
Master of Science in Informatics
April 2011
Eric Monteiro, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Selection and use of third-party
Software Components
Study of a IT consultancy firm

Martin M Syvertsen

Preface

Being a software developer is as any trade something that harbors its own
culture and its very own special understanding of the world and from a very
small perspective. This thesis studies the methods of developers in their own
world and tries to understand how they work and why they do the things
they do.

Figure 1: by Oliver Widder under CCAND 2.0 License [6]

i

Abstract

The use of third party software components is increasing. By looking at
developers at a Norwegian IT consultancy firm I find that developers are
using components at an individual level and there is no leading agenda that
promotes reuse. Developers that are used to finding and using components do
so often and with few problems this practice is aiding and improving software
development. However the frequency of use is not as high as it could be,
either because of limitations of reuse or lack of knowledge and skill on how
to find components. By encouraging the use of small software components
and proposing simple guidelines on how to do so companies could increase
both reuse and the benefits of them.

Keywords: open source, commercial off the shelf, software reuse, knowledge
management,

ii

Acknowledgments

I would like to thank my supervisor professor Eric Monteiro for helping me
not only write and form this thesis but making it happen in the first place.
His feedback has been crucial and without him I would have been lost in how
to write and work on this thesis.

I would like to thank Acando and all of it’s employes who I have interviewed,
observed and talked with during my work and for letting me inside their
company doors. A special thanks goes my advisors at Acando for their
support, help and for making this thesis possible.

I would like to thank my friends and family for their support and motivation.

I especially would like to thank Ida for her patience, support and understand-
ing.

iii

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Research Question . 2

1.2 Thesis structure . 3

2 Literature 4

2.1 Software Reuse . 4

2.1.1 Defining a software component 4

2.1.2 What software reuse means 5

2.1.3 Software reuse in practice 9

2.2 Commercial Off The Shelf . 11

2.3 Open Source Software . 15

2.3.1 History of Open Source 15

2.3.2 OSS Quality . 16

2.3.3 OSS development methods 17

2.3.4 OSS and business adoption 19

2.3.5 Licenses . 20

2.4 Knowledge Management . 22

2.4.1 Crowd-sourcing and the Internet 24

2.4.2 Software Craftsmanship 25

3 Research Approach 27

3.1 Selection of method and techniques 27

3.2 Access . 29

iv

CONTENTS CONTENTS

3.3 Data collection . 30

3.3.1 Collection phases . 31

3.3.2 Collection methods . 32

3.4 Writing Process . 37

3.5 Reflection on research method 38

4 Case 44

4.1 Introduction . 44

4.2 Background of Acando . 44

4.2.1 Acando - Facts and numbers 44

4.2.2 Acando work structure and ideals 45

4.3 Culture . 46

4.4 Findings . 48

4.4.1 Identifying the problem 49

4.4.2 Requirements . 50

4.4.3 Search . 50

4.4.4 Candidates . 51

4.4.5 Testing . 52

4.4.6 Implementation . 52

4.5 Fast and easy selection process 53

4.5.1 Fast and easy selection of components 53

4.6 Roles and developer profiles 55

4.7 Projects and phases . 58

5 Discussion 61

v

CONTENTS CONTENTS

5.1 Introduction . 61

5.2 Component use at Acando . 61

5.3 Knowledge, OSS, COTS and software reuse 67

5.3.1 Knowledge . 67

5.3.2 COTS, OSS and Software Reuse 72

5.4 Improving at Acando . 75

6 Conclusions 77

6.1 Conclusions for research . 77

6.2 Conclusions for developers . 78

6.3 Limitations . 78

6.4 Further work . 79

References 80

A Glossary 85

B Survey 86

C Problem 89

vi

LIST OF FIGURES LIST OF TABLES

List of Figures

1 by Oliver Widder under CCAND 2.0 License [6] 1

2 Software components can be thought of as LEGO blocks . . . 6

3 Acando floor-plan . 34

4 Process model for selection of components 48

5 Developer profiles . 58

6 Project profiles . 59

7 Project phases . 59

8 Survey sent to developers at Acando September 2010 86

8 Survey sent to developers at Acando September 2010 87

8 Survey sent to developers at Acando September 2010 88

List of Tables

1 Familiar software components 4

2 Small software components . 5

3 Example of COTS software 11

4 Small software components . 18

5 Research methods . 27

6 Observations . 33

7 Interviews . 37

8 Interview subjects overview 37

9 Smalltalk subjects overview 37

vii

1 INTRODUCTION

1 Introduction

Almost as early as there has been software development there has been an
ideal of reusing it efficiently. Seemingly the software developers are often
solving the same problems over and over again and the goal of simply reusing
previously written software, be it self made or found elsewhere, has a high
potential to drastically improve software development. If any new system was
made of 90-95% existing code then one could easily see software having better
quality, faster development and costing less. although the reuse of software
components in professional software development is increasing there is still
a long way to go towards achieving both the levels and the effects of reuse
that is wanted. This thesis is a case study of small component reuse at a
software consultancy firm in Norway and looks at the state of reuse amongst
developers. By looking at their methods, frequency of reuse and problems
with components this thesis seeks to identify potential problems and how
reuse can be increased.

1

1.1 Research Question 1 INTRODUCTION

1.1 Research Question

Research Question 0:
The use of software components in enterprise software development is in-
creasing, both of known components and unknown components. With this
increased use and availability of components, what problems are developers
facing, how are components being selected and what can be done to improve
on that process? Why is software reuse not ubiquitous for all developers and
all projects? What are the challenges of finding and using smaller software
components and what can be done to increase reuse? There are OSS compo-
nents and COTS components, what is the difference between these categories
and how is this affecting reuse? Why has the potential of software reuse not
yet fulfilled?

From Req. 0 it can be extracted part-questions that are easier to discern
when later discussing the findings and analysis of the thesis:

• Research Question 1:
What is the state of software reuse?

• Research Question 2:
Why are some developers using more components than others?

• Research Question 3:
What are the knowledge-related problems with component reuse?

• Research Question 4:
In what degree is there a difference between COTS components and
OSS components?

• Research Question 5:
How can use and selection of software components improve?

2

1.2 Thesis structure 1 INTRODUCTION

1.2 Thesis structure

• Literature - Looking at research on topics related to this thesis

• Research Approach - The research methods that were used

• Case - The case findings and initial results

• Discussion - Reviewing issues, problems and implications of the findings

• Conclusions - Review of what has been found and topics for further
work

3

2 LITERATURE

2 Literature

2.1 Software Reuse

2.1.1 Defining a software component

The problem that this thesis is studying is the use of small software com-
ponents in software development. It is therefore important to accurately
define what is meant by a small software component. For many software
projects there will be a predetermined set of components that are familiar
and almost staples when it comes to software systems. These components
are often big, they have a large feature set, and can be considered industry
de-facto standards in their respective fields of development.

For example a DBMS is a component found in most software systems and
for the DBMS component there is a handful of well known and well used
vendors and technologies available. So when choosing or deciding the main
DBMS of a system the software architect will have great prior knowledge
and experience when he or she chooses for example MySQL or Microsoft
SQL Server, these are not small components and fall outside the scope of
this study. Such components will also in many cases be pre-defined from
the customer, they come as demands and fundamental requirements from
customers who in most cases already have a computer infrastructure and
environment. Examples of components that fall outside the definition of
small software component are found in table 1.

Name Vendor Type Since
Microsoft SQL
Server 2008

Microsoft DBMS 1989

Apache HTTP
Web Server

Apache Software
Foundation

Web server 1995

.Net Microsoft Development Framework 2002
SAP ERP SAP AG ERP 1972

Table 1: Familiar software components

The type of software that thesis is focusing on are often small software com-
ponents with small feature sets that are chosen not by the major software

4

2.1 Software Reuse 2 LITERATURE

architects but by the developers that are building the system. If the devel-
oper for instance needs a PDF producing component for a system running on
the Python programming language and a search for “Python PDF” returns
59 hits on SourceForge [13] and one such component is chosen and used for
the system, then that falls under this study. It is important to understand
that small does not imply that the component is small in size but rather small
in it’s function and role in the larger system. It may be important, but not
fundamental to the operation and building of the system, those components
are usually chosen beforehand and in the planning and modeling phase of the
development. Often these small components will be libraries or extensions to
existing programming languages or frameworks. Examples of small software
components are shown in table 2.

Name Vendor Type License
jsoup Java
HTML Parser

one developer HTML library The MIT License

MiG Calendar MiG InfoCom Calendar GUI Commercial
Aspose.Pdf for
Java

Aspose PDF library Commercial

pyOpenSSL 3 developers python SSL wrapper LGPL

Table 2: Small software components

To summarize a small component for the purpose of this thesis is a compo-
nent selected by developers after the overall systems has been specified and
modeled. It is often small in functional scope and will not be a critical part
of the system itself.

2.1.2 What software reuse means

Software reuse is the method of using existing code when creating new soft-
ware, a simple and accurate definition of software reuse:

“Software reuse is about methods and techniques to enhance the
reusability of software, including the management of repositories
of components.” [5]

The basic premise here is the same as for any engineering discipline and that
is to create larger systems (buildings, factories, roads) by composing together

5

2.1 Software Reuse 2 LITERATURE

Figure 2: Software components can be thought of as LEGO blocks

existing components that have been used in other solutions. The simplest
analogy would be that of LEGO blocks, figure 2 shows some LEGOs. You
start with existing pieces of different sizes and functions and simply assemble
them together to build the end result. Some projects require that one invents
everything from scratch and many projects will require that original problems
are solved, but reusing existing and tested solutions will often be possible
and preferred. In the early days of software development much focus was
on original development, but today it is more common to reuse components,
be they purchased, free or self maintained. The goals or wanted benefits of
software reuse as proposed by [42] are:

• Better quality software

• Faster development

• Lower costs of development

When using components and actively designing software to be reusable it is
important to adopt the software engineering approach to fit as well. Reuse
has long been a practice in software engineering but in the beginning this
reuse was more ad-hoc [42]. Pressmann presents Component-based software
engineering (CBSE) as a method to develop systems by reusing software
components that is formalized and developed. By adhering to principles for
CBSE one systematically creates a system that is in itself component based
and it will be easier to implement third-party components as well as reuse

6

2.1 Software Reuse 2 LITERATURE

the components that are made for the system in other projects. In the case
of CBSE a component can be defined as:

“An individual component is a software package, a web service, or
a module that encapsulates a set of related functions (or data).”

By creating components that incorporate loose couplings that are easy to
replace and interact by use of simple and well defined interfaces, it is easy to
assemble and swap components with better working ones.

although there are several benefits with CBSE these are only theoretical and
not guaranteed results. There are several pitfalls, questions and challenges
when applying CBSE, for example:

• Can complex and large systems be constructed of different components?

• Can libraries of components be created in such a way that they are
accessible to the people who need them?

• Can existing components be found by those who need them?

• How does a developer select the right component for the job?

There are several proposed steps for CBSE development, here are the most
important concepts from Pressman [42]:

Component qualification
Component qualification is about ensuring that candidate components will
perform the functions that are required by the system. By considering aspects
like application interface, requirements for tools and integration, runtime en-
vironment, resource usage (CPU, memory etc.), programming language, one
ideally picks the best component suited for the task. It is easy to evaluate in-
ternally developed components as they are familiar. Third-party components
are harder to evaluate because they may be unfamiliar, poorly documented
or closed-source.

Component adaptation
Component adaption occurs when the components have been selected and
integration towards the final systems begins. Even tough the qualification
process selects the best possible and compatible components there is often
much work to do in building bridges and so-called wrappers around the com-
ponents so that they are usable in collaboration with the rest of the system.

7

2.1 Software Reuse 2 LITERATURE

Component composition
Component composition is the final step where adapted components are fitted
together in the larger system often using a central infrastructure of data-
busses and coordination. This is the final step for integrating the acquired
components into what will become the final system.

The problem of selection is one that is easy to spot but hard to solve. How
can a developer know or check if a component is trustworthy or “up to
scruff” when he or she has no previous experience with the component? As
the practice of reuse increases the market becomes more and more saturated
with more and more components that overlap in functionality, domain, pro-
gramming language and runtime requirements, making the list of candidates
larger and larger. With the addition of open source components the number
of components available are approaching the tens and hundreds for almost
any purpose of component.

To this problem comes several solutions, most of which involve methodic and
formal approaches like [25] [2] . Many of these involve the basic steps of gath-
ering as many components possible, applying different weighted metrics and
then choosing from an end result list that is sorted by numeric values. There
has been a lot of research on these kinds of formalized methods and some
companies and organizations provide frameworks like the Open Source Ma-
turity Model [47]. Also as suggested in [27] such reuse models are exhaustive
and little efficient because they will require more time as more components
are added to the market.

Hauge points out in [17] that this research has been more academic than
realistic. He notes that in reality developers seldom use such formalized
approaches as they either take to much time or they simply do not know
that they exist. Often research points to two kinds of selection methods,
formalized or ad-hoc. Hauge notes that the ad-hoc method is a simplification
of developers simply applying experience and resource use that is not ad-
hoc nor poor in use and results. He proposes a third approach that he
calls situated where the developer chooses from experience, knowledge and
resources available in the organization and on the internet. It is situated
because it is adapted to the constraints of the project in terms of time,
money and resources available.

8

2.1 Software Reuse 2 LITERATURE

2.1.3 Software reuse in practice

One important question is if the premise and promise of software reuse has
been fulfilled or not. In 1995 Clements claims:

“These and other concerns make CBSD a trap for the naive de-
veloper. It requires careful preparation and planning to achieve
success. Interface standards, open architectures, market analy-
sis, personnel issues, and organizational concerns all must be ad-
dressed. However, the benefits of CBSD are real and are being
demonstrated on real projects of significant size.” [5]

In other words that faster, cheaper and better software systems can be made
with the correct use of components. And yet the fact remains that software
systems require time, effort and money in almost the same way as before,
if not more because the expected features and uses of systems is steadily
increasing. From the same year as Clements [5], in 1995 a report talks about
the success and failure rates of software projects where 16% succeeded 53%
challenged (failed to meet deadlines/budgets/requirements) and 31% were
canceled [18]. In 2009 these numbers were 32% success, 44% challenged and
24% failure [49]. Such numbers show a slightly positive development, but not
enough to not still be disheartened by the state of software development. It
is not clear off course if these projects take use of the principles of software
reuse, but it would be safe to assume that if reuse had been proven to be
a silver bullet to failed software development it would certainly have been
widely adopted.

Gartner predicts that OSS components will be used in 90% of all new software
in 2012 [14]. So while reuse is increasing, the effects of reuse are perhaps not
matching that of the theory. It could be argued that reuse is helping, but
not by metrics that are being considered like quality in relations to features
or time spent in relations to features.

So the premise of reuse is that if applied successfully it will increase software
quality and development speed. But exactly how is one supposed to find the
software to reuse? Several proposals and studies have been made on selec-
tion methods, often formalized and strict that utilize statistics and assumes
collecting larger lists of candidate components. But what about components
that someone else already has used to great success? Complex and potentially
expensive selection methods could easily be replaced, in theory, by a large
database of known and tested components. Such a database could either be

9

2.1 Software Reuse 2 LITERATURE

internal and private, external and private or external and public. This is
a problem related to knowledge and with companies that have a large and
distributed workforce in which people are working on different projects but
perhaps solving the same problems, selecting the same (or different) com-
ponents for reuse the challenge is not to simply employ reuse practices in a
good way, but rather to exchange knowledge of reuse, both components and
methods, across the company.

10

2.2 Commercial Off The Shelf 2 LITERATURE

2.2 Commercial Off The Shelf

Commercial off the shelf software (COTS from here on) is simply put ready
made software that is available for purchase. It’s purpose is to aid and supple-
ment software development by either providing complete solutions or smaller
components like software libraries or GUI components. COTS software is
professionally developed by a software vendor and they are sold with differ-
ent strategies like single license, volume licenses, with support. The potential
benefits of COTS are reduced development time, reduced costs and increased
software quality. [28]

It has been a long standing goal in computer science to create software that
is so modular that creating a new system is simply the assembling of existing
components and COTS is the marketplace result of this goal. A good example
of the goals and ideas behind COTS software would be:

“as government budgets shrink and the desire for increasingly
complex systems continues, there is rising interest in leveraging
the use of commercially available products whenever possible.” [3]

The government mentioned here is the US government that increasingly em-
phasizes the use of COTS in development of IT solutions and systems. A
small list of COTS components that illustrate typical COTS components is
shown in table 3.

Name Vendor Type
Word 2010 Microsoft text editing

Windows 7 Professional Microsoft Calendar GUI
jPDFViewer Qoppa Software PDF library

OfficeHTMLFilter Antenna House Data conversion

Table 3: Example of COTS software

Word and Windows can be considered the ultimate COTS product because
they provide such a generic functionality that almost any business can buy
and use the exact same software. Such standalone components are not the
focus of this thesis however. For IT systems that are less generic origi-
nal software is often needed, but here COTS software components can aid

11

2.2 Commercial Off The Shelf 2 LITERATURE

with standalone functionality that within the custom made system is generic
enough that several projects have use for it.

The potential benefits of using COTS software are huge, but the drawbacks
and challenges of COTS are not insubstantial. In fact if the goal is extensive
use of COTS one would have to change and re-learn how to develop and
maintain software systems. In [3] the authors present several new and key
aspects to consider when working with COTS:

Development Lifecycle Changes
Explained as re-examining and re-thinking several lifecycle activities of the
development process, regardless of model being used (waterfall, spiral or
iterative).

Developing requirements
When writing the requirements for the system the author must be aware of
the existing components in the marketplace. In other words the requirements
for the system should closely match that of existing features available in the
current COTS marketplace.

Selection
The selection of components must occur in parallel with development of ar-
chitecture and requirements, this to ensure that a larger set of components
will be used. Applying a more traditional sequence of requirements, architec-
ture and then selecting components may exclude a large set of components.

Testing
Testing of systems with COTS components is different because you are es-
sentially performing “black box” testing. As such the need and requirement
to test the COTS components will have to be assessed and how to test them
will differ from traditional testing.

Maintenance
The maintenance of a system with heavy COTS use will require additional
insight into the update schedules of the different COTS vendors and also
the different licenses that the COTS component are purchased under. Some
may come with a time-based license and will require re-licensing, others may
have a pay-for-upgrade scheme that requires additional payment to be able
to update to the latest version of the component. Such factors must be
addressed when planning for maintenance with COTS in the system.

These are the main concerns when it comes to the development of the system
with COTS, in addition there are business and management concerns:

12

2.2 Commercial Off The Shelf 2 LITERATURE

• Knowing and evaluating technologies and products

• How to manage systems that use COTS

• Building new business cases

• Building metrics for business assessments

• Knowing the COTS marketplace

The article also points out that even tough COTS has potentially many bene-
fits, there is no simple and bullet-proof method to COTS based development,
it still requires a solid development team that are good at integrating differ-
ent components together to a larger system. The publication “Development
with Off-The-Shelf Components: 10 Facts” [28] shows that the use of OTS,
both OSS and COTS, is widely used as found in the IDC survey from 2007
shows that more than 50% of developers used components in their software
development projects. Further it discusses several myths about the use of
software components and criticizes much of the research and work that has
been done on the subject, as does Hauge in his PHD thesis [17]. The critique
comes to the research that has been done on the selection methods that have
been proposed by academia. Much of this research has focused on formalized
methods that often employ metrics and time consuming collection of com-
ponents that meet the requirements specification, these methods have been
shown to never se much actual use in the software industry as either they are
two time-consuming and expensive or they are simply not known outside of
academia [28].

The aforementioned formalized methods are several kinds of metric based
selection that has focused on objectivity and repeatability in attempts to
bring more precise science to the selection process. These frameworks have
been used and tested in some projects, notably these projects have been very
strict and systems critical projects that had and need the time that such
formalized methods require. Other research has proposed more revised for-
malized methods like one developed by Kar and Hareton [27], they proposed
a domain-based model to improve results and efficiency compared to pure
intuition (subjective) or direct assessment (expensive) methods. Although
such studies show promise, they seldom move from academic papers to actual
use in the industry. In reality, as shown in “Ten Facts” [28] the methods actu-
ally most often used are ad-hoc or as added by Hauge [17] they used what he
calls situated methods that are based on experience, knowledge, internet and
organization resources. Hauge talks specifically about OSS components but

13

2.2 Commercial Off The Shelf 2 LITERATURE

the same principles of knowledge gathering and selection still applies. With
ad-hoc and un-formalized methods we are talking about a developer that
simply relies on experience or some form of information retrieval. Methods
frequently used are:

• Own experience

• Asking colleagues

• Search engines

• Mailing-lists (both internal and external/public)

• Component database

With the selection methods often being ad-hoc one would perhaps expect
unforeseen problems with heavy COTS usage, however findings report that
this is not necessary the case:

“The results show that OTS components normally do not con-
tribute negatively to the quality of the software system as a whole,
as is commonly expected” [29]

However this article also notes risks and problems with such studies as they
often do not take into account the integration work being done be the devel-
opers implementing the components. Some cite the benefits of COTS being
so strong that software developers are forced as an economic necessity citing
efficiency and quality as major driving points [54]. If the potential benefits
are as great as those being proposed then there is absent perhaps evidence of
software projects quality increasing and development times decreasing, how-
ever such data is hard to find. One answer could simply be that systems
are becoming more feature rich and also that although COTS components
help software development they only provide generic solutions and original
problems and systems will still be a challenge to develop. There has also
been concerns regarding long term effects and costs of COTS use but few
conclusions have yet to be made [1].

14

2.3 Open Source Software 2 LITERATURE

2.3 Open Source Software

2.3.1 History of Open Source

The term Open Source Software (OSS from here on) has meant different
things over the course over a few decades and when discussing OSS and it’s
use it is important to assess the status, role and meaning of open source
today. Historically one could say that the concept of open source formally
began with the creation of such groups as the Free Software Movement in
1983, but there has always existed open source software. When a student,
teacher or author shares code that solves a problem, or a sample program that
demonstrates a feature, then that is open source software. From the roots of
software development in such academic groups and hacker communities grew
a more formalized definition of what open source is and means.

In The Cathedral And The Bazaar [41] the author Raymond presents two
kinds of open source development, the cathedral way is open source software
that is mainly developed and driven by a company like GNU Emacs. In the
bazaar way the software is developed by anyone who wants to participate.
This is the idea that open source is a development method, others say that
open source is a philosophy in the sense that software should be free and open
for change from everyone. This view is held and fronted by the Free Software
movement, started by Richard Stallman in 1983 when he launched the GNU
Project, a free Unix-like operating system. It’s important to explain that
free in this context means free as in free speech and not as in free beer. In
1998 the term “Open Source” was chosen by several people involved with
the free software movement to label their solutions and software. This as a
change from labeling it “free software” and enabled the projects to distance
themselves from the ideological meanings of the term “free software”. So
is OSS a method or an ideology? In the context of this paper and today’s
general understanding of OSS we can say that OSS is:

“Open source describes practices in production and development
that promote access to the end product’s source materials.”

From changing the name from “free software” to “open source” came a com-
mercialization of OSS that made it more viable and used by enterprise busi-
nesses. In the article “The Transformation Of Open Source Software” [9]
Fitzgerald proposes the term “OSS 2.0” as a new definition on a new kind
of OSS that is more business oriented. He claims that the open source phe-

15

2.3 Open Source Software 2 LITERATURE

nomenon has gained mainstream recognition as valuable contributors of soft-
ware. This has affected how OSS software is perceived and also how it is
developed in many cases. Fitzgerald explains that the term “OSS 2.0” is a
new kind of open source software that is more commercially driven and has
much more in common with proprietary software development than tradi-
tional FOSS/OSS software. This has been a gradual transformation and it
is hard to pinpoint, but seeing companies like IBM, Google and RedHat bas-
ing business on Open Source Software, not only leveraging but helping and
steering the development of it, is a clear shift from hackers in their basement
creating software in collaboration over the Internet. With this shift comes
more business models that makes it more commercially viable to choose and
use open source software and proprietary software is no longer the only choice
for enterprise development. This also applies strongly when it comes to the
practice of software reuse and smaller software components.

2.3.2 OSS Quality

Several sources claim that open source software has higher quality than com-
mercial or proprietary software [32]. They often cite high profile projects like
the Apache HTTP Server [50] and Mozilla Firefox [33] and point to the rela-
tive numbers of these projects like use, patches, commits, and so on to show
that these open source software projects are creating high quality software.
This is not necessarily an assumption that is wrong but it may simply only
hold true if you look at such projects like Apache and Mozilla Firefox. These
are well established projects that have a strong following both in corporate
and non-corporate communities. Some studies like [32] and [57] attempt to
quantify and analyze these differences in quality into metrics such as down-
loads, commits, number of active developers and so forth, however they may
omit that these numbers alone does not explicitly mean that the software is
of high quality.

In one famous article on open source software quality [41] it was said that
“given enough eyeballs, all bugs are shallow”. This is a statement from the
Cathedral and the Bazaar in which it is presented as “Linus’ Law” where Li-
nus Thorvalds, the founder of the Linux operating system, stated that “Given
a large enough beta-tester and co-developer base, almost every problem will
be characterized quickly and the fix will be obvious to someone.”. This is a
concept that prevails in talks about open source but its problematic to gen-
eralize any open source project as high quality because of this “law”. The
problem being simply that there are a huge amount of open source projects

16

2.3 Open Source Software 2 LITERATURE

and studies of open source project repositories like Github, Google Code and
SourceForge reveal that the average numbers for a single project is not that
of even tens or hundreds of developers. In one study of Sourceforge projects
the average number of developers were low, on average the number of devel-
opers was four and the most frequent number was one [26]. In addition to
this there are also studies that show that there is not necessarily any corre-
lation between the number of developers and the quality of the software [36].
The more sensible conclusion is that big projects that have a large number
of user that are open source will benefit from the Linus’ Law, projects like
Linux, Mozilla Firefox, Apache, MySQL and so on. Small projects that have
one or two developers and have a following of 10-20 people means that the
software quality is not in any way guaranteed to be better just because it is
open source. Some studies like [45] suggest that OSS components do have
high quality, but this study and others like it have looked at components
chosen by software developers, not on the average or max/min quality of
OSS components at large. It is like saying that “good components are good”
or “some OSS components are good which means that all OSS components
are good”. The simple truth is that OSS software is as any software, the
quality varies from project to project.

2.3.3 OSS development methods

The quality of open source touches on another important aspect, namely the
development methods that open source projects use. In the early days the
projects would live on the Internet chat-rooms, email lists and simple web-
sites. They were driven as hobby projects by individuals with a desire to
“scratch an itch” or simply fill a void in the software library. The develop-
ment method then was a highly distributed and perhaps ad-hoc one that did
not resemble the company driven development projects that employed RUP,
waterfall or spiral development methods. In the article “Group awareness in
distributed software development” [16] a study of open source development
methods reveal simple tools like email lists and forums work as awareness
mechanism that make it possible for the project to be developed with a high
degree of interoperability even tough the developers themselves never sit in
the same room or actually physically interact with each other. There is no
real magic development method to be found other than that the developers
are perhaps highly motivated and pay attention to what is happening on
the information channels of mailing lists, forums and chat rooms. Several
studies have been made on these seemingly ad-hoc development methods

17

2.3 Open Source Software 2 LITERATURE

that have produced several high-quality projects like Linux and Apache, but
efforts to extract them and use them in commercial development are few if
any although there are suggestions in studies such as [16].

Many open source projects are developed in this distributed and seemingly
ad-hoc way even today. Modern revision tools like CVS, SVN and recently
GIT have improved on the distributed development working environment
and there exists several large repositories and websites that are dedicated
for hosting OSS projects. These sites offer free hosting for OSS projects and
even features some levels of documentation and management oversight. The
projects vary from desktop software to smaller software libraries. Table 4
shows a small overview over some of the biggest repository sites.

Name Type Number of projects Since
Ruby Gems Ruby libraries 22403 2009

Github projects and libraries 1 million 2008
Google Code projects and libraries 5648 2005
Sourceforge projects and libraries 260000 1999

Table 4: Small software components

Between them these sites contain over 1.2 million projects and the numbers
are growing. Most projects are small with one or two developers but some
projects manage to gain attention and the bigger projects like [7] have for
example 900 contributors and also have a high degree of activity in commits
and usage. These kinds of projects represents in many ways the modern
version of OSS 1.0 projects in that they usually are 100% free, mostly non-
commercial, seemingly ad-hoc and based on simple development methods and
tools, development is lead by a hand full of individuals but anyone who has
the know-how can apply to commit work into the projects. Projects that are
popular, big and become important have often become full-time efforts and
business for the creators of the program. They become the “gatekeepers”
so to speak as to what is committed and put into the official line of the
program. When interests and stakes become a source of dispute and conflict
with the management, or within the management, another aspect of OSS
projects appear. Should the community or management become unfriendly
one or more parties may decide to fork the project. This means that the
current code of the projects is taken and started up as a new project under
a new name. A recent example of forking was the problems with the Open
Office software suit [38], the developers were not please with the Oracle

18

2.3 Open Source Software 2 LITERATURE

management and forked the project to start a new one, Oracle has now
stopped it’s development of Open Office [40]. Often the threat of forking will
work as a negation tool and force compromise and changes to the project.

2.3.4 OSS and business adoption

With the concept of OSS 2.0 many things have changed in the way that
many large OSS projects are developed and maintained. More and more
open source projects are being developed by companies that for different
reasons base their platforms on open source. Good examples are Google
Chrome, Android, Megoo and Mozilla Firefox. All these projects are funded
and run by companies. They are open source in that the products source
is available, but the development is in many cases much more resembling
to ordinary company driven software development, something that is often
criticized by free and open source ideologists that claim that this means the
projects are not in fact open source, or at least not open [39].

More and more projects are now open source but not in the same way as
before. Many commercial products have for example a dual licensing strategy
where the free and open source version puts restrictions on how to monetize
the use. Many open source products offer enterprise support and consultant
services with their solutions. In general the trend has been more and more
commercialization of open source products and open sourcing of commercial
products. It is unclear as to what or how these projects fit in with relation
the traditional 1.0 OSS projects but several projects gain much respect and
traction in being open source. Arguments like transparency and being able
to look under the hood are prominent when people want to speak highly
of OSS programs and systems in comparison with closed ones. Even tough
these projects are closed compared to their 1.0 counterparts when it comes
to development they still offer positive aspects of OSS. Several projects are
spinoffs of company driven OSS projects like the Camino browser, based on
Firefox which is developed by the Mozilla Corporation [34].

Some companies are attempting not only to use and build OSS but also ac-
tively employ the communities that OSS attracts. In one case Nokia reported
an interesting article on developing it’s Maemo mobile OS by making it open
source and creating a community that would support the development of
the OS [23]. Their findings were that using the community was not straight
forward and required resources to grow and attract developers. Also they
found that when it came down to release schedules and bug fixing the com-

19

2.3 Open Source Software 2 LITERATURE

munity developers were more interested in creating new and exciting features
so Nokia was often forced to do that part of the development themselves to
meet deadlines and requirements. Perhaps this is why Android development
is in large part a closed one where changes are let into the public open-source
a while after big releases are finished, a more closed and insular development
practice than many other OSS projects [51].

It is worth mentioning that a big problem when discussing OSS software, be
it quality, methods or business use, is that there is no conformity or simple
meaning to the term of OSS. For instance you would say that Android is
OSS, but it is not open for changes and the development is not transparent
and open. Android is OSS only in the sense that the end product is made
available in source code form. Linux is open for changes and the development
is largely transparent, but the actual code that is entered is closely scrutinized
by people of high-rank within the project, gatekeepers of the code if you like.
Maybe what is needed is a clearer terminology for OSS or a classification
systems of types of OSS software that indicates how they are developed,
used and purposed for. A community driven project like Mozilla Firefox still
has a larger and formalized organization behind the major decisions whilst
a company driven project like Android is not transparent or open in it’s
development at all.

Open source components are often touted to have benefits over closed source
counterparts because of being able to view the code and change the code
as needed. However very few developers actually do this for two simple
reasons: 1 changing the code requires work and that will often defeat the
purpose of using a component in the first place, 2 changing the code will
create problems further along when updates for the component will not be
compatible with the custom changes. Often when there are problems with
small software components it is easier to solve the problem indirectly and
not the component itself. However some developers do make changes to the
OSS software they use and even commit these fixes or enhancements back to
the projects, so even tough this benefit is perhaps overstated it is none the
less real.

2.3.5 Licenses

One aspect of OSS that is hard to cover thoroughly are the different kinds
of licenses available to publishers of OSS. For simplicity sake there are two
main kinds of open source licenses that are classified as copyleft and permis-

20

2.3 Open Source Software 2 LITERATURE

sive. Copyleft licenses, the most popular example being the GNU General
Public License (GPL) [11], requires that modifications of the software will
be published with the same license. The goal is simply to require the devel-
oper or modifier to share the work back to the community. Some versions of
copyleft licenses actually act viral as they demand that the whole system be
open-source and same-licensed as the OSS software itself. This has caused
some sensational headlines as it has been discovered that commercial soft-
ware or products have used copyleft licensed libraries, which in turn required
the whole project to be licensed under that same license [59]. These kinds
of licenses are usually avoided by several enterprise developers because it is
either impossible (the systems use proprietary closed-source code) or it is
not business wise to make public the whole solution as open source. The
permissive kind of license like the Apache 2.0 license [10], give the user of the
OSS component freedom to implement it in closed-source systems and even
to release it under a proprietary software license. The permissive licenses are
generally much more business friendly in that they do not require modified
versions of the software to be made public. For some companies the choice
of OSS is a choice of what kind of license it uses, for others the license is
irrelevant for various reasons like that it will never be public or will not be
sold in a particular way.

21

2.4 Knowledge Management 2 LITERATURE

2.4 Knowledge Management

The problem of selecting third-party components will often boil down to a
problem of knowledge or lack thereof. When you need a component and
you have knowledge and experience with one or more components you will
quickly be able to choose and use a component based on you’r own knowledge
and experience. However if you do not posses any knowledge on either the
components available, the problem/technology in question then you will have
to spend time finding, learning and evaluating components that you do not
have prior knowledge or experience of, thus making the chances of making a
poor decision much higher and the process will probably take more time and
effort.

The lack of knowledge however can be filled by the knowledge from an ex-
ternal source, like from a coworker, a blog, a forum or a wiki. These dif-
ferent sources of knowledge and information will vary in terms of liability,
trustworthiness and usefulness. For example if you ask a colleague from the
workplace that has 10+ years of experience with software development you
will be more inclined to trust that person than a random forum answer by
some anonymous user.

These different sources of information of knowledge clearly has different ben-
efits and disadvantages in terms of:

• Usefulness - how useful is the information in relation to the problem at
hand?

• Trustworthiness - how reliable is the information?

• Liability - who is saying what - what are the interests behind the in-
formation source?

• Accessibility - how much effort is required to attain the information?

• Resource use - how taxing is the information retrieval in terms of hours
spent or other persons hours spent

• Social Threshold - how hard is to ask for help about the problem?

These and many more are challenges of knowledge management and transfer
that have been studied for centuries if not since the beginning of knowledge
transfer itself in the early days of storytelling and learning to hunt. For

22

2.4 Knowledge Management 2 LITERATURE

corporations the challenge is to develop and spread competencies, knowledge
and experience as much as possible about inside the corporation itself, a
challenge that is daunting when you are more than a hundred people and
spread across several countries. Several attempts have been done at utilizing
modern information tools like content management systems, wikis, relational
databases and other information systems to maintain and effectively organize
this valuable asset, but failure to achieve these goals are frequent if not the
norm. Walsham puts it quite clearly:

“Information and communication technologies are not the answer
to improved knowledge- sharing within and between people and
organisations.” [55]

The problem with trying to solve the problem of knowledge and competencies
spreading simply by implementing IT information solutions is that knowledge
transfer is not simply to write and read text. In “Knowledge Management:
The Benefits and limitations of computer systems” [55] Walsham presents
several concepts to further define what the term knowledge means in dif-
ferent contexts. Explicit knowledge is found in databases, email and books
whilst tacit knowledge is a person’s experience and culture, the tacit knowl-
edge is most valuable and most difficult to spread trough pure text and data.
Walsham goes on to talk about a concept that he calls “communities of prac-
tice” that are groups of individuals that share interests and cultural language
that makes it easier for knowledge to be transferred between individuals.

Walsham [55] explores why technical solutions to knowledge management
has failed to achieve larger success within companies and that the reasons for
these lies close to that of tacit and non-tacit knowledge. Simply reading what
someone has written in a CMS or wiki solution. There needs to be certain
levels of hands-on from people for the knowledge to transfer successfully.
Other problems is the incentive problem, why should a person contribute to
an internal knowledge database when that same competency is the one that
sets him or her apart from other workers? When a company has model for
individual rewards and workers report billings pr. project, there may be little
reason to voluntarily spend time on such superfluous solutions.

However there are reports of successful knowledge management project that
incorporate some levels of technological solutions [8]. The article mentions
eight points that are crucial for knowledge management systems to be suc-
cessful:

23

2.4 Knowledge Management 2 LITERATURE

• Link to economic performance or industry value

• Technical and organizational infrastructure

• Standard, flexible knowledge structure

• Knowledge-friendly culture

• Clear purpose and language

• Change in motivational practices

• Multiple channels for knowledge transfer

• Senior management support

Not going trough all the points I will mention that I find especially knowledge-
friendly culture, motivational practices and multiple channels interesting as
they point to problems that need to be addressed for the business operation
as a whole, indeed the article promotes this several times. To simply “set up
a knowledge database” is not enough and knowledge management needs to
be addressed from a high level and throughout the company as a large scale
effort. It is also mentions that:

“At one large computer company, a series of ongoing efforts en-
couraged the reuse of a particular kind of knowledge: component
designs” [8]

This company clearly sees component reuse as a knowledge management ef-
fort, a very interesting point of view. There is are many pitfalls when it comes
to knowledge management and it may seem that capturing the competencies
of individual workers at worst may be trying to capturing “lightning in a
bottle”. However there are ways of improving knowledge management and
signs point at technology being able to aid in this, but it is not the solution
by itself.

2.4.1 Crowd-sourcing and the Internet

One modern innovation is the Internet. The Internet is the world connected
trough it’s computers and is easiest to define as computer information spread

24

2.4 Knowledge Management 2 LITERATURE

from everyone to everyone. The term crowd sourcing exposes one very inter-
esting aspect of the Internet which is the sheer volume of users it possesses
and what can be done by a larger collective. In the article “The Rise of
Crowdsourcing” [21] the author presents several business solutions that are
working by simply putting the task out on the internet and then receives
solutions and work from the masses to be picked by the company or person
that needed the help. Think of it as asking a question to a large crowd, the
bigger the crowd the bigger the probability that someone in the crowd knows
the problem and has a solution. With an estimated population of 1.9 billion
people [15] that crowd is starting to get very big. although not attributed
as crowd sourcing, Wikipedia is another good example of how the Internet
can solve and create big solutions as long as the numbers are high enough,
to date Wikipedia English has 3.6 million articles [58] and those articles are
contributed by it’s own users. Open and large forums can also bee seen as
a sort of crowd sourcing and sites like Stack Overflow [48] gives software de-
velopers a large user-base to ask professional questions to, also the answers
of such sites are again indexed by search engines like Google. This makes it
probable that if you have a question to ask, someone has already asked the
question and gotten an answer and a Google search may reveal it.

The growth of the Internet is making it a place of a modern problem that
it helped create, the problem of information overload. There is simply to
much information available and a simple Google search reveals that a basic
term like “java programming language” returns 1.6 million hits as of april
2011. As such the value of the Internet probably having good answers is
countered with the problem of finding the good data that is out there. Even
tough tools and search engines become better there is an increasing need for
having the knowledge and skill of how to find the correct information, much
like one must learn how a library works in order to find the right book and
it’s location.

2.4.2 Software Craftsmanship

In 1999 a book was released called “The Pragmatic Programmer, From Jour-
neyman to Master” [22] which talks about the software developer and how
he/she can improve as one. This book can be seen as the start of the ideas
and ideals of software craftsmanship movement. It discusses the process of
developing systems from start to end and goes into detail on the actual work-
flow of writing code and solving problems with programming. A excerpt from
the book illustrates the mindset behind the book, this is from “The Evils of

25

2.4 Knowledge Management 2 LITERATURE

Duplication”:

“We feel that the only way to develop software reliably, and to
make our developments easier to understand and maintain, is to
follow what we call the DRY principle: Every piece of knowledge
must have a single, unambiguous, authoritative representation
within a system. Why do we call it DRY?”

Tip 11 DRY—Don’t Repeat Yourself [22]

The book focuses on creating code that is efficient, smart and easy to main-
tain. It promotes the idea of being proud of the work. Other books expand
on the ideas that became open with “The Pragmatic Programmer” like “Ap-
prenticeship Patterns: Guidance for the Aspiring Software Craftsman” [19]
and “Clean Code - A Handbook of Agile Software Craftmanship” [30]. They
all promote a proud-ship of software development, blending it with terminol-
ogy from carpentry, painters and even eastern fighting. A software developer
starts out as an apprentice and goes into teaching with a master, developers
group in coding dojos and perform code katas [52] to improve or hone their
skills.

Software craftsmanship is not a knowledge management tool itself, but it
does promote that software developers take pride in their work, share their
knowledge and skill to others and promotes a community of practice. There-
fore it is a movement that promotes knowledge transfer and acquirement.

26

3 RESEARCH APPROACH

3 Research Approach

3.1 Selection of method and techniques

There are several methods for research that differ in the way they operate and
for what kind of research they are most purposeful for. A small overview of
the two main research methods can be found in table 5 with some techniques,
positive and negative aspects.

Name Techniques Positive Negative
Qualitative interviews,

observation,
participation

Answers why,
small data
samples

Results not
replicable, sub-
jective in nature

Quantitative statistics, sur-
veys

Statistical prob-
abilities in re-
sults, replicable
methods

Surveys have
pre-determined
questions and
answers

Table 5: Research methods

As the table shows there are positive and negative aspects for either method.
Quantitative research and analysis for instance often uses surveys. Surveys
are great for gathering large amounts of data and asking simple questions
which then can be aggregated into statistics and give results and certainty
in percentages. A great example of a large survey was the 2010 US Census
which was aimed at gathering information on how many people are living
in the united states in 2010 [53]. Questions are simple, often yes/no or
with multiple choice as options for answers. For the purpose of gathering
information on the number of people living in the U.S.A in 2010 the use of
surveys and quantitative research methods is both sufficient and accurate.
However such surveys have downsides as well, the questions are pre-written
and the scope is often narrow. When the questions asked are pre-determined
you will seldom get answers to the questions that are not being asked, such
un-asked questions are often the most important ones for many researchers.
Some questions may even be written in a leading way, knowingly or un-
knowingly, and this may affect the results. Quantitate research is a rigid
and static form which often has a narrow scope when it comes to problems
and issues where it is important to know within mathematical certainty the
degree of a certain phenomenon or problem.

27

3.1 Selection of method and techniques 3 RESEARCH APPROACH

Qualitative research is a method that aims to answer not only what is hap-
pening or with what frequency, but rather why and how things are happen-
ing. To achieve this qualitative methods are much less rigid and not wholly
dependent on large amounts of data collection, focusing instead on interpret-
ing gathered results and presenting theories as possible explanations. Being
flexible means the ability to start out with one problem or question and
then going where the research goes, being open to new information that may
change the whole perspective and focus of the research. A good example
is the method the qualitative research interview [35]. This is an interview
that is open ended, allowing the subjects to digress and expand on the initial
questions asked, allowing for a more natural flow of conversation and the
goal being to discover new questions and aspects on the research topic. The
disadvantages of qualitative research is that the focus is very narrow, making
it probable that other data would present itself if a larger sample size was
utilized and that observations and interviews of this nature is impossible to
re-create and re-test, an important factor for many sciences. Also the inter-
pretations of the data collected may not be correct and even strongly biased
in the subjective eyes of the researcher.

The problem for this thesis falls under that of systems engineering and specif-
ically on the less technical aspects of software development. Understanding
that software development is a team effort done by people in groups adds
a social and human component to the problem and research on the subject
will therefore lend from more social research branches than that of more
traditional computer science. It may be as much about the tools that devel-
opers use, as the way that the individual developers are interacting with the
customer, the boss or with each other.

It is important when choosing a research method to select one that is suited
for the kind of research to be done. In the case of this master thesis the choice
was qualitative research. Also there is an element of quantitative research
with one survey performed. With this kind of research it is given that the
results are not replicable and highly based on cognitive and subjective factors.
Empirical or quantitative research was not deemed possible for this thesis as
it is not possible to replicate any given conditions. It is also important
to define what kind of standing the qualitative research will be based on
as is said by Chua [4] that qualitative research can be done with either a
positivist, interpretative or critical stance. Klein and Myers [24] defines the
interpretative stance as

“IS research can be classified as interpretive if it is assumed that

28

3.2 Access 3 RESEARCH APPROACH

our knowledge of reality is gained only through social construc-
tions such a language, consciousness, shared meanings, docu-
ments, tools, and other artifacts.” [24]

This is the stance taken by me in this thesis and as such it falls under
qualitative research with an interpretative stance.

3.2 Access

The work on this thesis started in the late fall of 2009 when I first contacted
Acando to discuss a potential master thesis that I could work with them on.
From the fall of 2009 to spring 2010 a problem and assignment was worked
out with the collaboration between Acando, myself and the supervisor for
this thesis.

When discussing with Acando potential master thesis problems it was always
a factor to have the work be of interest and potential benefit of the company.
Starting on a theme of use of open source software the problem developed to
that of using software components in systems development at Acando. This
was a topic of interest from the work group leaders at Acando Trondheim
and the thesis would result in two parts, one master thesis and one report or
guide to improving software reuse at Acando.

During the fall of 2009 I attended a business presentation of Acando at
Acando’s offices in Trondheim with the student organization for Computer
Science at NTNU. During this presentation there was presented a list for
interested parties to put up their name in regards for either a job or master
thesis. I signed and a couple of weeks later got a mail from Acando asking
me what kind of problem I would be interested in writing with the company.
After a couple of mails back and forth a meeting was arranged with myself
and the two current group leaders at Acando. The initial mail from Acando
was sent on 21.10.2009.

My initial problem was centered around open source software phenomenon
like distributed development and comparing the development of OSS com-
pared to more traditional software development methods in an enterprise
setting. When approaching Acando I wanted to work out a problem that
would be interesting for them as well so I was open to changing the thesis
problem. As such the initial meetings became a sort of negotiation of differ-
ent topics and how they would fit a master thesis relevant for Acando. From

29

3.3 Data collection 3 RESEARCH APPROACH

the initial topic of looking at OSS methodology emerged the topic of soft-
ware reuse itself and how this was an often used technique but not one that
had been closer looked at internally. It is here worth noting that the initial
thesis problem was more or less put aside as a sacrifice to gain access to the
resource that would be Acando and it’s developers. This tradeoff poses a po-
tential problem in a research context, is the research biased towards finding
something that is of commercial value to Acando? This issue is discussed
later in this chapter.

After a meeting with Acando I went back to my supervisor and discussed
the options of how to find a problem that would be interesting to Acando.
A meeting with myself, the group leaders at Acando and supervisor was
arranged where the more or less final thesis problem was worked out. After
this meeting a written formulation of the problem was made and sent to
Acando for internal approval, this also worked as an agreement between I
and Acando, this formulation was sent to Acando on 18.01.2010. The written
formulation is found in the appendix, the names of Acando employees have
been censored.

With the problem properly formulated I held an introduction presentation at
Acando on one of their meeting days where all the developers are gathered
at the Acando offices. This presentation explained who I was and what I
would do during the next year at Acando which was to observe and talk to
developers at Acando about the topic of the thesis. This presentation was
held 06.05.2010.

On 03.09.2010 I met with Acando and signed a confidentiality agreement to
keep secret any sensitive information I would acquire during my observations
and interviews, this formally also started my observations at Acando as I
now could visit their offices during their working hours and also talk to the
developers at Acando freely.

My access to Acando has been limited to observing and interviewing the
employes at Acando. I have attended internal meetings only and no meetings
which involved clients or customers.

3.3 Data collection

The focus for the collection of data or information from Acando has been that
of the personal developer experiences at Acando. Starting off with smalltalk

30

3.3 Data collection 3 RESEARCH APPROACH

in the halls and by the coffee machine to more formal interviews. Observation
of work culture from meetings and also just by being in the Acando offices
have also provided insight into how Acando works and functions.

By observing and interviewing systems developers at Acando I wanted to
know how frequently developers were using third party software components
and most importantly how they were finding and selecting them. Also key
was to try to discover any latent problems with using third party compo-
nents, either in general or in specific cases of poorly selected or bad behaving
components. The primary goal of the study was to try to assess the status
of third party component use at Acando and to se if the situation could be
improved.

The basis for the results and discussions in chapters Case and Discussions are
drawn from data collected from Acando and Acando employes in Trondheim
in the period of fall 2010 to spring 2011. During this time I had access
to Acando offices in Trondheim and systems developers there. Acando is
an IT consultant firm working with advice, system solutions, developers to
lend and running and maintenance of systems. Here follows a complete
overview of methods used with numbers were applicable. Also included is
an overview of the different phases of data collection with a chronological
timeline presentation.

3.3.1 Collection phases

During the work on the thesis different phases of collection emerged. Data
needs would change as data came in, this is an overview of the the different
stages of data collection and their primary goals and rough descriptions of
them.

Phase 1 - Is there a problem?
The initial phase was to ascertain if there existed a certain amount of small
software component reuse at Acando. If this was not the case then the
whole problem would be more or less mute. This was a critical question to
answer and was the first data collection to be done. A survey was sent out
in september and was the basis for this phase.

Phase 2 - Basic information
Having established that there indeed was a certain amount of software reuse
at Acando the next collection phase was focused on gathering basic informa-
tion on component use from the developers. Who were using and selecting,

31

3.3 Data collection 3 RESEARCH APPROACH

what were they selecting and how were they finding the components fall
into this category. By initial observations and informal talks with developers
more formal and in-depth interviews were performed with developers.

Phase 3 - Unanswered questions
After gathering basic information several unanswered questions arose when
looking over the results and discussing them with my supervisor. These
questions became the starting points for second and third round interviews
were some new and some previously interviewed developers were targeted.

3.3.2 Collection methods

Questionnaire
One questionnaire was sent out during the fall of 2010 to the systems devel-
opers at Acando in Trondheim and Oslo. Approximately one hundred de-
velopers were sent an email to this online questionnaire, made using Google
Docs Forms, and approximately 50% of the recipients answered. The purpose
of this questionnaire was to quickly assess the general amount of use of third
party software components at Acando. It was important to establish this
early, should the response be low it could be assumed that components were
not being used at Acando at a significant volume and the problem for the
thesis would be void to ask in the first place. It is interesting to note that such
a questionnaire falls under quantitative research methods as it asks a preset
number of statically formulated questions and achieves quantifiable numbers
to present statistics and probabilities for the research. The questions were
focused on basics and was aimed at answering if there was significant use
and if yes what methods were being used to find and select the components.
An example from the questionnaire (translated from Norwegian):

“Have you been in a situation for a project/customer where you
considered different software components?”

The total amount of questions was eight where seven were asked to those that
had chosen a component and 3 were asked to those who had not chosen one.
It was sent out on a wednesday on 30.09.2010 and the deadline to answer
was friday 01.10.2010. Se appendix for the full questionnaire and results.

Observations
From September 2010 to March 2011 I visited Acando 29 times. Some days
I would be there from 09:00 to 16:00, other visits were shorter or later in

32

3.3 Data collection 3 RESEARCH APPROACH

the day, workshops for instance were from 16:00 to 20:00. There I worked,
observed and talked to developers at Acando and I also ate lunch, provided
as a courtesy from Acando to me. I performed different kinds of observa-
tion during my time at Acando. I performed participant observation when I
presented my problem during Acando meeting days and also I joined several
workshops that Acando has in part with its knowledge transfer strategy. For
the presentations the room would be filled with about thirty to forty people,
mostly IT personnel meaning different kinds of developers, advisors, systems
architects or team leaders. I would sit trough most of the presentations, be
they about economic results or information on Acando social activities and
wait for my turn to do my presentation. The workshops would consist of
a smaller group of mostly developers, perhaps 10-15 people and start after
work hours at about 16.00. They would be topical and have presentations
on different kinds of technology that one or two developers at Acando would
present. During these presentations questions could be asked from the audi-
ence and I, as part of the audience, asked questions at several occasions.

I performed non-participant observation whilst simply spending time in the
Acando offices and I observed a meeting of a smaller Acando workgroup. The
meeting consisted of one group leader and four developers that held a “sprint”
meeting which discussed and summarized the previous sprint and planned the
next one. Other observations were made during my time spent at Acando. I
would sit down at an empty work desk, Acando has several temporary work
desks at their office, and simply work there with my laptop and notes. I
would observe people working on desks adjacent to mine or wander around
the office floor. In table 6 there is an overview with approximate numbers of
frequency.

Type Number
Observations 29

Smalltalk 24
Workshops 4

Presentations 2
Meetings 3

Table 6: Observations

My observations were recorded in different mediums. Mostly I would note
whatever I observed with what recording option I had handy. For instance if
someone said something I found interesting when I was by the coffee machine
and without any notepad I would perhaps go back to my laptop and note it

33

3.3 Data collection 3 RESEARCH APPROACH

Figure 3: Acando floor-plan

in a digital document. Such notes may therefore note be 100% accurate and
it is also worth noting that Acando Trondheim is a Norwegian company that
speaks Norwegian, quotes and other related materials have been translated
for the purpose of this thesis being written in english. I would take notes
with the following media:

Format Number of documents
Google Docs Documents 40

Google Docs Spreadsheets 4
Google Docs Presentations 5

Small notebooks 4
Large notebooks 4

Figure 3 shows the floor-plan of the offices at Acando. The stars are the work-
places which I used during my visits. Workplaces are temporary workplaces
for consultants to use, offices are for employes working mostly at Acando.
The meeting space is divided by a light-wall that can be slid up to create a
larger meeting area. This floor-plan is a sketch and not a precisely drawn or
scaled blueprint.

34

3.3 Data collection 3 RESEARCH APPROACH

This data collection would quickly become cumbersome and chaotic, several
notebooks with almost random notes in them piling up, so I would peri-
odically create summary documents that formulated overall points and key
observations, they could perhaps be categories like “Selected quotes” that I
found interesting or “notes on selection methods” to make them more easy
to organize and look up for further additions should more data be relevant
to add later on.

During my time at Acando I had several informal chats about my thesis with
several developers and non-developers. This data is more or less unstructured
and ended up in notes. This also includes two presentations on the subjects
that was held for Acando as a presentation of the work as I began the thesis
and neared it’s completion. Typical example of these informal conversations
would be meeting someone by the coffee machine, a good place to meet
developers, and then talk with that person about who I was and what my
thesis work was about. In table 9 there is a rough overview of people that
are quoted in the thesis that originate from informal talks.

Interviews
From loose talks I would ask developers for more formal interviews. In total I
performed ten interviews with seven different developers at Acando. Eight of
these interviews were recorded for analysis purposes. The recorded interviews
followed the ideas of the semi-structured interview which is a commonly used
tool used in qualitative research. Before the interview I had noted some
basic questions and several open-ended questions that meant to make the
interview subject think and explore the problem. The purpose of this kind
of interview is to make it possible to uncover unforeseen aspects or problems
that are related to the research goals. An overview over interview types and
numbers is found in table 7. During the interviews I would take down notes
on interesting topics and points that I deemed important, such notes will not
reflect the entire interview precisely but rather catch the pieces and topics
that I felt was important there and then. To try to achieve more complete
analysis of the interview three interviews were transcribed. This was done
to thoroughly go trough them and try to discover points that may have
gone forgotten from the rough notes that were taking during the interviews
themselves.

During the thesis work I performed three phases of interviews with different
goals. The first round of interviews was aimed at getting down the important
basics of the problem. How were components being selected, what informa-
tion channels were being used. An open-ended question example from the

35

3.3 Data collection 3 RESEARCH APPROACH

first interview template:

“What experiences have you with using small software compo-
nents? (problems, good experiences, challenges etc.)”

Interviews would last on an average of thirty minutes and were recorded
with my laptop. The subject would be asked if recording was permitted and
it was explained that the interview was anonymous as the recording would
only be used for analysis reasons. The locations of the interviews would vary
from the offices at Acando to other office locations where the given developer
would be stationed, it was a point for me to make the interview fit into the
developers schedule, this is an important as pointed out by Oates [37].

After some of these first round interviews questions arose that were not being
answered (or asked) and a second round of interviews began. For these
interviews developers that I had already interviewed were asked again so
that I could skip the basic questions and target the problem that stood un-
answered. This interviews were also recorded and lasted on average about
30 minutes, the same as the first round. These interviews were more focused
than the initial ones but still followed an open-minded style of questions. An
example from the second round of interviews:

“Could you describe a timeline from the moment you recognize
that a problem can be solved by using a software component to
having selected one and started on implementing it.”

After looking at the results from the second round of interviews more unan-
swered questions arose and a third and final round was initiated. For these in-
terviews both perviously interviewed and new subjects were targeted. When
interviewing a new person a condensed version of the initial interview ques-
tions were asked in addition to the ones created from the last round.

In table 8 an overview of all bigger interviews and subjects is presented,
subjects are anonymous and coded into roles within Acando.

Official data
I would gather information about Acando trough official channels such as
their website, information flyers, economic reports and presentations done
by Acando on different occasions. This data was mainly to gather facts
about Acando and their business. An overview of such data sources:

36

3.4 Writing Process 3 RESEARCH APPROACH

Type Number
Recorded and planned interviews 8

Not recorded interviews 2

Table 7: Interviews

Code Phases Role
P1 1,2,3 Developer OSS
P2 1,2 Developer MS
P3 1 Leader MS
P4 1 Architect OSS
P5 1 Developer MS
P6 1 Developer OSS
P7 3 Developer MS

Table 8: Interview subjects overview

Code Role
P8 Leader
P9 Developer OSS
P10 Developer OSS
P11 Developer MS

Table 9: Smalltalk subjects overview

• Acando interim report january june 2010 - 17 pages

• Friprog tv interview - 9 minute interview of two developers [12]

• Acando helse norge - press announcement 1 page

• Acando p̊a ett minutt - presentation pamflett - 4 pages

• Fri prog i helse sektro - presentation 14 pages

3.4 Writing Process

The process of analyzing the data was a continuing process throughout the
data collection and writing of the thesis itself. After one round of interviews

37

3.5 Reflection on research method 3 RESEARCH APPROACH

I would try to gather together the overall themes and answers. This made
it possible to compare answers and themes with articles and also review
them logically. These findings where presented to the thesis advisor and
discussed. From these discussions emerged further questions and problems
that would spark new rounds of interviews with a new agenda. This process
of data collection, analysis and further data collection was continuous for the
whole thesis work period. As such the thesis problem started with looking at
potential problems regarding small components and ended up looking at why
the frequency of use is so relatively low. This was a progression of the work
and is reflected in the focus shift from the findings chapter to the discussions
chapter.

3.5 Reflection on research method

Klein and Myers provide a set of seven principles for evaluating interpretive
field studies [24], these principles are very useful as tools to guide and re-
view research work. They cover several critique angles, here follows these
principles and a review of this thesis as to how it stands up against them.

1. The Fundamental Principle of the Hermeneutic Circle
This is the problem of considering something by its smallest components, un-
derstanding those parts and then to also understand their roles and positions
in the greater whole. For this thesis the problem lies in looking at individual
developers on individual software development projects and correlating that
to the larger perspective which is Acando as a consultant firm that delivers
several projects with several developers. For example if one developer uses
lots of components and never has any problems with them, this does not
necessarily hold true for all developers in all projects. It is important to
understand how one developer fits into the bigger picture and if Acando as a
firm holds any larger standard to all it’s employes. Hopefully by interviewing
several developers I would be able to uncover a trend or tendency when it
came to third party component use.

For this thesis there are several underlying topics and themes that have been
examined, some closer than others, in an effort to understand the smaller
components of the puzzle in order to fully understand the issues. However
it is always possible that certain elements have been overlooked or taken for
granted in their understanding, used maybe as basic truths and platforms for
the thesis to build upon. Having accepted other articles as truths presents
this as a problem, if one assertion of a fundamental principle that the thesis

38

3.5 Reflection on research method 3 RESEARCH APPROACH

relies on is false then does this thesis fall with it? Sadly there is a time
and resource limit to this and any academic work, however it is also in the
tradition that others may criticize and point out faults with the premises and
assumptions.

As for the pieces of problems that have been studied and looked for and
during this thesis it has always been a goal to divide and conquer the different
topics. Breaking down software component selection into topics of OSS,
COTS, software reuse and knowledge management is evidence of this. When
interviewing developers it has been a point to not target or follow one single
idea from the start, trying rather to identify the different issues and how they
stand to create the bigger picture.

2. The Principle of Contextualization
This according to Klein and Myers:

“[The Principle of Contextualization] Requires critical reflection
of the social and historical background of the research setting,
so that the intended audience can see how the current situation
under investigation emerged.” [24]

For this thesis the reflection comes from the background literature and study.
What is the status of research on open source software, software reuse, com-
mercial off the shelf and knowledge management? How does Acando fit in
with this research and general status quo of systems development and IS
research. This groundwork is important as it a) permits the data from this
thesis to be compared to others and b) lets the reader of the thesis quickly
assess the state of the different related topics and research areas. It has been
interesting to se where Acando fits into the research and where it does not and
makes it possible to spot emerging trends and changes that are interesting
and relevant for the research question.

“Interpretivists argue that organizations are not static and that
the relationships between people, organizations, and technology
are not fixed but constantly changing. As a consequence, inter-
pretive research seeks to understand a moving target” [24]

As such it is important for the work to present the reader with enough
information as to form a clear picture of all relevant research views and
other contextual views. However there is also here a problem of scope, time

39

3.5 Reflection on research method 3 RESEARCH APPROACH

and the degree of exhausting all information available. With the Internet
it is not only possible but way to easy to burry one self in never ending
studies, papers and relevant information. As such the process of forming the
academic context is one that has been continuous throughout the work on
this thesis and it will be impossible for me to claim that all available sources
have been reviewed and looked at. As for the firm that has been the basis of
the study it is presented with both facts and observations of work culture and
context. However any company is a complex organism and the viewpoint has
always been from an insider with one foot inside the door. It can be argued
that my access was not free enough, not being able to sift trough the internal
IT systems or sit in with customer meetings for instance, this hinderance is
however clearly stated and accepted for the results and scope of this thesis.

3. The Principle of Interaction Between the Researchers and the
Subjects
This principle regards being critical as to how research data has been acquired
and constructed trough social interaction between me as a researcher and the
employes at Acando. This is a big concern for me for several reasons. For
one I’m studying and interviewing software developers and I myself am a
software developer. It has been potentially easy for me to identify with my
interview subjects and affirmatively agree with them during the interviews
and perhaps not ask the truly hard questions. When for example listening
to my own interviews I notice that the conversational flow becomes quick
and goes over in “developer” speak, I am perhaps to culturally similar to my
subjects. One example would be when a developer explains how he/she find
a component, here is an excerpt of the dialog:

P2 : “Then you do some searches and find the best looking can-
didate. The site looks good or the documentation is promising.”

Me : “Yes, mhmm, ok I understand”

This because the task of searching for a component and finding a promising
candidate is something I myself have done and I familiarize all to well with
the developer, I should in this case instead have asked “What do you mean
best looking candidate? What is a good looking site and what do you mean
by promising documentation?”. It is very possible that I never asked the
hard questions and let the developers of the hook if you like because of my
own experiences. However it may also benefit my work as I perhaps already
have a slight insight into how developers think and work, making it easier to
ask the right questions.

40

3.5 Reflection on research method 3 RESEARCH APPROACH

Another big concern is how I am perceived by those that I talk to, I have been
accepted for this thesis work by the team leaders at Acando and I therefore
have a possible taint of being from the “management” when approaching
people. During my interviews I introduce myself as a student working on
a master thesis for Acando, making it possible that it is understood that
I’m looking for potential problems and faults in the development process
of which the developers themselves are easy targets to be blamed for any
shortcomings. My impressions from the people I have interviewed and talked
to has never been that this was the case, the work culture in Acando being
open to criticism and analyzing, without the common worker to be blamed.
It is however possible that I have simply not been able to notice this and
that answers have been filtered trough a “this goes back to the top” mentality
without me being aware of it.

Properly evaluating this principle is hard because it is not easy to say if
the social interaction and social constructive way of collecting my data was
strongly affected by assumptions, culture, the perception as being sent from
management or my own experiences as a software developer. However having
that mentality has made it possible for me to look at my findings critically
and carefully try to review any prejudice or assumptions that may have been
made. Having the materials reviewed by a third party, my thesis advisor, also
helps. In the end when reviewing my findings and data trough the principle
of interaction I would say that there is a possibility that this has influenced
my data and results in a negative fashion, but that I don’t think that is the
case because being familiar with the culture made it easier, not harder for me
to ask the right questions. Having a basic understanding of what a software
component is and how it operates made it easier for me to ask straight out
“was there any problems?” knowing that this could be the case.

4. The Principle of Abstraction and Generalization
From Klein and Myers [24] :

“[The Principle of Abstraction and Generalization] Requires re-
lating the idiographic details revealed by the data interpretation
through the application of principles one and two to theoretical,
general concepts that describe the nature of human understand-
ing and social action”

This thesis is a study of one specific company and has viewed this company
trough specific people and moments in time, as such there is an understanding
that the findings and observations may be in fact unique for this case and

41

3.5 Reflection on research method 3 RESEARCH APPROACH

not applicable to other research or other companies. However it has been a
point to always try to generalize the findings and find the overall themes and
trends that the specific data has revealed. Relating the findings with with
existing theory and looking and the bigger picture rather than the individual
pieces is an attempt at putting these findings in a broader context. As such
there is a goal of looking at something for the value of not just one business
but for other research and even other companies. In the conclusions there
are discussions of interesting general ideas that this thesis has looked at.

5. The Principle of Diological Reasoning
From Klein and Myers [24] :

“[The Principle of Diological Reasoning] Requires sensitivity to
possible contradictions between the theoretical preconceptions
guiding the research design and actual findings (”the story which
the data tell“) with subsequent cycles of revision.”

In the discussion part of the thesis the findings from the study are compared
to the literature presented in the background chapter. Such differences are
discussed and examined as they are both interesting and problematic. Why
does this data contradict existing claims? Is the case unique and not related
to other findings, are previous findings wrong or has something happened
since the literature was written? The literature section has subsequently
also been rewritten and changed when new topics and questions would arise
that touched on topics that had not been looked at in the literature. For
instance the section on software craftsmanship was added late in the process
as this topic was brought in at a very late stage. This cycle of looking
at the findings and the need to correlating and comparing them with the
existing literature has been ongoing and important for the whole process of
writing this thesis. There is the problem of time and resources and again it is
possible that papers and articles have been overlooked, especially for topics
and themes that were discovered late in the process.

6. The Principle of Multiple Interpretations
The social context that may have influenced this thesis is how the thesis
itself came to be and was formulated. It was a problem created to cater to
the company that was to be studied and gained access to. As such there
is a viewpoint that this thesis is to be of benefit to the company and also
a problem of not being critical enough at the same time. Looking into a
business and finding big problems may not be a popular action and as such
there may have been to little critique as to how things operate. No radically

42

3.5 Reflection on research method 3 RESEARCH APPROACH

different viewpoint has been presented and how consultancy companies work
is in a way taken for granted as the only available view. One could argue that
this is not something this thesis has had the option to do, resulting perhaps
in the termination of the thesis itself and the cooperation with the company
in question, however it stands as a noteworthy critique of this thesis.

It is worth mentioning that aspects and lines of thought that could be consid-
ered problematic and as critiques as to how the consultant firm operates have
been explored and followed. Having a thesis advisor to review the findings
have helped in adding a viewpoint that is in a sense protected from having
to be friendly and compliant with the company.

7. The Principle of Suspicion
This principle aims to revel the effects of socially created distortions and
psychopathological delusions [24]. Being critical only to the findings and
how they are interpreted will not cover the problem of basic assumptions
and fundamental issues being misconceived.

For this thesis the principle of suspicion may fall on the fact that developers
are claiming to successfully use components without bigger problems. There
are hints towards this not being true with small side comments like:

“Smaller issues are fixed around the component itself, we make
it fit” - P1

This is played as a small issue from the developers but may in fact take more
time than they realize and maybe even mute the point of using components
in the first place. However the overall impression is that the developer are
positive towards component use and there is little reason for them to express
this if it is not the case. Trying to catch such false assumptions, from either
the subjects or the researcher, is however a difficult task and there may exists
flaws within any thesis work. For this thesis the tool for trying to catch and
uncover such delusions have been transcribing and re-reviewing interviews,
making it possible to re-listen to the conversations and critically reviewing
what is being said and understood explicitly and what is being dismissed or
accepted too easily.

43

4 CASE

4 Case

4.1 Introduction

This thesis is based on working with the software consultant firm Acando and
specifically the branch in Trondheim Norway. Starting with talks in the fall
of 2009 the thesis and problem evolved trough meetings with Acando, myself
and the supervisor for this thesis. This section will cover the background
of the company Acando and then present the results of enquiry and studies
that were performed there from the fall 2010 to spring 2011.

4.2 Background of Acando

4.2.1 Acando - Facts and numbers

Acando is a software consultant firm located in Norway, Sweden, Finland,
England and Denmark. The whole company has about 1100 employes.
Acando is a consultant firm that perform counseling, development, imple-
mentation and operation of information technology for it’s clients. Acando
presents their core values as: team spirit, passion and results. Their most
important business partners are Microsoft and SAP.

Acando Norway consist of 100 consultants and are situated in offices in Oslo
and Trondheim. The Norwegian branch was established as Consult IT in
1997, merged with eScienza in 2004 and Addcom Innovation in 2005 and be-
came Abeo AS. The modern day Acando is the result of Acando purchasing
Abeo AS in 2007. The Norwegian branch works with the development of pro-
cesses and organization by leveraging IT combined with business processes.
Their areas of deliveries include:

• Architecture

• IT-Solutions

• Business Intelligence

• Information Management

• Applications Management

44

4.2 Background of Acando 4 CASE

The latest entry to business at Acando is the added service of maintenance
and running of services. This as opposed to handing over the solutions that
Acando creates to third parties or the clients themselves. Acando has a strong
position with public services like public health and central administration
services. In the private sector Acando works with telecommunications, energy
companies, bank and finance.

Acando Norway has a workforce that consists of over one hundred consul-
tants in Trondheim and Oslo. Of these there are 95% with IT as their
education major. The majority are between 30 and 45 in age and have over
ten years working experience with IT. This masters thesis is written in co-
operation with Acando in Trondheim. The developers at Acando Trondheim
are grouped in two groups where one group is focused on working with Mi-
crosoft technologies like .Net, SharePoint, Microsoft SQL and other Microsoft
related technologies. This group works mainly with customers that either op-
erate on Microsoft technology today or they come to Acando with certain
requirements to use of Microsoft related technologies or products. The other
developer group works with technologies that don’t relate to Microsoft tech-
nology. A often used name for this group is “Open Source” even tough they
have no restrictions or qualms with working with closed sourced or propri-
etary software. There is no strong cultural divide between these groups and
it is mainly a organizational divide.

Most recently Acando developed a project for Helse Sør-Øst (south-east pub-
lic healthcare in Norway) called “PRO”. The development was here influ-
enced by a desire from the Norwegian government o increasingly use open
source in government related software development. The project was a short
and quick project and agile scrum development was chosen as the method.
Acando presented a solution which put together several different software
components, some COTS and some OSS, in a “best of breed” practice that
didn’t discriminate on if the technology was open source or not. The project
has become a showcase for Acando in proving that Open Source and soft-
ware reuse is a viable strategy that can give good results in a short and
cost-effective manner.

4.2.2 Acando work structure and ideals

As mentioned earlier the two groups of development have divided between
them Microsoft-related technologies and all that is not directly Microsoft
related. Also the company is showing a growing interest in open source tech-

45

4.3 Culture 4 CASE

nologies, they are looking more and more at solutions based on open source
where traditionally there has been only commercial enterprise software. It
is important to remember however that much of this open source software
is made for commercial settings and often come with enterprise levels of de-
veloper and customer support plans, making them less different from their
commercial counterparts than one might initially think.

In a interview with Friprogsenteret, a state funded center for use of free
software in the public sector, a software architect at Acando talks about how
Acando is approaching open source technologies and component reuse when
assembling solutions for customers. He mentions that there is a growing
interest in use of open source, especially from the public sector, but there is
still a lot of insecurity and little knowledge, especially from the customers,
about open source software. He and another architect that is also interviewed
in the video talk about how there needs to be developed a framework for
working with open source in a more standardized way. When it comes to the
open source software itself, he believes that it is the same as any software in
that it varies in quality and robustness from project to project, but that with
the community and open source aspect there comes a lot more information to
access and use during both consideration of components and support during
development. He puts it as simply that if the software meets the requirements
of the customer, then that is the important part, not if it’s open source or
not.

It is here interesting to mention the correlation between these statements and
business endeavors and the article by Fitzgerald on OSS 2.0 [9]. This fits in
with his findings on new business models using and leveraging open source
software by simply using it to create complete IT solutions from them.

4.3 Culture

My visits, interviews and general studies of Acando gave me insights into the
work structure and different work roles at the company. The work culture
in Acando is one that in my opinion reflects what is a typical “norwegian”
workplace. With this I mean that from initial visits to Acando it was hard
to spot the CEO from the rest of the consultant workforce. Sure enough
he was the one that sat in his own office (almost his own anyway), but still
the culture of Acando is that of equals. It is an informal workplace yet also
a decentralized workforce that does not necessarily meet at a weekly basis.
One employe had been at a project for five years and sometimes almost

46

4.3 Culture 4 CASE

forgot that it was Acando he was working for and when people asked he
answered that he worked for the current client. This kind of decentralized
work environment can make it hard to build close relations to all other co-
workers but Acando is aware of this and tries to counter it by having in-door
days where all consultants meet at the main office for meetings and general
socializing. Other measures include workshops, conference trips and interests
groups for biking, exercise and more.

The work culture of the programmers and developers that I have interviewed
and observed is a task focused yet a not an overly serious approach to the
work in the sense that it’s perfectly allowed not to be perfect but learn from
the mistakes made under-ways. When talking about this topic of people
being people and not all knowing one employe said:

“At home we ask the stupid questions” - P3

Which means that as consultants towards customers it is expected to be
experts on every IT questions, but internally at Acando there is an open
culture for asking questions and learning from each other. There is also a
culture for discussions and room for being critical as to how things are done,
an important value for any company that wants to innovate and not be stuck
within old ways. A quote that illustrates this is:

“Here at Acando there is a high ceiling” - P3

A norwegian saying pertaining to a place where critique and discussions are
welcome and encouraged.

The teams I have observed are about 5-6 people with a group leader and
currently the scrum and agile methods of work are often used. This implies
frequent and relatively short sprints where tasks and objectives are set for
two weeks of work. I observed one such meeting and noticed especially an
interesting method of estimation of tasks. For each defined task all the
developers would choose card from their own deck of planning poker cards.
These are cards ranging from 1 to 21 and when all members had chosen a
card they presented them at the same time. More often than not they would
show different estimates and from that starting point discuss what the most
realistic timeframe was, this often included a discussion on what the task
actually required.

47

4.4 Findings 4 CASE

Figure 4: Process model for selection of components

When it comes to knowledge and skill Acando has had several projects for
sharing such information on a corporate wide manner. These include email
lists, CV databases, wikis and internal blog/forum solutions. The workshops
are also intended as a way of exchanging experiences and ideas between the
geographically spread workforce.

4.4 Findings

In this section the results of surveys,interviews and observations of Acando
are presented. This research is qualitative and not absolute. Theories will be
presumed on relatively little data however this is within the understanding
of qualitative research.

After initial and second-interviews I had gained a clearer image of the extent
of software component selection by developers at Acando and also some in-
sights in which way these components were selected. I have made a simple
process model for how, in a general sense, most components are selected in
figure 4. Explanation of figure 4:

1. Problem In step one a problem encountered in the software development
process is identified by the developer to be a general one and that most likely
there exists a component that will aid or solve it.

2. Requirements From the initial problem comes a quick identifications of
requirements that the potential component must fulfill.

3. Search Quick web searches are performed from the most used web-search
engines like Google, Yahoo and Bing.

4. Candidates A shortlist of potential candidates is stacked up.

5. Testing The candidate components are downloaded and quickly tested
by the developer.

48

4.4 Findings 4 CASE

6. Implementation One component is chosen and will then go strait to
implementation into the main project.

The timeline for this selection process is short, often within a day or half-a-
day of work. Bigger components that are more crucial and perhaps harder
to switch later in development will take longer time and involve more devel-
opers, but for smaller (but important) components are chosen within a short
timeframe and often by one developer on his/her own.

4.4.1 Identifying the problem

There is a subtle issue when it comes to the use of software components and
that is the task of knowing when to look for components. During software
development the developers themselves must stop and ask themselves “Is this
problem potentially solved with a software component?” and if that answer
is “Yes this problem is probably solvable with a software component.” then
starting a process for finding and using such a component may start. How
does a developer know this? Is there any general way of defining problems
that can be solved with software components? Looking for solutions that
probably don’t exists would be a waste of time, better to just start making
the solution than to be going on any wild goose chase, but if a solution exists
there is time to be saved by using it.

When asked about this it was hard for any developer to answer it without
pondering the question. More or less they seem to have had enough expe-
rience with software development and software components that they a sort
of feel for when a problem may be solved by using a component instead of
starting from scratch. One developer answered:

“When the problem or aspect of the system is very generall and
common for most systems it is reasonable to believe that there
exists a component. For instance almost all end-user systems
employ GUI (graphical user interfaces) and therefore such com-
ponents, be it the framework or general widgets, often exists as
component solutions.” - P2

Whilst another, after mulling the question over for a while and actually
suddenly coming back to the topic, said:

“Protocol implementations will often be available as components

49

4.4 Findings 4 CASE

and those will often be prefereable to implementing you’r own
solution. Protocols will also almost always be available for a
wide range of languages and plattforms.” - P1

So for identifying if a problem can be solved with a software component there
cain be said that the following will apply:

• Generic problems that apply to all or many systems

• Protocols and file formats

• GUI frameworks and components

• Databases

• API wrappers

But these are generall points and it is hard to say anything about a common
identifier for component reuse.

4.4.2 Requirements

Having decided to try and find a component the developer then needs to set
some basic requirements for the potential component. This step is important
to try to accurately define what the component is supposed to do and how it
should do it. Many developers also mentioned that these requirements should
be as closely matched as possible, the component should ideally not do much
more than needed functionality as this ads complexity to the component
that is un-needed and potentially a bad sign. A simple component with at
focused feature set is more likely to perform well at those few functions than
a complex one with a plethora of features. As such the goal is a perfect
set of required features, not a sub-set and not a super-set. Examples of
requirements could be for instance a PDF generator component that needs
to be able to output tables, take in 10000 characters, page numbers and so
on.

4.4.3 Search

The search for a possible component is done mainly by internet searches.
Developers value their colleagues knowledge and will use them for help in

50

4.4 Findings 4 CASE

many situations, but for finding a suitable component a developer will of-
ten resort to Google and other search engines to gather information about
software components. But why aren’t the developers using their colleagues,
perhaps their most valuable asset, for finding suitable components? When I
asked if there was any threshold or reservation for “spamming” the mailing
lists of Acando with questions that may be considered “stupid” that would
be perhaps embarrassing to ask, everyone answered that it was quite OK
to ask the mailing-list and that there was a culture to ask about anything.
The reason for using search engines, dedicated websites and the Internet in
general instead of colleagues lies in one developers answer:

“For the specific problem at hand there is little chance that some-
one internally at Acando has encountered the excact same prob-
lem. With the Internet you have much larger group of developers
and it is more likely that someone else has encountered the same
problem.” - P2

Also the use of the Internet meant that the searching went pretty fast, as
opposed to sending out mails that may or may not be answered within an
uncertain amount of time. So the Internet in this case works as a fast tool
to gather information on available packages. It also serves as a tool to gain
knowledge on the use of the potential components. Several sites are dedicated
for developers that seek help from colleagues across the net like Stackoverflow
[48].

4.4.4 Candidates

For the actual candidates that are selected initially developers mention sev-
eral key criteria for what they are looking for in a software component. One
colorful quote suggests a preference toward OSS components in general:

“It must be open source and the website must be ugly.” - P10

Others preferred COTS whilst most developers claimed to be of the prag-
matic kind stating that they selected on the assertion of the component
at that it wasn’t really that important if it was OSS or COTS. But there
were slightly different criteria for OSS and COTS. For OSS components it
was important to se that the development of the project was fairly active

51

4.4 Findings 4 CASE

by checking the timestamp of the last commit logs and gather some overall
quality impressions from forum talk and download statistics. Rule of thumb
being that the more usage a component has the more likely that the compo-
nent is useful and of a minimum quality. The usage statistics also applies for
COTS components, but additionally the developers were looking for good
documentation, support possibilities and an assertion of the reputation of
the company delivering the software.

From these criteria the developers would make a shortlist of 2-3 possible
components that would be downloaded and tested.

4.4.5 Testing

Not all developers mentioned any specific testing of components. Some would
simply pick the best one from the “Candidates” step and begin with imple-
mentation. But many cited that they downloaded the components and ran
trough them with some quick prototype testing. This would quickly identify
if the component actually meet the requirements and give impressions for
a last kind of criteria that many mentioned, namely the “feel” of the com-
ponent. This “feel of use” is an informal criteria that is based on perhaps
seemingly unimportant qualities like how easy the component is to use, how
the methods are structured and so on. From these quick and simple pro-
totype test follows the actual pick of a single component, if no component
stands out then one is picked in seemingly random fashion.

4.4.6 Implementation

From the quick test and picking of a single component begins the imple-
mentation of the solution. This means integrating the component with the
software system that is being developed. From this point on the component
becomes a part of the main system either by a loose coupling or perhaps
more entangled use that makes the component difficult to “yank out” should
it be necessary. Most developers claimed to use loose couplings, but as one
of them pointed out these may be components that don’t easily swap. GUI
components for instance are often hard to simply replace later on in devel-
opment.

52

4.5 Fast and easy selection process 4 CASE

4.5 Fast and easy selection process

My observations at Acando shows that software components are being se-
lected and used regularly by software developers at Acando. The process for
selection of these components is simple, informal and done over a short pe-
riod of time. The components are small and simple, being “one task” pieces
of software. Seemingly these choices often go well. During a presentation of
these findings to Acando I asked the developers how often components were
replaced because of problems, only one out of thirty raised his hand. From
this comes naturally several important concerns and questions:

• Why is this informal process the dominant way of choosing components
and not formal and standardized methods

• Why do so few cases result replacing the components initially picked /
Why does this method seem to work so well?

• What are possible implications of these findings?

4.5.1 Fast and easy selection of components

The theory or assumption is:

The informal and quick selection of software components at Acando
works as few or no problems will occur.

And yet this conclusion is far from the theories of proposed methods of find-
ing, evaluating and picking software components in academic and software
engineering circles like CBSE proposed in [42]. The reason for using this
method is simple, software developers said they simply do not have the time
for formalized methods that take longer time. When faced with a prob-
lem that is possible to solve with a software component this has to be done
quickly and efficiently for the software component to actually present any
benefit over coding the solution from scratch. The main benefit of using
software components, as perceived by most developers at least, is that of
time spent on problems that can be drastically reduced. A trivial example
to illustrate:

For a certain project a developer needs to be able to output data as a PDF
document. For such a solution the developer can either a) read up on PDF

53

4.5 Fast and easy selection process 4 CASE

document standards and create a similar document from scratch, this is the
manual “do it yourself” method of development. Alternative b) would be to
find and select a software component that does this. For there to actually be
any point of using the software component it comes down to a question of
time, at least for the developers point of view. For most projects time will
be the most costly of all expenses. As such the point of using a component
is lost if the process of selecting and implementing it is longer than it would
be to make the solution from scratch. Also as one developer responded when
asked why this quick method was used:

“How many developers do you know that likes doing systems
design?” -P8

So the quick selection is partly a result of conditions and a preferred way
of working, time is important and speed is preferred. But still this process
and frequency of use still demands that problems do not occur to often. Had
nine out of ten components failed during the development then either other
selection methods would be applied or the use of components would be lower.
As such the quick selection process is also a result of it actually working in
a satisfactory manner for developers. The reason for such low failure rates is
one that is hard to identify, but some theories can by made as of why these
software components aren’t causing big problems.

Simple components :
The components are so simple and “focused” that they often are to be con-
sidered “one trick ponies” and as such should, at least, perform their single
task in a satisfactory manner. Someone has made and used this component
and it is to be assumed that it at least does that single task it was made to
do.

Faults are captured by development process:
The components themselves are subject to systems development as the rest
of the project is. With quality assurance, test driven development and accep-
tance testing any problems that the software components would be causing
will be caught and dealt with during the development.

Small problems are fixed ad-hoc:
When asked why components rarely were replaced during the development
of the project one developer answered:

“If the component doesn’t do everything it needs to, if it has

54

4.6 Roles and developer profiles 4 CASE

faults or shortcomings, I usually solve those issues myself” - P9

These kinds of “ad-hoc” fixes will be added by the developer to fill the gaps
or solve the problems with the component and so the component does not
need to be replaced.

OSS components can be changed:
All tough perhaps rare, some developers have added functionality or fixed
issues with OSS components. Some of the developers at Acando has done
this and it must be considered a viable option, at least for OSS components.
In some of those cases it will also be possible for the changes to be commit-
ted back to the OSS project, thus including the fix and making the change
unproblematic for maintenance and updates.

4.6 Roles and developer profiles

During my interviews and observations I noted that not only can one group
developers into their respective assigned role, developer, group leader, software-
architect etc. but also their personalities as developers. Here I present some
archetypes of developers at Acando and a radar graph illustrates and com-
pares them in figure 5. It is important to make clear that this chart is meant
only to illustrate the different types of developers and their differences, these
numbers are not factual but interpreted impressions of the different kinds of
developers that have been observed and interviewed. It is important to note
that these are personas, characters that don’t exist but represent the outer-
most traits of aspects of the developers. Think of these personas as parts of
a scale system where any one developer is in between these personas.

The OSS Developer
The OSS developer has an affinity for open source software in general, he
or she uses OSS components, operating systems and solutions frequently in
their professional and personal IT lives. He or she may have different reasons
for using OSS like ideological, experience, preference or cultural background.
Some schools for instance have a strong culture of OSS or OSS related tech-
nologies. Whatever the reason this developer thrives with OSS technology
and finds good support in forums, chat-rooms and mailing-lists and likes to
have the ability to dig down into software to se how it actually works, either
to understand it or fix it. This developer believes that OSS software is just
as good or better than their commercial counterparts. An OSS developer is
more likely to choose an OSS component or solution than a COTS or one

55

4.6 Roles and developer profiles 4 CASE

that is proprietary and closed. As one developer answered when asked what
kind of components he looked for:

“It must be open source and the website must be ugly” - P10

A comment that got a round of laughs from the surrounding developer crowd
as it was a reference to many OSS projects that spend a lot of time developing
software, but spends little or no time on website design.

The Commercical Developer
The commercial developer is one that values professional software develop-
ment with rules, structure and a certain guaranteed value for the money that
is exchanged for software. He or she likes that software is well documented,
has enterprise support options and that software is updated at predictable
timelines and schedules. There is no problem with software that is open
source, but it is strongly preferred that this is commercially and profession-
ally developed software. The reasons for preferring commercial software over
community driven software vary, some only care for the documentation and
support, others believe that community driven software lacks the focus and
discipline of professionally made software.

The Pragmatic Programmer
The pragmatic developer has a practical and agnostic approach to compo-
nents as he or she does not find any particular brand or type of components
to be superior to the other in a general sense. Software is software, it’s either
good or bad, and there are plenty of bad software examples in both the closed
commercial software world developed by professionals as there is in the com-
munity driven hacker world of open source projects. The pragmatic approach
does not exclude options, but rather picks the best suited component for any
given task or situation.

The Freshman
The freshman is a relatively new developer and most likely fresh out of school.
As a new developer it is not often easy to know what kind of options are avail-
able, for example “Can I purchase this expensive piece of software?” and it
will often be much easier to try to solve problems by programming. Inex-
perienced developers like this may not be familiar with using software com-
ponents and can lack knowledge about their general existence, availability
and usefulness when it comes to software development. Even tough schools
promote the ideals of software reuse with the idea of object oriented pro-
gramming, where making smart objects and methods is encouraged to write

56

4.6 Roles and developer profiles 4 CASE

less and more efficient code, the notion of seeking out software libraries and
components is not one that has found much academic focus when it comes
to programming classes and curriculums. The freshman developer may grow
out of this group and become more proficient in using components, but some
developers in some ways never leave this group as they either spend a lot of
time within projects that don’t allow or require components.

In addition to these developer profiles one can group them into roles in the
company structure. These are based on answers given by developer during
interviews and talks.

Group Leader
Group leaders at Acando are responsible for several teams of developers and
have a role and position that puts them between the developers and the
actual bosses.

Team Leader
Team leaders have responsibilities to guide and follow up on the actual de-
velopers and are a part of the development process, but don’t necessarily
program or develop themselves. They are important towards customer rela-
tions and steering the developers.

Senior Developer
Has worked with the company for a long while, five years or more, but is
comfortable with being a software developer and sees no need or reason to
become team leader.

Junior Developer
A newly hired developer that may also be fresh out of school.

Software Architect
The software architect plans the major outline for the larger systems and
chooses the initial and big components for the projects. The systems struc-
ture and overall design is the main responsibility and this requires a larger
look mentality and also to closely follow what the market has to offer when
it comes to components.

Advisor
Advisor consultants are hired for the purpose of advice and overall knowledge
and competencies in the world of IT, they are usually involved during the
initial stages of development or even before it is decided that something is
to be developed.

57

4.7 Projects and phases 4 CASE

Figure 5: Developer profiles

4.7 Projects and phases

When talking to developers at Acando and looking at case studies of software
project there emerges different types of software development projects and
different phases that they go trough. Graphs that illustrate the different
phases and profiles of projects are found in figure 6 for the profiles and figure
7 for the phases. Here follows descriptions for the illustrated projects and
phases. It is important to note that these presentations are approximate and
based on the impressions gathered from developers, they are not based on
actual numbers.

Planning, modeling and requirements
During the planning and modeling phases there is little component use, how-
ever the big and fundamental components are usually selected and planned
during these phases and the platforms chosen does have implications for the
further use of components.

For the requirements phase there may occur some small component use as
they can fill functional gaps during this phase if the architect or developer
involved already know of such components.

Development and maintenance
It is during the development phase that the highest amount of component use

58

4.7 Projects and phases 4 CASE

Figure 6: Project profiles

Figure 7: Project phases

59

4.7 Projects and phases 4 CASE

takes place. This is natural because it is during development that the need
for smaller components may occur and become apparent and the developers
working on the system may choose to implement them as the solution for
those needs.

During the maintenance phase there is some component reuse but not as
much as during the main development. Perhaps components selected during
development needs to be replaced because of lack of updates or new func-
tionality is need and the old components don’t match the new needs.

Free project
With a free project the developers are simply asked to create a solution at
a certain budget (sometimes the budget restrains are also very loose) and
everything else is up to the developers. There are no constraints as to what
kind of technology that can be used and as such this project type is open
for developers to use a wide array of components, platforms and existing
solutions.

Locked project
A locked project is less prone for heavy use of components as there is a
stricter frame for technologies and solutions to be used from the customer
(or it may locked down by the architect). There is a stricter approval process
for including components and this lowers the use.

Unique project
A unique project presents a problem or system that is unlike anything else
that has been previously done. It may also be a project done on a very narrow
framework which may be outdated or so proprietary that there exists little
software to be reused. For such project it is almost impossible to find any
software to reuse and the problems may be to specific for generic solutions
to exist.

Formal project
A formal project has a decent amount of software reuse but a little lower
than a free project because any component included into the system must be
thoroughly justified and approved, be it OSS and free or COTS and costly.
This bureaucracy hinders software reuse because it makes it more of a bother
for the developers.

60

5 DISCUSSION

5 Discussion

5.1 Introduction

Here I will discuss potential implications of the findings that where presented
in the Case-Findings chapter.

5.2 Component use at Acando

During the data collection questions would arise that needed answering. Re-
turning to developers for further interviews and targeting specific problems
helped to answer these issues, but often the answers would bring more ques-
tions. During this phase the topics and themes of the thesis were analyzed
and discussed by me and the thesis advisor.

The findings from Acando show in short the following:

• To some extent components are being selected and used quickly and
easily by developers

• These components are not causing problems

• These components are working and being used to positive effect in
systems development

So assuming that these points are true one could further present that Acando
is benefitting from the use of software components. The selection process of
“quick and easy” seems to be sufficient and efficient in selecting components.
This method also seemingly has a high cost to gain ratio as often minimal
time is spent finding and selecting components. And if Acando is benefitting
from the use of components then perhaps Acando are being to careful when
it comes to the extent in which components are being used. A claim could
be made that:

“Acando is currently using software components in a non-systemized
fashion. Developers are solving problems by using third-party
components, but this is neither sanctioned or forbidden.”

61

5.2 Component use at Acando 5 DISCUSSION

Seeing that software components are being used successfully at Acando one
would expect that the use of components would gradually increase. This does
not seem to be the case as most developers report to using a certain amount
of components, when they seem appropriate, but never increase the frequency
of use beyond a certain point. Some developers would answer that they use
the “proper” amount of components and don’t go beyond that. They also
suggest that there is such a thing as “to much” when it comes to software
component reuse. But why is this? If use of components give a positive
net effect then why not use as many as possible? In the following sections
I present some theories as to why component reuse stagnates at a certain
point and also why some developers use more components than others.

Software craftsmanship
Software craftsmanship is a term or idea coined during the late 90s early 00s
and was a response by several prominent software developers to problems
regarding software deliveries failing and economic interests being the priority
and not the quality of the software. The principle idea or philosophy behind
software craftsmanship is that programming and creating software is a craft
that is learned and developed over years and that it is a skill that needs to
be developed. This in contrast to software development being a perfect and
replicable science. In short it presents the idea of a software developer being
an individual that creates something unique and solves an equally unique
problem, with many possible solutions. By applying the ideas of craft and
skill, like that of art or carpentry, one can create a purpose of being proud
of the work of programming, aiming for the creation of code that looks good
and acts good.

When interviewing and talking with developers at Acando there is a sense
of craftsmanship ideals present in the developers. They are tinkerers of code
that create solutions for the customer trough the end product and have a
sense of pride in this task. It is perhaps here that a reason for component
reuse stagnating at a certain level. Developers don’t won’t their job to “sim-
ply” be gluing together different components. As one developer put it in
comparison to remodeling his own home:

“In the beginning I was using mostly finished components, but af-
ter I got better at it I wanted to use less of the complete solutions
and rather make my own from scratch using basic materials.” -
P1

This attitude and mindset points to a reluctancy to go “all the way” with

62

5.2 Component use at Acando 5 DISCUSSION

component use in that it would not be fun or challenging work to simply
download an X amount of components and make them work together as one
larger solution. To much reuse would ultimately make the work less interest-
ing, challenging and compelling work. There would also be a lower sense of
craftsmanship if everything was simply readymade pieces put together. In a
sense it adds up to a kind of reverse cognitive dissonance, the psychological
effect of being to attached to once own work making it hard to accept faults.
Here the developers are reluctant to distancing themselves to far from the
solution, not being able to make enough of the solution makes it not a cre-
ation at all. As such it seems that developers that use components do so at
a slightly increasing curve but stop at a certain point where they feel they
are using the “right” amount.

Whilst at an Acando-workshop on Ruby, a programming language, the course
presenter showed a built-in library system made for Ruby that makes it easy
to install third-party libraries made with Ruby. For example a module that
makes it easy to implement authentication will be installed by calling a com-
mand like “gem install auth-pack”. When presented with this an attendant
at the course quickly asked the question:

“Is there any central rating system for these components? Is it
easy to find good ones?” - P11

This is an indication of wanting to use components, seeking good places to
find them and perhaps showing a demand for better systems offering ratings
and reviews of components. I would imply that attending workshops and
looking at new technology horizons is a sign of the software craftsman, an
individual that wants to improve his or her skill as a developer. This is not
in conflict with using components, it may just be the opposite. A craftsman
might think “why reinvent the wheel” that is not an effective and smart way
of working at all. As such the ideals of software craftsmanship may hinder
component reuse if the goal is 100% reuse and minimal development efforts,
but to achieve a relatively high degree of reuse it is a positive incentive.

Incentives
Using third party components has the potential benefit of saving time and
utilizing better software that does it’s specific task very well compared to a
home-made solution. Time as everyone knows is money and this is especially
true when it comes to IT consultants. It is interesting to note that many
contracts and projects are billed at an hourly rate, the almost infamous
“writing hours” principle applying to the developers assigned to a project.

63

5.2 Component use at Acando 5 DISCUSSION

If the use of components indeed reduce development time does that mean
that they also cut down on billable hours for the firms? Should the price or
solution be based not on hours spent developing but a fixed price for a fixed
amount of features than using components would increase profits as hours
spent for the developer would go down. These two different models seem to
incentivize differently. A feature based model would benefit from extensive
reuse whilst for hourly billing it would be a drawback. Can it be suggested
that component reuse in consultant IT firms isn’t increasing because there is
no incentive to do so?

This negative incentive requires that the use of components truly does shorten
development time, but do they really do so? There is an estimation model
for software development that says that for a project that has available X
amount of money, Y amount of time and Z amount of people, the project is
estimated to use all of X,Y and Z. It is therefore perhaps to easy to claim that
the use of software components actually decreases development time. Maybe
it is simply less time spent on that particular part of the system, giving extra
time and attention to other aspects and problems. Perhaps there is more time
for testing and quality assurance, creating better and more valuable software.
One developer explained the use of components in an interesting manner:

“Think of it as gaining developers for free. If we were to make the
solution ourselves we would perhaps spend a lot of time making
a solution that in the end is worse than that of a component. Be-
hind any component, that is good, stands one or more developers
that have already iterated trough poor solutions and ended up
with a good one. By using that component you are gaining those
developers effort into the project.” - P1

The point is that the negative incentive theory is only applicable if com-
ponents truly lead to significantly lower development times and that con-
sultancy firms know this and therefore try not to use them. My findings
at Acando show that there is little incentive in either direction, no agenda
that promotes or discourages reuse. However there is an agenda that pro-
motes quality solutions in an efficient manner, meeting deadlines and budget
constraints will always be an important goal, and this agenda is indirectly
positive to component reuse. Should this be true then this theory should be
further examined. It is off course a troublesome and potentially controversial
problem, but a possible one none the less. Why would IT consultant firms
extensively use components if they end up loosing business?

64

5.2 Component use at Acando 5 DISCUSSION

When presented with the idea of hourly billing being a negative incentive
to component use an Acando-employee the response was that even tough
hourly billing was the prominent form of income, as opposed to fixed prices,
but that this did not mean consultants were reluctant to use methods or tech-
nology that cut down on development time. Effective development delivers
more value to the systems, more features and better quality. Also hours are
often bought in bulk or periods of time and having effective consultants is
important as to deliver value and not expenses to the customer.

“If we were using hammers instead of nail-guns to prolong the
time and write more hours, we would quickly loose clients and in-
tegrity as a consultant firm that delivers value to our costumers.”
- P3

This again is an indication that firms are not negative to the use of compo-
nents when it comes to a potential business model conflict.

Why more components are not the answer
When talking about the subject with a software developer and architect at
Acando one theory as to why reuse hasn’t been the solution and never will
be the solution, is simply that any system developed for a specific purpose, a
system tailored for one company for one specific domain, will require time and
effort no matter how much you reuse software. Such software is inadvertently
complex and as computers and software become more advanced they will
become increasingly complex. Such systems are helped by reuse, making it
easier to implement protocols, GUI, and solve other generic problems that
the systems may encounter, but the systems themselves will always demand
complex software development. Simply put the LEGO approach to making
systems will never be a complete solution that will drastically change the
way software is made, not for the foreseeable future and not for the systems
that are being built today anyway.

Maintenance and further development
Several developers mentioned concerns for extensive use of components when
thinking on software maintenance. The cost of software maintenance is a
problematic one because it adds another perspective to systems development
that is rarely, if ever, discussed namely the further development of the system.
Even tough good software engineering patterns and systems modeling create
loosely coupled systems where parts and pieces can be exchanged, there is
seldom a true plan for updating software. Patches are common yes, but a
software patch is mostly rewritten parts of code that is added to the system.

65

5.2 Component use at Acando 5 DISCUSSION

For systems that use components they are individually developed by other
parties, hence third-party components. Should a problem arise with these
components when the system is being upgraded or simply bug-fixed then
one has an added dependency that the component is fixed by the third party
developers. If the component is causing problems and is not fixed, there may
be several reasons for this to happen, then the component will perhaps need
to be replaced, either by finding another component or creating the solution
from scratch.

One developer mentioned that he was reluctant to use to many components
because it caused an added overhead to the next developer that would be
working on the code. Not talking about the updating problem but the prob-
lem of reading and understanding legacy code. Systems that extensively use
components may be harder to read and understand, an added overhead to
the next developer so to speak.

With the problem of maintenance there is perhaps good reason for developers
to limit the use of components to a certain level, however it assumes that
maintaining original code and solutions is easier to maintain than a compo-
nent equivalent. If the problem is real then the use of components is perhaps
that of a short term benefit and a long term disadvantage when it comes to
software development. If the firm delivering the solution has a short term
perspective then perhaps components are a benefit of them and not the cus-
tomer. If a longterm perspective is held also for the firm should then use of
components be restricted? Such problems remain speculative until studies of
long term component use have been made.

66

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

5.3 Knowledge, OSS, COTS and software reuse

5.3.1 Knowledge

My findings revealed that a potential problem and hinderance to component
reuse is related to knowledge and knowledge management. Here I discuss
these issues.

Keeping up to date
The sheer number of available components today is staggering and the rate
of which new components are created and added does not seem to be slowing
down. If it is required to stay up to date in this market it is understandable
that some developers simply don’t have the time or energy after work hours
to put into this task. As one developer at Acando answered when I asked
him about how he could increase his use of components:

“I believe I could use more components, but I simply don’t keep
up to date on what that is out there. It’s a basic lack of knowing
what’s available.” - P7

The use of components in software development is naturally linked to the
problem of knowledge, if you do not know there exists components then you
are less likely to use them. Having knowledge about these components is
an overhead that adds to the existing overhead of keeping up with modern
software development practices and it is perhaps to much to ask of developers
to read up on yet another aspect of programming such as this. This then
applies to those developers that less frequently using components, they are
possibly using less than the “right” amount that other developers claim to
be using. When asked in a direct follow-up to the answer on how he could
increase his use of components the answer was simple:

“I would just have to read up more about components, dig trough
sites and pay close attention to what is happening and what is
out there.” - P7

It could of course be argued that this is not needed to use components, several
developers seem only to use internet searches and their own experience when
it comes to finding components. Being efficient and quick at finding and
identifying components regardless of language or project is certainly a much

67

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

more valuable technique than having to be familiar with a huge number
of components at any given time. Nevertheless the task of knowing about
components is a big one and potential stopper for new developers that are
unfamiliar with finding and using components.

This skill of finding and using components is one that is hard to define in
writing and as such poises a problem for knowledge management that is not
new, to transfer tacit knowledge to a geographically spread workforce. It may
simply not be possible for any one developer to write down “do such and such
to find and such and such to identify good components”, the attempt could
certainly be made, but articles like [55] shows that many skills need to be
transferred by learning and doing from an instructor.

The use of components, unlike other developer traits, may not be the biggest
talking point when discussing the trade with other developers, be it col-
leagues at the same company or friends that also work within IT. At Acando
there are several interests groups and there is about once or twice a month
held workshops for new perspectives on technology. Topic examples includes
Ruby, Security or the Azure Cloud platform. These groups fit well with
the idea of communities of practice as proposed by Walsham [55] in that
here people that have the same interests meet and share their knowledge in
groups.

It is possible that the subject of smaller software components is such as small
one that it goes under the radar of regular tech-speak, it is a subtle topic
that many developers are familiar with, but don’t talk that much about.
The reason may be simple, pr. component it is not that an interesting or
groundbreaking topic when compared to more paradigm shifting ideas like
SOA or cloud computing. Component reuse doesn’t have this big impact, at
least not when you think of them one component at the time.

As such the reuse of smaller components is not a great enough topic that it
spreads trough developers like other development techniques or bigger pieces
of software like say the .Net framework or a programming editor like IntelliJ.
By going under the radar of such arguably important sources of knowledge
and information amongst developers, as presented in [56] with the coffee
machine story, perhaps this is a reason for the lack of viral and normal
collegial spreading when it comes to software reuse in firms such as Acando.

Lack of technical solution
Acando has tried several technical solutions, wiki and CMS being the most
prominent and it can be argued that their current CV system employs the

68

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

possibility to make available knowledge about components. However these
solutions may not have been the best suited for the job and may have failed
in their executions. For these solutions there is an overhead of learning how
to use them and a barrier of entry to use them, for instance for any wiki
article there is perhaps expected a certain amount of text or completeness.
So even tough Acando has tried and arguably failed with a technical solution
to its knowledge management, perhaps the solutions have not been mature
or right for the job.

Acando has tried both an internal wiki and internal CMS systems as technical
solutions. The wiki system makes it possible for anyone to add articles to
a knowledge database on any topic whilst the CMS system has billboards
and discussion groups, making it easy to post questions, news or discuss
topics internally within Acando. These systems have failed at achieving
widespread use or at least the critical mass of use to make them truly valuable
as knowledge resources. They have simply not been used in the extent that
they need to have achieved critical mass as such crowd sourcing tools require.

In the case of the internal wiki there is clearly a time consuming component of
filling inn information on a continuing basis and there are few if no incentives
to actually do so, other than being helpful and kind. Several developers
commented on this topic and the those with management positions were
well aware that the tendency was that such tools were to time consuming
and gave little back to the developer taking the time to write entries. The
theoretical gains of such solutions remains high whilst the real life use and
gain remains low seems to be the verdict. Many still feel that such systems
could work as long as they manage to gain that critical amount of usage and
that developers themselves understand the value of the system, not for the
short term gain but the long term gain. One developer had an experience
with writing such an entry:

“I looked up something about MS SQL and I found my own entry
about some tricks when it came to migration that I found really
usefull, I had forgotten that I had written that entry myself”

There is knowledge that sticks and knowledge that is quickly forgotten when
you stop using it on a daily basis and clearly such knowledge databases may
be useful to storing such forgettable, but not useless, knowledge. There is
a clear value to wiki and CMS systems, but how does one encourage and
incentivize higher use from developers?

69

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

There is also a thought that the technical tools themselves are not mature
enough, several developers suggested more “modern” approaches to knowl-
edge notation and several recent articles and trends point to interesting de-
velopments when it comes to a technical solution to the problem of knowledge
management. The recent year has seen the explosion of social networking
sites, FaceBook and Twitter are the biggest examples but also worth men-
tioning is LinkedIn and Tumblr.

Twitter is an interesting example because there is not a strong focus on
being friends or socially connected to the people you follow or tweet against,
you simply either follow or don’t follow people. Twitter in a nutshell is
microblogging with a limitation of a 140 characters pr. update or tweet
as it is called. Tweets can contain URLs which again can be to a site, to
a picture or to a video. Tweets can also contain hashtags, words with a
“#” in front of them which indicates the topic the tweet is about and also
works as a search-term to view other tweets with the same hashtag. To
tweet is something done fast as the goal is to proclaim something in the
shortest amount of chars possible. I myself have a twitter account and I
follow several developers, I have noticed that many of them will use twitter
and, trough either their network of followers or simply by using a hashtag,
will ask developer related questions trough simple tweets and often receive
several answers to them.

It is therefore easy to conceive of something of an internal twitter system
for developer firms like Acando that promotes simple updates or questions.
They can be either informative tweets like “I used component X for making
#pdf in #java and it was great” or questions like “Does anyone know a good
#PDF component for #java?”. Such tweets would be live streamed to other
developers at acando, or perhaps a larger professional network of developers,
and also stored in a larger database where the hashtags could be used as
metadata making the tweets easier to organize and search trough for further
use. In fact you could generate automatic knowledge databases if users were
connected to their tweets, showing that “Developer A has 20 tweets with
#java and 1 tweet with #pdf”. Such a system would be quick, easy and
painless to use, making a tweet with the right client software takes about
10 seconds, and could even create greater developer interaction between a
geographically spread workforce like that of Acando. Microsoft is working
on a module for it’s Sharepoint solution that could easily be mistaken for
this proposal - they call it Office Talk and has a Twitter- and Facebook-like
functionality built into the Sharepoint suite [31].

70

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

However even tough such proposed systems may sound great and have seem-
ingly great potential it is also worth remembering that wikis and CMS sys-
tems also had and still have this same potential promise. A technical solution
is therefore simple to think and theoretically create and use, but harder to
make a reality. All tough it is worth mentioning that SAP and IBM have
been promoting the use of social tools lately, for instance one report claims
that:

“This turned out to be highly motivating. Last year we delivered
160 000 projects, with shorter development time, lower costs and
a higher reuse of components” [44]

This was an effect of incorporating social networking technologies, specifically
an effort where developers were encouraged to suggest which projects they
would work on themselves. IBM is now pushing social tools as a new business
booster, but there are no short cuts as they also explain:

“The training is a part of our hundred year anniversary program.
Everyone were to advance the company by strategic and respon-
sible use of social tools.”

The fact that big companies like IBM [44] and SAP [43] are making guidelines
and investing in social tools suggest that there is something to be gained,
but I believe it is a little early to be sure of exactly what this is.

The use of crowdsourcing

All of the developer that actively used components mentions Internet as
a primary source for knowledge and information about components. It is
here worth noting that software component mostly live and exists on the
Internet. This is where they are sold, developed, marketed and either grow or
disappear. These same developers also mention that they value information
and knowledge higher than random internet forums and web sites, but still
they are most prone to use the Internet when it comes to finding components.
One developer gives a simple and reasonable answer as to why this is the case:

“There is a much larger probability that someone on the Internet
has had my problem and has a component to recommend. A
larger probability than someone within this relatively small firm

71

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

to have encountered the exact same problem at least. A Internet
search is also much faster than contacting someone else.” - P2

One could easily argue that this assumption and method is faulty and may
even result in loss of potential components, either that are better than the
ones chosen or no components were found when there in fact existed compo-
nents. However it is hard to argue that the Internet search is faster and has a
higher probability of returning results, even on obscure software development
problems, than phoning a colleague or sending out an email.

In this sense the Internet can be seen as the ultimate crowdsourcing tool,
indeed the term crowdsourcing originates from Internet based technologies
[20]. The basic idea of crowdsourcing is simple, you put you’r problem out
in the open and hope for people to respond and help you out. The more
people that can help you the larger the probability that someone will have
a helpful answer. For developers at Acando they sometimes do this, they
may post a question up on StackOverflow.com on what component other
developers would recommend for a specific problem, or they may simply
search for the component and find already asked and answered questions on
sites such as StackOverflow.com. With modern search engines that are more
frequently updated, index more and more sites and give better search results
it is increasingly easier to find relevant information for the seemingly most
obscure problems. With the large number of users that the Internet possesses
the odds of finding help increases dramatically. Internet as a crowdsourcing
tool then achieves this critical mass of users that the internal solutions often
fail to achieve. One could in fact argue that the Internet is a knowledge
management solution that works, if not in a very chaotic way.

5.3.2 COTS, OSS and Software Reuse

Threshold of use
My first observation was that for commercial software development there is
an important aspect of threshold for using a component or not. For some
projects there will be a need to justify any added costs to the project, so se-
lecting a COTS component is something that requires approval from someone
in the project leadership. These costs don’t necessarily need to be partic-
ularly high or problematic in themselves, but having to ask permission to
spend more money is a requirement for COTS components that OSS com-
ponent don’t face. When searching for components, there may simply be a
lower threshold to select an OSS component because downloading and us-

72

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

ing OSS components does not require any budget approval. In fact this low
threshold also permits a higher degree of “try and fail” as it is much easier
to download something that is OSS and try it as a solution, if it works then
there is no need to ask for budget approval and the software itself has proven
its value. One developer had a story about this kind of mechanic:

“One manager had said at some point that ”We will never use
OSS in this company“ as to which a employee responded ”But
our mail-server is already running on Linux and has been for a
long time now“” - P6

This story was presented as a proposal that OSS software was being used
more often than managers might even be aware of. Clearly using an expensive
COTS component is not that easy to simply do without approval from either
customer or management.

For many companies and projects the use of OSS components is potentially
problematic when it comes to licenses. Companies that provide software
solutions or solutions that use software are more sensitive to the different
kinds of OSS licensees.

Culture and benefits
The biggest difference between OSS and COTS is perhaps the cultural as-
pect. Several developers have a leniency towards either OSS or COTS and
has experience or ideology as reasons for this. Many of the benefits of either
OSS or COTS are disputed by people with strong cultural affinity, for exam-
ple someone that appreciates COTS components would often downplay the
option of altering OSS components.

Whilst these cultural and perceived differences are many, the actual conse-
quential differences were harder to find. Developers did not report that OSS
components were more troublesome or that COTS components were much
better. They had perceptions that this was or could be the case, but most
were certain that software was software, it is either bad, good or something
in between.

The kind of developer will influence how the developer acquires and seeks
knowledge about components. Being an OSS oriented programmer will tend
to follow OSS news and look for components within that category and the
commercially oriented programmer vice versa. Ideally is perhaps the prag-
matic developer that doesn’t care if the component is OSS or COTS, giving

73

5.3 Knowledge, OSS, COTS and software reuse 5 DISCUSSION

him or her the biggest pool to select components from. However as presented
these different developers are not real and few developers are in one booth,
if presented with only one choice then the developers that use components
would pick that one as one stated:

“For that component we were looking for something commercial,
but we only found an OSS component and picked that one” - P1

So for any developer that is used to using components there will seldom be
such a strong affinity for either OSS or COTS that he or she opts to not use
a component when the only option is COTS or OSS.

Benefits that are perhaps underestimated is one of culture. Open source
components are created and used by developers that thrive on forums and
email-lists. In general there is a culture for answering and exchanging solu-
tions to problems and the support this provides for open source components
is often a great deal larger than for pure commercial products. One de-
veloper mentioned that they had purchased enterprise support for an open
source product but that he felt that the community support for this product
was lacking. He felt that when the product had this enterprise support and
people were purchasing it the community support disappeared as the ques-
tions that would be asked in the forums were being asked to the professional
support staff.

The lack of differences
Many articles talk and discuss OSS and COTS as if they are from differ-
ent worlds when it comes to software. COTS has the perception in several
publications as to being the true commercial software alternative. OSS is
perceived as an interesting phenomenon and much has been written on the
quality of outstanding OSS projects and the commercial value of these.

These terms have in many context become laden with meaning that is hard to
actually find in todays component marketplace. There are several commercial
vendors that are open sourcing their solutions. They are selling different
degrees of their own product, one free without support, one paid with support
and so on. Within the traditional OSS world there is a stronger commercial
presence, OSS products are monetized with either support, services or in
some cases developer expertise for hire. With these worlds blending and
becoming more complex the OSS 2.0 term starts to make a lot more sense
and the traditional schism between commercial software and OSS software
means less and less.

74

5.4 Improving at Acando 5 DISCUSSION

Looking at articles that study OSS like [32] and [57] they are all looking at
OSS software as something distinct, something different from the commercial
alternative. As the developers present it they see software as software. Yes
there are certainly differences between purely commercial software and free
open source software, but for a developer it all boils down to the exact same
thing which is to find software that works and using that to aid his or her
own development of a software system. The issues of ideology, openness,
relative costs, development methods and other factors do not matter that
greatly when the goal is the same.

Lack of formal approaches
When talking to developers there is a distinct lack of academic influence in
the work methods. No developer would say that they employ the values of
CBSE or name any formal approaches to software reuse. There is one loosely
based principle of loose couplings between software but that is only a small
part of any suggested framework or systematic approach to software reuse
and is a principle that is found in many programming languages and cultures,
not at least that of software craftsmanship in being efficient and coding in
a smart way. Looking at articles on selection proposals like BASIS [2] for
COTS or OSM [47] for OSS there has not been a single developer to even
mention such proposals, this is in accordance with the findings of Hauge
in [17].

5.4 Improving at Acando

For Acando this thesis has been interesting to find ways to improve the use of
third party components in systems development. This should preferably be
a simple, painless and low-cost improvement of methods building on todays
practices. Here follows a string of topics on which Acando could improve,
some more feasible than others however the main focus here are simple, easy
and cost-efficient ways of improving reuse.

Formalizing and incentivizing
As it stands today the use of third party software components is a frequently
used practice at Acando but it is not one that is formally encourage by the
company itself. As it seems it is something that developers have a practice
of at an individual level, even tough it is common enough to be a normal
and well accepted practice. Should Acando want to increase the use of com-
ponents they could simply encourage all of its developers to do so, making
it a publicly accepted practice.

75

5.4 Improving at Acando 5 DISCUSSION

Acando has several important and well functioning ways of spreading ideas
and knowledge internally throughout the company. The simplest way it
might seem is to have interests groups and workshops that make as meeting
points for developers to meet after work and discuss technical topics of either
commercial interests or simply interests (and often those topics also become
commercial at some point). Should Acando want to increase the use of
software components it could simply have some lectures on the topic, either at
a central meeting of all employes or at a voluntary after-work workshop group.
The developers who are familiar with finding and using components could
then share simple tricks, favorite websites, things to look for in a component
etc. Such groups are good examples of communities of practice [55] and are
ideal for spreading and sharing knowledge. This is a simple way of trying to
increase reuse at Acando.

By formalizing the use of components there would also be room for guidelines
and rules for component reuse. However as to strict rules could potentially
hinder reuse it would be important to create guidelines that don’t add com-
plexities and added overhead to the development process itself.

Technological solutions
It would be interesting for Acando to look at the social tools that compa-
nies like IBM and SAP are using and promoting in order to achieve more
internal communication to improve knowledge sharing. Also looking at Of-
fice Talk for Sharepoint by Microsoft there are several technical solutions to
be considered. Acando already uses Sharepoint and as such the Office Talk
technology is especially interesting. However as Acando has already tried
new and promising technology before, like wikis, there is little evidence that
guarantees any results from such a solution. Also this is a proposal that
requires much more time and effort and could be potentially costly for the
company.

76

6 CONCLUSIONS

6 Conclusions

6.1 Conclusions for research

Software reuse
Small software components are being used without big problems at Acando
an IT consultancy firm in Norway. The frequency of use amongst devel-
opers vary from individual to individual and there does not seem to be a
pattern of increased use. With the full potential of software reuse seemingly
not being achieved or even attempted there is a question of why that is.
Software developers are dealing with making customized solutions for cus-
tomers, systems that have similar functionality to other systems, but is still
tailored for one special task and general software is not enough for the client.
Within this system lies requirements for functionality that many other sys-
tems, and therefore developers, has already made and solved. Reusing such
components aids software development, but will never fully replace original
software solutions and it’s challenges.

Software craftsmanship
It is interesting to note how individually these developers are working. Sit-
ting with individual tasks on larger group efforts the single developer meets
problems and solves them, either by himself/herself or by Internet searches.
When these solutions involve third party software components that are found,
selected and added to the system without much peer review is this a positive
trend or a problematic one? There is also the interesting concept of develop-
ers being reluctant to use to many components, becoming simply gluers of
code. This may never be the case as original software solutions will be needed
in the foreseeable future, but should developers be so proud and connected
to their work?

The concepts of software craftsmanship promotes a strong connection and
pride towards software development and the goal is better quality software
with smarter solutions, it is not clear if this stands in the way of extensive
software reuse or not.

Software development Literature and software development courses focus
to much on either original development, internal project reuse like object
oriented programming or strict formalized selection methods that se little to
no use in the real world. Reuse chapters present a simple reality where it is
suggested a bottom-up approach, you start off wanting to reuse and design

77

6.2 Conclusions for developers 6 CONCLUSIONS

the system around existing components. This is in most cases impossible
and the staggering amount of existing components makes the task almost
impossible if not extremely time consuming. Such proposals are a stark con-
trast to the reality where components are added when needed and possible, a
method that is simple, quick and gives small incremental benefits to existing
development methods, instead of having to redefine it. This point lies close
to one statement from the 1999 article “Why Software Reuse Has Failed” [46]
:

“The principles, methods, and skills required to develop reusable
software cannot be learned effectively by generalities and plati-
tudes. Instead, developers must learn concrete technical skills and
gain hands-on experience by developing and applying reusable
software components and frameworks in their daily professional
practice.”

The author of the article is talking more about internal systematic software
reuse, although OSS is mentioned as a prominent model for reuse. Still the
point applies here that generalities and platitudes don’t apply so well to real
world development, especially when evident by this almost under-the-radar
practice of software reuse.

6.2 Conclusions for developers

Increase reuse
When the use of components goes seemingly so well there is little reason
not to encourage further use. Simple guidelines and practices should be
established. Developers with experience should create collections of good
sites and trustworthy vendors. However the more overhead such projects
require the less likely they are to succeed. Simply encouraging and formally
acknowledging the practice of software reuse could be enough to increase
frequency and effect of reuse.

6.3 Limitations

This thesis is based on studying one branch of a Norwegian IT consultancy
firm in Trondheim and as such what is observed and concluded here may be

78

6.4 Further work 6 CONCLUSIONS

attributed to local factors. Cultural aspects of Norway and Acando may be
unique and not be transferrable to other places and contexts.

6.4 Further work

OSS and COTS
The differences between OSS and COTS software needs to be investigated
closer and probably the terminology needs to be redefined. With a steady
commercialization of OSS software and increasing open sourcing of COTS
these categories are merging and making less and less sense when talking
about them as different kinds of software. Looking at not only the differences
but the similarities between third party software and identifying new markers
that classify them would aid further research and studies.

Component use effect
The premises of software reuse, be it small components or larger ones, is that
of creating better software faster and cheaper. However there has been few
studies that actually compare reuse projects against original projects. The
problem of course being that each software project can be defined as unique
and you would almost never be able to develop one project with the same
developers twice as a test. Measuring the actual effects of software reuse is
difficult but needs to be addressed.

Also the long term effects of software reuse are yet unclear. As it stands today
it is hard to say if maintenance is more expensive and further development is
more difficult with heavy reuse projects. This should also be a topic of huge
interest for further studies.

79

REFERENCES REFERENCES

References

[1] Chris Abts, B.W. Boehm, and E.B. Clark. COCOTS: A COTS software
integration lifecycle cost model-model overview and preliminary data
collection findings. In ESCOM-SCOPE Conference. Citeseer, 2000.

[2] Keith Ballurio and Betsy Scalzo. Risk reduction in cots software selec-
tion with basis. COTS-Based Software Systems, pages 31–43, 2002.

[3] Lisa Brownsword, David Carney, and Tricia Oberndorf. The opportuni-
ties and complexities of applying commercial-off-the-shelf components.
Crosstalk, 11(4):4–6, 1998.

[4] W.F. Chua. Radical developments in accounting thought. The Account-
ing Review, 61(4):601–632, 1986.

[5] Paul C. Clements. From Subroutines to Subsystems: Component- Based
Software Development. Software Engineering Institute Carnegie Mellon
University, 1995.

[6] Creative Commons. Attribution-NoDerivs 2.0 Generic (CC BY-ND 2.0.
http://creativecommons.org/licenses/by-nd/2.0/.

[7] Cyanogen. Cyanogen Mod cm-kernel-exp.
https://github.com/cyanogen/cm-kernel-exp, 2011.

[8] T.H. Davenport, D.W. De Long, and M.C. Beers. Successful Knowledge
Management Projects. The Knowledge Management Yearbook 1999-
2000, pages 89–107, 1999.

[9] Brian Fitzgerald. The transformation of open source software. Mis
Quarterly, 30(3):587–598, 2006.

[10] The Apache Software Foundation. Apache 2.0 License, 2004.

[11] Inc. Free Software Foundation. GNU GENERAL PUBLIC LICENSE,
2007.

[12] Friprogsenteret. Acando satser p̊afri programvare.
http://vimeo.com/10976342.

[13] Geeknet Inc. Source Forge. http://sourceforge.net/, 2011.

[14] Gartner Group. Gartner use of OSS in 2012, 2008.

80

REFERENCES REFERENCES

[15] Miniwatts Marketing Group. Internet World Stats.
http://www.internetworldstats.com/stats.htm, 2011.

[16] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness
in distributed software development. Proceedings of the 2004 ACM con-
ference on Computer supported cooperative work - CSCW ’04, page 72,
2004.

[17] Ø yvind Hauge. Adoption of Open Source Software in Software-Intensive
Industry. 2010.

[18] By Duncan Haughey. Why Software Projects Fail and How to Make
Them Succeed. pages 1–2, 1995.

[19] D Hoover. Apprenticeship Patterns: Guidance for the Aspiring Software
Craftsman. 2009.

[20] By Jeff Howe. The Rise of Crowdsourcing. North, (14):1–5, 2012.

[21] J Howe. The Rise of Crowdsourcing. Wired, (14.06), 2006.

[22] A. Hunt and D. Thomas. The Pragmatic Programmer. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2000.

[23] Ari Jaaksi and Linux World. Building consumer products with open
source communities – the Maemo and 770 experiences. Agenda, pages
1–17, 2006.

[24] H.K. Klein and M.D. Myers. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS quar-
terly, 23(1):67–93, 1999.

[25] J. Kontio. A case study in applying a systematic method for COTS se-
lection. Proceedings of IEEE 18th International Conference on Software
Engineering, pages 201–209.

[26] S. Krishnamurthy. Cave or Community?: An Empirical Examination of
100 Mature Open Source Projects. First Monday, 7(6):20–56, 2002.

[27] K Leung. On the efficiency of domain-based COTS product selection
method. Information and Software Technology, 44(12):703–715, Septem-
ber 2002.

[28] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd
Petter N. Slyngstad, and Maurizio Morisio. Development with Off-the-
Shelf Components: 10 Facts. IEEE Software, 26(2):80–87, March 2009.

81

REFERENCES REFERENCES

[29] Jingyue Li, Reidar Conradi, Odd Petter Slyngstad, Marco Torchiano,
Maurizio Morisio, and Christian Bunse. A State-of-the-Practice Survey
of Risk Management in Development with Off-the-Shelf Software Com-
ponents. IEEE Transactions on Software Engineering, 34(2):271–286,
March 2008.

[30] R.C. Martin. Clean Code. Prentice Hall PTR Upper Saddle River, NJ,
USA, page 448, 2008.

[31] Microsoft. Office Talk. http://www.officelabs.com/projects/officetalk/Pages/default.aspx.

[32] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case
studies of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3):309–346,
July 2002.

[33] Mozilla. Firefox. http://www.mozilla.org/projects/firefox/, 2011.

[34] Mozilla Foundation. Mozilla. http://www.mozilla.org/.

[35] M.D. Myers and M. Newman. The qualitative interview in IS research:
Examining the craft. Information and Organization, 17(1):2–26, 2007.

[36] Brandon Norick, Justin Krohn, Eben Howard, Ben Welna, and Clemente
Izurieta. Effects of the number of developers on code quality in open
source software: a case study. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, pages 1–1. ACM, 2010.

[37] B.J. Oates. Researching information systems and computing. Sage Pub-
lications Ltd, 2006.

[38] Oracle. Open Office. http://www.openoffice.org/, 2011.

[39] Ryan Paul. Android openness withering as Google withholds
Honeycomb code. Ars Technica http://arstechnica.com/open-
source/news/2011/03/android-openness-withering-as-google-withhold-
honeycomb-code.ars.

[40] Ryan Paul. Oracle gives up on OpenOffice after community
forks the project. Ars Technica, (http://arstechnica.com/open-
source/news/2011/04/oracle-gives-up-on-ooo-after-community-forks-
the-project.ars), 2011.

82

REFERENCES REFERENCES

[41] E. Raymond. The cathedral and the bazaar. Knowledge, Technology &
Policy, 12(3):23–49, 1999.

[42] SP Roger and I Darrel. Software Engineering A Practitioner’s Approach.
1992.

[43] Erik Rossen. SAP lanserer ”Facebook for bedrifter”. digi.no
http://www.digi.no/864109/sap-lanserer-%ABfacebook-for-
bedrifter%BB, 2011.

[44] Erik Rossen. Sosiale medier snudde IBM opp ned, 2011.

[45] Di Wu S. Ajila. Empirical study of the effects of open source adoption on
software development economics. The Journal of Systems and Software,
(80), 2006.

[46] D.C. Schmidt. Why software reuse has failed and how to make it work
for you. C++ Report, 11(1), 1999.

[47] Open Source Advisery Service. Open Source Advisery Service, 2010.

[48] Stack Exchange Inc. Stack Overflow. http://stackoverflow.com/.

[49] Standish Chaos Reports. Software Project Failure Costs Billions.. Better
Estimation & Planning Can Help, 2008.

[50] The Apache Software Foundation. Apache HTTP Server.
http://httpd.apache.org/, 2011.

[51] The Open Handset Alliance. Android Open Source Project.
http://source.android.com/.

[52] Dave Thomas. Code Kata–How It Started.
http://codekata.pragprog.com/codekata/2007/01/code katahow it.html.

[53] U.S Census Bureau. 2010 Census. http://2010.census.gov/2010census/,
2010.

[54] J. Voas. COTS software: the economical choice? IEEE Software,
15(2):16–19, 1998.

[55] G Walsham. Knowledge Management:The Benefits and Limitations of
Computer Systems. European Management Journal, 19(6):599–608, De-
cember 2001.

83

REFERENCES REFERENCES

[56] G.M. Weinberg. The psychology of computer programming, volume
932633420. Van Nostrand Reinhold, 1971.

[57] D.A. Wheeler. Why open source software/free software (OSS/FS,
FLOSS, or FOSS)? Look at the numbers. David A. Wheeler’s Personal
Home Page.

[58] Wikimedia. Wikipedia. http://www.wikipedia.org/, 2011.

[59] Windows 7.cc. Microsoft: Windows 7 tool used GPL code.
http://www.windows7.cc/windows-7-tips-tweaks/microsoft-windows-
7-tool-used-gpl-code/.

84

A GLOSSARY

A Glossary

.Net Framework - Microsoft programming framework
Agile software development - A conceptual framework for software en-
gineering that promotes development iterations throughout the life-cycle of
the project
Azure Cloud - Microsoft cloud computing plattform
Black box testing - Testing on a non-transparent and unknown system
CMS - Content management system
COTS - Commercial off-the-shelf
CVS - Concurrent Versions System
Cloud computing - A technology used to access services offered on the
Internet cloud
DBMS - Database management system
ERP - Enterprise resource planning
GIT - Distributed revision control system
GUI - Graphical user interface
IntelliJ - integrated development environment for Java
Iterative software development -
LGPL - Open source license
MS SQL - Microsoft SQL Database
MySQL - Open source DBMS
OSS - Open source software
PDF - Portable document format
Python - Interpreted programming language
RUP - Rational unified process
Ruby - Interpreted programming language
SOA - Software oriented architecture
SVN - Revision control system
Scrum - Incremental framework for agile software development
Sharepoint - Microsoft intranet solution
Spiral model - Software development process
Twitter - Microblogging service
Waterfall - Software development process

85

B SURVEY

B Survey

(a) Question 1

(b) Question 2

Figure 8: Survey sent to developers at Acando September 2010

86

B SURVEY

(c) Question 3

(d) Question 3 follow up

(e) Question 4

Figure 8: Survey sent to developers at Acando September 2010

87

B SURVEY

(f) Question 5

(g) Question 6

(h) Question 7

Figure 8: Survey sent to developers at Acando September 2010

88

C PROBLEM

C Problem

Masteroppgave med Acando - Utvelgelse av tredjeparts
software komponenter
Problemstilling
Å bruke ferdige softwarekomponenter til IT prosjekter blir mer og mer van-
lig. Disse kommer fra store kjente leverandører, mindre kjente kommersielle
komponenter eller open source komponenter med eller uten tilknytning til
kommersielle firmaer. De større firmaene har man som regel god kunnskap
om, men n̊ar det kommer til mindre kjente firmaer og komponenter s̊a blir
det raskt vanskeligere å velge riktig komponent. Denne problemstillingen
eksisterer i dag og ser ut til å stadig øke.

Det er i denne sammenhengen interessant å se p̊a hvordan slike komponenter
utvelges. Det kan være meget problematisk å velge feil komponent, det være
seg et firma som ikke holder vann p̊a avtaler eller open source komponenter
med lite dokumentasjon og uforst̊aelig kode. Det vil være stadig viktigere å
utføre en god prosess n̊ar det gjelder å velge slike komponenter med tanke
p̊a anbud, utvikling og vedlikehold.

Mål
Med problemstillingen å velge ukjente softwarekomponenter vil jeg ha som
mål å lage en guide med tanke p̊a å forbedre og kvalitetssikre utvelgelsespros-
essen. Det er et viktig poeng at denne guiden skal være s̊a enkel å imple-
mentere som mulig med tanke p̊a lave kostnader for Acando. Å se p̊a eksis-
terende struktur for kompetanseoversikt med muligheter for å utvide disse
er en idé som har kommet opp og kan være en mulig løsning. Ordet guide
er åpent med tanke p̊a at resultatet av denne oppgaven kan være alt fra en
liten sjekkliste til en utvidelse av eksisterende kompetansesystemer. Det er
viktig at det skal være enkelt å ta i bruk og eventuelt implementere det som
oppgaven måtte resultere i.

Gjennomføring
Oppgaven vil ta utgangspunkt i hvordan utvelgelse av tredjeparts software
komponenter foreg̊ar i praksis hos Acando i dag. Enten ved å se p̊a utførte
prosjekt eller p̊ag̊aende prosjekter. Jeg vil derfor snakke med ansatte hos
Acando og utføre intervjuer. Det er viktig at dette arbeidet skal være s̊a lite
forstyrrende som mulig for Acando. I første omgang vil jeg være interessert
i bli bedre kjent med Acando som bedrift. Jeg vil gjerne besøke bedriften
dette semesteret (januar til juni) en til to ganger i m̊aneden, gjerne f.eks p̊a
bedriftens innedager om dette er mulig. Derfra vil det g̊a mot å se nærmere

89

C PROBLEM

p̊a enkelte prosjekt høsten 2010 - v̊ar 2011. Resultatet av dette arbeidet vil
være en masteroppgave samt en rapport og presentasjon for Acando.

Denne oppgaven er en masteroppgave i informatikk innenfor systemering ved
IDI fakultet p̊a NTNU, og er utformet p̊a grunnlag av møter og samtaler med
**** og **** hos Acando høsten 2009. Selve masteroppgaven skal leveres juni
2011. Studenten er Martin Syvertsen og veileder Eric Monteiro.

90

	Title Page
	Introduction
	Research Question
	Thesis structure

	Literature
	Software Reuse
	Defining a software component
	What software reuse means
	Software reuse in practice

	Commercial Off The Shelf
	Open Source Software
	History of Open Source
	OSS Quality
	OSS development methods
	OSS and business adoption
	Licenses

	Knowledge Management
	Crowd-sourcing and the Internet
	Software Craftsmanship

	Research Approach
	Selection of method and techniques
	Access
	Data collection
	Collection phases
	Collection methods

	Writing Process
	Reflection on research method

	Case
	Introduction
	Background of Acando
	Acando - Facts and numbers
	Acando work structure and ideals

	Culture
	Findings
	Identifying the problem
	Requirements
	Search
	Candidates
	Testing
	Implementation

	Fast and easy selection process
	Fast and easy selection of components

	Roles and developer profiles
	Projects and phases

	Discussion
	Introduction
	Component use at Acando
	Knowledge, OSS, COTS and software reuse
	Knowledge
	 COTS, OSS and Software Reuse

	Improving at Acando

	Conclusions
	Conclusions for research
	Conclusions for developers
	Limitations
	Further work

	References
	Glossary
	Survey
	Problem

