
Master of Science in Computer Science
June 2011
Torbjørn Hallgren, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Parallel Methods for Projection on
Strongly Curved Surfaces

Joel Eelaraj Chelliah

Problem Description

At the department of Computer and Information Science at NTNU, there is a vir-
tual reality system known as conCave, consisting of a strongly curved projection
surface. In order to view an image projected onto such a surface, it is necessary to
first deform the image according to the geometry of the surface, so that it appears
correctly when projected onto the curved surface. In this thesis we investigate two
different mathematically correct methods for transforming the projection of a scene,
such that it can be displayed on the strongly curved surface of the conCave system.
We develop massively parallel solutions for both these methods on the GPU, and
aim to achieve real-time stereoscopic projection of the transformed images.

Assignment given: January 17 2011
Supervisor: Torbjørn Hallgren

i

ii

Abstract

Using the parallel architecture of the graphics processing unit for general purpose
programming has become increasingly common in the recent years. The process of
creating a mathematically correct transformation of a scene for curved stereoscopic
projection is a very expensive task, which would greatly benefit from a massively
parallel solution implemented on the GPU.

In this thesis, we first investigate two different methods for obtaining a mathe-
matically correct transformation of images intended for stereoscopic projection on
strongly curved surfaces. One method revolves around transforming a pre-rendered
image, pixel by pixel, while the other method applies the transformation to the pro-
jection of the vertices in the scene before they are rendered as an image. We then
develop massively parallel solutions for both these methods on the GPU, striving to
a reach a real-time rate for the stereoscopic projection of the transformed images.

We test both methods for different problem areas, and compare the results to map
their strengths and weaknesses. From the obtained results, we conclude that they
are both useful in different areas. The vertex transformation performs poorly when
the number of vertices in the scene is very high, but for a moderate number of
vertices it achieves excellent results, even for exceptionally large image resolutions.
The pixel transformation is far less affected by the number of vertices in the scene;
however its performance declines rapidly as we increase the size of the image. Both
methods were able to execute in real-time for relevant problem sizes.

iii

iv

Acknowledgements

This report is the result of the Master’s thesis by Joel Chelliah as part of the course
TDT4900. It was written at the Department of Computer and Information Science
at the Norwegian University of Science and Technology.

I would like to extend my gratitude to several people for making this thesis possible.
First of all, I would like to thank my supervisor Torbjørn Hallgren for providing
the idea for this thesis, and for his invaluable assistance throughout the semester by
providing interesting ideas, valuable feedback and helpful guidelines, on my thesis
work, and the structuring this report. I would also like to thank my friends and fel-
low students at the HPC and Graphics lab for technical support, many stimulating
discussions of relevant topics, and motivation throughout this semester.

Trondheim, Norway, June 1 2011

Joel Chelliah

v

vi

Contents

Problem Description i

Abstract iii

Acknowledgements v

Table of Contents vii

List of Figures ix

List of Tables xii

List of Listings xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Problem Definition . 2
1.3 Outline . 2

2 Background 5
2.1 Virtual Reality . 5

2.1.1 Types of VR Systems . 6
2.1.2 Augmented Reality . 7
2.1.3 ConCave . 7

2.2 Stereoscopy . 9
2.2.1 Cues for Depth Perception . 9
2.2.2 Using Stereoscopy . 10
2.2.3 Stereo in VR . 11

2.3 Parallel Computing on the GPU . 11
2.3.1 Evolution of Parallel Computing 12
2.3.2 Graphics Processing Unit . 12
2.3.3 General Purpose GPU (GPGPU) Programming 13

2.4 CUDA . 14

3 Related Work 15
3.1 Ray Tracing . 15
3.2 Use of Voxel Data . 15
3.3 Approximation to Several Planes . 16
3.4 The Grid Method . 17

vii

3.5 Using Polygon Triangulation . 17

4 Methods 19
4.1 The Pixel Transformation Method . 19

4.1.1 Overview of the Transformation 19
4.1.2 Cylinder Transformation . 20
4.1.3 Sphere Transformation . 28

4.2 The Vertex Transformation Method 32
4.2.1 Overview of the Transformation 32
4.2.2 Mathematical Details . 32

5 Implementation 39
5.1 Working Environment . 39
5.2 Program Overview . 40
5.3 Pixel Transformation Method . 41

5.3.1 Computing in Parallel . 42
5.3.2 Transformation Kernels . 44

5.4 Vertex Transformation Method . 45
5.4.1 Defining the Shaders . 45
5.4.2 Finding The Projection Coordinates 46
5.4.3 Adding New Vertices . 47

5.5 Stereoscopic Rendering . 49
5.5.1 Interlaced Stereo Rendering 50
5.5.2 Quad-buffered Stereo Rendering 51

6 Benchmarking and Results 53
6.1 Testing Environment . 53
6.2 Pixel Transformation Results . 54

6.2.1 Deformation of The Image . 54
6.2.2 Transformation Kernels . 55
6.2.3 Sequential vs Parallel . 58

6.3 Vertex Transformation Results . 60
6.3.1 Visual results . 60
6.3.2 Image vs Vertex Transform 61

7 Conclusions and Future Work 69
7.1 Summary . 69
7.2 Conclusion . 69
7.3 Future Work . 70

7.3.1 General Ideas . 70
7.3.2 Ideas for the Pixel Transformation 71
7.3.3 Ideas for the Vertex Transformation 72

A CUDA Framework 77
A.1 Kernel Functions . 77
A.2 Thread Hierarchy . 78
A.3 Memory Hierarchy . 78

A.3.1 Registers and Local Memory 79

viii

A.3.2 Shared Memory . 79
A.3.3 Global Memory . 80
A.3.4 Constant and Texture Memory 80

B Kernel and Shader Code 81
B.1 Pixel Transformation Kernels . 81
B.2 Vertex Transformation Shaders . 86

ix

x

List of Figures

2.1 (a) ConCave front view. (b) ConCave side view. 7
2.2 ConCave geometry, [8]. 8
2.3 Same object seen from two different perspectives: (a) seen from the right

eye, (b) seen from the left eye. 10
2.4 Creating a stereo pair from a reference point P and distance d between

two eye/camera positions. 10
2.5 The GPU devotes more transistors to processing data, [14]. 13

3.1 Plane approximation of the cylindrical part of the conCave surface, using

three segments (seen from above). Image taken from [1]. 16
3.2 (a) Grid placed in front of the conCave surface before transformation, (b)

grid after transformation (seen from the front). Images taken from [2]. . . 17

4.1 Overall view of the projection on the cylindrical part of conCave, for the

pixel transformation. 20
4.2 Top view of the projection on the cylindrical part of conCave, for the pixel

transformation. 21
4.3 Side view of the projection on the cylindrical part of conCave, for the pixel

transformation. 22
4.4 Visualizing both solutions of z. 25
4.5 Top view of the projection on the spherical part of conCave, for the pixel

transformation. 28
4.6 Side view of the projection on the spherical part of conCave, for the pixel

transformation. 29
4.7 Top view of the projection on the cylindrical part of conCave, for the

vertex transformation. 33
4.8 Side view of the projection on the cylindrical part of conCave, for the

vertex transformation. 34

5.1 Overview of the transformation program execution. 40
5.2 Rendering the stereo pair using a stencil mask. 50

6.1 (a) Original image before transformation, (b) transformed image. 55
6.2 Execution time of the single transformation kernels, for different image sizes. 56
6.3 Average number of frames per second for the sequential and parallel pixel

transformation code, for different image sizes. 58
6.4 (a) Original image before transformation, (b) pixel transformation, (c)-(f)

vertex transformation with 0, 1, 2, 4 and 8 additional vertices between

each pair of vertices that form a line. 61

xi

6.5 Average number of frames per second for the pixel transformation and

vertex transformation code for different image sizes. 62
6.6 (a) Original image before transformation, (b) pixel transformation, (c)

vertex transformation. 63
6.7 Average number of frames per second for the vertex transformation and

pixel transformation code for different number of vertices. 64
6.8 Average number of frames per second for the vertex transformation and

pixel transformation code for image sizes, and with dynamic addition of

vertices. 65

A.1 CUDA thread hierarchy, taken from [13] with permission from NVIDIA. . 78
A.2 CUDA memory hierarchy, taken from [13] with permission fron NVIDIA. . 79

xii

List of Tables

2.1 ConCave measurements . 9

6.1 Specifications of the benchmarking system. 54
6.2 Execution time of the single transformation kernels, for different image sizes. 56
6.3 Execution time of the combined transformation kernels, for different image

sizes. 57
6.4 Average number of frames per second for the sequential and parallel pixel

transformation code, and the speedup of the parallel code over the sequen-

tial one, for different image sizes. 59
6.5 Average number of frames per second for the vertex transformation and

pixel transformation code, and the speedup of the vertex transformation

over the pixel transformation, for different number of vertices. 64
6.6 Average number of frames per second for the vertex transformation and

pixel transformation code for image sizes, and with dynamic addition of

vertices. 66

xiii

xiv

Listings

4.1 Cylinder transformation pseudocode . 27
4.2 Sphere transformation pseudocode . 31
4.3 Cylinder, or sphere transformation pseudocode, for the vertex transforma-

tion. 38
5.1 Threads in a kernel . 42
5.2 One threads per pixel . 43
5.3 Finding the projection coordinates. 46
5.4 Finding the projection coordinates without the projection matrix. 47
5.5 Inserting additional vertices. 48
5.6 Interlaced stereo rendering. 50
5.7 Quad-buffered stereo rendering. 51
B.1 Transformation function . 81
B.2 Cylinder transform kernel . 82
B.3 Sphere transform kernel . 84
B.4 Vertex Shader . 86
B.5 Fragment Shader . 88

xv

xvi

CHAPTER 1

Introduction

In this chapter we describe the motivations behind this thesis, state the main goals
that we want to achieve and how we wish to approach them, and provide a short
outline of the structure of this report.

1.1 Motivation

The concept of viewer-dependent projection consists of projecting a scene, where
the position and angle of the projected scene is dependent on the position of the
viewer. When the viewer moves to the left or right, the projection of the scene is
rotated and shifted based on the new position, such that the viewer gets the feeling
of standing in front of the actual elements in the scene. When this is done using
a strongly curved surface, the sensation of reality is enhanced even more. This is
due to the curved surface partly surrounding the viewer, and providing the impres-
sion of standing inside the projected environment. The perception of depth is also
increased due to the curvature of the surface. Stereoscopic projection on a curved
surface enhances the feeling of depth even more by providing additional depth cues.
However, performing a mathematically correct transformation of the scene for such
a surface is a very expensive task.

In recent years it has become more and more common to utilize the massively
parallel architecture of modern graphics processing units for general purpose pro-
gramming. Using the parallel computational capabilities of the GPU, programs can
be parallelized to run across hundreds of thousands of threads concurrently, thus
greatly improving their performance. Transforming an image for curved stereo-
scopic projection is a task often consisting of performing many expensive operations
across different portions of the image, which makes it a very good candidate for such
massive parallelization.

1

CHAPTER 1. INTRODUCTION

1.2 Goals and Problem Definition

The main goal of this thesis is to investigate two different methods for transform-
ing an image, such that it can be projected onto a curved surface, and to develop
massively parallel solutions for both of these methods on the GPU. The purpose
of this is to also compare the strengths and weaknesses of these methods for var-
ious problems, examining the levels of performance as well as the visual aspects.
The desired outcome of this thesis is to find a well-balanced parallel solution for
stereoscopic projection on curved surfaces that performs well, both visually and in
regards to execution time. This is a theoretically based thesis, focusing primarily
on the calculations of the transformations and the development of parallel solutions,
thus the scope of this thesis does not cover any physical experimentation of the
transformations on the conCave surfaces.

The first method will revolve around performing a mathematically correct pixel-
by-pixel transformation of a pre-rendered image of the scene, where we reposition
each pixel in the image according to the geometry of the surface. This will be imple-
mented on the GPU using the CUDA framework. The second method will apply the
transformation to the actual projection of the scene, by calculating new positions
for the projection of each of the vertices in the scene. This will be implemented
on the GPU using GLSL code for the vertex and fragment shaders in the graphics
pipeline.

The following requirements are established for both solutions:

• Projection of the curved image should run in real-time, which we define as at
least 24 frames per second as this is the de facto standard for animated motion
pictures.

• The code should utilize the GPU for all calculations pertaining to the trans-
formation of the scene, and maximize the number of operations that can be
performed in parallel.

• There should be support for stereoscopic rendering of the transformed scene.

• The application should be scalable for relevant problem sizes.

1.3 Outline

The remainder of the report is structured as follows:

Chapter 2: Background provides background information on several subjects
within virtual reality and stereoscopy that are relevant to this thesis. Topics concern-
ing GPGPU programming and the NVIDIA CUDA framework are also discussed.

Chapter 3: Related Work gives an overview of earlier projects and theses that
were done concerning stereoscopic projection on strongly curved surface, and also
covers other popular approaches that are often considered in these cases.

2

1.3. OUTLINE

Chapter 4: Method presents a detailed and thorough description of the two
transformation methods that are the focus of this thesis.

Chapter 5: Implementation describes the parallel implementations of the two
transformation methods investigated in this thesis, including the stereoscopic ren-
dering of the transformed scene.

Chapter 6: Benchmarking and Results covers the benchmarking routines per-
formed on both methods, presents the results that were obtained, and provides a
discussion based on these results.

Chapter 7: Conclusions and Future work summarizes what was achieved dur-
ing the course of this thesis, draws conclusions based on the results and discussions,
and provides some ideas for possible future work.

Appendices: include an excerpt from our fall specialization project report [5],
covering background information on the CUDA framework, and some example kernel
and shader code of the transformation methods developed throughout this thesis.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER 2

Background

This chapter provides background information on several subjects within virtual re-
ality, stereoscopy, GPU programming and the CUDA framework that are relevant
to this thesis.

Firstly, Section 2.1 gives an introduction to virtual reality, provides an overview
of various VR systems, and gives a more detailed explanation of the conCave VR
system. Secondly, Section 2.2 takes a brief look into stereoscopy, covering some ba-
sic knowledge of its functionality and how it is used in VR systems today. Thirdly,
Section 2.3 describes the concept of parallel programming on the GPU and looks
into GPGPU computing. Finally, Section 2.4 presents the CUDA framework and
programming model from NVIDIA.

2.1 Virtual Reality

Virtual Reality (VR) is a term used to describe a graphical computer-generated
environment that can simulate the presence realistic elements, and provide the ex-
perience of places in the real world. VR systems are used in a range of applications
such as flight simulation, games and for therapeutic uses. A VR system can consist
of anything from a simple computer screen to more complex constructions including
special stereoscopic displays, position and orientation sensors, and surround-sound
speakers. In a VR system, the possibilities of interaction available to the user de-
pends on the complexity of the system and the different components it consists of.
The user can interact with the virtual environment or a virtual object using a sim-
ple keyboard or mouse, or through special multimodal devices such as wired gloves,
touch screens, or devices that register head and body movements. The simulated
environment can be a copy of real world locations, which is the case for various vehi-
cle simulation programs, or the simulated environment can be completely fictional,
such as in virtual reality games.

5

CHAPTER 2. BACKGROUND

2.1.1 Types of VR Systems

VR systems can be divided into several different types depending on their purpose,
what kinds of equipments are used for visualization, and how the user is able to
interact with the virtual environment. The most common types of VR systems are
listed below [6].

Window on World System

This method has its roots all the way back to the 1960s, and is one of the first ways
of viewing computer-generated virtual reality environments; it consists of using a
conventional computer monitor to display the visual world. Today, this type of
display is often not considered to be VR since they hardly block out the real world,
do not present virtual objects in life size, and do not create the illusion of immersion
[7].

Video Mapping

This is a variation of the Window on World VR system, but also includes merging
a video input of the user’s silhouette into the scene, thus allowing the user to see
himself moving around and interacting with the surroundings in the virtual world.

Immersive Systems

In these systems the user’s view is completely immersed in the virtual world. It is
common to use special helmets or masks that block out the view of the real world,
enabling the user to fully experience the virtual environment through small displays
and speakers placed inside the headgear.

A variation of immersive systems uses several projection surfaces or a curved projec-
tion surface that surround the user, providing a cave-like room. Images are projected
onto all the surfaces giving the experience of standing in the middle of a virtual en-
vironment. The principle advantages of surround projections in CAVE systems are
a wide, surrounding field of view and the ability to give a shared experience to a
group of users, where one or several can be tracked [7]. The principle disadvantages
are that it may be very costly if multiple projectors are needed, requires a lot of
space especially for rear projection, brightness limitations, and reduced contrast and
color saturation due to light scattering. Of course, all these issues depend on the
size and type of the CAVE system. For small screen sizes the brightness limitations
will not be as hindering as for larger ones.

Telepresence

Telepresence is the concept of linking remote sensors to a device in the real world, so
that the device is linked with the senses of a human operator. The perceived view
of the device is displayed to the user through various displays and speakers, and
the user controls the actions of the device by sending different commands. Tracking
and pressure sensors are used to give the user as much control over the device as

6

2.1. VIRTUAL REALITY

possible. This comes close to the definition of augmented reality, which we will cover
later in this chapter.

Mixed Reality

A mixture of Telepresence and VR where the computer-generated input is merged
with Telepresence input. The virtual environment either partially consists of real-
time data taken from Telepresence input, or is constructed from earlier scans, images,
etc.

2.1.2 Augmented Reality

In contrast to traditional virtual reality, augmented reality (AR) is a term describing
live direct or indirect view of a real-world environment. While virtual reality deals
with a simulated environment, AR lets the user observe and interact with the real
world through various sensory inputs. Real world elements are often combined
with virtual elements through different technologies, such as object recognition, in
real time to help enhance the user’s perception. For example, objects can appear
as if they have been inserted into the real environment, such as text and markings
appearing over areas of interest. Most of the components that are used in traditional
VR are also present in AR systems, such as head-mounted displays and tracking
devices.

2.1.3 ConCave

ConCave is a cave-like projection surface that is designed for passive, depth-enhanced
projection, and was created by FakeSpace Systems in 1998 [8]. It was originally de-

Figure 2.1: (a) ConCave front view. (b) ConCave side view.

7

CHAPTER 2. BACKGROUND

veloped for Phillips Petroleum for the purpose of studying volumetric data under
correct spatial visualization. The shape of the surface gives a certain illusion of
depth even without the use of any special stereoscopic glasses, which is one of the
reasons that cave-like projection surfaces are a popular choice for oil and gas indus-
tries for studying geologic and seismic data. The small size of conCave makes it
very useful especially for small groups of people, and for rooms that are too small
to fit large projection equipment. FakeSpace later merged with another immersive
display development company known as Mechdyne. We refer to their website [8] for
more detailed information on the history of the conCave system.

The conCave unit at NTNU was also delivered by FakeSpace. This system is a
variation of an immersive VR system, as discussed in Section 2.1.1. It does not
completely immerse the user’s view into the virtual world, but it comes pretty close.
When standing close enough, the strongly curved surface of the cave will still pro-
vide the user with the illusion of standing somewhat inside a virtual environment.
A front and side view of the cave can be seen in Figure 2.1.

This system can also be compared to a dome. Although not completely similar,
they work in the same manner, and in most cases can be used for the same pur-
poses. Dome environments are spherical rooms where a single user or multiple users
stand in the middle and witness the virtual environment being projected around
them. However, dome systems can also be configured to only show a hemispheric
view, which is quite similar to what the conCave system does. The hemispheric view
is enough to wrap around the viewer’s peripheral vision, giving a very wide field of
view and realistic perception of distance to objects.

Figure 2.2: ConCave geometry, [8].

8

2.2. STEREOSCOPY

As we can see in Figure 2.2, the conCave surface consists of three basic shapes.
The top half has the shape of a quarter-sphere, whereas the bottom half has a semi-
cylindrical shape. In addition, there is a half-circular flat surface that covers the
bottom. Measurements of the surface can be found in Table 2.1.

Width 154cm
Height 154cm

Depth / radius 72cm
Height of cylindrical part 72cm
Height of spherical part 72cm

Table 2.1: ConCave measurements

2.2 Stereoscopy

Stereoscopy, also known as stereoscopic imaging, is a technique that is used to
enhance the illusion of depth in images and animations, and is a very useful technique
when trying to add realism to a scene. We are used to always perceiving the world
around us in three dimensions, so a scene that has no or very little sign of depth
will immediately seem artificial.

2.2.1 Cues for Depth Perception

The human visual system uses several cues to determine the depth in a scene. These
can be divided into monocular cues and stereo cues [9]. Monocular cues are present
in most two dimensional images, and lets us judge depth from a single image. Some
examples of these are:

• Texture variations and gradients.

• Objects being occluded by other objects.

• The size of an object changing as it moves towards or away from the viewer.

• Haze and desaturation

Stereo cues are based on two different viewpoints or images. One such cue is called
stereopsis. As our eyes are a small distance apart from each other, each eye will give
a slightly different view of the scene we are looking at. As we can see in Figure 2.3,
the same object appears slightly different to each eye. The brain then combines the
images projected onto the retinas of the two eyes to give us a perception of depth.
The retinal disparity, which is the distance between the two perceived images, varies
with the distance to the object we are looking at.

9

CHAPTER 2. BACKGROUND

Figure 2.3: Same object seen from two different perspectives: (a) seen from the right eye,
(b) seen from the left eye.

Another cue that can also be classified as a stereo cue is eye accommodation. This
term refers to when objects that are not in focus will appear blurred, and we are
required to readjust the focal length of the eye lens to bring the new object into
focus [10]. This helps provide even more depth information, especially when looking
at objects in close range.

A third stereo cue is convergence, which is what we do when we rotate our eyes
so that they are both looking at the same point. A result of this is that everything
that is not on the point of convergence appears doubled as each eye is providing a
different view of them, being in slightly different locations.

2.2.2 Using Stereoscopy

Stereoscopic imaging is done by creating two offset images of the same scene (also
known as a stereo pair), then displaying one image to the left eye and the other
image to the right eye. Doing so, it is possible to artificially provide stereopsis to
some extent by simulating the way we view the world with our own eyes. As we
can see in Figure 2.4, we create the two images of the stereo pair by placing the
viewpoints a distance d from each other. A typical average value for this distance
d is 1/30 of the distance from the observer to the nearest object of the scene [11].

Figure 2.4: Creating a stereo pair from a reference point P and distance d between two
eye/camera positions.

10

2.3. PARALLEL COMPUTING ON THE GPU

The viewpoints should also be equal distances to the reference point P, which is
the point right between the eyes. When d is zero, both viewpoints are positioned
at P and both images of the stereo pair will be identical. It should also be noted
that to get best possible visual results, it is important that the viewing directions
of both viewpoints are parallel to each other. The thick horizontal line represents
the scene, and the dotted lines visualize how the scene is displayed to each eye. The
two images we get from the offset viewpoints are combined by our brain into one
image and we will get an illusion of depth.

Although stereoscopy enhances the illusion of depth by adding stereopsis, it does
not provide eye accommodation or convergence, which are the second and third
stereo cues we discussed earlier. Hence the illusion of depth is still not as good as
reality. This is because when using stereoscopy it is necessary to keep the viewing
axes parallel, and not let them converge towards a specific point on the scene as
we do in real life. When looking at a specific point to which our eyes converge to,
this point appears perfectly clear but everything else appears blurry. When we then
change our view, our eyes will both focus and converge on the new location. In
stereoscopy, the entire image needs to be in focus so that whatever part you are
looking at can be viewed clearly [11]. Focusing on a specific point would only make
the image comfortable to look at for all the points in front of the converging point,
while making the rest of the image in the stereo pair difficult to fuse. By keeping the
viewing axes parallel (converging at infinity), the whole image can be easily fused.

2.2.3 Stereo in VR

Stereoscopy is often used in VR systems to enhance the feeling of reality in the
virtual environment. This is done by rendering the view twice, once for each eye,
with a tiny offset. There are different methods to make sure that each eye only sees
its corresponding image, which we can categorize as passive or active stereo.

Passive stereo refers to using two projectors, one for each eye, using different polar-
ized filters. Smaller filters matching the projectors’ filters also need to be placed in
front of the eyes, for each eye to pick up the projected image from its corresponding
projector.

Active stereo is the term used for alternatively projecting different perspectives
for each eye, and using special shutter glasses that alternately darkens over one eye,
and then the other, in synchronization with the frequency of the projection. When
the brain receives the images in such rapid succession it fuses them into one single
image and perceives depth.

2.3 Parallel Computing on the GPU

Parallel computing is the concept of many instructions being carried out simultane-
ously, and it involves dividing larger problems into smaller ones which are then solved
in parallel across several computing units. The most preferable scenario would be
if it were possible to divide these problems into completely independent parts that

11

CHAPTER 2. BACKGROUND

require no interactions with each other. This way, each task can be completed at
its own pace without having to wait for any of the other tasks. However, this is not
always the case, as sometimes there is need for communication between the differ-
ent processes, whether it is the need for synchronization or data transfer. The way
parallel programs are written to account for these communication needs, and the
underlying memory architecture can greatly affect the performance of the program.

2.3.1 Evolution of Parallel Computing

For a long time, gain in performance has come from improving the single-processor
design, but today parallelism has become the standard way to increase overall per-
formance. The most common way of increasing single processor performance was by
increasing the clock speed in processors, which lead to faster execution time of single
processes. This has, however, reached its limit due to reasons such as increased heat
generation and the power needed for further improvement. As a result, we see that
parallel systems are quickly becoming more and more common. Some examples of
these are:

• Multi-core CPUs: Putting several low power processor cores on the same
chip.

• Clusters: Connecting several commodity PCs through a network.

• GPUs: Using graphical processing units as accelerators to perform intense
computations.

In the early stages of parallel computing, these systems were mostly seen in super-
computers and heavy workstations; however, they soon spread out to consumer PCs,
and multi-core CPUs are now common in most new desktop and laptop PCs. Ad-
ditionally, many large applications such as modeling and image editing software are
taking advantage of the GPU for accelerating computationally intense operations.

2.3.2 Graphics Processing Unit

The Graphics Processing Unit (GPU) is a specialized component that helps ac-
celerate the rendering of 3D graphics. GPUs are able to perform highly intense
computations in parallel, and they are designed such that more transistors are de-
voted to processing data. They are different from the CPU in the sense that only
a very small part of the GPU is devoted to things like caching and flow control, as
depicted in Figure 2.5. With a very coherent memory access pattern and simple
flow control, the GPU is not designed to take into account things such as branching,
memory access, and extraction of instruction level parallelism at the same level of
the CPU. However, today the raw computational power of the GPU is enormous
compared to some of most powerful CPUs, and this gap is steadily growing. The
highly parallel structure of the GPU enables it to perform several instructions si-
multaneously, which makes the GPU very useful in the fields of computer graphics
rendering as well as high performance computing.

12

2.3. PARALLEL COMPUTING ON THE GPU

Figure 2.5: The GPU devotes more transistors to processing data, [14].

By the end of the 1990s, nearly every new computer contained a GPU that was
dedicated to providing high performance, interactive 3D graphics. This was the
consequence of increasing consumer demand for video games and various advances
in manufacturing technology [12]. Today, modern GPUs can be seen as commodity
data-parallel processors, and their computational capacities are still growing.

2.3.3 General Purpose GPU (GPGPU) Programming

In the beginning, the primary focus behind the development of GPUs was to achieve
more advanced and realistic graphics for games. However, in recent years this de-
velopment has also been influenced by the idea of using GPUs for general purpose
programming. Consequently, GPUs have slowly moved away from the traditional
fixed-function 3D graphics pipeline, and towards the interest of general purpose
computation.

For a long time, GPGPU programming was seen as a difficult task with a very
steep learning curve, and was not regarded as a relevant programming method for
some time. This was because general purpose programs needed to be written using
graphics APIs, which meant that programmers needed to first learn these APIs re-
ally well, and then try to figure out ways to write their programs under their given
limitations. Writing programs using the graphics API included using shaders, which
are the programmable parts of the graphics pipeline. They are responsible for tasks
such as generating vertices, drawing lines, and creating polygons. The first languages
that were used to program these shaders were High Level Shader Language (HLSL)
and the OpenGL Shading Language (GLSL). As the idea of GPGPU became more
popular, improvements were made to the GPUs to expand the programmability
beyond shaders. This resulted in new programming models and GPGPU-friendly
frameworks being created to hide the overheads from graphical APIs and simplify
the task of general purpose GPU programming. Some of the most recent frameworks
are OpenCL and CUDA.

13

CHAPTER 2. BACKGROUND

2.4 CUDA

Compute Unified Device Architecture (CUDA) is a general purpose parallel com-
puting architecture for GPGPU programming. Programmers can write their code
in languages such as C and Fortran using CUDA, and then have the program trans-
lated into bytecode that can be run on NVIDIA Graphics processors. Together with
OpenCL, CUDA is one of the most recent GPGPU-friendly frameworks designed to
relieve the burden of having to write general programs using graphics APIs.

As extensive research was done on the CUDA framework and programming model
in an earlier project [5], the same information will not be covered in this report. In-
stead we refer to an excerpt from that report which is included in Appendix A. This
should cover the details of the CUDA framework that is relevant to this thesis.

14

CHAPTER 3

Related Work

This chapter provides an overview of popular ideas, and earlier projects and theses
concerning stereoscopic projection on curved surfaces. The strengths and weak-
nesses of these approaches will also be explained briefly.

There are several methods for projection of data on curved surfaces. Some ap-
proaches focus mainly on the accuracy and correctness of the visualization, while
others are more concerned with getting a good approximation at high frame rates.
Sections 3.1 and 3.2 cover some popular approaches that are often considered in
these cases. Sections 3.3 - 3.5 present various methods that have been investigated
as part of project and thesis work at NTNU during recent years.

3.1 Ray Tracing

Ray tracing is done by projecting a ray from the viewer’s position through every
pixel on the screen and into the scene. If the ray hits an object in the scene, then
the color of that object is added to the pixel. Once each pixel has been colored this
way, the final image is rendered. Ray tracing gives very good visual results, but
the performance may be too slow for real time visualization due to the vast number
of calculations that must be performed. However, the speed and power of today’s
consumer PCs are growing at a rapid pace, meaning that this method may become
more relevant in the future, especially when one can harness the power of the GPU
for parallelizing all the heavy computations involved.

3.2 Use of Voxel Data

Voxels are cubic subdivisions of objects that store the information of different parts
of that object. They can be considered as three dimensional pixels. For projecting
scenes onto a curved surface, the objects in the scene are divided into smaller regions
consisting of voxels, which are shaped in accordance with the shape of the surface.

15

CHAPTER 3. RELATED WORK

This gives the impression of the objects surrounding the viewer. Voxel data are
often used for such visualizations in the oil industry and within medical studies, but
are generally a very poor choice for polygon based models.

3.3 Approximation to Several Planes

This is one of the two approaches investigated by Akeren during his Master’s thesis
in 2003 [1]. The idea was to divide the strongly curved surface into many tiny flat
segments that approximate the curved shape, and then use a regular method for
simple plane projection to project parts the image on each of these segments. The
subdivision of the surface depends on the overall geometry. As this was done on
the concave system described in Section 2.1.3, different patterns were needed for
dividing the cylindrical part and the spherical part of the surface. The cylindrical
surface was divided into uniform rectangular strips, while the spherical surface was
divided into uniform triangular planes. The corners of the planes were positioned so
they intersect the curved surface, as depicted in Figure 3.1. The number of segments
is the deciding factor in the accuracy and smoothness of the image.

The advantages of this method is that it is very fast for a small number of seg-
ments, as plane projections are pretty simple to perform and require very little
computational power. But there are several disadvantages. The visual quality is

Figure 3.1: Plane approximation of the cylindrical part of the conCave surface, using
three segments (seen from above). Image taken from [1].

16

3.4. THE GRID METHOD

highly dependent on the number of segments that are used, so a high number of
segments is necessary for good quality. However, dividing the surface into too many
segments will affect the performance. Too few segments also lead to the displayed
image being very jagged in the areas where the segments connect, due to the seg-
ments not overlapping enough.

3.4 The Grid Method

This approach was investigated by Djønne and Solheim during their combined spe-
cialization project in 2003 [2]. The idea here is to render the image to a texture,
which is then laid out on a grid. This grid is then shaped to fit the interior shape
of the curved surface, as depicted in Figure 3.2. The texture that is attached to
the grid will follow the same transformation, and will be displayed correctly on the
curved surface.

Figure 3.2: (a) Grid placed in front of the conCave surface before transformation, (b)
grid after transformation (seen from the front). Images taken from [2].

Although this method proved to work well in real-time and gave good visual re-
sults, it had problems showing bigger models correctly. The visual quality suffered
especially at larger perspectives or when viewing from very slant angles.

3.5 Using Polygon Triangulation

This approach was investigated by Djønne during his Master’s thesis in 2004 [3]. The
method consists of dividing larger polygons into simple triangles, and then moving
all the corners according to a transformation table. The transformation table is
created based on the position of the viewer and the projector. It is used to curve
the corners of the polygons, such that the image is displayed correctly on the curved
surface for the given viewer and projector position.

This method provided a lot clearer and better quality projections than the grid
method, especially for larger models. However, the performance of this approach
was somewhat slower than the grid method.

17

CHAPTER 3. RELATED WORK

18

CHAPTER 4

Methods

This chapter provides a detailed and thorough description of the two transformation
method that are the focus of this thesis.

Section 4.1 describes the pixel transformation method, where the idea is to pre-
render an image through regular planar projection, and then transform this image
into one that can be projected onto a curved surface. Then Section 4.2 describes the
vertex transformation method, which deals with transforming the projection based
on the vertex data of the scene.

4.1 The Pixel Transformation Method

A simplified version of this approach was investigated by Akeren during his Master’s
thesis in 2003 [1]. Here we look into a complete mathematically correct transfor-
mation. The idea consists of first rendering an image meant for regular planar
projection, in this case a perspective projection, and then transforming this image
pixel by pixel before projecting it, so that it displays correctly on the curved surface.
Two different transformations are needed. One for the part of the image projected
onto the spherical surface, and one for the part projected onto the cylindrical surface.

4.1.1 Overview of the Transformation

The following list provides an explanation of the main steps in the transformation
procedure.

1. A flat image is first rendered through regular perspective projection. The
pixels of the image are then read and stored in an array.

2. A Cylinder transformation procedure is performed on the bottom half of the
image. The new values of these pixels are calculated based on the position of
the viewer, the projector, and the projection surface.

19

CHAPTER 4. METHODS

3. A Sphere transformation procedure is performed, doing the same thing for the
top half of the image. The two transformation procedures are independent of
each other; hence they do not need to be called in any specific order.

4. After both transformations have taken place, the new image is rendered using
the transformed array of pixels, and is ready to be projected onto the curved
surface.

4.1.2 Cylinder Transformation

Here we describe the mathematical process of transforming the part of the image
that is meant for the cylindrical surface. The basic process of the transformation is
to map every pixel (i, j) of the output image to a pixel (u, v) from the input image,
which is rendered using regular perspective projection. The corresponding pixel
coordinate (u, v) for each (i, j) is found using the geometry between the position
of the projector, the viewer’s position, and the geometry of the curved surface.
This results in a pixel perfect, mathematically correct transformation of the original
image, so that it appears correctly on the curved surface.

Figure 4.1: Overall view of the projection on the cylindrical part of conCave, for the pixel
transformation.

20

4.1. THE PIXEL TRANSFORMATION METHOD

Projection on the Cylindrical Surface

In Figure 4.1 we look at the setup from an angular bird’s-eye view. The cylindrical
surface is displayed in green, while the red plane represents an imaginary flat surface
on which the original planar projection would have been displayed. As this method
is about transforming an image rendered for a flat surface into one that fits on a
curved surface, we must take into account where each pixel sent from the projection
point hits both of these surfaces. However, note that the flat surface is not really
there during the actual projection, but it is displayed in this image for the purpose
of visualizing the concept.

The point P indicates the position of the projector, and has the coordinates (xj, yj, zj).
The Center of Projection (COP) is the position of the viewer, and is given by the
coordinates (xo, yo, zo). The coordinates (xp, yp, zp) correspond to where a pixel (i, j)

Figure 4.2: Top view of the projection on the cylindrical part of conCave, for the pixel
transformation.

21

CHAPTER 4. METHODS

of the image that is projected from P , hits the plane; point (x, y, z) indicates where
the same pixel lands on the cylindrical surface. The coordinates (xc, yc, zc) corre-
spond to the point on the plane that intersects the viewer’s line of sight when the
viewer is looking directly at point (x, y, z) . The idea behind the transformation is
to make sure that what the viewer would have observed at point (xc, yc, zc) on the
plane is the same as what is projected towards (xp, yp, zp), and also (x, y, z).

To clarify, first note that both the projection path from P and the viewer’s line
of sight intersect at (x, y, z). At this point we want to project the pixel the viewer
would have seen at (xc, yc, zc) if a regular planar projection was done on the flat
plane, thus making it seem to the viewer as if he is observing this part of the image
at point (xc, yc, zc). The coordinates (x, y, z) must first be calculated in order to find
the point (xc, yc, zc). We then find the pixel coordinates (u, v), which is the pixel
position on the image that corresponds to the point (xc, yc, zc) on the plane. The
value of (i, j) is then replaced by the value of (u, v), so that the pixel that would
have been seen by the viewer on the flat surface at (xc, yc, zc) is the same as the
pixel projected onto the curved surface at (x, y, z). Once this is done for every sin-
gle pixel on the bottom half of the image, the cylinder transformation of the image
is complete.

Figure 4.3: Side view of the projection on the cylindrical part of conCave, for the pixel
transformation.

We assume that the planar surface is always parallel to the xy-plane of the co-
ordinate system, so that we can always expect zc and zp to be equal. From here on
we assume that zc = zp holds for all equations. To be able to more clearly observe
the scene from different angles, a top view of the same setup is provided in Figure
4.2 and a side view can be seen in Figure 4.3. All the coordinates are the same as
in Figure 4.1.

22

4.1. THE PIXEL TRANSFORMATION METHOD

Finding x,y and z

We start by finding expressions for (x, y, z), which is the point at which the pro-
jection of a certain pixel hits the curved surface. From the details in Figure 4.2 we
obtain the following equations:

tanφ =
xp − xj
zj − zp

=
x− xj
zj − z

(4.1)

tan θ =
xc − xo
zo − zc

=
x− xo
zo − z

(4.2)

From Equation 4.1 we derive the following expression for x:

x = xj +
(zj − z)(xp − xj)

zj − zp

=
zj(xp − xj)− z(xp − xj) + xj(zj − zp)

zj − zp

=
xpzj − xjzj + xjzj − xjzp − xpz + xjz

zj − zp

=
xpzj − xjzp + z(xj − xp)

zj − zp
(4.3)

From the side view of the scene provided in Figure 4.3 we can derive these ad-
ditional equations:

tanα =
yp − yj√

(zj − zp)2 + (xp − xj)2
=

y − yj√
(zj − z)2 + (x− xj)2

(4.4)

tan γ =
yc − yo√

(zo − zc)2 + (xo − xc)2
=

y − yo√
(zo − z)2 + (xo − x)2

(4.5)

The overall depiction provided in Figure 4.1 gives a much more accurate view of
how these equations are obtained, as it shows all three axes at the same time.

In the same manner as for x, we derive an expression for y based on Equation
4.4:

y =
(yp − yj)

√
(zj − z)2 + (x− xj)2√

(zj − zp)2 + (xp − xj)2
+ yj

= (yp − yj)

√
(zj − z)2 + (x− xj)2

(zj − zp)2 + (xp − xj)2
+ yj

23

CHAPTER 4. METHODS

We then substitute the x in this equation with the expression we obtained in Equa-
tion 4.3, and we are left with the following expression for y:

y = (yp − yj)

√√√√(zj − z)2 + (
xpzj−xjzp+z(xj−xp)

zj−zp
− xj)2

(zj − zp)2 + (xp − xj)2
+ yj (4.6)

The (xj, yj, zj) coordinates are already known, as they describe the position of the
projector. Since we know the dimensions of the image and the projection surface,
we can compute the (xp, yp) coordinates corresponding to any pixel position (i, j).
We choose zp based on where on the z-axis we want to place the planar surface.
This means that the only unknown variable in Equations 4.3 and 4.6 is z. Since
the surface we are projecting on has a cylindrical shape, and the vertical axis of the
cylinder is parallel to the y-axis of the coordinate system, we can make use of the
following equation:

(
x

R
)2 + (

z

R
)2 = 1 (4.7)

This equation pertains to an ordinary circular cylinder with a radius R. We insert
the expression for x derived in Equation 4.3 into Equation 4.7 to get the following
quadratic equation:

0 = x2 + z2 −R2

= (
xpzj − xjzp + z(xj − xp)

zj − zp
)2 + z2 −R2

=
x2pz

2
j − 2xpzjxjzp + 2z(xj − xp)xpzj + x2jz

2
p − 2z(xj − xp)xjzp + z2(xj − xp)2

(zj − zp)2

+ z2 −R2

Multiplying by (zj − zp)
2 on both sides gives:

0 = x2pz
2
j − 2xpzjxjzp + 2z(xj − xp)xpzj + x2jz

2
p − 2z(xj − xp)xjzp + z2(xj − xp)2

+ (zj − zp)2(z2 −R2)

= z2((xj − xp)2 + (zj − zp)2) + z(2(xj − xp)(xpzj − xjzp)) + x2pz
2
j − 2xpzjxjzp

+ x2jz
2
p −R2(zj − zp)2

(4.8)

We can then solve for z using the quadratic formula:

z =
−b±

√
b2 − 4ac

2a
where:

a = (xj − xp)2 + (zj − zp)2

b = 2(xj − xp)(xpzj − xjzp)
c = x2pz

2
j − 2xpzjxjzp + x2jz

2
p −R2(zj − zp)2

24

4.1. THE PIXEL TRANSFORMATION METHOD

There is no need to calculate both roots of z, as the answer we are interested
in always comes from the negative root. This comes from the fact that the semi-
cylindrical surface is located on the negative side of the z-axis, meaning that the
value of z we are looking for should always be negative.

Figure 4.4: Visualizing both solutions of z.

In Figure 4.4 we also see that since the cylinder is centered at z = 0, when solving
the quadratic formula, we will always end up with one positive solution and one
negative solution, because the line from the projection point intersects the cylinder
once before and once after crossing the z-axis. Of course, if the projector’s position
is offset in the x direction by a very large amount, it will be theoretically possible to
get two negative solutions. However, this is irrelevant to us since in this case parts,
of the projected image would be landing on the outside of the surface. Since the
solution we need is always on the negative side of the z-axis, we can always disregard
the positive solution. Looking at the expression for a in the quadratic formula, we
see that it is always a positive value. We also know that everything inside the square
root is always positive. This means that we only need to solve the formula with the

25

CHAPTER 4. METHODS

negative root, as we can be sure that it will always give us the negative solution for
z:

z =
−b−

√
b2 − 4ac

2a
(4.9)

Once we have a solution for z, we insert this into Equations 4.3 and 4.6 to find
the corresponding values of x and y.

Finding xc, yc and zc

Next we find the coordinates (xc, yc, zc), which is, as described earlier, the point
where the viewer’s line of sight intersects with the plane when looking at (x, y, z).
As we already discussed in Section 4.1.2, zc is equal to zp. Therefore, since zp is
already known to us prior to projection, we only need to find xc and yc. From
Equation 4.2 we derive the following expression for xc:

xc =
(zo − zc)(x− xo)

zo − z
+ xo

=
(zo − zc)(x− xo)

zo − z
+
xo(zo − z)

zo − z

=
xzo − xzc − xozo + xozc + xozo − xoz

zo − z

=
x(zo − zc) + xo(zc − z)

zo − z
(4.10)

We can then solve for xc using the solutions for x and z obtained from Equations
4.3 and 4.9. Finally, we derive the following expression for yc from Equation 4.5:

yc =
(y − yo)

√
(zo − zc)2 + (xo − xc)2√

(zo − z)2 + (xo − x)2
+ yo

= (y − yo)

√
(zo − zc)2 + (xo − xc)2
(zo − z)2 + (xo − x)2

+ yo (4.11)

We solve for yc using the solutions for x, y and z obtained from Equations 4.3,
4.6 and 4.9.

Pseudocode for the Cylinder Transformation

The pseudocode in Listings 4.1 describes the order in which the different computa-
tions of the cylinder transformation are performed.

26

4.1. THE PIXEL TRANSFORMATION METHOD

1 // Input : P, COP, Input image , Output image
2 for (int i = 0 ; i< Input image . width ; i++)
3 {
4 xp = compute xp (i , Input image . width) ;
5
6 // Choose zp based on d e s i r e d z−p o s i t i o n
7 // f o r p lanar s u r f a c e .
8 zp = 0 . 0 ;
9

10 // Solve f o r z us ing quadrat i c equat ion
11 z = So lve z (P, xp , zp) ;
12
13 x = Compute x (P, z , xp) ;
14 xc = Compute xc (COP, x , zp) ;
15 u = Compute u (xc , Input image . width) ;
16 for (int j = Input image . he ight /2 ; j< Input image . he ight ; j++)
17 {
18 yp = compute yp (j , Input image . he ight) ;
19 y = Compute y (P, x , z , xp , yp) ;
20 yc = Compute yc (COP, x , y , z , xc , zp) ;
21 v = Compute v (yc , Input image . he ight) ;
22
23 Output image [i] [j] = Input image [u] [v] ;
24 }
25 }

Listing 4.1: Cylinder transformation pseudocode

The first step is to solve the quadratic equation to find z. The projector’s posi-
tion P , which we are given as input, and the intersection point (xp, yp, zp), which we
get from scaling the current pixel position (i, j), are enough to solve this equation.
Once this is done, we can use the value of z to calculate the corresponding x and
y values, and thereafter find the point (xc, yc, zc) which we use for transforming the
pixels. Note that the cylinder transformation is only being applied to the bottom
half of the image.

The cylindrical shape of the surface enables us to first compute a value for x and
xc and then find all corresponding y and yc coordinates for that particular pair of x
and z. This is possible because the x and z coordinates of a cylinder do not depend
on the y coordinate, as we can see in Equation 4.7, meaning that for each pair (x, z),
we can compute all values of y without having to recalculate the value of x or z.
This is taken into account in the example in Listings 4.1 by computing x, xc and
u outside the second for-loop. We find u and v by scaling xc and yc back to the
resolution of the image, and use them to determine the pixel values of the output
image.

27

CHAPTER 4. METHODS

4.1.3 Sphere Transformation

Here we describe the mathematical process of transforming the part of the image
that is to be projected onto the spherical surface. The overall procedure of the
transformation is very similar to the cylinder transformation discussed earlier. The
difference is in the mathematical details of finding the unknown variables and in
which order the different computations need to be performed.

Projection on the Spherical Surface

In Figure 4.5 we look at the same setup as earlier from a bird’s-eye view, but this
time the projection is done on the spherical part of the surface. The remaining
details are the same as the ones describing the positioning of the cylindrical surface
in Section 4.1.2. A side view of the same scene is shown in Figure 4.6.

Figure 4.5: Top view of the projection on the spherical part of conCave, for the pixel
transformation.

28

4.1. THE PIXEL TRANSFORMATION METHOD

Figure 4.6: Side view of the projection on the spherical part of conCave, for the pixel
transformation.

Finding x, y and z

The expressions for x and y are similar to the ones we derived in Section 4.1.2.
Once again, the only unknown element is the z-coordinate. As we are working on a
hemisphere-shaped surface, we can make use of the following equation:

x2 + y2 + z2 = R2 (4.12)

This equation describes a sphere centered at the origin with a radius R. We in-
sert the expressions for x and y derived in Equations 4.3 and 4.6 into Equation 4.12,
and obtain the following equation:

0 = x2 + y2 + z2 −R2

= (
xpzj − xjzp + z(xj − xp)

zj − zp
)2 + ((yp − yj)

√√√√(zj − z)2 + (
xpzj−xjzp+z(xj−xp)

zj−zp
− xj)2

(zj − zp)2 + (xp − xj)2
+ yj)

2

+ z2 −R2

=
(xj(zp − z)− xp(zj − z))2

(zj − zp)2
+ ((yp − yj)

√√√√(zj − z)2 +
(xj−xp)2(z−zj)2

(zj−zp)2

(zj − zp)2 + (xp − xj)2
+ yj)

2 + z2 −R2

This results in a fourth degree polynomial, containing four solutions for z. As
this is a very long equation, it was not solved by hand. The math tool Maple [16],
was used to solve this equation, and also to help us find a much simpler form for the
four solutions. Here we only show the simplified formulas for z, which we created

29

CHAPTER 4. METHODS

by studying the patterns of the actual solutions:

z =
b±
√
d

a
,
c±
√
e

a
where:

a = (xj − xp)2 + (yj − yp)2 + (zj − zp)2

b = zj(x
2
p − xpxj − yp(yj − yp)) + zp(x

2
j − xpxj + yj(yj − yp))

c = zj(xp(xp − xj) + yp(yp − 3yj) + 2y2j) + zp(xj(xj − xp) + yj(yp − yj))

d = (zj − zp)2(z2j (R2 − x2p − y2p)− 2zpzj(R
2 − xpxj − ypyj)− (xjyp − xpyj)2

+ z2p(R2 − x2j − y2j) +R2((xj − xp)2 + (yj − yp)2))

e = (zj − zp)2(z2j (R2 − x2p − y2p + 4yj(yp − yj))− 2zpzj(R
2 + ypyj − 2y2j − xpxj)

+ z2p(R2 − x2j − y2j) + y2j (R + 2xj − xp)(R− 2xj + xp)

− 2ypyj(R
2 − 2x2j + xpxj) +R2((xj − xp)2 + y2p)− x2jy2p)

Similarly to the cylinder case, we are only interested in a negative value for z.
We can see that a is always positive, since each part of its corresponding expression
is a square. Knowing that d and e must also always be positive means that we can
already rule out two of the solutions for z. This is the same procedure we followed
to eliminate the positive solution for the cylinder case in Section 4.1.2. The two
remaining equations, 4.13 and 4.14, can both be negative.

z =
b−
√
d

a
(4.13)

z =
c−
√
e

a
(4.14)

When the position of the projector is within acceptable ranges in the x and y
directions, both solutions seem to always provide the same value for z. This was
investigated by creating several 3D plots in Maple, trying to cover as many different
cases as possible. Only in cases that are practically irrelevant, such as moving the
projector a very long distance in the x or y direction do the solutions differ from
each other. Since we know that the projector is always within the range of being
able to project the entire image onto the inside surface, we only need to solve one of
these equations. We choose to solve for z using Equation 4.13, because it requires
fewer computations than solving Equation 4.14.

30

4.1. THE PIXEL TRANSFORMATION METHOD

Once we have a solution for z, we insert this into Equations 4.3 and 4.6 to find
the corresponding values of x and y.

Finding xc and yc

The expressions for xc and yc can be derived in the same way as we did for the cylin-
der case, from Equations 4.2 and 4.5, and the same as the ones found in Equations
4.10 and 4.11. We solve them in the same way as we did earlier, using the obtained
solutions for x, y and z.

Pseudocode for the Sphere Transformation

The following pseudocode describes the order in which the different computations
of the sphere transformation are performed.

1 // Input : P, COP, Input image , Output image
2 for (int i = 0 ; i< Input image . width ; i++)
3 {
4 for (int j = 0 ; j< Input image . he ight /2 ; j++)
5 {
6 xp = compute xp (i , Input image . width) ;
7 yp = compute yp (j , Input image . he ight) ;
8
9 // Choose zp based on d e s i r e d z−p o s i t i o n

10 // f o r p lanar s u r f a c e .
11 zp = 0 . 0 ;
12
13 // Solve f o r z us ing four th degree equat ion
14 z = So lve z (P, xp , zp) ;
15
16 x = Compute x (P, z , xp) ;
17 y = Compute y (P, x , z , xp , yp) ;
18 xc = Compute xc (COP, x , zp) ;
19 yc = Compute yc (COP, x , y , z , xc , zp) ;
20 u = Compute u (xc , Input image . width) ;
21 v = Compute v (yc , Input image . he ight) ;
22
23 Output image [i] [j] = Input image [u] [v] ;
24 }
25 }

Listing 4.2: Sphere transformation pseudocode

It is very similar to the cylinder transform code with a few small changes. The
difference is that we now need to compute a z value for each (x, y)-pair, while in the
previous method we only needed to compute a new z for each value of x. Thus the

31

CHAPTER 4. METHODS

equation for z is solved inside the innermost for-loop in Listings 4.2. As solving for
z is the most expensive step in both transformations, the computational intensity of
the sphere transformation is much higher than that of the cylinder transformation,
since z has to be calculated more often. It should also be noted that we only need
to solve a quadratic equation in the cylinder case, while for the sphere it is a fourth
degree equation.

4.2 The Vertex Transformation Method

This approach is similar to the pixel transformation method described in Section
4.1 in many ways. The main difference is that instead of transforming an image, we
transform the actual way in which the scene is projected. This means that we do
not rely on a pre-rendered image to work on, but alter the projection of the original
scene by doing calculations based on the information of the scene that is available
to us. By doing so, we will not be getting a pixel perfect transformation as we did in
the previous method, but we will avoid the overhead of having to render the image
twice.

4.2.1 Overview of the Transformation

The following list provides an explanation of the main steps in the transformation
procedure.

1. For each vertex in the scene, we want to calculate the direction in which it is
to be projected, so that it appears correctly on a curved surface.

2. A Cylinder transformation procedure is performed on all the vertices at the
bottom half of the scene. The positions of where these vertices are to be
projected are calculated based on the position of the viewer, the projector,
and the projection surface.

3. A Sphere transformation procedure is performed on all the vertices on the top
half of the scene. The two transformation procedures are independent of each
other and do not need to be called in any specific order.

4. Once a projection point has been calculated and given to each vertex in the
scene, the transformed image can be rendered and then projected onto the
curved surface.

4.2.2 Mathematical Details

Here we describe the mathematical process of transforming the projection for both
the cylindrical and spherical parts of the surface. The basic idea here is to calculate
a projection position for each vertex. These positions are calculated to be on an
imaginary flat surface in front of the curved surface; however, the calculations are
based on the fact that the image is to be projected onto a curved surface.

32

4.2. THE VERTEX TRANSFORMATION METHOD

Figure 4.7: Top view of the projection on the cylindrical part of conCave, for the vertex
transformation.

Projection Setup

An overview of the setup is provided in Figures 4.7 and 4.8. They are very similar to
the ones introduced in Figures 4.2 and 4.3 with some minor differences. As we are
transforming the actual projection in this approach, our goal is to find a projection
position (xp, yp, zp) for each vertex (xb, yb, zb). We do this by first figuring out where
the viewer’s line of sight intersects the curved projection surface when looking at the
vertex. This is the straight line from the point (xo, yo, zo) to the point (xb, yb, zb).
The coordinates (x, y, z) describe where this line intersects the curved surface.

After the (x, y, z) coordinates are calculated we can proceed to finding (xp, yp, zp),
which are the projection coordinates of the current vertex.

33

CHAPTER 4. METHODS

Figure 4.8: Side view of the projection on the cylindrical part of conCave, for the vertex
transformation.

The red line corresponds to an imaginary flat surface on which the projection co-
ordinates of all the vertices are to be placed. We see that the point (xp, yp, zp) is
the correct projection coordinates for vertex (xb, yb, zb), because the line from the
projector (xj, yj, zj), to the projection coordinates intersects the curved surface at
the same point in which the viewer observes the vertex on the curved surface.

For further general information on the setup we refer to Section 4.1.2, as all re-
maining details are very similar to the ones in our previous approach.

Finding x, y and z

The first step is calculating the (x, y, z) coordinates. From the details in Figures 4.7
and 4.8, we obtain the same equation for φ and α as we do in Section 4.1.2. The
equations for θ and γ are now slightly different, but are still obtained in the same
manner as before:

tan θ =
xb − xo
zo − zb

=
x− xo
zo − z

(4.15)

tan γ =
yb − yo√

(zo − zb)2 + (xb − xo)2
=

y − yo√
(zo − z)2 + (xo − x)2

(4.16)

34

4.2. THE VERTEX TRANSFORMATION METHOD

From Equations 4.15 and 4.16 we then derive expressions for x and y:

x = xo +
(zo − z)(xb − xo)

zo − zb

=
zo(xb − xo)− z(xb − xo) + xo(zo − zb)

zo − zb
=
xbzo − xozo + xozo − xozb − xbz + xoz

zo − zb

=
xbzo − xozb + z(xo − xb)

zo − zb
(4.17)

y =
(yb − yo)

√
(zo − z)2 + (x− xo)2√

(zo − zb)2 + (xb − xo)2
+ yo

= (yb − yo)

√
(zo − z)2 + (x− xo)2

(zo − zb)2 + (xb − xo)2
+ yo

We substitute the x in this equation with the expression we obtain in Equation 4.17
to get the following expression for y:

y = (yb − yo)

√
(zo − z)2 + (xbzo−xozb+z(xo−xb)

zo−zb
− xo)2

(zo − zb)2 + (xb − xo)2
+ yo (4.18)

The vertex position and the position of the COP is already known, which leaves z
as the only unknown variable in Equations 4.17 and 4.18. For the cylindrical part
of the surface, we make use of Equation 4.7, and by also including the expression
for x derived in Equation 4.17, we obtain the following quadratic equation:

0 = x2 + z2 −R2

= (
xbzo − xozb + z(xo − xb)

zo − zb
)2 + z2 −R2

=
x2bz

2
o − 2xbzoxozb + 2z(xo − xb)xbzo + x2oz

2
b − 2z(xo − xb)xozb + z2(xo − xb)2

(zo − zb)2

+ z2 −R2

Multiplying by (zo − zb)
2 on both sides gives:

0 = x2bz
2
o − 2xbzoxozb + 2z(xo − xb)xbzo + x2oz

2
b − 2z(xo − xb)xozb + z2(xo − xb)2

+ (zo − zb)2(z2 −R2)

= z2((xo − xb)2 + (zo − zb)2) + z(2(xo − xb)(xbzo − xozb)) + x2bz
2
o − 2xbzoxozb

+ x2oz
2
b −R2(zo − zb)2

(4.19)

35

CHAPTER 4. METHODS

We can then solve for z using the quadratic formula:

z =
−b±

√
b2 − 4ac

2a
where:

a = (xo − xb)2 + (zo − zb)2

b = 2(xo − xb)(xbzo − xozb)
c = x2bz

2
o − 2xbzoxozb + x2oz

2
b −R2(zo − zb)2

For the spherical surface, we use Equation 4.12 together with the x and y we derived
in Equations 4.17 and 4.18 to obtain the following fourth degree equation:

0 = x2 + y2 + z2 −R2

= (
xbzo − xozb + z(xo − xb)

zo − zb
)2 + ((yb − yo)

√
(zo − z)2 + (xbzo−xozb+z(xo−xb)

zo−zb
− xo)2

(zo − zb)2 + (xb − xo)2
+ yo)

2

+ z2 −R2

=
(xo(zb − z)− xb(zo − z))2

(zo − zb)2
+ ((yb − yo)

√√√√(zo − z)2 + (xo−xb)2(z−zo)2

(zo−zb)2

(zo − zb)2 + (xb − xo)2
+ yo)

2 + z2 −R2

Using Maple [16], we solve this equation in the same way we do in Section 4.1.2,
and obtain the following solutions:

z =
b±
√
d

a
,
c±
√
e

a
where:

a = (xo − xb)2 + (yo − yb)2 + (zo − zb)2

b = zo(x
2
b − xbxo − yb(yo − yb)) + zb(x

2
o − xbxo + yo(yo − yb))

c = zo(xb(xb − xo) + yb(yb − 3yo) + 2y2o) + zb(xo(xo − xb) + yo(yb − yo))

d = (zo − zb)2(z2o(R2 − x2b − y2b)− 2zbzo(R
2 − xbxo − ybyo)− (xoyb − xbyo)2

+ z2b (R2 − x2o − y2o) +R2((xo − xb)2 + (yo − yb)2))

e = (zo − zb)2(z2o(R2 − x2b − y2b + 4yo(yb − yo))− 2zbzo(R
2 + ybyo − 2y2o − xbxo)

+ z2b (R2 − x2o − y2o) + y2o(R + 2xo − xb)(R− 2xo + xb)

− 2ybyo(R
2 − 2x2o + xbxo) +R2((xo − xb)2 + y2b)− x2oy2b)

36

4.2. THE VERTEX TRANSFORMATION METHOD

For the quadratic equation, we use the solution described in Equation 4.9 and for
the fourth degree equation, we use the one mentioned in Equation 4.13. The logic
behind choosing the proper solutions for both equations, is the same as the one
derived in our previous method, and we refer to Sections 4.1.2 and 4.1.3 for further
details on this matter. Once we have solved for z, we insert it into Equations 4.17
and 4.18 to find the corresponding values of x and y.

Finding xp, yp and zp

The value of zp determines the position of the imaginary planar surface on the z-
axis, and is already chosen prior to doing these calculations. This means that we
just have to deal with finding xp and yp to decide the projection position for the
vertex. From Equations 4.1 and 4.4, we derive the following expressions for xp and
yp:

xp =
(zj − zp)(x− xj)

zj − z
+ xj

=
(zj − zp)(x− xj)

zj − z
+
xj(zj − z)

zj − z

=
xzj − xzp − xjzj + xjzp + xjzj − xjz

zj − z

=
x(zj − zp) + xj(zp − z)

zj − z
(4.20)

yp =
(y − yj)

√
(zj − zp)2 + (xj − xp)2√

(zj − z)2 + (xj − x)2
+ yj

= (y − yj)

√
(zj − zp)2 + (xj − xp)2
(zj − z)2 + (xj − x)2

+ yj (4.21)

We then solve for xp and yp using the solutions for x and y obtained from Equa-
tions 4.17 and 4.18. For z, we use the solution obtained from Equation 4.9 or 4.13,
depending on which part of the surface we are currently working on.

Pseudocode for the Transformation

The pseudocode for both the cylinder transformation part and the sphere trans-
formation part in this approach are identical. The only difference is that they are
performed on different parts of the model and that the value of z is calculated using

37

CHAPTER 4. METHODS

different equations.

1 // Input : P, COP, and a l l the v e r t i c e s in the scene
2 for (int i = 0 ; i<numVertices ; i++)
3 {
4 V = V e r t i c e s [i] ;
5
6 // Solve f o r z us ing quadrat i c equat ion f o r
7 // c y l i n d e r t rans fo rmat ion or fourth−
8 // degree equat ion f o r sphere t rans fo rmat ion
9 z = So lve z (COP, V) ;

10
11 x = Compute x (COP, z) ;
12 y = Compute y (COP, z , x) ;
13
14 // Choose zp based on d e s i r e d z−p o s i t i o n
15 // f o r p lanar s u r f a c e .
16 zp = 0 . 0 ;
17
18 xp = Compute xp (P, x , zp) ;
19 yp = Compute yp (P, x , y , xp , zp) ;
20
21 P r o j e c t i o n p o s i t i o n [i] = (xp , yp , zp) ;
22 }

Listing 4.3: Cylinder, or sphere transformation pseudocode, for the vertex transformation.

The operations here are performed on each vertex instead of per pixel, which means
that the total number of operations is now dependent on the number of vertices in
the scene, and not the size of the image that is to be rendered.

38

CHAPTER 5

Implementation

This chapter covers the implementation of both transformation methods, and de-
scribes how we provide stereoscopic rendering of the transformed images.

Section 5.1 describes the working environment in which the implementation of the
different methods take place, and which tools, languages and libraries are used
throughout the development the code. Then, Section 5.2 provides a brief overview
of the execution of the program that handles the transformation methods. Section
5.3 describes the implementation of the pixel transformation method, and covers
both the sequential, and a massively parallel version implemented in CUDA. Then,
Section 5.4 looks at the vertex transformation method, which is implemented using
shaders. Finally Section 5.5 covers the stereoscopic rendering of the transformed
images.

5.1 Working Environment

The code developed during the course of this thesis is mainly written in C++ using
the Visual C + + IDE [17] on a Windows 7 platform. The choice of programming
language and platform is based on previous experience around writing and testing
code, when developing applications.

Certain parts of the code are written in CUDA C, which is the language used to
write code for the CUDA framework described in Appendix A, and some parts of
the code are written in OpenGL Shader Language (GLSL). The CUDA and GLSL
code are also written using the Visual C++ IDE with the aid of some add-ons to
enable support for these languages in the IDE. We use OpenGL for handling the
visualization, such as positioning the models, lighting and shading, and rendering
the different images for projection. Several open source libraries are used, including
GLEW and GLFW, and we also use some CUDA based libraries provided by the
CUDA SDK.

39

CHAPTER 5. IMPLEMENTATION

5.2 Program Overview

This section provides an overview of the program that handles the initialization
and execution of the transformation methods, and displays the transformed images.
Figure 5.1 shows the most important steps in the execution of the program, which
we explain in more detail in the list below.

Figure 5.1: Overview of the transformation program execution.

1. The first step is the initialization. This covers the initialization of every ele-
ment in the program, such as setting the window parameters, key handling,
initializing OpenGL and setting the projection matrix to be fit for a perspec-
tive projection with given parameters. If the program will be using the pixel
transformation method, we must allocate space on device memory to receive
the positions of the projector and viewer. If the program will be using the ver-
tex transformation method, we must load and initialize the shader files that
will be used for the transformation.

40

5.3. PIXEL TRANSFORMATION METHOD

2. We enter the main loop of the program. The first step here is to update the
counters for the time and the frame count so that we can calculate the amount
of time and frames that have passed in total, and since the previous frame was
rendered.

3. Any keyboard commands that are given are checked at this point, and corre-
sponding actions are carried out. Commands for exiting the program, toggling
various features such as transformation and stereo rendering, and also navi-
gating within the projection are all handled at this point.

4. The transformation phase depends on what method of transformation has
been set prior to starting the program. The program branches off into differ-
ent function calls based on whether it is the sequential pixel transformation
method, parallel pixel transformation method, or the vertex transformation
method that has been chosen. If the program is set to run the sequential
pixel transformation method, then it first renders and image using the per-
spective projection matrix, and then calls two sequential functions for doing
the transformation of the cylindrical part and the spherical part of the image.
If the parallel pixel transformation method is chosen, then the program calls
functions that communicate with the device, transfers the image data and all
other the necessary information over to device memory, and has all the com-
putation done on the device through kernel functions. The transformed image
is then returned to the host memory. If the vertex transformation method is
chosen, then the program calls a function that runs the shader programs which
transform the positions of all the vertices in the model.

5. Finally, the finished image is rendered and drawn to the buffer, so that it can
be displayed on screen. If stereo rendering is enabled, then it will create a
stereo pair of the transformed scene. This concludes a single iteration of the
main loop, and the program proceeds to create the next frame.

5.3 Pixel Transformation Method

This section describes the implementation of the pixel transformation method de-
scribed in Section 4.1. Two different versions of this method are developed, one
sequential version coded in C++, and one massively parallel version using C++
and CUDA. The implementations (especially the sequential one) are very straight-
forward and follow the pseudocodes presented in Section 4.1. They can be found in
Listings 4.1 and 4.2. Although very similar to the pseudocode, some intermediate
steps were added to simplify common expressions, such that the calculations per-
formed are much more readable and closer to the form in which they were described
in Section 4.1. The sequential code will not be described in any further detail, but
we will be looking more closely at the parallel version and describing key parts of
the code.

41

CHAPTER 5. IMPLEMENTATION

5.3.1 Computing in Parallel

The parallel version utilizes the CUDA framework for doing all the heavy computing
on the GPU, and all parts of the code that communicates with, and relies on the
graphics processor, is written in CUDA C. The actual code is still very similar to
the sequential version; however, instead of being run sequentially through a doubly
nested for-loop, the operations are run in parallel across thousands of threads at a
time. This means that each thread is responsible for calculating and outputting the
results for a handful of pixels. To accomplish this, we must create a thread assign-
ment pattern for the kernel function (a function that is run on the GPU device) that
splits the amount of work among several threads. When we then run the kernel, we
provide it with the number of threads it requires to perform its operation on the
given input. One example of how different threads are handled in the kernel can be
seen in Listing 5.1.

1 // Cal l with n threadblocks ,
2 // each conta in ing WIDTH/n threads .
3
4 g l o b a l void TransformationKernel (. . .)
5 {
6 int i = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;
7
8 // Transformation code , where each thread , i ,
9 // i s r e s p o n s i b l e f o r row i o f the image

10 // . . .
11 }

Listing 5.1: Threads in a kernel

The variables blockIdx, threadIdx and blockDim are built-in variables that are meant
to help the kernel obtain the id of the current thread, the id of its thread block,
and the dimensions of the threadblock. In line 6 of the code in Listings 5.1, we
use these built-in variables to find the global id of current thread within the 3-level
thread hierarchy. We can then proceed with giving commands to each thread based
on their global id. The thread hierarchy is explained in more detail in Appendix A.

Row per Thread

If our transformation kernel follows the thread assigning pattern displayed in Listing
5.1, we can remove the outermost for-loop present in the pseudo code in Listings 4.1
and 4.2, and give each thread the task of computing an entire iteration of that loop.
This means that if the width of the image is 512 pixels, instead of having a for-loop
going from 0 to 511, we run our kernel on 512 separate threads, each having a unique
global id between 0 and 511. The thread whose global id corresponds to the index i
is responsible for everything that is done during iteration i in the sequential version.
If the dimensions of the image are 512x512, we have made the transformation go a
lot faster by diving the work of calculating 512x512 pixels over 512 threads.

42

5.3. PIXEL TRANSFORMATION METHOD

Pixel per Thread

But there is no reason to stop there. As the GPU is capable of having hundreds of
thousands of threads working in parallel, we can code the kernel in such a way that
the calculations for each pixel are done by a separate thread. An example of this is
shown in Listing 5.2.

1 // Cal l with WIDTH∗HEIGHT/(a∗a) number o f two−dimens iona l
2 // threadblocks , each conta in ing a ∗ a threads .
3
4 g l o b a l TransformationKernel (. . .)
5 {
6 int g l o b a l b l o c k i d = blockIdx . x ∗ blockDim . x ∗ blockDim . y ;
7
8 int cu r r en t th r ead = g l o b a l b l o c k i d
9 + (threadId . x + blockDim . x ∗ threadIdx . y) ;

10
11 int i = t modulo WIDTH;
12 int j = (t − i) / WIDTH;
13
14 // Transformation code , where each thread , (i , j) ,
15 // i s r e s p o n s i b l e f o r p i x e l [i , j] o f the image
16 // . . .
17 }

Listing 5.2: One threads per pixel

In this example the kernel is called with b·b
a·a thread blocks, each containing a two

dimensional array of threads. Each block has axa threads, and bxb defines the reso-
lution of the image. In total this makes b·b

a·a · (a ·a) threads, which is also the number
of pixels in a bxb image. The reason we cannot simply call the kernel with just n
thread blocks, each containing b · b/n threads, is due to the limitations of the thread
hierarchy. The allowed grid size is usually a lot larger than the allowed block size,
which means that we must resort to clever ways of working around this problem so
that we can still assign a similar assignment of pixels to a large number of threads.
The thread assignment code we present in Listings 5.2 first calculates the thread’s
global id in lines 6-8, which is a number between 0 and b · b − 1. Then it finds the
corresponding pixel position that number would have on a two dimensional array
of size bxb in lines 10-11. Each thread is then responsible for doing calculations
concerning the pixel located at that position.

Although using one thread per pixel does parallelize the code a lot more, it does
not necessarily mean that it is always the best choice. The code used for assigning
one thread per pixel requires a lot more operations than the code used for assign-
ing a thread for each row, and this needs to be taken into account. It depends
on how much the actual computation benefits from such parallelism and whether

43

CHAPTER 5. IMPLEMENTATION

this performance gain is enough to hide the overhead cost of the pixel-per-thread
assignment.

5.3.2 Transformation Kernels

Several different kernel functions are implemented to experimentally find the com-
bination of kernels that give the highest performance:

• CylinderTransformKernel〈〈〈 ... 〉〉〉(...)

• CylinderTransformKernel2〈〈〈 ... 〉〉〉(...)

• SphereTransformKernel〈〈〈 ... 〉〉〉(...)

• SphereTransformKernel2〈〈〈 ... 〉〉〉(...)

• CombinedTransformKernel〈〈〈 ... 〉〉〉(...)

• CombinedTransformKernel2〈〈〈 ... 〉〉〉(...)

Two versions of the cylinder transformation function and the sphere transformation
function are made. In the first version (“number 1” kernels), each thread is as-
signed to calculate the values of an entire row of pixels, while in the second version
(“number 2” kernels), each thread is assigned to a single pixel in the image. These
thread assignment patterns are further described in Section 5.3.1 and Listings 5.1
and 5.2. Two versions of a combined kernel were also created. The combined kernel
does both the sphere and cylinder transformations in one go, and the two different
versions correspond to our two different pixel-thread assignment patterns. All six
kernels will be tested under different conditions to find the best performing kernel
function, or combination of kernel functions.

Each kernel receives the same input. These include a list of variables needed for
the transformation, such as the positions of the projector and the viewer, an array
of pixels representing the input image, and an array of pixels corresponding to the
output image. These values must be located in device memory for the kernels to
be able to use them as input and output variables. The position of the viewer and
projector are located in host memory, and must be copied over to device memory
prior to each kernel call. This is done by first allocating enough space for the vari-
ables in device memory by calling the cudaMalloc(...) function, and then calling
the cudaMemcpy(...) function to copy data from host memory to device memory.
It is not necessary to do the same for the input image, since the image is generated
by the graphic card, thus already located in device memory. The input and output
images only need to be placed in special buffer objects that can be accessed by both
CUDA and OpenGL. The kernels and OpenGL functions can then freely exchange
data through these buffer objects without having to do any memory transfers to or
from host memory.

The number of threads per thread block and the number of thread blocks per grid
also need to be specified when calling a kernel. This is done within the three angle
brackets located next to the name of the kernel function. For the kernel functions

44

5.4. VERTEX TRANSFORMATION METHOD

that follow the one row of pixels per thread pattern, we specify the grid dimension
to be (n, 1, 1), making it a one dimensional array containing n thread blocks, and
the block dimension to be (w/n, 1, 1), where w is the number of pixels corresponding
to the width of the image. We set the value of n based on the width of the input
image and how many threads per thread block the GPU can handle. When a kernel
that is using the thread assignment pattern displayed in Listing 5.1 is called with
these specifications, each thread is given the task of computing the values of w pixels.

For the kernel functions that follow the one pixel per thread pattern, the specifi-
cations for the dimensions are dependent on how many threads per thread block the
GPU can handle and the maximum acceptable number of thread blocks per grid.
We also need to specify the block dimension to be a two dimensional array. This
means that if the maximum allowed dimension for the thread block is (t, t, 1) and the
resolution of the image is bxb pixels, the dimension of the grid (which is the number
of thread blocks necessary) is given by (b·b

t·t , 1, 1). For example if the size of the image
is 512x512 pixels and the maximum thread block dimension the device can handle
is (16, 16, 1), we need to set the grid dimension to (1024, 1, 1) to be able to have one
thread per pixel. No changes need to be made to the code inside the kernel; as we
can see in Listings 5.2 it will automatically assign each thread to its corresponding
pixel based on the dimensions of the image and the thread block size. The kernels
that only deal with one transformation method are naturally called with only half
as many threads in the y dimension of the thread block. If the kernel is only to be
working on a 512x256 array then we can specify the thread block dimension to be
(16, 8, 1) and grid dimension to be (1024, 1, 1).

The full source code for the CylinderTransformKernel2 and SphereTransformK-
ernel2, and how they are called from the host can be seen in Appendix B.1.

5.4 Vertex Transformation Method

Here we describe the implementation of the vertex transformation method described
in Section 4.2. We write the code in OpenGL Shader Language (GLSL), since we
are working directly on the programmable shaders in the graphics pipeline. The
implementation very closely follows the pseudo code presented in Listing 4.3, except
for the fact that the operations on each of the vertices are run in parallel. Unlike
the implementation of the pixel transformation method described in Section 5.3, this
implementation has no control over the number of threads that are used to perform
the operations. All decisions regarding the number of threads, as well as any type
of hierarchy, is handled by the device and cannot be altered by the program.

5.4.1 Defining the Shaders

The two programmable parts of the graphics pipeline that must be defined for this
implementation are the vertex shader and the fragment shader. The vertex shader is
responsible for doing all calculations on the vertices in the scene, while the fragment
shader (also referred to as the pixel shader), is responsible for doing all calculations
on a pixel by pixel level.

45

CHAPTER 5. IMPLEMENTATION

Since this method revolves around transforming the projection by finding new pro-
jection positions for each vertex in the scene, all of the code for the transformation is
written in the vertex shader. The fragment shader does some pixel-by-pixel shading
and lighting of the scene based on the information it receives from the vertex shader,
but does not play any part in the actual transformation process.

To be able to use these shaders for vertex and pixel manipulation, the program
needs to be able to load and read the shader code, and then bind the vertex and
fragment shaders to the process of rendering the image. This will let the shader
programs take over the responsibility of calculating the projection of the vertices
and values the pixels. Input arguments, such as the positions of the viewer and the
projector, need to be passed to the shader programs through special function calls
before the rendering takes place. This works in somewhat the same way as how
input arguments are passed for the CUDA transform kernels in Section 5.3.2. The
full vertex and fragment shader code used in this transformation are displayed in
Appendix B.2.

5.4.2 Finding The Projection Coordinates

The final output of the vertex shader defines the projection of each vertex in the
scene, and provides the coordinates that they should have when displayed on the
screen or a projection surface. This is usually done using a projection matrix, a
model view matrix, and the positions of the vertices in the scene. For each vertex
its projection point is calculated in the following way:

1 void main (void)
2 {
3 g l P o s i t i o n = g l Pr o j e c t i o nM at r i x
4 ∗ gl ModelViewMatrix ∗ g l Ver t ex ;
5 }

Listing 5.3: Finding the projection coordinates.

The variable gl Vertex is a vector holding the position of the current vertex, and the
vector gl Position is the output of the vertex shader and defines the screen/surface
coordinates of this vertex. These are the coordinates needed for projection. Both
the model view matrix and the projection matrix are defined prior to running the
shader, and they are received and stored in the variables gl ModelViewMatrix and
gl ProjectionMatrix. The model view matrix defines the coordinate system that is
used to place and orient the objects in the scene, and also to combine the geometric
transformations of the objects with the transformation to this coordinate system.
The projection matrix decides how the scene is to be projected onto the screen. For
example, if it should be an orthogonal projection or a type of perspective projection.

46

5.4. VERTEX TRANSFORMATION METHOD

Since matrices can only describe linear transformations, it is not possible to de-
fine a projection matrix that can create an accurate and mathematically correct
transformation of the scene intended for a curved surface. This is why we need
to write specific vertex shader code that can define the projection of the vertices
based on where they are to be displayed on the curved surface. One possibility is to
first do the transformation described in Listings 5.3, and then make changes to the
gl Position vector based on how they will be projected onto the curved surface. But
the method we describe in Section 4.2 is able to still calculate the correct projection
for each vertex without doing this transformation first. We are able to avoid using
the projection matrix altogether, thus avoiding the overhead of the matrix-matrix
multiplication operation between the model view and projection matrix, as we can
see below:

1 uniform vec3 P;
2 uniform vec3 COP;
3 void main (void)
4 {
5 vec4 vertPos = gl ModelViewMatrix ∗ g l Ver t ex ;
6 float xb = vertPos . x ;
7 float yb = vertPos . y ;
8 float zb = vertPos . z ;
9

10 // Transformation code to f i n d (xp , yp zp)
11 // based on P, COP and (xb , yb , zb)
12 // . . .
13
14 g l P o s i t i o n . x = xp ;
15 g l P o s i t i o n . y = yp ;
16 g l P o s i t i o n . z = zp ;
17 }

Listing 5.4: Finding the projection coordinates without the projection matrix.

The point vertPos, which we get from this equation, is the position of the ver-
tex in the coordinate system defined by the model view matrix. This point also
corresponds to the vertex position (xb, yb, zb) described in Figures 4.7 and 4.8. From
this point on, the implementation closely follows the pseudo code in Listings 4.3 to
find the projection coordinates (xp, yp, zp) for each vertex.

5.4.3 Adding New Vertices

As mentioned earlier in Section 4.2, the vertex transformation does not provide a
pixel perfect transformation of the scene. The reason for this is that we are only
calculating the projection points of the vertices. But during the rasterization stage
of the graphics pipeline, where the vertex representation is converted to a pixel
representation, the lines between the vertices are drawn by interpolating between

47

CHAPTER 5. IMPLEMENTATION

their positions, meaning that only straight lines can be drawn between each pair of
vertices. The outcome of this limitation is that this method will give a very poor
transformation of scenes where the vertices are far apart from each other.

One possible solution to this problem is to insert new vertices into the scene where
they seem appropriate. We do this by inserting n number of new vertices between
two vertices that would originally form a line, thus making it n consecutive lines,
each 1/n the size as the original. This will improve the accuracy of where the pixels
are placed during the rasterization, since there are now a lot more vertices represent-
ing the same area as before. The number of new vertices we need to add between a
pair of two old vertices should be dependent on three things:

1. The original distance between the two vertices.

2. The distance the vertices have to the COP .

3. The resolution at which the scene will be rendered in.

The idea is to prevent the perceived distances between two vertices from becoming
so large that it will affect the visual outcome of the transformation. If we move the
object closer to the COP it will appear larger, which increases the perceived distance
between its vertices. This also happens when the scene is rendered to a much bigger
resolution, making the object appear larger and thus pushing the vertices within
the object further apart. For these reasons, it might be necessary to add additional
vertices to the object to give the transformed image a much smoother appearance.
Naturally, when the object is further away from the viewer, or the image resolutions
is very small, it may not be necessary to add as many new vertices to get the same
effect. We implement the following method to determine how many new vertices we
should add between a pair of vertices in an object:

1 void c o n s t r c t o b j e c t (. . .)
2 {
3 V max = 16 ; //maximum number o f new v e r t i c e s we
4 //want to add between two old v e r t i c e s
5
6 for (int i =0; i<num vert i ces ; i++)
7 {
8 // draw a ver tex . . .
9

10 // f o r each pa i r o f v e r t i c e s we do the f o l l o w i n g :
11 if (distance to COP <= minimum distance)
12 {
13 num new vert ices = V max ;
14 }
15
16 else

17 {
18 num new vert ices = f l o o r (s c a l e D e t a i l ∗ v e r t d i s t a n c e
19 ∗ image width / d i s t anc e) ;

48

5.5. STEREOSCOPIC RENDERING

20 }
21
22 // draw the new v e r t i c e s . . .
23 }
24 }

Listing 5.5: Inserting additional vertices.

The number of new vertices we add between a pair of vertices is given by: The
original distance between the two vertices multiplied by the resolution of the image,
and then divided by the average distance to the COP . It is also multiplied by a
constant value that has the purpose of scaling the number, and thus controlling the
level of detail and smoothness in the deformation of the image.

Although this is a very simple method, it can soon become very costly in terms
of performance. The new vertices cannot be added from the vertex shader, so they
must be added before starting the transformation. This means that the process of
adding new vertices is handled purely on the CPU, so for huge models consisting
of a large number of vertices this may cause a performance issue. However, highly
detailed models that already consist of a large number of vertices will not necessarily
need new additional vertices for the transformed image to appear correctly.

5.5 Stereoscopic Rendering

Although projecting the transformed image on a curved surface already provides a
certain amount of depth perception to the viewer, we can enhance the feeling of
depth by rendering the transformed image for stereoscopic viewing. We do this by
creating a stereo pair of the scene, as described in Section 2.2.2.

When only rendering a single image for regular monoscopic viewing, the position of
the COP , as seen in Figures 4.1 - 4.3, corresponds to the reference point in Figure
2.4. When creating a stereo pair, we need to render two images with their respective
COP s corresponding to the two eyes in Figure 2.4. We render the first image where
we displace the COP a distance d to the left of the reference point, and we render
the second image with the COP displaced a distance d to the right. As the viewing
direction of the COP is always parallel to the z-axis in our implementation, we only
shift the position of the COP in the x direction, as we can see in Listings 5.6 and
5.7. The viewing directions of the displaced COP s are still parallel to the z-axis of
the coordinate system.

We implement two types of stereoscopic rendering of the projection, known as in-
terlaced stereo rendering, and quad-buffered stereo rendering. They both fall under
the classification of active stereo, which we discussed in Section 2.2.3, and require
special shutter glasses to be viewed. The main difference between these two types
is that interlaced stereo rendering combines the two images of the stereo pair into
one single image for each frame, while quad-buffered stereo rendering shows both

49

CHAPTER 5. IMPLEMENTATION

images one after another for each frame.

5.5.1 Interlaced Stereo Rendering

Interlaced stereo rendering is done by rendering the first image of the stereo pair
by only drawing every odd numbered line of the image, then rendering the second
image of the stereo pair by only drawing the even numbered lines of the image, and
finally interweaving the two images into one image.

We implement this in our code by creating a stencil mask where every other row has
the value ‘1’ and the remaining rows are ‘0’. Then, by performing simple boolean
operations between the stencil mask and the stereo pair images, we render the two
images as shown in Figure 5.2. The final image consists of all the even lines from
one image and all the odd lines from the other image. Below we provide some pseu-
docode of the rendering procedure.

Figure 5.2: Rendering the stereo pair using a stencil mask.

1 void Render Stereo ()
2 {
3 float e y e s e p e r a t i o n = 0 . 0 5 ;
4
5 move COP(− eye s epe ra t i on , 0 , 0) ;
6 draw () ; // (l e f t image)
7 trans form () ;
8
9 move COP(eye s epe ra t i on , 0 , 0) ;

10 draw () ; // (r i g h t image)
11 trans form () ;
12
13 glEnable (GL STENCIL TEST) ;
14 g lS t enc i lFunc (GL NOTEQUAL, 1 , 1) ;
15 draw l e f t image () ;
16 g lS t enc i lFunc (GL EQUAL, 1 , 1) ;
17 draw r ight image () ;

50

5.5. STEREOSCOPIC RENDERING

18 g l D i s a b l e (GL STENCIL TEST) ;
19 }

Listing 5.6: Interlaced stereo rendering.

The stereo rendering procedure is slightly different for both our transformation
methods. The pseudocode in Listings 5.6 is similar to how we render the images
when performing the pixel transformation method. For this method, the draw func-
tion is called a total of four times when rendering a single frame. First we draw
the scene twice (once for each eye), then perform transformations on both images
before finally rendering each of them again while doing a stencil test. For the ver-
tex transformation method, the draw function is only performed twice since we are
already rending the transformed image for each eye on the first go.

5.5.2 Quad-buffered Stereo Rendering

The usual way a scene is rendered in OpenGL is through double buffering. This
means that the rendered frames are being drawn consecutively on two different
buffers, such that while the first frame is being displayed by the first buffer, the sec-
ond frame is being rendered to the second buffer. Then the third frame is rendered
to the first buffer while the second buffer is being displayed, and so on. Quad-
buffered rendering utilizes four buffers, providing double buffering for each eye. The
two buffers corresponding to one eye are swapped in sync with the two buffers cor-
responding to the other eye. In the pseudocode below we see that a separate buffer
is provided for each eye. For the next frame two new buffers will be used to render
the images while the current buffers are displayed on screen.

1 void Render Stereo ()
2 {
3 float e y e s e p e r a t i o n = 0 . 0 5 ;
4
5 move COP(− eye s epe ra t i on , 0 , 0) ;
6 glDrawBuffer (GL BACK LEFT) ;
7 draw () ; // l e f t image
8 trans form image () ;
9 draw () ;

10
11 move COP(eye s epe ra t i on , 0 , 0) ;
12 glDrawBuffer (GL BACK RIGHT) ;
13 draw () ; // r i g h t image
14 trans form image () ;
15 draw () ;
16 }

Listing 5.7: Quad-buffered stereo rendering.

51

CHAPTER 5. IMPLEMENTATION

It should also be noted here that the pseudo code in Listings 5.7 corresponds to
the pixel transformation method. Even though there is no stencil test here, the
pixel transformation method still require four draw calls when rendering in stereo,
since the transformation and drawing procedures are separated. The vertex trans-
formation can still be rendered with just two.

This rendering method is much more effective than the previous one, as there is
no need for doing any stencil testing. However, quad-buffering requires special sup-
port by the graphic card, and is not available on most cards. To be able to display
a stereoscopic image correctly through quad-buffered rendering, we require special
displays or projectors that can display the image at a much higher frequency (120Hz)
than standard displays, in addition to shutter glasses that can synchronize with this
frequency.

52

CHAPTER 6

Benchmarking and Results

This chapter describes the benchmarking stage of both transformation methods.
The different testing routines, as well as the obtained results, will be presented and
discussed thoroughly in the following sections.

Firstly, in Section 6.1 the testing environment which we use to measure the per-
formance and various other results is described. Secondly, Section 6.2 presents
the results and discussion regarding the benchmarking of the pixel transformation
method. Finally, in Section 6.3 we display the results obtained from testing vertex
transformation method, and compare the outcome of both transformation methods
for various problem areas.

6.1 Testing Environment

As the two transformation methods we developed during the course of this thesis are
both massively parallel methods, it was important that we tested them on several
different graphics cards. However, since the pixel transformation code was written
in CUDA, we were limited to only testing on NVIDIA GPUs. These include the
GEFORCE GT 240M, the GEFORCE GTX 280, the QUADRO 5800, and the
TESLA C2050, which was also the main graphics card present in our benchmarking
system. The system housing the GEFORCE GT240M was used mostly during
the stages of implementation and debugging. The QUADRO card was used for
testing quad-buffered stereo rendering, as it was the only type of NVIDIA card that
supported this rendering mode. Detailed specifications of our main benchmarking
system can be seen in Table 6.1.

53

CHAPTER 6. BENCHMARKING AND RESULTS

Hardware
CPU Intel Core 2 Quad
CPU clockspeed 2.83 GHz
Memory size 4 GB
Graphics card #1 NVIDIA TESLA C2050
Graphics card #1 memory 4 GB
Graphics card #2 NVIDIA GEFORCE GTX280
Graphics card #2 memory 1 GB

Software
OS Windows 7
Visual Studio ver. 2008, with SP1
NVIDIA graphics driver ver. 263.06
CUDA toolkit ver. 3.2

Table 6.1: Specifications of the benchmarking system.

All benchmarking results which we present and discuss in the following section are
from testing the code on this system, using the TESLA C2050 GPU.

6.2 Pixel Transformation Results

Here we present and discuss the performance and visual results of testing the pixel
transformation method. We tested both the sequential and parallel versions, includ-
ing all the kernels described in Section 5.3.2.

6.2.1 Deformation of The Image

When we transform the image, we are deforming it in a way that is exactly the
opposite to the geometry of the curved surface. Basically, we are bending the im-
age in the reverse shape of the projection surface, so that when we project it, the
shape of the surface and the shape of the image cancel each other out, and the scene
appears correctly. In Figure 6.1, we show how a scene looks before and after the
transformation has taken place. When rendering this scene, the position of P was
set to be at (0, 0, 2.5), and the position of the COP at (0, 0, 1). In other words, this
scene is meant to be projected from a position right in front of the projection sur-
face. Furthermore, the viewer should be standing right between the projector and
the surface. If the viewer moves to the left or right, we would need to project an
image with different COP coordinates. Similarly, repositioning the projector also
means that we will need to change the P coordinates and render a new image for
the projection to appear correctly. The grey area at the top half of the image corre-
sponds to the part of the image that will never fall on the curved projection surface.

The top half of the image has been deformed into a circular shape to fit the spherical
part of the projection surface. When viewing on a regular display or a flat surface,

54

6.2. PIXEL TRANSFORMATION RESULTS

Figure 6.1: (a) Original image before transformation, (b) transformed image.

it will appear as if this part of the image forms a convex quarter-sphere, as we can
see in Figure 6.1b. Since the intended projection surface has the shape of a concave
quarter-sphere, it will cause this part of the image in Figure 6.1b to appear as it
does in Figure 6.1a when projected onto it. The same applies for the lower half of
the image, which appears as if it is being displayed on top of a convex cylinder in
Figure 6.1b. The deformation of the lower half is not as clear in this image, but
we can see from the object close to the lower edges that there are several changes
there as well. The torus in the middle of the image remains mostly the same. The
only visible difference there is that it appears larger, which is also explained by the
convex deformation of the image.

6.2.2 Transformation Kernels

In Section 5.3.2 we presented six different transformation kernels we developed to
find the most efficient way of performing the transformation of the scene. We tested
these kernels by running each of them 1000 times for different dimensions of the
input image. Then we calculated the average time each kernel took for each of the
image sizes. The NVIDIA Compute Visual Profiler was used to record the run time
of the kernels functions. Since the kernels perform the same calculation on each
pixel regardless of their content, it does not matter what is actually on the input
image we send to the kernels. As far as the execution time is concerned, the only
deciding factor is the number of pixels in the image, as this affects the total number
of operations that must be performed. The actual pixel values in the input image
have no bearing on the run time of the kernels.

Individual Kernel Results

The results of the individual kernels are displayed in Figure 6.2 and Table 6.2. Note
that the kernel functions post-fixed by the number 1 follow the row-per-thread pat-
tern, while the ones post-fixed by the number 2 compute one pixel per thread, as
described in Section 5.3.2.

55

CHAPTER 6. BENCHMARKING AND RESULTS

What we can immediately notice from the results, is that the pixel-per-thread as-
signing pattern seems to work far better than the row-per-thread pattern for all
problem sizes. If we had tested on lower image dimensions than 128x128, the over-
head of assigning one thread per pixel as we showed in Listings 5.2, might have been
large enough to hinder the performance of the “number 2” kernels.

Figure 6.2: Execution time of the single transformation kernels, for different image sizes.

CylinderT..1 CylinderT..2 SphereT..1 SphereT..2
128x128 63.07µs 6.3µs 105.81µs 6.81µs
256x256 199.93µs 14.28µs 229.24µs 14.65µs
384x384 343.92µs 28.97µs 386.81µs 28.35µs
512x512 518.92µs 45.3µs 586.24µs 46.91µs
640x640 729.45µs 71.49µs 856.37µs 72.05µs
768x768 1008.15µs 101.71µs 1165.27µs 105.47µs
896x896 1363.94µs 142.19µs 1546.23µs 152.187µs

1024x1024 1805.74µs 176.35µs 1993.06µs 196.15µs

Table 6.2: Execution time of the single transformation kernels, for different image sizes.

As we increase the problem size, the kernels that are using the pixel-per-thread
pattern seem to gain a tremendous speed advantage over their respective counter-
parts.

For the sphere transformation kernel, the reason for this is mainly behind calcu-
lating the value of z. It consists of many operations, and needs to be recalculated

56

6.2. PIXEL TRANSFORMATION RESULTS

for each pixel. Since it is by far the most expensive step in the algorithm, we gain a
very large speedup in parallelizing this process. For the CylinderTransformKernel2,
the speedup over its corresponding row-per-thread equivalent is not quite as big,
but still large enough to make a big difference. This is because recalculating the
value of z, which is also the most expensive step, only needs to be done once per
column of pixels in the image, and not per pixel. Using the pixel-per-thread pat-
tern, this step is performed on a per-pixel basis instead, so this alone really should
not provide much of a speedup. We believe that the speed advantage gained by
the CylinderTransformKernel2 is due to parallelizing the computations of all other
variables such as x, y, xc and yc. The combined cost of these computational steps is
large enough such that, when parallelized, it hides the overhead of assigning threads
in the pixel-per-thread pattern. In general, the “number 2” kernels seemed to be at
least 10 times faster than their equivalent “number 1” kernels.

Combined Kernel Results

In Table 6.3 we see the results of testing the combined kernels. By combining the
cylinder and sphere transformation kernels, it is possible to combine similar steps
from both functions into a single step, and thereby reduce the number of operations
that are performed. The combined kernels used close to only half the number of
registers that their respective individual kernels used together, in addition to having
a much higher level of warp occupancy. However, there still did not seem to be
much of a speedup when comparing the run times. For both types of thread assign-
ing patterns, the individual transformation functions together seemed to perform
a little bit better than their combined version. This may be due to the branching
in the code introduced by fusing together both transformation procedures. Since
the function needs to perform different operations, and relies on different variables
depending on which part of the image is being transformed, if and else statements
are used to guide the execution of the code. This may hamper the control flow of
the kernel and force parts of the code into serial execution.

CombinedTransformKer..1 CombinedTransformKer..2
128x128 214.78µs 10.09µs
256x256 521.53µs 26.99µs
384x384 855.38µs 56.07µs
512x512 1296.33µs 93.13µs
640x640 1814.79µs 147.28µs
768x768 2481.54µs 212.25µs
896x896 3333.01µs 299.36µs

1024x1024 4262.59µs 378.91µs

Table 6.3: Execution time of the combined transformation kernels, for different image
sizes.

Based on these results, we conclude that the CylinderTransformKernel2 and Sphere-
TransformKernel2 are definitely the best choices for transforming an image that is

57

CHAPTER 6. BENCHMARKING AND RESULTS

within relevant dimensions. These kernels will fail for very large problem sizes, where
the number of required threads is larger than the number of threads the GPU is
capable of providing. With the Tesla C2050, we were able to transform a 4096x4096
image using these kernels, but for all other graphics cards the maximum possible
image size was much smaller.

6.2.3 Sequential vs Parallel

We tested the parallel implementation of the transformation method using the indi-
vidual “number 2” kernels against the sequential implementation of the same method
to see how much of a speedup the program as a whole gains due to parallelization.
We executed the entire code, which includes drawing an animated scene, lighting
and shading of the models in the scene, and stereoscopic rendering of the trans-
formed image. The animated scene consisted of an orange teapot bouncing around
within a cubic domain. The shading was handled by OpenGL calls and covered basic
ambient and diffuse shading of the object with regards to a single light source. For
stereoscopic projection of the scene, we used the interlaced stereo rendering method
described in Section 5.5.1. We tested for the same problem sizes as we did when
testing the kernel functions in Section 6.2.2. For each image dimension, we ran the
sequential and parallel versions of the program for two minutes and then calculated
the average number of frames that were rendered per second. The results can be
seen in Figure 6.3 and Table 6.4.

Figure 6.3: Average number of frames per second for the sequential and parallel pixel
transformation code, for different image sizes.

58

6.2. PIXEL TRANSFORMATION RESULTS

Sequential Transform Parallel Transform Speedup
128x128 103.27 270.63 2.62
256x256 37.94 154.3 4.07
384x384 16.41 98.86 6.02
512x512 9.73 66.7 6.86
640x640 6.21 43.25 6.96
768x768 4.42 31.99 7.24
896x896 3.22 23.95 7.44

1024x1024 2.49 21.8 8.76

Table 6.4: Average number of frames per second for the sequential and parallel pixel
transformation code, and the speedup of the parallel code over the sequential one, for
different image sizes.

The green horizontal line at 60fps marks the maximum frame refresh rate that most
displays and projectors have. Any animation above the rate of 60fps gets clamped
to this frequency when actually viewing the projection on the display. We disabled
this functionality to be able to see the true number of frames rendered per second.

Comparing Average Frames per Second

The average frame rate of the sequential code immediately fell below 60fps, even for
small problem sizes, while for the parallel code it was able to stay above this rate,
even for dimensions as large as 1024x1024 pixels. As we increased the resolution
further past 1024x1024, the parallel code also eventually fell below this line, but
not until we reached a fairly large image size. However, the frame rate of 60fps is
only the refresh rate of the display, and going below does not always imply loss of
fluidity in the animation. It also depends on the amount of detail in the scene, the
variations in the lighting, and how fast things are moving around. A frame rate of
24 is the de facto standard for animated motion pictures; for animations as simple
as the ones we have used in our testing, the required frame rate for the human eye
to perceive fluid motion is far less. Even for the problem size of 2048x2048, the
parallel version was able to render at an average rate of 36,82 frames per second,
which was enough to provide a visually pleasing and fluid 3D animation of our test
scene. The sequential code on the other hand, was unable to obtain the same result
even for much smaller images.

When we disabled stereoscopic rendering, both the parallel and sequential versions
of the program performed almost twice as fast for all dimensions of the image. But
even at this rate, the sequential code was just barely able to produce a fluid anima-
tion for images of size 512x512. The parallel version, however, was able to provide
a frame rate of 20 frames per second for the image size of 4096x4096. The part of
the rendered animation that was visible on our display (which only had a resolution
of 1920x1200) seemed to have an acceptable level of smoothness and speed to still
be visually pleasing for the human eye.

59

CHAPTER 6. BENCHMARKING AND RESULTS

Speedup of The Transformation Functions

For the problem size of 1024x1024 pixels, the parallel version ran approximately 40
times as fast as the sequential version. This may not seem that impressive when
considering the number of pure computational operations within the transformation
that is parallelized, but this “low” speedup is actually due to all the parts of the
program that are forced to run sequentially for both versions. This includes draw-
ing the models according to their updated coordinates, updating the model view
matrix, updating counters and calculating statistics, performing a stencil test for
stereo rendering, etc. To determine the speedup purely from parallelizing the trans-
formations, we measured the combined runtime of both sequential transformation
functions, and compared them to the combined runtime of both parallel transfor-
mation functions from Table 6.2. For the image size of 512x512 the cylinder and
sphere transformation kernels together spent a total average of 92,21µs. Compared
to the run time of 45,28ms measured for the sequential transformation, the speedup
is 491,05.

6.3 Vertex Transformation Results

Here we present and discuss the performance and visual results obtained from test-
ing the vertex transformation method. We also compared it to the parallel pixel
transformation test results presented in Section 6.2.

6.3.1 Visual results

As we covered earlier in Section 5.4.3, the vertex transformation method does not
provide a pixel perfect transformation, as it only transforms the projection of the
vertices in the scene. The pixels values of the image are determined by interpolating
between the transformed vertices. This resulted in the transformed image always
consisting of straight lines. The overall impression it provided through such a result,
was that the objects in the image were being skewed in certain directions, but not
deformed in ways that correspond to semi-cylindrical or hemispherical shapes. This
was especially easy to notice when performing the transformation on models consist-
ing of few vertices that were all far apart from each other. However, as the number
of vertices in a model increased, or the distances between the vertices decreased, the
quality of the transformed image increased accordingly.

The question is, how many extra vertices need to be added to a model so that
once it is transformed, the resulting image will be identical to the one obtained
from the pixel perfect pixel transformation method? The answer to this, as we have
discussed in Section 5.4.3, depends on many different factors. We performed testing
for a simple case, where we placed a large cube in the part of the scene where it
is subject to the most deformation due to the transformation. The cube originally
consisted of 8 vertices, which were all of equal length apart from each other. By
gradually adding additional vertices to the cube we increased the quality of the
transformed image. In Figure 6.4 we display the visual results of the transformation
for different number of additional vertices.

60

6.3. VERTEX TRANSFORMATION RESULTS

Figure 6.4: (a) Original image before transformation, (b) pixel transformation, (c)-(f)
vertex transformation with 0, 1, 2, 4 and 8 additional vertices between each pair of vertices
that form a line.

In Figure 6.4a, we see the original image before any transformation has been per-
formed, Figure 6.4b shows the same scene transformed using the pixel transformation
method, and Figure 6.4c shows the result of the vertex transformation. Here we see
that all the lines are straight when instead they should be curved in accordance to
the formation of the hemispherical surface, as they are in Figure 6.4b. Figures 6.4d -
6.4f show how the result gradually improved as we drew additional vertices between
each pair of vertices that form a line. In the last picture, the result looks identical
to the pixel transformation result, but it required a total of 96 additional vertices to
be inserted into the cube. This is not such a bad trade-off considering the number
of pixels that needed to be transformed by the pixel transformation method. The
resolution of the images rendered in Figure 6.4 is 1024x1024, meaning that the pixel
transformation method needed to perform transformation operations on a total of
1048576 pixels. The vertex transformation method only needs to transform 104
vertices to get the same result.

6.3.2 Image vs Vertex Transform

The best possible way to compare the results of both methods was not very straight-
forward. The pixel transformation method relies heavily on the number of pixels
in the image, while the vertex transformation is heavily dependent on the number
of vertices in the scene. For this reason, it was necessary to do several different
tests to be able to more accurately compare the performance of both transformation
methods.

61

CHAPTER 6. BENCHMARKING AND RESULTS

Fixed Number of Vertices

We performed the same test as the one described in Section 6.2 using the vertex
transformation method. The test was run for 2 minutes for each of the different
resolutions, with both interlaced stereo rendering, and lighting enabled. For now we
let the number of vertices remain the same for all measurements. Since this transfor-
mation method relies on using shaders to produce the actual image, the lighting and
shading calculations also needed to be done through shaders. For this, we imple-
mented a simple pixel-by-pixel ambient and diffuse lighting method in the fragment
shader, similar to the one performed by OpenGL for the pixel transformation. The
test scene was an animation of a teapot bouncing around within a cubic domain.
The results can be in Figure 6.5.

Figure 6.5: Average number of frames per second for the pixel transformation and vertex
transformation code for different image sizes.

These results are not surprising at all, considering that the number of vertices re-
mained the same throughout the entire test. For the vertex transformation method,
the number of calculations performed is the same for the image size of 128x128 and
the image size of 1024x1024. The visual results, on the other hand, can vary a lot
depending on the resolution of the image. The reason for this is that as the size of
the image increases, so does the perceived distance between the vertices projected
onto the image. Due to the vertex transformation method always drawing straight
lines between each pair of vertices, increased distance between these vertices can
affect the smoothness of the rendered image. However, in Figure 6.6 we see that
this is not the case for the teapot scene.

62

6.3. VERTEX TRANSFORMATION RESULTS

Figure 6.6: (a) Original image before transformation, (b) pixel transformation, (c) vertex
transformation.

In Figure 6.6a we see the original image, Figure 6.6b shows the result of the pixel
transformation, and the vertex transformation result is displayed in Figure 6.6c.
The teapot has been moved very close to the viewer, and the scene is rendered to
a resolution of 1024x1024. Both these factors affect the perceived distance between
the vertices in the teapot, but we see that both transformations still give exactly the
same results. Disregard the difference in the shading of the teapot, which is due to
small differences in the way the lighting and shading is performed for both methods.
The size and shape of both transformed images are exactly the same. This is due to
the teapot consisting of a large number of vertices positioned very closely together,
so even after increasing the resolution and scaling the teapot, the vertices were still
not far enough apart to cause loss of correctness in the transformation. If we had
increased the resolution by a lot more, then we might have noticed a difference, but
for relevant problem sizes there did not seem to be any changes.

The fact that the vertex transformation method, in general, requires fewer calcula-
tions per vertex than the pixel transformation method does per pixel, should also be
taken into consideration. Another important point is that the pixel transformation
method needs to pre-render the original image before performing its calculations,
while the vertex transformation method can perform its calculations based on the
vertex data of the models in the scene. This might explain why the vertex transfor-
mation method performed much better even for small problem sizes like 128x128.

Increasing Number of Vertices

We tested the scalability of the vertex and pixel transformation methods for in-
creasing number of vertices, with a fixed image resolution of 1024x1024 for both
methods. The test scene consisted of a number of cubes with lighting and stereo-
scopic rendering enabled. Each cube consisted of 8 vertices, and as we were testing,
we increased the number of vertices by adding more and more cubes into the scene.
We increased the number of vertices by 4000 at a time by adding new cubes into
the scene, and the tests were run for 2 minutes for each group of additional vertices.
We added the cubes sequentially, so it should be taken into consideration that this
might have affected the overall frame rate of both methods during this particular
test. The results are displayed in Figure 6.7 and Table 6.5.

63

CHAPTER 6. BENCHMARKING AND RESULTS

Figure 6.7: Average number of frames per second for the vertex transformation and pixel
transformation code for different number of vertices.

Vertex Transf... Pixel Transf... Speedup
4000 316.49 98.84 3.20
8000 192.88 84.59 2.28
12000 128.17 76.64 1.67
16000 96.7 77.19 1.25
20000 77.36 70.76 1.09
24000 64.48 62.43 1.03
28000 52.25 57.01 0.91
32000 42.34 48.02 0.88
36000 30.27 43.5 0.69
40000 24.5 38.37 0.63

Table 6.5: Average number of frames per second for the vertex transformation and
pixel transformation code, and the speedup of the vertex transformation over the pixel
transformation, for different number of vertices.

For a low number of vertices, the vertex transformation naturally performed a lot
better than its counterpart, but as we went past 25000 vertices in the scene, the
pixel transformation gradually gained the advantage. As we increased the number
of vertices, the pixel transformation method lost speed very slowly. This is because,

64

6.3. VERTEX TRANSFORMATION RESULTS

the only time it is dependent on the number of vertices is for pre-rendering the origi-
nal image, which is not very expensive. The vertex transformation’s execution time,
on the other hand, is highly dependent on the number of vertices, which explains
the steep drop in performance. From these results, we can gain a certain notion of
when it may be beneficial to use the different transformation methods, but of course
the ultimate decision also depends on the visual aspect.

Dynamically Updating Number of Vertices

Finally, we tested the method we implemented for adding new vertices dynamically
to the model based on different factors, as described in Section 5.4.3. We render
a simple scene consisting of a number of floating cubes moving around in a cubic
domain. For each frame, the code does calculations based on how far the cubes are
from the viewer, the distance between the vertices of each cube, and the resolution of
the image. Based on these calculations, it determines how many additional vertices
to place between each pair of vertices that form a line on each of the cubes. Using
this method for adding vertices, we compared the image and vertex transformation
methods for different image resolutions once again. The difference this time was
that increasing the image resolution also affected the execution time of the vertex
transformation method, because of the responsive growth in the number of vertices.
The results can be seen in Figure 6.8 and Table 6.6. The average frame rate is
somewhat higher for both methods, since the scene we are rendering is a lot simpler
than the teapot scene rendered for Figure 6.5.

Figure 6.8: Average number of frames per second for the vertex transformation and pixel
transformation code for image sizes, and with dynamic addition of vertices.

65

CHAPTER 6. BENCHMARKING AND RESULTS

Vertex Transf... Pixel Transf... Speedup
128x128 580.54 446.15 1.30
256x256 409.6 396.96 1.03
384x384 334.88 383.72 0.87
512x512 302.34 303.16 0.99
640x640 249.94 229.65 1.08
768x768 229.45 178.25 1.28
896x896 160.35 137.83 1.16

1024x1024 129.39 111.88 1.15

Table 6.6: Average number of frames per second for the vertex transformation and pixel
transformation code for image sizes, and with dynamic addition of vertices.

Here, the average frame rates of both transformation methods seemed to have a
more similar declining pattern as we increased the image resolution. When render-
ing at a resolution of 1024x1024, the vertex transformation method added up to
29 new vertices between each pair of vertices, for cubes that came really close to
the viewer. Furthermore, it gave a very smooth and visually pleasing transformation.

Based on these results, the method for adding vertices dynamically seems to work
quite well; however, there is a lot of overhead involved, as this operation must be
done sequentially on the CPU. If a large number of objects are present in the scene,
adding new vertices to all of them will most likely slow down the program a lot. An-
other issue is that it is not a simple task to add extra vertices to just any model. For
cubes it is a pretty simple procedure, since we know that all the vertices are equally
far apart; nonetheless for more complicated models, like the teapot, it may be too
expensive to perform such an operation. As we showed in Figure 6.6, a model does
not necessarily need additional vertices for the transformation to appear correctly,
so the question of whether vertices should be added dynamically or not, relies on
the amount of detail in the model itself.

In general, we can conclude from all the results presented here that, whether or not
to use the pixel transformation method depends first and foremost on the number of
vertices present in the scene. As we showed in Figure 6.7, after the total number of
vertices passes a certain point, the pixel transformation method will always be the
best choice. As for the vertex transformation, the choice depends on several factors.
For scenes with a small to average number of vertices, the vertex transformation may
be the best choice, but this is not a given. It depends on the resolution of the image
that is being rendered, the distance the models in the scene have to the viewer, and
details of each model. It also depends on whether it is possible to add extra vertices
to the model, and the cost of doing so. Scenes consisting of a very large number of
simple models would mostly benefit from the pixel transformation, since the scene
may consist of an exceptionally high vertex count, or each model may be too simple
to be transformed correctly by the vertex transformation method. An example of
such a scene would be a scene filled with thousands of cubes such as the one showed

66

6.3. VERTEX TRANSFORMATION RESULTS

in Figure 6.4. For scenes consisting of few, but detailed models, such as the teapot,
it would be more beneficial to use the vertex transformation. This will make the
rendering a lot faster, as we can see in Figure 6.5, and the image resolution can still
be scaled to a certain point without loss of quality from the transformation, as we
show in Figure 6.6.

67

CHAPTER 6. BENCHMARKING AND RESULTS

68

CHAPTER 7

Conclusions and Future Work

In this chapter we provide a brief summary of our work, the achieved results, and
the experiences gained throughout this thesis. We also present the conclusions we
have formed, and provide some interesting ideas for future work.

7.1 Summary

The goal of this thesis was to investigate two different methods for transforming an
image, such that it can be projected onto a curved surface, and to develop parallel
solutions to these methods. Our work included a study of various topics including
virtual reality, curved projection surfaces, stereoscopy, and parallel computing on the
GPU. This was followed by research into the two transformation methods, setting up
equations based on the geometry of the curved surface, and deriving the necessary
formulas required to perform the transformations. Massively parallel solutions were
developed for both transformation methods, and implemented on the GPU. The
pixel transformation method was implemented using the CUDA framework, and the
vertex transformation method was implemented on the vertex and fragment shaders
of the graphics pipeline. Various experiments were performed on both methods
to test their performance and visual appeal, and the results were documented and
discussed. The results of both transformations were also compared to each other,
to gain a better understanding of the strengths and weaknesses of each method.

7.2 Conclusion

Based on the outcome of the different experiments, we conclude that the pixel and
vertex transformation methods both have areas where they excel in, and areas where
they perform very poorly. We believe that it is not possible to generally conclude
whether one method is better than the other, because the performance and visual

69

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

outcome of both transformations are largely dependent on the type of the scene.

Performance wise, the pixel transformation method is most suitable for scenes con-
sisting of an exceptionally large number of vertices, while the vertex transformation
performs better on scenes consisting of a small to average number of vertices. The
reason for this is that only the pre-rendering phase of the pixel transformation
method is affected by the number of vertices in the scene, leading to the execution
time declining very slowly as we increase the number of vertices. The runtime of
the vertex transformation method, on the other hand, is primarily dependent on the
number of vertices, and would therefore not be a very effective choice for rendering
such scenes. The pixel transformation is mostly affected by the resolution of the
image that is rendered, while the vertex transformation is not affected by this at all.
However, the results obtained from our experiments suggest that the pixel transfor-
mation performs fairly well, even for large image sizes. It was always able to stay
above an acceptable frame rate for resolutions as high as 1024x1024. For even higher
resolutions it might be wise to consider the vertex transformation method; however,
the number of vertices in the scene also needs to be taken into consideration.

Considering the visual aspect, the vertex transformation seems to fare poorly for
scenes consisting of very simple models; especially models that consist of a very small
number of vertices spaced far apart from each other. An option is to dynamically
add new vertices to these models, but this may degrade the performance, depending
on the number of new vertices that need to be added. It is also not an easy task
to add new vertices to just any kind of model. The pixel transformation always
provides visually pleasing images. As it performs a pixel perfect transformation of
the image, we can be certain that the transformed image will always be displayed
correctly regardless of what kind of scene it is.

The absolute worst case scenario for the vertex transformation would be a scene
consisting of a very large number of simple models, such that each model has a very
low vertex count, yet the number of vertices in the scene is very large. This would
provide very poor results both performance wise and visually. The pixel transfor-
mation method, on the other hand would perform very well on such scenes. Scenes
that consist of very few but highly detailed models, would benefit more from the
vertex transformation.

7.3 Future Work

The work done during the course of this thesis has brought into light a number
of ideas that we feel might be suitable for future theses or projects. These include
thoughts on further development of the pixel and vertex transformations, in addition
to further work regarding projections on curved surfaces in general.

7.3.1 General Ideas

Now that two different transformation methods have been developed and tested
thoroughly, the next step would naturally be to try projecting the transformed im-

70

7.3. FUTURE WORK

ages onto the conCave projection surface. There is a lot we still do not know about
the visual outcome of the transformation methods, as we have only judged them by
the way they appear on a display. It would be interesting to see how they appear
on a curved surface, and if there are any special details or visual flaws that were not
noticeable when just viewing them on the display.

Another issue that should be investigated is the position of the imaginary planar sur-
face we set when doing the pixel transformation. During our experiments throughout
this thesis, we always fixed the imaginary plane at the front of the curved surface.
The position of the imaginary surface is irrelevant when we are projecting or viewing
the transformed image on a flat surface. However, when projecting the image on a
curved surface, this affects the visual outcome, as it determines which parts of the
projection are in focus. This relates to the concept known as circle of confusion.

Another idea worth looking into is, when projecting onto a curved surface, we also
need to take into consideration how the positions of the projector and the viewer
affect the perceived intensity of different parts of the image. Due to the curvature
of the conCave system, the light from the projector is spread a lot thinner across
certain parts of the curved surface. When projecting onto a flat plane, the light
distribution per surface area is the same across the entire surface. For a curved
surface, which would have a much larger surface area due to its curvature, the light
distribution per surface area is much less; especially for the edges of the surface.
When the viewer is standing very close to the projector, the projection angle and
viewing angle are somewhat the same, thus the quality of the perceived scene is not
affected to a noticeable extent. However, when the viewer is standing further away
from the projector, the low light distribution per surface area near the edges will
reduce the intensity of the perceived image projected on those parts of the surface.
It is possible to correct this visual flaw by determining the intensity that each pixel
in the image should have, based on the positions of the projector and the viewer.

The code already contains functionality for moving the position of the viewer, so
it should be easy to integrate the use of position and orientation sensors, such
that the transformation is updated as the viewer moves around. The feasibility
of these transformation methods within virtual or augmented reality systems with
such equipments should be investigated, with regards to their speed as well as their
visual results.

7.3.2 Ideas for the Pixel Transformation

Fermi-based optimizations should be considered to improve the performance of the
pixel transformation method when running on a Fermi GPU. These include cache
and memory configurations, making changes to the way global memory is accessed,
running several kernel functions in parallel, and adjusting the level of precision on
floating point operations. For more detail on these subjects, we refer to our project
report regarding Fermi optimizations [5].

The visual results of the pixel transformation might benefit from some anti-aliasing

71

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

of the transformed image. Anti-aliasing cannot be applied to the image prior to
transformation, as this gives a very unnatural look once the pixels have been moved
around, causing the silhouettes of the transformed objects to end up looking very
“rough”, as if no anti-aliasing has been performed. A suggestion is to implement a
parallel anti-aliasing kernel in CUDA, that can be called right after the transforma-
tion of the image has taken place.

7.3.3 Ideas for the Vertex Transformation

Since this method transforms the scene by transforming the vertices, this might
need to be taken into consideration when implementing the lighting of the scene.
It should be investigated whether, and how, the light source should be repositioned
as we transform each vertex position, such that when the shading of the scene is
performed, the fragment shader provides correct shading of the objects in the scene
according to the transformation. This is not an issue for the pixel transformation
method, since the shading is only performed on the pre-rendered image; for the
vertex transformation it is done on the transformed image.

72

Bibliography

[1] John K̊are Akeren. Stereographic visualization on strongly curved projection sur-
faces. Master’s thesis, Norwegian University of Science and Technology, 2003.

[2] Sverre Djønne and Rune Solheim. Stereografisk visualisering p̊a sterkt krum-
mende overflate. Specialization project, Norwegian University of Science and
Technology, 2003.

[3] Sverre Djønne. Visualisering p̊a sterkt krummende overflater ved bruk av
polygon-triangulering. Master’s thesis, Norwegian University of Science and
Technology, 2004.

[4] Rune Solheim. Stereografisk visualisering av polygonmodell p̊a sterkt krummende
overflate. Master’s thesis, Norwegian University of Science and Technology,
2004.

[5] Joel Chelliah. The NTNU HPC snow simulator on the Fermi GPU. Specializa-
tion project, Norwegian University of Science and Technology, 2010.

[6] Jerry Isdale. What is Virtual Reality? Web-based introduction, 1998. http:
//vr.isdale.com/WhatIsVR/noframes/WhatIsVR4.1.html

Visited during January - June, 2011.

[7] Frederick P. Brooks, Jr. What’s real about virtual reality. IEEE: Computer
Graphics and Applications, University of North Carolina at Chapel Hill, 2005.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=799723

Visited during January - June, 2011.

[8] Mechdyne.com Producer of various immersive display systems. http://www.
mechdyne.com/

Visited on March 2011.

[9] Ashutosh Saxena, Jamie Schulte and Andrew Y. Ng. Depth estimation using
monocular and stereo cues. Computer Science Department, Stanford University,
2007. http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-354.pdf

[10] Paul Bourke. Calculating Stereo Pairs. July 1999. http://paulbourke.net/
miscellaneous/stereographics/stereorender/

Visited during January - June, 2011.

[11] Stereoscopy.com. Collection of various information articles and images concerin-
ing stereoscopy. http://www.stereoscopy.com
Visited during January - June, 2011.

73

http://vr.isdale.com/WhatIsVR/noframes/WhatIsVR4.1.html
http://vr.isdale.com/WhatIsVR/noframes/WhatIsVR4.1.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=799723
http://www.mechdyne.com/
http://www.mechdyne.com/
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-354.pdf
http://paulbourke.net/miscellaneous/stereographics/stereorender/
http://paulbourke.net/miscellaneous/stereographics/stereorender/
http://www.stereoscopy.com

BIBLIOGRAPHY

[12] David Luebke and Greg Humphreys. How GPUs work. Overview, Univer-
sity of Virginia, 2007. http://www.cs.virginia.edu/~gfx/papers/pdfs/59_
HowThingsWork.pdf

[13] NVIDIA’s next generation Cuda compute architecture: Fermi. White pa-
per, NVIDIA, 2009. http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

[14] NVIDIA Cuda programming guide, version 3.2. Guide, NVIDIA, 2010.
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/

docs/CUDA_C_Programming_Guide.pdf

[15] NVIDIA Cuda C best practices guide, version 3.1. Guide, NVIDIA, 2010.
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/

docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf

[16] Maple, official website. http://www.maplesoft.com/products/maple/
Visited during January - June, 2011.

[17] Visual Studio, official website. http://www.microsoft.com/express/

Windows/

Visited during January - June, 2011.

74

http://www.cs.virginia.edu/~gfx/papers/pdfs/59_HowThingsWork.pdf
http://www.cs.virginia.edu/~gfx/papers/pdfs/59_HowThingsWork.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://www.maplesoft.com/products/maple/
http://www.microsoft.com/express/Windows/
http://www.microsoft.com/express/Windows/

Appendices

75

APPENDIX A

CUDA Framework

Note: This is an excerpt from out fall specialization project report [5], covering
the details of the CUDA framework.

Typically, a CUDA application will consist of some sequential code that is to be
run on the CPU, which we call host code, and some code that is to be run in paral-
lel on the GPU. The language used for writing CUDA is called CUDA C, which is
an extension of the programming language C. This extension allows the programmer
to write code that is run in parallel across a large number of threads on the GPU.
During the call to a kernel, which is a function run on the GPU, the programmer can
set up a hierarchical ordering of how the kernel should be executed across several
groups of threads.

A.1 Kernel Functions

Kernels are data-parallel functions that run in parallel on many threads on the GPU.
The kernel is defined using special syntax that denotes the hierarchy of threads it
will be running on. The programmer will also need to specify a special classifier
that indicates how the kernel is called and where it is supposed to execute, e.g using
a global declaration specifier, means that this kernel is run on the GPU and can
only be called from host functions. There are also other such classifiers as, device
, for code that is run on the GPU and can only be invoked by other kernels, and

host defines functions that can only be executed on the host. This is also the
default classifier and can be omitted in most cases.

77

APPENDIX A. CUDA FRAMEWORK

Figure A.1: CUDA thread hierarchy, taken from [13] with permission from NVIDIA.

A.2 Thread Hierarchy

The concept of threads on the GPU is quite similar to threads on the CPU. A
thread is the most basic unit that executes on the GPU and it can have its own
variables and control flow independent from all other threads. Threads are grouped
into a hierarchy of thread blocks which contain several threads, and grids which are
arrays of several thread blocks. This three level hierarchy is illustrated in Figure
A.1. When a kernel function is called, it executes as a grid of thread blocks, where
each grid can be a one- or two dimensional array, and each thread block can have
up to three dimensions. The threads within each thread block have several built-in
identification variables that can be used to determine their unique locations at both
the grid and thread block level. When a kernel is finished executing there is an
implicit synchronization of all the threads, however threads within a thread block
can synchronize during a kernel execution by calling the syncthreads() function.

A.3 Memory Hierarchy

As mentioned above, kernels are executed in parallel across multiple threads on the
GPU. These threads have several memory spaces to access data from during their
execution.

78

A.3. MEMORY HIERARCHY

Figure A.2: CUDA memory hierarchy, taken from [13] with permission fron NVIDIA.

A.3.1 Registers and Local Memory

Each thread has its own private local memory and also a set of registers. The
registers are naturally the fastest data storage but the total amount of registers
available to each thread block is limited. The local memory for each thread is
actually stored on the global memory meaning that it has high latency and registers
should be used instead whenever possible. If a kernel uses more registers than there
are available, register spilling occurs. This means that the data gets put into local
memory instead.

A.3.2 Shared Memory

Each thread block has a shared memory portion that all the threads within can use
to share data. The lifetime of shared memory variables are the same as the thread
block’s. Access to shared memory has higher latency than for registers but is still a
lot faster than global memory accesses.

79

APPENDIX A. CUDA FRAMEWORK

A.3.3 Global Memory

All threads can access the global memory which is very large but has high access
latency. When memory transfer is taking place to and from the GPU, memory is
moved in and out of global memory using different CUDA API calls. It’s impor-
tant that memory that is read and written from and to global memory should be
coalesced. This means that each thread in a warp accesses the corresponding word
segment (i.e. thread k accesses the k-th word in a segment). Threads can addition-
ally also access two other memory spaces which also reside in global memory, but
can be accessed a lot faster under certain conditions. These are texture memory
and constant memory.

A.3.4 Constant and Texture Memory

These are read-only, which means that they cannot be altered from inside the kernels.
Any variables that are to be placed in texture or constant memory must be defined
in the host and copied over to the GPU before the kernel is called. They are both
cached on the SMs and repeated lookups can be much faster than accessing regular
global memory. Constant memory is specifically used for storing constants and
texture memory is used to bind a section of memory as a cached texture.

80

APPENDIX B

Kernel and Shader Code

Here we present some of the code produced during the course of this thesis. First,
we show the “number 2” cylinder and sphere transformation kernels of the pixel
transformation method, written in CUDA C, and how they are called from the host.
Then we show the vertex and fragment shader code of the vertex transformation
method, written in GLSL.

B.1 Pixel Transformation Kernels

After pre-rendering the scene the following function is called from the host on the
pre-rendered image. It is responsible for transfering data between device and host
memory and calling the kernels:

1 void CUDATransformPixels
2 (int pbo in , int pbo out , po int3 cop , po int3 p)
3 {
4 // Input parameters
5 t In [0] = cop . x ; //xo
6 t In [1] = cop . y ; //yo
7 t In [2] = cop . z ; // zo
8 t In [3] = p . x ; // x j
9 t In [4] = p . y ; // y j

10 t In [5] = p . z ; // z j
11
12 // Store parameters in dev i ce memory
13 cudaMemcpy(transformInput , tIn , 6 ∗ sizeof (float) ,
14 cudaMemcpyHostToDevice) ;
15
16 // Map pbo to image
17 cudaGLMapBufferObject ((void ∗∗)&in data , pbo in) ;

81

APPENDIX B. KERNEL AND SHADER CODE

18 cudaGLMapBufferObject ((void ∗∗)&out data , pbo out) ;
19
20
21 // Block and gr id dimensions
22 dim3 block (16 ,16 ,1) ;
23 int numBlocks = (WIDTH ∗ (HEIGHT/2)) / (16 ∗ 16) ;
24 dim3 gr id (numBlocks , 1 , 1) ;
25
26
27 // Ca l l t rans form k e r n e l s
28 CylinderTransformKernel2<<<gr id , block>>>(transformInput ,
29 in data , out data) ;
30 SphereTransformKernel2<<<gr id , block>>>(transformInput ,
31 in data , out data) ;
32
33 // Unmap pbo from image
34 cudaGLUnmapBufferObject (pbo in) ;
35 cudaGLUnmapBufferObject (pbo out) ;
36 }

Listing B.1: Transformation function

The cylinder transform and sphere transform kernels which are called from the
above function are excecuted on the device:

Cylinder Transform Kernel

1 g l o b a l void CylinderTransformKernel2
2 (float ∗ input , unsigned char ∗ i n p i x e l s ,
3 unsigned char ∗ o u t p i x e l s)
4 {
5 int t = (blockIdx . x ∗ blockDim . x ∗ blockDim . y)
6 + (threadIdx . x + blockDim . x ∗ threadIdx . y) ;
7
8 int i = t modulo WIDTH;
9 int j = (t − i) / WIDTH;

10
11 //COP
12 float xo = input [0] ;
13 float yo = input [1] ;
14 float zo = input [2] ;
15 //P
16 float xj = input [3] ;
17 float yj = input [4] ;
18 float z j = input [5] ;
19
20 float R2 = WIDTH SCALE FACTOR ∗ WIDTH SCALE FACTOR;

82

B.1. PIXEL TRANSFORMATION KERNELS

21 float ha l fHe ight = HEIGHT/ 2 . 0 ;
22 float halfWidth = WIDTH/ 2 . 0 ;
23
24 // For s tepp ing in the x and y d i r e c t i o n s
25 float deltaXP = 2.0 ∗ WIDTH SCALE FACTOR / WIDTH;
26 float deltaYP = 2.0 ∗ HEIGHT SCALE FACTOR /HEIGHT;
27
28 // Where p r o j e c t i o n i n t e r s e c t s the planar s u r f a c e
29 float xp = (−halfWidth ∗ 2 .0 ∗ WIDTH SCALE FACTOR /WIDTH)
30 + (i ∗ deltaXP) ;
31 float yp = (−ha l fHe ight ∗ 2 .0 ∗ HEIGHT SCALE FACTOR /HEIGHT)
32 + (j ∗ deltaYP) ;
33 float zp = 0 ;
34
35 // S imp l i f y i ng common e x p r e s s i o n s
36 float xj xp = xj − xp ;
37 float z j z p = z j − zp ;
38 float xj xp2 = xj xp ∗ xj xp ;
39 float z j z p 2 = z j z p ∗ z j z p ;
40 float xpzj = xp ∗ z j ;
41 float xjzp = xj ∗ zp ;
42
43 // Solve z−equat ion
44 float a = xj xp2 + z j z p 2 ;
45 float b = 2 .0 ∗ xj xp ∗ (xpzj − xjzp) ;
46 float c = (xpzj − xjzp) ∗ (xpzj − xjzp) − R2 ∗ z j z p 2 ;
47
48 float z = (−b − s q r t (b ∗ b − 4 ∗ a ∗ c)) / (2 ∗ a) ;
49
50 // Solve f o r x and xc , and dec ide u
51 float x = (xpzj − xjzp + z ∗ xj xp) / z j z p ;
52 float xc = (x ∗(zo − zp) + xo ∗ (zp − z)) / (zo − z) ;
53 int u = halfWidth ∗ (xc / WIDTH SCALE FACTOR + 1) ;
54
55 // Solve f o r y and yc , and dec ide v
56 float y = (yp − yj) ∗ s q r t (((z j − z) ∗ (z j − z)
57 + (x − xj) ∗ (x − xj)) / a) + yj ;
58 float yc = (y − yo) ∗ s q r t (((zo − zp) ∗ (zo − zp)
59 + (xo − xc) ∗ (xo − xc)
60) / ((zo − z) ∗ (zo − z)
61 + (xo − x) ∗ (xo − x))) + yo ;
62 int v = ha l fHe ight ∗ (yc / HEIGHT SCALE FACTOR + 1) ;
63
64 // Put p i x e l va lue in output image
65 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR] =
66 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR] ;
67 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 1] =
68 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR + 1] ;
69 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 2] =
70 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR + 2] ;

83

APPENDIX B. KERNEL AND SHADER CODE

71 }

Listing B.2: Cylinder transform kernel

Sphere Transform Kernel

1 g l o b a l void SphereTransformKernel2
2 (float ∗ input , unsigned char ∗ i n p i x e l s ,
3 unsigned char ∗ o u t p i x e l s)
4 {
5 int t = (blockIdx . x ∗ blockDim . x ∗ blockDim . y)
6 + (threadIdx . x + blockDim . x ∗ threadIdx . y) ;
7
8 int i = t modulo WIDTH;
9 int j = (t − i) / WIDTH;

10
11 //COP
12 float xo = input [0] ;
13 float yo = input [1] ;
14 float zo = input [2] ;
15
16 //P
17 float xj = input [3] ;
18 float yj = input [4] ;
19 float z j = input [5] ;
20
21 float R2 = WIDTH SCALE FACTOR ∗ WIDTH SCALE FACTOR;
22 float ha l fHe ight = HEIGHT/ 2 . 0 ;
23 float halfWidth = WIDTH/ 2 . 0 ;
24
25 // For s tepp ing in the x and y d i r e c t i o n s
26 float deltaXP = 2.0 ∗ WIDTH SCALE FACTOR / WIDTH;
27 float deltaYP = 2.0 ∗ HEIGHT SCALE FACTOR /HEIGHT;
28
29 // Where p r o j e c t i o n i n t e r s e c t s the planar s u r f a c e
30 float xp = (−halfWidth ∗ 2 .0 ∗ WIDTH SCALE FACTOR /WIDTH)
31 + (i ∗ deltaXP) ;
32 float yp = (j ∗ deltaYP) ;
33 float zp = 0 ;
34
35 // S imp l i f y i ng common e x p r e s s i o n s
36 float xj xp = xj − xp ;
37 float z j z p = z j − zp ;
38 float yj yp = yj − yp ;
39 float xj xp2 = xj xp ∗ xj xp ;
40 float z j z p 2 = z j z p ∗ z j z p ;
41 float yj yp2 = yj yp ∗ yj yp ;
42 float xj2 = xj ∗ xj ;

84

B.1. PIXEL TRANSFORMATION KERNELS

43 float xp2 = xp ∗ xp ;
44 float z j 2 = z j ∗ z j ;
45 float zp2 = zp ∗ zp ;
46 float yj2 = yj ∗ yj ;
47 float yp2 = yp ∗ yp ;
48 float xpxj = xp ∗ xj ;
49 float xpzj = xp ∗ z j ;
50 float xjzp = xj ∗ zp ;
51 float zpz j = zp ∗ z j ;
52 float xjyp = xj ∗ yp ;
53 float xpyj = xp ∗ yj ;
54 float ypyj = yp ∗ yj ;
55
56 // Solve z−equat ion
57 float a = xj xp2 + yj yp2 + z j z p 2 ;
58 float b = z j ∗ (xp2 − xpxj − yp ∗ yj yp)
59 + zp ∗ (x j2 − xpxj + yj ∗ yj yp) ;
60 float d = z j z p 2 ∗ (z j 2 ∗ (R2 − xp2 − yp2)
61 − 2 ∗ zpz j ∗ (R2 − xpxj − ypyj)
62 − (xjyp − xpyj) ∗ (xjyp − xpyj)
63 + zp2 ∗ (R2 − xj2 − yj2)
64 + R2 ∗ (x j xp2 + yj yp2)) ;
65
66 float z = (b − s q r t (d)) / a ;
67
68 // Solve f o r x and xc , and dec ide u
69 float x = (xpzj − xjzp + z ∗ xj xp) / z j z p ;
70 float xc = (x ∗(zo − zp) + xo ∗ (zp − z)) / (zo − z) ;
71 int u = halfWidth ∗ (xc / WIDTH SCALE FACTOR + 1) ;
72
73 // Solve f o r y and yc , and dec ide v
74 float y = (yp − yj) ∗ s q r t (((z j − z) ∗ (z j − z)
75 + (x − xj) ∗ (x − xj)
76) / (z j z p 2 + xj xp2)) + yj ;
77 float yc = (y − yo) ∗ s q r t (((zo − zp) ∗ (zo − zp)
78 + (xo − xc) ∗ (xo − xc)
79) / ((zo − z) ∗ (zo − z)
80 + (xo − x) ∗ (xo − x))) + yo ;
81 int v = ha l fHe ight ∗ (yc / HEIGHT SCALE FACTOR + 1) ;
82
83
84 // draw on the top h a l f
85 j += ha l fHe ight ;
86
87
88 // Put p i x e l va lue in output image
89 if (u < 0 | | u >= WIDTH | | v < 1 | | v >= HEIGHT)
90 {
91 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR] = 0x55 ;
92 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 1] = 0x55 ;

85

APPENDIX B. KERNEL AND SHADER CODE

93 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 2] = 0x55 ;
94 }
95 else

96 {
97 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR] =
98 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR] ;
99 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 1] =

100 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR + 1] ;
101 o u t p i x e l s [(i + j ∗ WIDTH) ∗ NUM COLOR FACTOR + 2] =
102 i n p i x e l s [(u + v ∗ WIDTH) ∗ NUM COLOR FACTOR + 2] ;
103 }
104 }

Listing B.3: Sphere transform kernel

B.2 Vertex Transformation Shaders

Before rendering, the vertex and fragment shaders are attached to the program to
take responsibility of the projection of the vertices and drawing of the pixels. The
vertex transformation procedure is done in the vertex shader alone:

Vertex Shader

1 // input
2 uniform vec3 P;
3 uniform vec3 COP;
4
5 // f o r l i g h t i n g
6 vary ing vec4 d i f f u s e , ambient ;
7 vary ing vec3 normal , l i gh tD i r , ha l fVec to r ;
8
9 void main (void)

10 {
11 //COP
12 float xo = COP. x ;
13 float yo = COP. y ;
14 float zo = COP. z ;
15
16 //P
17 float xj = P. x ;
18 float yj = P. y ;
19 float z j = P. z ;
20
21 float R = 1 . 0 ;
22 float R2 = R ∗ R;
23
24 float zp = 0 . 0 ;

86

B.2. VERTEX TRANSFORMATION SHADERS

25
26 // Vertex p o s i t i o n
27 vec4 vertPos = gl ModelViewMatrix ∗ g l Ver t ex ;
28 float xb = −vertPos . x ;
29 float yb = vertPos . y ;
30 float zb = −vertPos . z ;
31
32 // S imp l i f y i ng e x p r e s s i o n s
33 float xo xb = xo − xb ;
34 float yo yb = yo − yb ;
35 float zo zb = zo − zb ;
36 float xo xb2 = xo xb ∗ xo xb ;
37 float zo zb2 = zo zb ∗ zo zb ;
38 float xo2 = xo ∗ xo ;
39 float xb2 = xb ∗ xb ;
40 float zo2 = zo ∗ zo ;
41 float zb2 = zb ∗ zb ;
42 float xbxo = xb ∗ xo ;
43 float xbzo = xb ∗ zo ;
44 float xozb = xo ∗ zb ;
45 float zbzo = zb ∗ zo ;
46
47 float a , b , c , d , z ;
48
49 if (yb<0.0)
50 {
51 a = xo xb2 + zo zb2 ;
52 b = 2 .0 ∗ xo xb ∗ (xbzo − xozb) ;
53 c = xb2 ∗ zo2 − 2 .0 ∗ xbzo ∗ xozb + xo2 ∗ zb2 − R2 ∗

zo zb2 ;
54
55 z = (−b − s q r t (b ∗ b − 4 .0 ∗ a ∗ c)) / (2 . 0 ∗ a) ;
56 }
57 else

58 {
59 float yo yb2 = yo yb ∗ yo yb ;
60 float yo2 = yo ∗ yo ;
61 float yb2 = yb ∗ yb ;
62 float ybyo = yb ∗ yo ;
63 float xoyb = xo ∗ yb ;
64 float xbyo = xb ∗ yo ;
65
66 a = xo xb2 + yo yb2 + zo zb2 ;
67 b = zo ∗ (xb2 − xbxo − yb ∗ yo yb)
68 + zb ∗ (xo2 − xbxo + yo ∗ yo yb) ;
69 d = zo zb2 ∗ (zo2 ∗ (R2 − xb2 − yb2)
70 − 2 .0 ∗ zbzo ∗ (R2 − xbxo − ybyo)
71 − (xoyb − xbyo) ∗ (xoyb − xbyo)
72 + zb2 ∗ (R2 − xo2 − yo2)
73 + R2 ∗ (xo xb2 + yo yb2)) ;

87

APPENDIX B. KERNEL AND SHADER CODE

74
75 z = (b − s q r t (d)) / a ;
76 }
77
78 // Find x and xp
79 float x = (xbzo − xozb + z ∗ xo xb) / zo zb ;
80 float xp = (x ∗(z j − zp) + xj ∗ (zp − z)) / (z j − z) ;
81
82 // Find y and yp
83 float y = (−yo yb) ∗ s q r t (((zo − z) ∗ (zo − z)
84 + (xo − x) ∗ (xo − x)
85) / (zo zb2 + xo xb2)) + yo ;
86 float yp = (y − yj) ∗ s q r t (((z j − zp) ∗ (z j − zp)
87 + (xp − xj) ∗ (xp − xj)
88) / ((z j − z) ∗ (z j − z)
89 + (x − xj) ∗ (x − xj))) + yj ;
90
91 vec4 p r o j e c t i o n P o i n t ;
92 p r o j e c t i o n P o i n t . x = xp ;
93 p r o j e c t i o n P o i n t . y = yp ;
94 p r o j e c t i o n P o i n t . z = zp ;
95 p r o j e c t i o n P o i n t .w = vertPos .w;
96
97 g l P o s i t i o n = p r o j e c t i o n P o i n t ;
98
99 // l i g h t i n g c a l c u l a t i o n s

100 normal = normal ize (gl NormalMatrix ∗ gl Normal) ;
101 l i g h t D i r = normal ize (vec3 (g l L i gh tSourc e [0] . p o s i t i o n)) ;
102 d i f f u s e = g l FrontMate r i a l . d i f f u s e
103 ∗ g l L i gh tSourc e [0] . d i f f u s e ;
104 ambient = g l FrontMate r i a l . ambient
105 ∗ g l L i gh tSourc e [0] . ambient ;
106 }

Listing B.4: Vertex Shader

The fragment shader is responsible for the pixel-by-pixel lighting. Some of the
lighting calculations are done in the vertex shader, and the variables are passed to
the fragment shader to complete the calculations and set the pixel values:

Fragment Shader

1 // l i g h t i n g v a r i a b l e s from the ver tex shader
2 vary ing vec4 d i f f u s e , ambient ;
3 vary ing vec3 normal , l i gh tD i r , ha l fVec to r ;
4
5 void main (void)

88

B.2. VERTEX TRANSFORMATION SHADERS

6 {
7 vec3 n , halfV ;
8 float NdotL , NdotHV ;
9

10 vec4 c o l o r = ambient ;
11 n = normal ize (normal) ;
12
13 NdotL = max(dot (n , l i g h t D i r) , 0 . 0) ;
14
15 if (NdotL > 0 . 0)
16 {
17 c o l o r += d i f f u s e ∗ NdotL ;
18 }
19
20 g l FragCo lor = c o l o r ;
21 }

Listing B.5: Fragment Shader

89

APPENDIX B. KERNEL AND SHADER CODE

90

	Title Page
	Problem Description
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Goals and Problem Definition
	Outline

	Background
	Virtual Reality
	Types of VR Systems
	Augmented Reality
	ConCave

	Stereoscopy
	Cues for Depth Perception
	Using Stereoscopy
	Stereo in VR

	Parallel Computing on the GPU
	Evolution of Parallel Computing
	Graphics Processing Unit
	General Purpose GPU (GPGPU) Programming

	CUDA

	Related Work
	Ray Tracing
	Use of Voxel Data
	Approximation to Several Planes
	The Grid Method
	Using Polygon Triangulation

	Methods
	The Pixel Transformation Method
	Overview of the Transformation
	Cylinder Transformation
	Sphere Transformation

	The Vertex Transformation Method
	Overview of the Transformation
	Mathematical Details

	Implementation
	Working Environment
	Program Overview
	Pixel Transformation Method
	Computing in Parallel
	Transformation Kernels

	Vertex Transformation Method
	Defining the Shaders
	Finding The Projection Coordinates
	Adding New Vertices

	Stereoscopic Rendering
	Interlaced Stereo Rendering
	Quad-buffered Stereo Rendering

	Benchmarking and Results
	Testing Environment
	Pixel Transformation Results
	Deformation of The Image
	Transformation Kernels
	Sequential vs Parallel

	Vertex Transformation Results
	Visual results
	Image vs Vertex Transform

	Conclusions and Future Work
	Summary
	Conclusion
	Future Work
	General Ideas
	Ideas for the Pixel Transformation
	Ideas for the Vertex Transformation

	CUDA Framework
	Kernel Functions
	Thread Hierarchy
	Memory Hierarchy
	Registers and Local Memory
	Shared Memory
	Global Memory
	Constant and Texture Memory

	Kernel and Shader Code
	Pixel Transformation Kernels
	Vertex Transformation Shaders

