
Master of Science in Computer Science
June 2011
Ian Bratt, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

WoolPlot: A Visual Wool Profiler

Peter Hemmen

Problem Description

Following the program execution of a task-based program on a modern
SMP is difficult. No guarantees are given as to how the scheduler will
schedule the tasks, or even if the application will be executed in parallel
at all. To help a programmer understand the flow of an application and
get ideas for which areas are worth improving, a parallel profiler may
prove very useful.

The focus of this thesis is to implement some new profiling capabilities
for Wool, a C-library being developed at SICS. This is a young,
open-source library which is built to support very fine-grained
parallelism. The student will have to decide on what type of profiling to
create, such as whether the data-gathering will be statistical or
instrumentation-based.

The task will include creating a graphical user interface which will help
both an implementer of Wool and a regular user understand what is
happening in the execution of a Wool program. Some natural elements
to display in the GUI are steals, spawns and critical path, however, how
the GUI will look and what it should include will be established at a
later stage in the project. The task should include reporting on how the
profiler performs on several different benchmarks, as well as measuring
the overhead incurred by the profiler.

Assignment given:
Supervisor:

17. January 2011
Ian Bratt

Abstract

Task-based programming involves creating tasks, which can be run
independently of each other, and letting the run-time system schedule
the tasks on the underlying architecture. Wool is a new library for task-
based programming created at SICS in Sweden. To assist a developer
who is using Wool to parallelize a program, as well as the scientists who
are actually developing Wool, a profiler which shows what happened in
a computation can be very helpful.

In this project we modify the Wool library to print more data about
its computations. When the output is given to a Java application also
developed in this project, the Java application produces a graphical
representation of the execution. Each worker thread is visualized
separately, with spawns, steals, leaps, critical path and CPU usage
information included at a position corresponding to when the events
actually occurred.

The profiler, which we have named WoolPlot, is put to the test using
a few real-world benchmarks, as well as some created especially for this
project. The benchmarks show that WoolPlot works well when describing
the distinct events such as steals and spawns. The reporting on the CPU
load is too inaccurate to be sufficient for all practical uses. The overhead
of the profiler is estimated to be between 3% and 6%.

Contents

1 Introduction 1

2 Parallelism and Wool 3
2.1 Parallel computations . 3

2.1.1 Parallel Programming Models 3
2.2 Task Based Programming . 4

2.2.1 Work-stealing . 6
2.2.2 Task-based programming style 7
2.2.3 Other task based programming models 8
2.2.4 Wool . 9
2.2.5 Direct and continuation passing style 12

2.3 Wool specifics . 14
2.3.1 Programming . 16
2.3.2 Building . 17
2.3.3 Running . 17
2.3.4 Built-in logging . 17

3 Profiling 21
3.1 Data gathering . 21

3.1.1 Measurement-based profiling 22
3.1.2 Statistical profiling . 23

3.2 Types of output . 23
3.2.1 Flat profile . 24
3.2.2 Call graph . 25

3.3 Online vs. offline . 26
3.4 Parallel Profiling . 26
3.5 Related work . 28

3.5.1 gprof . 28
3.5.2 OProfile . 29

i

3.5.3 Intel VTune . 30
3.5.4 AMD CodeAnalyst . 30
3.5.5 ompP . 31
3.5.6 Google CPU Profiler 33
3.5.7 Cilkview . 33

4 Implementation 37
4.1 Data collection . 37

4.1.1 Steals and leaps . 39
4.1.2 Spawns . 39
4.1.3 CPU usage . 40
4.1.4 Wool versions . 44
4.1.5 C Preprocessor macros 44
4.1.6 C macros used in this project 46

4.2 Java UI . 46
4.2.1 Visualization . 46
4.2.2 Implementation . 51
4.2.3 Timing . 53
4.2.4 Critical path . 57

5 Results 59
5.1 Hardware . 59
5.2 Benchmarks . 59

5.2.1 Sorting . 60
5.2.2 Nqueens . 62

5.3 Artificial benchmarks . 62
5.3.1 Unoptimized merge sort 65
5.3.2 Stealable tasks . 65
5.3.3 Leapfrogging . 67

5.4 Time impact . 70
5.4.1 Profiler . 70
5.4.2 Spin function . 73

6 Conclusions and Further Work 75
6.1 Conclusion . 75
6.2 Further Work . 75

6.2.1 Output format . 75
6.2.2 Profiling Specific Sections 76
6.2.3 Hardware Counters 76

ii

6.2.4 Other ideas . 76

References 79

A Detailed documentation A-1
A.1 Data format . A-1

iii

iv

List of Figures

2.1 Schematic drawing of a task run-time 7
2.2 The concept of leapfrogging 12
2.3 The idea behind parking . 13
2.4 The basic spawn-call-sync pattern in Wool 14
2.5 Pseudo code describing continuation passing 14
2.6 Illustration of continuation passing 15
2.7 Output produced by setting the COUNT EVENTS com-

piler flag . 20
2.8 An excerpt of the output produced by setting the

LOG EVENTS compiler flag 20

3.1 A call graph generated by the Google CPU profiler 27
3.2 The threading timeline from the Locks and Waits in Intel

VTune Amplifier XE 2011 . 31
3.3 The threading timeline from AMD CodeAnalyst 32
3.4 The concept of critical path 34
3.5 Cilkview’s output for compressing a 28MB file using bzip2 36

4.1 An overview of the profiling stages 38
4.2 Detail view of the visualization of steals and leaps 47
4.3 Closeup of a few spawns, with an active popup 48
4.4 A detailed screenshot of CPU usage painting 48
4.5 A zoomed view of how the critical path is painted 49
4.6 An overview of how the GUI looks when viewing an entire

computation . 50
4.7 A simplified class diagram of the Java application 52
4.8 Schematic overview of the different GUI components 55
4.9 Early version of the GUI . 56

v

5.1 Profile result when sorting 100 million integers using the
BOTS sort . 61

5.2 Nqueens(11) with spawns painted 63
5.3 Nqueens(11) without spawns painted 64
5.4 Unoptimized merge sort . 66
5.5 Stealable tasks benchmark with the default amount of

stealable tasks . 68
5.6 Stealable tasks benchmark with 100 stealable tasks 69
5.7 Leapfrogging application . 71

vi

Chapter 1

Introduction

Task-based programming is indeterministic in nature, because the actual
scheduling of the work is left to the run-time system. It is often
difficult for a programmer to know just what actually happened when
an application was executed. Parallel programs might not be as parallel
as one had expected, or they might not scale appropriately when run on
many processors. By showing what actually happened in a run, software
profilers will often be able to help a developer with discovering and
resolving such issues.

Wool is an open-source C-library for task-based programming created
at SICS especially to support very fine-grained parallelism. A parallel
Wool run will always include spawns and steals. The threads involved
in the run will steal spawned tasks and then eventually spawn their own
tasks from the stolen tasks. These events realize the actual parallelism in
the application.

Recording these events and visualizing them has been the main goal of
this project. This report will provide the background information needed
to understand the challenges met in this project, as well as describe
the implementation and testing of the profiler, which has been named
WoolPlot.

Outline

Chapter 2 provides a background look at parallelism in general, with
a special focus on task-based programming. To prepare for the
implementation chapter, some quite specific background info about the
Wool library is also included.

1

In Chapter 3, a brief, general background on software profiling is
given. In addition, it includes example output and screenshots from
many of the profilers which have inspired us when designing WoolPlot.

The implementation is described in detail in Chapter 4. This chapter
will explain how the Wool source code was modified, how the Java
application was created, and how both parts tie together to create a
profiler.

To see how WoolPlot performed, several programs are briefly
explained and profiled in Chapter 5. These include both real-world
benchmarks, as well as a few proof-of-concept applications made
especially for this project.

Finally, Chapter 6 summarizes the project and outlines ideas for
further improvements of WoolPlot.

2

Chapter 2

Parallelism and Wool

2.1 Parallel computations

Parallel programming has in later years stepped out of large-scale clusters
and into the mainstream consumer market. As the traditional, single-
cored processor hit the power wall, CPU manufacturers have instead
started placing more, albeit less powerful cores on the chips [1]. To
maximize execution speed, a programmer has to utilize as many of these
cores as possible. This type of chip-level multiprocessing is what this
report will deal with.

2.1.1 Parallel Programming Models

Message passing and shared-memory programming are the two main
areas of parallel programming. The former is typically reserved for
large clusters of powerful nodes performing large-scale calculations.
Multi-parameter scientific simulations such as weather forecasting and
analyzing geological models in search for oil are some characteristic
uses. Shared-memory programming is typically more attractive to
programmers because of the easier handling of data [2]. For the everyday
computer user, it is also a much more important area of research.
More and more home computers have two or more processing cores,
and the very latest development has even seen multi-cores enter the
mobile phone-market, with the first ever mainstream dual-core mobile
phone being the LG Optimus 2X [3]. Clearly, creating easy ways for a
programmer to parallelize code is a challenge with large implications.

3

Shared memory

Unsurprisingly, shared memory programming refers to computations
where several processing cores share some level of the memory hierarchy.
This does not necessarily mean, however, that there is few processors
involved. The biggest Tile-Gx processor from Tilera has no less than 100
symmetric cores [4]. When many processors have access to the same
data, great care has to be taken to avoid such problems as data races
and deadlocks. In addition, depending on what programming model
is used, the different threads might have to be managed explicitly by
the programmer. On the other hand, because processors always have
access to a level of the cache or the main memory, the user does not need
to worry about explicit communication. Among the most widely used
shared memory programming models are POSIX threads and OpenMP.

Message passing

Some calculations are so large and time-consuming that they have to be
performed by many computers put together in a cluster. In order to
accomplish this, a programmer has to explicitly specify what data is to be
sent around, and also make sure that the data is sent back and aggregated
correctly. The different processors communicate by sending messages,
and programmers have to take care to avoid deadlocks. The most
widespread model for message passing programming is MPI (Message
Passing Interface).

2.2 Task Based Programming

This project will involve working with Wool, which is a library for task-
based programming. Task-based programming aims to simplify shared-
memory programming by removing some chores from the programmer.
The developer has to specify what parts of the code are independent. The
scheduler, or run-time system, will then take care of sharing the work
between all available processors. What this means, is that a programmer
will not have to tailor the code to fit any specific architecture. He or
she should be confident that the work will be well balanced on whatever
system the code eventually is run on.

Some advantages of task based programming are summarized in the
following list:

4

Fine-grained Thread switching is slower than task switching. By keeping
a thread running and just giving it more work to do, task-based
programming minimizes switching in and out entire threads. Due
to this, programs can be more fine-grained. In the TBB tutorial [5],
Intel states that starting and terminating a task is about 18 times
faster than doing the same operations for a thread. Those figures
apply to Linux systems. Under Windows, the number overshoots
100.

Portable and scalable The programmer does not have to adapt a pro-
gram to the underlying architecture. The task scheduler takes care
of that automatically, and programs should scale to exploit all avail-
able hardware.

Efficient load balancing Rather than dividing the problem equally
among all processors explicitly, a programmer should be able to
focus on solving the other programmatic challenges. The scheduler
takes responsibility for sharing the work. Furthermore, traditional
threaded programming models typically use the operating system’s
fair scheduler to allow every thread some running time. The task-
based scheduler can act independently of these restrictions, and
may therefore be able to schedule the calculations in a more effi-
cient manner.

Task abstraction Task-based programming aims to free the programmer
of such troubles as mapping the computation to the hardware
or consider data races and deadlocks. Thinking in tasks, and
specifying them in code, should be an easier approach to parallel
programming.

Fitting for asymmetric multiprocessors In an interesting paper, Hill and
Marty argue that asymmetric multi-cores might be a viable way to
achieve more speedup from multiprocessors [6]. This is due to the
fact that there often will be some large un-parallelizable part of a
program which should be run on the fastest CPU core possible to
limit how much it dominates the computation. Given a scheduler
which is aware of the architecture [7, 8], task-based programming
may very well be a fitting way to utilize such a system.

5

2.2.1 Work-stealing

It appears that the most common scheduling technique for task-based
programming is work-stealing. It was proposed as early as in 1981 [9],
but Blumofe and Leiserson gave the “first provably good work-stealing
scheduler for multi-threaded computations with dependencies” [10] in
their 1999 paper. The authors also participated in creating Cilk, which
is a task-based programming language based on C. Unsurprisingly, it
employs work-stealing for scheduling the tasks. The following is a brief
introduction to how their algorithm works.

In their paper, Leiserson and Blumofe use processors and threads
where we would use threads and tasks. For this section, we will use
threads and tasks to make it fit with the rest of the thesis. A precondition
for the description is that the scheduler makes sure that each processor
has one thread running on top of it, ready to work on tasks.

Each thread keeps its tasks in a double-ended queue, often called
deque. A task can only be added to the bottom of a deque, but it can be
removed from either end. Adding and removing tasks from the deques
are governed by the four rules which dictates how a thread should behave
when a task spawns a child, stalls, dies or re-enables a stalled task.

If a task spawns a child, the work in that task has to be completed
before the spawning task can continue. The spawning task is thus put
back on the bottom of the deque, and the thread begins work on the
newly spawned task. When a task stalls due to waiting on a dependency,
or dies because it is finished, the thread needs more work. It will first
look to its own deque and remove a task from the bottom if there are any
present. If the deque is empty, the thread will try to steal a task from
the top of a randomly chosen thread’s deque. It will continue to do so
until it is successful. The last of the four rules concerns whenever a task
enables a stalled task. The recently enabled task should then be added to
the bottom of the deque of the thread which enabled it.

It is interesting to note that all the parallelism comes from the stealing.
The threads themselves are responsible for fetching more work, and as
long as there are enough parallelism available in the form of tasks, the
threads will be kept busy. Another appealing quality is the inherent
cache-friendliness of the deques. A thread which spawns a task will
always try and execute it right away, while the cache is hot. The tasks
at the top of the deques are always the oldest tasks in the deque. This
means that if a task is stolen, it will most likely have the least cache-wise

6

impact on the thread it was stolen from, because the thread might have
spawned and executed many tasks since it was first created.

Figure 2.1 shows a schematic drawing of a task runtime taken
from [11]. The figure illustrates the point of having dedicated worker
threads is to avoid thread switching, and instead rely on the much faster
task switching.

Task queue

Core Core Core Core

Thread Thread Thread Thread

Oldest task

Newest task

Oldest task

Newest task

Oldest task

Newest task

Work Work Work

StealTask queue

Task queue

Task queue

Stolen task

Work

Figure 2.1: Schematic drawing of a task run-time

2.2.2 Task-based programming style

A common pattern in task-based programming is letting tasks themselves
spawn tasks. For example, Intel calls this “Recursive Chain Reaction” in

7

their tutorial for TBB [5, p. 71]. If a programmer wants to iterate over
an array using tasks, there are two main ways of doing this. Either, the
“root“ task can spawn all the other tasks, which each gets a piece of the
array, or the root task can spawn two tasks, which each gets half the
array. Those will in turn do the same with their part, and the parts will
eventually be small enough to just iterate through in the leaf nodes of the
task tree which has now been created.

On the surface, these two approaches look quite similar, they will
perform the same job, but the first will create fewer tasks, and should
even be easier to program. Because of the way a work-stealing scheduler
works, however, the second approach is far superior. Say a task can be
created in one timestep, and n tasks should be created, the first approach
will use n timesteps to create the tasks. If we assume a perfect parallel
execution, the recursive way will be able to spawn n tasks using only
O(lg n) timesteps1.

An even more important issue, is that of balancing the load. When
the root task spawns a task in the first timestep, no other threads will
have any work to do, and one of them will steal the newly spawned
task. Using the recursive scheme, the two active tasks will now each
spawn a task, resulting in two new tasks which can be stolen. In the
linear scheme, however, the first stolen task will not spawn another
task, so there will only be one new task to steal in the next timestep.
Considering that there has to be locking involved whenever a thread tries
to steal work, to avoid two threads stealing the same task, the overhead
of this approach cannot be ignored. Furthermore, in many work-stealing
schedulers, threads in need of work will try to steal from random threads.
This will undoubtedly cause many unnecessary steal attempts, seeing as
there is only one thread actually spawning new tasks.

2.2.3 Other task based programming models

There are several publicly available task based programming models.
Intel is using a lot of resources on parallel computing, and they offer
both Intel Cilk Plus [12] and Threading Building Blocks. Some other well
known include OpenMP, in which tasks were supported from version
3.0 [13], SMPSs [14] and Grand Central Dispatch (GCD) from Apple.

For many of the task based programming models designed for SMPs,

1Unless otherwise stated, lg n is a short form of log2 n.

8

the work-stealing scheduler employed in Cilk seems to be an inspiration.
To name a few, both TBB, SMPSs and Wool uses very similar scheduling
as Cilk.

2.2.4 Wool

Wool is a relatively young library being developed mainly by Karl-Filip
Faxén at The Swedish Institute of Computer Science (SICS). With the
current version being 0.1.2alpha, it is mostly a research tool, and by
no means a finished product. According to Faxén, the objective of the
library is “to provide a reasonably convenient programming interface
(in particular not by forcing the programmer to write in continuation
passing style) in ordinary C while still having a very low task creation
overhead.” [15]. This is accomplished by using macros extensively and
utilizing pthreads for the actual parallelism. In addition, inline functions
and a few lines of inline assembly are used [16].

Performance

According the user guide, “[Wool’s] performance is competitive with
that of Cilk and the Intel TBB, at least in terms of overhead.” [17]. As
this implies, the overall performance of the library has not been the
main focus of the developers, which an early paper describing Wool also
shows [15]. Nonetheless, a more recent comparison between OpenMP
3.0, Cilk++ and Wool, shows Wool to actually perform quite well [16].

Use

To create a task in Wool, one will have to define it using one of the pre-
made macros. By default, Wool creates macros for tasks with and without
a return value and a maximum arity of 10. A task is invoked with the
keyword spawn, and the return value is collected using the keyword sync.
A call to sync will block if the task has not yet returned, thus acting as
a barrier to make sure execution does not go forward with undefined
variables. There is also a call keyword, which is just a shorthand form of
both spawn and sync, which makes the direct invocation of a task more
efficient and cleaner. A more thorough explanation and some pseudo
code examples can be seen in Section 2.2.5 on page 12.

9

As with most task-based programming models, creating a task is
equivalent to marking the piece of code as something which can be run in
parallel. If there are worker threads which have no work, the task can be
stolen, but if there are no free worker threads, or if the system simply only
has one processor core, the task will eventually be executed by the thread
which spawned it. The task is then said to be in-lined. In practice, most
tasks will be in-lined, and this should happen very quickly, so that there
is no reason to use a normal function call rather than spawning a task.
Ideally, there should also be very low overhead for tasks which are stolen
as well. Wool has indeed a very low spawning and syncing overhead
(orders of magnitude better than TBB, Cilk++ and OpenMP [18]). This
allows a programmer to create as many tasks as possible, and be confident
that the execution will be fast no matter the actual size of the system it
will run on.

Like OpenMP and Intel TBB, Wool also provides a way to quickly
parallelize a for-loop with independent instructions, through a separate
for construct. The Wool parallel for-loops requires the programmer to
specify a loop body, which is what is done in one iteration of the loop.
The parallel for-loops in Wool have not been used in this project. Because
the for-loops are built using the other macros, however, programs using
them can be profiled in the same manner as programs built using regular
syncing and spawning directly.

Implementation

The driving force behind Wool, Karl-Filip Faxén, has written a paper in
which he explains some of the finer points of Wool’s implementation [15].
For this discussion, it is important to remember that there usually
is exactly one worker thread per CPU core, so a worker is virtually
analogous to a CPU core.

An interesting implementation issue is what a worker should do when
it tries to sync a task, and discovers it has been stolen. If it steals some
work from another random worker, it will have something to do, but it
might create another issue. If a worker (X), which discovers that the task it
tries to sync has been stolen by worker (Y), steals work from another task
(Z), X might be busy when Y completes the task it stole. In this scenario,
the code after the task X initially tried to sync will be ready to execute,
but because X is busy executing other tasks, it can not be executed until
X returns. Also, because it cannot be spawned by any worker other than

10

X, it can not be stolen. If there is an abundance of exposed parallelism
in the computation, so that each worker is busy anyway, this might not
matter. Generally, however, it is not desirable to have code which is ready
to execute, without a worker able to execute it.

One of the ways to avoid this situation, originally proposed by Wagner
and Calder [19], is leapfrogging. When the worker X, which tries to sync,
finds that the task has been stolen, it is only allowed to steal from the
worker, Y, which stole the task it was trying to sync. Because Y had no
other tasks when it stole from X, the only tasks it will have to steal will
have been created by the task it stole from X. These tasks will have to be
completed before the original task can be synced anyway, so both tasks
are now working towards the same goal. In addition, there is no way
that Y will complete the original stolen task while X is still busy working
on something, so the time when there is code ready to execute and no
worker to execute it should in theory be significantly reduced. Figure 2.2
on the following page taken from [20] should help explain this concept.
Core A tries to sync task T1, and finds that Core B has stolen it. Instead of
just waiting, or stealing from any other worker, it steals from the worker
which stole the task it was trying to sync. That way, completing T1 should
go faster, and as little time as possible is wasted.

Another technique to reduce the waiting time of workers in this
situation is to just switch the entire worker thread. By having more
threads than cores, there will always be another thread which can be
switched in when a worker must wait on a sync because the task was
stolen. Modern thread schedulers can typically accomplish this with
quite low overhead. However, just having more threads than cores and
letting the thread scheduler handle the switching itself will most likely
lead to threads being switched back and forth too often, causing bad
cache use. Parking, which Faxén introduces as a novel technique, is
a compromise between letting the thread scheduler handle it and the
standard approach to task-based programming, where each core has
exactly one worker thread. When parking is used, there is more threads
than cores, but in regular execution, only one thread is used per core,
and the others are blocked, or parked. When a worker thread reaches a
stolen sync, it will unblock a parked worker thread and go to sleep while
it waits for the sync to complete. When the sync completes, there will
be one more active thread than there are cores, but when a thread has
nothing to do, it will check if there are too many active workers, and
either block itself or try to steal work as usual. We have tried to explain

11

Figure 2.2: The concept of leapfrogging. Core A finds a task stolen, and
steals from Core B, which stole the task.

the concept in Figure 2.3 on the next page.

2.2.5 Direct and continuation passing style

Whenever a task is spawned, it has to be synced at some point. The
straightforward way of handling this is forcing the task which spawned
a task to also sync it. This might however cause some problems when the
task it is trying to sync has been stolen in the meantime. To show why this
can happen quite easily, the pseudo code in Figure 2.4 on page 14 shows
how a task normally spawns two new tasks in Wool. The spawn puts the
task in the worker’s task pool, allowing other tasks to steal it while the
worker works on the task invoked by the call expression. Remember
that call is equivalent to invoking spawn directly followed by a sync.

To avoid ending up in the situation where a task is stolen before
it can be synced, there is a task-based programming technique called
continuation passing. This is not implemented in Wool, but is described
here because of its use in other task-based programming models. In fact,
the developer has made a point of the fact that programmers are not
forced to use continuation passing style when programming in Wool [15,

12

Task

Worker B

Task

Task

Worker C

Task

Task

Worker A

Tries to sync
a stolen task

Task

Worker B

Task

Task

Worker C

Task

Task

Worker A

Parks itself and
enables Worker C

Task

Worker B

Task

Task

Worker C

Task

Task

Worker A

Sync is now
complete

Worker B

Task

Task

Worker C

Task

Task

Worker A

When it has no
more work, it checks
the number of workers
and parks itself

4

2

3

1

Figure 2.3: The idea behind parking. The figure shows just one of the
CPU cores involved in a computation. Worker B tries to sync task which
has been stolen by a worker on another CPU core. It parks itself and
enables Worker C. When the task which Worker B originally tried to sync
is completed, Worker B is unblocked and completes the syncing. At that
point, there are two workers active on one core, but as soon as one of
them, here Worker B, is idle, it blocks itself instead of trying to steal more
work.

13

1 spawn SomeTask(parameter)
2 call SomeOtherTask(parameter)
3 sync SomeTask

Figure 2.4: The basic spawn-call-sync pattern in Wool

p. 1].
The point of continuation passing is to spawn a new task which

becomes the “parent“ of the other spawned tasks, and thus handles the
syncing when they return. This way, the task which spawned the new
tasks will not still be active while the other tasks are executing. It will
instead have synced with the task that spawned it, and the worker thread
will be free to work on other things. Figure 2.5 depicts in pseudo code
how this might look in a language similar to Wool. None of the calls
to spawn will block, so the task will just spawn off the three tasks and
return. The continuation task is spawned just like the others, so it can also
be stolen by another worker to help balance the load. Taken from [11],
Figure 2.6 on the facing page illustrates the idea graphically. Where it
is supported, continuation passing might provide a speedup, but it is a
bit harder to program, and that is exactly why Wool does not force the
programmer to write in this style [15].

1 spawn SomeTask(...)
2 spawn SomeOtherTask(...)
3 spawn ContinuationTask(SomeTask, SomeOtherTask)
4 return

Figure 2.5: Pseudo code describing continuation passing

2.3 Wool specifics

This section will describe in detail how to program, build and run
applications using Wool, as well as describe the logging features already
present in Wool.

14

SpawnSpawn SpawnSpawn

Parent

Parent

Spawn

Parent

Parent
Parent

Parent

Continuation task

Continuation task

Parent
Parent

Original task Original task

Child task Child task
Child task Child task

Child task
Child task

3

1 2

Figure 2.6: The parent spawns off the children, and also a task which is
the new parent of the children.

15

2.3.1 Programming

Because Wool needs to read arguments and set up worker threads before
starting the program, it has defined the main function. After performing
the needed setup, it will invoke the task called main. Instead of creating
the normal main function, a programmer has to create a main task, which
should look like this:

TASK_2(int, main, int, argc, char **, argv)

{

...

}

A common usage example for task based programming languages is
the well-known Fibonacci example. Listing 2.1 shows a simple Fibonacci
example written in Wool.

Listing 2.1: A simple Fibonacci example in Wool
1 TASK_1(int , pfib , int , n)

2 {

3 if (n < 2) {

4 return n;

5 } else {

6 int a, b;

7 SPAWN(pfib , n-1);

8 a = CALL(pfib , n-2);

9 b = SYNC(pfib);

10 return a + b;

11 }

12 }

13

14 TASK_2(int , main , int , argc , char **, argv)

15 {

16 int n = 35;

17 int result = CALL(pfib , n);

18 printf("pfib(%d) = %d\n", n, result);

19 return 0;

20 }

16

2.3.2 Building

When downloading Wool from the project’s website [18], the archive
includes many C-files, but they are mostly example programs. Other
than the Makefile, the only important program files are wool.c and
wool.sh. The point of wool.sh is to generate wool.h, which contains
the task definition macros for the tasks and loop body macros. An input
parameter <n> specifies the maximum arity of the tasks and loop body
macros. If the file does not already exist, the Makefile will by default run
the shell script with 10 as input parameter, creating tasks with arity 1 to
<n> and loop body macros for arity 0 to <n-2>. wool.c defines most of
the runtime, and also contains the main(). The point is then to compile
the wool.c to a .o-file and link it to the program. In addition, Wool uses
POSIX threads (pthreads) to manage the threads, so the pthread library
will also need to be linked to the main program. The README file
included in the Wool archive suggests the following typical command
line:

gcc -pthread -O3 -o foo foo.c wool.o

2.3.3 Running

Wool defaults to using only one worker thread, so if the point is to do
a parallel run, one has to specify the number of workers to be started
with a -p <n> flag, where n is the number of workers to be started. This
default value is stated in the Wool users guide [17].

Other useful input parameters to Wool include an s for specifying the
number of stealable tasks in each worker’s task pool, and a t to set the
initial size of each worker’s task pool. The first parameters passed to the
program will be used by Wool if they are recognized, and the rest will be
passed to the main task of the program.

2.3.4 Built-in logging

There is already some logging implemented in Wool. When Wool is
compiled with the environment variable COUNT EVENTS set, Wool will
count all the Wool-specific events such as steals, leaps, spawns, steal
attempts, spins and such, and write a summary to stderr when the
execution is done.

17

In order to get even more detailed information, one can compile Wool
after setting the variable LOG EVENTS. In this case, many important events,
and a timestamp for when they happened, are written out to stderr after
the execution.

Naturally, LOG EVENTS has a bigger impact on the running time
than COUNT EVENTS. LOG EVENTS saves much more data, and each
event will also trigger a call to a function to create a timestamp.
COUNT EVENTS, on the other hand, will mostly increment integers, and
there is no timing involved.

While this information could have been used as a basis for the Java
application created in this project, it was considered better to instead
write new code to collect and write out the needed information. That
way, only the information needed would be printed, and the data format
could be easily chosen. In addition, the logging code already present
was a nice help when trying to understand the Wool source code. For
instance, the number of spawns are clearly listed, so it was easy to check
whether the new code actually wrote out all the spawns.

COUNT EVENTS focuses on 7 different events. The type of event
and the timestamp are saved in the pre-allocated array of the worker
the event happened to, and each event is written out in the following
format: EVENT [worker] [type of event] [timestamp]. For sufficiently
long runs, the file with the event logs will quickly become very large. It
is not unusual to see files with over five million lines, which consumes
over 150MB of disk space.

A ’1’ is a signal that a steal was completed successfully. The next
step is obviously executing that task. A ’2’ is output when a worker
has completed executing a stolen task, and all the tasks spawned from
that task. This typically means that it has no more work and has to try
and steal a new task. ’3’ is signalled when a worker has tried to sync a
stolen task and starts leapfrogging to keep busy while the task is being
completed. When the worker is done leapfrogging, typically because the
task it was waiting for is completed, it signals a ’4’. Every spawn is
marked by a ’5’, while a ’6’ means that a task is synced. A number
over 100 is output each time a worker tries to steal a task. The victim
of the steal can be seen by reading the two last digits. These events are
summarized in Table 2.1 on the next page.

Figure 2.7 on page 20 shows the most important part of the output
COUNT EVENTS produces. As we can see, the run seems pretty well
parallelized, where all 12 worker threads have spawned over 100 tasks

18

Event Description
1 Successful steal (or leapfrog)
2 Execution of stolen task (and all subtasks) completed
3 Leapfrog starts
4 Leapfrogging is done
5 Spawn
6 Sync
1xy Attempt to steal from worker xy

Table 2.1: The different events created by LOG EVENTS and their
descriptions

each. As usual, worker 0 does not steal any tasks, but it actually performs
the most leapfrogs of all the workers.

A very small part of the type of results generated by LOG EVENTS
are show in Figure 2.8 on the next page. In this excerpt, worker 0 (the
worker that starts the whole computation) syncs two tasks, then signals
that it starts leapfrogging, and attempts to steal from worker 1. The steal
attempt was successful, which is signaled by outputting a 1. The worker
then starts to spawn new tasks from the task it just stole. The timestamps
are in nanoseconds, collected using sys/time.h, for which the resolution
is dependent on the system. On the system used in this example, the clock
does not have a high enough resolution to record nanoseconds, which is
why every timestamp ends with three zeros.

A program trace like the one created by LOG EVENTS is dependent
on very accurate timing. Since the different threads will each save
timestamps, the clocks are synchronized at the start of the run, and
how much each clock was corrected is written out at the very start of
the LOG EVENTS output. Our experience suggests that the corrections
are usually very small (a few microseconds) on the systems used in this
project, but even a small offset might cause big misunderstandings about
the program flow, so correct timing is crucial.

19

SIZES Worker 256 Task 128 Lock 40

Worker Spawns Inlined Read Wait St tries Steals L tries Leaps Spins

STAT 0 207 175 6 26 0 0 528489 23 0

STAT 1 180 147 8 25 2470 17 528279 23 41082

STAT 2 124 94 12 18 2475 18 598159 8 41159

STAT 3 132 95 8 29 2565 17 149858 21 40680

STAT 4 100 79 10 11 2516 20 411732 9 41268

STAT 5 163 133 5 25 2486 11 377852 19 40805

STAT 6 369 341 7 21 2418 17 526777 20 41093

STAT 7 167 140 10 17 2486 13 228528 8 40601

STAT 8 193 163 5 25 2510 22 590612 15 41466

STAT 9 120 84 9 27 2467 22 514256 13 41561

STAT 10 134 97 5 32 2462 15 706427 13 40866

STAT 11 159 129 3 27 2499 12 287296 15 40895

ALL 2048 1677 88 283 27354 184 5448265 187 451476

Figure 2.7: A part of the output from a sorting run on Kongull after
setting the COUNT EVENTS compiler flag. Many interesting statistics
are reported, but there are no timing associated with them.

EVENT 0 6 5913967000

EVENT 0 6 5916513000

EVENT 0 3 5916514000

EVENT 0 101 5916516000

EVENT 0 1 5916516000

EVENT 0 5 5916518000

EVENT 0 5 5916519000

EVENT 0 5 5916519000

Figure 2.8: An excerpt of the output produced by setting the
LOG EVENTS compiler flag. Each event has which worker it relates to,
the type of event, and a timestamp.

20

Chapter 3

Profiling

For anything other than trivial computer programs, following the
program flow and understanding where most of the time is spent might
quickly become very difficult. Profilers can help programmers with both
these problems, and in some cases they can also clarify why a particular
section code consumes the time it does.

Creating these profilers can be very challenging. The goal is to collect
extremely accurate and detailed information, while at the same time
effecting the execution of the program being profiled as little as possible.
As with many other things, computer programs will almost invariably
act differently when it is being observed. Designing computer profilers
will then inevitably involve a decision of where to compromise between
accuracy and intrusiveness.

3.1 Data gathering

There are two main ways of collecting the data needed to create a useful
output. Measurement-based profiling involves instrumenting the code so
that it will report on its own execution. Statistical profiling, or sample-
based profiling, will generally not modify the program, but will instead
collect information by observing the system at specified times during
execution. Both methods will introduce some overhead, but in general,
the first method is both more accurate and costly in terms of overhead,
whereas the second will be less intrusive and also less accurate.

21

3.1.1 Measurement-based profiling

To perform measurements on a piece of code, one will need to alter the
execution in some way. Among the ways to do this are to use some sort of
automatic tool to alter the source code, changing the code yourself, using
the compiler to do it or running the entire program from inside another
program.

Regular statistics provided by profilers are how many times each
procedure is called, and how much time is spent in each procedure.
For the first statistic, a straightforward way of calculating this number
is just creating a counter variable for each procedure in the program
and inserting code which increments the appropriate counter at the start
of each procedure. Similarly, one can keep track of the time used in
a procedure by collecting a timestamp at the very start and end of a
procedure and then subtracting the two [21]. This will give an accurate
time, but on most modern systems, the time will not be correct because
of the multi-tasking operating systems which preempts processes on a
regular basis.

For any programs of some size, the relatively uncomplicated methods
mentioned above might soon be very time-consuming. One will always
want to keep the overhead to a minimum, and one way to reduce it is to
focus on basic blocks. Allen defines a basic block this way [22]: “A basic
block is a linear sequence of program instructions having one entry point
(the first instruction executed) and one exit point (the last instruction
executed).” There can never be conditional jumps inside a basic block,
so one can be certain that when a serial program has executed the first
instruction, it will have to execute the last instruction in the basic block
before it can do anything else. For counting how many times each basic
block is executed, Ball and Larus have found the optimal way of selecting
where the counter increments should be placed [23].

Hardware performance counters are also used by many profilers.
These are dedicated registers on most modern processors, which keep
track of many hardware events, such as instructions executed, cache
misses and instruction stalls. By utilizing these, more precise data can
be collected in a cheap way [24].

Measurement-based profiling can provide very accurate data, albeit at
a higher cost than statistical profiling in general, because instrumentation
will always incur an overhead. In addition, it is good for focusing on
a specific part of code, when one already has an idea of where to look.

22

Different types of instrumentation will also measure different aspects of
a program, so the profiler can be suited according to what one is looking
for.

3.1.2 Statistical profiling

The basic idea behind statistical profiling is to collect samples about
some part of the system at regular intervals, and create statistical
approximations of what is happening based on those. The program
counter, or instruction pointer, will for example show what instructions
are being performed at any given time. A straightforward way of creating
a statistical profiler is to sample the instruction pointer often, and then
approximate the time for each instruction based on that. If the pause
between sampling intervals are smaller, the approximation will be better,
but the time it takes to collect the samples will also be more noticeable.
Hardware performance counters can also be used in statistical profiling,
where they can provide accurate information with a very low collection
cost.

Statistical profilers will typically be able to differentiate between the
program being profiled and all the background processes of the operating
system. Thus, one will often get quite accurate results using statistical
profiling, even though they are not based on precise measurements. By
nature, statistical profilers will not need any instrumentation of the code.
Thus, the programs are allowed to run at nearly full speed, and the
profiler will be able to analyze a normal run of the code as opposed
to an altered version which may not perform as it normally would have.
Because there usually is no need to change the code before profiling,
many statistical profilers are easy to use.

A regular use for a statistical profiler is to profile an entire application
and get a quick overview of where the application is using time, and thus
where the first optimization efforts should be focused. They will often
not be useful when one wants to use profiling to answer a very specific
question about only a small part of the code.

3.2 Types of output

For a single threaded performance profiler, the most important thing is
generally to identify what function, method, basic block or even line

23

of code uses the most time. These points are often referred to as hot-
spots [25, 26]. To make a program run faster, there is most to be gained
by first optimizing the part that runs the slowest. There are several ways
of displaying that information to the programmer.

In addition to the performance profilers, there is another set of tools
designed to help a developer understand what is going on in a program.
In an influential paper written in 1994, Srivastava and Eustace opens the
introduction in the following way:

“Program analysis tools are extremely important for under-
standing program behavior. Computer architects need such
tools to evaluate how well programs will perform on new ar-
chitectures. Software writers need tools to analyze their pro-
grams and identify critical pieces of code. Compiler writers
often use such tools to find out how well their instruction
scheduling or branch prediction algorithm is performing or
to provide input for profile-driven optimizations” [27].

For the current state of computer science, it is appropriate to also
extend the list of important use cases to also include seeing how a parallel
computation is performed on a given system.

Seyster divides software execution visualizations into four main
categories [28]: Those showing the steps a program takes as it runs,
those focusing on data structures, those with features especially suitable
for object-oriented programs, and those showing other related properties,
such as CPU load or memory access time. For this project, only the first
and last of the categories will be touched upon.

3.2.1 Flat profile

Perhaps the simplest type of profiling output is the flat profile. This is
often generated by both measurement-based and statistical profilers, and
it is normally just a list of how many times each procedure was called,
and how long they took to complete. Clearly, it can still be very useful,
and for a first look at a program before starting to tune, it is often all that
is needed.

Below is an example of a flat profile created by gprof, and taken from
the gprof project’s website [29]. Among other things, it shows the number
of times each function is called, how many seconds is used inside each

24

function, the percentage of the entire program each function uses, and the
name of the functions. Clearly, when a quick overview of the program is
needed, a flat profile will suffice.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

16.67 0.05 0.01 7 1.43 1.43 write

16.67 0.06 0.01 mcount

0.00 0.06 0.00 236 0.00 0.00 tzset

0.00 0.06 0.00 192 0.00 0.00 tolower

0.00 0.06 0.00 47 0.00 0.00 strlen

0.00 0.06 0.00 45 0.00 0.00 strchr

0.00 0.06 0.00 1 0.00 50.00 main

0.00 0.06 0.00 1 0.00 0.00 memcpy

0.00 0.06 0.00 1 0.00 10.11 print

0.00 0.06 0.00 1 0.00 0.00 profil

0.00 0.06 0.00 1 0.00 50.00 report

...

3.2.2 Call graph

A slightly more advanced output is the call graph. The main point here
is showing how the called procedures relate to each other during a run.
The profiler keeps track of all the procedure calls during execution, and
can then create a graphical representation of the run after the fact. This
is called a dynamic call graph, since it shows a computation run as it
actually happened. A static call graph is an approximation which shows
all possible ways procedures could call each other.

The actual graphical representations of a call graph vary from just an
indented text list, to a color-coded image, to a drill-down GUI. Figure 3.1
on page 27 shows an example call graph generated by the Google
CPU profiler, and taken from the project’s website [30]. Procedures are
represented by nodes in the graph, and edges between nodes indicate

25

that a procedure has invoked another procedure. There are also numbers
on the edges representing the amount of time units spent in a function
when it was called from within the other function.

3.3 Online vs. offline

By far the most usual display tool is an offline application, which will
display information about the execution after the fact. There are some
online profilers, however. These will allow the profiler to see the profiling
information as the program executes, and even make changes to the
application and watch the difference in the profiler during the run. An
example of a profiler which can profile an already running process is the
Intel VTune Amplifier, which is introduced in more detail in Section 3.5.3
on page 30. It cannot, however, alter the running process from within the
profiler. An advantage with an online profiler is that a developer can use
the application and instantly see the results in the profiler [28].

This project will result in an offline profiler. Not only is it easier
to create, the point of the profiler is to watch entire runs of parallel
programs. There is therefore no need to be able to make changes at
runtime.

3.4 Parallel Profiling

Creating parallel applications is generally harder than writing serial ones.
When many threads, divided among many cores, are working on the
same computation, it might be hard for a developer to know exactly what
happened where. And even when using a model like POSIX threads,
where the threads have to be handled explicitly by the programmer, there
is always the risk of such subtle errors as deadlocks or data races. A
parallel profiler should ideally be able to help the user with all these
aspects which are characteristic of parallel programming, while also
having many or all of the features of a single-threaded profiler.

In a badly balanced parallel computation, a profiler might report that
one of the threads is using much time in a function called spin lock.
A good parallel profiler would be better off instead indicating that the
thread has nothing to do. A thread in a spin lock is waiting for a
signal from another thread before it can move on. An inexperienced

26

Figure 3.1: A call graph generated by the Google CPU profiler. Each
node in the graph represent a procedure. Unlike the flat profile, a call
graph illustrates the call relationships between procedures. Notice also
that the size of the nodes change according to the amount of CPU time
the functions consumed.

27

programmer might think that this spin lock function is worth trying to
optimize instead of immediately focusing on better balancing the load.

For a sequential program, there is usually no problem determining
in what order events occurred, because no two events can happen at
the same time. For a parallel program, however, events may happen
concurrently, at least seemingly. Accurate and synchronized timing need
to be in place if the exact order of events are to pieced together.

Several profilers exist to analyze runs where MPI or explicit threading
is used. These tend to focus more on the cost of sending data and
synchronization between the involved processors. For the purpose of
this report, however, it makes more sense to focus on some of the
profilers which support task-based programming. Runs using a task-
based programming model will include dynamic load balancing and no
guarantees as to how the distribution of work will turn out. For that
type of run, it is more interesting to get some indication of whether
the work was distributed evenly or some indication of whether the
application will scale, rather than reports on the cost of communication
or synchronization.

3.5 Related work

3.5.1 gprof

In 1982, in what has since been considered a very influential paper,
Graham, Kessler and McKusick detailed the design and use of the call
graph execution profiler gprof [21]. The whole idea is based on the
modularity of programs, or the fact that they consist of relatively small
routines which call each other. The main point of the profiler is to create
a call graph, a tree showing how the routines are called, and also display
a flat profile which shows each routine and how much time they, and the
routines they call, use.

Gprof uses a combination of statistical and measurement-based
profiling. To determine the arcs of the call graph, and count the number
of times each routine is executed, gprof instruments the code with a call to
a monitoring routine in the prologue of each routine call. Execution times
are approximated by sampling the program counter at uniform intervals.

An example of one type of output from gprof, the flat profile, is shown
in Section 3.2.1 on page 24.

28

3.5.2 OProfile

Originally started as a master’s thesis project by John Levon, OProfile has
since been incorporated into the Linux kernel. It is a statistical profiler,
using periodically collected samples to create an overview of how much
time each process used during the profiling run. On some architectures,
OProfile will even use performance monitoring counters to provide the
programmer with detailed information about such low-level events as
branch predictions and cache misses [31]. In general though, because
it has such a broad scope, OProfile will usually not be able to help a
programmer with the most extreme, accuracy-critical, specific profiling.

OProfile is system-wide, meaning it will profile everything being
executed on the system in the given time. Even though this might seem
unnecessary for a programmer just wanting to profile his or her sorting
algorithm, it does provide a realistic and accurate picture of what is
happening on the system. The overhead is quite low, typically between 1
– 8% according to the project’s web page [32]. Also, the profiling process
should be easy for the programmer, since no changes are needed in order
to profile a piece of code. There is a feature, however, which will create
annotated source code if the binary has been compiled with the -g option.

The following is an excerpt of the quite simple output generated by
OProfile for a “system-wide binary image summary”. It is taken from the
OProfile webpage [32], and shows the percentage of CPU time used on
each process for the sampled timespan.

$ opreport --exclude-dependent

CPU: PIII, speed 863.195 MHz (estimated)

Counted CPU_CLK_UNHALTED events (clocks processor is not halted)

with a unit mask of 0x00 (No unit mask) count 50000

450385 75.6634 cc1plus

60213 10.1156 lyx

29313 4.9245 XFree86

11633 1.9543 as

10204 1.7142 oprofiled

7289 1.2245 vmlinux

7066 1.1871 bash

6417 1.0780 oprofile

6397 1.0747 vim

3027 0.5085 wineserver

...

29

3.5.3 Intel VTune

Marketed as a high-end, very advanced performance profiler, the latest
edition of the Intel VTune line is the VTune Amplifier XE 2011 [26]. It
is available as both a standalone application in Windows and Linux, as
well as a plug-in to Microsoft Visual Studio for Windows users. VTune
is a mature product line, and Intel uses its expertise in hardware to
provide very detailed information to users running code on Intel CPUs.
In addition, a focus on parallel profiling enables features like a time-line
with displays the behavior of each thread and highlighting of potential
locations to optimize. A special “Locks and Waits-analysis“ is intended to
help a developer easily find places where threads are not being utilized
because they are waiting on locks set by other threads. Other notable
features include system-wide, event-based sampling, tight source code
integration, and the ability to attach the profiler to already running
processes under Windows.

To help programmers create correct code as opposed to making
working code faster, Intel also provides Parallel Inspector which among
other things can discover memory leaks and possible errors due to
concurrent memory accesses. Intel Parallel Studio combines both these
tools as well as the Parallel Advisor and Parallel Composer [33].

A screenshot of the concurrency timeline in the latest VTune version
is shown in Figure 3.2 on the next page. The screenshot is taken from
the program’s online documentation [34], and it displays each thread
separately, with colors marking whether they are running or waiting, and
an aggregate timeline showing the overall concurrency of the execution
at any given time.

3.5.4 AMD CodeAnalyst

In many ways the counterpart of Intel VTune, AMD CodeAnalyst
Performance Analyzer can extract detailed information from performance
counters specific to AMD’s processors. Like Intel VTune, it is available as
a standalone application to Windows and Linux, as well as a plug-in to
Microsoft Visual Studio under Windows. Among the features are both
event-based and time-based profiling used in hot-spots-analysis, as well
as instruction-based sampling and good support for multi-core profiling.
In addition, CodeAnalyst is able to analyze the performance of managed,
(just-in-time compiled) Java and .NET-code [25].

30

Figure 3.2: The threading timeline from the Locks and Waits in Intel
VTune Amplifier XE 2011. Each thread has its separate timeline, with
colors representing the status at any given point in the calculation. The
overall concurrency is displayed in an aggregate timeline at the bottom.

Figure 3.3 on the following page taken from the application’s website
[25] shows AMD’s version of a threading timeline similar to Intel’s one in
Figure 3.2. Green bars represent user activity in a thread, so a user is able
to get a quick overview of whether all the threads are working as much
as they could. It is not as polished as Intel’s version, and it is also lacking
an aggregate bar displaying the total concurrency.

3.5.5 ompP

OmpP is a measurement-based profiler built specifically to work on
several OpenMP compilers and runtimes. Instead of reporting only on
routines, ompP will also collect and display data for special OpenMP
events such as critical sections. In the case of task-based programming,
this means that ompP will instrument each call to task and taskwait

(similar to Wool’s spawn and sync), and subsequently report on which
threads are executing tasks at which time. If instructed to by the user,
ompP can also use hardware counters.

The following flat profile is an outtake from [35]. It shows ”the time
threads spend executing tasks while waiting at the implicit exit barrier
of the parallel region.“ Thread 0 was busy for 3 seconds executing tasks,
while thread 1 only spent 2 seconds executing tasks, as can be seen in the
rightmost taskT column. Because there was not enough tasks to execute,
thread 1 spent 1 second waiting at the barrier before it could continue, as

31

Figure 3.3: The threading timeline from AMD CodeAnalyst. User activity
in a thread is represented by a green bar. Typically, one want as much
concurrency as possible, so the greener, the better.

32

the exitBarT column shows.

R00001 main.c (15-26) PARALLEL

TID execT execC bodyT exitBarT startupT shutdwnT taskT

0 3.00 1 0.00 0.00 0.00 0.00 3.00

1 3.00 1 0.00 1.00 0.00 0.00 2.00

SUM 6.00 2 0.00 1.00 0.00 0.00 5.00

3.5.6 Google CPU Profiler

As the name implies, Google CPU Profiler is both developed and used by
Google [30]. The output mode is either textual or graphical. In graphical
mode, the profiler paints a call graph, and displays running times based
on sampling as well as how many percent of the total running time a
method consumed. In Linux 2.6 and above, the profiler automatically
profiles all threads. There does not seem to be any special support for
parallelism as in many of the other profilers described here, however.

To use the profiler, one needs to link it into the executable, and then
enable it either by function calls in the code, or by setting an environment
variable. After the code is run, there are several ways of displaying
the output. It is a statistical profiler, because the timing is collected
using sampling, and by default it collects 100 samples every second. An
example call graph output is shown in Figure 3.1 on page 27.

3.5.7 Cilkview

The Cilkview scalability analyzer [36] takes a bit different, yet very
interesting, approach to profiling multithreaded applications. It is
built specifically for Cilk++, and what differentiates it from many
other profilers is its estimation capabilities. Instead of monitoring an
actual multithreaded run, it measures the logical parallelism during an
instrumented single-processor run and predicts the maximum potential
speedup of the application.

To calculate the parallelism of an application, Cilkview employs the
dag model of multithreading. This envisions the execution of a parallel
program as a directed acyclic graph (dag), with each vertice being a piece
of code which have to be executed sequentially. These vertices are called
strands. Whenever a strand spawns another task, the spawning strand

33

naturally becomes the predecessor of the newly spawned task in the dag.
An in-depth explanation of the model can be found in [37, Ch. 27].

After using the model to represent the execution, the parallelism of the
application can be calculated. Work is the total time needed to execute
all the strands in the execution. In other words, the time it would take
to run the program with a single processor. If a program is perfectly
parallelizable, the time needed to execute it would be work/P, where P
is the number of processors. This is extremely rarely the case, however,
because there almost always is a substantial part of the program which
will have to be executed sequentially. Span is denoted as the time needed
to execute this longest, sequential part of the program. The longest
path through the dag is often called the critical path of the program.
The concept of critical path is illustrated in Figure 3.4, which shows a
dag of tasks, with the longest unparallelizable part marked in red. The
parallelism is defined as work/span. This is quite logical. The more work
there is, or the faster the critical path can be executed, the more parallel
the program is. Using these measurements, Cilkview provides speedup
estimates for different number of processors.

Figure 3.4: The concept of critical path. The circles are tasks, all of same
size, and arrows indicate dependencies. No matter how many processors
are used, the computation can not finish faster than one processors can
complete the tasks in the critical path, which is marked in red.

He et al. are a bit unclear on exactly how Cilkview actually calculates

34

the critical path. It seems to be quite complex, but the concept is
explained as follows: By instrumenting the run, and then carefully
keeping track of which tasks can execute logically in parallel, and which
tasks have to be executed after one another, they get a measure of the
span of the computation. Instruction-counting is used instead of direct
timing. Although it is not very accurate, it is stated to be good enough
for calculating work and span.

The measurements collected on a single core does not account for
the overhead incurred by the scheduler or the cost of moving tasks
between processors to actually benefit from the available parallelism. The
authors introduce a concept called the burdened-dag model which tries
to account for the performance impact of migrating tasks to different
worker threads. By assuming that all possible parallelism is realized, a
worst-case cost of migration overhead is worked out. This is added to
the already existing dag by introducing a burden on each continuation
and sync and the burdened parallelism can be evaluated in a similar
manner as for the unburdened dag. This new estimate is typically a little
lower than the unburdened counterpart if the application is parallelized
in a proper way. If there are too many spawns of small tasks, however, the
burdened parallelism will be much lower than the theoretical parallelism,
and the programmer will have a good idea of what to improve in the
application.

Figure 3.5 on the following page shows an example graph created
by Cilkview taken from [36]. It is the scalability analysis for a file
compression tool called bzip2. The blue area in the graph represents
the range Cilkview has estimated that the speedup will lie in based
on the number of cores the application is executed on. The horizontal
line represents the application parallelism as calculated by Cilkview.
Naturally, the speedup will never go above the application parallelism.
Furthermore, it is usually difficult exploiting all available parallelism
in practice, so one would generally want to try and have a lot more
parallelism than cores. This screenshot also includes real benchmarking
results from a run on 8 cores represented by the line of red stars.

35

Figure 3.5: Cilkview’s output for compressing a 28MB file using bzip2.
The horizontal line depicts the application parallelism of 12.25, and
the blue area is the scalability range Cilkview has estimated for the
application. The red stars show the actual speedup achieved when using
8 cores.

36

Chapter 4

Implementation

In order to visualize a Wool computation, there first had to be collected
some data. The idea was to change the Wool source code to make it print
out some information about its own computations. That collected data
could then be put into a separate application which creates a visualization
of the run. Figure 4.1 on the next page shows a conceptual overview of
the process.

This chapter will describe in detail how WoolPlot was implemented.
First, the data collection stage will be described, which mostly involved
instrumenting the Wool source code, and allowing the measuring code to
be switched easily on and off by hiding it behind preprocessor symbols.
Second, the profiler application itself will be explained, which is written
in Java and uses the output from the instrumented Wool source code
to provide a visual overview of the computation. There is also a little
post-processing of the data involved to find the critical path of the
computation.

4.1 Data collection

An instrumentation-based approach to collecting data was chosen quite
early in the project. To get accurate data about spawns and steals, there
is really no other way of doing it. In order to get information about the
CPU load, however, a statistical approach where the load data is polled
at regular intervals was chosen. Common among all the data collection
is that it is not included in the code unless specific compiler flags are set.
The reasoning behind this is that WoolPlot should have no impact on the
Wool code unless it is activated.

37

stderr

Any Wool
program

Modified Wool
library

Java application

Textual
information

about
the run

Visualization of the run

Figure 4.1: An overview of the profiling stages. The implementation
chapter will describe how the Wool library was modified, and how the
Java application was built.

38

With Wool being a task-based library, it was clear that the profiler
should include information about spawns, steals and leaps. This is mostly
interesting to someone interested in Wool’s internals. To try and make
WoolPlot more useful for an everyday user of Wool, however, CPU load
and critical path was included later in the process.

4.1.1 Steals and leaps

To visualize a steal, one would need to know who the thief is, who the
victim is, and when the steal occurred. The timing would clearly need to
be as accurate as possible, ideally one would want to save the exact time
when the steal took place. In order to accomplish collecting this timing,
the steal-function in Wool had to be extended slightly.

When the STEALS compiler flag is set, the preprocessor will
instrument the steal-function to save each successful steal in a special
steal struct. The struct, which contains a timestamp and the victim of
the steal, is then saved in a pre-allocated 2-dimensional steal array where
the first dimension is decided by which worker is the thief. As for all the
data collected in this project, the steals are printed to stderr after the main
method, or rather the main task, returns.

The leapfrogs are collected in exactly the same way as the steals. The
only real difference between the saving of the two is a small check inside
the steal-function to see if the steal we are about to save is a “normal”
steal or a leapfrog. The steal-function has a parameter of type Task*
named dq top. This is used for executing a task after it is successfully
stolen. For a regular steal, this will point to the base of thief’s deque.
That is then used to differentiate between the two types of steals.

4.1.2 Spawns

For each spawn, we are interested in who spawned it, when it was
spawned, and what the name of the task is. All this data is put
in a spawn struct and saved in a pre-allocated 2-dimensional array
at every spawn, in much the same way as the steal structs are
saved. Getting and saving the task names from task spawn macro
functions was not straightforward, but it was accomplished using the
following two small macro functions: #define STR_EXPAND(tok) #tok

and #define STR(tok) STR_EXPAND(tok). By inputting the name of the

39

task into the STR macro function, it could be saved as a char* in the spawn
struct.

4.1.3 CPU usage

A typical use for a profiler is helping a programmer make an application
faster by showing what parts of the application consume most time.
This is a basic feature in most profilers, and it is often displayed to the
user through a flat profile or call-graph. Because this is such a regular
feature, and since it has little to do with parallelism, we did not want to
implement that. To make the profiler more useful for an everyday user,
however, we wanted to add some information about the performance
of the different cores. By displaying the utilization of each core, it is
simple to see whether all the cores are working hard, and thus whether
the application is sufficiently parallel. Wool is supposed to map one
worker thread to each CPU core, so collecting usage data per core seems
reasonable, since there should never be more than one worker thread on
one core.

Options

There are several ways of calculating CPU load. Most modern CPUs
have special hardware registers called performance counters. These
provide detailed information about hardware events, and can be used
to accurately determine the CPU usage [38]. For this early proof-of-
concept profiler, the very accurate data was not considered to be worth
the difficulty in implementing the use of hardware counters. Hardware
counters are a very good solution, however, and it should absolutely be
considered for further work.

An easier way of getting information about the CPU is by using the
/proc file-system. This is included in the Linux kernel, and is a ”pseudo-
file system which is used as an interface to kernel data structures“ [39].
Among other things, it provides information about all processes, for
example how much CPU time is scheduled for each process. In addition,
there is an aggregate file, which provides information both on the system
as a whole, and on a per-core basis.

40

CPU specific data

The /proc/stat file is the aggregate file. It can vary from architecture to
architecture, but the entries which is used in this project are very common
throughout. The first line contains statistics for the system as a whole,
and is not used by our profiler. Then follows one line for each CPU core
in the system. It contains four numbers, which is the amount of time
”that the system spent in user mode, user mode with low priority (nice),
system mode and the idle task, respectively“ [39]. The time is reported in
a unit called USER HZ, sometimes called a jiffy. On most architectures,
it is 10ms, but will often vary. This use of USER HZ shows the very
real limitation of using the /proc file-system for measuring CPU load.
One will never get more accurate data than the USER HZ on the given
architecture.

Because the USER HZ varies between architectures, one might think
that one will run into trouble when using WoolPlot across different
architectures. This is easily avoided, however, by only sticking to using
these relative numbers. By never converting USER HZ to seconds, the
entire problem disappears.

Process specific data

In addition to the aggregate data, we also need some process specific
numbers. These are located in /proc/[pid], where [pid] is the process id.
Each process is assigned an id, and all the specific info pertaining to only
that process is then kept in the folder with the same name as the process
id. Again, there is a stat-file containing a lot of useful statistics. The
entries we care about are only state and num threads. State is a single
character describing the state of the process, and num threads displays
the number of threads currently associated with this process.

To calculate just how much a specific CPU core have been working
on that process, we have to dig even deeper into the /proc file-system.
Located in /proc/[pid]/task/[tid], where [tid] is the numerical thread ID
of a thread, is a thread-specific stat-file for each thread working on the
process. The format of this stat-file is equal to the /proc/[pid]/stat-file,
but the data is aggregated per thread. The entries we care about in this
file is utime, stime and processor. utime is the amount of time, again
measured in USER HZ, this thread has been scheduled in user mode,
and stime is the same only for kernel mode. The processor entry displays

41

what CPU number this thread was last executed on. We use this last bit
of information to map the worker threads to specific CPUs.

Load calculation

The way we calculate the CPU load over time is then as follows: Scan the
aggregate and all the thread-specific files in the process-specific directory
at regular intervals. Calculate how much CPU time was scheduled on
the process by each thread since the last scan, and compare it to the
total amount of CPU time scheduled on each core since the last scan. A
percentage is then calculated for each core, and saved together with a
timestamp representing when this was checked.

Accuracy

Contrary to the other data collection in WoolPlot, this is an example
of statistical data collection. The resulting numbers are statistical
approximations for what happened between two checks. The accuracy
could have been improved by making the interval between checks smaller,
but that would also make the polling more intrusive. The files in the
/proc filesystem is typically only accurate down to 10ms anyway. That
means that if the file is polled every 10ms, one would only either get a 0
or 1. In this project, the polling interval has been set to 200ms in order
to get a useful amount of data for each sample. Clearly, this will not
give a high enough accuracy to be useful for small, performance-critical
applications. For sufficiently long runs, however, it will at least give a
clear indication of whether the CPU cores are utilized as much as they
should.

Forking

In order to alter the Wool code as little as possible, and allowing the
calculation of CPU load to happen concurrently with the execution of the
Wool program, the Wool process is forked. Forking splits the process into
two [40], allowing Wool to execute normally, while the forked process
will take care of polling for the CPU data. The process state, fetched
from the /proc/[pid]/stat-file is set to Z (for Zombie) when the the
process terminates. That will trigger the forked process to stop polling
and write out the data it has collected. Clearly, the two processes will

42

not execute perfectly concurrently, but it will appear so because the
monitoring process will be given enough CPU time to perform the checks.

Spinning

When experimenting with this newly implemented functionality, we tried
running different programs and watching how the CPU load changed
over time. Interestingly, the CPU load would never drop below 90% or
so, even for benchmarks which was obviously not well parallelized. For
example, a merge sort without a parallel merge would be expected to
have all the CPU cores but one idle towards the end of the execution.
After looking extensively for errors in the CPU polling code, the reason
was found in the Wool code itself. When a worker fails to steal a task,
it will back off a little by entering a spin() function, which contains a
for loop designed to keep the worker busy for a varying amount of time.
That means that the CPU cores will report a high load, even if they are
not actually doing any useful work.

To try and see if we could get the desired results from the CPU
load code, we tried changing the code in the spin() function to an
appropriately sized call to nanosleep(). Sleeping for a microsecond was
found to work adequately. With this new spin function, WoolPlot would
now report cores as idle when they had no work to do.

We suspected that changing the spin() function could hurt the
execution. To investigate this, we ran some experiments designed to only
measure the impact of sleeping instead of doing useless work. Those can
be seen in Section 5.4.2 on page 73. Anyway, the change will only come
into effect when the CPU POLL compiler flag is set. When not using the
profiler, the normal spin function is used.

Portability

As it turned out, this method of collecting CPU load data was not actually
as portable as we had hoped. The formatting of the stat-files are slightly
different on the development machine and on Kongull. The difference
is only that there is one more entry on the development machine, but it
complicates the testing nonetheless, and one would have to expect that
the code polling the CPU might have to be tweaked, or at least checked,
every time WoolPlot is introduced to a new system.

43

4.1.4 Wool versions

The current version of Wool is 0.1.2alpha. This is the version used mainly
in this project. There is also an alternate version, Wool 0.2. Despite the
version numbering, this version is actually older. The main difference
is that in Wool 0.2, the main method does not have to be a task. One
can invoke a parallel execution directly from sequential code using the
macros ROOT CALL and ROOT FOR. This makes it easier to add Wool
to an already existing project, or parallelize more complicated code. A
small part of the simple Fibonacci example written in Wool 0.2 is shown
in Listing 4.1. On the other hand, Wool 0.1.2alpha implements event
logging, which is described in Section 2.3.4 on page 17, it supports IA64
under Linux and it should also be a lot faster according to the Wool
project’s website [18].

There is a Wool version of the Barcelona OpenMP Tasks Suite (BOTS),
which we were given access to during this project. Unfortunately, this
version was written for Wool 0.2, and just changing the benchmarks
was nontrivial. Thus, it was decided to try and port WoolPlot to Wool
0.2 instead. This way, we could just include the bare necessities of the
compiler, and try to incorporate them as cleanly as possible in the code.
As the porting progressed, however, the more subtle differences between
the two versions became very clear. Version 0.2 does not implement
event logging, so many of the features which was used to originally
create WoolPlot were simply not available. For instance, code used to get
timestamps, and methods to synchronize the clocks between the different
worker threads were missing. Also absent was such a basic, convenient
field such as worker->idx, which made it easy to save which worker was
doing what. Eventually, the porting effort was abandoned, and we were
so fortunate as to be given some BOTS programs written for Wool 0.1.2
by Karl-Filip Faxén.

4.1.5 C Preprocessor macros

In order to create Wool as a fast library to be used with plain C, instead of
a language of its own, the author has used C macros extensively. Macros
are interpreted by the preprocessor and transform programs before they
are compiled [41]. There are almost endless uses for this, but below are
listed the some of the ones most relevant to Wool.

Function-like macros All the task definitions are created using this

44

Listing 4.1: An excerpt of the Fibonacci example in Wool version 0.2
1

2

3 int main(int argc , char **argv)

4 {

5 int m;

6 int n = 35;

7

8 //initialize Wool and start the workers

9 wool_init(&argc , &argv);

10

11 //invoke parallel code from sequential code

12 m = ROOT_CALL(pfib , n);

13

14 //stop the Wool workers and clean up

15 wool_fini();

16 }

technique. This allows defining and invoking named tasks without
having to introduce new language features.

Conditional includes This makes it easy to include or ignore lines of
code based on a macro variable. This variable can even come from
the environment, so no changes has to be done in the code itself to
turn on and off features like event logging.

Architecture-based includes Based on different environment variables
being present on different architectures, this causes the same Wool
archive to work on both Linux, Solaris and Apple.

Commenting out It is easy to comment out large sections of code, even
if there are other comments in the middle of it. Wool is a work in
progress, so there are sections in the code which is commented out
in this way.

Constant definitions When pushing performance to the limit, defining
constants without actually creating a variable will save the compiler
some work, and enforce that no time is wasted by suboptimal
optimization.

45

4.1.6 C macros used in this project

Using macros in C is a very easy way to switch on and off features in the
code without using branches which have to be evaluated at runtime. The
macros used in this project are described below.

STARTENDTIMES This collects a timestamp directly before and after
the main task is called, and prints them out together with the
number of worker threads.

STEALS This prints out a list with every steal in the execution, with
thief, victim and a timestamp.

LEAPS This prints out a list with every leapfrog in the execution, with
thief, victim and a timestamp.

SPAWNS This prints out a list of every spawn, with who spawned it,
when it was spawned, and what it’s called.

CPU POLL This gives a list of how much each thread used the processor
printed for regular intervals.

PROFILER This is only for setting all the macro flags at once, so it is
easy to turn all the features on or off.

4.2 Java UI

4.2.1 Visualization

When considering how to portray the computation, it was quite early
decided to make the timespan of the computation one of the axes in
the overview. Also, because the GUI had to show spawns and steals,
a natural approach would be to display each worker thread separately. In
this respect, Intel’s Parallel Amplifier XE, and its ”Threading time line“
has been an inspiration. A screenshot is included in Section 3.5.3 on
page 301. With all the worker threads represented by a bar, which also
represents the timespan of the computation, how to visualize spawns and
steals was quite straightforward. They would of course have to be placed

1A small introduction of it can also be seen from 1:35 of this Youtube video:
http://youtu.be/n4z5p8f5L-A.

46

http://youtu.be/n4z5p8f5L-A

appropriately on the timeline based on when they occurred, and the steals
would be painted on both the involved worker bars. As more features,
such as critical path, were included in the visualization, the initial model
turned out to hold up well, and the new features found a natural place in
the interface. The following subsections will describe each GUI element
in more detail, before the interface as a whole will be briefly described at
the end of the section.

Steals and leaps

Steals and leaps were the first implemented features. They are visualized
by painting a small red circle on the victim’s bar, a small green circle on
the thief’s bar, and an arc in between the two. For a steal, the arc is yellow,
while it is magenta for the leaps. Figure 4.2 shows a closeup of how the
steals and leaps are portrayed.

Figure 4.2: Detail view of the visualization of steals and leaps. Steals have
a yellow arc, while leaps are painted in magenta. At the ends of the arcs,
a red circle represents a victim, while the thief is given a green circle.

Spawns

A small white circle represents a spawn. Also, each spawn can be clicked
to reveal the name of the task, and how many tasks that worker has
spawned before that one. A computation will often have more than one
type of task, and to make it easier to differentiate them at a glance, a
small dot is added to the center of each spawn, where the color is based
on the name of the task. An example of this is shown in Figure 4.3 on the
following page.

47

Figure 4.3: Closeup of a few spawns, with an active popup on the psort
task

CPU usage

A thin, colored bar underneath each worker bar shows the CPU load.
A busy CPU is represented by the color green, and the color changes
gradually based on the CPU load. An almost idle CPU is represented by
a red bar. In much the same way as the spawns, one can gain an overview
of the CPU usage quickly by looking at the color codes, and clicking on
it provides all the detail available. This functionality is demonstrated in
Figure 4.4.

Figure 4.4: A detailed screenshot of CPU usage painting

48

Critical path

The critical path was added to the project quite late. There were not many
possible places in the visualization to incorporate it. The most obvious
placement was well suited, however, and a thin, red line will now be
placed on top of the worker bar which is part of the critical path. A
zoomed view of how the critical path is drawn can be seen in Figure 4.5.

Figure 4.5: A zoomed view of how the critical path is painted

Full GUI

Figure 4.6 on the next page shows what the GUI looks like when viewing
a full computation. The image is rotated 90 degrees to fit better on the
page. The interface has a tendency to get quite crowded when all the
features are switched on. The zoom slider was an important addition to
the GUI as it helped a user acquire a detailed view as well as looking at
the computation at a glance. Another nice usability feature is the buttons
for switching on and off painting of all the features. By switching off some
of the features, is it much easier to focus on the interesting information.

49

Figure 4.6: An overview of how the GUI looks when viewing an entire
computation. Notice the buttons at the top for choosing what elements
to include, and the zoom slider at the bottom.

50

4.2.2 Implementation

Among the many ready-made plotting libraries and programming
languages which could have been suitable for displaying the needed
information, Java was chosen mostly because of the author’s experience
with the language. This made it possible to create a working prototype
quickly. In addition, Java was considered powerful and versatile enough
to avoid limiting what could be done later in the project.

Figure 4.7 on the following page shows a simplified class diagram of
the Java program. StatsReader reads the text file created by running
an application with the instrumented Wool version, and creates the
necessary Java objects. There is a Worker object for every worker thread.
Each Worker object also contains list with the objects representing all
the steals, leaps, spawns and CPU usage percentages pertaining to that
worker thread. When all the data is read and made into objects, the
StatsReader will pass the objects to a PlotPanel, which is the main GUI
element.

The PlotPanel is a subclass of JPanel, and the important method
paintComponent(Graphics g) is overridden in order to specify exactly
how the element is painted. By doing this, the JPanel essentially turns
into a canvas, which one can fill with whatever. Inside the method, which
in many ways is the most important method in the entire Java application,
the list of workers are iterated through, and all the steals, leaps, spawns
and usages are painted according to the buttons and the slider elsewhere
in the GUI.

Before deciding on this approach, several existing graph libraries were
considered. There is a vast array of already written code which would
have filled the needs of this project to varying degrees. By choosing to
use one of them, however, many of the tasks will be much easier, but
the possibilities will often be limited by the design of the chosen library.
In the end then, the choice of doing all the painting “by hand” with
the Graphics2D class was taken in order to keep all choices as open as
possible. Exactly what the user interface would look like was still unclear
at that point, and by accepting to work a little harder on painting some
of the simple elements, as few opportunities as possible were lost.

The Graphics2D class provides such convenient methods as drawArc(),
fillOval() and fillShape() which are used to visualize the user inter-
face. When using the fillShape() method which draws and fills a shape
at a certain location, it is also appropriate to use the contains() method

51

Main
StatsReader

+StatsReader(fileName:String)
+makePlotPanel(): PlotPanel

PlotPanel

+paintComponent(g:Graphics): void

Worker
+bar: Shape

Steal
+thief: int
+victim: int
+timeStamp: BigDecimal
+shape: Shape

Spawn
+timeStamp: BigDecimal
+spawner: int
+shape: Shape
+taskName: String

Usage
+percentage: Double
+color: Color
+timeStamp: BigDecimal
+bar: Shape

List

List

List

List

Figure 4.7: A simplified class diagram of the Java application. The Main

class starts the execution with help from StatsReader. The painting of
the GUI is done in PlotPanel.

52

in the Shape class to provide information when the user clicks on certain
shapes.

To briefly show how complex the code for painting even simple
elements can be, Figure 4.2 on the next page lists the paintSteal method.
First, the x-position (in pixels) is calculated using the timestamp of the
steal, the total time of the computation and the current width of the
PlotPanel. Because the timestamps are too large to be represented using
int, the BigDecimal class is used. Unfortunately, this makes the code
much bigger. The y-positions for the thief and the victim are calculated
in a similar manner as the x, before the distance between the two involved
workers are calculated. To avoid all the steal-arcs being painted on top
of each other, the distance is then used to decide the radius of the arc, so
that a steal between workers further away from each other will result in
a wider arc. Lastly, green and red circles are painted at both ends of the
arc, to show who was the thief and who was the victim.

The Main class is responsible for starting the execution, and also
setting up the GUI. It uses the StatsReader to create the PlotCanvas,
and also creates the slider and buttons of the GUI.

Figure 4.8 on page 55 shows how the different components are put
together to create the GUI. The Main class keeps track of all the GUI
elements. That means creating all the buttons and sliders and adding all
the GUI elements at the correct place. The PlotPanel is too complicated
to handle from the Main class, so it has its own class.

Figure 4.9 on page 56 is a screenshot of an early version of the GUI.
At that point, there was a bug in the collection of leaps, so that there are
too many leaps reported. In addition, not all spawns were reported, so
there are too few of them in the GUI. Notice also the very rudimentary
timeline at the top and the lack of CPU usage and critical path.

4.2.3 Timing

WoolPlot collects timestamps directly before and after the main task is
called. The timestamps will thus not include Wool’s initial setup, nor the
printing of all the profiler data after the execution is complete. It does
include, however, the entire main task, with all its setup. In a normal
sorting benchmark, for example, the application will have to create the
array which is to be sorted. Depending on the speed of the random
function, this will often take much time. When profiling a parallel
application, this is not the interesting part of the application. A quick

53

Listing 4.2: The paintSteal method in the PlotPanel class
1 private void paintSteal(Graphics2D gd , Steal steal) {

2

3 int x = (int) (startWidth + barLength *

steal.timeStamp.subtract(startTime).divide(

endTime.subtract(startTime), 10,

RoundingMode.HALF_UP).doubleValue ());

4

5 int yOfThief = (int) (startHeight + heightIncrement *

steal.thief + barThickness / 2);

6

7 int yOfVictim = (int) (startHeight + heightIncrement *

steal.victim + barThickness / 2);

8

9 int distanceWeight = 5;

10

11 // Calculate the distance between the workers

12 int absoluteIndexDistance = Math.abs(steal.thief -

steal.victim);

13

14 // The distance decides the radius of the arc

15 gd.drawArc(x - absoluteIndexDistance * distanceWeight ,

Math.min(yOfThief , yOfVictim), absoluteIndexDistance

* distanceWeight * 2, Math.abs(yOfThief - yOfVictim),

270, 180);

16

17 final int radius = 5;

18

19 //Paint a green circle in the bar of the thief

20 gd.setColor(Color.GREEN);

21 gd.fillOval(x - radius , yOfThief - radius , radius * 2,

radius * 2);

22

23 //Paint a red circle in the bar of the victim

24 gd.setColor(Color.RED);

25 gd.fillOval(x - radius , yOfVictim - radius , radius * 2,

radius * 2);

26 }

54

WoolPlot

JButtonJPanel

JSlider

JScrollPane

PlotPanel extends JPanel

0% 50% 100%

JButton JButton JButton

Main extends JFrame

Figure 4.8: Schematic overview of the different GUI components

55

Figure 4.9: Early version of the GUI

fix, which eventually turned out to work quite well, was just finding the
first spawn of the execution, and using the timestamp for that as the first
timestamp in the run. That way, the visualization is guaranteed to start
at the beginning of the parallel part of the run, or at least at the earliest
possibility for parallelism. As long as the setup is sequential, this works
well. Clearly, if the setup is also done in using tasks, for instance if an
array is filled with random numbers by a parallel for loop, this trick will
not have any effect. In addition, if there are any sequential work being
done after the parallel execution is complete, this will also be included in
the profiler. Ideally, there should have been implemented an easy way of
selecting just what part of the application one would want to profile.

For calculating the critical path, the timing provided by setting the
LOG EVENTS compiler flag is used. These timestamps represent the time
since the application started. In order to paint the critical path correctly,
this timing had to be synchronized with the timestamps collected by
WoolPlot, which are absolute timestamps. A natural choice was then to
use the first spawn of the computation. When the first spawn are found
in both the event logs and the spawns reported by WoolPlot, converting

56

one of the timestamps to the other is trivial.

4.2.4 Critical path

Calculating the critical path of a computation has always been one of the
goals of this project. Exactly how it was to be accomplished, however,
was long unclear. One way was to implement a version of the Cilkview
algorithm. Both the Cilkview algorithm and the concept of critical path
is more explained in Section 3.5.7 on page 33. In Cilkview, the theoretical
critical path is calculated by executing the entire computation on a single
CPU core. There were two main reasons that this path was not chosen
for this project. First, precisely how to implement the algorithm were not
crystal clear after reading about it in the paper describing Cilkview [36].
Second, choosing this way would mean that one would have to run an
application twice to profile it. Once for collecting the data about how
the execution actually happened, and once for calculating the theoretical
critical path of the computation.

After exchanging some e-mails with the creator of Wool, Karl-Filip
Faxén, he shared his ideas on how to calculate the critical path from
the logs produced by setting the LOG EVENTS compiler flag (described
in Section 2.3.4 on page 17). His method would not calculate the
theoretical critical path of a computation, but rather the critical path of
the computation the way it actually was executed. Faxén’s proposed way
was then chosen not only because it was much clearer how it was to be
accomplished, but also because it would fit better with WoolPlot, seeing
as it would not require a second, sequential run of the code.

The critical path consists of the events needed to make the last event
occur. One can look at it as what the computation is waiting for. In a
normal execution, the main thread will at some point have to leapfrog in
order to get work. As soon as the main thread has no more work, it no
longer contributes directly to finishing the computation. At that point,
the critical path has moved to the worker thread which stole from the
main task and caused it to start leapfrogging. If that thread runs out of
work, the critical path will again have moved to another thread. And so
it continues, until the computation is complete.

The procedure for calculating the critical path based on the event logs
is based on going backwards through the logs and following rules to
decide which events to include. The events are described in Table 2.1 on
page 19. All the rules will not be listed here, however, a few examples are

57

as follows: The last ’2’ from the event logs signals the end of the parallel
computation. A ’2’ means that the worker is done with the task it stole
and all tasks spawned from that task. The event before the ’2’ is either
a ’1’, which is a signal that a thread completed a successful steal, or a
’4’, which means that a thread starts to leapfrog, whichever of the two
occurred latest. If it was a ’1’, the event before that should be a ’1xy’
which means that the thread tried to steal from worker ’xy’. Before that,
there is two main possibilities for the next event: Either, it is the spawn of
the stolen task, that would be a ’5’ in worker ’xy’, or it is the reason that
the worker started stealing. If it is leapfrogging, it is a ’3’, since that is
the signal for “starting to leapfrog”, or it could be a ’2’. The event which
happened latest of these three possibilities is added to the critical path.
It’s important to note that if it was the ’5’ in worker ’xy’ which happened
latest, the critical path will have moved to worker ’xy’.

58

Chapter 5

Results

This chapter will show and discuss the results of using WoolPlot on
several different benchmarks. The profiler is tested on some real-world
applications, as well as some which have been specifically programmed
to showcase what WoolPlot can do. All the screenshots in this section
are rotated 90 degrees to fit the page better and make it easier to see the
details.

5.1 Hardware

The applications in this project have all been run on Kongull, a
supercomputer at NTNU. Even though it consists of 98 interconnected
nodes, we have only used one node at a time. Each node comprises two
six-core AMD Opteron 2.4 GHz 2431 processors (codename Istanbul). The
applications have been run with 12 worker threads, which results in one
worker thread per CPU core. According to the specifications on AMD’s
website [42], each of the processors have six 128KB L1 caches, six 512KB
L2 caches, and a shared L3 cache which holds 6MB.

5.2 Benchmarks

The benchmarks run in this section comes from the Wool version of
Barcelona OpenMP Task Suite, abbreviated BOTS. BOTS was originally
aimed at evaluating different OpenMP tasking implementations [43].
Because it aims to test a large set of features, it has since been ported
and used to evaluate other task-based programming models. The exact

59

number of benchmarks may still change, but at least it contains such
benchmarks as Fibonacci, FFT, Sorting and NQueens. Originally, we were
given a full version of BOTS, written for Wool 0.2. After trying to port
WoolPlot unsuccessfully to Wool 0.2, we were given some BOTS programs
with main tasks from Karl-Filip Faxén. It is a few of those which are run
in this section.

5.2.1 Sorting

BOTS includes an implementation of a sorting algorithm which is dubbed
“cilksort” in the source code comments. In essence, it is a parallel merge
sort, where the problem is split and sorted recursively with a quicksort
which resorts to insertion sort for very small sizes, before it is merged
in parallel, also using recursion. Akl and Santoro are credited as the
inventors of the algorithm [44]. The algorithm is very similar to the one
used in this author’s specialization project which was implemented in
C++ using TBB [11]. In order to run the benchmark, the user has to
specify several parameters. Merge cutoff and qs cutoff decide the sizes
of the merge tasks and the sorting tasks, respectively. Insertion cutoff
specifies at what size the quicksort should resort to an insertion sort.
The last two parameters are the self-explanatory size and reps.

Figure 5.1 on the next page shows the profiling visualization when
sorting 100 million integers with the qs and merge cutoff values set to
75,000 and the insertion sort cutoff set to 20. The visualization is quite
messy, and there is not much to draw from it, other than that the run
seems quite well balanced, with all the worker threads busy. The first part
of the execution, where all the worker threads spawn tasks continually is
actually just initialization of the sorting, and should ideally not have been
included in the profiler output. The cilksort fills the array to be sorted and
also copies it in parallel. This means that it is included in the profiling.
This highlights a possible area of improvement for WoolPlot. It should
include a way of selecting just what part of an application to profile. The
original BOTS sorting application also includes correctness verification of
the sorting. That verification has been commented out in this run because
there is no need in profiling it.

60

Figure 5.1: Profile result when sorting 100 million integers using the
BOTS sort. The execution is well balanced, with all the worker threads
busy. There is much communication between the threads, but that is to
be expected.

61

5.2.2 Nqueens

The nqueens benchmark finds all solutions to the nqueens problem of
placing n chess queens on a chess board of size n× n without any of the
queens being able to attack each other [45]. For n = 11, there are 2,680
solutions, while there are 365,596 for n = 13. The benchmark solves the
problem recursively, trying all possible positions by brute force. Because
trying a position involves spawning a new task, the benchmark spawns
an extremely high number of tasks.

As can be seen in Figure 5.2 on the facing page, which shows the
result of running nqueens with problem size 11, worker 0 spawns tasks
continually from the start to the end of the computation. Worker 0
spawned 308,759 tasks, and there were spawned 1,806,706 tasks in total.
To make it easier to see the steals and leaps, Figure 5.3 on page 64 shows
the computation without the spawns painted. The critical path never
moves, since worker 0 never has to steal to get work. It never waits on
another worker thread, and that is why it performs no leapfrogs. It is
interesting to note that there are more steals than leaps in the execution.
This is slightly unusual, and suggests that the task tree created by the
algorithm is wide. A wide task tree means that each task spawns many
tasks, but that the continuous strands of tasks are not very long. There
is an abundance of small tasks, so that even if a worker manages to
steal a task from another worker, it has often completed the task before
the victim tries to sync it. The victim will therefore not have to go
leapfrogging to get more work.

The run is so short that the CPU usage does not make much sense, it
is therefore removed from the screenshots.

5.3 Artificial benchmarks

For real-world, well parallelized benchmarks, WoolPlot outputs will often
look similar. Every worker will have work to steal, and they will all be
busy most of the time. In order to see some interesting and different
outputs, we created some specialized applications designed to highlight
different aspects of Wool and WoolPlot.

62

Figure 5.2: Nqueens(11) with spawns painted. This is a spawn-heavy
computation, an there is not much communication between the threads.
They all spawn many tasks, however, so they are busy nonetheless.

63

Figure 5.3: Nqueens(11) without spawns painted. There are usually as
least as many leaps as steals in an execution. More steals than leaps in
this execution suggests a wide, but short task tree.

64

5.3.1 Unoptimized merge sort

In a parallel merge sort, the numbers to be sorted are first split into
many tasks recursively, and then sorted sequentially when they are small
enough. At this point, there are many small, individually sorted arrays.
A fast merge sort needs to also implement merging in parallel to make the
computation sufficiently parallel. If the merge procedure is sequential, it
will be too time consuming. To see if the profiler can pick up on this,
such a sub-optimal merge sort was implemented and run.

Figure 5.4 on the following page shows the result of sorting 100 million
integers with a merge sort with a sequential merge procedure. The
sorting tasks are quite big, with sequential cutoff set to 750,000. That
explains why there are relatively few tasks in the computation. The
colored bars underneath the blue worker bars show the CPU load for each
worker. Green represents that the CPU is very busy, and red means that
the CPU is nearly idle. As we can see, all the CPU cores are kept busy
by the initial sorting. When the time comes for merging, however, the
computation is not nearly parallel enough. The very last merge requires
a single worker to iterate through the entire array of numbers. The result
can clearly be seen in the figure. Worker 3 is occupied for a longer time
than the other workers, so we can assume that it takes part in the second
to last merge step, where half the array has to be merged. At the very
end, however, all the other workers have to wait on worker 0 to finish the
computation alone.

5.3.2 Stealable tasks

When programming with tasks, good coding practice is to make the tasks
themselves spawn additional tasks. Naturally, it would be interesting to
see what would happen if one task spawned all the other tasks. The
tasks consists of collecting a timestamp, and then doing some useless
work while checking often to see how much time had passed since the
useless work began. For these runs, the tasks returned after stalling for
100ms. Worker 0 spawned 100 of these tasks using a for-loop, before it
then synced the 100 tasks using another for-loop.

A standard run of the application on Kongull is shown in Figure 5.5 on
page 68. There was a total of 9 steals. Every worker except 1 and 8 stole
a task, and there were obviously no leaps. The entire computation took
slightly over 9 seconds, and worker 0 was the only one where the CPU

65

Figure 5.4: Sorting 100 million integers using a merge sort with a
sequential merge. Notice how all the workers but worker 0 is idle at
the end because worker 0 has to merge the entire array sequentially.

66

was busy. After some investigation, a setting in Wool which controls the
number of stealable tasks was discovered. According to the Wool users
guide, the default is 3 + log2 n, where n is the number of workers. When
using Kongull, which has 12 workers, this should result in about 6 or 7
stealable tasks at a time. In this case, it turned out to be 9 stealable tasks.
The exact reason for this is a bit unclear, but this was not investigated
further.

The Wool user guide states that limiting the number of stealable
tasks result in “decreasing the overhead in recursive divide-and-conquer
applications while potentially leading to loss of parallelism” [17]. For this
application, the latter obviously occurred. To see the difference, the exact
same compiled code was run once more, now with -s 100 as an input
parameter, to allow 100 stealable tasks per worker. The result is shown
in Figure 5.6 on page 69. This time around, the run only takes about 2
seconds to complete, and the CPU cores are busy most of the time. Also,
10 tasks were executed on worker 0, while every other worker stole either
8 or 9 tasks, so the load was actually quite well balanced. Because all the
tasks have to be stolen from worker 0, the critical path does not move from
worker 0 until the very end of the computation. The last task is stolen
by worker 4, and when the main thread tries to sync it, and sees that it
is stolen, it tries to leapfrog from worker 4 until worker 4 completes the
task. It is also worth noting that it takes some time before all the worker
threads have work to do. They try to steal from randomly chosen threads,
but there is only worker 0 which has any work. A considerable amount
of time has passed since the first spawn before the last thread, worker 8,
accomplished a successful steal.

5.3.3 Leapfrogging

In addition to the application where one worker thread spawns all the
tasks, it was interesting to profile a very different type of benchmark,
where there is a long chain of spawns emanating from one, initial spawn.
This was accomplished by creating a task which spawns one single task
and then does useless work, we call it waiting for the sake of simplicity,
for 100ms before syncing the spawned task. This wait will allow more
than enough time for the newly spawned task to be stolen by another
worker thread before it is synced. The task has a counter which is
decremented for each spawn, allowing control over how many tasks are
spawned.

67

Figure 5.5: Stealable tasks benchmark with the default amount of
stealable tasks. Only 9 tasks were stolen, and the run was very poorly
parallelized. The critical path never moves from worker 0, since it never
waits for another worker.

68

Figure 5.6: Stealable tasks benchmark with 100 stealable tasks. Now, all
the tasks could be stolen, and the run is therefore much more parallel.
Notice the small dip in the critical path when worker 0 is waiting on
worker 4 to complete the final task.

69

The result when running this application on Kongull is shown
in Figure 5.7 on the next page. Because there is only one task available to
steal at any one time, it takes a little while before all the worker threads
have work to do. They will try to steal from random other worker threads,
and also back off a little when they have tried many times without getting
a successful steal. When all the worker threads have stolen their first task,
spawned a new one and waited for 100ms, they will try to sync the task
they spawned. This will then have been stolen by another task, so they
will try to leapfrog. Because the task tree actually is just a long line of
spawns, which will not end before the very end of the execution, every
steal after the first one for each worker will be a leapfrog. In other words,
the workers will only try to steal from the worker thread which last stole
from them. A result of this can be observed in the screenshot, where
worker 1 has nothing to do for long spans of time because it only tries
to steal from worker 5. Despite this, the execution is actually rather well
parallelized. It could have been even better if the workers could have
stolen from any other worker at any other time. Of course, this example
is contrived, and leapfrogging is generally a good idea to avoid having
code ready to execute and no worker able to execute it.

5.4 Time impact

A profiler will always have an impact on the application being profiled.
An important question is how big this impact is. If the profiler changes
the execution too much, one should be suspicious as to whether the
results of the profiling actually is to be trusted, or if the profiling are
too intrusive.

5.4.1 Profiler

To measure the intrusiveness of WoolPlot, all the features were turned
on, including the built-in LOG EVENTS and COUNT EVENTS, and a
sorting application was run 100 times. Then, all the logging features were
switched off, before the job was scheduled once more. Timing was done
by having a small piece of inline assembly code read the processor’s cycle
counter directly before and after the first call to the sorting task. To avoid
clogging up Kongull with huge amounts of uninteresting log files, the
stderr output was directed to /dev/null, in order to destroy it.

70

Figure 5.7: An execution of the leapfrogging application with a long
strand of tasks in the task tree. Notice how worker 1 is left with nothing
to do for long spans of time because it is only allowed to try and steal
from worker 5.

71

The sorting application is a parallel merge sort created especially for
this project. It is a Wool port of the merge sort implemented in Intel TBB
for the author’s specialization project [11]. It splits the array of numbers
recursively until the size drops below the sequential sort threshold when
they are sorted sequentially using qsort. The arrays are then merged in
parallel. Because we have written the sorting algorithm ourselves, it is
easy to know exactly what it does, and it is easy to time just the sorting,
and nothing else.

For WoolPlot, the time it takes to collect data is directly linked to the
execution. The profiling is event-based, in that every spawn or successful
steal will incur overhead because information about that event will have
to be saved. With that in mind, the results should be different when the
amount of tasks is varied. To put this theory to the test, the problem size
was kept constant, while the cutoff values were significantly reduced,
before the procedure was repeated.

Each configuration was scheduled three times, totaling 1,200 runs.
The problem size was 100 million, and the serial cutoff was first set to
750,000, which gave a total of 2,048 spawns. The results are summed up
in Table 5.1 on the facing page. The serial cutoff was then set to 50,000,
resulting in 22,528 reported spawns. Table 5.2 on the next page shows
the results. The expected outcome was that WoolPlot would be more
intrusive for the run with the smallest task size. The exact opposite was
shown to be the case, however. After careful inspection, the reason for
this was pinpointed to the built-in event logging. In addition to reporting
successful steals and spawns, it also logs each steal attempt. For a run
with such big tasks as sorting 750,000 integers, a worker thread which is
left without a task to work on, will have time to perform a huge amount
of steal attempts. To investigate this theory further, a few runs were
performed where the stderr logs were kept. The sizes of the log files
confirmed the suspicion. Table 5.3 on the facing page shows the average
time impact for the different problem sizes, along with the average size of
the outputted text file for five runs with the two different task sizes. The
big tasks cause the log file to be more than four times as large as with the
smaller tasks, and the performance suffers somewhat because of it. The
writing of the log file was not timed, but a larger log file also means that
more data was collected, which explains the increased overhead.

In summary, WoolPlot causes about a 5% increase in running time.
The fact that the running time is not significantly changed, one can then
be confident that the information about the run is fairly accurate. The

72

Description 1st job 2nd job 3rd job
Cycles w/ profiling 5.4663e+09 5.42726e+09 5.40457e+09
Cycles wo/ profiling 5.1563e+09 5.17208e+09 5.2092e+09
Percentage slower 6.01% 4.93% 3.75%

Table 5.1: Cycle counts and percentages with cutoff values set to 750,000

Description 1st job 2nd job 3rd job
Cycles w/ profiling 5.16896e+09 5.15116e+09 5.10604e+09
Cycles wo/ profiling 5.02098e+09 5.00690e+09 4.90288e+09
Percentage slower 2.95% 2.88% 4.14%

Table 5.2: Cycle counts and percentages with cutoff values set to 50,000

OProfile project’s web page talks about the application’s low overhead,
and reports an overhead of between 1 – 8% [32]. Clearly, this test has
only taken into account the overhead incurred by collecting the data. In a
real situation, a developer will also have to wait for the data to be written
to stderr. Because this is done after the main task returns, however, it will
not have an impact on the execution, and it is directly proportional to the
amount of data collected. Thus, it has not been relevant to measure.

5.4.2 Spin function

When a thread tries to steal a task several times without succeeding, it
will back off a little by entering a function called spin(). This contains
code designed to keep the thread busy for a little while by doing some
useless work. Unfortunately, this will prevent WoolPlot from showing
when a thread has no tasks, because a thread will be busy whether it is
doing useful work or not. Because of this, we changed the contents of the
spin function to instead containing a call to nanosleep which makes the
thread sleep for a microsecond. This made the threads appear idle when

Cutoff value 750,000 50,000
Percentage slower 4.9% 3.32%
Average size of text file 159M 39M

Table 5.3: Aggregate overview of the time it takes to collect data using
WoolPlot

73

they were not working on tasks, but we also wanted to see if this change
hurt performance.

All profiling was turned off, and the time program [46] was used to
time 10 runs of nqueens where n = 15 with the normal spin function.
The call to nanosleep was then inserted, and the process was repeated.
The results are summarized below:

Average time with normal spin

real 3m39.2233s

user 43m49.3377s

Average time with sleeping

real 3m43.9296s

user 9m39.403s

The real time is the wall time of the computation, that is to say how
much time passes between the program is started and finished. The user

time is the amount of time scheduled on the CPU cores by the program.
Sleeping instead of regular spinning hurts performance slightly. The

runs are quite long, with the spinning version using 3 minutes and 39
seconds. The sleeping version uses about 4 seconds more, which amounts
to an increased running time of 2.14%. We consider this a price worth
paying to get information about the CPU core usage during the run.

On an interesting side note, the amount of user time spent in the
function when sleeping instead of spinning is dramatically decreased.
When spinning normally, the threads are working almost nonstop. When
sleeping, however, the program as a whole runs a little slower, but the
total amount of CPU time scheduled by the program is only about 22%
of the CPU time scheduled by the spinning version of the program.

74

Chapter 6

Conclusions and Further Work

6.1 Conclusion

This project has resulted in WoolPlot, a working, off-line Wool profiler.
The data collection is mostly measurement-based. The modified Wool
source code produces an output text file which contains information
about all steals, leaps and spawns in the execution, as well as CPU load.
When the text file is used as input to the Java application, the run will
be visualized in a graphical user interface. If the built-in logging already
present in Wool was used, the Java will application will also calculate the
critical path of the computation the way it happened, and paint it in the
GUI.

The creation and execution of several benchmark have shown that
WoolPlot performs well in practice, especially on the discrete events such
as spawns and steals. The CPU load reporting, on the other hand, can be
improved upon. These shortcomings will be described in more detail in
Section 6.2.3 on the next page. Experiments suggest that WoolPlot incurs
between 3 and 6% overhead.

6.2 Further Work

6.2.1 Output format

Keeping the output in the form it is now has the advantage that it can be
easily read by a human which can see if it makes sense, and in some cases
also gain insights directly from viewing the output. The disadvantage,

75

however, is that it is slow to both write and read, and it consumes much
space. For big runs especially, the output files will sometimes exceed
300MB. If both the C and Java code was re-programmed to instead work
with binary files, both some time and space would be saved.

6.2.2 Profiling Specific Sections

It is usually not interesting to profile the set-up and clean-up of an
execution. WoolPlot will now automatically exclude showing what
happened in the run before the first spawn. This helps a little, but
there should ideally be a way to choose exactly what to profile. Either
by starting and stopping the profiling with function calls directly in the
code, or at least having an easier way to zoom in on the visualization in
the GUI, so that it is trivial to select just what part of the computation to
view.

6.2.3 Hardware Counters

The decision to use the /proc/stat filesystem for acquiring CPU load
data was, in retrospect, not a wise one. The data is not accurate enough
to provide any more than an idea of whether the cores are busy or not.
In addition, because of how often the stat-file is updated, the polling
interval has to be quite large. This means that the CPU usage information
is practically useless for short, tight runs.

Implementing use of hardware performance counters would provide
WoolPlot with much more accurate data, which could provide valuable
insights into where the time is spent. Also, there is a library
which could make the implementation quite a lot easier. PAPI aims
to “specify a standard application programming interface (API) for
accessing hardware performance counters available on most modern
microprocessors” [47]. The project is still very much alive today, the latest
version, 4.1.3, was released May 2011 [48].

6.2.4 Other ideas

To provide even better information about an execution, WoolPlot could
include more specific data. An idea is to visualize the size of the task
queue for each worker over time. That way, one could easily see the
effect of steals on the task queue size, and also how many tasks there are

76

available at any time in the computation. Clearly, the task queue is empty
when a worker tries to steal a new task. When a thread goes leapfrogging,
on the other hand, there is no way of knowing how many tasks it has in
its task queue.

Another idea is to somehow show the steal attempts, as well as the
successful steals. That would show whether a thread is backing off or
actively looking for work, and combined with information about the task
queues, it could be very interesting. Careful consideration has to be
taken when deciding how to show this, because there is usually many
more attempts than successful steals, and the visualization is already a
bit crowded.

77

78

References

[1] S. Fuller and L. Millett, “Computing performance: Game over or
next level?,” Computer, vol. 44, no. 1, pp. 31–38, 2011.

[2] B. Wilkinson and M. Allen, Parallel programming: techniques and ap-
plications using networked workstations and parallel computers. Prentice-
Hall, Inc. Upper Saddle River, NJ, USA, 1998.

[3] LG Corporation, “Lg optimus 2x p990 product page.”
http://www.lg.com/uk/mobile-phones/all-lg-phones/

LG-android-mobile-phone-P990.jsp. Retrieved 30. May 2011.

[4] Tilera, “Tile-Gx Processor Family.” http://tilera.com/products/

processors/TILE-Gx_Family. Retrieved 24. March 2011.

[5] Intel, “Intel threading building blocks tutorial.” http:

//www.threadingbuildingblocks.org/uploads/81/91/Latest%

20Open%20Source%20Documentation/Tutorial.pdf. Retrieved 1.
November 2010.

[6] M. Hill and M. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[7] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in ACM SIGARCH Computer Architecture
News, vol. 32, p. 64, IEEE Computer Society, 2004.

[8] N. Lakshminarayana, S. Rao, and H. Kim, “Asymmetry aware
scheduling algorithms for asymmetric multiprocessors,” in Proc.
of the Fourth Annual Workshop on the Interaction between Operating
Systems and Computer Architecture, 2008.

79

http://www.lg.com/uk/mobile-phones/all-lg-phones/LG-android-mobile-phone-P990.jsp
http://www.lg.com/uk/mobile-phones/all-lg-phones/LG-android-mobile-phone-P990.jsp
http://tilera.com/products/processors/TILE-Gx_Family
http://tilera.com/products/processors/TILE-Gx_Family
http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Tutorial.pdf
http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Tutorial.pdf
http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Tutorial.pdf

[9] F. W. Burton and M. R. Sleep, “Executing functional programs on
a virtual tree of processors,” in Proceedings of the 1981 conference on
Functional programming languages and computer architecture, FPCA ’81,
(New York, NY, USA), pp. 187–194, ACM, 1981.

[10] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, pp. 720–748,
September 1999.

[11] P. Hemmen, “Task-based Programming on a 64-core Tilera CPU.”
TDT4590 Complex Computer systems, Specialization Project NTNU,
December 2010.

[12] Intel, “Intel cilk plus website.” http://software.intel.com/en-us/

articles/intel-cilk-plus/. Retrieved 2. December 2010.

[13] “OpenMP Application Program Interface, Version 3.0 May 2008.”
Online: http://www.openmp.org/mp-documents/spec30.pdf(cited
15. November 2010).

[14] J. M. Pérez, R. M. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core architectures,”
in Proceedings of the 2008 IEEE International Conference on Cluster
Computing, 29 September - 1 October 2008, Tsukuba, Japan, pp. 142–151,
IEEE, 2008.

[15] K.-F. Faxén, “Wool-a work stealing library,” SIGARCH Comput.
Archit. News, vol. 36, pp. 93–100, June 2009.

[16] A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparison of some
recent task-based parallel programming models,” 3rd Workshop on
Programmability Issues for Multi-Core Computers , Pisa, Italy., 2010.

[17] K.-F. Faxén, “Wool 0.1 users guide.” http://www.sics.se/~kff/

wool/users-guide.pdf, June 2009. Retrieved 9. November 2011.

[18] “Wool home website.” http://www.sics.se/~kff/wool/. Retrieved
23. March 2011.

[19] D. Wagner and B. Calder, “Leapfrogging: A portable technique for
implementing efficient futures,” in In SIGPLAN Notices, pp. 208–217,
1993.

80

http://software.intel.com/en-us/articles/intel-cilk-plus/
http://software.intel.com/en-us/articles/intel-cilk-plus/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.sics.se/~kff/wool/users-guide.pdf
http://www.sics.se/~kff/wool/users-guide.pdf
http://www.sics.se/~kff/wool/

[20] A. Iordan, A. Podobas, L. Natvig, and M. Brorsson, “Investigating
the Potential of Energy-savings Using a Fine-grained Task Based
Programming Model on Multi-cores,” A4MMC 2011 : 2nd Workshop
on Applications for Multi and Many Core Processors, 2011.

[21] S. Graham, P. Kessler, and M. Mckusick, “Gprof: A call graph
execution profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126,
1982.

[22] F. E. Allen, “Control flow analysis,” in Proceedings of a symposium on
Compiler optimization, (New York, NY, USA), pp. 1–19, ACM, 1970.

[23] T. Ball and J. Larus, “Optimally profiling and tracing programs,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 4, pp. 1319–1360, 1994.

[24] G. Ammons, T. Ball, and J. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” ACM Sigplan
Notices, vol. 32, no. 5, pp. 85–96, 1997.

[25] AMD, “Amd codeanalyst performance analyzer product page.”
http://developer.amd.com/cpu/codeanalyst/Pages/default.

aspx. Retrieved 22. March 2011.

[26] Intel, “Intel vtune amplifier xe 2011 product
page.” http://software.intel.com/en-us/articles/

intel-vtune-amplifier-xe/. Retrieved 22. March 2011.

[27] A. Srivastava and A. Eustace, “Atom: A system for building cus-
tomized program analysis tools,” in Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation,
pp. 196–205, ACM, 1994.

[28] J. Seyster, “Techniques for visualizing software execution,” 2008. A
Research Proficiency Exam, Stony Brook University.

[29] J. Fenlason and R. Stallman, “Gprof project website.” http://www.

cs.utah.edu/dept/old/texinfo/as/gprof.html. Retrieved 2. June
2011.

[30] “Google CPU Profiler.” http://goog-perftools.sourceforge.net/

doc/cpu_profiler.html. Retrieved 21. March 2011.

81

http://developer.amd.com/cpu/codeanalyst/Pages/default.aspx
http://developer.amd.com/cpu/codeanalyst/Pages/default.aspx
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://goog-perftools.sourceforge.net/doc/cpu_profiler.html
http://goog-perftools.sourceforge.net/doc/cpu_profiler.html

[31] W. Cohen, “Tuning programs with OProfile,” Wide Open Magazine,
vol. 1, pp. 53–62, 2004.

[32] “Oprofile.” http://oprofile.sourceforge.net/. Retrieved 21.
March 2011.

[33] Intel, “Intel parallel studio product page.” http://software.intel.

com/en-us/articles/intel-parallel-studio-home/. Retrieved 22.
March 2011.

[34] Intel, “Interpreting locks and waits analysis results.”
http://software.intel.com/sites/products/documentation/

hpc/amplifierxe/en-us/lin/ug_docs/olh/common/interpreting_

locks_waits_window.html. Retrieved 2. June 2011.

[35] K. Fürlinger and D. Skinner, “Performance profiling for openmp
tasks,” Evolving OpenMP in an Age of Extreme Parallelism, pp. 132–
139, 2009.

[36] Y. He, C. Leiserson, and W. Leiserson, “The Cilkview Scalability
Analyzer,” in Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures, pp. 145–156, ACM, 2010.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition. The MIT Press, 3rd ed., 2009.

[38] K. W. Cameron and Y. Luo, “Performance Evaluation Using Hard-
ware Performance Counters.” http://people.cs.vt.edu/~cameron/

prof/isca99/. Retrieved 30. May 2011.

[39] “Proc man-page.” http://www.kernel.org/doc/man-pages/online/

pages/man5/proc.5.html. Retrieved 9. May 2011.

[40] “Fork man-page.” http://www.kernel.org/doc/man-pages/

online/pages/man2/fork.2.html. Retrieved 21. May 2011.

[41] Free Software Foundation Inc, “The C Preprocessor.” http://gcc.

gnu.org/onlinedocs/cpp/index.html. Retrieved 25. March 2011.

[42] AMD, “Amd opteron processor solutions.” http://products.amd.

com/en-ca/OpteronCPUDetail.aspx?id=552&f1=Six-Core+AMD+

Opteron%e2%84%a2&f2=&f3=Yes&f4=&f5=512&f6=Socket+F+(1207)

&f7=&f8=45nm+SOI&f9=&f10=4800&f11=6&. Retrieved 9. June 2011.

82

http://oprofile.sourceforge.net/
http://software.intel.com/en-us/articles/intel-parallel-studio-home/
http://software.intel.com/en-us/articles/intel-parallel-studio-home/
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/olh/common/interpreting_locks_waits_window.html
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/olh/common/interpreting_locks_waits_window.html
http://software.intel.com/sites/products/documentation/hpc/amplifierxe/en-us/lin/ug_docs/olh/common/interpreting_locks_waits_window.html
http://people.cs.vt.edu/~cameron/prof/isca99/
http://people.cs.vt.edu/~cameron/prof/isca99/
http://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html
http://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html
http://www.kernel.org/doc/man-pages/online/pages/man2/fork.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/fork.2.html
http://gcc.gnu.org/onlinedocs/cpp/index.html
http://gcc.gnu.org/onlinedocs/cpp/index.html
http://products.amd.com/en-ca/OpteronCPUDetail.aspx?id=552&f1=Six-Core+AMD+Opteron%e2%84%a2&f2=&f3=Yes&f4=&f5=512&f6=Socket+F+(1207)&f7=&f8=45nm+SOI&f9=&f10=4800&f11=6&
http://products.amd.com/en-ca/OpteronCPUDetail.aspx?id=552&f1=Six-Core+AMD+Opteron%e2%84%a2&f2=&f3=Yes&f4=&f5=512&f6=Socket+F+(1207)&f7=&f8=45nm+SOI&f9=&f10=4800&f11=6&
http://products.amd.com/en-ca/OpteronCPUDetail.aspx?id=552&f1=Six-Core+AMD+Opteron%e2%84%a2&f2=&f3=Yes&f4=&f5=512&f6=Socket+F+(1207)&f7=&f8=45nm+SOI&f9=&f10=4800&f11=6&
http://products.amd.com/en-ca/OpteronCPUDetail.aspx?id=552&f1=Six-Core+AMD+Opteron%e2%84%a2&f2=&f3=Yes&f4=&f5=512&f6=Socket+F+(1207)&f7=&f8=45nm+SOI&f9=&f10=4800&f11=6&

[43] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona openmp tasks suite: a set of benchmarks targeting the
exploitation of task parallelism in openmp,” in Parallel Processing,
2009. ICPP’09. International Conference on, pp. 124–131, IEEE, 2009.

[44] S. Akl and N. Santoro, “Optimal parallel merging and sorting
without memory conflicts,” Computers, IEEE Transactions on, vol. 100,
no. 11, pp. 1367–1369, 1987.

[45] R. Bruen et al., “The n-queens problem,” Discrete Mathematics, vol. 12,
no. 4, pp. 393–395, 1975.

[46] “Time man.page.” http://www.kernel.org/doc/man-pages/

online/pages/man1/time.1.html. Retrieved 10. June 2011.

[47] S. Browne, C. Deane, G. Ho, and P. Mucci, “Papi: A portable
interface to hardware performance counters,” in Proceedings of
Department of Defense HPCMP Users Group Conference, 1999.

[48] The PAPI Project Team, “Papi project website.” http://icl.cs.utk.

edu/papi/index.html. Retrieved 8. June 2011.

83

http://www.kernel.org/doc/man-pages/online/pages/man1/time.1.html
http://www.kernel.org/doc/man-pages/online/pages/man1/time.1.html
http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/index.html

84

Appendix A

Detailed documentation

The code for WoolPlot is made available together with this thesis, and
our hope is that it has been documented well enough in the course of the
report. The only documentation in this appendix is the data format for
the output produced by the modified Wool source code.

A.1 Data format

The first output the Java application reads is the number of worker
threads, followed by two timestamps, which the C application collects at
very start and end of the execution. Next in line is every steal, every leap,
every spawn, the event logs produced by activating the LOG EVENTS
macro and the CPU usages over time. The formats for all the data are
given below.

---BEGIN STARTENDTIMES---

[number of workers]

[start timestamp]

[end timestamp]

//begin steals

[[thief]:[victim]:[timestamp]]

.

.

.

[[thief]:[victim]:[timestamp]]

//begin leaps

<leaps>

A-1

[[thief]:[victim]:[timestamp]]

.

.

.

[[thief]:[victim]:[timestamp]]

//begin spawns

<spawns>

[[spawner]:[timestamp]:[task name]]

.

.

.

[[spawner]:[timestamp]:[task name]]

//output from COUNT_EVENTS

//begin output from LOG_EVENTS

//some information about clock synchronization

<event_logs>

EVENT [worker] [type] [timestamp]

.

.

.

EVENT [worker] [type] [timestamp]

//begin cpu usages

<cpu_usage>

[[worker thread]:[timestamp]:[usage percentage]]

.

.

.

[[worker thread]:[timestamp]:[usage percentage]]

A-2

	Title Page
	Introduction
	Parallelism and Wool
	Parallel computations
	Parallel Programming Models

	Task Based Programming
	Work-stealing
	Task-based programming style
	Other task based programming models
	Wool
	Direct and continuation passing style

	Wool specifics
	Programming
	Building
	Running
	Built-in logging

	Profiling
	Data gathering
	Measurement-based profiling
	Statistical profiling

	Types of output
	Flat profile
	Call graph

	Online vs. offline
	Parallel Profiling
	Related work
	gprof
	OProfile
	Intel VTune
	AMD CodeAnalyst
	ompP
	Google CPU Profiler
	Cilkview

	Implementation
	Data collection
	Steals and leaps
	Spawns
	CPU usage
	Wool versions
	C Preprocessor macros
	C macros used in this project

	Java UI
	Visualization
	Implementation
	Timing
	Critical path

	Results
	Hardware
	Benchmarks
	Sorting
	Nqueens

	Artificial benchmarks
	Unoptimized merge sort
	Stealable tasks
	Leapfrogging

	Time impact
	Profiler
	Spin function

	Conclusions and Further Work
	Conclusion
	Further Work
	Output format
	Profiling Specific Sections
	Hardware Counters
	Other ideas

	References
	Detailed documentation
	Data format

