temporal profiles of queries.

• We formally modeled Wikipedia viewed as a temporal resource for classification
of time-based synonyms. We proposed an approach to discovering time-based syn-
onyms using Wikipedia and improving the time of synonyms. In addition, we pro-
posed query expansion techniques that exploit time-based synonyms. We exten-
sively evaluated our proposed approaches to extracting and improving time of syn-
onyms, and query expansion using time-based synonyms. Finally, a news archive
search prototype considering terminology changes over time was presented.

• We performed the first study and analysis of performance prediction methods for
temporal queries. We proposed different time-based predictors and techniques for

159

160

improving query performance prediction by combining multiple predictors. Exten-
sive experiments were conducted for evaluating single predictors and the combined
methods.

• We conducted the first study of query classification using two time dimensions, and
presented a novel taxonomy of queries based on two time dimensions was formally
defined. We proposed an approach to automatically classifying a query into two
main classes as well as retrieval models for both time dimension. In addition, an
approach to predicting an appropriate ranking model for time-sensitive queries was
presented. By performing extensive experiments, we evaluated our proposed query
classification and time-aware ranking model prediction.

• We performed the first study and analysis of time-aware ranking methods. By con-
ducting extensive experiments, we compared the performance of different time-
aware ranking methods using the same dataset.

• We proposed the first study of the ranking related news predictions task. We pro-
posed a learned ranking model incorporating four classes of features including term
similarity, entity-based similarity, topic similarity, and temporal similarity. We eval-
uated our proposed approach using queries selected from real-world future trends
and predictions extracted from the New York Times Annotated Corpus. Finally, we
performed an in-depth analysis of feature selection to guide further research in the
ranking related news predictions task.

In the rest of this chapter, we will outline our plans for future work, and discuss
possible research topics beyond what have been addressed in the thesis.

Future Work

Our plans for future work are as follows. In order to overcome the limitation of temporal
language models, there are several issues we intend to study as part of the future research
on document/query dating. First, our word interpolation method is an interesting idea in
improving the language model. However, not every word should be interpolated in the
same manner, thus we could apply a weighting scheme to words and interpolate only sig-
nificant words. In addition, we intend to further improve the dating task based on external
knowledge from sources such as Wikipedia. Finally, the dating task is analogous to a clas-
sification problem where a document is classified into a time interval. A possible future
work is to employ different classification methods in determining time of a document.

Future work on terminology changes over time include combining time-dependent
synonyms and temporal language models in order to provide temporal search using a
named entity without having to provide explicitly the time in the query. We will also in-
tegrate our approach for time-dependent synonym discovery with information extraction
techniques that can find additional information in Wikipedia (for example names of pres-
idents at particular points in time). Finally, we want to exploit the detected relationships

Chapter 10. Conclusions 161

together with temporal dynamics of document contents [34] in order to improve relevance
ranking.

Our planned future work on query performance prediction is multifold. First, we
want to find new time-based prediction methods that are more sophisticated than those
we have proposed. For example, we can also consider time uncertainty as an indicator
for query performance. Second, we want to apply time-based post-retrieval prediction
for temporal search. This is because post-retrieval prediction determines a ranked list
of retrieved documents, so in general post-retrieval prediction performs better than pre-
retrieval prediction. In addition, we plan to increase the number of temporal queries used
for analysis and also apply different temporal ranking methods. The most important next
step is when a query is predicted to perform poorly, we want to apply time-based query
expansion in order to improve the overall effectiveness of a temporal search system.

Outlook
The research problems we have addressed are among several problems of searching tem-
poral document collections. Beyond the scope of this thesis, there are still a lot of op-
portunities for further investigation. In the following, we outline two promising topics
for future research: 1) mining user-generated contents, and 2) spatio-temporal ranking
models.

Mining user-generated contents. In recent years, social network services, e.g., Twit-
ter, blogs, and discussion forums, have gained increasing interests. The contents gener-
ated from social networks (called user-generated contents) have increased dramatically,
and challenges when dealing with such data include real-time (stream) data, noisy texts
(unedited language), and dynamic topics/events. An interesting research direction is to
employ our time-aware approaches to mining user-generated contents. One example of
possible applications is Online Reputation Management that is created to monitor social
medias, such as Twitter, in order to detect contents or opinions about an products, people
and organizations [4]. In addition to an opinion mining application, we can also mining
news articles together with user-generated contents in order to predict future events, as
been discussed in Chapter 9.

Spatio-temporal ranking models. This thesis only focuses on temporal queries, that
is, those containing temporal information needs. In some cases, queries may contain
not only time, but also geographic information. For example, a user may search for a
particular event by issuing a query, which is composed of both a location and time. In
recent work [113], Strötgen et al. proposed to use temporal and geographic expressions
in documents’ contents to measure the similarity between documents for a cross-language
retrieval task. Similarly, it is interesting to exploit temporal and geographic information
in ranking. Thus, an interesting research direction is to incorporate both temporal and
geographic information into retrieval and ranking.

162

Bibliography

[1] O. Alonso and M. Gertz. Clustering of search results using temporal attributes. In
Proceedings of SIGIR’2006, 2006.

[2] O. Alonso, M. Gertz, and R. A. Baeza-Yates. On the value of temporal information
in information retrieval. ACM SIGIR Forum, 41(2):35–41, 2007.

[3] O. Alonso, M. Gertz, and R. A. Baeza-Yates. Clustering and exploring search
results using timeline constructions. In Proceedings of CIKM’2009, 2009.

[4] E. Amigó, J. Artiles, J. Gonzalo, D. Spina, B. Liu, and A. Corujo. Weps3 evaluation
campaign: Overview of the on-line reputation management task. In Proceedings
of CLEF (Notebook Papers/LABs/Workshops), 2010.

[5] Apache Lucene. http://lucene.apache.org/.

[6] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. On smoothing and inference
for topic models. In Proceedings of UAI’2009, 2009.

[7] R. A. Baeza-Yates. Searching the future. In Proceedings of SIGIR workshop on
mathematical/formal methods in information retrieval MF/IR 2005, 2005.

[8] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval - the
concepts and technology behind search, Second edition. Pearson Education Ltd.,
Harlow, England, 2011.

[9] K. Balog, L. Azzopardi, and M. de Rijke. A language modeling framework for
expert finding. Inf. Process. Manage., 45(1):1–19, 2009.

[10] K. Berberich, S. Bedathur, O. Alonso, and G. Weikum. A language modeling
approach for temporal information needs. In Proceedings of ECIR’2010, 2010.

[11] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum. Fluxcapacitor: efficient
time-travel text search. In Proceedings of the 33rd VLDB, 2007.

[12] K. Berberich, S. J. Bedathur, T. Neumann, and G. Weikum. A time machine for
text search. In Proceedings of SIGIR’2007, 2007.

[13] K. Berberich, S. J. Bedathur, M. Sozio, and G. Weikum. Bridging the terminology
gap in web archive search. In Proceedings of WebDB’2009, 2009.

163

164 Bibliography

[14] K. Berberich, M. Vazirgiannis, and G. Weikum. Time-aware authority ranking.
Internet Mathematics, 2(3), 2005.

[15] R. Blanco and H. Zaragoza. Finding support sentences for entities. In Proceeding
of SIGIR’2010, 2010.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March 2003.

[17] C. Bøhn and K. Nørvåg. Extracting named entities and synonyms from wikipedia.
In Proceedings of AINA’2010, 2010.

[18] R. C. Bunescu and M. Paşca. Using encyclopedic knowledge for named entity
disambiguation. In Proceedings of EACL’2006, 2006.

[19] J. Canton. The Extreme Future: The Top Trends That Will Reshape the World in
the Next 20 Years. Plume, 2007.

[20] D. Carmel and E. Yom-Tov. Estimating the Query Difficulty for Information Re-
trieval. Morgan & Claypool Publishers, 2010.

[21] Z. Chen, J. Ma, C. Cui, H. Rui, and S. Huang. Web page publication time detection
and its application for page rank. In Proceeding of SIGIR ’2010, 2010.

[22] M. Ciaramita and Y. Altun. Broad-coverage sense disambiguation and information
extraction with a supersense sequence tagger. In Proceedings of EMNLP’2006,
2006.

[23] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online
passive-aggressive algorithms. J. Mach. Learn. Res., 7:551–585, 2006.

[24] B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in
Practice. Addison-Wesley Publishing Company, USA, 1st edition, 2009.

[25] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance. In
Proceedings of SIGIR’2002, 2002.

[26] N. Dai and B. D. Davison. Freshness matters: in flowers, food, and web authority.
In Proceeding of SIGIR ’2010, 2010.

[27] W. Dakka, L. Gravano, and P. G. Ipeirotis. Answering general time-sensitive
queries. In Proceeding of CIKM’2008.

[28] V. de Boer, M. van Someren, and B. J. Wielinga. Extracting historical time peri-
ods from the web. Journal of the American Society for Information Science and
Technology, 61:1888–1908, September 2010.

[29] F. de Jong, H. Rode, and D. Hiemstra. Temporal language models for the disclosure
of historical text. In Proceedings of AHC’2005 (History and Computing), 2005.

Bibliography 165

[30] G. Demartini, A. P. de Vries, T. Iofciu, and J. Zhu. Overview of the INEX 2008
Entity Ranking Track. 2009.

[31] F. Diaz and R. Jones. Using temporal profiles of queries for precision prediction.
In Proceedings of SIGIR’2004, 2004.

[32] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and H. Zha.
Time is of the essence: improving recency ranking using twitter data. In WWW
’10: Proceedings of the 19th international conference on World wide web, pages
331–340, New York, NY, USA, 2010. ACM.

[33] J. L. Elsas and S. T. Dumais. Leveraging temporal dynamics of document content
in relevance ranking. In Proceedings of WSDM’2010, 2010.

[34] J. L. Elsas and S. T. Dumais. Leveraging temporal dynamics of document content
in relevance ranking. In Proceedings of WSDM’2010, New York, NY, USA, 2010.

[35] A. Ernst-Gerlach and N. Fuhr. Generating search term variants for text collections
with historic spellings. In Proceedings of ECIR. Springer, 2006.

[36] A. Ernst-Gerlach and N. Fuhr. Retrieval in text collections with historic spelling
using linguistic and spelling variants. In Proceedings of JCDL, 2007.

[37] Google News Archive Search.
http://news.google.com/archivesearch/.

[38] Google Zeitgeist. http://www.google.com/press/zeitgeist.html/.

[39] T. L. Griffiths. Finding scientific topics. Proceedings of the National Academy of
Science, 101:5228–5235, Jan 2004.

[40] R. Gwadera and F. Crestani. Mining and ranking streams of news stories using
cross-stream sequential patterns. In Proceedings of CIKM’2009, 2009.

[41] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (Second Edition). Springer, 2009.

[42] C. Hauff, L. Azzopardi, and D. Hiemstra. The combination and evaluation of query
performance prediction methods. In Proceedings of ECIR’2009, 2009.

[43] C. Hauff, L. Azzopardi, D. Hiemstra, and F. de Jong. Query performance pre-
diction: Evaluation contrasted with effectiveness. In Proceedings of ECIR’2010,
2010.

[44] C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query performance
predictors. In Proceedings of CIKM’2008, 2008.

[45] C. Hauff, V. Murdock, and R. Baeza-Yates. Improved query difficulty prediction
for the web. In Proceeding of CIKM’2008, 2008.

166 Bibliography

[46] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In
Proceedings of SPIRE’2004, 2004.

[47] J. He, M. Larson, and M. de Rijke. Using coherence-based measures to predict
query difficulty. In Proceedings of ECIR’2008, 2008.

[48] J. Hu, L. Fang, Y. Cao, H.-J. Zeng, H. Li, Q. Yang, and Z. Chen. Enhancing
text clustering by leveraging Wikipedia semantics. In Proceedings of SIGIR’2008,
2008.

[49] The Internet Archive. http://archive.org/.

[50] A. Jatowt, K. Kanazawa, S. Oyama, and K. Tanaka. Supporting analysis of future-
related information in news archives and the web. In Proceedings of JCDL’2009,
2009.

[51] A. Jatowt, Y. Kawai, and K. Tanaka. Temporal ranking of search engine results. In
Proceedings of WISE’2005, 2005.

[52] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings
of KDD’2002, 2002.

[53] R. Jones and F. Diaz. Temporal profiles of queries. ACM Trans. Inf. Syst., 25, July
2007.

[54] P. J. Kalczynski and A. Chou. Temporal document retrieval model for business
news archives. Inf. Process. Manage., 41, 2005.

[55] A. C. Kaluarachchi, A. S. Varde, S. Bedathur, G. Weikum, J. Peng, and A. Feld-
man. Incorporating terminology evolution for query translation in text retrieval
with association rules. In Proceedings of CIKM’2010, 2010.

[56] A. C. Kaluarachchi, A. S. Varde, J. Peng, and A. Feldman. Intelligent time-aware
query translation for text sources. In Proceedings of AAAI’2010, 2010.

[57] N. Kanhabua, R. Blanco, and M. Matthews. Ranking related news predictions. In
Proceeding of SIGIR’2011, 2011.

[58] N. Kanhabua and K. Nørvåg. Improving temporal language models for determining
time of non-timestamped documents. In Proceedings of ECDL’2008, 2008.

[59] N. Kanhabua and K. Nørvåg. Using temporal language models for document dat-
ing. In Proceedings of ECML PKDD’2009, 2009.

[60] N. Kanhabua and K. Nørvåg. Determining time of queries for re-ranking search
results. In Proceedings of ECDL’2010, 2010.

[61] N. Kanhabua and K. Nørvåg. Exploiting time-based synonyms in searching docu-
ment archives. In Proceedings of JCDL’2010, 2010.

Bibliography 167

[62] N. Kanhabua and K. Nørvåg. Quest: Query expansion using synonyms over time.
In Proceedings of ECML PKDD’2010, 2010.

[63] N. Kanhabua and K. Nørvåg. A comparison of time-aware ranking methods. In
Proceeding of SIGIR’2011, 2011.

[64] N. Kanhabua and K. Nørvåg. Time-based query performance predictors. In Pro-
ceeding of SIGIR’2011, 2011.

[65] M. Keikha, S. Gerani, and F. Crestani. Temper: A temporal relevance feedback
method. In Proceedings of ECIR’2011, 2011.

[66] M. Keikha, S. Gerani, and F. Crestani. Time-based relevance models. In Proceed-
ings of SIGIR’2011, 2011.

[67] J. Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of
SIGKDD’2002, 2002.

[68] A. Klose, A. Nfirnberger, R. Kruse, G. Hartmann, and M. Richards. Interactive
text retrieval based on document similarities, 2000.

[69] M. Koolen, F. Adriaans, J. Kamps, and M. de Rijke. A cross-language approach to
historic document retrieval. In Proceedings of the 28th ECIR, 2006.

[70] W. Kraaij. Variations on language modeling for information retrieval. SIGIR Fo-
rum, 39(1):61, 2005.

[71] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais. Understanding temporal
query dynamics. In Proceedings of WSDM ’2011, 2011.

[72] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in recom-
mender systems. In Proceeding of SIGIR’2010, 2010.

[73] V. Lavrenko and W. B. Croft. Relevance based language models. In Proceedings
of SIGIR’2001, 2001.

[74] X. Li and W. B. Croft. Time-based language models. In Proceedings of
CIKM’2003, 2003.

[75] X. Li and W. B. Croft. Improving novelty detection for general topics using sen-
tence level information patterns. In Proceedings of CIKM’2006, 2006.

[76] Y. Li, W. P. R. Luk, K. S. E. Ho, and F. L. K. Chung. Improving weak ad-hoc
queries using wikipedia asexternal corpus. In Proceedings of SIGIR’2007, 2007.

[77] T.-Y. Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr.,
3(3):225–331, 2009.

[78] D. M. Llidó, R. B. Llavori, and M. J. A. Cabo. Extracting temporal references to
assign document event-time periods. In Proceedings of DEXA’2001, 2001.

168 Bibliography

[79] K. E. Lochbaum and L. A. Streeter. Comparing and combining the effectiveness
of latent semantic indexing and the ordinary vector space model for information
retrieval. Inf. Process. Manage., 25(6):665–676, 1989.

[80] The LongRec project. http://research.idi.ntnu.no/longrec/.

[81] C. Macdonald and I. Ounis. Searching for expertise: Experiments with the voting
model. Comput. J., 52(7):729–748, 2009.

[82] I. Mani and G. Wilson. Robust temporal processing of news. In Proceedings of
ACL’2000, 2000.

[83] C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 999.

[84] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

[85] M. Matthews, P. Tolchinsky, R. Blanco, J. Atserias, P. Mika, and H. Zaragoza.
Searching through time in the new york times. In HCIR Workshop on Bridging
Human-Computer Interaction and Information Retrieval, HCIR’2010, 2010.

[86] O. Medelyan, D. N. Milne, C. Legg, and I. H. Witten. Mining meaning from
Wikipedia. Int. J. Hum.-Comput. Stud., 67(9):716–754, 2009.

[87] D. Metzler, R. Jones, F. Peng, and R. Zhang. Improving search relevance for im-
plicitly temporal queries. In Proceedings of SIGIR’2009, 2009.

[88] D. N. Milne, I. H. Witten, and D. M. Nichols. A knowledge-based search engine
powered by wikipedia. In Proceedings of CIKM’2007, 2007.

[89] J. Mothe and L. Tanguy. Linguistic features to predict query difficulty - a case study
on previous trec campaigns. In Proceedings of SIGIR Workshop on Predicting
Query Difficulty - Methods and Applications, SIGIR’2005, 2005.

[90] V. Murdock. Exploring Sentence Retrieval. VDM Verlag Dr. Mueller e.K., 2008.

[91] Mediawiki dump tool. http://www.mediawiki.org/wiki/Mwdumper/.

[92] NewsLibrary search engine. http://www.newslibrary.com/.

[93] K. Nørvåg. Supporting temporal text-containment queries in temporal document
databases. Journal of Data & Knowledge Engineering, 49(1):105–125, 2004.

[94] S. Nunes, C. Ribeiro, and G. David. Using neighbors to date web documents. In
Proceedings of WIDM ’2007, 2007.

[95] S. Nunes, C. Ribeiro, and G. David. Use of temporal expressions in web search. In
Proceedings of ECIR’2008, 2008.

Bibliography 169

[96] New York Times Annotated Corpus.
http://www.corpus.nytimes.com.

[97] Open source natural language software.
http://opennlp.sourceforge.net/.

[98] M. J. Pazzani and D. Billsus. Content-based recommendation systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The adaptive web, pages 325–
341. Springer-Verlag, Berlin, Heidelberg, 2007.

[99] J. Peng, C. Macdonald, and I. Ounis. Learning to select a ranking function. In
Proceedings of ECIR’2010, 2010.

[100] J. Perkiö, W. Buntine, and H. Tirri. A temporally adaptive content-based relevance
ranking algorithm. In Proceedings of SIGIR’2005, 2005.

[101] J. M. Ponte and W. B. Croft. A language modeling approach to information re-
trieval. In Proceedings of SIGIR’1998, 1998.

[102] Recorded Future. https://www.recordedfuture.com/.

[103] S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Journal of
the American Society for Information Science, 27(3):129–146, 1976.

[104] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In Proceedings of SIGIR’1994,
1994.

[105] M. Sanderson. Ambiguous queries: test collections need more sense. In Proceed-
ings of SIGIR’2008, 2008.

[106] N. Sato, M. Uehara, and Y. Sakai. Temporal ranking for fresh information retrieval.
In Proceedings of IRAL’2003, 2003.

[107] R. Schenkel, F. M. Suchanek, and G. Kasneci. YAWN: A semantically annotated
Wikipedia XML corpus. In Proceedings of BTW’2007, 2007.

[108] F. Scholer, H. E. Williams, and A. Turpin. Query association surrogates for web
search: Research articles. J. Am. Soc. Inf. Sci. Technol., 55:637–650, May 2004.

[109] R. P. Schumaker and H. Chen. Textual analysis of stock market prediction using
breaking financial news: The AZFin text system. ACM Trans. Inf. Syst., 27:12:1–
12:19, March 2009.

[110] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-
gradient solver for SVM. In Proceedings of ICML’2007, 2007.

[111] B. Shaparenko, R. Caruana, J. Gehrke, and T. Joachims. Identifying temporal
patterns and key players in document collections. In Proceedings of TDM, 2005.

170 Bibliography

[112] Y. Song, S. Pan, S. Liu, M. X. Zhou, and W. Qian. Topic and keyword re-ranking
for lda-based topic modeling. In Proceeding of CIKM’2009, 2009.

[113] J. Strötgen, M. Gertz, and C. Junghans. An event-centric model for multilingual
document similarity. In Proceeding of SIGIR’2011, 2011.

[114] SuperSense tagger.
http://sourceforge.net/projects/supersensetag/.

[115] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers on large
online QA collections. In Proceedings of ACL-HLT’2008, 2008.

[116] R. Swan and J. Allan. Extracting significant time varying features from text. In
Proceedings of CIKM’1999, 1999.

[117] R. Swan and D. Jensen. Timemines: Constructing timelines with statistical models
of word usage. In Proceedings of KDD Workshop on Text Mining, KDD’2000,
2000.

[118] N. Tahmasebi, K. Niklas, T. Theuerkauf, and T. Risse. Using word sense discrimi-
nation on historic document collections. In Proceedings of JCDL’2010, 2010.

[119] TARSQI Toolkit. http://www.timeml.org/site/tarsqi/toolkit/.

[120] Terrier IR Platform. http://terrier.org/.

[121] Time Expression Recognition and Normalization.
http://timex2.mitre.org/tern.html.

[122] Stanford Topic Modeling Toolbox.
http://nlp.stanford.edu/software/tmt/.

[123] V. Vinay, I. J. Cox, N. Milic-Frayling, and K. Wood. On ranking the effectiveness
of searches. In Proceedings of SIGIR’2006, 2006.

[124] P. Wang, J. Hu, H.-J. Zeng, L. Chen, and Z. Chen. Improving text classification by
using encyclopedia knowledge. In Proceedings of ICDM’2007, 2007.

[125] X. Wang and A. McCallum. Topics over time: a non-markov continuous-time
model of topical trends. In Proceedings of KDD’2006, 2006.

[126] Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum. Timely YAGO: harvesting,
querying, and visualizing temporal knowledge from wikipedia. In Proceedings of
EDBT’2010, 2010.

[127] The Wayback Machine. http://wayback.archive.org/web/.

[128] X. Wei and W. B. Croft. LDA-based document models for ad-hoc retrieval. In
Proceedings of SIGIR’2006, 2006.

Bibliography 171

[129] English Wikipedia completed dump (2008/01/03).
http://www.archive.org/details/enwiki-20080103/.

[130] English Wikipedia snapshots.
http://sourceforge.net/projects/wikipedia-miner/files/.

[131] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. Morgan Kaufmann, 2005.

[132] D. Wu, G. P. C. Fung, J. X. Yu, and Q. Pan. Stock prediction: an event-driven
approach based on bursty keywords. Frontiers of Computer Science in China,
3(2):145–157, 2009.

[133] F. Wu and D. S. Weld. Autonomously semantifying Wikipedia. In Proceedings of
CIKM’2007, 2007.

[134] Y. Xu, G. J. Jones, and B. Wang. Query dependent pseudo-relevance feedback
based on wikipedia. In Proceedings of SIGIR’2009, 2009.

[135] P. S. Yu, X. Li, and B. Liu. On the temporal dimension of search. In Proceedings
of the 13th WWW on Alternate track papers & posters. ACM, 2004.

[136] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for
optimizing average precision. In Proceedings of SIGIR’2007, 2007.

[137] H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and G. Attardi. Ranking
very many typed entities on wikipedia. In Proceedings of CIKM’2007, 2007.

[138] T. Zesch, I. Gurevych, and M. Mühlhäuser. Analyzing and accessing Wikipedia as
a lexical semantic resource. In Proceedings of Biannual Conference of the Society
for Computational Linguistics and Language Technology, 2007.

[139] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

[140] R. Zhang, Y. Chang, Z. Zheng, D. Metzler, and J.-y. Nie. Search result re-
ranking by feedback control adjustment for time-sensitive query. In Proceedings
of NAACL’2009, 2009.

[141] R. Zhang, Y. Konda, A. Dong, P. Kolari, Y. Chang, and Z. Zheng. Learning recur-
rent event queries for web search. In Proceedings of EMNLP’2010, 2010.

[142] T. Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In Proceedings of ICML’2004, 2004.

[143] Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval query performance pre-
diction using similarity and variability evidence. In Proceedings of ECIR’2008,
2008.

172 Bibliography

[144] Y. Zhou and W. B. Croft. Query performance prediction in web search environ-
ments. In Proceedings of SIGIR’2007, 2007.

