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Abstract

Information retrieval is a research area that there has been a lot focus
on in the last decades. Little of this research has been tailored towards
biomedical information retrieval which faces difficulties with it’s spe-
cialized corpora. This thesis investigates the possibility of increasing
the efficiency of biomedical retrieval systems by using statistical clus-
tering to improve retrieval performance for biomedical searches. Our
approach uses expectation maximization clustering with naive Bayes
to cluster the search results in order to re rank the results.

We have tested our approach by developing a search engine proto-
type with this feature and evaluated it against a biomedical document
collection. We conclude that while there is some increase in precision
compared to a baseline search, the gain is too minimal to warrant the
extra effort on the user side.
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Chapter 1

Introduction

The amount of information available is growing exponentially, as such
there is a continuous quest in information retrieval (IR) for handling
this ever growing amount of data gracefully [21]. In the biomedical
domain especially it is critical for researchers to be able to precisely
retrieve the relevant knowledge needed so to stay up to date on the
most recent literature and findings in the field [18]. This thesis tries to
bring more effiency to biomedical search using existing techniques such
as expectation maximization clustering and naive Bayes together new
ways. There has been very little research using these for biomedical
retrieval.

1.1 The problem

Ramampiaro [18] describes several of the challenges faced when ap-
plying common information retrieval models to the biomedical field.
In particular, one of the problems faced is that queries can be too
broad, or that the retrieval systems are not effective enough, resulting
in low precision and results that are not satisfactory enough in terms
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2 CHAPTER 1. INTRODUCTION

of answering the user’s information need. This is because of the ambi-
guity and inconsistency within the field, where words can have several
meanings and the mixing of natural English and with domain specific
terms. For this reason, we are looking for ways to efficiently increase
the performance of such search systems.

1.2 Scope

The authors suggests that a way to improve performance for biomed-
ical retrieval is by including explicit user relevance feedback in the
search process. Having the user provide binary relevance feedback
for the top ranked documents in a search result serves as great in-
put for constructing a traditional naive Bayes classifier known from
machine learning. We believe that by re estimating this naive Bayes
classifier using the statistical expectation maximization algorithm, the
improved classifier’s performance is suitable for partitioning the search
results into a relevant and irrelevant set. We attempt to increase pre-
cision by returning only the documents from the relevant cluster. We
have developed a prototype to implement this approach.

1.3 Thesis structure

This thesis is structured in the 7 following chapters:

Chapter 1

This chapter outlines the problem and motivation behind the work
done in this thesis. It also describes the intents of our approach.

2



1.3. THESIS STRUCTURE 3

Chapter 2

This chapter explains the theoretical background and definitions needed
to understand the concepts in this thesis. We describe general theory
about information retrival and how information retrieval systems are
evaluated.

Chapter 3

This chapter shows other relevant and related work to this thesis.

Chapter 4

This chapter explains the ideas and the theories behind our approach
in detail.

Chapter 5

This chapter describes the implementation of our prototype.

Chapter 6

This chapter contains the evaluation and presents the testing and re-
sults gathered in this thesis.

Chapter 7

This chapter provides the final conclusion to our findings. We also
show how further work could affect and enhance the results.

3



Chapter 2

Background research

This chapter will give a short introduction to information retrieval
(IR) and other terms from the field. This lays the foundations for
explaining our work understandably in the subsequent chapters.

2.1 Information retrieval

There are several definitions for what constitutes information retrieval,
but in our context the following fits well: [11]

Information Retrieval (IR) is finding the material (usually
documents) of an unstructured nature (usually text) that
satisfies an information need from within large collections
(usually stored on computers).

Retrieval systems, or search engines facilitates this by having a user
with an information need translating it into a query, a formal state-
ment of the need, which is given as input to the system. The system
then tries as best to answer the query with the documents it deems
relevant from the collection. To prevent scanning the entire document

4



2.1. INFORMATION RETRIEVAL 5

collection for relevant documents for every query, a very time con-
suming process, the system employs an index [2]. An index is a data
structure built over the collection to speed up searching it. The index
is then searched instead of the collection. A simple example would be
a list of every single word in the collection, and for each word a pointer
to the document(s) containing that word. Even though an expensive
initial scan over all the documents has to happen to construct the in-
dex at first, it is cheap to maintain the index at later stages when the
collection is modified. The extra computer storage required for storing
the index is outmatched by the benefit of measuring search times in
milliseconds instead of hours.

When indexing, it is normal to strip off any punctuation and low-
ercase the text, in addition to performing a series of operations on
it:

Stop word removal

Stop words are extremely common words that appear so frequently
that they lose their usefulness as search terms [2]. Some examples are
the, is and a. Stop words can be filtered out prior to indexing as they
add little or no value for retrieval. They are insignificant as query
keywords and they match too many documents.

Stemming

Stemming [2] is the process of reducing a word to it’s root form, or
stem. This is a countermeasure against the many different morpho-
logical variants of words. Most of the morphological variants have
similar semantic interpretations, and for retrieval systems they can
be considered as equivalent. For instance, the words “computer” and
“computation” might be stemmed as “comput”, as the stems them-
selves does not have to be valid words. With stemming, the words

5



6 CHAPTER 2. BACKGROUND RESEARCH

would be recognized as equivalent by the retrieval system, and the
user’s information need is more likely to be filled.

Stemming also has the positive side effect of reducing the index
size, as the number of distinct terms representing the set of docu-
ments is diminished.

The same text preprocessing that is applied when building the index
also has to be applied to the queries for the retrieval system to be able
to match relevant documents.

2.1.1 Vector space model

The vector space model was first introduced in 1975 by Salton [19].
It is the most widely adopted model for information retrieval and
therefore the one we present here. This is also the one adopted for our
approach (See Chapters 4 and 5). Other common models include the
Boolean model and the probabilistic model.

In the vector space model, each document in a collection of n
documents, containing m separate terms, are represented as vectors.
Each dimension of a vector corresponds to a weight for a particular
term. In the vector d1 = (wj1, . . . , wjm), wji designates a weight for
the term ti, in the document dj. There are several approaches to
weighting the terms, but the most widely used is term frequency -
inverse document frequency (tf-idf) and it is defined as:

wi,j = tf · idf =
freqi,j

maxlfreql,j
log

N

ni
(2.1)

where freqi,j is the number of occurrences of ti in document dj, max-
imum frequency is computed over all the terms in dj, N is the total
number of documents in the collection and ni is the number of docu-
ments containing the term ti. The denominator serves for normalizing
different document lengths.

6



2.2. CLUSTERING 7

This statistical measurement seeks to calculate the importance of
a term in a document in a document collection by balancing two fac-
tors: Terms that occur often in a document are more likely to be more
important (term frequency), and terms that occur within many doc-
uments are likely to be less important when distinguishing between
documents (inverse document frequency).

By calculating the distance between two vectors, we measure the
similarity between them. The most common measure, cosine similar-
ity, is defined as: [2]

sim (di, dj) =
~di · ~dj∣∣∣~di∣∣∣ ∣∣∣~dj∣∣∣ (2.2)

By treating a query as a document vector, queries can be compared
against documents, and if there is similarity a document belongs to
the result set. The result set can then be ranked according to their
degree of similarity. This inhibits the relevance degree of matching
documents when searching.

2.2 Clustering

Clustering deals with finding a structure in a collection of unlabelled
data. The goal is to organize similar or related objects into appropriate
groups. While the content of a group, or cluster, should be as similar
as possible, it should also be as dissimilar as possible from objects
belonging to the other clusters [11] (see Figure 2.1). Today the intent
of clustering in IR is to better represent the information retrieved and
enhance the retrieval process [25], but initially it was used to increase
precision and recall [24]. It is easy to see one of the applications of
clustering. Imagine a user inputting the query “jaguar” in a retrieval
system. The system will retrieve all documents found relevant, but

7



8 CHAPTER 2. BACKGROUND RESEARCH

Figure 2.1: An example document set and the inherent cluster struc-
ture.

presumably, the results could be a mix of different documents about
the big feline animal, the operating system by Apple Inc. and the
luxury car brand. With clustering, the results would be ranked in
their corresponding cluster. This structural overview would enable the
user to quickly identify his wanted group, and the relevant documents
within.

Many different clustering algorithms have been introduced in the
literature, and possible classifications of the clustering methods can
be according to whether they are hard or soft, flat or hierarchical and
local or global [2][11].

Hard clustering means the data is partitioned into a specified num-
ber of mutually exclusive subsets. With hard clustering, each object
is assigned to exactly one cluster.

Soft clustering, or fuzzy clustering, means object assignment is dis-
tributed over all clusters. An object can have partial membership in
several clusters. As such, it is more natural than hard clustering. Ob-

8



2.3. TEXT CLASSIFICATION 9

jects on the boundaries between several clusters are not forced to fully
belong to a single cluster, but rather assigned membership degrees
indicating their partial membership.

Flat clustering is simply a set of clusters.
Hierarchical clustering is clusters within clusters, forming a tree

structure.
Global clustering means the entire document collection is clustered

beforehand.
Local clustering, also known as online or query-time clustering is

the opposite, where the clustering is performed on subset of the col-
lection, for instance the query results.

2.3 Text classification

Given a set of classes, classification, or text categorization is the pro-
cess of determining which class a given object belongs to [11]. In
general there are three different ways to classify: manually by hu-
mans, by computers after a set of rules crafted by humans (such as
regular expressions1 or by machine learning-based functions [11]. Man-
ual classification is undesirable as it is time-consuming and therefore
unsuitable for larger document collections and often it even requires
trained professionals, such as librarians. Using a rule set is also unde-
sirable as they are difficult to create and maintain.

As such there is focus on machine learning-based text classification.
This is a supervised learning problem where a machine based classi-
fier learns from training data [11], with the goal of replicating the
categorical distinction that a human supervisor imposes on the data.
More specifically, given a set of labelled training examples on the form
{(x1, y1) , · · · , (xn, yn)}, a learning algorithm seeks to find the function

1A concise and flexible means for matching strings of text, such as particular
characters, words, or patterns of characters.

9



10 CHAPTER 2. BACKGROUND RESEARCH

γ : X → Y [13]. Labelled documents are documents that have already
been manually classified, and are annotated to a class [11].

Even though text classification shares several characteristics with
the field of clustering (Section 2.2), there is mainly one significant
difference. Whereas classification tries to assign documents to exist-
ing groups, clustering tries to extract the groupings inherent from the
document themselves. The essence of this is that clustering is a form
of unsupervised learning, while classification is supervised. In our ap-
proach and prototype we use both unlabelled and labelled data (see
Chapters 5-4) which falls between both categories and is known as
semi-supervised learning [15].

2.4 Evaluation of information retrieval sys-

tems

In this section we describe ways in which we can measure and evaluate
the performance of information retrieval systems.

2.4.1 Test collections

A test collection is a controlled collection of documents, queries and
relevance judgements for the given queries [11]. These test collections
are created for the purpose of evaluating and benchmarking retrieval
systems.

Some of the test collections popular for IR evaluation are:

Cranfield

The Cranfield collection is considered the first test collection. It was
assembled in the late 1950s in the United Kingdom. It consists of

10



2.4. EVALUATION OF INFORMATION RETRIEVAL SYSTEMS 11

1398 documents about aerodynamics and 225 different queries with
relevance statistics.

Text REtrieval Conference (TREC)

TREC is a series of workshops run every year with the purpose of
encouraging IR research. The initiative was started by the U.S. Na-
tional Institute of Standards (NIST) in 1992, and it is now collab-
oration between NIST and Intelligence Advanced Research Projects
Activity (IARPA). Each year there are one more tracks, or research
areas. Each track is a specific challenge, complete with document
collections, information needs and their relevance judgements.

The TREC collections is considered by many as a de facto standard
for IR evaulation [14].

GOV2

GOV2, from the TREC Terabyte track, is another NIST initiative.
It consists of 25 million different web pages and it is the largest test
collection available for research purposes.

2.4.2 Recall

Recall is a measure of the fraction of the relevant documents retrieved
for a query (see Figure 2.2). If we define |Ra| as the number of relevant
documents retrieved and |R| as the total number of relevant documents
for the query, then recall is defined as: [2]

Recall =
|Ra|
|R|

(2.3)

11
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Document collection

Retrieved
documents

Relevant
documents

Precision and recall

Figure 2.2: Precision and recall

2.4.3 Precision

Precision is a measure of the relevance of an answer set for a given
query (see Figure 2.2). More specifically, precision is the fraction of
retrieved documents which are considered relevant [2]. If we define
|Ra| as the number of relevant documents retrieved, and |A| as the
total number of documents in the answer set, then precision is defined
as:

Precision =
|Ra|
|A|

(2.4)

A high precision value means we are retrieving relevant documents
for a query, while a low precision means our result has a high degree
of irrelevant documents, or false positives.

12
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2.4.4 Precision at n

Precision at n (P@n) measures precision where n is the given cut-
off rank. Only the top n documents are considered when calculating
precision. This is a useful measure because it reflects the searching
habits of a user, who is only looking at the first n results or the first
page, with n results [23][20]. However, this measure portrays poorly
when the number of relevant documents is smaller than n [11].

2.4.5 R-Precision

R-precision is the precision after R ranked documents have been re-
trieved, where R also is the total number of relevant documents. This
aims to fix the shortcoming of the precision at n measurement, as it
accounts for the size of the set of relevant documents [11].

2.4.6 Mean Average Precision (MAP)

Precision and recall are set-based measures, which are inadequate
when evaluating ranked retrieval search engines [11]. Moreover, P@n
and R-Precision which measures ranked results are specific to a single
query. Mean Average Precision (MAP) is a single value score for a set
of queries. It is the average of the average of the precision values at
the points which each relevant document is retrieved.

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision (Rjk) (2.5)

where the set of relevant documents {d1 . . . dmj} for qj ∈ Q and Rjk

are the ranked documents from the top and down to document dk [11].
Even though MAP is a single score value there are many factors

included in it’s calculation. Hence it is harder to interpret the value

13
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when compared to the other evaluation measures, since the same score
can be obtained in several ways.

14



Chapter 3

Related work

The quest to improve biomedical information retrieval is not new. It
has been, and is a, continually ongoing focus of research. This chapter
describes some of these strategies and systems.

3.1 Increasing performance

3.1.1 Query expansion

Query expansion is the process of a information retrieval system adding
terms to, or reformulating the user’s initial query. This is to reduce
the mismatch between queries and documents so to increase precision
and/or recall [11]. This is to work out the problem of synonymity.

Almost all articles in the MEDLINE database are tagged with
multiple MeSH (Medical Subject Headings) terms. MeSH is a con-
trolled vocabulary maintained by the United States National Library
of Medicine (NLM) for indexing purposes. Experiments have shown
that query expansion on MeSH term improves performance [10]. Oth-
ers have taken a more traditional approach of using terms from the

15



16 CHAPTER 3. RELATED WORK

query and the top ranked documents and also shown improvement for
MEDLINE searches [1].

3.1.2 Structural documents with different weights

Another technique for improving performance is to take advantage of
documents’ inherent structure. For instance, most documents has a
title, and the assumption could be made that the title is often cho-
sen to best describe the contents of the document. If a term from a
query is found in a document’s title, it should contributes more to the
likelihood that a document is relevant than if it is only found in it’s
contents. It may therefore be beneficial to weight the fields differently
when searching or indexing, according to their degree of importance, as
a way to improve performance. For MEDLINE citations, Ramampiaro
shows that weighting the title field twice as much as the abstract fields
yields better results [18].

3.2 Implemented systems

3.2.1 PubMed

PubMed is the official search engine for (mainly) the MEDLINE database1.
It is developed by the National Center for Biotechnology Information
(NCBI) for the United States National Library of Medicine (NML).
When searching citations, PubMed automatically expands queries by
combining boolean operators and relevant MeSH terms to increase
performance. It also features an advanced search page which requires
extensive knowledge of how MEDLINE is built and MeSH terms to
use. PubMed does not use a document ranking model and results

1See http://www.ncbi.nlm.nih.gov/pubmed/
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3.2. IMPLEMENTED SYSTEMS 17

seems to be in chronological order [18]. As of 2011, PubMed indexed
over 21 million records2

3.2.2 ClusterMed

ClusterMed is a meta-search engine developed by Viv́ısmo, Inc. that
searches PubMed and then organizes the results into hierarchical cat-
egories3. It aims to improve search productivity and efficiency by
clustering the results based on authors, affiliation, publication dates
and MeSH terms etc.

As it’s linguistic processing algorithms are proprietary, the actual
categorization scheme is unknown, but it seems to utilize frequently
occurring words and frequently occurring phrases in the title and ab-
stract fields, spanning both each single result and all the results com-
bined [8].

3.2.3 Anne O’Tate

Anne O’Tate4 is another meta-search engine that relies on PubMed.
Anne O’Tate searches PubMed then analyses the results and breaks
it down into a number of categories, such as authors, journals and
affiliations for easier navigation. It also has the ability break these
sets down even further.

One of it’s features is a soft clustering that cluster the results
by their MeSH terms into no more than 18 clusters. Because of the
simplicity of the cluster algorithm the authors claim they are able to
cluster tens of thousands articles in real time [22].

2Query ”all[sb]” in PubMed to see the current size of the database.
3See http://demos.vivisimo.com/clustermed
4See http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html

17
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18 CHAPTER 3. RELATED WORK

3.2.4 BioTracer

BioTracer is a proof-of-concept prototype search engine for the biomed-
ical domain [18]. It combines a number of different techniques with
the goal of improving performance by maximizing precision and re-
call. Among the methods used are an extended Okapi BM25 ranking
model, boosting of specific document parts, user relevance feedback
and support for wildcard queries. BioTracer has shown promising re-
sults against the TREC corpus.

18



Chapter 4

Approach

This chapter goes into depths explaining our approach in trying to
increase the efficiency in biomedical searching. We present the three
main theories that constitute our work, how we plan to combine them
and our reasons for doing so.

4.1 The idea

The problem we are presented with is the issue of performance for
biomedical retrieval systems. As described in the introduction (see
Chapter 1), there is focus on maximizing the efficiency. Our take on
reaching this goal is to combine several existing information retrieval
techniques. Even though these are well known within the IR field,
to our knowledge, they have never been utilized this way. This is
especially for true for the biomedical domain, which is our area of
focus.

What we propose, is that we extend a traditional search engine
with a user relevance feedback process, where the user with the results
after a query actively rates a subset of the results as either relevant or

19



20 CHAPTER 4. APPROACH

irrelevant. The user rated results are then used as input for training
a naive Bayes text classification (see Section 2.3) function which we
rebuild using other unlabelled data for training with the help of the ex-
pectation maximization (EM) algorithm. Using EM, the search results
is then clustered into a relevant and a irrelevant cluster, and only the
documents from the relevant cluster are returned, weeding out more
irrelevant ones from the search results than the retrieval system could
originally manage. As far as we know, this has never been tried before.
The hypothesis is, that by including the presented method, the mean
average precision (see Section 2.4.6) will increase, and thus improving
the performance of the system.

We will know explain our idea in further detail, emphasizing on
the methods, how we intend to use them and why it should work.

4.2 Relevance feedback

An important aspect of our idea is relevance feedback. This is an
interaction cycle between the user and the system, where the user
selects a small set of documents from the result set that appear to be
relevant to the query [2]. The results are then reordered or re ranked.
Traditionally, relevance feedback is used in conjunction with query
expansion (see Section 3.1.1), but in our approach this technique is to
manually classify documents as relevant or irrelevant, and use them
as labeled training data for a classifier.

Relevance feedback is shown to improve retrieval relevance, as it
exploits the fact that it can be hard to express a good query for an in-
formation need, but it is easy to assess the relevance of the documents
returned [11][2]. We believe the same applies for our method, and that
the relevance feedback will provide us with a better clustering than if
we were to use random initialisation for the clusters.

20



4.3. NAIVE BAYES CLASSIFIER 21

4.3 Naive Bayes classifier

For classifying the search results into clusters of relevant and irrelevant
documents we will use a naive Bayes classifier. This is a well known
classifier from machine-learning which is based on estimating P (A|B),
the probability or probability density of features A given class B, and
utilizing a property known as the Bayes’ theorem [5]:

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

In naive Bayes classification, documents are classified as the most
probable, or maximum a posteriori (MAP1) class [11]:

cmap = arg max
c

P ′(c)
n∏
i=1

P ′ (tk|c) (4.2)

which means for each class, multiply together the conditional probabil-
ity of each feature, given that class, and select the one with the largest
posterior probability. The parameters are estimated using maximum
likelihood estimation (MLE), which for naive Bayes is approximated
using simple frequencies from the training set. For prior category dis-
tribution, the estimate is [11]:

P ′ (c) =
Nc

N
(4.3)

where Nc is the number of times class c showed up in the training data,
and N is the total number of training documents. The estimate for
feature probability distributions is the probability of term t belonging

1Not to be confused with mean average precision (Section 2.4.6), which also
has the acronym MAP. For consistency, we will refer to MAP as the IR evaluation
measure.
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to class c and is computed similarly [11]:

P ′ (t|c) =
Tct∑

t′∈V Tct′
′ (4.4)

where Tct is the number of times term t appeared in a document la-
belled c during training, with the denominator being the total number
of occurrences of c for all terms.

This MLE suffers from the zero probability problem. If a particular
feature, or term, is never seen together with a particular class during
training, the MLE estimates zero probability. Just because a particu-
lar observation was not made in the training data does not mean we
will not encounter it in the test data. To eliminate this issue, we use
additive or Laplace smoothing, which simply adds one to each term
count [11].

A naive Bayes classifier assumes that each feature of a class is
conditionally independent of the other features that make up the
class. Hence the term naive. This dramatically reduces the number
of parameters that needs to be estimated and simplifies the training
step [13]. It is easy to see why the class-conditional independence be-
tween features is not true. We know that when a term occurs once in
a document, it is more likely to occur again. There is also a topical
relation between the terms. A document with the terms “Bayes” and
“classifier” is much more likely to also contain “naive” than any other
random document. It has been shown that despite the simple assump-
tion of class independence, even when violated, naive Bayes classifiers
performs well [9].

Our choice of using naive Bayes is the appeal of it’s simplicity be-
cause of the previously discussed assumption. This makes it blazingly
fast computationally and only requires a small amount of training
data as the assumed independence of features does not degrade it’s
predictive accuracy.
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For supervised training data we will use the relevance judgements
provided by the user as described in Section 4.2.

4.4 Expectation Maximization

Expectation Maximization (EM) is a statistical technique, or frame-
work, for maximizing likelihood estimates with missing data [4]. It
is not only useful for problems involving incomplete data, but also
for problems that can be posed in a similar form, such as mixture
model estimation [12], which for naive Bayes is multinomial or a bag
of words [17].

EM is a form of model-based clustering. Model-based clustering
assumes that the data were generated by a model and tries to recover
the original model from the data. The model that we recover then
defines assignment of documents to clusters [11].

The algorithm tries to find the parameters Θ that maximize the
log-likelihood of generating the data D: [11]

Θ = arg max
Θ

L (D|Θ)

= arg max
Θ

log
N∏
n=1

P (dn|Θ) (4.5)

= arg max
Θ

N∑
n=1

logP (dn|Θ)

where L (D|Θ) is the objective function that measures the goodness
of the clustering. Given two clusterings with the same number of
clusters, we prefer the one with higher L (D|Θ) [11].

The way EM does this is by iteratively computing two steps known
as expectation, corresponding to reassignment, and maximization cor-
responding to recomputing the parameters of the model [16]. These
steps also form the algorithm’s name.
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In a semi-supervised setting, with both labelled and unlabelled
data, we still need to calculate the maximum a posteriori as in Sec-
tion 4.3. The expectation step estimates the expectations of the miss-
ing values given the latest iteration of the model parameters [15]. In
our setting, the E-step consists of using Equation 4.2 to classify each
unlabelled document, but instead of selecting the class with the high-
est probability, we note the probability that each cluster generated
the document. This set of assignment probabilities defines a soft clus-
tering, were the documents have fractional membership in the two
clusters “relevant” and “irrelevant”.

The maximization step maximizes the likelihood of the model pa-
rameters using the previously-computed expectations of the missing
values as if they were the true ones [15]. This means re estimating the
maximum a posteriori estimate with the fractions computed in the
E-step as true class labels.

In our case, the labeled data only, supplied by the user through
relevance feedback, is used to build an initial naive Bayes classifier.
The classifier is then iteratively re estimated with the unlabelled doc-
uments until it reaches N iterations or the classifier does not change
from one iteration to the next. This is measured by a below-threshold
change in the log probability of the parameters (Equation 4.6). For a
full description of the algorithm, see Table 4.1.

In most cases, using EM yields significantly better classifiers then
when just using labelled data alone [15][16], especially when there are
only a few labelled documents. This is one of the reasons we are testing
it in our approach. Given that the retrieval system performs reason-
ably well, it is doubtful that the user will provide enough relevance
feedback for us to build an effective classifier using just naive Bayes
alone. The unlabelled training data to help with estimation will be
the subset of documents from the search results that the user has not
provided relevance judgements for.

Finally it should be noted that there is nothing naive Bayes de-
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• Inputs: Collections Xl of labelled documents and Xu

of unlabelled documents.
• Build an initial naive Bayes classifier, θ̂, from

the labelled documents, Xl, only. Use maximum
a posteriori parameter estimation to find θ̂ =
arg maxθ P (Xl|θ)P (θ)

• Loop while classifier parameters improve, as measure
by the change in l(θ|X,Y ) (the log probability of the
labelled and unlabelled data, and the prior):

– (E-step) Use the current classifier, θ̂, to esti-
mate component membership of each unlabelled
document, i.e., the probability that each mix-
ture component (and class) generated each doc-
ument, P (cj |xi; θ̂)

– (M-step) Re-estimate the classifier, θ̂, given the
estimated component membership of each doc-
ument. Use maximum a posteriori parameter
estimation to find θ̂ = arg maxθ P (X,Y |θ)P (θ)

• Output: A classifier, θ̂, that takes an unlabelled doc-
ument and predicts a class label.

Table 4.1: The EM algorithm for semi-supervised learning of a naive
Bayes text classifier [15].
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pendent about expectation maximization itself, it can be applied to
any type of probabilistic model that computes P (A|B). Our reasons
for using naive Bayes is presented in Section 4.3.
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Chapter 5

Implementation

Previously we have described our approach to increasing the precision
in biomedical search engines. This chapter explains the implementa-
tion specific details and the technology behind the prototype created
for testing and evaluating our idea. The prototype is a vector space
model search engine extended with expectation maximization cluster-
ing.

5.1 Technologies

This section presents the tools used to develop our prototype. We rely
heavily on these as it allows us to focus on the problem at hand by
building on the tried and testing work of others. As both the tools are
written in the Java1 programming language, it naturally became the
language of choice for our prototype as well.

1Available from http://java.com
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28 CHAPTER 5. IMPLEMENTATION

5.1.1 Apache Lucene

Apache Lucene2 is an open-source search engine library written in
Java. Despite it’s simplicity it performs well and it is easy to index and
search large document collections. Our prototype is based on Lucene,
with our own expansions for expectation maximization clustering.

5.1.2 LingPipe

LingPipe3 is a tool kit for computational linguistics text processing.
It is written in Java and contains a vast array of features, several of
them tailored for the biomedical field and the library integrates well
with Lucene.

Our prototype uses version 4.0.1 of LingPipe.

5.2 Architectural Overview

The prototype has two main features, namely indexing MEDLINE ab-
stracts and retrieving them. Even though they both operate on the
same data, we think of them as two very different processes and they
will be presented as such. First we will describe how we built the
index, then how we query it. As the goal of this thesis is to improve
performance through expectation maximization, the majority of this
chapter will be devoted to the latter’s (more advanced) implementa-
tion.

2Available from http://lucene.apache.org/
3Available from http://alias-i.com/lingpipe/
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5.3. PARSING MEDLINE 29

5.3 Parsing MEDLINE

The parsing of MEDLINE citations in XML (see Appendix B for
a sample citation) is handled by the class MyMedlineHandler, which
implements the MedlineHandler interface from the LingPipe project.
This class receives callbacks with MedlineCitation objects as the sole
argument, which we then pass on to our indexer through the addDocument←↩

→() function. As we do not care for the later released updates to the
dataset where citations may be removed, we have not implemented
the required delete() method.

As this is an event driven model, this lets us bypass the limit of
available memory, which would a case with a DOM (Document Object
Model) parsing where the entire XML would be loaded into memory
before processed. In practice that would be infeasible considering the
size of the collection.

1 public class MyMedlineHandler implements MedlineHandler {
2

3 private MedlineIndexer mIndexWriter;
4

5 public MyMedlineHandler(MedlineIndexer indexWriter){
6 mIndexWriter = indexWriter;
7 }
8

9 @Override
10 public void delete(String pmid) {
11 throw new UnsupportedOperationException("not expecting ←↩

→deletes. got pmid= " + pmid);
12 }
13

14 @Override
15 public void handle(MedlineCitation citation) {
16 mIndexWriter.addDocument(citation);
17 }
18 }

It is worth mentioning that the TREC 2004 Genomics Track collection
is split into multiple several gigabyte XML files, which turned out
to be a problem as the LingPipe library could not process the split
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30 CHAPTER 5. IMPLEMENTATION

collection. A small Python4 script (see Appendix D) was written for
the purpose of combining these into a single file suitable for handling
by our prototype.

5.4 Indexing MEDLINE

The indexer in the prototype is initialized and run with the following
code:

1 mMedlineCodec = new SearchableMedlineCodec ();
2 mIndexWriter = new IndexWriter(FSDirectory.getDirectory(←↩

→mIndex), mMedlineCodec.getAnalyzer (), new IndexWriter.←↩

→MaxFieldLength(IndexWriter.DEFAULT_MAX_FIELD_LENGTH));
3

4 MedlineParser parser = new MedlineParser(true);
5

6 MyMedlineHandler handler = new MyMedlineHandler(this);
7

8 parser.setHandler(handler);
9

10 System.out.println("Processing file: " + mXMLFilepath);
11

12 InputSource inputSource = new InputSource(mXMLFilepath);
13 parser.parse(inputSource);
14

15 System.out.println("Started optimizing index.");
16 mIndexWriter.optimize ();
17 mIndexWriter.close ();
18

19 System.out.println("Processing complete.");

and the addDocument() function called from our handler mentioned in
Section 5.3 as such:

1 void addDocument(MedlineCitation citation) {
2 Document doc = mMedlineCodec.toDocument(citation);
3 mIndexWriter.addDocument(doc);
4 }

4http://www.python.org/
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The interesting bit here is the SearchableMedlineCodec. This class
transforms MedlineCitation objects to Lucene Document objects which
are indexable by Lucene. This class also contains a LuceneAnalyzer←↩

→. An analyzer to Lucene is how it breaks a stream of characters
into tokens, a policy for how to extract index terms from text. The
analyzer used by our prototype is almost like the regular Lucene
StandardAnalyzer which strips-off punctuation, lowercases and filters
out common stop words. The main difference is that we allow digits
in our tokens. This is prevent degrading the biomedical information,
which would be the case for a term such as ferroportin1.

A MEDLINE citation contains a rich amount of structured data
(see Appendix B for an example) such as title, abstract, journals and
authors amongst other things. Documents created using SearchableMedlineCodec←↩

→ allows us to search over all these elements in the resulting index,
giving us a rich set of searchable fields which can be utilized during
retrieval. Primarily in our prototype, we only make use of the title,
abstract and PMID.

For building the index itself we simply use Lucene’s standard IndexWriter←↩

→. Once the index is built we call optimize() on it, priming it for the
fastest available search.

See Figure 5.1 for a simplified class diagram of the classes used for
indexing in our prototype.

5.5 Retrieval

For document retrieval we have a Search class. This contains an in-
stance of LingPipe’s MedlineSearcher through which we run a list of
queries. More precisely there is a query tailored for each topic. The
MedlineSearcher uses Lucene’s standard IndexSearcher and SearchableMedlineCodec←↩

→ to understand and query our index. This ensures that the analyzer
used to parse the queries is the same as the one used to index doc-
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Figure 5.1: Class diagram of the classed used for indexing.
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uments, a necessity for finding the indexed tokens when querying.
All this is pretty straightforward, the interesting bit is where we fil-
ter out false positives based on the naive Bayes classifier built using
expectation-maximization clustering (see Section 5.6 for the imple-
mentation details for EM):

1 SearchResults <MedlineCitation > results = medlineSearcher.←↩

→search(query);
2

3 TradNaiveBayesClassifier emClassifier = ←↩

→ExpectationMaximization.em(topicId , results , reporter);
4

5 for (int i = 0; i < (results.size() < 1000 ? results.size() :←↩

→ 1000); ++i) {
6 MedlineCitation ml = results.getResult(i);
7

8 if (emClassifier.classify(MedlineCodec.titleAbstract(ml))←↩

→.bestCategory () == "Relevant") {
9 (...)

10 }
11 }

The prototype automatically saves the output from retrieval to plain
text files compatible with the trec eval tool. An excerpt from a text
file produced by a run with our prototype yields:

1 1 Q0 10693807 1 4.039227962498965 tag1
2 1 Q0 11809412 2 3.717294454574585 tag1
3 1 Q0 12091366 3 3.575765371322632 tag1
4 1 Q0 12091367 4 2.615002155303955 tag1

where each column is defined as: [6]

• The first column is the topic number (1-50).

• The second column is the query number within that topic. This
is currently unused and must always be Q0.

• The third column is the official PubMedID of the retrieved doc-
ument.

• The fourth column is the rank the document is retrieved.
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• The fifth column shows the score (integer or floating point) that
generated the ranking.

• The sixth column is called the “run tag” and must be a unique
identifier across all runs submitted to TREC.

The file is sorted by topic order and then subsorted by the generated
ranking score as is required by the trec eval tool. There are two files
produced each run, one with the regular query results and one with
the “relevant” results after clustering the answer set. This is so we
are able to compare the results and evaluate the performance of our
prototype.

See Figure 5.2 for a simplified class diagram of all the classes used
for retrieval in our prototype, including the EM classes.

5.6 Expectation Maximization with Naive

Bayes

For clustering we have a ExpectationMaximization class. It begins by
declaring several constant declarations. These are inputs to both the
EM algorithm itself and the naive Bayes classifier. By altering these
we are able to affect the results produced by our prototype, as these
correlate to many variables from Chapter 4.

1 static final int MAX_ITER = 25;
2 static final double THRESHOLD = 0.0001;
3 static final double TOKEN_COUNT = 0.0001;
4 static final double DOC_LENGTH_NORMALIZER = 9.0;
5 static final double CATEGORY_PRIOR = 0.005;
6 static final double TOKEN_IN_CATEGORY_PRIOR = 0.001;
7 static final double INITIAL_TOKEN_IN_CATEGORY_PRIOR = 0.1;

The input to this class is a ResultSet of documents produced by
queries (as presented in Section 5.5). The class then defines the cor-
pora of the labelled and unlabelled data respectively, which will be
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Figure 5.2: Class diagram of the classed used for retrieval.
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used to train the Naive Bayes classifier. The labelled data consists of
Classified character sequences for the supervised training, whereas
the unlabelled data for unsupervised training, is just plain character
sequences. In our case a character sequence will be a MEDLINE cita-
tion, or more precisely a citation’s title and abstract. The naive Bayes
classifier is setup to extract tokens from these text sequences the exact
same way as when the prototype builds it’s indices (see Section 5.4)
for no other reason than coherence.

As previously explained (Chapter 4), a document can be classified
as either “relevant” or “irrelevant” by a user, which also defines our
clusters.

1 ListCorpus corpus = new ListCorpus <Classified <String >>();
2 ListCorpus unlabeledCorpus = new ListCorpus <String >();
3

4 Classification relevant = new Classification("Relevant");
5 Classification irrelevant = new Classification("Irrelevant");

Training

As the prototype runs through numerous queries for evaluation pur-
poses we have defined the class MedlineQRELS as a way to automatise
the supervised training process. This lets the prototype itself take
on the user role and provide relevance feedback for the top N search
results, and spares us from a time consuming task when constantly
testing.

The way we have implemented this is that MedlineQRELS parses the
file with relevance judgements supplied with the TREC MEDLINE
collection, and builds a mapping between all topics and their set of
relevant documents. The file is on the format: [6]

<topic> <0> <PMID> <judgment>

where judgement = 1 (definitely relevant), 2 (possibly relevant), or 3
(not relevant). We followed the convention for the TREC official re-
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sults which requires binary relevance judgements, so documents that
are rated definitely relevant or possibly relevant were considered rele-
vant [6].

Given a MEDLINE citation PMID and topic number we can then
easily lookup that citation’s relevance for that topic through the func-
tion relevant():

1 public boolean relevant(String pmid , String topic) {
2

3 Set <String > set = mTopicMap.get(pmid);
4

5 return set != null ? set.contains(topic) : false;
6 }

As the MedlineQRELS requires some time to load due to the parsing,
we have decided to implement it using the singleton pattern5 to keep
the number of instances to one.

The following code demonstrates then how we set up the labelled
and unlabelled training data. We argue that the user is not likely to
bother classifying more than at most three documents to each cate-
gory when giving relevance feedback, so the prototype exhibits this
behaviour. All the documents that are not classified will be assigned
as unlabelled training data to help with estimation.

1 int trainedRelevant = 0;
2 int trainedIrrelevant = 0;
3

4 // set i to result set size or max 1000 to prevent ←↩

→indexoutofboundsexception
5 for (int i = 0; i < (results.size() < 1000 ? results.size() :←↩

→ 1000); ++i) {
6 MedlineCitation ml = results.getResult(i);
7 boolean relevance = MedlineQRELS.getInstance ().relevant(←↩

→ml.pmid(), topic.getID ());
8 if (relevance && trainedRelevant < 3) {
9 Classified <String > classified;

10 classified = new Classified <String >( MedlineCodec.←↩

→titleAbstract(ml), relevant);

5A design pattern that ensures that only one instance of a class is created.
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11 corpus.addTrain(classified);
12 ++ trainedRelevant;
13 } else if (! relevance && trainedIrrelevant < 3) {
14 Classified <String > classified;
15 classified = new Classified <String >( MedlineCodec.←↩

→titleAbstract(ml), irrelevant);
16 corpus.addTrain(classified);
17 ++ trainedIrrelevant;
18 } else {
19 unlabeledCorpus.addTrain(MedlineCodec.titleAbstract(←↩

→ml));
20 }
21 }

Finally we create the TradNaiveBayesClassifier from the LingPipe
project which is re estimated until it reaches below a certain threshold
or after a certain number of iterations.

1 emClassifier = TradNaiveBayesClassifier.emTrain(←↩

→initialClassifier , corpus , unlabeledCorpus , MAX_ITER , ←↩

→THRESHOLD);

See Figure 5.2 for a simplified class diagram of all the classes used for
retrieval, including the EM classes.
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Chapter 6

Testing and results

This chaper explains how we tested our prototype, presents the results
we gathered and their evaluation.

6.1 Test collection

To evaluate the performance of our prototype we have tested against
the TREC 2004 Genomic Track test collection. We believe this col-
lection to be best suited within the genomic domain with it’s number
of vastly different topics covered.

The TREC 2004 Genomics Track collection consists of 4,591,008
MEDLINE citations. A subset of these citations, namely 42,255, have
been judged against 50 topics. Each of these topics consists of a ti-
tle, need and a context field (see Appendix C for an example topic).
The judged records have relevance judgements, being either definitely
relevant, possibly relevant or not relevant to a given topic [6]. In
our testing we do not differ between definitely relevant and possibly
relevant and consider them both relevant. This is in standing with
the official TREC protocol for results, which requires binary relevance
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judgements [6].

6.2 The queries

For queries there were several approaches to automatically generating
queries tested. First, the ”title” field from each topic was used as
queries. Then a combination of the ”title” and ”need” fields and lastly,
a combination of ”title”, ”need” and ”context” was tested. However,
all these approaches were deemed to give too low recall to provide any
feasible results, even when weighting the ”title” field twice as much
when searching, as done in BioTracer [18]. Finally we decided using
the same queries as Jervidalo [7], which with the previously described
“title” weighting produced usable results.

The full set of queries for each topic can be seen in Appendix A.

6.3 Evaluation method

To evaluate the performance of our prototype we use measures for
retrieval. As described in Chapter 5 the prototype outputs the results
so they are compatible with Buckley’s trec eval1 program (version
9.0), the standard tool used when evaluating TREC collections. Our
focus is mainly on mean average precision, as it is the most standard
measure among the TREC community [11]. However, we also measure
the precision at 10 and 100, because we know that the user is likely to
look at the top most results [20][23]. These are also the same measures
used when evaluating BioTracer [18].

1See http://trec.nist.gov/trec_eval/
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6.4 Test environment

The hardware and software specifications for the machine used during
testing of the prototype is listed in Table 6.1. Most of these spec-
ifications are included for reference purposes only. There should be
nothing system dependent about our prototype that affects the re-
sults and results and findings in this thesis. Note that the Java VM
arguments were critical when our prototype was indexing the test col-
lection, as it required more memory than the default settings to run.
However, this was not necessary during retrieval and clustering.

CPU: Intel Core 2 Duo CPU 2.40 GHz
Memory: 2 GB

Disk: 160 GB S-ATA 7200RPM
OS: Ubuntu Natty Narwhal 11.4

Java version: OpenJDK 6 (1.6.0 22)
Java VM arguments: -Xms128m -Xmx512m

Table 6.1: Hardware and software environment used.

6.5 Results

In this section we present the results from running our prototype.
The average measurements for the 50 queries from Appendix A are
presented in Table 6.2. We can see that there is a slight increase in
mean average precision (MAP), which is our measurement of focus,
when applying EM to the regular search results. Figure 6.1 shows a
graph comparison of map for baseline VSM and our VSM extended
with EM approach.
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Figure 6.1: A comparison of MAP for VSM and VSM+EM
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MAP R-precision P@10 P@100

Lucene VSM 0.1690 0.2232 0.3918 0.1798
Lucene VSM + EM 0.1827 0.2506 0.4200 0.2058

Table 6.2: Evaluation results

6.6 Discussion

As seen in the previous section, there is some, but little overall increase
in performance when extending our baseline vector space model with
expectation maximization and naive Bayes. However, the graph in
Figure 6.1 shows several fluctuations. Even though VSM+EM per-
forms better on average, there are some topics where regular VSM
significantly outperforms our approach. It looks like these are mainly
the topics where there are few relevant documents and that the clas-
sifier gets better “irrelevant” training than “relevant”, which affects
the clustering negatively. Another possible reason for the fluctuations
could be to the fact that a MEDLINE citation may only contain a
title and no abstract [18], documents like this could be a bad source
of training examples for the classifier.
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Chapter 7

Conclusion

In this thesis we sought to improve the performance of biomedical
search using the statistical expectation maximization technique. We
have defined an approach where we use EM together with traditional
naive Bayes classification and user relevance feedback to cluster the
results into “relevant” and “irrelevant” documents. We proposed that
this approach would increase precision as it would filter out irrelevant
documents from the search results. To test our proposal, we have
developed a retrieval system prototype that implements our idea. The
prototype also featured “regular retrieval” as a means of producing
results that were comparable with the extended retrieval that was our
approach. The prototype has been evaluated against a biomedical test
collection using well known evaluation measures.

Given the data collected in evaluation our prototype we have deter-
mined that using expectational maximization has little, but a positive
effect on overall precision. However, in some special cases the perfor-
mance would even degrade. The user relevance feedback cycle is an
extra step, and with such little overall improvements, and in special
cases worsened performance, we believe it is unlikely that the user will
bother with the extra effort. Our testing shows that the initial search
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results the user is presented with are near close enough already to the
results he is presented with after the clustering. Thus we conclude
that our approach, as it currently stands, is unsuitable to increase
performance in biomedical retrieval.

7.1 Further work

Our evaluation shows that there was some gain in performance, al-
though relatively small. This could justify further research in us-
ing expectation maximization for biomedical search improvements.
A suggestion by the authors is to look at other classification meth-
ods. Caruna shows that the classifiers random forest and gradient tree
boosters both outperform naive Bayes [3]. At the time of this writ-
ing, there is also a not yet released paper called “Mixed-Effects Ran-
dom Trees” by Ahlem Hajjem, from a newly held conference1 on using
mixed random forest together with EM. The abstract looks promising,
and may also warrant further research when it becomes available.

1Statistics 2011 Canada / IMST 2011-FIM XX, July 2011
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Appendix A

Queries

This is a list of the queries used for evaluating our prototype. The
queries are aquired from Jervidalo [7].

1 iron AND ( Ferroportin1 OR ( Ferroportin AND 1) OR SLC40A1 OR←↩

→ FPN1 OR HFE4 OR IREG1 OR ( Iron AND regulated AND gene ←↩

→AND 1) OR MTP1 OR SLC11A3)
2 (transgenic OR transgenesis OR ( copy AND gene ) ) AND (mice ←↩

→OR mouse OR murine)
3 (mouse kidney ) ( gene expression ) ( kidney development ) ( ←↩

→kidney )
4 kidney AND (( gene OR genes ) OR ( expression AND ( profile ←↩

→OR profiles ) ) ) AND (mice OR mouse OR murine)
5 ( isolate OR isolating OR fractionation OR purify ) AND ( ←↩

→cell OR ( nucleus OR nuclei ) OR subcellular )
6 FancD2 OR ( Fanconi AND anemia) OR ( group D2) OR ( type AND ←↩

→4 AND fanconi AND pancytopenia )
7 (( oxidative OR oxidation ) AND stress ) AND DNA AND repair
8 ( oxidative OR oxidation ) OR ( cancer OR cancers OR ←↩

→carcinoma OR cancerous ) AND ( disease OR diseases OR ←↩

→carcinogenesis ) AND ( gene OR pathway) AND (DNA AND ←↩

→repair )
9 (muty OR hmyh) AND -myoglobin

10 (NEIL1)
11 hairless mice carcinogenesis skin OR UV
12 ( gene OR genes ) AND smad4
13 (TGFB OR ( transforming growth factor beta ) OR (TGF) ) AND (←↩

→ homeostasis OR angiogenesis )
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14 (TGFB OR ( transforming growth factor beta ) ) AND (( head ←↩

→and neck squamous cell ) OR HNSCC)
15 (ATPase OR ATPases) AND ( apoptosis OR ( cell death ) )
16 (AAA proteins ) ( lipids ) (AAA protein family ) ( protein ←↩

→interactions )
17 (DO1 OR (p53 AND ( antibody OR anti ) ) ) AND binding
18 ( Gis4 OR YML006C)
19 (GAL1 OR SUC1) AND ( repressors OR reprosessor OR activators ←↩

→OR activator ) AND SNF1
20 ( covalent OR attachment OR covalence OR substrate ) AND ( ←↩

→ubiquitin OR ubiquitously OR ubiquitylation OR ←↩

→ubiquitination )
21 (p63 OR TP63) OR (TP73 OR p73) (( cell cycle arrest ) OR ←↩

→apoptosis ) DNA
22 p53 AND DNA AND ( respond OR responding OR response ) AND ( ←↩

→break OR damage OR (( single OR double ) AND stranded ) ←↩

→)
23 Saccharomyces OR cerevisiae ( protein OR proteins ) ( ←↩

→ubiquitin OR proteolytic OR pathway )
24 (PGRP) (mouse AND peptidoglycan AND recognition AND proteins ←↩

→)
25 ( scleroderma OR (autoimmune AND disease ) ) AND (( genes OR ←↩

→gene OR genome) OR ( scan OR scans ) OR ( microarray OR ←↩

→( micro AND array ) ) )
26 (BFA1) (BUB2)
27 ( autophagy OR ( gene autophagic ) ) AND apoptosis
28 ( autophagy OR ( gene autophagic ) ) AND apoptosis AND ( ←↩

→proteases OR morphological )
29 (gyrA OR (DNA gyrase ) ) AND (( phenotype OR phenotypes ) OR ←↩

→( sequence OR sequences ) ) AND ( mutation OR mutations ←↩

→OR alteration ) AND ((E AND coli ) OR escherichia )
30 Nkx OR Sax
31 (TOR OR mTOR OR ( Target AND Of AND Rapamycin) OR FRAP1 OR (←↩

→FK506 AND associated AND protein ) )
32 Xenograft AND ( tumorogenesis OR cancer OR cancers OR ←↩

→carcinoma )
33 ( histoplasmosis OR ( histoplasma AND capsulatum ) OR ( blood←↩

→ borne pathogen ) ) AND (mice OR mouse OR murine)
34 Cryptococcus AND ( gene OR genes OR genome)
35 ( histoplasmosis OR ( histoplasma AND capsulatum ) OR ( blood←↩

→ borne pathogen ) ) AND (mice OR mouse OR murine)
36 Cryptococcus AND ( gene OR genes OR genome)
37 PAM OR ( peptide AND amidating AND enzyme) OR ( ←↩

→peptidylglycine AND amidating )
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38 ( stroke OR ( cerebrovascular AND accident ) OR CVA) AND (( ←↩

→genetic AND ( loci OR locus ) ) OR E4 OR ( factor AND V)←↩

→ OR ( risk AND ( factor OR factors ) ) )
39 ( hypertension OR HTN OR ( high AND blood AND pressure ) ) ←↩

→AND (( ris k OR danger ) AND ( genes or gene ) )
40 ( antigen OR antigens ) AND ( epithelial OR epithelium ) ( ←↩

→lung OR pulmonary OR lungs )
41 ( mutation OR mutations OR altered ) AND (( Cystic AND ←↩

→Fibrosis ) OR CF OR mucovoidosis OR muscoviscidosis )
42 (( chromosome OR chromosomal) AND ( translocations OR ←↩

→translocation ) ) OR (( chromosome OR chromosomal) AND ( ←↩

→rearrangement OR rearrangements ) )
43 ( sleeping AND beauty ) OR ( Kleine AND Levin AND Syndrome) ←↩

→OR KLS
44 (( nerve AND growth AND factor ) OR NGF) AND ( protein OR ←↩

→proteins )
45 (MWH1 OR ( mental health wellness ) ) OR ( mental ( disorder ←↩

→OR disorders ) ( gene OR genes OR genetic ) )
46 RSK2 OR ( ribosomal protein kinase )
47 (BCL OR BCL2 OR (BCL AND 2) ) AND (( antagonists OR ←↩

→antagonist ) OR ( inhibitors OR inhibitor ))
48 (UNC OR ( homologues OR homolog) OR BGS) AND (( gene OR genes←↩

→ ) OR ( c AND elegans ) OR ( Caenorhabditis AND elegans ←↩

→) )
49 ( glyphosate OR glycine ) AND ( tolerance OR tolerant OR ←↩

→immune)
50 ( temperature OR cold ) AND protein AND ((E AND coli ) OR ←↩

→escherichia )
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Example MEDLINE citation
in XML format

1 <!DOCTYPE MedlineCitationSet PUBLIC " -//NLM//DTD NLM Medline ,←↩

→ 1st November 2003// EN" "http ://www.nlm.nih.gov/←↩

→databases/dtd/nlmmedline_031101.dtd">
2 <MedlineCitationSet >
3 <MedlineCitation Owner="NLM" Status="Completed">
4 <PMID>10605436 </PMID>
5 <DateCreated >
6 <Year>2000</Year>
7 <Month>01</Month >
8 <Day>07</Day>
9 </DateCreated >

10 <DateCompleted >
11 <Year>2000</Year>
12 <Month>01</Month >
13 <Day>07</Day>
14 </DateCompleted >
15 <DateRevised >
16 <Year>2003</Year>
17 <Month>11</Month >
18 <Day>14</Day>
19 </DateRevised >
20 <Article >
21 <Journal >
22 <ISSN>0021 -9525</ISSN>
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23 <JournalIssue PrintYN="Y">
24 <Volume >76</Volume >
25 <Issue>2</Issue >
26 <PubDate >
27 <Year>1978</Year>
28 <Month>Feb</Month >
29 </PubDate >
30 </JournalIssue >
31 </Journal >
32 <ArticleTitle >Concerning the localization of steroids←↩

→ in centrioles and
33 basal bodies by immunofluorescence.
34 </ArticleTitle >
35 <Pagination >
36 <MedlinePgn >255 -60</MedlinePgn >
37 </Pagination >
38 <Abstract >
39 <AbstractText >Specific steroid antibodies , by the
40 immunofluorescence technique , regularly reveal ←↩

→fluorescent
41 centrioles and cilia -bearing basal bodies in ←↩

→target and nontarget
42 cells. Although the precise identity of the ←↩

→immunoreactive steroid
43 substance has not yet been established , it seems ←↩

→noteworthy that
44 exogenous steroids can be vitally concentrated by←↩

→ centrioles ,
45 perhaps by exchange with steroids already present←↩

→ at this level.
46 This unexpected localization suggests that ←↩

→steroids may affect cell
47 growth and differentiation in some way different ←↩

→from the two -step
48 receptor mechanism.
49 </AbstractText >
50 </Abstract >
51 <Affiliation >Istituto di Anatomia e Istologia ←↩

→Patologica , Universita di Ferrara , Italy.</←↩

→Affiliation >
52 <AuthorList CompleteYN="Y">
53 <Author >
54 <LastName >Nenci </LastName >
55 <ForeName >I</ForeName >
56 <Initials >I</Initials >
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57 </Author >
58 <Author >
59 <LastName >Marchetti </LastName >
60 <ForeName >E</ForeName >
61 <Initials >E</Initials >
62 </Author >
63 </AuthorList >
64 <Language >eng</Language >
65 <PublicationTypeList >
66 <PublicationType >Journal Article </PublicationType←↩

→>
67 </PublicationTypeList >
68 </Article >
69 <MedlineJournalInfo >
70 <Country >UNITED STATES </Country >
71 <MedlineTA >J Cell Biol</MedlineTA >
72 <NlmUniqueID >0375356 </NlmUniqueID >
73 </MedlineJournalInfo >
74 <ChemicalList >
75 <Chemical >
76 <RegistryNumber >0</RegistryNumber >
77 <NameOfSubstance >Steroids </NameOfSubstance >
78 </Chemical >
79 </ChemicalList >
80 <CitationSubset >IM</CitationSubset >
81 <MeshHeadingList >
82 <MeshHeading >
83 <DescriptorName MajorTopicYN="N">Animals </←↩

→DescriptorName >
84 </MeshHeading >
85 <MeshHeading >
86 <DescriptorName MajorTopicYN="N">Centrioles </←↩

→DescriptorName >
87 <QualifierName MajorTopicYN="Y">ultrastructure </←↩

→QualifierName >
88 </MeshHeading >
89 <MeshHeading >
90 <DescriptorName MajorTopicYN="N">Cilia </←↩

→DescriptorName >
91 <QualifierName MajorTopicYN="N">ultrastructure </←↩

→QualifierName >
92 </MeshHeading >
93 <MeshHeading >
94 <DescriptorName MajorTopicYN="N">Female </←↩

→DescriptorName >
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95 </MeshHeading >
96 <MeshHeading >
97 <DescriptorName MajorTopicYN="N">Fluorescent ←↩

→Antibody Technique </DescriptorName >
98 </MeshHeading >
99 <MeshHeading >

100 <DescriptorName MajorTopicYN="N">Human </←↩

→DescriptorName >
101 </MeshHeading >
102 <MeshHeading >
103 <DescriptorName MajorTopicYN="N">Lymphocytes </←↩

→DescriptorName >
104 <QualifierName MajorTopicYN="Y">cytology </←↩

→QualifierName >
105 </MeshHeading >
106 <MeshHeading >
107 <DescriptorName MajorTopicYN="N">Male</←↩

→DescriptorName >
108 </MeshHeading >
109 <MeshHeading >
110 <DescriptorName MajorTopicYN="N">Organelles </←↩

→DescriptorName >
111 <QualifierName MajorTopicYN="Y">ultrastructure </←↩

→QualifierName >
112 </MeshHeading >
113 <MeshHeading >
114 <DescriptorName MajorTopicYN="N">Rats</←↩

→DescriptorName >
115 </MeshHeading >
116 <MeshHeading >
117 <DescriptorName MajorTopicYN="N">Rats , Sprague -←↩

→Dawley </DescriptorName >
118 </MeshHeading >
119 <MeshHeading >
120 <DescriptorName MajorTopicYN="N">Respiratory ←↩

→Mucosa </DescriptorName >
121 <QualifierName MajorTopicYN="N">cytology </←↩

→QualifierName >
122 </MeshHeading >
123 <MeshHeading >
124 <DescriptorName MajorTopicYN="N">Steroids </←↩

→DescriptorName >
125 <QualifierName MajorTopicYN="Y">analysis </←↩

→QualifierName >
126 </MeshHeading >
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127 <MeshHeading >
128 <DescriptorName MajorTopicYN="N">Trachea </←↩

→DescriptorName >
129 </MeshHeading >
130 </MeshHeadingList >
131 </MedlineCitation >
132 </MedlineCitationSet >
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Example topic from the
TREC 2004 Genomics Track

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <TOPIC>
3 <ID>13</ID>
4 <TITLE >Role of TGFB in angiogenesis in skin</TITLE >
5 <NEED>Documents regarding the role of TGFB in ←↩

→angiogenesis in skin with respect to homeostasis and←↩

→ development.</NEED>
6 <CONTEXT >TGFB plays a crucial role in regulating ←↩

→angiogenesis , a biological process that occurs ←↩

→during development and homeostasis , as well as ←↩

→during inflammatory perturbation.
7 </CONTEXT >
8 </TOPIC>
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Appendix D

Python script

1 import os
2

3 MEDLINE_ROOT_DIR = "/home/alexanbj/MEDLINE/unpacked/"
4

5 xml_files = []
6

7 for subdir , dirs , files in os.walk(MEDLINE_ROOT_DIR):
8 for file in files:
9 xml_files.append(file)

10

11 xml_files.sort()
12 print xml_files
13

14 combined=open("/home/alexanbj/MEDLINE/combined", ’w’)
15

16 for file in xml_files:
17 print file
18 for line in open(MEDLINE_ROOT_DIR+file , ’r’):
19 combined.write(line)
20

21 combined.write(" </MedlineCitationSet >")
22 combined.close ()
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