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Abstract

Modern chip multi-processors o�er increased computing power through hard-
ware parallelism. However, for applications to exploit this parallelism, they
have to be either designed for or adapted to the new processor architectures.
Seismic processing applications usually handle large amounts of data that are
well suited for the task-level parallelism found in multi-core shared memory
computer systems.

In this thesis, a large production code for seismic inversion is pro�led and an-
alyzed to �nd areas of the code suitable for parallel optimization. These code
fragments are then optimized through parallelization and by using highly op-
timized multi-threaded libraries.

Our parallelizations of the linearized AVO seismic inversion algorithm used
in the application, scales up to 24 cores, with almost linear speedup up to 16
cores, on a quad twelve-core AMD Opteron system. Overall, our optimization
e�orts result in a performance increase of about 60 % on a dual quad-core
AMD Opteron system.

The optimization e�orts are guided by the Seven Dwarfs taxonomy and pro-
posed benchmarks. This thesis thus serves as a case study of their applica-
bility to real-world applications.

This work is done in collaborations with Statoil and builds on previous works
by Andreas Hysing, a former HPC-Lab master student, and by the author.
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Chapter 1

Introduction

Re�ection seismology is a method of exploration geophysics. It can be used
to estimate the structure of the Earth's interior from re�ected seismic waves.
Marine re�ection seismology is of great bene�t to the oil and gas industry,
as it enables geophysicists to locate reservoirs in the seabed potentially con-
taining hydrocarbons.

Conditioning Reservoir variables to Amplitude Versus Angle data (CRAVA)
is a computer program developed by the Norwegian Computing Center (NR)
in collaboration with Statoil, that performs seismic inversion. Seismic in-
version computes elastic properties of a target area from seismic re�ection
data by inverting the physics equations for wave propagation. The process
is the inverse of computing the data observations (seismograms) from the
wave equations, or seismic modeling [36]. CRAVA uses a relatively new
geo-statistical approach to the inversion problem, which is much faster than
previous approaches. Additionally, the new approach enables quanti�cation
of the inherent uncertainties in the results, something that the older deter-
ministic methods do not support.

The current trend in microprocessor architecture design is increased paral-
lelism, and is a consequence of the increasingly di�cult task of improving
e�ciency in the traditional uniprocessor architectures, as they approach the
physical limits for frequency and power. Current microprocessors have sev-
eral processing cores, each of which can sustain its own program execution.
Using all the cores collectively to solve a problem can drastically improve
program performance.

In this thesis, the seismic inversion algorithm in CRAVA is optimized for
multi-core processors through parallelization, which in contrast to previous

1



2 CHAPTER 1. INTRODUCTION

work results in good speedup. Additionally, optimized and multi-threaded li-
braries for linear algebra and Fast Fourier Transforms are applied to CRAVA.

1.1 Project goals

Statoil is one of the largest commercial users of high-performance computing
(HPC) in Norway. Despite the fact that CRAVA runs on parallel hardware, it
was not designed to use the available parallelism. Previous works by Andreas
Hysing [28] and the author [44] successfully optimized sections of CRAVA for
parallel hardware. However, the application has a large code base, and a great
potential for further optimization exists.

The main goal of this thesis is to optimize CRAVA for modern multi-core
architectures. To achieve this goal, the original code is pro�led to locate
areas suitable for optimization. The relevant sections of code will be classi-
�ed according to the seven dwarfs taxonomy and proposed benchmarks [4],
before optimization techniques are applied to them. The optimization tech-
niques will include use of multi-threaded libraries and parallelization though
OpenMP.

OpenMPI is not considered in this thesis due to the implicitly required algo-
rithm decompositions, which are complex tasks and outside the scope of this
thesis.

1.2 Outline

The rest of the thesis is structured as follows:

Chapter 2: Relevant background material and concepts important for this
thesis related to parallel computing and optimization techniques are
presented to give the reader the proper context. This chapter is in part
adapted from the author's fall specialization project [44].

Chapter 3: The seismic inversion tool CRAVA is presented in more detail,
and some key aspects of seismology are explained. Previous work is
presented and the state of CRAVA at the beginning of this thesis is
de�ned. This chapter is in part adapted from the author's fall special-
ization project [44].
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Chapter 4: The pro�ling data for CRAVA are presented and suitable opti-
mization techniques are explained and applied. Additional background
material is presented for coherency.

Chapter 5: The e�ects of the performance optimizations applied to CRAVA
in this thesis are shown. Each technique's results are compared to the
original state, and the overall e�ects are summarized. The scalability
of the optimized application is shown in results from a scaling-test.

Chapter 6: Conclusions made from the performance optimizations to CRAVA
are presented. The contributions of this thesis are listed, along with
recommendations for the application and ideas for future work.

Appendix A: Details of the various tests used in the thesis are listed.

Appendix B: Some additional timings and detailed results, supplementing
the results in Chapter 5.

Appendix C: Relevant source code of the array transformation routines,
and the seismic inversion process.
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Chapter 2

Parallel Computing and Context

This chapter introduces background material and concepts used in this thesis
related to parallel computing and optimization techniques. First, some basic
concepts of parallel computing are presented, followed by how di�erent forms
of parallelism are manifested in hardware. Next, software pro�ling tools
are introduced, the seven dwarfs are explained, and �nally, optimization
techniques are presented.

2.1 Parallel computing theory

As computers became increasingly more powerful, it became possible for
larger and more complex problems to run on them. However, some problems
are simply too large to run on a single computer. The solution for some of
these problems is parallel computing. With multiple processors collaborating,
large problems can be solved in a feasible amount of time. The computational
capability of computers continue to increase, along with the computational
demand. Contributors to the demand include problems that cannot be solved
in a reasonable amount of time on current computers, called grand challenge
problems [48]. An example is global weather forecasting. Weather predictions
must be timely for the results to be useful. When more weather data can
be processed in the available time period, weather predictions become more
accurate and detailed.

5



6 CHAPTER 2. PARALLEL COMPUTING AND CONTEXT

2.1.1 Speedup

Two sections of a program can be run in parallel if they do not have any
dependencies between them (e.g. data dependencies). If the sections are of
equal computational size, the problem would ideally execute in 1

p
th of the

sequential run-time on p computing units, an e�ect known as linear or ideal
speedup [48]. A problem that can be immediately divided into completely in-
dependent parts is called embarrassingly parallel [48], and is straightforward
to parallelize. Displaying the Mandelbrot set is an example of an embarrass-
ingly parallel problem [48]. Some problems are not possible to decompose
without introducing communication and synchronization between the parts,
for example heat distribution problems using stencil based algorithms [48].

Parallel programs may contain one or more sections that cannot be paral-
lelized. As Gene Amdahl observed in 1967, these sections limit the maximum
speedup of the parallel program [1]. He formulated the parallel speedup as
the equation:

S(p) =
1

f + 1−f
p

=
p

1 + (p− 1)f
(2.1)

Where S is the speedup factor, f is the serial fraction of the program, and p
is the number of processors. From Equation 2.1 it follows that the maximum
speedup approaches 1

f
regardless of how many processors are used. The

limiting e�ect for various parallel percentages are shown in Figure 2.1.

Figure 2.1: Amdahl's law for speedup given various percentages of paralleliz-
able code. Figure from Wikipedia [46].
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What Amdahl's law expresses is the maximum possible speedup, however
actual speedup is usually less, and can be expressed as [48]:

S(p) =
Ts
Tp

(2.2)

Where Ts is the observed time of the best sequential implementation, and Tp
is the observed time of the parallel implementation using p processors. While
speedup is usually lower than ideal, observed speedup can occasionally be
greater than the number of processors used, an e�ect known as super-linear
speedup [48]. Possible reasons for super-linear speedup are a sub-optimal se-
quential implementation, or caching e�ects. For example, when the program
code or data �ts in the increased amounts of memory or cache that come
with using more processors, the need for disk or memory tra�c is reduced.
Another source of super-linear speedup can be better use of special purpose
arithmetic instructions, for example fused multiply-accumulate which is often
used in digital signal processing.

2.1.2 Memory architectures

There are two basic types of memory architectures for parallel computers [48]:

Shared memory systems have a single address space, reachable by all the
processors in the system. A shared address space is convenient for program-
ming, since all processors have access to the same data. The programmer
does not have to do extra work to decompose the data and distribute it be-
tween processors. In small systems, memory interconnects like a bus (e.g.
Intel's Front-side bus) or a switch (e.g. a crossbar switch 1) is used to con-
nect processors and memory modules. Unfortunately this does not scale
very well, and in larger systems a bus quickly becomes a bottleneck, while
switches require more space than feasible. Distributed shared memory is of-
ten a solution for larger systems: Each processor can still reach all of the
memory, but access speeds vary. Architectures with varying memory ac-
cess speeds are called non-uniform memory access (NUMA) architectures as
opposed to uniform memory access (UMA) architectures, where the access
speeds are constant for all memory locations. A multi-processor system is
often a NUMA architecture, where each processor socket has its own memory
modules, but can access the other processor sockets' memory through inter-
connection links (e.g. HyperTransport 2 links). The memory access time is

1A crossbar switch is a mesh of buses that provides routes between every processor and
every memory module.

2http://www.hypertransport.org

http://www.hypertransport.org
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dependent on the number of links a request must pass through.

In distributed memory systems each compute node has its own memory,
and the nodes are connected through network interconnects. Sharing data
between nodes requires network communication. Programming distributed
memory systems is more complex than programming shared memory systems,
because data transfers have to be explicitly handled by the programmer. For
performance reasons it is preferable to operate on local memory as much as
possible, reducing the network communication to a minimum.

2.1.3 Forms of parallelism

A common way to classify computers is by Flynn's taxonomy [22]. Flynn
classi�ed computers in terms of instruction streams and data streams, and
called the traditional single-processor computer a single instruction stream-
single data stream (SISD) computer. Multi-processor computers that can ex-
ecute one program per processor, and each processor applies the program's
instruction stream to di�erent data, are classi�ed as multiple instruction
streams-multiple data streams (MIMD). In addition to these two extremes,
two more classi�cations are de�ned: single instruction stream-multiple data
streams (SIMD) and multiple instruction streams-single data stream (MISD).
The term stream is commonly dropped from the de�nitions in newer publi-
cations [35].

Modern general purpose processors commonly have SIMD instructions in the
form of short vector operations. In SIMD, the same instruction is applied
to the multiple data elements in a short vector simultaneously. An example
of SIMD instructions is Intel's Streaming SIMD-Extensions (SSE). SSE now
has good compiler support and is implemented in many modern architectures
(including architectures from other vendors, like AMD).

While SIMD is data parallelism, MIMD is task parallelism. Task parallelism
means that multiple tasks can run simultaneously. Modern MIMD computers
include multi-processor systems and multi-core systems. A popular program-
ming model for MIMD machines is single program-multiple data (SPMD). In
SPMD the same program is run simultaneously on all computing units, but
each processor operates on di�erent data. One of the bene�ts of SPMD is
that only one program needs to be developed. Normally, the single program
contains code that is executed only by certain computers in the group of com-
puters, depending on the unit's identity within the group. A classic example
of the SPMD programming model is MPI programs.
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The MISD architecture class is not in use today, unless one speci�cally clas-
si�es pipelined architectures in this group [48], but as Flynn notes, MISD
existed in the ancient plug-board machines.

2.2 Parallel hardware

Parallelism exists in di�erent forms as described in Section 2.1.3, and di�erent
hardware exploits parallelism in di�erent ways. Some of the most common
technologies and hardware are described in this section. The performance
of parallel hardware is usually measured in the number of �oating-point op-
erations performed per second, or �ops. The maximum number of �ops
the hardware can yield is called its peak performance. Achieving peak per-
formance is heavily dependent upon the problem and algorithms used, and
experienced performance is often lower than peak due to sub-optimal use of
the hardware.

2.2.1 Instruction-level parallelism

In 1965 Gordon Moore predicted that the amount of transistors we can
cheaply place on a chip will double approximately every two years. For
over 15 years, at the end of the 20th century, this was manifested in about
50 % performance increase every year as measured by the integer SPEC2006 3

benchmark test [4]. Many of the extra transistors were used to exploit in-
struction level parallelism (ILP) [43], which led to rapidly increasing clock
frequencies. ILP denominate concepts that enable the processor to issue more
instructions in the same amount of time, while still preserving the sequential
programming model . One of the concepts is pipelining.

In pipelining the instruction processing is split into smaller steps or micro-
operations called stages. An instruction is partially processed at each stage,
and follows a path of stages until completed. The bene�t becomes appar-
ent when an instruction is done with one stage and moves on to the next
one, since a new instruction can then start processing in the �rst stage, thus
increasing the number of instructions executed in a period of time. Instruc-
tions can be issued at the speed of the slowest stage in the pipeline, and
the processor clock frequency is increased to match this speed. The slowest
stage can limit the pipeline's performance if the gap up to the rest of the

3http://www.spec.org/cpu2006/

http://www.spec.org/cpu2006/
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stages is large. The micro-operations can be generic and common for sev-
eral instructions. Stages can also be duplicated to create multiple parallel
data paths, enabling multiple instructions to execute at the same stage in
the pipeline simultaneously. However, duplicating stages is complicated and
requires much control logic.

The number of stages in a pipeline is called the pipeline depth. If a pipeline
gets very deep, it can experience performance problems due to stalls and
�ushes. A stall of the pipeline occurs when an instruction I1 is dependent
on the result of an earlier instruction I2 that has not yet �nished executing.
Instruction I1 has to wait until the result from I2 is ready before it can
be executed further, and the pipeline stalls. One technique to reduce the
performance penalty from pipeline stalls is out-of-order execution, where
instructions are rearranged on-the-�y to keep the pipeline busy while an
instruction is waiting for data.

A pipeline �ush happens when a branch in the instruction stream (program)
jumps to a di�erent place in the stream. Since the instructions following the
branch instruction have already started execution in the pipeline, a jump in
the instruction stream means they have to be stopped or �ushed from the
pipeline. A pipeline �ush means that many clock cycles are wasted on useless
computation, and the number of instructions completed per cycle decreases.
One technique to reduce pipeline �ushing is speculative execution or branch
prediction, where the processor predicts the outcome of a branch and starts
its execution.

2.2.2 Multi-core

Much of the information found in this section is based on references Asanovic
et al. [4] and Sodan et al. [43].

The amount of ILP is limited due to inherent dependencies in programs, and
architecture designs eventually hit the ILP wall, where further performance
gains were diminishing. Architectures also hit the power wall ; the point
where the heat generated from adding more transistors or turning up the
clock frequency is more than what can be dissipated by conventional cooling.
Additionally, the e�ect of increasing the clock frequency was limited by the
performance gap between the processor and memory, known as the memory
wall.

The ILP wall, power wall and memory wall comprise the brick wall. Due to
the brick wall the fast uniprocessor was not an ideal design for further per-
formance gain. The focus instead turned to task parallelism. By duplicating



2.2. PARALLEL HARDWARE 11

the control and execution units, multiple instruction streams or threads could
run practically independent of each other. This enabled further performance
increases without hammering the brick wall by simply increasing the num-
ber of processing cores (multi-core). The old sequential programs would still
run as normal, but parallel programs were needed to unleash the full power
within the cores.

The complexity of the cores is a deciding factor for the performance and
energy consumption in new architectures. For highly parallel applications,
simple processing cores are ideal (e.g. for graphics processing). However, for
serial applications, more complex processing cores are better suited. From
Amdahl's law we know that the serial part of a program can limit parallel
performance. A heterogeneous mix of simple and complex cores, might be
better suited for applications with both parallel and serial fractions than
a homogeneous collection of simple or complex cores. The STI 4 Cell BE
processor for instance, has one general purpose processor and eight synergistic
processing elements.

The �rst multi-core architectures simply put multiple single-core processors
on one chip, but more recent architectures are designed around the idea of
cores. The current core designs are rather complex in nature, and often
have private inner caches as well as shared outer caches. Ensuring cache
coherency with the increasing number of cores will require a lot of die area
and energy. For this reason, increasing the number of complex cores is ex-
pected to level out in diminishing returns rather quickly. Yet, the future
chip multi-processors are expected to reach 100s, maybe 1000s of processing
cores. Simpler core designs are one way to achieve these many-core proces-
sors. Some prototypes experiment with message passing protocols between
the cores, resembling a small cluster [20].

2.2.3 Clusters

Clusters are the traditional workhorses of parallel computing. A cluster con-
sists of multiple computers (nodes) connected by a high-speed network. A
parallel algorithm is used to delegate a part of the problem to each node,
and the problem is collectively computed by the cluster [48]. To achieve
high utilization of the hardware, high locality in the computation and lit-
tle communication is important. A relatively powerful cluster can be built
using inexpensive commodity workstation hardware (Beowulf cluster) [48],

4STI is an alliance between Sony, Toshiba and IBM.
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but supercomputer clusters are often specially designed using high perfor-
mance components. The nodes of a cluster are usually made of homogeneous
hardware, but recently installations of heterogeneous clusters have emerged.
Several of the top positions on the TOP500 list 5 are now heterogeneous
clusters, mixing traditional CPUs with GPUs or Cell processors.

Clusters are usually programmed using the SPMD programming model, and
communication between the nodes is often handled using the Message Passing
Interface (MPI) [48]. MPI is an API speci�cation and many implementations
exist. Vendors often maintain MPI implementations specially tuned to their
hardware. At the base of MPI is the concept of communication groups,
de�ned as subsets of all the processors. Within a group, each processor
gets an identity that is used for sending and receiving messages. These
identities can be assigned to form virtual topologies in the group that �ts
the problem. MPI has both point-to-point (e.g. send, receive) and collective
(e.g. broadcasts, reductions) communication methods. De�nable data-types
to simplify the use of complex data patterns are also available.

Clusters make it possible to work with large datasets, since single machines
do not have to process all the data. Machines are usually designed for
compute-intensive applications, where performance is measured in number
of arithmetic operations per second. However applications can also be data-
intensive, or heavily I/O bound, which make them dependent on the ability
to process more data. With datasets in the terabyte or petabyte scale, dis-
tributing the data for every computation quickly becomes impractical. New
architectures are necessary and the focus of a still developing research area.
A possible solution might be similar to what Google is using for their Internet
search [7]: The dataset is partitioned over groups of processors which become
responsible for its part. Computations on the data is sent to the responsible
group instead of transferring the data around. A computation request might
use the MapReduce abstraction [15].

2.2.4 GPGPU

In the recent years general purpose computation on graphics processing units
(GPGPU) has emerged as an attractive platform for high-performance com-
puting. The GPU was developed as a co-processor to the CPU that accel-
erated graphics rendering and game physics [34]. It revolutionized computer
games and has become increasingly more powerful since its introduction.

5List of the most powerful computers systems in the world. http://top500.org

http://top500.org
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Graphics calculations are naturally parallel, which has resulted in GPU de-
signs resembling symmetric multi-core processors [6].

A new market opened up for GPUs when the HPC community became
interested in using them for general purpose computation. GPU vendors
quickly provided programming interfaces and adapted the hardware to com-
puting standards. The most used programming frameworks are NVIDIA's
CUDA [40] and Khronos Group's OpenCL [38], which is embraced by AMD
(ATI). Both are based on the C/C++ programming languages. A close rela-
tionship between frameworks and vendors can be a problem for portability [6],
which is the case for e.g. CUDA.

Recent GPUs have improved support for �oating-point arithmetic and double-
precision numbers [19]. GPUs are optimized to run compute-intensive SPMD
programs with little or no synchronization [6]. The programs (or kernels) are
run in parallel on several multi-processors. Each multi-processor has a num-
ber of computing cores which process one thread each. Spawning threads on
a GPU costs very little overhead, and several thousand threads can easily
run at once. Collections of threads (called warps) are run simultaneously on
the multi-processors, and can be quickly switched around to hide memory la-
tency. To achieve full memory bandwidth, requests have to be coalesced [40].
Meaning that several threads access di�erent addresses within the same mem-
ory bank.

The general di�erence between the CPU and GPU architectures can be seen
in Figure 2.2. The GPU has fewer transistors devoted to caching data and
�ow control, but much more to data processing [40].

Figure 2.2: Comparison of the CPU and GPU architectures. Figure used
with with permission from NVIDIA [40].

A single GPU today can have a theoretical peak performance of several ter-
a�ops [6, 40]. The fastest GPUs have the potential for about 10 times more
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�ops than the currently fastest multi-core CPUs, but achieving this perfor-
mance is heavily dependent on the problem and the algorithm used. Impor-
tant factors that can limit throughput are synchronization, memory accesses
and compute-intensity. One study found that on a selection of kernels tuned
for both platforms, the GPU only performed 2.5x better than the CPU on
average [34]. And that was without including the costs of moving data be-
tween the host and GPU, which can substantially limit the performance
advantage [14]. These costs are unavoidable when the GPU is used as a
co-processor, but can be reduced if the kernels are highly compute-intensive.

2.3 Pro�ling

Pro�ling an application involves analyzing and mapping certain characteris-
tics of the program. These characteristics can be the most frequently called
functions, cache utilization or where the program spends the most of its
time. Pro�ling information can help determine which sections of a program
to prioritize when optimizing.

Usually a program has some sections where it spends more time compared
to other sections. An often quoted trend of this fact is the 90/10-rule: 90
percent of the execution time is spent in just 10 percent of the code [30].
The 90/10-rule is common for data-intensive applications with large loop
structures. An optimization within the most used 10 percent of the code
will have a much greater e�ect on the overall run-time than an optimization
within the remaining 90 percent.

Programs that can not be classi�ed using the 90/10-rule can still bene�t
from pro�ling. However, their run-time usage is more evenly distributed
throughout the program, and more optimization e�ort is usually needed to
achieve large speedups.

2.3.1 Types of pro�lers

There are three subcategories of pro�lers: event-based, statistical and instru-
menting. They di�er in how data is gathered, their accuracy, and how they
a�ect program execution.

Event-based pro�lers use properties of the programming language to listen
for events. The language usually supports �trapping� events, such as function
calls and object creation. They introduce minor overhead and cause the
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program to run at a slightly reduced speed. The run-time of the pro�ler's
own code can cause additional slowdown.

Statistical pro�lers use operating system features to interrupt the program
execution and capture run-time information. Sampling the program counter
can tell you exactly where execution is in the program at given intervals.
Based on the sampling a statistical approximation of the program's run-
time pro�le can be generated. Statistical pro�lers are by design not entirely
accurate, but allow the program to run at near full speed.

Instrumenting pro�lers insert additional code in the program to perform
data gathering. The additional code can severely alter run-time and result
in large slowdowns, but the upside is that they can produce entirely accurate
data. The instrumentation code can be added in several ways. Manual in-
strumentation involves that the programmer manually writes code to collect
data or time sections. Special tools can also inject this code automatically.
The compiler might alternatively support automatic instrumentation, like
the GNU pro�ler gprof [21]. Finally, the instrumentation can occur at run-
time through the use of special dynamically linked libraries, or altering the
binary executable.

2.3.2 Available pro�lers

Many di�erent performance pro�lers exists, and a selected few are presented
in this section for insight and relevance. While many commercial and vendor
supplied pro�lers exists (e.g. Intel VTune and AMD CodeAnalyst), the pro-
�ling tools described here are all open source with either a GPL or BSD-style
license.

Valgrind

Valgrind 6 is an instrumentation framework for dynamic analysis tools [16].
It comes bundled with several tools for analyzing memory usage and pro-
gram behavior. One of those is Memcheck which uncovers heap data bugs,
including memory leaks. Another one is Cachegrind, which pro�les cache
utilization. Callgrind is a modi�ed version of Cachegrind that also creates a
graph over the function calls. Valgrind also has two tools for detecting er-
rors in multi-threaded programs (e.g. race conditions), named Helgrind and
DRD.

6http://valgrind.org

http://valgrind.org


16 CHAPTER 2. PARALLEL COMPUTING AND CONTEXT

Valgrind uses dynamic binary instrumentation to pro�le a program. Meaning
it injects instrumentation commands directly into an intermediary represen-
tation of the binary executable. The instrumented code is run on a CPU
emulator within the Valgrind core. The CPU emulator approach can pro�le
programs or libraries for which no source code is available. Depending on
which tools are used the slowdown factor due to pro�ling can range from 5
to 100 or more [16]. The output from Valgrind is more useful if the program
is compiled with debug information, which is rarely the case with external
libraries.

The output of Cachegrind and Callgrind can be visualized in KCachegrind 7.
It is a separate tool and not part of Valgrind. KCachegrind o�ers a graphical
user interface which makes the results much easier to review. Features include
an interactive visual call-graph, maps over calls to or from a certain function,
and annotated source code. The instruction count is used to relate data to
time usage, but no actual timing occurs.

TAU

Tuning and Analysis Utilities 8 (TAU) is a parallel performance system from
the University of Oregon. It features a framework and toolkit for performance
instrumentation, measurement, analysis and visualization of large-scale par-
allel applications [42]. TAU is an instrumenting pro�ler, and supports a
multitude of instrumentation approaches, including manual, dynamic and
completely automatic. Scripts to automate the instrumentation during com-
pilation make TAU easy to use. The pro�ling is completely customizable, and
it is possible to accurately de�ne which �les or functions to pro�le. There is
also support for analyzing memory usage and I/O activity.

Several visualizing programs exists for TAU. From the simple terminal text
representation of pprof to the graphical representations of the very powerful
ParaProf. TAU supports most of the popular programming languages, in-
cluding C/C++, Java and Python. TAU was designed with parallel programs
in mind, and support for threads, MPI and multiple nodes is present.

In an attempt to reduce performance penalties due to pro�ling, TAU stops
tracking a function if it is called more than 100 000 times and uses less than
10 µs per call. These numbers can be changed if necessary.

7http://kcachegrind.sourceforge.net/
8http://tau.uoregon.edu

http://kcachegrind.sourceforge.net/
http://tau.uoregon.edu


2.4. SEVEN DWARFS 17

GNU gprof

Gprof is the GNU Pro�ler, and is included in the GNU Binutils collection 9.
It analyses pro�ling data from a program compiled and linked with GCC
and the �ag -pg. Gprof uses both instrumentation and statistical pro�ling.
Every function is instrumented to log function calls, and a statistical time
usage estimate is collected through sampling. The use of sampling means the
time usage estimates are subject to statistical errors [21]. Although gprof
produces readable textual output, the output of gprof is better visualized
in KProf 10. Similiarly to KCachegrind, KProf is not part of gprof but an
external visualization tool.

Gprof does not support multi-threaded applications. Due to the sampling
method used, which relies on a timed kernel signal, only the main thread is
pro�led if several threads are spawned. The spawned threads do not react
to the kernel signal, since they do not know what signal to listen for. There
exists a relatively simple workaround for this behavior using a dynamically
loaded wrapper for pthreads [27].

2.4 Seven dwarfs

In 2006 a group of Berkeley researchers sat down to discuss the impact of
multi-core on microprocessor design. In their paper [4] they make several
recommendations for the future of chip multi-processors. One of them is to
use a collection of �dwarfs� instead of traditional benchmarks to design and
evaluate parallel programming models and architectures. The dwarfs are al-
gorithmic kernels that captures patterns of computation and communication.
The reasoning is that new architectures and programming models that per-
form well on these patterns will be well suited for applications of the future.
Another key point is that optimizing and parallelizing every computer prob-
lem is non-trivial and very complex. By instead focusing on generic methods,
a large number of applications can bene�t from the same optimization e�orts.
The dwarfs represent these generic methods.

In the Berkeley paper [4], 13 dwarfs are identi�ed. The �rst seven dwarfs
originate from a presentation by Phil Colella, in which he identi�es seven nu-
merical methods he believes will have future importance for scienti�c compu-
tation. The seven dwarfs are presented below along with a short description
based on Asanovic et al. [4].

9http://www.gnu.org/software/binutils/
10http://kprof.sourceforge.net/

http://www.gnu.org/software/binutils/
http://kprof.sourceforge.net/
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1. Dense Linear Algebra Linear algebra on dense matrices and vectors.
This dwarf is often computationally bound (matrix-matrix) and bene�t
greatly from block algorithms that use the cache to keep the CPU
occupied, as well as vector instructions. The benchmark used for the
Top 500 list is based on dense linear algebra (Linpack benchmark 11).

2. Sparse Linear Algebra Linear algebra on sparse matrices and vectors.
A sparse matrix contains many zero values and is usually stored in a
compressed format to reduce storage and bandwidth requirements (e.g.
block compressed sparse row (BCSR) format). Sparse linear algebra is
often limited by memory bandwidth.

3. Spectral Methods Spectral methods solve problems numerically when
the data are in the frequency domain, as opposed to time or spatial
domains. Typically, only the transformation of basis is classi�ed as a
spectral method, e.g. the Fast Fourier Transform. Spectral methods
are often limited by memory latency.

4. N-Body Methods N-body methods depend on interactions between many
discrete points. Methods include particle methods where every point is
dependent on all other points, e.g. predicting the motion of astronom-
ical bodies in space. This dwarf can lead to O(n2) calculations and is
computationally bound.

5. Structured Grids Data represented in regular multidimensional grids,
where the points are conceptually updated together. Points in close
spatial proximity is often accessed with a 5 or 7 point stencil for two
or three-dimensional grids. The dwarf is currently more memory band-
width limited.

6. Unstructured Grids Conceptually similar to structured grids, but data
point locations and connectivity to neighboring points are explicitly
de�ned. Updates typically include multiple levels of memory reference
indirection. The dwarf is limited by memory latency.

7. Monte Carlo Calculations depend on statistical results of repeated ran-
dom trials. The dwarf is considered embarrassingly parallel, and has
very little communication.

While the original seven dwarfs apply mostly to high performance comput-
ing, the Berkeley researchers identify an additional six for other application

11http://www.netlib.org/benchmark/hpl/

http://www.netlib.org/benchmark/hpl/
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areas. These areas include embedded systems, machine-learning, general-
purpose computing, databases, graphics and games. The additional dwarfs
are Combinational Logic, Graph traversal, Dynamic Programming, Backtrack
and Branch+Bound, Construct Graphical Models and Finite State Machine.
More information about these dwarfs is found in the paper [4].

2.5 Optimization techniques

Just because a program is run on hardware that supports parallelism, does
not automatically mean that program execution time will decrease. The pro-
gram must either be coded or compiled for parallelism, with the exception of
hardware parallelism like ILP. Sometimes the parallelization is handled au-
tomatically by the compiler, but usually it requires an implementation e�ort
by the developer. Exceptions exist where external libraries can contain par-
allelism or automatically parallelize requests, but the program is completely
serial.

Adapting a program to better use the hardware is called optimization. Exam-
ples of optimizations are eliminating branches and excessive function calls.
Some compilers can also make use of developer supplied hints to create a
better machine code structure, e.g. GCC's builtin_expect() (popularly re-
ferred to as likely/unlikely) hints on conditional branches. One optimization
technique for parallel hardware is parallelization, and means to introduce
parallelism in the program. Parallelizations can be done at many levels,
ranging from automated compiler vectorization to manual decomposition of
the problem.

2.5.1 OpenMP

OpenMP is a portable API for easy multi-treaded parallelization. It is based
on work-sharing between concurrent threads, and provides compiler pragmas
(hints) to identify parallelism. All the details of creating and destroying
threads, load balancing and synchronization are managed by the compiler.
OpenMP has become the de facto standard for easy shared-memory parallel
programming [5]. Figure 2.3 shows the OpenMP threading model. When
an annotated parallel section is encountered, a number of worker threads
are spawned and work is shared between them. Originally only loop-level
and prede�ned task parallelism were supported. However, version 3 adds
support for irregular parallelism and dynamic tasks [5]. In OpenMP, it is
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up to the programmer to ensure dependencies in tasks are handled, unlike
for instance the similar framework SMPSs that feature a dependency aware
task programming model [41]. The programmer needs to be careful to avoid
�ow dependencies and race conditions, and if necessary, override the default
settings for data sharing and provide synchronization and locking.

Figure 2.3: The threading model of OpenMP. The serial program execu-
tion is on top, and the threaded execution at the bottom. Figure from
Wikipedia [47].

The use of compiler directives allows a serial program to be parallelized in-
crementally. Injecting parallelism into an existing program can be done with
a relatively small implementation e�ort, reducing the chance of introducing
unintentional bugs. If the parallel OpenMP program is compiled without
OpenMP support it will compile just like the serial program, enabling easy
debugging and portability. OpenMP o�cially supports C/C++ and For-
tran, and is implemented in many of the most popular compilers. GCC has
supported OpenMP 2.5 since version 4.2 and OpenMP 3.0 since version 4.4.

2.5.2 Libraries

Another way to increase performance is by using externally maintained li-
braries for common kernels. Using libraries often reduce development time
since less functionality have to be implemented. Libraries are often heav-
ily optimized by experts on the speci�c problems, sometimes even deploying
auto-tuning. By using dynamically loaded libraries, the same application can
achieve good performance portability through platform speci�c highly tuned
kernel routines.
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Auto-tuning

Auto-tuning is a technique to create portable code that adapts to the hard-
ware for maximum performance [4]. The adaptation is achieved through test-
ing di�erent versions of the code and either through brute force or heuristics
determining the best settings. These settings can be tile sizes, versions of
SSE, di�erent algorithms or implementations that favor the target hardware.
Auto-tuning can be performed at either compile-time or run-time. Perform-
ing the tuning at run-time limits performance, but can be the best choice
for certain applications (e.g. sparse linear algebra). A library auto-tuned
at compile-time can take hours to install, but can o�er near optimal perfor-
mance to all programs using it. Performance can even trump hand-tuned
libraries from the vendors. In the recent years, more auto-tuners for parallel
codes have started appearing [29].

2.5.3 BLAS and LAPACK

The most used application programming interface for matrix and vector oper-
ations in libraries is the Basic Linear Algebra Subprograms (BLAS) standard
[33, 18, 17]. It de�nes subprograms, or functions, for the most used linear
algebra operations. The functions are grouped in �levels� where each level
has increasing input dimensionality and complexity order [17]. The di�erent
levels of BLAS are listed in Table 2.1. The BLAS standard comes with a
reference implementation, but is also independently implemented in various
libraries. CPU vendors often maintain a tailored implementation for their
speci�c architectures. Common optimizations include cache-tiling, SIMD-
vectorization and threading for multi-core.

Table 2.1: The di�erent levels of BLAS.
BLAS level Type of operations

Level 1 Vector operations, incl. scalar-vector operations.
Level 2 Matrix-vector operations
Level 3 Matrix-matrix operations

BLAS routines are often used to build larger libraries, e.g. the Linear Alge-
bra PACKage (LAPACK) [2]. LAPACK provides routines for solving linear
equation systems, eigenvalue problems and more. Since it uses the architec-
ture speci�c routines of BLAS (when available) it will often achieve good
utilization of hardware.
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Compatibility with C/C++

The original implementations of BLAS and LAPACK are written in FOR-
TRAN. It is fully possible to link FORTRAN object �les with C/C++, and
the libraries even support this by providing C interfaces. However, FOR-
TRAN uses a di�erent memory layout for matrix arrays than C/C++. In
local memory, multidimensional arrays are saved as pseudo-multidimensional
arrays. Pseudo-multidimensional means that the array is really stored con-
tiguously in a one dimensional array, but is accessed in a multidimensional
fashion. The compiler translates multidimensional indexes in the program
code into strided memory addresses in the pseudo-multidimensional array.
The size of the stride is de�ned in the programming language as a function
of array size. In FORTRAN, indexes are translated in column-major order,
while C/C++ and many modern languages use a row-major order transla-
tion. The di�erence between the two is illustrated in Figure 2.4.

Figure 2.4: The di�erence between Column-major order and Row-major or-
der. Row-major stores the rows after each other, while column-major stores
the columns after each other.

In C and C++ multidimensional arrays are arrays of arrays. If the di-
mensions are de�ned at compile-time this is just an abstraction of pseudo-
multidimensional arrays. If the arrays are dynamic (on the heap) the multidi-
mensional array will be an array of pointers to arrays. The memory structure
is not predictable for dynamic arrays, and the code has to dereference the
pointers to reach the data.

There exists several versions of LAPACK made for C++, e.g. CPPLAPACK
and LAPACK++. However, these versions of the library require the use of a
special matrix data type. While this can be very advantageous when writing
a new program from scratch, it is far more complicated to convert an existing
application. Converting is complicated because every reference, indexing and
use of the arrays needs to be carefully changed to avoid introducing bugs.
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ACML

ACML 12 is AMD's core math library. It is copyrighted by AMD, but is
available for free for anyone to use. ACML contains BLAS and LAPACK
routines optimized for AMD processors, as well as some FFT routines and
a random number generator. Both single and multi-core versions are avail-
able. ACML contains some FORTRAN code and use the column-major order
memory layout for pseudo-multidimensional arrays.

ATLAS

ATLAS 13 [45] is a portable BLAS implementation based on auto-tuning. It
is open source (GNU General Public License) and often regarded as the best
optimized version of BLAS. Some LAPACK routines are also available. AT-
LAS is built on a C-port of BLAS (CBLAS) and supports both column-major
order and row-major order memory layout for pseudo-multidimensional ar-
rays.

2.5.4 FFTW

FFTW 14 [25] is a free open source (GPL) library for fast Fourier trans-
forms (FFT), which is the most e�cient type of discrete Fourier transform
(DFT). FFTW is known as one of the fastest implementations of the FFT
for CPUs [23]. It can compute transforms for arrays of arbitrary size in
O(n log n) time. FFTW uses a form of auto-tuning to achieve good e�-
ciency on di�erent hardware. By measuring the performance, FFTW can
choose the most optimal algorithm before performing the transformation. If
the number of repeated transforms is su�ciently large, this technique can
yield very good performance. However for single or few repeated transforms,
it is usually faster to let FFTW estimate the best algorithm. Estimation is
many times faster than measuring and hardly impacts the transformation
time at all. The estimated or best measured algorithm is returned from the
library as an �execution plan�, which is a transformation scheme and can be
used for any number of transforms.

12http://developer.amd.com/libraries/acml/
13http://math-atlas.sourceforge.net/
14http://�tw.org/

http://developer.amd.com/libraries/acml/
http://math-atlas.sourceforge.net/
http://fftw.org/
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Chapter 3

CRAVA

CRAVA is an application for performing elastic seismic inversion. It is open-
source and written in C and C++. CRAVA was developed by the Norwegian
Computing Center (NR) in collaboration with Statoil.

Seismic, or geophysical, inversion involves determining the interior structure
of the earth from data obtained at the surface. In seismic inversion, posterior
(sub-sea) elastic parameters are estimated from seismic re�ection data and
well logs. These parameters are vital for use in geological modeling. Seismic
inversion has been used for quite some time [36], and has traditionally been
treated as a deterministic problem. One of the features that sets CRAVA
apart from other implementations is the use of a relatively new Bayesian
(statistical) approach to the inversion process, which provide quanti�able
uncertainties and errors [12].

This chapter presents CRAVA in more detail, and explains concepts used
in seismic processing. First, seismic data is introduced along with the ac-
quisition process. Then, a more thorough look at CRAVA and its features
is presented, followed by the testing scheme used in this thesis. Finally, we
present previous work on CRAVA, and its state before the optimizations of
this thesis began.

25
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3.1 Marine seismic data acquisition

Seismic waves are energy waves that travel through the ground. They can
be the result of an earthquake, an explosion or arti�cial generation. Seismic
acquisition is the process of gathering wave data over time, for further pro-
cessing. Gathered seismic data can be used for the prediction of earthquakes,
detection of explosions and mapping subsurface geological features [37].

To obtain seismic data for a marine survey, a vessel drags a seismic source
in the water behind it. This source is most often air guns that shoot pres-
surized air towards the seabed [32]. The frequency of these pressure waves
take the shape of wavelets 1, and are in part re�ected at boundaries be-
tween two media with di�erent acoustic impedances [37], termed facies. The
re�ections move at an inverse angle of the source wave, and are recorded
by hydrophones, which is underwater microphones sensitive to pressure [32].
Several hydrophones are attached to a streamer a few meters under the wa-
terline and towed behind the acquisition vessel.

Before the seismic data can be used with CRAVA, they need to be pre-
processed (pre-stack migration) [9]. The responses with similar angles are
grouped together in so-called partial angle stacks, and treated as the same
angle φ. GPS is used to relate the data to geological locations. An illustration
of the setup can be seen in Figure 3.1.

3.2 CRAVA overview

CRAVA is an acronym for "Conditioning Reservoir variables to Amplitude
Versus Angle data." Angle data refers to the way the angles between down-
ward and upward traveling seismic waves change according to the increasing
distance (o�set) between the seismic source and consecutive hydrophones [3].
Amplitude refers to the signal intensity of the re�ection in the partial angle
stacks, as recorded by the hydrophones. These amplitude data contain noise
and measurement uncertainty, which are taken into account by the Bayesian
linearized AVO (Angle Versus O�set) inversion method. The main advantage
of the method is that uncertainties in the results can be quanti�ed [3, 12].
Typical datasets are tens to hundreds of gigabytes (GB), and the program
can use several hours in normal operation for the larger sets.

1A wavelet is a wave-like oscillation with an amplitude that starts out at zero, increases,
and then decreases back to zero.
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Figure 3.1: The seismic acquisition process.
Original illustration courtesy of the U.S. Geological Survey. (Public domain)

One output of CRAVA is the inverted elastic parameters Vp (pressure-wave
velocity), Vs (shear-wave velocity), and ρ (density). These parameters can
be used for further geophysical analyses and modeling. Pressure waves are
compressional waves in the same direction as the energy propagation, and
can travel through any material. Shear waves are transverse waves that
displace the material perpendicular to the energy propagation direction. The
di�erence is illustrated in Figure 3.2.

3.3 Features

CRAVA has three modes: inversion, estimation and forward modeling. The
primary mode is inversion. CRAVA uses a new geo-statistical inversion
method, which transforms the problem to the Fourier domain. Here the in-
version problem can be solved independently for each frequency component,
before it is transformed back to time domain. The approach reduces time
complexity from O(n2.x) to O(n log n), making it faster than the traditional
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Figure 3.2: The di�erence between pressure (P) and shear (S) waves. The
large arrow shows the energy propagation direction, while the little hammers
indicate the displacement direction of the wave.
Original illustration courtesy of the U.S. Geological Survey. (Public domain)

inversion methods, while enabling the use of moderate computer resources
[12, 13, 31]. The elastic parameters generated in inversion can either be
predicted as the �most probable� values, or stochastically simulated using a
Monte Carlo method 2 [11].

Before the inversion, prior background models are constructed for the earth,
based on log data from drilling wells. The logs contain basic information
about which facies exists (e.g. sand or shale), and at what depth. Inversion
then predicts the posterior distributions matching the seismic data, while
updating the models. The posterior distributions can be predicted analyti-
cally due to the linearized relationship between the AVO data and the elastic
model parameters. The analytical method exploits the fact that re�ection
strength depends on the re�ection angle and material properties where the
re�ections take place [9].

The estimation mode checks the quality of the data and estimates missing
information for inversion, but does not perform the actual inversion. Forward
modeling is a minor feature that generates synthetic seismic data from the
background model. This mode is a joint estimation and inversion mode,

2Computational algorithm that relies on repeated sampling of a random number gen-
erator. It is useful for modeling phenomena with signi�cant uncertainty in inputs.
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which is also used for quality assurance. CRAVA will, when possible, estimate
any information not supplied. Additional steps in CRAVA include kriging the
results to the wells and the commonly used facies probabilities generation.
Kriging is a form of geo-statistical interpolation, while facies probabilities
are cubes with the statistical probability for each of the facies. The di�erent
facies have di�erent oil capacities, and �nding areas containing e.g. sand, is
more interesting than areas of shale, since the probability for oil is higher in
sand.

3.4 Testing

The CRAVA source code is bundled with a test suite containing ten tests,
detailed in Table A.1. These tests run the working-copy of CRAVA against
small synthetic datasets, and compare the output to previously generated
results. Any anomalies in the computed data are reported as errors, and
if measurable the di�erence is shown. The tests are used throughout this
project to verify that any changes do not compromise accuracy or correct-
ness. It is worth noting, that using compiler optimization �ags changes the
�oating-point rounding, and CRAVA reports the variances as errors. The
variances are however small, and since rounding errors naturally occur with
small �oating-point numbers [26], these errors are ignored.

The tests' datasets are small compared to real datasets and only suited for
verifying correctness. For benchmarking a much larger dataset is used. This
dataset originates from a Statoil-operated oil�eld on the Norwegian conti-
nental shelf. Details are listed in Table A.2, and the test is referred to as the
benchmark test in this thesis.

3.5 Previous work and current state

Andreas D. Hysing worked on optimizing CRAVA in his master's thesis [28].
His work involved optimizing and parallelizing the re-sampling algorithm,
and parallelizing the inversion step. OpenMP was used to parallelize the
code for shared memory systems. Re-sampling showed a 60 % serial speedup
and good parallel scalability. The parallelization of inversion did not show
any parallel speedup. A FFT settings store was tested to cache settings for
fast Fourier transformations and support re-use of execution plans (as de�ned
in Section 2.5.4). It achieved a small improvement in run-time, but did not
signi�cantly impact overall application performance.
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In the author's fall specialization project, on which this thesis is based, two
sections of CRAVA were pro�led and parallelized [44]. The sections were
Prior expectation (background model) and Building the Stochastic model.
Additionally, some optimizations were made to the FFT settings store. Good
local speedups were achieved resulting in 3.8x and 2.3x speedups for the two
sections, and about 18% overall improvement for normal operation 3.

Listing 3.1: Original time usage of CRAVA at the start of this thesis.
Sec t i on CPU time Wall time
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Loading s e i sm i c data 123 .30 0 .83 % 141.00 4 .26 %
Resampling s e i sm i c data 1976.60 13 .32 % 280.00 8 .46 %
Wells 12 .34 0 .08 % 12.00 0 .36 %
Pr io r expect ion 606 .36 4 .09 % 136.00 4 .11 %
Pr io r c o r r e l a t i o n 7 .38 0 .05 % 7.00 0 .21 %
Bui ld ing s tochas . model 741 .51 5 .00 % 313.00 9 .46 %
Inve r s i on 10751.13 72 .45 % 1754.00 53 .01 %
Parameter f i l t e r 429 .33 2 .89 % 429.00 12 .96 %
Rest 191 .08 1 .29 % 237.00 7 .16 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 14839.04 100 .00 % 3309.00 100 .00 %

Listing 3.1 shows the di�erent sections of the program and their original time
usage. The timings includes the previous works mentioned above by Hysing
and the author. To obtain these timings, the benchmark test was used on
a test system with a total of 8 cores, introduced in Section 4.1. Inversion
is now the most time consuming part by far, with parameter �ltering on a
distant second.

3When comparing normal operation on the same system as used in this thesis with
OpenMP 3.0 and ignoring time used to load data. Ref. Listings B.16 and B.17 in [44].
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Chapter 4

Performance Analysis and

Optimizations

In this chapter, we present implementation details of our performance opti-
mizations. First, we describe our test and development environments. Then
we present the pro�ling methods used and tools tested. Next, for each dwarf
found in CRAVA, the dwarf is explained and its performance data from pro-
�ling presented, before optimization techniques are applied to it. Finally,
the seismic inversion algorithm is studied in more detail and its performance
data presented, before the algorithm is optimized through parallelization.

4.1 Test and development environments

In this thesis, we use the real-world dataset explained in Section 3.4 for
testing. To satisfy the memory requirement for this dataset, a compute node
from a large cluster is used. This test system is detailed in Table 4.1, while
the workstation system used for day-to-day development is described in Table
4.2. Since the test system only contained an old version of GCC and installing
a newer version was impossible due to permissions, it was necessary to cross-
compile CRAVA on the development system to be able to use OpenMP 3.0.
Compiling CRAVA returns an executable binary �le. For the executable �le
from the development system to run on the test system, which run a di�erent
version of Linux and accompanying libraries, LSB can be used.

Linux Standards Base 1 (LSB) is a project to increase application compati-
bility between Linux distributions. It speci�es standard libraries, �le system

1http://www.linuxfoundation.org/collaborate/workgroups/lsb
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Table 4.1: Benchmark test system.
System Cluster compute node

CPU(s) Quad-Core AMD Opteron 2356 (Barcelona)
Frequency 2.3 GHz
Cores 8 (2 sockets × 4)
Memory 32 GB
Instruction set amd64 (x86_64)
OS Red Hat Enterprise Linux Server release 5.4
GCC 4.1.2
OpenMP 2.5
LSB 3.1

Table 4.2: Development system.
System HPC-LAB workstation

CPU Intel Core i7 930 (Nehalem)
Frequency 2.8 GHz
Cores 4 (8 with HyperThreading)
Memory 6 GB
Instruction set x86_64
OS Ubuntu 10.04
GCC 4.4.3
OpenMP 3.0
LSB 2.0, 3.0, 3.1, 3.2, 4.0

layout and more. The idea is that when an application is LSB compliant, it
can run on any distribution that is also LSB compliant of the same version
or newer, even in binary form. Thanks to LSB it has become easier to dis-
tribute binary programs for Linux without having a multitude of versions or
restrictions on distributions.

To get a fully LSB compliant executable, a special compiler wrapper is used.
This wrapper tells the compiler to use the proper LSB linker and libraries.
On CRAVA this wrapper caused a myriad of compiler errors, so a simpler
solution was used: The program was linked statically, which means that
all the code for external library calls are included in the executable �le.
By statically linking CRAVA it can run independent of system libraries,
as opposed to dynamic linking where the system libraries and versions are
required to match the executable. An advantage of dynamic linking is the
possibility of platform speci�c implementations of libraries, potentially auto-
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tuned to the system.

For CRAVA, libraries like the standard C++ library and OpenMP are stati-
cally linked, which require the entire pthreads library to be statically linked
as well. The GNU C++ compiler has to be persuaded to statically link the
standard C++ library, and doing so causes known complications if the pro-
gram manually loads dynamic libraries with dlsym. Luckily CRAVA does
not, and the resulting binary is fully self-contained. The binary was exam-
ined with the LSB compliance checker and found to be compatible with many
di�erent Linux distributions, including Red Hat 5 and the test system.

4.2 Pro�ling

CRAVA generates usage reports like the one in Listing 3.1, giving a coarse
view of the time used by the application. The sections in these reports can
represent large amounts of code, and more information is needed to determine
where to focus the optimization e�ort. To make good decisions it is important
to have performance data that is as accurate as possible. Therefore, it is vital
to let CRAVA run mostly una�ected by the pro�ling code.

Slow network storage I/O accounts for a large percentage of CRAVA's total
time usage. The unpredictable network latency results in very �uctuating
timings for certain parts of the program. To reduce the impact of the network
latency and obtain more consistent timings, an extra run-through of the
program is performed before timings are recorded. This extra run-through
lets the operating system cache most of the input data in memory, which
helps speed up consecutive runs and provide persistent I/O timings.

In this thesis, several pro�ling methods were tested and used. Below follows
a short description and discussion of the di�erent methods.

Valgrind

Valgrind with the tool Callgrind produce informative call graphs of an ap-
plication. It uses the number of instructions to relate functions to time
use, which gives an indication of the time usage distribution but not exact
timings. An indication can be useful for most programs, but when tested on
CRAVA it was found to be impractical. In fact, due to the increased memory
requirement, the test system (Table 4.1) could not run CRAVA in Callgrind.
Another contributing factor is the implied slowdown as explained in Section
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2.3.2, which makes testing ine�ective. Due to these issues Valgrind was not
used for pro�ling in this thesis.

TAU

TAU was used to pro�le the matrix code. All functions related to matrix
operations are located in one source �le, that is well suited for automatic
pro�ling. Automation is advantageous due to the large number of functions.
TAU was chosen because of ease of use and good visual representation of re-
sults. TAU is supposed to work with both static and dynamic linking. Static
linking is used by default, and dynamic linking can be chosen through pa-
rameters. Despite several attempts, the compiler scripts never worked with
static linking. No static linking made the compiler based instrumentation
useless since CRAVA is statically linked for practical reasons. By digging
through example code we revealed the internal TAU tools used for instru-
menting. Using these tools directly in a Make�le generated valid pro�ling
code, but the resulting application became many times slower and reported
a possible error in performance data output. It turns out that the TAU pro-
�ler dumps pro�ling data to disk when all active timers are stopped. The
compiler scripts inserts a top level timer automatically, but since we perform
the instrumentation �manually�, this timer is non-existent. Through testing
it became apparent that this timer had to be in the same �le as the rest
of the pro�ling code. The �nal solution injects a top level timer into the
instrumented source �le, which is called from the main program at the start
and end. This top level timer allowed the application to run with about 50 %
increase in time use, and to dump data to disk only once.

GNU gprof

We attempted to use gprof on the matrix code. Since it is fully integrated
into the GNU compiler collection, instrumenting the code was relatively easy.
The instrumented application ran with only a minor performance impact.
However, the output of gprof was deemed less useful than the other options,
because it was at a function level granularity, which was not detailed enough
at times. Another contributing factor to the low usefulness of gprof output,
was the fact that the results are prone to statistical errors.
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Manual instrumentation

Using detailed pro�ling like TAU on the whole application was not feasi-
ble due to the increase in time usage. A simple pro�ling framework was
needed for testing during development. The framework used in this thesis
was originally built by A. Hysing [28], and has been adapted slightly for this
thesis. Instrumentation code is manually put in strategic places throughout
the code, measuring time usage with simple timers. The timings are passed to
the framework along with an identi�er, and the framework creates a log of all
the timers in a human readable format. This framework allows for variable
granularity and detailed pro�ling where necessary. If for instance a func-
tion contains several for-loops, uncovering the time distribution is an easy
task (albeit somewhat tiresome). The timing function used is the OpenMP
wallclock timer, omp_get_wtime().

Since each FFT call must pass through the settings store, it can easily be
timed there. Our FFT timing was implemented in a slightly ine�ective way
requiring an extra linked list, and caused the detailed view of time usage
for FFTW execution plans to become unstable. The detailed view being
unstable means that the time usage per individual plan is not always accurate
in one run, but can be statistically established over several consecutive runs.
However, the total execution time used is always accurate.

4.3 Dwarfs

Two dwarfs are easily identi�ed in CRAVA: dense linear algebra and spectral
methods. Both are further detailed and optimized in the following sections.

4.3.1 Dense linear algebra

The dense linear algebra dwarf covers calculations with dense matrices and
vectors. Dense matrix operations are usually computationally bound and can
be optimized for data-level parallelism through SIMD and task-level paral-
lelism through cache-tiling.

CRAVA uses dense matrix operations in several sections, but the use is mostly
concentrated in the Parameter �lter section. The original matrix code were
simple naive implementations. NR expressed early that this was known to be
an ine�cient solution and it was planned to be �xed. However, it is included
in this thesis because it directly classi�es as a dwarf.
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The original code was pro�led with TAU and the top time-consuming func-
tions are listed in Table 4.3. The top three functions account for the vast
majority of time usage, and the rest of the functions use even less than the
fourth. The timings relate directly to the timings in Listing 3.1, where the
total time usage was 3309 seconds.

Table 4.3: Top time consuming matrix operation functions in CRAVA.
Function Calls Time per call Time total

lib_matr_prod 26 13247 ms 344 s
lib_matrAXeqBMatR 8 21245 ms 170 s
lib_matrCholR 932 12 ms 11 s
lib_matrAxeqbR 79414 0.01 ms 0.8 s

Total 525.8 s

Lib_matr_prod performs matrix-matrix multiplication. This is a BLAS
level 3 operation and matches the routine dgemm (double-precision general
matrix multiply). The GEMM routine is very generic and is the basis for
most of the other BLAS level 3 routines. It calculates the new value of matrix
C from the matrix product of matrices A and B, and optionally the old value
of C. The input matrices can be either transformed or not, and the new and
old value scaled if needed (α and β). As shown in the formula:

C ← αAB + βC

Lib_matrAXeqBMatR solves a set of linear equation systems

AX = B

for real numbers. The input matrix A is a symmetric positive de�nite,
lower Cholesky factorized matrix. This matches the LAPACK routine dpotrs,
which can solve

Axj = bj

systems for each column j in X and B.

Lib_matrCholR performs a lower Cholesky factorization of a real sym-
metric positive de�nite matrix A.

A = LLT

This matches the LAPACK routine dpotrf, which returns the matrix L.
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Optimization

To optimize the dense linear algebra in CRAVA, BLAS and LAPACK li-
braries are used. CRAVA is coded in C/C++ and could theoretically use
C++ versions of LAPACK, but converting a large application like CRAVA
to a new matrix data-type would be a huge task and not considered for this
thesis.

Since CRAVA is mostly run on AMD processors, the AMD Core Math Li-
brary (ACML) was chosen as the best suited library. ACML contains some
FORTRAN code, which is not always straightforward to mix with C/C++
routines when the memory layout of the routines di�er, as described in Sec-
tion 2.5.3. ACML use the column-major order memory layout for pseudo-
multidimensional arrays, which makes it incompatible with CRAVA which
uses mostly dynamic multidimensional arrays. However, this incompatibility
can be can be solved by transforming the matrices before and after calls to
ACML. A transformation will obviously incur a time penalty, which will limit
the overall optimization e�ect of a library.

In this thesis, two functions are used to convert a generic matrix from the
CRAVA format to ACML format, and back. In reality the data is copied
into a new one-dimensional array , passed to ACML and �nally, copied back
into the original matrix. This array conversion allows CRAVA to make full
use of the BLAS and LAPACK routines of ACML.

Additionally, CRAVA is tested with a version of the Automatically Tuned
Linear Algebra Software (ATLAS) [45] BLAS library, auto-tuned for the test
system. ATLAS supports both column-major order and row-major order
memory layout for pseudo-multidimensional arrays. However, it does not
support dynamic arrays, and still requires a transformation from the CRAVA
format. The transformation routines for ATLAS can use memcpy to speed
up the data copying.

4.3.2 Spectral methods

The spectral methods dwarf embodies algorithms that numerically solve par-
tial di�erential equations (PDE), where data are in the frequency domain [39].
PDEs are often expressed in continuous space and time, and can not be solved
without discretization. A spectral method provides a way to translate the
equations into discrete versions which can be solved numerically. Spectral
discretizations can yield approximations with high accuracy, as well as a
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low number of grid points to achieve the desired precision, resulting in low
memory footprint [39].

The Fourier series lies at the core of many spectral methods, where data
is represented in the frequency domain. In fact most spectral methods re-
quire a transformation of the data for the discretization to work [39]. For
the methods based on the Fourier series, a discrete Fourier transform is per-
formed, e.g. by using the FFT. A key point of the spectral methods dwarf
is that after the change of basis, the computational pattern often resembles
the Structured or Unstructured Grid dwarfs [39].

CRAVA uses a spectral method in its core step, inversion. A discrete rep-
resentation is used to solve the di�erential wave equations in the frequency
domain. As mentioned above, after the transformation of basis the rest of
the computation in this dwarf will be of a di�erent nature. This section will
therefore focus mostly on the FFT, and the inversion itself will be examined
in more detail in Section 4.4.

CRAVA uses the library FFTW [25] for its Fourier transforms. In previ-
ous works (Hysing [28] and Stinessen [44]), the FFTW execution plans were
cached and re-used, with varying success. Because FFTs classify as the spec-
tral methods dwarf, a decision was made to further investigate their perfor-
mance. As described in Section 4.2 the settings store is used as a centralized
timer for FFTs. Sadly the timing implementation caused a few inaccuracies,
but through repeated runs the performance data established are listed in
Table 4.4. The timings again relate directly to the timings in Listing 3.1,
where the total time usage was 3309 seconds. Clearly the 3D transforms are
the most dominant in CRAVA. In fact, only 4 execution plans account for
over 99 % of the transformation time (top 2 from Table 4.4 with forward and
backward transforms).

Table 4.4: Details and time usage of all the Fast Fourier Transforms in
CRAVA, sorted by FFTW execution plan.

Plan dimensions Size Transforms Total time

3D 1344× 972× 336 17 480 s
1D 336 11.7 mill. 51 s
1D (rest) assorted less than 1000 0.4 s

Total 531.4 s
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Optimization

In the author's fall specialization project [44], an attempt was made to enable
threading of FFTs by allowing multiple transforms to run in simultaneously.
This had minor positive e�ect only in some cases. However, FFTW includes
multi-threaded execution routines for plans, and in this thesis they are ap-
plied to the CRAVA code. Since most of the plan executions pass through
the settings store, it is the natural place to inject the parallelism. Several
di�erent setups are tested:

� Running all transforms with multi-threading

� Running only the 3D transforms with multi-threading

� Running only the 3D transforms with multi-threading, but without the
simultaneous execution from the fall specialization project [44].

� Use the measuring feature of FFTW to �nd the best algorithm for the
repeated 1D transforms.

To use the multi-threaded execution routines of FFTW a version upgrade
was necessary. CRAVA was originally packed with version 2.1.2. While this
version does have basic threading support, OpenMP threading was not intro-
duced before version 2.1.4. Some experimentation showed that the OpenMP
threading was slightly faster, and FFTW version 2.1.5 (bug �x) was inte-
grated in CRAVA. It should be noted that when FFTW was upgraded, the
output of CRAVA changed slightly, causing the correctness tests to report
small di�erences. The change in output is assumed to be due to rounding
di�erences in the �oating-point arithmetic [26] in the new library version and
therefore ignored. Although the 2.1.x branch of FFTW is used in CRAVA, a
newer version branch 3.x exists [25], promising over 20 % performance gain
over 2.1. This performance gain is accomplished through a new code struc-
ture and more SIMD vectorization. The newer version was not considered
for this thesis because of its new API, which would have required even more
changes in CRAVA due to its incompatibility with 2.1.
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4.4 Inversion

The objectives of geophysical inversion is to estimate elastic model param-
eters based on general knowledge and a set of measurements. These model
parameters are Vp(x, t), Vs(x, t) and ρ(x, t), as explained in Chapter 3, where
x is the lateral location and t is the two-way vertical seismic travel-time. The
Bayesian linearized AVO inversion method used in CRAVA is based on a weak
contrast approximation [9, 12]. The approximation relates the seismic re�ec-
tion coe�cients to the elastic medium, and is a linearization of the Zoepprits
equations [9]. The following equations are paraphrased from Buland et al.
[8, 9, 10] and Dahle et al. [12]. The continuous approximation re�ectivity
function is given as

c(x, t, θ) = aVp(x, t, θ)
∂

∂t
lnVp(x, t)

+ aVs(x, t, θ)
∂

∂t
lnVs(x, t)

+ aρ(x, t, θ)
∂

∂t
ln ρ(x, t)

where θ is the re�ection angle. The inversion algorithm requires that aVp , aVs
and aρare de�ned in a prior known background model. This unknown model
parameter vector is de�ned as

m(x, t) = [lnVp(x, t), lnVs(x, t), ln ρ(x, t)]
T

The seismic data is represented by the convolutional model

dobs(x, t, θ) =

ˆ
s(τ, θ)c(x, t− τ, θ)dτ + ed(x, t, θ)

where s is the wavelet, c is the synthetic seismic and ed is an angle and
location dependent error term.

dobs, m, s, wobs are time discretizations of the seismic data, elastic param-
eters, seismic wavelet and well-log data, respectively. The error term in the
measured data is assumed to be a zero mean Gaussian distribution. The
other discretizations are then multi-Gaussian or multi-normal distributions.
m is for example

m|µm,Σm ∼ Nnm(µm,Σm)
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where nm is the dimension of m, µm is the expectation vector and Σm is
the covariance matrix. From this it can be construed that the posterior
distribution is Gaussian

m|dobs ∼ Nnm(µm|dobs ,Σm|dobs)

where the posterior expectation and covariance are

µm|dobs = µm + (SAΣ
′

m)
TΣ−1dobs(dobs − µdobs

) (4.1)

Σm|dobs = Σm − (SAΣ
′

m)
TΣ−1dobsSAΣ

′

m (4.2)

and SAΣ
′

m is the covariance between dobs and m.

Equations 4.1 and 4.2 are dependent on the inverse covariance matrix Σ−1dobs .
This matrix has n2

θn
2 elements for a volume with n cells, and calculating the

inverse matrix is an operation with complexity O(n2.x). For any reasonably
sized inversion volumes this matrix inversion becomes restrictively time con-
suming. However, the covariance function for a homogeneously correlated
spatial variable is diagonalized by a 3D Fourier transform. In the Fourier
domain each frequency component can be solved independently, thus having
a complexity of O(n). The inversion becomes upper bound by the Fourier
transform which has a complexity of O(n log n).

Optimization

The inversion algorithm in CRAVA is by de�nition a spectral method. A
partial di�erential equation is spatially discretized and solved numerically.
After the discretization, the inversion calculation resembles the computa-
tional pattern of the structured grid dwarf. No n-point stencil is used in the
computation, but data from each angle stack are fetched and a series of dense
matrix operations are performed on them.

Early benchmarks revealed that inversion was the number one time-consumer
in CRAVA. Listing 3.1 shows that inversion accounts for over 50 % of the
wallclock time used. At �rst an attempt was made to work with the already
parallelized inversion code from Hysing [28], but as his own results shows, this
code does not scale at all, and even scales negatively for some metrics. The
original serial version of CRAVA support using secondary storage (e.g. hard
disk) for storing temporal data if it cannot �t all in memory. This secondary
storage is implemented using serial I/O to and from the data structures. Se-
rial I/O imposes restrictions on the e�ciency of a parallel version, and limits
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the possible parallel speedup as Amdahl's law explains. The old paralleliza-
tion respected these restrictions by using a pipelined execution model. This
implementation would run the computation in parallel but the surrounding
I/O serially [28].

However, the common usage of CRAVA does not involve the secondary stor-
age feature, and serial I/O is not necessary when all data resides in memory.
The pipeline is therefore not an ideal solution for normal use. An attempt
was made to remove the sequential restrictions in the existing parallel imple-
mentation, but the attempt had negative e�ect. A slowdown factor of almost
2 was observed. Tracking down the cause of this e�ect proved di�cult, and
instead it was decided to start over from scratch. The original serial inversion
code was reinstated, and work began to parallelize it.

Table 4.5: Time usage in the original serial inversion code.
Part Time usage Percent

Inversion loop 731 s 63.5 %
Stack FFT 92 s 8.0 %
I/O time 329 s 28.5 %
Total 1152 s 100 %

The original serial code was benchmarked and the time usage is detailed in
Table 4.5. These timings are comparable to the timings in Listing 3.1, if
its inversion section is ignored. For comparison, CRAVA's total time usage
with the original serial inversion code would have been 2707 seconds. The
table shows that the inversion loop is the largest part of the inversion section,
followed by I/O. The inversion loop traverses every layer in the seismic angle
stacks, gradually deeper into the posterior. For every layer, joint error multi-
pliers are computed from the wavelets. Every location in the layer use these
multipliers to construct an error matrix along with the location speci�c error
correlation. Next, the inversion is performed individually for every location.
All the angle stacks and parameters are calculated in one loop traversal, as
per the O(n) complexity.

Table 4.6 shows the original time usage within the inversion loop in Table
4.5. The core inversion loop is the largest single time consumer, but loading
and storing data from and to memory also use a considerable amount of time.
The memory is accessed though serial data access methods. The �rst step
in parallelizing inversion is to use indexed access methods. Adding indexed
access methods increased time usage by about 10 %. This increase was
assumed to be a result of the extra bounds checks in the indexed methods.
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Table 4.6: Time usage within the inversion loop in Table 4.5.
Part Time usage Percent

Loading data 280 s 38.3 %
Core inversion loop 317 s 43.4 %
Creating error matrix 63 s 8.6 %
Storing data 71 s 9.7 %
Total 731 s 100 %

For a parallelization of the inversion loop, some data structures needs to
be thread speci�c. In the old parallelization, the core inversion loop was
parallelized. In order to avoid allocation and deallocation of these resources
for every iteration in the main inversion loop, the thread-private feature in
OpenMP 3.0 was used [28]. This approach allowed the data to be allocated
and deallocated once in each thread, and live across iterations. However,
the prominent OpenMP version available in CRAVA's normal operational
environment is 2.5, which lacks support for thread-private data. For this
thesis we decided to try a di�erent approach. By focusing on parallelizing
the main inversion loop, the data structures can be created and removed
inside the OpenMP parallel section, which will work in both version 2.5 and
3.0 of OpenMP. With this approach each layer is processed in parallel, and
there is less chance of data collisions between the private caches of the cores
(which can lead to thrashing in the caches). Additionally, the serial fraction
in computing the error multipliers poses no problem with this approach, since
that too is run locally by the thread responsible for that layer. The pseudo
code for the new inversion algorithm is listed in Algorithm 4.1.

With the new parallel implementation of the inversion algorithm, the time
usage increased by a factor of 3. At �rst this was believed to be caused by
cache problems, but after tedious debugging, the reason emerged as mutual
exclusion (mutex) locks around the indexed data access methods. They were
likely put there to ensure data consistency, but are unnecessary with the new
parallelization approach. Removing the mutex locks had great e�ect on time
usage and speedup was achieved. The locks are also the main reason why
introducing indexed data access methods increased time usage.

The inversion algorithm checks every layer for relevancy before processing. If
the layer is not a relevant frequency, no inversion is performed, and the prior
model is simply copied to the posterior model. When all the data resides in
memory the prior and posterior grids are the same data structures, and the
data copying is redundant. A quick test proved that of the 336 layers in the
benchmark test, only 112 (33 %) are relevant frequencies and inverted. The
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Algorithm 4.1 Pseudo code for the new parallel inversion algorithm.
1: parallel with n threads do
2: Allocate thread data
3: worksharing for k = 0 to dz do
4: /* Iterations divided amongst threads */
5: Compute error_multipliers from wavelet
6: for j = 0 to dy do
7: for i = 0 to dx do
8: if relevant_frequency then
9: Load data from di,j,k
10: Fill error_matrix for i, j, k with error_multipliers
11: Solve equations with data and error_matrix
12: Store new data to di,j,k
13: else if using_file_storage then
14: Load data from dprei,j,k
15: Store data to dposti,j,k
16: end if
17: Update covariances for i, j, k
18: end for
19: end for
20: end for
21: Remove thread data
22: end parallel
23: Inverse FFT
24: Write parameters to disk

algorithm was modi�ed to not perform this copying for irrelevant frequencies.
However, one special case exists when the data is located in secondary storage
where the prior and posterior grids are separate data structures. In this case
a data copy is required, but the processing step is unnecessary. The change
to the inversion algorithm along with the special case condition is represented
in Algorithm 4.1 on lines 8 to 16.
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Chapter 5

Results

In this chapter we present the results of applying the optimizations described
in Chapter 4. New benchmark timings are presented and compared to the
original timings. Metrics for the improvements are given and visualized,
along with discussion of the results.

The di�erent sections in Chapter 4 are systematically examined before the
overall e�ects on CRAVA are presented. Timings are from benchmarks on the
test system (see Table 4.1), except where stated otherwise. The timings for
the scaling-test are from benchmark tests on the scale-test system, detailed
in Table 5.1.

Table 5.1: Scale-test system
System Cluster application node

CPU Twelve-core AMD Opteron 6168 (Magny Cours)
Frequency 1.9 GHz
Cores 48 (4 sockets × 12)
Memory 512 GB
Instruction set amd64 (x86_64)
OS Red Hat Enterprise Linux Server release 5.6
GCC 4.1.2
OpenMP 2.5
LSB 4.0
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5.1 Dense linear algebra dwarf

After ACML was enabled on the top three matrix operations as described in
Section 4.3.1, the code was pro�led with TAU a second time. As expected,
a large improvement was observed. The new timings are listed in Table 5.2.

Table 5.2: Time usage of the optimized matrix operations, with comparison
to the original time usage.
Function Time

per call
Total time

new
Total time

before
Speedup

lib_matr_prod 85 ms 2.2 s 344 s 156x
lib_matrAXeqBMatR 121 ms 1 s 170 s 170x
lib_matrCholR 0.9 ms 0.8 s 11 s 13.8x
C_to_FORTRAN 2 ms 2 s - -
FORTRAN_TO_C 0.6 ms 0.6 s - -

Total 6.6 s 525 s 79.5x

The section of CRAVA with the most matrix operations is Parameter �lter.
Using ACML resulted in a 98.1 % reduction in run-time (53.6x speedup) on
this section, as shown in Section 5.4. The large speedup has to be viewed in
context with the previous version. Since a naive numerical recipes implemen-
tation was used, direct comparison with a highly optimized library is unfair.
The di�erence in time usage is visualized in Figure 5.1.

Figure 5.1: Comparison of the dense matrix time usage before and after use
of ACML.

Compared to the new matrix operations, the array transformation routines
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use a large amount of time. However, when compared to the rest of the pro-
gram, it is of insigni�cant size. The rest of the matrix operations in CRAVA,
that was not considered for library calls, deal with very small matrices and
vectors (as explained in Section 4.3.1). Most run in less than 5 microsec-
onds, and the gains from optimization would be small. The limited amount
of work for small matrices in CRAVA exempli�es that the size of the dataset
is important to the parallel performance of the dense linear algebra dwarf.
Both a serial version and multi-threaded version of ACML were tested with
CRAVA. On the test system, the multi-threaded version performed slightly
better than the serial, but as a scaling test (introduced in Section 5.4) uncov-
ered, the multi-threaded version scaled negatively, and is not the best choice
for the small matrix operation datasets in CRAVA.

The auto-tuned ATLAS version performed well, but overall were no better
than ACML. The timings for ATLAS are listed in Table 5.3 along with a
comparison to ACML. ATLAS uses more time on the actual matrix opera-
tions, but the array transformations are considerably faster due to the use of
memcpy. The transformation routines are about 85 % faster than the rou-
tines used for ACML. Overall, the ATLAS implementation is about the same
speed as the ACML implementation when including the array transformation
time.

Table 5.3: Time usage of the matrix operations when ATLAS is used.
Function Time per

call
Total
time

Speedup ATLAS
ACML

lib_matr_prod 139 ms 3.6 s 95.6x 1.64
lib_matrAXeqBMatR 285 ms 2.3 s 73.9x 2.30
lib_matrCholR 0.6 ms 0.5 s 22x 0.63
multidim_to_pseudo 0.26 ms 0.3 s - 0.15
pseudo_to_multidim 0.13 ms 0.1 s - 0.17

Total 6.8 s 77.2x 1.03
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5.2 Spectral methods dwarf

In the spectral methods dwarf the Fast Fourier Transforms of CRAVA were
executed with multi-threading. FFTW supplies routines for threading with
OpenMP. A few di�erent setups were tested, with varying success. The 3D
transforms bene�ted greatly from parallel execution, but most when given full
access to the CPUs. From previous e�orts, multiple 3D transforms were per-
formed simultaneously. This limited the e�ect of the multi-threaded routines.
Running multiple multi-threaded routines simultaneously would spawn more
threads than available cores. Since spectral methods are limited by memory
latency [4], it was speculated that the threads would end up competing for
memory bandwidth or cache resources, resulting in the limited performance
gains.

The smaller one-dimensional transforms did not show a large change from the
multi-threaded routines. Most likely they do not parallelize completely (as
noted in the documentation [24]), or are so small that the e�ect is negligible.
Since these transforms are called several million times, we attempted to use
the measuring feature of FFTW to �nd the best algorithm. The measuring
feature increased the time used to create the plans by about 16 seconds,
or 1/3 of the total plan execution time, only to have no improvement on
the transformation time. For the �nal version only the 3D transforms are
run with multi-threading, and the simultaneous transformations removed.
All the transforms use the best estimated algorithm by FFTW. The new
performance data is listed in Table 5.4.

Table 5.4: The new time usage of all the FFTs in CRAVA, with comparison
to the original time usage.
Plan di-
mensions

Size Time usage
new

Time usage
before

Speedup

3D 1344× 972× 336 56 s 480 s 8.6x
1D 336 51 s 51 s -
1D (rest) assorted 0.4 s 0.4 s -

Total 107.4 s 531.4 s 5x

Overall the changes reduced transformation time by 80 %. The improve-
ment is visualized in Figure 5.2. The sections of CRAVA most a�ected by
the improvement in FFT time use are Building of the stochastic model and
Inversion.

The results show that only the 3D transforms bene�ted from multi-threaded
execution. While the one-dimensional transforms are relatively small and
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quick, their combined time usage can get dominating if enough transforma-
tions are performed. They are not be able to exploit parallelism available
in the hardware and fall back to serial execution. These results are an in-
dication that the spectral methods dwarf is not a one sided benchmark for
parallel hardware and programming models. Even if the newer versions of
FFTW advertise more SIMD vectorization, it would not exploit the current
trend in processor architecture design of increased task level parallelism.

Figure 5.2: Comparison of the old and new FFT time usage in CRAVA.

5.3 Inversion

The inversion section of CRAVA is optimized through parallelization of the
inversion algorithm. Additionally, the algorithm now skips data copying for
irrelevant frequencies. The new time usage of the section is listed in Table
5.5.

Table 5.5: New time usage within the inversion section in CRAVA, compared
to the time usage before optimization.
Part Time usage

new
Percent Time usage

before
Speedup

Inversion loop 54 s 13 % 731 s 13.5x
Stack FFT 13 s 3 % 92 s 7x
I/O time 343 s 84 % 329 s -
Total 410 s 100 % 1152 s 2.8x

The improvement for �Stack FFT� originates from the multi-threaded Fourier
transforms in Section 5.2. A 13.5x speedup is observed for the inversion loop,
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and the inversion section is now dominated by I/O with 84 % of the total
time usage. The 14 seconds increase in I/O time is due to the network condi-
tions and latency, and not due to our changes. The reason for the inversion
loop's super linear speedup is the extra work performed in copying data for
irrelevant frequencies in the original serial version. When the unnecessary
data copying is dropped the inversion loop takes 336 seconds (as recorded in
the scaling-test described below), resulting in a reasonable parallel speedup
of 6.2x. The improvements to the inversion section are visualized in Figure
5.3.

Figure 5.3: Comparison of the time usage within the inversion section of
CRAVA before and after the optimization and new parallelization.

To test the parallel scalability of the new inversion algorithm, a scaling-
test was performed on the scale-test system (detailed in Table 5.1). The
optimized version of CRAVA was run with a varying number of threads,
which is assumed to exactly match the number of processing cores used.
The results are plotted in Figure 5.4 (detailed timings are available in Table
B.1). The results show a good parallel speedup for the parallelized inversion
algorithm, with near linear speedup up to around 16 cores. Above 16 cores
the speedup decreases, and even turns slightly negative for about 32 or more
cores. The scale-test system has 48 cores, but sadly our optimized version
of CRAVA �hangs� (locks up and stops) at 40 or more cores, so the highest
number of cores we are able to test is 38. From the graph we observe that
the I/O time is approximately constant, and accounts for increasingly more
of the total time usage in the inversion section.
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Figure 5.4: The parallel scalability of the new inversion algorithm paralleliza-
tion. Inner time usage of the inversion section of CRAVA for various number
of processing cores.

5.4 Overall e�ects

After all the optimizations in Chapter 4 were applied to the CRAVA code,
another benchmark test was performed to measure the overall optimization
e�ects. The new time usage of the sections within CRAVA are presented in
Listing 5.1.

Listing 5.1: The new time usage within CRAVA after the optimizations
applied in this thesis are applied.
Sec t i on CPU time Wall time
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Loading s e i sm i c data 120 .10 2 .98 % 154.00 11 .13 %
Resampling s e i sm i c data 1783.74 44 .29 % 254.00 18 .35 %
Wells 11 .01 0 .27 % 11.00 0 .79 %
Pr io r expect ion 605 .22 15 .03 % 135.00 9 .75 %
Pr io r c o r r e l a t i o n 7 .19 0 .18 % 7.00 0 .51 %
Bui ld ing s tochas . model 714 .21 17 .73 % 172.00 12 .43 %
Inve r s i on 575 .17 14 .28 % 418.00 30 .20 %
Parameter f i l t e r 35 .09 0 .87 % 8.00 0 .58 %
Rest 175 .81 4 .37 % 225.00 16 .26 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 4027.56 100 .00 % 1384.00 100 .00 %

We observe that the time used within sections Building stochastic model,
Inversion and Parameter �lter has decreased from the original time usage in



52 CHAPTER 5. RESULTS

Listing 3.1. These changes are presented in Table 5.6, along with the change
in total wallclock time. A visualization of this table is seen in Figure 5.5.

Table 5.6: Comparison of time usage for the sections within CRAVA, that
are a�ected by our optimization e�orts, as well as the total time usage of
CRAVA.
Section New time

usage
Old time

usage
Speedup Improvement

Building
stochastic model

172 s 313 s 1.82x 45.05 %

Inversion 418 s 1754 s 4.20x 76.17 %
Parameter �lter 8 s 429 s 53.63x 98.14 %
Total run time 1384 s 3309 s 2.39x 58.17 %

Figure 5.5: Comparison of the time usage within sections of CRAVA a�ected
by our optimizations, as well as the total time usage of CRAVA.

It is important to note that the I/O times depend on the network conditions
and are very unstable. The sections containing I/O are Inversion, Rest and
Loading seismic data. As noted in Section 4.2, the impact of data input
latency is reduced by letting the operating system cache the data in memory.
A �cold run� without this cache use about 700 % (very unstable) more time
loading the data (one example is found in Listing B.1).

The results from the scaling-test performed with our optimized version of
CRAVA on the scale-test system (see Table 5.1), are plotted in Figure 5.6.
The detailed timings are available in Table B.1, and a larger version of the
graph is available in Figure B.1.
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Figure 5.6: Time usage of selected sections of CRAVA in a scaling-test with
various number of processing cores. Larger version in Figure B.1, and detailed
timings in Table B.1.

The graph shows that for the re-sampling section, time use doubles from 6
to 8 cores. In fact, the section's time usage was observed to be very unstable
after the pro�ling timing code was disabled. As both Listing 3.1 and Listing
5.1 show, the re-sampling time usage for 8 cores lies around 250 - 280 seconds
on the test system (Table 4.1). A possible reason for the di�erent time usage
on the scale-test system is a di�erent, less suited allocation of threads to
cores and processor sockets.

Figure 5.6 reveals that the multi-threaded ACML routines scale negatively
past 2 cores on the scale-test system. This trend is easier to see in the detailed
timings in Table B.1. The results indicate that the small-sized matrices of
CRAVA are not large enough to trump the overhead of thread creation and
synchronization in the multi-threaded ACML routines.
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Chapter 6

Conclusions and Future Work

Modern multi-core processors o�er great computing power through hardware
parallelism. However, for applications to exploit this parallelism they have
to be either designed for or adapted to the new processor architectures. The
main goal of this thesis was to further optimize a serial application for multi-
core shared memory systems. The application is used for reservoir research
in the oil and gas industry, and processes seismic data to produce parameters
used for modeling the Earth's interior structure.

In this thesis, we optimized the seismic application CRAVA through OpenMP
parallelization and use of external multi-threaded libraries. The optimization
was guided by pro�ling and the ideas behind the seven dwarfs taxonomy [4].
Di�erent pro�lers were tested and used on the application to locate sections
of code suitable for performance optimization. We presented a way to paral-
lelize the seismic inversion algorithm in CRAVA for OpenMP 2.5 or newer,
and heavily optimized multi-threaded libraries were applied to dense linear
algebra and three-dimensional Fast Fourier Transforms. Benchmarking tests
were performed on modern AMD multi-core systems to measure the opti-
mization e�ects on a large real-world dataset made available to us by Statoil.
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6.1 Contributions

The contributions of this thesis are:

� A study of di�erent pro�lers and their suitability for real-world appli-
cations like the seismic inversion tool CRAVA.

� A case study for the applicability of the seven dwarfs taxonomy and
proposed benchmarks [4]. We observe from our results how the size
of the datasets are of great importance to the parallel e�ciency of the
dwarfs on current computer systems, and that the small datasets can
limit the e�ectiveness of optimizing architectures for the dwarfs.

� A way to parallelize the linearized AVO seismic inversion algorithm
used in the CRAVA application, as well as a way to skip considerable
amounts of irrelevant data copying within the algorithm.

� A performance improvement of about 60 % for the CRAVA application
on a dual quad-core shared memory system.

6.2 Conclusions

For the CRAVA application we found that suitable pro�lers for testing sec-
tions during development were simple manual instrumentation frameworks.
Additionally, for some instances where many function calls are grouped and
examined together, larger automated pro�ling frameworks with selective pro-
�ling are useful. Important for all are that they do not impose a large over-
head or excessively impact the timings.

In CRAVA we found the two dwarfs dense linear algebra and spectral meth-
ods. Furthermore, the spectral method dwarf's computation in the Fourier
domain resembled the computational pattern of the structured grid dwarf.
We demonstrated that CRAVA operate with data of very di�erent sizes
within these patterns, from large to small. Their percentage of total time
usage were less than 1/3, and our results showed small to no gains from par-
allelization for the smallest data, raising the question of real-life e�ectiveness
from using of these dwarfs as parallel benchmarks.

Our results showed that seismic processing applications, such as the CRAVA
seismic inversion code, can bene�t greatly from multi-core optimization ef-
forts. Through serial optimizations and parallelization, we managed to achieve
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a 13.5x speedup for the inversion algorithm that scales up to 24 cores, with
almost linear speedup up to 16 cores, on a quad twelve-core shared memory
system. By using multi-threaded libraries, we observed a mildly super linear
speedup on 3D Fast Fourier Transforms, and small to no speedup for small
1D transforms. Due to small matrices, multi-threaded linear algebra library
routines contributed to minimal speedup compared to the serial routines,
and even scaled negatively for large number of processors. Overall, the op-
timization e�orts resulted, as mentioned, in a performance increase of about
60 % on a dual quad-core shared memory system.

6.3 Future work

In this section, we present suggestions and ideas for future work, starting
with recommendations for the CRAVA application:

� The version of CRAVA in this thesis, as well as previous work, have
been distanced from the development and production version. Porting
the optimizations into the latest version should be prioritized to better
utilize the parallelism available in modern hardware.

� To achieve greater portability, a dynamically linked version of ATLAS,
which can be tuned for each system, is recommended for CRAVA in-
stead of architecture speci�c libraries like ACML.

� Unless there is a need to support tape drives or other media incapable
of random data access, it will probably be bene�cial to investigate the
possibility of removing serial access methods for data structures and
instead rely purely on indexed methods.

� Our results show that I/O is now a dominating part of CRAVA. This
can partly be attributed to slow network storage, but a further analysis
into disk access could be bene�cial. Blocking, memory mapping and
incremental continuous output are possible techniques to investigate.
Another possibility worth exploring is parallel I/O through e.g. MPI-2
parallel I/O routines.

� As the current time usage of CRAVA is decreasing, it would be inter-
esting to see how the optimizations scale with increasing dataset sizes.
This investigation should involve a load-balancing analysis.
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� Although not suited for everyday use, running CRAVA through an
automated full-program pro�ler like Callgrind is probably a good idea
before any further optimizations, to see how sections of code compares
to others.

� The remaining optional stages of CRAVA, which have not been opti-
mized yet, are good candidates for further performance increases. Cal-
culation of facies probabilities and kriging to wells, for example, are
large sections that can be examined. Their time usage is now very
large compared to the optimized sections as seen in Listing B.2.

� Through our optimization e�orts it became apparent that the inversion
algorithm can be decomposed for a distributed memory cluster system.
Distributed implementations of the 3D FFT already exists. Investigat-
ing the feasibility for distributing the remaining sections of CRAVA for
cluster systems could be interesting as a way to increase the amount of
memory available.
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Appendix A

Tests

This appendix present details of the various tests used in this thesis.

A.1 Correctness tests

The details of the tests used to verify correctness throughout development
are listed in Table A.1. Note the small grid sizes.
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A.2 Benchmark test

The details of the benchmark test and dataset are listed in Table A.2. Note
the large memory requirement.

Mode prediction
Angle stacks 10◦, 20◦, 30◦

Seismic format SEG Y
Wavelets estimate (3)
Surface format STORM
Grid dimensions 1344× 972× 336
Padding ratio 0.03× 0.02× 0.12
Wells 8
Well format RMS
Facies sand/shale
Data size 8.7 GB
Memory needed 23.9 GB
Output format STORM

Table A.2: Benchmark test.
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Appendix B

Additional Timings

This appendix present additional timings and detailed results.

B.1 Scaling-test

The detailed timings from the scaling-test on a 48-core shared memory system
(Table 5.1) are listed in Table B.1, and visualized in Figure B.1, which is a
larger version of the graph in Figure 5.6. Note how some timings increase in
time usage as the number of cores increase.
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B.2 Cold-run

Timings from our optimized version of CRAVA on a �cold run�, meaning no
data is cached in memory by the operating system. Note the large time usage
of sections Loading seismic data and Rest, compared to runs where the data
is cached in memory (e.g. Listing 5.1).

Listing B.1: The new time usage within CRAVA on a �cold run�, or without
any data cached in memory by the operating system.
Sec t i on CPU time Wall time
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Loading s e i sm i c data 131 .15 2 .46 % 1286.00 39 .83 %
Resampling s e i sm i c data 3085.55 57 .97 % 514.00 15 .92 %
Wells 11 .16 0 .21 % 11.00 0 .34 %
Pr io r expect ion 598 .37 11 .24 % 135.00 4 .18 %
Pr io r c o r r e l a t i o n 7 .20 0 .14 % 8.00 0 .25 %
Bui ld ing s tochas . model 709 .92 13 .34 % 166.00 5 .14 %
Inve r s i on 560 .34 10 .53 % 414.00 12 .82 %
Parameter f i l t e r 35 .56 0 .67 % 9.00 0 .28 %
Rest 183 .56 3 .45 % 686.00 21 .24 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 5322.83 100 .00 % 3229.00 100 .00 %
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B.3 Facies probabilities and kriging

Timings from our optimized version of CRAVA with the unoptimized Facies
probabilities and Kriging features enabled are listed in Listing B.2. Note the
large time usage of these sections compared to the others.

Listing B.2: The time usage within the optimized version of CRAVA with
�Facies probabilities� and �Kriging� features enabled.
Sec t i on CPU time Wall time
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Loading s e i sm i c data 120 .72 1 .29 % 120.00 2 .78 %
Resampling s e i sm i c data 1785.94 19 .09 % 253.00 5 .86 %
Wells 10 .97 0 .12 % 11.00 0 .25 %
Pr io r expect ion 608 .33 6 .50 % 136.00 3 .15 %
Pr io r c o r r e l a t i o n 7 .17 0 .08 % 7.00 0 .16 %
Bui ld ing s tochas . model 747 .94 7 .99 % 200.00 4 .63 %
Parameter f i l t e r 34 .89 0 .37 % 8.00 0 .19 %
Fac i e s p r o b a b i l i t i e s 1006 .59 10 .76 % 1105.00 25 .57 %
Krig ing 4069.85 43 .49 % 1079.00 24 .97 %
Rest 4453.99 47 .60 % 2069.00 47 .88 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 9357.49 100 .00 % 4321.00 100 .00 %
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Appendix C

Relevant Source Code

This appendix lists relevant source code from the thesis. First, the code for
array transformation routines, then the inversion code.

C.1 Array transformation

The array transformation routines for ACML is listed in Listing C.1, and the
routines for ATLAS is listed in Listing C.2.

Listing C.1: Array transformation routines for ACML, converting CRAVA
dynamic arrays to FORTRAN pseudo-multidimensional format.

1 double * C_to_FORTRAN( int rows , int columns , double **Cmat , double *Fmat)
2 {
3 /* Convert C s t y l e matrixes to FORTRAN 77 (Row−major to Column−major order )*/
4 int i , j ;
5 i f (Fmat == NULL)
6 {
7 Fmat = malloc ( rows * columns * s izeof (double ) ) ;
8 }
9 for ( j = 0 ; j < columns ; j++)

10 for ( i = 0 ; i < rows ; i++)
11 Fmat [ j * rows + i ] = Cmat [ i ] [ j ] ;
12
13 return Fmat ;
14 }
15
16 double ** FORTRAN_to_C( int rows , int columns , double *Fmat , double **Cmat)
17 {
18 /* Convert FORTRAN 77 s t y l e matrixes to C (Column−major to Row−major order )*/
19 int i , j ;
20 i f (Cmat == NULL)
21 {
22 // a l locat ion
23 return NULL;
24 }
25 for ( j = 0 ; j < columns ; j++)
26 for ( i = 0 ; i < rows ; i++)
27 Cmat [ i ] [ j ] = Fmat [ j * rows + i ] ;
28
29 return Cmat ;
30 }
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Listing C.2: Array transformation routines for ATLAS, converting CRAVA
dynamic arrays to C pseudo-multidimensional arrays.

1 /* Function to convert true multidimensional array of arrays to pseudo multidimensional
(1d) arrays . */

2 /* Allocates output matrix i f not suppl ied */
3 double *multidim_to_pseudo_array ( int rows , int columns , double **multidim , double *

pseudo )
4 {
5 int i ;
6 i f ( pseudo == NULL)
7 {
8 pseudo = malloc ( rows * columns * s izeof (double ) ) ;
9 }

10
11 for ( i = 0 ; i < rows ; i++)
12 memcpy(&pseudo [ i *columns ] , multidim [ i ] , columns* s izeof (double ) ) ;
13
14 return pseudo ;
15 }
16 /* Function to convert pseudo multidimensional (1d) arrays to true multidimensional

array of arrays . */
17 /* Allocates output matrix i f not suppl ied (not implemented yet . ) */
18 double **pseudo_to_multidim_array ( int rows , int columns , double *pseudo , double **

multidim )
19 {
20 int i ;
21 i f ( multidim == NULL)
22 {
23 // a l locat ion
24 return NULL;
25 }
26
27 for ( i = 0 ; i < rows ; i++)
28 memcpy(multidim [ i ] , &pseudo [ i *columns ] , columns* s izeof (double ) ) ;
29
30 return multidim ;
31 }

C.2 Inversion code

The original inversion code is listed in Listing C.3, and our optimized version
is listed in Listing C.4. Contact NR 1 (SAND dept.) for full source code.

Listing C.3: Original inversion code. Snippet from crava.cpp.
1 stat ic void f i l l E r r o rMa t r i x ( f loat wnc , const double** errThetaCov , double s ca l e , const

fftw_complex* errMult1 , const fftw_complex* errMult2 , const fftw_complex* errMult3 ,
int matrixSize , fftw_complex ** errVar ) {

2 for ( int l = 0 ; l < matr ixS ize ; l++){
3 for ( int m = 0; m < matr ixS ize ; m++){ // Note we mult ip ly kWNorm[ l ] and comp.

conj (kWNorm[m]) hence the + and not a minus as in pure mul t ip l icat ion
4 errVar [ l ] [m] . re = static_cast<f loat >(
5 0 .5 f * ( 1 . 0 f−wnc) * errThetaCov [ l ] [m]* s c a l e *( errMult1 [ l ] . r e * errMult1 [m] . re +

errMult1 [ l ] . im* errMult1 [m] . im) +
6 0 .5 f * ( 1 . 0 f−wnc) * errThetaCov [ l ] [m]* s c a l e *( errMult2 [ l ] . r e * errMult2 [m] . re +

errMult2 [ l ] . im* errMult2 [m] . im) ) ;
7 }
8 }
9 for ( int l = 0 ; l < matr ixS ize ; l++){

10 errVar [ l ] [ l ] . r e += static_cast<f loat >(wnc* errThetaCov [ l ] [ l ] * errMult3 [ l ] . r e *

errMult3 [ l ] . r e ) ;
11 errVar [ l ] [ l ] . im = 0.0 f ;
12 }
13 for ( int l = 0 ; l < matr ixS ize ; l++){
14 for ( int m = l +1; m < matr ixS ize ; m++){
15 errVar [ l ] [m] . im = static_cast<f loat >(
16 0 .5 f * ( 1 . 0 f−wnc) *( errThetaCov [ l ] [m]* s c a l e )*(−errMult1 [ l ] . r e * errMult1 [m] . im +

errMult1 [ l ] . im* errMult1 [m] . re ) +

1http://www.nr.no

http://www.nr.no


C.2. INVERSION CODE 75

17 0 .5 f * ( 1 . 0 f−wnc) *( errThetaCov [ l ] [m]* s c a l e )*(−errMult2 [ l ] . r e * errMult2 [m] . im +
errMult2 [ l ] . im* errMult2 [m] . re ) ) ;

18 }
19 }
20 for ( int l = 0 ; l < matr ixS ize ; l++){
21 for ( int m = 0; m < l ; m++){
22 errVar [ l ] [m] . im = static_cast<f loat >(
23 0 .5 f * ( 1 . 0 f−wnc) *( errThetaCov [ l ] [m]* s c a l e )*(−errMult1 [ l ] . r e * errMult1 [m] . im +

errMult1 [ l ] . im* errMult1 [m] . re ) +
24 0 .5 f * ( 1 . 0 f−wnc) *( errThetaCov [ l ] [m]* s c a l e )*(−errMult2 [ l ] . r e * errMult2 [m] . im +

errMult2 [ l ] . im* errMult2 [m] . re ) ) ;
25 }
26 }
27 }
28 #define PROCESS_DATA(TID) \
29 double ijkErrLamRe = static_cast<f loat >( fabs ( errCorrUnsmoothVal . re ) ) ; \
30 f i l l E r r o rMa t r i x (wnc_, const_cast<const double**>(errThetaCov_ ) , ijkErrLamRe ,

errMult1 , errMult2 , errMult3 , ntheta_ , errVar ) ; \
31 lib_matrProdCpx (K, parVar2 , ntheta_ , 3 ,3 , KS) ; \
32 lib_matrProdAdjointCpx (KS, K, ntheta_ , 3 , ntheta_ , margVar ) ; \
33 lib_matrAddMatCpx ( errVar , ntheta_ , ntheta_ , margVar ) ; \
34 i f ( lib_matrCholCpx ( ntheta_ , margVar ) == 0) { \
35 l ib_matrAdjoint (KS, ntheta_ , 3 , KScc ) ; \
36 lib_matrAXeqBMatCpx( ntheta_ , margVar , KS, 3) ; \
37 lib_matrProdCpx (KScc ,KS, 3 , ntheta_ , 3 , reduceVar ) ; \
38 lib_matrSubtMatCpx ( reduceVar , 3 , 3 , parVar2 ) ; \
39 lib_matrProdMatVecCpx (K, ijkMean2 , ntheta_ , 3 , ijkDataMean ) ; \
40 for ( i = 0 ; i < ntheta_ ; i++){ \
41 i jkRes2 [ i ] . r e = i jkRes [ i ] . r e ; \
42 i jkRes2 [ i ] . im = i jkRes [ i ] . im ; \
43 i jkRes3 [ i ] . r e = i jkRes [ i ] . r e ; \
44 i jkRes3 [ i ] . im = i jkRes [ i ] . im ; \
45 } \
46 lib_matrSubtVecCpx ( ijkDataMean , ntheta_ , i jkRes2 ) ; \
47 lib_matrProdAdjointMatVecCpx (KS, i jkRes2 , 3 , ntheta_ , i jkAns ) ; \
48 lib_matrAddVecCpx ( ijkAns , 3 , ijkMean2 ) ; \
49 lib_matrProdMatVecCpx (K, ijkMean2 , ntheta_ , 3 , i jkRes2 ) ; \
50 lib_matrSubtVecCpx ( i jkRes2 , ntheta_ , i jkRes3 ) ; \
51 }
52
53 int Crava : : computePostMeanResidAndFFTCov ( )
54 {
55 // This method i s g l o ba l l y b locking .
56 // Two independant c a l l s for computePostMeanResidAndFFTCov() from two ( in )dependant

independant instances w i l l execute in s e r i a l .
57 //
58 // computePostMeanResidAndFFTCov() i s designed th i s way because openMP requires

threadprivate var iab les to be s t a t i c .
59 // computePostMeanResidAndFFTCov() exp lo ints threadprivate to be able to perform

expensive c a l l s once .
60 #i f d e f PROFILING
61 double wtime = omp_get_wtime ( ) ;
62 double ptimeAccum = 0 . 0 ;
63 double invLoop = 0 . 0 ;
64 double readTimeAccum = 0 . 0 ;
65 double writeTimeAccum = 0 . 0 ;
66 #end i f
67
68 omp_set_lock(& lock ) ;
69 U t i l s : : writeHeader ( " Po s t e r i o r  model / Performing  Inve r s i on " ) ;
70 i f ( seisData_ == NULL) return 1 ;
71 double wal l =0.0 , cpu=0.0;
72 TimeKit : : getTime ( wall , cpu ) ;
73 int i , j , k , l ;
74 const f loat lowCut = lowCut_ ;
75 const double simboxMinRelThick = simbox_−>getMinRelThick ( ) ;
76 const f loat highCut = highCut_ ;
77 const double l z = simbox_−>ge t l z ( ) ;
78 const int ntheta = ntheta_ ;
79 const int nzp = nzp_ ;
80 const int nz = nz_ ;
81 const int cnxp = nxp_/2+1;
82 const int nyp_cnxp = nyp_*cnxp ;
83 const f loat de l t a = static_cast<f loat >((nz *1000.0 f ) /( l z *nzp ) ) ;
84 const f loat monitorS ize = std : : max(1 . 0 f , static_cast<f loat >(nzp_) *0 .02 f ) ;
85 f loat nextMonitor = monitorS ize ;
86
87 Wavelet * d i f f 1Opera to r = new Wavelet (Wavelet : :FIRSTORDERFORWARDDIFF, nz_ , nzp_) ;
88 Wavelet * d i f f 2Opera to r = new Wavelet ( d i f f 1Operator , Wavelet : :FIRSTORDERBACKWARDDIFF) ;
89 Wavelet * d i f f 3Opera to r = new Wavelet ( d i f f 2Operator , Wavelet : : FIRSTORDERCENTRALDIFF) ;
90
91 d i f f1Operator−>ff t1DInPlace ( ) ;
92 delete d i f f 2Opera to r ;
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93 d i f f3Operator−>f f t1DInPlace ( ) ;
94
95 Wavelet ** errorSmooth = new Wavelet * [ ntheta ] ;
96 Wavelet ** errorSmooth2 = new Wavelet * [ ntheta ] ;
97 Wavelet ** errorSmooth3 = new Wavelet * [ ntheta ] ;
98
99 for ( l = 0 ; l < ntheta ; l++){

100 std : : s t r i n g angle = NRLib : : ToString ( thetaDeg_ [ l ] , 1) ;
101 std : : s t r i n g f i leName ;
102 seisData_ [ l ]−>setAccessMode (FFTGrid : :READANDWRITE) ;
103 i f ( seisWavelet_ [0]−>getDim ( ) == 1) {
104 errorSmooth [ l ] = new Wavelet ( seisWavelet_ [ l ] , Wavelet : :FIRSTORDERFORWARDDIFF) ;
105 errorSmooth2 [ l ] = new Wavelet ( errorSmooth [ l ] , Wavelet : :FIRSTORDERBACKWARDDIFF) ;
106 errorSmooth3 [ l ] = new Wavelet ( errorSmooth2 [ l ] , Wavelet : : FIRSTORDERCENTRALDIFF) ;
107 f i leName = std : : s t r i n g ( "ErrorSmooth_" ) + angle + IO : : Suf f ixGenera lData ( ) ;
108 errorSmooth3 [ l ]−>pr intToFi l e ( f i leName ) ;
109 errorSmooth3 [ l ]−>ff t1DInPlace ( ) ;
110
111 f i leName = IO : : Pref ixWavelet ( ) + angle + IO : : Suf f ixGenera lData ( ) ;
112 seisWavelet_ [ l ]−>pr intToFi l e ( f i leName ) ;
113 seisWavelet_ [ l ]−>ff t1DInPlace ( ) ;
114
115 f i leName = std : : s t r i n g ( "FourierWavelet_" ) + angle + IO : : Suf f ixGenera lData ( ) ;
116 seisWavelet_ [ l ]−>pr intToFi l e ( f i leName ) ;
117 delete errorSmooth [ l ] ;
118 delete errorSmooth2 [ l ] ;
119 }
120 }
121 delete [ ] errorSmooth ;
122 delete [ ] errorSmooth2 ;
123
124 meanAlpha_−>setAccessMode (FFTGrid : :READANDWRITE) ; // Note
125 meanBeta_ −>setAccessMode (FFTGrid : :READANDWRITE) ; // the top f i v e are over written
126 meanRho_ −>setAccessMode (FFTGrid : :READANDWRITE) ; // does not have the i n i t i a l

meaning .
127
128 FFTGrid * parSpat ia lCorr = cor re la t i ons_−>getPostCovAlpha ( ) ; // NB! Note double

usage of postCovAlpha
129 FFTGrid * errCorrUnsmooth = cor re la t i ons_−>getPostCovBeta ( ) ; // NB! Note double

usage of postCovBeta
130 FFTGrid * postCovAlpha = cor re la t i ons_−>getPostCovAlpha ( ) ;
131 FFTGrid * postCovBeta = cor re la t i ons_−>getPostCovBeta ( ) ;
132 FFTGrid * postCovRho = cor re la t i ons_−>getPostCovRho ( ) ;
133 FFTGrid * postCrCovAlphaBeta = cor re l a t i ons_−>getPostCrCovAlphaBeta ( ) ;
134 FFTGrid * postCrCovAlphaRho = cor re la t i ons_−>getPostCrCovAlphaRho ( ) ;
135 FFTGrid * postCrCovBetaRho = cor re la t i ons_−>getPostCrCovBetaRho ( ) ;
136 parSpat ia lCorr −>setAccessMode (FFTGrid : :READANDWRITE) ; // a f ter the prosessing
137 errCorrUnsmooth −>setAccessMode (FFTGrid : :READANDWRITE) ; //
138 postCovRho −>setAccessMode (FFTGrid : :WRITE) ;
139 postCrCovAlphaBeta−>setAccessMode (FFTGrid : :WRITE) ;
140 postCrCovAlphaRho −>setAccessMode (FFTGrid : :WRITE) ;
141 postCrCovBetaRho −>setAccessMode (FFTGrid : :WRITE) ;
142
143 LogKit : : LogFormatted ( LogKit : :LOW, "\ nBui ld ing  po s t e r i o r  d i s t r i b u t i o n : " ) ;
144 LogKit : : LogMessage ( LogKit : : HIGH, "\n  0%       20%       40%       60%       80%      

100% \
145       \n  |     |     |     |     |     |     |     |     |     |     |   \
146       \n  ^" ) ;
147
148 fftw_complex * errMult1 = new fftw_complex [ ntheta ] ;
149 fftw_complex * errMult2 = new fftw_complex [ ntheta ] ;
150 fftw_complex * errMult3 = new fftw_complex [ ntheta ] ;
151 fftw_complex ** K = new fftw_complex * [ ntheta ] ;
152 for ( int i t e r = 0 ; i t e r < ntheta ; i t e r++){
153 K[ i t e r ] = new fftw_complex [ 3 ] ;
154 }
155
156 // Memory i s a l located once per thread which means that each thread thread has heir

own memory area .
157 // Noticed that a l l these var iab les are marked threadprivate and therefor store data

between para l l e l
158 // blocks
159 #i f _OPENMP >= 200805
160 #pragma omp p a r a l l e l
161 {
162 #endif
163 reduceVar = new fftw_complex * [ 3 ] ;
164 errVar = new fftw_complex * [ ntheta ] ;
165 i jkAns = new fftw_complex [ 3 ] ;
166 ijkDataMean = new fftw_complex [ ntheta ] ;
167 ijkMean = new fftw_complex [ 3 ] ;
168 ijkMean2 = new fftw_complex [ 3 ] ;
169 i jkRes = new fftw_complex [ ntheta ] ;
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170 i jkRes2 = new fftw_complex [ ntheta ] ;
171 KScc = new fftw_complex * [ 3 ] ; // cc − complex conjugate (and transposed )
172 KS = new fftw_complex * [ ntheta ] ;
173 margVar = new fftw_complex * [ ntheta ] ;
174 parVar2 = new fftw_complex * [ 3 ] ;
175 parVar = new fftw_complex * [ 3 ] ;
176 i jkRes3 = new fftw_complex [ ntheta ] ;
177 for ( int i t e r = 0 ; i t e r < ntheta ; i t e r++){
178 errVar [ i t e r ] = new fftw_complex [ ntheta ] ;
179 KS[ i t e r ] = new fftw_complex [ 3 ] ;
180 margVar [ i t e r ] = new fftw_complex [ ntheta ] ;
181 }
182 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
183 reduceVar [ i t e r ]= new fftw_complex [ 3 ] ;
184 KScc [ i t e r ] = new fftw_complex [ ntheta ] ;
185 parVar2 [ i t e r ] = new fftw_complex [ 3 ] ;
186 parVar [ i t e r ] = new fftw_complex [ 3 ] ;
187 }
188 #i f _OPENMP >= 200805
189 #pragma omp s i n g l e copypr ivate ( parVar )
190 #endif
191 {
192 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
193 for ( int i t e r 2 = 0 ; i t e r 2 < 3 ; i t e r 2++){
194 parVar [ i t e r ] [ i t e r 2 ] . re = parPointCov_ [ i t e r ] [ i t e r 2 ] ;
195 parVar [ i t e r ] [ i t e r 2 ] . im = 0 . 0 ;
196 }
197 }
198 }
199 #i f _OPENMP >= 200805
200 }
201 #endif
202
203 // Each thread performs a small part of the s e r i a l code and stores the i r part of the

re su l t .
204 // Exp l i c i t l y spec i fy ing the same scheduler for a l l p a ra l l e l b locks makes the re su l t

of pa ra l l e l b locks
205 // to be shared between para l l e l regions .
206 //
207 // Note :
208 // * The de fau l t scheduler i s implementation dependant .
209 // * schedule ( s ta t ic , 1) == round robin . thread 0 , 1 , 2 , 3 , . . .
210 //
211
212 #ifde f PROFILING
213 invLoop = omp_get_wtime ( ) ;
214 #endif
215 for ( k = 0 ; k < nzp ; k++){
216 fftw_complex kD = di f f1Operator−>getCAmp(k ) ; // def ines content of

kD
217 i f ( seisWavelet_ [0]−>getDim ( ) == 1) { //1D−wavelet
218 i f ( simbox_−>getIsConstantThick ( ) == true )
219 {
220 // def ines content of K=WDA
221 f i l l kW (k , errMult1 ) ; // errMult1 used as dummy
222 lib_matrProdScalVecCpx (kD, errMult1 , ntheta ) ; // errMult1 used as dummy
223 lib_matrProdDiagCpxR ( errMult1 , A_, ntheta , 3 , K) ; // def ines content of (WDA

) K
224
225 // def ines error−term mul t ip l i e r s
226 fillkWNorm (k , errMult1 , seisWavelet_ ) ; // def ines input of (kWNorm)

errMult1
227 fillkWNorm (k , errMult2 , errorSmooth3 ) ; // def ines input of (

kWD3Norm) errMult2
228 lib_matrFillOnesVecCpx ( errMult3 , ntheta ) ; // def ines content of errMult3
229 //simbox_−>getIsConstantThick () == fa l s e
230 } else {
231 fftw_complex kD3 = di f f3Operator−>getCAmp(k ) ; // def ines kD3
232
233 // def ines content of K = DA
234 lib_matrFil lValueVecCpx (kD, errMult1 , ntheta ) ; // errMult1 used as dummy
235 lib_matrProdDiagCpxR ( errMult1 , A_, ntheta , 3 , K) ; // def ines content of ( K = DA

)
236
237 // def ines error−term mul t ip l i e r s
238 lib_matrFillOnesVecCpx ( errMult1 , ntheta ) ; // def ines content of errMult1
239 for ( l =0; l < ntheta ; l++)
240 errMult1 [ l ] . r e /= seisWavelet_ [ l ]−>getNorm ( ) ;
241
242 lib_matrFil lValueVecCpx (kD3 , errMult2 , ntheta ) ; // def ines content of errMult2
243 for ( l =0; l < ntheta ; l++)
244 {
245 errMult2 [ l ] . r e /= errorSmooth3 [ l ]−>getNorm ( ) ; // def ines content of errMult2
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246 errMult2 [ l ] . im /= errorSmooth3 [ l ]−>getNorm ( ) ; // def ines content of errMult2
247 }
248 f i l l InverseAbskWRobust (k , errMult3 ) ; // def ines content of errMult3
249 } //simbox_−>getIsConstantThick ()
250 }
251
252 // Log progress
253 i f ( k > static_cast<int>(nextMonitor ) ) {
254 nextMonitor += monitorS ize ;
255 LogKit : : LogMessage ( LogKit : :LOW, "^" ) ;
256 }
257
258 bool s equen t i a l Input = meanAlpha_−>allowsRandomRead ( ) ;
259 s equen t i a l I nput = meanBeta_−>allowsRandomRead ( ) ;
260 s equen t i a l I nput = meanRho_−>allowsRandomRead ( ) ;
261 s equen t i a l I nput = parSpat ia lCorr−>allowsRandomRead ( ) ;
262 s equen t i a l I nput = errCorrUnsmooth−>allowsRandomRead ( ) ;
263 for ( int i t e r = 0 ; i t e r < ntheta ; i t e r++){
264 s equent i a l Input &= seisData_ [ i t e r ]−>allowsRandomRead ( ) ;
265 }
266 bool sequent ia lOutput = postCovAlpha−>allowsRandomWrite ( ) ;
267 sequent ia lOutput &= postCovBeta −>allowsRandomWrite ( ) ;
268 sequent ia lOutput &= postCovRho −>allowsRandomWrite ( ) ;
269 sequent ia lOutput &= postCrCovAlphaBeta−>allowsRandomWrite ( ) ;
270 sequent ia lOutput &= postCrCovAlphaRho −>allowsRandomWrite ( ) ;
271 sequent ia lOutput &= postCrCovBetaRho −>allowsRandomWrite ( ) ;
272 sequent ia lOutput &= postAlpha_−>allowsRandomWrite ( ) ;
273 sequent ia lOutput &= postBeta_ −>allowsRandomWrite ( ) ;
274 sequent ia lOutput &= postRho_ −>allowsRandomWrite ( ) ;
275 for ( int i t e r =0; i t e r <ntheta ; i t e r++){
276 sequent ia lOutput &= seisData_ [ i t e r ]−>allowsRandomWrite ( ) ;
277 }
278 int wr i t eSp in l ock = 0 ;
279 #i f _OPENMP >= 200805
280 #pragma omp p a r a l l e l for ordered private ( j ) default ( shared ) schedu le ( static , 1)
281 #endif
282 for ( j = 0 ; j < nyp_cnxp ; j++){
283 // A ordered section ensures sequent ia l ordering
284 // Sequential ordering i s e sen t ia l in th i s part in order to retain sequent ia l I/O to

disks .
285 int i d I = k ;
286 int idJ = j /cnxp ;
287 int idK = j%cnxp ;
288 #ifde f PROFILING
289 const double readTime = omp_get_wtime ( ) ;
290 #endif
291 #pragma omp ordered
292 {
293 errCorrUnsmoothVal = errCorrUnsmooth−>getComplexValue ( idK , idJ , idI , true ) ;
294 ijkMean [ 0 ] = meanAlpha_−>getComplexValue ( idK , idJ , idI , true ) ;
295 ijkMean [ 1 ] = meanBeta_ −>getComplexValue ( idK , idJ , idI , true ) ;
296 ijkMean [ 2 ] = meanRho_ −>getComplexValue ( idK , idJ , idI , true ) ;
297 parSpart ia lCorrVa l = parSpat ia lCorr−>getComplexValue ( idK , idJ , idI , true ) ;
298 for ( int i t e r = 0 ; i t e r < ntheta ; i t e r++){
299 i jkRes [ i t e r ] = seisData_ [ i t e r ]−>getComplexValue ( idK , idJ , idI , true ) ;
300 }
301 }
302 #ifde f PROFILING
303 readTimeAccum += omp_get_wtime ( ) − readTime ;
304 #endif
305 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
306 ijkMean2 [ i t e r ] . im = ijkMean [ i t e r ] . im ;
307 ijkMean2 [ i t e r ] . re = ijkMean [ i t e r ] . re ;
308 }
309 f loat ijkParLamRe = fabs ( parSpart ia lCorrVa l . re ) ;
310 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
311 for ( int i t e r 2 = 0 ; i t e r 2 < 3 ; i t e r 2++){
312 parVar2 [ i t e r ] [ i t e r 2 ] . re = static_cast<fftw_real >(parVar [ i t e r ] [ i t e r 2 ] . re *

ijkParLamRe ) ;
313 parVar2 [ i t e r ] [ i t e r 2 ] . im = static_cast<fftw_real >(parVar [ i t e r ] [ i t e r 2 ] . im *

ijkParLamRe ) ;
314 }
315 }
316 f loat rea lFrequency = de l t a * std : : min (k , nzp−k ) ; // the physica l frequency
317 bool cur rent = ( rea lFrequency > lowCut* simboxMinRelThick && realFrequency <

highCut ) ; // invert ing only re levant frequencies
318 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
319 ijkMean2 [ i t e r ] . im = ijkMean [ i t e r ] . im ;
320 ijkMean2 [ i t e r ] . re = ijkMean [ i t e r ] . re ;
321 }
322 i f ( cur rent ) {
323 PROCESS_DATA(omp_get_thread_num () ) ;
324 }
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325
326 // A spinlock i s used to force s e r i a l execution without use of the ordered because

ordered can only
327 // be used once per i t e ra t ion
328 // A spinlock works by continously t e s t ing a condition unt i l i t f a i l s . This i s

more resouce demanding ,
329 // than using locks based on interrupts .
330 // When there i s nothing be t ter to use the resouces on a spinlock i s as good as

any lock .
331 while ( wr i t eSp in l ock != j ) ;
332 #ifde f PROFILING
333 const double writeTime = omp_get_wtime ( ) ;
334 #endif
335 postCovAlpha−>setComplexValue ( idK , idJ , idI , parVar2 [ 0 ] [ 0 ] , true ) ;
336 postCovBeta −>setComplexValue ( idK , idJ , idI , parVar2 [ 1 ] [ 1 ] , true ) ;
337 postCovRho −>setComplexValue ( idK , idJ , idI , parVar2 [ 2 ] [ 2 ] , true ) ;
338 postCrCovAlphaBeta−>setComplexValue ( idK , idJ , idI , parVar2 [ 0 ] [ 1 ] , true ) ;
339 postCrCovAlphaRho −>setComplexValue ( idK , idJ , idI , parVar2 [ 0 ] [ 2 ] , true ) ;
340 postCrCovBetaRho −>setComplexValue ( idK , idJ , idI , parVar2 [ 1 ] [ 2 ] , true ) ;
341 for ( int i t e r =0; i t e r <ntheta ; i t e r++){
342 seisData_ [ i t e r ]−>setComplexValue ( idK , idJ , idI , i jkRes3 [ i t e r ] , true ) ;
343 }
344 postAlpha_−>setComplexValue ( idK , idJ , idI , ijkMean2 [ 0 ] , true ) ;
345 postBeta_ −>setComplexValue ( idK , idJ , idI , ijkMean2 [ 1 ] , true ) ;
346 postRho_ −>setComplexValue ( idK , idJ , idI , ijkMean2 [ 2 ] , true ) ;
347 #ifde f PROFILING
348 writeTimeAccum += omp_get_wtime ( ) − writeTime ;
349 ptimeAccum += omp_get_wtime ( ) − readTime ;
350 #endif
351 // Release the lock .
352 #pragma omp atomic
353 wr i t eSp in l ock += 1 ;
354 #pragma omp f l u s h ( wr i t eSp in l ock )
355 }
356 }
357 #ifde f PROFILING
358 invLoop = omp_get_wtime ( ) − invLoop ;
359 #endif
360
361 LogKit : : LogMessage ( LogKit : :LOW, "\n" ) ;
362 // Para l l e l memory cleanup . Each threads cleans up the i r l oca l copy of threadprivate

memory.
363 // All c a l l s in pa ra l l e l b locks happends the same times as the number of threads
364 #i f _OPENMP >= 200805
365 #pragma omp p a r a l l e l private ( j )
366 #endif
367 {
368 for ( int i t e r = 0 ; i t e r < ntheta ; i t e r++){
369 delete [ ] errVar [ i t e r ] ;
370 delete [ ] KS[ i t e r ] ;
371 delete [ ] margVar [ i t e r ] ;
372 }
373 for ( int i t e r = 0 ; i t e r < 3 ; i t e r++){
374 delete [ ] KScc [ i t e r ] ;
375 // de le te [ ] parVar [ i t e r ] ;
376 delete [ ] parVar2 [ i t e r ] ;
377 delete [ ] reduceVar [ i t e r ] ;
378 }
379 delete [ ] errVar ;
380 delete [ ] i jkAns ;
381 delete [ ] ijkDataMean ;
382 delete [ ] ijkMean ;
383 delete [ ] ijkMean2 ;
384 delete [ ] i j kRes ;
385 delete [ ] i j kRes2 ;
386 delete [ ] i j kRes3 ;
387 delete [ ] KS;
388 delete [ ] KScc ;
389 delete [ ] margVar ;
390 // de le te [ ] parVar ;
391 delete [ ] parVar2 ;
392 delete [ ] reduceVar ;
393 }
394 for ( i = 0 ; i < ntheta ; i++){
395 delete errorSmooth3 [ i ] ;
396 delete [ ] K[ i ] ;
397 }
398 delete d i f f 1Opera to r ;
399 delete d i f f 3Opera to r ;
400 delete [ ] errMult1 ;
401 delete [ ] errMult2 ;
402 delete [ ] errMult3 ;
403 delete [ ] errorSmooth3 ;
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404 delete [ ] K;
405
406 // these does not have the i n i t i a l meaning
407 meanAlpha_ = NULL; // the content i s taken care of by postAlpha_
408 meanBeta_ = NULL; // the content i s taken care of by postBeta_
409 meanRho_ = NULL; // the content i s taken care of by postRho_
410 parSpat ia lCorr = NULL; // the content i s taken care of by postCovAlpha
411 errCorrUnsmooth = NULL; // the content i s taken care of by postCovBeta
412
413 postAlpha_−>endAccess ( ) ;
414 postBeta_−>endAccess ( ) ;
415 postRho_−>endAccess ( ) ;
416
417 postCovAlpha−>endAccess ( ) ;
418 postCovBeta−>endAccess ( ) ;
419 postCovRho−>endAccess ( ) ;
420 postCrCovAlphaBeta−>endAccess ( ) ;
421 postCrCovAlphaRho−>endAccess ( ) ;
422 postCrCovBetaRho−>endAccess ( ) ;
423
424 postAlpha_−>invFFTInPlace ( ) ;
425 postBeta_−>invFFTInPlace ( ) ;
426 postRho_−>invFFTInPlace ( ) ;
427
428 for ( l =0; l<ntheta ; l++)
429 seisData_ [ l ]−>endAccess ( ) ;
430
431 //Finish use of seisData_ , since we need the memory.
432 i f ( ( outputGridsSeismic_ & IO : : RESIDUAL) > 0)
433 {
434 i f ( simbox_−>getIsConstantThick ( ) != true )
435 multiplyDataByScaleWaveletAndWriteToFile ( " r e s i d u a l s " ) ;
436 else
437 {
438 for ( l =0; l<ntheta ; l++)
439 {
440 std : : s t r i n g angle = NRLib : : ToString ( thetaDeg_ [ l ] , 1 ) ;
441 std : : s t r i n g s g r iLabe l = " Res idua l s  f o r  in c id ence  angle  "+angle ;
442 std : : s t r i n g f i leName = IO : : P r e f i xRe s idua l s ( ) + angle ;
443 seisData_ [ l ]−>setAccessMode (FFTGrid : :RANDOMACCESS) ;
444 seisData_ [ l ]−>invFFTInPlace ( ) ;
445 seisData_ [ l ]−>wr i t eF i l e ( fi leName , IO : : PathToInvers ionResults ( ) , simbox_ ,

s g r iLabe l ) ;
446 seisData_ [ l ]−>endAccess ( ) ;
447 }
448 }
449 }
450 for ( l =0; l<ntheta ; l++){
451 i f ( seisData_ [ l ] != NULL) delete seisData_ [ l ] ;
452 seisData_ [ l ] = NULL;
453 }
454 delete [ ] seisData_ ;
455 seisData_ = NULL;
456 LogKit : : LogFormatted ( LogKit : :DEBUGLOW, "\nDEALLOCATING:  Se i smic  data\n" ) ;
457
458 i f (model_−>getVe loc i tyFromInvers ion ( ) == true ) { //Conversion undefined unt i l

predict ion ready . Complete i t .
459 postAlpha_−>setAccessMode (FFTGrid : :RANDOMACCESS) ;
460 postAlpha_−>expTransf ( ) ;
461 GridMapping * tdMap = model_−>getTimeDepthMapping ( ) ;
462 const GridMapping * dcMap = model_−>getTimeCutMapping ( ) ;
463 const Simbox * timeSimbox = simbox_ ;
464 i f (dcMap != NULL)
465 timeSimbox = dcMap−>getSimbox ( ) ;
466
467 tdMap−>setMappingFromVelocity ( postAlpha_ , timeSimbox ) ;
468 postAlpha_−>logTrans f ( ) ;
469 postAlpha_−>endAccess ( ) ;
470 }
471
472 i f (model_−>getMode lSett ings ( )−>getUseLocalNoise ( ) )
473 {
474 cor re la t i ons_−>invFFT () ;
475 cor re la t i ons_−>createPostVar iances ( ) ;
476 cor re la t i ons_−>FFT() ;
477 correctAlphaBetaRho (model_−>getMode lSett ings ( ) ) ;
478 }
479
480 i f ( wr i tePred ict ion_ == true )
481 ParameterOutput : : wr iteParameters ( simbox_ , model_ , postAlpha_ , postBeta_ , postRho_ ,
482 outputGridsElast ic_ , f i l eGr id_ , −1, fa l se ) ;
483
484 writeBWPredicted ( ) ;
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485
486 Timings : : se tTimeInvers ion ( wall , cpu ) ;
487 omp_unset_lock(& lock ) ;
488
489 #ifde f PROFILING
490 s t r ing s t r eam ss ;
491 s s << "Se ismic  i nv e r s i on  [ cnxp :  " ;
492 s s << cnxp ;
493 s s << " ,  nyp :  " ;
494 s s << nyp_ ;
495 s s << " ,  nzp :  " ;
496 s s << nzp_ ;
497 s s << " ]  wa l l c l o ck  time . " ;
498 wtime = omp_get_wtime ( ) − wtime ;
499 NRLib : : Prof : : setName ( s s . s t r ( ) , INVERSIONLOG) ;
500 NRLib : : Prof : : setName ( " Se i smic  i nv e r s i on  time read ing . " , INVERSIONREADLOG) ;
501 NRLib : : Prof : : setName ( " Se i smic  i nv e r s i on  time wr i t i ng . " , INVERSIONWRITELOG) ;
502 NRLib : : Prof : : setName ( " Se i smic  i nv e r s i on  inner  loop  CPU time . " , INVCPUTIMELOG) ;
503 NRLib : : Prof : : setName ( " Se i smic  Inve r s i on  loop  time . " , INVERSIONLOOPLOG) ;
504 NRLib : : Prof : : trackTime (wtime , INVERSIONLOG) ;
505 NRLib : : Prof : : trackTime ( readTimeAccum , INVERSIONREADLOG) ;
506 NRLib : : Prof : : trackTime (writeTimeAccum , INVERSIONWRITELOG) ;
507 NRLib : : Prof : : trackTime (ptimeAccum , INVCPUTIMELOG) ;
508 NRLib : : Prof : : trackTime ( invLoop , INVERSIONLOOPLOG) ;
509 #endif
510
511 return (0 ) ;
512 }

Listing C.4: Optimized inversion code. Snippet from crava.cpp.
1 in l ine stat ic void f i l l E r r o rMa t r i x ( f loat wnc , const double** errThetaCov , double s ca l e ,

const fftw_complex* errMult1 , const fftw_complex* errMult2 , const fftw_complex*
errMult3 , int matrixSize , fftw_complex ** errVar ) {

2 for ( int l = 0 ; l < matr ixS ize ; l++ ) {
3 for ( int m = 0; m < matr ixS ize ; m++ )
4 { // Note we mult ip ly kWNorm[ l ] and comp. conj (kWNorm[m]) hence the + and not

a minus as in pure mul t ip l icat ion
5 f loat tmp = 0.5 f * ( 1 . 0 f−wnc) * errThetaCov [ l ] [m] * s c a l e ;
6 errVar [ l ] [m] . re = static_cast<f loat >(
7 tmp * ( errMult1 [ l ] . r e * errMult1 [m] . re + errMult1 [ l ] . im * errMult1 [m] . im)

+
8 tmp * ( errMult2 [ l ] . r e * errMult2 [m] . re + errMult2 [ l ] . im * errMult2 [m] . im) )

;
9 i f ( l==m) {

10 errVar [ l ] [m] . re += static_cast<f loat >( wnc* errThetaCov [ l ] [m] * errMult3 [ l ] . r e *

errMult3 [ l ] . r e ) ;
11 errVar [ l ] [m] . im = 0.0 f ;
12 }
13 else {
14 errVar [ l ] [m] . im = static_cast<f loat >(
15 tmp * (−errMult1 [ l ] . r e * errMult1 [m] . im + errMult1 [ l ] . im * errMult1 [m] . re ) +
16 tmp * (−errMult2 [ l ] . r e * errMult2 [m] . im + errMult2 [ l ] . im * errMult2 [m] . re ) ) ;
17 }
18 }
19 }
20 }
21
22 int Crava : : computePostMeanResidAndFFTCov ( )
23 {
24 Ut i l s : : writeHeader ( " Po s t e r i o r  model / Performing  Inve r s i on " ) ;
25
26 #ifde f PROFILING
27 double invLoop ;
28 double innerInvLoop = 0 . 0 ;
29 double timeReadingAccum = 0 . 0 ;
30 double timeWritingAccum = 0 . 0 ;
31 double timeErrorMatrAccum = 0 . 0 ;
32 double cleanup ;
33 double s ta r tup = omp_get_wtime ( ) ;
34 double wtime = omp_get_wtime ( ) ;
35 double stackFFT ;
36 double invIO , invIOAccum = 0 . 0 ;
37 #endif
38 double wal l =0.0 , cpu=0.0;
39 TimeKit : : getTime ( wall , cpu ) ;
40 int i , j , k , l ,m;
41
42 fftw_complex * errMult1 ;
43 fftw_complex * errMult2 ;
44 fftw_complex * errMult3 ;
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45
46 fftw_complex * i jkData ;
47 fftw_complex * ijkDataMean ;
48 fftw_complex * i j kRes ;
49 fftw_complex * ijkMean ;
50 fftw_complex * i jkAns ;
51 fftw_complex kD, kD3 ;
52 fftw_complex ijkTmp ;
53
54 fftw_complex ** K;
55 fftw_complex ** KS;
56 fftw_complex ** KScc ; // cc − complex conjugate (and transposed )
57 fftw_complex ** parVar ;
58 fftw_complex ** margVar ;
59 fftw_complex ** errVar ;
60 fftw_complex ** reduceVar ;
61
62 Wavelet * d i f f 1Opera to r = new Wavelet (Wavelet : :FIRSTORDERFORWARDDIFF, nz_ , nzp_) ;
63 Wavelet * d i f f 2Opera to r = new Wavelet ( d i f f 1Operator , Wavelet : :FIRSTORDERBACKWARDDIFF) ;
64 Wavelet * d i f f 3Opera to r = new Wavelet ( d i f f 2Operator , Wavelet : : FIRSTORDERCENTRALDIFF) ;
65
66 d i f f1Operator−>f f t1DInPlace ( ) ;
67 delete d i f f 2Opera to r ;
68 d i f f3Operator−>f f t1DInPlace ( ) ;
69
70 Wavelet ** errorSmooth = new Wavelet * [ ntheta_ ] ;
71 Wavelet ** errorSmooth2 = new Wavelet * [ ntheta_ ] ;
72 Wavelet ** errorSmooth3 = new Wavelet * [ ntheta_ ] ;
73
74 int cnxp = nxp_/2+1;
75
76 for ( l = 0 ; l < ntheta_ ; l++)
77 {
78 std : : s t r i n g angle = NRLib : : ToString ( thetaDeg_ [ l ] , 1) ;
79 std : : s t r i n g f i leName ;
80 seisData_ [ l ]−>setAccessMode (FFTGrid : :READANDWRITE) ;
81 i f ( seisWavelet_ [0]−>getDim ( ) == 1) {
82 errorSmooth [ l ] = new Wavelet ( seisWavelet_ [ l ] , Wavelet : :FIRSTORDERFORWARDDIFF) ;
83 errorSmooth2 [ l ] = new Wavelet ( errorSmooth [ l ] , Wavelet : :FIRSTORDERBACKWARDDIFF) ;
84 errorSmooth3 [ l ] = new Wavelet ( errorSmooth2 [ l ] , Wavelet : : FIRSTORDERCENTRALDIFF) ;
85 f i leName = std : : s t r i n g ( "ErrorSmooth_" ) + angle + IO : : Suf f ixGenera lData ( ) ;
86 errorSmooth3 [ l ]−>pr intToFi l e ( f i leName ) ;
87 errorSmooth3 [ l ]−>ff t1DInPlace ( ) ;
88
89 f i leName = IO : : Pref ixWavelet ( ) + angle + IO : : Suf f ixGenera lData ( ) ;
90 seisWavelet_ [ l ]−>pr intToFi l e ( f i leName ) ;
91 seisWavelet_ [ l ]−>ff t1DInPlace ( ) ;
92
93 f i leName = std : : s t r i n g ( "FourierWavelet_" ) + angle + IO : : Suf f ixGenera lData ( ) ;
94 seisWavelet_ [ l ]−>pr intToFi l e ( f i leName ) ;
95 delete errorSmooth [ l ] ;
96 delete errorSmooth2 [ l ] ;
97 }
98 else { //3D−wavelet
99 /* Commented out code removed */

100 }
101 }
102 delete [ ] errorSmooth ;
103 delete [ ] errorSmooth2 ;
104
105 meanAlpha_−>setAccessMode (FFTGrid : :READANDWRITE) ; // Note
106 meanBeta_ −>setAccessMode (FFTGrid : :READANDWRITE) ; // the top f i v e are over written
107 meanRho_ −>setAccessMode (FFTGrid : :READANDWRITE) ; // does not have the i n i t i a l

meaning .
108
109 FFTGrid * parSpat ia lCorr = cor re la t i ons_−>getPostCovAlpha ( ) ; // NB! Note double

usage of postCovAlpha
110 FFTGrid * errCorrUnsmooth = cor re la t i ons_−>getPostCovBeta ( ) ; // NB! Note double

usage of postCovBeta
111 FFTGrid * postCovAlpha = cor re la t i ons_−>getPostCovAlpha ( ) ;
112 FFTGrid * postCovBeta = cor re la t i ons_−>getPostCovBeta ( ) ;
113 FFTGrid * postCovRho = cor re la t i ons_−>getPostCovRho ( ) ;
114 FFTGrid * postCrCovAlphaBeta = cor re l a t i ons_−>getPostCrCovAlphaBeta ( ) ;
115 FFTGrid * postCrCovAlphaRho = cor re la t i ons_−>getPostCrCovAlphaRho ( ) ;
116 FFTGrid * postCrCovBetaRho = cor re la t i ons_−>getPostCrCovBetaRho ( ) ;
117 parSpat ia lCorr −>setAccessMode (FFTGrid : :READANDWRITE) ; // a f ter the prosessing
118 errCorrUnsmooth −>setAccessMode (FFTGrid : :READANDWRITE) ; //
119 postCovRho −>setAccessMode (FFTGrid : :WRITE) ;
120 postCrCovAlphaBeta−>setAccessMode (FFTGrid : :WRITE) ;
121 postCrCovAlphaRho −>setAccessMode (FFTGrid : :WRITE) ;
122 postCrCovBetaRho −>setAccessMode (FFTGrid : :WRITE) ;
123
124 // Computes the poster ior mean f i r s t below the covariance i s computed
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125 // To avoid to many grids in mind at the same time
126 double priorVarVp , j u s t f a c t o r ;
127
128 int cho lFlag ;
129 f loat rea lFrequency ;
130
131 const bool us ingF i l eS to rage = meanAlpha_−>i s F i l e ( ) | | meanBeta_−>i s F i l e ( ) | | meanRho_

−>i s F i l e ( )
132 | | postAlpha_−>i s F i l e ( ) | | postBeta_−>i s F i l e ( ) | | postRho_

−>i s F i l e ( ) ;
133
134 LogKit : : LogFormatted ( LogKit : :LOW, "\ nBui ld ing  po s t e r i o r  d i s t r i b u t i o n : " ) ;
135 f loat monitorS ize = std : : max(1 . 0 f , static_cast<f loat >(nzp_) *0 .02 f ) ;
136 f loat nextMonitor = monitorS ize ;
137 std : : cout
138 << "\n  0%       20%       40%       60%       80%      100%"
139 << "\n  |     |     |     |     |     |     |     |     |     |     |   "
140 << "\n  ^" ;
141
142 #ifde f PROFILING
143 star tup = omp_get_wtime ( ) − s ta r tup ;
144 invLoop = omp_get_wtime ( ) ;
145 #endif
146 #ifde f PROFILING
147 #pragma omp p a r a l l e l default ( none ) \
148 private ( i , j , k , l ,m, realFrequency ,kD, errMult1 , errMult2 , errMult3 ,K, kD3 , ijkMean , i jkData ,

i jkRes , ijkTmp , parVar , priorVarVp , errVar ,KS, margVar , \
149 cholFlag , KScc , reduceVar , ijkDataMean , i jkAns ) \
150 shared ( d i f f 1Operator , d i f f 3Operator , errorSmooth3 , cnxp , parSpat ia lCorr , errCorrUnsmooth ,

timeReadingAccum , timeErrorMatrAccum , postCovAlpha , postCovBeta , \
151 postCovRho , postCrCovAlphaBeta , postCrCovAlphaRho , postCrCovBetaRho ,

timeWritingAccum , innerInvLoop , nextMonitor , monitorSize , std : : cout , stdout )
152 #else
153 #pragma omp p a r a l l e l default ( none ) \
154 private ( i , j , k , l ,m, realFrequency ,kD, errMult1 , errMult2 , errMult3 ,K, kD3 , ijkMean , i jkData ,

i jkRes , ijkTmp , parVar , priorVarVp , errVar ,KS, margVar , \
155 cholFlag , KScc , reduceVar , ijkDataMean , i jkAns ) \
156 shared ( d i f f 1Operator , d i f f 3Operator , errorSmooth3 , cnxp , parSpat ia lCorr , errCorrUnsmooth ,

postCovAlpha , postCovBeta , \
157 postCovRho , postCrCovAlphaBeta , postCrCovAlphaRho , postCrCovBetaRho , nextMonitor ,

monitorSize , std : : cout , stdout )
158
159 #endif
160 {
161 errMult1 = new fftw_complex [ ntheta_ ] ;
162 errMult2 = new fftw_complex [ ntheta_ ] ;
163 errMult3 = new fftw_complex [ ntheta_ ] ;
164
165 i jkData = new fftw_complex [ ntheta_ ] ;
166 ijkDataMean = new fftw_complex [ ntheta_ ] ;
167 i jkRes = new fftw_complex [ ntheta_ ] ;
168 ijkMean = new fftw_complex [ 3 ] ;
169 i jkAns = new fftw_complex [ 3 ] ;
170
171 K = new fftw_complex * [ ntheta_ ] ;
172 KS = new fftw_complex * [ ntheta_ ] ;
173 KScc = new fftw_complex * [ 3 ] ; // cc − complex conjugate (and transposed )
174 parVar = new fftw_complex * [ 3 ] ;
175 margVar = new fftw_complex * [ ntheta_ ] ;
176 errVar = new fftw_complex * [ ntheta_ ] ;
177 reduceVar = new fftw_complex * [ 3 ] ;
178
179 for ( i = 0 ; i < ntheta_ ; i++)
180 {
181 K[ i ] = new fftw_complex [ 3 ] ;
182 KS[ i ] = new fftw_complex [ 3 ] ;
183 margVar [ i ] = new fftw_complex [ ntheta_ ] ;
184 errVar [ i ] = new fftw_complex [ ntheta_ ] ;
185 }
186
187 for ( i = 0 ; i < 3 ; i++)
188 {
189 KScc [ i ] = new fftw_complex [ ntheta_ ] ;
190 parVar [ i ] = new fftw_complex [ 3 ] ;
191 reduceVar [ i ]= new fftw_complex [ 3 ] ;
192 }
193 #pragma omp for
194 for ( k = 0 ; k < nzp_ ; k++)
195 {
196 rea lFrequency = static_cast<f loat >((nz_*1000.0 f ) /( simbox_−>ge t l z ( ) *nzp_) * std : : min (k ,

nzp_−k ) ) ; // the physica l frequency
197 kD = di f f1Operator−>getCAmp(k ) ; // def ines content of kD
198 i f ( seisWavelet_ [0]−>getDim ( ) == 1) { //1D−wavelet
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199 i f ( simbox_−>getIsConstantThick ( ) == true )
200 {
201 // def ines content of K=WDA
202 f i l l kW (k , errMult1 ) ; // errMult1 used as dummy
203 lib_matrProdScalVecCpx (kD, errMult1 , ntheta_ ) ; // errMult1 used as dummy
204 lib_matrProdDiagCpxR ( errMult1 , A_, ntheta_ , 3 , K) ; // def ines content of (

WDA) K
205
206 // def ines error−term mul t ip l i e r s
207 fillkWNorm (k , errMult1 , seisWavelet_ ) ; // def ines input of (kWNorm)

errMult1
208 fillkWNorm (k , errMult2 , errorSmooth3 ) ; // def ines input of (

kWD3Norm) errMult2
209 lib_matrFillOnesVecCpx ( errMult3 , ntheta_ ) ; // def ines content of

errMult3
210
211 }
212 else //simbox_−>getIsConstantThick () == fa l s e
213 {
214 kD3 = di f f3Operator−>getCAmp(k ) ; // def ines kD3
215
216 // def ines content of K = DA
217 lib_matrFil lValueVecCpx (kD, errMult1 , ntheta_ ) ; // errMult1 used as dummy
218 lib_matrProdDiagCpxR ( errMult1 , A_, ntheta_ , 3 , K) ; // def ines content of ( K =

DA )
219
220 // def ines error−term mul t ip l i e r s
221 lib_matrFillOnesVecCpx ( errMult1 , ntheta_ ) ; // def ines content of errMult1
222 for ( l =0; l < ntheta_ ; l++)
223 errMult1 [ l ] . r e /= seisWavelet_ [ l ]−>getNorm ( ) ; // def ines content of errMult1
224
225 lib_matrFil lValueVecCpx (kD3 , errMult2 , ntheta_ ) ; // def ines content of errMult2
226 for ( l =0; l < ntheta_ ; l++)
227 {
228 errMult2 [ l ] . r e /= errorSmooth3 [ l ]−>getNorm ( ) ; // def ines content of errMult2
229 errMult2 [ l ] . im /= errorSmooth3 [ l ]−>getNorm ( ) ; // def ines content of errMult2
230 }
231 f i l l InverseAbskWRobust (k , errMult3 ) ; // def ines content of errMult3
232 } //simbox_−>getIsConstantThick ()
233 }
234
235 const bool re levant_frequency = rea lFrequency > lowCut_*simbox_−>getMinRelThick ( ) &&

realFrequency < highCut_ ; // invert ing only re levant frequencies
236
237 #ifde f PROFILING
238 const double innerLoop = omp_get_wtime ( ) ;
239 #endif
240 for ( j = 0 ; j < nyp_ ; j++) {
241 for ( i = 0 ; i < cnxp ; i++) {
242 #ifde f PROFILING
243 const double timeReading = omp_get_wtime ( ) ;
244 #endif
245 ijkTmp = parSpat ia lCorr−>getComplexValue ( i , j , k , true ) ;
246 f loat ijkParLamRe = fabs ( ijkTmp . re ) ;
247
248 for ( l = 0 ; l < 3 ; l++ )
249 for (m = 0 ; m < 3 ; m++ )
250 {
251 parVar [ l ] [m] . re = static_cast<fftw_real >(parPointCov_ [ l ] [m] * ijkParLamRe ) ;
252 parVar [ l ] [m] . im = static_cast<fftw_real >(0.0 f ) ;
253 }
254
255 #ifde f PROFILING
256 timeReadingAccum += omp_get_wtime ( ) − timeReading ;
257 #endif
258
259 i f ( re l evant_frequency ) // invert ing only re levant frequencies
260 {
261 #ifde f PROFILING
262 const double timeReading = omp_get_wtime ( ) ;
263 #endif
264 ijkMean [ 0 ] = meanAlpha_−>getComplexValue ( i , j , k , true ) ;
265 ijkMean [ 1 ] = meanBeta_ −>getComplexValue ( i , j , k , true ) ;
266 ijkMean [ 2 ] = meanRho_ −>getComplexValue ( i , j , k , true ) ;
267
268 for ( l = 0 ; l < ntheta_ ; l++ )
269 {
270 i jkData [ l ] = seisData_ [ l ]−>getComplexValue ( i , j , k , true ) ;
271 i jkRes [ l ] = i jkData [ l ] ;
272 }
273
274 priorVarVp = parVar [ 0 ] [ 0 ] . re ;
275 ijkTmp = errCorrUnsmooth−>getComplexValue ( i , j , k , true ) ;
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276 double ijkErrLamRe = static_cast<f loat >( fabs ( ijkTmp . re ) ) ;
277
278 #ifde f PROFILING
279 timeReadingAccum += omp_get_wtime ( ) − timeReading ;
280 #endif
281
282 #ifde f PROFILING
283 const double t imeError = omp_get_wtime ( ) ;
284 #endif
285 f i l l E r r o rMa t r i x (wnc_, const_cast<const double**>(errThetaCov_ ) , ijkErrLamRe ,

errMult1 , errMult2 , errMult3 , ntheta_ , errVar ) ;
286 #ifde f PROFILING
287 timeErrorMatrAccum += omp_get_wtime ( ) − t imeError ;
288 #endif
289
290 lib_matrProdCpx (K, parVar , ntheta_ , 3 ,3 , KS) ; // KS is

defined here
291 lib_matrProdAdjointCpx (KS, K, ntheta_ , 3 , ntheta_ , margVar ) ; // margVar =

(K)S(K) ' i s defined here
292 lib_matrAddMatCpx ( errVar , ntheta_ , ntheta_ , margVar ) ; // errVar i s

added to margVar = (WDA)S(WDA) ' + errVar
293
294 cho lFlag=lib_matrCholCpx ( ntheta_ , margVar ) ; // Choleskey

factor of margVar i s Defined
295
296 i f ( cho lFlag==0)
297 { // then i t i s ok e l se poster ior i s iden t i ca l to prior
298
299 l ib_matrAdjoint (KS, ntheta_ , 3 , KScc ) ; // WDAScc i s

adjoint of WDAS
300 lib_matrAXeqBMatCpx( ntheta_ , margVar , KS, 3) ; // redef ines

WDAS
301 lib_matrProdCpx (KScc ,KS, 3 , ntheta_ , 3 , reduceVar ) ; // def ines

reduceVar
302 lib_matrSubtMatCpx ( reduceVar , 3 , 3 , parVar ) ; // redef ines

parVar as the poster ior so lut ion
303
304 lib_matrProdMatVecCpx (K, ijkMean , ntheta_ , 3 , ijkDataMean ) ; // def ines

content of ijkDataMean
305 lib_matrSubtVecCpx ( ijkDataMean , ntheta_ , i jkData ) ; // redef ines

content of ijkData
306
307 lib_matrProdAdjointMatVecCpx (KS, i jkData , 3 , ntheta_ , i jkAns ) ; // def ines

ijkAns
308
309 lib_matrAddVecCpx ( ijkAns , 3 , ijkMean ) ; // redef ines

ijkMean
310 lib_matrProdMatVecCpx (K, ijkMean , ntheta_ , 3 , i jkData ) ; // redef ines

ijkData
311 lib_matrSubtVecCpx ( ijkData , ntheta_ , i jkRes ) ; // redef ines

ijkRes
312 }
313
314 #ifde f PROFILING
315 const double t imeWriting = omp_get_wtime ( ) ;
316 #endif
317 postAlpha_−>setComplexValue ( i , j , k , ijkMean [ 0 ] , true ) ;
318 postBeta_ −>setComplexValue ( i , j , k , ijkMean [ 1 ] , true ) ;
319 postRho_ −>setComplexValue ( i , j , k , ijkMean [ 2 ] , true ) ;
320
321 for ( l =0; l<ntheta_ ; l++)
322 seisData_ [ l ]−>setComplexValue ( i , j , k , i j kRes [ l ] , true ) ;
323 #ifde f PROFILING
324 timeWritingAccum += omp_get_wtime ( ) − t imeWriting ;
325 #endif
326 }
327 else i f ( u s i ngF i l eS to rage )
328 {
329 // Move data from mean to post i f using Fi le storage (not the same grids )
330 ijkMean [ 0 ] = meanAlpha_−>getComplexValue ( i , j , k , true ) ;
331 ijkMean [ 1 ] = meanBeta_ −>getComplexValue ( i , j , k , true ) ;
332 ijkMean [ 2 ] = meanRho_ −>getComplexValue ( i , j , k , true ) ;
333 postAlpha_−>setComplexValue ( i , j , k , ijkMean [ 0 ] , true ) ;
334 postBeta_ −>setComplexValue ( i , j , k , ijkMean [ 1 ] , true ) ;
335 postRho_ −>setComplexValue ( i , j , k , ijkMean [ 2 ] , true ) ;
336 }
337 #ifde f PROFILING
338 const double t imeWriting = omp_get_wtime ( ) ;
339 #endif
340
341 postCovAlpha−>setComplexValue ( i , j , k , parVar [ 0 ] [ 0 ] , true ) ;
342 postCovBeta −>setComplexValue ( i , j , k , parVar [ 1 ] [ 1 ] , true ) ;
343 postCovRho −>setComplexValue ( i , j , k , parVar [ 2 ] [ 2 ] , true ) ;
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344 postCrCovAlphaBeta−>setComplexValue ( i , j , k , parVar [ 0 ] [ 1 ] , true ) ;
345 postCrCovAlphaRho −>setComplexValue ( i , j , k , parVar [ 0 ] [ 2 ] , true ) ;
346 postCrCovBetaRho −>setComplexValue ( i , j , k , parVar [ 1 ] [ 2 ] , true ) ;
347
348 #ifde f PROFILING
349 timeWritingAccum += omp_get_wtime ( ) − t imeWriting ;
350 #endif
351 }
352 }
353 #ifde f PROFILING
354 innerInvLoop += omp_get_wtime ( ) − innerLoop ;
355 #endif
356 // Log progress
357 i f ( k+1 >= static_cast<int>(nextMonitor ) )
358 {
359 nextMonitor += monitorS ize ;
360 std : : cout << "^" ;
361 f f l u s h ( stdout ) ;
362 }
363 }
364
365 // Cleanup in each thread
366 delete [ ] errMult1 ;
367 delete [ ] errMult2 ;
368 delete [ ] errMult3 ;
369 delete [ ] i jkData ;
370 delete [ ] ijkDataMean ;
371 delete [ ] i j kRes ;
372 delete [ ] ijkMean ;
373 delete [ ] i jkAns ;
374
375
376 for ( i = 0 ; i < ntheta_ ; i++)
377 {
378 delete [ ] K[ i ] ;
379 delete [ ] KS[ i ] ;
380 delete [ ] margVar [ i ] ;
381 delete [ ] errVar [ i ] ;
382 }
383 delete [ ] K;
384 delete [ ] KS;
385 delete [ ] margVar ;
386 delete [ ] errVar ;
387
388 for ( i = 0 ; i < 3 ; i++)
389 {
390 delete [ ] KScc [ i ] ;
391 delete [ ] parVar [ i ] ;
392 delete [ ] reduceVar [ i ] ;
393 }
394 delete [ ] KScc ;
395 delete [ ] parVar ;
396 delete [ ] reduceVar ;
397 }
398 std : : cout << "\n" ;
399 #ifde f PROFILING
400 invLoop = omp_get_wtime ( ) − invLoop ;
401 cleanup = omp_get_wtime ( ) ;
402 #endif
403
404 // these does not have the i n i t i a l meaning
405 meanAlpha_ = NULL; // the content i s taken care of by postAlpha_
406 meanBeta_ = NULL; // the content i s taken care of by postBeta_
407 meanRho_ = NULL; // the content i s taken care of by postRho_
408 parSpat ia lCorr = NULL; // the content i s taken care of by postCovAlpha
409 errCorrUnsmooth = NULL; // the content i s taken care of by postCovBeta
410
411 postAlpha_−>endAccess ( ) ;
412 postBeta_−>endAccess ( ) ;
413 postRho_−>endAccess ( ) ;
414
415 postCovAlpha−>endAccess ( ) ;
416 postCovBeta−>endAccess ( ) ;
417 postCovRho−>endAccess ( ) ;
418 postCrCovAlphaBeta−>endAccess ( ) ;
419 postCrCovAlphaRho−>endAccess ( ) ;
420 postCrCovBetaRho−>endAccess ( ) ;
421
422 #ifde f PROFILING
423 stackFFT = omp_get_wtime ( ) ;
424 #endif
425 postAlpha_−>invFFTInPlace ( ) ;
426 postBeta_−>invFFTInPlace ( ) ;
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427 postRho_−>invFFTInPlace ( ) ;
428 #ifde f PROFILING
429 stackFFT = omp_get_wtime ( ) − stackFFT ;
430 #endif
431
432 for ( l =0; l<ntheta_ ; l++)
433 seisData_ [ l ]−>endAccess ( ) ;
434
435 #ifde f PROFILING
436 invIO = omp_get_wtime ( ) ;
437 #endif
438 //Finish use of seisData_ , since we need the memory.
439 i f ( ( outputGridsSeismic_ & IO : : RESIDUAL) > 0)
440 {
441 i f ( simbox_−>getIsConstantThick ( ) != true )
442 multiplyDataByScaleWaveletAndWriteToFile ( " r e s i d u a l s " ) ;
443 else
444 {
445 for ( l =0; l<ntheta_ ; l++)
446 {
447 std : : s t r i n g angle = NRLib : : ToString ( thetaDeg_ [ l ] , 1 ) ;
448 std : : s t r i n g s g r iLabe l = " Res idua l s  f o r  in c id ence  angle  "+angle ;
449 std : : s t r i n g f i leName = IO : : P r e f i xRe s idua l s ( ) + angle ;
450 seisData_ [ l ]−>setAccessMode (FFTGrid : :RANDOMACCESS) ;
451 #ifde f PROFILING
452 const double f f tTime = omp_get_wtime ( ) ;
453 #endif
454 seisData_ [ l ]−>invFFTInPlace ( ) ;
455 #ifde f PROFILING
456 stackFFT += omp_get_wtime ( ) − f f tTime ;
457 #endif
458 seisData_ [ l ]−>wr i t eF i l e ( fi leName , IO : : PathToInvers ionResults ( ) , simbox_ ,

s g r iLabe l ) ;
459 seisData_ [ l ]−>endAccess ( ) ;
460 }
461 }
462 }
463 for ( l =0; l<ntheta_ ; l++)
464 delete seisData_ [ l ] ;
465 LogKit : : LogFormatted ( LogKit : :DEBUGLOW, "\nDEALLOCATING:  Se i smic  data\n" ) ;
466 #ifde f PROFILING
467 invIOAccum += omp_get_wtime ( ) − invIO ;
468 #endif
469
470 i f (model_−>getVe loc i tyFromInvers ion ( ) == true ) { //Conversion undefined unt i l

predict ion ready . Complete i t .
471 postAlpha_−>setAccessMode (FFTGrid : :RANDOMACCESS) ;
472 postAlpha_−>expTransf ( ) ;
473 GridMapping * tdMap = model_−>getTimeDepthMapping ( ) ;
474 const GridMapping * dcMap = model_−>getTimeCutMapping ( ) ;
475 const Simbox * timeSimbox = simbox_ ;
476 i f (dcMap != NULL)
477 timeSimbox = dcMap−>getSimbox ( ) ;
478
479 tdMap−>setMappingFromVelocity ( postAlpha_ , timeSimbox ) ;
480 postAlpha_−>logTrans f ( ) ;
481 postAlpha_−>endAccess ( ) ;
482 }
483
484 i f (model_−>getMode lSett ings ( )−>getUseLocalNoise ( ) )
485 {
486 cor re la t i ons_−>invFFT () ;
487 cor re la t i ons_−>createPostVar iances ( ) ;
488 cor re la t i ons_−>FFT() ;
489 correctAlphaBetaRho (model_−>getMode lSett ings ( ) ) ;
490 }
491
492 #ifde f PROFILING
493 invIO = omp_get_wtime ( ) ;
494 #endif
495 i f ( wr i tePred ict ion_ == true )
496 ParameterOutput : : wr iteParameters ( simbox_ , model_ , postAlpha_ , postBeta_ , postRho_ ,
497 outputGridsElast ic_ , f i l eGr id_ , −1, fa l se ) ;
498
499 writeBWPredicted ( ) ;
500 #ifde f PROFILING
501 invIOAccum += omp_get_wtime ( ) − invIO ;
502 #endif
503
504 delete [ ] seisData_ ;
505 for ( i = 0 ; i < ntheta_ ; i++)
506 {
507 delete errorSmooth3 [ i ] ;
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508 }
509 delete [ ] errorSmooth3 ;
510
511 delete d i f f 1Opera to r ;
512 delete d i f f 3Opera to r ;
513
514 Timings : : se tTimeInvers ion ( wall , cpu ) ;
515
516 #ifde f PROFILING
517 cleanup = omp_get_wtime ( ) − cleanup − stackFFT − invIOAccum ;
518 wtime = omp_get_wtime ( ) − wtime ;
519
520 s t r ing s t r eam ss ;
521 s s << "Se ismic  i nv e r s i on  [ cnxp :  " ;
522 s s << cnxp ;
523 s s << " ,  nyp :  " ;
524 s s << nyp_ ;
525 s s << " ,  nzp :  " ;
526 s s << nzp_ ;
527 s s << " ]  wa l l c l o ck  time . " ;
528
529 NRLib : : Prof : : trackTime ( invLoop , INVERSION_INV_LOOP) ;
530 NRLib : : Prof : : trackTime ( innerInvLoop , INVERSION_INNER_INV_LOOP) ;
531 NRLib : : Prof : : trackTime ( timeReadingAccum , INVERSION_TIME_READING) ;
532 NRLib : : Prof : : trackTime ( timeWritingAccum , INVERSION_TIME_WRITING) ;
533 NRLib : : Prof : : trackTime ( timeErrorMatrAccum , INVERSION_TIME_ERROR_MATR) ;
534 NRLib : : Prof : : trackTime ( cleanup , INVERSIONCLEANUP) ;
535 NRLib : : Prof : : trackTime ( startup , INVERSION_STARTUP) ;
536 NRLib : : Prof : : trackTime ( stackFFT , INVERSION_STACK_FFT) ;
537 NRLib : : Prof : : trackTime ( invIOAccum , INVERSION_IO) ;
538 NRLib : : Prof : : trackTime (wtime , INVERSIONLOG) ;
539
540 NRLib : : Prof : : setName ( s s . s t r ( ) , INVERSIONLOG) ;
541 NRLib : : Prof : : setName ( " Inve r s i on  I /O time" , INVERSION_IO) ;
542 NRLib : : Prof : : setName ( " Inve r s i on  Stack FFT" , INVERSION_STACK_FFT) ;
543 NRLib : : Prof : : setName ( " Inve r s i on  s tar tup " , INVERSION_STARTUP) ;
544 NRLib : : Prof : : setName ( " Inve r s i on  cleanup " , INVERSIONCLEANUP) ;
545 NRLib : : Prof : : setName ( " Inve r s i on  c r e a t i ng  e r r o r  matr" , INVERSION_TIME_ERROR_MATR) ;
546 NRLib : : Prof : : setName ( " Inve r s i on  time spent  wr i t ing " , INVERSION_TIME_WRITING) ;
547 NRLib : : Prof : : setName ( " Inve r s i on  time spent  read ing " , INVERSION_TIME_READING) ;
548 NRLib : : Prof : : setName ( " Inve r s i on  inner  Loop" , INVERSION_INNER_INV_LOOP) ;
549 NRLib : : Prof : : setName ( " Inve r s i on  Loop" , INVERSION_INV_LOOP) ;
550 #endif
551 return (0 ) ;
552 }
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