
Doctoral theses at NTNU, 2011:293

Norvald H. Ryeng
Improving Query Processing
Performance in Large Distributed
Database Management Systems

ISBN 978-82-471-3158-9 (printed ver.)
ISBN 978-82-471-3159-6 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Th

es
is

 fo
r

th
e

de
gr

ee
 o

f
P

hi
lo

so
ph

ia
e

D
oc

to
r

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s
an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

e

N
orvald H

. R
yeng

D
octoral theses at N

TN
U

, 2011:293

Norvald H. Ryeng

Improving Query Processing
Performance in Large Distributed
Database Management Systems

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2011

Norwegian University of
Science and Technology
Faculty of Information Technology, Mathematics and Electrical
Engineering
Department of Computer and Information Science

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

©Norvald H. Ryeng

ISBN 978-82-471-3158-9 (printed ver.)
ISBN 978-82-471-3159-6 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU,

Printed by Tapir Uttrykk

Abstract

The dream of computing power as readily available as the electricity in a wall socket
is coming closer to reality with the arrival of grid and cloud computing. At the same
time, databases grow to sizes beyond what can be efficiently managed by single server
systems. There is a need for efficient distributed database management systems
(DBMSs). Current distributed DBMSs are not built to scale to more than tens
or hundreds of sites (i.e., nodes or computers). Users of grid and cloud computing
expect not only almost infinite scalability, i.e., at least to thousands of sites, but also
that the scale is adapted automatically to meet the demand, whether it increases or
decreases. This is a challenge to current distributed DBMSs.

In this thesis, the focus is on how to improve performance of query processing
in large distributed DBMSs where coordination between sites has been reduced in
order to increase scalability. The challenge is for the sites to make decisions that
are globally beneficial when their view of the complete system is limited. The main
contributions of this thesis are methods to increase failure resilience of aggregation
queries, adaptively place data on different sites and locate these sites afterwards,
and cache intermediate results of query processing.

The study of failure resilience in aggregation queries presented in this thesis
shows that different aggregation functions react differently to failures and that coun-
termeasures must be adapted to each function. A low-cost method to increase ac-
curacy is proposed.

The dynamic data placement method presented in this thesis allows data to be
fragmented, allocated, and replicated to adapt to the current system configuration
and workload. Fragments are split, coalesced, reallocated, and replicated during
query processing to improve query processing performance by allowing more data
to be accessed locally. The proposed lookup method uses range indexing to make it
possible to efficiently identify the sites that store relevant data for a query with low
overhead when data is updated.

During query execution, a number of intermediate results are produced, and
this thesis proposes a method to cache these results and use them to answer other,
similar queries. In particular, a caching method to improve execution times of top-k
queries is presented.

Results of experiments in simulators and on an implementation in the DASCOSA-
DB distributed DBMS prototype show that these methods lead to significant savings
in query execution time.

i

ii

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the Norwegian University of Science and Technology. The
work described in this thesis was conducted at the Department of Computer and
Information Science under the supervision of Professor Kjetil Nørv̊ag, with Professor
Svein Erik Bratsberg and Dr. Olav Sandst̊a as co-supervisors.

Acknowledgments

First, I would like to thank my supervisor Professor Kjetil Nørv̊ag for his continuous
guidance and his great interest and involvement as a supervisor. I would also like to
thank Professor Svein Erik Bratsberg and Dr. Olav Sandst̊a for being co-supervisors.

I would like to thank Adjunct Associate Professor Jon Olav Hauglid for great
cooperation over several years, and in particular for help with implementation in the
DASCOSA-DB prototype. Dr. Christos Doulkeridis and Dr. Akrivi Vlachou make
up an amazing research team, and I am very happy that we got to work together
on a paper. Thank you. I would also like to thank the rest of my colleagues at the
department for good discussions, inspiration and friendship.

I could never have completed this thesis if it had not been for the support of
friends and family. They are too many for me to mention them all, but they still
have my gratitude. I would particularly like to thank Jeanine Lilleng, Nina Knudsen
and Dr. Hans Sverre Smalø for always being there when I needed it, from start to
finish.

iii

iv

Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Focus . 4

1.3 Methods . 5

1.4 Thesis Outline . 5

2 Background 7

2.1 Peer-to-Peer Networks . 7

2.2 Data Placement . 13

2.3 Distributed Query Processing . 17

2.4 Caching of Query Results . 21

2.5 Distributed Data Storage and Query Processing Systems 22

3 Contributions 33

3.1 Research Topics . 33

3.2 Published Papers . 35

4 Concluding Remarks 41

4.1 Evaluation of Contributions . 42

4.2 Future Work . 43

Bibliography 45

II Published Papers 53

A Robust Aggregation in Peer-to-Peer Database Systems 55

A.1 Introduction . 57

A.2 Related Work . 58

A.3 Data Loss . 59

A.4 Fighting Data Loss . 63

A.5 Experiments . 67

A.6 Conclusion and Future Work . 71

Bibliography . 72

v

vi CONTENTS

B RIPPNET: Efficient Range Indexing in Peer-to-Peer Networks 75
B.1 Introduction . 77
B.2 Related Work . 78
B.3 Preliminaries . 79
B.4 Distributed Range Indexing . 81
B.5 Extensions . 85
B.6 Experimental Evaluation . 86
B.7 Conclusion . 90
Bibliography . 91

C Efficient and Robust Database Support for Data-Intensive Appli-
cations in Dynamic Environments 93
C.1 Introduction . 95
C.2 Background . 96
C.3 Overview of DASCOSA-DB . 97
C.4 Demonstration . 102
C.5 Future Work . 102
Bibliography . 103

D DYFRAM: Dynamic Fragmentation and Replica Management in
Distributed Database Systems 105
D.1 Introduction . 107
D.2 Related Work . 109
D.3 Preliminaries . 111
D.4 Overview of DYFRAM . 115
D.5 Replica Access Statistics . 116
D.6 Fragmentation and Replication . 121
D.7 Evaluation . 126
D.8 Conclusions and Further Work . 136
Bibliography . 136

E Site-Autonomous Distributed Semantic Caching 139
E.1 Introduction . 141
E.2 Related Work . 143
E.3 Preliminaries . 143
E.4 Distributed Semantic Caching . 145
E.5 Experimental Evaluation . 152
E.6 Conclusion and Future Work . 154
Bibliography . 155

F Efficient Distributed Top-k Query Processing with Caching 157
F.1 Introduction . 159
F.2 Related Work . 160
F.3 Preliminaries . 162
F.4 ARTO Framework . 162
F.5 Answering Top-k Queries from Cache 164

CONTENTS vii

F.6 Remainder Queries . 167
F.7 Server Selection . 170
F.8 Experiments . 170
F.9 Conclusion . 172
Bibliography . 173

G The DASCOSA-DB Grid Database System 175
G.1 Introduction . 177
G.2 Overview of Related Systems . 178
G.3 System Architecture . 180
G.4 Distributed Data and Metadata Management 183
G.5 Distributed Query Processing in DASCOSA-DB 187
G.6 Distributed Monitoring and System Management 192
G.7 Experimental Evaluation . 194
G.8 Summary and Future Challenges . 195
Bibliography . 196

viii CONTENTS

List of Figures

2.1 Example of an unstructured network. 8
2.2 Example of a supernode network. 9
2.3 A Chord identifier circle. 11
2.4 Horizontal and vertical fragmentation of a table. 14
2.5 Four steps of distributed query processing. 18
2.6 Data and query shipping. 20
2.7 Caching opportunities. 22

A.1 Hierarchical aggregation using a DHT. 57
A.2 Variants of aggregation trees. 64
A.3 Accuracy of aggregation functions with different number of replicas. . 69
A.4 Accuracy of the count function with different node degrees. 69
A.5 Accuracy of the avg function with different node degrees. 70
A.6 Accuracy of the max function with different node degrees. 71

B.1 An example system. 79
B.2 Data distribution on a node. 82
B.3 Two-dimensional index of one-dimensional data. 83
B.4 Range placement. 85
B.5 Probability of index updates. 88
B.6 Messages used in varying network sizes. 89
B.7 Messages used when varying query widths. 90

C.1 High-level overview of the architecture of DASCOSA-DB. 97
C.2 Screenshot from the DASCOSA-DB system monitoring tool. 98
C.3 Query and performance under churn. 99
C.4 Example access pattern, and desired fragmentation and allocation. . . 100

D.1 Example access pattern, and desired fragmentation and allocation. . . 109
D.2 Dynamic fragmentation and allocation. 115
D.3 Histogram with four buckets and corresponding value ranges. 124
D.4 Results from two-site workload. 129
D.5 Comparative results from two-site workloads. 131
D.6 Results from workloads involving several sites. 133
D.7 Results from DASCOSA-DB implementation. 134

E.1 Example query from unmodified DASCOSA-DB. 144

ix

x LIST OF FIGURES

E.2 Extended lookup message. 146
E.3 Extended lookup reply message. 147
E.4 Query dissemination with table fragment timestamps. 148
E.5 Result and timestamp propagation. 149
E.6 Execution time for varying network bandwidth. 152
E.7 Results for varying parameter distributions. 154

F.1 2D representation of query and data space. 163
F.2 Query plan transformation. 164
F.3 Cache containing the cache entries of two queries. 165
F.4 Areas examined by the remainder query vs. restarting a query Q1. . . 168
F.5 Transferred data for 1,000 queries and uniform data distribution. . . . 171
F.6 Results of queries with varying k. 172
F.7 Results of queries with varying cache size. 173

G.1 Distributed architecture of DASCOSA-DB. 181
G.2 High-level overview of the architecture of a DASCOSA-DB site. . . . 182
G.3 Data fragmentation. 185
G.4 Query dissemination. 188
G.5 Query failure and restart. 191
G.6 Screenshot from the DASCOSA-DB system monitoring tool. 193
G.7 Execution time relative to baseline. 195

Part I

Introduction

1

Chapter 1

Introduction

Many databases have outgrown what single server systems can provide, and they
continue to grow. To meet future demands for data storage, we need to build
database management systems (DBMSs) that can scale. However, scaling is not
easy. Distribution adds coordination overhead, and this overhead grows with the
size of the system and limits scalability. A solution to the scalability problem is to
make sites (i.e., the nodes or computers) in the distributed system more autonomous
and thereby reducing the need for coordination, but this also has its downside: How
can a less coordinated distributed DBMS process queries efficiently?

The advent of grid and cloud computing promises easier access to computing
resources than ever, with the possibility to scale the resource allocation up and down
as needed. The vision of distributed systems that automatically adapt resource
usage to the users’ needs seems to be within reach, but that requires distributed
systems that can scale seamlessly from a single site to thousands of sites and adapt
to the current workload [6, 97]. How can one build a DBMS that allows this type
of automatic scalability, both in terms of storage and query processing?

The focus of this thesis is on how query processing can be done efficiently in a
distributed DBMS with a large degree of site autonomy. This problem is addressed
by looking at methods to improve data placement and query execution.

1.1 Motivation

In a large distributed system such as a DBMS in the cloud, one has to expect sites
or network links to fail. A failing site takes with it the data stored on it, and a
distributed system must be able to deal with this data loss. One strategy to deal
with failures is to accept that some data will be unavailable and let queries return
the best result that is possible given the currently available data. But how can
query processing be made more resilient to failures? The current proposed solution
for making aggregation queries resilient to failures is to replicate data and the whole
aggregation process, in practice doubling the cost of each query. Because of this
cost, it is not a viable solution.

With distributed systems comes the option of varying data placement. Assuming
data can be placed freely in the distributed system, where should it be put? The

3

4 CHAPTER 1. INTRODUCTION

idea of a grid or cloud system is that the system scales with the load and storage re-
quirements. This means that the workload and the number of sites available for data
storage and query processing changes, and the system should adapt automatically
to these changes.

There must also be an efficient way of locating these data, even as they are
moving around to match the current workload. With a large number of changes, it
is important that this lookup mechanism does not need to be updated every time a
data item is changed. Current structured networks mostly store tuple indices that
must be updated every time a tuple changes.

Current DBMSs cache data as it is read from disk, and some also cache the final
results as they are delivered to the user. However, they do not cache intermediate
results, i.e., the results of subtrees of the whole relational algebra tree for the query.
A query is specialized to return only the relevant tuples and attributes, while the
intermediate results are more general and may be used to answer more queries.
Hence, there should be more to gain from caching these intermediate results than
only final results.

1.2 Research Focus

The topic of this thesis is how to improve the performance of query processing in
large distributed DBMSs where autonomy has been increased and coordination has
been reduced in order to improve scalability. The reduced coordination costs is
beneficial to scalability, but it comes at the cost of less information available at each
site. Each site decides autonomously, based only on the locally available information,
how to process queries. The challenge is to do this in a way that is beneficial to the
system as a whole.

In particular, this thesis focuses on data distribution and lookup, caching of in-
termediate results and how to deal with site failures during processing of aggregation
queries.

1.2.1 Research Questions

The main research question for this thesis is:

How can query processing in large distributed database management sys-
tems be made more efficient?

This question covers too large an area of research to fit into one thesis, so it has
been further specified into the following questions:

1. How are aggregation operations influenced by site failures?

2. How can data placement adapt to constantly changing workloads?

3. How can data be located if sites are given autonomy over storage decisions?

4. How can caching of intermediate results be used to speed up query processing?

1.3. METHODS 5

These questions will be revisited in Chapter 4, where they will form the basis
against which the contributions of this thesis will be evaluated.

1.3 Methods

The main contribution of this thesis is methods for failure resilient aggregation,
data placement and lookup, and caching of intermediate results. These methods
have been evaluated by doing simulations and experiments on implementation in a
distributed DBMS prototype.

There are two main advantages of simulators: control and scale. By simulating
only enough of a system to conduct the necessary experiments, it is easier to have
full control over the parameters and environment of the simulations. A real system
is influenced by external events, while a simulator creates a fully controlled environ-
ment where external events have no effect on the simulation. By limiting the details
or depth of the simulation, it can be scaled to cover a large number of sites, thereby
offering an opportunity to examine larger systems than otherwise possible.

The main limitation of simulations is reduced realism since the simulator is not
a real system in a real environment. For the results to be relevant, it is impor-
tant that external events that will have a significant effect on the system in a real
implementation are also modelled in the simulator. It is easier to measure effects
in a simulator, but fewer metrics are available since the metrics are limited by the
simulator model.

Implementation in an existing system or prototype offers a realistic setting, but it
is harder to control the environment and more costly to scale. The effect of external
events on the system is both a strength and a weakness. It is a strength because
it is the effect of a real environment, but it is also a weakness because it makes it
harder to understand what is actually the cause of the effects that are measured.

Experiments in existing systems or prototypes are also harder to scale than
simulations. Since the system is real, and not only simulated, real hardware is
needed to run experiments. Scaling experiments to thousands of sites is possible in
simulators. Finding thousands of networked computers to run a prototype DBMS
is harder.

For the work presented in this thesis, a combination of simulators and imple-
mentation in prototypes are used. Some methods are evaluated only in simulator
or prototype, while other are evaluated using both. The DASCOSA-DB distributed
DBMS prototype has been developed concurrently with the research included in this
thesis and has been used to evaluate several of the proposed methods. Work con-
ducted prior to the development of the DASCOSA-DB prototype has been evaluated
using simulators.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 contains background
information on peer-to-peer systems, data placement, query processing and caching.

6 CHAPTER 1. INTRODUCTION

It also contains a short review of relevant distributed storage and querying systems.
Chapter 3 describes the papers included in this theses and how they fit together.
Chapter 4 concludes the thesis.

The published papers are included, in chronological order, as Part II. These
papers are reproduced faithfully with regard to the published text, except for cor-
rections to minor typographical errors. To increase readability, the papers have also
been reformatted to fit the thesis format. This reformatting has not altered the
contents of the papers.

Chapter 2

Background

This chapter contains background material that will serve as an introduction to
the concepts that are necessary to understand the papers included in this thesis.
The background material has been divided into five areas: Section 2.1 is an in-
troduction to peer-to-peer systems and overlay networks, in particular structured
overlay networks. Section 2.2 discusses the problem of how to split up database
tables and allocate the fragments to sites in a distributed DBMS. Section 2.3 ex-
plains distributed query processing. Section 2.4 describes how caching is used in
query processing in distributed DBMSs. Finally, Section 2.5 presents some existing
systems for distributed data storage and querying.

2.1 Peer-to-Peer Networks

Large-scale distribution is hard. Large systems consist of a large number of com-
puters, and if the probability of a single computer failing remains constant, the
probability of a single failure in the system increases with the number of computers.
If the system is large enough, failures are to be expected as part of normal operation.
This means that systems must be constructed in such a way that single failures do
not bring down the whole system. It is especially important to avoid creating any
single points of failure.

One of the solutions that have been proposed is the use of peer-to-peer overlay
networks. Peer-to-peer overlay networks remove the need for a centralized server
that easily becomes a bottleneck and single point of failure. This allows the peer-
to-peer networks to grow to considerable sizes [4].

The overlay networks can be broadly categorized into three different categories:
unstructured networks, supernode networks, and structured networks. The structure
of the overlay network decides the fundamental principles of communication and
hence affects the capabilities and limitations of the systems built on top of the
overlay network.

In general, we describe an overlay network as a graph G = (V,E) with a set V
of sites and a set E of network links between these sites. The different categories
of overlay networks are mostly distinguished by restrictions on which network links
may exist in E, but some networks also distinguish between different types of sites.

7

8 CHAPTER 2. BACKGROUND

a
b

ed

c

f

g

Figure 2.1: Example of an unstructured network.

2.1.1 Unstructured Networks

Unstructured networks are networks where any site can connect to any other site
without restrictions. A site may connect to several other sites, so that it is not
disconnected if one network link or site fails. The extra connections also allow for
direct communication with more sites. An example of an unstructured network is
shown in Figure 2.1. In this example, site e will stay connected to sites a and d
even if site b disappears. However, the failure of site b will partition the network
into two parts. In order for the network as a whole to survive the failure of site b,
more connections have to be made between the two partitions.

The Gnutella file sharing system [42] and Freenet [26] are examples of systems
using unstructured overlay networks.

Storage and Querying

A key feature of unstructured networks is that there are no restrictions on data
placement. All sites have full autonomy over which data items they store and which
other sites they connect with. This means that each site can store those data items
it currently needs and rely on the network to get new ones if necessary.

The disadvantage of this approach is that a query has to be broadcast to all
sites in order to retrieve all possible data items, as there is no structure that can
provide more efficient lookup mechanisms. If site e in Figure 2.1 requests some data,
a query will be sent out to sites a and b, which again will forward it to sites d and
f , respectively. Site f will forward the query to sites c and g. In large networks,
this broadcast scheme is infeasible, and a time-to-live field is inserted into queries
to limit the number of routing hops a query may travel before it is dropped. This
limited horizon effectively limits what data items are visible to a site and means
that it is impossible to give lookup guarantees in unstructured networks.

2.1. PEER-TO-PEER NETWORKS 9

b

a

d

c

C

B

A

Figure 2.2: Example of a supernode network. Capital letters represent top-level
sites, lower case letters represent mid-level sites, while unnamed sites are on the
lowest tier.

2.1.2 Supernode Networks

Supernode networks are much like unstructured networks, but some sites have been
appointed supernodes and given a special status in the system. There may be
multiple levels of supernodes, forming a hierarchy. Sites connect to other sites in
the same or the next tier, with the sites of the highest tiers forming the core of the
network. That is, the network G = (V,E) consist of a set V = V1∪V2∪V3∪ · · · ∪VT
of sites in T tiers (1 being the highest tier). Each site v is member of only one tier
Vt. A network link e = (v1, v2) from site v1∈Vt to v2 is allowed only if v2∈Vt−1∪Vt.

Sites with slow network links or low processing power are usually placed in the
lowest tier, with more powerful and well-connected sites as supernodes higher up in
the hierarchy. This organization helps to avoid slow network links or sites becoming
bottlenecks in the system. Figure 2.2 shows a network with three tiers, where sites
A, B and C are in the top tier and sites a, b, c and d are in the middle tier. All
unnamed sites are in the lowest tier.

FastTrack [102] and Napster [71, 72] are examples of systems using supernode
overlay networks.

Storage and Querying

Supernode networks are more organized than unstructured networks. The supern-
odes play an important part in this organization, and are often given the task of
indexing data stored in the network. The autonomy of the unstructured network is

10 CHAPTER 2. BACKGROUND

retained, allowing them to store the data items they need.
Queries for new data items are sent to the supernodes. The supernodes have

indices of the data items on sites connected to them and may ask other supernodes
about items from their subtrees of the network. The list of sites that store relevant
data items is sent back to the querying site and this site may connect directly with
any of those sites to retrieve the item. This hierarchical index lookup makes querying
large networks feasible. Traditionally, peer-to-peer networks have been designed
mostly for file sharing, but effort has been made to construct routing indices that
enable efficient query processing [36].

2.1.3 Structured Networks

Structured networks impose a structure on the network, restricting which connec-
tions may exist between the sites. There is a large variety of possible structures, but
two have emerged that have proven very useful for database applications: distributed
hash tables (DHTs) and tree structured networks.

Hash tables are well known for their efficient lookup properties, and distributed
hash tables deliver some of the same performance to overlay routing. Each site
is given a unique key, usually by hashing on some identifying data, e.g., network
address. All data items stored in the system are also given addresses in the same
address space by hashing on a key, and each site is given responsibility for storing
data in a range of the data space. Examples of DHTs are Kademlia [64], Chord [92],
CAN [83], Pastry [87], Tapestry [48] and Bamboo [86]. Common to most of these is
that they have a simple ring-like structure, as shown in Figure 2.3. Each site in the
ring is given the task of storing data items that fall between this site and its closest
neighbor with a lower address, i.e., data items are stored on the successor site of the
item’s position in the ring. Messages are routed from site to site in jumps along the
ring according to routing tables held by each site.

A structured network can also take on a tree structure. This class of structured
networks include systems such as the Distributed Segment Tree [113], the Range
Search Tree [39], BATON [54], P-Grid [2] and P-Tree [30]. A similar approach is
search tries stored in DHTs [106].

Storage and Querying

The strength of structured networks is the ability to directly address data items and
route messages to the site responsible for the address space to which the data item
belongs. The disadvantage of this approach is that it forces a data partitioning on
the sites in order to balance storage and querying load, making the structure of the
network decide how data is partitioned. Often, the data is spread out uniformly using
a hashing function to avoid any sites becoming hotspots and possible bottlenecks in
the system. Despite the forced data placement, structured overlay networks have
their advantages. Efficient routing algorithms and guaranteed data discovery make
structured overlay networks very popular for database applications.

The DHTs only support exact match lookups. More advanced queries, such as
range and cover queries (i.e., queries for all data items in a given range or all ranges

2.1. PEER-TO-PEER NETWORKS 11

0

1

2

3

4

5

6

7

successor (5)=0

successor (1)=1

successor (2)=4

Figure 2.3: A Chord identifier circle with eight possible addresses. The system
consists of three sites with addresses that hash to the values 0, 1, and 4. Three data
items with identifiers that hash to 1, 2, and 5 are stored in the network.

12 CHAPTER 2. BACKGROUND

that cover a given data point), are made impossible by the same hashing function
that gives DHTs their advantage. To do a range query in a DHT, one would have
to look up every possible key in the range, creating an excessive amount of lookup
requests, especially if the data space is sparsely populated. In [112], two methods
for doing range queries in peer-to-peer systems are discussed. The first is simply
to give the same hash key to all values within a range. This would reduce the
number of hash keys used and hence the number of lookup requests needed, with
the disadvantage of clustering data on those sites. Another drawback of this method
is that it only supports predefined ranges. The other method suggested is to create
a multicast group for each range. Queries are then multicast to the ranges that are
relevant.

A method for range selection in DHTs based on locality sensitive hashing is
presented in [43]. The method can look up a range in O(logN) hops in an N -
site network, but it only gives an approximate answer. Another approach is to use
locality-preserving hashing functions to place similar values close to each other in
the hash space, as is done in HotRoD [79], which combines the locality-preserving
hashing with replication to support range queries. Another method is to use Gray
coding, as done by GChord [114], so that consecutive values differ in only one
bit. This bit change is used to forward the range query through a Chord network,
reaching all data points within a range.

The simplest method is perhaps to skip the hashing step altogether, as is done
in [1] and [14]. By skipping the hashing step, contiguous values are placed after
each other in a ring structure that is otherwise the same as in a DHT-ring. This has
the obvious disadvantage of being unbalanced if the data set is skewed, but these
methods add load balancing algorithms to ensure fairness.

Tree structures are often applied in database systems, and they support range
queries. Distributed segment trees are binary trees that support both range and
cover queries, but requires updates to sites in all levels of the tree every time a tuple
is inserted or deleted. Techniques exist to reduce the load on the root and sites
close to the root somewhat, but still a message has to be sent to these sites [113].
This creates a lot of messages every time a tuple is inserted or deleted and limits
scalability.

P-trees [30] are built on top of a Chord [92] DHT where each site stores part
of a structure similar to a B+-tree. Tuples are stored in leaf sites, and these sites
constitute the Chord ring, similar to the linked list of leaves in a B+-tree. How-
ever, P-trees with a large number of children at each level are not very efficient
for frequently updated databases because of high maintenance costs. Another tree
structure, P-Grid [2], uses a binary prefix tree. The disadvantage of P-Grid is that
it in case of skewed data may degenerate into a linked list, which severely limits
scalability [54]. The BATON [54] tree structure uses self-adjustment to avoid these
problems in case of data skew.

A number of range indexing techniques are built on skip lists. Skip lists are trees
of linked lists where the lowest level is a linked list of all sites. Lists higher up in the
tree skip a certain number of elements ahead, creating increasingly sparser lists for
higher levels. Skip lists are used by SkipIndex [111], SkipNet [46], Skip Graphs [13]

2.2. DATA PLACEMENT 13

and ZNet [90].
Unstructured and supernode networks do not have the same problem with range

queries. A range query in an unstructured network can be broadcast in the same
manner as other queries, and in supernode networks, the supernodes can look up
ranges in their indices. DHTs are built for direct lookup, and struggle with range
queries because of the coupling between querying mechanism and data placement.
Queries are formulated as direct data item lookups, and the data item is located by
message routing. The structure of the network forces data placement restrictions
on the sites, typically using hashing functions to achieve load balancing, making it
hard to keep ranges together. Combined with direct tuple addressing, this makes
range queries hard.

2.2 Data Placement

In a distributed DBMS, there is a question of where to store data. Data can be
stored centrally on one site, split up and distributed to a set of sites, stored in its
entirety on all sites, or any solution in between. The options are infinite. It is hard
to know in advance which configuration is the best for a given system.

To improve query processing performance, a data placement algorithm should
aim to place data so that they can be accessed efficiently. If data is stored on other
sites than where they are used, they have to be accessed remotely. Usually, remote
accesses are much slower than local accesses since the data has to be fetched over a
network. The optimal would then be to store data such that all accesses are local,
but unfortunately that is not always possible. Also, we expect failures to occur,
which means that data must be replicated to survive site failures. This will also
increase the number of sites that can access data locally, but it incurs some extra
cost in keeping the replicas up-to-date.

2.2.1 Fragmentation

The problem of data placement can be divided into three subproblems: fragmenta-
tion, fragment allocation, and replication. Fragmentation is about dividing a table
into a set of table fragments. Figure 2.4 shows two ways to fragment a table. Frag-
mentation can be done horizontally, splitting the table between the rows so that
all attributes of a tuple are stored together in the same fragment. It can also be
done vertically, splitting the table between columns. With the latter method, all
fragments would contain the key attributes and one or more other attributes for all
tuples. This is known as a column store.

The horizontal fragmentation shown in Figure 2.4 is a fragmentation into ranges,
where each fragment consists of a continuous range of rows. It is also possible
for fragments to contain a set of single rows from many places in the table. An
example of a fragmentation method that would result in such fragments is horizontal
fragmentation based on the hash of key attributes. This type of fragmentation occurs
if, e.g., a DHT is used to store database tuples. The DHT places a data item on
a site based on the hash of the item’s key, and all items with keys that hashes to

14 CHAPTER 2. BACKGROUND

A1 A2 A3 A4 A1 A2 A3A1 A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

1
2
3
4
5
6
7
8
9
10

1

11

1
2
3
4
5
6
7
8
9
10

1

11

1
2
3

4
5
6
7

8
9
10

1

11

Original table Horizontally fragmented Vertically fragmented

A1 A4
1
2
3
4
5
6
7
8
9
10

1

11

Figure 2.4: Horizontal and vertical fragmentation of a table. Attribute A1 is the
key.

a value in the same address range (i.e., the range of the DHT address space that a
site is responsible for) belong to the same fragment.

The fragmentation problem is particularly visible when multiple sites contend for
access to data in the same region. How should the data be fragmented to minimize
contention? If two sites both access data in the same region, the data could be split
into two fragments with either the contended data in one of the regions or split so
that each fragment contains a part of the contended region. A third option is to
split the region into three parts, two accessed exclusively by either site and a third
that contains the contended region.

The problem of fragmenting tables so that data is accessed locally most of the
time has been studied throughly [8, 27, 35, 49, 53, 82, 88, 89, 91, 95, 104, 115]. It is
also related to some of the research in data placement in distributed file systems (see
a summary in [41]). One of the important differences between distributed file systems
and database systems is that of granularity. Whereas file systems address files
and disk blocks, database systems address tables and tuples. Distributed database
systems also need a fragmentation attribute that can be used to define partitioning
rules for the table.

2.2.2 Fragment Allocation

After fragmentation, the problem of fragment allocation arises. Given a set of frag-
ments, which fragment should be allocated to which site? The basic principle is to
allocate the fragments in such a way that most accesses are local. This is not as
easy as it may sound since, in general, there are more than one site competing for
access to the same data. If local access is not possible, which remote site is most

2.2. DATA PLACEMENT 15

beneficial?

In case of multiple sites accessing the same fragment, allocation algorithms have
to decide if the fragment should be allocated to one of the sites accessing it, perhaps
the site that has the most accesses to the fragment, or if the fragment should be
placed on a separate site, where all contending sites have equal access to it.

Fragmentation and fragment allocation are tightly coupled. There are methods
that do only fragmentation [8, 82, 89, 104, 115] and methods that do only allocation
of predefined fragments [9, 12, 18, 28, 38, 65, 98]. Some methods also exist that
integrate both tasks [27, 35, 49, 53, 88, 91, 95].

The intended lookup strategy also influences data allocation. As described in
Section 2.1, data placement strategies and lookup strategies are tightly connected.
When looking up data, a clear structure is beneficial since it allows direct access to
interesting data items. However, data usage is usually not that structured, which
means that fragment allocation and lookups are often opposites that must be bal-
anced according to the expected use of the system. E.g, a DHT forces a certain
fragmentation and allocation in order to achieve guaranteed lookup, while an un-
structured overlay network sacrifices lookup guarantees in order to achieve a free
fragment allocation.

2.2.3 Replication

A third question in data placement is replication. How many replicas should there be
of a single table fragment? Replication is often thought of in connection with failure
resilience since multiple replicas make the system more redundant to site failure, but
redundancy is not the only advantage. Replication can solve some of the problems
with multiple sites contending for the same fragment by allocating the fragment to
all of them. This way, remote accesses are converted to local accesses. This is an
advantage as long as there are many read operations, but write operations become
more costly as there are now multiple replicas to update. This also complicates
write operations as there might be consistency requirements that require updates to
be executed simultaneously in all replicas.

While fragmentation and fragment allocation are typically integrated, replication
has usually been studied separately [15, 25, 45, 67, 68, 103]. Still, there are some
methods that take an integral view of fragmentation, allocation and replication [35,
91, 95]. Some of the replication strategies allow for dynamic replication [15, 45, 67,
68, 103], creating new replicas when needed. However, one must be careful so that
the cost of dynamic replication does not exceed the alternative of remote reads and
writes [25].

2.2.4 Static Data Placement

Fragmentation, allocation and replication methods can also be categorized as either
static or dynamic. Static methods analyze an expected database workload and
produces an optimized static data placement. The workload used as a basis for
static methods is typically a set of database queries gathered over time from the live

16 CHAPTER 2. BACKGROUND

system, but it can also include inserts and updates. It can be argued that static
methods could gain from looking at a sequence of operations instead of a set [7], but
sets are still the norm.

Some methods also utilize more particular information on the data in addition
to the query set [89]. The disadvantage of this information, is that it has to be
entered manually by a user with knowledge of the data. It is not possible to get
this kind of information automatically. The design advisor [115] is one type of static
method that bypasses the problem of gathering additional information by delivering
its decisions as suggestions of possible actions to a human database administrator.
The database administrator would then use his knowledge of the data to adapt the
advisor’s suggestion.

Common to static methods, are that they are offline methods, used only at major
database reconfigurations. They do not adapt to changes in the workload. Some
approaches, such as evolutionary algorithms for fragment allocation [9, 28], lend
themselves easily to the static setting, since it is possible to give them time to run
through many generations on a non-changing workload.

2.2.5 Dynamic Data Placement

A static method precomputes fragmentation, allocation and replication. However,
this optimal configuration may quickly become suboptimal if the workload changes.
Sites may change hotspots, or the ratio of reads to writes may change. Such vari-
ations can take place over days, e.g., changing from a working day to a holiday
workload, or it may be faster changes measured in minutes or seconds. Static meth-
ods cannot handle these types of workload changes.

Dynamic methods continuously monitor the database to adapt fragmentation,
allocation and replication to the changing workload. These methods are part of
the trend towards fully automatic tuning of database management systems [101].
There have also been efforts to integrate vertical and horizontal partitioning while
also taking other physical design features like indices and materialized views into
consideration [8].

Research in adaptive data placement has focused mostly on load balancing, either
by data balancing [27, 49] or by query analysis [53]. Data balancing tries to keep
the amount of data similar across sites, while query based balancing tries to keep
the computational load similar. The results are not always the same. If there are
hotspots in the data accesses, the sites storing these hotspots will have a greater
load per data item than other sites in the system. In this case, the two approaches
to load balancing will give different results.

While load balancing has been a popular field of study, the idea of continuously
moving data to optimize access has received less attention. The work of Brunstrom et
al. [18] is an exception to this. In their system, predefined fragments are periodically
considered for reallocation based on the number of accesses to the fragments. This
work, however, does not integrate fragmentation and replication.

Unlike static methods, dynamic methods have to associate a cost with changing
the existing fragmentation, allocation or replication. Refragmentation is cheap if

2.3. DISTRIBUTED QUERY PROCESSING 17

fragments are only split, but if fragments are to be coalesced, some of them might
have to be moved to other sites, incurring data transportation costs. The same
applies to fragment allocation. Replication has a cost model where it is cheap to
remove a replica since all that is necessary is to delete it locally. Creating a new
replica, however, is expensive since the whole fragment has to be copied to a new
site.

An additional challenge is that it is hard to predict how the workload will be in
the future. Adaptive methods must base their decisions on historical information,
but the workload might change so that the new configuration does not pay off before
the workload changes again. This has the effect that some adaptive changes may
worsen the situation instead of improving it. The algorithms should try to avoid
adapting too quickly to changes, but must also not change too slowly.

2.2.6 Distributed Decision Making

Another aspect of data placement methods is distribution of control. Some methods
use a dedicated centralized server for gathering information and decision making.
Other methods employ a completely distributed architecture, allowing each server to
make autonomous decisions. Among the latter class of systems, we find replication
schemes for mobile ad hoc networks (see [78] for an overview). However, these ap-
proaches do not consider table fragmentation and in general do replication decisions
on a quite coarse granularity. A combination of the centralized and decentralized
methods also exist. The servers are organized in smaller groups, and each of these
groups chooses its own coordinator that makes decisions for the whole group, thus
behaving like a centralized coordinator for the group [45, 67].

An interesting model for adaptive, decentralized data placement, is that pro-
posed for Mariposa [91, 94], which uses an economic model with a bidding system
to adapt to changing workloads. A Mariposa site will sell its data to the highest
bidder in a bidding process. Queries will buy data to have them locally accessible
instead of settling for remote accesses and high access times, but have limited bud-
gets. Mariposa’s method is dynamic, adapting to the situation at the time of query
planning, optimizing for queries with large budgets.

2.3 Distributed Query Processing

This section covers mostly general distributed query processing methods. A more
in-depth description of such methods can be found in [77].

A query posed to a distributed system is assigned a coordinator site, e.g., the
site that was contacted in order to pose the query. This could be the same site for
all queries, or the coordinator role could be distributed so that each query has its
own coordinator. The coordinator processes the query by going through four basic
steps, shown in Figure 2.5.

The coordinator starts by decomposing the query from the form it was posed
by the user, typically SQL, to algebraic form that is used internally by the system.
After decomposition comes the data localization step where the coordinator site

18 CHAPTER 2. BACKGROUND

Query decomposition

Data localization

Query optimization

Query execution

SQL

Result

Figure 2.5: Four steps of distributed query processing.

locates the data fragments necessary to process the query. The result is a basic
query plan that explains where to get data and how to compute the final result.
This query plan is improved by the query optimizer step. The optimizer chooses
a strategy for executing the query, including join order and how data fragments
are scanned. Finally, the optimized query is executed and a result is produced and
returned to the user.

Query decomposition is a translation from one query language to the internal
query language of the DBMS and is mostly the same for both centralized and dis-
tributed systems, but the localization, optimization and processing steps deserve a
closer examination. In a real system, these steps are not necessarily separate but
may integrate and overlap. However, it is easiest to examine them one by one.

2.3.1 Data Localization

Data localization is nonexistent in a centralized system since all data needed by the
query are located on a single site. In a distributed system, these data have to be
found. The query describes which tables are used, and in some cases also a range of
values for an attribute in that table. Using this information, the localizer must find
which sites store relevant data.

Systems that store tuples directly in a DHT have rules for data placement and
know that all sites potentially have relevant data. Data items are retrieved one by
one and there is no need to look up which sites are involved in advance. However, if
sites are allowed to store data independently of a DHT, a global catalog is needed.
The global catalog stores information on where data is located, i.e., a mapping
between tables or data ranges of tables and sites. This catalog may be centralized
or distributed.

In a large distributed DBMS, an important part of the localization step is to rule
out sites from the query. If sites are not ruled out, each query has to be broadcast

2.3. DISTRIBUTED QUERY PROCESSING 19

to all sites, leading to inefficient use of the system. The localization step limits the
involved sites to those that are actually needed to process the query. The result of
localization is a query plan that describes how and where to get and process data
in order to get the final result.

2.3.2 Query Optimization

Query optimization makes a series of improvements to the query plan. A significant
optimization is to find a good join order, since this often has a great impact on query
execution time. Other optimizations involve access methods. The localization step
has found relevant primary and secondary indices, and the optimizer may choose
one of these or fall back on a complete scan of a table or a table fragment. These
optimizations are not separate, so the existence of an index may affect join order.

The optimizer also has the option of choosing replicas. It could choose the replica
assumed to be the fastest to access, or it may choose to access multiple replicas in
parallel to speed up access.

A survey of query optimization can be found in [52].

2.3.3 Query Execution

There are two basic strategies for query execution in a distributed system: data
shipping and query shipping. Figure 2.6 shows how execution is distributed for
both strategies for a query joining three tables, T , U and V . Table T is split into
two fragments, T1 and T2, while the other two tables consist of one fragment each.
When using data shipping, all query execution takes place on a single site. This
may be the same site for all queries, i.e., a central query execution site, but it can
also be a different site for each query. In any case, there is only one site executing a
single query. Other sites that are involved are used as data storage sites that only
execute read and write operations.

The data shipping strategy moves data to the site of query execution. A query
shipping system, on the other hand, moves the query to the sites that store the data.
If the result of one operator is used by an operator on another site, the site of the
first operator will ship an intermediate result to the next site. In the end, the last
operator produces the final result that is sent back to the user.

The optimizer decides which algebra operations are to be executed at which
sites. One strategy is to reduce the amount of data transferred between sites, which
usually means that as many operations as possible are done locally where the data
are stored. If data from two sites are used by an operator, the operator is located at
the site that has the largest operand, resulting in only the smallest operand being
sent over the network.

Query processing in large distributed systems present new problems to data
owners. One is the issue of trusting a cloud provided site to execute queries correctly.
Data owners can cryptographically sign data to make sure changes are discovered,
but results of query operators are harder to verify [108]. Also, there is a question of
privacy. Not all data can be shared with the cloud provider, and efficient execution

20 CHAPTER 2. BACKGROUND

Site 1 Site 2 Site 3 Site 4

scan scan

σ

scan✻

✻

T1 T2 U V

Site 1 Site 2 Site 3 Site 4

scan scan scan

σ

scan

✻

✻

T1 T2 U V

Data shipping Query shipping

Figure 2.6: Data and query shipping.

of privacy sensitive queries is a current research topic [5].

Distributed Operators

Figure 2.6 shows a query shipping system where each relational algebra operator
is processed on a single site. It is also possible to distribute the processing of one
operator. One example of this is the use of a reduction tree to process aggregation
queries, as is done in, e.g., TAG [63]. A tree of sites is constructed, and each node
in the tree produces a partial aggregate covering its own data. Internal nodes in the
tree combine their own partial aggregate with those of their children, propagating
partial aggregates from the leaf nodes towards the root. The root produces the final
aggregated value covering all sites.

Another example of distributed operators is the equijoin operator as implemented
in PIER [51]. The hash based redistribution join exploits the hashing function of
the underlying DHT to do join attribute matching. Both operands are inserted into
the DHT using the join attribute as key. This results in tuples with matching keys
from both operands to be stored on the same site. Each site then joins the tuples
they have received and sends the result back to the coordinator. This processing is
similar to a MapReduce [32] using the hashing function to map and join to reduce.

MapReduce can also be used as a framework to execute queries [40, 96]. Queries
are decomposed to a representation of specialized map and reduce operations that
are then executed in a cloud running, e.g., Hadoop. Traditional query execution
and MapReduce are useful for different types of queries [93], so systems have been
built that combine techniques from parallel DBMSs and MapReduce and select the
best method for each query [81, 105].

2.4. CACHING OF QUERY RESULTS 21

2.4 Caching of Query Results

The principle of locality states that accesses are clustered so that a process that
accesses a particular data item is more likely to access the same item again or to
access items in its close proximity than it is to access other data items. This principle
can be applied to a single query, a transaction, a site or to the complete distributed
query workload. This principle does not always hold, but when it holds, it makes it
possible to save time by caching data.

DBMSs typically cache disk blocks to speed up disk access. A data shipping
distributed DBMS may also cache data that is received from other sites. On a
higher level, it is possible to cache parts of tables [11, 16, 62]. The coordinator
may have ordered an indexed scan on a table fragment on another site and may
cache the contents it receives. This is still caching of the raw data that is needed
to process queries, but on a higher level than disk block caching. The results are
readily available if the same operation is requested at a later time.

The use of a result cache that caches the final result of a query has been imple-
mented into MySQL [70]. The final result of SELECT queries are cached, and if the
exact same query reoccurs, it is answered from cache if this is still valid. The query
has to be exactly the same in SQL form, byte by byte, for the cache to be used.
The result cache gives good results in systems where the clients frequently pose the
same query, e.g., a web site that shows the last ten entries on its main screen. A
similar caching is available in Oracle 11g [60], but the caching is explicitly requested
by the client.

Unlike the result caches, semantic caching [31] and predicate-based caching [56]
are two methods that try to exploit cached results also when the new query does not
completely match the cached query. These methods add semantic descriptions to
cached data and later use these to match new queries to cache entries. This means
that more queries can reuse the already cached result.

When a query is posed in such a system, the cache is checked for semantically
described cache entries that are similar to the new query. If such an entry is found,
the query is split into two queries: one query that reads from cache and a remainder
query that builds on the cached data to construct the result originally requested
by the new query. If the cached entry contains more information than is needed
by the new query, it is narrowed down. However, if the cache entry is not enough
to answer the new query, the remainder query must fetch this data and merge it
with the cache entry. This may include joining the cached result with a new table,
extending ranges of WHERE clauses and other limitations. The system must take
care so that the remainder query and the merge of the remainder query result with
the cache entry is not more costly than the new query originally was.

If the construction of a remainder query is successful, the semantic caching pro-
duces little overhead and reduces network traffic in the distributed DBMS [55, 84].
Semantic caching has also been applied to deductive databases [21] and web querying
systems [24, 61].

The caching of input data and final results concerns data at each end of the
query, but less attention has been given to caching opportunities in stages between

22 CHAPTER 2. BACKGROUND

Site 1 Site 2 Site 3 Site 4

scan scan scan

σ

scan

✻

✻

T1 T2 U V

Disk block cachesCACHE CACHE CACHE CACHE

CACHE

CACHE

CACHE

CACHE CACHE

C
A

C
H

E

Result cache

Intermediate result caches

Figure 2.7: Caching opportunities.

input and output. MySQL caches the result of SELECT queries, but does not
cache the results of nested queries. In a query shipping system, intermediate results
are shipped between sites and therefore readily available for caching. Figure 2.7
shows the different caching opportunities in query processing. In the figure, only
the receiver caches data. It is also possible to cache data on the sender side.

Usually, a cache caches data that happens to pass by it. Queries are cached
automatically with the expectation that they will be reissued. With cache invest-
ment [57], the DBMS deliberately executes suboptimal queries in order to generate
cache entries that are expected to have a high hit rate. This means that one query is
deliberately slowed down in order to improve the execution of (expected) subsequent
queries. This cache investment expects to amortize the costs of a suboptimal query
execution over time as more queries are able to use the cached data than otherwise
would have been possible.

Taken further, a DBMS may use view materialization [23, 66] to always keep the
results of some interesting queries precomputed. These views are usually defined
manually by the database administrator.

2.5 Distributed Data Storage and Query Process-

ing Systems

A number of systems have been constructed for distributed data storage and query
processing. Some systems only provide data storage, other provide only query pro-
cessing, and some provide a combination of these. Some are built for a specific

2.5. DISTR. DATA STORAGE AND QUERY PROCESSING SYSTEMS 23

purpose, while other are more general storage or query systems.

The disadvantage of caching and materialization is that data must be kept up-
to-date or invalidated when the base tables are changed in such a way that the cache
or materialized result is affected. If the update strategy is chosen, this adds a cost
to update requests. If invalidation is chosen, it adds a cost either to updates or to
querying. Delays in updates and invalidation can be accepted if consistency is not
strictly enforced.

2.5.1 Data Storage Systems

Data storage systems provide persistent storage for data using various data models.
Common to these systems is that the querying capabilities are minimal. Such facil-
ities are expected to be provided by systems that build on the storage systems. A
survey of scalable data stores can be found in [20].

OceanStore

The OceanStore system [59] is designed to provide persistent storage on a global
scale. A wide variety of consistency guarantees, ranging from simple file system
access to ACID-type transactions, is possible. It also supports replication to improve
availability and access time.

Data access is by globally unique identifiers (GUIDs). Names are converted to
GUIDs by reading a catalog object. The lookup process is bootstrapped by looking
up a well known GUID for the root of the catalog hierarchy.

OceanStore is based on an unstructured peer-to-peer network with an advanced
two-tier routing algorithm. The first routing algorithm is probabilistic, using a mod-
ification of Bloom filters. Each site has a filter expressing the data stored on that
site. Sites also maintain filters for each outgoing connection, and the probabilistic
algorithm routes queries from site to site following these filters. The second algo-
rithm is a deterministic algorithm that is used if the probabilistic algorithm fails.
Deterministic routing is based on hierarchical routing as suggested by Plaxton et
al. [80]. This algorithm uses hashing on the GUID to create a global routing tree.
To avoid problems with churn, the tree is replicated using different salts for the
hashing function. The unstructured system allows data objects to be stored on any
site.

Bigtable

Google’s Bigtable [22] is another large-scale distributed data storage system. The
data model of Bigtable is close to relational databases, but tuples are not stored or
accessed as one unit. Instead, a row and column key is used for both read and write
operations. Bigtable also supports a grouping of columns into what is called column
families. Column families are part of the table schema, but within each family new
columns can be created just by inserting data into the cell given by row, column
family and column name. Access control is done on the column family level.

24 CHAPTER 2. BACKGROUND

The query model is simple. A client is allowed to request a certain cell in the
table, given by row and a column key consisting of column family and column name.
The table can also be scanned, filtering on column family.

Bigtable uses a central server to provide locking services. This server has a
number of passive replicas ready to take over in case of a server crash. Each table
is stored as a three-level tree where the leafs are table fragments and the internal
nodes of the tree are pointers to these leaves. The root node of the tree has pointers
to these internal nodes. The central server has the global catalog with information
about where the root for each table is located.

Apache HBase [47] is an open-source Bigtable implementation based on Hadoop.

Cloudy

Many cloud data storage systems have appeared that have different data and con-
sistency models. Cloudy [58] is a storage system that tries to give configurable
consistency and availability guarantees. Cloudy has a modular architecture and
provides a number of storage engines for both main memory and disk storage.

On top of the storage layer are a number of internal modules for message rout-
ing, data partitioning, load balancing and site membership services. The external
interface is also modular, providing modules for SQL, XQuery and key-value store
access.

Cloudy provides a site membership service called Cloudburst. The Cloudburst
service allows Cloudy to add and remove sites as the load changes, allowing the
system to scale automatically.

ES2

The Elastic Data Storage System ES2 [19] is another storage system for the cloud.
While most cloud data storage systems are key-value stores, ES2 has a relational data
model. The relations are partitioned both horizontally and vertically and stored in
Hadoop’s HDFS. Indices and metadata are also stored in HDFS.

The query processor supports both online transaction processing (OLTP) and
online analytical processing (OLAP) queries. For OLTP queries, ES2 provides get,
put and delete functions. The get and delete functions work on sets of tuples so that
one can query a table for multiple attributes and multiple tuples in one operation.
This is different from the access model of Bigtable, which only provides single cell
read and write operations.

The OLAP query processor provides scan methods, but unlike MapReduce, it
provides index scans so that it is not necessary to scan the whole table. To enable
OLTP and OLAP operations to run simultaneously, ES2 stores multiple versions of
tuples. OLTP operations access the latest version, while OLAP queries use older
versions.

2.5. DISTR. DATA STORAGE AND QUERY PROCESSING SYSTEMS 25

CouchDB

Apache CouchDB [29] is a document-oriented storage system. Semistructured doc-
uments are the primary data unit. These documents consist of a number of fields,
attachments and metadata. Documents are of varying size and format and identified
using a document ID.

Lookups can be done using the document ID or using views, which are a method
to filter and aggregate documents. Views are defined using JavaScript functions
that take documents as input and produce any number of rows in a view for each
document. CouchDB optimization is largely concentrated around efficient view man-
agement, including maintaining indices of documents belonging to views.

Multi-version concurrency control is used to allow different applications to read
and write the same document simultaneously, and the database is always kept in a
consistent state, so that only a minimum of recovery is necessary after a crash.

Dynamo

Amazon’s Dynamo [33] is a key-value store for cloud services with high availability
demands. The interface is simple and consists of only a get and a put method that
accesses data based on the primary key. No operations span more than one key-value
pair, and it is not possible to combine multiple get or put request into transactions.

Data consists of a key and value, each an array of bytes that is not interpreted
by Dynamo. Data items are stored in a circular data space, similar to that of
Chord [92]. Each site is assigned responsibility for data items with keys hashing to
an address between the site’s address and the address of the site’s predecessor in
the ring. In order to balance the load between sites, each site is assigned multiple
addresses, and therefore responsibility for multiple address ranges. Replication is
done by storing copies on successor sites.

Voldemort

Voldemort [99] is another key-value store. Like Dynamo, it has a simple interface
providing only primary key access, uses hashing to decide which site stores data
items, and uses successors in the circular data space to replicate data.

The data model is more complex than that of Dynamo. In addition to unin-
terpreted byte arrays, Voldemort has data types for strings of text and serialized
objects, including Java and JavaScript objects.

2.5.2 Query Systems

The query systems provide query capability, but not permanent storage. Query
processing is done on data that is non-permanently stored by the system or produced
on demand. Sensor networks fall into the last category.

26 CHAPTER 2. BACKGROUND

PIER

The Peer-to-Peer Information Exchange and Retrieval system (PIER) [50, 51] is a
general-purpose query network for relational data. PIER uses a DHT as overlay
network for storing tuples. These tuples will time out after a set time, and sites
that want to keep data in the PIER network has to republish their tuples regularly.

The interface to the overlay network is algorithm agnostic, and can be used with
different DHT algorithms. PIER has been tested with several algorithms, such as
CAN [83], Chord [92] and Bamboo [86].

PIER objects are identified by an identifier consisting of a namespace, a key and
a distinguishing suffix. The namespace is the name of the table, or in some cases the
name of a temporary result. The key is the table’s key attributes. These two parts
are combined and used as input to the DHT’s hashing function. An additional suffix
is used to make the identifiers unique in case two tuples hash to the same DHT key.
Tuples are stored as serialized Java objects and can use the full Java type system
for storing data.

Since tuples are not permanently stored in the network, they have to be refreshed
regularly. A time-to-live value is associated with each tuple, and sites have to
renew tuples before they time out. If a site disappears from the network, its tuples
eventually time out and are removed. To avoid this, it must hand its data over to
another site before leaving the network.

A special dataflow language called UFL is used to specify queries as relational
algebra graphs. The client is considered to be outside the PIER network and contacts
a site in the network to pose its query. The site that is contacted is called the
proxy site and acts as coordinator for the query. The UFL query is transformed
into a set of Java objects representing the algebra operations. The coordinator site
distributes this graph of Java objects to the other sites. When a site receives a query
on this form, it starts processing it and producing answer tuples. The tuples are
continuously forwarded to the coordinator, until the query stops after a time limit
specified in the query.

Queries are distributed using a distribution tree. There exists one such tree in
the PIER network, and this tree is used for all queries. Sites that connect to the
network are added to this tree by sending a message to a hardcoded root hash key.
This message is routed through the DHT according to the routing algorithm, and
the first site that receives the message adds the site as its child in the distribution
tree.

Astrolabe

Astrolabe [85] is a system for continuously running aggregation queries used for
system monitoring. Astrolabe maintains aggregated data in a hierarchy of zones.
Each zone stores and maintains aggregate values based on its sub-zones. At the
lowest level, each site in the system constitutes a leaf.

The network structure in Astrolabe is unstructured. A site has a connection to
its parent zone, and automatically becomes a member of all ancestor zones. Each site
also has connections to a set of other sites in its own zone and may have connections

2.5. DISTR. DATA STORAGE AND QUERY PROCESSING SYSTEMS 27

to other sites in the system.
Each site constitutes a leaf zone. In this zone, it has complete control over the

data. In the higher tiers of the hierarchy, zones store and maintain aggregates over
the data in sub-zones. The root of the hierarchy has aggregates that cover the whole
system. A site querying the network will connect directly to the site that maintains
the zone in question.

When a data item is updated in a leaf zone, an aggregate value in the leaf zone
may change. Updates are distributed to other parts of the network using a gossip
protocol that guarantees eventual consistency. Using this protocol, a site randomly
selects another site with which it exchanges information about its closest ancestor
zone. Each aggregate value is marked with a time stamp so that the gossip protocol
knows which value is the newest. After this exchange, aggregates of ancestor zones
are computed if necessary. This gives eventual consistency, but sites in the same
zone may be inconsistent at any given time.

The gossip messages also include information about zone membership. This
way, sites learn about new sites that join the system. This information is crucial to
keeping the network stable as sites come and go.

Astrolabe processes queries formulated in SQL and provides ODBC and JDBC
programming interfaces. Since Astrolabe only provides eventual consistency guar-
antees, a query may return old data and subsequent queries may return inconsistent
results.

SDIMS

The Scalable Distributed Information Management System (SDIMS) [107] is an
aggregation system similar to Astrolabe, but based on a DHT. Similar to Astrolabe,
all sites are leaves in a hierarchy of groups. Each site stores a selected set of attributes
and aggregation functions to calculate the aggregates of these attributes for higher
levels of the hierarchy.

Where Astrolabe uses a gossip protocol to update sites, SDIMS passes the aggre-
gates up and down the group hierarchy. The SDIMS API provides three functions:
install, update and probe. These operations take a parameter describing the re-
quested propagation in the hierarchy, from local to global. This allows data items
that are frequently read and infrequently written to be updated globally, so that
probes (queries) can be done locally. On the other hand, items that are much more
frequently written to can be updated only locally, avoiding flooding the whole system
when the value is most likely overwritten before the next time it is read.

TAG

The Tiny Aggregation Service (TAG) [63] is an aggregation service for wireless
sensor networks. One site is appointed the root and broadcasts a message stating
its own identifier and its level in the hierarchy. All sites that hear this and are not
already in the hierarchy, adds the site as their parent and broadcast similar messages
containing their own identifiers and levels, which is one more than the parent’s level.
As this process is repeated, the whole system forms a hierarchy. The messages are

28 CHAPTER 2. BACKGROUND

repeated periodically to detect new sites and to reconnect sites that have not been
able to contact their parent for a while.

The hierarchy is used to do aggregation in two phases. In the first phase, the
query is propagated downwards through the hierarchy. Each leaf site then computes
its reply and sends it to the parent site. An intermediate level site gathers replies
from its children, combines it with its own result and ships the result up one level
to its own parent. In the end, the reply reaches the root of the tree and is returned
to the querying application.

The technique is not very tolerant to failures. If one site is unable to contact its
parent, the whole subtree rooted at that site is lost from the reply. In [63], caching
is proposed as a solution to increase the quality of the results. If a child has not
replied within a given time limit, its parent site will use the cached value. Since a
site is allowed to choose a new parent if it is unable to connect to its current parent,
care must be taken so that the cache is invalidated before the child can appear in
another subtree.

Cougar

The Cougar Project [34, 109, 110] is another aggregation system for sensor networks,
and like TAG it also has a hierarchical structure where queries enter at the root site,
but the approach to query processing is quite different.

At the top of the tree is the root site that issues all the queries. The internal
nodes, called view nodes, of the hierarchy store pre-aggregated values for the next
lower level, which is the leaf nodes with the actual sensors.

Queries are processed in a hybrid pull-push manner. View nodes proactively
aggregate the values read from the leaves and queries are made against the view
nodes. Two different types of connections are allowed: on-demand and proactive.
In proactive links, information is pushed to update pre-aggregated values, while
on-demand links require view nodes to pull the data from leaves.

Querying is a three phase process. In phase one, leaves push data to the view
nodes, which compute the aggregate values. In phase two, the query is sent out
from the root to the view nodes. In the third an final phase, the view nodes send
their replies to the root. The root then merges the partial results of all the view
nodes to get the final result.

2.5.3 Data Storage and Querying Systems

The combination of data storage and advanced querying is closer to the traditional
DBMSs, but also these systems come in a number of variations.

Piazza

The Piazza system [44] is a peer-to-peer data management system for integrating
data sources with heterogeneous schemas. Instead of requiring all sites to share
a common schema, e.g., as PIER does, Piazza mediates between these schemas,
allowing each site full autonomy over which data to store and schema to use.

2.5. DISTR. DATA STORAGE AND QUERY PROCESSING SYSTEMS 29

Both unstructured and supernode overlay networks can be used, but sites are not
free to connect to any other site. A connection between two sites implies a partial
or full schema mapping between the sites. Creating such schema mappings are
heavyweight operations, which means that new connections are not added frequently.
Because of this, the system is assumed to have a low churn level with very few sites
joining or leaving.

The focus of the Piazza project has been schema mediation and query reformu-
lation according to schema mappings. Piazza sites store data in XML and issue
queries in a language inspired by XQuery. Queries that are sent over the network
are reformulated to reflect schema mappings as they propagate from one site to
another. The result of a query is similarly rewritten to new schemas as it is passed
back to the querying site.

Replication is possible in Piazza. A storage description defines what content a
site should store, and this description can define parts of other sites’ databases that
should be replicated locally. Like network connections, updates to this description
is not expected to be a very frequent operation, and hence not automated.

PeerDB

PeerDB [74, 75, 76] is a peer-to-peer relational DBMS using mobile agents in query
processing. It is built on the BestPeer platform [73], which is a system for mobile
agents in peer-to-peer networks. BestPeer uses a supernode network and PeerDB
combines this with the MySQL DBMS for data storage.

Sites in a PeerDB system can have heterogeneous schemas. Each schema is
described by keywords, and query processing uses standard information retrieval
techniques to find probable candidates for matching tables. When a query is issued,
it is first parsed to extract table and attribute names. These names are looked up in
a local dictionary to find matches in the local database. Agents are also shipped off
to neighboring sites to find matching tables and attributes there. Possible matches
are returned to the querying site, where the user selects which tables are to be
included in the final answer. After the user has made this choice, the agents on the
matching sites rewrite the query to match the local schema and return tuples as
reply to the query.

AmbientDB

AmbientDB [37] uses a DHT to provide a self-organizing peer-to-peer network of
intelligent home appliances. These devices share information using a database sys-
tem. The DHT serves both as a way to connect the devices and as an indexing
mechanism for data stored in the database.

The challenges facing AmbientDB include mobile devices with limited network-
ing bandwidth and computing resources. The devices may also disconnect frequently
and stay disconnected for long periods of time. AmbientDB provides database ser-
vices both for single devices that are currently away from the rest of the network
and for the rest of the network. Devices that are able to connect to other devices

30 CHAPTER 2. BACKGROUND

nearby can access each other’s data, and synchronize by updating data items that
have been updated while the devices where disconnected.

The self-organizing properties of AmbientDB makes it possible for devices to
extend the database schema and data propagation strategies. E.g., a thermometer
may extend the database schema to include temperature recordings that can be used
by other devices to automatically adjust to the surroundings.

APPA

The Atlas Peer-to-Peer Architecture (APPA) [10] builds on a supernode or struc-
tured overlay network and provides a full stack of data storage and querying services.
The APPA system consists of multiple layers. On the bottom layer, APPA provides
a simple key-value store, and higher level layers build more advanced services. On
the top level is services such as schema management, replication and query process-
ing.

Schema mapping in APPA is different from the pairwise schema mappings in
Piazza. In APPA, sites agree on a common global schema and express their tables
as views of this schema. Querying is done against the local view, and this query is
reformulated against the global schema before the set of sites with data relevant to
the query are found.

Mariposa

Mariposa [94] is a distributed DBMS that uses economic models to solve optimiza-
tion problems. Table fragments are considered a resource and are bought and sold
during a bidding process that is used to decide which sites should participate in
processing a given query.

A new query is given a budget to use on query processing. The sites bid for
the execution of this query, and the economy is constructed in such a way that the
more expensive query plans are more efficient. This means that a query that has
been given a large budget is prioritized and can buy a more efficient execution. This
bidding process includes the buying and selling of table fragments in order to move
data closer to the processing sites.

ObjectGlobe

ObjectGlobe [17] is a distributed storage and query processing system where data,
query operators and computing power is traded. Each site can offer a combination
of data sets, query operators and computing power. A site that wants to execute a
query combines components from several other sites and buys computing resources
to process the query. A pipeline is constructed that ships intermediate results from
one operator to another.

The difference between ObjectGlobe and Mariposa is that while Mariposa uses
the economic model to improve querying performance, ObjectGlobe has a more
direct connection to a real economy, where data sets, operator implementations and
computing power are actually sold.

2.5. DISTR. DATA STORAGE AND QUERY PROCESSING SYSTEMS 31

HadoopDB

HadoopDB [3] is a database middleware system for the cloud. It is built on top
of Hadoop, an implementation of MapReduce [32]. Each site in the system has a
local DBMS that manages storage, and these sites are connected by the Hadoop
framework. The local database is integrated with the MapReduce framework so
that it can be accessed similarly to Hadoop’s own distributed file system, HDFS. A
metadata catalog containing information about local DBMSs, data sets, partitioning
and replication is stored in HDFS.

The Hadoop framework is used to coordinate tasks and to distribute query pro-
cessing, and its failure resilience properties are used to achieve fault tolerance. A
modified implementation of Hive [96] is used to transform a query from the SQL-like
query language to MapReduce tasks. Query plans are constructed so that as much
query processing as possible is done in the local DBMS on each site. By doing this,
HadoopDB is able to maintain the failure resilience properties of Hadoop and much
of the query optimization of the DBMS.

MongoDB

MongoDB [69] is document-oriented like CouchDB, but provides a much more ad-
vanced querying system. The basic data unit is a semistructured document, and
documents are grouped into collections. Typically, there is a collection for each
document type.

Data can be fragmented and replicated to increase availability and performance.
MongoDB also provides automatic load balancing for query load and data distribu-
tion. Queries are posed in an imperative language by defining filters for a scan over
a document collection, and B-tree indices are used to increase performance.

VoltDB

A more traditional relational DBMSs is provided by VoltDB [100]. VoltDB is a
distributed main memory DBMS that uses a traditional relational data model with
schemas defined in SQL. However, it is not as traditional when it comes to querying.
Each site runs a single-threaded server process. Because of single-threading, no
locking is used and no concurrency issues occur. All access to the tables are via
stored procedures that constitute a microtransaction.

Being a main memory DBMS, replication is used to provide data persistence.
Active replication to other sites in the same data center is used to protect against
single site failures. Passive replication to other data centers is used to protect against
larger outages.

32 CHAPTER 2. BACKGROUND

Chapter 3

Contributions

This thesis is a collection of published papers describing work on query processing
in distributed DBMSs. This chapter explains how the individual papers fit together
and provides details about each author’s contributions.

3.1 Research Topics

The research can be split up into four parts. First, a study of the effects of failures on
aggregation queries, described in Section 3.1.1. Section 3.1.2 describes the research
on how data is distributed among sites in the system and how they are looked up
when needed. Section 3.1.3 describes the research done on caching to improve query
execution. Finally, Section 3.1.4 describes the DASCOSA-DB distributed DBMS
prototype that was built partly as a result of the work conducted for this thesis.

3.1.1 The Effect of Failures on Aggregation Queries

In large distributed systems, it is expected that sites fail during query processing.
If the failure rate of individual sites is kept constant, the failures will become more
and more frequent as new sites are added to the system. This means that large dis-
tributed systems must be planned with failures in mind. In a database management
system, these failures will affect ongoing queries, and if they are not detected, they
may alter the result of these queries.

In Paper A, the effect of failures in a peer-to-peer system on aggregation queries
is studied. A reduction tree is created in a peer-to-peer network and queried for
typical aggregate values: minimum, maximum, sum, count and average.

The experiments show that the aggregate functions behave differently with re-
gard to failures. Some aggregation functions are more affected than others. Some
aggregation functions depend on all tuples to produce their result, while others only
require the one most important tuple. This leads to different methods for handling
failures for the different types of aggregation functions.

The main finding of the paper is that replication is not always the best answer
to the challenges introduced by failures and that other design changes, such as

33

34 CHAPTER 3. CONTRIBUTIONS

adjusting the branching factor of reduction trees, may be more efficient measures
against data loss.

3.1.2 Data Placement and Query Localization

Given a query in a distributed DBMS, the system must be able to efficiently locate
the data that is needed to answer the query, i.e., it must split the sites into the set of
sites with relevant data and the set of sites without relevant data. This is necessary
to avoid contacting every site on every query, which would swamp the system in
messages very quickly.

Paper B proposes a distributed range index that stores ranges of index keys to
reduce the amount of update messages for write heavy loads. Index updates are
only issued for keys that do not fall within one of the existing ranges in the index.
This reduces the number of update messages greatly, without affecting the use of
the index for query localization. In addition, the proposed indexing method allows
range lookups, which is essential for query localization.

While localization is essential to query processing, data placement strategies are
optional. However, the placement strategies are important when considering the
performance of query processing. It takes longer time to access data over a network
connection than accessing it locally, but accessing it locally usually means that it
has to be transferred before operations start, which is also a cost that should be
considered. For some queries it might be better to use remote accesses, while other
queries may do better with first moving the data so that they can be accesses locally.

Another aspect of data placement is the use of replication. With multiple repli-
cas, multiple sites can benefit from local read access. However, the price to pay is
more costly updates, since all replicas must be updated.

Paper D proposes a dynamic fragmentation and replication method that moves
data to sites that use them if it is deemed beneficial to the system as a whole.
Replicas are also created, migrated and deleted if it benefits the currently running
queries. This method looks at the global query load as a whole, but locally on a
single table fragment at a time. This means that it improves performance of the
global query load without much coordination effort.

3.1.3 Caching of Query Results

Caching is used in almost all types of systems to reduce processing time, including
DBMSs. In a centralized system, disk blocks are cached to provide quick access to
frequently used data, and the same is possible in data shipping distributed systems.
However, in a query shipping database management system, there are no fixed-size
blocks transported between sites. Rather, the tuples passed between sites are the
result of a sequence of relational algebra operators. Caching of these are not as
straight forward as caching of disk blocks.

Paper E describes how semantic caching can be implemented in a distributed
query shipping system. Semantic caching tags a cached item with semantic infor-
mation that describes it. This information can later be used to match this cache

3.2. PUBLISHED PAPERS 35

entry to new queries. The caching method allows later queries to use the whole
cache entry as is, to use only a subset of it, or to extend it using a remainder query.
With these options, a query can save a significant amount of processing time.

A special type of semantic caching is studied in Paper F. The top-k query oper-
ator allows for significant new options in using cached results. The result of a top-k
query over a set of attributes of a table can be used to answer any other top-k query
over the same attributes. This paper shows that significant savings can be achieved
if the results of previous queries are cached.

3.1.4 DASCOSA-DB

Much of the research included in this thesis has used the DASCOSA-DB distributed
DBMS prototype as a framework for implementing research ideas. DASCOSA-DB
is a system that increases scalability by reducing coupling between its sites. Each
site is to a large degree autonomous and makes its own decisions about storage and
query processing. By making sites autonomous, there is less need for coordination,
and it is easier to scale the system.

With increasing system size comes an increased failure rate. DASCOSA-DB is
built to withstand site and network failures by relying on peer-to-peer technology.
Papers C and G describes the details of DASCOSA-DB.

Since the DASCOSA-DB prototype became available, it has been used as a
basis for the experiments conducted for Papers D–F. New methods have been im-
plemented as extensions to DASCOSA-DB and experiments have been conducted
on this implementation.

3.2 Published Papers

This section contains a list of all papers in Part II with publication details, abstracts
and statements of each author’s contributions to the paper.

3.2.1 Paper A: Robust Aggregation in Peer-to-Peer Data-
base Systems

This paper was published in the proceedings of the 12th International Database En-
gineering & Applications Symposium (IDEAS). The paper was presented at IDEAS
2008 in Coimbra, Portugal, September 10–12, 2008.

Abstract

Peer-to-peer database systems (P2PDBs) aim at providing database services with
node autonomy, high availability and loose coupling between participating nodes by
building the DBMS on top of a peer-to-peer network. A key feature of current peer-
to-peer systems is resilience to churn in the overlay network layer. A major challenge
in P2PDBs is to provide similar robustness in the data and query processing layer.
In this paper we in particular describe how aggregation queries in P2PDBs can be

36 CHAPTER 3. CONTRIBUTIONS

handled in order to reduce the impact of churn on accuracy of results. We perform a
formal study of data loss and accuracy of such queries, and describe new approaches
that increase the accuracy of aggregation queries in P2PDBs under churn.

Statement of Contributions

Norvald H. Ryeng was the main contributor of the work described in this paper.
Kjetil Nørv̊ag had the role of an active contributor/supervisor, including discussing
the ideas and editing the paper.

3.2.2 Paper B: RIPPNET: Efficient Range Indexing in Peer-
to-Peer Networks

This paper was published in the proceedings of the 3rd IEEE International Con-
ference on Digital Information Management (ICDIM). The paper was presented at
ICDIM 2008 in London, UK, November 13–16, 2008.

Abstract

Write-heavy applications present a challenge to peer-to-peer indexing methods which
need to update the index for each write operation. The costs incurred when the
distributed index is updated becomes a bottleneck. Current distributed indexing
methods are designed for indexing and retrieving single tuples, giving a very high
update cost. In this paper we present a new approach to efficient peer-to-peer
range indexing that employs indexing of ranges to reduce average update costs as
well as providing efficient data localization and decoupling from data placement
policies. Based on results from experiments, we demonstrate the applicability and
significantly reduced update cost of the new approach.

Statement of Contributions

Norvald H. Ryeng was the main contributor of the work described in this paper.
Kjetil Nørv̊ag had the role of an active contributor/supervisor, including discussing
the ideas and editing the paper.

3.2.3 Paper C: Efficient and Robust Database Support for
Data-Intensive Applications in Dynamic Environments

This paper was published in the proceedings of the 25th International Conference on
Data Engineering (ICDE). The paper was presented and the system demonstrated
at ICDE 2009 in Shanghai, China, March 29–April 2, 2009.

Abstract

Requirements from new types of applications call for new database system solutions.
Computational science applications performing distributed computations on Grid

3.2. PUBLISHED PAPERS 37

networks with requirements for efficient storage and query solutions are now emerg-
ing. For this purpose we have developed DASCOSA-DB, a P2P-based distributed
database system, which in addition to providing location-transparent storage and
querying, also includes novel features like efficient partial restart of queries and re-
distribution of query operators in the context of failure, dynamic refragmentation
and allocation, and distributed semantic caching. In this demo, the novel features
will be demonstrated, combined with a more general description of the architecture
and demonstration of the distributed query processing capabilities.

Statement of Contributions

Jon Olav Hauglid had the largest contribution to DASCOSA-DB. He designed
and implemented most of the system. Norvald H. Ryeng contributed the semantic
caching method and its implementation and also contributed to the dynamic frag-
ment management and the overall design of DASCOSA-DB. Kjetil Nørv̊ag had the
role of an active contributor/supervisor, including many discussions and editing the
paper.

3.2.4 Paper D: DYFRAM: Dynamic Fragmentation and Re-
plica Management in Distributed Database Systems

This paper was published in Distributed and Parallel Databases 28(2–3), pages
157–185, 2010.

Abstract

In distributed database systems, tables are frequently fragmented and replicated
over a number of sites in order to reduce network communication costs. How to
fragment, when to replicate and how to allocate the fragments to the sites are chal-
lenging problems that has previously been solved either by static fragmentation,
replication and allocation, or based on a priori query analysis. Many emerging ap-
plications of distributed database systems generate very dynamic workloads with
frequent changes in access patterns from different sites. In such contexts, continu-
ous refragmentation and reallocation can significantly improve performance. In this
paper we present DYFRAM, a decentralized approach for dynamic table fragmen-
tation and allocation in distributed database systems based on observation of the
access patterns of sites to tables. The approach performs fragmentation, replication,
and reallocation based on recent access history, aiming at maximizing the number
of local accesses compared to accesses from remote sites. We show through sim-
ulations and experiments on the DASCOSA distributed database system that the
approach significantly reduces communication costs for typical access patterns, thus
demonstrating the feasibility of our approach.

38 CHAPTER 3. CONTRIBUTIONS

Statement of Contributions

Jon Olav Hauglid was the main contributor to the work described in this paper.
The original idea was further developed in discussions with Norvald H. Ryeng, who
also participated in writing the paper. The implementation in DASCOSA-DB was
done by Jon Olav Hauglid in tandem with Norvald H. Ryeng testing and debugging
it and performing the experiments in DASCOSA-DB. Kjetil Nørv̊ag had the role
of an active contributor/supervisor, including discussing the ideas and editing the
paper.

3.2.5 Paper E: Site-Autonomous Distributed Semantic Cach-
ing

This paper was published in the proceedings of the 26th Symposium on Applied
Computing (SAC). The paper was presented at SAC 2011 in Taichung, Taiwan,
March 21–24, 2011.

Abstract

Semantic caching augments cached data with a semantic description of the data.
These semantic descriptions can be used to improve execution time for similar queries
by retrieving some data from cache and issuing a remainder query for the rest. This
is an improvement over traditional page caching, since caches are no longer limited
to only base tables but are extended to contain intermediate results. In large-scale
distributed database systems, using a central server with complete knowledge of
the system will be a serious bottleneck and single point of failure. In this paper,
we propose a distributed semantic caching method where sites make autonomous
caching decisions based on locally available information, thereby reducing the need
for centralized control. We implement the method in the DASCOSA-DB distributed
database system prototype and use this implementation to do experiments that show
the applicability and efficiency of our approach. Our evaluation shows that execution
times for queries with similar subqueries are significantly reduced and that overhead
caused by cache management is marginal.

Statement of Contributions

Norvald H. Ryeng was the main contributor to the work described in this paper.
Jon Olav Hauglid advised on the implementation in DASCOSA-DB and contributed
to the discussions. Kjetil Nørv̊ag had the role of an active contributor/supervisor,
including discussing the ideas and editing the paper.

3.2.6 Paper F: Efficient Distributed Top-k Query Process-
ing with Caching

This paper was published in the proceedings of the 16th Conference on Database
Systems for Advanced Applications (DASFAA). The paper was presented at DAS-

3.2. PUBLISHED PAPERS 39

FAA 2011 in Hong Kong, China, April 22–25, 2011.

Abstract

Recently, there has been an increased interest in incorporating in database manage-
ment systems rank-aware query operators, such as top-k queries, that allow users
to retrieve only the most interesting data objects. In this paper, we propose a
cache-based approach for efficiently supporting top-k queries in distributed database
management systems. In large distributed systems, the query performance depends
mainly on the network cost, measured as the number of tuples transmitted over the
network. Ideally, only the k tuples that belong to the query result set should be
transmitted. Nevertheless, a server cannot decide based only on its local data which
tuples belong to the result set. Therefore, in this paper, we use caching of previous
results to reduce the number of tuples that must be fetched over the network. To
this end, our approach always delivers as many tuples as possible from cache and
constructs a remainder query to fetch the remaining tuples. This is different from
the existing distributed approaches that need to re-execute the entire top-k query
when the cached entries are not sufficient to provide the result set. We demon-
strate the feasibility and efficiency of our approach through implementation in a
distributed database management system.

Statement of Contributions

Norvald H. Ryeng was the main contributor to the work described in this paper.
Akrivi Vlachou and Christos Doulkeridis had the role of active contributors, includ-
ing discussing the ideas and editing the paper. Kjetil Nørv̊ag had the role of an
active supervisor.

3.2.7 Paper G: The DASCOSA-DB Grid Database System

This paper was published as a chapter in the book Grid and Cloud Database Man-
agement, Giovanni Aloisio and Sandro Fiore (editors), Springer-Verlag, 2011.

Abstract

Computational science applications performing distributed computations using grid
networks are now emerging. These applications have new and demanding require-
ments for efficient query processing. In order to meet these requirements, we have
developed the DASCOSA-DB distributed database system. In this chapter, a de-
tailed overview of the architecture and implementation of DASCOSA-DB is given,
as well as a description of novel features developed in order to better support typical
data-intensive applications running on a grid system: fault-tolerant query process-
ing, dynamic refragmentation, allocation and replication of data fragments, and
distributed semantic caching.

40 CHAPTER 3. CONTRIBUTIONS

Statement of Contributions

Jon Olav Hauglid had the largest contribution to DASCOSA-DB. He designed
and implemented most of the system. Norvald H. Ryeng contributed the semantic
caching method and its implementation and also contributed to the dynamic frag-
ment management and the overall design of DASCOSA-DB. Kjetil Nørv̊ag had the
role of an active contributor/supervisor, including many discussions and editing the
paper.

Chapter 4

Concluding Remarks

This thesis has examined some selected techniques for improving execution time and
cost of queries in large distributed DBMSs. The improvements are made in the areas
of data placement and localization and caching of results and intermediate results
of queries.

The study of aggregation queries presented in this thesis shows that different
queries are affected differently by churn and explains why replication is not neces-
sarily the best method to improve churn resilience in aggregation processing. Reduc-
tion tree branching factor and selective replication of parts of the tree are identified
as ways to improve accuracy without increasing query costs too much.

Data placement has a significant role in query processing. The work presented
in this thesis has shown how data can be fragmented, allocated and replicated to
adapt to a constantly changing workload and presents results that show a large
reduction in the number of remote data accesses and a corresponding reduction in
query execution time.

Peer-to-peer networks put restrictions on data lookup, and this thesis has pre-
sented a range indexing method that decouples data placement and indexing in
order to provide support for range and cover queries. The method reduces the cost
of inserts and updates since index records do not have to be updated after every
such operation.

A method for semantic caching of intermediate results in a query shipping dis-
tributed DBMS has been proposed, along with experimental results that show how
execution time decreases when these caches are enabled. A new caching mechanism
for top-k building on the semantic cache has also been presented. The experimental
evaluation shows a significant reduction in the number of remote accesses.

The methods presented in this thesis are a step on the way to make relational
distributed DBMSs for grid and cloud computing scale by making sites more au-
tonomous and thereby reducing coordination overhead. To match the elasticity
of the grids and clouds themselves, the methods adapt automatically to changing
workloads.

41

42 CHAPTER 4. CONCLUDING REMARKS

4.1 Evaluation of Contributions

The main research question for this thesis was defined in Section 1.2.1 as

How can query processing in large distributed database management sys-
tems be made more efficient?

This question was then narrowed down to four more specific research questions.
This section evaluates the contributions based on these four questions.

4.1.1 How Are Aggregation Operations Influenced by Site
Failures?

This question is addressed in Paper A. Aggregation functions are affected differently,
which calls for different measures to increase resilience to site and network failures.
Other papers suggest using replication of the aggregation process, but the results
show that some aggregation functions respond better to adjusting the branching
factor of reduction trees. In cases where replication is beneficial, it is not always
necessary to replicate the whole tree, but only the most important nodes.

4.1.2 How Can Data Placement Adapt to Constantly Chang-
ing Workloads?

This question is addressed in Papers C, D and G. By keeping statistics of remote and
local accesses to regions of a table fragment, tables are refragmented, reallocated,
and replicated in order to provide as many local reads as possible, taking the cost of
transferring fragments into account. The result is a strategy for dynamically making
data placement decisions in a way that reduces the execution time for queries and
is able to adapt to changing workloads.

4.1.3 How Can Data Be Located If Sites Are Given Auto-
nomy over Storage Decisions?

This question is addressed in Paper B. Instead of tuple indexing, a range index is
used to identify relevant data fragments and sites that contain data relevant to a
query. By decoupling the index from data placement, sites are allowed full autonomy
over storage decisions, while retaining the ability to efficiently locate data.

4.1.4 How Can Caching of Intermediate Results Be Used to
Speed up Query Processing?

This question is addressed in Papers C and E–G. The semantic caching allows in-
termediate and final results to be cached and reused for similar queries. Both the
general technique of Paper E and the adapted implementation for top-k queries in
Paper F show reduced execution times.

4.2. FUTURE WORK 43

4.2 Future Work

The main research question is wide, and the work for this thesis had to be narrowed
down to only a few specific methods. This leaves a number of research opportunities
unvisited.

As Paper A shows, there are opportunities for operator specific improvements.
Query operators differ, and the methods for improving failure resilience affect oper-
ators differently. More efficient and less costly methods may be chosen by looking
into the specifics of each operator instead of more general approaches. Paper B
provides a distributed range indexing method that can be extended to answer some
aggregation queries. Such an extension could also be used to provide approximations
of data stored on failed sites, which could increase accuracy further.

The data placement method proposed in Paper D is adaptive, but still relies on
a few manually set parameters. Adaptive adjustment of these parameters is bene-
ficial since that would offer a completely automatic and self tuning data placement
algorithm.

The caching method described in Paper E may benefit from a query planner
that invests in the cache by creating suboptimal query plans to increase future cache
hit rates. The specific caching method of Paper F still has to be fully integrated
with the general caching method of Paper E by resolving cache replacement policy
incompatibility between the specific and the general caching method. There is also
potential for further improvements to the individual cache replacement policies.

44 CHAPTER 4. CONCLUDING REMARKS

Bibliography

[1] M. Abdallah and H. C. Le. Scalable range query processing for large-scale
distributed database applications. In Proceedings of PDCS, 2005.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A self-organizing structured P2P sys-
tem. SIGMOD Record, 32(3):29–33, 2003.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.
HadoopDB: An architectural hybrid of MapReduce and DBMS technologies
for analytical workloads. Proceedings of the VLDB Endowment, 2:922–933,
August 2009.

[4] E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, 5(10),
2000.

[5] D. Agrawal, A. E. Abbadi, F. Emekçi, and A. Metwally. Database management
as a service: Challenges and opportunities. In Proceedings of ICDE, 2009.

[6] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J. Carey,
S. Chaudhuri, A. Doan, D. Florescu, M. J. Franklin, H. Garcia-Molina,
J. Gehrke, L. Gruenwald, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E.
Ioannidis, H. F. Korth, D. Kossmann, S. Madden, R. Magoulas, B. C. Ooi,
T. O’Reilly, R. Ramakrishnan, S. Sarawagi, M. Stonebraker, A. S. Szalay, and
G. Weikum. The Claremont report on database research. SIGMOD Record,
37:9–19, September 2008.

[7] S. Agrawal, E. Chu, and V. R. Narasayya. Automatic physical design tuning:
Workload as a sequence. In Proceedings of SIGMOD, 2006.

[8] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizon-
tal partitioning into automated physical database design. In Proceedings of
SIGMOD, 2004.

[9] I. Ahmad, K. Karlapalem, Y.-K. Kwok, and S.-K. So. Evolutionary algorithms
for allocating data in distributed database systems. Distributed and Parallel
Databases, 11(1):5–32, 2002.

[10] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Design and implemen-
tation of Atlas P2P architecture. In Global Data Management, 2006.

45

46 BIBLIOGRAPHY

[11] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and
B. Reinwald. Cache tables: Paving the way for an adaptive database cache.
In Proceedings of VLDB, 2003.

[12] P. M. G. Apers. Data allocation in distributed database systems. ACM Trans-
actions on Database Systems, 13(3):263–304, 1988.

[13] J. Aspnes and G. Shah. Skip graphs. In Proceedings of SODA, 2003.

[14] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable
multi-attribute range queries. In Proceedings of SIGCOMM, 2004.

[15] N. Bonvin, T. G. Papaioannou, and K. Aberer. A self-organized, fault-tolerant
and scalable replication scheme for cloud storage. In Proceedings of SoCC,
2010.

[16] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive
database caching with DBCache. IEEE Data Engineering Bulletin, 27(2):11–
18, 2004.

[17] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam,
and K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet.
VLDB Journal, 10(1):48–71, 2001.

[18] A. Brunstrom, S. T. Leutenegger, and R. Simha. Experimental evaluation
of dynamic data allocation strategies in a distributed database with changing
workloads. In Proceedings of CIKM, 1995.

[19] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu, and
Q. Xu. ES2: A cloud data storage system for supporting both OLTP and
OLAP. In Proceedings of ICDE, 2011.

[20] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–
27, December 2010.

[21] U. S. Chakravarthy and J. Minker. Multiple query processing in deductive
databases using query graphs. In Proceedings of VLDB, 1986.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In Proceedings of OSDI, 2006.

[23] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing
queries with materialized views. In Proceedings of ICDE, 1995.

[24] B. Chidlovskii, C. Roncancio, and M.-L. Schneider. Semantic cache mechanism
for heterogeneous web querying. Computer Networks, 31(11–16):1347–1360,
1999.

BIBLIOGRAPHY 47

[25] B. Ciciani, D. Dias, and P. Yu. Analysis of replication in distributed database
systems. IEEE Transactions on Knowledge and Data Engineering, 2(2):247–
261, June 1990.

[26] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Proceedings of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, 2000.

[27] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data placement in
Bubba. In Proceedings of SIGMOD, 1988.

[28] A. L. Corcoran and J. Hale. A genetic algorithm for fragment allocation in a
distributed database system. In Proceedings of SAC, 1994.

[29] Apache CouchDB: Technical overview. http://couchdb.apache.org/docs/
overview.html.

[30] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. Querying
peer-to-peer networks using P-trees. In Proceedings of WebDB, 2004.

[31] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic
data caching and replacement. In Proceedings of VLDB, 1996.

[32] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of OSDI, 2004.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. SIGOPS Operating Systems Review,
41:205–220, October 2007.

[34] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao. The Cougar
project: A work-in-progress report. SIGMOD Record, 32(4):53–59, 2003.

[35] T. Didriksen, C. A. Galindo-Legaria, and E. Dahle. Database de-centralization
— a practical approach. In Proceedings of VLDB, 1995.

[36] C. Doulkeridis, A. Vlachou, K. Nørv̊ag, Y. Kotidis, and M. Vazirgiannis. Mul-
tidimensional routing indices for efficient distributed query processing. In
Proceeding of CIKM, 2009.

[37] W. Fontijn and P. Boncz. AmbientDB: P2P data management middleware for
ambient intelligence. In Proceedings of PERCOMW, 2004.

[38] P. Furtado. Experimental evidence on partitioning in parallel data warehouses.
In Proceedings of DOLAP, 2004.

[39] J. Gao and P. Steenkiste. Efficient support for range queries in DHT-based
systems. Technical Report CMU-CS-03-215, Carnegie Mellon University, 2003.

http://couchdb.apache.org/docs/overview.html
http://couchdb.apache.org/docs/overview.html

48 BIBLIOGRAPHY

[40] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a high-level
dataflow system on top of map-reduce: The Pig experience. Proceedings of the
VLDB Endowment, 2:1414–1425, August 2009.

[41] B. Gavish and O. R. L. Sheng. Dynamic file migration in distributed computer
systems. Communications of the ACM, 33(2):177–189, 1990.

[42] The Gnutella homepage. http://www.gnutella.com/.

[43] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range selection queries
in peer-to-peer systems. In Proceedings of CIDR, 2003.

[44] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov.
The Piazza peer data management system. IEEE Transactions on Knowledge
and Data Engineering, 16(7):787–798, 2004.

[45] T. Hara and S. K. Madria. Data replication for improving data accessibility in
ad hoc networks. IEEE Transactions on Mobile Computing, 5(11):1515–1532,
2006.

[46] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:
A scalable overlay network with practical locality properties. In Proceedings
of USITS, 2003.

[47] The Apache HBase homepage. http://hbase.apache.org/.

[48] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object
location in a dynamic network. In Proceedings of SPAA, 2002.

[49] K. A. Hua and C. Lee. An adaptive data placement scheme for parallel
database computer systems. In Proceedings of VLDB, 1990.

[50] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER: An
Internet-scale query processor. In Proceedings of CIDR, 2005.

[51] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the Internet with PIER. In Proceedings of VLDB, 2003.

[52] Y. Ioannidis. Query optimization. In The Computer Science and Engineering
Handbook, pages 1038–1054. CRC Press, 1996.

[53] M. Ivanova, M. L. Kersten, and N. Nes. Adaptive segmentation for scientific
databases. In Proceedings of ICDE, 2008.

[54] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A balanced tree structure
for peer-to-peer networks. In Proceedings of VLDB, 2005.

http://www.gnutella.com/
http://hbase.apache.org/

BIBLIOGRAPHY 49

[55] B. T. Jónsson, M. Arinbjarnar, B. Þórsson, M. J. Franklin, and D. Srivastava.
Performance and overhead of semantic cache management. ACM Transactions
on Internet Technology, 6(3):302–331, 2006.

[56] A. M. Keller and J. Basu. A predicate-based caching scheme for client-server
database architectures. VLDB Journal, 5(1):35–47, 1996.

[57] D. Kossmann, M. J. Franklin, G. Drasch, and W. Ag. Cache investment:
Integrating query optimization and distributed data placement. ACM Trans-
actions on Database Systems, 25(4):517–558, 2000.

[58] D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and F. Pfaffhauser.
Cloudy: A modular cloud storage system. Proceedings of the VLDB Endow-
ment, 3(2):1533–1536, 2010.

[59] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. OceanStore:
An architecture for global-scale persistent storage. In Proceedings of ASPLOS,
2000.

[60] T. Kyte. On Oracle database 11g. Oracle Magazine, XXI(5), 2007.

[61] D. Lee and W. W. Chu. Semantic caching via query matching for web sources.
In Proceedings of CIKM, 1999.

[62] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton. Middle-tier database caching for e-business. In Proceedings
of SIGMOD, 2002.

[63] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation service for ad-hoc sensor networks. SIGOPS Operating Systems
Review, 36(SI):131–146, 2002.

[64] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information sys-
tem based on the XOR metric. In Proceedings of IPTPS, 2002.

[65] S. Menon. Allocating fragments in distributed databases. IEEE Transactions
on Parallel and Distributed Systems, 16(7):577–585, 2005.

[66] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view
selection and maintenance using multi-query optimization. SIGMOD Record,
30(2):307–318, 2001.

[67] A. Mondal, S. K. Madria, and M. Kitsuregawa. CADRE: A collaborative
replica allocation and deallocation approach for mobile-P2P networks. In Pro-
ceedings of IDEAS, 2006.

[68] A. Mondal, K. Yadav, and S. K. Madria. EcoBroker: An economic incentive-
based brokerage model for efficiently handling multiple-item queries to improve
data availability via replication in mobile-P2P networks. In Proceedings of
DNIS, 2010.

50 BIBLIOGRAPHY

[69] The MongoDB homepage. http://www.mongodb.org/.

[70] MySQL 5.5 reference manual, Chapter 7.9.3: The MySQL query cache, 2010.

[71] The Napster homepage. http://www.napster.com/.

[72] Napster protocol specification. http://opennap.sourceforge.net/

napster.txt, April 2000.

[73] W. S. Ng, B. C. Ooi, and K.-L. Tan. BestPeer: A self-configurable peer-to-peer
system. In Proceedings of ICDE, 2002.

[74] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A P2P-based system
for distributed data sharing. In Proceedings of ICDE, 2003.

[75] B. C. Ooi, Y. Shu, and K.-L. Tan. Relational data sharing in peer-based data
management systems. SIGMOD Record, 32(3):59–64, 2003.

[76] B. C. Ooi, K.-L. Tan, A. Zhou, C. H. Goh, Y. Li, C. Y. Liau, B. Ling, W. S. Ng,
Y. Shu, X. Wang, and M. Zhang. PeerDB: Peering into personal databases.
In Proceedings of SIGMOD, 2003.

[77] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice-Hall, 2nd edition, 1999.

[78] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman. A survey
of data replication techniques for mobile ad hoc network databases. VLDB
Journal, 17(5):1143–1164, 2008.

[79] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load balancing and
efficient range query processing in DHTs. In Proceedings of EDBT, 2006.

[80] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of SPAA, 1997.

[81] A. D. Popescu, D. Dash, V. Kantere, and A. Ailamaki. Adaptive query exe-
cution for data management in the cloud. In Proceedings of CloudDB, 2010.

[82] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman. Automating physical
database design in a parallel database. In Proceedings of SIGMOD, 2002.

[83] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of SIGCOMM, 2001.

[84] Q. Ren and M. H. Dunham. Using semantic caching to manage location
dependent data in mobile computing. In Proceedings of MobiCom, 2000.

[85] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining.
ACM Transactions on Compututer Systems, 21(2):164–206, 2003.

http://www.mongodb.org/
http://www.napster.com/
http://opennap.sourceforge.net/napster.txt
http://opennap.sourceforge.net/napster.txt

BIBLIOGRAPHY 51

[86] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a
DHT. In Proceedings of USENIX ATC, 2004.

[87] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of
Middleware, 2001.

[88] D. Sacca and G. Wiederhold. Database partitioning in a cluster of processors.
ACM Transactions on Database Systems, 10(1):29–56, 1985.

[89] D.-G. Shin and K. B. Irani. Fragmenting relations horizontally using a
knowledge-based approach. IEEE Transactions on Software Engineering,
17(9):872–883, 1991.

[90] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional
range queries in peer-to-peer systems. In Proceedings of P2P, 2005.

[91] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu. Data
replication in Mariposa. In Proceedings of ICDE, 1996.

[92] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet applications. In Proceedings
of SIGCOMM, 2001.

[93] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. MapReduce and parallel DBMSs: Friends or foes? Communications
of the ACM, 53:64–71, January 2010.

[94] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu. Mariposa: A wide-area distributed database system. VLDB
Journal, 5(1):48–63, 1996.

[95] A. Tamhankar and S. Ram. Database fragmentation and allocation: An in-
tegrated methodology and case study. IEEE Transactions on Systems, Man,
and Cybernetics, Part A, 28(3):288–305, 1998.

[96] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: A warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment, 2:1626–1629, August 2009.

[97] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and
A. Delis. Flexible use of cloud resources through profit maximization and
price discrimination. In Proceedings of ICDE, 2011.

[98] T. Ulus and M. Uysal. Heuristic approach to dynamic data allocation in dis-
tributed database systems. Pakistan Journal of Information and Technology,
2(3):231–239, 2003.

[99] The Voldemort homepage. http://www.project-voldemort.com/.

http://www.project-voldemort.com/

52 BIBLIOGRAPHY

[100] The VoltDB homepage. http://voltdb.com/.

[101] G. Weikum, C. Hasse, A. Moenkeberg, and P. Zabback. The COMFORT auto-
matic tuning project, invited project review. Information Systems, 19(5):381–
432, 1994.

[102] Wikipedia: FastTrack. http://en.wikipedia.org/wiki/FastTrack.

[103] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication of
data. In Proceedings of PODS, 1992.

[104] E. Wong and R. H. Katz. Distributing a database for parallelism. SIGMOD
Record, 13(4):23–29, 1983.

[105] Y. Xu, P. Kostamaa, and L. Gao. Integrating Hadoop and parallel DBMS. In
Proceedings of SIGMOD, 2010.

[106] P. Yalagandula and J. C. Browne. Solving range queries in a distributed
system. Technical Report TR-04-18, Department of Computer Sciences, Uni-
versity of Texas at Austin, 2004.

[107] P. Yalagandula and M. Dahlin. A scalable distributed information manage-
ment system. In Proceedings of SIGCOMM, 2004.

[108] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join
processing in outsourced databases. In Proceedings of SIGMOD, 2009.

[109] Y. Yao and J. Gehrke. The Cougar approach to in-network query processing
in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[110] Y. Yao and J. Gehrke. Query processing in sensor networks. In Proceedings
of CIDR, 2003.

[111] C. Zhang, A. Krishnamurthy, and R. Y. Wang. SkipIndex: Towards a scalable
peer-to-peer index service for high dimensional data. Technical Report TR-
703-04, Princeton University Computer Science Department, 2004.

[112] M. Zhang and K.-L. Tan. Supporting rich queries in DHT-based peer-to-peer
systems. In Proceedings of WETICE, 2003.

[113] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed segment tree: Support
of range query and cover query over DHT. In Proceedings of IPTPS, 2006.

[114] M. Zhou, R. Zhang, W. Qian, and A. Zhou. GChord: Indexing for multi-
attribute query in P2P system with low maintenance cost. In Proceedings of
DASFAA, 2007.

[115] D. C. Zilio et al. DB2 design advisor: Integrated automatic physical database
design. In Proceedings of VLDB, 2004.

http://voltdb.com/
http://en.wikipedia.org/wiki/FastTrack

Part II

Published Papers

53

Paper A

Robust Aggregation in
Peer-to-Peer Database Systems

Norvald H. Ryeng and Kjetil Nørv̊ag.
In Proceedings of IDEAS, 2008.

55

A.1. INTRODUCTION 57

Select a root identifier Choose parent based
on routing path

Partial aggregates
propagate up the tree

Root
ID

A

B

C

D
E

F

A

B

C

D
E

F

G

A

D B C

F

G

E

A

D B C

F

G

E

A

D B C

F

G

E

Root
ID

A

B

C

D
E

F

A

B

C

D
E

F

G

Figure A.1: Hierarchical aggregation using a DHT.

Abstract

Peer-to-peer database systems (P2PDBs) aim at providing database services with
node autonomy, high availability and loose coupling between participating nodes by
building the DBMS on top of a peer-to-peer network. A key feature of current peer-
to-peer systems is resilience to churn in the overlay network layer. A major challenge
in P2PDBs is to provide similar robustness in the data and query processing layer.
In this paper we in particular describe how aggregation queries in P2PDBs can be
handled in order to reduce the impact of churn on accuracy of results. We perform a
formal study of data loss and accuracy of such queries, and describe new approaches
that increase the accuracy of aggregation queries in P2PDBs under churn.

A.1 Introduction

A key feature of current peer-to-peer routing mechanisms is resilience to churn, the
effect of nodes constantly joining and parting from the network. Nodes leaving the
network, either because of a planned shutdown or because of a node or network fail-
ure, will generally not interfere with the message passing capability of the network;
network traffic is routed through other nodes until a disconnected node reconnects.

A major challenge in peer-to-peer database systems (P2PDB) is to provide simi-
lar robustness in the data and query processing layer. When a node is disconnected,
the data stored at that node is also inaccessible. In some cases it may be possible for
nodes to hand over their data before disconnecting, but in case of node and network
failures, data may become inaccessible without warning. The failure rate of a large
distributed system is such that the system cannot expect all nodes to be accessi-
ble at all times, so waiting for disconnected nodes to reconnect is not generally an
option. Instead, when nodes fail, query processing has to be based on partial data.

The typical method for doing aggregation in P2PDBs is to use a reduction tree,
as illustrated in Fig. A.1. In this way, the nodes at the leaves of the tree start ag-
gregating over their local database, and each leaf node sends its partial aggregates
to its parent node. An intermediate-level node gathers partial results from its chil-

58 PAPER A

dren and merges these results with the result from the local database. The result
of the merge is sent upwards in the tree to the parent node. This passing of partial
aggregates continues all the way to the root node, which merges and evaluates the
partial aggregates to get the final result of the query.

The problem with this approach is that failure of internal nodes causes loss
of data from all nodes below it in the hierarchy. Existing work propose to use
replication of the aggregation process to counter this effect [5, 7]. In this paper we
study in more detail the data loss in aggregation and show that costly replication is
not necessarily the best way to improve the accuracy of results.

The analysis and techniques presented in this paper are applicable both for P2P
systems based on distributed hash tables (e.g., Chord [15], CAN [10], Pastry [12]),
as well as unstructured P2P-systems where tree-overlays can be created through
flooding (e.g., Gnutella-like networks).

The main contributions of this paper are 1) a formal study of data loss in P2PDB
aggregation queries, 2) new approaches that reduces the impact of churn on aggre-
gation accuracy, and 3) an experimental study of the effect of various parameters in
techniques used to reduce the impact of churn on aggregation accuracy.

The organization of the rest of the paper is as follows. In Section A.2 we give
an overview of related work. In Section A.3 we perform a formal study of data loss
and accuracy of query results in P2PDBs. In Section A.4 we discuss techniques
for reducing data loss. In Section A.5 we present experimental results. Finally, in
Section A.6, we conclude the paper and outline issues for further work.

A.2 Related Work

Although very popular for file-sharing applications and distributed computing, only
a few P2PDBs and P2P data management systems have been realized so far. The
most well-know systems include PIER, Piazza, APPA, and PeerDB:

• The Peer-to-Peer Information Exchange and Retrieval system (PIER) [5, 6] is
a general-purpose query processor that executes relational queries in a DHT-
based network. PIER does not implement persistent storage and relies on
external data producers to insert and renew data.

• The Piazza system [4] is a peer data management system that mediates be-
tween heterogeneous schemas. Instead of requiring all nodes to share a com-
mon schema (as, e.g., PIER does), each node is allowed full autonomy in which
data it wants to store and which schema to use.

• The APPA system [16], on the other hand, assumes that participating nodes
will agree to a common schema description.

• PeerDB [9] also supports schema matching using agent technology to find
relevant relations on other nodes.

Distributed aggregation queries are also performed in other variants of dis-
tributed computing systems and sensor network systems, for example:

A.3. DATA LOSS 59

• In Astrolabe [11], data is placed in a hierarchy of zones. Each zone stores and
maintains aggregated data from its sub-zones, and at the lowest level, from
virtual leaf zones constructed around single nodes.

• The Scalable Distributed Information Management System (SDIMS) [17] is an
aggregation system similar to Astrolabe, but based on a DHT.

• The Tiny Aggregation Service (TAG) [8] is an aggregation service for wireless
sensor networks. TAG is based on a hierarchical network which is also used
as the reduction tree.

• The Cougar Project [3] also uses a hierarchical algorithm, but the approach is
quite different from that of TAG. Queries are processed in a hybrid pull-push
manner, where information is proactively updated at the second level view
nodes, which then are queried by the root node.

In general, papers about aggregation queries in sensor networks are performed by
best-effort algorithms where churn and accuracy are not taken into account. This
contrasts to our work which makes adaption of parameters and choice of algorithm
possible in order to achive high accuracy under churn. An exception to best-effort
algorithms is the approach presented in [2], which is more robust to churn but at
considerable cost for some aggregation operator types.

Related topics to churn-resistant aggregation are approaches to avoid/reduce
the impact of cheaters/tampering and approximate query processing. For example,
sensor networks are vulnerable to tampering, and networks could be attacked with
the intent of giving erroneous answers to queries. In [13], algorithms are presented
for aggregation despite compromised nodes.

When cost is more important than accuracy, approximate query processing can
be employed. A sampling-based approach to aggregation query processing is pro-
posed in [1].

In [14] the topic of accuracy in P2P aggregation was introduced.

A.3 Data Loss

In this section we investigate and formalize the notion of data loss in P2PDB aggre-
gation queries using reduction trees. Formulas for evaluating the accuracy of query
results are also presented.

A.3.1 Network Model

A peer-to-peer network G = 〈V,E〉 consists of a set V of nodes and a set E of
network links between these nodes. Not all nodes and network links need to be fully
functional at all times. Some nodes and network links may experience a failure,
or may choose to part the network for a time. The total network is the network
where V contains all nodes, both those currently in the network and those that
are currently disconnected, and E contains all network links used by these nodes

60 PAPER A

to communicate with each other. The coming and going of nodes that occurs in
peer-to-peer networks is known as churn.

There are different types of events that generate churn in a peer-to-peer network.
One is nodes that are joining the network or parting from it. When these events are
planned, i.e., the node knows about the event in advance and may give warning to
the network, we call them voluntary. A voluntary parting is thus when a node parts
from the network in an organized way. Joins are always voluntary.

Other types of events are node and network failures. Failing nodes have no time
to hand over data to other nodes or even tell the other nodes that it is failing. Data
that are stored in a failing node are therefore lost until the node connects to the
network again. A node may also be disconnected if its network link is disabled.
In some cases a disabled network link may split the network into partitions, each
partition fully functional, but with a reduced data set. A node that parts the
network due to a node or network failure, parts involuntarily.

Due to churn, the network is split into an active network Ga = 〈Va, Ea〉 and an
inactive network Gi = 〈Vi, Ei〉. In the case of network partitioning into p partitions,
there are p active networks Ga1 · · ·Gap and one inactive network. The inactive
network represents resources that could become available, but at the moment are
inaccessible. The active and inactive networks are non-overlapping and Ga∪Gi = G.

A.3.2 Processing of Aggregation Queries

The most practical solution to aggregation queries in a P2P system with focus on
distributed processing is to use a reduction tree, as illustrated in Fig. A.1. The
nodes at the leaves of the tree start aggregating over their local database, and each
leaf node sends its partial aggregates.

A partial aggregate is the information sufficient for creating a global aggregate
value based on partial results from a number of sources. For example, assuming a
grouped aggregate query for finding the average value of a column c in each group
g of the relation R, i.e.:

SELECT g, AVG(c) FROM R GROUP BY g;

An example of a partial aggregate in this case is a 3-ary tuple consisting of a group
identifier (a value from the g column of R), the sum so far for tuples within the
group, and the number of tuples that have so far contributed to the result in the
group.

An intermediate level node gathers partial aggregates from its children and
merges these results with the result from the local database. The result of the
merge is sent upwards in the tree to the parent node. This passing of partial aggre-
gates continues all the way to the root node, which merges and evaluates the partial
aggregates to get the final result of the query.

A.3.3 Causes for Data Loss

Queries can only access nodes in Va, the active network. Data in nodes in Vi are
inaccessible. If a node v∈Vi remains inaccessible throughout the query, the only way

A.3. DATA LOSS 61

data stored in v may be accessible is through a replica stored at another node in
Va. However, v may suddenly join the network and make its data accessible again.
The opposite may also happen. A node in Va may part the network, voluntarily or
involuntarily, during query processing. Depending on whether it has processed the
query or not, its data may also be inaccessible to the query.

There are three events that may occur during query processing that can affect
the total database B(Va) of the active network: a node may join the network, a node
may part voluntarily, and, finally, a node may part involuntarily.

When joining a network, v may bring new data to the network. If B(v) = ∅,
B(Va) ∪ B(v) = B(Va), and the result of the query should be the same as if v had
not joined. Nodes with no data may occur if nodes that part voluntarily hand off
their data to other nodes before parting, and when new nodes are introduced to
the system. If B(v) 6= ∅, the total database has changed, and the result of ongoing
queries may be affected. If B(v)∩B(Va) = B(v), all data in v are already present in
the database, and duplicate insensitive aggregation functions are not affected. Since
data are never lost when nodes join, the problem is limited to informing the newly
joined nodes of ongoing queries and let them take part in processing these.

Nodes that part voluntarily may hand off data to other nodes before they part.
This would be the natural behavior in a peer-to-peer database system. In file sharing
systems nodes usually take data with them when they part, but in these systems
data are usually heavily replicated, so the total database of files is not affected.
However, aggregates, e.g., count of nodes that contain certain files, may change.

When nodes part involuntarily, data are lost if it is not replicated on other nodes
still in Va. Also, due to the use of reduction trees, failing nodes may contain aggre-
gated data from other nodes. These shadow nodes are part of the active network,
but due to the failure of another node, their data are lost to the querying process.

A.3.4 Importance of Nodes

To investigate the consequences of involuntary parting and shadow nodes, we in-
troduce the concept of importance of a node. The importance of a node v is the
amount of the total database v is responsible for. In a reduction tree, leaf nodes are
only responsible for their own data, so if vl is a leaf node, its importance is

I(vl) =
|B(vl)|
|B(Va)|

. (A.1)

Its parent node, vi, is an internal node with C children, v1, v2, . . . , vC , and its
importance is

I(vi) =
|B(vi)|
|B(Va)|

+
C∑
c=1

I(vc). (A.2)

The root node is in the end responsible for the whole database, making its
importance

I(vroot) =
|B(Va)|
|B(Va)|

= 1. (A.3)

62 PAPER A

This is natural, since if the root node fails, all data are in its shadow, and the
whole query result is lost.

In a DHT we assume a uniform distribution of tuples, so the size of the local
database and hence the importance of each leaf node is the same. The formulas for
importance are simplified and become

I(vl) =
1

|Va|
, (A.4)

I(vi) =
1

|Va|
+

C∑
c=1

I(vc), (A.5)

I(vroot) =
|Va|
|Va|

= 1. (A.6)

Generally, the importance of a node at depth h in an aggregation tree of height
H is

Ih =
kH−h+1 − 1

k − 1
· I(vl), (A.7)

where k is the degree, i.e., the number of child nodes at each level.

A.3.5 Expected Data Loss

Using the notion of importance, we can calculate the expected data loss caused by
a single node failure. The data loss consists of both the local database of the failing
node and of all nodes in its shadow, which is summed up in the importance number
for that node.

In a full, perfectly balanced reduction tree where each node is of degree k, the
probability of a random failing node to be a node at depth h, is

Pr(h) =
kh

|Va|
. (A.8)

The expected data loss caused by a single node failure is

LH =
H∑

h=0

Pr(h) · Ih. (A.9)

A.3.6 Accuracy

The expected data loss, L, is closely related to the accuracy of the query result, but
accuracy depends not only on how much data is lost, but also on which data are lost.
Some tuples may be more important than others, and some queries and aggregation
functions can tolerate more data loss than others. One way of measuring accuracy
is to look at the distance from the ideal result, i.e., the result of the query if the
system was not subject to churn during query processing.

A.4. FIGHTING DATA LOSS 63

For the aggregation functions count , sum and avg , we simply define the distance
function as

dcount(r, ri) = dsum(r, ri) = davg(r, ri) =
r − ri
ri

, (A.10)

i.e., the percentage of deviation from the ideal result.
The min and max functions should behave similarly, and the distance between

the actual and ideal result should be comparable between these two functions. The
definition of distance given for count , sum and avg will result in large distances for
small deviations from the ideal answer of the min function, while the same deviation
will result in a short distance for the max function. By defining the distance function
as

dmin(r, ri) = dmax (r, ri) =
r − ri
|Dvalue |

, (A.11)

where Dvalue is the domain of the value attribute, the distance measure should be
comparable for these two functions.

The definition of the ideal result, however, is not so straight forward. In a system
without churn, all nodes would be connected and all data would be present in the
system at all times. Given a network G = 〈V,E〉, the ideal result of a query Q can
be defined as the result of executing Q on all data residing on nodes in V , i.e., the
result of Q executed on all data in the total network.

Another definition may be to consider the active network Ga = 〈Va, Ea〉 at a
given time, e.g., at the start of query execution. The ideal result is then defined as
the result of executing Q on all data residing on nodes in Va at that time.

Yet another approach is to look at the nodes Vq ⊆ Va that have actually received
the query. The ideal result is then the result one would get if none of Vq fails during
query execution.

Whichever definition of ideal result is chosen, it should be possible to calculate
the expected accuracy under a certain churn level based on the formulas for expected
data loss given in A.3.5. In these calculations one should notice that, e.g., the min
and max functions are very sensitive to loss of tuples with extreme values, but
tolerate much more loss of other tuples, so the distribution of values should be
taken into account.

A.4 Fighting Data Loss

In this section we first look at the current method of preventing data loss on node fail-
ure, i.e., replication. We then present a two new approaches to increasing accuracy:
1) importance-based replication (IB-replication) and 2) increasing node degree.

A.4.1 Replication

The current approach to fighting data loss (as suggested by, e.g., [5] and [7]) is
replication. This is easily done by creating several independent reduction trees,
replicating the whole aggregation process. To run a parallel aggregation processes
a complete trees have to be created, as illustrated in Fig. A.2(b) for a = 2. The

64 PAPER A

(a) Basic. (b) Replicated.

(c) IB-replication. (d) Higher node-degree.

Figure A.2: Variants of aggregation trees. In the case of replication, solid lines
denote one of the replica trees, and the dashed lines the other replica. Note that in
general, a node participating in replica trees do not have to be in the same part of
the tree in the different trees (as is the case in the figures above), it can for example
be leaf node in one tree but function as a higher-level node in a replica tree. Note
also that in practice, the node degrees of the aggregation trees will be much higher
than in the figures.

query is executed in each of these trees. Different trees can be constructed from
the routing path by selecting different destination identifiers for the tree generation
message.

When aggregation is done, the algorithm is presented with a set of a complete
aggregation results from which it may select one. However, this still leaves room
for some unnecessary data loss, as the results for one group may be better in one
replica, while the results for another group is better in another replica.

The solution is to pick the best results from each replica of the final result. In
general, a result is better than another if it is based on the information from more
tuples, i.e., the result with the highest count is the best. This selection of the best
result may be done on the final result as a whole, but also on individual groups in
the results. For each group, the algorithm selects the result from the replica with
the best result.

The best result of the count function is the maximum result among the replicas.
Similarly the best result for the sum function over positive integers is the highest
sum. The max and min aggregation functions behave similarly, choosing the max-
imum and minimum among the replicas for each group. When computing the avg
function, it is hard to tell which result is the best, but again, choosing the result

A.4. FIGHTING DATA LOSS 65

with the highest tuple count will statistically be the better choice.

The major drawback with replication is the increased number of messages sent.
An a-replication results in a times the communication costs of the original algorithm.
While even doubling the costs is expensive, selecting a = 3 or a = 4 would seriously
degrade the scalability of the system.

A.4.2 Importance-based Replication

As noted above, replication of the complete tree results in considerably more ex-
pensive query execution. This cost may be decreased by only replicating nodes of a
certain importance, with respect to Equation (A.7). This would result in a replica-
tion of the nodes that will have a big impact on the system if they fail, while the
large number of lesser important nodes are kept at a = 1, i.e., unreplicated. Such a
tree is illustrated in Fig. A.2(c). Note that in Fig. A.2(c) replication is only omitted
at the lowest level, while in a higher tree more than one level might be without
replication.

Importance-based replication requires the tree generation algorithm to know at
which level of the hierarchy the node is placed. This information could be included in
the parent node’s response to the tree generation message. The replication scheme
could be arranged to have several levels of replication, e.g., three copies of the
immediate children of the root, two copies of their children and only one copy of
other nodes. Since most nodes are placed at the leaf level or the level above, this
would greatly reduce the cost of replication while still replicating the most important
nodes. I.e., the result is no significant extra cost (the replicated communication and
processing at upper part is very low compared to the total number of nodes in the
tree participating in the processing), but accuracy comparable to full replication.

A.4.3 Increasing Node Degree

Replication is prohibitively costly for large systems, and other approaches should be
followed if possible. Based on the formulas in Section A.3.4, we propose that more
attention is paid to other parameters, especially the degree of nodes. A tree with
larger node-degree is illustrated in Fig. A.2(d).

Using trees based on routing paths, the degree is decided by the size of the routing
tables and the routing strategy used by the DHT algorithm. A large routing table
that allows the node to do long jumps in the DHT space will result in a broad tree
with few tiers, while a small routing table or an algorithm that only does short
jumps will result in a deeper tree.

This hierarchy results in low communication costs, but the drawback is that
nodes become more valuable towards the top. If one of the higher-level nodes fail,
a lot of data will be lost. This effect is documented by Li et al. [7].

The importance of a node depends not only on its level in the hierarchy, but also
on the degree. This is evident in Equations (A.2), (A.5) and (A.7). If the tree is
broad, each of the higher level nodes are less important. A pathological case is when
the degree is 1, i.e., the hierarchy is a linked list where the importance is increased

66 PAPER A

by one for each level of the hierarchy. If one node is lost, all information from nodes
below it in the hierarchy is lost. Assuming a uniform failure model, this hierarchy
would on average lose half of the information each time a node fails.

If the hierarchy is a binary tree, the two nodes below the coordinator node are
each responsible for one half of the information in the tree. Instead of losing half the
information on average, it is the worst case loss. If the degree is three or four, the
expected data loss is still lower. In the extreme, the degree is equal to the number
of nodes, in which case the distributed aggregation degenerates into centralized
aggregation.

If routing paths are used to build the hierarchy, the degree and depth of the
hierarchy are decided by DHT algorithm parameters. The size of the routing table
is one of the factors that decide how many hops a message needs to get to the root,
and therefore also the depth of the tree. The properties of the hierarchy are also
dependent on the routing policy of the network, e.g., if the DHT algorithm always
routes messages in a greedy manner or if it takes other aspects into consideration.
The degree of nodes could be changed either by modifying the routing principles of
the algorithm, or by disconnecting the tree generation from the routing path.

In [7], Li et al. describe a tree construction protocol that takes the degree of
internal nodes as a parameter. Such functions could be used to generate trees
independent of routing paths, thus deciding in each case the desired degree of the
tree.

The tree generated by existing algorithms can be estimated by considering the
height of the tree to be the maximum length of the routing path, i.e., the maximum
number of hops when doing a lookup. Assuming that all nodes have the same
degree and that the tree is completely balanced, the degree can be calculated. The
connection between number of nodes, N , degree, k, and height h of the tree is given
by

N =
kh+1 − 1

k − 1
.

The Chord algorithm has a high-probability upper bond of O(1
2

log2N), where N
is the number of nodes. Experiments show that the routing path length for a Chord
network of 10,000 nodes varies from 2 to 11 [15], with an average of approximately
5. Assuming that all nodes have the same degree, and that the tree is completely
balanced and full, a network of 10,000 nodes with maximum path length 5 has a
degree of approximately 6.

In CAN, the degree depends on the number of dimensions. Experiments in [10]
show that the number of hops in a 4-dimensional CAN of approximately 130,000
nodes, the path length is approximately 5, which should give a degree of approxi-
mately 10.

These low numbers indicate that more attention should be paid to the degree of
nodes in the reduction tree. From Section A.3.4 we see that the degree is directly
related to the importance of nodes, and hence, the expected data loss.

A.5. EXPERIMENTS 67

A.5 Experiments

In this section we compare full replication and varying node-degrees by simulating
aggregation by reduction trees in a DHT. Results from importance-based replica-
tions are omitted as their performance will be close to full replication (although at
a very much lower cost).

A.5.1 Network Model

The simulated network system is a DHT network experiencing different churn levels.
The focus is on the results of the queries, not on the number of messages sent between
nodes or other network metrics. This allows for some simplifications in the network
model.

The first assumption that is made, is that nodes that leave the network without
failure, i.e., in a planned, organized way, will hand over data and ongoing queries to
other nodes before disconnecting. This can be done either by transferring data and
queries to other nodes, or by entering a state where the node completes all ongoing
queries, but does not accept new queries. When a node no longer has active queries
or data, it can leave the network. This assumption is one on the behavior of the
software system, not of the network structure.

Based on this assumption, the network (without node failures) is modeled as
of constant size, i.e., the number of nodes joining is equal to the number of nodes
leaving the network.

Node failures are assumed to occur after the node has received all messages, but
before it sends any messages. This means that failed nodes are not discovered by
the network, and that all messages to failed nodes are lost. The justification for this
assumption is that nodes that discover failed nodes can take actions to overcome
this problem, e.g., update its routing tables and route messages through a different
node. There are still situations where node failure will not be detected, e.g., if a
node fails during phase one of the repartitioning algorithm after it has received all
tuples from one node.

Since some cases of node failure are supposed to be discovered and handled
otherwise, the number of node failures for the simulations should be lower than in
the corresponding real-world situation.

The simulations are run on a network of 10,000 nodes. 10% of the nodes fail
during query processing. This is a fairly high number, chosen to show how the
algorithms perform under the bad conditions.

A.5.2 Data and Query Model

The data model is that of a relational database consisting of a single 100,000 tuple
relation which is distributed over all nodes. Since the network is based on a DHT,
a uniform distribution of tuples is assumed.

The aggregation functions studied in the experiments are the standard SQL
functions sum, count , avg , min and max .

68 PAPER A

The tuples have 3 attributes: key , group and value. The key attribute is a unique
value which is used as the primary key for the tuple. When aggregating, the results
are grouped by the group attribute, and the value attribute is used as parameter
to the aggregation function. All values are positive integers. The value and group
attributes are chosen randomly from their domains, using a uniform distribution.

A.5.3 Algorithm Implementation

The generated reduction trees are completely random, and not based on any DHT.
This design choice allows the simulator to construct trees with different properties,
so that the effect of changing the degree can be studied.

When doing replication, all replicas of the result are examined to pick out the best
result for each function over each group, as described in Section A.4.1. Replication
is done by generating new reduction trees.

A.5.4 Metrics

The results are compared to an ideal result aggregated over B(Va), and the accuracy
of the query result is calculated using the formulas defined above. As a result, the
accuracy of min and max cannot be compared directly to the accuracy of the other
aggregation functions.

Each query is run 10,000 times, and the mean and inter-quartile range is used
when discussing the results of the experiments.

A.5.5 Results

First we look at the effect of replication. Fig. A.3 shows the accuracy for avg , count
and max functions. The results for sum and min functions are similar to those of
the count and max functions, respectively, and are not reproduced in the figure.
The figure shows the mean value, and lines extend to the first and third quartile to
show distribution density.

We see that the results of the count function are more inaccurate than those of
avg and max . For avg this is the result of the DHT distributing values randomly.
The loss of one node does not result in systematic data loss, so the average value is
not severely affected by data loss.

The max function depends on a specific value being present in the accessible
dataset. If this value is not lost, the function will return the correct answer. If there
are more than one tuple with this value, the function is even more resilient to data
loss.

The count function, however, depends on every tuple being present, and is thus
much more vulnerable in case of node failures. Unlike the other functions, which
come much closer to an accurate result even when not replicated, count (and sum)
clearly show improvement when replicated.

From the results, we see that the accuracy can be increased somewhat by repli-
cating the process, but that there is little to gain by increasing to three or four

A.5. EXPERIMENTS 69

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 1 2 3 4 5

A
cc

ur
ac

y

Number of replicas

avg
count

max

Figure A.3: Accuracy of aggregation functions with different number of replicas.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Figure A.4: Accuracy of the count function with different node degrees.

70 PAPER A

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Figure A.5: Accuracy of the avg function with different node degrees.

complete processes. Replication is a costly solution, and if there is little to gain in
terms of accuracy, it may not be worth the cost. Also, the avg , min and max func-
tions prove to be quite accurate to start with, whereas the count and sum functions
show that some method to fight data loss is needed. In the rest of the experiments,
only single replication is used, so the results compared are from simple hierarchical
aggregation (H) and replicated hierarchical aggregation (RH).

Fig. A.4 shows the results of varying the degree of nodes in the reduction tree
from 10 to 1,000 (using steps 10; 50; 100; 1,000). We can see that the accuracy
of count queries climb quite steeply from 10 to 100, i.e., from 0.1% to 1% of the
number of nodes in the system, but that accuracy does not increase much beyond
this number. The replicated algorithm (RH) performs better than the non-replicated
algorithm (H), but for low node degrees, there is more to gain by increasing the
degree than by replicating.

Due to implementation details, the replicated algorithm actually performs worse
for low node degrees when computing the average, as can be seen in Fig. A.5. The
reason for this peculiar result, is that the simulator computes the result of avg from
the results of sum and count .

The algorithm chooses the best result for count and sum separately, and only
computes avg in the end. The result is that the two components of the partial
aggregate for avg are chosen from different replicas which generally do not contain
the same tuples, and the result of the query becomes more inaccurate. This shows
that it is important to choose all elements of the partial aggregates from the same
replica, even though the single parts may be more accurate by themselves in different
replicas.

We also see that there is little to gain by increasing the degree when computing
avg queries. The distribution becomes somewhat denser, but not much.

When computing the maximum value, the results in Fig. A.6 show that the node
degree is important, but that there is more to get from simple replication. For the
parameters used in our simulations it is always better to replicate than to increase
the degree of internal nodes.

A.6. CONCLUSION AND FUTURE WORK 71

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Figure A.6: Accuracy of the max function with different node degrees.

The results from the experiments show that the different aggregation functions
react differently to varying node degrees. The count function has much to gain from
increasing the node degree before replicating the process, but max gains more from
replication than from increasing the degree. The results also show that the two
techniques can be combined to increase accuracy further. The avg function is quite
accurate to begin with, and does not seem to react much to either method.

If we compare the results to the estimated node degrees of trees based on routing
paths in Chord and CAN given in Section A.4.3, we see that the simulation results
indicate that trees based on current DHT implementations are too narrow, and that
accuracy could be increased by generating broader trees.

A.6 Conclusion and Future Work

We have performed a formal study of data loss in aggregation queries and described
the different events that may affect the result of such queries. The focus has been on
the uncontrollable events, i.e., node and network failure, and how algorithms can be
adapted to provide accurate answers in a setting where node failures are common.

Based on this analysis, we have proposed new approaches to increasing accuracy.
Instead of just replicating the whole aggregation process, which until now has been
the suggested solution, we proposed two alternatives based on importance-based
replication and the degree of internal nodes in aggregation trees.

Our experiments showed that these new approaches in some cases may be more
efficient in increasing accuracy than the costly replication, and also that these two
methods may be combined to increase accuracy further. The simulations also indi-
cate that there is much to gain from increasing the node degree from that of current
implementations.

Several open problems remain. The query processor should be able to use statis-
tics to predict which algorithm and which parameters would suit the query best.
This could be combined with a requested level of accuracy to find the most efficient

72 PAPER A

aggregation method to achieve the requested accuracy.

The data and accuracy loss of other relational operations should also be studied,
so that queries do not suffer unnecessarily from data loss. When planning query
execution, the methods chosen for each operation should be selected to achieve the
requested accuracy. This requires a formal study of data loss and functions for
predicting accuracy of relational operations.

Bibliography

[1] B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki. Approximating aggregation
queries in peer-to-peer networks. In Proceedings of ICDE’2006, 2006.

[2] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price of validity
in dynamic networks. In Proceedings of SIGMOD’2004, 2004.

[3] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao. The Cougar
project: A work-in-progress report. SIGMOD Rec., 32(4):53–59, 2003.

[4] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov.
The Piazza peer data management system. IEEE Transactions on Knowledge
and Data Engineering, 16(7):787–798, 2004.

[5] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of PIER: an
internet-scale query processor. In Proceedings of CIDR, pages 28–43, 2005.

[6] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the internet with PIER. In Proceedings of VLDB’2003, 2003.

[7] J. Li, K. Sollins, and D.-Y. Lim. Implementing aggregation and broadcast
over distributed hash tables. SIGCOMM Comput. Commun. Rev., 35(1):81–
92, 2005.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[9] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A P2P-based system
for distributed data sharing. In Proceedings of ICDE’2003, 2003.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of SIGCOMM’01, 2001.

[11] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining.
ACM Trans. Comput. Syst., 21(2):164–206, 2003.

BIBLIOGRAPHY 73

[12] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of
Middleware’2001, 2001.

[13] S. Roy, S. Setia, and S. Jajodia. Attack-resilient hierarchical data aggregation
in sensor networks. In Proceedings of SASN, 2006.

[14] N. Ryeng and K. Nørv̊ag. Accuracy of aggregation in peer-to-peer DBMSs. In
Poster presented at DBISP2P’2007, 2007.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceed-
ings of SIGCOMM’01, 2001.

[16] P. Valduriez and E. Pacitti. Data management in large-scale P2P systems. In
Proceedings of VECPAR’2004, 2004.

[17] P. Yalagandula and M. Dahlin. A scalable distributed information management
system. In Proceedings of SIGCOMM ’04, 2004.

74 PAPER A

Paper B

RIPPNET: Efficient Range
Indexing in Peer-to-Peer Networks

Norvald H. Ryeng and Kjetil Nørv̊ag.
In Proceedings of ICDIM, 2008.

75

B.1. INTRODUCTION 77

Abstract

Write-heavy applications present a challenge to peer-to-peer indexing methods which
need to update the index for each write operation. The costs incurred when the
distributed index is updated becomes a bottleneck. Current distributed indexing
methods are designed for indexing and retrieving single tuples, giving a very high
update cost. In this paper we present a new approach to efficient peer-to-peer
range indexing that employs indexing of ranges to reduce average update costs as
well as providing efficient data localization and decoupling from data placement
policies. Based on results from experiments, we demonstrate the applicability and
significantly reduced update cost of the new approach.

B.1 Introduction

Large, distributed simulation processes can produce a lot of data. In some simu-
lations the number of write operations are much higher than the number of read
operations, and data is more often read from local storage than from other nodes. A
distributed relational database management system (RDBMS) for large simulations,
e.g., in a computational grid, must be able to efficiently perform writes, while at
the same time allowing global lookups. The distributed, self-organizing nature of
peer-to-peer systems provides a good basis for building such RDBMSs.

Existing peer-to-peer RDBMSs use tuple based indexing, which requires the
distributed index to be updated every time a tuple is inserted, updated or deleted.
For write-heavy systems, the cost of updating the distributed index is a bottleneck.
In this paper we present RIPPNET, an indexing method for peer-to-peer RDBMSs
that instead indexes ranges of tuples. The local database at each node is divided
into ranges that are registered in the distributed index. By indexing ranges instead
of tuples, the number of messages used to keep the index up to date is reduced,
while still allowing for data localization queries.

The common indexing method for structured systems is to use a distributed
hash table (DHT) that indexes tuples. Since the tuples are inserted into the DHT,
the DHT enforces a certain data placement based on the hashing function. Our
range index is orthogonal to any data placement policies. This is important in a
simulation setting where each node mostly accesses the data produced locally, but
occasionally needs to access data from other nodes. If the index structure dictates
a data placement policy that is incompatible with the pattern produced by the
simulation, the result is a lot of network traffic to write or read data. By decoupling
indexing from data placement, many reads can be made local.

Thus the main contribution of this paper is an indexing method for peer-to-peer
RDBMSs that:

• indexes ranges of tuples,

• significantly reduces costs for write-heavy systems, and

• is decoupled from data placement policies.

78 PAPER B

The described indexing method is implemented in a simulator and results from
experiments show that update costs are significantly reduced.

In this paper we start by reviewing related work in Section B.2 before we present
some preliminaries in Section B.3. Our new range indexing method is presented
in Section B.4, and extensions to the basic method are described in Section B.5.
Finally, we evaluate our approach and achieved results in Section B.6 and conclude
the paper in Section B.7.

B.2 Related Work

Current systems typically use DHTs such as Kademlia [12], Chord [18], CAN [15],
Pastry [16] or Tapestry [10] to store tuples or tuple indices. These systems support
only exact match lookups. More advanced queries, such as range and cover queries,
are blocked by the hashing function, which destroys the data ordering.

Two techniques for performing range queries in peer-to-peer systems are dis-
cussed in [21]. The first is simply to give the same hash key to values within a range,
thereby reducing the number of different hash keys and DHT lookups needed. The
other technique is to create a multicast group for each range.

Gupta et al. [8] present a range selection technique for DHTs based on locality
sensitive hashing (LSH). The method locates data in O(logN) hops in a N -node net-
work. However, the suggested methods only give approximate answers. HotRoD [14]
uses a combination of locality-preserving hashing function and replication to support
range queries in a DHT-based system. In [1] and [4] data are distributes contigu-
ously into a DHT-like ring, but without using the hashing function, relying on load
balancing algorithms to maintain fairness in case of data skew. GChord [23] utilizes
Gray coding to support range queries. Consecutive values differ in only one bit, and
this fact is used to forward queries through the Chord network.

Another approach is to organize the data into a tree structure. This class of
systems include the Distributed Segment Tree [22], the Range Search Tree [7], BA-
TON [11], P-Grid [2] and P-Tree [5]. A similar approach is search tries stored in
DHTs [19].

The Distributed Segment Tree is a binary tree that can handle both range and
cover queries. Unfortunately, nodes in all levels must be updated when a tuple is
inserted or deleted. To reduce the load of higher-level nodes, these nodes can decide
to drop tuples belonging to their children, but still the message has to be sent. In the
Range Search Tree, each node of the tree consists of a load balanced set of physical
nodes.

P-Tree is based on B+-trees and uses Chord as the underlying DHT. Tuples
are stored in leaf nodes, which constitute the Chord network. P-Grid places data
in a binary prefix tree where each node maintains references to other nodes with
the same prefix. Both P-Tree and P-Grid have worst case scenarios where the tree
degenerates into a linked list. BATON overcomes this limitation by self-adjusting
to data skew.

SkipIndex [20], SkipNet [9] and Skip Graphs [3] and ZNet [17] are based on Skip
Lists, a tree of linked lists, where the list at level 0 is a linked list of all nodes. Higher

B.3. PRELIMINARIES 79

Figure B.1: An example system.

level lists are increasingly sparse. Using these lists, range queries can be supported.

The RangeGuard system [13] uses a set of supernodes to allow for range queries
in a DHT. The supernodes form a ring, each supernode taking responsibility for
one range of the value space.

Common to all these range search strategies, are that they are based on tuple
indexing. The cost of updates vary between the different structures, but all have to
perform some work on every tuple update. Our approach is to store ranges in the
index, thereby reducing the number of update messages sent to the index.

B.3 Preliminaries

In this section we first present our system model and then the problem of distributed
data localization.

B.3.1 System Model

In our model of a peer-to-peer DBMS, tuples are stored in horizontal fragments of
relations. Relations are fragmented based on some fragmentation rule that may be
local to a node or system-wide. A node may store more than one fragment of a
relation, and these fragments need not be consecutive.

In the example shown in Figure B.1, there are five nodes, n1, n2, . . . n5. Nodes
n1, n3 and n4 each store a fragment, numbered f1, f2 and f3, respectively, of relation
R =

⋃
∀i fi. Node n2 stores one fragment, f ′1, and node n5 stores two fragments, f ′2

and f ′3, of relation R′ =
⋃
∀i f

′
i .

It is our assumption that the data distribution is not uniform, at least not within
a single node. Skewed data sets are common in real life applications, such as the
distribution of names, and in our model we assume that this is generally the case.

For each fragment there exists a minimum and maximum allowable value for
an attribute of a tuple in that fragment. Simple fragmentation rules may fragment
based on only one attribute, e.g., separating the relation into fixed steps of the

80 PAPER B

fragmentation attribute. This would limit the value of the fragmentation attribute
in each fragment, but leave the other attributes limited only by the limits of the
data type. The allowed range of the fragmentation attribute may be significantly
larger than the range that is actually used.

B.3.2 Data Localization

The localization step in a distributed query processor needs to translate a query
on global relations R and R′ to a query on the physical fragments, f1, . . . , f3 and
f ′1, . . . , f

′
3, of the relations. Not all fragments are needed for all queries. If the

query is for all tuples where an attribute is within some range, only fragments
containing tuples within that range are needed. We call those fragments relevant
to the query. Other fragments of those queries are irrelevant to the query. In
the example in Figure B.1, query q separates the fragments of R into the relevant
fragments, Rq = f1 ∪ f3, and the irrelevant fragments Rq = f2. This concept of
relevance is extended to nodes, such that relevant nodes contain at least one relevant
fragment, and irrelevant nodes contain no relevant fragments. Given a query, q, we
divide the set of nodes, N, into those relevant to the query, Nq, and those irrelevant
to the query, Nq.

If the system is very small, it is more efficient to broadcast the query to all nodes,
relevant or not, instead of first identifying relevant nodes and then send the query

only to these nodes. The disadvantage of broadcasts increases with
|Nq |
|Nq | , the ratio

of irrelevant nodes to relevant nodes. At some point, the cost of broadcasts exceeds
the cost of identifying relevant nodes. Exactly when this occurs, depends on the
cost of identifying relevant nodes.

When the system is very small, a complete index of all fragments can be stored
on all nodes. As the system grows larger, this becomes infeasible. For each node
to have complete knowledge of all fragments, even of all nodes, requires too much
communication and state information. Currently most systems use DHTs, both to
store tuples and to create distributed indices. The DHT allows all nodes to look up
and retrieve data from all other nodes, with only a small amount of state information
on each node.

One disadvantage of DHTs is that they only allow exact match lookups. If the
relevant fragments for a query are all those within a range, we have to look up every
single possible value within that range. The total cost of a query for a range using
this method depends on the cost of a single exact match lookup and the width of the
range in question. E.g., if there are only two possible values within the range, the
two exact match queries required will not be a very costly range search. However,
if the range is wide, the cost of looking up every possible value within the range
makes it infeasible.

Efficient data localization is not without cost. For indices to be useful, they must
be kept up-to-date. Maintaining an index of all tuples is costly. Every time a tuple
is inserted in a relation in the system, a new index entry must be inserted. This
detailed index is useful for some purposes, but overly detailed for data localization
purposes. The data localization step only needs to find out which nodes are to be

B.4. DISTRIBUTED RANGE INDEXING 81

involved in the query, not the location of every single tuple.
A simple solution is to index ranges of tuples instead of single tuples. To find

relevant nodes, the data localization step has to find all ranges that overlap the range
requested by the query. For each range stored in the index, a node identifier is stored.
A range query, q, will be answered by a set of relevant ranges and corresponding
relevant nodes, Nq.

B.4 Distributed Range Indexing

We propose a distributed index of ranges of tuples where each node defines ranges of
tuples in its local database and stores information about these ranges in a distributed
index. A query processor that needs to identify all nodes storing data within a range
looks up in the index and finds all intersecting ranges.

The indexing method can be used on multidimensional data, e.g., indexing over
multiple attributes of a relation. For ease of presentation, the examples will be
limited to indices over one attribute.

To build, maintain and use a distributed range index, there are three main
processes: range partitioning of data and building the index, maintaining the index,
and searching the index. We will treat these processes separately.

B.4.1 Partitioning Local Data

Local data should be divided into ranges based on the indexing attributes. This
could be done using using any clustering algorithm, or using fixed steps in the
attribute domain. An incremental range partitioning method that allows for growing
or shrinking of ranges is necessary. Using such a method, the algorithm would not
have to rescan the whole database when a tuple is added.

Unlike many other applications, the ranges can be overlapping, i.e., a single tuple
can belong to several ranges. However, index lookups will gain from having dense
ranges, so adding tuples that are too distant from the rest of the range will proba-
bly not gain anything. Also, keeping the index updated when tuples are inserted,
updated and deleted is easier when tuples belong to only one range.

Outliers may occur, and when deemed to far away for inclusion into one of the
other ranges, they may form ranges of their own. However, since these outliers are in
fact indexed as single tuples, the range partitioning algorithm should try to generate
as few outliers as possible.

For each range identified, we create an index record. The only required fields
of this record is the minimum and maximum values of the range and the network
address of the node where this range is stored.

The index record can be further extended by storing various statistics on the
range, such as the number of tuples, etc. This information is not necessary for the
index to work, but may be useful to the query planner when constructing a query
plan. This is discussed further in Section B.5.3.

The data distribution on one node may look similar to that displayed in Fig-
ure B.2. This node stores data that can be partitioned into four ranges, r1, r2, r3

82 PAPER B

Figure B.2: Data distribution on a node.

and r4. These ranges cover only the parts of the attribute domain where the node
has data. The ranges of one node need not cover all possible values. The example
node has no outliers.

If the distribution is much more uniform than in our example, one may have to
resort to fixed-width partitioning to define ranges. These will probably be sparser
than what is outlined above, but the indexing method can still be used.

Each node has to identify ranges in its local database before the index can be
built. Later, we will see how the ranges are maintained when tuples are inserted,
updated and deleted.

B.4.2 Building the Index

When each node has partitioned its data into ranges, we can build a distributed
index of all ranges. When indexing over d attributes, we build a 2d-dimensional
index. The dimensions are the minimum and maximum values of each of the d
attributes.

Let us consider an index over a one-dimensional attribute, e.g., an integer value.
Our index would then be a two-dimensional index, consisting of the pair of minimum
and maximum values for all ranges. Each range, r, would be represented as a point,
〈rmin, rmax〉, in the index space, as shown in Figure B.3.

Since the minimum value of a range is always smaller than the maximum value,
the possible index records form a triangular space in the two-dimensional index.
When partitioning data into ranges, some data points may be considered outliers
and will be stored as single points in the index. Since the minimum and maximum
values are equal for these points, they will be stored along the diagonal.

This structure can be stored in a Content Addressable Network (CAN) [15]. We
have to bypass the hashing step and store the values directly in the CAN. The
hashing algorithm makes sure data is evenly distributed among the nodes. When
we bypass the hashing step, data will be unevenly distributed among the nodes. In
particular, only the upper left triangle of a two-dimensional network will be used.
In Section B.5.2 we look at how we can keep a close to uniform data distribution in
the network without the hashing step.

New index records are inserted into the index in the same way as for a normal

B.4. DISTRIBUTED RANGE INDEXING 83

Figure B.3: Two-dimensional index of one-dimensional data.

CAN, except that the hashing step is bypassed. The index is updated when ranges
in the original database changes. If a range is deleted or merged into another range,
the corresponding index record is deleted. Updates and deletes are also similar to
their normal CAN counterparts.

B.4.3 Maintaining the Index

Once the index has been created, it must be kept up-to-date. On inserts, updates
and deletes, nodes must check if index records have to be updated.

On inserts, nodes must check if the tuples fit inside already existing ranges. If
so, no further action needs to be taken. If not, it must decide if it should extend an
existing range or define a new range to cover the tuples.

On deletes, nodes must check if it is possible to shrink the range the deleted
tuples belong to. Too wide ranges does not affect the result, but it affects the
performance of the index. Index records that describe a too wide range will result
in more messages sent to nodes that do not store data within the requested range.
If ranges are overlapping, there may be more than one range to check.

Updates are treated as a combination of inserts and deletes, and the correspond-
ing actions must be taken.

To avoid having to look up in the distributed index for every insert, update and
delete, nodes should store information about local ranges. This local information
should be enough to decide when to extend or shrink existing ranges and when to
create new.

If extra statistics are stored in the index records, care must be taken to also up-

84 PAPER B

date this. Statistics updates may occur more often than ranges have to be extended
or shrunk, so for this reason, exact count and similar statistics should be avoided.

The result of indexing ranges is that the index does not have to be updated for
every insert, update and delete of database tuples. The exact savings in communi-
cations costs depends on the data set and the frequency of such requests.

B.4.4 Index Lookups

The index allows for two types of lookups: range queries and exact match queries.
Range queries are used to answer queries for indexed data, while exact match queries
are used when updating index records.

Range Queries

There are four different situations that may occur when comparing two ranges. In
our case, we will compare an indexed range, r, with the range of the query, q. The
different situations that may occur are that

• r and q overlap in the lower part of r and the upper part of q,

• r and q overlap in the lower part of q and the upper part of r,

• q is contained in r, and

• r is contained in q.

The index is queried by ranges. A query q for the range 〈qmin , qmax 〉 is represented
in Figure B.3 by its reverse range point, q̄ = 〈qmax , qmin〉, as shown in Figure B.4. All
points in the area delimited by the vertical axis, the line from q̄ perpendicular to the
vertical axis and the vertical line extending from q̄ perpendicular to the horizontal
axis represent ranges that overlap, contain or are contained by the range of q.

Query execution is done by routing a message to q̄. The node containing q̄ then
forwards the query to its neighbors within the requested range, which again forwards
the query to their neighbors, etc. In this way the query propagates through the
network until it reaches all index nodes potentially containing overlapping ranges.

Any node that in this process receives the query, in addition to forwarding the
query to its neighbors, responds to the querying node with a list of matching ranges.

As a result of this query propagation scheme, narrow ranges will be reached
before wide ranges. These narrow ranges are also more likely to contain useful
tuples. As shown in Figure B.4, the first ranges that are encountered, are those that
are contained within the query range, and thus guaranteed to only contain relevant
data. The query then continues to partially overlapping ranges and ranges that
contain the query range. The wider ranges are indexed on the last nodes to receive
the query, and hence, returned last.

Cover queries are queries for regions that contain a certain point. The distributed
range index can answer cover queries by answering the range query for ranges over-
lapping the range with minimum and maximum values equal to this point.

B.5. EXTENSIONS 85

Figure B.4: Range placement.

Exact Match Queries

The index can also be queried for an exact match, e.g., when a record needs to be
updated. This is done in the same way as it is done in a normal CAN. This is
a query type used to maintain the index. Exact match queries for indexed values
are done as cover queries, since there may be more than one range covering the
requested value.

B.5 Extensions

Section B.4 presented the basic idea. In this section we present extensions to the
basic idea for handling multidimensional data, load distribution and more advanced
index records.

B.5.1 Multidimensional Data

The proposed range indexing technique supports multidimensional indices. Indexing
d-dimensional data requires a 2d-dimensional CAN, since for each dimension the
index needs one minimum and one maximum dimension. The easiest mapping would
then be to map minimum values to even numbered dimensions and maximum values
to odd numbered dimensions, such that for each dimension i of the key, the index
has two dimensions, imin = 2i and imax = 2i+ 1.

Since the dimensions are not independent, with increasing dimensions, a smaller
percentage of the CAN is actually used to store data. The problem of uneven data

86 PAPER B

and computational load distribution is discussed in the next section.

B.5.2 Uniform Distribution

An unfortunate effect of bypassing the hashing step of the CAN is that the data
distribution is no longer uniform. For a two-dimensional CAN, half the address
space is not used by the index. Also, the computational load is not distributed
evenly. In Figure B.3, the node storing the upper left corner of the CAN will be
involved in every index lookup.

The naive approach to solving the data distribution problem is to swap maxi-
mum and minimum dimensions for different indices. If multiple indices are stored
in the same CAN, they can use different dimensions as minimum and maximum
dimensions, thereby evening out the data distribution. Also, the direction of dimen-
sions can be switched. This does not guarantee uniform distribution, but helps in
distributing data to all nodes, not only one half of them.

When dimensions are swapped and reversed, this also helps even out the differ-
ences in computational load, but still the corner nodes of a two-dimensional CAN
will be more heavily loaded than other nodes. The most heavily loaded nodes could
be replicated, using a round-robin algorithm to choose which replica to use for a
specific index lookup.

B.5.3 Statistics in Index Records

Statistics on range size and distribution could be stored in the index record. If exact
answers are not needed, this could be used to speed up aggregation queries, using
the statistics to estimate the aggregate without asking the nodes where the data are
stored.

The query planner can also use statistics to select first the nodes with a high
density of tuples within the requested range. This could also be used to give a quick
reply that gradually improves as the rest of the database is searched.

There are disadvantages to storing statistics in the index records. For the statis-
tics to be correct, the index record must be updated more often than the range
indexing mechanism requires. When adding statistical information to the index
records, one must be careful not to require too frequent updates. The information
in index records should change slowly and be defined as within some error margin,
to avoid updating the index record for every single tuple insert, update or delete.

B.6 Experimental Evaluation

The proposed indexing technique was implemented in a CAN simulator that allowed
us to experiment with different network sizes and database sizes. The proposed range
indexing method is compared to a baseline method where queries are broadcast to
all nodes, but only those nodes that contain relevant data reply.

B.6. EXPERIMENTAL EVALUATION 87

B.6.1 Setup

The experiments were done using a Java-based CAN simulator extended with range
query capabilities as described in Section B.4. The simulator ran one query at a
time, waiting until one query finished before the next was issued.

Network Model

For each of the network sizes, the network used was the exact same for each query.
Nodes joining the network were given responsibility for zones as described in [15],
using a random number to find the zone to split.

The simulated networks were static. There were no nodes joining or leaving the
network during simulation.

Messages were forwarded through the CAN only when doing the actual lookup.
The lookup message contained a node identifier of the querying node, and this
identifier was used for direct communication outside the CAN. When overlapping
ranges were found, the results were returned to the querying node directly using this
identifier.

Data Set

A database was created for each node. The advantages of the indexing strategy is
based on principle of data locality, i.e., data on a single node tends to be similar, or
clustered. For each node a set of random seed points were chosen. From these seed
points data clusters were grown.

An index was made over one attribute, a positive integer. The data on each node
was partitioned into ranges using the DBSCAN [6] clustering method. Outliers were
inserted as ranges consisting of single tuples.

Query Model

In each experiment, the network was queried 10,000 times. The range queried was
chosen randomly, but the width of the query was fixed to a certain percentage of
the attribute domain.

Metrics

For each query, we measured the number of messages used to propagate the query
and return a complete answer. This number includes both the propagation of the
query through the CAN and the direct return messages from nodes in the index to
the querying node.

The first experiment describes the update frequency. In this experiment, the
probability was measured in a network of 1,000 nodes, inserting the tuples in the
order they were generated. For each node it was recorded whether the total range
of the node had to be updated when a new tuple was inserted.

88 PAPER B

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800 2000

U
pd

at
e

pr
ob

ab
ili

ty

Tuple number

Figure B.5: Probability of index updates.

B.6.2 Results

We now describe the results of three experiments. In the first experiment, we looked
at the probability of index updates during tuple inserts. Then we looked at how the
cost of querying varies with network size and query range.

Update Rate

Tuple indices must be updated on every tuple insert, update and delete. When
indexing ranges, the update frequency can be reduced if new tuples that are arriving
fall within a range that already is registered in the index. In this experiment we
looked at the first 2,000 tuples inserted into each node of a 1,000 node network. The
data set was the same as used in the other experiments, where points tend to cluster
around a few points. Figure B.5 shows the probability of tuples to extend the range
and causing an index update.

The first 10 inserts have a very high probability of causing index updates, so
they have been removed from the figure to allow us to see better what happens
afterward. As we see from the figure, the probability of new tuples causing index
updates is greatly reduced as the database fills up. Already after 10 inserts, the
probability of causing an index update is reduced to 17.4%. After about 150 inserts,
the probability of index updates is reduced to below 1%. This can be compared to
the 100% probability of update in a tuple based index.

B.6. EXPERIMENTAL EVALUATION 89

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
es

sa
ge

s

Nodes

Baseline
Range index

Figure B.6: Messages used in varying network sizes.

Varying Network Size

In this experiment we looked at the number of messages used to look up a range for
varying networks sizes. The number of nodes in the network is the main parameter
that decides the cost of a range lookup. The database used was a one-dimensional
database of 10,000,000 tuples, distributed over networks of different sizes: 2,000;
4,000; 6,000; 8,000 and 10,000 nodes. The queries asked for a range covering 1% of
the attribute domain.

From the results shown in Figure B.6, we see that the average cost of lookups
increase linearly with network size. The great variations in number of messages are
a result of the area that is covered by a query. The query area is a function of the
width of the query and the central point. Queries that are close to the edges of the
attribute domain cover a smaller area of the CAN space than do queries covering
the central part of the domain.

The number of messages used for range index lookup increases more slowly than
the number used by the baseline, so the distance from the baseline increases with
network size.

Varying Query Range

Our next experiment shows how the other important parameter, the width of the
query range, affects the number of messages. The varying query ranges should also
have an effect on the precision of the queries. The experiment was done on a network

90 PAPER B

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40

M
es

sa
ge

s

Query witdth (%)

Baseline
Range index

Figure B.7: Messages used when varying query widths.

of 10,000 nodes, storing a database of 10,000,000 tuples. The number of messages
used was measured for queries covering 1%, 20% and 40% of the attribute domain.

The results are shown in Figure B.7. We see that the baseline method is nearly
constant. The reason for this is that the only effect that increases the cost of this
method is the number of ranges that are within the query range.

The cost of the range index method increases to more than the cost of the baseline
method at a query width of about 37% of the domain width. After this point, the
cost of locating nodes is higher than contacting all of them.

B.7 Conclusion

We have presented a method for distributed indexing of ranges instead of tuples in a
peer-to-peer system. This indexing method significantly reduces the cost of inserts,
updates and deletes, since index records do not have to be updated every time a
tuple is changed. The range index can be used for data localization in a RDBMS.

Unlike previous peer-to-peer indexing methods, data placement is decoupled from
the index structure. This allows for a greater degree of node autonomy and greater
flexibility in data placement.

We also look at the cost of index lookups and show that index lookups are more
efficient for narrow searches, but that it at some point becomes more efficient just
to broadcast the query to all nodes, since so many of them are involved anyway.

As far as we know, this is the first peer-to-peer range index, and there are still

BIBLIOGRAPHY 91

unsolved problems. Our index requires a specific kind of multidimensional DHT.
Many systems use one-dimensional DHTs, and the method should be generalized to
be used also in these systems.

More work should be done on answering queries by using statistics stored in index
records. Summary queries, such as aggregation queries, will benefit from not having
to check every tuple. Many systems require only approximate answers, and this
would fit well in with the current indexing method, without requiring too frequent
updates.

Bibliography

[1] M. Abdallah and H. C. Le. Scalable range query processing for large-scale
distributed database applications. In Proceedings of PDCS’2005, 2005.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A Self-organizing Structured P2P Sys-
tem. SIGMOD Record, 32(3):29–33, 2003.

[3] J. Aspnes and G. Shah. Skip graphs. In Proceedings of SODA’2003, 2003.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable
multi-attribute range queries. In Proceedings of SIGCOMM’2004, 2004.

[5] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. Querying
peer-to-peer networks using P-trees. In Proceedings of WebDB’04, New York,
NY, USA, 2004.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
KDD’1996, 1996.

[7] J. Gao and P. Steenkiste. Efficient support for range queries in DHT-based
systems. Technical Report CMU-CS-03-215, Carnegie Mellon University, 2003.

[8] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range selection queries
in peer-to-peer systems. In Proceedings of CIDR’2003, 2003.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:
a scalable overlay network with practical locality properties. In Proceedings of
USENIX Symposium on Internet Technologies and Systems’2003, 2003.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object
location in a dynamic network. In Proceedings of SPAA’2002, 2002.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: a balanced tree structure
for peer-to-peer networks. In Proceedings of VLDB’2005, 2005.

[12] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system
based on the XOR metric. In Proceedings of IPTPS’2002, 2002.

92 PAPER B

[13] N. Ntarmos, T. Pitoura, and P. Triantafillou. Range query optimization leverag-
ing peer heterogenity in DHT data networks. In Proceedings of DBISP2P’2005,
2005.

[14] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load balancing and
efficient range query processing in DHTs. In Proceedings of EDBT’2006, 2006.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of SIGCOMM’01, 2001.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of
Middleware’2001, 2001.

[17] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional
range queries in peer-to-peer systems. In Proceedings of P2P’2005, 2005.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceed-
ings of SIGCOMM’01, 2001.

[19] P. Yalagandula and J. C. Browne. Solving range queries in a distributed system.
Technical Report TR-04-18, Department of Computer Sciences, University of
Texas at Austin, 2004.

[20] C. Zhang, A. Krishnamurthy, and R. Y. Wang. SkipIndex: towards a scalable
peer-to-peer index service for high dimensional data. Technical Report TR-703-
04, Princeton University Computer Science Department, 2004.

[21] M. Zhang and K.-L. Tan. Supporting rich queries in DHT-based peer-to-peer
systems. In Proceedings of WETICE’2003. IEEE Computer Society, 2003.

[22] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed segment tree: Support of
range query and cover query over DHT. In Proceedings of IPTPS’2006, 2006.

[23] M. Zhou, R. Zhang, W. Qian, and A. Zhou. GChord: indexing for multi-
attribute query in P2P system with low maintenance cost. In Proceedings of
DASFAA’2007, 2007.

Paper C

Efficient and Robust Database
Support for Data-Intensive
Applications in Dynamic
Environments

Jon Olav Hauglid, Kjetil Nørv̊ag and Norvald H. Ryeng.
In Proceedings of ICDE, 2009.

93

C.1. INTRODUCTION 95

Abstract

Requirements from new types of applications call for new database system solutions.
Computational science applications performing distributed computations on Grid
networks with requirements for efficient storage and query solutions are now emerg-
ing. For this purpose we have developed DASCOSA-DB, a P2P-based distributed
database system, which in addition to providing location-transparent storage and
querying, also includes novel features like efficient partial restart of queries and re-
distribution of query operators in the context of failure, dynamic refragmentation
and allocation, and distributed semantic caching. In this demo, the novel features
will be demonstrated, combined with a more general description of the architecture
and demonstration of the distributed query processing capabilities.

C.1 Introduction

Requirements from new types of applications call for new database system solu-
tions. Computational science applications performing distributed computations on
Grid networks with requirements for efficient storage and query solutions are now
emerging.

While Grid computing has gained maturity through the recent years, manage-
ment of data in Grid systems is less mature. Data storage and access is still mostly
file oriented, and it is in general left to users to manage files and their locations
as needed. Although some support has emerged for metadata management, more
advanced database services is still only the proposal stage, examples are the OGSA-
DAI and OGSA-DQP frameworks [2], which are service-based, with little coopera-
tion between sites.

The goal of our research is a reliable Database Grid, with location-transparent
storage, i.e., users/applications do not have to care about where data is stored and
where queries are processed. The aim is sites cooperating on data storage and
processing while retaining autonomy, i.e., a Grid-wide database system. A sub-goal
(but maybe just as important in the long term!) is to help in making computational
engineering society believe in databases!

What we provide is a SQL-accessible distributed database system supporting
traditional features, but in addition also novel features intended to make the system
more suitable for challenging dynamic environments:

• Automatic management of fragment location and replication.

• Efficient handling of query failures through a new partial restart technique.

• Distributed semantic caching.

In the reminder of the paper we will 1) present the background for our project,
2) give an overview of the architecture and implementation of DASCOSA-DB, with
emphasis on three of the novel contributions offered by DASCOSA-DB, and 3) out-
line our three planned demonstrations.

96 PAPER C

C.2 Background

DASCOSA-DB can be considered somewhere in between a traditional distributed/fe-
derated database system and P2P DBMS. We will in this section describe some
issues that forms the background for some of the design decisions in the development
of DASCOSA-DB, as well as describing some related work.

Each DASCOSA-DB site has a large degree of local autonomy, but a high degree
of cooperation (for example during query execution) is possible. Unlike a typical P2P
setting, the participants in a Grid will have knowledge of each other, for example,
which universities or companies are participating. Because of this, users can also
be expected to be more “well-behaving” compared to a P2P network where most
users can be assumed to only gain without giving if given the possibility. Note that
although the participating organizations can be known, individual machines as such
does not need to be known, i.e., each site will only know a few other sites.

It can be expected that in our application area, large and long-running queries
involving many computers will be frequent. Since the probability of failure increases
with query duration and number of computers involved, failure of individual sites
(or connection to sites) during execution of a query can be frequent, and there is also
a certain probability of double-failures, where also the restarted query fails. In some
cases there can also be a deadline on data delivery, for example in combination with
simulations/observation of physical processes. Thus, complete restart of a query
should be avoided. It is also desirable that the handling of query failures should
be completely transparent from applications. This contrasts to the traditional case
where a query is aborted and has to be restarted.

A typical access pattern for many computational science applications is to first
read an amount of initialization data, then sporadic queries and updates during
computation, and finishing with writing a possibly large amount of result data to
the database. The different sites will in general be in different phases wrt. access
pattern. Global queries, for example from previous results, might be performed
during execution. In many cases, strict transaction consistency and isolation is not
critical. As a result, there is little need for optimizing on concurrency. However,
since there can be large amounts of data created, this data should as much as possible
be stored locally. In order to cope with this access pattern which is dynamic both
with respect to site and data, dynamic fragmentation and replication is needed.

During the recent years, a large number of research papers on topics related
to indexing and querying structured data in P2P network has been published. Of
particular interest in the context of our work are a number of other projects aiming at
providing relational data access through P2P technology like PIER [6], PeerDB [7],
Hyperion [10], and APPA [1]. Also other distributed storage systems like, e.g.,
Bigtable [3] provide distributed storage of data but no query capability. We will in
this paper focus on features in DASCOSA-DB not available in other systems.

C.3. OVERVIEW OF DASCOSA-DB 97

Message Handler

Pastry

Executor

Application Programming Interface and JDBC

Local
Database

Database
Index Metadata

Storage (Derby)

Fault
Detector

Fault
Handler Local

DHT
Index

Table
Publisher

Broadcast
Handler

Commit
Manager

Request
Response
Handler

Query
Execute

Insert
Handler

Update/
Insert

Parser

Planner/
Optimizer

Query
Processor

Tuple
Cache

Figure C.1: High-level overview of the architecture of DASCOSA-DB.

C.3 Overview of DASCOSA-DB

In this section we give an overview of 1) the architecture of DASCOSA-DB with par-
ticular emphasis on the its novel partial restart techniques, adaptive fragment man-
agement and distributed semantic caching, and 2) the implementation of the current
version of DASCOSA-DB. For more information about details of DASCOSA-DB
we refer to the project’s web page.1

C.3.1 Architecture

The global data model used in DASCOSA-DB is based on the relational model. A
table can be stored in its entirety on one site, or it can be horizontally fragmented
over a number of sites. In order to improve both performance as well as availability,
fragments can be replicated, i.e., fragments of a table can be stored on more than
one site.

In some approaches to P2P databases, every tuple is individually indexed in the
P2P system (typically using a DHT put operation). In the case of large amounts
of data and updates, and with queries more complex than single lookup operations,
such solutions are not scalable. In DASCOSA-DB, we instead use the DHT to index
data of larger granularity (fragments), i.e., the DHT can be considered as a highly
reliable and distributed catalog. The main task of the DHT-part of the system is to
provide a mapping between a table name and the sites storing the fragments of the
table. Information about local fragments is regularly published to the DHT.

1http://research.idi.ntnu.no/dascosa/

http://research.idi.ntnu.no/dascosa/

98 PAPER C

Figure C.2: Screenshot from the DASCOSA-DB system monitoring tool.

The overall architecture of DASCOSA-DB is illustrated in Fig. C.1. As can be
seen from the figure, DASCOSA-DB can be viewed as middleware on top of a DHT
and local database system.

Query processing is in DASCOSA-DB performed quite similarly to traditional
databases, where SQL is transformed into a distributed execution plan (i.e., query
operators annotated with the site where they are going to be executed). After
planning, query execution begins by transmitting the algebra tree from the initiator
site to the different sites involved. Choice of sites is based on location of fragments
and total reduction of communication cost.

C.3.2 Novel Features

We now give a brief description of 3 novel features of DASCOSA-DB: 1) partial query
restart, 2) dynamic fragment management, and 3) distributed semantic caching.

C.3. OVERVIEW OF DASCOSA-DB 99

 S
2

 S
3

C3 C
4

 S
10

I

 S
0

C1

 S
4

C
5

 S6

N(2) C2(2)

 S
1

N
(1)

C2(1)

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

2 3 4 6 8 9 10 12 13 14

TPC-H Query Number

R
es

ta
rt

 c
os

t

Figure C.3: Query and performance under churn. Replica j of fragment Ti is denoted
Ti(j).

Partial Restart

As mentioned above, the probability of failure during a query increases with the
number of sites involved in the query and with longer duration of queries and/or
higher churn rate (unavailable sites). Traditionally, only failure during update trans-
actions has been considered, and failure of queries has been handled by complete
query restart. While this is an appropriate technique for small and medium-sized
queries, it can be expensive for very large queries, and in some application areas
there can also be deadlines on results so that complete restart should be avoided.
While in some cases various checkpoint-restart techniques have been employed to
avoid complete restart of operations, these techniques have been geared towards up-
date/load operations, and in many cases implies that a query will be delayed until
the failed site is online again.

An alternative to local checkpointing and complete restart is a technique sup-
porting partial restart. In this case, unfinished subqueries from failed sites can
be resumed on new sites after failures, and utilizing partial results already pro-
duced before the failure (both results generated at non-failing sites as well as results
from failing sites that have already been communicated to non-failing sites). In
DASCOSA-DB we have integrated a new technique for partial restart that com-
pared to previous approaches like [11] 1) reduces query execution time compared to
complete restart, 2) incurs minimal extra network traffic during recovery from query
failure, 3) employs decentralized failure detection, 4) supports non-blocking opera-
tors, 5) handles recovery from multi-site failures, and 6) avoids duplicate tuples by
deterministic delivery of tuples from base relations and operators..

An example of partial restart is illustrated in Fig. C.3. To the left is illustrated
6 sites, each storing fragments of the customer and nation tables of the TPC-H
benchmark (all sites store fragments of customer, there is a replica of fragment 2 on
both site S1 and S5, and the single fragment of nation is stored on both site S1 and
S5). Assume then that the simple query
SELECT * FROM nation JOIN customer

is issued from site S10, resulting in the query tree in Fig. C.3 (site S1 was selected
for the join operator during planning to minimize network traffic as it has a frag-
ment of both involved tables). Then assume that site S1 fails sometime during the

100 PAPER C

21 3 54 6

A
cc
e
ss

 f
re
q
u
e
n
cy

Fragmentation attribute value

Site 1

Site 2

Figure C.4: Example access pattern, and desired fragmentation and allocation.

query. The failure is discovered by site S10 which select site S5 as replacement site.
The particular challenges that have been solved in our approach relates to failure
detection, selection of replacement site, and restart of the various relational algebra
operators. In Fig. C.3 is illustrated the restart cost for some selected TPC-H queries,
compare to complete restart. As can be shown, the cost of restart is considerably
reduced using partial restart.

Dynamic Fragment Management

Traditionally, table fragments in distributed database systems have been fragmented
and replicated based on fixed value ranges or rules defined by database administra-
tors. In DASCOSA-DB, fragments and replicas are created and migrated automat-
ically by the system based on the access pattern, aiming at keeping the amount of
accesses to remote sites as low as possible. The ranges of fragments are not fixed,
so that fragments can be split and coalesced automatically. In this way, the system
will be able to efficiently adapt to changing workloads.

An example of what we aim at with our approach is illustrated in Fig. C.4, where
the figure illustrates the access pattern to a database table from two sites. Site 1 has
a uniform distribution of accesses, while Site 2 has an access pattern with distinct
hot spots. In this case, a good fragmentation would be 6 fragments, one for each of
the hot spot areas and one for each of the areas between. A good allocation would
be the fragments of the hot spot areas (F1, F3, and F5) allocated to site 2, with the
other fragments (F2, F4, and F6) allocated to site 1. Using our approach this access
pattern will be detected, and fragmentation and allocation performed accordingly.
Note that if the access pattern changes later, this will be detected and fragments
reallocated in addition to possible repartitioning.

In DASCOSA-DB, access statistics is used to detect pattern. For each fragment,

C.3. OVERVIEW OF DASCOSA-DB 101

a set of histograms is maintained, and each histogram represents statistics about
accesses from one particular remote site. Each bucket in a histogram represents a
value subrange of the fragment, and contains an estimate of the number of accesses to
the actual interval the bucket covers. At regular times, the histograms are analyzed,
and it is determined through the use of cost functions whether the overall cost
would be lower if a fragment were located on another site. It can also be detected
if a subinterval of a fragment is heavily accessed from a remote site. In this case, it
can be decided that the fragment should be split into 3 fragments, and the fragment
containing the interval heavily accessed from the remote site is migrated to the
remote site. In order to avoid too many fragments, fragments which meets in the
value interval can be coalesced when they end up at the same site. I.e., a fragment
resulted from a split and then migrated might actually be coalesced with another
fragment when it is received at the remote site (whether this is performed or not
is also based on considerations of potential replicas of the fragments). Contents in
histograms are regularly expired, so that they only contain recent statistics and only
represent remote sites that have recently accessed the fragment.

It is important to note that our approach for fragment maintenance is different
from previous approaches (e.g., [9]) that are based on analyzing SQL queries, while in
our approach accesses at tuple level are considered. Also the possibility of managing
higher degree of dynamics as well as migration strategies distinguish our techniques
from previous approaches.

Distributed Semantic Caching

In semantic caching, results from selected queries as well as their query descriptions
are kept. These results can be applied to reuse results from previous queries, thus
reducing the total query cost. In large-scale distributed database systems, using
a central central server with complete knowledge of the system will be a serious
bottleneck and single point of failure. In DASCOSA-DB this problem is reduced by
distributing the caching knowledge over several sites. In addition, decisions about
what to cache and cache replacement is performed automatic and site-autonomous.

C.3.3 Implementation

The implementation of DASCOSA-DB has been performed in two steps: first, a
simple proof-of-concept prototype was developed [8]. The current version is a com-
pletely re-implemented version, and acts as a middleware on top of Apache Derby [4]
running as the local DBMS on each site. The catalog service for indexing tables is
implemented using the FreePastry DHT [5]. DASCOSA-DB is 100% Java, which
gives easy deployment, platform independence, and can also be embedded in other
software if desired.

In order to facilitate easy interactive access to the system as well as study configu-
ration, distribution of data, and query execution, we have implemented a monitoring
tool, cf. the screenshot in Fig. C.2. As can be seen in the figure, queries can be en-
tered and information about local tables as well as information about remote tables

102 PAPER C

(which is part of the responsibility of the site as participant in the DHT) can be
found. Both static statistics as well as per-query statistics can easily be viewed.

C.4 Demonstration

Our demonstration will illustrate both the general distributed database aspects of
DASCOSA-DB, as well as more novel aspects like partial restart. In the demon-
stration we will for convenience run a number of DASCOSA-DB-instances on one or
two machines. The demonstration will use a dataset generated by the TPC-H data
generator [12].

C.4.1 Overall and Distributed Queries

In this demonstration we will give an overview of DASCOSA and its basic features.
We will show how both simple and complex SQL queries are executed in the sys-
tem, and demonstrate how fragmentation and replication aspects are automatically
handled by the system.

C.4.2 Partial Restart

In this demonstration we will demonstrate how DASCOSA-DB work in the context
of failing sites during query execution. The effect of partial restart will be demon-
strated by queries not failing, queries failing and not employing partial restart (i.e.,
complete restart), and employing our partial restart approach. We will in this con-
text also show how the system automatically selects new sites that will complete the
work of failed sites, and how replication can make restart possible even when sites
storing base tables fail during a query.

C.4.3 Distributed Semantic Caching

In this demonstration we will show how DASCOSA-DB utilizes cached subqueries
in order to improve performance in the context of repeated queries or queries that
contains subqueries of previous queries.

C.5 Future Work

Although we now have a working prototype of a distributed database system, there
is no lack of remaining challenges. Improving query optimization in the context of
adaptive fragments and replication is an obvious goal. Another important issue in
our context is more automatic handling schema heterogeneity, where the plan is to
employ ontology-based methods. We also intend to study how equivalents of partial
restart and adaptive fragmentation can be employed in the context of XML data.

BIBLIOGRAPHY 103

Acknowledgments

The authors would like to thank other previous and current participants in the
DASCOSA project: Eirik Eide, Odin H. Standal, and João Rocha. Supported by
grant #176894/V30 from the Norwegian Research Council.

Bibliography

[1] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Design and implemen-
tation of Atlas P2P architecture. In Global Data Management, 2006.

[2] M. N. Alpdemir et al. OGSA-DQP: a service for distributed querying on the
Grid. In Proceedings of EDBT’2004, 2004.

[3] F. Chang et al. Bigtable: A distributed storage system for structured data. In
Proceedings of OSDI’2006, 2006.

[4] Apache Derby, http://db.apache.org/derby/.

[5] FreePastry, http://freepastry.org/.

[6] R. Huebsch et al. Querying the internet with PIER. In Proceedings of
VLDB’2003, 2003.

[7] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A P2P-based system
for distributed data sharing. In Proceedings of ICDE’2003, 2003.

[8] K. Nørv̊ag. DASCOSA: database support for computational science applica-
tions. In Proceedings of GLOBE’06, 2006.

[9] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman. Automating physical
database design in a parallel database. In Proceedings of SIGMOD’2002, 2002.

[10] P. Rodŕıguez-Gianolli et al. Data sharing in the Hyperion peer database system.
In Proceedings of VLDB’2005, 2005.

[11] J. Smith and P. Watson. Fault-tolerance in distributed query processing. In
Proceedings of IDEAS’2005, 2005.

[12] TPC-H, http://www.tpc.org/tpch/.

http://db.apache.org/derby/
http://freepastry.org/
http://www.tpc.org/tpch/

104 PAPER C

Paper D

DYFRAM: Dynamic
Fragmentation and Replica
Management in Distributed
Database Systems

Jon Olav Hauglid, Norvald H. Ryeng and Kjetil Nørv̊ag.
In Distributed and Parallel Databases 28(2–3), pages 157–185, 2010.

105

D.1. INTRODUCTION 107

Abstract

In distributed database systems, tables are frequently fragmented and replicated
over a number of sites in order to reduce network communication costs. How to
fragment, when to replicate and how to allocate the fragments to the sites are chal-
lenging problems that has previously been solved either by static fragmentation,
replication and allocation, or based on a priori query analysis. Many emerging ap-
plications of distributed database systems generate very dynamic workloads with
frequent changes in access patterns from different sites. In such contexts, continu-
ous refragmentation and reallocation can significantly improve performance. In this
paper we present DYFRAM, a decentralized approach for dynamic table fragmen-
tation and allocation in distributed database systems based on observation of the
access patterns of sites to tables. The approach performs fragmentation, replication,
and reallocation based on recent access history, aiming at maximizing the number
of local accesses compared to accesses from remote sites. We show through sim-
ulations and experiments on the DASCOSA distributed database system that the
approach significantly reduces communication costs for typical access patterns, thus
demonstrating the feasibility of our approach.

D.1 Introduction

There is an emerging need for efficient support of databases consisting of very large
amounts of data that are created and used by applications at different physical loca-
tions. Examples of application areas include telecom databases, scientific databases
on grids, distributed data warehouses, and large distributed enterprise databases.
In many of these application areas the delay from accessing a remote database is
still significant enough to make necessary the use of distributed databases employing
fragmentation and replication, a fact also evident recently by increased support for
distributed fragmented and replicated tables in commercial products like MySQL
Cluster.

In distributed databases, the communication costs can be reduced by partitioning
database tables horizontally into fragments, and allocating these fragments to the
sites where they are most frequently accessed. The aim is to make most data accesses
local, and avoid remote reads and writes. The read cost can be further reduced by
the replication of fragments when beneficial. Obviously, important challenges in
fragmentation and replication are how to fragment, when to replicate fragments, and
how to allocate the (replicated) fragments.

Previous work on data allocation has focused on (mostly static) fragmentation
based on analyzing queries. These techniques are only useful in contexts where
read queries dominate and where decisions can be made based on SQL-statement
analysis. Moreover, they also involve centralized computations based on collected
statistics from participating sites. However, in many application areas, workloads
are very dynamic with frequent changes in access patterns at different sites. One
common reason for this is that their data usage often consists of two separate phases:
a first phase where writing of data dominates (for instance during simulation when

108 PAPER D

results are written), and a subsequent second phase when a subset of the data,
for example results, is mostly read. The dynamism of the overall access pattern
is further increased by different instances of the applications executing in different
phases at different sites.

Because of dynamic workloads, static/manual fragmentation and replication may
not always be optimal. Instead, the fragment and replication management should
be dynamic and completely automatic, i.e., changing access patterns should result
in refragmentation and reallocation of fragments when beneficial, as well as in the
creation or removal of fragment replicas. In this paper, we present DYFRAM,
a decentralized approach for dynamic fragmentation and replica management in
distributed database systems, based on observation of access patterns of sites to
tables. Fragmentation and replication is performed based on recent access history,
aiming at maximizing the number of local accesses compared to accesses from remote
sites.

An example of what we aim at achieving with our approach is illustrated in
Fig. D.1. It illustrates the access pattern of a database table from two sites. Site
1 has a uniform distribution of accesses, while site 2 has an access pattern with
distinct hot spots. In this case, a good fragmentation would generate 6 fragments,
one for each of the hot spot areas and one for each of the intermediate areas. A good
allocation would be the fragments of the hot spot areas (F1, F3, and F5) allocated
to site 2, with the other fragments (F2, F4, and F6) allocated to site 1. As will
be shown later in the experimental evaluation, DYFRAM will detect this pattern,
split the table into appropriate fragments, and then allocate these fragments to
the appropriate sites. Whether some of the fragments should be replicated or not
depends on the read/write pattern. Note that if the access pattern changes later,
this will be detected and fragments reallocated as well as repartitioned if necessary.

The main contributions of this paper are 1) a low-cost algorithm for fragmenta-
tion decisions, making it possible to perform refragmentation based on the recent
workload, and 2) dynamic reallocation and replication of fragments in order to min-
imize total access cost in the system. The process is performed in a completely
decentralized manner, i.e., without a particular controlling or coordinating site. An
important aspect of our approach is the combination of the dynamic refragmentation,
reallocation, and replication into a unified process. To the best of our knowledge,
no previous work exists that perform this task dynamically during query execution
based on both reads and writes in a distributed setting. Our approach is also ap-
plicable in a parallel system, since one of our important contributions compared to
previous work is that the decisions can be taken without communication of statistics
or synchronization between sites.

The organization of the rest of this paper is as follows. In Section D.2 we give an
overview of related work. In Section D.3 we outline our system and fragment model
and state the problem tackled in this work. In Section D.4 we give an overview
of DYFRAM. In Section D.5 we describe how to manage replica access statistics.
In Section D.6 we describe in detail the dynamic fragmentation and replication
algorithm. In Section D.7 we evaluate the usefulness of our approach. Finally, in
Section D.8, we conclude the paper and outline issues for further work.

D.2. RELATED WORK 109

F2F1 F3 F5

Optimal fragmentation

F4 F6

A
cc

e
ss

 f
re

q
u

e
n

cy

Fragmentation attribute value

Site 1

Site 2

Figure D.1: Example access pattern, and desired fragmentation and allocation.

D.2 Related Work

The problem of fragmenting tables so that data is accessed locally has been studied
before. It is also related to some of the research in distributed file systems (see a
summary in [14]). One important difference between distributed file systems and
distributed database systems is the typical granularity of data under consideration
(files vs. tuples) and the need for a fragmentation attribute that can be used for
partitioning in distributed database systems.

Fragmentation is tightly coupled with fragment allocation. There are methods
that do only fragmentation [2, 24, 26, 33, 34] and methods that do only allocation
of predefined fragments [3, 4, 7, 10, 13, 20, 30]. Some methods also exist that
integrate both tasks [9, 11, 17, 19, 25, 27, 29]. Replication, however, is typically
done as a separate task [5, 8, 15, 21, 22, 32], although some methods, like ours, take
an integral view of fragmentation, allocation and replication [11, 27, 29]. Dynamic
replication algorithms [5, 15, 21, 22, 32] can optimize for different measures, but
we believe that refragmentation and reallocation must be considered as alternatives
to replication. In DYFRAM we choose among all these options when optimizing
for communication costs. Our replication scheme is somewhat similar to that of
DIBAS [11], but DYFRAM also allows remote reads and writes to the master replica,
whereas DIBAS always uses replication for reads and do not allow remote writes
to the master replica. This operation shipping is important when analyses [8] of
replication vs. remote reads and writes conclude that the replication costs in some
cases may be higher than the gain from local data access. A key difference between
DIBAS and DYFRAM is that DIBAS is a static method where replication is based on
offline analysis of database accesses, while DYFRAM is dynamic and does replication

110 PAPER D

online as the workload changes.

Another important categorization of fragmentation, allocation and replication
methods is whether they are static or dynamic. Static methods analyze and optimize
for an expected database workload. This workload is typically a set of database
queries gathered from the live system, but it could also include inserts and updates.
Some methods also use more particular information on the data in addition to the
query set [26]. This information has to be provided by the user, and is not available
in a fully automated system. A form of static method is the design advisor [34]
which suggests possible actions to a database administrator. The static methods
are used at major database reconfigurations. Some approaches, such as evolutionary
algorithms for fragment allocation [3, 10], lend themselves easily to the static setting.

Static methods look at a set of queries or operations. It can be argued that the
workload should be viewed as a sequence of operations, not as a set [1]. Dynamic
methods continuously monitor the database and adapt to the workload as it is at
the moment and are thus viewing a sequence of operations. Dynamic methods are
part of the trend towards fully automatic tuning [31], which has become a popular
research direction. Recently, work has appeared aiming at integrating vertical and
horizontal partitioning while also taking other physical design features like indices
and materialized views into consideration [2]. Adaptive indexing [1, 6] aims to create
indices dynamically when the costs can be amortized over a long sequence of read
operations, and to drop them if there is a long sequence of write operations that
would suffer from having to update both base tables and indices. Our work is on
tables and table fragments, but shares the idea of amortizing costs over the expected
sequence of operations. In adaptive data placement, the focus has either been on
load balancing by data balancing [9, 17], or on query analysis [19]. In our algorithms,
we seek to place data on the sites where they are being used (by reads or writes),
not to balance the load.

Using our method, fragments are automatically split, coalesced, reallocated and
replicated to fit the current workload using fragment access statistics as a basis for
fragment adjustment decisions. When the workload changes, our method adjusts
quickly to the new situation, without waiting for human intervention or major re-
configuration moments. Closest to our approach may be the work of Brunstrom et
al. [7], which studied dynamic data allocation in a system with changing workloads.
Their approach is based on pre-defined fragments that are periodically considered
for reallocation based on the number of accesses to each fragment. In our work,
there are no pre-defined fragments. In addition to reallocating, fragments can be
split and coalesced on the fly. Our system constantly monitors access statistics to
quickly respond to emerging trends and patterns.

A third aspect is how the methods deal with distribution. The method can either
be centralized, which means that a central site gathers information and decides on
the fragmentation, allocation or replication, or it can be decentralized, delegating
the decisions to each site. Some methods use a weak form of decentralization where
sites are organized in groups, and each group chooses a coordinator site that is
charged with making decisions for the whole group [15, 21].

Among the decentralized systems, we find replication schemes for mobile ad hoc

D.3. PRELIMINARIES 111

networks (see [23] for an overview). However, these approaches do not consider table
fragmentation and in general do replication decisions on a more coarse granularity,
e.g., files.

In DYFRAM, fragmentation, allocation and replication decisions are fully de-
centralized. Each site decides over its own fragments, and decisions are made on
the fly based on current operations and recent history of local reads and writes.
Contrary to much of the work on parallel database systems, our approach has each
site as an entry point for operations. This means that no single site has the full
overview of the workload. Instead of connecting to the query processor and reading
the WHERE-part of queries, we rely on local access statistics.

Mariposa [27, 28] is a notable exception to the traditional, manually fragmented
systems. It provides refragmentation, reallocation and replication based on a bidding
protocol. The difference from our work is chiefly in the decision-making process. A
Mariposa site will sell its data to the highest bidder in a bidding process where sites
may buy data to execute queries locally or pay less to access it remotely with larger
access times, optimizing for queries that have the budget to buy the most data. A
DYFRAM site will split off, reallocate or replicate a fragment if it optimizes access
to this fragment, seen from the fragment’s viewpoint. This is performed also during
query execution, not only as part of query planning, as is the case in Mariposa.

A summary and feature comparison of our method and related fragmentation,
allocation and replication methods is given in Table D.1. We show which features
are provided by each method and whether it is a dynamic method that adapts to the
workload or a static method that never updates its decision. The methods are also
categorized according to the where the decisions to fragment, allocate and replicate
are made. This can be done either centralized to a single site which has the necessary
information about the other sites, or decentralized.

D.3 Preliminaries

In this section we provide the context for the rest of the paper. We introduce symbols
to be used throughout the paper, which are shown in Table D.2.

D.3.1 System Model

The system is assumed to consist of a number of sites Si, i = 1 . . . n, and we assume
that sites have equal computing capabilities and communication capacities. Each
site runs a DBMS, and a site can access local data and take part in the execution of
distributed queries, i.e., the local DBMSs together constitute a distributed database
system. The distribution aspects can be supported directly by the local DBMS or
can be provided through middleware.

Metadata management, including information on fragmentation and where repli-
cas are stored, is performed through a common catalog service. This catalog service
can be realized in a number of ways, for example in our prototype system we use a
distributed hash table where all sites participate [16].

112 PAPER D

Table D.1: Summary of related fragmentation, allocation and replication methods.

F
ra

gm
en

ta
ti

on

A
ll
o
ca

ti
on

R
ep

li
ca

ti
on

D
y
n
am

ic

S
ta

ti
c

C
en

tr
al

iz
ed

D
ec

en
tr

al
iz

ed

DYFRAM � � � � �
Agrawal et al. [2] � � �
Ahmad et al. [3] � � �
Apers [4] � � �
Bonvin et al. [5] � � �
Brunstrom et al. [7] � � �
Ciciani et al. [8] � � �
Copeland et al. [9] � � � �
Corcoran and Hale [10] � � �
Didriksen and Galindo-Legaria [11] � � � � �
Furtado [13] � � �
Hara and Madria [15] � � �
Hua and Lee [17] � � � �
Ivanova et al. [19] � � � �
Menon [20] � � �
Mondal et al. [21] � � �
Mondal et al. [22] � � �
Rao et al. [24] � � �
Saccà and Wiederhold [25] � � � �
Shin and Irani [26] � � �
Sidell et al. [27] � � � � �
Tamhankar and Ram [29] � � � � �
Ulus and Uysal [30] � � �
Wolfson and Jajodia [32] � � �
Wong and Katz [33] � � �
Zilio et al. [34] � � �

D.3. PRELIMINARIES 113

Our approach assumes that data can be represented in the (object-)relational
data model, i.e., tuples ti being part of a table T . A table can be stored in its
entirety on one site, or it can be horizontally fragmented over a number of sites.
Fragment i of table T is denoted Fi.

In order to improve performance as well as availability, fragments can be repli-
cated, i.e., a fragment can be stored on more than one site. We require that repli-
cation is master-copy based, i.e., all updates to a fragment are performed to the
master-copy, and afterward propagated to the replicas. If a master replica gets
refragmented, other replicas must be notified so they can be refragmented as well.

D.3.2 Fragment Model

Fragmentation is based on one attribute value having a domain D, and each frag-
ment covering an interval of the domain of the attribute, which we call fragment
value domain (FVD). We denote the fragment value domain for a fragment Fi as
FVD(Fi) = Fi[mini,maxi]. Note that the FVD does not imply anything about what
values that actually exist in a fragment. It only states that if there is a tuple in the
global table with value v in the fragmentation attribute, then this tuple will be in
the fragment with the FVD that covers v. We define two fragments Fi and Fj to be
adjacent if their FVD meets, i.e.:

adj(Fi, Fj)⇒ maxi = minj ∨maxj = mini

When a table is first created, it consists of one fragment covering the whole do-
main of the fragmentation attribute value, i.e., F0[Dmin, Dmax], or the table consists
of a number of fragments F1, . . . , Fn where ∪ni=1FVD(Fi) = [Dmin, Dmax]. A frag-
ment Fold can subsequently be split into two or more fragments F1, . . . , Fn. In this
case, the following holds true:

∪ni=1Fi = Fold

∀Fi, Fj ∈ {F1, . . . , Fn}Fi 6= Fj ⇒ Fi ∩ Fj = ∅

In other words, the new fragments together cover the same FVD as the original
fragment, and they are non-overlapping. Two or more adjacent fragments F1, . . . , Fn

can also be coalesced into a new fragment if the new fragment covers the same FVD
as the previous fragments covered together:

Fnew = ∪ni=1Fi

∀Fi ∈ {F1, . . . , Fn}, ∃(Fj ∈ {F1, . . . , Fn}) : adj(Fi, Fj)

Consider a distributed database system consisting of a number of sites Si, i =
1 . . . n and a global table T . At any time the table T has a certain fragmentation, e.g.,
F = {S0(F0, F3), S3(F1, F2)}. Note that not all sites have been allocated fragments,
and that there might be replicas of fragments created based on the read pattern. In
this case, we distinguish between the master replica Rm where the updates will be
applied, and the read replicas Rr

i . Using a master-copy protocol the read replicas
Rr

i will receive updates after they have been applied to the master replica Rm.

114 PAPER D

Table D.2: Symbols.

Symbol Description

Si Site
ti Tuple
T Table T
Fi Fragment i of table T
Ri Replica i
Rm Master replica
Fi[min,max] Fragment value domain
F Fragmentation
C Cost
Ai Tuple access
REj Refragmentation

D.3.3 Problem Definition

During operation, tuples are accessed as part of read or write operations A. If the
fragment where a tuple belongs (based on the value of the fragmentation attribute)
is stored on the same site as the site Sa performing the read access AR, it is a local
read access and the cost is C(AR) = CL. On the other hand, if the fragment is
stored on a remote site, a remote read access has to be performed, which has a cost
of C(AR) = CR.

In the case of a write access, the cost also depends on whether the fragment to
which the tuple belongs is replicated or not. The basic write cost of a tuple belonging
to a master replica that is stored on the same site as the site Sa performing the write
access is C(AW) = CL. If the master replica is stored on a remote site, a remote
write access has to be performed, which has a cost of C(AW) = CW . In addition,
if the fragment is replicated, the write will incur updates to the read replicas, i.e.,
C(AU) = rCW where r is the number of read replicas.

In this paper we focus on reducing the communication costs, and therefore as-
sume that CL = 0. Note, however, that it is trivial to extend our approach by
including local processing cost.

If we consider the accesses in the system as a sequence of n operations at discrete
time instants, the result is a sequence of accesses [A1, ..., An]. The total access cost
is
∑

iC(Ai). The access cost of a tuple at a particular time instant depends on the
fragmentation F .

Refragmentation and reallocation of replicas of fragments can be performed at
any time. Given a computationally cheap algorithm for determining fragmentation
and allocation, the main cost of refragmentation and reallocation is the migration
or copying of fragments from one site to another. We denote the cost of one refrag-
mentation or reallocation as C(REj) (this includes any regeneration of indices after
migration), and the cost of all refragmentations and reallocations as

∑
j C(REj).

The combined cost of access, refragmentations and reallocations is thus Ctotal =

D.4. OVERVIEW OF DYFRAM 115

Site 0

Local DB

access

statistics

Local DB

Fragmentation

and replica

management

algorithms

Create/delete

replica?

Split fragment?

Local

accesses

Site 1

Site 2

Site 3

Site n

Remote

accesses

Figure D.2: Dynamic fragmentation and allocation.

∑
iC(Ai) +

∑
j C(REj). Note that the access, refragmentation and reallocation

operations are interleaved. The aim of our approach is to minimize the cost Ctotal.

D.4 Overview of DYFRAM

This section describes our approach to dynamically fragment tables, and replicate
those fragments on different sites in order to improve locality of table accesses and
thus reduce communication costs. Our approach has two main components: 1) de-
tecting replica access patterns, and based on these statistics to 2) decide on refrag-
mentation and reallocation. The approach is illustrated in Fig. D.2.

Each site makes decisions to split, migrate and/or replicate independently of
other sites. This makes it possible to use our approach without communication
overhead, changing the network protocol or even using it on all sites in the system.

In order to make informed decisions about useful fragmentation and replica
changes, future accesses have to be predicted. As with most online algorithms, pre-
dicting the future is based on knowledge of the past. In our approach, this means
detecting replica access patterns, i.e., which sites are accessing which parts of which
replica. This is performed by recording replica accesses in order to discover access
patterns. Recording of accesses is performed continuously. Old data is periodically
discarded so that statistics only include recent accesses. In this way, the system
can adapt to changes in access patterns. Statistics are stored using histograms, as
described in Section D.5.

Given the available statistics, our algorithm examines accesses for each replica
and evaluates possible refragmentations and reallocations based on recent history.
The algorithm runs at given intervals, individually for each replica. Since decisions
are made independently of other sites, decisions are made based on the information

116 PAPER D

available at that site. With master-copy based replication, all writes are made to
the master replica before read replicas are updated. Therefore, write statistics are
available at all sites with a replica of a given fragment. On the other hand, reads are
only logged at the site where the accessed replica is located. This means that read
statistics are spread throughout the system. In order to detect if a specific site has
a read pattern that indicates that it should be given a replica, we require a site to
read from a specific replica so that this site’s read pattern is not distributed among
several replicas.

With all sites with replicas of a given fragment acting independently, we have
to make sure that decisions taken are not in conflict with each other. To achieve
this, we handle the master replica and read replicas differently. The site with the
master replica can: 1) split the fragment, 2) transfer the master status to a different
replica, and 3) create a new replica. Sites with read replicas can: 1) create a new
replica, and 2) delete its own replica.

These decisions are made by the algorithm by using cost functions that estimate
the difference in future communication costs between a given replica change and
keeping it as is. Details are presented in Section D.6.

Regarding data consistency and concurrency control, this can be treated as in ex-
isting systems employing fragmentation and replication and is therefore not outlined
here. In our DASCOSA-DB distributed database system [16], locking in combina-
tion with the system catalog (DHT-based) is used, however more complex protocols
can also be used in order to increase concurrency (this is not specific to DYFRAM).

D.5 Replica Access Statistics

Recording of replica accesses is performed at the tuple level. The access data consists
of (S, v, a) tuples, where S is the site from which the operation came, v is the value of
the fragmentation attribute and a is the access type (read or write). In cases where
recording every access can be costly (the overhead is discussed later), it is possible
to instead record a sample of accesses — trading accuracy for reduced overhead.

The data structure used to store access statistics is of great importance to our
approach. It should have the following properties:

• Must hold enough information to capture read and write patterns.

• Efficient handling of updates as they will be frequent.

• Memory efficient - storage requirements should not depend on fragment size
or number of accesses.

• Must be able to handle any v values, because it will not be known beforehand
which ranges are actually used.

• Must be able to effortlessly remove old access history in order to only keep
recent history.

D.5. REPLICA ACCESS STATISTICS 117

Table D.3: Histogram symbols.

Symbol Description

Hi Histogram
bk Histogram bucket number
Ri[bk] Number of reads in bucket
Wi[bk] Number of writes in bucket
W Bucket width
MAX B Maximum number of buckets
ZW Factor used when resizing buckets

Since our purpose for recording accesses is to detect access patterns in order
to support fragmentation decisions, we are interested in knowing how much any
given site has accessed different parts of the fragment. We store access statistics
in histograms. Every site has a set of histograms for each fragment it has a local
replica of. These histograms must be small enough to be kept in main memory for
efficient processing.

In the following, we present the design of our access statistics histograms as well
as algorithms for the different histogram operations.

D.5.1 Histogram Design

Histograms have been used for a long time to approximate data distribution in
databases [18]. Most of these have been static histograms constructed once and
then left unchanged. In our case, data to be represented by the histograms arrive
continuously. Static histograms would therefore soon be out of date and constant
construction of new histograms would have prohibitive cost.

Another class of histograms is dynamic histograms [12, 18], that are maintained
incrementally and therefore better suited for our approach. Most histograms de-
scribed in the literature are equi-depth histograms, since these capture distributions
better than equi-width histograms for the same number of buckets [18].

For our approach we chose to use equi-width histograms. This choice was made
in order to improve the performance of histogram operations, since equi-width his-
tograms are by design simpler to use and to access than equi-depth histograms.
This is because all buckets have the same width, and finding the correct bucket
for a given value is therefore a very simple computation. As will become apparent
when we describe histogram updates and retrievals in detail below, it also simplifies
computing histogram range counts when we use two different histogram sets in or-
der to store only the recent history. The obvious disadvantage of using equi-width
histograms is that we have to use more buckets in order to capture access pat-
terns with the same accuracy as equi-depth histograms. However, the significantly
reduced computational cost makes this an acceptable trade-off.

Histogram-related symbols used in the following discussion are summarized in
Table D.3. Each bucket in a histogram Hi has a bucket number bk and contains

118 PAPER D

two values: the read count Ri[bk] and the write count Wi[bk]. We use equi-width
histograms with bucket width W and limit bucket value ranges to start and end on
multiples of W . The value range of a bucket is then [bk ·W, (bk + 1) ·W).

Histograms only maintain statistics for values that are actually accessed, i.e.,
they do not cover the whole FVD. This saves space by not storing empty buckets,
which is useful since we lack a priori knowledge about fragment attribute values.
Buckets are therefore stored as (bk, Ri[bk],Wi[bk]) triplets hashed on bk for fast access.

In order to limit memory usage, there is a maximum number of stored buckets,
MAX B. If a histogram update brings the number of stored buckets above MAX B,
the bucket width is scaled up by a factor ZW . Similarly, bucket width is decreased
by the same factor if it can be done without resulting in more than MAX B buckets.
This makes sure we have as many buckets as possible given memory limitations, as
this better captures the replica access history.

In order to store only the most recent history, we use two sets of histograms:
the old and the current set. All operations are recorded in the current set. Every
time the evaluation algorithms have been run, the old set is cleared and the sets
swapped. This means that the current set holds operations recorded since the last
time the algorithm was run, while the old set holds operations recorded between
the two last runs. For calculations, the algorithms uses both sets. This is made
simple by the fact that we always use the same bucket width for both sets and that
bucket value range is a function of bucket number and width. Adding histograms is
therefore performed by adding corresponding bucket values. We denote the current
histogram storing accesses from site Si to replica Rj of fragment Fj as Hcur[Si, Rj],
while the old histogram is Hold[Si, Rj]

D.5.2 Histogram Operations

This section presents algorithms for the different histogram operations.

Histogram Update

Every time a tuple in one of the local replicas is accessed, the corresponding his-
togram is updated. This is described in Algorithm 1. Although not included in the
algorithms (to improve clarity), we normalize values before they are entered into the
histogram. Assume a replica Ri of fragment Fi with FVD(Fi) = Fi[mini,maxi] and
a tuple tj with fragmentation attribute value vj. We then record the value vj−mini.
This means that histogram bucket numbers start at 0 regardless of the FVD.

Since this operation is performed very often, it is important that it is efficient.
As described above, the value range of bucket number bk is [bk ·W, (bk + 1) ·W).
We therefore need to determine bk for a given fragmentation attribute value vj and
then increment its bucket value. The formula is bk = vj/W , which means that
the computational cost is O(1). Also, since histograms are kept in main memory,
histogram updates do not incur any disk accesses.

If no bucket already exists for bucket number bk, a new bucket must be con-
structed. This is the only time where the histogram gets more buckets, so after the
update, the current number of buckets is checked against the upper bound MAX B

D.5. REPLICA ACCESS STATISTICS 119

Algorithm 1 Site Si reads tuple tj in replica Rj with fragmentation attribute value
vj. (Similar for writes.)

histogramUpdate(Si, Rj, vj):

Hi ← Hcur[Si, Rj]
bk ← vj/W
Ri[bk]← Ri[bk] + 1
if numberOfBuckets > MAX B then

increaseBucketWidth(Rj)
end if

Algorithm 2 Increase bucket width W for histograms for replica R by factor ZW .

increaseBucketWidth(R):

for all Si ∈ getActiveSites(R) do
for all Hi ∈ Hcur[Si, R] ∪Hold[Si, R] do
H ′i ← ∅
for all bk ∈ Hi do
b′k = bk/ZW

R′i[b
′
k] = R′i[b

′
k] +Ri[bk]

W ′
i [b
′
k] = W ′

i [b
′
k] +Wi[bk]

end for
Hi ← H ′i

end for
end for

and bucket width is increased (and thus the number of buckets decreased) if we now
have too many buckets.

Histogram Bucket Resizing

If at any time a tuple access occurs outside the range covered by the current buckets,
a new bucket is made. If the upper bound of buckets, MAX B, is reached, the bucket
width W is increased and the histograms reorganized. We do this by multiplying
W with a scaling factor ZW . This factor is an integer such that the contents of
new buckets are the sum of a number of old buckets. Increasing bucket width of
course reduces the histogram accuracy, but it helps reduce both memory usage and
processing overhead. Since we only store recent history, we may reach a point where
the set of buckets in use becomes very small. If we can reduce bucket width to W/ZW

and still have fewer buckets than the upper bound, the histogram is reorganized by
splitting each bucket into ZW new buckets. This reorganization assumes uniform
distribution of values inside each bucket, which is a common assumption [18]. Details
are shown in Algorithm 2. Note that this is performed for both the current and old
set of histograms in order to make them have the same bucket width, as this makes
subsequent histogram accesses efficient. The function getActiveSites(R) returns the
set of all sites that have accessed replica R.

Similarly, if we at any point use only a very low number of buckets, the bucket

120 PAPER D

widths can be decreased in order to make access statistics more accurate. This is
described in Algorithm 3. Of special note is the expression max(1, Ri[bk]/ZW). If a
large bucket to be divided into smaller buckets contain only a few tuples, rounding
can make Ri[bk]/ZW = 0, which would in effect remove the bucket (since only
buckets containing tuples are stored). To prevent loss of information in this case,
new buckets contain a minimum of 1 tuple.

Histogram Range Count

When retrieving access statistics from histograms, i.e., contents of buckets within a
range, both current and old histograms are used. Since both histograms have the
same bucket width and corresponding bucket numbers, retrieval is a straight sum-
mation of range counts from the two histograms and therefore very fast to perform.
In order to count number of reads or writes from site S to replica R stored in buck-
ets numbered [bmin, bmax], the functions histogramReadCount(S,R, bmin, bmax) and
histogramWriteCount(S, R, bmin, bmax) are used. In order to get the sum of range
counts for writes from all sites, the function histogramWriteCountAll(R, bmin, bmax)
is used.

Histogram Reorganization

As stated earlier, it is important that only the recent access history is used for
replica evaluations in order to make it possible to adapt to changes in access pat-
terns. This is achieved by having two sets of histograms, one current histogram Hcur

that is maintained and one Hold which contains statistics from the previous period.
Periodically the current Hold is replaced with the current contents of Hcur, and then
Hcur is emptied and subsequently used for new statistics.

The only time buckets are removed from the histogram is during reorganization.
It is therefore the only time that the number of buckets in the histogram can get
so low that we can decrease the bucket width (thus creating more buckets) and
still stay below the bucket number maximum MAX B. This will be performed using
decreaseBucketWidth(R) described in Algorithm 3. The function performing the
reorganization is in the following denoted histogramReorganize(R).

D.5.3 Histogram Memory Requirements

It is important that the size of the histograms is small so that enough main memory
is available for more efficient query processing and buffering. For every replica a
site has, it must store two histograms for each active site accessing the fragment.
Every bucket is stored as a (bk, Ri[bk],Wi[bk]) triplet (note that sparse histograms
are used, so that only buckets actually accessed are stored). Assuming b buckets and
c active sites, the memory requirement for each replica is 2 · c · b · sizeOf(bucket) or
O(b ·c). Since b has an upper bound MAX B, memory consumption does not depend
on fragment size or number of accesses, only on the number of active sites.

D.6. FRAGMENTATION AND REPLICATION 121

Algorithm 3 Decrease bucket width W for histograms for replica R by factor ZW .

decreaseBucketWidth(R):

for all Si ∈ getActiveSites(R) do
for all Hi ∈ Hcur[Si, R] ∪Hold[Si, R] do
H ′i ← ∅
for all bk ∈ Hi do

for b′k = 0 to ZW do
R′i[bk · ZW + b′k] = max(1, Ri[bk]/ZW)
W ′

i [bk · ZW + b′k] = max(1,Wi[bk]/ZW)
end for

end for
Hi ← H ′i

end for
end for

D.6 Fragmentation and Replication

Our approach calls for three different algorithms. One for creating new replicas, one
for deleting replicas and one for splitting and coalescing fragments. These will be
described in the following sections.

These algorithms are designed to work together to dynamically manage fragmen-
tation and replication of those fragments such that the overall communication costs
are minimized. The communication cost consists of four parts: 1) remote writes,
2) remote reads, 3) updates of read replicas, and 4) migration of replicas (either in
itself or as part of creation of a new replica).

Common for all three algorithms is that they seek to estimate the benefit from a
given action based on available usage statistics. This is implemented using three cost
functions, one for each algorithm. These functions are described in Section D.6.4.

D.6.1 Creating Replicas

This algorithm is run at regular intervals for each fragment of which a given site has
a replica. The aim is to identify sites that, based on recent usage statistics, should
be assigned a replica. If any such sites are found, replicas are sent to them, and
the site holding the master replica is notified so that the new replicas can receive
updates.

The algorithm for identifying and creating new replicas of replica R is shown in
Algorithm 4. In the algorithm, a cost function (to be described in Section D.6.4)
is applied for each remote site Sr that has read from to R. The result is a utility
value that estimates the communication cost reduction achieved by creating a new
replica at site Sr. All sites with positive utility value receive a replica. If no site has
a positive utility, no change is made.

Note that, if desired, the number of replicas in the system can be constrained by
having a limit on the number of replicas. This might be beneficial in the the context
of massive read access to various sites.

122 PAPER D

Algorithm 4 Evaluate replica R for any possible new replicas. R is located on site
Sl.

createReplica(R):

bmin ← min(Hcur[Sl, R]) {First bucket used}
bmax ← max(Hcur[Sl, R]) {Last bucket used}
cardw ← histogramWriteCountAll(R, bmin, bmax)
for all Sr ∈ getActiveSites(R) do

card rr ← histogramReadCount(Sr, R, bmin, bmax)
utility ← wBE · cardrr − cardw − wFS · card(R)
if utility > 0 then

copyReplica(R, Sr) {Also notifies master replica}
end if

end for

Algorithm 5 Evaluate local replica R and decide if it should be deleted. R is
located on site Sl.

deleteReplica(R):

bmin ← min(Hcur[Sl, R]) {First bucket used}
bmax ← max(Hcur[Sl, R]) {Last bucket used}
cardw ← histogramWriteCountAll(R, bmin, bmax)
card lr ← histogramReadCount(Sl, R, bmin, bmax)
utility ← wBE · cardw − card lr
if utility > 0 then

deleteLocalReplica(R) {Also notifies master replica}
end if

D.6.2 Deleting Replicas

Since each fragment must have a master replica, only read replicas are considered
for deletion. This algorithm evaluates all read replicas a given site has, in order to
detect if the overall communication cost of the system would be lower if the replica
were deleted. The details are shown in Algorithm 5. Again, a cost function is used
to evaluate each read replica R. Any replica with a positive utility is deleted after
the site with the master replica has been notified.

D.6.3 Splitting Fragments

The aim of the fragmentation algorithm is to identify parts of a table fragment that,
based on recent history, should be extracted to form a new fragment and migrated to
a different site in order to reduce communication costs (denoted extract+migrate).
To avoid different fragmentation decisions made simultaneously at sites with replicas
of the same fragment, this algorithm is only applied to master replicas.

More formally, assume a fragmentation Fold which includes a fragment Fi with
FVD(Fi) = Fi[mini,maxi] having master replica Rm

i allocated to site Si. Find a
set of fragments Fm, ..., Fn such that ∪Fm, ..., Fn = Fi with Fnew ∈ Fm, ..., Fn and

D.6. FRAGMENTATION AND REPLICATION 123

Algorithm 6 Evaluate fragment F for any possible extract+migrates. Rm is the
master replica of F and is currently located on site Sl

refragment(F,Rm):

fragmentations ← ∅
for all Sr ∈ getActiveSites(Rm) do

for all bmin ∈ Hcur[Sr, R
m], bmax ∈ Hcur[Sr, R

m] do
card rw ← histogramWriteCount(Sr, R

m, bmin, bmax)
card lw ← histogramWriteCount(Sl, R

m, bmin, bmax)
utility ← wBE · card rw − card lw − wFS · card(F)
if utility > 0 and (max−min+ 1) > fragmentMinSize then

fragmentations ← fragmentations ∪ (Sr,min,max, utility)
end if

end for
end for
sort(fragmentations) {Sort on utility value}
removeIncompatible(fragmentations)
for all (Sr,min,max, utility) ∈ fragmentations do
F1, Fnew, F2 ← extractNewFragment(F,min,max)
migrateFragment(Fnew, Sr) {Migrates master replica}
updateReplicas()

end for
coalesceLocalFragments()
histogramReorganize(Rm)

master replica Rm
new allocated to site Sk 6= Si such that the communication cost

Ctotal =
∑
C(Ai) +

∑
C(REj) is lower than for Fold.

The result of each execution can be either: 1) do nothing, i.e, the fragment is
as it should be, 2) migrate the whole master replica, or 3) extract a new fragment
Fnew with FVD(Fnew) = Fnew[minnew, maxnew] and migrate its new master replica
to site Sk. A decision to migrate the whole master replica can be seen as a special
case of extract+migrate. In the discussion below, we therefore focus on how to
find appropriate values for minnew and maxnew. If a refragmentation decision is
made, all sites with read replicas are notified so that they can perform the same
refragmentation. This is necessary to enforce that all replicas of a given fragment
are equal.

The algorithm for evaluating and refragmenting a given fragment F is presented
in Algorithm 6. It evaluates all new possible fragments Fnew and possible recipient
sites Sr using a cost function. The result is a utility value that estimates the commu-
nication cost reduction from extracting Fnew and migrating its master replica to Sr.
Afterward, all compatible fragmentations with positive utility values are performed.
Two fragmentations are compatible if their extracted fragments do not overlap. In
case of two incompatible fragmentations, the fragmentation with the highest util-
ity value is chosen. Note that no fragments with FVD less than fragmentMinSize
will be extracted in order to prevent refragmentation from resulting in an excessive

124 PAPER D

Bk[1] Bk[2] Bk[3] Bk[4]
Histogram
buckets

Possible
value

ranges

Figure D.3: Histogram with four buckets and corresponding value ranges.

number of fragments.

Given a fragment Fi with FVD(Fi) = Fi[mini,maxi], the size of the fragment
value domain is then width = maxi−mini +1. Assume an extraction of a new frag-
ment Fnew such that FVD(Fnew) = Fnew[minnew, maxnew]∈FVD(Fi). If FVD(Fnew)
is assumed to be non-empty, i.e., maxnew > minnew, then width − 1 possible values
for minnew and maxnew are possible. This means that O(width2) possible fragments
Fnew will have to be evaluated. This could easily lead to a prohibitively large number
of Fnew to consider, so some heuristic is required.

We reduce the number of possible fragments to consider based on the following
observation: The basis for the evaluation algorithm is the access histograms de-
scribed above. These histograms represent an approximation since details are lim-
ited to the histogram buckets. It is therefore only meaningful to consider FVD(Fnew)
with start/end-points at histogram bucket boundaries.

With b histogram buckets and b � width as well as b having an upper bound,
processing becomes feasible. The number of value ranges to consider is b(b+ 1)/2 =
O(b2). An example of a histogram with four buckets and 10 possible FVD(Fnew) is
shown in Fig. D.3.

After the algorithm has completed, any adjacent fragments that now has master
replicas on the same site are coalesced (denoted coalesceLocalFragments() in the
algorithm). This helps keeping the number of fragments low. If two fragments are
coalesced, the read replicas of those fragments must be updated as well. Some sites
will likely have read replicas of only one of the fragments. These sites must either
delete their replicas or get a replica of the fragment they are missing so coalescing
can be performed on all replicas. Our heuristic is that we send the fragment which
requires least communication cost to the sites missing that fragment. The remaining
sites delete their local replicas.

Finally, old access statistics are removed from any remaining local master replicas
using function histogramReorganize, as described in Section D.5.2.

D.6. FRAGMENTATION AND REPLICATION 125

D.6.4 Cost Functions

The core of the algorithms are the cost functions. The functions estimate the com-
munication cost difference (or utility) between taking a given action (create, delete,
split) and keeping the status quo. The basic assumption is that future accesses will
resemble recent history as recorded in the access statistics histograms.

From Section D.3.3 the communication cost Ctotal =
∑

iC(Ai)+
∑

j C(REj). Ac-
cesses can either be reads, writes or updates:

∑
iC(Ai) =

∑
k C(ARk)+

∑
l C(AWl)+∑

mC(AUm). The recent history for fragment F consists of a series of accesses
SA = [A1, ..., An]. Each access Ai comes from a site So. The accesses from a given
site So is SA(So) where SA(So) ⊂ SA. Since we measure communication cost, local
accesses have no cost, i.e., ∀Ai, Ai ∈ SA(Sl)⇒ C(Ai) = 0.
The basic form of the cost functions is as follow:

utility = benefit − cost (D.1)

Replica creation: The benefit of creating a new read replica on site Sr is
that reads from site Sr will become local operations and thus have no network
communication cost. The cost of creating a new replica is first that the new replica
will have to be updated whenever the master replica is written to. The second
part of the cost is the actual transfer of the replica to the new site. This gives the
following utility function:

utilityCreate = card(SR(Sr))− card(SU)− card(F) (D.2)

where card(SR(Sr)) is the number of reads from remote site Sr, card(SU) is the
number of replica updates and card(F) is the size of the fragment.

Replica deletion: When a read replica R at site Sl is deleted, the benefit is
that replica updates will no longer have to be transmitted to Sl. The cost is that
local reads from Sl to R will now become remote. Thus we get the following utility
function:

utilityDelete = card(SU)− card(SR(Sl)) (D.3)

Splitting fragments and migrating master replicas: As described earlier,
the algorithm handles splitting by using the cost function on all possible value ranges
for the fragment. Thus the aim of the cost function is limited to estimating when a
master replica R should be migrated from Sl to a remote site Sr. The only way a
migration of the master replica can affect the number of remote reads and updates in
the system, is if Sr already has a read replica. However, since Sl does not know the
usage statistics of any possible replica at Sr, we simplify the function by omitting
this possibility. The benefit of a migration of the master replica to Sr is therefore
that writes from Sr will become local operations. Similarly, the cost will be writes
from Sl. In addition we must consider the cost of migrating in itself. Our utility
function:

utilityMigrate = card(SW (Sr))− card(SW (Sl))− card(F) (D.4)

Cost function weights: While these equations are expressions of possible com-
munication cost savings from different actions, they cannot be used quite as they

126 PAPER D

are in an actual implementation. There are a couple of issues. First, SW , SR and
SU by design include only the recent history and cardinality values are therefore
dependent on how much history we include. On the other hand, card(F) is simply
the current number of tuples in the fragment and thus independent on history size.
We therefore scale card(F) by a cost function weight wFS. This weight will have
to be experimentally determined and optimal value will depend on how much the
usage history includes.

The second problem is stability. If we allow, e.g., migration when the number of
remote accesses is just a few more than the number of local accesses, we could get
an unstable situation where a fragment is migrated back and forth between sites.
This is something we want to prevent as migrations cause delays in table accesses
and indices may have to be recreated every time. To alleviate this problem, we scale
the benefit part of the cost functions by wBE ∈ [0..1]. For migrations, wBE = 0.5
means that there will have to be 50 % more remote accesses than local accesses for
migration to be considered, i.e., for the utility to be positive (disregarding fragment
size).

By including wFS and wBE we get the following cost functions:

utilityCreate = wBE · card(SR(Sr))− card(SU)− wFS · card(F) (D.5)

utilityDelete = wBE · card(SU)− card(SR(Sl)) (D.6)

utilityMigrate = wBE · card(SW (Sr))− card(SW (Sl))

−wFS · card(F) (D.7)

Different values for the two cost function weights are evaluated experimentally
in the Evaluation section below.

D.7 Evaluation

In this section we present an evaluation of our approach. We aim to investigate
different dynamic workloads and the communication cost savings our algorithms
can achieve. Ideally, we would have liked to do a comparative evaluation with
related work. However, to the best of our knowledge, no previous work exists that
do continuous dynamic refragmentation and replication based on reads and writes
in a distributed setting. Instead, we compare our results with a no-fragmentation
and an optimal fragmentation method (where applicable).

The evaluation has three parts. First we examine the results from running a
simulator on four workloads involving just two sites. These workloads have been de-
signed to highlight different aspects, such as fragmentation, replication and changing
access patterns. We have kept them as simple as possible to make it easier to analyze
the results qualitatively. For the second part of the evaluation, we do simulations
using two highly dynamic workloads involving more sites, providing a more real-
istic setting. The third part consists of experiments on an implementation in a
distributed database system.

D.7. EVALUATION 127

D.7.1 Experimental Setup

For the evaluation, we implemented a simulator which allows us to generate dis-
tributed workloads, i.e., simulate several sites all performing tuple reads and writes
with separate access patterns. In all presented simulation results, the fragmentation
and replication decision algorithms were run every 30 seconds. All simulations have
been run 100 times, and we present the average values. For each simulated site, the
following parameters can be adjusted:

• Fragmentation attribute value interval: minimum and maximum values for
the accesses from the site.

• Access distribution: either uniform or hot spot (10 % of the values get 90 %
of the accesses).

• Average rate of tuple accesses in number of accesses per minute. We use a
Poisson distribution to generate accesses according to the frequency rate.

• Access type: reads, writes or a combination of both.

Values for these parameters need not be constant, but can change at any point for
any site in the workload. In our simulations, we have used maximum histogram size
of MAX B = 100 buckets, and each table has one fragment with no read replicas
when a simulation starts. We also tested with 1000 buckets, but this provided
negligible benefits for our workloads.

Unlike most of the relevant previous work, our method tightly integrates frag-
mentation allocation and replication. Therefore, it does not make much sense com-
paring against techniques that only perform one of the tasks. Instead, we use the
following two fragmentations methods to act as baselines for comparison. The first
is a baseline where the table is not fragmented or replicated at all. The table consists
of a single fragment with its master replica permanently allocated to the site with
the largest total number of accesses. This is what would happen in a database sys-
tem that does not use fragmentation or replication (e.g., to simplify implementation
and configuration), at least given that workloads were completely predictable. Since
there is no replication, there are no communication costs from migrations either.

The second allocation method we compare against, is optimal fragmentation.
Here we assume full knowledge about future accesses. Each table is (at runtime)
fragmented and the fragments are migrated and/or replicated to the sites which
would minimize remote accesses.

It should be noted that both these fragment allocation alternatives assume ad-
vance knowledge about the fragmentation attribute value interval, distribution, fre-
quency and type of accesses, none of which are required for our dynamic approach.

D.7.2 Workloads Involving Two Sites

In this section, we present results from four workloads, each with two sites (S1, S2).
These two sites accessed 25000-50000 tuples each. Early testing showed that 25000

128 PAPER D

Table D.4: Two-site workloads.

Workload no. Access Distribution Rate Purpose

1 Write S1:Uniform,
S2:Hot spot

Low Detect hot spots

2, first half Write S1:Hot spot,
S2:Uniform

Low Detect distribution
change

2, second half Write S1:Uniform,
S2:Hot spot

Low

3 S1:Read,
S2:Write

Uniform S1:High,
S2:Low

Make read replica

4, first half S1:Read,
S2:Write

Uniform S1:High,
S2:Low

Change replica pat-
tern

4, second half S1:Write,
S2:Read

Uniform S1:Low,
S2:High

tuples was more than enough to reach a stable situation. Only two sites were used
for these workloads in order to make it easier to analyze the results. Each workload
was therefore designed with a specific purpose in mind.

The fragmentation attribute value intervals for the two sites were designed so
that they overlapped completely. Two rates were used, a high rate of 6000 accesses
per minute and a low rate of 3000 accesses per minute. For workload 1 and 3, the
workload was constant for both sites, while 2 and 4 switched workload parameters
halfway through. Workloads 2 and 4 serve as examples of dynamic workloads where
access patterns are not constant and predictable. The results from these workloads
should illustrate if our approach’s ability to adjust fragmentation and replication at
runtime result in communication cost savings. The four workloads are detailed in
Table D.4.

Workload 1: In this workload, one of the sites has 10 hot spots while the other
has uniform access distribution. Ideally, these 10 hot spots should be detected and
migrated while the remainder should be left on the uniform access site. This case
is similar to the one presented in Fig. D.1. Fig. D.4(a) shows results for workload 1
with different values for wBE and wFS. Communication costs for no-fragmentation
and optimal fragmentation are also shown.

For this workload, the majority of the communication cost comes from remote
writes, i.e. when the extract+migrate algorithm is very conservative on migrating
the hotspots from S1 to S2. High values of wFS cause the algorithm to overestimate
the cost of migration while low values of wBE cause the benefit to be undervalued.
This combination thus almost reduces to the no-fragmentation case. For lower values
of wFS and higher values of wBE, refragmentation decisions are made earlier and the
result is comparable to optimal fragmentation.

Workload 2: This is a dynamic version of workload 1, with the two sites switching

D.7. EVALUATION 129

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1

Communication cost (tuples)

w
B

E

w
F

S=
0.

25
w

F
S=

0.
50

w
F

S=
0.

75
w

F
S=

1.
00

N
oF

ra
g

O
pt

im
al

(a
)
T
w
o
-s
it
e
w
o
rk
lo
a
d
1
.

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1

Communication cost (tuples)

w
B

E

w
F

S=
0.

25
w

F
S=

0.
50

w
F

S=
0.

75
w

F
S=

1.
00

N
oF

ra
g

O
pt

im
al

(b
)
T
w
o
-s
it
e
w
o
rk
lo
a
d
2
.

 2
50

00

 3
00

00

 3
50

00

 4
00

00

 4
50

00

 5
00

00

 5
50

00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1

Communication cost (tuples)

w
B

E

w
F

S
=

0.
25

w
F

S=
0.

50
w

F
S=

0.
75

w
F

S=
1.

00
N

oF
ra

g
O

pt
im

al

(c
)
T
w
o
-s
it
e
w
o
rk
lo
a
d
3
.

 2
50

00

 3
00

00

 3
50

00

 4
00

00

 4
50

00

 5
00

00

 5
50

00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1
Communication cost (tuples)

w
B

E

w
F

S=
0.

25
w

F
S=

0.
50

w
F

S=
0.

75
w

F
S=

1.
00

N
oF

ra
g

O
pt

im
al

(d
)
T
w
o
-s
it
e
w
o
rk
lo
a
d
4
.

F
ig

u
re

D
.4

:
(a

)
R

es
u

lt
s

fr
om

tw
o-

si
te

w
or

k
lo

ad
1.

(b
)

R
es

u
lt

s
fr

om
tw

o-
si

te
w

or
k
lo

ad
2.

(c
)

R
es

u
lt

s
fr

om
tw

o-
si

te
w

or
k
lo

ad
3.

N
ot

e
th

at
N

oF
ra

g
an

d
O

p
ti

m
al

ar
e

eq
u

al
fo

r
th

is
w

or
k
lo

ad
,

at
25

00
0

tu
p
le

s.
(d

)
R

es
u
lt

s
fr

om
tw

o-
si

te
w

or
k
lo

ad
4.

130 PAPER D

access patterns halfway through. The simulation results for this workload are shown
in Fig. D.4(b).

Results here are similar to workload 1, but with an extra overhead from detecting
the access pattern change. This overhead is larger than for workload 1 simply
because at the time the workload changes, the recent history is filled with the old
workload and it takes a while for the new workload to dominate. The worst result
is again similar to no-fragmentation.

Workload 3: This workload has one site writing while the other site reads at
twice the rate. Ideally the site that writes should get the master replica, while the
other site gets a read replica. Results from workload 3 are shown in Fig. D.4(c).

The most important factor for the communication cost of this workload is whether
a read replica is created on S2. For low values of wBE, the benefit of such a replica
is undervalued and it is never created leading to poor results. Changes in wFS only
delay replica creation slightly and therefore has comparatively little influence. The
exception is where high wFS and low wBE together prevent any migrations from
happening, giving similar results to no-fragmentation. No-fragmentation does quite
well here as it allocates the fragment to the site with the highest number of accesses
which is also the optimal solution.

Workload 4: Similar to workload 3, except the two sites change behavior halfway
through the workload. What we would like to see is a deletion of the read replica,
migration of the master replica and a subsequent creation of a new read replica.
Results from workload 4 are shown in Fig. D.4(d).

The results are somewhat similar to workload 3. The largest difference is the
overhead from detecting the workload change (similar to that of workload 2). For
low values of wBE, remote reads are the dominant cost since no replica is created. For
higher values, a replica is created and remote updates dominates. No-fragmentation
is now much worse since it does not adjust to the change.

Detailed results for all four workloads with wBE = 0.9, wFS = 0.50 are shown in
Table D.5. This table lists the number of remote accesses, migrations, fragments
at the end of the run and the number of tuples transferred during migrations. The
communication cost is the sum of remote accesses and tuples transferred. The final
two columns shows the communication cost from the no-fragmentation and optimal
allocation methods. Average results for the four workloads using the same cost
function weight values are shown in Fig. D.5.

D.7.3 Workloads Involving Several Sites

This section presents the results from two workloads involving 20 active sites each
(i.e., the actual system can consist of a much larger number of sites, however only 20
sites simultaneously access the actual table during the simulation). The first of these
workloads is intended to resemble a distributed application which have separate read
and write phases, e.g., a grid application.

We have modeled the read phase as follows: A site uniformly accesses an random
interval that constitutes 10% of the table. Between 30.000 and 60.000 reads are
performed at an access rate of 2000 to 4000 reads a minute. Values for the interval,

D.7. EVALUATION 131

Table D.5: Detailed results, wBE = 0.9, wFS = 0.50.

Workl.
no.

Re.
writes

Re.
reads

Re.
updates

Migr. Frag. Tuples Comm.
cost

No
frag.

Optimal

1 6229 0 0 10 20 46 6275 25000 5000

2 11145 0 0 53 47 860 12005 25000 5000

3 984 3154 22476 2 1 1385 27999 25000 25000

4 4009 6374 30310 44 21 3173 43866 50000 25000

 0

 10000

 20000

 30000

 40000

 50000

No frag. Dynamic Optimal

C
om

m
un

ic
at

io
n

co
st

 (
tu

pl
es

)

Figure D.5: Comparative results from two-site workloads.

132 PAPER D

number of reads and rate are drawn randomly at the start of each phase.

After the read phase has completed, a write phase follows. Here the site uniformly
accesses a random interval 1% of the size of the table. Anywhere from 20.000 to
40.000 tuples are written at a rate of 2000 writes a minute. After the write phase
has completed, a new read phase is initiated (and so on) until the site has accessed
500.000 tuples. With 20 sites, this gives a complete workload consisting of 10 million
accesses. Also note that due to the random parameters, two different sites will
generally not be in the same phase.

Comparative evaluation is more difficult for this workload than for those pre-
viously presented. The no-fragmentation method is still usable, but less realistic
as the fixed non-fragmented master replica easily can become a bottleneck for re-
mote writes and updates. The optimal fragmentation method is more problematic.
With 10 million accesses each run and no clear access pattern, a very large number
of fragmentations, migrations and replica allocations would have to be evaluated
to find the optimal dynamic solution. Further, the highly random nature of this
workload means that a fragmentation and replica allocation that are optimal for
one run, will not be optimal for another. The optimal fragmentation method would
therefore have to be recomputed for each run. For these reasons we found optimal
fragmentation infeasible and omitted it from this part of the evaluation.

The results are shown in Fig. D.6(a). With ten times as many sites as for earlier
workloads, having too many replicas becomes a much more important issue due to
the number of update messages needed to keep all the replicas consistent. This is
what causes very poor results with a combination of low wBE and low wFS. The low
wFS underestimates the cost of creating a read replica while low wBE makes it hard
to delete it later. This leads to an excessive number of replicas and poor performance
from the high number of updates needed. Due to the highly dynamic nature of this
workload, high values of wBE work well as they make the algorithms take action
earlier. Since the number of writes is low and confined to narrow intervals of the
table, fragment sizes stay small and thus the wFS value is of little importance.

The second multi-site workload is intended to resemble a more general usage
pattern where each site does not have distinct read and write phases, but rather a
single phase that includes both. We have modeled it as follows: A site uniformly
accesses a random interval that constitutes 10% of the table. Each of these accesses
can be either a read (80%) or a write (20%). The access rate is from 2000 to 4000
accesses a minute, and the phase lasts between 30.000 and 60.000 accesses. After
the phase has completed, it restarts with new sets of parameters randomly drawn.
As for the last workload, this continues until 500.000 accesses have been made from
each site. The simulation results are shown in Fig. D.6(b).

Similar to the grid application workload, the creation and deletion of read replicas
are the most important factors influencing the results. Low values of wBE make the
algorithms act conservatively, both when creating and deleting replicas. This leads
to remote reads dominating the communication cost. For higher values of wBE, more
replicas are created giving fewer remote reads but more updates. For this workload,
these two factors tended to balance each other out, giving similar communication
costs for a wide selection of cost function weight values. While there are separate

D.7. EVALUATION 133

 6

 7

 8

 9

 10

 11

 12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

m
un

ic
at

io
n

co
st

 (
tu

pl
es

)/
M

ill
io

ns

wBE

wFS=0.25
wFS=0.50
wFS=0.75
wFS=1.00

NoFrag

(a) Grid application workload.

 6

 7

 8

 9

 10

 11

 12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

m
un

ic
at

io
n

co
st

 (
tu

pl
es

)/
M

ill
io

ns

wBE

wFS=0.25
wFS=0.50
wFS=0.75
wFS=1.00

NoFrag

(b) General workload

Figure D.6: (a) Results from grid application workload. (b) Results from general
workload.

134 PAPER D

 0

 10

 20

 30

 40

 50

 60

General Grid app.

P
e

rc
e

n
ta

g
e

 r
e

d
u

c
ti
o

n
 i
n

 c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(a) Multi-site workloads in simulations.

 0

 10

 20

 30

 40

 50

 60

General Grid app.

P
e

rc
e

n
ta

g
e

 r
e

d
u

c
ti
o

n
 i
n

 c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(b) Multi-site workloads in DASCOSA-DB.

Figure D.7: (a) Comparative results from simulations with multi-site workloads,
showing reduction in communication cost relative to the no-fragmentation method.
(b) Comparative results from multi-site workloads using DYFRAM implemented
in DASCOSA-DB, showing reduction in communication cost relative to the no-
fragmentation method.

D.7. EVALUATION 135

Table D.6: Tuples transferred during multi-site workloads in simulations and imple-
mentation in DASCOSA-DB.

Simulation Implementation

Workload No frag. DYFRAM Reduction No frag. DYFRAM Reduction

General 9.5 mill. 6.85 mill. 27.9% 100.000 59519 40.5%
Grid app. 9.5 mill. 6.95 mill. 26.8% 100.000 47921 52.1%

write phases in the grid application workload that each only accessed 1% of the table,
writes in this workload were interleaved with reads and accessed a much larger part
of the table (for a given phase). This workload also had a smaller fraction of the
accesses as writes. These three factors caused the splitting algorithm to create
smaller fragments which meant that wFS had little impact on the results.

Comparative results for the two multi-site workloads using wBE = 0.9 and wFS = 0.50,
are shown in Fig. D.7(a) and Table D.6.

D.7.4 Implementation of DYFRAM in DASCOSA-DB

In this experiment, DYFRAM was implemented in the DASCOSA-DB distributed
database system [16] in order to verify simulation results. The workloads tested are
similar to the grid and general workloads presented in Section D.7.3, but have been
scaled down a bit for practical reasons.

The grid workload has read phases of 6.000–12.000 accesses. Each phase uni-
formly accesses a random 5% interval of the table. Write phases do 4.000–8.000
writes to a random 0.5% interval of the table. There is no delay between accesses.
As soon as a site finishes one phase, it starts on the next, alternating between read
and write phases. The experiments are done with 6 sites, each issuing 20.000 ac-
cesses, i.e., a total of 120.000 accesses. Half of the sites start in a read phase, while
the other half starts in a write phase. Due to the different phase lengths, this pattern
will change several times during the experiment.

The general workload is scaled with the same factors, giving phases of 6.000–
12.000 accesses to 5% of the table. 80% of these are read accesses and 20% are write
accesses. Each of the 6 sites issues 20.000 accesses, resulting in a total of 120.000
accesses.

The refragmentation algorithm is run every 30 seconds with wFS = 0.2 and
wBE = 0.95, which should give a quite aggressive use of refragmentation and repli-
cation. As explained in Section D.6.4, the weights were found experimentally by
testing on a shorter workload, consisting only of a few thousand accesses. The
results are compared against the no-fragmentation method. Each experiment is
repeated a number of times with different random seeds.

The results from both workloads and the no-fragmentation method are shown
in Fig. D.7(b) and Table D.6. We see that the results are similar to those from
the simulations. For the general workload, communication costs are reduced by
more than 40% compared to the no-fragmentation method. The costs of the grid

136 PAPER D

workload is reduced by more than 50%. Clearly, the cost of replication is made
up for by converting remote accesses to local accesses. Around 20% of the tuples
transferred are caused by fragments moving around. The ratio of read vs. write
accesses varies more, with the grid workload generally having higher write costs and
the general workload having higher read costs.

The results do not vary much between each run, and small changes in wFS and
wBE do not change the results much. The length of each phase will affect the cost
savings, but even if phases are only half as long, communication costs are 25% below
the no-fragmentation method.

D.8 Conclusions and Further Work

In distributed database systems, tables are frequently fragmented and replicated
over a number of sites in order to reduce network communication costs. How to
fragment, when to replicate and how to allocate the fragments to the sites are
challenging problems that has previously been solved either by static fragmentation
and allocation, or based on the analysis of a priori known queries. In this paper we
have presented DYFRAM, a decentralized approach for dynamic table fragmentation
and allocation in distributed database systems, based on observation of the access
patterns of sites to tables. To the best of our knowledge, no previous work exists that
perform the combination of continuous refragmentation, reallocation, and replication
in a distributed setting.

Results from simulations show that for typical workloads, our dynamic frag-
mentation approach significantly reduces communication costs. The approach also
demonstrates well its ability to adapt to workload changes. In addition to sim-
ulations, we have also implemented DYFRAM in the DASCOSA-DB distributed
database system, and demonstrated its applicability in real applications.

Future work include exploring adaptive adjustment of the cost function weights
as well as better workload prediction based on control theoretical techniques. We
also intend to develop a variant of our approach that can be used in combination
with static query analysis in order to detect periodically recurring access patterns.

Bibliography

[1] S. Agrawal, E. Chu, and V. R. Narasayya. Automatic physical design tuning:
workload as a sequence. In Proceedings of SIGMOD 2006, 2006.

[2] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal par-
titioning into automated physical database design. In Proceedings of SIGMOD,
2004.

[3] I. Ahmad et al. Evolutionary algorithms for allocating data in distributed
database systems. Distributed and Parallel Databases, 11(1):5–32, 2002.

[4] P. M. G. Apers. Data allocation in distributed database systems. ACM Trans.
Database Syst., 13(3):263–304, 1988.

BIBLIOGRAPHY 137

[5] N. Bonvin, T. G. Papaioannou, and K. Aberer. A self-organized, fault-tolerant
and scalable replication scheme for cloud storage. In Proceedings of SoCC ’10,
2010.

[6] N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In
Proceedings of ICDE, 2007.

[7] A. Brunstrom, S. T. Leutenegger, and R. Simha. Experimental evaluation
of dynamic data allocation strategies in a distributed database with changing
workloads. In Proceedings of CIKM ’95, 1995.

[8] B. Ciciani, D. Dias, and P. Yu. Analysis of replication in distributed database
systems. IEEE Transactions on Knowledge and Data Engineering, 2(2):247–
261, Jun 1990.

[9] G. Copeland et al. Data placement in Bubba. In Proceedings of SIGMOD 1988,
1988.

[10] A. L. Corcoran and J. Hale. A genetic algorithm for fragment allocation in a
distributed database system. In Proceedings of SAC’94, 1994.

[11] T. Didriksen, C. A. Galindo-Legaria, and E. Dahle. Database de-centralization
- a practical approach. In Proceedings of VLDB 1995, 1995.

[12] D. Donjerkovic, Y. E. Ioannidis, and R. Ramakrishnan. Dynamic histograms:
Capturing evolving data sets. In Proceedings of ICDE, 2000.

[13] P. Furtado. Experimental evidence on partitioning in parallel data warehouses.
In Proceedings of DOLAP 2004, 2004.

[14] B. Gavish and O. R. L. Sheng. Dynamic file migration in distributed computer
systems. Commun. ACM, 33(2):177–189, 1990.

[15] T. Hara and S. K. Madria. Data replication for improving data accessibility in
ad hoc networks. IEEE Transactions on Mobile Computing, 5(11):1515–1532,
2006.

[16] J. O. Hauglid, K. Nørv̊ag, and N. H. Ryeng. Efficient and robust database
support for data-intensive applications in dynamic environments. In Proceedings
of ICDE, 2009.

[17] K. A. Hua and C. Lee. An adaptive data placement scheme for parallel database
computer systems. In Proceedings of VLDB 1990, 1990.

[18] Y. Ioannidis. The history of histograms (abridged). In Proceedings of VLDB
2003, 2003.

[19] M. Ivanova, M. L. Kersten, and N. Nes. Adaptive segmentation for scientific
databases. In Proceedings of ICDE 2008, 2008.

138 PAPER D

[20] S. Menon. Allocating fragments in distributed databases. IEEE Transactions
on Parallel and Distributed Systems, 16(7):577–585, 2005.

[21] A. Mondal, S. K. Madria, and M. Kitsuregawa. CADRE: A collaborative replica
allocation and deallocation approach for mobile-p2p networks. In Proceedings
of IDEAS 2006, 2006.

[22] A. Mondal, K. Yadav, and S. K. Madria. EcoBroker: An economic incentive-
based brokerage model for efficiently handling multiple-item queries to improve
data availability via replication in mobile-p2p networks. In Proceedings of DNIS
2010, 2010.

[23] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman. A survey
of data replication techniques for mobile ad hoc network databases. VLDB J.,
17(5):1143–1164, 2008.

[24] J. Rao et al. Automating physical database design in a parallel database. In
Proceedings of SIGMOD 2002, 2002.

[25] D. Saccà and G. Wiederhold. Database partitioning in a cluster of processors.
ACM Trans. Database Syst., 10(1):29–56, 1985.

[26] D.-G. Shin and K. B. Irani. Fragmenting relations horizontally using a
knowledge-based approach. IEEE Trans. Software Eng., 17(9):872–883, 1991.

[27] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu. Data
replication in mariposa. In Proceedings of ICDE 1996, 1996.

[28] M. Stonebraker et al. Mariposa: A wide-area distributed database system.
VLDB J., 5(1):48–63, 1996.

[29] A. Tamhankar and S. Ram. Database fragmentation and allocation: an inte-
grated methodology and case study. Systems, Man and Cybernetics, Part A,
IEEE Transactions on, 28(3):288–305, May 1998.

[30] T. Ulus and M. Uysal. Heuristic approach to dynamic data allocation in dis-
tributed database systems. Pakistan Journal of Information and Technology,
2(3):231–239, 2003.

[31] G. Weikum et al. The COMFORT automatic tuning project, invited project
review. Information Systems, 19(5):381–432, 1994.

[32] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication of
data. In Proceedings of PODS’92, New York, NY, USA, 1992. ACM.

[33] E. Wong and R. H. Katz. Distributing a database for parallelism. SIGMOD
Rec., 13(4):23–29, 1983.

[34] D. C. Zilio et al. DB2 design advisor: integrated automatic physical database
design. In Proceedings of VLDB 2004, 2004.

Paper E

Site-Autonomous Distributed
Semantic Caching

Norvald H. Ryeng, Jon Olav Hauglid and Kjetil Nørv̊ag.
In Proceedings of SAC, 2011.

139

E.1. INTRODUCTION 141

Abstract

Semantic caching augments cached data with a semantic description of the data.
These semantic descriptions can be used to improve execution time for similar queries
by retrieving some data from cache and issuing a remainder query for the rest. This
is an improvement over traditional page caching, since caches are no longer limited
to only base tables but are extended to contain intermediate results. In large-scale
distributed database systems, using a central server with complete knowledge of
the system will be a serious bottleneck and single point of failure. In this paper,
we propose a distributed semantic caching method where sites make autonomous
caching decisions based on locally available information, thereby reducing the need
for centralized control. We implement the method in the DASCOSA-DB distributed
database system prototype and use this implementation to do experiments that show
the applicability and efficiency of our approach. Our evaluation shows that execution
times for queries with similar subqueries are significantly reduced and that overhead
caused by cache management is marginal.

E.1 Introduction

Large, distributed systems often use site autonomy as a way to reduce communi-
cation costs, allowing sites to make their own decisions and rely more on locally
available information and less on information that must be fetched from their neigh-
bors. In addition, if we can allow some of the housekeeping information to be slightly
outdated without affecting the query results, further decoupling of sites is possible.

Caching is one aspect of a query processing system that lends itself to au-
tonomous decisions. Each site can cache the data it needs to speed up its own
processing, without coordinating with other sites first. In distributed database sys-
tems, there is a choice of either shipping data to the sites where queries are processed
or shipping queries to the sites where data are stored. Caching is possible and useful
in both types of systems, but the nature of these systems provide different caching
opportunities and call for different caching solutions. In this paper, we adapt the
idea of semantic caching, taken from data shipping systems, and present a new
method for semantic caching for a large query shipping system.

The main idea of semantic caching is to tag the cached data items with semantic
information, typically predicates used in select queries. By looking at the tags,
subsequent queries can identify cached items that can replace parts of the query.
The data that is not in cache is fetched by a remainder query, and together the
remainder query and the cached query provides the answer to the original query.

One of the challenges that are introduced when semantic caching is moved into
a system of autonomous sites is that no single site has full knowledge of the query
workload. When queries can enter the system from any site, and each site processes
only a small part of each query before the result is shipped off to the next site, no
single site has the complete picture of the query workload. This limits the metrics
available for caching algorithms, but as we demonstrate, it is still possible to make
globally sound caching decisions.

142 PAPER E

Table E.1: Symbols.

Symbol Description

S Site
T Table T
Ti Fragment i of table T
n Algebra node
N Algebra tree
Nn Subtree rooted at n
c Cache entry
C List of cache entries
C One site’s cache
ts Timestamp
query(c) Query representation of cache entry

By building semantic caches of intermediate results on the sites where these
results are produced, subsequent similar queries can benefit from retrieving some
of their data from cache and issuing remainder queries to perform the rest of the
operations. Our method builds a globally accessible, distributed cache based on
autonomous sites. Whereas in traditional semantic caching each site has its own
local cache that is not shared with other sites, our method gives sites access also to
the cache entries elsewhere in the network.

With semantic caching comes the possibility of making caching decisions based
on more than access statistics. Richer caching algorithms can be defined that inspect
the semantics and decide to cache data that is not the most frequently used, but that
will give a higher performance gain when used. Even if the join of two tables is a less
frequent subquery than the tables themselves, more time may be saved if the result
of the join is cached than if the tables are cached. By making sites autonomous,
we also open up for the possibility of using different caching algorithms on different
sites.

The contributions of this paper is as follows: We present a new method for
semantic caching of intermediate results in a distributed database system, using
autonomy to increase scalability. We demonstrate how this caching method reduces
query execution time with almost no overhead. We also demonstrate that the more
advanced cache replacement policies that are possible with a semantic cache give
considerable improvements over traditional LRU. Experimental evaluation of the
costs and benefits of our semantic caching method is done by implementing it in the
DASCOSA-DB [9] distributed database prototype.

The rest of this paper is organized as follows. We start with a review of related
work in Section E.2. Section E.3 describes the system setting. Our caching method
is described in detail in Section E.4. Section E.5 describes our experiments and
results, and we conclude the paper and outline future work in Section E.6.

E.2. RELATED WORK 143

E.2 Related Work

Semantic caching [7] and predicate-based caching [13] augment cached data with
a semantic description of the data. The benefits of semantic caching include low
overhead and reduced network traffic [11, 18]. Cache tables [1, 3, 16] are somewhat
similar to semantic caching, but only caches tables, not intermediate or final results
of queries. Semantic caching has also been applied to deductive databases [4] and
web querying systems [6, 15]. Common to all these systems are that they are built
for a single query entry point to the system.

There are several approaches to filling caches. Cache investment [14] aims to
optimize for the future by deliberately executing suboptimal queries to generate
cache entries that have a higher hit rate. Caching of time-consuming operations has
also been studied for single values that are duplicated in a result [10]. Identification
of candidates for caching and insertion as cache nodes at different levels in the
algebra tree [8] is often done during query planning.

Cache entries may exist with similar, but not exactly the same, data to what has
been requested. Such cache entries may be transformed to match the request [2].
This increases the cache hit rate for workloads with many similar queries. View
materialization [5, 17] is a kind of explicit caching requiring manual intervention.

Our approach is similar to that of PeerOLAP [12] in that sites operate under a
large degree of autonomy and make local caching decisions. However, while PeerO-
LAP uses broadcast messages to locate caches, our approach retrieves information
on existing cache entries from a distributed catalog service. This way we avoid
flooding the network on each query.

E.3 Preliminaries

In this section we describe the system and query model used in the rest of this paper.
The symbols used in the paper are found in Table E.1. We have implemented our
caching method in the DASCOSA-DB distributed database system prototype. Our
caching method is general and does not put many limitations on the underlying
system, but some details of the implementation are dependent on details of the
underlying system.

E.3.1 System Model

The system consists of a number of sites, each site Si being a single computer node
or a parallel system acting as a single entity seen from other sites. All sites can store
relational tables, and these may be horizontally fragmented. Fragment i of table T
is denoted Ti.

The sites in the system are autonomous, and the only requirement is that they
have a common protocol for execution of queries and metadata management. This
means that some sites may choose not to cache, and those that do cache may choose
different cache replacement policies. This makes it possible to include sites under

144 PAPER E

S0 S1

S2

S3

T U

V

I
Initiator site

Initiator node

C
o

m
p

le
x ity a

n
d

 co
st

R
e

u
sa

b
i lity

Figure E.1: Example query from unmodified DASCOSA-DB.

different administrative domains, allowing interoperability while at the same time
allowing each administrative domain to remain autonomous.

Metadata management, including information on where data is stored, is per-
formed through a common catalog service. This catalog service is itself assumed
to be fault tolerant. It can be realized in a number of ways. For example, in
DASCOSA-DB, the catalog service is realized by a distributed hash table where all
sites participate. The organization of the catalog is not important to our caching
method, but our implementation relies on some implementation details of the catalog
service.

E.3.2 Query Model

We assume queries are written in some language that can be transformed into re-
lational algebra operators, for example SQL. These algebra operators constitute
an algebra tree for the query, and each subtree of the query tree is a subquery.
Throughout this paper we will use the terms subtree and subquery interchangeably.

Queries may arrive from any site of the system. The site that introduces a query
to the system, called the initiator site for that query, becomes the coordinator for
that query. When a query is entered at one site, this site becomes the initiator site
for that query. The initiator site decomposes the query into an algebra tree, e.g.,
as the one shown in Figure E.1. The example query accesses the three tables T , U
and V located at sites, S0, S1 and S2, respectively. Query processing is distributed
between these three sites and the initiator site for the query, S3. When the query
planner has assigned each algebra node Ni to a site, Si, the query is shipped to these
sites using Algorithm 7.

When query processing starts, each node of the algebra tree produces an inter-
mediate result that is shipped to the parent (or downstream) node. Our distributed

E.4. DISTRIBUTED SEMANTIC CACHING 145

Algorithm 7 Stepwise transmission of algebra tree.

At site Si, after receiving Ni:

ni ← root(Ni)
for all nc ∈ children(ni) do
Nc ← subtree(nc)
Sc ← getAssignedSite(nc)
Send(Nc, Sc)

end for

semantic caching method caches these intermediate results, such as the result of
T ∗ U , and reuses them in subsequent queries. This can save significant amounts of
processing. The cumulative cost and complexity of the intermediate results increases
towards the root, but reusability decreases. Caching the result of nodes close to the
root of the tree means we save more work when we get a cache hit, but cache hits
are more frequent for intermediate results closer to the leaves.

E.4 Distributed Semantic Caching

In order to implement semantic caching, we modify the localization, dissemination
and processing steps of DASCOSA-DB, and add a fourth: cache registration. These
modifications and extensions are described in the following sections.

E.4.1 Query Localization

After query decomposition, the query is represented as a tree N of algebra operator
nodes. This is given as input to the query localization step.

The initiator site has to do catalog lookups for all tables referenced by N . This is
done by requesting from the catalog service a list of table fragments Ti and the sites
STi

on which they are located. In DASCOSA-DB, the request for information about
one table is handled by one site of the distributed catalog service. That site knows
of all fragments of that table. We extend the information stored at the catalog site
to also include an index of some, but not necessarily all (see Section E.4.4), cache
entries of intermediate results involving that table.

We also extend the catalog lookup request by piggybacking a representation of N
onto the request messages, as shown in Figure E.2. The catalog service site responds
with its normal result of table fragments and their locations and adds an additional
list C = {c1, c2, c3, . . .} of cache entries it knows of. The extended reply message is
shown in Figure E.3. Each entry c = 〈Nc, Sc, tsc〉 describes the cached query Nc, the
site Sc that stores the cache entry and the timestamp tsc of the entry. All entries in
C are relevant cache entries, by which we mean entries that can be used to answer
the query.

After receiving all lookup replies, we have accumulated information on all rele-
vant cache entries for N . The optimizer may decide to rewrite the query to use some
cache entries that do not exactly match a subtree of the current plan. Due to space

146 PAPER E

Table name

Fragment number

Query

Original fields

Added fields

Figure E.2: Extended lookup message.

constraints, we refer to [7] and [11] for more details on how queries are transformed
to take advantage of semantic caches.

After caches have been found and the query plan has been adapted, the next
step is to assign each node n of N to a site. Leaf nodes are table accesses and
are assigned to the sites that store the corresponding table fragments. Normally,
DASCOSA-DB assigns an operator node to the same site as one of its operands.
We extend this algorithm to exploit cached data. By looking at the subquery Nn

rooted at n and the list of cache entries, if ∃ c : Nc=Nn, n is assigned to Sc. If there
are more than one cache entry for Nn, the localizer chooses one. Nodes that are not
found in cache are assigned to sites using the normal query localization algorithm.

The initiator site does not actually decide whether to use a cache entry. It only
assigns algebra nodes to sites where the catalog service says there are matching
cache entries. Sites are autonomous in caching decisions, so a site that was intended
by the initiator to deliver data from cache may have replaced the cache entry when
the query arrives, making it necessary to process the query in full.

When all nodes of the query have been assigned to a site, the initiator site starts
shipping out the query to the rest of the sites participating in resolving it.

E.4.2 Query Dissemination

The query N is shipped stepwise to the participating sites, using a modified version
of Algorithm 7. The initiator site assigns root(N) to itself, and then for all n ∈
children(root(N)) sends out Nn to Sn, which again send out the subtrees of the
nodes they receive, etc. This continues until the leaf nodes, i.e., table access nodes,
are received by the sites that store the corresponding tables. The timestamps tsTi

of all table fragments referenced by nodes in a subtree are piggybacked onto that
subtree as it is sent out.

If no cache entries exist, the query shipping behaves exactly as in the unmodified
Algorithm 7, but sites that have cached previous results must check their caches to
see if the query matches any entries.

When a site receives a query, it checks the table fragment timestamps tsN
Ti

from
the query against entries c ∈ C in the local cache to see if any of its cache entries
should be invalidated. If ∃Ti, c : tsN

Ti
> tsc

Ti
, c is outdated and should be removed.

This is done for all cache entries that involve these table fragments, not only those

E.4. DISTRIBUTED SEMANTIC CACHING 147

Table name

Fragment

Cached query

Original fields

Added fields

Attribute

Attribute Type

Primary key

Size

Type

Type

Site

Site

Timest.

Fragment Size Site Timest.

Timest.

Cached query Site Timest.

Figure E.3: Extended lookup reply message.

relevant to the current query.

After removing outdated cache entries, the site checks if ∃ c∈C : query(c)=Nn.
If such a cache entry is found, the site has to request current timestamps ts∗Ti

of all
the table fragments that are referenced by Nn. This is done to guarantee that the
cache entry is up-to-date. The locations of the fragments are found by looking at the
received query, which contains table scan operators assigned to the corresponding
sites.

The cache entry timestamp consists of a set of table fragment timestamps tsc
Ti

such that ∀Ti : tsN
Ti
≤ tsc

Ti
≤ ts∗Ti

. If ∀Ti : tsc
Ti

= ts∗Ti
, the site holds back the whole

subtree rooted at the cached algebra node and stops query dissemination of that
branch. The algebra node is replaced by a special node that delivers the result from
cache. If ∃Ti : ts∗Ti

> tsc
Ti

, the cache entry is outdated and is removed before query
dissemination continues as if the cache entry had never existed, assigning the root
node to be processed locally and sending the subtrees rooted at the children of this
node to the sites to which they have been assigned by the initiator site.

Figure E.4 shows how the query is distributed to the participating sites. In the
example, the query with timestamps is sent out upstream from the initiator site,
split at each algebra node. A cache entry for T ∗U is found on site S0 and a special
request is made to the sites storing relevant table fragments (in this example, the
tables consist of only one fragment each) to retrieve the current timestamps. Table
T is stored on site S0, so the timestamp request is processed locally. Site S1 receives

148 PAPER E

S0 S1

S2

S3

T U

V✻

✻

I

CACHE

Query result

Query w/timestamps

Timestamp request

Current timestamp

Figure E.4: Query dissemination with table fragment timestamps.

the request from site S0 and replies with the current timestamp of table U .

Our caching method supports variations of this timestamp policy. Different
isolation levels may allow caches that are older than the current table fragment
timestamps, leading to more cache hits. Timestamp policies should be the same on
all sites, since the system as a whole cannot guarantee stronger isolation levels than
the weakest timestamp policy allows.

Dissemination stops when all branches of the query tree have been terminated
by a leaf node delivered to the site to which it has been assigned or by a deliver-
from-cache operator. As soon as a leaf node is delivered, or a deliver-from-cache
node created, the node enters the processing step and starts producing data.

E.4.3 Query Processing and Caching

In the dissemination step, it was discovered whether any relevant cache entries
existed and were up-to-date, in which case dissemination of that subtree stopped
and the root of the subtree was replaced by a special node serving data from cache.
Cache entries are locked in cache as long as they serve an ongoing query.

The special deliver-from-cache operators simply deliver the cached result, includ-
ing the cached timestamps, which by now are guaranteed to be up-to-date. Since the
timestamps of the table fragments needed to produce the cached result are stored
with the cache entry, they can easily be retrieved and sent with the result, providing
timestamps for caching of downstream nodes.

If data is not served from cache, there might be an opportunity for caching.
To allow downstream caches, table fragment timestamps are propagated along with
the results of operators, as shown in Figure E.5. At each interior node n in the
query tree, the result of the operation is tagged with a combined timestamp tsn =
∪n′∈children(n)tsn′ of the timestamps of all operands.

E.4. DISTRIBUTED SEMANTIC CACHING 149

S0 S1

S2

S3

T U

V✻

✻

I

tsUtsT

tsV

tsT, tsU

tsT, tsU, tsV

Figure E.5: Result and timestamp propagation.

The result of algebra nodes are candidates for caching at the site where they are
processed, and the timestamps that comes with the result are used to timestamp
cache entries that are created. The decision to cache the result or not is made when
a node starts executing, and is based on the cache replacement policy.

In general, the cache replacement policy defines an ordering of cache entries.
In block based caching, where cache entries are always of the same size, only the
first entry to be replaced has to be identified. When caching intermediate results of
differing sizes, multiple cache entries may have to be removed to fit one larger entry
in cache. The ordering must also include queries, so that candidates for caching can
be compared against any existing cache entry. In Algorithm 8 we define the general
cache replacement algorithm using such an ordering. Given a successor relation �p

defined by the cache replacement policy and the cache C, we use the ordered set
Cp = (C,�p), where head(Cp) is the least element of Cp.

Each site decides autonomously which results to cache and may apply different
cache replacement policies and have different cache sizes. Since cache entries are
compared against queries that have not yet been processed, some values must be
estimated, e.g., the size of the intermediate result of Nn. The successor relation �p

that defines the ordering of cache entries may rely on a number of metrics, either
measured or estimated.

Available Metrics

Each site has only a restricted view of the system, knowing only the algebra nodes
passing through it and the subtrees rooted at these. It also knows the contents of
its own cache and the usage statistics of that cache. We divide the available metrics
into three measurement categories: size, cost and query pattern.

The size of the result is necessary to decide if there is room for the result in
the cache. However, before the query has been processed and the size can actually

150 PAPER E

Algorithm 8 Decide to cache the result of Nn (true) or not (false).

At site S, when deciding whether or not to cache the result of
Nn:

free ← free cache space
Creplaced ← ∅
Cremaining ← Cp
while free < size(Nn) do
c← head(Cremaining)
if Nn �p c then

free ← free + size(c)
Creplaced ← Creplaced ∪ {c}
Cremaining ← Cremaining \ {c}

else
return false

end if
end while
Cp ← Cremaining

return true

be measured, we must rely on estimates based on the available statistics. Table
statistics that are available from the global catalog and included in N can be used
to find the size of table fragments and estimate the size of the results of downstream
operators.

The cost of resolving a query can be estimated knowing operand size and oper-
ator implementation details. The cost of reproducing a result from scratch is the
cumulative cost of the algebra subtree, so the estimated cost of reproducing the
result can be found by adding up the estimated cost of all nodes in the subtree.

A simpler cost estimate is the node’s position in the algebra tree. The leaf
nodes are table access nodes. Intermediate nodes have a higher cost, and the cost
of reproducing the result increases towards the root. Instead of computing the
cumulative cost, we can simply use the height of the subtree rooted at that node.

The simplest query pattern metric is to use least recently used (LRU) ordering
of cache entries, allowing recently used cache entries to stay in the cache while less
recently used entries are replaced.

Cache Replacement Policies

Based on the metrics defined above, we can implement several cache replacement
policies.

LRU The simplest cache replacement policy is to always replace the least recently
used cache entry. This policy is simple, but is not able to use the semantic informa-
tion that the caching method makes available. Therefore, it is unable to separate
between query results that require a lot of computational effort to reproduce and
results that are easily recreated from scratch.

E.4. DISTRIBUTED SEMANTIC CACHING 151

LRU + cost An improvement is to use the cost measure in addition to usage to
decide which cache entry should be replaced next. The semantic information allows
us to estimate the cost of each step in the query and to use cumulative cost to either
favor queries of high or low complexity. The cost measure is given more weight than
LRU, but as a cache entry ages also complex results may be replaced. We call these
policies LC policies.

The LC+ policy favors results of queries of high complexity, making sure that
results that would take longer to reproduce are kept in cache longer than results of
queries that have a lower computational complexity. The complex queries are not
the most frequently reused, but more time is saved for each cache hit.

Our LC− policy does the opposite. It adds a penalty to the complex queries.
This means that the results of queries of lower complexity, which are expected to
be more reusable and produce more cache hits, stays longer in cache. The choice
between LC+ and LC− is a weighing of savings per cache hit versus number of hits.

LRU + height The cost estimate is a quite complex estimate to make. As
described earlier, the height of the query tree may be a simple alternative to the
full cost estimate. Like cost estimates, height can be used to favor either complex
or simple queries, so we divide the LH policies into LH+, which favors results of
complex queries, and LH−, which favors versatile results.

E.4.4 Cache Registration

As soon as the last tuple is inserted into a cache entry, it is made available for use.
However, it is not registered in the catalog until the site sends an update message
to the catalog service.

The sites regularly update the catalog with information about local table frag-
ments, and we extend these updates with information about cache entries. For each
entry in the local cache, a site sends a representation of the algebra subtree and
timestamps for each table fragment accessed by the subtree.

There are generally more than one table involved in a query. In DASCOSA-DB,
the catalog of fragments of one table is stored on one catalog service site. To avoid
having to register the cache entries on the catalog service sites for all tables involved
in the query, we use a hashing function to select one site to which the query is sent.
For each query, the hashing function is used to select the catalog site for one of the
involved tables.

Since the cache entry for the result of an algebra tree is always registered at the
catalog site storing information on one of the tables referenced by the algebra tree,
our method guarantees that by sending the query with the lookup request for all
tables, all cache entries are found. Due to the hashing function, the catalog of cache
entries is distributed among catalog sites.

Cache Currency and Invalidation

The catalog stores a lower bound on the timestamps of all table fragments. When
a catalog site receives an update message for a cache entry c, it can compare the

152 PAPER E

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

LRU
LC+
LC-
LH+
LH-

(a)

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

LRU
LC+
LC-
LH+
LH-

(b)

Figure E.6: (a) Relative execution time of high-bandwidth system with uniform
workload. (b) Relative execution time of low-bandwidth system with uniform work-
load.

timestamps tsc
Ti
∈ tsc of the cache entry with the timestamps of table fragments

tsK
Ti

from its part K of the global catalog. If ∃Ti : tsc
Ti
< tsK

Ti
, table fragment Ti has

been updated after the cache entry was created and this is registered in the catalog.
The cache entry will not be registered, and the caching site is informed of the new
timestamp.

Similarly, if ∃Ti : tsc
Ti
> tsK

Ti
, table fragment Ti has been updated since last catalog

update, and tsK
Ti

is updated. In this way, the cache entry updates are actually
improving the catalog service freshness.

E.4.5 Transactional Support

Implementation of semantic caching does not change transactional support or lock-
ing policies in DASCOSA-DB. All locks for a query are acquired by the initiator
site before query dissemination, and our semantic caching method does not change
that behavior. The initiator site will acquire locks for all table fragments that are
needed, including those that form the basis for cache entries used by the query,
thereby guaranteeing full transactional isolation.

E.5 Experimental Evaluation

To evaluate the caching method, we have implemented it in the DASCOSA-DB
distributed database system prototype. The caching method has been tried with
the caching policies described in Section E.4.3 and different query workloads. We
used the DASCOSA-DB’s existing cost functions for cost estimation.

The experiments were done on a TPC-H [19] dataset using scaling factor SF =
0.1, partitioned horizontally based on primary key and distributed over five sites,
each running an instance of DASCOSA-DB. One more site with no table frag-
ments was used for issuing queries. We generated query workloads consisting of 200

E.5. EXPERIMENTAL EVALUATION 153

queries from the TPC-H benchmark queries, varying all substitution parameters of
the benchmark. The substitution parameters were drawn either from a uniform
distribution or from a skewed distribution where 80% of the values are drawn from
20% of the domain.

We measured the execution time and cache hits of repeated executions of our
query workload. These measurements are only meaningful on a relative scale, so
execution time was measured relative to a baseline execution without caching. Dur-
ing this execution, caching code was completely disabled. Cache hits were measured
relative to the number of queries in the workload.

E.5.1 Varying Network Bandwidth

In this experiment, the network bandwidth was varied to produce two different set-
tings: a high-bandwidth setting with 100 Mbit/s links connecting the sites, and
a low-bandwidth setting with 1 Mbit/s links. The substitution parameters of the
queries were drawn randomly from the parameter domains, using a uniform distri-
bution.

Figure E.6(a) shows the average execution time relative to the execution time
measured when caching was disabled, i.e., without any caching code running. The
values shown for 0 MB cache thus show the overhead of the caching method, i.e.,
the extra cost associated with the caching method without any of its benefits. As
is seen from the figure, the overhead is negligible.

Further, the graph shows that with the largest cache size, LRU saves 36% of
the execution time, while LC+ saves 40%. LH+ and LH− vary very little from
LRU, while LC−, favoring results of queries of low complexity, performs worst. This
indicates that the savings gained from caching results of complex queries outweighs
the possibilities for frequently used results of low complexity.

Comparing Figures E.6(a) and E.6(b), we see that the distance between LC+ and
LRU is greater in the low-bandwidth setting. This is in line with our expectations of
LC+, deciding to cache results of more complex queries, allowing for greater savings
once they are used. When bandwidth is reduced, LC+ stands out while the rest of
the policies perform poorer.

E.5.2 Varying Parameter Distribution

In this experiment, query parameters were either drawn from a uniform distribution
or from a skewed distribution where 80% of the values were drawn from 20% of the
parameter domain. Network bandwidth was kept low (1 Mbit/s).

The skewed distribution was chosen to be a more realistic workload, where some
values are more frequent than others. This would be the case in many real life
systems. We believe the choice of 80/20 is a conservative one, which means slightly
pessimistic results.

Figure E.7(a) shows that LRU achieves a reduction in execution time of 55%,
i.e., 11 percentage points more than with uniform parameter distribution, and LC+

saves 56%. While LRU and LC+ do not differ very much for large cache sizes, LC+

154 PAPER E

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Cache size (MB)

Uniform LRU
Uniform LC+
Skewed LRU
Skewed LC+

(a)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 10 20 30 40 50 60

C
ac

he
 h

it
ra

te

Cache size (MB)

Uniform LRU
Uniform LC+
Skewed LRU
Skewed LC+

(b)

Figure E.7: (a) Relative execution time of low-bandwidth system with both work-
loads. (b) Cache hit rates for low-bandwidth system with both workloads.

achieves these savings also for much smaller cache sizes.

The comparison of cache hit rates in Figure E.7(b) sheds some light on what
is going on. LC+ manages to keep the right entries in cache also for smaller cache
sizes, while LRU needs large cache sizes to achieve this. We also note that a larger
cache does not necessarily mean better hit rates, since cache entries are of different
sizes. Large entries may displace multiple smaller entries, thus reducing the number
of hits.

There is clearly an increased hit rate for the skewed workload, which is the reason
for the improvement in execution time over the uniform workload.

E.6 Conclusion and Future Work

In this paper, we have developed a new method for semantic caching in a dis-
tributed database system with autonomous sites, where caching policies and deci-
sions can vary from site to site and workload statistics are sparse. By making sites
autonomous, we allow the system to scale without excessive network traffic. We
have shown how the result of subqueries can be cached and reused by subsequent,
similar queries to speed up query processing.

We have implemented the semantic cache in the DASCOSA-DB prototype as a
proof of concept and platform for our experiments. The experiments have shown
that we get considerable improvements in execution time when enabling semantic
caching. The overhead of our caching method is also very low.

The cache hit rate is not the only factor influencing the performance. The
cost of recomputing the cached data is also important. The savings made possible
by caching the result of a complex query are sometimes higher than the savings
from caching the results of less time-consuming queries with a higher hit rate. The
information necessary to make such decisions is made available by semantic caching.

Our results indicate several ways to further improve query processing by seman-
tic caching. The next step is to further enable the query optimizer to take advantage

BIBLIOGRAPHY 155

of cached intermediate results, including rewriting queries in otherwise suboptimal
ways to increase cache hit numbers and rewrite queries to increase reusability of
intermediate results. A semantic cache also allows for more advanced cache replace-
ment policies, and further work should be done to find policies that care not only
for the number of cache hits, but also the potential computational cost savings of a
cache entry.

Bibliography

[1] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and
B. Reinwald. Cache tables: Paving the way for an adaptive database cache. In
Proceedings of VLDB, 2003.

[2] H. Andrade, T. M. Kurç, A. Sussman, and J. H. Saltz. Active semantic caching
to optimize multidimensional data analysis in parallel and distributed environ-
ments. Parallel Computing, 33(7-8):497–520, 2007.

[3] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive
database caching with DBCache. IEEE Data Engineering. Bulletin, 27(2):11–
18, 2004.

[4] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Trans. Database Syst., 15(2):162–207, 1990.

[5] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing
queries with materialized views. In Proceedings of ICDE, 1995.

[6] B. Chidlovskii, C. Roncancio, and M.-L. Schneider. Semantic cache mechanism
for heterogeneous Web querying. Computer Networks, 31(11–16):1347–1360,
1999.

[7] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic
data caching and replacement. In Proceedings of VLDB, 1996.

[8] L. M. Haas, D. Kossmann, and I. Ursu. Loading a cache with query results. In
Proceedings of VLDB, 1999.

[9] J. O. Hauglid, K. Nørv̊ag, and N. H. Ryeng. Efficient and robust database
support for data-intensive applications in dynamic environments. In Proceedings
of ICDE, 2009.

[10] J. M. Hellerstein and J. F. Naughton. Query execution techniques for caching
expensive methods. In Proceedings of SIGMOD, 1996.

[11] B. T. Jónsson, M. Arinbjarnar, B. Þórsson, M. J. Franklin, and D. Srivastava.
Performance and overhead of semantic cache management. ACM Transactions
on Internet Technology, 6(3):302–331, 2006.

156 PAPER E

[12] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive
peer-to-peer network for distributed caching of OLAP results. In Proceedings
of SIGMOD, 2002.

[13] A. M. Keller and J. Basu. A predicate-based caching scheme for client-server
database architectures. VLDB Journal, 5(1):35–47, 1996.

[14] D. Kossmann, M. J. Franklin, G. Drasch, and W. Ag. Cache investment: inte-
grating query optimization and distributed data placement. ACM Transactions
on Database Systems, 25(4):517–558, 2000.

[15] D. Lee and W. W. Chu. Semantic caching via query matching for web sources.
In Proceedings of CIKM, 1999.

[16] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton. Middle-tier database caching for e-business. In Proceedings of
SIGMOD, 2002.

[17] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view
selection and maintenance using multi-query optimization. SIGMOD Record,
30(2):307–318, 2001.

[18] Q. Ren and M. H. Dunham. Using semantic caching to manage location de-
pendent data in mobile computing. In Proceedings of MobiCom, 2000.

[19] Transaction Processing Performance Council. TPC benchmark H (decision
support) standard specification revision 2.11.0, 2010.

Paper F

Efficient Distributed Top-k Query
Processing with Caching

Norvald H. Ryeng, Akrivi Vlachou, Christos Doulkeridis and Kjetil Nørv̊ag.
In Proceedings of DASFAA, 2011.

157

F.1. INTRODUCTION 159

Abstract

Recently, there has been an increased interest in incorporating in database manage-
ment systems rank-aware query operators, such as top-k queries, that allow users
to retrieve only the most interesting data objects. In this paper, we propose a
cache-based approach for efficiently supporting top-k queries in distributed database
management systems. In large distributed systems, the query performance depends
mainly on the network cost, measured as the number of tuples transmitted over the
network. Ideally, only the k tuples that belong to the query result set should be
transmitted. Nevertheless, a server cannot decide based only on its local data which
tuples belong to the result set. Therefore, in this paper, we use caching of previous
results to reduce the number of tuples that must be fetched over the network. To
this end, our approach always delivers as many tuples as possible from cache and
constructs a remainder query to fetch the remaining tuples. This is different from
the existing distributed approaches that need to re-execute the entire top-k query
when the cached entries are not sufficient to provide the result set. We demon-
strate the feasibility and efficiency of our approach through implementation in a
distributed database management system.

F.1 Introduction

Nowadays, due to the huge amount of available data, users are often overwhelmed by
the variety of relevant data. Therefore, database management systems offer rank-
aware query operators, such as top-k queries, that allow users to retrieve only a
limited set of the most interesting tuples. Top-k queries [5, 8, 15] retrieve the k tu-
ples that best match the individual user preferences based on a user-specified scoring
function. Different scoring functions express the preferences of different users. Sev-
eral applications benefit from top-k queries, including web search, digital libraries
and e-commerce. Moreover, the high distribution of data raises the importance of
supporting efficient top-k query processing in distributed systems.

In this paper, we propose a cache-based approach, called ARTO1, for efficiently
supporting top-k queries in distributed database management systems. In large-scale
distributed systems, the dominant factor in the performance of query processing is
the communication cost, measured as the number of tuples transmitted over the
network. Ideally, only the k tuples that belong to the result set should be fetched.
Nevertheless, in the case of top-k queries, a server cannot individually decide which
of its top-k local tuples belong to the global top-k result set of the query. In order to
restrict the number of fetched tuples and reduce the communication costs, we employ
caching of result sets of previously posed top-k queries. Each server autonomously
maintains its own cache and only a summary description of the cache is available to
any other server in the network.

In general, a top-k query is defined by a scoring function f and a desired number
of results k, and these parameters differ between queries. Given a set of cached

1Algorithm with Remainder TOp-k queries.

160 PAPER F

top-k queries in the system and a new query, the problem is to identify whether
the results of cached queries are sufficient to answer the new query. To deal with
this problem, we apply techniques similar to those of the view selection problem in
the case of materialized views [15] in centralized database systems. Based on the
cached queries, we need to decide whether the cached results cover the results of a
new query. In this case, the query is answered from the cache and no tuples need
to be transferred over the network. However, the major challenge arises when the
query is not covered by the cached tuples.

Different from existing approaches [20] that require the servers to recompute the
query from scratch, we do not evaluate the entire query, but we create a remainder
query that provides the result tuples that are not found in cache. More detailed,
we split the top-k query into a top-k′ query (k′ < k) that is answerable from cache,
and a remainder next-(k − k′) query that provides the remaining tuples that were
not retrieved from the top-k′ query. To further optimize the query performance, we
deliberately assign the top-k query to the server that is expected to induce the lowest
network cost based on the locally cached tuples. To summarize, the contributions
of this paper are:

• We propose a novel framework for distributed top-k queries that retrieves as
many tuples k′ (k′ < k) as possible from the cache, and poses a remainder
query that provides the remaining k − k′ tuples that are not found in cache.

• We present a novel method for efficiently computing remainder queries, with-
out recomputing the entire top-k query.

• We propose a server selection mechanism that identifies the server that owns
the cache with the most relevant entries for a given query.

• We evaluate our approach experimentally by integrating ARTO in an existing
distributed database management system [14], and we show that our method
significantly reduces communication costs.

The rest of this paper is organized as follows. In Section F.2, we explain how this
paper relates to previous work in this area. Section F.3 presents preliminary con-
cepts, and Section F.4 presents our framework for distributed top-k query process-
ing. Answering top-k queries from cache is outlined in Section F.5. The remainder
queries are described in Section F.6, while Section F.7 presents the server selection
mechanism. Results from our experimental evaluation are presented in Section F.8,
and in Section F.9 we conclude the paper.

F.2 Related Work

Centralized processing of top-k queries has received considerable attention recently [2,
5, 8, 15]. For a comprehensive survey of top-k query processing we refer to [16]. Hris-
tidis et al. [15] discuss how to answer top-k queries from a set of materialized ranked
views of a relational table. Each view stores all tuples of the relation ranked accord-
ing to different ranking functions. The idea is to materialize a set of views based on

F.2. RELATED WORK 161

a requirement either on the maximum number of tuples that must be accessed to
answer a query, or on the maximum number of views that may be created. When
a query arrives, one of these views is selected to be used for answering the top-k
query. In [11], the materialized views of previous top-k queries (not entire relations)
are used to answer queries, as long as they contain enough tuples to satisfy the
new query. For each incoming query, the view selection algorithm chooses a set of
views that will give an optimal (in terms of cost) execution of the proposed LPTA
algorithm. A theoretical background on view selection is given in [3], providing
theoretical guarantees whether a view is able to answer a query or not. However,
the algorithms that are presented only allow a query to be answered from views if
the views are guaranteed to provide the answer.

In distributed top-k query processing, the proposed approaches can be catego-
rized based on their operation on vertically [6, 9, 12, 17, 18] or horizontally [1, 4, 19,
20] distributed data. In the case of vertically distributed data, any server maintains
only a subset of the attributes of the complete relation. Then, each server is able
to deliver tuples ranked according to any scoring function that is applied on one or
more of its attributes [9, 12, 17]. The TPUT algorithm [6] focuses on limiting the
number of communication round-trips, and this work has later been improved by
KLEE [18].

In the case of horizontally distributed data, each server stores a subset of the tu-
ples of the complete relation, but for each tuple all attributes are maintained. In [1],
a broadcasting technique for answering top-k queries in unstructured peer-to-peer
networks is presented. For super-peer topologies, Balke et al. [4] provides a method
using indexing to reduce communication costs. This method requires all super-peers
to process queries, unless exactly the same query reappears. SPEERTO [19] pre-
computes and distributes skyline result sets of super-peers in order to contact only
those super-peers that are necessary at query time. BRANCA [20] is a distributed
system for answering top-k queries. Caching of previous intermediate and final re-
sults is used to avoid recomputing parts of the query. The cache is used much in
the same way as the materialized views in [3, 11, 15], but on intermediate results
of the query. This means that some servers in the system must process the query
from scratch, while others may answer their part of the same query from cache. The
main difference between ARTO and other caching approaches, such as BRANCA,
becomes clear in the hard cases, when the query cannot be answered by the cache.
ARTO still uses the part of the cache that partially answers the query and poses
a remainder query for the remaining tuples, without the need to process the query
from scratch, as in the case of BRANCA.

Finally, our techniques for answering top-k queries relate to stop-restart of query
processing [7, 10, 13]. These methods assume that some of the result tuples are
already produced and restart processing from where the original query stopped.
Our remainder queries differ by not restarting an existing top-k query but a query
that was partially answered by cached tuples.

162 PAPER F

F.3 Preliminaries

Top-k queries are defined based on a monotone function f that combines the individ-
ual scores into an overall scoring value, that in turn enables the ranking (ordering)
of tuples. Given a relation R, which consists of n attributes ai, the result set of a
top-k query Q = 〈R, f, k〉 contains k tuples such that there exists no other tuple in
R with better score than the k tuples in the result set. The relation R may be a
base relation or the result of an algebra operator, i.e., the result of a join. The most
commonly used scoring function is the weighted sum function, also called linear.
Each attribute ai is associated with query-dependent weight wi indicating ai’s rel-
ative importance for the query. Furthermore, without loss of generality, we assume
that for any tuple t and any attribute ai the values t(ai) are scaled to [0, 1]. The
aggregated score f(t) for a tuple t is defined as a weighted sum of the individual
scores: f(t) =

∑n
i=1wit(ai), where wi ≥ 0 (1 ≤ i ≤ n), and ∃j such that wj > 0.

The weights represent the relative importance of different attributes, and without
loss of generality we assume that

∑n
i=1wi = 1. Thus, a linear top-k query Q is

defined by a vector wQ and the parameter k. The ranked tuples can be delivered
in either ascending or descending order, but for simplicity, we will only consider
descending order in this paper. Our results are also valid in the ascending case.

A tuple t of R can be represented as a point in the n-dimensional Euclidean
space. Furthermore, given a top-k query Q = 〈R, f, k〉 defined by a linear scoring
function, there exists a one-to-one correspondence between the weighting vector wQ

and the hyperplane which is perpendicular to wQ. We refer to the (n-1)-dimensional
hyperplane, which is perpendicular to vector wQ and crosses the k-th result tuple, as
the query plane of wQ, and denote it as LQ. All points on the query plane LQ have
the same scoring value for wQ. A 2-dimensional example is depicted in Fig. F.1.
Processing the top-k query Q is equivalent to sweeping the line LQ from the upper
right corner towards the lower left corner. Each time LQ meets a tuple t, this tuple
is reported as the next result tuple. When LQ meets the k-th tuple, the complete
result set has been retrieved.

F.4 ARTO Framework

In this paper, we assume a distributed database system where the relations are
horizontally fragmented over multiple servers. In more details, each relation R is
fragmented into a set of fragments R1, R2, . . . , Rf and each fragment Ri consists of
a subset of tuples of the relation R. Our approach is generic and imposes no further
constraints on the way fragments are created or whether they are overlapping or
not. Furthermore, each server may store fragments of different relations. Any server
can pose a top-k query and we refer to that server as querying server. During query
processing, the querying server may connect to any other server. Thus, no routing
paths are imposed on the system other than those of the physical network itself.
The only assumption of ARTO is that there exists a distributed catalog accessible
to all servers, which indexes the information about which server stores fragments of
each relation R. Such a distributed catalog can be implemented using a distributed

F.4. ARTO FRAMEWORK 163

O(0,0)

R(1,1)

Q
LQ

90°

p1

p2p3
p4

pk=p5

p6

Figure F.1: 2D representation of query and data space.

hash table (DHT).

To answer a top-k query over a relation R, the querying server first locates those
servers that store fragments of R by using the catalog, and constructs a query plan
such as the one in Fig. F.2(a). In our example, S2 is the querying server and the
relation R is fragmented in four fragments R1, . . . , R4 stored on servers S1, . . . , S4

respectively. Based on the query plan, each fragment Ri is scanned in ranked order
(denoted in Fig. F.2(a) as rank), and the top-k operator reads tuples one by one,
until the k highest scoring tuples have been retrieved. In more details, the top-
k operator maintains a sorted output queue and additionally a list containing the
score of the last tuple from each server. Since the tuples read from Ri are in ranked
order, whenever a tuple in the output queue has a higher score than all scores in the
list, it can safely be output as a result tuple. Thus, the top-k tuples are returned
incrementally. Moreover, the top-k operator reads the next tuple from the fragment
Ri with the tuple with the highest score in the list. Therefore, the top-k operator
reads as few input tuples as possible from the fragments Ri.

This is the basic approach of answering top-k queries in a distributed data man-
agement system. Since it is important to minimize the network cost of query pro-
cessing, ARTO uses a caching mechanism to take advantage of previously answered
top-k queries. Thus, ARTO avoids retrieving tuples from other servers, when the
cached tuples are sufficient to answer the new query. To this end, each server main-
tains its own cache locally, and caches the queries (and their results sets) that were
processed by itself. During query processing, the querying server first uses its cache
to detect whether the cached tuples are sufficient to answer the given top-k query
(see Section F.5). Even if the cached tuples are not sufficient, ARTO minimizes the
transferred data by using as many cached tuples as possible and retrieving only the
missing tuples from the remote servers through the novel use of remainder queries
(see Section F.6). To this end, the query plan is rewritten in order to take advantage

164 PAPER F

S1

R1

S2 S3 S4

R2 R3 R4

result

rank rank rank rank

top-k

(a)

S1

R1

S2 S3 S4

R2 R3 R4

result

lim.
rank

lim.
rank

lim.
rank

lim.
rank

top-k

rank

cache

(b)

Figure F.2: (a) Query plan for distributed top-k query. (b) Transformed query plan.

of the local cache. The result of such a query transformation is shown in Fig. F.2(b).
Compared to the initial query plan, the top-k operator additionally retrieves tuples
from the cache and performs a limited scan from the relation fragments, thus trans-
ferring only tuples that are not cached.

The combination of cached tuples and remainder queries allows ARTO to reduce
the number of transferred tuples. The exact number of transferred tuples depends
on the similarity of cached queries to the new query. Thus, in order to improve
further the query processing performance, we extend ARTO with a server selection
mechanism, which assigns the new query to the server with the most similar cached
query. In order to facilitate this mechanism, each server publishes descriptions of
its cached queries in the distributed catalog. Then, the querying server first detects
the server with the most similar cached query, and re-assigns the new query to this
server (see Section F.7).

In rest of this paper, we assume that data tuples are not updated, inserted or
deleted during query processing. This means that the cache always will be up-to-
date. Techniques that enforce cache consistency can be adopted in a straightforward
way, as they are orthogonal to our work.

F.5 Answering Top-k Queries from Cache

In ARTO, each server autonomously maintains its own cache. More specifically, after
answering a top-k query and retrieving the entire result set, the query originator is
able to cache the query result. The cache C = {Ci} maintains a set of m cache
entries Ci. Each cache entry Ci = {Qi, bi, {p1, . . . , pki}} is defined by a query
Qi = {R, fi, ki}, the tuples {p1, . . . , pki} that belong to the result set of Qi, and a
threshold bi which is the scoring value of point pki with respect to fi, i.e., bi = fi(pki).
Consequently, any tuple p of the cache entry Ci has score fi(p) ≥ bi. Notice that

F.5. ANSWERING TOP-K QUERIES FROM CACHE 165

O(0,0)

R(1,1)

Q

SLC

Q2

Q1

LQ2

LQ1

SLC2SLC1

Figure F.3: Cache containing the cache entries of two queries.

the description of a cached entry Ci that is published in the catalog consists only
of {Qi, bi}, without the individual result tuples. For the sake of simplicity, we
assume that all cache entries refer to the same relation R. Obviously, given a query
Q = {R, f, k}, only cache entries that refer to relation R are taken into account for
answering Q.

Fig. F.3 shows a server’s cache C that contains two cache entries, C1 and C2.
Query Q1 corresponds to a top-3 query, while Q2 is a top-4 query with different
weights. Their corresponding lines, LQ1 and LQ2 , stop at the k-th point for each
query respectively.

F.5.1 Basic Properties

In this section, we analyze when the query results of a cache C are sufficient to
answer a top-k query Q. When this situation occurs, we say that the cache covers
the query. Given a query Q = {R, f, k}, we identify three cases of covering: (1) a
cache entry Ci covers a query defined by the same function (f = fi), (2) a cache
entry Ci covers a query defined by a different function (f 6= fi), and (3) a set of
cache entries {Ci} cover a query defined by a different function (f 6= fi, ∀i).

In the first case, if there exists a cache entry Ci such that the weighting vectors
that define f and fi are identical and k ≤ ki, then Q can be answered from the
result of the cache entry Ci. More specifically, the first k data points of the cache
entry Ci provide the answer to Q.

In the second case, we examine if a cache entry covers a query defined by a
different function. To this end, we use the concept of safe area [3] SAi of a cache
entry Ci.

Definition 1 (Safe area) The safe area SAi of a cache entry Ci with respect
to a query Q is the area defined by the right upper corner of the data space and

166 PAPER F

the (n − 1)-dimensional hyperplane SLCi
that is perpendicular to the query vector,

intersects the query plane LQi
, and has the largest scoring value for Q between all

candidate hyperplanes.

In Fig. F.3, the lines that define the safe areas for C1 and C2 with respect to
Q are shown as SLC1 and SLC2 , respectively. Given a query Q, a cache entry Ci is
sufficient to answer a query Q, if it holds that the safe area SAi of the cache entry
Ci contains at least k data points. This means that there cannot be any other tuples
in the result set of Q that have not been retrieved by the query Qi, because the safe
area has been scanned during the processing of Qi. For example, in Fig. F.3, both
cache entries are sufficient for answering the query Q for k = 2, but none of those
is sufficient to answer the query Q for k = 3.

The third case deals effectively with the previous situation. Several cache entries
need to be combined to answer the top-k query, since a single cache entry is not
sufficient. To determine whether a set of cache entries can be used to answer a top-k
query, we define the concept of cache horizon.

Definition 2 (Cache horizon) The cache horizon of a cache C = {Ci} is defined
as the borderline of the area defined by the union of query planes LQi

.

The cache horizon represents the border between the points that are cached and
those that are not. Points behind the cache horizon (towards the right upper corner
of the data space) are contained in at least one cached entry, while points beyond
the cache horizon (near the origin of the data space) have to be retrieved from the
relation R that is stored at different servers. In Fig. F.3, the cache horizon is defined
by the lines LQ1 and LQ2 and the enclosed area has been examined to answer queries
Q1 and Q2. In order to determine if the result set of Q is behind the cache horizon
and can be answered by combining more than one cache entry, we define the limiting
point of the cache.

Definition 3 (Limiting point) The limiting point of a cache C is the point, where
the hyperplane SLC perpendicular to the query vector intersects the cache horizon,
when SLC moves from the right upper corner of the data space towards the origin.

The area defined by the hyperplane SLC and the right upper corner of the data
space is called safe area of the cache horizon. If this area contains more than k data
points, then Q can be answered by combining more than one cache entry.

Given a cache C with m cache entries C1, C2, . . . , Cm, the limiting point of the
horizon with respect to a query Q can be identified using linear programming. We
construct a constraint matrix H and right-hand-side values b from the weights and
thresholds of the m cache entries:

H =

w11 w12 · · · w1n

w21 w22 · · · w2n
...

wm1 wm2 · · · wmn

 ,b =

b1
b2
...
bm

F.6. REMAINDER QUERIES 167

Given a query Q, the objective is to maximize f = wQ
Ta, subject to the con-

straints Ha ≤ b and 0 < ai < 1, ∀ai. The solution of this linear programming
problem provides the coordinates of the limiting point. By applying the scoring
function f defined by Q, we get the cache score b = f(p) of the limiting point p. If
at least k cached points pi exist such that f(pi) ≥ b, then the entire result set of
query Q is retrieved from the cache entries.

F.5.2 Cache Replacement Policy

A first observation regarding a cache entry Ci ∈ C is that it can become redundant
due to other cache entries in C. More formally, Ci becomes redundant if its query Qi

is covered by a set of other cache entries. Redundant cache entries can be evicted
from the cache without affecting the cache’s ability to answer queries. Identifying
whether a cache entry Ci is redundant is achieved by solving a linear programming
problem. More detailed, the objective is to maximize wCi

Ta, subject to H′a ≤ b′

and ∀aj : 0 < aj < 1, where H′ and b′ describe the combined horizon of all cache
entries except Ci. Thus, we find the limiting point p of the cache when Ci is ignored.
If bi > fi(p), the cache entry Ci is redundant and can be removed.

Applying a traditional cache replacement policy, such as LRU, is inappropriate
due to the unique characteristics of our cache. The reason is that answering a top-k
query from the cache may require combining tuples from more than one cache entry.
Consequently, cache entries are utilized collectively, rendering any policy based on
usage statistics of individual cache entries ineffective.

Motivated by this, we introduce a new cache replacement policy named Least-
Deviation Angle (LDA), which is particularly tailored to our problem. After remov-
ing redundant entries, LDA determines the priority of a cache entry to be evicted
based on deviation from the equal-weights vector eT = (1, 1, . . . , 1). For each cache
entry Ci, the angle θi = arccos(ŵCi

· ê) between e and Ci is calculated and used as a
measure of deviation. The entry Ci with the largest θi is replaced first. Intuitively,
LDA penalizes cache entries that have low probability to be highly similar to other
queries.

F.6 Remainder Queries

In the previous section, we described in which cases the entries of the cache
are sufficient for retrieving the entire result set of a query Q. When this occurs,
no networking cost exists for answering the query. In the case where only k′ < k
tuples t are retrieved from the cache for which the inequality f(t) ≥ b holds (b is
the cache score), the cache fails to return the complete result set. Then, instead of
executing the entire query Q from scratch, ARTO executes a remainder query that
retrieves only the k − k′ missing tuples and transfers only the necessary tuples to
provide the complete result set. We first provide a short discussion showing that
is more beneficial to execute a remainder query, rather than restarting a cached
query Qi = {R, fi, ki} and retrieving additional tuples, so that the k tuples of Q are

168 PAPER F

O(0,0)

R(1,1)Q1

Q

A

B

X

Y DG F

E

SLC1

LQ1

LQ

Figure F.4: Areas examined by the remainder query vs. restarting a query Q1.

retrieved. Then, we define the remainder query and explain how it will be processed
in order to minimize the network consumption.

F.6.1 Discussion

In this section, we discuss the issue whether it is more beneficial to restart a query of
a cache entry Ci than posing a remainder query. Fig. F.4 depicts a cache containing
one cache entry C1 that covers the data space until the line LQ1 (line DB). A query
Q is posed, and the points in the cache entry until the line SLC1 (line AB) are used
for answering the query Q. If fewer than k tuples are enclosed in ABR, additional
uncached tuples must be retrieved from remote servers. We consider two options for
retrieving the remaining tuples. The first alternative is to pose a remainder query
that would scan the part FEBA of the data space. Since the query is executed based
on the given weighting vector of Q, we can stop after retrieving k tuples exactly,
i.e., at the query line LQ (FE). The other alternative is to restart the cached query
Q1. In this case, we can take advantage of all k1 data points of the cache entry C1

(i.e., we save the cost of scanning DBA). On the other hand, in order to be sure
that we have retrieved all tuples of the result set of Q we have to scan a larger area
at least until the line GE .

If data is uniformly distributed, the number of tuples retrieved is proportional
to the area of the data space that is scanned. For the sake of simplicity, we assume
that the query line of any query lies in the the upper right triangle of the data space.
This means that we have scanned less than half the data space, in order to retrieve
the result set of any query, which is an acceptable assumption since usually the
values of k are small. In our example, the area of FEBA is smaller than the area of
GEBD , and the retrieved tuples are expected to be fewer when the remainder query
is used. In the following, we prove that this always holds for the 2-dimensional case,

F.6. REMAINDER QUERIES 169

when the query line does not cross the diagonal line XY. Similar conclusions can
been drawn for arbitrary dimensionality.

Theorem 1 Given a 2-dimensional data space, if all query lines do not cross the
diagonal line XY , a smaller area is scanned if the remainder query is executed than
if continuing a cached query.

Proof 1 Using the areas of Fig. F.4, it suffices to show that the area of trapezoid
FEBA is smaller than the area of trapezoid GEBD. The two trapezoids share one
common side, namely EB. Furthermore, it is always the case that BD > BA and
GE > FE. Based on Thales’ theorem about the ratios of line segments that are
created if two intersecting lines are intercepted by a pair of parallels, we derive that
FA
AR

= EB
BR

(1) and GD
DR

= EB
BR

(2). From (1) and (2) we conclude that FA
AR

= GD
DR

. Since
DR > AR, we derive that GD > FA. Therefore, three sides of FEBA are smaller
than the corresponding three sides of GEBD and the remaining fourth side BE is
common. Hence, the area of FEBA is smaller than the area of GEBD.

F.6.2 Processing of Remainder Queries

Given a query Q and a cache score b, a remainder query is defined as Q′ = 〈R, f, k−
k′, b〉, where k′ is the number of cached tuples p such that f(p) ≥ b. Any server
Si that stores a fragment Ri of the relation R receives the remainder query Q′.
Independently from the implementation of the top-k operator at Si, the server Si

transfers to the querying server only tuples p such that f(p) ≤ b. Thus, it avoids
transferring tuples that are already cached and lie in the safe area of the querying
server.

To further limit the number of transferred tuples to the querying server, Si filters
out some of the locally retrieved tuples by using the cache horizon before transferring
them. Even though some tuples lie outside the safe area, they are available at the
querying server in some cache entry. For example, in Fig. F.4, the remainder query
has to start scanning the data space from the line SLC1 until k tuples are retrieved,
i.e., the remainder query fetches new tuples until the query line LQ. Nevertheless,
the points that fall in the triangle DBA are already available at the querying server
in the cache entry C1. These tuples do not need to be transferred, thus minimizing
the number of transferred data. In order for Si to be able to filter out tuples based on
the cache horizon, Si retrieves the descriptions of all cache entries from the querying
server. Then, all tuples p such that there exists a cache entry Ci such that fi(p) > bi
are not transferred to the querying server, since these tuples are stored locally in
the cache. The querying server combines the tuples received from the servers Si

with the tuples in the cache and produces the final result set of the query Q. To
summarize, the cache horizon is used to limit the remainder query, which means
that the whole cache is exploited and a minimal number of tuples is fetched from
other servers.

170 PAPER F

Algorithm 9 Server selection

1: Input: Query Q = {R, f, k}, Servers S
2: Output: Server S∗ that will process Q
3: S∗ ← null, minScore←∞
4: for (∀Si ∈ S) do
5: {(Qj, bj)} ← catalog.getCacheDesc(Si)
6: score(Si)← computeLimitingPoint({(Qj, bj)})
7: if (score(Si) < minScore) then
8: S∗ ← Si

9: minScore← score(Si)
10: end if
11: end for
12: return S∗

F.7 Server Selection

The problem of server selection is to identify the best server for executing the top-k
operator. While the rank scan operators must be located at the servers that store
the relation fragments, the top-k operator can be placed on any server. Our server
selection algorithm assigns the top-k operator to the server that results in the most
cost-efficient query execution in terms of network cost.

Intuitively, the best server S∗ to process the top-k query Q = {R, f, k} is the one
that can return as many as possible from the k result tuples from its local cache,
thereby reducing the amount of the remaining result tuples that need to be fetched.
To identify S∗, we need to inspect the cache entries for each server. This operation
is efficiently performed using the distributed catalog. In more detail, the catalog can
report the descriptions of cache entries C = {Ci} of any server, where a description
of Ci consists of {Qi, bi}. Based on this information, the limiting point of the server
is calculated, as described in Section F.5. Based on the limiting point, we compute
the score of each server by applying the function f of the query Q. The server S∗

with the smallest score is selected because this server has the largest safe area and
therefore is the best candidate to process the top-k query. Algorithm 9 provides the
pseudocode for the server selection mechanism.

F.8 Experiments

In this section, we present an experimental evaluation of ARTO. We have im-
plemented ARTO into the DASCOSA-DB [14] distributed database management
system and use this implementation to investigate the effect of different parameters,
query workloads and datasets.

Experimental setup. DASCOSA-DB provides a global distributed catalog
based on a distributed hash table, and this catalog was used to implement publishing
and lookup of cache entries’ descriptions. Experiments were performed for varying
a) number of servers, b) values of k, and c) cache size. We used three datasets,

F.8. EXPERIMENTS 171

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75

T
ra

n
sf

er
re

d
 d

at
a

(t
u
p
le

s)

Number of servers

ARTO
Hit/miss

No caching

Figure F.5: Transferred data for 1,000 queries and uniform data distribution.

with uniform, correlated and anti-correlated distributions. Each dataset consisted
of 1,000,000 5-dimensional tuples. The datasets were distributed horizontally and
uniformly over all servers. A separate querying server issued queries to the system
and received the results. The weights of the queries were uniformly distributed.

Each experiment was performed both without caching and with ARTO enabled.
In addition, we did experiments with a hit/miss implementation where the cache was
used only if it were sufficient to answer the complete query. This is conceptually
similar to previously proposed methods, e.g., BRANCA [20]. We measured the
number of tuples accessed a) locally on the querying server using its cache, and b)
from remote servers.

Varying number of servers. In this experiment, ARTO was evaluated with
uniformly distributed, correlated and anti-correlated datasets. Each dataset was
distributed over 25, 50 and 75 servers. A workload of 1,000 queries with uniformly
distributed weights and k = 50 were issued. Each server had 10,000 bytes cache,
which allows for 4 complete top-50 results to be cached at each server.

Fig. F.5 shows the total number of tuples that are transferred over the network
for the query workload using a uniform dataset. We observed similar results for
correlated and anti-correlated datasets, which hints that the performance of our
approach is stable across different data distributions. The combination of server
selection with remainder queries causes a major improvement in network commu-
nication costs, even with such a small cache size (4 cache entries). The advantage
of ARTO is clearly demonstrated when comparing to the hit/miss strategy, which
performs poorly, as it requires k tuples in the safe area to use the cache. Since
cache misses are frequent, the complete top-k query has to be executed. The re-
sults of hit/miss are just barely better than without caching, while ARTO achieves
significant improvements.

Varying k. The size of k affects the gain that can be obtained from caching. If k

172 PAPER F

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75 100 125

T
u
p
le

s

k

ARTO total
Hit/miss total

No caching total
ARTO local

Hit/miss local
No caching local

Figure F.6: Results of queries with varying k.

is very small, there are not that many remote accesses that can be replaced by local
accesses. In this experiment, the caching method was tested with varying values
for k. A uniform dataset of 1,000,000 tuples on 25 servers was used. Each site had
10,000 bytes cache. The results displayed in Fig. F.6 show how the number of total
and local accesses increases with increasing k. ARTO always accesses significantly
more local tuples compared to the competitor approaches. Around k = 100, the
number of local tuples accessed starts to decrease. This is because the cache is of
a limited size. With k = 100, only two complete top-k results fit in cache. Even
in this extreme case, ARTO still manages to access a high percentage of the total
tuples from the local cache, thereby saving communication costs.

Cache size. In order to study the effect of cache size in more detail, we per-
formed an experiment where we gradually increased the cache size up to 50,000
bytes, i.e., more than 20 complete results. We fixed k = 50 and used a uniform
dataset of 1,000,000 tuples on 25 servers. The results are shown in Fig. F.7. As
the cache size increases, more top-k queries can be cached, thus enlarging the safe
area. Consequently, ARTO reduces the number of transferred data (remote tuples
accessed). In contrast, the hit/miss strategy always results in cache misses and
cannot reduce the amount of transferred data.

F.9 Conclusion

In this paper, we present ARTO, a novel framework for efficient distributed top-k
query processing. ARTO relies on a caching mechanism that reduces the network
communication costs significantly by retrieving as many tuples as possible from the
local cache. In order to retrieve the missing tuples, we define the remainder query
that transfers only the tuples that are not stored in the cache by filtering out tuples
based on the cache horizon. Moreover, ARTO provides a server selection mechanism

BIBLIOGRAPHY 173

20k

40k

60k

80k

100k

0 5 10 15 20 25 30 35 40 45 50

T
ra

n
sf

er
re

d
 d

at
a

(t
u
p
le

s)

Cache size (kB)

ARTO
Hit/miss

Figure F.7: Results of queries with varying cache size.

that assigns a new top-k query to the most promising server. We have implemented
our framework in the DASCOSA-DB database management system. The results of
the experiments show considerable improvements in network communication costs.

Acknowledgments

The authors would like to express their thanks to Jon Olav Hauglid for help with
the implementation in DASCOSA-DB and João B. Rocha-Junior for providing the
dataset generator.

Bibliography

[1] Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstruc-
tured P2P systems using top-k queries. Distributed and Parallel Databases
19(2-3), 67–86 (2006)

[2] Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k
queries. In: Proceedings of VLDB (2007)

[3] Baikousi, E., Vassiliadis, P.: View usability and safety for the answering of
top-k queries via materialized views. In: Proceedings of DOLAP (2009)

[4] Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed
top-k retrieval in peer-to-peer networks. In: Proceedings of ICDE (2005)

[5] Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over rela-
tional databases: Mapping strategies and performance evaluation. ACM Trans.
Database Syst. 27(2), 153–187 (2002)

174 PAPER F

[6] Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks.
In: Proceedings of PODC (2004)

[7] Chandramouli, B., Bond, C.N., Babu, S., Yang, J.: Query suspend and resume.
In: Proceedings of SIGMOD (2007)

[8] Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings
of VLDB (1999)

[9] Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries
over multimedia repositories. IEEE Trans. on Knowledge and Data Engineering
16(8), 992–1009 (2004)

[10] Chaudhuri, S., Kaushik, R., Ramamurthy, R., Pol, A.: Stop-and-restart style
execution for long running decision support queries. In: Proceedings of VLDB
(2007)

[11] Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries
using views. In: Proceedings of VLDB (2006)

[12] Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for
image databases. In: Proceedings of VLDB (2000)

[13] Hauglid, J.O., Nørv̊ag, K.: PROQID: Partial restarts of queries in distributed
databases. In: Proceedings of CIKM (2008)

[14] Hauglid, J.O., Nørv̊ag, K., Ryeng, N.H.: Efficient and robust database support
for data-intensive applications in dynamic environments. In: Proceedings of
ICDE (2009)

[15] Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A system for the
efficient execution of multi-parametric ranked queries. In: Proceedings of SIG-
MOD (2001)

[16] Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv. 40(4) (2008)

[17] Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-
accessible databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

[18] Michel, S., Triantafillou, P., Weikum, G.: KLEE: A framework for distributed
top-k query algorithms. In: Proceedings of VLDB (2005)

[19] Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k
query processing in highly distributed environments. In: Proceedings of SIG-
MOD (2008)

[20] Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled dis-
tributed environments. Data and Knowledge Engineering 63(2), 315–335 (2007)

Paper G

The DASCOSA-DB Grid
Database System

Jon Olav Hauglid, Norvald H. Ryeng and Kjetil Nørv̊ag.
In Grid and Cloud Database Management, Giovanni Aloisio and Sandro Fiore (Ed.),
Springer-Verlag, 2011.

175

G.1. INTRODUCTION 177

Abstract

Computational science applications performing distributed computations using grid
networks are now emerging. These applications have new and demanding require-
ments for efficient query processing. In order to meet these requirements, we have
developed the DASCOSA-DB distributed database system. In this chapter, a de-
tailed overview of the architecture and implementation of DASCOSA-DB is given,
as well as a description of novel features developed in order to better support typical
data-intensive applications running on a grid system: fault-tolerant query process-
ing, dynamic refragmentation, allocation and replication of data fragments, and
distributed semantic caching.

G.1 Introduction

During the recent years, there has been a trend towards applications deployed on
increasingly larger distributed systems with need for advanced data management. A
prime example of such applications is computational science applications that uses
advanced computing capabilities to understand and solve complex problems. Such
applications frequently requires powerful computing resources, for example delivered
through grid computing services.

While grid computing has gained maturity through the recent years, management
of data in grid systems is less mature. Data storage and access is still mostly file
oriented, and it is mostly left to users to manage files and their locations as needed.
Although some support has emerged for metadata management, more advanced
database features are not widely supported.

The goal of our research is a reliable database grid, with location-transparent
storage, i.e., users/applications do not have to care about where data is stored
and where queries are processed. The aim is sites cooperating on data storage
and processing while retaining autonomy, i.e., a grid-wide database system. It is
important to note how our context differs from more traditional approaches. The
focus is on applications where large amounts of data is created and used on the same
site, and where parts of the data, in particular summary data, are accessed by other
grid participants.

An example of such applications is weather forecasting, where the national
weather forecasting institutions have large amounts of locally collected data, do
forecast, and make the resulting data available. They also store historical data.
Both the summary data and historical data will be of interest to, and used by, other
weather forecasting institutions and environmental researchers.

In this chapter we describe DASCOSA-DB, a distributed database system, which,
in addition to providing location-transparent storage and querying, also includes
novel features like efficient partial restart of queries and redistribution of query
operators in the context of failure, dynamic refragmentation, allocation and repli-
cation of data fragments, and distributed semantic caching. A detailed overview
of the architecture and the implementation of DASCOSA-DB is given, as well as
a description of some of the features developed in order to better support typical

178 PAPER G

data-intensive applications running on a grid.

The rest of this chapter is organized as follows: In Sect. G.2 we give a short
overview of other similar systems. In Sect. G.3 we present the system architecture
of DASCOSA-DB. Sect. G.4 describes how data and metadata management is
handled, and Sect. G.5 explains query processing, including semantic caching and
partial restart of failed queries. Our distributed monitoring and management tool
is described in Sect. G.6. An experimental evaluation of the system is provided in
Sect. G.7. Finally, we summarize our work and describe future research directions
in Sect. G.8.

G.2 Overview of Related Systems

Distributed databases and query processing is not a new field. For an introduction
to distributed databases, we refer to [15]. A survey of distributed query processing is
given in [12]. In this section, we will give an overview of systems that are similar to
DASCOSA-DB. This includes both storage systems without query capabilities and
query systems without storage capabilities, as well as complete database systems.

Much of the more recent work is based on peer-to-peer (P2P) networks, both
unstructured and structured. Especially distributed hash tables (DHTs) have re-
ceived much attention. A number of papers deal with focused issues such as query
processing in DHT networks, including [2, 7].

OceanStore [13] is one of the storage systems without query capabilities. It
provides an infrastructure for permanent storage and replication of objects, but no
query system. Objects are accessed based only on their globally unique ID, and this
ID has to be known in order to retrieve or update the object.

BigTable [5] is a large-scale distributed storage system with a model closer to
relational databases. The storage model is similar to the relational model, but tuples
are not stored or accessed as one unit. Instead, a row key and column key is used for
both read and write operations. It does not provide more advanced query languages.

DASCOSA-DB does not provide its own storage infrastructure, but relies on an
existing relational DBMS to store data. In that way, it is somewhat similar to the
pure query engines that only provide a query processing service and no persistent
storage.

Astrolabe [16] is one such system. Astrolabe is a distributed, hierarchical aggre-
gation system designed for system monitoring. Astrolabe provides an interface that
is similar to a database system, i.e., it provides SQL queries and standard database
programming interfaces like ODBC and JDBC. To achieve scalability, updates are
spread using a gossip protocol that guarantees eventual consistency. There is no
guarantee that a client reads the most recent data, but if updates stop, all clients
will eventually agree on the most recent value.

PIER [11] is a middleware query engine built on top of a DHT. PIER does
not permanently store its data. Data sources publish their data in the DHT and
update them regularly, and data that are not refreshed are removed. Typically, a
PIER network will contain only object metadata (e.g., filenames, sizes, tags) and

G.2. OVERVIEW OF RELATED SYSTEMS 179

a reference to the original data object. Clients will query the network to get the
references to the objects of interest and retrieve the objects separately.

The difference between these query engines and DASCOSA-DB is that, although
DASCOSA-DB has a middleware architecture like PIER, it provides persistent stor-
age by using a local database on each site. It is not necessary to constantly republish
data, as is the case with PIER.

Among the systems that provide a full DBMS, with both query processing and
storage, are Hyperion [17], Orchestra [22] and Piazza [6]. All these systems allow
each site to have its own schema, and use schema mediation techniques to allow cross-
site querying. PeerDB [14] also falls into this category of systems with heterogeneous
schemas, but the approach to schema mediation is different. Instead of relying
on schema mediators, information retrieval techniques are used to find matching
relations.

DASCOSA-DB does not use schema mediation. The systems mentioned above
are meant to connect existing databases and provide a common query interface.
Although DASCOSA-DB is a distributed database system with a high degree of site
autonomy, it still behaves as one system, not many different systems with a common
interface.

Other systems based on a common schema include APPA [1], Mariposa [21] and
ObjectGlobe [4]. APPA provides a multilayered solution on top of a structured or
super-peer P2P network, where the bottom layer is a simple key/value-store and the
top level provides advanced services such as schema management, replication and
query processing.

Mariposa is a distributed database system that uses economic models to solve
optimization problems. Mariposa sites buy and sell fragments and bid for the execu-
tion of queries. The trading and bidding makes sure queries are answered efficiently
and that data are moved closer to where they are needed.

ObjectGlobe is a distributed query processing infrastructure that allows users
to combine data sources and query operators from different providers at different
sites to perform queries. Sites can sell data, query operators, computing power or a
combination of these. The client combines these resources to a full query pipeline.

AmbientDB [3] is probably the system that bears the closest resemblance to
DASCOSA-DB. AmbientDB is a system designed to provide full relational database
functionality for stand-alone operation in autonomous devices that may be mobile
and disconnected for long periods of time, while enabling them to cooperate in an
ad hoc way with (many) other AmbientDB devices. A DHT is used both as a means
for connection peers in a resilient way as well as supporting indexing of data.

Like AmbientDB, DASCOSA-DB is also constructed as a combination of mid-
dleware and federated databases, connecting the local databases of each site. The
key difference is that AmbientDB is a system for mobile devices, which have low
computational power and may frequently be disconnected from the network, while
DASCOSA-DB is designed for sites that have the computational power necessary to
do query processing and more stable network connections. DASCOSA-DB is also
based on a DHT, like AmbientDB and PIER. However, the DHT is only used as
a metadata catalog. Query processing uses point-to-point links following the query

180 PAPER G

tree, more like Mariposa and ObjectGlobe. This is different from PIER, where the
DHT is used extensively in query processing.

In terms of query capabilities, all sites of DASCOSA-DB are equal. There is
no buying or selling of query operators or data. Data is fragmented, allocated and
replicated according to the needs of the combined load of all sites, trying to keep
the costs of network communication low. Query operators are shipped out to sites
in order to minimize network costs by trying to perform most query operations on
local data.

Many of the systems mentioned above support SQL-like querying and presents
data similar to a normal relational database system. DASCOSA-DB is fully a rela-
tional database system that supports standard SQL.

A brief description of a DASCOSA-DB demonstration is given in [9].

G.3 System Architecture

In this section, the architecture of DASCOSA-DB is described. DASCOSA-DB
consists of a number of autonomous sites connected to form a distributed database
system. First is described how sites are connected, how data is distributed and how
sites cooperate to execute queries and updates, and then the internal architecture
of a single site is presented in more detail.

G.3.1 Distributed Architecture

DASCOSA-DB is designed as a middleware layer that binds together local DBMSs
running on different sites to make a distributed DBMS providing location trans-
parency. Fig. G.1 shows the distributed architecture of DASCOSA-DB, as a mid-
dleware connecting local databases and applications to provide access to a large,
distributed database. All sites are autonomous. There is no single site that controls
the distributed DBMS. In this way, the sites act together as a peer-to-peer network.

All sites connect to form a DHT. This DHT is used to store the distributed
catalog, which contains information on all tables, table fragments, replicas and cache
entries in the system. Currently, FreePastry1 is used, but any other DHT may be
used.

A new site wishing to join a running DASCOSA-DB system only needs to know
the address of one connected site in order to join the DHT and thus be a part of the
distributed database. When it has joined, it publishes information about its local
metadata in the distributed catalog in order to make its local tables available to the
rest of the system.

Sites communicate using messages. These messages can either be sent directly
to a site if the address is known, or routed to the target site using the DHT routing
mechanism. The latter method is used for catalog lookups and updates.

DASCOSA-DB supports the relational model and bases its storage on a local re-
lational database management system. The current implementation uses JavaDB,2

1http://freepastry.org/
2http://www.oracle.com/technetwork/java/javadb/overview/

http://freepastry.org/
http://www.oracle.com/technetwork/java/javadb/overview/

G.3. SYSTEM ARCHITECTURE 181

� �

��������

����	AB�	C�

D�EF�E��D�

D��E

����	AB�	C�

D�EF�E��D�

D��E

����	AB�	C�

D�EF�E��D�

D��E

����	AB�	C�

D�EF�E��D�

D��E

����	AB�	C�

D�EF�E��D�

D��E

����	AB�	C�

D�EF�E��D�

D��E

Figure G.1: Distributed architecture of DASCOSA-DB.

but any relational database management system may be used. The back-end database
system can be chosen freely at each site.

The relational tables can be horizontally fragmented over a subset of the sites
in the system. Each fragment can also be replicated. The distributed catalog main-
tains information about tables, fragments and their replicas. Creation and removal
of fragments and replicas can be done using DASCOSA-DB’s automated refragmen-
tation method. Based on logging of read and write accesses, fragments can be split
or joined, or replicas can be created and removed. This is done to reduce overall
communication costs by making more data available locally where it is used and
scale the number of replicas by the amount of writes. For example, a site doing
heavy reads on a table fragment will get a local replica once this pattern is detected.

When executing queries, DASCOSA-DB utilizes query shipping. After query
optimization, different query operators are allocated and distributed to sites in the
system. This allows different operators to be executed by different sites in parallel.
DASCOSA-DB also includes support for distributed semantic caching to speed up
query execution. During updates, replicas are kept up to date using synchronous
replication and transactions are handled using the two-phase commit protocol.

G.3.2 Site Architecture

The overall architecture of a DASCOSA-DB site is illustrated in Fig. G.2. As
described above, sites communicate using direct messages or using the DHT. To-
gether with modules handling broadcasting of messages to the network and request-
response pairs of messages, these constitute the communication subsystem in DASCOSA-
DB.

Local storage on a site consists of three parts. First, there is the relational data.

182 PAPER G

Storage (Java DB)

Local
Database

Database
Index MetadataMessage Handler

DHT (Pastry)

Distributed
Index

SQL Interface

Executor

Table Fragment Handler

Broadcast
Handler

Request-
Response
Handler

Parser Planner Optimizer

Query
Executor

Update
Executor

2PC

Fault
Handler

Cache
Lock

Manager
Fault

Detector

Figure G.2: High-level overview of the architecture of a DASCOSA-DB site.

Relational tables can have one or more fragments and each fragment has one or
more replicas. Therefore, the unit of local storage is a table fragment replica. The
second part of local storage is the indices for these replicas. Finally, each site stores
a part of the distributed metadata catalog. Which part of the catalog a given site
stores, is determined by the distributed hashing algorithm and the site’s position in
the DHT.

Which replicas a site stores locally can change at runtime. Based on an analysis
of logged reads and writes, the local Table Fragment Handler can dynamically decide
to change the fragmentation and allocation of replicas in one of four ways:

• Coalesce two fragments into one fragment. This means that all replicas of
both fragments will have to be altered.

• Split a fragment into two fragments. As with coalesce, this will have global
effect for all replicas of the fragment.

• Send a copy of a local replica to another site so that this site can get its own
local replica to speed up local accesses.

• Delete a local replica. This will reduce the effort needed to keep all replicas
of a fragment up to date and will therefore make sense in periods with many
updates.

The Fault Detector and Fault Handler are used to implement partial restart of
failed queries. If a site detects that another site designated to execute a subquery
has failed, it can handle this fault transparently from the rest of the query execution.
This is done by relocating the failed subquery to other sites. In many cases, this

G.4. DISTRIBUTED DATA AND METADATA MANAGEMENT 183

can be done efficiently by not having the new sites restart the subquery completely,
but rather continue where the failed site stopped.

Each site in the system can receive SQL queries and updates, for example using
the provided user interface or using API calls. A received SQL statement is first
parsed and transformed into relational algebra. If it is a query, a lookup in the
distributed catalog is done to find location information about all involved tables.
This information is then used by the Planner and Optimizer modules to generate
a distributed query plan, including allocating the individual query operators to
individual sites in the system. The operators are distributed to the involved site
where the Query Execution module is responsible for the actual execution.

In order to facilitate easy interactive access to the system, as well as study
configuration, distribution of data and query execution, DASCOSA-DB includes a
monitoring tool that gives a live view of table fragments, replicas, catalog entries
and cache entries. It also provides a live view of query execution, including network
traffic and currently running query operators.

G.4 Distributed Data and Metadata Management

Tables in DASCOSA-DB may be horizontally fragmented based on the primary
key, and DASCOSA-DB provides an adaptive fragmentation and replication sys-
tem [10] that automatically moves data between sites as needed. In this section,
the fragmentation process and then the replication of the fragments are described.
Then it is described how metadata about fragments and replicas are retrieved from
the local database when a site connects to the system and how it is published and
subsequently retrieved from the global distributed catalog.

G.4.1 Fragmentation

A table may be stored in its entirety on one site, or it can be fragmented over
a number of sites. An unfragmented table is treated as a table having a single
fragment. Tables are fragmented horizontally based on the primary key. Each
fragment of a table is given a fragment value domain (FVD) that defines which range
of the primary key domain has been allocated to the fragment. The fragments are
non-overlapping, and the FVDs of all fragments of a table cover the whole primary
key domain.

The FVD of a fragment may cover a much larger range than the range of actual
tuples in the fragment. E.g., a newly created table consists of one fragment with
the whole primary key domain as its FVD, even though it does not store any tuples
yet. As tuples are inserted, updated, read and deleted, a larger part of the FVD is
actually used, and the table may split into more fragments

The traditional way of fragmenting and replicating tables in distributed database
systems has been to use fixed value ranges or rules defined by database administra-
tors. In DASCOSA-DB, fragments and replicas are created and migrated automati-
cally by the system to accommodate the current query load. Based on access pattern
monitoring, DASCOSA-DB will try to keep the number of accesses to remote sites

184 PAPER G

as low as possible. The FVDs and fragment placements are not fixed, so fragments
can be split, coalesced and migrated automatically to adapt to changing workloads.
Fig. G.3(a) shows a simple example of how two sites with different access patterns
access the same table. Site S2 has a few hotspots, while site S1 accesses the whole
table uniformly and infrequently. In this case, DASCOSA-DB will split (or merge if
the table is already split) the table into 6 fragments, F1, F2, . . . , F6. F1, F3 and F5

will be allocated to site S2, while F2, F4 and F6 will be allocated to site S1.

In order to make informed decisions about useful fragmentation and replica
changes, future accesses have to be predicted. As with most online algorithms,
predicting the future is based on knowledge of the past. In our approach, this
means detecting access patterns, i.e., which sites are accessing which parts of which
fragment. This is done by recording accesses in order to discover access patterns.
Recording of accesses is a continuous process. Old data is periodically discarded so
that statistics only include recent accesses. In this way, the system can adapt to
changes in access patterns.

Given the available statistics, our algorithm examines accesses for each replica
and evaluates possible refragmentations and reallocations based on recent history.
The algorithm runs at given intervals, individually for each replica. Each site bases
its decisions only on information available at that site, requiring no synchronization
with other sites. With master-copy based replication, all writes are made to the
master replica before read replicas are updated. Therefore, write statistics are avail-
able at all sites with a replica of a given fragment. On the other hand, reads are
only logged at the site where the accessed replica is located. This means that read
statistics are spread throughout the system. In order to detect if a specific site has a
read pattern that indicates that it should be given a replica, it is required that each
site reads from a specific replica so that each site’s read pattern is not distributed
among several replicas.

There is a great potential for cost savings by improving fragmentation. Fig. G.3(b)
shows the reduction in number of tuples transferred over the network in DASCOSA-
DB for two different workloads. In the general workload, all sites access tuples
uniformly across a selected range of the whole table. 80% of the accesses are read
accesses and 20% are write accesses. The reduction in tuple transfers is more than
40%. In the grid application workload, each site alternates between read phases
and write phases, changing hotspots for each phase. The grid application workload
has more clearly separated phases, and the savings are more than 50%. The results
clearly show that the cost of splitting, migrating and replicating fragments pays off.

G.4.2 Replica Management

A table fragment is considered to be a logical entity. The physical entities stored in
the local DBMSs are table fragment replicas. All fragments must therefore have at
least one replica.

Replicas are kept up to date using synchronous replication. Every statement
that changes the state of a fragment is sent to all sites with replicas. All replicas
must be updated in order for a transaction to commit, and a two-phase commit

G.4. DISTRIBUTED DATA AND METADATA MANAGEMENT 185

F2F1 F3 F5F4 F6

1

2

(a)

 0

 10

 20

 30

 40

 50

 60

General Grid application

P
ct

. r
ed

uc
tio

n
in

 c
om

m
. c

os
t

(b)

Figure G.3: (a) Access pattern and desired fragmentation. (b) Reduction in com-
munication costs relative to static fragmentation.

186 PAPER G

protocol is used to ensure that all replicas agree on the decision to abort or commit
the transaction.

Similar to the way fragments can be split or coalesced, replicas can be automat-
ically created and deleted. Each site logs reads and updates to the locally stored
replicas. A new replica is created at a given site if this site does a lot of reads. The
idea is that the cost of transferring the replica to the site is less than having a con-
stant stream of remote read requests. A local replica is deleted if there are few local
accesses compared to the number of updates received. For both these mechanisms,
the idea is to reduce the overall network traffic.

Not all replicas are treated equally. One replica is designated as the master
replica. In order to ensure that automatic replica deletion does not delete all replicas,
this replica is not eligible for deletion. The site containing the master replica has two
special functions. First, it is the site where refragmentation decisions are made. This
prevents two sites from independently and simultaneously deciding to, e.g., split the
same fragment. Only the site with the master replica is able to do this. Second,
the site with the master replica acts as a lock manager for the table fragment. This
allows us to not have a centralized lock manager, which could become a bottleneck
in a large system. When the system first boots, the catalog site storing the catalog
entry for a table decides for each fragment of the table which replica becomes the
master replica, and thus also which site becomes the master replica site. A new
master replica site can be selected if the current master replica site crashes. It is
also possible for the current master replica site to transfer this status in case of
refragmentation.

G.4.3 Metadata Management

DASCOSA-DB uses a DHT to store and access the metadata catalog. The DHT
provides a reliable and robust routing and lookup mechanism. Due to the DHT
routing, catalog lookups are fault tolerant. The DHTs hashing function also dis-
tributes responsibility for metadata storage. All sites in the system participate in
the DHT, and when a metadata object is published in the DHT, the DHT places
it on one of the sites according to a hash of the object. Using a uniform hashing
function, metadata objects are uniformly distributed among the catalog sites.

When a site joins the DHT, it scans its local database and inserts information on
local objects into the DHT. Catalog objects will time out if they are not renewed,
and sites periodically republish their information before the objects time out and
are removed. This is done to ensure that erroneous information that may appear
due to sites crashing after publishing their metadata is cleaned up regularly.

The catalog keeps track of tables and their schemas. For each table, it stores
information about the primary key and the name and data type of all attributes.
The catalog also keeps track of how tables are fragmented and replicated, i.e., how
many fragments there are, the FVD of each fragment, and the number of replicas
and their locations. Also, one replica of each fragment is designated the master
replica, and the catalog stores this information.

The existence of caches of intermediate query results is also regularly published

G.5. DISTRIBUTED QUERY PROCESSING IN DASCOSA-DB 187

to the catalog in the same manner as table, fragment and replica information. For
each cached query result, the catalog stores a semantic descriptor, location and
timestamp. Information about cache entries is not looked up directly, but rather
discovered as a side effect of table lookups. The cache lookup is included in ta-
ble lookup requests and replies. This mechanism is described in more detail in
Sect. G.5.1.

G.5 Distributed Query Processing in DASCOSA-

DB

DASCOSA-DB is a query shipping system where all sites store data and process
queries. Queries may arrive from any site of the system, and the site that introduces
a query to the system becomes the initiator site for that query. It is assumed that
queries are written in some language that can be transformed into relational algebra
operators, for example SQL.

G.5.1 Query Pipeline

A query enters the system at one site. This site, called the initiator site, becomes
the coordinating site for this query. The initiator site transforms the query into
an algebra tree. During query planning, the different algebra nodes are assigned
to sites. This requires catalog lookups in order to transform logical table accesses
into physical localization programs, e.g., a set of accesses to table fragment replicas.
Sites can be assigned more than one algebra node so that one site can be assigned a
whole subquery. As all sites have the capability to execute operators, sites storing
table fragments used in the query are typically also assigned query operations on
these fragments during planning. This tends to reduce network traffic as tuples can
be processed locally. An example of an algebra tree with site assignment is shown
in Fig. G.4(a). The initiator site plays the role of coordinator for this query and
executes an initiator algebra node that is the endpoint of the query result.

DASCOSA-DB can cache the intermediate and final results of queries. Each site
autonomously caches results of locally executed queries and subqueries and registers
these in the distributed catalog so that the caches can be found by other sites. These
catalog entries contain a semantic description of the cached query result, the address
of the site that stores the cache entry, and a timestamp used to check cache entry
validity.

As Fig. G.4(a) indicates, the complexity of a query increases with the height
of the query tree. The query T ∗ U ∗ V is more complex than T ∗ U . If some of
the intermediate results, like T ∗ U , are cached, the more complex queries may be
answered partly from these caches, saving both execution time and computational
cost. More complex results in cache means larger savings when these caches are
used. However, as the other arrow in Fig. G.4(a) shows, the reusability of a result
is higher for the less complex queries.

188 PAPER G

S0 S1

S2

S3

T U

V

I
Initiator site

Initiator node

C
o

m
p

le
x ity a

n
d

 co
st

R
e

u
sa

b
i lity

(a)

S0 S1

S2

S3

T U

V✻

✻

I

CACHE

Query result

Query w/timestamps

Timestamp request

Current timestamp

(b)

Figure G.4: (a) Example query plan. (b) Query dissemination with a cache hit.

When a table is looked up in the catalog, the initiator site piggybacks a rep-
resentation of the query to the lookup message. The catalog site that handles the
lookup request sees this query representation and responds by piggybacking onto
the response a list of suitable cache entries that might speed up query processing.
Information about a cache entry is stored at the same site as one of the tables in-
volved in the query that produced it. This means that after looking up all tables,
the initiator site has been told about all caches involving the combination of these
tables. During localization, the initiator site looks at these cache entries. If a rele-
vant cache entry is found, the initiator site can rewrite the query to use the cache
entry. This is done by including the query that produced the cached result as a
subquery of current query and assigning the subquery to the site where it is cached.

After planning and possibly rewriting the query to use cached intermediate re-
sults, query dissemination begins by transmitting the algebra tree stepwise from the
initiator site to the different sites involved. The root algebra node always stays at
the initiator site. For each child of the root node, the initiator site sends out the
subtree rooted at that child node to the child’s assigned site. These sites, upon
receiving query subtrees where the roots are assigned to them, loop through the
children of the roots and ship them off to the sites to which they are allocated. This
continues until all nodes have reached their destination. The result of this stepwise
transmission is that each site knows the complete subquery for which it is the root.

However, if a site receives a subtree for a query it has in its cache, and if that
cache entry is still valid, further dissemination of that subtree stops. Instead, the
site prepares a special algebra node to produce the result from cache. To the sites
higher up in the hierarchy, there is no way to tell if the result is served from cache or
produced from scratch. This transparency allows the sites to make cache decisions
without relying on central coordination. Fig. G.4(b) shows query T ∗ U ∗ V with

G.5. DISTRIBUTED QUERY PROCESSING IN DASCOSA-DB 189

a cache hit on subquery T ∗ U . Site S0 checks the timestamp of the cache entry
against the timestamps of T and U to see if the cache is up to date. If it is, T ∗ U
is delivered from cache, and the only query operator actually executed is the join of
T ∗ U and V at site S0. Site S1 is never involved in the query processing, except
when replying to the request for the timestamp of U .

Results of query operators are transferred between sites in tuple packets. The
system supports stream-based processing of tuples, for example joins performed
by pipelined hash-join [23]. This means that an algebra node usually can start
producing tuples before all the tuples are available from its operand nodes. This
makes it possible for nodes downstream to start processing as soon as possible and
therefore lets more nodes execute in parallel. This requires each site to be able to
accept and buffer yet unprocessed packets, but it allows data transfers to be made
without explicit requests, thereby improving response time. In case of limited buffer
availability, flow control is used to temporarily halt packet transmissions.

The result of any algebra operator is a candidate for caching at the site where it
is produced. Sites are allowed to use any cache replacement algorithm they want.
A cache entry is usable as soon as it is created, but in order to enable the query
planners to plan on using cached results the cache entries must be registered in the
distributed catalog. A site that has cached a result reports its existence to the same
site that handles lookup request for one of the tables used to produce the result.
E.g., if the cache entry is the result of T ∗ U , the catalog stores the information
about this entry at either the site that stores the catalog entry for T or the catalog
entry for U . Any site that later looks up both T and U in order to perform a join
is guaranteed to find this entry.

G.5.2 Standard Query Operators

DASCOSA-DB supports the typical query operators. At the lowest level, the scan
operator accesses the local DBMS and delivers tuples of a table fragment. In order
to speed up execution, special scan nodes exist that push selection and projection
down into the local DBMS.

Selection and projection operators also exist to be inserted into the query tree
when the operations cannot be pushed down into the local DBMSs. The selection
operators also support set operators, i.e., IN and EXISTS, to compare against the
result of subqueries.

The join operators include natural join, equijoin and outer join. These are im-
plemented as pipelined hash joins. An operator also exists to produce the Cartesian
product. Other operators include sorting, limiting, aggregation (including group-
ing), duplicate removal (UNIQUE) and a skyline operator.

All operators, except the scan operators, have flow controlled input and output
streams with a general interface. This makes it possible to connect them in any
meaningful way to represent a query. This generalized interface also makes it easy
to ship queries around, since the input and output streams are network transparent.

For most normal cases in-memory operators suffice, but for large operand sizes
there are also variants of these operators that will use disk to avoid excessive memory

190 PAPER G

consumption.

G.5.3 Fault-Tolerant Distributed Query Processing

The more sites that are involved in a query, the higher the probability of a site fail-
ing during query processing. Long queries and high churn rates in the system also
increases the probability of site failures. The traditional way of handling failures
focuses on update transactions, and the typical failure recovery is to do a complete
restart of the failed transaction. Query failures have largely been overlooked. Com-
plete query restart is an appropriate technique for small and medium-sized queries,
however it can be expensive for very large queries, and in some application areas
there can also be deadlines on results so that complete restarts should be avoided.
In some cases, various checkpoint-restart techniques have been employed to avoid
complete restarts of operations, but these techniques have been geared towards up-
date/load operations, and in many cases implies that a query will be delayed until
the failed site is back online.

As an alternative to local checkpointing and complete restart, DASCOSA-DB
supports partial restart of queries [8]. With partial restart, unfinished subqueries
from failed sites can be resumed on new sites after failures. These restarted sub-
queries may also utilize partial results already produced before the failure — both
results generated at non-failing sites and results from failing sites that have already
been communicated to non-failing sites. The technique integrated in DASCOSA-DB
can be compared to previous approaches like [20]. DASCOSA-DB’s fault tolerant
query processing 1) reduces query execution time compared to complete restart,
2) incurs minimal extra network traffic during recovery from query failure, 3) em-
ploys decentralized failure detection, 4) supports non-blocking operators, 5) handles
recovery from multi-site failures, and 6) avoids duplicate tuples by deterministic
delivery of tuples from base relations and operators. The query restart techniques
can also be used to provide distributed suspend and restart of queries.

Fig. G.5(a) shows a system executing the query T ∗ U ∗ V . Originally, only sites
S1, S2, S4, S5 and S6 are involved, but sometime during query processing S4 fails.
This is detected by site S6, which is the recipient of the result of the failed algebra
node. Site S6 chooses S3 to replace S4, and reissues the query T ∗ U to this site. Site
S3 follows the normal query dissemination strategy and forwards the scan operators
to sites S1 and S2. The particular challenges that have been solved in our approach
relate to failure detection, selection of replacement site, and restart of the various
relational algebra operators.

Failures during query processing are detected by using timeouts. There is no
central failure detector. Instead, a site monitors all sites that produce the operands
for query operators executing at that site. If a site failure is detected, a new site is
selected for each of the failed operators. The impact of a failure is therefore localized
— it only affects the sites receiving the results of the failed query operators. Other
queries and subqueries executing at other sites continue as normal.

The replacement site selected to execute a failed query operator tries to pick off
where the operator first failed. How this is done, depends on the operator. Two

G.5. DISTRIBUTED QUERY PROCESSING IN DASCOSA-DB 191

(a)

0 %

20 %

40 %

60 %

80 %

100 %

2 3 4 6 8 9 10 12 13 14

TPC-H query number

(b)

Figure G.5: (a) Example of query failure and restart. (b) Relative cost of restarted
TPC-H queries.

192 PAPER G

classes of operators can be identified: stateless and stateful. Stateless operators
process tuples independently. Examples include projection and selection. For these
operators, the number of operand tuples an operator has used to produce a given
number of result tuples is stored. This number is transmitted with each packet of
tuples sent in the network. Using this number, a replacement site knows where to
start when resuming a failed operator. For example, assume that a failed site Sf

was executing a selection. This selection was done on tuples received from another
site So. The target site St for the selection, has received 500 result tuples when
Sf fails. Assume that 800 tuples from So had been processed to produce those 500
result tuples. This fact will be known by St and transmitted to the replacement site
Sr. Sr will then know that it should request So to resume sending tuples, skipping
the first 800.

For stateful operators, on the other hand, each result tuple can be dependent on
more than one operand tuple. Such operators include join and aggregation. When
such operators are restarted, they must request operands to be replayed in full.
However, they can still use the number of received operands before the failure to
prevent sending duplicates. E.g., a join must get its two operands completely, but
it can skip sending the first result tuples up to and including the number of tuples
received from the failed site.

For this partial restart technique to work correctly, tuples must be produced by
an operator in a deterministic order. Note that this does not mean that is has to be
a sorted order. For scan operators, it is required that tuples are retrieved from the
local DBMSs in a deterministic order. Further, it is required that other operators are
deterministic so that they produce tuples in a deterministic order given the same
ordering of operand tuples. Thus, this requirement reduces to having operators
consuming tuples in a deterministic order. This is achieved by having operators
consume packets of operand tuples in a round-robin order sorted on the ID of the
source site of an operand tuple packet.

The results in Fig. G.5(b) show the cost of a restart for a representative collection
of ten TPC-H queries. The average restart cost is 50%. The two queries with the
least gain (query 2 and 13) were also the two shortest queries. There is a constant
overhead in detecting site failure and restarting queries. For the longer queries, this
constant overhead is relatively small, so these queries have a lower restart cost.

G.6 Distributed Monitoring and System Manage-

ment

DASCOSA-DB includes an integrated distributed monitoring and management tool.
Fig. G.6 shows the user interface which allows the user to issue SQL statements and
monitor the state of the system in real time. It has proven very useful for the
different research projects employing or extending DASCOSA-DB.

DASCOSA-DB supports running more than one site on the same physical com-
puter. All these sites will still communicate as if distributed and have separate local
DBMSs. Running more than one site locally allows the user to easily examine the

G.6. DISTRIBUTED MONITORING AND SYSTEM MANAGEMENT 193

Figure G.6: Screenshot from the DASCOSA-DB system monitoring tool.

194 PAPER G

execution of distributed queries as the monitoring tool can observe all these sites.

The available views show which table fragments are stored at each site and the
schema for each of these. The catalog view for a site shows catalog entries stored
at that site. Tables are listed with the number of fragments and replicas, and each
fragment entry shows the FVD, the actual used ranged and the number of tuples in
the fragment. The catalog view also shows cached query results.

Network traffic monitoring is made easy by using the network log, which will list
all messages received and sent by a selected site. This allows the user to, e.g., easily
track the distributed execution of a query. Both query processing messages, catalog
messages and other maintenance messages can be inspected.

The monitoring tool also allows the user to inspect running queries and follow
the execution of algebra nodes as flow control changes the state of algebra nodes
between processing and paused states. A complete view of all running queries and
algebra nodes is provided.

Cache inspection is also provided. DASCOSA-DB has two caches: a restart
cache that is used to provide fault tolerant query processing, and a semantic cache of
intermediate query results. Each of these may be inspected through the management
interface.

Finally, the management interface allows the user to simulate network failures
and site crashes by toggling on or off message delivery to each site. When a site is
disconnected, the rest of the system will notice its disappearance and adjust to the
new situation. Queries involving the failed site will restart, and new master replicas
will be appointed.

G.7 Experimental Evaluation

The individual features of DASCOSA-DB have been evaluated experimentally in
earlier papers [8, 10, 18]. In this section, it is showed how the system, as a whole,
scales. Evaluation of additional DASCOSA-DB features not described in this chap-
ter can be found in [19].

G.7.1 Experimental Setup

The system consists of 10 interconnected sites running DASCOSA-DB. A TPC-H
dataset is horizontally fragmented into five fragments. Each site stores one frag-
ment, meaning that there are two replicas of each fragment. A set of 1000 random
TPC-H queries with random values for substitution parameters is used. An 80/20
distribution is used both for query and parameter selection.

The number of sites that issue queries, and thereby the number of coordinator
sites, is varied between 1, 5 and 10 to show how system performance increases with
increased parallelism. Each querying site executes its queries in series, waiting for
one to complete before issuing the next. The system is tested both with and without
semantic caching enabled.

G.8. SUMMARY AND FUTURE CHALLENGES 195

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Number of querying sites

Without caching
With caching

Figure G.7: Execution time relative to baseline.

G.7.2 Results

The execution time of each experiment relative to a baseline is measured, where
all queries were issued in sequence from a single site, without caching any query
results. The results shown in Fig. G.7 show that by increasing parallelism so that
all sites issue queries, execution times are reduced by 25%. Since DASCOSA-DB
allows queries to be issued from any site, the risk of the coordinator site becoming
a bottleneck is reduced, and higher throughput can be achieved.

Further, semantic caching reduces the run time with up to 73%. This consider-
able improvement is possible because parts of the algebra tree for a query is similar
to some parts of other queries. These parts are reused to provide a quicker response
to the query, freeing up resources that otherwise would be used to process each
query from scratch.

The execution time does not decrease as much with increasing number of query-
ing sites as was the case without caching. The reason for this is that there is not
much more time to save after the reduction in execution time caused by semantic
caching. Also, caching is a means to improve execution time of a series of queries,
not parallel queries. The result has to be cached before it is used. Still, our seman-
tic caching method makes it possible to reduce execution time of multiple parallel
querying sites since cache entries are shared with all other sites.

G.8 Summary and Future Challenges

The central point of the grid is to present the user with readily available computa-
tional power without the need to know where this power comes from. This should
also be the central point for data storage used by the grid, and our DASCOSA-DB
is designed with this in mind.

196 PAPER G

We have presented a middleware system that transparently provides access to
data distributed throughout the grid. Based on the relational model, our query
shipping database system efficiently queries data in situ, while constantly adapting
to the shifting workload by moving table fragment replicas closer to where they are
used and by replicating data that has to be read by many sites. Semantic caching
reduces the need to compute everything from scratch and allows new queries to
take advantage of the intermediate results of queries that have already finished,
even if they came from different sites. In case of failures during query processing,
DASCOSA-DB will restart only the failed subquery. DASCOSA-DB also provides
a distributed monitoring and management system.

Although we now have a working distributed database system, there is no lack
of remaining challenges. More advanced optimization in the presence of cached data
is needed. We will also study rank-aware operators which are important for many
of the intended application areas.

Acknowledgments

The development of the DASCOSA-DB has been supported by grant #176894/V30
from the Norwegian Research Council.

Bibliography

[1] Akbarinia, R., Martins, V., Pacitti, E., Valduriez, P.: Design and Implemen-
tation of Atlas P2P Architecture. In: Global Data Management, 1st edn. IOS
Press (2006)

[2] Bauer, D., Hurley, P., Pletka, R., Waldvogel, M.: Bringing efficient advanced
queries to distributed hash tables. In: Proceedings of LCN (2004)

[3] Boncz, P., Treijtel, C.: AmbientDB: relational query processing in a P2P net-
work. In: Proceedings of DBISP2P (2003)

[4] Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam,
S., Stocker, K.: ObjectGlobe: ubiquitous query processing on the Internet.
VLDB Journal 10(1), 48–71 (2001)

[5] Chang et al., F.: Bigtable: A distributed storage system for structured data.
In: Proceedings of OSDI (2006)

[6] Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The
Piazza peer data management system. IEEE Transactions on Knowledge and
Data Engineering 16(7), 787–798 (2004)

[7] Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica,
I.: Complex queries in DHT-based peer-to-peer networks. In: Proceedings of
IPTPS (2002)

BIBLIOGRAPHY 197

[8] Hauglid, J.O., Nørv̊ag, K.: PROQID: Partial restarts of queries in distributed
databases. In: Proceedings of CIKM (2008)

[9] Hauglid, J.O., Nørv̊ag, K., Ryeng, N.H.: Efficient and robust database support
for data-intensive applications in dynamic environments. In: Proceedings of
ICDE (2009)

[10] Hauglid, J.O., Ryeng, N.H., Nørv̊ag, K.: DYFRAM: dynamic fragmentation
and replica management in distributed databasesystems. Distributed and Par-
allel Databases 28(2–3), 157–185 (2010)

[11] Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the internet with PIER. In: Proceedings of VLDB (2003)

[12] Kossmann, D.: The state of the art in distributed query processing. ACM
Computing Surveys 32(4), 422–469 (2000)

[13] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Wells, C., Zhao, B.: OceanStore:
An architecture for global-scale persistent storage. In: Proceedings of ASPLOS
(2000)

[14] Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: A P2P-based system for
distributed data sharing. In: Proceedings of ICDE (2003)

[15] Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems.
Prentice-Hall (1991)

[16] van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining.
ACM Trans. Comput. Syst. 21(2), 164–206 (2003)

[17] Rodŕıguez-Gianolli et al., P.: Data sharing in the Hyperion peer database sys-
tem. In: Proceedings of VLDB’2005 (2005)

[18] Ryeng, N.H., Hauglid, J.O., Nørv̊ag, K.: Site-autonomous distributed semantic
caching. In: Proceedings of SAC (2011)

[19] Ryeng, N.H., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Efficient distributed
top-k query processing with caching. In: Proceedings of DASFAA (2011)

[20] Smith, J., Watson, P.: Fault-tolerance in distributed query processing. In:
Proceedings of IDEAS (2005)

[21] Stonebraker et al., M.: Mariposa: A wide-area distributed database system.
VLDB J. 5(1), 48–63 (1996)

[22] Taylor, N.E., Ives, Z.G.: Reliable storage and querying for collaborative data
sharing systems. In: Proceedings of ICDE (2010)

198 PAPER G

[23] Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-
memory environment. Distributed and Parallel Databases 1(1), 103–128 (1993)

	102801_Omslag_01_1_Doktor_omslag_ntnu_eng
	102801_Innmat_01_1_Doktor_tittelside_NTNU_eng.pdf.100.B5.Black.TS
	102801_Innmat_01_1_Doktor_tittelside_NTNU_eng.pdf
	102801_Innmat_02_1_Doktor_kolofon_NTNU_eng.pdf
	102801_Innmat_04_0_thesis.pdf
	I Introduction
	Introduction
	Motivation
	Research Focus
	Methods
	Thesis Outline

	Background
	Peer-to-Peer Networks
	Data Placement
	Distributed Query Processing
	Caching of Query Results
	Distributed Data Storage and Query Processing Systems

	Contributions
	Research Topics
	Published Papers

	Concluding Remarks
	Evaluation of Contributions
	Future Work

	Bibliography

	II Published Papers
	Robust Aggregation in Peer-to-Peer Database Systems
	Introduction
	Related Work
	Data Loss
	Fighting Data Loss
	Experiments
	Conclusion and Future Work
	Bibliography

	RIPPNET: Efficient Range Indexing in Peer-to-Peer Networks
	Introduction
	Related Work
	Preliminaries
	Distributed Range Indexing
	Extensions
	Experimental Evaluation
	Conclusion
	Bibliography

	Efficient and Robust Database Support for Data-Intensive Applications in Dynamic Environments
	Introduction
	Background
	Overview of DASCOSA-DB
	Demonstration
	Future Work
	Bibliography

	DYFRAM: Dynamic Fragmentation and Replica Management in Distributed Database Systems
	Introduction
	Related Work
	Preliminaries
	Overview of DYFRAM
	Replica Access Statistics
	Fragmentation and Replication
	Evaluation
	Conclusions and Further Work
	Bibliography

	Site-Autonomous Distributed Semantic Caching
	Introduction
	Related Work
	Preliminaries
	Distributed Semantic Caching
	Experimental Evaluation
	Conclusion and Future Work
	Bibliography

	Efficient Distributed Top-k Query Processing with Caching
	Introduction
	Related Work
	Preliminaries
	ARTO Framework
	Answering Top-k Queries from Cache
	Remainder Queries
	Server Selection
	Experiments
	Conclusion
	Bibliography

	The DASCOSA-DB Grid Database System
	Introduction
	Overview of Related Systems
	System Architecture
	Distributed Data and Metadata Management
	Distributed Query Processing in DASCOSA-DB
	Distributed Monitoring and System Management
	Experimental Evaluation
	Summary and Future Challenges
	Bibliography

