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Problem Description

The goal of this thesis is to develop a numerical simulation of powder-snow

avalanches. Recent research in mathematical modeling of snow avalanche

�ow has provided sets of governing equations that describe the dynamics of

such �ow.

The computational method will be based on Smoothed Particle Hydrody-

namics (SPH), a particle-based simulation technique that provide numerical

solutions to �uid motion. Additionally, the �ow simulation has been acceler-

ated by an implementation on the GPU.
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Abstract

The increased attention given to the determination of the complex behavior

of powder-snow avalanche �ow has resulted in several mathematical models

being developed to describe the �ow of such phenomena. In this thesis, a

particle-based numerical solution of a mathematical model of powder-snow

avalanche �ow has been developed, in order to simulate and visualize the

dynamics of such �ow.

These physics-based �uid simulations requires a lot of computational power

in order to calculate the governing equations within reasonable time. The

numerical solution has therefore been implemented on the GPU, in order to

take advantage of its highly parallel architecture, and provide the necessary

computational power to accelerate the calculations of the governing dynam-

ics.

The resulting simulation is shown to procude an evolving �ow, indicative

of complex behavior, that is dependent on the physical parameters provided

to the system.
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CHAPTER 1

Introduction

1.1 Motivation and Aim

Fluid animation is considered one of the hardest problems within the �eld

of computer graphics, due to the complex physical behavior a �uid possess.

Examples of such behavior include deformations, turbulence, vortex forma-

tions, and interface dynamics. Because of this complex dynamic of �uid �ow,

visually pleasing results are very hard to produce by hand, even for the most

talented of artist. As a consequence of this, tools and applications have been

produced to aid the creation of realistic �uid animation. The method em-

ployed within these tools all have the goal of describing the motion of �uid.

This motion is governed by the Navier-Stokes equations, which is a set of

constitutive mathematical equations relating the �uid quantities.

A wide range of natural phenomena have been successfully modeled by apply-

ing these governing equations to describe their �ow. Some examples include

water [29], smoke [27], and �re [72]. Powder-snow avalanche is a phenomenon

that has gained a lot of attention over the years, as researchers are seeking

1



2 CHAPTER 1. INTRODUCTION

to best describe the dynamics of its �ow. This focus have been motivated by

the need for avalanche hazard-zoning, as well as being able to provide realis-

tic animations of snow avalanches for feature �lms and games. Additionally,

new instruments have been developed, making is possible to measure physical

properties of real world snow avalanches. As a result of this focus, mathe-

matical models based on the Navier-Stokes equations have been developed

to describe the complex dynamic behavior of powder-snow avalanches.

The calculations of the governing equations requires a lot of computational

power. This requirement can potentially be devastating for applications that

have an essential interest in interactivity and real-time simulations. This time

constraint introduce additional challenges to physics-based �uid simulation,

and has been the main reason for its non-existence in computer games. The

highly parallel architecture of the GPU, in addition to its evolution into a

programmable unit, has changed the �uid simulation landscape in modern

games, by making physics-based animation a reasonable alternative for nu-

merical simulation.

The goal of this thesis is to develop a physics-based simulation of powder-

snow avalanches. A mathematical model describing the complex dynamics

of such a �ow have recently been developed by Dutykh et.al [23], which is an

extension of the Navier-Stokes equation for �uid �ow. This model serve as

the basis of the implemented simulation. In addition to providing a numerical

solution to the governing equations, the simulation has been implemented on

the GPU to introduce an acceleration of the computationally intensive tasks

in the simulation.

1.2 Outline

The remainder of this thesis is divided into �ve chapters. The contents of

these are as follows.
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Chapter 2 provides a discussion of the work that are related to the prob-

lem of developing a simulation of powder-snow avalanches. It presents ex-

perimental work that have been done to create a better understanding of the

snow avalanche �ow, in addition to the mathematical models that have been

developed to describe its motion. Some previous e�orts to implement general

�uid �ow simulation on the GPU is also presented.

Chapter 3 describes the method applied for solving the problem of snow

simulation. This chapter will introduce the Navier-Stokes equations, and how

it relates to the problem of physics-based �uid simulation. The mathematical

model governing powder-snow avalanche �ow is then presented, before an

SPH formulation is outlined to numerically solve this model. How the GPU

has been integrated into the implementation is presented at the end of this

chapter.

Chapter 4 and 5 provides a description of the SPH implementation of

the numerical solution, as well as the results of the simulation.

Chapter 6 concludes this thesis with a discussion of the results obtained,

and how the implementation may further be improved and extended in order

to construct a solid and robust simulation framework for snow avalanche �ow.





CHAPTER 2

Related Work

2.1 Snow Avalanche Modeling

An avalanche is a rapid gravity-driven mass of snow moving down slopes. It

is a natural phenomenon that typically occurs in mountainous terrain. The

reason for an avalanche release is the di�erence between the gravitational

force acting on the top of the slope and the binding force holding the snow

together. When fresh snow accumulates on older snow, the layered structure

resulting from this is susceptible to internal slides between the layers, leading

to av avalanche occurring. There are several factors involved in determining

the cohesion between the layers, and thereby the risk of an avalanche hap-

pening, e.g temperature and wind.

When snow begins sliding down a mountain slope, its initial state is a dense

�ow. As air gets entrained within the snow particles of the dense �ow, the

avalanche will start to evolve into a powder-snow avalanche. In its interme-

diate state, the avalanche may consist of a dense underlying core of snow,

above which a cloud of entrained snow and air particles reside. If this upper

5



6 CHAPTER 2. RELATED WORK

Figure 2.1.1 � Illustrations of powder snow avalanches.

cloud layer reaches a velocity higher than that of the underlying dense layer,

the cloud will break away from the core, thereby creating a pure fully devel-

oped powder-snow avalanche.

In classifying avalanches, Ancey [4] proposed to only consider the form of

motion of the avalanche, and not the quality of the snow. This leads to two

limiting cases of avalanches; �owing avalanches and airborne avalanches.

Flowing avalanches are often referred to as dense-�ow avalanches due to the

high density core at the bottom of the �ow. The depth is fairly small, and

typical mean velocities ranges from 5 m/s to 25 m/s.

The airborne avalanche is a cloud of snow moving rapidly down slopes. The

depth can become very large, and the mean velocity can exceed 100 m/s.

Such avalanches are sometimes referred to as a powder-snow avalanche.

Several research experiments have been performed in order to determine the

�owing properties of snow avalanches. These experiments have provided

statistical and visual measurements that serves as a fundamental physical

background for the mathematical models that have later been developed for
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describing snow avalanches. Two approaches have been used to investigate

snow �ow properties. One is arti�cial triggering of full-scale avalanches, while

the other are small-scale experiments performed in laboratories.

For dense �ow avalanches, laboratory experiments have been performed by

[20, 73, 52], while full-scale experiments were performed by [42, 19], both with

the goal of analyzing internal velocity pro�les in rheological terms. Despite

the di�erent experimental approaches, the results obtained from these exper-

iments were found to be very consistent. The velocity pro�les gathered sug-

gested the behavior of a yield stress �uid, which tended to lock up on regions

where the shear stress in the snow is less than a given threshold value. This

result prompted dense-�ow avalanche models based on non-Newtonian �uid

mechanics. As a consequence, models were presented representing dense-�ow

behavior using the Bingham [73], Herschel-Bulkley and Cross models [52],

and the biviscous model [20]. Using these models, dense-�ow avalanches can

be described using simple constitutive equations.

Experiments on powder-snow avalanches are more di�cult to perform than

those regarding dense-�ow. They are rare events, making full-scale ap-

proaches less viable. Additionally, even in laboratory settings, it is di�cult to

reproduce the actual physical powder-snow phenomenon. This is why most

of the experimental setups consist of studying the dynamics of general tur-

bidity currents, that only give pointers and approximations to the behavior

of powder-snow avalanches. Such turbidity currents can be reproduced by

dispersing a heavy �uid into a lighter �uid, e.g. salt suspension dispersed in

water. The density ratio of such currents are in the range 1 to 2, whereas

for powder-snow avalanches this ratio is in the order of 10. The experiments

performed on powder-snow avalanches are not only concerned about the ve-

locity pro�le, but also the advanced dynamics of the powder-cloud, including

its �ow behavior and internal structure.

Hop�nger et.al [45] and later Beghin [10] performed measurements of veloc-

ity and density pro�les in two and three dimensions, respectively, of gravity
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Figure 2.1.2 � Experimental setup on gravity currents performed by [65]. The
tank is strati�ed with a lower layer of salt water, and an upper layer of fresh
water. Image from [65].

currents using salt suspensions dispersed in water. They showed that it is

possible to obtain laws about velocity and density of the �owing cloud, and

how the height, length, and width growth-rates of the clouds were linear

function of the slope.

Hermann and Hutter [44] simulated avalanches using polystyrene particles in

still water to experiment with powder �ow behavior at run-out zones, while

Bozhinkiy [13] created a material using a mixture of ferromagnetic sawdust

and aluminum dust, seeking better approximations to a natural powder-snow

avalanche.

McElwaine [59] carried out ping-pong ball avalanche experiments to study

three-dimensional granular �ows. They measured individual ball velocities

and air pressure using video cameras. They observed development of a com-
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plicated three-dimensional structure with a distinct head and tail. Addition-

ally, they deduced the structure of the air �ow around the avalanche using

the data from air pressure measurements. The experiments provided detailed

data to elucidate the dynamics of general two-phase granular �ows of mat-

ter, and provided insights on the physically signi�cant dynamical processes

controlling avalanches.

2.1.1 Snow Avalanche Simulation

Simulating a snow avalanche is a challenging task, because of the complex

nature of the phenomenon. The mathematical models that best describes the

dynamics of an avalanche are based on the models describing regular �uid

�ow mechanics [2, 5]. These �uid �ow models are essentially expansions of

the Navier-Stokes equations, which will be described in the next section. This

approach approximates the avalanche as a continuum, when it in fact consists

of a composition of a wide range of particle sizes that may change with time

and position. Despite this impediment to use a full �uid-mechanics approach

to avalanche modeling, most of the models applying this approximation do

make for some good simulations of snow avalanche �ow.

Using this approach of modeling avalanche dynamics by relying on analo-

gies with other physical phenomena, has resulted in avalanche models being

analogous to granular �ows [82, 88, 18], Newtonian �uids [47], power-law

�uids [74], and viscoplastic �ows [20, 3].

The complexity of di�erent modeling schemes is determined by consider-

ing the di�erent spatial scale of the avalanche. The simplest models consider

the avalanche as a single unit of snow without deformation, and their goal is

to calculate the most basic properties of an avalanche, including velocity and

run-out distance. Considering the entire avalanche as a single unit will result

in not being able to determine the intrinsic parameters that governs the be-

havior of an avalanche �ow. The only parameter involved in these models is

the friction coe�cient between the snow pack and the ground. This friction
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Figure 2.1.3 � Di�erent types of snow observed in avalanche deposits. Even
though a snow avalanche may consists of a composition of a wide range of
particle sizes, the currently best numerical models for simulating the �ow of an
avalanche approximates the snow avalanche as a continuum substance. Image
from [4]

coe�cient is more a conceptual parameter than a physical one, since it is

supposed to approximate the e�ects of more physical intrinsic parameters.

The simplest models for dense-�ow avalanches are derived from the original

formulation by Voellmy [92], which belong the class of sliding-block models,

leading to simple ordinary di�erential equations. The obvious drawbacks of

using this model is the oversimpli�cation of the physics of avalanches. Sev-

eral models based on the Voellmy-model has been developed that seek to

relax these simpli�cations [81, 79].

The simple models for powder-snow avalanches also consider the snow pack

to be a single unit, but the amount of parameters is larger than that of

dense-�ow avalanches due to the more advanced dynamics of these �ows. In

addition to the friction coe�cient, there are coe�cients considering the air

and snow entrainment and the shape of the avalanche. Kulikovskiy et.al [54]

related the problem of modeling powder-snow avalanches to the modeling of
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Figure 2.1.4 � Di�erent spatial scales used for describing avalanches. Top:
The simplest models consider the avalanche to be a non-deforming unit of snow
with friction as the only opposing force. Middle: The intermediate models
perform a depth-averaging procedure to accomplish better approximation of
�ow. Bottom: The complex numerical models consider the avalanche to be
made up of particles, and simulate advanced dynamics based on the properties
of them. Image from [4].

general particle clouds, and determined a simple theoretical model regarding

the cloud to be a semi-elliptic body, whose volume vary with time. They

obtained a set of four equations describing the mass-volume, momentum and

kinetic energy balance. This theory is referred to as thermal theory, and has

been redeveloped in subsequent papers, including [9, 8, 31, 11, 30, 3, 91].

On the opposite side of the spatial scale is the avalanche models consid-

ering snow avalanche behavior at the particle level. These models leads to

complicated rheological and numerical problems, as the �ow characteristics

are computed at any point of the occupied space. Despite the computational

complexity of these models, they are popular due to their detailed descrip-

tion of the �ow dynamics. These models are highly in�uenced by the models

described if hydraulics, which are based on the Navier-Stokes equations, as

mentioned earlier.

The experiments presented earlier made for a consensus in the literature,
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that dense �owing avalanches can be described using non-Newtonian �uid

models. Some of the models that were found to best capture the behavior

of dense-�ow avalanches are the Bingham model [73], the Herschley-Bulkley

and Cross model [52], and the biviscous model [20]. What separates the

�ow behavior of snow avalanches from that of regular non-Newtonian �uid

is the entrainment of snow from the base of the avalanche. This entrainment

has been shown to strongly in�uence the dynamics of �owing avalanches

[33, 86, 87], and recent literature deals with new models that take this en-

trainment into account [24, 12].

While the dense-�ow avalanche models consists of approximating its behav-

ior to that of simpler �uid �ow, the dynamics of powder-snow avalanche are

far too complex to make a direct analogy to phenomena within the �eld of

hydraulics. As consequence of this, novel models have been determined to

best capture the dynamics of powder-snow avalanches [26, 90, 23]. These

models describe the behavior of turbulence �ow by adding Fick's law for the

di�usion process between air and snow.

As a compromise between the simple and the complex models, intermedi-

ate models have also been developed. They bene�t from being less compu-

tationally expensive than three-dimensional numerical models and yet more

accurate than simple ones. These intermediate models are sometimes referred

to as depth-averaged models, because they are obtained by integrating the

motion equations across the �ow depth in a way similar to what is done in

hydraulics for shallow water equations. This depth-averaging can be justi-

�ed by making several assumptions about the �ow of matter, for example

incompressibility and small depth to length ratio of the �ow.

For dense-�ow, the most common model was developed by Savage and Hutter

[82] and is referred to as the Savage-Hutter model. This model has subse-

quently been extended by [48, 39, 49]. For powder-snow �ow, Parker [78]

developed a complete depth-averaged model for general turbidity currents,

that were later extended to take into account the e�ects of air entrainment
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in snow avalanches by Fukushima et.al [31].

2.2 Fluid Simulation Using GPU

There has been some research in recent years in order to develop �uid sim-

ulation algorithms that takes full advantage of the computational potential

provided by the GPU.

Harada et.al [43] implemented Smoothed Particle Hydrodynamics on the

GPU using OpenGL and the Cg shader language. This was done before the

introduction of CUDA and the ability to program scienti�c calculations in a

simple manner. During the time of their implementation, a solid knowledge

of computer graphics and details of the graphics pipeline was necessary in

order to utilize the computational ability of the GPU. Their implementation

was one of the �rst to process every calculation of SPH on the GPU, remov-

ing any CPU-GPU memory transfer overhead.

Zhang et.al [93] presented an SPH implementation that supported adap-

tive sampling and rendering, all performed on the GPU. Both this algorithm

and the one presented by Harada et.al [43] used a grid-based spatial subdi-

vision structure to simplify the nearest neighbor search. Goswami et.al [37]

achieved signi�cant speedup and low memory consumption by applying a

data structure based on Z-indexing instead of a spatial hashing method on a

grid-based subdivision.





CHAPTER 3

Method

The process of implementing a physics-based simulation of a powder-snow

avalanche begins with establishing a mathematical model describing the dy-

namics of the �ow. As discussed in Chapter 2, there has been various ap-

proaches for establishing such mathematical models, the most detailed of

which is based on 3D computational �uid dynamics. The model of choice for

this thesis was presented by Dutykh et.al [23].

After a mathematical model has been provided, a numerical simulation is

performed to provide a visual representation of the powder-snow avalanche.

The numerical solver implemented is based on Smoothed Particle Hydrody-

namics (SPH), a particle-based numerical method for approximating values

and derivatives of continuous �eld quantities.

In order to achieve high performance simulation of the powder-snow avalanche,

the incorporation of the GPU in the implementation is highly advantageous.

The process of integrating the GPU in the simulation to deal with compu-

tations of resource-intensive tasks will conclude this chapter of the applied

methods.

15
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Before delving into the complex mathematical model describing the �ow of

a powder-snow avalanche, a discussion of general physics-based �uid simu-

lation and its relevance in a wide range of areas is given. This discussion

will present the Navier-Stokes equations, which are the basis for many math-

ematical models describing �uid �ow, including the aforementioned model

governing the �ow of powder-snow avalanches. The Lagrangian formulation

of the Navier-Stokes equations are then presented, which is the necessary

formulation of the governing equations when applying a particle-based nu-

merical solver like SPH.

3.1 Physics-based Fluid Simulation

A �uid is a substance that do not resist deformation, meaning it will �ow

when external forces are applied to it. The two most common �uid matters

are gas and liquid. Gases expand to �ll the container in which it is released,

while liquids �ow under the forces of gravity, eventually occupying the low-

est regions of the container. Unlike gases, liquid will create free surfaces,

the dynamics of which is not a�ected by the boundaries of the container.

There are some physical phenomena that share the characteristics of gas and

liquids. Smoke is a substance that is comprised of gas in combination with

liquid particulates, a combination referred to as an aerosol. The �ow of such

phenomena is dependent on the surrounding container, while also having a

distinct free surface. In physics-based �uid simulation, the goal is to best

capture these physical characteristics , and thereby be able to create a real-

istic visualization that resembles the behavior of �uids.

There is a wide range of di�erent areas where physics-based �uid simula-

tion is applicable. These include feature �lms, commercial work, computer

games, virtual environments, and medical simulation. The methods applied

within these areas di�er in the amount of realism that is required to provide

a satisfactory result. In the feature �lm industry, the goal is to have the

best match to the behavior of �uids, making the simulation indistinguish-
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able from the real world. Within these �elds, there exists a need to simulate

at high resolutions, so as to capture all the intrinsic small-scale features of

�uids, like splashes, droplets, etc. [57]. In its current state, the technology

is such that detailed simulation can not be done in real-time, so areas like

computer games has a di�erent methodology when it comes to simulating

�uids. Within this �eld the goal is real-time simulation and stability. For

virtual reality applications and computer games, there is therefore a need for

a reduction in the complexity of �uid dynamics, so as to be able to compute

the behavior in real-time. These reductions include visual degradations by

simulating at lower resolution, as well as coarser approximation of physical

behavior to reduce computational complexity [69].

3.1.1 Navier-Stokes Equations

A �owing �uid has some basic physical quantities associated with it, namely

velocity, density, and pressure. These quantities are considered as continuous

�elds in the �uid. How the velocity of the �uid changes as a function of time

is governed by the Navier-Stokes equations, which describe the relationship

between these quantities.

∂ρ

∂t
+∇ · (ρv) = 0 (3.1.1)

ρ(
∂v

∂t
+∇v · v) = −∇p+∇ · (2µD(v)) + f (3.1.2)

where v is the velocity, ρ is the density, and p is the pressure of the �uid. µ

is a measurement of the viscosity in the �uid, and f represents the sum of

external forces acting on the �uid, e.g. gravity.

These two equations represents the classical form of the mass and momen-

tum conservation equations for continuum mechanics, and they describe the

motion of a regular �uid, e.g. air or water. Equation (3.1.2) is the momen-

tum balance equation, and it describes how the �uid accelerates due to the

forces acting on it. It is essentially Newton's second law stated in continuum

mechanics. The two terms −∇p and ∇· (2µD(v)) are internal forces, and are
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contributions to the total force that only arise from within the �uid. −∇p
represents the force induced by the di�erences in pressure in the �uid, and

describes how the �uid �ows from areas with high pressure to areas with low

pressure. D(v) is the strain rate tensor and is de�ned as:

D(v) =
1

2
(∇v + (∇v)T )

Strain is a measure of deformation, and D(v) represents the rate at which

deformation occurs when stress is applied. This rate may be linear, as is

the case with regular Newtonian �uids, or non-linear, which would describe

a non-Newtonian �uid. Additionally, viscosity µ is a measure of how much

internal friction the �uid exhibits, so the entire term ∇ · (2µD(v)) gives a

description of the possibly complex behavior of the �uid when it is deformed.

Equation (3.1.1) is the mass continuity equation, and is a statement of the

conservation of mass. The mass conservation is necessary in order to fully

describe �uid �ow. The general formulation as presented in equation (3.1.1)

is speci�ed for compressible �uids, and describes how the �uid may compress

or expand in order to retain its total mass. By assuming that the �uid may

not compress or expand, we state that the density of the �uid is constant.

The �uid is then considered incompressible, and the mass continuity equation

is expressed as a condition of the divergence of the velocity �eld, ∇ · v = 0.

additionally assuming that the �uid is Newtonian, the strain rate tensor

gets reduced to a simple laplacian operation. The complete Navier-Stokes

equations of an incompressible, Newtonian �uid is then

∇ · v = 0 (3.1.3)

ρ(
∂v

∂t
+∇v · v) = −∇p+ µ∇2v + f (3.1.4)

This formulation of the Navier-Stokes equations is based upon the entire

�uid being composed of several �uid cells, aligned in a grid structure. Each

of these cells has a �xed position in space, in addition to being associated with

all the �uid properties. Figure (3.1.1) depicts how the �uid properties are
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connected to the �uid cells. This formulation of the Navier-Stokes is referred

to as the Eulerian formulation, and expresses the problem of measuring the

�ow of �uid by observing the �uid at �xed points in space. To realize how

Figure 3.1.1 � In the grid-based Eulerian view, each cell in the grid has �uid
properties associated with it, like velocity (arrows), density (cell �ll), pressure
(arrow color), and temperature (cell outline). Image from [38].

the formulation presented in equations (3.1.3) and (3.1.4) is based on this

grid-based spatial subdivision, imagine a particle �owing with the �uid. If

we want to measure the rate of change of velocity for this particle as it

is �owing through the spatial domain, we have to �rst predict its position

based on previously observed positional data, and then observe the velocity

of this particle at its new cell position. Additionally, if the �uid is not

considered stable, extra velocity of the particle needs to be predicted based

on its acceleration. The velocity of a particle then depends on both time t

and position x(t), which again depends on time. The full derivative of the

velocity �eld then yields

d

dt
v(t,x(t)) =

∂v

∂t
+
∂v

∂x

dx

dt

=
∂v

∂t
+∇v · v

This expression is present in the momentum conservation equation presented

earlier.
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3.1.2 Lagrangian Fluid Dynamics

The Eulerian formulation of the �uid �ow is a good way of measuring dy-

namics of �uids which occupies the entire spatial domain, e.g. wind. It is,

however, less robust when dealing with �uids that have a free surface, the

�ow of which do not occupy the entire computational domain. By repre-

senting the �uid using particles instead of grid-aligned cells, this free surface

is handled naturally by the movement of the particles. This particle-based

representation of �uid �ow is called a Lagrangian representation. Unlike the

grid-based Eulerian representation, the properties of the �uid is carried with

the particles that make up the �uid. There is therefore not a need to pre-

dict a particles position, as it is associated with the particle, and calculated

based on its velocity. The problem of �nding the rate of change of velocity

for a particle �owing through the computational domain, is then made eas-

ier, as the velocity now only depends on time. This leads to the Lagrangian

formulation of the Navier-Stokes equations.

∇ · v = 0

ρ
Dv

Dt
= −∇p+ µ∇2v + f

The denotation Dv
Dt

is referred to in the literature as the material derivative,

and is de�ned as
Dv

Dt
=
∂v

∂t
+∇v · v (3.1.5)

To further the understanding of the two di�erent formulations, one should

realize that the velocity variable in the material derivative Dv
Dt

is referencing

the velocity of some matter �owing with the �uid, whereas the velocity vari-

able on the right hand side of the equations (3.1.5) is referencing the velocity

�eld of the �uid domain. Stating that Dv
Dt

= 0, speci�es that any matter

�owing with the �ow is either at rest or moving with constant velocity. Stat-

ing that ∂v
∂t

= 0, however, de�nes a constant velocity �eld, which may still

determine a complex �ow of matter within the �uid. The movement of the

matter in this case is governed by the second term on the right hand side of

equation (3.1.5). This term is called the advective term, and sometimes de-
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noted (v ·∇)v, where v ·∇ is known as the advection operator. (∇·v)v then

speci�es that the velocity of any matter in the �ow is advected by the velocity

�eld, which may change over time depending on the value of ∂v
∂t
. The material

derivative is a way of linking the Eulerian and the Lagrangian formulations

of the Navier-Stokes equations. The Lagrangian particle-based formulation

of the governing equations for �uid �ow is necessary when simulating �uids

using Smoothed Particle Hydrodynamics, which will be presented later.

Figure 3.1.2 � In the Lagrangian view, each particle has a position and ve-
locity, in addition to �uid properties following them. Image from [38]

3.2 Mathematical Model for Powder-snow Avalanches

During the discussion of powder-snow avalanche simulation in Chapter 2, it

was realized that the evolution from a dense snow avalanche �ow to a powder-

snow avalanche is governed by the presence of air, and its entrainment in the

snow �ow. Such �ows, whose behavior is governed by the presence of two dif-

ferent �uids is referred to as two-phase �ows in �uid mechanics. The mathe-

matical models applying the two-phase modeling approach for the simulation

of powder-snow avalanches are the ones that provide the most complete in-

formation of the �ow structure. However, by including the e�ects of a second

�uid in the governing equations, they become computationally expensive, as

the computational domain grows larger [71, 26, 90].
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The introduction to the Navier-Stokes equations in the previous section dealt

with the problem of �nding a solution to a single vector �eld, namely the

velocity �eld of a single-phase �ow. The additional �uid in a two-phase �ow

would require a solution to two velocity �elds, one for each of the �uids, lead-

ing to an increase in computation during simulation. This requirement may

be removed by assuming that both phases are constrained to be governed

by the same velocity. This assumption allows for the solution of a single

velocity �eld, as in the case of a regular single-phase �ow [70, 61, 60]. These

single-velocity two-phase models have been successfully applied to tsunami

waves [22] and breaking waves[14].

Dutykh et.al [23] presented such a single-velocity two-phase model for the

simulation of avalanches in the aerosol regime. Their model allows for the

two phases of the �ow to interpenetrate, forming a mixing zone in the vicin-

ity of the interface. This mixing process will introduce a strati�cation in

the �ow, allowing for the evolution of a powder-cloud. The derivation of

the mathematical model begins with the Navier-Stokes equations in classical

form, as presented in the previous section.

∂ρ

∂t
+∇ · (ρu) = 0

ρ(
∂u

∂t
+∇u · u) = −∇p+∇ · (2µD(u)) + f

The mixing of the two �uids is taken into account by Fick's type law [28],

resulting in the following quasi-compressible equation

∇ · u = −κ∇2 log ρ

where κ is the di�usion coe�cient. These three equations represent the

governing equations of the two phases making of the entire computational

domain. This set of equations describes the �ow of a compressible �uid. By

rewriting these in terms of the single-velocity two-phase model, the system

of equations will describe an incompressible �uid, which is simpler to solve
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numerically.

The single velocity variable governing the entire two-phase system is de�ned

as

v ≡ u + κ∇ log ρ

and is referred to in the literature as the �uid volume velocity [15]. Using

this new velocity variable, the system of governing equations are rewritten in

terms of it. From Fick's law it is determined that the �uid in incompressible

within the �uid volume velocity v.

∇ · v = 0

From this incompressibility condition, along with the assumption of the �ow

being a Newtonian �uid, the mass and momentum conservation equations in

terms of the new velocity variable v becomes

∂ρ

∂t
+ v · ∇ρ = κ∇2ρ (3.2.1)

ρ(
∂v

∂t
+∇v · v) +∇p+ κ∇(v · ∇ρ)− κ(v · ∇ρ)

∇ρ
ρ

+κ2∇ρ
ρ
∇2ρ− κ2∇2∇ρ− κρ(∇ log ρ · ∇)v (3.2.2)

−κρ(v · ∇)∇ log ρ+ κ2ρ(∇ log ρ · ∇)∇ log ρ

= ρg +∇ · (2µD(v))− κ∇ · (2µ∇∇ log ρ)

The di�use term in the mass conservation equation (3.2.1) comes from the

Fick's law governing the mixing process between two �uids. The momen-

tum conservation equation (3.2.2) is substantially simpli�ed in the model

presented by [23], and their �nal set of governing equations are as follows,

expressed in the Lagrangian formulation by using the material derivative

(3.1.5)

∇ · v = 0
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Dρ

Dt
= 2ν̄∇2ρ

ρ
Dv

Dt
+∇π + 2ν̄(∇v)T∇ρ− 2ν̄∇v∇ρ = ρg +∇ · (2µD(v))

where the di�usion coe�cient has been set to κ = 2ν̄. π is the a new de�nition

of the pressure in the �ow

π = p+ 4ν̄µ0∇2 log ρ

where p is calculated by an equation of state from the mixture density ρ. The

remaining variables are mixture quantities, representing the physical prop-

erties of the mixture �uid originating from the interpenetration of snow and

air in the avalanche �ow.

The derivation of the mixture quantities, as presented by Dutykh [23], begins

with the notion of a volume fraction. When considering two-phase �ows, the

volume fraction of a �uid is the fraction of the entire volume occupied by this

�uid. In the case of powder-snow avalanches, the two �uids in question are

snow and air. If the fraction of the volume occupied by the snow is φ ∈ [0, 1],

then the volume fraction of the air is 1− φ. By assuming constant densities

and kinematic viscosity for both the snow and air, the mixture density ρ and

the mixture dynamic viscosity µ are de�ned as

ρ = φρ+ + (1− φ)ρ−

µ = φρ+ν+ + (1− φ)ρ−ν−

where ρ± and ν± are the density and kinematic viscosity of the heavy and

light �uid, respectively. The mixture dynamic viscosity may be expressed in

terms of the density ρ as follows

µ = µ0 + ν̄ρ
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where µ0 and ν̄ are related to the densities and kinematic viscosities of the

two �uids in the following way

µ0 =
ν−ρ−ρ+ − ν+ρ+ρ−

ρ+ − ρ−

ν̄ =
ν+ρ+ − ν−ρ−

ρ+ − ρ−

3.3 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a mesh-free Lagrangian method,

�rst created for simulating astrophysical problems [58, 35]. Since then it

has been applied in numerous �eld for simulating continuum applications,

including �uid dynamics and the problem related to free-surface �ow [63].

SPH obtain approximate numerical solutions of the �uid dynamics equations

by replacing the �uid with a set of particles, representing interpolation point

from which �uid properties can be calculated.

SPH uses interpolation as the numerical technique for approximating the

physical quantities present in a �uid. Interpolation means �nding approxi-

mate values for a unknown function f based on the values of f at di�erent

points. The interpolation technique is based on the following identity

f(x) =

ˆ
Ω

f(x′)δ(x− x′)dx′ (3.3.1)

where f(x) is a function of the position vector x, which is any point the in

the domain Ω. δ(x−x′) is the Dirac delta function, having the following two

properties.

δ(x− x′) =

∞ x = x′

0 x 6= x′

ˆ ∞
−∞

δ(x− x′) = 1
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While the identity (3.3.1) is exact, the Dirac delta function is not really a

valid mathematical function and may therefore not be used for establishing

numerical models. A smoothing function is introduced to provide an approx-

imation for equation (3.3.1). This approximation is usually termed a kernel

approximation, and the smoothing function W is referred to as a smoothing

kernel function, or simply a kernel function. The kernel approximation of

f(x) becomes

〈f(x)〉 =

ˆ
Ω

f(x′)W (x− x′, h)dx′

where h is termed the smoothing length, and de�nes the area of in�uence of

the smoothing function W , e�ectively determining how much of the domain

surrounding position x will be used to approximate f(x).

The purpose of the smoothing function W is to best mimic the behavior

of the delta function δ(x − x′). Monaghan [67] speci�es that in order for it

to do that, it has to satisfy the following two conditions

ˆ
Ω

W (x− x′, h)dx′ = 1

lim
h→0

W (x− x′, h) = δ(x− x′)

Additionally, W (x− x′, h) = 0 when |x− x′| > h. The �rst condition is the

normalization condition, and is making sure that 〈f(x)〉 is scaled properly.

The second condition is the Delta function property, and states that as the

smoothing function approaches zero, W approaches δ, and the approxima-

tion 〈f(x)〉 approaches the correct value f(x).

This integral interpolation method is a general numerical method for ap-

proximating a value from surrounding values. In order to apply this to the

problem of approximating �uid quantities, the �uid density ρ is incorporated

into the approximation integral in the following way

〈f(x)〉 =

ˆ
Ω

f(x′)W (x− x′, h)
ρ(x′)

ρ(x′)
dx′
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Then, by representing the �uid volume with a �nite set of particles and

realizing that the volume integral of density over the domain Ω is the mass

of the �uid (m =
´

Ω
ρ(x′)dx′), the integral is replaced by a summation of

neighboring particles

〈f(xi)〉 =
N∑
j=1

f(xj)
mj

ρj
W (xi − xj, h) (3.3.2)

where N is the total number of particles within the area of in�uence around

the particle at position xi. Equation (3.3.2) states that the value of a func-

tion at a particle can be approximated by using the average value of the

surrounding particles weighted by the smoothing function, and is at the cen-

ter of the SPH approximation method.

Figure 3.3.1 � In SPH, the quantities at each particle are smoothed over a
neighborhood of size h. The weighted contributions of the neighboring particles
are summed up, giving larger weight to closer particles than those farther away.
Image from [85].

In order to fully describe �uid �ow using SPH, there is a need to derive

how the spatial di�erential operators are applied to the SPH formulation in

equation (3.3.2). Below, it is only shown how the gradient operator ∇() is

applied to the SPH formulation, but the same derivation holds for the diver-

gence ∇ · (), the laplacian ∇2(), and the curl ∇× ().
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The gradient operator ∇f(x) is de�ned as ∂
∂x
f(x). Applying this operator

to the SPH formulation in equation (3.3.2) yields

∂

∂xi
〈f(xi)〉 =

∂

∂xi
[
∑
j

f(xj)
mj

ρj
W (xi − xj, h)]

By using the product rule we get the following result

∂

∂xi
[
∑
j

f(xj)
mj

ρj
W (xi − xj, h)] =

∑
j

[
∂

∂xi
(f(xj)

mj

ρj
)W (xi − xj, h)

+f(xj)
mj

ρj

∂

∂xi
W (xi − xj, h)]

=
∑
j

[0 ·W (xi − xj, h) + f(xj)
mj

ρj

∂

∂xi
W (xi − xj, h)]

=
∑
j

f(xj)
mj

ρj
∇W (xi − xj, h)

Since f(xj) is not a function of xi, the directional derivative ∂
∂xi
f(xj) is 0.

We then end up with the fact that a di�erential operation on a function f(x)

is transformed into a di�erential operation on the smoothing function W .

This means that we are able to approximate the spatial derivatives of a �eld

function f(x) by determining the values of this function and the derivatives

of the smoothing function W , rather than from the derivatives of the �eld

function itself. The following SPH kernel functions are the approximations

of the spatial di�erential operators gradient, divergence, laplacian and curl

of a �eld variable.

〈∇f(xi)〉 =
∑
j

f(xj)
mj

ρj
∇W (xi − xj, h)

〈∇ · f(xi)〉 =
∑
j

f(xj)
mj

ρj
· ∇W (xi − xj, h)

〈
∇2f(xi)

〉
=

∑
j

f(xj)
mj

ρj
∇2W (xi − xj, h)

〈∇ × f(xi)〉 =
∑
j

f(xj)
mj

ρj
×∇W (xi − xj, h)
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3.3.1 Smoothing Functions

The smoothing kernel functions determines both the accuracy and the com-

putational e�ciency of the SPH function representation, and plays therefore

a very important role in the SPH approximation [1, 56, 32, 68]. There has

been a large amount of research and investigation of the smoothing kernel

in order to improve the performance of the SPH method. This section will

introduce some of the most important generalized smoothing kernels that

have been used. In the following presentation, xij is de�ned as the vector

xi − xj, and r is de�ned as xij

h
.

A Gaussian kernel was applied to simulate non-spherical stars by Gingold

and Monaghan in their original paper [35].

W (xij, h) = αe−r
2

where α is 1
π1/2h

, 1
πh2

, and 1
π3/2h3

in one-, two-, and three-dimensional space,

respectively. Monaghan [62] considered this kernel to be a "golden rule" of

SPH since it is very stable and accurate. Despite this consideration, how-

ever, this kernel is quite computationally expensive since it can take a long

distance for the kernel to approach zero.

The cubic B-spline function was originally used by Monaghan and Lattanzio

[66], and is the most widely used smoothing function

W (xij, h) = α


2
3
− r2 + 1

2
r3 0 ≤ r ≤ 1

1
6
(2− r)3 1 ≤ r ≤ 2

0 r ≥ 2

where α is 1
h
, 15

7πh2
, and 3

2πh3
, in one-, two-, and three-dimensional space,

respectively. It closely resembles a Gaussian function while having a more

narrow compact support, making it less computationally expensive. The dis-

advantage of this kernel is that its second derivative is not a smooth function,

making the laplacian unsuitable for use.
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Morris [68] introduced two higher order splines that approximate the Gaus-

sian more closely, in addition to being more stable. The �rst was the quartic

spline

W (xij, h) = α



(r + 2.5)4 − 5(r + 1.5)4 + 10(r + 0.5)4 0 ≤ r ≤ 0.5

(2.5− r)4 − 5(1.5− r)4 0.5 ≤ r ≤ 1.5

(2.5− r)4 1.5 ≤ r ≤ 2.5

0 r ≥ 2.5

where α is 1
24h

, de�ned only in one-dimensional space. The second was the

quintic spline

W (xij, h) = α



(3− r)5 − 6(2− r)5 + 15(1− r)5 0 ≤ r ≤ 1

(3− r)5 − 6(2− r)5 1 ≤ r ≤ 2

(3− r)4 2 ≤ r ≤ 3

0 r ≥ 3

where α is 120
h
, 7

478πh2
, and 3

359πh3
, in one-, two-, and three-dimensional space,

respectively.

Johnson [50] simulated high velocity impact problems by means of the fol-

lowing quadratic smoothing function

W (xij, h) = α(
3

16
r2 − 3

4
r +

3

4
)

where α is 1
h
, 2
πh2

, and 5
4πh3

in one-, two-, and three-dimensional space, re-

spectively. They made improvements over the cubic B-spline function by

removing the problem of compressive instability. They did this by insuring

that the derivative of the kernel function always increases as particles moves

closer, and decreases when they move apart.
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Liu et.al [56] constructed a quartic smoothing function that is more con-

venient and e�cient to use, while still behaving very much like the cubic

B-spline

W (xij, h) = α

2
3
− 9

8
r2 + 19

24
r3 − 5

32
r4 0 ≤ r ≤ 2

0 r ≥ 2

where α is 1
h
, 15

7πh2
, and 315

208πh3
in one-, two-, and three-dimensional space,

respectively. Its improvement is a result of only using a single piece, instead

of two.

Müller [69] designed special purpose smoothing kernels for the purpose of

interactivity in their particle-based �uid simulation with free surfaces. They

designed the following kernel

Wpoly6(xij, h) =
315

64πh9

(h2 − r2)3 0 ≤ r ≤ h

0 r ≥ h

This kernel is not, however, suitable for computation of the pressure forces

because the gradient of the kernel approaches zero at the center, which results

in the repulsion force vanishing. The pressure forces were computed using

the spiky kernel by Desbrun et.al. [21]

Wspiky(xij, h) =
15

πh6

(h− r)3 0 ≤ r ≤ h

0 r ≥ h

that generates the necessary repulsion forces.

Müller designed an additional kernel for the computation of viscosity forces

Wviscosity(xij, h) =
15

2πh3

− r3

2h3
+ r2

h2
+ h

2r
− 1 0 ≤ r ≤ h

0 r ≥ h

Its laplacian is positive everywhere, which removes the artifact resulting in a

mistakenly increase in velocity when two particles get close to each other. The
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Figure 3.3.2 � The tree smoothing kernels applied to the SPH implementation
by [69]. From left to right, there is Wpoly6, Wspiky, and Wviscosity, including
its gradients and laplacians, displayed in thin and dashed lines, respectively.
Image from [69].

kernel functions used for the implementation of the powder-snow avalanche

simulation will be the three presented by Müller [69].

3.3.2 Techniques for Deriving SPH Formulations

Having established the equations allowing us to numerically simulate �uid

�ow using SPH, it is now time to derive the SPH formulation of the governing

equations presented earlier. Monaghan [67] presented an approach for deriv-

ing an SPH formulation of any partial di�erential equation. They used the

following two identities for di�erential operators on scalar �elds and vector

�elds, respectively
Ds(ϕ)

ρ
= Ds(

ϕ

ρ
) +

ϕ

ρ2
Ds(ρ) (3.3.3)

ρDv(v) = Dv(ρv)− v ·Ds(ρ) (3.3.4)

where ρ is the density of the �uid, ϕ is determines a scalar �eld, and v deter-

mines a vector �eld. Ds() is a di�erential operator de�ned for scalar �elds,

namely the gradient ∇() and the laplacian ∇2(), while Dv() is a di�erential

operator de�ned for vector �elds, consisting of the gradient ∇(), the diver-

gence ∇ · (), the curl ∇× (), and the laplacian ∇2().
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This technique of placing the �uid density quantity inside the gradient op-

erator is stated by Monaghan [67] to be the �rst golden rule of SPH. The

reason for this consideration is that applying the above two identities will

produce symmetric values between pair of particles, resulting in a conserva-

tion of linear and angular momentum.

The next step is then to apply the standard SPH formulation in equation

(3.3.2) to each of the two terms on the right hand side of equation (3.3.3)

and (3.3.4). This will lead to the following six SPH approximations for the

relevant di�erential operations

〈∇ϕ〉 = ρi[
∑
j

mj(
ϕi
ρ2
i

+
ϕj
ρ2
j

)∇W (xij, h)] ∈ R3

〈
∇2ϕ

〉
= ρi[

∑
j

mj(
ϕi
ρ2
i

+
ϕj
ρ2
j

)∇2W (xij, h)] ∈ R

〈∇ · v〉 =
1

ρi
[
∑
j

mj(vj − vi) · ∇W (xij, h)] ∈ R

〈∇ × v〉 =
1

ρi
[
∑
j

mj(vi − vj)×∇W (xij, h)] ∈ R3

〈
∇2v

〉
=

1

ρi
[
∑
j

mj(vj − vi)∇2W (xij, h)] ∈ R3

〈∇v〉 =
1

ρ
[
∑
j

mj(vj − vi)⊗∇W (xij, h)] ∈ R3x3

In addition to the these identities and formulations, there are some rules

of operation that may be useful when deriving an SPH formulation for a

complex system of equations [56]. The following two rules exist for two

arbitrary function of �eld variables f1 and f2

〈f1 ± f2〉 = 〈f1〉 ± 〈f2〉

〈f1f2〉 = 〈f1〉 〈f2〉

These equations state that an SPH approximation of a sum of functions

equals the sum of their individual SPH approximations, and likewise how
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the SPH approximation of the product of two functions equals the product

of their individual SPH approximations.

The SPH approximation operator is a linear operator, as given by the fol-

lowing identity

〈cf1〉 = c 〈f1〉

Additionally, the SPH operator is commutative, giving the �nal two useful

rules

〈f1 + f2〉 = 〈f2 + f1〉

〈f1f2〉 = 〈f2f1〉

By applying these SPH formulations, approximations to the system of equa-

tions describing powder-snow avalanche have been performed.

3.3.3 SPH Formulation of Governing Equations

The governing equations describing the dynamics of a powder-snow avalanche

consists of three constitutive equations. They all depend on the density of

the �uid, which an additional �eld quantity that has to be calculated using

SPH approximation. The calculation of the density value at a particle are

given by

ρi =
∑
j

mjW (xij, h)

3.3.3.1 Incompressibility Condition

∇ · v = 0

The incompressibility condition is a statement of how the �uid should behave,

rather than a constitutive equation relating �uid quantities. It is expressed

in terms of the divergence of the velocity �eld of the �uid continuum. The

physical meaning of the divergence ∇·v is that the balance of out�ow and in-

�ow for a given volume element is zero at any time. Another way of thinking

about such a divergence-free �uid �ow is that there are no sources or sinks

of �uid �ow. In order to satisfy this incompressibility condition, the forces
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acting within the �uid continuum has to be modi�ed to prevent an imbal-

ance between out�ow and in�ow of a �uid volume element. More speci�cally,

the force originating from the di�erences of pressure in the �uid has to be

balanced.

There have been di�erent strategies applied to enforce the incompressibil-

ity in particle-based �uid simulations. Incompressible SPH (ISPH) is the

name given to methods modeling incompressible �uid �ow by solving a pres-

sure projection equation, �rst introduced in Eulerian methods [25]. These

methods �rst integrate the velocity �eld in time without enforcing incom-

pressibility, before projecting the solved �eld onto a divergence-free space

through a pressure Poisson equation [55, 46]. These methods allow for large

time steps in the simulation of �uid �ow, but the iterative algorithms needed

to solve the Poisson equation is very time consuming, leading to large com-

putations at each time step.

Solenthaler et.al [84] introduced a method of enforcing incompressibility by

applying a local prediction-correction scheme to determine the particle pres-

sures (PCISPH). Their method involved a convergence loop at each time

step, consisting of predicting velocity and density, followed by a correction

of these based on a reference density. This method is less computational

expensive at each integration step than ISPH, while still allowing for large

time steps.

In the standard SPH model, the pressure is calculated from an equation

of state (EOS) derived from the ideal gas law given by

pV = nRT (3.3.5)

where p is pressure, V is volume per unit mass, n is the number of gas

particles in mol, R is the universal gas constant, and T is the temperature.

Assuming constant temperature and mass, the right hand side of equation

(3.3.5) may be kept constant, and thereby replaced by a gas sti�ness constant
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k.

pV = nRT

p(
1

ρ
) = k

p = kρ

Using this equation will lead to a large compressible behavior of the �uid,

and is therefore not a appropriate choice for modeling incompressible �ow.

An extended EOS resulting in less compressibility was suggested by Desbrun

et.al [21]

p = k(ρ− ρ0)

where ρ0 is the rest density of the �uid.

Weakly compressible SPH (WCSPH) is a model that applies an EOS that

limits the amount of compressibility occurring in the �uid [64]. This model

utilities the Tait equation, which is e�cient to compute, while still enforc-

ing an acceptable degree of incompressibility. The pressure is calculated as

follows

p =
kρ0

γ
((
ρ

ρ0

)γ − 1) (3.3.6)

where k is a sti�ness parameter and ρ0 is the reference density. γ is the

adiabatic index, a physical measurement of the ratio of the heat capacity

at constant pressure to heat capacity at constant volume in a �uid. Nu-

merically, this variable is determined experimentally, and are usually set to

7. Using WCSPH for approximating incompressible �uid �ow will lead to

an e�cient computation without degrading the simulation a great deal, and

will be therefore be the choice of model for the simulation of powder-snow

avalanche �ow.

3.3.3.2 Mass Conservation

Dρ

Dt
= 2ν̄∇2ρ
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The mass conservation equation is a statement of how the density of the �uid

changes as the �uid �ows. In the classic formulation of the incompressible

Navier-Stokes equations (equation 3.1.3 and 3.1.4), this mass conservation

is not present. This is because the incompressibility condition implies that
Dρ
Dt

= 0, and it may therefore be omitted. In the model describing powder-

snow avalanche �ow, there will be a density change as a consequence of the

�uid mixing governed by Ficks's law of di�usion, and the mass conservation

equations therefore reappears. Applying the aforementioned formulations to

determine the SPH approximations yields

〈
2ν̄∇2ρ

〉
= 2ν̄ρ[

∑
j

mj(
1

ρi
+

1

ρj
)∇2W (xij, h)]

3.3.3.3 Momentum Conservation

ρ
Dv

Dt
+∇π + 2ν̄(∇v)T∇ρ− 2ν̄∇v∇ρ = ρg + µ∇2v

The momentum conservation equations governs the actual movement of the

particles and relates the acceleration of each particle to the forces that acts

upon it. As argued during the discussion of the incompressibility condition,

the pressure in a �uid is more of a balancing force, and should therefore not

contain additional terms that a�ect the �ow of the �uid. An appropriate

formulation of the momentum balance equation is then derived by rewriting

the equation in terms of the regular pressure variable p. The second term of

the alternative pressure de�nition π = p+ 4ν̄µ0∇2 log ρ is then placed in the

momentum balance equation, resulting in the following formulation

ρ
Dv

Dt
+∇p+ 2ν̄(∇v)T∇ρ− 2ν̄∇v∇ρ = ρg + µ∇2v − 4ν̄µ0∇∇2 log ρ

By reformulating the momentum balance equation, an expression similar to

what was determined when presenting the incompressible, Newtonian Navier-

Stokes equations is derived.

ρ
Dv

Dt
= −∇p+ µ∇2v + f
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where −∇π and µ∇2v represents the internal forces in the �uid �ow, while

f = ρg − 2ν̄(∇v)T∇ρ + 2ν̄∇v∇ρ − 4ν̄µ0∇∇2 log ρ are the external forces

governing the complex dynamics of the �ow.

Internal Forces There are two SPH approximations performed on the

internal forces. There is the pressure force −∇p, and the viscosity force

µ∇2v. The following two SPH approximations corresponds to these two

terms

〈−∇p〉 = −ρ[
∑
j

mj(
pi
ρ2
i

+
pj
ρ2
j

)∇W (xij, h)]

〈
µ∇2v

〉
= µ

1

ρ
[
∑
j

mj(vi − vj)∇2W (xij, h)]

External Forces The seemingly complex expression making up the exter-

nal forces governing the �uid �ow originates from the mixing process that is

occurring between the snow and the air in the powder-snow avalanche �ow.

The di�erential terms in the expression that needs to be approximated con-

sists of ∇v, ∇ρ, and ∇∇2 log ρ. In the last term, the evaluation of ∇2 log ρ

needs to be performed before the calculation of the entire term. The following

are the SPH approximation of the external forces, where α = ∇2 log ρ.

〈∇ρ〉 = ρ[
∑
j

mj(
1

ρi
+

1

ρj
)∇W (xij, h)]

〈∇v〉 =
1

ρ
[
∑
j

mj(vj − vi)⊗W (xij, h)]

〈
∇2 log ρ

〉
= ρ[

∑
j

mj(
log ρi
ρ2
i

+
log ρj
ρ2
j

)∇2W (xij, h)]

〈∇α〉 = ρ[
∑
j

mj(
αi
ρ2
i

+
αj
ρ2
j

)∇W (xij, h)]

3.3.4 Time Integration

After calculating the acceleration of each particle, they are advanced through

time using a global �xed time step ∆t. This advancement is done by calcu-
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lating new positions and velocities of the particles based on ∆t. How this

time integration is performed may greatly a�ect the quality and the stability

of the simulated system.

One of the most common numerical time integration schemes is the semi-

implicit Euler technique. This technique is based on the explicit Euler tech-

nique, which is the most basic method for numerical integration. In explicit

Euler, the advancements of position and velocity are dependent only on their

previously calculated values, and their new values are calculated in parallel

as follows

xt+∆t = xt + ∆tvt

vt+∆t = vt + ∆tat

Despite its simple nature, the explicit Euler method su�er from inaccuracy

and instability in systems with rather complicated physical behavior. For

more complex models, the semi-implicit Euler method is a better option, as

it is more stable than its predecessor. This technique is not only dependent

on the previously calculated values, but also the current. The position of a

particle is calculated by evaluating the velocity at the current time step.

vt+∆t = vt + ∆tat

xt+∆t = xt + ∆tvt+∆t

This technique provides a simple, yet e�ective way of advancing the system

through time.

3.4 GPU Computing

The graphics processing unit (GPU) has experienced a rapid increase in both

performance and capabilities over the last couple of years. They provide

large memory bandwidth and computational power, in addition to applying

advanced processor technologies. Researchers and developers have become
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interested in taking advantage of this power for general-purpose computing.

As a result, development has been made to improve the programmability of

the GPU to make it a compelling platform for computationally demanding

tasks in a wide variety of application domains. The term General-Purpose

GPU (GPGPU) has been popularized as the e�ort to make the GPU an al-

ternative to the traditional CPU as a general-purpose computation unit for

high-performance computer systems.

This section will introduce GPGPU and the reason for its integral part in

certain problem domains. Additionally, to be able to program e�ciently on

the GPU, its architecture has to be understood.

3.4.1 GPGPU

At the heart of GPU computing is the highly parallel characteristic of the

graphics pipeline. Any application that exhibits data parallelism can be fully

exploited by the graphics hardware and thereby allowing for higher perfor-

mance than would have been achieved by a CPU. These applications include

tasks such as sorting, image processing, linear algebra, and physics-based

simulation.

Di�erent applications, and even di�erent phases of a single application, place

unique and distinct demands on computing resources. Before developing a

speci�c application on the GPU platform, one should �rst realize that not

every application will bene�t from the parallel architecture available on this

platform. Asanovic et.al [6] surveyed the issues that are present when deal-

ing with parallelism, and argued that successful parallel platforms should

perform well on 13 classes of problems, which they termed dwarfs. Che

et.al [16] examined three of these dwarfs implemented on a CPU, a GPU,

and a FPGA. By comparing developments costs and performance, they con-

cluded that GPU's excel at parallel workload with deterministic memory

access. Several applications within di�erent scienti�c �elds satisfying these

constraints have been successfully implemented on the GPU with great per-
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formance increase [80, 53, 77].

3.4.2 GPU Hardware Architecture

The GPU used to be a �xed-function special purpose processing unit de-

signed for use in computer games. Its function was to compute the colors of

the pixels of an output image on the screen in parallel. In recent years the

focus has been shifted toward the programmable aspect of the GPU, and the

hardware architecture has experienced an evolution centered around a large

number of parallel processors with great arithmetic capability.

The graphics pipeline is a term referring to the method of producing a 2D

raster image from a representation of the 3D scene by use of graphics hard-

ware. The di�erent stages in this pipeline perform speci�c operations on the

geometric primitives created by the 3D application.

Figure 3.4.1 � The classic graphics pipeline. Image from [34]

These operations exhibit large data parallelism, as the task performed on

each stage is executed on a large amount of data, e.g. vertices and pixels.

To execute such a pipeline e�ectively with high throughput, the GPU di-

vides the processing resources among the di�erent stages, as well as within

each stage. Using this organization, the GPU is capable of meeting the large

computational needs presented by the graphics pipeline. Each task at the

di�erent stages could further be made more e�cient by creating special pur-

pose hardware for the operations present at the stage.

This �xed-function special purpose GPU architecture was implemented for

graphics acceleration, and has evolved substantially over its lifetime. In
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recent years, the changes have become more dramatic, as the GPU has tran-

sitioned from a �xed-function to a programmable architecture.

The �xed-function pipeline was not able to e�ciently express complicated

shading and lighting operations. As a solution to this, the stages dealing with

the processing of vertices and fragments was made programmable, thereby

allowing for programs to be written to introduce a more general processing

of vertices and fragments, making the development of games more exciting.

These programs was called shaders and introduced the programming model

called the shader model.

Even though the stages of the graphics pipeline became more programmable,

the separation of tasks into stages was still a major disadvantage of the graph-

ics pipeline. The separation introduced the problem of load balancing which

limited the performance of the GPU pipeline, making it dependent on its

slowest stage.

The introduction of the uni�ed shader model converged the instruction sets

of the vertex and fragment programs, making the introduction of a single

programmable hardware unit inevitable. This uni�ed shader architecture

makes the programmable units divide their time among vertex, fragment,

and geometry processing. This architecture is present in modern day graph-

ics hardware, and is what makes GPGPU viable, by allowing developers to

target the single programmable unit, rather than dividing work across mul-

tiple hardware units.

3.4.3 OpenCL

As an e�ort to develop applications that take full advantage of the parallelism

present in modern processor architectures, several general purpose parallel

programming models have been introduced. OpenCL is one of these, and

support programming across CPU's, GPU's, and other processors. OpenCL

consists of a programming language, in addition to an API for controlling

and coordinating computation across heterogeneous processors.
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Figure 3.4.2 � GPU architecture from NVIDIA with massively parallel pro-
grammable units at the core. Image provided by NVIDIA

This section will introduce the OpenCL framework for parallel program-

ming, describing the model architecture, consisting of the platform model,

the execution model, the memory model, and the programming model.

3.4.3.1 Platform Model

The platform model is the conceptual model of how the underlying hardware

is presented to the programmer. The model represent the system by dividing

it into one host connected to one or more devices. These devices acts as co-

processors to the host. They are subdivided into one or more compute units,

which are further divided into one or more processing elements. It is within

these processing elements the computations occur.

An OpenCL application runs on the host, which sends commands to the

device that are to be executed on the processing elements within the device.
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Figure 3.4.3 � The bene�t from using a uni�ed shader architecture. Pro-
grammable units divide their time among vertex, fragment, and geometry pro-
cessing, leading to less idle hardware and larger throughput. Image from [75]

3.4.3.2 Execution model

The commands sent by the host to the device are instructions written in

special function called kernels. The kernels execute on one or more devices,

and they are managed by a host program that executes on the host.

An instance of a de�ned kernel is executed for each item in an index space.

For a data parallel programming model, this index space is made up of the

elements in a memory object containing the di�erent data associated with

the OpenCL application. The kernel instance is called a work-item, and

there is a one-to-one mapping between the work-item and a data element.

Each work-item then executes the same code in parallel, each operating on

di�erent data.

Work-items may be arranged into work-groups, which will provide a dif-

ferent organization of the index space. Each work-group is assigned a single

compute unit, and the work-items within the group run concurrently on the

processing elements present in the compute unit. This distribution of work-

items into work-groups is important when synchronization between work-

items is necessary. The OpenCL index space is called an NDRange, and is

an N-dimensional index space, where N is 1, 2, or 3.
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Figure 3.4.4 � The OpenCL platform model. There is one host and one
or more computer devices. Each compute device is made up of one or more
compute units, which again is made up of one or more processing elements.
Image from [41]

3.4.3.3 Memory Model

The device memory domain is divided into four distinct memory regions,

which work-items has access to. The global memory can be thought of

as the main memory of the device. This region permits reads and writes

access to all work-items. Constant memory is similar to global memory,

except work-items may not write to this memory. It remains constant dur-

ing the execution of the kernel. Local memory is a memory region local

to a work-group, and shared by the work-items within this group. Finally,

private memory is private to each work-item, and may not be accessed by

another work-item. As memory access latency is one of the most important

performance inhibitors of a computer application, the understanding and uti-

lization of this memory query is vital in high performance computing.

A kernel can neither access host main memory nor dynamically allocate

global memory. Memory management is therefore done by the host, which

allocate memory blocks in global or constant memory, in addition to copy-

ing data to and from these blocks. In most cases, the host copies all input

data to the device memory domain prior to kernel execution, and all output

data back to the host memory domain afterward. Any data transfer between
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Figure 3.4.5 � Example of an NDRange index space showing work-items,
their global IDs and the mapping onto the pair of work-group and local IDs.
Image from [41]

host and device during the execution of a kernel will greatly decrease the

performance of the application.

3.4.3.4 Programming Language.

The OpenCL programming language is a variant of the C99 language opti-

mized for GPU programming. The language is used just to write the per-

formance or data-intensive routines in an application, making the transition

to a GPU application of a previously implemented program much easier for

developers. These OpenCL kernel are compiled for the GPU on the �y.

3.5 Smoothed Particle Hydrodynamics on GPU

Smoothed particle hydrodynamics needs a large amount of particles in order

to achieve �ne-scale �ow details and smooth surfaces. Because of this, the

method has in the past been less popular in applications requiring interac-

tive simulation of �uid �ow. Due to the ease with which computations on

particle systems can be made parallel, the massively parallel computational

capabilities of the modern GPU has recently been taken advantage of, so as
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Figure 3.4.6 � The four address spaces that the work items has access to.
Image from [36]

to make SPH more attractive for simulations of large systems at interactive

rates. A GPU implementation of SPH will result in the simulation of detailed

physics-based �uid �ow being performed in hours rather than days.

The computationally most expensive part in SPH simulation is the neigh-

borhood search that has to be performed for each particle at every iteration.

This evaluation of the nearby particles may be performed in the most naïve

way, by iterating through all particles in the simulation domain. The time

complexity of such an approach in a simulation containing n particles is

bound by O(n2), which leaves room for improvements. An important real-

ization is that the only particles that contribute to the calculation of �uid

quantities in SPH are the ones that are in close proximity to the particle be-

ing evaluated. For this reason, the neighborhood search can be made easier

and faster by dividing the simulation domain into a uniform grid, which al-

lows for the time complexity to be reduced to O(mn), where m is the average

number of particles found at neighboring grids.

The goal is then to combine the computational capabilities of the GPU with
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the time complexity decrease provided by the spatial subdivision technique.

The GPU implementation is performed using OpenCL, a general purpose

parallel programming model, that makes it possible to develop applications

that take full advantage of the parallelism present in modern processor ar-

chitectures.



CHAPTER 4

Implementation

The SPH method has been implemented to simulate powder-snow avalanche

dynamics. The simulation consists of two main procedures, which are done

at each time step. First, there is the creation of the grid-based spatial subdi-

vision. A more detailed explanation of how the grid-based spatial subdivision

is performed is presented, in addition to a discussion of its vital part in the

nearest neighbor search. The second procedure presented is the calculation

of the governing equations of the system that are made to determine the

force applied to each particle. The details of the simulation loop is outlined,

before discussing the determination of the physical parameters.

4.1 Uniform Spatial Subdivision

There are two main operations that are to be performed when using a spatial

subdivision technique. There is the creation of the grid data structure, and

there is the evaluation of neighboring grid cells. The spatial subdivision is

performed using a uniform grid, which is the simplest possible spatial sub-

division. Using a uniform grid will subdivide the three-dimensional spatial

49
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domain into a grid of equally-sized cells. Each cell will contain a number

of particles, and the neighborhood search is performed by iterating through

the 27 cells that are surrounding the cell currently being examined. The cell

sizes may be determined by the smoothing length de�ned in the SPH kernel

function, which will provide an e�ective iteration through every particle in

the nearby cells. The grid data structure is constructed every iteration by

using a spatial hashing method. This method was performed by Green [40]

in his particle simulation using CUDA. Green build the data structure using

sorting, which provides a simple and e�ective way of creating the grid data

structure, in addition to improving memory coherence when accessing the

grid.

The cells in the grid are then evaluated using a spatial hashing method

[89], which allows for cell evaluation by assigning it a hash value based on

its position in the grid. Before explaining the procedures involved in the

construction of the spatial subdivision, some parameters detailing the setup

of the simulation environment needs to be determined. These include the

world size, the grid size, the cell size, and the particle size.

The world size is the size of the three dimensional spatial domain in which

the simulation is performed, determining the boundaries of the simulation

environment. In addition to the world size, the world origin needs to be

determined to be able to calculate the cell index of a particle.

The grid size determines the amount of cells contained within the simu-

lation environment, whereas cell size is the actual size of each of these cells.

Using a single �xed cell size will result in a uniform grid structure. The cell

size is calculated by dividing the world size by the grid size.

Finally, the particle size needs to be determined. The size of a particle

should be set so as to �t within a cell. By allowing for several particles to

be contained within a cell, a better approximation to the �uid quantities will

be made, due to the large amount of particles involved in the evaluation of



4.1. UNIFORM SPATIAL SUBDIVISION 51

a quantity. There will be a performance tradeo�, however, as more compu-

tation needs to be done at each time step.

Having determined the simulation environment parameters, the actual con-

struction of the spatial subdivision is performed by three implemented pro-

cedures: hash calculation, hash table sorting, and particle reordering.

4.1.1 Hash Calculation

The hash value given to a particle is determined from the cell in which it is

contained. The cell index is calculated from the position p of the particle

using the following function

cell_index{x,y,z} =
⌊
(p{x,y,z} − world_origin{x,y,z})/cell_size{x,y,z}

⌋
Using this function, the cell index is speci�ed by means of Cartesian coordi-

nates in the space de�ned by the grid, which makes determining neighboring

cells very easy.

The hash value of a particle is then calculated by using the hash function

presented by Green [40].

hash(p) = (z · gridsizey + y) · gridsizex + x

which provides the linear cell id as the hash value. As it stands, this function

assumes that the cell size is strictly determined by the grid size, as described

earlier.

4.1.2 Hash Table Sorting

Sorting is performed on the hash values associated with the particles. This

sorting procedure will create a list of particles ids in cell order, as depicted

in Figure (4.1.1).
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Figure 4.1.1 � The grid structure containing particles within cells, and the
sorted list used for e�ective cell boundary determination. Image from [40].

The sorting procedure is performed using an implementation of bitonic sort

on the GPU provided by NVIDIA [76].

4.1.3 Particle Reordering

After sorting the particles on the hash value, the sorted list is used to �nd the

start and end particle indices for each cell. This is done by comparing each

particles hash value with the hash value of the previous particle in the sorted

list. If these hash values are identical the two particles belong to the same

cell, and if they are di�erent, the currently evaluated particle is contained

within the next cell in the linearly ordered grid. Two one-dimensional arrays

are used to store the indices of the particles related to a cell: cell_start

and cell_end. These arrays are indexed by the hash value of a cell, and

contains the indices of the �rst and last particle that are part of that cell,

respectively. The arrays containing the particle quantities is then reordered

into sorted order to improve the coherence of the texture look-up during the

particle interaction procedure.
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4.1.4 Nearest Neighbor Search

Due to the use of the grid-based spatial subdivision, the particle neighbor-

hood is easily and quickly iterated through. First, neighboring cells are de-

termined by subtracting and adding 1 to the Cartesian coordinate de�ning

the cell index. This procedure is outlined in Algorithm (4.1).

Algorithm 4.1 Cell Loop

1: for l = −1→ 1 do
2: for k = −1→ 1 do
3: for j = −1→ 1 do
4: nbcellx = cellx + j
5: nbcelly = celly + k
6: nbcellz = cellz + l
7: end for

8: end for

9: end for

Then the particles within these cells are evaluated by using the start and

end particle indices determined in the particle reordering procedure explained

previously. The cell iteration procedure is outlined in Algorithm (4.2).

Algorithm 4.2 Cell Iteration

1: procedure CellIteration(cell)
2: hash_value← getHash(cell)
3: start_index← cell_start[hash_value]
4: end_index← cell_end[hash_value]
5: for j = start_index→ end_index do
6: determine particlej contribution
7: end for

8: end procedure

4.2 Calculation of Governing Equations

The SPH formulations for calculating the governing equations were presented

in the previous chapter. The implementation of these calculations consists
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of three iterations over the particles at each simulation step. During the �rst

iteration the density of the �uid particles is calculated. Then the pressure

is evaluated based on the particles densities. During the calculation of the

pressure, the quantity ∇2 log ρ is determined. The reason for this is that this

quantity must be determined for every particle before evaluating the forces,

which are calculated during the third iteration. The general �uid simulation

algorithm is presented in Algorithm (4.3).

Algorithm 4.3 Fluid Simulation

1: initialize()
2: while animating do
3: for all particles i do
4: calcHash(i)
5: end for

6: sort()
7: for all particles i do
8: findCellBounds(i)
9: end for

10: for all particles i do
11: computeDensity(i)
12: end for

13: for all particles i do
14: computePressure(i)
15: end for

16: for all particles i do
17: computeForces(i)
18: end for

19: for all particles i do
20: integrate(i)
21: end for

22: end while

The procedures in lines 3 → 9 are related to the inclusion of the spatial

subdivision of the computational domain, and were explained in the previ-

ous section. The initialize() procedure has two purposes: Determining the

parameters of the simulation environment, as well as initializing the physical

parameters of the particle system representing the �uid. The initialization
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of the physical parameters are discussed in the next section. In this section,

the procedures performed at lines 10 → 21 as presented, relating to the ac-

tual calculation of the governing equations describing powder-snow avalanche

�ow.

4.2.1 Density Computation

The computeDensity() procedure is outlined in Algorithm (4.4). At each

iteration over the particles the density is recalculated using the SPH approx-

imation previously presented

ρi =
∑
j

mjW (xij, h)

The density variation that occur within each particle will govern the calcu-

lation of the pressure that is needed to balance the forces in the �uid, so

as to make the �uid incompressible. The new density that are calculated

for a particle is compared to the reference density of the �uid. If there is

a variation between these two values, compressible behavior has occurred,

and the pressure that is calculated from this di�erence will seek to balance

out this compressible artifact. This pressure computation is described in the

next section.

Since the mass conservation equation describes a change in density that is

suppose to happen, the recalculation of the density has to take this into ac-

count. This is done by storing both the rest density and a separate reference

density for each particle. The reference density will change over time ac-

cording to the mass conservation equation, and the di�erence between this

density and the rest density of the �uid needs to be subtracted from the

recalculation of the particle density.

4.2.2 Pressure Computation

The computePressure() procedure is outlined in Algorithm (4.5). The pres-

sure computation is made to balance out unwanted compressibility in the
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Algorithm 4.4 Density Computation

1: procedure ComputeDensity(i)
2: ρ← 0.0
3: for all neighbours j do
4: ρ += mjWpoly6(xij, h)
5: end for

6: ρd ← ρ0 − ρd
7: ρi ← ρ− ρd
8: end procedure

�uid. It is calculated using the Equation of State described in equation

3.3.6. This equation is presented using the rest density ρ0 as the density to

which the calculated density is compared. The newly introduced reference

density should be used for this purpose in this case. The force that orig-

inates from the di�erences in pressure, will now be modi�ed to counteract

any compressibility.

In addition to calculating the pressure, this iteration through the particles

will calculated the necessary value ∇2 log ρ for each particle, that is needed

for the computation of the forces in next iteration.

Algorithm 4.5 Pressure Computation

1: procedure ComputePressure(i)
2: ∇2 log ρ← 0.0
3: for all neighbours j do
4: ∇2 log ρ += mj(

log ρj
ρ2j

+ log ρi
ρ2i

)∇2Wpoly6(xij, h)

5: end for

6: pi ← kρr
γ

(( ρ
ρr

)γ − 1)

7: αi ← ρi∇2 log ρ
8: end procedure

4.2.3 Force Computation

The computeForce() procedure is outlined in Algorithm (4.6). In addition

to the computation of the internal and external forces on a particle, a density
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Algorithm 4.6 Force Computation

1: procedure ComputeForces(i)
2: ∇p← 0.0
3: ∇α← 0.0
4: ∇ρ← 0.0
5: ∇2v← 0.0
6: ∇2ρ← 0.0
7: ∇v← 0.0
8: for all neighbours j do
9: ∇2ρ += mj(

1
ρj

+ 1
ρi

)∇2Wpoly6(xij, h)

10: ∇p += mj(
pj
ρ2j

+ pi
ρ2i

)∇Wspiky(xij, h)

11: ∇α += mj(
αj

ρ2j
+ αi

ρ2i
)∇Wpoly6(xij, h)

12: ∇ρ += mj(
1
ρj

+ 1
ρi

)∇Wpoly6(xij, h)

13: ∇2v += mj(vj − vi)∇2Wviscosity(xij, h)
14: ∇v += mj(vj − vi)⊗∇Wpoly6(xij, h)
15: end for

16: fai ← −∇p
17: f bi ← µ∇2v
18: f ci ← −4ν̄µ0∇α
19: fdi ← −2ν̄(∇v)T∇ρ
20: f ei ← −2ν̄∇v∇ρ
21: fi ← fai + f bi + f ci + fdi + f ei + ρg
22: ∆ρ← 2ν̄∇2ρ∆t
23: ρr ← ρr + ∆ρ
24: end procedure

change is performed, in correspondence with the mass conservation equation.

To be able to calculate the quantity ∇v, matrix operations has to be per-

formed. These operation are not supported by OpenCL, and had to be imple-

mented into the simulation environment. These operations include the outer

product of two vectors, matrix-vector multiplication, matrix-scalar multipli-

cation, and matrix transpose.

4.2.4 Time Integration

The integrate() procedure is outlined in Algorithm (4.7). This procedure
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Algorithm 4.7 Time Integration

1: procedure Integrate(i)
2: vi ← vi + ai∆t
3: xi ← xi + vi∆t
4: end procedure

updates the velocity and position vectors of a particle, by means of the

implicit Euler technique described in the previous chapter. During this step,

a collision detection is also performed to determine whether some particles

are outside the simulation domain. The current simulation environment is

a rectangular box, so these collision detections are simple if -statements on

particle positions. A no-slip condition is imposed, which means that the

velocities of the particles colliding with the bottom plane of the rectangle are

set to zero.

4.3 Initialization of Simulation System

The particle system representing the �uid is initialized by determining the

physical parameters that are associated with the �uid. These parameters

include particle mass, gas sti�ness, and viscosity coe�cient. In addition to

these physical parameters, the smoothing radius of the kernel approximation

function, as well as the simulation time step, has to be determined. The

physical parameters associated with a numerical simulation does not have a

perfect one-to-one mapping with the real world, due to the di�erent spatial

scales the simulation may be performed in. Most of the parameters needs

to be determined experimentally, but the real world physical domain can

provide a determination of some of the relevant parameters.

4.3.1 Particle Mass

The volume V of a speci�ed �uid is determined by its density ρ and mass m

in the following manner

V =
m

ρ
.
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By representing the �uid with n number of particles, each with its �xed mass

m′, the equation can be rewritten as follow

V =
nm′

ρ
.

If we then specify the volume and the density of the �uid we wish to simulate,

in addition to how many particles we will use to represent it, the mass of

each particle can be determined by

m =
ρV

n
.

The volume and density of a �uid are usually the quantities that are provided

when simulating a speci�ed �uid. One may then choose to specify the mass

of each particle in the simulation system, and from that determine how many

particles are needed to provide a physical accurate result of the �uid �ow.

However, since the amount of particles has a great e�ect on the computational

complexity of the simulation, this is the normally the prede�ned parameter

that are provided to the system.

4.3.2 Gas Sti�ness and Simulation Time Step

During the discussion of incompressibility in the previous chapter, a pressure

calculation was determined based on a gas sti�ness constant k. This gas sti�-

ness can be compared to a spring constant in a spring system. The equivalent

of the spring system in computational �uid dynamics is the pressure force

that arise from the di�erences in pressure. For this reason, the accuracy of

the �uid �ow is greatly dependent on the choice of this constant. The value

of the gas sti�ness constant is theoretically given by

k = nRT

as presented in the previous chapter. This formula is not appropriate to

use in numerical simulations, however, as it will result in a very large value

for k. In addition to being an important parameter in the ful�llment of
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the incompressibility condition, the sti�ness constant will, if made too large,

have a great impact on the simulation system. Large values of k will result

in a sti� simulation system, which will result in numerical instability, due

to a rapid variation in the solutions made each time step. Small time steps

are then needed to prevent the simulation from �exploding�. A tradeo� is

then presented, as the required large values for k in the incompressibility

condition will result in small time steps, and thereby a slow simulation, which

will reduce the interactivity of the system. The sti�ness constant is therefore

resolved by a tuning performed by the animator.

4.3.3 Viscosity Coe�cient

The viscosity coe�cient the dynamic viscosity µ, and is a physical mea-

surement of how viscous the �uid is, that is how resistant the �uid is to

deformation. Numerically, this coe�cient provides a factor of stability to the

simulated system, by providing a damping variable, and should be tuned in

correspondence with the sti�ness parameter.

4.3.4 Smoothing Length

The issue regarding the smoothing length of the kernel approximation func-

tion has been integrated into the issue of deciding the cell size of the spatial

subdivision. Since local interaction between particles is evaluated by only

iterating through the particles contained in the 27 surrounding cells, the

connection between these two parameters is obvious. Regardless of which

parameter is determined by the other, the size of area around a particle

used to determine the �uid quantities has an impact of both the stability

and the robustness of the �uid simulation. One might think that a larger

radius of in�uence will always lead to more precise evaluation of the �uid

quantities. This is not the case, however, as a large support radius will at

certain instances lead to non-uniform weighting of surrounding particle val-

ues. The intuition of how di�erent support radii is a�ecting the evaluation

of �uid quantities is depicted in Figure (4.3.1). The support radius can be

determined by prede�ning the average amount of particles one would want
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when evaluating a �uid quantity, and should be determined based on the

total amount of particles in the system.

Figure 4.3.1 � The di�erent e�ects from choosing di�erent smoothing lengths
for the kernel approximation function. Top: A large support radius may give
a bad weight distribution on the surrounding particles. Bottom left: A small
support radius may not provide enough averaging data. Bottom right: An ap-
propriate support radius is important when evaluating �uid quantities. Image
from [51]





CHAPTER 5

Results

This chapter will provide visual result from my implementation of the powder-

snow avalanche �ow.

The implemented model provides di�erent simulation variables that are avail-

able to produce di�erent e�ects of the �uid �ow. These include the volume

fraction parameter and the density di�erence between the light �uid and the

heavy �uid. The volume fraction parameter is a measurement of how much

of the entire volume is made up of the heavy �uid, and will therefore deter-

mine how dense the �ow should be. By specifying a larger density di�erence

between the heavy and the light �uid, the �uid �ow should behave more

turbulent. These di�erent set of parameters have been employed to depict

the di�erent developments of the �uid �ow, and what e�ect the di�erent

simulation parameters have on the �ow structure. For every simulation the

incline of the simulation environment is set to 30o, to represent a downhill

�ow. The number of particles in the current simulation is set to 32768.

The two parameters having the greatest e�ect on the �uid �ow is the volume

fraction φ and the density di�erence between the heavy �uid ρ+ and the light

63
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Figure 5.0.1 � Simulation evolution for φ = 0.4, ρ+ = 90 kg
m3 , ρ

− = 5 kg
m3

�uid ρ−. Figure (5.0.1) shows the development of �ow having the following

parameter values

φ = 0.4

ρ+ = 90
kg

m3

ρ− = 5
kg

m3

The evolution of an area being less dense is observed at the outer regions of

the �ow. The potential turbulence is dropping of as the simulation evolve

over time. The limited amount of particles used in the simulation neglect

the continuation of a more cloud-like �ow.

Figure (5.0.2) show the simulation performed using a di�erent set of param-
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Figure 5.0.2 � Simulation evolution for φ = 0.4, ρ+ = 950 kg
m3 , ρ

− = 10 kg
m3

eter values

φ = 0.4

ρ+ = 950
kg

m3

ρ− = 10
kg

m3

The larger di�erence in densities between heavy and light �uid are shown

to result in a more turbulent initiation of the �ow. The denser part of the

�ow at the bottom is seen to �ow faster than that of the upper layer, giving

indication of lighter �uid at the top.

The �nal set of visual result shows the e�ects of varying the volume fraction

parameter governing the in�uence of the heavy �uid in the mixture sub-

stance.
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Figure 5.0.3 � Simulation evolution for φ = 0.3

Figure (5.0.3) shows the simulation using a volume fraction of 0.4, while Fig-

ure (5.0.4) displays the snow avalanche development using a volume fraction

of 1.0. By varying the volume fraction parameter, the �ow of �uid is changed,

due to the degree of in�uence the snow density has on the mixture density.
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Figure 5.0.4 � Simulation evolution for φ = 1.0





CHAPTER 6

Conclusion and Future Work

The main focus of this thesis was the simulation of a powder-snow avalanche

�ow. The simulation were implemented using the particle-based simulation

solution SPH, from a mathematical model describing powder-snow �ow dy-

namics by Dutykh et.al [23]. The simulation was accelerated by applying

the computational power of the GPU, in order to provide a faster simulation

time than would have been achieved on the CPU.

The particle-based approach for �ow simulation has some limitations and

potential issues when simulating the complex dynamics of a powder-snow

avalanche. It su�ers from an approximation issue when particles are sepa-

rated by a distance larger than that of the smoothing length de�ned in the

kernel approximation function. The consequence of this is that the behavior

of the particles at the outer ridges of the �ow, when the �ow evolves into

a powder cloud state, may not be calculated correctly, due to the lack of

surrounding particle quantities to interpolate. In order to simulate in more

detail the dynamics of these areas, a larger amount of particles are needed,

which will slow down the simulation substantially. The current implemen-

tation is based on the SPH rules and formulation techniques presented by

69
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Monaghan [67]. Several other techniques and modi�cations has later been

developed that increase both the stability and the speed of SPH simulations

[69, 17, 1]. There is therefore great potential to further improve on the

simulation performance, and hence be able to provide good results of the

dynamics of the �ow at reasonable speeds.

Another issue regarding the simulation system is the handling of strati�-

cation that will occur as the �ow is evolving. Strati�cation refers to the

state of the �ow being consisted of two or more layers of �uid with di�erent

properties, as is the case in powder-snow avalanches. The dense core at the

bottom of the �ow has di�erent physical properties than the cloud of snow

that will develop at the top. As the simulation progresses, the �uid mixing

resulting from Fick's law of di�usion will modify the density of the �ow at

certain areas, resulting in this separation of �uid properties. The calculation

of the pressure needs to take this density separation into account, in order

for the pressure force to be calculated correspondingly [83, 7]. Currently, the

pressure force too big at the outer regions of the �ow, and at the same time

too small near the bottom. This will result in compressible behavior in the

dense �ow, and expanding behavior in the powder �ow. Possible solutions to

this problem would be to abandon the weakly incompressible SPH approach

and possible employ di�erent incompressibility options.

There is no turbulence modeling in the simulation other than those resolved

by the simulation model. By introducing an explicit turbulence modeling

procedure, a more detailed and complex dynamic of the �ow could be pre-

sented. Further improvements could be made by modifying the boundary

conditions of the simulation environment, so as to relax the no-slip condition

currently implemented. By improving the performance and robustness of

the implemented simulation, in addition to extending the system with the

aforementioned techniques, the product of this thesis may provide a good

framework for general avalanche modeling.

E�orts should also be made regarding the problem of rendering the par-
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ticle system. A good rendering procedure would be able to develop more

visual pleasing results than those provided by OpenGL alone. Further im-

provements can be made by attempting a more e�ective implementation of

the simulation on the GPU, by applying recent developments regarding the

speedup possible by exploiting the computation potential of the GPU [37].
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