
Master of Science in Informatics
May 2011
Magnus Lie Hetland, IDI
Cyril Banino-Rokkones, Yahoo! Technologies Norway

Submission date:
Supervisor:
Co-supervisor: 

Norwegian University of Science and Technology
Department of Computer and Information Science

Utilizing linguistic analysis in multiple
source search engines

Vegard Økland





Problem description

Modern search engines have several data sources available to users, e.g. News
search, Image search and Video search. When a user enters a query in a search
engine, it is up to the user to choose a different source than the normal web search.
On average, a user will only consider the first few occurrences in a search result and
do so in a few seconds [36]. It would therefore be beneficial to the user experience
if the user did not have to limit the sources manually to refine a search.

This project will evaluate different machine learning methods to classify relevant
sources to a query. The goal of this is having an automated learning system that
takes some labeled input and uses this to help inform or direct the user to the
relevant source.

The project will take advantage of a Yahoo! product; Yahoo! Query Linguist
Analysis Service (abbreviated QLAS from now on and through the document). The
goal is to incorporate semantic data from QLAS into the learning system. This
should augment the amount of information available to the learning system, and
improve its performance. It is not clear how this semantic data could be combined
with the training data and incorporated in the learning system. A substantial part
of the project will be to explore this.

This project was done in cooperation with Yahoo! Technologies Norway AS (YTN).
YTN develops Vespa, a search engine platform that has the possibility to search
from multiple sources. YTN is interested in researching the field of learning source
relevance to improve the search experience in Yahoo services. YTN is also interested
in researching ways data from QLAS could be used by Vespa to enable source
relevance classification when Vespa is used in a multiple-index setup.
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Abstract

Modern search engines can search for multiple types of content. Average web users
spend a short amount of time analyzing search engine result. These two factors
make it desirable to predict what type of content are relevant for a user’s query.
Using this information in the search interface could lead to a better user experience
with fewer user actions to access the relevant information.

This project is focused on and around the task of learning what content source is
relevant for a query in a search engine. This project uses the approach of incorpo-
rating semantic data in supervised machine learning methods to achieve this. The
result of the project is an analysis of a Yahoo! semantic analysis service and how it
can be incorporated in a source classification system. This analysis concluded that
the semantic service contain valuable information to a source classification system,
but it is very expensive to utilize.
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Chapter 1

Introduction

Web search engines are no longer used merely for finding textual information con-
tained in HTML documents. The Internet has grown from a collection of hyper-
linked HTML documents to a platform for all types of content. Because of this,
search engines have adapted to search in many different types of content.

To be able to differentiate between different types of content, a search engine can
maintain a separate index for each content type. This reduces the problem from
deciding what type of content is relevant for a search, to which source is relevant.
This simplifies the problem greatly because the classification mechanism does not
need to know about the underlying differences in the content. Another benefit of
this is, if one finds a good method to differentiate between some sources, it should
not be difficult to extend it to a greater set of different sources.

Search engines have historically let the user decide which sources to include in a
search. This is done in two ways; the user enters a term and then limits the search to
a specific type of content, or the user deliberately chooses the content type by going
to a specific site (e.g. http://image.google.com, http://news.yahoo.com). The
average user of web search has a very short patience [36]. It would therefore be
desirable to discover what content types are relevant to a query, without having the
user specify it. Having the knowledge of what content types are relevant to a query
could lead to an improved user experience. This should be correct considering it
would require fewer actions from the user to access the relevant material.

Modern search engines will in many cases give a hint to what sources are relevant
with links like “Scholarly articles for query x” or “Image results for query y” in the
top of a search result. However, the methods they use are trade secrets that are
not published. This makes the topic of source categorization an interesting topic.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

One way to determine which index contains the most relevant content is to send all
incoming queries to all indexes and use methods from classic information retrieval
to determine which result set is the most relevant (See Section 2.1 for further infor-
mation). This approach will have scaling problems and be unreasonably expensive.
All the indexes would have to be able to sustain the load of the biggest and most
visited index. This should not be necessary. If an index is relevant and interesting
to a few people (e.g Scholarly article search) it should not require the same infras-
tructure as a huge and highly used index (e.g. normal web search). The goal is
therefore to classify the relevant source for the query, without querying any of the
indexes 1.

A trivial solution to classifying relevant sources for a query could be to store each
query in a dictionary together with a classified source. This could be done after
some user behavior analysis have determined which source the user was satisfied
with. The next time the same query is submitted to the search engine, the source
classifier will classify it as the last user decided.

There are a few problems and challenges with this solution. There are no gen-
eralization of the queries, meaning that a unseen query could never be classified.
According to Google, 20% of queries are unseen the past 90 days [20]. Further,
the semantics of the query are not used to classify the relevant source. Another
challenge is the “turn user behavior into a classification” part. While this probably
is not impossible, it is not trivial either.

Using the semantic meaning of a query to determine the relevant sources should in-
tuitively give an advantage over just ignoring it. Figure 1.1 shows a simple example
where several people (or, more accurately, their respective query) have been found
to have a semantic interpretation of Celebrities and they are labeled as relevant for
the Image and Video source. Then a new person also gets the semantic interpreta-
tion of a Celebrity however it is not known which sources are relevant for the new
person. It would then be convenient to discover relations between semantic infor-
mation and sources (e.g. semantic(Celebrity)→ relevantSource(Image, V ideo)).
This would enable a search engine to classify a source before the user behavior has
labeled a query to be relevant for a source.

Yahoo! QLAS will be the source of the semantic information. It is not clear how
the information can be utilized so this will be a significant part of this project.
There are no guarantees that QLAS contains information that is relevant to source
classification. Researching this and evaluating the value of QLAS in a source
classification system is a big motivational factor for YTN.

1Possibly except an index that is dedicated to the task of classifying sources.
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Person1, Person2, …
 PersonN

Celebrity Image, Video

IsA RelevantSource

NewPerson

IsA RelevantSource
(infered)

Figure 1.1: A simple example where the semantics of a query could help find the
relevant sources.
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1.2 Assignment interpretation

To set clear boundaries and limit the scope, the project has been split up in some
independent points.

• Analyze the value of the information content in QLAS, in the context of
source classification.

• Evaluate how linguistic query analysis can be used to improve machine learn-
ing methods in this field.

• Evaluate different machine learning methods in the area of classifying relevant
sources from a query.

1.3 Main contribution

This report examines different ways to analyze and utilize a semantic analysis of a
search query to classify what source are relevant for the query. The report exam-
ines traditional feature vector machine learning, parameter free machine learning,
metric indexing and using traditional information retrieval to achieve this.

The report gives a detailed analysis of the value and usability of a specific semantic
analysis tool available at Yahoo!.

Some experimental software was written to test these mechanisms and some 3rd-
party libraries and software packages were used.

1.4 Report outline

Chapter 2, Background theory and state of the art, gives an introduction to classic
information retrieval, machine learning, metric indexing and the Yahoo! service
QLAS, that this project utilizes extensively.

Chapter 3, Experiments, explains the experiments that make the base of the project.
This chapter is heavily based on the theory given in Chapter 2.

Chapter 5, Results, states the results of all the experiments given in Chapter 3. It
also gives a simple comparison of the results in the different experiments.

Chapter 6, Result analysis and comparison, gives a deeper analysis and comparison
of the results in Chapter 5.

Chapter 7, Conclusion and future work, summarized the results of the project and
suggest areas of further work.
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Appendix A, APPENDIX, contains example documents and outputs from QLAS,
QLAS documentation and the full output from the machine learning experiments.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Background theory and state
of the art

This chapter gives the necessary background knowledge about machine learning,
traditional information retrieval methods, metric indexing and software packages
used and referenced in the project.

2.1 Traditional Information retrieval

The field of information retrieval has traditionally been focused on making a large
collection of text documents readily available. A second objective is to rank the
relevance of the different documents in regard to a user query. This field is much
older than computer science, libraries have used card catalogs for indexing and
book classification systems like the Dewey Decimal Classification and Library of
Congress Classification to discriminate relevance between different books. The goal
of these library systems are much the same as in modern information retrieval,
to navigate a large document collection where it is unfeasible of a user to do a
sequential scan to find the desired content.

In the field of artificial intelligence, the problem of information retrieval is seen
as a classification problem [31], where each document can be divided into two
classes; relevant and non-relevant. To achieve this a model is built around the
documents and different models facilitate different information retrieval methods.
Examples of these models are the Boolean Model which uses Bayesian methods (e.g.
Naive Bayes) and the Vector Model which uses methods like term frequency–inverse
document frequency and cosine distance.

Several information retrieval techniques have been developed over the years. This

7
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subsection will give a short introduction to the different techniques.

2.1.1 Document indexing

The purpose of creating a document index is to create a data structure that enables
a fast look up through a large document collection. This should be possible without
having to do a linear scan (sequentially reading through each document) of all the
original documents.

Inverted index

An inverted index is a data structure that maps each individual piece of content
(e.g. word, word span, phrase) to the location where the content is stored [4]. An
example of an inverted index can be seen in Table 2.1. The index consists of three
documents:

Doc1: Oranges and lemons, Say the bells of St. Clement’s.

Doc2: You owe me five farthings, Say the bells of St. Martin’s

Doc3: When will you pay me? Say the bells of Old Bailey.

Content Document

and 1
bells 1 ,2 ,3
farthings 2
five 2
lemons 1
me 2, 3
of 1, 2, 3
old bailey 3
oranges 1

Content Document

owe 2
pay 3
say 1, 2, 3
st. clement 1
st. martin 2
the 1, 2, 3
when 3
will 3
you 2, 3

Table 2.1: A small inverted index . Some pre processing have been done on the
data.

Vector space model

The vector space model is a method of representing a document as a vector (or
a document collection as a matrix) where each position in the vector represents a
term [4].
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Using the same three documents as in Section 2.1.1 the matrix would look like
Table 2.2

Doc and st.martins old st.clements owe of farthings me
1 1 0 0 1 0 1 1 0
2 0 1 0 0 1 1 0 1
3 0 0 1 0 0 1 0 1

...

Doc say bailey five oranges the lemons you bells
1 1 0 0 1 1 1 1 1
2 1 0 1 0 1 0 1 1
3 1 1 0 0 1 0 0 1

Table 2.2: Example vector space model

2.1.2 Relevance evaluation

The vector space model, in combination with an inverted index (or other index)
enables one to do a fast evaluation of relevance. The relevance can be calculated
by using a combination of term frequency–inverse document frequency (tf-idf) and
cosine similarity to calculate the distance of two documents [32].

tfi,j =
ni,j∑
k nk,j

(2.1)

idfi = log
|D|

|{d : ti ∈ d}|
(2.2)

(tf-idf)i,j = tfi,j × idfi (2.3)

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)2 ×
√∑n

i=1 (Bi)2
(2.4)

The tf-idf function (Equation 2.3) is used to calculate the importance of each term
in a document by giving common terms a low score and more unique terms a higher
score. An example of this is labeling the term “the”1 as unimportant for an English
document and some unique terms as highly important.

The cosine similarity measure (Equation 2.4) is then used to calculate the cosine
of the angle between two documents. A small angle gives a greater similarity in
the range [0, 1] than a bigger angle.

1Common terms like “the” are often removed because they convey very little information, but
one does not have to do so. This process is called stop word removal.
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2.2 Machine Learning

Deciding which sources are relevant to a query can be seen as a multiclass statistical
classification problem. Statistical classification is a sub field of supervised machine
learning. Another example of this type of classification is language detection for
natural language documents.

There exists several statistical classification methods and the various methods per-
form differently on different problems and data sets. There is no clear better
method for all problem domains [38, 37, 39]. One should therefore evaluate several
methods to find the one appropriate for the given problem. This notion of there
being no single best method is often referred to as the no free lunch theorem.

2.2.1 Supervised versus unsupervised machine learning

One can separate a classification task into two families. If the data is in the
form examplem → classx, examplen → classy the method is supervised. If the
data is in the form examplem, examplen, without class information, the method is
unsupervised.

The difference in supervised and unsupervised learning is the type of training data
it uses. Supervised learning uses training data that is labeled with a correct class or
“answer”. The data is usually in the form of a pair (input, output). Unsupervised
learning uses data without output examples. Both methods are important tech-
niques. It can be difficult and/or costly to obtain classified training data, hence it
would be a great limitation to only be able to do supervised learning.

If one is using unsupervised learning to solve a classification task, the task is called
clustering. The method can not answer a question as “what language is this doc-
ument” but it can do a task “find documents with a similar language like this
one”.

2.2.2 Eager vs lazy machine learning and inductive bias

At the root of all machine learning is an inductive bias. This is the formal way
a certain method generalizes from seen instances in the training data to unseen
instances. Without an inductive bias, a machine learning method is nothing more
than a dictionary.

An eager machine learning method will make this generalization before any un-
known instances are seen, e.g. by creating a decision tree from the training data.
The inductive bias of this example will be in what fashion the decision tree is
created and how it is discriminated from other alternative trees. ID3 [27] does,
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for example, prefer small trees over large ones and uses a entropy based function
information gain as a heuristic to do so.

A lazy method postpones the inductive bias until an unseen instances is presented.
The entire training data corpus is used as a possible source of classification and
the inductive bias is usually in how cases from the training corpus are selected as
sources of classification. Examples of lazy methods is k-nearest-neighbor (kNN )
and case based reasoning. kNN works by choosing the k training cases that lie
closest to the unclassified case, using some distance function. Here the inductive
bias is in the choice of distance function, the size of k and how the k closest objects
are treated as sources for classifying the unknown instance. There are several ways
to use the k closest objects to classify an object, e.g. using them as votes or using
the distance to each object. A more advanced method is placing the k objects in
a semantic ontology and using a form of semantic classification.

2.2.3 Parameter free machine learning

A machine learning method that has many tunable parameters can be problem-
atic. The person using the method will have to use his own prejudice to tune the
parameters. This will result in a human influence on the result from the machine
learning. Keogh et al. [22] deals with the problem of parameter-laden data min-
ing algorithm and promotes parameter-free algorithms. From the abstract of the
paper:

Data mining algorithms should have as few parameters as possible,
ideally none. A parameter-free algorithm would limit our ability to
impose our prejudices, expectations, and presumptions on the problem
at hand, and would let the data itself speak to us.

In this paper they highlight that algorithms with many parameters are difficult to
compare. They compared 51 algorithms to their approach, inspired by Li et al.
[23]. They tested all the algorithms by clustering eighteen pairs of time series data
from different sources. In comparing the algorithms they discovered that while the
parameter-laden methods could be tweaked to perform well on all the data sets,
for 3⁄4 there was no single set of settings that performed well over all the data sets.

The result from this paper speaks strongly in favor of parameter free algorithms.
The paper explored the parameter free function Normalized compression distance.
This algorithm is presented in Section 3.2.2.
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2.2.4 Challenges and sources of error in machine learning

A machine learning algorithm can run into challenges because the training data is
not perfect or the appropriate amount of training data is unknown.

Noise

Noise in training data can be contradicting information or random data that is
not relevant to the target model. This imposes challenges on the machine learning
algorithm and different algorithms tackle this in different ways. (The next section
contains more about this.)

Overfitting

Overfitting in machine learning is when a model is over trained or under trained
[18]. This can happen when one use too much or not enough training data or
training time. The goal of the training model and its inductive bias is to learn
generalizations of a model domain from the training data. If overfitting occurs it
learns features or random noise that are specific to the training data which is not
representable for the general model domain. Another way to state this problem is
if the trained model violates Occam’s razor or the principle of parsimony by using
an overly complex model, e.g. by using a quadratic function to model a linear
model.

There are several methods to prevent overfitting, some are listed below.

• Cross validation can be done in many ways. The general idea is to partition
the training data into two complementary partitions, one for training and
one for analysis. After a model is created from the training set the analysis
partition is used to measure how well the model performs. This analysis can
be done several times and the result from it can be used in several ways, e.g.
stopping the training early, send a feedback that more training is required or
used as a heuristic in pruning the trained model.

• Bootstrap aggregating or bagging [7] works by creating several subsets
from a set of training data by using uniform sampling with replacement. This
creates several sets where many of the samples will be represented in more
than one set. Each of the sets are used to create their own models using some
machine learning algorithm. Each of these models are then combined to do
classification by averaging the result of each, or use each model as a vote.
The result of this is a smoothing effect on the final model.

• Pruning is a method to reduce the size of decision trees [17]. The optimal size
of a decision tree is difficult to find. If it is too small it will neglect important
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features in a model. If it is too large it risks overfitting the data. Pruning a
tree is to remove parts of it, if doing so does not reduce the performance of
the model. Cross validation can be used to measure this.

2.2.5 Entropy based classification

Benedetto et al. introduced the idea of using a common compression algorithm like
LZ77 to measure the relative entropy between two pieces of data. This entropy
measurement can be used to classify data of an unknown class.

The entropy of a piece of data is a measurement of how “predictable” or uncertain
a random variable is. Entropy usually refers to Shannon entropy [35]. This is the
measurement of the average missing information content if one does not know the
value of a random variable. Shannon entropy also defines the theoretical limit of
an optimal loss-less compression of a piece of data. If a data source is an infinite
proper/true random source, its entropy is the same size as the source. I.e. it
is impossible to predict the value of random variable and the data can not be
compressed. If a source is more predictable, e.g. a natural language, it has a finite
entropy which is smaller than the original source. This stems from the fact that
certain characters or words are used more frequently than others, e.g ‘a’ and ‘e’
are used more than ‘z’, and ‘the’ is used more often than ‘xylophone’.

A different definition of entropy, which suites this context well is the Chaitin–
Kolmogorov complexity: the complexity of a string is the length of the string’s
shortest possible description in some fixed universal description language. Unfor-
tunately, it is computationally impossible to find this description [23]. It is however
upper semi-computable, meaning it can be approximated from above. Common
compression algorithms try to achieve this approximation and it is therefore a
powerful tool to measure entropy.

There are appealing properties in using the approximated Kolmogorov complexity
to do classification. It requires no a priori knowledge about the data, it has no
requirements considering data format (e.g. feature vector) and it is parameter free
(see Section 2.2.3). Because of this, in addition to being a lazy learning method,
makes it a very slow method and might not be practical to use in a real world
system. In the end it serves as an interesting way to analyze data. It is also inter-
esting to compare it against other methods that either require a priori knowledge
or have requirements regarding the training data format.

Using entropy without compression

There are other ways of measuring entropy of data and machine learning algo-
rithms have done so for a long time before researchers started experimenting with
compression and classification. The ID3 algorithm [27], published by Quinlan in
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1986 uses entropy to measure information gain. This is used as a heuristic to create
small decision trees. In contrast to using data compression, ID3 expects its train-
ing data to be a feature vector. The entropy of each feature in a feature vector is
measured individually to find which feature that splits a data set in the best way.
It does not evaluate the entropy of the entire data set as a whole.

2.2.6 Statistical classification methods

This subsection gives a short summary of six statistical classification methods.
Each of them are refered to in Section 3.3.

Naive Bayes classifier

Naive Bayes is a statistical classifier based on Bayes theorem and the assumption
that all variables are statistically independent [31]. A Naive Bayes classifier can
be stated as Equation 2.5 and rewritten as Equation 2.6. Equation 2.6 clearly
shows the independence assumption. The probability of a class is the product of
the probability of the class and the probability of each feature. This independence
assumption is not necessarily correct but the algorithm may still perform well [40].

p(C|F1, ..., Fn) =
p(C)p(F1, ..., Fn|C)

p(F1, ..., Fn
(2.5)

p(C|F1, . . . , Fn) =
1

Z
p(C)

n∏
i=1

p(Fi|C) (2.6)

Decision tables + Naive Bayes

This algorithm combines a Naive Bayes model and a decision table to create a
semi-naive Bayes classifier [15]. The decision table represents a Bayesian network
that describes conditional dependencies between variables. The goal of the decision
table is to find highly discriminating variables. This is done by selecting variables
that maximizes cross-validating performance. A class probability is given by com-
bining the Naive Bayes and the Decision Table. This can be seen in Equation 2.7.
pNB(C|X⊥) is the probability given by Naive Bayes, pDT (C|X>) is the probability
given by the Decision Table and α is a tuning constant.

p(C|X) =
α · pDT (C|X>) · pNB(C|X⊥)

p(C)
(2.7)
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IB1

IB1 is a instance based learner which means that the inductive bias is postponed
until a test case is presented. IB1 uses Equation 2.8 to calculate the distance
between the test case and training instances. The closest class is selected as the
class of the unknown test case [3].

Similarity(x, y) = −

√√√√ n∑
i=1

f(xi, yi) (2.8)

f(xi, yi) = (xi − yi)2

RIPPER

Repeated Incremental Pruning to Produce Error Reduction (RIPPER), was pre-
sented by Cohen [11] and is a optimization of IREP (Incremental Reduced Error
Pruning [14]). RIPPER is a prepositional rule learner that tries to learn first or-
der logic (FOL) rules efficiently on big and noisy datasets. Rules are created by
splitting the training data in two sets; a growing set (2/3) and a pruning set (1/3).
The rules are created by first creating a single rule that covers the growing set,
the pruning set is then used to delete conditions that maximizes a cross validation
function. Instances that are covered by the rule is then deleted and the rule is
added to the rule set. This process is repeated until all the training instances are
covered by a rule.

C4.5

C4.5 [28] is a decision tree algorithm and is an extension of ID3 [27]. C4.5 builds a
decision tree in the same way as ID3, by using information entropy. The improve-
ments over ID3 are listed below.

• C4.5 handles continuous attributes. It does this by creating thresholds at
nodes that splits the lists by dividing the list into those variables above and
below the threshold.

• C4.5 handles missing values. It does this by marking missing values as ? and
those values are not used to calculate information gain.

• C4.5 prunes the tree after creation. This is done by going through the tree
after it is created and collapsing branches into leaf nodes if the branch does
not improve the cross-validating performance.

• C4.5 handles attributes with differing costs.
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Random Forest

A random forest classifier creates a forest of decision trees [8]. During classification
the random forest evaluates the unknown instance against each decision tree in
the forest and selects the mode (the class that has the largest number of decision
trees). Each decision tree is created by m random attributes and splits are created
by how well the attribute splits the training set.

2.2.7 Training data

Different machine learning methods require different types of training data. This
section explains feature vectors, semantic networks and entropy data. The most
common of these are feature vectors, used by algorithms like ID3, C4.5, Naive
Bayes, and random forest. Semantic networks are used in e.g. case based reasoning
[2].

There is one big challenge when using complex training data and the algorithms you
use require feature vectors or semantic networks: How one transforms the original
data (e.g. medical images, time series, audio clips, video clips) into another form
that is more suitable for the machine learning algorithm? An even greater challenge
is to do that without loosing any information contained in the original data.

Feature vectors A training set of feature vectors often look like the example
in Table 2.3 and the cases with an unknown classification/answer exemplified in
Table 2.4. Each feature can be binary or n-ary attributes, strings or floating-point
values. Each algorithm using feature vectors will have a specification about what
types of attributes it can take as valid input.

featurea1 featureb1 featurec1 ... classification
featurea2 featureb2 featurec2 ... classification
featurea3 featureb3 featurec3 ... classification

Table 2.3: Feature vector training data

featurea1 featureb1 featurec1 ... ???
featurea2 featureb2 featurec2 ... ???

Table 2.4: Feature vector to be predicted

Semantic networks Semantic networks are structured data surrounding some
other piece of data in a given domain. Methods that use this will typically use the
semantic information to do more complex similarity measures. An example of one
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Figure 2.1: A semantic network from the animal kingdom

of these methods is case-based reasoning. Figure 2.1 is an example of a semantic
network.

Entropy data All data have a Kolmogorov complexity which is a measure of
how much information is contained in the data. The Kolmogorov complexity is
the theoretical measure of how much data can be compressed. This can be used
in entropy based machine learning. All data have some entropy and there are no
requirements on the form or size of the data. See Section 2.2.5 for more information
about Kolmogorov complexities.

2.2.8 Training data in this project

The training data for this project is a feature vector model supplied by Yahoo!
Taiwan, see Table 2.5 for an example. It consists of a query, three probabilities
and some identification variables. The data set is split up in 15 164 test cases and
138 699 training cases evenly divided in four classes. The data were not used “as is”
in the experiments because the focus of using QLAS in the classification process.
The important part of the original training data in this project is the query, its
classification and its QLAS analysis.

The linguistic analysis from QLAS will be used to improve the machine learning
process. Exactly how this service should be used is not obvious and a major part
of this project is to explore this problem. A further description of the linguistic
service can be found in Section 2.4.1 and an example of a analyzed query can be
found in Section A.1.1.



18 CHAPTER 2. BACKGROUND THEORY AND STATE OF THE ART

NO JUDGMENT SPVID QUERY slm.web slm.image slm.shopping

0 0.0 .AP3eg837... 中翻英 -4.624399 -19.55382 -6.811815

0 0.0 .Gh9yne... sd暴力美學 -9.99194 -26.07177 -11.30722
....

Table 2.5: Training data example. The numbers in the right three columns are
log-likelihoods

2.3 Metric Indexing

Metric indexing is a type of similarity search that can be used where traditional
(coordinate-based) spatial access falls short. This is typically the case when one
is searching in collections of complex documents, e.g. multimedia files or scientific
data. When using metric indexing to facilitate search, a query is an object equal
in format to those in the document collection. An example of this is how an image
would be the query in a image search engine.

Metric indexing search is based on a distance function and the goal of metric
indexing is to do some form of pre processing to achieve better performance than
a linear scan (applying the distance function on the query object and each of the
objects in the collection). This distance function must adhere to the mathematical
notion of a metric, hence metric indexing [19]. A distance function d : X×X → R
must adhere to the following constraints to qualify as a metric:

1. Non-negative, d(x, y) ≥ 0

2. Symmetric, d(x, y) = d(y, x)

3. Triangle inequality, d(x, z) ≤ d(x, y) + d(y, z)

4. Identity of indiscernibles, d(x, y) = 0 iff x and y are equal.

2.3.1 Search types

A linear scan is the most basic way to do a similarity search. To improve this one
can calculate or estimate d(query, object) without actually calculating the distance
function. This can be done by taking advantage of the metric space, as long as
the approximation adheres to some restrictions; the approximation must always
be either an under estimate or an over estimate. These functions are denoted
d̂(x, y) ≥ d(x, y) and ď(x, y) ≤ d(x, y).

The most basic type of search when using metric indexing is a range search.
This search finds objects that lie not further than range from the query object,
d(query, object) ≤ range. By using the functions d̂ and ď one can make some
statements about the relevance of an object, summarized in the following table.
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The task of excluding objects from a collection is more important than including
the relevant. This is usually correct because the majority of a document collection
is not relevant to a query.

Distance Relevancy

d̂(query, object) > range maybe relevant

d̂(query, object) < range relevant

ď(query, object) > range not relevant

ď(query, object) < range maybe relevant

Another search that have many practical applications is k-nearest neighbors (kNN).
This can be implemented using the range search. The search is started by setting
the radius to infinite and until k objects are found the radius stays infinite. After
k objects are found the radius is decreased using the k objects as a heuristic. If an
evaluated object lies outside the current radius it is discarded. If it is within the
radius it is added to the candidate set and the radius is possibly decreased. This
type of search is a branch and bound method.

2.3.2 Curse of dimensionality

Different data sets and distance metrics have a different dimensionality. When
the dimensionality of data increases it becomes more difficult to index. This is
often called the curse of dimensionality, a term coined by Richard E. Bellman [5].
The reason for this curse is the exponential growth of space by linearly adding
dimensions.

To measure the dimensionality in regards to metric indexing one can use intrinsic
dimensionality [10] defined in Equation 2.9. The variables µ and σ are the mean
and standard deviation of the distance distribution histogram of the data set. An
example of a distance distribution histogram can be found in Figure 6.2.

ρ =
µ2

2σ2
(2.9)

The intrinsic dimensionality is high if the distances between objects are very similar.
The extreme case is a “zero-one metric”, where the distance between all objects
except itself is zero. The intrinsic dimensionality increases towards infinity as the
zero-one index grows.
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2.3.3 Index data structures

There are several index types one can use in metric indexing. This section presents
some common concepts and three specific index structures.

Pivot based index structures

Pivoting is a method where some objects, either a subset, the full set of the object
collection, or a synthetically generated set, are chosen as pivots. The selection of
pivots can either be at random or using some heuristic, e.g choosing objects that are
distant from each other. The distance from each object to each pivot is calculated
and stored in a matrix. This is the index structure used when searching.

To be able to utilize the index one have to be able to estimate d̂(q, x) and ď(q, x)
without calculating d(q, x). This can be done by using the geometry of the metric

space. d̂(q, x) is set to d̂(q, x) = d(q, p) + d(p, x) and ď(q, x) is set to ď(q, x) =
|d(q, p)− d(p, x)|.

When a query is evaluated the distance d(query, pivot) is calculated for each pivot.
This distance and the distance d(pivot, object) taken from the index is then the data
needed to calculate the upper bound. To take advantage of multiple pivot objects in
the pivot set P the functions d̂(q, x) and ď(q, x) are defined as d̂(q, x) = min

p∈P
d̂(q, x)

and ď(q, x) = max
p∈P

ď(q, x). Figure 2.3 shows a graphic representation of how the

search space is reduced by evaluating several pivots.

AESA Approximating and Eliminating Search Algorithm (AESA) [30] uses all
the objects in a data set as pivots. At the start of a query, the distance from the
query to a random pivot is calculated. This distance is used to calculate the lower
bound ď (and possibly the upper bound d̂) given in Section 2.3.3. After this initial
distance calculation a filtering is performed removing all objects that have ď > r. If
one finds objects with d̂ < r it can be included in the result set without calculating
the distance. A new pivot is then chosen and the procedure is repeated.

This method has a high memory and creating cost because of the choice to include
all objects as pivots, O(n2).

LAESA Linear AESA [25] address the high CPU and memory cost of AESA.
It makes a compromise and only uses a subset of the objects in the data set as
pivots. This gives a cost of O(nm), where m is the size of the pivot set. A LAESA
index has the same form as AESA if n = m, but the search procedure is different.
Because it uses fewer objects as pivots it can not be expected to filter as well AESA.
This will lead to more distance calculations when performing a search.
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Maybe: 0, confirmed: 0, discarded: 1
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0.35
Query radius: 0.02, number of pivots: 1

0.15 0.20 0.25 0.30 0.35
Maybe: 1, confirmed: 0, discarded: 0
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Query radius: 0.06, number of pivots: 1

0.15 0.20 0.25 0.30 0.35
Maybe: 0, confirmed: 1, discarded: 0
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0.35
Query radius: 0.10, number of pivots: 1

Figure 2.2: The figure shows three radius values and the distance approximation
functions d̂(q, x) = d(q, p)+d(p, x) (outer dotted line) and ď(q, x) = |d(q, p)−d(p, x)|
(inner dashed line). The query object is the purple object in the center, the pivot
object is green and the unknown object changes color. Using three different radii,
one can discard (first plot) or confirm the object (last plot), or the state could be
unknown (second plot). If the state is unknown one has to calculate the distance
function d(query, unknown). As stated earlier, the goal is to minimize the number
of these calculations.
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0.0 0.2 0.4 0.6 0.8 1.0
Maybe: 400, confirmed: 0, discarded: 0
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Query radius: 0.30, number of pivots: 0
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Query radius: 0.30, number of pivots: 20

Figure 2.3: The figure is showing how the search space is reduced at each step of
considering multiple pivots, using the functions d̂ and ď from Section 2.3.3. Blue
objects are definitely relevant, yellow are possible matches and red are discarded
objects. By calculating the distance to 20 pivot objects the search space are reduced
from 400 objects to 117 confirmed, 263 discarded and 20 unknown. After the
filtering is done one have to calculate the distance to the 20 unknown objects .
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Avg distance of candidate set: 0.334, distance calculations: 10
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Figure 2.4: Example of kNN implemented with a LAESA range search. The radius
is infinite in the first round and the k objects that are heuristically closest to the
query are chosen as a candidate set. The following iterations is a ‘branch and
bound’ search to minimize the radius until the k closest objects are found.
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The appropriate size of the pivot set can be difficult to know. There are some
things that can be used as a heuristic though. A higher dimensional data is more
difficult to index than lower dimensional data. Using this insight one can use a
measure of dimensionality, e.g. intrinsic dimensionality (see Section 2.3.2), as a
heuristic for an approximation of the appropriate size of the pivot set. However,
this will not give the exact size of a optimal pivot set.

Pivot selection The simplest way to select pivots is to select them at random.
This has the advantage of having a very low complexity and should speed up the
creation time of an index. The downside of this method is that different objects
are more suitable as pivots than others and one might end up with a index that
performs poorly. A more sophisticated way is to incrementally select pivots that
maximize the distance between the pivots. The downside of this is the cost, after
selecting the first pivot at random one have to do a linear scan for each pivot. This
gives a complexity of O(mn) where n is the number of pivots and m is the size of
the data set that the index represents.

Another consideration is the number of pivots to use. Using to many will increase
the cost of index creation and possibly search. Using to few will result in poor
filtering performance of the index. Indexing “difficult” datasets requires more piv-
ots than a “simple” one. To measure how “difficult” or “simple” a data set is
one can use the data sets aintrinsic dimensionality. A data set with high intrinsic
dimensionality is more difficult to successfully index than a low one. The intrinsic
dimensionality can be used as a heuristic to determine how many pivots are needed.
A high intrinsic dimensionality will require more pivots then a low dimensionality.

Tree based methods

SSSTree The SSSTree [9] is based on Sparse Spatial Selection [26], a dynamic
method that selects a set of pivots that is well distributed in the metric space. The
strategy it follows is to evaluate each new object in the index as a potential pivot.
The object is chosen as a pivot if the distance from it to the other pivots is greater
or equal to Mα, where M is the maximum distance between objects and α is a
tuning constant.

The SSSTree uses this heuristic to build a tree of clusters. The first object inserted
is chosen as the center of the cluster in the first node. When more objects are
inserted into the tree they are either selected as the center of a new cluster or
added as an object to the closest cluster. An object is chosen as a new cluster
center if the distance from the object to the closest cluster center is greater than
Mα. This construction process will result in a unbalanced tree. The different levels
in the tree will adapt to the complexity and distribution of the objects within it [9].
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2.4 Software libraries

Some software packages were used in addition to the software created specifically
for this project; Yahoo! QLAS, Yahoo! Vespa, Weka and Gensim.

2.4.1 Yahoo! Query Linguistic Analysis Service

Yahoo! have developed a service Query Linguistic Analysis Service (QLAS) to find
different possible intents behind search queries. Examples of this can be different
things called the same, e.g. different towns around the world called “Bergen” or
the fact that “New York” can be used to refer to either the state or the city.

A QLAS analysis of a query will try to find different interpretations of the query
and weight each interpretation with a probability of being correct. An example of
this can be found in section A.1.1, which is a QLAS analysis of the query “new
york”. The output of QLAS is very verbose, the following table gives a summary
of the different interpretations.

Interpretation Score

place category: city 0.991837
place category: state 0.982552
media category: movie 0.346093
brand type: manufacturer 0.161142

QLAS Output A QLAS analysis will create one or more interpretations of a
query, six in the case of the query “new york”. Each interpretation will have a
domain field which is a notion of what the interpretation means as a whole. An
example of this:

Interpretation:

query=[new york]

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}]
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The name-field is the name of the domain and the schema-field is the kind of
domain the name was taken from. QLAS has three kinds of domains, “coexistence”,
“language model” (lm) , and “jabba”. A full overview of each domain can be found
in Section A.1.2.

In addition to the domain field, an interpretation will take the given query and
analyze it for different possible spans. If the query is in English, it is typically
tokenized by white space and in addition, a span could be several words together.
Continuing with the example query of “new york”, this will generate three spans,
“new” “york” and “new york”. From the actual output from Section A.1.1:

Interpretation:

id=3

span=[0,3][new] id=12 class=token referent=

span=[4,4][york] id=13 class=token referent=

span=[0,8][new york] id=16 class=place_name referent=

Interpretation:

id=4

span=[0,3][new] id=12 class=token referent=

span=[4,4][york] id=13 class=token referent=

span=[0,8][new york] id=15 class=media_title referent=

As seen in this example, a span will have some class. This class is taken from
a QLAS taxonomy which can be found in its entirety in Appendices A.1.3. The
taxonomy consists of six types of classes:

• syntactic, e.g. token

• proper noun, e.g. place name

• common noun, e.g. business

• adjective, e.g. color

• code, e.g. company ticker

• no classification, e.g. compound

Finally, the score field indicates how certain the interpretation made by QLAS is.
This is a number between 0 and 1 telling how certain QLAS is that the interpreta-
tion is correct. In the New York example the interpretations “class=place name,

[taxonomy: place category]-> "/state"” and “class=brand name, [taxonomy:

brand type]-> "/manufacturer"” were found. The first interpretation has a
score of 0.991837 and the last one has a score of 0.161142.
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2.4.2 Vespa

Vespa is a search engine developed at the Yahoo! Trondheim office. Vespa can be
summarized as following:

“ Vespa is a generic, scalable platform for creating search applications
in Yahoo!

Vespa consists of three main components:

• Vespa Search - indexing and query processing

• Vespa Document Store (VDS): document and object storage

• Vespa Document Processing (VDP): document processing and trans-
formation pipeline

Vespa is well suited to index and search general text content as well
as more structured information. Vespa supports real-time updates of
full documents and massive partial updates, the latter with sub-second
guarrantees. Vespa sports a highly flexible and easy-to-work with rele-
vancy framework.

Vespa is used to power most of Yahoo!’s search needs, with the exception
of Web Search, currently more than 120 properties use Vespa.

As of April 2009, Vespa serves close to 9 billion page views per month.

”

(Source: Internal Yahoo! documentation [1])

2.4.3 Gensim

Gensim [29] is an information retrieval Python library. It implements traditional
information retrieval methods like tf-idf and cosine similarity (see Section 2.1)
but also more advanced methods like Latent semantic indexing, Latent Dirichlet
Allocation and Random Projections.

2.4.4 Weka

Weka is an open source machine learning software pack developed at The University
of Waikato, New Zealand. This is how they describe the project [16]:

“ The overall goal of our project is to build a state-of-the-art facility
for developing machine learning (ML) techniques and to apply them to
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real-world data mining problems. Our team has incorporated several
standard ML techniques into a software “workbench” called WEKA,

for Waikato Environment for Knowledge Analysis.”

Weka enables one to rapidly experiment with many different machine learning
algorithms. As stated in Section 2.2, there is no single algorithm that outperforms
the rest in all learning scenarios. It is therefore valuable to be able to test whole
families of algorithms to quickly identify the one that works well in the learning
scenario one is pursuing.



Chapter 3

Experiments

3.1 Evaluation methodology

All the experiments in this project have the goal of correctly labeling the relevant
source for a search query. The correct way to evaluate an experiment is therefore
given by the training and evaluation data that the experiment utilizes. The ex-
periments uses a data set from Yahoo! Taiwan that has a separate training and
evaluation part. This data set gives a single correct source for many example
queries and the evaluation is therefore the percentage of correctly classified queries
from the evaluation data set. See Section 2.2.8 for further details about the training
data.

The experiment in Section 3.5, using metric indexing, is focused on speeding up the
classification process. To evaluate this the measurement is an achieved reduction
in distance calculations (the costly part of the source classification) and how this
reduction affects the classification performance.

3.2 Entropy based QLAS classification

In this experiment the objective is to classify a query → source (classify which
source is relevant for a query) using compression based classification of its QLAS
analysis. The basic idea is to use an entropy analysis to measure the distance from
the test query QLAS object to the set of training objects. The category in the
training set with the closest average distance is chosen as relevant for the query.

This experiment has many positive aspects because the value of the underlying
data is unknown. It is not know if the QLAS data is a good source of information
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in source classification. If it has valuable information it is not known how this
should be used. Entropy classification is parameter free and the training data has
no form or format requirements. This means that the data can be used as is and
it does not require any parameter tuning.

3.2.1 Direct zipping

This method is based on the work of Benedetto et al. [6] and can be explained as
follows. The classified training data is split into their respective file set based on
their class and this file set is compressed using a standard compression algorithm.
This gives a file set like “class1.zip”, “class2.zip”, “classn.zip”.

The classification process for a new document works as follows. Add the document
to each categorized file set and compress them together, giving the files “class1 +
unknown.zip”, “class2+unknown.zip”, “classn+unknown.zip”. The class where
the difference between the compressed classified data and the compressed classified
data plus the unknown document is the smallest, is chosen as the class for the new
document. Equation (3.1) summarizes the process. See Section 2.2.5 for further
background theory.

Category = min(∆CatA:b,∆CatB:b, ...,∆CatX:b) (3.1)

∆CatX:b = length(compress(CatX + b))− length(compress(CatX))(3.2)

3.2.2 Normalized Compression Distance

Like the previous experiment, this method also uses a standard compression algo-
rithm. The method was presented in Li et al. [23] and can be seen as a further
development in the same field of using entropy for classification. See Section 2.2.5
for further background theory.

This experiment compares each training instance in each category independently
using the function described in Equation (3.5). For each possible class, the aver-
age distance between a training instance and the unknown instance is calculated.
The class with the smallest average distance is chosen as the classification of the
unknown.

Category(unknown) = min(CategoryA,CategoryB,CategoryX) (3.3)

CategoryX(unknown) =

∑CategoryX
instance NCD(instance, unknown)

length(CategoryX)
(3.4)

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
(3.5)
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3.3 Feature vector based machine learning

To evaluate the performance of methods that require feature vectors as input data, a
feature vector extractor was created. This enables a wide array of machine learning
algorithms. This extractor takes the full semistructured QLAS data (see Appendix
A.1.1) that was used in the previous experiment and creates a feature vector in the
form of Table 3.1. The feature extractor creates a single feature vector for each
interpretation in a QLAS analysis. Table 3.1 shows how two instances from the
training set with their QLAS data are transformed to seven feature vectors.

It should be noted that this is a naive way to do a feature vector extraction. The
task of creating good automatic feature vector extractors is a field of its own. The
result of this experiment can therefore be seen as an evaluation of a naive feature
vector extraction, as much as the actual algorithms.

The algorithms in the following list was tested, using their implementation in Weka
(see Section 2.4.4).

• Naive Bayes (see Section 2.2.6)

• Decision tables + Naive Bayes (Section 2.2.6)

• IB1 (see Section 2.2.6)

• RIPPER (see Section 2.2.6, named JRip in Weka)

• C4.5 (see Section 2.2.6)

• Random Forest (see Section 2.2.6)

The goals of this experiment are the same as those in Section 3.2, but with alterna-
tive methods. The result of this experiment is given in Section 5.2 and compared
to the experiments in Section 3.2 in Figure 5.3.

3.4 Traditional information retrieval similarity

This section presents two experiments using two different search engines. The idea
behind using search engines in this context is to use the ranking feature in the
search engine to find the most relevant QLAS analysis. Those QLAS documents
are then used to classify a query.
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3.4.1 Off-the-shelf search engine

This experiment uses a standard (proprietary) search engine to measure the sim-
ilarity between QLAS documents. This is done using the search engine Vespa,
described in Section 2.4.2.

The experiment is performed in the following way: all the QLAS documents from
the training set is indexed as a normal text document together with their classifica-
tion. To classify a new query a two step process is performed. It is first analyzed by
QLAS, then the QLAS document is used to construct a query. The ten best results
are retrieved by Vespa and the average relevance for each category is calculated.
An example output of the search result can be found in Section A.2.7. The class
with the highest average relevance is selected as the class for the new query.

If this experiment should work it has some big advantages. It uses off-the-shelf
components that are already optimized for performance. However, a search engine
similarity function is made with human queries and natural language documents
in mind. It is therefore reasonable to be pessimistic about the performance.

3.4.2 Traditional information retrieval: cosine distance, tf-
idf

The experiment in the previous section has a major shortcoming. A proprietary
search engine can be seen as a “black box” because the internal mechanisms are not
readily available. If the experiment is a success or failure it is hard to reason and
analyze the underlying cause of the result. Because of this, a second experiment
was done with a “textbook” implementation of the vector model, tf-idf and cosine
distance. This was done using the Python information retrieval library Gensim [29].

The experiment works much in the same way as the one described in the previous
section. Each QLAS document is transformed into a vector and put in a matrix
consisting of all the document vectors of the document class. A search is then
performed in each of the document class indexes and the result from each is joined
into a single result. The 10 closest hits was then used to classify the search query
using the functions in Section 3.5.2.

3.5 Metric indexing

The entropy based experiment in Section 3.2 is computationally very expensive.
The method calculates the expensive distance function from the query object to
all the objects in the training set. The category with the lowest average distance
from the query object is chosen as the classified category. This is in other words,
a linear scan of the training data.
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The goal of this experiment is to evaluate if metric indexing can be applied to
the problem of classifying sources using QLAS data. To evaluate this, a significant
speedup measured in fewer distance calculations should be observed. This reduction
in cost should not affect the positive result in experiment 5.1.2 significantly.

3.5.1 Distance measurement

The distance measurement in metric indexing is usually a proper metric. This is
however not the case in this experiment. Even though it is not a proper metric it
is still a distance measurement and the though is to use it as an “approximated
metric” to get a approximated search. This can however not guarantee that the
closest objects are returned in a kNN search.

NCD

There is a problem when using NCD as a metric in metric indexing, it is not a
proper metric. NCD is only a proper metric when using the actual Kolmogorov
complexity, which is not computable. The complexity is approximated using a
practical available compression algorithm. Hence, NCD is in practical terms an
approximation of a proper metric. This does not mean that it will not work at
all under any circumstances, but it means that using metric indexing to find the k
nearest neighbors the index can not guarantee that the returned objects are the k
closest.

3.5.2 kNN

When using kNN to do classification one has do decide how to interpret the returned
closest objects. This is a general statement about kNN, be it in regards to metric
indexing, case based reasoning or any other application. There are different ways to
do this. One can calculate the distance to the k elements and choose the class that
has the lowest average distance or one can use each objects as a “vote”, selecting
the class that has the most objects in k. The selected classification function should
be selected in the basis in what the data set represents.

In this case we are interested in the normalized compression distance of the k
nearest objects where closer means better and more objects of the same class should
speak to the correctness of the class. Three functions were tested to classify the
result, listed in the following table.
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Function Explanation

Voting The class with the majority of objects among
the k closest are chosen. This function does
not make sense if k = n.

Average distance The class with the lowest average distance to
the k objects is chosen. This function was also
used in the entropy experiment in Section 3.2.

Weighted average distance The class with the lowest average distance
multiplied by how many percent of k the class
populates. This function only makes sense to
uses if k 6= n. The reasoning behind it is that
a single object should not be chosen if there
are several other objects in another class that
are also reasonable close.

3.5.3 Index structures

As stated in Section 2.3, metric indexing have several possible indexing methods
and similarity metrics. Two index structures were used in this experiment, LAESA
and SSSTree. The LAESA experiment used 32 and 96 random pivots. See Section
2.3.3 and 2.3.3 for the background theory about these.
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Chapter 4

Implementation

Some software were written to perform the experiments in this project. Some 3rd-
party packages were also used. This chapter describes the software written from
scratch. All the software was written in Python, but Python modules written in C
were extensively used.

4.1 Entropy classification

The entropy classification extensively uses the Python modules zlib and bz2. The
classification process is easily done in parallel (no synchronization needed between
threads) so the program was written in parallel using the Python classes thread-
ing.Thread and Queue.Queue. The classification process is started with loading all
the queries into a queue and the training corpus into a dictionary. From there the
following is done in each thread:

1. Retrieve the QLAS analysis of the query.

2. Calculate the entropy using either Equation 4.1 or Equation 4.2 (C(x) is a
compression function).

3. Select the class with the lowest entropy as the classification for the unknown
instance.

4. Save the classification in the a result queue.

In addition to the classification threads a thread is created to collect the result
from the classification threads. When n new classification have been collected the
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result is saved to permanent storage. The number of classification threads was set
equal to the number of CPU cores.

NCDCategory(unknown) =

∑Category
instance NCD(instance, unknown)

length(Category)
(4.1)

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))

DirectZip(unknown) = length(compress(Category + unknown))−
length(compress(Category)) (4.2)

4.2 Feature vector classification

The feature vector classification was done in Weka (see Section 2.4.4) so those
algorithm were not implemented from scratch. However, to be able to use Weka and
those algorithm the QLAS data have to be transformed from the raw QLAS data to
feature vectors. A program was written to do this. The task is a straight forward
parsing task. If one looks at the example QLAS analysis in Appendix A.1.1, it has a
very clear form. The first part is some meta data and then a list of interpretations.
Inside the interpretation there is also a repeating structure. To parse the document
the program first split the document in individual interpretation. After that each
interpretation is parsed.

The program defines a QLAS class that represents the information and contains
the logic to parse the raw data. After the parsing is done the feature vectors
representing the QLAS object can be extracted as Python lists. These lists was
stored to disk as comma separated values, using the module csv. An example of
how the program takes one QLAS analysis and create several feature vectors can
be found in Table 3.1.

4.3 Traditional information retrieval classification

This experiment was also performed using two 3rd-party software packages, Vespa
and Gensim. Vespa is a proprietary search engine developed at Yahoo! Technolo-
gies Norway. Gensim is a open source information retrieval package written in
Python. The classification process is easily parallelized in the same way as the
program described in Section 4.1. The following was done in each classification
thread:
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1. Retrieve the QLAS analysis of the unclassified query.

2. Use the QLAS data to create a query. This was done by removing all non-
textual characters (parentheses, colons and so one) and then take every word
in the remaining text to create a query like term1||term2||..||termn where ||,
means OR.

3. Submit the query and use the search result to classify the query.

4.4 Metric indexing

Two metric indexing techniques was implemented, LAESA and SSSTree.

4.4.1 LAESA

The indexing and search in LAESA was implemented using a Numpy [21] matrix
and Numpy matrix operations.

Index creation

A LAESA index is a n×m matrix where n is the number of objects in the collection
that is indexed and m is the number of pivots. To be able to do matrix operations
efficiently the matrix was stored in a Numpy matrix.

To create an index m random pivots was chosen, m/4 from each class. The NCD
(using zlib, compression level 9) distance from each object to each pivot was calcu-
lated and stored in the matrix. The index matrix was then saved together with the
index id of the pivots. The Python module pickle was used to serialize and save
the data.

Searching

To do a search the entire index is loaded into memory. Two search types were
implemented, range search and kNN search.

A range search with radius r is initiated by calculating the distance to the pivot
elements. This, together with the index gives the upper bound d̂(q, x) and the
lower bound ď(q, x). This is done quickly by adding/subtracting the distance vector
query → pivot to the whole index. The objects are separated into three groups,
included, discarded and maybe. The distance from the query object to the objects
in the maybe group is then calculated. The included group and the objects in the
maybe group that have a distance lower then r are returned.
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The kNN search is implemented using the range search, but the distances to the
maybe group is not calculated immediately. A range search with radius = ∞ is
started and the distance to k object is calculated. The largest distance of the k
object is then used as the new radius. A new range search is then done. If a new
object is found within the new radius, it is added to the set of k possible objects and
the object in the set of k with the greatest distance is removed from the set. This
process of decreasing the radius is continued until the search can not be improved
anymore.

4.4.2 SSSTree

The SSSTree index is a unbalanced tree of clusters. This was implemented using
Python objects where each object contains a node center and a list of child nodes.

Index creation

The index creation is started by creating a single node using the first object in the
object collection. When the next objects are added a recursive process is started.
It is first added to the root node. At this level it is decided if the object should be
added to a new child node under the root, or adding it to one of the child nodes
already created. This process is continued recursively if it is added to an existing
child node.

There are two scenarios when adding an object to a node; either adding it to the
root node or adding it further down the tree. The difference in adding a node to
the root node or a child node is the calculation used to estimate the space covered
by a node. The function defined in Equation 4.3 is used in the root node. The
function defined in Equation 4.4 is used in child nodes. If the distance is greater
then respectively Equation 4.3 or Equation 4.4 is it added as a new child node. If
the distance is smaller it is added to the closest existing child node.

distance(root center, new object) ≥ M × α (4.3)

distance(node center, new object) ≥ covering radius× α (4.4)

covering radius = 2× max
child∈ChildNodes

distance(node center, child) (4.5)

The M variable used at the root is the greatest possible distance between objects.
The covering radius variable (defined in Equation 4.5) is an estimation of the
space covered by a node. α is tuning constant, usually set around 0.35 to 0.4.
When creating a NCD SSSTree index it turned out that a slightly higher α was
needed, 0.48 worked well.
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Searching

The search process in a SSSTree has the goal of pruning parts of the tree. This is
done by using Equation 4.6 at nodes recursively. A node and its children can be
pruned from the search if the distance from the query object to the node center,
minus the radius, is greater than the covering radius multiplied with the alpha
constant.

The search was implemented by having a search method at each node object. The
search method is called recursively on each node that could not be pruned from the
search. The returning result from each child node is concatenated and returned
higher up the tree.

distance(query, node center)− radius ≥ covering radius× α (4.6)
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Chapter 5

Results

The experiments in this project used 138 699 training cases and 15 164 test cases
evenly divided into four classes; blog, image, knowledge and shopping. Completely
random classification should be 25% correct so any result close to that would not
be a positive result. See Section 2.2.8 for further details about the training data.

Each result table is a 5× 7 matrix. The left column shows the class of the test
set and column 3 to 6 show how the test instances were classified. An example:
the first line of the first table in Section 5.1.1 show how the blog category was
classified using direct compression / zlib; 1662 correctly as blog, 842 as image, 684
as shopping and 540 as knowledge. The rightmost column show the percent of test
instances that was correctly classified.

5.1 Entropy / compression classification

This section presents the classification results using the entropy based methods
Direct Zipping and Normalized Compression Distance. Please see Section 3.2 for
further details about the experiment. Three levels of compression were used for
comparison sake.

5.1.1 Direct compression

This experiment uses the compression libraries zlib[13] and bzip2[34]. zlib imple-
ments the compression algorithm DEFLATE, which uses a combination of LZ77
and Huffman coding. bzip2 is a block compression algorithm. It is considered a
more powerful compression algorithm (higher level of compression) than zlib but
is considerably slower.
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The three following subsections show the results using three levels of compression.
They are all better than random classification, however there are some unexpected
results. One would think that a higher level of compression always gave a better
result, at a computational cost. This is not true for all the experiments. The test
set for the category blog gives the best result at level 5 (then level 1, then level
9 (the most expensive) at third place). Table 5.1.1 summarizes the correctness at
the different levels. Another unexpected result is the very different behavior of zlib
and bzip2. This is discussed further in Section 6.1.1.

Level 1 zlib/bzip results

Result using level 1 zlib/bzip2 compression as a means of classification.

zlib:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 1662 842 684 540 44.58%
image 3862 771 2157 502 432 55.85%
shopping 3749 662 849 1996 314 52.24%
knowledge 3821 756 693 595 1705 44.62%

bzip2:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 32 0 2111 1585 0.86%
image 3862 32 0 2189 1641 0.00%
shopping 3749 17 0 2366 1438 61.92%
knowledge 3821 32 1 2043 1673 44.63%

Level 5 zlib/bzip results

Result using level 5 zlib/bzip2 compression as a means of classification.

zlib:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 1648 525 1082 473 44.21%
image 3862 654 1515 1102 591 39.23%
shopping 3749 461 499 2606 255 68.20%
knowledge 3821 657 468 754 1870 49.88%
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bzip2:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 6 934 2125 663 0.16%
image 3862 2 1038 2239 583 26.88%
shopping 3749 1 972 2354 494 61.61%
knowledge 3821 5 1000 2146 598 15.95%

Level 9 zlib/bzip results

Result using level 9 zlib/bzip2 compression as a means of classification.

zlib:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 1020 913 1023 772 27.36%
image 3862 253 2013 962 634 52.12%
shopping 3749 198 579 2741 303 71.74%
knowledge 3821 236 505 649 2359 62.92%

bzip2:

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 3003 162 95 468 80.55%
image 3862 3155 150 127 430 3.88%
shopping 3749 3067 165 151 438 3.95%
knowledge 3821 3080 154 109 406 10.83%

Levels compared

Classification results using different levels.

zlib:

Category Level 1 Level 5 Level 9

blog 44.58% 44.21% 27.36%
image 55.85% 39.23% 52.12%
shopping 52.24% 68.20% 71.74%
knowledge 45.48% 49.88% 62.92%
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bzip2:

Category Level 1 Level 5 Level 9

blog 0.86% 0.16% 80.55%
image 0.00% 26.88% 3.88%
shopping 61.92% 61.61% 3.95%
knowledge 44.63% 15.95% 10.83%

5.1.2 Normalized Compression Distance

This experiment is similar to the previous, but it uses the Normalized Compression
Distance to measure entropy. A difference in this experiment, in addition to using
a different distance measurement is that the experiment evaluates each case in the
training corpus individually. The class with the lowest average distance is chosen
as the class for the unknown instance.See Section 3.2.2 for a full description of the
experiment.

The following sections summarize the result using three levels of compression. The
results are in general much better than those of Section 5.1.1 but this method is
considerably slower. The reason for this speed difference is that the method com-
presses individual training cases and the unknown test one by one. The previous
method compresses the whole training corpus for each class in one swoop.

zlib, compression level 1

Result using NCD with level 1 zlib.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 2064 358 1174 132 55.36%
image 3862 0 3014 424 424 78.04%
shopping 3749 0 0 3777 44 98.85%
knowledge 3821 0 732 321 2696 71.91%

zlib, compression level 5

Result using NCD with level 5 zlib.
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Figure 5.1: Plot of three compression levels using zlib and bzip2 classification.
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Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 1870 345 1173 340 50.16%
image 3862 0 2940 377 545 76.13%
shopping 3749 0 0 3754 67 98.25%
knowledge 3821 0 708 311 2730 72.82%

zlib, compression level 9

Result using NCD with level 9 zlib.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 3728 1786 353 1217 372 47.91%
image 3862 0 2939 381 542 76.10%
shopping 3749 0 0 3757 64 98.33%
knowledge 3821 0 718 321 2710 72.29%

Levels compared

Category Level 1 Level 5 Level 9

blog 55.36% 50.16% 47.91%
image 78.04% 76.13% 76.10%
shopping 98.85% 98.25% 98.33%
knowledge 71.91% 72.82% 72.29%

Table 5.1: Classification results using NCD at different levels.

5.2 Feature vector based machine learning

These sections presents the classification result using the feature vector based learn-
ing algorithms presented in Section 2.2.6. The results can be evaluated from two
perspectives; the performance of the algorithms and the quality of the feature vec-
tors. This is discussed further in Section 6.2. A graphical comparison of the feature
vector algorithms and Normalized Compression distance can be found in Figure 5.3.

One thing to notice is the different number of test (and training) instances in the
results. The numbers are different because each instance in the original corpus
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Figure 5.2: Plot of three compression levels using NCD/zlib classification.
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is a pair (query, QLAS data for query), and a few more numbers associated with
the query. Each QLAS analysis contains several interpretations of the query they
represent. Each of those interpretations are used to create a individual feature
vector. More about this process can be found in Section 3.3.

5.2.1 Naive Bayes

Full result output in Appendix A.2.1.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 1018 2248 5361 4360 7.8%
image 13365 548 3481 4609 4727 26%
shopping 13848 758 2740 7003 3347 50.6%
knowledge 12906 417 1916 2342 8231 63.8%

5.2.2 DTNB

Full result output in Appendix A.2.2.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 3690 2444 3208 3645 28.4%
image 13365 2033 4236 2992 4104 31.7%
shopping 13848 2748 2847 5163 3090 37.3%
knowledge 12906 1238 2024 1435 8209 63.6%

5.2.3 IB1

Full result output in Appendix A.2.3.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 6499 2430 2672 1386 5%
image 13365 4830 4037 2577 1921 30.2%
shopping 13848 5361 3024 4071 1392 29.4%
knowledge 12906 4622 3056 1786 3442 26.7%
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5.2.4 RIPPER

Full result output in Appendix A.2.4.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 358 67 11758 804 2.8%
image 13365 54 279 11681 1351 2.1%
shopping 13848 289 80 12630 849 91.2%
knowledge 12906 23 46 9591 3246 25.2%

5.2.5 C4.5

Full result output in Appendix A.2.5.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 4304 2320 3049 3314 33.1%
image 13365 2522 3702 2851 4290 27.7%
shopping 13848 3186 2760 5019 2883 36.2%
knowledge 12906 1683 1743 1222 8258 64%

5.2.6 Random Forest

Full result output in Appendix A.2.6.

Classified category

Test category Tests blog image shopping knowledge Correct

blog 12987 4274 2161 3597 2955 32.9%
image 13365 2126 4280 2995 3964 32%
shopping 13848 2870 2427 5853 2698 42.3%
knowledge 12906 1447 1882 1232 8345 64.7%

5.3 Traditional information retrieval similarity

This section present the results of the information retrieval experiments. The idea
here is to use a regular text search engine to find similar QLAS documents. See
Section 3.4 for further details.
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5.3.1 Vespa classification

The result of the experiment presented in Section 3.4.1. Vespa was set up to return
the 10 closest objects.

Vespa had the option to not return any results. This leads to a dilemma of how
to interpret the correctness of the classification. One option is to view a empty
result as the wrong classification, the test instance is wrongly classified as the class
no-class. Another option is to ignore test instances that were not classified from
the total set of instances (the sum of tests does not include the unclassified). It is
not clear what is correct so both numbers are included in the Correct column. The
first number is the correctness if unclassified is included, the second is without.

Classified category

Test category Tests blog image shopping knowledge no class Correct

blog 3728 1105 396 400 1542 285 29.6% / 32.1%
shopping 3862 1142 495 422 1620 183 12.8% / 13.5%
image 3821 1112 464 399 1702 144 10.4% / 10.9%
knowledge 3749 1222 456 396 1323 352 35.3% / 38.9%

5.3.2 Gensim classification

The result of the experiment presented in Section 3.4.2. This experiment is a kNN
with k = 10. The k closest objects was classified using three classification methods.
These are presented in Section 3.5.2.

Voting classification

Classified category

Test category Tests blog image shopping knowledge correct
blog 3725 2966 340 248 171 79.6%
image 3862 2568 848 266 180 22.0%
shopping 3821 2482 431 774 134 20.3%
knowledge 3749 2539 428 273 509 13.6%

Average distance classification
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Classified category

Test category Tests blog image shopping knowledge correct
blog 3725 2978 236 244 267 79.9%
image 3862 2506 837 274 245 21.7%
shopping 3821 2494 239 886 202 23.2%
knowledge 3749 2442 269 236 802 21.4%

Weighted average distance classification

Classified category

Test category Tests blog image shopping knowledge correct
blog 3725 2893 337 273 222 77.7%
image 3862 2427 911 294 230 23.6%
shopping 3821 2356 395 892 178 23.3%
knowledge 3749 2408 398 280 663 17.7%

5.4 Metric indexing

This section present the result of using metric indexing to speed up the classifica-
tion process using NCD (using zlib, compression level 9) as a metric. Each result
consists of two parts, the classification performance and the reduction in distance
calculations. The kNN search in the metric index was set up with k = 10. The
choice of k is discussed in Section 6.3. See Section 3.5 for further information about
the experiment.

5.4.1 LAESA using 32 random pivots

This subsection presents the classification and filtering performance using NCD
and a LAESA index using 32 random pivots.

Voting Classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 2003 554 718 453 53.7%
shopping 3862 1069 1480 1141 172 38.7%
image 3749 1155 789 1450 355 41.5%
knowledge 3821 1762 521 864 674 17.4%

Average Distance Classification
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Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1517 569 776 866 40.7%
shopping 3862 840 1531 1030 461 40.1%
image 3749 901 769 1413 666 40.3%
knowledge 3821 1101 564 851 1305 34.3%

Weighted Average Distance Classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1681 624 912 511 45.1%
shopping 3862 1222 1239 1122 279 32.4%
image 3749 1166 807 1325 451 37.5%
knowledge 3821 1572 599 991 659 17.1%

On average, 62442.2 fewer distance calculations were executed at each search,
giving a reduction of 45.02% compared to a linear scan.

5.4.2 LAESA using 96 random pivots

This subsection presents the classification and filtering performance using NCD
and a LAESA index using 96 random pivots.

Voting classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1926 569 742 491 54.7%
shopping 3862 1148 1397 1068 249 37.6%
image 3749 1289 716 1557 187 40.5%
knowledge 3821 1795 504 874 678 17.2%

Average distance classification
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Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1442 618 775 893 40.2%
shopping 3862 831 1479 1021 530 40.0%
image 3749 875 740 1482 652 39.0%
knowledge 3821 1104 572 865 1310 34.5%

Weighted average distance classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1625 619 927 557 45.7%
shopping 3862 1262 1160 1083 358 30.7%
image 3749 1304 748 1376 321 36.3%
knowledge 3821 1605 565 1013 668 17.0%

On average, 65646.3 fewer distance calculations were excluded at each search,
giving a reduction of 47.33% compared to a linear scan.

5.4.3 SSSTre

This subsection presents the classification and filtering performance using NCD
and a SSSTree index.

Voting classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1343 866 856 663 35.8%
shopping 3862 625 1973 998 266 51.3%
image 3749 680 1028 1576 465 41.2%
knowledge 3821 1100 760 988 973 25.5%

Average Distance Classification
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Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1475 571 757 925 39.5%
shopping 3862 753 1566 965 578 40.7%
image 3749 836 730 1464 719 38.6%
knowledge 3821 1105 606 777 1333 35.1%

Weighted Average Distance Classification

Classified category

Test category Tests blog shopping image knowledge correct

blog 3728 1082 905 920 821 29.0%
shopping 3862 663 1755 1004 440 45.7%
image 3749 645 1087 1455 562 38.4%
knowledge 3821 858 852 1003 1108 29.1%

On average, 31558.8 fewer distance calculations were executed at each search,
giving a reduction of 22.75% compared to a linear scan.
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Chapter 6

Result analysis and
comparison

6.1 Compression based classification

The compression based methods was able to get significantly better results than
what one would expect of random classification. A random classification is expected
to give 25% correct. The compression based methods achieved from 55% to 98.5%
correct classification in the different document classes.

There is large variation in the performance of the different categories. The reason
for this, considering how the method uses entropy, can probably be attributed to
a varying quality in the underlying training data. The QLAS analysis enumerates
all the different possible interpretations for a query together with a probability.
There is therefore no guarantee that the different categories in a training set which
is augmented with QLAS is of equal quality, even if the training sets were equal
before the addition of QLAS data. This will depend on the queries in each category
and what QLAS can say about these queries.

It is quite reasonable to think that this method was not able to pick up on the
connected interpretation and probability. A simple scenario of this would be two
documents: “long string: 0.9”, “long string 0.1”. The normalized compression
distance (Section 3.2.2) would be small because they are, from a compression algo-
rithms perspective, very similar. However, they might not be related to the same
category of documents as they have a very different relation to “long string”. An-
other issue is when there are many interpretations in a QLAS document. Given
that the analysis has found one interpretation that is highly probable and others
that it not probable. This method might not able to deduce that the interpretation
with a high probability are more important than the ones with a low probability.
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The less important interpretations will then create a form of noise by taking the
focus away from the important one.

6.1.1 Direct zipping

Using bzip2 and the direct zipping method (Section 5.1.1) gave some strange results
(see Section 5.1.1). The expected result was to be monotonically increasing with
a higher compression level. This was not the case. To check for possible errors
an experimental run was done to verify that a higher compression level actually
gave better compression on the experiment data. It did so. With some further
investigation it became clear that bzip2 had some unexpected characteristics. In
certain cases the size of the compressed training data were larger than the size of
the compressed training data plus the unknown testing sample.

size(compress(training)) > size(compress(training + unknown))

Should this result be correct, either from the perspective of a practical compression
algorithm or the theoretical Kolmogorov complexity of the data? This problem
could be stated more clearly, can the Kolmogorov complexity of the prefix of a string
be greater than the string itself? The intuition is that this should be possible. Let
S be a long random string of high complexity and D be S repeated n times. Now let
PrefixD be the same as D, only a few characters shorter. In this case the complexity
of D is “repeat S n times” and the complexity of PrefixD would be “repeat S n
times, then subtract a few characters”. In this case len(D) > len(PrefixD) and
complexity(D) < complexity(PrefixD). See Figure 6.1 for a graphical representation
of this. The fact that the complexity of a prefix is bigger than the full string
does not affect the reasoning behind the experiment. If one is able to add a string
to as long string and get a smaller complexity, it is from a entropy classification
perspective, highly related.

Looking at the bzip2 result tables in Section 5.1.1 it is clear that there is a bias for
certain categories in each compression level. This bias can be explained as follows.
Compressing each training set will result in a set compress(a + testinstance) <
compress(b + testinstance) < compress(c + testinstance). If this order changes
at different compression levels it implies that the compression algorithm is able to
exploit different structures in the files at different compression levels. This order
change is to be expected. However, if the order change is “consistent”, meaning a
single category is usually preferred at a certain compression level, then you have a
strong bias that explains the result of this experiment. A small test was done to
test this bias. A few test instances was compressed/classified in the say way as this
experiment. After each test the growth1 for each class was examined. The result
of this was the same classification pattern at different compression levels, as those
in Section 5.1.1.

1The size of compress(unknown+ categoryx)− compress(categoryx)
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Figure 6.1: A hypothetical string and its prefix where the prefix has a larger
complexity than the string it self.

From the result in Section 5.1.1, it seems that bipz2 favors certain categories at
different compression levels. One can imagine several reasons for this, using di-
rect zipping. This method uses the size difference of compress(categoryn) and
compress(categoryn + unknown) to classify an unknown case. If one does not
ensure that each categoryn is of equal information quality (from the compressor’s
perspective) there could be an uneven bias for some categories. The experiment in
Section 3.2.2 should be less prone to this because of its normalization. The result
of the experiment supports this.

A simple example where direct zipping would fall short is if the size of each class
differs much. Say that one has two files representing two classes, classa and classb,
and classb is much larger than classa. The big file, classb could then “absorb”
the test instance much better. The reasoning behind this is that a big file have a
greater chance of having data pieces in common with a new small file, than the
small file. This will result in a smaller increase in file size after it is compressed
because compression algorithms take advantage of data similarities like this.

The scenario of varying file sized is valid for this project if QLAS generally has
more information about the queries in one class than another. It does however not
explain the differing bias at different compression levels.
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6.1.2 Normalized compression distance

The normalized compression distance clearly gave the best classification perfor-
mance with an average correctness of 76.1% (see Section 5.1.2). A surprising part
of the result was nevertheless that the best result was not achieved with the highest
level of compression. This is not the result one would expect. The better a com-
pression algorithm compresses, the closer the result is to the actual Kolmogorov
complexity.

The reason for the non-monotonic increase in classification performance can prob-
ably be attributed to the QLAS data that was used for the classification. As
previously discussed, there is no guarantee that the QLAS analysis for different
queries and sets of queries in each category is of equal information quality. Both
this and the previous experiment indicate that the compression algorithm had a dif-
ferent bias to different categories at each compression level. This bias did, however,
impact the result only slightly.

6.2 Feature vector based classification

A big part of the classification performance in the feature vector based algorithms
will be given by the quality of the information stored in the feature vectors. Be-
cause there is no clear one-to-one relationship between the training data in this
experiment and the entropy based experiment, it would not be right to unequiv-
ocally claim the superiority of one method over the other. The experiment can
be evaluated from two perspectives; the algorithms and the quality of the feature
vector extractor.

When using feature vectors the learning algorithms has to use its inductive bias
to make a generalization from the training cases to a learned model. When doing
this the learning algorithm is sensitive to noise and overfitting (see Section 2.2.4).
Because the training data was used indiscriminately it is possible that the quality
and amount (479 656 training instances) were not suitable for these algorithms.

The feature vector extractor that generated feature vectors from the original train-
ing data plus its QLAS analysis did not translate absolutely all the original data.
Having said that, it translated all that seemed intuitively relevant (see Table 3.1).
The feature based methods did never come close to the classification performance
of the entropy based methods.

The poorer performance can probably be attributed to two factors. The entropy
based method used a more expensive analysis of the training data. It had also more
information available (the feature vector extractor did not categorically translate
all the information available into the feature vectors). This does not necessarily
mean that including more information in the feature vector extractor would lead
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to better performance.

One of the stranger results in the feature vector experiment is the result of the
IB1 algorithm (see Section 5.2.3). It performed worse than the expected result of
random classification. This result can be seen as a permanently erroneous inductive
bias. Three of the categories were classified slightly better than at random but one
of the categories were consistently wrong. This lead to a average correctness that
performed worse than the expected result of random classification.

6.3 Metric indexing

Using metric indexing gave a significant reduction in distance calculations. It did
however come with a downside. Just finding the k closest objects and using these
to do the classification gave a large degradation in classification performance.

Using metric indexing gave a significant reduction in distance calculations, but not
as much as is desired. LAESA reduced the distance calculations by 45% – 47% and
SSSTree by 22.75%, using k = 10. To improve the classification performance one
could increase k, but that would come at the cost of more distance calculations.
To increase the filtering performance one could decrease k, but that would come
at the cost of classification performance.

Since the number of distance calculations at k = 10 is already high, it is not a good
option to increase k. The classification performance at k = 10 was not that good
either, much worse than the entropy experiment in Section 6.1.2. It is therefore
not a good option to decrease k.

Increasing the number of pivots from 32 to 96 did not give a significant reduction
in distance calculations either. This suggests that increasing the number of pivots
further would not lead to a significant filtering performance.

The intrinsic dimensionality of the data set using normalized compression distance
was estimated to 21.3. This was estimated by using the mean and standard de-
viation of the 96 random pivot LAESA index. An intrinsic dimensionality of over
21 and the fact that Normalized Compression Distance is an approximated metric
is probably the reason of why the metric indexing were not able to reduce the
distance calculations further. The distance distribution histogram can be found in
Figure 6.2.

6.4 Traditional information retrieval

Using a off-the-shelf search engine or more traditional information retrieval did not
give very positive results. This is a method that usually works well in discriminating
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Figure 6.2: The distance distribution histogram of the 96 pivot LAESA index
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between other types of documents. It is therefore fairly safe to conclude that the
problem with this method is that the QLAS documents are not appropriate for
this type of document ranking.

The entropy classification experiment in Section 6.1.2 gave a significant better
result using the same data, at a much higher cost. The result of that experiment
strongly indicate that the information is present in the QLAS data, but is it costly
to do the analysis to find it. This experiment did not use any deep (expensive)
analysis of data, just a typical bag-of-words model. Hence, the results are not so
surprising.

It should be noted that the result of using Vespa is not comparable with the other
results. Vespa has the option to not return any documents if a certain threshold is
not met. The other experiments in this project did not have the option to do so.
The classification result is therefore divided in five classes, the four previously used
and “unclassified”. The consequence if this is that the expected result of random
classification is reduced from 25% to 20%.

The classification result using Vespa (see Section 5.3.1) displays a similar behavior
to the direct zipping experiment (Section 3.2.1). The result suggest that there is a
bias for each category and the category of the test instances have little influence on
the classification. The blog category was categorized about 30% of the time, regard-
less of what test category was classified. The same holds for the other categories;
image : 12%; shopping : 11%, knowledge: 40% and unclassified: 7%.

The result using Gensim (see Section 5.3.2) also have a biased tendency, although
not comparable with Vespa. The blog category is overrepresented in all the test
categories. But, unlike Vespa, each of the other categories are more often classified
correctly, then incorrectly.
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Chapter 7

Conclusion and further work

The most important conclusion of this project is that QLAS can in theory be used to
do source classification. However, in its current form one have to use very expensive
classification methods. The experiment that gave a highly statistical significant
result is to computationally expensive to be used in a practical production system.

A big reason for why many of the results were not very positive can be attributed to
the fact that QLAS was not designed for the purpose utilized in this project. Still,
this does not mean that the QLAS project is useless in regards to source classifica-
tion. This project used QLAS data “as is” with a standard QLAS installation. I
believe that many of the components of QLAS could be used in a source classifica-
tion system, e.g. the ability to place a query in a semantic ontology. This could be
very valuable in a source classification system, as hypothesized in Section 1.1. But
to be able to do this in a practical applicable system, the output from QLAS has
to be built with a purpose for a system like that. Another possible modification
could be to build a semantic ontology purpose-built for source classification.

7.1 Entropy classification

To be able to use this method in a practical system one would have to maintain
a small data set of documents that are good at distinguishing between document
categories. The training set would have to be reasonably small because the speed
of classifying a document increases linearly with the size of the training set (the
entire training corpus has to be compressed for each classification). This is a big
limiting factor of this method, especially in a search engine where the goal is coping
in an age of exponential information production [24]. Nonetheless, the result of the
method was useful, in evaluating the value of the information in QLAS. It might be
difficult to deploy in a commercial grade search engine, but the result it produced
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in this project were still valuable as a tool for data analysis.

In reading papers utilizing this method [22, 23, 6], it definitely seems to be a useful
machine learning technique in many scenarios, e.g., when there is no obvious answer
to a problem. This is the case in the “Tree of life” problem, where one wants to
determine the relation of different organisms/genomes. This was called exploratory
machine learning in [23]. Classifying web search queries in a practical production
system on the other hand is not of this type. This is more similar to classic machine
learning where one has positive examples in each class that the system is expected
to classify. On the other hand, analyzing the value of information content in QLAS
can be seen as exploratory machine learning or data mining and in this regard the
experiment was a success.

7.2 Feature vector classification

The main limiting factor for this type of classification is the quality of the feature
vectors in the training set. Using a naive feature vector extractor on the QLAS
documents did not produce feature vectors that performed well. As stated in the
beginning of this chapter, a modified QLAS or just using parts of QLAS could
probably be used in some way to produce much better training data, and hence,
feature vectors. This would require a re-engineering of QLAS and was out of scope
for this project.

7.3 Traditional information retrieval

This experiment was a “shot in the dark”. The experiment was done on the offhand
chance that it would work. The expected results before doing the experiment were
not highly optimistic. I still feel that the experiment was worth spending some
time on. If it had a positive result it would have been very good news for Yahoo!.
They could have used two production system, as is. This was however not the case.

7.4 Future work

This project did not result in a system that could be deployed as a production
system. Several aspects needs further investigation.
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Possible changes in QLAS

A investigation into the internal workings of QLAS is warranted. The entropy
classification experiment showed that the necessary information is present, but not
easily available. Based on this it would be interesting to do a project that evaluated
possible changes in QLAS to improve this. It might even be possible to add source
classification directly into QLAS.

Creating a semantic classification system from scratch

An alternative to modifying QLAS is to create a new semantic aware source classifi-
cation system from scratch. This has the advantage that one can create a semantic
ontology with this goal in mind. This would however be a very big task and much
of the required work have probably already been done in creating QLAS.

Analyzing user behavior to produce a source classification system

A good source for learning the connection between queries and sources is the way
users interact with a search engine. A simple model of this could be “n% of users
refine a search query X to source Y , Y is a relevant source if n is higher than
threshold”. Other more elaborate methods probably exist. This user behavior
analysis task is critical to generate data for a source classification system. It could
either done in log analysis after the search is done or live as users interact with the
system.

Coping with a steady stream of input

A search engine must cope with a steady stream of new information. A source
classification system needs to handle this as well. Using semantics in the source
classification might ease this by learning general connections between semantic
classes but it should still be able to cope with a continuous stream of new inputs.
The methods investigated in this project did not focus on this issue. This aspect
have to be addressed to create a source classification system that can be used in a
real world system.

Latent semantic indexing

The traditional information retrieval experiments did not give very positive results.
One area one might explore further is if latent semantic indexing [12] or other
advanced information retrieval could improve this performance.
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Boosting

Boosting [33] is based in the question “can a set of weak learners create a single
strong learner?” It could be interesting to see if combining several algorithms that
were not able to produce very positive results in this project could be combined to
create a stronger classifier.

7.5 Final thoughts

The most significant contribution of the project is the analysis of the feasibility of
using QLAS in a source classification system. This produced valuable information.
Unfortunately, the project did not result in any production grade algorithms or
software.
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APPENDIX

A.1 QLAS

A.1.1 QLAS analysis example, query: “new york”

QLAS Analysis:

decorations=

[version]->"1.2.3"

Interpretation:

id=3

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=
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span=[4,4][york] id=9 class=token referent=

span=[0,8][new york] id=11 class=place_name referent=

decorations=

[^taxonomy:place_category]->"/state"

[conf]->0.982552

segmentation()=[(new)(york)]

decorations=

[score]->0.991837

Interpretation:

id=4

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=

span=[4,4][york] id=9 class=token referent=

span=[0,8][new york] id=14 class=place_name referent=2459115

decorations=

[^taxonomy:place_category]->"/city"

[woe_id]->2459115

segmentation()=[(new)(york)]

decorations=

[score]->0.991837

Interpretation:

id=2

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",
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"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=

span=[4,4][york] id=9 class=token referent=

span=[0,8][new york] id=10 class=media_title

referent=ymovies:1808741477

decorations=

[^taxonomy:media_category]->"/movie"

[release_date]->"1996-10-30"

segmentation()=[(new)(york)]

decorations=

[domain]->[

{

"name":"movie",

"schema":"jabba",

"slots":{

"movie":[

10

]

}

}

]

[score]->0.346093

Interpretation:

id=5

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",
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"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=

span=[4,4][york] id=9 class=token referent=

span=[4,4][york] id=12 class=brand_name referent=

decorations=

[^taxonomy:brand_type]->"/manufacturer"

segmentation()=(new)[(york)]

decorations=

[score]->0.161142

Interpretation:

id=7

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=

span=[4,4][york] id=9 class=token referent=

segmentation()=(new)(york)

decorations=

[domain]->[

{

"implicit":true,

"name":"image",

"schema":"jabba",

"slots":{

}

}
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]

[score]->0.086218

Interpretation:

id=6

Modification:

id=1

query=[new york]

decorations=

[domain]->[

{

"name":"domain_local",

"prob":0.300649,

"schema":"lm"

},

{

"name":"domain_product",

"prob":0.442650,

"schema":"lm"

}

]

[score]->1.000000

span=[0,3][new] id=8 class=token referent=

span=[4,4][york] id=9 class=token referent=

span=[4,4][york] id=13 class=organization_name referent=

segmentation()=(new)[(york)]

decorations=

[score]->0.064981

analysis time: 43.851 ms

total: 43.851 ms

A.1.2 QLAS Domains

This section contains information about the domains a QLAS analysis can contain.

Language Model

Language Model (LM) domains are created when an LM classifier decides the query
is in a class with a certain confidence. The ”name” field will contain a classification
of the modification (one of “domain autos”, “domain local”, “domain product”,
“domain travel”), and there will be an additional ”prob” field in the range [0,1]
which specifies some confidence in the classification.
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domain
name

interpretation mean-
ing

example queries other fields

event refers to some event -
image has image intent - implicit
local has local intent plumbers in sunnyvale implicit
map has map intent sunnyvale map implicit
movie contains or is related to a

movie or movies generally
the matrix, shrek 2 show-
times in sunnyvale

task

music - -
product contains or is related to a

produ ct or product cate-
gory

mp3 players, apple ipod
touch 80gb

task

reference specific reference task synonym of obfuscated,
how many feet in 5 meters

task, dimen-
sion

travel related to travel or has
travel intent

paris vacations, delta
flight 123

task

weather has weather intent sunnyvale weather

Table A.1: Different jabba domains

An example of a LM interpretation can be found in Figure A.1.

Jabba

Jabba domains are created when an interpretation matches a Jabba rule. The
schema field will be jabba, and there will be another slots field whose value is itself
an object. Jabba rules may also set arbitrary fields in the domain object.

An example of a QLAS interpretation labeled with a jabba domain can be found
in Figure A.2.

A full list of all the posible domains can be found in Table A.1. Each domain can
in addition condain extra fields, they are all listed in Table A.2, A.3.

Coexistence

Coexistence domains are created when a simple coexistence tagger detects two
spans of certain classes together.
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...

Interpretation:

id=19

Modification:

id=1

query=[restaurants in sunnyvale]

...

span=[0,11][restaurants] id=2 class=token referent=

span=[12,2][in] id=3 class=token referent=

span=[15,9][sunnyvale] id=4 class=token referent=

span=[0,11][restaurants] id=5 class=business referent=

decorations=

[seq_prob]->0.912692

[tag_prob]->1.000000

span=[15,9][sunnyvale] id=10 class=place_name referent=2502265

decorations=

[^taxonomy:place_category]->"/city"

[seq_prob]->0.912692

[tag_prob]->1.000000

[woe_id]->2502265

segmentation()=[(restaurants)](in)[(sunnyvale)]

decorations=

[domain]->[

{

"name":"domain_local",

"schema":"lm",

"prob":0.808629

},

{

"name":"domain_travel",

"schema":"lm",

"prob":0.638892

}

]

[score]->3.122428

...

Figure A.1: LM interpretation
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common slots
slot name meaning examples
directive directive spans which indicated

the rule match
sunnyvale map, paris vacations,
shrek 2 showtimes in sunnyvale

location entire location plumbers in sunnyvale ca 94089
common fields
”implicit” : true rule match is based on implicit

meaning of the query or parts
pizza (triggers local)

local slots
slot name meaning example
business business plumbers in sunnyvale

movie slots
slot name meaning example
movie movie entity that is the object of

the query
shrek 2 showtimes in sunnyvale

movie fields
no task field generally movie-related the matrix
”task” : ”review” interpretation has review intent

for specific movie
movie reviews for avatar

”task” : ”show-
time”

interpretation has showtime in-
tent for specific movie

shrek 2 showtimes in sunnyvale

”task” : ”trailer” interpretation has movie trailer
intent for specific movie

waterworld trailers

music slots
slot name meaning example
slot name meaning example
artist artist entity that is the object of

query
-

product slots
slot name meaning example
attributes attributes associated with prod-

uct
black ipod 80gb

category product category mp3 players
item product item apple ipod
product fields
no task field interpretation is product item or

category
mp3 players

”task” : ”review” interpretation has review intent
for specific product

apple ipod touch 80gb

Table A.2: Jabba fields, Table 1
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[domain]->[

{

"name":"movie",

"schema":"jabba",

"slots":{

"movie":[

10

]

}

}

]

Figure A.2: Example of a jabba domain in a QLAS analysis

reference slots
slot name meaning example
slot name meaning example
object main object of reference request synonym of obfuscated
quantity quantity to be converted how many feet in 5 meters
from conversion source how many feet in 5 meters
to conversion destination how many feet in 5 meters
reference fields
”task” : ”the-
saurus”

thesaurus intent synonym of obfuscated

”task” : ”conver-
sion”

info on a specific flight how many feet in 5 meters

”dimension” :
”measurement”

denotes conversion task is for
measurements

how many feet in 5 meters

travel slots
slot name meaning example
origin travel origin flight from sfo to jfk
destination travel destination flight from chicago to paris
flight number flight number only, not including

airline
delta flight 123

travel fields
no task field - -
”task” : ”guide” info about a travel destination paris vacations
”task” : ”flight” info on a specific flight or flights delta flight 123
”task” : ”hotel” info about hotel/motel/b b & 5 star hotels in paris

Table A.3: Jabba fields, Table 2
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A.1.3 QLAS Taxonomy

A.2 Experiment output

The results of the experiments are summarized in Chapter 5. This section gives
the full output of the experiments.

A.2.1 Naive Bayes

Naive Bayes Classifier

Time taken to build model: 3.61 seconds

Time taken to test model on training data: 7.11 seconds

=== Error on training data ===

Correctly Classified Instances 175572 36.6037 %

Incorrectly Classified Instances 304084 63.3963 %

Kappa statistic 0.1557

Mean absolute error 0.3374

Root mean squared error 0.4376

Relative absolute error 89.9936 %

Root relative squared error 101.0623 %

Total Number of Instances 479656

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.047 0.019 0.449 0.047 0.086 0.596 blog

0.322 0.238 0.309 0.322 0.315 0.576 image

0.337 0.196 0.38 0.337 0.357 0.634 knowledge

0.765 0.392 0.385 0.765 0.513 0.738 shopping

0.366 0.21 0.381 0.366 0.318 0.636

=== Confusion Matrix ===

a b c d <-- classified as
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5588 31457 34319 46600 | a = blog

2140 38376 24574 54246 | b = image

4010 37957 42394 41385 | c = knowledge

698 16348 10350 89214 | d = shopping

=== Error on test data ===

Correctly Classified Instances 19111 35.9865 %

Incorrectly Classified Instances 33995 64.0135 %

Kappa statistic 0.1471

Mean absolute error 0.3399

Root mean squared error 0.441

Relative absolute error 90.6762 %

Root relative squared error 101.8523 %

Total Number of Instances 53106

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.044 0.026 0.352 0.044 0.078 0.574 blog

0.316 0.234 0.312 0.316 0.314 0.578 image

0.347 0.197 0.384 0.347 0.365 0.637 knowledge

0.737 0.396 0.374 0.737 0.496 0.717 shopping

0.36 0.213 0.356 0.36 0.314 0.626

=== Confusion Matrix ===

a b c d <-- classified as

566 3295 3694 5432 | a = blog

289 4220 2774 6082 | b = image

525 4094 4807 4422 | c = knowledge

226 1910 1252 9518 | d = shopping

A.2.2 DTNB

=== Run information ===

Scheme: weka.classifiers.rules.DTNB -X 1

Relation: training

Instances: 479656
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Attributes: 10

class

lang

prob_a

prob_b

prob_c

qlas_class

qlas_class_prob

qlas_taxonomy

qlas_taxonomy_score

qlas_taxonomy_dec

Test mode: user supplied test set: size unknown (reading incrementally)

=== Classifier model (full training set) ===

Decision Table:

Number of training instances: 479656

Number of Rules : 66870

Non matches covered by Majority class.

Evaluation (for feature selection): CV (leave one out)

Feature set: 3,5,6,7,1

Time taken to build model: 360.26 seconds

=== Evaluation on test set ===

=== Summary ===

Correctly Classified Instances 21298 40.1047 %

Incorrectly Classified Instances 31808 59.8953 %

Kappa statistic 0.202

Mean absolute error 0.3171

Root mean squared error 0.4496

Relative absolute error 84.5708 %

Root relative squared error 103.8546 %

Total Number of Instances 53106

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.284 0.15 0.38 0.284 0.325 0.62 blog

0.317 0.184 0.367 0.317 0.34 0.612 image

0.373 0.194 0.403 0.373 0.388 0.64 knowledge

0.636 0.27 0.431 0.636 0.514 0.744 shopping

0.401 0.199 0.395 0.401 0.391 0.653
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=== Confusion Matrix ===

a b c d <-- classified as

3690 2444 3208 3645 | a = blog

2033 4236 2992 4104 | b = image

2748 2847 5163 3090 | c = knowledge

1238 2024 1435 8209 | d = shopping

A.2.3 IB1

IB1 classifier

Time taken to build model: 4.95 seconds

Time taken to test model on training data: 70340.82 seconds

=== Error on training data ===

Correctly Classified Instances 291395 60.7508 %

Incorrectly Classified Instances 188261 39.2492 %

Kappa statistic 0.477

Mean absolute error 0.1962

Root mean squared error 0.443

Relative absolute error 52.3471 %

Root relative squared error 102.3202 %

Total Number of Instances 479656

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.8 0.281 0.481 0.8 0.601 ? blog

0.599 0.122 0.619 0.599 0.609 ? image

0.578 0.077 0.728 0.578 0.644 ? knowledge

0.454 0.043 0.773 0.454 0.572 ? shopping

0.608 0.13 0.651 0.608 0.607 0

=== Confusion Matrix ===

a b c d <-- classified as

94359 9479 9291 4835 | a = blog

33545 71431 8515 5845 | b = image
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33392 14887 72626 4841 | c = knowledge

34707 19532 9392 52979 | d = shopping

=== Error on test data ===

Correctly Classified Instances 18049 33.9867 %

Incorrectly Classified Instances 35057 66.0133 %

Kappa statistic 0.1205

Mean absolute error 0.3301

Root mean squared error 0.5745

Relative absolute error 88.041 %

Root relative squared error 132.6947 %

Total Number of Instances 53106

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.5 0.369 0.305 0.5 0.379 0.566 blog

0.302 0.214 0.322 0.302 0.312 0.544 image

0.294 0.179 0.367 0.294 0.326 0.557 knowledge

0.267 0.117 0.423 0.267 0.327 0.575 shopping

0.34 0.219 0.354 0.34 0.336 0.56

=== Confusion Matrix ===

a b c d <-- classified as

6499 2430 2672 1386 | a = blog

4830 4037 2577 1921 | b = image

5361 3024 4071 1392 | c = knowledge

4622 3056 1786 3442 | d = shopping

A.2.4 JRip

JRIP rules:

===========

Number of Rules : 68
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Time taken to build model: 1785.83 seconds

Time taken to test model on training data: 3.95 seconds

=== Error on training data ===

Correctly Classified Instances 156281 32.5819 %

Incorrectly Classified Instances 323375 67.4181 %

Kappa statistic 0.0895

Mean absolute error 0.3621

Root mean squared error 0.4255

Relative absolute error 96.5934 %

Root relative squared error 98.2819 %

Total Number of Instances 479656

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.051 0.005 0.78 0.051 0.096 0.562 blog

0.026 0.005 0.614 0.026 0.049 0.531 image

0.929 0.833 0.284 0.929 0.435 0.549 knowledge

0.26 0.069 0.549 0.26 0.353 0.608 shopping

0.326 0.238 0.553 0.326 0.236 0.562

=== Confusion Matrix ===

a b c d <-- classified as

6035 810 104435 6684 | a = blog

472 3057 104390 11417 | b = image

1209 838 116821 6878 | c = knowledge

19 271 85952 30368 | d = shopping

=== Error on test data ===

Correctly Classified Instances 16513 31.0944 %

Incorrectly Classified Instances 36593 68.9056 %

Kappa statistic 0.0709

Mean absolute error 0.3651

Root mean squared error 0.4286

Relative absolute error 97.3761 %

Root relative squared error 98.9917 %

Total Number of Instances 53106
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=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.028 0.009 0.494 0.028 0.052 0.547 blog

0.021 0.005 0.591 0.021 0.04 0.525 image

0.912 0.841 0.277 0.912 0.424 0.536 knowledge

0.252 0.075 0.519 0.252 0.339 0.596 shopping

0.311 0.241 0.468 0.311 0.216 0.551

=== Confusion Matrix ===

a b c d <-- classified as

358 67 11758 804 | a = blog

54 279 11681 1351 | b = image

289 80 12630 849 | c = knowledge

23 46 9591 3246 | d = shopping

A.2.5 J48

Time taken to build model: 1606.26 seconds

Time taken to test model on training data: 3.54 seconds

=== Error on training data ===

Correctly Classified Instances 298257 62.1814 %

Incorrectly Classified Instances 181399 37.8186 %

Kappa statistic 0.4961

Mean absolute error 0.2464

Root mean squared error 0.3485

Relative absolute error 65.7339 %

Root relative squared error 80.4953 %

Total Number of Instances 479656

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.542 0.105 0.628 0.542 0.582 0.842 blog
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0.507 0.089 0.653 0.507 0.571 0.832 image

0.616 0.109 0.667 0.616 0.64 0.858 knowledge

0.827 0.2 0.57 0.827 0.675 0.899 shopping

0.622 0.125 0.63 0.622 0.617 0.857

=== Confusion Matrix ===

a b c d <-- classified as

63932 12440 18568 23024 | a = blog

13691 60496 15363 29786 | b = image

16245 12253 77435 19813 | c = knowledge

7954 7468 4794 96394 | d = shopping

=== Error on test data ===

Correctly Classified Instances 21283 40.0765 %

Incorrectly Classified Instances 31823 59.9235 %

Kappa statistic 0.2019

Mean absolute error 0.3269

Root mean squared error 0.4486

Relative absolute error 87.1897 %

Root relative squared error 103.6189 %

Total Number of Instances 53106

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.331 0.184 0.368 0.331 0.349 0.626 blog

0.277 0.172 0.352 0.277 0.31 0.582 image

0.362 0.181 0.413 0.362 0.386 0.615 knowledge

0.64 0.261 0.441 0.64 0.522 0.748 shopping

0.401 0.199 0.393 0.401 0.391 0.642

=== Confusion Matrix ===

a b c d <-- classified as

4304 2320 3049 3314 | a = blog

2522 3702 2851 4290 | b = image

3186 2760 5019 2883 | c = knowledge

1683 1743 1222 8258 | d = shopping
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A.2.6 Random Forest

Random forest of 10 trees, each constructed while considering 4 random features.

Out of bag error: 0.3837

Time taken to build model: 3499.39 seconds

Time taken to test model on training data: 570.56 seconds

=== Error on training data ===

Correctly Classified Instances 380745 79.3788 %

Incorrectly Classified Instances 98911 20.6212 %

Kappa statistic 0.7252

Mean absolute error 0.1828

Root mean squared error 0.2776

Relative absolute error 48.7638 %

Root relative squared error 64.108 %

Total Number of Instances 479656

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.759 0.062 0.8 0.759 0.779 0.955 blog

0.753 0.05 0.833 0.753 0.791 0.955 image

0.785 0.043 0.866 0.785 0.823 0.96 knowledge

0.88 0.119 0.704 0.88 0.782 0.961 shopping

0.794 0.068 0.802 0.794 0.794 0.958

=== Confusion Matrix ===

a b c d <-- classified as

89574 7006 6706 14678 | a = blog

7761 89884 5505 16186 | b = image

8707 6043 98722 12274 | c = knowledge

5923 4993 3129 102565 | d = shopping

=== Error on test data ===

Correctly Classified Instances 22752 42.8426 %
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Incorrectly Classified Instances 30354 57.1574 %

Kappa statistic 0.2383

Mean absolute error 0.3179

Root mean squared error 0.4213

Relative absolute error 84.8034 %

Root relative squared error 97.3157 %

Total Number of Instances 53106

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.329 0.161 0.399 0.329 0.361 0.659 blog

0.32 0.163 0.398 0.32 0.355 0.631 image

0.423 0.199 0.428 0.423 0.425 0.673 knowledge

0.647 0.239 0.465 0.647 0.541 0.792 shopping

0.428 0.19 0.422 0.428 0.42 0.688

=== Confusion Matrix ===

a b c d <-- classified as

4274 2161 3597 2955 | a = blog

2126 4280 2995 3964 | b = image

2870 2427 5853 2698 | c = knowledge

1447 1882 1232 8345 | d = shopping

A.2.7 Vespa output

1 <r e s u l t t o ta l−hit−count=”84974”>
<h i t r e l evancy =”0.14760351294762875” source=”q l a s”>

3 < f i e l d name=”category”>knowledge</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :1291956383:</ f i e l d >

5 </hit>
<h i t r e l evancy =”0.12751657434115707” source=”q l a s”>

7 < f i e l d name=”category”>shopping</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−2109994265:</ f i e l d >

9 </hit>
<h i t r e l evancy =”0.12479737839875495” source=”q l a s”>

11 < f i e l d name=”category”>blog</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−20109161:</ f i e l d >

13 </hit>
<h i t r e l evancy =”0.12441472907126407” source=”q l a s”>

15 < f i e l d name=”category”>knowledge</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−1948869789:</ f i e l d >

17 </hit>
<h i t r e l evancy =”0.1225546367713739” source=”q l a s”>
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19 < f i e l d name=”category”>knowledge</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :1883930451:</ f i e l d >

21 </hit>
<h i t r e l evancy =”0.12204705399273562” source=”q l a s”>

23 < f i e l d name=”category”>image</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :795608533:</ f i e l d >

25 </hit>
<h i t r e l evancy =”0.12180796420934385” source=”q l a s”>

27 < f i e l d name=”category”>knowledge</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :731226415:</ f i e l d >

29 </hit>
<h i t r e l evancy =”0.11959180646868277” source=”q l a s”>

31 < f i e l d name=”category”>blog</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−2057640103:</ f i e l d >

33 </hit>
<h i t r e l evancy =”0.11893421879975129” source=”q l a s”>

35 < f i e l d name=”category”>shopping</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−203011059:</ f i e l d >

37 </hit>
<h i t r e l evancy =”0.11866847512874994” source=”q l a s”>

39 < f i e l d name=”category”>knowledge</ f i e l d >
< f i e l d name=”documentid”>doc : q l a s :−798616389:</ f i e l d >

41 </hit>
</r e su l t>
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