
June 2006
Ketil Bø, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Case Based Surveillance System

Thomas Aron Aasen





Problem Description
The master thesis is an extention of the project report "learning from experience" that took part
during fall 2005. The tasks are to further design, implement and test a system that is able to
achieve learning based on previously experienced cases. The domain is automatic video
surveillance and the method used is case-based reasoning.

Assignment given: 20. January 2006
Supervisor: Ketil Bø, IDI





Abstract

Many problems in the field of automatic video surveillance exists today. Some have yet
to be overcome. One of these problems is how a computer system automatically can
determine if a situation should cause an alarm or not. To resolve this problem, the use
of Case-based reasoning (CBR) is proposed. CBR is a technique that allows a system
to reason about different situations and to learn from them. The aim is to produce a
system that utilizes these abilities. The system should learn to recognize the situations
that causes different alarms. When a situation is recognized and categorized, these
false alarms can be completely avoided. This master thesis explains and shows the
advantages of using such a system together with advanced image processing techniques.



2

Preface

This master thesis is the result of my work from January 20th to June 16th 2006.
It was carried out at the Department of Computer and Information Science (IDI), at
the Norwegian University of Science and Technology (NTNU).

I would like to thank my advisor, Ketil Bø, for guiding me and answering my questions.

Thomas Aron Aasen

Trondheim, Norway
16. June 2006



Contents

1 Introduction 11

2 Related research 13

3 Background 17
3.1 TrollEye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Image pre-processing . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Image segmentation . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Mathematical morphology . . . . . . . . . . . . . . . . . . . 24

3.3 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Learning with CBR . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 The CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 CBR and image processing . . . . . . . . . . . . . . . . . . . 30

4 Solution 31
4.1 General system design . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Image processing module . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 IPL 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Converting a color image to grayscale . . . . . . . . . . . . . 39
4.2.5 Computing the difference between two images . . . . . . . . 39
4.2.6 Performing intensity correction on the images . . . . . . . . . 40
4.2.7 Finding the histogram variables . . . . . . . . . . . . . . . . 41
4.2.8 Counting objects in the alarm image . . . . . . . . . . . . . . 42

4.3 CBR module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Case database . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Revise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.5 Retain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



4 CONTENTS

5 Testing and results 51
5.1 Goals of testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Procedure of testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Selection of test data . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Filling up the database . . . . . . . . . . . . . . . . . . . . . 55

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Is the system reliable? . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Does the system minimize number of wrong solutions selected? . . . 58
5.6 Is the System Learning? . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Discussion and future work 61
6.1 Image processing module . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1 Extracted features . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 CBR module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 The database . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Is CBR a successful approach? . . . . . . . . . . . . . . . . . . . . . 64
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion 67

A Test logs 73



List of Figures

2.1 Three intensity profiles with corresponding changes in movement [1]. 16

3.1 TrollEye in setup mode with a live camera feed. . . . . . . . . . . . . 17
3.2 An alarm area defined by a four-sided polygon, and a dialog bow

appearing when an alarm has been raised. . . . . . . . . . . . . . . . 18
3.3 The statistical graph shows movement in the alarm area. The threshold

for raising an alarm (the alarm sensitivity) based on the movement is
also shown in the graph. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 The system setup dialog box where various DLLs can be added. . . . 19
3.5 Median filtering with a 3x3 median window. . . . . . . . . . . . . . . 22
3.6 A structuring element used in mathematical morphology [2]. . . . . . 24
3.7 The effect of applying erosion to an image [2]. . . . . . . . . . . . . . 25
3.8 The effect of applying dilation to an image [2]. . . . . . . . . . . . . 25
3.9 The effect of applying an opening to an image [2]. . . . . . . . . . . . 26
3.10 The effect of applying a closing to an image [2]. . . . . . . . . . . . . 26
3.11 The CBR cycle [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 System overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 System information flow. . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Class diagram of the image processing module. . . . . . . . . . . . . 33
4.4 Flow in the image processing module. . . . . . . . . . . . . . . . . . 34
4.5 (1) The two original images (reference image and alarm image). (2)

Result of applying median filtering to (1). (3) The difference image
calculated from (2). (4) Result of applying median filtering to (3). . . 35

4.6 Median filtering with four connected regions. . . . . . . . . . . . . . 36
4.7 Median filtering with diagonally connected regions. . . . . . . . . . . 36
4.8 Image going through two phases of erosion and two phases of dilation. 37
4.9 Structure a_case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Result of grayscale conversion. . . . . . . . . . . . . . . . . . . . . . 39
4.11 Computing the difference of two images with intensity threshold 30. . 40
4.12 From left: Mask for identifying 4-connected regions. Mask for identifying

8-connected regions. Label Collision . . . . . . . . . . . . . . . . . . 43
4.13 Class diagram of the CBR module. . . . . . . . . . . . . . . . . . . . 44
4.14 Flow diagram of the retrieve stage. . . . . . . . . . . . . . . . . . . . 45
4.15 Flow diagram of the reuse stage. . . . . . . . . . . . . . . . . . . . . 47
4.16 Flow diagram of the revise stage. . . . . . . . . . . . . . . . . . . . . 48

5



6 LIST OF FIGURES

4.17 Flow diagram of the retain stage. . . . . . . . . . . . . . . . . . . . . 49

5.1 The reference image used for testing. . . . . . . . . . . . . . . . . . . 52
5.2 (1a) Testcase 1. (1b) Testcase 1 with snow. . . . . . . . . . . . . . . . 53
5.3 (2a) Testcase 2. (2b) Testcase 2 with snow. . . . . . . . . . . . . . . . 53
5.4 (3a) Testcase 3. (3b) Testcase 3 with snow. . . . . . . . . . . . . . . . 53
5.5 (4a) Testcase 4. (4b) Testcase 4 with snow. . . . . . . . . . . . . . . . 54
5.6 (5a) Testcase 5. (5b) Testcase 5 with snow. . . . . . . . . . . . . . . . 54
5.7 (6a) Testcase 6. (6b) Testcase 6 with snow. . . . . . . . . . . . . . . . 54
5.8 (a) Difference image from the case with people in the street. (b)

Difference image from test 7. (c) Difference image from the case with
only snow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 (7a) Testcase 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Tables

5.1 Cases inserted in the database. . . . . . . . . . . . . . . . . . . . . . 55
5.2 Reliability testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 Results from test 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Results from test 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 Results from test 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Results from test 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.5 Results from test 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.6 Results from test 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.7 Results from test 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.8 Results from test 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.9 Results from test 9. (first run) . . . . . . . . . . . . . . . . . . . . . . 78
A.10 Results from test 9. (second run) . . . . . . . . . . . . . . . . . . . . 78
A.11 Results from test 9. (third run) . . . . . . . . . . . . . . . . . . . . . 79

7



8 LIST OF TABLES



List of Algorithms

3.1 Median filtering [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Converting RGB to grayscale. . . . . . . . . . . . . . . . . . . . . . 39
4.2 Compute difference image. . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Intensity correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Finding the change in average intensity and histogram max and min. . 42
4.5 4-connected and 8-connected region identification. . . . . . . . . . . 43
4.6 Comparing cases in the retrieve stage. . . . . . . . . . . . . . . . . . 46
4.7 Comparing cases in the reuse stage. . . . . . . . . . . . . . . . . . . 47
4.8 Update weight vector. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9



10 LIST OF ALGORITHMS



Chapter 1

Introduction

Automatic video surveillance is common today and its usage will only grow in the
future. Systems for security, traffic monitoring etc. are in widespread use throughout
the world. All these systems aims to provide the user with correct information about
what happens in the monitored area. An important characteristic in automatic video
surveillance systems is the fact that it is automatic. This means that the system itself
has to interpret the actions it gets from the camera feed. And here lies the difference
between automatic video surveillance systems and traditional video surveillance systems.
Before these automatic systems came, there always had to be someone watching the
feed from the camera. As video surveillance becomes more and more common, the
need for automatic systems becomes larger.

A problem in the field of automatic video surveillance is the fact that the systems
are not free from errors. It is very hard to produce a perfect system, and there is
always a small chance that a system makes the wrong decision once in a while. An
alarm sounding from a burglary in progress could just be the wind blowing extra hard
in the threes. But how can a computerized system distinguish such situations from
others? How can a computerized system determine if an alarm suddenly raised is a
false or a real alarm? This paper proposes the use of case-based reasoning (CBR)
to solve these problems. CBR is a field within the artificial intelligence community
that is widely researched today. The strength of CBR is that it enables a system to
learn from previous experienced situations. This again implies that it enables a system
to improve over time and with each situation that occurs. In the system proposed,
advanced image processing techniques first interprets the image that raised the alarm.
This interpretation is made up from several different features extracted from the image.
These features again are what makes up the contents of a case. When a case is
composed by the image processing part of the system, it passes it on to the CBR part.
Now, the idea is that there exists a database with several different cases. CBR is then
used to reason about the new case, compare it to the ones in the database and come up
with a solution.

The remainder of this thesis is structured as follows. In the first section, a background
on related research, automatic video surveillance and existing systems is given. The
section continues to give a thorough background on different commonly used image

11



12 CHAPTER 1. INTRODUCTION

processing methods. The last part of the sections is devoted to CBR. This part aims
to explain what CBR is, and how it allows systems to learn from experience. After
the background section, the paper continues to give a presentation of the work done
during this master thesis. This section first explains how the system as a whole is
designed, before explaining respectively how image processing and CBR is used in
the implementation of a system that solves the problem. In the section following, a
selection of tests and results from these tests are shown in detail. In the end a discussion
of the solution proposed and some insight into alternative solutions is given before the
concluding remarks summarizes the achievements made during the work period.



Chapter 2

Related research

There are many cameras mounted around in shops, on streets, in office-buildings etc.
today. As the amount of video surveillance and monitoring grows, the amount of data
to monitor also grows. With this growth, the number of human eyes required to watch
the monitors is simply to high. The cost of setting up a monitoring device is also
cheap compared to the price of a human observer. By replacing the human eye with
automatic monitoring systems, this problem is solved. Many different systems for
automatic monitoring exist today, from very simple ones, to highly advanced systems.
The most simple systems are often used in private homes. In these systems, reacting to
any kind of movement can be sufficient. In places that needs a high level of security,
advanced systems are used, and the human eye often acts as a backup. An example
can be in airports around the world. Security is top priority here, and the surveillance
system has to work properly and raise alarms when something out of the ordinary
happens. Advanced systems can e.g. track moving targets and classify them [5][6],
perform face recognition [7], or do other similar tasks.

Automatic video surveillance is really all about automatic video interpretation. That
is, interpreting and understanding the different scenes in a video. There exists various
beliefs on how this can and should be done. This paper presents the idea of using CBR
together with image processing to construct a system for automatic video surveillance.
This is a quite new approach to the problem, and the success of this idea is elaborated
during the next chapters. However, there also exists other theories and ideas on a
solution for this problem. All these ideas have their differences, but they often have
many things in common and they share the same goal. The different stages in all
common systems are:

1. Something happens in the scene monitored.

2. Acquire the information.

3. Interpret the information.

4. Understand the interpretation.

5. Make a decision.

13



14 CHAPTER 2. RELATED RESEARCH

These five points are included in all systems. When something happens in the scene
that is monitored, the system has to acquire information about the scene. This information
is not any good without an interpretation, so the next step would be to interpret this
information. The system also has to understand the interpretation and lastly make a
decision about the scene. This basically means that a working system has to be able to
get all relevant information from the scene, and understand what happens in the scene.

Automatic video interpretation has been an area of focus for a couple of decades in
the field of cognitive vision. The goal of all these systems is to recognize different
scenarios involved in the scene captured on video. Several research units are now
defining and finding new solutions to systems that is able to understand the activities
that goes on in the scene. The different approaches most commonly used to recognize
scenarios can be categorized in the following three categories:

• Probabilistic/neural network combining potentially recognized scenarios.

• Symbolic network that stores totally recognized scenarios.

• Symbolic network that stores partially recognized scenarios.

A natural approach for the computer vision community would be to base a system on
probabilistic/neural networks. Taking this approach, each node in the network usually
corresponds to scenarios recognized at a given instant with a certain probability. This
approach is used in [8], where a system for automatically driving a car based on visual
data is elaborated and tested. Another quite similar approach is used in [9], where
they use Radial Basis Function (RBF) networks, a type of artificial neural network
for application to problems of supervised learning [10]. In that paper they introduce
adaptive vision techniques for use in video-conference applications. Such techniques
are applied to track motion and recognize faces in the video. With this approach, the
network has to be trained extensively with several different versions of a face. A face
can be shown in several different angels, and all these angels needs to be incorporated
in the training for successful tracking later. Tracking objects can be a very good way to
interpret what is going on in the scene. However, it requires the system to use several
frames from the video continuously, and that requires a lot of processing power.

For the artificial intelligence community, the natural approach would be to use symbolic
networks and to store fully recognized scenarios. In this approach, nodes in the
network usually correspond to boolean recognition of scenarios. In [11], the aim
is to incrementally recognize certain situations, like states of the scene, events and
scenarios, in a video stream, in order to understand what happens in the scene. Several
facts are pre-defined, which can be things like type, geometry and property. These
facts are all given attributes from certain pre-defined concepts. A concept can be a
person or such. From analyzing images from the video, these facts are given different
concepts. A scenario is defined as a combination of different facts and concepts. So
this means that different scenarios can be recognized from these facts and concepts.
The problem here is how to recognize these concepts from the different video streams.

The third approach mentioned in the list is to use symbolic networks and to store



15

partially recognized scenarios. For example, [12], has used the terminology chronicle
to express a temporal scenario. A chronicle is represented as a set of temporal constraints
on time-stamped events. The recognition algorithm keeps and updates partial recognition
of scenarios using the propagation of temporal constraints based on RETE algorithm1.
This approach is also used in [13], where an adaptation of temporal constraints propagation
for video surveillance is made.

Another interesting approach is described by the work done in [14]. This work presents
a new scenario recognition algorithm for video interpretation. The idea here is to use
a priori knowledge about the scene. In the scene there can be static objects (counters,
plants etc.) and there can be moving objects (people etc.). These objects are all
actors in the scenario. Different scenarios are stored with actors and sub-scenarios
in a database. Each sub-scenario can be a movement by some actor in the scene from
one place to another. The sequence of these sub-scenarios is what determines which
main scenario the system believes is in action at any given moment. So, if a certain
pre-programmed sequence of sub-scenarios suddenly occurs, and this pre-programmed
sequence represents an alarm situation, the alarm is raised.

One of the more extensive projects within the field of video surveillance is the Video
Surveillance and Monitoring (VSAM) project that ran from 1997 to 1999 [1]. The
research was conducted by the Robotics Institute at Carnegie Mellon University (CMU)
and the Sarnoff Corporation. They basically developed a system for autonomous
Video Surveillance and Monitoring. The technical approach uses multiple, cooperative
video sensors to provide continuous coverage of people and vehicles in a cluttered
environment. The system is able to detect and track moving objects in a video sequence
by using a combination of temporal differencing [15] and template tracking. To determine
if there is movement in a video sequence, the system uses a background subtraction
with a three-frame differencing algorithm. Three-frame differencing implies the use
of three frames to determine movement from differences in pixel values from frame to
frame. Basically the method classifies a pixel as moving if there is change between the
first and second frame, and change between the first and third frame. The changes in
pixels are captured in pixel intensity profiles, which shows how the intensity change
varies over time. An example of such intensity profiles is shown in figure 2.1. Based
on these intensity profiles, the system can interpret the movement of objects in the
image. For further information on the VSAM project, see [1].

1The RETE algorithm is an efficient pattern matching algorithm for implementing rule-based ("ex-
pert") systems. The RETE algorithm was designed by Dr. Charles L. Forgy of Carnegie Mellon Univer-
sity in 1979. RETE has become the basis for many popular expert systems.



16 CHAPTER 2. RELATED RESEARCH

Figure 2.1: Three intensity profiles with corresponding changes in movement [1].



Chapter 3

Background

This chapter gives the reader a background in video surveillance software as well an
introduction to several image processing techniques and CBR.

3.1 TrollEye

TrollEye is a system for automatic security and surveillance. The system is developed
by TrollHetta AS. It is based on modern methods in image processing and pattern
recognition. The standard edition of the system is used for surveillance in homes and
small businesses, but the system also comes in an expert version which allows for more
intelligent detection algorithms and sensors to be used. Figure 3.1 shows the program
with a live camera feed. Several cameras can be added just by connecting them to
the USB port of the computer. When a camera is added to the system, alarm areas
and sensors can be added directly to the feed from the camera. An alarm area is a
four-sided polygon which can be shaped in any form and direction. An example of a
defined alarm area is shown in figure 3.2. It is in this alarm area that TrollEye looks
for events or changes that can trigger an alarm.

Figure 3.1: TrollEye in setup mode with a live camera feed.

TrollEye uses sensors, devices which raises the alarms should it be necessary. The

17



18 CHAPTER 3. BACKGROUND

Figure 3.2: An alarm area defined by a four-sided polygon, and a dialog bow appearing
when an alarm has been raised.

sensors are connected to a sensor card, and sensors can be assigned to a specific camera
to detect alarms. A single sensor can also be assigned to multiple cameras at once.
Rules are used to link and process alarm areas or sensors. A rule can be defined as a
mathematical expression. One example of a rule can be that there has to be an alarm
situations in two alarm areas at the same time for the alarm to be raised. By default,
one rule is applied for each alarm area. This rule is defined so that an alarm is raised
if an alarm occurs in the area. The alarm area is monitored for changes when the
system is in recording mode. To follow the movements or changes in an alarm area, a
statistical graph can be used. An example of such a graph is shown in figure 3.3.

Figure 3.3: The statistical graph shows movement in the alarm area. The threshold for
raising an alarm (the alarm sensitivity) based on the movement is also shown in the
graph.

TrollEye uses several different DLLs1 for input devices, pre-analysis, analysis and
action. DLLs can be added or removed according to what the user wants the system

1A Dynamic Library, also referred to as a Dynamically Linked Library, is a computer library that
implements the concept of dynamic linking.



3.2. IMAGE PROCESSING 19

to do. The system also allows for external DLLs to be added. So users can make
their own DLLs and incorporate them into the system. The dialog box for adding or
removing DLLs is shown in figure 3.4. In the figure, two action DLLs are currently
active. The lower one is called EmailAlarm.dll. This is an example of a typical action
performed by the system. In this case, an e-mail is sent to some predefined address
when an alarm is raised. Input Device DLLs are used for finding and determining the
source of the camera feed. Pre-analysis DLLs contains methods that are applied to
the alarm area before analysis. These methods can perform different image processing
tasks to the alarm area, maybe to make the alarm area more clear, lighter or darker as
needed.

Figure 3.4: The system setup dialog box where various DLLs can be added.

Another important feature in TrollEye is the ability to capture an image which is
referred to as a normal scene. A normal scene is used as a reference image and tells the
system what the scene looks like when there is nothing going on. The normal scene
image is used for continuously comparison with the monitored scene to determine if
there are objects of any kind in the image.

3.2 Image processing

3.2.1 Image acquisition

Image acquisition is simply the task of obtaining the image for further use. Images are
acquired in the RGB2 color format. In this format the image is stored as a three-dimensional
matrix, where two dimensions determine the location of each pixel while the third
dimension determine values for red, green and blue respectively. Storing images in
this way makes it easy to work with the images in further processing.

3.2.2 Image pre-processing

This section and the following section are mainly based on work described in [4].
2The RGB color model utilizes the additive model in which red, green, and blue light are combined in

various ways to create other colors. The very idea for the model itself and the abbreviation "RGB" come
from the three primary colors in additive light models.



20 CHAPTER 3. BACKGROUND

Pre-processing is a common name for operations to images at the lowest level of
abstraction. The aim of pre-processing is a general improvement of the image and to
enhance features of the image that are important for further processing. Pre-processing
of any image does not increase the amount of information in the image, but it typically
decreases amount of information. So it can be argued that pre-processing is such
a bad idea, that it is better to not do any pre-processing at all. But pre-processing
can be very useful as well. It can help suppress information in the image that is
not relevant for the task to be performed. There is typically a lot of redundancy in
images. Pixels corresponding to an object in an image, often have the same or similar
brightness value. By using this knowledge, distorted pixels can be picked out and
corrected by e.g. setting the value to the average pixel value around the distorted
pixel. Image pre-processing can be divided into four categories; pixel brightness
transformations, geometric transformations, local neighborhood processing and image
restoration. Local neighborhood transformation is the one that is most important for
this system.

Local pre-processing

In local pre-processing the idea is to use the neighborhood of a pixel in an image
to compute the new pixel brightness value. This kind of processing is also known
as filtering, because it always implies the use of a filter. There are two main local
pre-processing procedures. The first, smoothing, is used to suppress noise in an image.
Smoothing also blurs all the sharp edges in the image, which leads to loss of important
information. The second procedure, gradient operators, can be seen as the opposite
as smoothing. It uses local derivatives in the image. When taking the derivative of
an image, areas in the image with rapid change in brightness, are seen as bigger.
Edges and other rapid change areas in the image then becomes more clear by using
gradient operators. But noise is also an area with rapid change, so by applying this
procedure, noise level is also increased. Although smoothing and gradient operators
have quite conflicting goals, there exist procedures that allows for smoothing and edge
enhancement at the same time.

Smoothing aims to suppress noise in an image, and uses redundancy in the image. As
implied, smoothing reduces edge information in the image, but there are smoothing
methods that are edge preserving. An example of smoothing is averaging. It uses
a filter (also called convolution mask) over the whole image. This way, all pixel
values will be averaged by the pixel values in their neighborhood. The size of the
filter determines how large the neighborhood is. A 3x3 filter is often used:

1
9

 1 1 1
1 1 1
1 1 1

 (3.1)

This filter will reduce noise but also blur the image, without preserving edge information.
Another filter, which preserves the significance of the center pixel and its 4-connected



3.2. IMAGE PROCESSING 21

neighbors, is shown here:

1
16

 1 2 1
2 4 2
1 2 1

 (3.2)

Another method for efficiently reducing noise in an image, is called median1 filtering.
Median filtering is a smoothing method that replaces the current pixel with the median
pixel value from a neighborhood. Noisy pixels are efficiently removed as they does
not contribute to change the median value in the neighborhood. Median filtering does
not blur edges much, so it preserves most of the important information in the image.
The algorithm for median filtering is as follows:

Algorithm 3.1 Median filtering [4].
1: Set

th = mn
2

2: Position the window at the beginning of a new row, and sort its contents. Construct
a histogram H of the window pixels, determine the median med and record ltmed,
the number of pixels with intensity less than or equal to med.

3: For each pixel p in the leftmost column of intensity pg perform
H[pg] = H[pg]−1

Further, if pg < med, set
ltmed = ltmed−1

4: Move the window one column right. For each pixel p in the rightmost column of
intensity pg, perform

H[pg] = H[pg]+1
If pg < med, set

ltmed = ltmed +1
5: If ltmed > th then go to 6. Repeat

ltmed = ltmed +H[med]
med = med +1

until ltmed ≥ th. Go to 7.
6: Repeat

med = med−1
ltmed = ltmed−H[med]

until ltmed ≤ th.
7: If the right-hand column of the window is not at the right-hand edge of the image,

go to step 3.
8: If the bottom row of the window is not at the bottom of the image, go to step 2.

In algorithm 3.1, a median window of m rows and n columns is used. The size of the
median window is very important to consider as it has great impact on the result of the
filtering. Figure 3.5 shows the use of median filtering with a 3x3 median window and
the resulting median value. The pixel that is being processed in the figure, has a value

1The median is the value that is found in the middle when the values are sorted.



22 CHAPTER 3. BACKGROUND

Figure 3.5: Median filtering with a 3x3 median window.

of 150. The new value of the pixel is the median of the neighborhood, which is 124. If
for example this pixel instead has a noisy value of 40, the new value of the pixel will
still be 124. This shows that median filtering is an efficient approach to noise removal
in an image.
For more information about image pre-processing, see [4].

3.2.3 Image segmentation

The aim of image segmentation is to distinguish objects from background in images.
The process is an important step towards analysis and further processing of image data.
Segmentation can be of a complete or partial nature. In complete segmentation, the
result is a set of disjoint regions that completely corresponds to the objects. To achieve
complete segmentation, high-level features and specific knowledge of the image needs
to be taken into account. But the level of segmentation achieved depends a great deal
on the contents in the image. If the background is of a uniform intensity, objects
can easily be recognized, and complete segmentation is achieved. An example is
black letters printed on a white background. No knowledge of the image data is here
needed to obtain complete segmentation. On the other hand, partial segmentation,
results in regions that does not completely correspond to the objects in the image.
The image is here divided into several regions that are homogeneous with respect to
some low-level feature such as brightness. The partially segmented image can contain
some overlapping regions, and must then be subjected to further processing based on
high-level features. Image segmentation can be divided into three main approaches;
threshold techniques, edge-based segmentation and region-based segmentation. A
more extensive elaboration on threshold techniques and region-based segmentation
follows.

Thresholding

Thresholding is the simplest segmentation method. It works very well for images
that contains objects that are quite clearly separated from the background. Basic
thresholding is based only on the value of each pixel and does not take any neighboring
pixel values into account. The transformation of an input image f to an output image

o(i, j) =
{

1 if f (i, j)≥ T
0 if f (i, j)≤ T

(3.3)



3.2. IMAGE PROCESSING 23

where T is the threshold value. The value of this threshold is very important for
successful segmentation. There are several ways to accomplish this. The trivial solution
is to apply a global threshold i.e. use the same threshold value over the whole image.
However, this method seldom gives very good results, as background and object intensity
often varies with the position in the image. Another solution is to use adaptive thresholding.
Adaptive thresholding allows for the use of local threshold values that can be a function
of local image characteristics. This means that the threshold value can be different
depending on the position in the image. One way to do this, is to divide the image into
several subimages. Local threshold values can then be determined from the intensity
levels in each subimage. Global thresholding is determined from the whole image f
as:

T = T ( f ) (3.4)

Adaptive, local thresholding is also dependent on position in the image:

T = T ( f , fc) (3.5)

fc is here the part of the image where the local threshold is applied.
Many other threshold techniques also exist. One of these other procedures is called
semi-thresholding. With this procedure, the objects keep their original intensity level:

o(i, j) =
{

f (i, j) if f (i, j)≥ T
0 if f (i, j)≤ T

(3.6)

With this procedure, it is easier for the human eye to analyze the objects in the image.
The only change is in the background, which is set to a constant intensity level.

Region-based segmentation

The aim of region-based segmentation, unlike the previous mentioned technique, is to
locate and create regions right away. The main strength of region-based segmentation
is that it works very well with images with much noise. Region-based segmentation
divides the image into regions based on homogeneity in regions of the image. Homogeneity
in image regions can be based on gray-level, color, shape, etc. The complete segmentation
of an image R is expressed by a finite set of regions R1,...,RS, such that

R =
S[

i=1

Ri Ri∩R j = /0 i 6= j (3.7)

In region-based segmentation, two extra assumptions are needed:

H(Ri) = T RUE i = 1,2, ...,S (3.8)

H(Ri∪R j) = FALSE i 6= j, Ri adjacent to R j (3.9)

S is her the total number of regions and H(Ri) is a homogeneity evaluation of the
region Ri. After segmenting, the resulting regions must be homogeneous. The resulting
regions must also be maximal, which means that when one region is merged with
an adjacent region, the homogeneous criterion is false. The simplest criterion to use
when determining homogeneity is simply the gray-level. Region-based segmentation



24 CHAPTER 3. BACKGROUND

is often referred to as region growing, and the most straight-forward way to do this,
called region merging, is to think of each pixel in the image as a region on its own. A
pixel on its own will seldom satisfy (3.9), so the procedure is to merge regions as long
as (3.8) is satisfied. Differences in the result can occur because merging can be done
in different ways and in different order.

3.2.4 Mathematical morphology

Mathematical morphology [16] is a technique that affects shapes and boundaries of
regions in an image. In this application it is used to erase small objects and to group
fill holes in detected objects.

Figure 3.6: A structuring element used in mathematical morphology [2].

Erosion

Erosion is one of the the two (erosion and dilation) basic operations within mathematical
morphology. When applied to binary images, it is used to erode away the boundaries
of white pixels. The erosion operation takes two parameters. The image which erosion
is to be applied to and a structuring element. The structuring element is what decides
the the effect of the erosion on the image. The mathematical definition of erosion for
binary images is as follows:

• Suppose that X is the set of Euclidean coordinates corresponding to the input
binary image, and that K is the set of coordinates for the structuring element.

• Let Kx denote the translation of K so that its origin is at x.

• Then the erosion of X by K is simply the set of all points x such that Kx is a
subset of X.

The effect of erosion applied to an image can be seen in figure 3.7. The white areas
have become smaller as the black areas are growing.

Dilation

Dilation is the other typical operation within the field of mathematic morphology.
It is basically the opposite of erosion. As erosion is used to erode away the white
pixels, dilation is used to enlarge the boundaries of the white pixels. The mathematical
definition of dilation for binary images is as follows:



3.2. IMAGE PROCESSING 25

Figure 3.7: The effect of applying erosion to an image [2].

• Suppose that X is the set of Euclidean coordinates corresponding to the input
binary image, and that K is the set of coordinates for the structuring element.

• Let Kx denote the translation of K so that its origin is at x.

• Then the dilation of X by K is simply the set of all points x such that the
intersection of Kx with X is non-empty.

Figure 3.8: The effect of applying dilation to an image [2].

The effect of dilation applied to an image can be seen in figure 3.8. The white areas
have become larger as the black areas are getting smaller.

Opening

Opening, together with closing, are two other important operation in mathematical
morphology. They both are the result of combining erosion and dilation. An opening
is performed by taking an erosion followed by a dilation, using the same structuring
element for both operations. Doing this removes small white holes in a black object,
i.e. fills gaps.
Figure 3.9 shows the effect of applying an opening to a binary image.

Closing

Closing is basically the opposite of opening. It is performed by taking a dilation
followed by an erosion.
The effect of performing a closing on a binary image is shown in figure 3.10.



26 CHAPTER 3. BACKGROUND

Figure 3.9: The effect of applying an opening to an image [2].

Figure 3.10: The effect of applying a closing to an image [2].

3.3 Case-based reasoning

Case-based reasoning (CBR) is a relatively new technique in the field of problem
solving and learning [3]. Over the last few years is has gotten more and more attention
as its opportunities has become more clear. CBR is a paradigm for problem solving,
that is somewhat different from other AI problem solving paradigms. Different in the
way that CBR does not only rely on general domain knowledge, but also on the specific
knowledge of previously experienced cases. CBR has been applied in several different
systems and in several different domains. Reasons for applying CBR can be many.
In Casey [17] it is applied to achieve a more effective reasoning about a complicated
domain. Casey is one of the most successful CBR systems. It reasons about heart
deceases diagnostics, and acts as a effective version of the Heart Failure program [18].
Casey is also a safe system, because if it does not find a solution it uses the Heart
Failure program as backup. Another system that is implemented is IBP [19]. This
system uses CBR to predict the outcome of trade-secret lawsuits. Other systems such
as PROTOS [20] and CARMA [21] also shows very promising results within their
domains.

The basic idea of CBR is to use a database of previous cases to find a solution for
any new case. When a new case is presented to the system, specific knowledge from
cases in the database is used to locate the cases in the database which are most similar.
Specific knowledge here can be anything that is relevant for the problem which the
system is aiming to solve. This is obviously very different from system to system,
depending on what features are important in each problem scenario.



3.3. CASE-BASED REASONING 27

The general steps in any CBR system are:

• Identify all features from the new case presented to the system.

• Locate the most similar case from the database.

• Use the most similar case to suggest a solution for the new case.

• Evaluate this solution.

• Have the system learn from this experience.

3.3.1 Learning with CBR

Learning is a very important part of CBR systems. The idea comes from the field of
machine learning, where the rules for the system are derived in the system itself and
not by the programmer. Rules are made and updated continuously while scenarios
or cases are presented to the system. Learning in CBR in mainly the case update
procedures. Cases can and will usually be updated after each new case is solved. The
experience from solving a new case is retained in order to solve similar problems
in the future. CBR favors learning from experience, since it is usually easier to
learn by retaining a concrete problem solving experience than to generalize from it.
Learning in this kind of way also resembles the way that humans learn. Humans uses
previous experience to reason about a current situation, and learn more and more as
more situations are encountered. But this kind of learning really requires a set of
well formulated and worked out methods for deciding which parts of the experience
is relevant to learn from. Learning methods needs to extract all relevant knowledge
and discard knowledge that is of no use. If this is not the case, the system can be
reasoning wrongly about future cases, and the more cases presented, the more mistakes
the system is likely to make.

There is always some kind of learning when a new case is presented to the system.
The case base is updated regardless of how the problem was solved, and each time the
case base is updated, the system is learning something new. There are mainly three
issues in case-based learning. These are how to extract relevant knowledge, how to
index the case after learning and integration of the new knowledge learned.

Extraction of relevant knowledge can be done in many ways. The most obvious
way is to store all the problem specific information as knowledge. This is in many
systems sufficient and useful. Other systems also store an explanation or some sort
of justification of how and why the solution to the problem was found. By including
the explanation, cases in the future can be compared by means of the explanations
for better modification. Another quite typical source of relevant knowledge to store is
the method that was used to obtain the correct solution. This can be extremely useful
in later case problem solving. Simply by reusing the method the old solution was
obtained by, the new case can be solved correctly.

Indexing of cases and knowledge in the case base is very important for future retrieval.
The problem is really how the features of each case should be indexed and compared.



28 CHAPTER 3. BACKGROUND

One solution is to think of all the features as equally important, and do a full comparison
between a new case and cases in the case base. But with this approach all the features
acts as indexes. Another way is to give features different scales of contribution depending
on the importance of the feature. If one feature is generally found to be very important
for determining the solution, the cases in the case base can be indexed on behalf of
this feature. When the new case is presented, it will be compared by this feature first.
Doing it this way will help speed up the system and the retrieval phase.

Integration of new knowledge into the case base basically means changing the indexing.
One example is that the new knowledge can lead to a change in the strength of a distinct
feature in one or more cases. This has to be done in a smart way, so that the system
can improve with every case, and provide better reasoning for future cases.

3.3.2 The CBR cycle

In general, CBR can be described by four steps:

1. RETRIEVE the most similar case

2. REUSE the information from this case to solve the problem

3. REVISE the solution case

4. RETAIN the parts of this experience likely to be useful in the future

These steps can be viewed on as a cycle, see figure 3.11, where each step is processed
in turn.

Figure 3.11: The CBR cycle [3].



3.3. CASE-BASED REASONING 29

The cycle shows the different stages of a CBR system, and how these stages communicates
with cases and knowledge. Previous cases and general knowledge is drawn in the
middle, and makes up the knowledge base. An explanation of the different stages
follows.

Case retrieval

The first stage in the cycle is case retrieval. It starts out with a description of the
new case, and uses this description to locate similar cases from the case base. All
relevant features from the new case will have to be extracted, and compared to features
from all cases in the case base. There are several problems that must be addressed in
this phase. First of all, deciding which features are most important for determining
case similarity. A new case can often be similar to an old case in many ways, but
maybe some important features of the cases are totally different. Two really relevant
cases can also sometimes appear to be quite different. This is called the matching,
or similarity-assessment, problem. One way to deal with this problem is to compare
cases in several different ways. Another problem can be that a feature is relatively
unknown, and occurs only seldom. It is then hard to determine if the value of this
feature is big or small, because there is no other value to compare it to. This is called
the situation-assessment problem.

The goal of this task is to end up with one or a few previously experienced cases which
are similar to the new case presented. To select the most similar cases, a similarity
threshold is applied. All cases which are above this certain threshold will be fetched
from the case base. When the case base is quite big, this often means that several cases
is found to be above the threshold value. To find only the most similar case, some sort
of selection method has to be applied. When only one case, which will be the proposed
solution, is found, this stage is over.

Case reuse

Next in the cycle is the case reuse stage. This stage is also often referred to as case
adaptation. Reuse of the retrieved previous case solution focuses on two things, namely
the differences between the past and the new case, and what part of the retrieved case
can be transferred to the new case. The most simple way to do this is to abstract
away all differences between the cases, and to use the solution of the retrieved case
directly as the solution for the new case. This is a somewhat trivial example of
reuse. Another approach is to take the differences into account. This requires an
adaptation process that deals with these differences. There are mainly two different
ways to reuse past cases. The first is to reuse the past case solution, which is known as
transformational reuse. With this approach, the past case solution is not used directly as
a solution for the new case, but there exists knowledge in the form of transformational
operators, T, that when applied to the past case solution creates a solution for the
new case. Transformational operators can be indexed around the differences detected
among the retrieved and new cases. A strong domain-dependent model in the form of
transformational operators is required, because it focuses on the solutions instead of
how the problem is solved.



30 CHAPTER 3. BACKGROUND

A second approach is known as derivational reuse. Here, the method that leads to
the solution is reused. Every case in the case base has to hold on to information about
the steps that led to the solution. These steps are reused for the new case, and a solution
for the new case is created.

Case revise

In the revise stage, the solution is tested and evaluated by the system. If the outcome of
the evaluation is successful, the solution is approved. If it’s not, the solution case will
be repaired either by some method or by user interaction. The stage can be divided
into two parts, evaluate solution, and repair fault. In the evaluation part the solution is
applied in a real environment and the result is approved or disapproved. If the result
from the evaluation is approved, then this stage is over. But if it is disapproved, the
errors are detected and explanations are generated.

Case retain

The final stage is retain. This is where the learning takes place. This task will update
the knowledge base with the parts of this experience that are useful to retain. Learning
is triggered by the success or failure of the case evaluation. Subtasks to retainment are
usually selecting what information to store, in what form to store it, how to index the
case in the case base, and how to integrate the case in memory.

No matter what the outcome of the reasoning is, there is always some learning involved.
Either the case was solved by the use of some previous case, which can lead to the
creation of a new case or a generalization of the old case, or the case was solved by
some other method, which will lead to the creation of a new case. In any case a decision
must be made about what to use as source for learning. Description of problem and
solution are usually a good source for learning, but explanations and justifications of
why solutions are correct can also be included as learning sources. Extraction of the
method that solved the problem is also a possible source.

3.3.3 CBR and image processing

The use of CBR in image interpretation systems is proposed in [22]. As image interpretation
systems are becoming increasingly popular in several different applications, the need
for robust and flexible systems are getting bigger. CBR is a strategy that can provide
robustness and flexibility. It is a powerful method for controlling the image processing
in all phases. As yet, CBR is not widely used in image interpretation systems. This
may be because CBR is not very well known within the image interpretation community.
Images are a difficult domain to model. CBR generally does not rely on a well-formulated
domain theory, and can therefore be a very good approach in image interpretation
systems.



Chapter 4

Solution

This chapter focuses on the implementation of the system, and gives an explanation of
the different choices made.

4.1 General system design

The system is designed and implemented in two major parts, as seen in figure 4.1.

Figure 4.1: System overview.

As this system really deals with reasoning about images, the two different modules
are the image processing module and the CBR module. The main task in the image
processing module is to extract features from images, while the CBR module deals
with all reasoning tasks. These two modules are quite independent of eachother,
however, there are also parts that ties them together. One factor that is shared by
both modules is knowledge about how a case is built up. Both module needs to have
this knowledge. The image processing module is supposed to fill in the information
about each case, and the CBR module is supposed to use this information. Therefore,
should a change in case structure occur, both modules needs to be changed in various
places. The overall main flow of information in the system is shown in figure 4.2.

31



32 CHAPTER 4. SOLUTION

This figure shows that the system trigger is when an alarm is raised. This information
is passed on to the image processing module in the form of a reference image and an
alarm image. Features from the images are here extracted, and sent to the CBR module
which reasons about the case and produces a solution.

Figure 4.2: System information flow.

4.2 Image processing module

The image processing module deals with all image processing tasks in the system.
It is one of the two large modules (image processing and CBR). This module uses
a lot of methods from the open source library IPL 98 as well as other implemented
methods. The major goal of the image processing module is to prepare images for
feature extraction and to perform the feature extraction itself. Figure 4.3 shows the
class diagram of the Ip class that is the implementation of the image processing module.
The basic flow within the image processing module can be seen in figure 4.4. The
figure shows the two images first being loaded into the the program. When this is
accomplished, the next step is to convert both of them to grayscale images. They
then both undergo the same pre-processing procedures before a difference image is
computed. This difference image also goes through pre-processing procedures before
the features are extracted from both the input images and the difference image. This
module then ends up with a feature vector which is passed on the CBR module.



4.2. IMAGE PROCESSING MODULE 33

Figure 4.3: Class diagram of the image processing module.

4.2.1 IPL 98

In the implementation, an existing open source image library called IPL (Image Processing
Library) 98 [23] is used. This library provides several methods for different image
processing tasks. From simple ones such as loading a bmp1 file, to heavier processes
such as segmentation techniques. In this system IPL 98 is used to:

• Load images

• Save images

• Perform median filtering

• Perform mathematical morphology

IPL 98 loads and saves images in bmp format.

4.2.2 Pre-processing

Image pre-processing is very important for the result and for the rest of the image
processing modules functions. The system uses pre-processing in two stages. At first
the grayscale reference image and alarm image are pre-processed by median filtering.
The second stage of pre-processing happens when the difference image is computed.
The difference image also goes through median filtering. In addition, the difference
image is processed by mathematical morphology, to remove any small disturbance left
in the image after median filtering.

Median filtering

The images are median filtered in several stages. First, the grayscale converted original
images are median filtered to remove any noise that may be present in the images. Both
the reference image and the alarm image are median filtered using the exact same filter
method. These images will later be compared to produce a difference image, so it is
important that all the same actions are taken on both images. This difference image
is also median filtered to further remove any noise caused by the production of the
difference image. Using a medial filter on the difference image removes small objects
in the image. The whole process and an example of the result can be seen in figure
4.5. The reason for using median filtering is that is removes noise, but at the same
time preserves details in the image. Median filtering preserves details better than for
example a mean filter [24], which is another alternative for noise removal.

1Bmp (Bitmap Picture) is a bitmapped graphics format used internally by the Microsoft Windows
graphics subsystem, and used commonly as a simple graphics file format.



34 CHAPTER 4. SOLUTION

Figure 4.4: Flow in the image processing module.

In figure 4.5 it is clear to see that noise has been removed in both stages of median
filtering. Another positive outcome of median filtering can be seen in the latter stage
of filtering (where the difference image is median filtered). The small white holes
in the big black object has been filled, so that the object is also better segmented by
applying median filtering.

The actual algorithm for median filtering can be seen in algorithm 3.1. The program
uses a built in version from IPL 98 to perform median filtering. This version applies
median filtering in two stages. First it applies a four connected filtering, see figure 4.6,
that sets the pixel X to the median value of the five gray pixels shown in the figure.
Second, a diagonally connected filtering, see figure 4.7, is applied. This time the pixel
X is set to the median value of the five diagonally connected gray pixels shown in the
figure.



4.2. IMAGE PROCESSING MODULE 35

Figure 4.5: (1) The two original images (reference image and alarm image). (2) Result
of applying median filtering to (1). (3) The difference image calculated from (2). (4)
Result of applying median filtering to (3).



36 CHAPTER 4. SOLUTION

Figure 4.6: Median filtering with four connected regions.

Figure 4.7: Median filtering with diagonally connected regions.



4.2. IMAGE PROCESSING MODULE 37

Mathematical morphology

Mathematical morphology is applied to isolate the objects in the image that are of
particular interest. Small pixel variations from noise and moving trees can quickly be
reduced or eliminated by correct use of mathematical morphology.

Figure 4.8: Image going through two phases of erosion and two phases of dilation.

If figure 4.8 the effect of mathematic morphology on a typical difference image is
shown. The original difference image is shown in the upper left corner, and the result
is shown in the lower left corner. Notice the small white dent on the right side of the
large object. During the morphology phase the image goes through two erosions and
two dilations. In figure 4.8 it is clear to see the changes in the large object during each
stage. During the erosion the object is getting bigger, and white holes are filled with
black pixels. During dilation the object is getting smaller or, in other words, returning
to the original size of the object. The result clearly shows that the unwanted white dent
in the large object is filled, and the object has straighter boundaries which reflects the
reality of the object better.

4.2.3 Feature extraction

Extracting of the features representing each case is done during the image processing
module. These features are what makes different cases unique, so determining which
features to extract is an important decision. As this system is quite simple and ought to
run fast, the features chosen are features which are quite easy to extract. The selected
features focuses on the different intensities in the images as well as information about
objects in the image. Selected features are:

• average intensity in the alarm image.

• change in intensity from reference image to alarm image.

• average object size in difference image.

• largest object size in difference image.



38 CHAPTER 4. SOLUTION

• number of objects in difference image.

The reason for focusing on objects found in the alarm image is obvious. These objects
have most likely triggered the alarm. The number of objects and their sizes are often
the only features separating a case from another. To store the information about these
features, the structure “a_case” is created. A structure is a very nice way to store
information about the cases, because all the information needed can be contained
within the structure.

Figure 4.9: Structure a_case

As seen in figure 4.9, the structure contains several different variables that describes
the case. These are:

• alarm_situation: defines if the case represents an alarm or not.

• avg_intensity: the average intensity in the alarm image.

• avg_object: the average size of the objects found in the alarm image.

• case_nr: a number to identify the case.

• change_intensity: the change in intensity from the reference image to the alarm
image.

• largest_object: the size of the largest object found in the alarm image.

• nr_of_objects: the number of objects found in the alarm image.

• textual: a textual description of the case.

• weight_avg_intensity: the weight of the avg_intensity variable.

• weight_avg_object: the weight of the avg_object variable.

• weight_change_intensity: the weight of the change_intensity variable.

• weight_largest_object: the weight of the largest_object variable.

• weight_nr_of_objects: the weight of the nr_of_objects variable.



4.2. IMAGE PROCESSING MODULE 39

4.2.4 Converting a color image to grayscale

This function, called ConvertRGBtoGray, is used to convert an image represented in
RGB colors to grayscale. The reason for converting the images to grayscale is that
colors are of no concern in this system. It only works with intensity images and get
all the information it needs from these images. Doing this straight away also reduces
processing time, as image pixels are stored with 8 bits in intensity images as opposed
to 24 bits in full color images.
The output from this function is an intensity image with values from 0 to 255. An
example of a result from this particular grayscale conversion is shown in figure 4.10.

Figure 4.10: Result of grayscale conversion.

The color image is converted to grayscale using the algorithm 4.1.

Algorithm 4.1 Converting RGB to grayscale.
1: A← read RGB image
2: Gray← A
3: for i = 0 to length(A) do
4: for j = 0 to height(A) do
5: Gray[i, j] = 0.299∗A[i, j,1]+0.587∗A[i, j,2]+0.114∗A[i, j,3]
6: end for
7: end for

4.2.5 Computing the difference between two images

This function, called ComputeDiff, is used to compute the difference image from the
reference image and the alarm image. The reference image and the alarm image are
taken in as parameters and a difference image is returned as output. The function
compares each pixel value in the two input images, and turns the corresponding pixel
in the output image on or off depending on the value of difference from the two input
images. If the difference is above a predefined threshold, the corresponding pixel in
the output is set to black. If they are sufficiently similar, the pixel is set to white. The
value of the threshold is important. If this value is set too low, too many of the small
disturbances in the image are passed on the difference image. On the other hand, if
the threshold value is too high, important features in the image may be ruled out, and
wont be passed on to the difference image. The threshold value can very easily be
changed to test different values, and to find the best one. Figure 4.11 shows what the
input images and the resulting difference image when the threshold is set to 30.
The algorithm for computing the difference image is shown in algorithm 4.2.



40 CHAPTER 4. SOLUTION

Figure 4.11: Computing the difference of two images with intensity threshold 30.

4.2.6 Performing intensity correction on the images

This function is called HistoEqImages and is used to correct intensities in both the
reference and the alarm image to enhance the quality of the difference image. If the
difference in intensity between the two images are too large, this can have a bad effect
on which objects that are found in the difference image. Many areas in the image
that are not really objects, but maybe just a shadow can be mistaken as objects if
this difference is too large. By reducing this difference, this can be avoided. Both
images are corrected to make the average intensity in the images as close to 1222 as
possible. Algorithm 4.3 shows what happens during this intensity correction. The

2122 is the gray value right in the middle of the scale that goes from 0 (black) to 255 (white).

Algorithm 4.2 Compute difference image.
1: A← read reference image
2: B← read alarm image
3: for i = 0 to length(A) do
4: for j = 0 to height(A) do
5: if abs(A[i, j]−B[i, j]) < threshold then
6: OUT PUT [i, j] = 255
7: else
8: OUT PUT [i, j] = 0
9: end if

10: end for
11: end for



4.2. IMAGE PROCESSING MODULE 41

important thing that happens in this algorithm is that a correction value for each image
is computed. These values represent the gap between the average intensity values in
the images and 122. The latter part of the algorithm corrects each pixel in the images
by these correction values, but only if the resulting intensity ends up between 0 and
255.

Algorithm 4.3 Intensity correction.
1: A← read reference image
2: B← read alarm image
3: SumA← sum of values in image A
4: SumB← sum of values in image B
5: for i = 0 to length(A) do
6: for j = 0 to height(A) do
7: SumA+ = A.GetPixel(i, j)
8: SumB+ = B.GetPixel(i, j)
9: end for

10: end for
11: CorrectA← the correction value for image A
12: CorrectB← the correction value for image B
13: CorrectA = 122− (SumA/(length(A)∗height(A)))
14: CorrectB = 122− (SumB/(length(B)∗height(B)))
15: for i = 0 to length(A) do
16: for j = 0 to height(A) do
17: if (A.GetPixel(i, j)+CorrectA) > 255 or A.GetPixel(i, j)+CorrectA) < 0

then
18: DoNothing
19: else
20: A.SetPixel(i, j)← A.GetPixel(i, j)+CorrectA
21: end if
22: if (B.GetPixel(i, j)+CorrectB) > 255 or B.GetPixel(i, j)+CorrectB) < 0

then
23: DoNothing
24: else
25: B.SetPixel(i, j)← B.GetPixel(i, j)+CorrectB
26: end if
27: end for
28: end for

4.2.7 Finding the histogram variables

This function, called FindingHistoVar, is used to find several intensity attributes in the
reference image and the alarm image.
From the reference image it computes:

• average intensity in image.

From the alarm image it computes:



42 CHAPTER 4. SOLUTION

• average intensity in image.

• value of the lowest intensity in the image.

• value of the highest intensity in the image.

By using the average intensity values from the two images, it also computes the change
in the intensity from the reference image to the alarm image. Algorithm 4.4 shows
what happens during this procedure. The algorithm is pretty straightforward.

Algorithm 4.4 Finding the change in average intensity and histogram max and min.
1: A← read reference image
2: B← read alarm image
3: CounterA← counter for values in reference image
4: CounterB← counter for values in alarm image
5: max = 0← variable that remembers highest intensity value
6: min = ∞← variable that remembers lowest intensity value
7: for i = 0 to length(A) do
8: for j = 0 to height(A) do
9: CounterA = CounterA+A.GetPixel(i, j)

10: CounterB = CounterB+B.GetPixel(i, j)
11: if B.GetPixel(i, j) > max then
12: max = B.GetPixel(i, j)
13: else if B.GetPixel(i, j) < min then
14: min = B.GetPixel(i, j)
15: end if
16: end for
17: end for
18: Computing the average intensity and the change in the average intensity:
19: AV GINTre f image = CounterA

length(A)∗height(A)

20: AV GINTalarmimage = CounterB
length(B)∗height(B)

21: AV GINTchange = AV GINTalarmimage−AV GINTre f image

4.2.8 Counting objects in the alarm image

This function, called CountNrOfObjects, is used to find object information from the
difference image computed from the reference image and the alarm image. It uses
region identification techniques to label each object in the image. By doing this it
can quickly find the number of objects in the image, and the size of each of these
objects. 8-connected region identification is used in this system. Objects that are close
enough to be identified as the same object in 8-connected region identification can
sometimes be identified as two different objects in 4-connected region identification.
In this system there is no reason to classify two such close objects as two different
objects, therefore 8-connected region identification is preferred. Algorithm 4.5 shows
the steps taken in region identification.



4.2. IMAGE PROCESSING MODULE 43

Algorithm 4.5 4-connected and 8-connected region identification.
1: First pass: Search the entire image R row by row and assign a non-zero value v

to each non-zero pixel R(i,j). The value v is chosen according to the labels of
the pixel’s neighbors, where the property neighboring is defined by figure 4.12
(’neighbors’ outside the image R are not considered),

• If all the neighbors are background pixels (with pixel value zero), R(i,j) is
assigned a new (and as yet) unused label.

• If there is just one neighboring pixel with a non-zero label, assign this label
to the pixel R(i,j).

• If there is more than one non-zero pixel among the neighbors, assign the
label of any one to the labeled pixel. If the labels of any of the neighbors
differ (label collision), store the label pair as being equivalent. Equivalence
pairs are stored in a separate data structure - an equivalence table.

2: Second pass: All of the region pixels were labaled during the first pass, but some
regions have pixels with different labels (due to label collisions). The whole image
is scanned again, and pixels are re-labeled using the equivalence table information
(for example, with the lowest value in an equivalence class).

Figure 4.12: From left: Mask for identifying 4-connected regions. Mask for
identifying 8-connected regions. Label Collision



44 CHAPTER 4. SOLUTION

4.3 CBR module

The CBR module deals with the reasoning parts of the system. It is started when
a new feature vector is supplied by the image processing module. It then performs a
search in the case database, locates the best cases and reasons about these. The module
ends with a solution to the case in the form of a selected case from the database or the
creation of a totally new case. A class diagram from the implementation of this module
is seen in figure 4.13.

Figure 4.13: Class diagram of the CBR module.

4.3.1 Case database

The case database is where all cases is stored. It contains all the information needed
for each case. For each case it holds the following information:

• A separation point to notify that a new case is starting.

• A number on the case.

• All data from the structure a_case.

The entire case database gets read into the program when a new case is presented.
Values that needs to be updated are updated in the system itself and not directly in
the database. After the program is finished running, the database is updated, and all
necessary changes are made to the database.



4.3. CBR MODULE 45

4.3.2 Retrieve

Figure 4.14: Flow diagram of the retrieve stage.

The retrieve stage is the first stage in the CBR module. Its main task is to compare
the new case with all cases in the database, and to select the best cases to pass on to the
next stage. Initially, the stage reads all cases from the database into the system. This is
done by reading a case at a time from the database, and putting the case into an array
of cases locally in the program. When all cases are read, it moves on to the next stage,
which is to compare the new case with all these old cases. This stage compares the new
case with each case one by one. This specific comparison procedure also considers the
weights corresponding to each feature. The weights makes sure that each feature only
counts on the total case resemblance value according to the value of the weight. The
algorithm used can be seen in algorithm 4.6.
The output from the retrieve stage is the three best matching cases extracted from the
database, except when there are no cases in the database previously. When the database
is empty, the retrieve stage exits and tells the retain stage to create a new case. However
if there are cases in the database, the three best cases are passed on to the reuse stage.

4.3.3 Reuse

Reuse is the next stage. Its main task is to test if the best matching case and the
new case are sufficiently similar to be used automatically as solution. It only has to
to test the single best matching test, because if this case is not similar enough to be
automatically approved, the two other retrieved cases neither are. In fact, the two other
retrieved cases are always further from the new case in similarity value that the best
matching retrieved case. Another threshold value is used to determine if this similarity
value is good enough or if the user has to approve the solution manually. The algorithm
used to determine similarity is algorithm 4.7.
If the value from algorithm 4.7 is lower than the predefined similarity threshold, the
case is automatically approved and passed on directly to the retain stage. On the other
hand, if the cases are found to not be sufficiently similar, the case has to be approved or



46 CHAPTER 4. SOLUTION

Algorithm 4.6 Comparing cases in the retrieve stage.
1: if there are no cases in the database then
2: exit and create a new case.
3: else
4: Solution← buffer value
5: A← best value
6: B← second best value
7: C← third best value
8: Anr← number on best matching case
9: Bnr← number on second best matching case

10: Cnr← number on third best matching case
11: A = 100000000000
12: B = 100000000000
13: C = 100000000000
14: for j = 0 to j = number_o f _cases do
15: for k = 0 to k = number_o f _ f eatures do
16: Solution+ = (thenewcase. f eaturenr[k] − casenr[ j]. f eaturenr[k])2 ∗

casenr[ j].weightnr[k]
17: end for
18: if Solution < A then
19: C = B
20: B = A
21: A = Solution
22: Cnr = Bnr
23: Bnr = Anr
24: Anr = oldCases[ j].caseNr
25: else if Solution < B then
26: C = B
27: B = Solution
28: Cnr = Bnr
29: Bnr = oldCases[ j].caseNr
30: else if Solution < C then
31: C = Solution
32: Cnr = oldCases[ j].caseNr
33: end if
34: Solution = 0
35: end for
36: end if
37: return Anr,Bnr,Cnr



4.3. CBR MODULE 47

Figure 4.15: Flow diagram of the reuse stage.

Algorithm 4.7 Comparing cases in the reuse stage.
1: A← difference measure
2: for k = 0 to k = number_o f _ f eatures do
3: A+ = f eaturenr[k]2

4: end for
5: A =

√
A

6: return A

disapproved manually by a user, and is therefore passed on to the revise stage together
with the two other retrieved cases.

4.3.4 Revise

In the revise stage the main task is to have the user manually approve or disapprove
the retrieved cases. The revise stage is only invoked if the best retrieved case was
rejected by the reuse stage. During this stage the user will get a textual description of
the retrieved cases. At first the user has to deal with the best matching case. The user
will then have two choices. The best retrieved case can be approved as the solution
case for the new case, or it can be rejected. If the user approves the retrieved case,
he will also be prompted to tell if the new case represents an alarm case. This info
is only intended as a control to see if the approved case has the same alarm status as
the retrieved case. If this check passes, the retrieved case is sent to the retain stage to
update the information about the case. The user also has the option to disapprove the
best retrieved case. If this happens, the same procedure is started with the second best
matching case. If this case also is rejected, it moves on to the third best matching case.



48 CHAPTER 4. SOLUTION

Figure 4.16: Flow diagram of the revise stage.

If all three cases are rejected, a new case will be created. The user is then prompted
for a description of the new case and the alarm status. A new case is created and the
system moves on to the retain stage to update information about the wrongly retrieved
cases.

4.3.5 Retain

The last stage of the CBR module is retain. This is where the system gets updated
according to what happened during the previous stages. A case can enter this stage in
several different ways. The first, and least frequent way is if there are no cases in the
database. When this occurs, the retrieve stage only have to make a new case. A second
way is when there are cases in the database, but the new case did not resemble any
of these cases. This situation also leads to the creation of a new case, but in addition
the weights of the retrieved cases are updated. The third alternative is when on of the
retrieved cases was approved as solution for the new case. Now there is no need to



4.3. CBR MODULE 49

Figure 4.17: Flow diagram of the retain stage.

create a new case, and the only thing that happens is that the weights of the retrieved
cases are updated. All three alternatives finishes with an update of the database.

Updating the Weights

The task of updating the weights are an essential part of the system. Essential because
this is what gives the system the ability to learn. After a new case is passed through
the system, the weights of the retrieved case are modified. The idea is that if the
retrieved case was accepted as the solution case for the new case, features that were
similar in the two cases are the most important ones. These features should therefore
count more than the other features in this exact case. By strengthening the weights
on the important features and weakening the weights on the others, the case gets more
specific and the chance that the system retrieves the correct case next time is increased.
On the other hand, if the retrieved case is rejected by the user, the weights are updated
in the opposite way. This is done because the system chose the wrong case, and if the
weights are updated the opposite way, there is less chance of doing this mistake again.

Algorithm 4.8 shows how the weights of the retrieved case are updated. Several
variables are used to control what happens to the weights in different circumstances.
The threshold value used is a ratio between the feature in the new and in the retrieved
case. This is the value that decides if the exact feature is important for the case or
not. Two percentage values are also used. One high that changes the feature in that is
being compared, and one low that changes the other features in the opposite direction
to compensate. Exactly the same happens for all features. When this is done, the
features are scaled back to proportion, which means that the sum of all weights are the
same after update as before. This is done because after very many runs, the weights
can become very large, and that can make the system taking wrong decisions later.



50 CHAPTER 4. SOLUTION

Algorithm 4.8 Update weight vector.
1: A← read feature vector from new case
2: B← read feature vector from retrieved case
3: WB← read weight vector from retrieved case
4: Setthreshold
5: Sethighpercentage
6: Setlowpercentage
7: for i = 0 to length(A) do
8: if abs(A[i]−B[i]) < threshold then
9: for j = 0 to length(WB) do

10: if j == i then
11: if Case Accepted as Solution then
12: increase WB[i] by a predetermined high percentage
13: else
14: decrease WB[i] by a predetermined high percentage
15: end if
16: else
17: if Case Accepted as Solution then
18: decrease WB[i] by a predetermined low percentage
19: else
20: increase WB[i] by a predetermined low percentage
21: end if
22: end if
23: end for
24: else
25: for j = 0 to length(WB) do
26: if j == i then
27: if Case Accepted as Solution then
28: decrease WB[i] by a predetermined high percentage
29: else
30: increase WB[i] by a predetermined high percentage
31: end if
32: else
33: if Case Accepted as Solution then
34: increase WB[i] by a predetermined low percentage
35: else
36: decrease WB[i] by a predetermined low percentage
37: end if
38: end if
39: end for
40: end if
41: end for
42: Adjust weights so that the total weight sum is same as before



Chapter 5

Testing and results

This chapter gives a review of the tests done with the system.

5.1 Goals of testing

The main idea behind these tests is to see if a CBR module can be used to better the
performance of an automatic video surveillance system. Basically this means the tests
should locate the scenarios that represent false alarms and distinguish these from those
that represents alarms. To check if this is accomplished, three goals are made:

• Reliability in the system

• Minimization of wrong solutions selected

• System has the ability to learn

These three goals has to be accomplished to conclude that the system is working well.
The first goal says that the system has to be reliable. Reliability is a very important
factor in all computer systems [25]. When a system is said to be reliable, it implies
that the system has to perform well over time. It should always produce the same
results to the same inputs. This can be tested by running the same tests several times,
and check if the results are the same. Minimization of wrong solutions selected is the
basic criteria for the success of this system. Testing with different testcases, should
give a good answer to this goal. The last important piece of the system is that is has
to have the ability to learn. This means that the system should learn from each case,
and perform better next time. This can be tested by manipulating user inputs to try to
make the system make different choices.

5.2 Procedure of testing

To test the system and to really see what happens on every run, a system log is created
with every run. This log contains a written part of everything that happens during
a run, as well as images saved at every stage. The written log provides the user
with a thorough understanding of the system, as each step gets documented. To fully
understand the system, viewing images as they evolve with each processing step is an

51



52 CHAPTER 5. TESTING AND RESULTS

advantage. When the system is in full working order it is supposed to have two images
as input, and by using image processing and CBR, figure out what to do. Testing
should be performed in the same manner. During testing the system gets two input
images, a reference image and an alarm image. Using these two images, the system
should figure out which case to use as solution.

5.2.1 Selection of test data

Selection of what kind of data to be used for system testing is very important. The data
needs to be varied and it needs to represent many different thinkable situations. [26]

The Reference Image

The reference image (figure 5.1) used in these tests is an image from a regular street
in a town. This particular image is selected because it has many different elements in
it. The scene has several cars and buildings in it. It also include a large three and a
shadow from a building outside the image borders. By selecting such an image, many
aspects can be tested at the same time which is a great advantage.

Figure 5.1: The reference image used for testing.

The Testcases

The testcases are shown in figures 5.2 to figure 5.7. These testcases are variations of
the reference image with different properties. Some of them have been tampered with
to create different natural scenes like snow and changing lighting conditions.



5.2. PROCEDURE OF TESTING 53

Figure 5.2: (1a) Testcase 1. (1b) Testcase 1 with snow.

Figure 5.3: (2a) Testcase 2. (2b) Testcase 2 with snow.

Figure 5.4: (3a) Testcase 3. (3b) Testcase 3 with snow.



54 CHAPTER 5. TESTING AND RESULTS

Figure 5.5: (4a) Testcase 4. (4b) Testcase 4 with snow.

Figure 5.6: (5a) Testcase 5. (5b) Testcase 5 with snow.

Figure 5.7: (6a) Testcase 6. (6b) Testcase 6 with snow.



5.3. RESULTS 55

5.2.2 Filling up the database

Before the testing can begin, there has to be some cases in the database. To fill the
database the system is run as usual with cases representing different situations. For
this particular set of tests, the database is filled with four different cases. These four
different cases represents enough situations to put each testcase into at least one of
them. The selected cases are:

• A case where nothing at all happens

• A case where there are people walking in the street

• A case where there is a car driving in the street

• A case where there is a lot of snow in the image

These four cases acts as containers during testing. Each one of the tests should fall
into one of these containers. A more detailed description is shown in table 5.1.

Cases inserted in the database before testing
Case: Description: Image: Raises alarm:
1 Nothing happens 1a No
2 People are walking in the street 2a No
3 There is a car driving in the street 3a Yes
4 There is only snow in the image 1b No

Table 5.1: Cases inserted in the database.

5.3 Results

Test 1

Test 1 (table A.1) includes an alarm image that is much darker than the reference
image. The alarm input image used in this test is image 4a (figure 5.5) This situation
could occur if heavy clouds or something is blocking light from entering the scene.
The system automatically approved the case where nothing happened as a solution,
which is the correct solution. This implies that the system is able to deal with changes
in lighting conditions, especially when changes are the same throughout the whole
image.

Test 2

Test 2 (table A.2) is very similar to test 1. It also includes an alarm image that is much
darker than the reference image. Test 2 uses image 5a (figure 5.6) as input. In addition
to the change in lighting conditions, this image also includes some people that are
walking in the street. This time, the system did not automatically approve a solution
case. It suggested the case where people are walking in the street as best solution. This
was the correct solution, and was approved by the user. This test further implies that
the system is able to deal with changes in lighting conditions.



56 CHAPTER 5. TESTING AND RESULTS

Test 3

Test 3 (table A.3) includes an alarm image that is much brighter than the reference
image. The image used in test 3 is image 6a (figure 5.7). In addition to the change
in lighting conditions, this image also includes a car in the street. The system did not
automatically approve a solution case, but it suggested the case where there is a car
in the street as best solution. This was the correct solution, and was approved by the
user. This test further strengthens the assumption that the system is able to deal with
changes in lighting conditions.

Test 4

Test 4 (table A.4) uses image 2b (figure 5.3). This is the same image as 2a, only with
added snow. This means that this image includes some people walking in the street
as well as a lot of snow. This time the system automatically approved the solution
case, which was the case were people were walking in the street. This was the correct
solution. The outcome of this test shows that the system did not care about the snow,
but was able to locate the important features of the image, and choose the correct
solution case based on these.

Test 5

Test 5 (table A.5) uses image 3b (figure 5.4). This is the same image as 3a, only with
added snow. This means that this image includes a car in the street as well as a lot of
snow. This time the system din not automatically approve the solution case. However,
the system chose the correct solution case as best case. The retrieved case was the
one with the car in the street. This was the correct solution. The outcome of this test
shows, as test 4, that the system did not care about the snow.

Test 6

Test 6 (table A.6) uses image 4b (figure 5.5). This is the same image as 3a, only with
added snow. This means that this image includes a car in the street as well as a lot of
snow. This time the system din not automatically approve the solution case. However,
the system chose the correct solution case as best case. The retrieved case was the
one with the car in the street. This was the correct solution. The outcome of this test
shows, as test 4 and 5, that the system did not care about the snow.

Test 7

Test 7 (table A.7) is very similar to test 2. It also includes an alarm image that is much
darker than the reference image. Test 7 uses image 5b (figure 5.6) as input. In addition
to the change in lighting conditions and some people that are walking in the street, this
image also contains a lot of snow. This time, the system did not automatically approve
a solution case. It suggested the case where people are walking in the street as best
solution. This was the correct solution, and was approved by the user. This test further
suggest that the system is able to disregard the snow. The alarm situation is now much



5.4. IS THE SYSTEM RELIABLE? 57

darker and many new objects (snow) are presented in the scene. It still chooses the
correct solution case, which is very good.

Test 8

Test 8 (table A.8) includes an alarm image that is much brighter than the reference
image. The image used in test 8 is image 6b (figure 5.7). In addition to the change
in lighting conditions, this image also includes a car in the street as well as a lot of
snow. The system did not automatically approve a solution case, but it suggested the
case where there is a car in the street as best solution. This was the correct solution,
and was approved by the user.

A more extensive review of the tests together with logs can be seen in appendix A.

5.4 Is the system reliable?

To figure out if the system shows reliability in the test results, the same tests were run
over and over again in circles. Each test was performed four times. Table 5.2 shows
the outcome of this test.

Reliability testing
Test Nr: Run 1: Run 2: Run 3: Run 4:
1 1 1 1 1
2 2 2 2 2
3 2 2 2 2
4 1 1 1 1
5 2 2 2 2
6 1 1 1 1
7 2 2 3 2
8 2 2 2 2
Table codes:
1: Correct case was retrieved and approved by the system
2: Correct case was retrieved and approved by the user
3: Wrong case was retrieved

Table 5.2: Reliability testing.

As seen in table 5.2 the eight tests was conducted four times each. The table shows
that the system is very reliable. However, one of the tests produced a wrong result.
During the third run of test 7, the system retrieved the wrong case as best solution.
To be exact, it picked out the case with only snow in the image instead of the case
with people walking in the street. To try to explain this mistake made by the system,
the difference images from the two cases and test 7 is shown in figure 5.8. The figure
shows three difference images. Image (b) is the difference image from test 7. Image
(a) is the difference image from the case with people walking in the street. This was
the case that should have been selected as the best solution. Image (c) is the difference
image from the case with only snow. This was the case that the system selected as



58 CHAPTER 5. TESTING AND RESULTS

best case. As seen, difference images (b) and (c) are quite similar. In the first two runs
the correct case was selected, which is represented by (a). A possible solution is that
during the first two runs, the system has been learning that an important feature for the
case with only snow is the number of objects in the image. The number of objects in
(b) and (c) are very much the same, so this could have caused the failure.

Figure 5.8: (a) Difference image from the case with people in the street. (b) Difference
image from test 7. (c) Difference image from the case with only snow.

5.5 Does the system minimize number of wrong solutions se-
lected?

The overall test results shows that the system really is minimizing the number of wrong
solutions selected. During the testing, there was only one wrong solution selected.
Except this one wrong selection, the system chose the correct solutions every single
time.

5.6 Is the System Learning?

The tests up until now have been successful. This really that the image processing
module is doing its job perfectly. But it does not say much about the CBR module,
except the fact that it locates the right case based on a comparison between the cases.
To really test the CBR module, the tests has to be manipulated. To accomplish this,
image 7a (5.9) is used. This image shows the scene with two cars and a lot of snow.

Figure 5.9: (7a) Testcase 7.



5.6. IS THE SYSTEM LEARNING? 59

The first run of this test can be seen in table A.9. In this run, the system selected the
case where there is a car driving in the street. This is the correct solution case, but
now the CBR module should be put to the test. To achieve this, the system is told that
the case where people are walking in the street is the correct solution case. This case
was during the first run picked out as the second best matching case. In the second run
(table A.10 the same case was chosen as the best solution. The case with the people
walking in street was again chosen as the second best case, and the system was told
that this was the solution case. Now, in the third run (table A.11), the goal of this
test was accomplished. The case with people walking in the street was selected as the
best matching case by the system. This implies that the system now have learned to
recognize this situation as people walking in the street. Of course, this is the wrong
solution, but the system has learned that this is the correct solution from the user inputs
during each run. This test clearly shows that the system is able to learn.



60 CHAPTER 5. TESTING AND RESULTS



Chapter 6

Discussion and future work

The intended use of the system is to exploit the functionality of CBR together with
image processing techniques. This is achieved by implementation of a series of methods
within both fields. The system has been tested for overall functionality and the results
from these tests shows that the system is working well. However, as the system
only has been tested at a high level, there are still several uncertainties that has to
be addressed. Many of these uncertainties forms the basis for further work and further
testing. The several issues are addressed under each module below.

6.1 Image processing module

The image processing module is used to extract relevant features from the alarm image.
An important part of this module is how the objects are segmented. This system uses
two images, a reference image and an alarm image, to locate the different objects in
the image. This makes the system very dependent on the reference image. At this
stage, there is no control over what the reference image contains. If the reference
image itself contains passing objects, this could have very bad effects on the outcome
of the segmentation. A further development of the system should therefore include a
control check of the reference image to make sure there are none unusual objects in it.
An advantage of taking this approach to segmentation is that it is very easy to locate
the relevant objects from the alarm image. Only the objects of interest gets selected.
Alternatives that only requires the alarm image could also be used for segmentation.
Color- and texture-based segmentation is described in [27]. Such methods can also be
included in the system alongside the reference image approach to have even better
control on object shapes and sizes. Before the segmentation process there is also
a pre-processing phase. Pre-processing is done in a fairly usual way, using median
filtering. This approach seems to work fine. Noise and small objects are removed
from the images. This system also incorporates the use of mathematical morphology
to further remove the rest of the small objects in the images. Results shows that this is
a good way to remove these objects. Morphology also fills holes in objects which is
very good. The downside is that it often has a tendency to group objects. If two objects
in the image are quite close together, there is a possibility that these two objects can
be seen as only one object when morphology has done its job. But in this system, it
really does not matter, because this happens with all such similar close objects. So if it

61



62 CHAPTER 6. DISCUSSION AND FUTURE WORK

happens to a new case, the same thing would have happened to the cases already in the
database. All in all the image processing module seem to do a good job of segmenting
out objects.

6.1.1 Extracted features

The features that are selected for extraction from the images have great impact on the
results in the system. This implementation only extracts features that are intensity-related
and object-related. The most important features in this application is of course the
information about the different objects located in the image. This information is
restricted to sizes of the objects. Different kinds of object information can be color of
objects and position of objects in the image. Colors of the different objects intuitively
does not have any impact in this application. It really does not matter if the car found
in the image is red or green. Based on this assumption color information is completely
disregarded in this system. As for position of objects in the image, this can have an
impact. An object in a specific position in the image can be a larger threat than the
same object in a different position. This is an example of one feature that could be
incorporated into the system to maybe improve the functionality. Feature extraction in
general is widely discussed in [28] and in [29].

Considering the testing and the results from the testing, the features that are extracted
seem to represent the scene in the image very nicely. But should there be added more
features to each case, this will most likely serve as an improvement to the system, and
enable the system to be even more precise in its case retrieving.

6.2 CBR module

The CBR module implemented in this paper uses a very common approach to CBR
systems. Dividing the module into four submodules (retrieve, reuse, revise and retain)
is a reasonable way to model the different tasks. The basic functions in this module
works exactly as intended. However, there are several variables in the module that
can have great impact on the results if modified. One of these is the threshold for
automatically passing the reuse stage. Throughout the testing, the system kept selecting
and retrieving the correct cases as solutions. But user interaction was often needed to
manually approve the solutions. On the basis of the systems great ability to select
correct solutions, this threshold can without a doubt be increased. Doing this means
that the user does not have to approve the correct retrieved cases as often as during the
testing. The risk by increasing this threshold is that the system has more of a chance
at automatically approve a wrong case for whatever reason. But testing shows that this
risk is quite minimal, so the threshold should be increased.

Another source of discussion is the values selected in the method that does the update
of the weights of the cases. The issue here is most importantly how similar each feature
has to be to increase its weight. Another threshold is used to determine this question.
The value of this threshold is compared to the percentage change between each feature
of the retrieved cases and the new case. The risk here is that the threshold can be set



6.2. CBR MODULE 63

too low or too high. If it is set too high, features that really are not that similar could
be seen as important for the case and the weight is subsequently increased. Also, the
system is at risk of choosing all features as important for the case. If this happens,
there is no change whatsoever to the weight in the case. They stay the same as before,
and the system will not have learned anything at all. On the other hand, if the weights
are set too low, the opposite is true. This is just as bad for the system. A situation
can occur where the selected case really is not very similar to the new case according
to the features, but it is chosen as the correct solution by the user. This may lead to
a situation where none of the features are similar enough to get its weight increased,
and the system does not learn anything at all from this particular episode. The value
of this threshold is very difficult to set correctly as differences vary from case to case.
One way to overcome such problems is to implement a threshold that is not fixed, but
can be changed from case to case. A solution can be to set the threshold just above the
second most similar feature. If such a solution is implemented, at least two features
will always get their weights increased. These are the two most similar features. This
can be a source of further development of the system. This method also includes some
variables which can be further discussed. These are the high and low percentages for
the value of change in the feature weights. These variables has to be set at quite good
values to ensure the good functionality of the system. Tuning these percentages to
good values can be accomplished by further testing with different values.

6.2.1 The database

In this system the case database is stored as a plain text file. Although this works in
this specific system, this is not an optimal solution. The reason it works fine in this
system, is that the whole database is copied into the system at each startup. This makes
it possible to manipulate the cases internally in the system, and the way the cases are
stored between system runs is not that imperative. It is also a reasonably good solution
as long as the database is quite small. However, in this system, the database is going
to grow. New situations are going to occur, and this requires the creation of new cases.
Fetching all cases from the database into the system will then be a major task, and
much of the information copied into the system will be unnecessary to have there at all.
A solution to this problem can be to store the cases in a typical database environment
(SQL [30], Oracle [31] etc.). This would allow the system to perform queries into
database, and only get the information needed at a given moment.

Another way to make the database better and more effective would be to have a smart
sorting or indexing of the cases. This would allow to have links between the cases,
and links between the different features. An advantage by having these links would be
that searching the database for relevant cases can go faster. If a relevant case is found,
the system can follow these links in some pre-defined way. This would certainly speed
up the system. However, it is difficult to find a smart way to use such an indexing to
improve the system.



64 CHAPTER 6. DISCUSSION AND FUTURE WORK

6.2.2 Learning

A major part of this system is its ability to learn. And the important question in
the learning field, is how well the system is learning? Especially, how well is the
system learning using CBR compared to different machine learning techniques? The
advantage of using CBR in this system is that the user of the system can assist in the
training of the system. The user has the ability to manipulate the system to recognize
certain situations as alarm situations. This is a kind of supervised learning [32]. In
this particular system, this is the only form of learning that is possible. But supervised
learning should be preferred in such a system, because this allows the system to be
adapted for different usages. An alternative to using CBR would be to use neural
networks [33] and [34]. This would allow for unsupervised learning as well and
this could maybe improve a standardized system, but would not give the system the
opportunity to be specialized.

The testing done on this system clearly shows that the system can be manipulated by
the user. Or in other words, the user can teach the system how to respond to different
situations. Testing showed that it only took a couple of runs before the system was
persuaded into thinking differently. Also when the system made an error, it quickly
corrected itself on the next run according to the user input. This proves that the system
also learns very fast.

6.3 Is CBR a successful approach?

The experience with using CBR together with image processing to create an image
interpretation system has been positive. During testing it has been shown that CBR is
capable of making the correct solutions.

One of the strong sides of CBR is that it can solve problems that only are partially
understood. In an image taken from a video feed there will always be small differences.
No two alarm situations will be exactly the same. A CBR system does not need to have
an exact match to find a solution, it just chooses the best candidate, and this is often the
correct solution. CBR is also good at learning implicit rules. That is, deciding what
knowledge that is important for each case. This is made possible be the feature weights
in each case. The user does not have to decide which features that are important for
each case. The system figures this out itself. In some cases, a feature can be completely
disregarded. Such a characteristic goes well with image interpretation. An example
could be that there is a car in the image. If the image also contains a lot of snow, the
knowledge of snow should be completely disregarded, because the important thing in
that special case is the car. From testing, it is obvious that this is accomplished.

One main advantage, as previously mentioned, of using CBR is that the system can
be formed by the user needs. There does not have to be pre-defined situations that
always trigger alarms. The user can, by user input, decide how the system should
respond to each separate scenario. This is made possible by the fact that supervised
training is applied throughout the system. With a neural network it would have been
difficult for a user to supervise this in a system.



6.4. FUTURE WORK 65

6.4 Future Work

Many of the parameters discussed has to be better tuned for the system to reach optimal
performance. More extensive testing with different parameters and different input
scenarios should also be done. A more practical suggestion for future work would be
to incorporate these modules into TrollEye. Taking this action will allow the system to
be tested in real-time and to really see the opportunities in using CBR in a surveillance
system. Another option to the system would be to include a priori knowledge in the
form of a knowledge base. Some common objects can be implemented into the system
with shape and size. By combining this knowledge with the reasoning, the system can
be improved to make even better choices.



66 CHAPTER 6. DISCUSSION AND FUTURE WORK



Chapter 7

Conclusion

During this thesis the opportunities that lies in using CBR in an automatic video
surveillance system has been explored. The theory behind it has been given and a
working system has been made. The system has undergone thorough testing and results
have been documented.

Several image processing techniques have been used to perform the first tasks in the
system. This first task was prepare the reference image and the image that created the
alarm. When this was accomplished, objects were located and features was extracted.
All this was done to create the basis for the CBR module, which used this image
information as a case and found a solution to it. This thesis has shown that CBR
makes it possible for a computer system to distinguish certain situations from others.
Situations where alarms should have been raised have been put into containers that
represented alarms. And situations that represented false alarms have not been put into
these same containers.

The main objective of this thesis was to find out if CBR performs well in an automatic
video surveillance system. This thesis has showed that CBR is a very successful
approach to image interpretation. The fact that it is very natural to create descriptions
from images assists in this explanation. Whenever something can be described to the
fully, cases can be created and reasoned about. This is the main strength of CBR.
Another strength of CBR systems has been their ability to learn and to learn fast.
Testing the system has showed that CBR is very capable of learning from its mistakes
and correct these mistakes.

The system that is implemented works well as a platform for testing the significance
and usefulness of CBR in the video interpretation domain. As the system is not yet
implemented to work with a camera feed in real time, it is difficult to see the full
possibilities of CBR. But the main achievement of this thesis, is that it has been showed
that a computer system using CBR can determine if an alarm sounded is a false or a
real alarm. The system is able to determine if there is a car in between a lot of snow,
or if there is only a lot of snow. Although there is a long way to go before a computer
system on its own can make perfect decisions each time, this thesis has provided a base
and a start, and showed that such systems can be made.

67



68 CHAPTER 7. CONCLUSION



Bibliography

[1] Robert T. Collins, Alan J. Lipton, Takeo Kanade, Hironobu Fujiyoshi, David
Duggins, Yanghai Tsin, David Tolliver, Nobuyoshi Enomoto, Osamu Hasegawa,
Peter Burt, and Lambert Wixson1. A system for video surveillance and
monitoring, 1999.

[2] Robert Fisher, Simon Perkins, Ashley Walker,
and Erik Wolfart. Mathematical morphology.
http://www.homepages.informatics.ed.ac.uk/rbf/HIPR2/morops.htm.

[3] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Communications, 7(1),
pages 39–59, 1994.

[4] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and
machine vision. PWS Publishing, 2 edition, 1999.

[5] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classification and tracking
from real-time video, 1998.

[6] Nikos Paragios and Rachid Deriche. Geodesic active contours and level sets
for the detection and tracking of moving objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(3):266–280, 2000.

[7] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips. Face recognition: A
literature survey, 2000.

[8] N. Oliver and A. Pentland. Graphical models for driver behavior recognition in
a smartcar, 2000.

[9] A. Jonathan Howell and Hilary Buxton. Active vision techniques for visually
mediated interaction. Image Vision Comput., 20(12):861–871, 2002.

[10] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function
networks. Neural Comput., 3(2):246–257, 1991.

[11] Nathanaël Rota and Monique Thonnat. Activity recognition from video
sequences using declarative models. pages 673–680.

[12] M. Ghallab. Representation, on-line recognition and learning, 1996.

[13] N. Chleq and M. Thonnat. Realtime image sequence interpretation for
video-surveillance applications. ICIP, B:801–804.

69



70 BIBLIOGRAPHY

[14] V. Vu, F. Bremond, and M. Thonnat. Automatic video interpretation: A
recognition algorithm for temporal scenarios based on pre-compiled scenario
models, 2003.

[15] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[16] Ronei Marcos De. Anais do ix sibgrapi (1996) 357-358 image classification using
mathematical morphology.

[17] Phyllis Koton. Reasoning about evidence in causal explanations. In AAAI, pages
256–263, 1988.

[18] William J. Long. Medical diagnosis using a probabilistic causal network. Applied
Artificial Intelligence, 3:367–383, 1989.

[19] K. Ashley S. Brüningshouse. Combining case-based and model-based reasoning
for predicting the outcome of legal cases. ICCBR 2003. LNAI 2689, pages
246–260, 2003.

[20] A. Aamodt. Knowledge acquisition and learning by experience - the role of
casespecific knowledge, 1995.

[21] John D. Hastings L. Karl Branting and Jeffrey A. Lockwood. Integrating cases
and models for prediction in biological systems. AI Applications 11(1), pages
29–48, 1997.

[22] Petra Perner. Why case-based reasoning is attractive for image processing. D.
Aha and I. Watson (Eds.), Case-Based Reasoning Research and Development,
Springer Verlag 2001, Inai 2080, pages 27–44, 2001.

[23] R. Dencker. Image processing library. http://www.mip.sdu.dk/ipl98/mainipl.htm.

[24] Kh. Manglem Singh and Prabin K. Bora. Adaptive rank-ordered mean filter for
removal of impulse noise from images.

[25] Jean-Claude Laprie and Karama Kanoun. Software reliability and system
reliability. pages 27–69, 1996.

[26] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. SIGPLAN Not., 10(6):493–510, 1975.

[27] Serge Belongie, Chad Carson, Hayit Greenspan, and Jitendra Malik. Color- and
texture-based image segmentation using EM and its application to content-based
image retrieval. In Proceedings of the Sixth International Conference on Com-
puter Vision, 1998.

[28] Y. Bresler G. Harikumar. Feature extraction techniques for exploratory
visualization of vector-valued imagery. Image Processing, IEEE Transactions
on Volume 5, Issue 9, pages 1324–1334, 1996.



BIBLIOGRAPHY 71

[29] R. Chellappa K. Etemad. Separability-based multiscale basis selection and
feature extraction for signal and image classification. Image Processing, IEEE
Transactions on Volume 7, Issue 10, pages 1453–1465, 1998.

[30] M. J. Egenhofer. Spatial sql: A query and presentation language. IEEE Transac-
tions on Knowledge and Data Engineering, 6(1):86–95, 1994.

[31] Sam R. Alapati and Martin Reid. Expert Oracle 9i Database Administration.
APress L. P., 2003.

[32] D. Randall Wilson and Tony R. Martinez. Reduction techniques for
instance-based learning algorithms. Machine Learning, 38(3):257–286, 2000.

[33] Parekh R. G., Yang J., and Honavar V. Constructive Neural Network
Learning Algorithms for Multi-Category Pattern Classification. Technical report,
Department of Computer Science, Iowa State University, Ames, Iowa, 1995.

[34] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural
networks. Artificial Intelligence, 70(1-2):119–165, 1994.



72 BIBLIOGRAPHY



Appendix A

Test logs

Test 1
Image: 4a
Description: In this scenario there are no objects in the scene. The image has

been darkened to represent clouds in front of the sun or late in the
evening.

Supposed solution case: Case 1: Nothing happens.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 1: nothing happens.
The second best case is case 4: only snow in the image.
The third best case is case 2: people are walking in the street.
The cases are similar enough to pass reuse.
The retrieved case is approved as solution and does not represent
an alarm.
ALARM IS NOT RAISED!
Updating weights with oldcase: 1 and args 2.
Updating the database.

Test outcome: The new case was similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.1: Results from test 1.

73



74 APPENDIX A. TEST LOGS

Test 2
Image: 5a
Description: In this scenario there are some people walking in the street. The

image has been darkened to represent clouds in front of the sun
or late in the evening.

Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 2: people are walking in the street.
The second best case is case 4: only snow in the image.
The third best case is case 1: nothing happens.
The cases are not similar enough to pass reuse.
Case 2 approved by user: yes.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.2: Results from test 2.

Test 3
Image: 6a
Description: In this scenario there is a car driving in the street. The image has

been brightened to represent bright light.
Supposed solution case: Case 3: There is a car in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 3: there is a car in the street.
The second best case is case 2: people are walking in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 3 approved by user: yes.
Updating weights with oldcase: 3 and args 2.
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.3: Results from test 3.



75

Test 4
Image: 2b
Description: In this scenario there are some people walking in the street. There

is also a lot of snow in the air.
Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 2: people are walking in the street.
The second best case is case 4: only snow in the image.
The third best case is case 1: nothing happens.
The cases are similar enough to pass reuse.
The retrieved case is approved as solution and does not represent
an alarm.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Updating the database.

Test outcome: The new case was similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.4: Results from test 4.

Test 5
Image: 3b
Description: In this scenario there is a car driving in the street. There is also a

lot of snow in the air.
Supposed solution case: Case 3: There is a car in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 3: there is a car in the street.
The second best case is case 2: people are walking in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 3 approved by user: yes.
Updating weights with oldcase: 3 and args 2.
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.5: Results from test 5.



76 APPENDIX A. TEST LOGS

Test 6
Image: 4b
Description: In this scenario there are no objects in the scene. The image has

been darkened to represent clouds in front of the sun or late in the
evening. There is also a lot of snow in the air.

Supposed solution case: Case 4: Only snow in the image.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 4: only snow in the image.
The second best case is case 1: nothing happens.
The third best case is case 2: people are walking in the street.
The cases are similar enough to pass reuse.
The retrieved case is approved as solution and does not represent
an alarm.
ALARM IS NOT RAISED!
Updating weights with oldcase: 4 and args 2.
Updating the database.

Test outcome: The new case was similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.6: Results from test 6.



77

Test 7
Image: 5b
Description: In this scenario there are some people walking in the street. The

image has been darkened to represent clouds in front of the sun
or late in the evening. There is also a lot of snow in the image.

Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 2: people are walking in the street.
The second best case is case 4: only snow in the image.
The third best case is case 1: nothing happens.
The cases are not similar enough to pass reuse.
Case 2 approved by user: yes.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.7: Results from test 7.

Test 8
Image: 6b
Description: In this scenario there is a car driving in the street. The image has

been brightened to represent bright light. There is also a lot of
snow in the air.

Supposed solution case: Case 3: There is a car in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 3: there is a car in the street.
The second best case is case 2: people are walking in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 3 approved by user: yes.
Updating weights with oldcase: 3 and args 2.
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.8: Results from test 8.



78 APPENDIX A. TEST LOGS

Test 9 (First run)
Image: 7a
Description: In this scenario there are two cars driving in the street. There is

also a lot of snow in the air.
Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 3: there is a car in the street.
The second best case is case 2: people are walking in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 3 approved by user: no.
Case 2 approved by user: yes.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Updating weights with oldcase: 3 and args 1.
Updating the database.

Test outcome: The wrong case was selected.
Test was not successful.

Table A.9: Results from test 9. (first run)

Test 9 (Second run)
Image: 7a
Description: In this scenario there are two cars driving in the street. There is

also a lot of snow in the air.
Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 3: there is a car in the street.
The second best case is case 2: people are walking in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 3 approved by user: no.
Case 2 approved by user: yes.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Updating weights with oldcase: 3 and args 1.
Updating the database.

Test outcome: The wrong case was selected.
Test was not successful.

Table A.10: Results from test 9. (second run)



79

Test 9 (Third run)
Image: 7a
Description: In this scenario there are two cars driving in the street. There is

also a lot of snow in the air.
Supposed solution case: Case 2: People are walking in the street.
Log: Done reading cases from DB.

Comparing cases in the retrieve stage.
The best case is case 2: people are walking in the street.
The second best case is case 3: there is a car in the street.
The third best case is case 4: only snow in the image.
The cases are not similar enough to pass reuse.
Case 2 approved by user: yes.
ALARM IS NOT RAISED!
Updating weights with oldcase: 2 and args 2.
Case text: people are walking in the street
Updating the database.

Test outcome: The new case was not similar enough to the retrieved case to
automatically be approved by the system.
The correct container was chosen.
Test was successful.

Table A.11: Results from test 9. (third run)


