
Master of Science in Computer Science
July 2011
Terje Rydland, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Unit Testing with TDD in JavaScript

Tine Flåten Kleivane

Problem Outline

Techniques as TDD makes testing the driving force in design, documentation,
maintainability and code quality. In dynamic languages such as JavaScript,
which completely lacks compile time warnings, testing is the glue that holds
the big applications together. This thesis sets out to explore the techniques
and tools available for doing unit testing with TDD in JavaScript.

Assignment given: 31. January 2011

Supervisor: Terje Rydland

Abstract

JavaScript has gained increased usage and attention the last years, but
development and testing methods is still lagging behind.

To mitigate some of these issues, this thesis brings together unit testing
and JavaScript, using test-driven development as a methodology. Through
exploration of these topics, the differentiators in a unit testing framework are
considered. Existing frameworks are also discussed and how the terminology
in JavaScript differs from traditional xUnit family frameworks.

By creating and running a set of four test cases, both the general and
unique features of JavaScript are tested in hand-picked frameworks, which
were decided through an evaluation process. One of the contributions is
based on this; a recommendation for a minimum set of test library features
for a JavaScript unit testing framework.

Various factors were found to differentiate the frameworks, and so the
thesis also provides a Discovery test case to emphasize some of these as-
pects. This test case provides practitioners with a quick option for learning
a new framework. The set of test cases can be applied to new frameworks to
assess their functionality.

As the thesis explores an area with little current research, suggestions
for further work present several topics, ranging from system level JavaScript
testing to quantitative studies building on the set of test cases.

Preface

This report represents the work done in my master’s thesis (Master of
Science) in Computer Science at the Department of Computer and Informa-
tion Science (IDI) at the Norwegian University of Science and Technology
(NTNU). The duration of the thesis has been from February 2011 to July
2011 and my supervisors have been Assistant Professor Terje Rydland at
NTNU and Torstein Nicolaysen at BEKK Consulting.

I owe a great thanks to both my supervisors for support and feedback.
Especially to Torstein, who has patiently endured questions and provided
both encouragement and criticism, raising the bar of my achievements and
the thesis in general.

Many thanks also to my team of proofreaders, Ruben, Nils and my dad,
and fellow students at Fiol and the Sahara offices for coffee, lunches and great
company.

And to my family, eternal gratitude for continuous support during 17
years of school, and encouragement on all other arenas.

And to NTNU and Trondheim, it has been five great years.

Tine Flåten Kleivane

Skien, 7. July 2011

Contents

Abstract i

Preface i

List of tables vii

List of figures ix

List of listings xi

Glossary xiii

Abbreviations and acronyms xv

1 Introduction 1

1.1 Motivation . 1
1.2 Research question . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Background 5

2.1 Unit testing . 5
2.1.1 Unit testing frameworks 6
2.1.2 Integration testing . 8

iv Contents

2.2 Test-Driven Development . 9

2.2.1 The rules of TDD and their implications 9

2.2.2 Programming with TDD 11

2.2.3 Research results . 12

2.2.4 Behavior-Driven Development 14

2.3 JavaScript . 16

2.3.1 History . 17

2.3.2 The language . 22

2.4 Summary . 33

3 Research method 35

3.1 Literature study . 35

3.2 Research methods . 36

3.2.1 Qualitative methods 36

3.2.2 Quantitative methods 37

3.2.3 Feasibility prototyping 37

3.3 Adopting demo and proof of concept - methods 38

3.3.1 Process description . 40

3.4 Limitations . 43

3.5 Summary . 43

4 An introduction to JavaScript and testing 45

4.1 Characteristics affecting tests 46

4.2 Vocabulary . 51

4.3 Examining a JavaScript framework 52

4.4 Summary . 61

5 State of the art 63

5.1 Jasmine . 63

5.2 JSpec . 64

Contents v

5.3 JsTestDriver . 65

5.4 JsUnit . 66

5.5 nodeunit . 68

5.6 QUnit . 68

5.6.1 FuncUnit . 69

5.6.2 Pavlov . 70

5.7 Screw.Unit . 71

5.8 Sinon.JS . 71

5.9 TestSwarm . 72

5.10 YUI Test . 73

5.11 Others . 74

5.12 Feature mapping . 75

5.13 Summary . 80

6 Results 81

6.1 Test cases . 81

6.1.1 FizzBuzz . 82

6.1.2 Alias . 83

6.1.3 Twitter . 84

6.1.4 DOM manipulation . 84

6.2 Execution . 85

6.2.1 Standalone Jasmine . 87

6.2.2 Jasmine and Sinon.JS 89

6.2.3 JSpec . 91

6.2.4 JsTestDriver and Sinon.JS 94

6.2.5 Standalone QUnit . 96

6.2.6 QUnit and Sinon.JS 97

6.2.7 YUI Test . 99

6.3 Summary . 102

vi Contents

7 Discussion 105

7.1 Limitations of the research design and material 105
7.2 Personal experiences . 106

7.2.1 Difficulties . 107
7.2.2 Experiences with TDD in JavaScript 108
7.2.3 Effects from TDD in JavaScript 111

7.3 Level of testing . 112
7.4 Reviewing JavaScript characteristics 114
7.5 Reviewing frameworks characteristics 121

7.5.1 Redefining framework characteristics 131
7.6 Recommended test library features for unit frameworks 132

7.6.1 A Discovery test case 133
7.7 Testing terminology for JavaScript 136
7.8 Summary . 137

8 Conclusion 139

8.1 Further work . 144

Appendices 149

A JavaScript support functions 149

B Source code 151

B.1 Jasmine timing . 151
B.1.1 Abstracting away time 154

C Encapsulating timeouts 159

Bibliography 161

List of Tables

2.1 Summary of data findings by Shull et al.[1]. 13
2.2 Falsy values in JavaScript. 31

5.1 General characteristics of combined frameworks. 77
5.2 Release, support and community characteristics of combined

frameworks. 78
5.3 Library features of combined frameworks. 79

List of Figures

2.1 Interaction with the SUT i unit testing frameworks. 7
2.2 Means of interaction with integration testing. 8
2.3 Best viewed with Netscape Navigator and IE. 19

3.1 Project method: step by step. 40

4.1 Execution of tests in the browser. 54

5.1 A Jasmine example. 64
5.2 The JsUnit test runner. 67
5.3 Results from TestSwarm. 73

6.1 The FizzBuzz test case passed in Jasmine. 87
6.2 The DOM test case in with JsTestDriver and Sinon. 95
6.3 The test runner in QUnit. 98
6.4 The Console module in the test runner outputting YUI test

results. 101

7.1 Result of Listing 7.5 implemented and executed in the different
test runners. 124

Listings

2.1 A JavaScript function and method. 22

2.2 A Java method and function. 23

2.3 An example of prototypal inheritance in JavaScript. 25

2.4 An example of functional inheritance in JavaScript. 25

2.5 Inheritance in Java. 26

2.6 Closures in JavaScript. 27

2.7 The three ways of creating a global variable. 29

2.8 Decimal floating point arithmetic in JavaScript. 31

2.9 Equality in JavaScript with the double equals operator. 32

4.1 JsTestDriver TDD syntax. 55

4.2 Jasmine BDD syntax. 55

4.3 JSpec BDD DSL syntax. 56

4.4 Stubbing on a function for behavior verification. 58

5.1 An example of the JSpec BDD DSL. 65

5.2 An example configuration of JsTestDriver.config 66

5.3 Generative row tests and stubbing of specs in Pavlov. 70

6.1 Pseudocode for test case 1: "FizzBuzz". 82

6.2 Pseudocode for test case 2: "Alias". 83

6.3 Pseudocode for test case 3: "Twitter". 84

6.4 Pseudocode for test case 4: "DOM". 85

6.5 Part of the setup method in Jasmine 89

xii Listings

6.6 Invoking endGame from the setTimeout function through the
global scope. 90

6.7 The first test in the FizzBuzz test case in JSpec. 92
6.8 Setup with the use of JSpec’s fixture method. 93
6.9 Insertion of a div element in setup before each test method. . 95
6.10 Creating a common this environment for the fake timers. . . 99
7.1 Excerpt from a w3schools tutorial on Ajax. 109
7.2 Pseudocode for test case 4: "DOM" with line 2 commented out.115
7.3 Testing the changed DOM test case in QUnit. 115
7.4 Examples of testing with fake timers and content of parameter. 118
7.5 A test to reveal the lifecycle of a framework. 123
7.6 Jasmine mocks. 128
7.7 Sinon spy. 129
7.8 Sinon mocks[60]. 130
7.9 A test case to get to know the features of a new framework. . 135
A.1 An implementation of super in JavaScript. 149
B.1 Tests for Alias in Jasmine. 151
B.2 Source code for Alias in Jasmine. 153
B.3 Tests for Alias with time abstracted away. 154
B.4 Source code for Alias with time abstracted away. 156
C.1 Encapsulating time. 159

Glossary

continuous integration (CI) is a continuous process of applying quality
control, usually through automatic building and execution of tests. 68,
73

system under test (SUT) refers to the system currently being tested. Some-
times referred to as CUT (code under test or class under test). 6

Abbreviations and acronyms

API Application Programming Interface. 6, 7, 49, 50, 60, 129, 135

BDD Behavior-Driven Development. 3, 14–16, 33, 55, 56, 63–65, 69, 70, 74,
76, 79, 86, 122, 126, 134, 135, 137, 138

CI continuous integration. 49, 66, 68, 73, 75, 106, 121, 131

CMS content management systems. 53

CSS Cascading Style Sheet. 20, 106, 114

DOM Document Object Model. 18, 20, 21, 46, 48, 52, 53, 60, 68, 84, 88,
91, 95, 99, 114–116, 123, 126

DSL domain-specific language. 56, 65, 76, 91, 126

IDE Integrated Development Environment. 1, 2, 51, 54, 65, 110, 111, 125

IE Internet Explorer. 17–21, 43, 48

LOC line of code. 12, 48

MMF minimum marketable features. 16

MTTF mean time to fix. 12, 13

xvi Abbreviations and acronyms

OS operating system. 2, 48, 54, 106

SRL software readiness level. 39

SUT system under test. 6–8, 60, 129

TDD Test-Driven Development. 1–5, 9–16, 33, 36–40, 42, 46, 47, 51–53, 55,
56, 58–61, 64, 70, 71, 79, 82, 86, 102, 106, 108–112, 118–120, 122, 125,
126, 135, 137–139, 141, 142

UI User Interface. 46, 50, 60, 73, 106, 135

W3C World Wide Web Consortium. 17, 19, 20

XHR XmlHttpRequest. 59, 85, 88, 94, 99, 100, 106, 109, 110, 113, 120

Chapter 1

Introduction

JavaScript has changed from a small language for blinking web pages to a
full-fledged application programming language, available on client and server.
This has happened without the support of a traditional Integrated Develop-
ment Environment (IDE), and traditional testing and development methods.
This support is still lacking, but as the reach of the language widens, the
necessity for supporting technologies and frameworks grow. This thesis sets
out to discover and bridge some of the ground between JavaScript and unit
testing using Test-Driven Development (TDD). By utilizing techniques de-
scribed in TDD, the development and design process can be made more
iterative and the resulting application more correct, easier to maintain and
able to produce more business value.

1.1 Motivation

TDD has been around since the dawn of programming[2], but was "rediscov-
ered" by Kent Beck and made popular by his book "Test-Driven Development
By Example"[3] in 2003. TDD as a design technique encourages and helps
the developer to[2]

2 Introduction

• Be explicit about the implementation scope.

• Simplify design.

• Grow confidence in functionality as the source code is expanded or
changed.

• Separate logical design from physical design, and physical design from
implementation.

It can also provide a common platform for clear communication among
developers and other parties of interest, as well as being a valuable source of
documentation.

To realize and perform TDD effectively, there is a dependency on frame-
works. Efficient testing is easier achieved in IDEs like Eclipse, VisualBasic
and IntelliJ where plugins can be run as a part of the build process or at
the push of a button1. Currently there are no de facto standard either for
JavaScript IDEs or JavaScript testing frameworks.

An additional challenge with JavaScript is the inherent problem of mul-
tiple environments. JavaScript runs in different browsers with different ver-
sions, running different operating systems (OSs). If there are dependencies
to other JavaScript libraries, both these and their versions must also be taken
into account.

JavaScript is a dynamic language2, so developers with experience from
static languages can find that the structured approach that TDD represents
will manifest in better design. TDD also has a number of psychological
effects, like reduced anxiety, a higher level of communication and change in
team dynamics. The TDD process and effects are explained in Section 2.2.

1Examples of common frameworks are JUnit for Java and NUnit for .NET languages.
2JavaScript is explained further in Section 2.3.

Research question 3

Multiple JavaScript libraries exists for unit testing, TDD and Behavior-
Driven Development (BDD)3. Choosing the best fit is important to ease the
development and testing process. Tools already exist to help developers and
there is no need to duplicate existing technology or make testing harder than
necessary.

Motivated by the returns from utilizing TDD and how the techniques can
help the development, it is beneficial to explore what features are necessary
in a JavaScript TDD framework. This way, developers can easier choose the
right tool for their projects and start to realize these benefits.

1.2 Research question

On the background of the problem outline given in the section above, the
following research questions were defined

1. What available frameworks exist for unit testing with TDD in JavaScript?

2. Which test features are recommended for a JavaScript unit testing
framework?

3. What effect does TDD have on JavaScript development?

1.3 Contributions

The most important contributions in this thesis are:

• A recommended set of test features for a JavaScript unit testing frame-
work.

3BDD originates from TDD method and is explained in Section 2.2.4.

4 Introduction

• A Discovery test case created to quickly gain a lot of information
about a new framework.

• A set of differentiator in frameworks .

• A clarification on terminology in JavaScript testing versus xUnit frame-
works.

• A set of test cases that can be used to assess new frameworks.

1.4 Outline

Chapter 1 explains the motivation behind the thesis, presents the research
questions and gives the main contributions of the work.

Chapter 2 introduces background material on JavaScript, unit testing and
TDD.

Chapter 3 discusses and justifies the research method used in the thesis.

Chapter 4 introduces the combination of JavaScript and TDD, decomposes
the existing frameworks and establishes a common ground for discus-
sion in the following chapters.

Chapter 5 looks at the state of the art in JavaScript testing frameworks
and compares central characteristics.

Chapter 6 explains the result from applying the research method on se-
lected frameworks.

Chapter 7 discusses the findings of Chapter 6 with regards to the initial
research questions and the information from Chapter 4.

Chapter 8 concludes the findings and looks to further research on the topic.

Chapter 2

Background

2.1 Unit testing

Unit testing have been around since the 1970’s and was first introduced by
Kent Beck1 in the Smalltalk language. Today, the concept has been adapted
to a myriad of other languages. The definition of a unit test is as follows[4]:

A unit test is a piece of a code (usually a method) that invokes
another piece of code and checks the correctness of some assump-
tions afterward. If the assumptions turn out to be wrong, the
unit test has failed. A "unit" is a method or function.

There are also several properties a unit test must adhere to[4]:

• It should be automated and repeatable.

• It should be easy to implement.

• Once it’s written, it should remain for future use.

• Anyone should be able to run it.
1Who later rediscovered TDD, as described in Section 2.2.

6 Background

• It should run at the push of a button.

• It should run quickly.

With a unit test, the system under test (SUT) would be very small and
perhaps only relevant to developers working closely with the code[5]. A
unit test should only exercise; logical code, code that contains branches,
calculations or in other ways enforces some decision-making. Simple property
getters and setters in Java are examples of non-logical code.

2.1.1 Unit testing frameworks

Unit testing frameworks help developers write, run and review unit tests.
These frameworks are commonly named xUnit frameworks2 and share a set
of features across implementations[3, 4]:

• An assertion mechanism to decide the outcome of a test, usually an
variant of assertEquals(expected, actual).

• Fixtures for common objects or external resources among tests.

• A way of testing for exceptions.

• A representation of individual tests and test cases3 to help structure
test assets.

• An executable to run and review single tests or groups of tests.

Figure 2.1 shows the automation strategy of the xUnit frameworks. Tests
are hand-scripted on through an Application Programming Interface (API)
on a unit level. This gives more robust and maintainable tests that even can

2Where the x represents the language it is created to test.
3Test cases, also called test suites, are a way of representing a collection of tests.

Unit testing 7

be prebuilt. The tools required are simple and cheap, but require more skill
to apply and an existing API. Looking at the front of Figure 2.1 other types
of automation are given. Both scripted and recorded UI tests are available
with the Selenium[6] tool. Also FuncUnit4 is in this category. These tools
work primarily on a system granularity level.

The recorded API testing exercises the SUT and logs interesting interac-
tion points, and compares these with earlier runs or expected results. Cur-
rently, not many tool use this strategy. Recorded UI tests are performed by
robot users and are currently very unstable and give small returns.

Figure 2.1: xUnit framework automation strategy and SUT granularity. Fig-
ure adapted from Meszaros[5].

Unit testing have a surrounding set of test patterns that help enforce the
desirable properties described in introduction to Section 2.1. A small set of
these are explained below:

• Fake Object : replace a component that the system under test depends
on, with a light-weight implementation.

• Test Spy : capture the indirect output calls5 for later verification.

4Described in Section 5.6.1.
5Examples of indirect output is number of calls and arguments in the call.

8 Background

• Implicit Setup : build a common fixture for several tests in the setup-
method.

A more complete terminology and description of xUnit test patterns
can be found in Gerard Meszaros’ "xUnit Test Patterns: Refactoring Test
Code"[5].

2.1.2 Integration testing

This form of testing occurs on a higher level than unit testing, as demon-
strated by Figure 2.2. The definition of the term is as following[4]:

Integration testing means testing two or more dependent software
modules as a group.

With this form of testing, an error in the underlying units will be cascaded
up to the user or programmer with little clue of its originator. In general,
integration testing can be said to exercise many units of code to evaluate on
or many aspects, while a unit test will exercise a single unit in isolation.

Figure 2.2: Integration testing with the component as SUT. Note that
unit testing resides on a level of finer granularity. Figure adapted from
Meszaros[5].

Test-Driven Development 9

Integration testing can also be called component test as it verifies that
some larger component provides an expected service, either through an API
or UI. It is favorable that integration tests share the properties of unit test-
ing with regards to automatization and repeatability, but this is not always
achieved.

Many people confuse integration testing with the full system test. Testing
on a system level through the UI or API is a customer test or acceptance test
that validates the final deliveries of the system. Referring to Figure 2.2, this
would reside on system level granularity.

2.2 Test-Driven Development

TDD is a development methodology that has gained more attention in the
later years as different methodologies within the software business has emerged.
Dissecting the name, development suggests a full-fledged process with anal-
ysis, logical and physical design, implementation, testing, review, integra-
tion and deployment, and test-driven implies how concrete, automated tests
should drive the development process[7]. TDD also has the nickname test-
first programming.

2.2.1 The rules of TDD and their implications

There are two imperatives within TDD[3]:

• Write new code only if an automated test has failed

• Eliminate duplication

These rules are simple, but generate complex individual and group be-
havior. As a programmer, the rules imply that you must write your own
tests, as you cannot wait for someone else to do it. It also puts pressure on

10 Background

the development tools to provide rapid response to even small changes. The
design must be loosely coupled to make testing easy and it must be done
organically to support decision making between tests.

In addition, the two imperatives dictate an order when programming [3]

Red : Write a test that does not work, perhaps does not even compile.

Green : Make the test work quickly, committing whatever sins necessary in
process.

Refactor : Eliminate all duplication created in merely getting the test to
work.

The implications of the imperatives increases as the defect density de-
creases; dedicated testers can shift from reactive to proactive work and esti-
mation is easier as many bugs are taken out early. The "ultimate goal" in
TDD can be seen as shipping new software every day with the confidence
that it will work.

From this we can observe that TDD is an outside-in methodology. The
motivation for undertaking this methodology, and work from the known out-
side domain and towards a programmatic solution, is to manage anxiety
when programming[3]. Anxiety makes for less communication and feedback,
which in many cases is exactly what is needed. When doing TDD, advancing
in as small steps as necessary reduces this anxiety, while still knowing that
the code previously written is not impacted. This can also be seen as a form
of risk management for software development. It gives the programmer and
a team more confidence; in themselves, each other and the produced code.
Other benefits are tests as documentation, lower defect injection rate, decou-
pled design, openness to new business possibilities, easier maintenance and
scope control. The latter is important as programmers tend to "gold plate"
the code by adding nice-to-have features or designing the code for a case

Test-Driven Development 11

not (yet) presented. By using TDD, the design follows from the refactoring
phase and the code is built in such a way that it can easily be extended when
a new case is presented.

2.2.2 Programming with TDD

The goal of TDD is described by Ron Jeffries as "Clean code that works" [3].
The red/green/refactor - mantra can be split up according to this goal, to
allow the programmer to focus on the different tasks. The Green phase
solves the that works while Refactor deals with clean code. The split allows
a programmer to learn along the way and still get the task done.

It is important to keep in the red/green/refactor - rhythm to achieve the
steady progress. This means that a small round trip time can be the right
way to go, even if progress is achieved in tiny steps. If the steps taken are too
big, it can be difficult to trace an introduced bug. Also if it is not obvious
how to solve a problem, dividing it into even smaller tests, makes progress
slow and steady as opposed to a big and demotivating upfront design effort.
The programmers’ experience, both with TDD and the problem will decide
the size of the tests and the size of the refactoring steps.

To help the progress, TDD has adopted and adapted a set of test and
design patterns that fits into the different phases. These patterns provide
general solutions that can be adapted to the task at hand. Examples of
patterns are:

• One to Many: if programming with a collection of objects, first make
the test run with a single object, then implement the collection.

• Value Object: in an object that is widely shared and where state is
unimportant, all methods on the object should return a new object.

12 Background

• Extract Method: to make a complicated method easier to read, extract
a small part of it into a separate part.

More patterns can be found in Kent Beck’s "Test-Driven Development
By Example"[3].

Not all programming tasks are as easily solved using TDD. Software se-
curity, concurrency, shared objects, performance and user interfaces are do-
mains where the automated tests of TDD not yet works as a design driver.
There are also challenges when adopting TDD in the middle of a project,
TDD on enterprise level and when the dependency on third party code is
heavy[3].

2.2.3 Research results

The research community has not yet converged on the effects TDD has on
a project. There are many studies, but the differences between them, team
programming experience, attitude, knowledge and support by customer or
management, makes comparisons difficult.

A recent study by Forrest Shull et al.[1] summarized a range of earlier
studies as well interviewing expert Grigori Melnik from Microsoft. The three
areas of interest were delivered quality, internal quality and productivity.
Delivered quality were taken from metrics like mean time between failures
and time spent for quality assurance, as they are all pointing towards exter-
nal quality. Internal quality was from object-oriented structure metrics like
cohesion and coupling as well as code complexity and code density metrics.
Evidence of productivity was measuring development or maintenance effort,
effort per line of code (LOC), or effort per feature. The compared results are
summarized in Table 2.1.

The practitioner Melnik argues on delivered quality, as TDD does not
replace dedicated testers, but leaves them free to look for more serious bugs.

Test-Driven Development 13

He also claims TDD reduces the mean time to fix (MTTF) bugs, which is a
metric missing in the studies. Regards to internal quality, he strongly dis-
agrees, having experienced first hand an increase in quality on a project after
introducing TDD. Team maturity is pointed out as one of the main confound-
ing factors, making the comparison difficult between research studies and a
mature team at work.

On productivity, earlier studies are sending inconsistent messages, and
such no certain evidences are found. Melnik points to the length of the
studies as the learning curve can have a heavy impact on productivity, and
argues that maintenance of the code is a missing metric. His experience
suggested that TDD created less code, which also was easier to maintain,
and lowered the MTTF.

Janzen[8] found that TDD projects have lower code complexity and higher
test volume and coverage, but were unable to link this to lower coupling and
higher cohesion. Furthermore other studies[9] points out less quantifiable
benefits such as helping communication between developers, testers, clients
and other parts of the business. Janzen also found moderate evidence that
programmers who learned TDD, kept some practices when doing non-TDD
projects, indicating a methodology appealing to developers.

Drawbacks mentioned are maintenance of both production and test code
and the difficulties of getting the methodology "right"[10]. The latter fac-
tor is increased by a survey by Aniche and Gerosa[11], where 44% of the

Dimension Findings

Evidence of delivered quality Moderately positive evidence

Evidence of internal quality No special effect

Evidence of productivity No negative effects

Table 2.1: Summary of data findings by Shull et al.[1].

14 Background

respondents says that they forget to refactor code. With reference to the
Section 2.2.1, this would imply only code that works, which undermines the
TDD design strategy. In the study by Aniche and Gerosa, there are no corre-
lation between experience in TDD and forgetting the refactoring step. This
goes against expert Melnik, who saw team maturity as a heavy influencer on
how well the team managed.

Software experts Kent Beck and Robert Martin have both fronted for the
method[3, 12], arguing that it gives a low fault injection rate and lower defect
density.

In general, research shows no absolutes when it comes to TDD although
experts vouch for the methodology. No studies were found that researched on
the long-term consequences advocated by TDD such as extensibility, reusabil-
ity, and maintainability.

2.2.4 Behavior-Driven Development

BDD was first introduced by Dan North in his article "Introducing BDD"[13]
and is a methodology that evolved from TDD practices. BDD is a design
technique centering on user stories, which should be written in a language
understood by non-programmers. The latter fact allows business executives,
tester, users and other stakeholders to take a more active part in the devel-
opment. The user stories are centered on the syntax:

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Test-Driven Development 15

Scenario 1: Title
Given [context] And [some more context]...
When [event]
Then [outcome] And [another outcome]...

As with TDD, BDD is an outside-in design technique. In BDD the stories
are written first, then verified and prioritized by domain-experts, users and
other non-technical stakeholder. The programmer then creates the code to
accomplish the described stories.

BDD has three core principles[14]:

• Business and technology should refer to the same system in the same
way.

• Any system should have an identified, verifiable value to the business.

• Up-front analysis, design and planning all have a diminishing return.

The first core principle is solidified through the user story, written as seen
above, in a non-technical language. This notion of natural language follows
many BDD frameworks, even on a code level, as will be seen in Chapter 4 to 6.

The second core principle of adding business value can be seen in the
story as the So That [benefit] part. Advice is given to ask recursively why
the I want [feature] is necessary until (max. 5 times) one of the following
business values is seen[15]:

• Protect revenue.

• Increase revenue.

• Manage cost.

• Increase brand value.

16 Background

• Make the product remarkable.

• Provide more value to your customers.

This allows stakeholders to more easily prioritize and helps focusing on
the minimum marketable features (MMF) that will give the most value.

The third core principle has the same meaning as the TDD process. A
small as possible upfront design is done, rather the design is emerging through
testing and refactoring.

Together the principles help developers mitigate the risks of creating ex-
tra features or creating the wrong features. As of today, BDD has not yet
received much attention in the research community, but this may relate to its
age and because the research on its originating method, TDD, is still sparse
and with contradictory results.

2.3 JavaScript

JavaScript popularity has grown in the recent years and it has been claimed
as the worlds most popular programming language[16]. Almost all com-
puters today have at least one JavaScript interpreter installed on their ma-
chine, most commonly inside the browser. Currently browser vendors boost
JavaScript engines as the most important feature during product launches.
Also with the introduction of HTML5 the JavaScript APIs are being stan-
dardized and are now even more powerful. "Classic" programmers has ear-
lier shunned it as a lesser language, but training and innovativeness have
opened the eyes of a new generation of JavaScript developers. JavaScript
has been called the world’s most misunderstood programming language[17]
due to lousy implementations, amateur programmers and design errors, but
this is about to change.

JavaScript 17

2.3.1 History

JavaScript was developed at Netscape by Brendan Eich[18], hired from Sil-
icon Graphics. He wanted to write a Scheme6 interpreter for the Netscape
browser. Netscape gave the project a go, but with one exception, Scheme
was not a common programming language, so they wanted it to look more
like Java. Eich then took the functional model from Scheme, the syntax from
Java and the prototype model from Self7[20]. It is said that Eich was given
ten days to complete the project, so not all the ideas implemented was good
ones. The resulting language was called LiveScript.

At this point Netscape and Sun decided to cooperate to ensure a more
competitive environment against Microsoft, who competed with its Internet
Explorer (IE). Sun intended Java as a browser technology and LiveScript
became one of the most important problems in the merger. Netscape did not
want to kill the language, and it is said the someone as a joke suggested the
name change to JavaScript[21]. The suggestion hit, and even though Sun had
nothing to do with the development of LiveScript and that it was nothing
like Java, they still got ownership of the JavaScript trademark and Netscape
was given an exclusive license. Microsoft responded by reverse-engineering
the JavaScript engine in the Netscape browser, creating their own version
named JScript.

Netscape decided to try to standardize the project to avoid others extend-
ing their product, and approached World Wide Web Consortium (W3C). The
W3C was not happy with Netscape, the browser vendor had made a lot of
unstandardized additions to HTML, so they refused. Netscape at the end
submitted JavaScript for standardization at the European Computer Manu-

6A functional language derived from LISP, Scheme has lexical scoping and a fairly
simple syntax.

7An extreme dialect of Smalltalk, Self is a prototype-based dynamic object-oriented
programming language[19].

18 Background

facturers Association[22]. The new standard could not be named JavaScript
as this trademark was owned by Sun, and the committee ended up naming
the new language ECMAScript.

Today the name JavaScript, JScript and ECMAScript all refers to the
same language, but as JavaScript is a trademark now owned by Oracle8,
ECMAScript would be its correct name. This project will use the name
JavaScript throughout the report, as this is the name most commonly used
"in the wild".

As Brendan Eich designed JavaScript he simultaneously made important
decisions on designing the browser API that JavaScript was to interact with.
This API was called the Document Object Model (DOM). The HTML ele-
ments made scriptable in this API mapped exactly onto the elements of the
language HyperText9. The names from HyperText can still be seen today as
in the attribute onClick. This was the zero level DOM.

Some years later, Scott Isaacs picked up the API and made some im-
provements. He added the iFrame and made all HTML elements scriptable.
Later again, Netscape added the script tag, and Microsoft added the source
attribute, allowing a general separation of concern for the first time.

The early work on the DOM was bad for web developers, and it is rea-
sonable to say that it deserve some discredit for dragging JavaScript down as
a language. During the browser wars 10 Netscape and Microsoft engaged in
a spiraling attempt to out-innovate each other. They added unique features
and quirks, which made it exceedingly difficult to develop pages that worked
in both browsers. As a result images like the one in Figure 2.3) was common
on websites.

8Through acquiring Sun in 2010[23, 24].
9HyperText was designed as a programming language to bring expressiveness back.

10The competition between Netscape Navigator and IE to become the dominating
browser.

JavaScript 19

Figure 2.3: An example of earlier "best viewed with" image for IE and
Netscape.

The W3C, the official standards body, tried to negotiate with the com-
panies to achieve a standard, but were only partially successful. By looking
at the HTML tree in the different browsers today, we can see how they dif-
ferentiate by loading the same web page.

The HTML that was post-standardized after these events does not give
any guidance on how to parse documents, and as a reaction browsers are
mostly silently ignoring unknown tags. But in some cases, this has resulted
in a fault correction mechanism; tag insertion. Browsers will as an exam-
ple insert a missing head element, but the exact placement varies among
browsers. All browsers, but IE, insert text nodes for blank spaces. In gen-
eral, this makes it difficult for JavaScript to handle the tree traversal and
other interaction correct across different browsers. As a patch, HTML5 con-
tains a full parsing mechanism for web pages, and it is hoped that newer
browsers will keep to this, though it will take time before old browsers are
replaced.

The DOM also contains a pointer structure to parents, siblings and chil-
dren. For retrieving nodes, there are two options available. Either traverse
the tree structure or through methods as getElementById, getElementsByName
and getElementsByTagName. The two latter are not recommended to use due
to performance issues with the return of node lists. These nodes are possible

20 Background

for JavaScript to modify and add to. In some of these modifications, it is
needed to add to both IE specific attributes and W3C defined ones, making
DOM modification a complicated process to attain the same results in all
browsers. Also the DOM and the Cascading Style Sheet (CSS), although
aware of each other, decided on the least compatible way of writing; CSS
used hyphens to describe attributes, the DOM developers used camel case11.
Today we still experience the pain caused by the browser wars and W3Cs
early disagreement with the web community. Problems relating to event dis-
patching and the prevention of default event can also relate to this period
and the intensely competitive environment that JavaScript grew up under.

Suddenly, with the demise of Netscape, it all disappeared. Microsoft
decided that its .NET platform was the next thing, supported by researching
companies all saying the Internet had played its part[25]. Microsoft had
made the XMLHttpRequest, had made JavaScript for IE and made the DOM
usable, if not pleasant.

The next event in JavaScript history was the dawn of Ajax12 in 2005.
The term was coined by Jesse James Garrett[26], user experience designer
and co-founder of Adaptive Path. Together with a group of programmers
he was planning a way of doing partial page replacements instead of a full
replacement upon user interaction. This was to help site load speed and
make interaction easier and more responsive.

With Ajax, the developers started innovating on with browser software,
as opposed to browsers themselves, and using mainly on JavaScript as a tool.
The reason of this shift was the after-effects of the browser wars. Though a

11Camel case means that words are joined with the first letter capitalized, e.g. iAmWrit-
ingCamelCase.

12There is some confusion on Ajax vs AJAX. Garret described Ajax as asynchronous
JavaScript and XML, leading to the confusion an AJAX acronym. Today Ajax encom-
passes other technologies as well, especially JSON, so AJAX as an acronym does not refer
to the whole concept. Due to this, this thesis will stick to Ajax.

JavaScript 21

great source of innovation, the web was now filled with users on old browsers,
proving a barrier to the innovation of new software features. To make the
most out of this web tangle, it was time for innovation not in the browser,
but in libraries and browser add-ons. Web developers started to make Ajax
libraries to mask the problems of the DOM and to heighten the interactivity,
simply pushing the browser to an extent not thought possible. Ajax libraries
provides portability of a web page across browsers, masking the differences
and providing a simpler and more consistent API, leaving web developers
able to focus their attention on a higher level.

Currently the diversity between the libraries is high. JavaScript gurus
long predicted a shakeout between the libraries, but currently there are many
different ones, all maintained by a highly dedicated community. The libraries
all offer different programming models, widgets and inheritance model, leav-
ing the choice between them to the most difficult problem.

JavaScript became popular even though it had bad parts and a diffi-
cult interaction API. Originally, Java was intended to be the language that
brought interactivity back to the browsers, but this failed

JavaScript was needed to keep the web moving forward. HTML and CSS
had long ago surpassed their original scope and web design was getting harder
and harder to do correctly. George F. Colony, CEO of Forrester Research in
2000 said:

"Another software technology will come along and kill off the
Web, just as it killed News, Gopher, et al. And that judgment
day will arrive very soon - in the next two to three years."[25]

Ajax helped release the potential of the web and of the JavaScript lan-
guage and this makes web development significantly today. But historical
effects still prevail, IE 6 still has a 12 % market share worldwide13 and it was

13According to http://www.ie6countdown.com/.

http://www.ie6countdown.com/

22 Background

released in 2001. The evolution has come a long way since then, but develop-
ing for IE6 still sets websites back by years. New standards like ES5 and ES5
Strict14 go back and changes some on the inherent fault made in JavaScript,
but only by discontinuing the support for old browsers can JavaScript and
web standards move on.

2.3.2 The language

JavaScript is designed around some central features that make up the core
of the language. These include functions, loose typing, dynamic objects,
prototypal inheritance and an expressive object literal notation.

Functions The functions in JavaScript are first class objects and has, as
discussed in Section 2.3.1, taken a lot from lambda languages like Scheme
and LISP. They can be passed as any other variable and be an attribute of
an object. The scope in JavaScript is lexical and functional, so the functions
support something bigger; information hiding and encapsulations through
the use of closures. This is explained further in the Strengths section.

1 var person = {

2 name: "Tine"

3 };

4 person.getName = function () {

5 return this.name;

6 };

7
8 function add(i, k){

9 return i + k;

10 };

11 person.canAdd = add;

Listing 2.1: A JavaScript function and method.

14The two sets of ECMAScript version 5.

JavaScript 23

1 public class Person{

2
3 String name;

4
5 public Person (){

6 this.name = "Tine";

7 };

8
9 public String getName (){

10 return this.name;

11 }

12
13 public static int add(int i, int k){

14 return i+k;

15 };

16 }

Listing 2.2: A Java method and function.

Object literal The two examples in Listing 2.1 and 2.2 expose many dif-
ferences and specialties of JavaScript. Firstly the object literal notation

1 var person = {};

is exposed. This notation can add attributes as key-value pairs separated by
a comma. The key can be anything but the reserved words, and the values
have no restrictions. Secondly as functions are first class objects, it is possible
to assign it as a property of another object as done in line 12 in Listing 2.1.

In Java, the matter changes. The class based structure makes the creation
of new objects more cumbersome. Also the add function cannot be changed
from a static function to an object method.

Loose typing Loose typing can be best explained through what it is not. A
strongly typed language will impose restrictions on which types can interact

24 Background

and the compiler will detect any "wrong" types interacting and throw an
error. The compiler will at least stop the moment it reaches such a misuse.
Fans of loosely typed languages will complain that the time spent on type
conversion is not worth the time for bugs the compiler will fix. Returning
to Listing 2.1 and Listing 2.2, we see the Java code specifies the return type
of getName(), type of the name variable and input types in add(). The
JavaScript example does neither.

Inheritance The inheritance module, or model of programming, is also dif-
ferent within JavaScript, which employs prototypal inheritance15. This can
be a difficult concept to grasp for classically trained, object-oriented pro-
grammers. JavaScript has different patterns that can be applied to achieve
inheritance, but the main characteristic is that an object can inherit from
another object, as opposed to classes. The most common patterns are:

• Pseudoclassical: using a function that adds variables to this.

• Prototypal: adding variables to a function’s prototype object, which
will be inherited by all objects created by the function. Listing 2.3
provides an example.

• Functional: adding variables to an internal object and returning a ob-
ject containing accessor functions. Cascading this pattern creates in-
heritance as exemplified in Listing 2.4.

The differences in the patterns are the syntax, degree of information hid-
ing, flexibility and code reuse, as well as the use of functionality provided by
new and prototype.

The examples below make the differences between Java and the different
patterns in JavaScript visible. We have a car inheriting from a vehicle object
and its getWheels method, while overwriting the describe method.

15Not to be confused with the prototypal inheritance pattern.

JavaScript 25

1 function Car(spec) {

2 this.typeOfGasoline = spec.typeOfGasoline;

3 this.describe = function (){

4 return "I’m a Car with " + this.wheels + " wheels running

on " + spec.typeOfGasoline ;};

5 return this;

6 };

7 function Vehicle(spec) {

8 this.wheels = spec.wheels ;};

9 Vehicle.prototype.getWheels = function (){ return this.wheels;

}

10 Vehicle.prototype.describe = function (){ return "I’m a

Vehicle with " + this.wheels + " wheels"; }

11 Car.prototype = new Vehicle ({ wheels: 4});

Listing 2.3: An example of prototypal inheritance in JavaScript.

1 var vehicle = function(spec){

2 var that = {};

3 that.getWheels = function (){

4 return spec.wheels;

5 };

6 that.describe = function (){

7 return "I’m a Vehicle with "+ spec.wheels +" wheels"; };

8 return that;

9 };

10 var car = function(spec){

11 spec.wheels = spec.wheels ||Âă4;

12 var that = vehicle(spec);

13 that.describe = function (){

14 return "I’m a Car with " + spec.wheels + " wheels running

on " + spec.typeOfGasoline; };

15 return that;

16 };

Listing 2.4: An example of functional inheritance in JavaScript.

26 Background

1 public class Vehicle{

2 int wheels;

3 public Vehicle(int wheels){

4 this.wheels = wheels; }

5
6 public int getWheels (){

7 return this.wheels; }

8
9 public String describe (){

10 return "I’m a Vehicle with "+ this.getWheels () + " wheels

"; } }

11
12 public class Car extends Vehicle{

13 String typeOfGasoline;

14
15 public Car(int wheels , String typeOfGasoline) {

16 super(wheels);

17 this.typeOfGasoline = typeOfGasoline; };

18
19 public String describe (){

20 return super.describe () + ", more precisely; a Car with "

+ this.getWheels () + " running on " + this.

typeOfGasoline; }

21 }

Listing 2.5: Inheritance in Java.

There are many differences to be pointed out in the example listings
above. The code in Listing 2.3 forces a car to have four wheels, while List-
ing 2.4 gives a car four wheels unless else is specified. The JavaScript exam-
ples works on an object level using functions and the Java example works
exclusively on class level. It is important to note that Java has easy access
to the inherited methods through super, this connection has to be created
by the programmer in JavaScript. An example implementation by Douglas
Crockford can be found in Appendix A.

JavaScript 27

The pseudoclassical pattern are demonstrated in Douglas Crockford’s ex-
cellent book "JavaScript : The Good Parts"[27]. All the inheritance patterns
have their strengths and weaknesses, but this alone is a big difference from
other classical languages, exemplified by Java. In Java there are no "other"
way of doing inheritance, the syntax and setup will look more or less the
same across files and among web developers. In JavaScript the different in-
heritance patterns can create confusion and it is far easier to introduce bugs
and unintended behavior.

Strengths

number type Starting of with a look at the types found in JavaScript
it has a great strength in its simplicity. There is only one type of number,
corresponding to Java’s double, which help avoid a great set of issues related
to overflow and other numeric errors. Though it introduces a weakness with
regards to decimal fractions explained in the next section.

Variables The ease of the type systems is in general a great strength for
JavaScript. Creating new variables are made easy and the loose typing sys-
tem simplifies interaction between objects. New variables are created with
the keyword var and objects and array are created through the use of literals:

1 var object = {name: "Tine", age: 23} // object literal {}

2 var array = ["one", 2, "three"] // array literal []

Closures The lexical scope in JavaScript provides the option for closures.
This means that the inner function always has access to the variables of the
outer function, even when the outer function has returned.

1 var person = function (name , age) {

2 var getName = function (){

3 return name;

28 Background

4 };

5 var getAge = function (){

6 return age

7 };

8 var getOlder = function (){

9 age = age + 1;

10 return age;

11 }

12 return { getOlder : getOlder ,

13 getAge : getAge ,

14 getName : getName };

15 };

16
17 var t = person("Tine", 21);

18 t.name // undefined

19 t.age // undefined

20 t.getName () // "Tine"

21 t.getAge () // 20

22 t.getOlder () // 21

23 t.getAge () // 21

Listing 2.6: Closures in JavaScript.

As seen in the listing above, a lot of features usually seen as object ori-
ented can be achieved in JavaScript as well. The code in Listing 2.6 creates
private variables for each person object that is created. The variables of
person can only be interacted with through the functions in the returned
object.

Closures are powerful for information hiding and encapsulation and a
definitive strength of JavaScript, but at the same time, they can be difficult
to understand and apply correctly.

JavaScript 29

Weaknesses

As Section 2.3.1 shows, the language was developed over a short period of
time. This inevitably led to some bad design elements and in general, the
features described in this section needs to be avoided as much as possible.

Global object One of the worst, or perhaps the worst part is the global
object. This is the same as the window object in browsers. Any variable
declared as a global variable is visible to all scripts running on a page. As
the scripts increase in size the risk of a name collision increases, and they
can end up modifying each other’s variables, without any compiler or runtime
warning. This is difficult to diagnose as the number of scripts increase. On
today’s websites JavaScript are utilized more and more, so it gets more and
more likely for a name collision to happen. If the scripts are independent
subprograms, it is a risk that this is not discovered during tests.

There are three ways of creating global variables, which are shown in
Listing 2.7.

1 //By declaring a var outside a function

2 var a = {};

3
4 //By using a variable without declaring it, it is implied

global

5 a = {};

6
7 //By adding it as a property to the global object in browsers

8 window.a = {};

Listing 2.7: The three ways of creating a global variable.

Scope The scope in JavaScript is also made to confuse. In most languages
containing curly bracket blocks, {}, have block scope. This means the vari-
ables declared inside the scope are not visible outside. JavaScript has func-

30 Background

tion scope; all variables declared inside a function are visible inside the func-
tion. This is why it is considered a best practice to declare all variables at
the top of the function.16

NaN Another bad feature is the concept of NaN or Not a Number. This
is the result of an operation not possible, like dividing by 0 or converting a
non-numeric string to a number and can happen because of the loose typing
apparent in JavaScript. A chain operation where this is the case with one of
the operands, the end result will be NaN. The developer must then try to roll
back to the operation that created the first NaN result. There are also some
other interesting and non-intuitive aspects of Nan:

1 typeof NaN === "number" // true!

2 NaN === NaN // false

3 NaN !== Nan //true

The function isNaN() that checks whether the argument is NaN, but the
safest way is to do a typeof check and isFinite(), as the latter also excludes
the number value Infinity.

Arrays Arrays in JavaScript are also not as good as in other languages,
mostly with regards to performance. The JavaScript array is an object
simulating an array. The means that the typeof operator does not dis-
tinguish between an array and an object, though it is possible to test for
this.constructor === "Array". Since arrays are only modified objects
they do not have the performance gain given in other languages, but it makes
them easy to use. There is no default sort and there is no need to decide
a length of the array, although the length property exists. The insertion
in arrays are done through hashing, which in dense arrays, is more or less

16Ta med hoisting?

JavaScript 31

similar to a linear search. Because of this, arrays in JavaScript are best used
when the keys are integers in a natural order.

Falsy values JavaScript has a set of so-called falsy values. These values
evaluate to false when converted to booleans and they can be confusing in a
while-loop or if statement. These values are shown in Table 2.2.

Value Type

0 Number

NaN Number

"" : empty string String

null Object

undefined undefined

false Boolean

Table 2.2: Falsy values in JavaScript.

Decimal numbers JavaScript only have one number class, which in many
ways are very convenient. The standard used are binary floating points,
which introduce a major issue, as the decimal fractions in this standard are
not handled. In the listing below, the problem is illustrated.

1 var i = 0.1;

2 var j = 0.2;

3 i+j // 0.30000000000000004

4 (i*100 + j*100) /100 // 0.3

Listing 2.8: Decimal floating point arithmetic in JavaScript.

As demonstrated, the decimals need to be multiplied before they can be
accurately added and then reverted back to decimal numbers.

32 Background

Equality The equality operator as we know it from other languages tests
for equality in objects when used twice (==). JavaScript has two versions of
equality tests (==) and (===). The latter works as expected, returning only
true when the objects are of same type and have the same value. The former
tries coerce if the objects are not of the same type, and the result renders
the operator highly unstable, as there are no transitivity and many special
cases. It is advised to always use the triple equality.

1 ’’ == ’0’ //false

2 0 == ’’ //true

3 0 == ’0’ //true

4
5 false == ’false ’ // false

6 false == ’0’ //true

Listing 2.9: Equality in JavaScript with the double equals operator.

new In the pseudoclassical inheritance pattern the new operator is used
on custom constructor functions. A call with new creates a new object that
inherits from the objects prototype and then binds the operand to this. This
gives the construction function the ability to modify the object before it is
returned. If a constructor function is called without new the function uses the
global object as this, using and updating global variable for each call. There
are no warnings on this practice. The best practice of capitalizing constructor
functions gives a visual clue that the function is to be used with new. An
alternative implementation is to use a create function as demonstrated in
Appendix A.

There are also other parts of the language that are better not used, either
because of obscurity or the risk of doing it wrong, as well as known syntactic
bugs. For a full reference of the recommended subset of JavaScript, Dou-
glas Crockford’s book "JavaScript : The Good Parts" [27] is recommended.

Summary 33

Here is also the syntactic code checker JsLint introduced. JsLint is a tool
that scans the input code for syntactic errors and discrepancies from code
conventions, providing developers with another set of "eyes" to check their
code.

2.4 Summary

This chapter has covered a lot of ground on the separate topics unit testing,
TDD and JavaScript. The concept of unit test and corresponding properties
has been covered and the xUnit frameworks described. The methodology
of TDD has been introduced, the red/green/refactor - mantra and how to
use patters to achieve the right progress. Also current research on TDD has
been covered and it was found that the method holds inconclusive results
with regards to measurable effects, although experts vouch for it.

BDD has been introduced as an offspring of TDD and it was shown how
it is utilizing natural language to ease communication with stakeholders.
Integration testing has also been covered to attain insight on the possible
higher levels of testing.

The main features of JavaScript have been pointed out, and how these
differ from classical object-oriented languages, exemplified by Java. The
strengths and weaknesses of the language have been discussed as well as its
history.

Chapter 3

Research method

This chapter will look at and explain the research method applied during the
work with this thesis. Further it will discuss the limitations with regards to
the chosen method, and present the justification behind the choice.

3.1 Literature study

As an introduction to the topic, a literature study was conducted to evaluate
the research done on this area. A search was done on the following keywords
and combinations of them:

• Frameworks evaluation.

• JavaScript.

• Unit testing

• Test-Driven Development.

The search results were drilled down into to make it more relevant and
discover potential studies.

The search was conducted on the following platforms:

36 Research method

• IEEE Xplore[28]

• SpringerLink[29]

• ACM Digital Library[30]

It was found that little study had been done on any of the topics com-
bined, which lead to a revision of research method, as described in the next
sections.

3.2 Research methods

This section explains the different research methods that were considered
and why they were ultimately discarded. This provides the background for
the choice of method, which is explained in the next section.

3.2.1 Qualitative methods

A qualitative approach to the research questions would be to gain a deeper
understanding of performing and reasoning around tools for unit testing with
TDD in JavaScript, as well as more information around context and evalua-
tion. The research questions posed in Section 1.2 could be answered though
interviews, group discussions and well as observations and field studies with
experts and/or teams working with the topics. If previous studies had been
published, analyzing a group of similar cases could give insight to a larger
context, possibly testing a new hypothesis for Research Question 3.

The issue with this approach is the lack of previous studies on the topics
and the relatively small known adoption of JavaScript TDD techniques in
companies. Because the scope of this thesis could not include a mapping of
companies using TDD tools on individual projects, the qualitative approach
was discarded.

Research methods 37

3.2.2 Quantitative methods

Quantitative methods are used to collect information in a structured way
to answer a set of hypotheses. Using statistics or collected empirical data
through observation, the research questions in Section 1.2 could give answers
less connected to individual or a group of cases. E.g. a survey connected to
the research questions conducted on groups developing with and without a
TDD approach to unit testing JavaScript.

Problems with a potential survey would be that the sample of companies
using TDD and JavaScript would be too small to give statistical verification
to the results, and not many companies were known to develop this way.
With regards to the duration of this thesis, only a small amount of time
could be spent on finding companies and if this number came out to small,
the thesis could not be concluded and such another method had to be chosen.
This risk was not acceptable, and a survey approach could not be used.

Observations on different teams is similar to the research conducted and
described in Section 2.2.3; the actual comparison is difficult to internal and
external differences among teams, creating doubts on the exact source of
discrepancies in measurements. This form of observation would be out of
scope of this thesis, due to experience, duration and resources.

3.2.3 Feasibility prototyping

Feasibility prototyping is a form of software prototyping found within the
method of systems analysis and is described as[31]:

[...]feasibility prototyping is used to test the feasibility of a specific
technology that might be applied to the business problem[...]

This would mean to create actual prototypes that can be tested in on an
existing business problem to determine its fit within the domain.

38 Research method

The general goal of systems analysis is to dissect a system and study
the interaction between the entities[31, 32] and the feasibility prototype will
be one of these entities. The prototype sets out to prove a set of technical
assertions and will verify that the architecture and total system solution will
fulfill the business needs. It will act as a proof of concept for the details
implemented in the prototype.

The problem with regards to feasibility testing in this thesis is the lack
of a business problem to integrate the prototypes with. Is would be possible
to formulate a business problem to reflect the research questions, e.g.

The business want to use TDD and similar techniques to test its
JavaScript application development.

Feasibility prototyping would then be applied to this problem with the dif-
ferent framework to find the best fit.

The issue with this approach is the "invention" of a business problem.
This would be an insistence on a fit between the research questions and
thesis methodology. The method needs a real business problem, and this
leads to discarding feasibility prototyping.

3.3 Adopting demo and proof of concept - meth-

ods

The three methods described above have their origins in different parts of
computer science. The two first methods belong with the traditional do-
main of computer science, while the last are place more within the domain
of software engineering. The traditional sciences have formulation of hy-
potheses and testing these as central[34], while software engineering are more
concerned with problems around design, construction and maintenance of in-
dustrial software[34]. Referring to the discussion above, the lack of resources,

Adopting demo and proof of concept - methods 39

time and experience hinder a traditional approach, while the lack of industrial
application and a business problem hinders the feasibility prototyping.

The reason for this can possibly be the current software readiness level
(SRL). SRL is defined by the US Department of Defense to assess hardware
and software readiness, where level 1 is least ready and 9 is fully operational
at no risk. Initially, JavaScript unit testing frameworks seem to be on level
6, defined as:

Level at which the program feasibility of a software technology is
demonstrated. This level extends to operational environment pro-
totype implementations where critical technical risk functionality
is available for demonstration and a test in which the software
technology is well integrated with operational hardware/software
systems.

The next level emphasizes full existing documentation, which is lacking
for many frameworks, and the lower level only indicates prototype implemen-
tations.

The low SRL can be a reason for the low recognized adoption of JavaScript
unit testing frameworks, and also the reason for the limited current research
on the area.

With this backdrop it would be most appropriate for this study to provide
an incentive to further research by providing a demo and a proof of concept
for JavaScript unit testing with TDD. The study can this way give a starting
point for new studies and discover new aspects that need clarification, while
reducing the chance for choosing fruitless directions in the future. It is also
expected that the study can illustrate a potential in the frameworks and TDD
methodology, providing an incentive to framework developers and further
business adoption.

40 Research method

3.3.1 Process description

Using the above arguments, the study’s method will be based on exploration
of the current state of the art and issues found when interleaving the chosen
topics, TDD, unit testing and JavaScript.

The evaluation of the frameworks could be done with proof-of-concept
test cases, designed to address a specific concern found within JavaScript
testing. The test cases, when carefully chosen, will address these concepts
and provide a better background for evaluating the frameworks.

The process in the thesis is described in the Figure 3.1.

Figure 3.1: Project method: step by step.

The steps 2 to 6 can be done iterative to account for learning throughout
the project. This can be a buffer since the concepts discussed have no found
previous research. The iterations will allow revision of subparts according to
experience gained when working in the domain.

Literature study

This part provides the background on the separate topics. Using the sources
from the initial literature study in Section 3.1, TDD can be researched. When
learning a new language, it was considered convenient to use recommended
book, and here JavaScript guru Douglas Crockford’s book "JavaScript : The
Good Parts"[27] have been used together with "Object-Oriented JavaScript"
by Stoyan Stefanov[35].

Adopting demo and proof of concept - methods 41

Unit testing has also been well described in books, here Gerard Meszaros’
"xUnit Test Patterns : Refactoring Test Code"[5] and Roy Osherove "The
Art of Unit Testing"[4] have been used.

This part maps to Chapter 2 of this thesis.

Map unit testing and JavaScript

This section would need to go from the general testing of JavaScript to con-
crete issues when doing unit testing. To answer some questions and pro-
vide insight, the Oslo XP meetup "Test-Driven JavaScript with Christian
Johansen and Fabian Jakobs" was attended on the 24th of January. Also a
copy of Johansen’s book "Test-Driven JavaScript Development"[36] was read
to learn from the challenges he met.

This section would provide some digging into the features of existing
framework, so the work in this section would be somehow parallel with the
research for Step 3 in Figure 3.1.

The result of this work maps to Chapter 4.

Explore current frameworks

Through using search engines, books and databases, a search for current
framework could be conducted. Explaining the found frameworks according
to the general unit testing features and JavaScript specifics would be impor-
tant. Other characteristic could also be given weight, e.g. support and last
time updated.

The result is found in Chapter 5 and this answers Research Question 1.

Develop test cases

Step 4 in Figure 3.1 takes aim to develop pseudocode for set of test cases that
will cover the relevant features needed for general unit testing and specific

42 Research method

JavaScript issues. These will be uncovered by Step 2 in the research method.
The test cases take aim to describe a program to be developed with a TDD
process, and the descriptions will be minimal to ensure no assumptions are
given.

The test cases need only to encompass a small set of features, just enough
to cover the aspect necessary to evaluate.

This step maps to Section 6.1.

Run test cases

Before the tests are run, an assessment of the found frameworks needs to be
done. The thesis may only need a subset of the frameworks to be covered in
order to answer the remaining research questions.

When this is decided, the test cases will be developed with a TDD process
with unit test. No minimum test coverage is set.

The development will happen on a personal laptop with a number of
current browsers installed, a MacBook Air running Mac OS X version 10.6.7
with browsers Firefox, Chrome, Safari and Opera installed.

The result of this part is covered in Section 6.2

Evaluation and discussion

The last section will evaluate the development of the test cases in the different
frameworks and discuss the findings. This section will answer the remaining
research questions based on the results from the execution.

This is done in Chapter 7.

Limitations 43

3.4 Limitations

In any research project there will be limitations due to different factors. In
this thesis, the factors are

• Low personal experience will affect the difficulty of development, which
can again affect results and evaluation.

• Research for JavaScript testing on enterprise level are out-of-scope.

• No known previous research or comparisons are done.

• The time for execution of the project are limited and such the pro-
grammatic output is limited to a proof of concept.

• The frameworks are evaluated outside a development project, making
the conclusion non-applicable for all situations.

• Recreating the study may be difficult as it is dependent on program-
matic experience.

• Hardware limitations does not allow the test cases to be executed in
IE1.

3.5 Summary

This section has explained the reasoning behind the choice of research method.
As no previous research has been done, the process will result in a demo and
proof of concept. This cannot be regarded as scientific evidence, but will pro-
vide a background and incentive, and be illustrative for traditional computer

1IE can run on Mac OS X through various extensions, but it demands other types of
software not available for this thesis.

44 Research method

science and software engineering methods that seek to elaborate on specific
factors, hypothesis or industrial applications.

The process itself is described in Figure 3.1, and consists of six steps.
These range from background material to development and execution of test
cases to cover general and specific issues related to unit testing in JavaScript.

Chapter 4

An introduction to JavaScript

and testing

In loosely typed languages such as JavaScript, testing is what keeps the
application together and give developers confidence to make changes to ex-
isting code. This chapter will introduce the reader to the concepts around
JavaScript and testing. Firstly, an overview will be given of the JavaScript
features that affects how and what kind of testing can be done. Secondly, a
vocabulary is introduced to more clearly distinguish the differences and to
assure consistency during the course of discussion. Lastly, a closer look will
be taken at important differentiators in the frameworks.

The concepts introduced in this section are based on prestudies to frame-
works described in Chapter 5 and the background gained in Chapter 2. The
section seeks to establish a common vocabulary for discussion and further
evaluation of JavaScript testing frameworks and unit testing in particular.

46 An introduction to JavaScript and testing

4.1 Characteristics affecting tests

In the following section a set of characteristics of the web language JavaScript
will be presented. Their influence and level of testing are discussed, according
to the research method presented in Chapter 3.

Interaction

JavaScript is used to interact with the User Interface (UI) through
HTML and CSS.

JavaScript acts through the DOM to interact with HTML and CSS to
change the behavior and look of a site. The different implementations of the
DOM have resulted in another characteristic of JavaScript, namely cross-

browser execution, which is discussed later.

To be able to test JavaScript and HTML interaction, the relevant piece
of HTML code must be available to the test. One solution would be to run
the tests on a live site in a production environment. To be able to execute
fast and independent of external resources as encouraged by TDD and unit
testing1, this is not a good solution. Instead of the test running in the HTML
domain, the HTML can be inserted in the test domain. This means that the
HTML code needed is included in the test cycle. This is an example of an
external fixture. It would be important that the framework could handle
correct setup and teardown to ensure test isolation.

Pure look or UI is beyond unit testing frameworks2 and will not be con-
sidered when exercising the frameworks and reviewing the results. But as a
professional domain, this is one of the areas where TDD development has not
yet reached, mostly because of a lack of tools. Testing of user interfaces is

1This is discussed in Section 2.1.1 and 2.2.2.
2Referring to Figure 2.1 on page 7.

Characteristics affecting tests 47

still in a large extent manual. Kent Beck has argued that TDD can be used.
Variants of integration and acceptance testing3 can be used to test reaction
to user input on different granularities referring to Figure 2.2.

Responsiveness

A website that does not respond or respond slowly will lose users

This characteristic is about the users’ experience of a website. A user per-
ceiving a site as unresponsive will quickly dismiss the site out of frustration
or distraction. It was found that an increase in server delay from 1 to 2
seconds, made users increase their time to click4 from 1.9 to 3.1 seconds[37],
which indicates a distraction. The same experiment found no changes in rev-
enue/user for 0.2 seconds or lower, but from 0.5 to 2 seconds delay, revenue
dropped from in a range from -1.2% to -4.3%.

To attain a responsive site, a lot of technologies need to cooperate and
JavaScript is only one part. Load times, slow internet connection, server de-
lays, non-optimal loading or round trips are examples of such issues. Simple
tricks as minifying5 and zipping files can make a difference. In general this
makes benchmarking code on JavaScript engines less important, as it does
not test in a natural environment nor tests effect on perceived experience.

Performance testing is a an area that is not very well covered, and on
of the initial areas where Kent Beck states that TDD still has issues[3]. In
his book[38], Christian Johansen describes how new Date can be used to
time the execution of methods, but this can currently only be done with an
HTML test runner. It is also dependent on a given time limit or multiple
implementations to check who is the fastest.

3Integration testing is covered together with acceptance testing in Section 2.1.2.
4A measure of how long it takes until the user clicks on the site again.
5Minification refers to the practice of wiping a document of unnecessary characters,

such as whitespace and comments, to reduce file size.

48 An introduction to JavaScript and testing

In general, JavaScript performance can be improved in many ways. First,
speed is dependent on the right algorithms and data structures. Second,
costly DOM operations can be minimized, e.g. always use lookup by ID
instead of traversing the nodelist with class or name lookups. Lastly, some
browsers have slow spots, e.g. IE should always have defined variables, its
slow lookup back to the global scope is generally known to take time. The
eval function is slow across browsers and should be avoided.

It is important to remember that execution speed (in LOC) is a trade-
off with file size (as loading time), because all JavaScript scripts need to be
downloaded. This usually leads to code optimization on hotspots together
with minification of script files.

In total, responsiveness is primarily not an important aspect when doing
unit testing, because of the limited testing and test isolation. This charac-
teristic will be disregarded in the execution and results of this thesis.

Cross-browser execution

The JavaScript code needs to work across browsers and operating
systems.

Users expect the site to look and behave the same across browsers and
OS’s, but this is not achieved automatically due to the various versions of
JavaScript and differences in DOM implementation in browsers6. This intro-
duces another challenge for a testing framework, as the tests should optimally
run in all browsers on all platforms in a quick and effortless way to fulfill the
unit testing characteristics.

6Both are introduced in the History Section 2.3.1.

Characteristics affecting tests 49

Complex logic

JavaScript can be used for development of enterprise applications,
indicating bigger and more complex logic.

JavaScript has gained popularity in application development, both on
client and server and up to an enterprise wide level. Innovations such as
node.js7 also makes server-side8 testing highly relevant.

The sheer number of files involved as the source code grows, puts more
pressure on readability, separation of concerns, configuration and deployment
of the testing tool. Also, the potential for integration with a continuous
integration (CI) system can be important, depending on the way the code is
managed.

When the number of tests increases, the speed of the individual test run
is also more noticeable. This means that tools must have efficient testing
mechanisms, and be able to abstract away external dependencies to avoid
relying on systems outside its control.

Server-side code and parts of application code will have in common that
they do not rely on the browser’s API, which opens to new execution models
outside the browser. This gives the testing tools new opportunities to achieve
the desired speed, configuration and deployment.

Asynchronous code

JavaScript uses asynchronous code in Ajax calls and timing func-
tions.

Asynchronous code leaves a function and its current scope on the stack
for later execution, even after the original invoking function has returned.

7A server-side JavaScript environment that uses a asynchronous event loop[39].
8Testing outside the browser and browser API.

50 An introduction to JavaScript and testing

This implies that testing an asynchronous piece of code must wait until this
function on the stack has executed before validating the result, as the return
value of the function under test will not be relevant. The function on the
stack will run as a response to an event, a state change in the case of Ajax
or a timer running out. This means that a testing tool must either be able
to pause the test and wait a certain amount of time before validating, fake
this interval or use xUnit patterns to abstract away the dependency.

When testing with the JavaScript timing mechanisms9, the developer will
know the correct interval to wait, as this needs to be specified when invoking
the async function. The testing tool should be able to fake the duration of
the actual waiting time, or change the design to abstract the wait away. If
not, the developer risk waiting before the test results return, or not being
able to test the timing mechanism at all. This will either result in lower test
coverage or breach on unit test principles again causing an disturbance in
the red/green/refactor cycle10.

The reliance on Ajax is also an external dependency that creates an in-
terval before execution that is not decided by the programmer. The external
dependency refers to the site that receives the request. This site is beyond
the control of the developer and the test is suddenly dependent on the cur-
rent connection between the server site and the test machine, as well as any
internal factors on the server. These are irrelevant to the code under test,
and they are favorable to fake or abstract away to return the control of both
time and the actual response to the programmer. If the framework does not
provide faking, the testing must be done in a different manner, by chang-
ing design, reducing the test coverage or to introduce the dependency and
increase wait time against the red/green/refactor cycle.

9Like setTimeout and clearTimeout.
10Explained in Section 2.2.1.

Vocabulary 51

If a wait is introduced, the test risk failure even with correct response, if
that response is returned after the wait interval set by the programmer.

The asynchronous characteristics and solutions are applicable on all sys-
tem level granularities, but it will possibly demand more setup on coarser
levels, depending on exposed API or UI and execution environment.

4.2 Vocabulary

The following terms will be used in the coming chapters to more accurately
describe the available technologies for unit testing in JavaScript.

The terms are derived from Meszaros[5]:

• A test library is a collection of methods to help preform unit testing
patterns. A test library has no way of running the methods on its own,
but it will decide the lifecycle11 of the tests.

• A test runner will execute the test methods programmed with a test
library and return the results. Multiple interface variations exist, the
most common are graphical and command line.

• A test framework includes a test library for writing tests and a test
runner for execution.

The terms are taken from the xUnit framework family and can be ex-
tended to JavaScript tools. There seems to be some confusion on the naming
of different parts in a framework, so these clarifications are meant to provide
a common ground for discussion.

11The sequence of setup, individual tests and teardown methods.

52 An introduction to JavaScript and testing

4.3 Examining a JavaScript framework

JavaScript IDEs do not provide the same help as IDEs for static typed lan-
guages like Java and C#12, which leads to a lack of a de facto JavaScript IDE.
This again prevents the community to standardize on a single testing frame-
work. Furthermore, debugging has in the past been manual through alert
statements and browser extension like Firebug[40]. For TDD it is important
that the language and environment support a short round trip time in the
red/green/refactor cycle13 to help realizing the design and test patterns.

This section will describe the most important differentiators in JavaScript
unit testing frameworks:

• Environment

• Execution

• Syntax

• Test library

The four sections were chosen based on what was found during research for
Chapter 5, as these were the main factors where the researched frameworks
differed. These will act as reference points when evaluating the frameworks
and they are furthermore discussed and revised in Section 7.5.

Environment

The most natural environment for a JavaScript application14 is the browser,
and in many situation the JavaScript will depend on the browser’s DOM

12This is especially concerned refactoring operations.
13As described in Section 2.2.2.
14JavaScript application is a common denominator for JavaScript files, script or appli-

cations running in the browser.

Examining a JavaScript framework 53

in order to function correctly. As explained in Section 2.3.1, the DOM has
many shortcomings that need to be circumvented, but in situations where
the JavaScript does not communicate with the DOM, the code can in fact
be executed in an environment simulating the browser’s JavaScript engine.

Execution outside the browser turns more useful as JavaScript have gained
popularity as a server-side language and applications grow larger and more
complex15. At this point the internal logic of the application can be verified
in a simulated environment as it is the JavaScript on the client-side or in a
dedicated content management systems (CMS) that will handle the DOM
communication.

Currently, Mozilla supports Rhino[41], a JavaScript engine implemented
in Java. Rhino provides the general execution model of JavaScript without
the browser DOM API, but this is possible to simulate with John Resig’s
Env.js[42].

Execution

The main difference when it comes to execution of tests, would be whether
the programmer needs to consult the browser or not to get results. Refreshing
the browser for each test run is easy to implement and configure, but is not
as fast and effortless as TDD process dictates.

The problem will increase according to the number of browsers that need
to run the tests as they all will have to be opened and refreshed manually.
The advantage of this method is the transparency offered – the library itself
will be a .js file, making it easy to explore and extend using already known
techniques. Many test runners will utilize this type of in-browser testing,
creating a HTML page where the test and source files are loaded through
script tags. For test libraries it is possible for programmers to create an own

15This is a characteristic mentioned in Section 4.1.

54 An introduction to JavaScript and testing

Figure 4.1: Execution of tests in the browser, exemplified by QUnit.

in-browser test runner by utilizing the library’s method. This is showcased
in the book "Test-Driven JavaScript Development"[43].

The alternative to in-browser is called headless testing. This implies that
the tests are run from the command line or from inside an IDE, and the
results are returned to this interface. They can run the tests in different
environments, some run tests in Rhino, while others push the tests to a
browser16 and showcase only the returned results.

Headless testing can have more demanding setup with regards to con-
figuration of local servers and potential connections to browsers or remote
machines. The source and test files needs configuration to ensure correct ref-
erencing and, in some cases, monitoring operations searching for file updates.
The process can give returns when tests are run in multiple browsers with
less effort.

Section 2.3.1 introduced the Ajax libraries as another layer on top of
browsers. These libraries also need to be taken into account when testing.

16This might need a browser opened by the user, but the browser will still not be
consulted in order to see the results.

Examining a JavaScript framework 55

This means that the tests need to be run i∗j ∗k times to account for browser
version, OS version and Ajax library version.

Syntax

The syntax of the framework is created to support a chosen methodology,
which in this thesis will be TDD or BDD. A TDD syntax is of pure JavaScript
with library methods similar to the xUnit frameworks. This is showcased in
the following code example from JsTestDriver:

1 TestCase("FizzBuzzKata", {

2 "test on 0 return 0": function (){

3 var result = fizzbuzz (0);

4 assertEquals("Zero",0, result);

5 }

6 };

Listing 4.1: JsTestDriver TDD syntax.

The assert statement is typical for this syntax.

BDD syntaxes are more diverse, but they have in common that they stay
closer to a natural language, as this is one of the principles of BDD17. Below
Listing 4.2 and Listing 4.3 give two examples of different BDD syntaxes.

1 describe("FizzBuzz", function () {

2 it("return 0 on 0", function () {

3 expect(fizzbuzz (0)).toEqual (0);

4 });

5 });

Listing 4.2: Jasmine BDD syntax.

17Referred to in Section 2.2.4.

56 An introduction to JavaScript and testing

1 describe ’FizzBuzz ’

2 it ’should return null on null’

3 fizzbuzz (0).should.equal 0

4 end

5 end

Listing 4.3: JSpec BDD DSL syntax.

Listing 4.2 has a JavaScript syntax, but the library methods are named
close to the BDD principles. The assertEqual() statement in Listing 4.1 is
now expect().toEqual(), which is more readable.

In Listing 4.3, a custom domain-specific language (DSL) is shown, in this
case belonging to JSpec18. Here another step is taken into the domain of
natural language.

The syntax shown in Listing 4.3 has borrowed heavily from RSpec[44].
RSpec was developed by Dan North, the creator of BDD[13] and RSpec is
considered the template for many BDD frameworks today, especially with
regards to syntax and lifecycle.

Test library

The test library decides how testing is done, what can be done and how
demanding it will be of the programmer.

The library consists of methods for determining the lifecycle of setup,
individual tests and teardown as well as grouping of tests into suites. It also
has comparison methods, called assert mechanisms in TDD and matchers in
BDD, which determine the outcome of the tests. The range and coverage of
assert methods and the lifecycle of setup and teardown between libraries can
vary, but in general these are the backbones of a library, and how they are
built will depend on design goals and supporting methodology.

18JSpec is discussed in Section 5.2 and Section 6.2

Examining a JavaScript framework 57

When these essentials are covered, a test library can add features to
ensure easier testing, higher readability and less repetition for the developer.
Below, some general features are described. These can be found in many
xUnit frameworks across languages. This is followed by features specifically
developed to JavaScript characteristics.

General features

When writing a test, there are two paths to verification of correctness: state
and behavior verification. State verification ensures correctness by checking
that the state of the object under test has changed into some expected state.
This is achieved through the use of local variables and assert statements.

Behavior verification ensures correctness by recording if an expected
method is invoked during execution. The result of the method is irrelevant,
the mere fact that it has been invoked as a result of the test run, verifies
correct behavior. More advanced verification can be a method that is called
exactly once, or verification of its parameters and scope.

These two methods benefits from tools in order to help the programmer
to test the system in the best way. Tools like stubs, mocks and spies can save
a programmer from repeatedly typing and abstract away implementations of
interfaces.

Stub A stub can be used for behavior and state verification, as well as a
range of other testing patterns. A stub will need to be set up and restored
after each tests, and this can lead to tedious repetitive coding. A dedicated
stub function can relieve this and potentially be a part of automatic setup
and teardown.

A stub can also be used as stand-in to force a specific code path, as a
saboteur to force exceptions, to avoid unimplemented methods or to simplify
an implementation of an inconvenient interface.

58 An introduction to JavaScript and testing

In the example in Listing 4.4, the stub acts as a stand-in for the functionUnderTest
method, allowing only the invocation itself to be verified.

1 function stubFn () {

2 var fn = function () {

3 fn.called = true;

4 };

5 fn.called = false;

6 return fn;

7 }

8
9 // Test

10
11 var functionUnderTest = stubFn ();

12 //calls that shall invoke method

13 assertTrue(functionUnderTest.called);

14 //steps to restore functionUnderTest to its original form

Listing 4.4: Stubbing a function for behavior verification, courtesy of
Christian Johansen[45].

Spy A spy is a way of performing behavior verification. A spy is a stub
implementation[36] like the one seen in Listing 4.4, only that it also records
the arguments and context of the call.

Mock A mock can only be used for behavior verification. As a stub,
the mock has some pre-programmed behavior, but is also subject to pre-
programmed expectations. This means that a mock changes the way of
programming, demanding that the expectations are stated at the beginning
of a test, and at the end of the test only verifies that the expectations were
met.

Examining a JavaScript framework 59

Stubs, mocks and spies can be used interchangeably in many situations,
so choosing between them can be based on personal preference or readability
concerns.

Specific features

Testing JavaScript contains a lot of the general patterns found within TDD
as discussed in Section 2.2.2. Features that need to be tailored to JavaScript
is centered around asynchronous code19, like Ajax and timing functions.

Asynchronous code To achieve the degree of isolation necessary to create
good tests, the library need to fake an implementation of the XmlHttpRe-
quest (XHR) object, that can act as a stand-in that does not fire an actual
Ajax call. The most important parts of this task is to be able to trigger the
browser’s onreadystatechange method20 and to fake responses. Abilities
here are among others, possibilities to set headers in the response object,
choose response text and which calls triggers which responses. The ability
to trigger wrong responses to see how the code handles this is important to
achieve robust code.

Simulation of time is encountered through the timeout mechanisms, like
setTimeout and clearTimeout. For a library, it is important to be able
to test events that are dependent on time, since this is a characteristic of
JavaScript usage. The library can test this in two ways; either by pausing
the test for the duration of the timeout, as specified by the programmer, or
by faking the clock, and programmatically changing the time and forcing the
timeout call to happen at once.

From a TDD perspective, the latter is definitely preferred, as it as it
facilitates the vital speed requirements. A test with a timeout of one second,

19As described in Section 4.1
20This is triggered as the readyState of an XHR object is changed.

60 An introduction to JavaScript and testing

totals to an irritating wait when the number of tests are high. The chances
are that the developer will start coding again before the result of the last test
is run, reducing the usefulness of the TDD method. For libraries that have
neither option, care must be taken to abstract away the notion of time or
manually execute the inner function of the timeout. The former introduces a
design change, and the latter does not give complete coverage, but is in many
ways more compliant with TDD testing than the long wait for test results
presented above.

Fixture Referring to Section 2.2.2, fixtures were discussed as a part of a
TDD framework and it is also an xUnit pattern[3]. In JavaScript, external
fixtures are commonly HTML code that is manipulated. With an in-browser
test runner the developer can add an HTML element to the page, but care
must be taken during setup and teardown to ensure the node is left in its
original state as to not introduce cross-browser issues or dependencies across
tests.

Fixtures could also be considered a general feature, but since it is confined
to HTML fixtures, this thesis will regard it as a feature specific to JavaScript.

Event testing Some test libraries contain features for DOM event test-
ing21. This is a property on a different level from the previously discussed,
when referring to Figure 2.1, page 7. It usually happens on a coarser SUT
granularity than unit testing and interacts through the UI, rather than the
API. Event testing seeks to simulate a user’s action on a web page or appli-
cation, through events like click, focus, hover and submit. It is important
with regards to JavaScript testing, but not applicable on a unit level. This
thesis will not focus on event testing, but will describe it for the means of
completion.

21Further references to event testing should be interpreted as DOM event testing.

Summary 61

4.4 Summary

This chapter has brought together JavaScript and unit testing with TDD
and elaborated on the language features and characteristics affect testing.
Interaction, responsiveness, performance, complex logic and asynchronous
code have been explained and their specific addition to the area of testing
has been unraveled.

A vocabulary has been introduced to clarify the terms used in the chap-
ters to come. These terms are test library, test runner and the test frame-
work, which describes the methods available, the form of running and the
combination of those two.

The differentiators in a JavaScript framework have been examined: en-
vironment, execution, syntax and test library. The test library was divided
into general features of any TDD framework, like stub, mocks and spies, and
features specific to the language, covering the characteristics described in the
first section.

Also during the course of the chapter, the terms in-browser and headless
testing were introduced, as well as the two ways of ensuring correctness: state
and behavior verification.

This chapter will equip the reader for evaluation of the framework in
Chapter 5, results in Chapter 6 and discussion in Chapter 7.

Chapter 5

State of the art

This chapter takes a look at existing frameworks and libraries. The different
aspects of the technology will be explained and explored according to the
vocabulary, described in Section 4.2 and the differentiators of the framework,
described in Section 4.3. As a summary, the main characteristics and features
are presented in tables in Section 5.12.

Sections 5.6.1 and 5.9 described frameworks and tools that are not within
the xUnit family. They are described to show the extended reach of JavaScript
testing and the divergence currently found on the area.

5.1 Jasmine

Jasmine is a BDD testing framework developed by Pivotal Labs[46], the for-
mer maintainers of JsUnit1. The framework itself does not rely on browsers,
the DOM or other JavaScript libraries, so it can be run standalone and
in-browser, through a JsTestDriver plugin or with node.js. It also support
continuous builds through maven, and has a Ruby gem and version for Rails.

1JsUnit is described in Section 5.4

64 State of the art

It has a BDD syntax and follows the RSpec naming standards, with
describe as test cases and it as individual tests.

Jasmine’s test library has nested before and after functions, instead of
more TDD-like setup and teardown. It has a wide range of built-in matchers
and the ability to define custom ones. It handles asynchronous code through
pausing tests and provides spies and stubs under the denominator spies.

Figure 5.1: A result report created by the browser test runner.

5.2 JSpec

JSpec is a framework built to support BDD techniques. It is developed by TJ
Holowaychuk and is one of the most feature-rich testing frameworks. It can
be run in the browser or in a Rhino/env.js environment. It has a command
line Ruby gem to automate testing on save and to initialize projects. The
library features include support for faking Ajax call and time, spies, stubs

JsTestDriver 65

and a well of matchers. JSpec also has options for adding external fixtures,
in JSON2 format or HTML.

JSpec is heavily influenced by RSpec[44] and adopts a similar DSL. This
gives a more human readable syntax as shown in Listing 5.1 helped by an
abundance of available matchers. There also exist a grammar-less option for
writing a JavaScript BDD syntax.

1 describe ’.fizzbuzz ()’

2 it ’should return 0 on 0’

3 fizzbuzz (0).should.equal 0

4 end

5 end

Listing 5.1: An example of the JSpec BDD DSL.

5.3 JsTestDriver

JsTestDriver is a test framework developed at Google and released in May
2009[47]. Developers Miško Hevery and Jeremie Lenfant-Engelmann recog-
nized that the JavaScript community had not converged on a standard testing
framework, as had happened for other languages, and set out to make the
complete JavaScript testing framework. Specifically incorporated was com-
mand line control, parallel execution in browsers and instant feedback in
IDE[47].

JsTestDriver’s test library is extensive with regards to assertions and it
also has an asynchronous API[48], but no tools for stubs, mocks, spies or
faking time or Ajax calls. It has an own syntax for adding HTML fixtures
/*:DOC += <div id=’foo’><div>*/[49].

2JavaScriptObjectNotation.

66 State of the art

The test runner of JsTestDriver is the main contribution. It runs com-
mand line or through an IDE plugin3, allowing for execution in multiple
browsers both local and remote, leveraging the scaling issues discussed in Sec-
tion 4.1. A server is started through the command line and the browsers that
are to run the tests are opened on an Uniform Resource Locator (URL) point-
ing to the server. JsTestDriver then pushes pending tests to the browser and
returns the results to the command line. Configuration is achieved through
a .config file, exemplified in Listing 5.2. It is also possible to include plugins,
currently a module exists for measuring code coverage.

1 server: http :// localhost :4224

2
3 load:

4 - src/*.js

5 - src -test /*.js

6
7 exclude:

8 - somefile.js

Listing 5.2: An example configuration of JsTestDriver.config

The test runner is able to act as a runner for many other test libraries and
frameworks. There exist adapters for YUI Test, QUnit and Jasmine and pure
test libraries like Sinon.JS can run on top of the JsTestDriver library. The
command line launching also makes it easy to integrate with a CI system.

5.4 JsUnit

JsUnit was the first testing framework for JavaScript and was started in
2001[50]. It is a direct port of JUnit[50], which makes it a part of the xUnit

3JsTestDriver can be integrated with IntelliJ and Eclipse. It also has a Maven plugin.

JsUnit 67

framework family. Today its main developer, Pivotal Labs, is no longer
actively maintaining the project, as they are focusing on Jasmine4[51, 50].

JsUnit comes with an in-browser test runner where the test file needs to
be specified, as seen in Figure 5.2.

Figure 5.2: The JsUnit test runner.

There is no configuration apart from the file path, and test are written
between script tags in the HTML file itself, while the code under test is
included as separate files. It is also possible to combine a multiple of test
pages to a test suite. JsUnit has a simple set of assertions, setup and teardown
functionality, but no advanced features. A function for logging and tracking
is provided and integrated with the in-browser test runner, allowing different
priorities of warnings and messages.

4As referred to in Section 5.1.

68 State of the art

JsUnit also provides a server that can run the tests from JUnit or Ant, to
give the user an opportunity to run tests simultaneously in multiple browsers
and on remote machines.

5.5 nodeunit

nodeunit is developed by Caolan McMahon and is a test framework developed
for testing node.js applications5[52], but it also supports normal client-side
testing in browsers. Its syntax is adopted from the minimalistic style of
QUnit6

The test library contains a range of assertions, options for grouping test
cases, setup and teardown. It tests asynchronous calls out-of-the-box due
to its asynchronous nature. The library contains the two special functions
expect(amount) and done(), which are the enablers of this asynchronous
testing. Each test needs to specify the number of assertions expected, and if
this number does not match the counter when done is called, the test fails.
The tests are run serial to allow the use of stubs, spies and mocks, though
there are no built-in mechanisms to achieve this.

The test runner is available both in the browser and command line. It
allows for building a custom test reporter, but also has built-in options for
HTML and jUnit XML7.

5.6 QUnit

QUnit is most commonly associated with jQuery, as it is developed by the
same team and is used to test jQuery itself[54]. It is maintained by John

5node.js is completely asynchronous and such the test must be the same.
6QUnit is described in Section 5.6.
7jUnit XML reports are compatible with CI tool Hudson[53].

QUnit 69

Resig and Jörn Zaefferer, both from the jQuery team, and is available as
open source[76].

It is a test framework consisting of an in-browser test runner and a small
test library covering assertions, exception testing and organization of test
cases8 with setup and teardown. It can perform asynchronous testing through
pausing the tests and has an option for adding HTML fixtures though a
special #qunit-fixture DOM element in the test runner. This HTML code
is reset between each test.

The test runner has a nifty feature for detecting an introduction of a new
global variable9 as well as unexpected exceptions.

The framework can be integrated with test automation tools through a
microformat created at runtime. QUnit can be integrated with JsTestDriver,
extended with Pavlov, Sinon.JS and others through various adapters[54].

5.6.1 FuncUnit

FuncUnit provides functional testing based on a jQuery-like API[55]. To-
gether with QUnit, the stack provides both low and high-level testing. Fun-
cUnit provides simulated user input for event testing, which can be utilized
in acceptance testing10. Examples of these actions are a click of a mouse or
a drag movement. It can also test CSS attributes like innerHeigh, which
can test a sites look across browsers. The tests can be run in a browser or
through Selenium.

FuncUnit is a part of the JavaScriptMVC[56], but is also available as a
standalone product.

8Referred to as modules.
9Refer to Section 2.3.2 on why global variables are not preferred.

10Section 2.1.2 explained the term acceptance testing.

70 State of the art

5.6.2 Pavlov

Pavlov is a BDD test library exclusively for QUnit. It is developed by Michael
Monteleone and available under a MIT license[57]. It provides a BDD syntax
for QUnit and adds some higher level features. Pavlov has nested test cases
and cascading setup and teardown mechanisms, extended matchers and the
ability to add new ones. Pavlov also extends QUnit’s wait with a wait(ms,

callback) similar to JavaScript native setTimeout.

One of the features unique to Pavlov is the generative row tests and the
stubbing of specs, which is both shown in Listing 5.3.

1 given([5, 4], [8, 2], [9, 1]).

2 it("should award a spare if all knocked down on 2nd roll"

, function(roll1 , roll2) {

3 // this spec is called 3 times , with each of the 3

sets of given()’s

4 // parameters applied to it as arguments

5
6 if(roll1 + roll2 == 10) {

7 bowling.display(’Spare!’);

8 }

9
10 assert(bowling.displayMessage).equals(’Spare!’);

11 });

12
13 // stubs specs which yield "Not Implemented" failures:

14
15 it("should allow 2 rolls on frame 1-9");

16 it("should allow 3 rolls on the last frame");

Listing 5.3: Generative row tests and stubbing of specs in Pavlov, courtesy
of Michael Monteleone[57].

Screw.Unit 71

5.7 Screw.Unit

Screw.Unit is a BDD test framework developed by Nathan Sobo and is avail-
able under a MIT license[58]. It has an in-browser test runner and a BDD
syntax.

Looking at the library, it has nested describes and cascading before and
after statements. It supports custom matchers and has options for specifying
preconditions in tests. The library has no build-in mechanisms for mocks,
stubs, spies or testing of asynchronous code. Event testing is also left to
other frameworks as Prototype or jQuery[59].

It is possible to add custom logging by subscribing to test and the loading
of events.

5.8 Sinon.JS

Sinon.JS is a test library designed and maintained by Christian Johansen
and available under a BSD license[60]. The library provides test spies, stubs
and mocks as well as fake timers, XHttpRequests and servers to deal with
asynchronous code.

The library itself is a single .js file and can be added on top of exist-
ing frameworks. In his book, Test-Driven JavaScript Development[36], the
framework used are a combination of Sinon and JsTestDriver. It can also be
run with QUnit, Jasmine and nodeunit for node.js with various adapters.

Sinon has a rich set of features that extends the ones of the average test
library. This means that simple assertions already existing are not taken into
Sinon. It has no assertion mechanism for equals, null and other standards,
rather it expands mostly on unit test patterns and faking browser behavior.

72 State of the art

5.9 TestSwarm

TestSwarm is a distributor providing continuous testing across browsers and
platforms for any test framework. It provides a solution for JavaScript devel-
opers to avoid the problems with scaling test environments11. The suite was
originally designed by John Resig for jQuery testing, but has now become an
official Mozilla Labs project[61].

The TestSwarm code is used to test the jQuery project, but it is still in
Alpha state, and should not be completely relied on. The tests can be run
online12 or by downloading the source code and setting up a private swarm.

The swarm relies on a pool of clients connected with different browsers
and platforms to run the tests. It has a lot of error correction mechanisms
in case a client goes down in the middle of a test run, this to ensure the
test results are not affected. This form of testing means that no browsers
must be opened in order to execute the tests while they are still run in a
real browser environment. As mentioned, TestSwarm needs test framework
to handle execution on the client. Currently QUnit, UnitTestJS, JSSpec,
JSUnit, Selenium, and Dojo Objective Harness are supported[61].

A run of test swarm may look like Figure 5.3, where the browser icons on
top indicate different versions or different platforms. Red indicates at least
one failing test, gray are tests not run and green are passed tests.

11i dependencies and j browser versions on k platforms as discussed in Section 4.1.
12Through the site http://swarm.jquery.org/.

http://swarm.jquery.org/

YUI Test 73

Figure 5.3: An example run of multiple commits in TestSwarm. Courtesy of
John Resig[61].

5.10 YUI Test

YUI Test is a part of the YUI Library, which is

a set of utilities and controls, written with JavaScript and CSS,
for building richly interactive web applications using techniques
such as DOM scripting, DHTML and Ajax[62].

It is available in two versions YUI 2 and YUI 3, where the latter is the one
discussed here. The complete YUI library and its individual modules are
available under a BSD license.

YUI Test contains a range of assertion mechanisms, options for mocking,
exception and asynchronous testing and grouping of test cases.

Through the YUI Event library it is also possible to simulate some key,
mouse and UI events[63, 64].

The in-browser test runner within YUI Test is run easily, but the options
for viewing the result or exporting are many. For viewing the results in

74 State of the art

a browser, they can either be pushed to a console, like Firebug[40], or be
viewed through Yahoo!s own Console widget. YUI Test can also export to
JSON, JUnit XML13, YUI Test XML and TAP. It is also possible to post
these exported results to a server. You can also build your own result viewer,
as it is possible to subscribe to events posted by the runner-object.

5.11 Others

Other frameworks and libraries exist, but are not discussed in this chapter.
This is due to a combination of factors, among them terminated support,
time since last release and dependencies. Selenium is a special case, but is
considered out-of-scope, as it does not use JavaScript.

• JsMock[65] : Mock object library last updated in 2007.

• Jack[66] : Mock and stub library last updated in 2009.

• JSSpec[67] : BDD test framework last updated in 2008.

• Crosscheck[68] : unit-testing framework capable of emulating multiple
browser environments. No longer supported.

• Smoke[69] : older mocking and stubbing library for Screw.Unit.

• Selenium[6] : automated testing across platforms. Can use Java, C#
and others to write browser tests, as well as record and playback test-
ing14.

• mockjax[70] : library for mocking jQuery’s ajax method.

13jUnit XML reports are compatible with CI tool Hudson[53].
14The program records a browser session and plays it back when the test is initiated.

Feature mapping 75

5.12 Feature mapping

To give a comparative overview of the frameworks and libraries mentioned
in the above sections, Tables 5.1 to 5.3 sum up important characteristics.
To give a realistic summary, the standalone test libraries have been given
a test runner to make a complete framework. In Table 5.3 some features
are not compared; the general assertions, setup and teardown mechanisms
and organization of tests. They are removed because all the frameworks
supported these features with only minor variations. The term fixture in this
context also refers to HTML fixtures. Other features are i.e. the opportunity
for custom matchers/assertions and the ability to register for events on the
runner. These have been considered at the other end of the scale, as these
are not needed often and would clutter rather that clarify the big picture.

Sinon.JS is the only framework-independent test library, and it is com-
pared on top of frameworks Jasmine, QUnit and JsTestDriver. The two
former have adapters for Sinon, and JsTestDriver can use Sinon out-of-the-
box. It is possible to use the library with other frameworks as well, but the
feature mapping in this case is left to the reader. TestSwarm is excluded, as
it is a pure test distributor, not a testing framework.

Table 5.1 describes three differentiator; syntax, execution and environ-
ment. Execution mode is stated as in-browser or console in the environment
column. Table 5.2 described characteristics important to judge the frame-
work project, such as stable release and support. Table 5.3 describes the
features in the last differentiating factor, the test library.

The criteria in Table 5.2 are stable release, support and community. These
are chosen to be able to judge whether the framework is actively maintained,
and if not, has a dedicated community that can continue the development.
Support in this context means that the framework in under active develop-
ment. The stable release and support is judged based on the information

76 State of the art

found online, either at social coding spaces such as GitHub or the developers
personal sites. Dead links, a long timespan between updates, old jQuery
version are among others judged as a sign of terminated support. The com-
munity is represented by last GitHub commit or Google Group activity level.
It could be argued that export formats is an important characteristic deserv-
ing a column, but this is considered out of scope. It would be beyond the
research question of the thesis to set up and test out a CI environment.

All the material supporting the information in the tables can be found in
the bibliography of the specific framework’s section. Where this is not the
case, references are provided. The icons are a part of the Silk icon package,
created by Mark James[71].

Fr
am

ew
or
k

A
d
d
it
io
n
al

li
-

b
ra
ry

L
ic
en

se
a

D
ep

en
d
-

en
ci
es

S
yn

ta
x

E
nv

ir
on

m
en
t

N
od

e

Ja
sm

in
e

-
M
IT

-
B
D
D

In
br
ow

se
rb

Si
no

n.
JS

B
SD

-
B
D
D

In
br
ow

se
r

JS
pe

c
-

M
IT

-
B
D
D

D
SL

R
hi
no

,
br
ow

se
r

or
co
ns
ol
e

Js
Te

st
D
ri
ve
r

-
A
pa

ch
e
Li
ce
ns
e
2.
0

-
Ja
va
Sc
ri
pt

B
ro
w
se
r
th
ro
ug

h
co
ns
ol
e

Si
no

n.
JS

B
SD

-
Ja
va
Sc
ri
pt

B
ro
w
se
r
th
ro
ug

h
co
ns
ol
e

Js
U
ni
t

-
G
N
U

G
P
L
2.
0

-
Ja
va
Sc
ri
pt

In
br
ow

se
r

no
de
un

it
-

M
IT

no
de
.js

Ja
va
Sc
ri
pt

no
de
.js
,
br
ow

se
r

th
ro
ug

h
co
ns
ol
e

Q
U
ni
t

-
G
N
U

G
P
L
2.
0
&

M
IT

-
Ja
va
Sc
ri
pt

In
br
ow

se
r

Fu
nc

U
ni
t

U
nk

no
w
n

-
Ja
va
Sc
ri
pt

In
br
ow

se
r

or
w
it
h
Se
le
ni
um

P
av

lo
v

M
IT

-
B
D
D

In
br
ow

se
r

Si
no

n.
JS

B
SD

-
Ja
va
Sc
ri
pt

In
br
ow

se
r

Sc
re
w
.U

ni
t

-
M
IT

-
B
D
D

In
br
ow

se
r

Y
U
I
Te

st
-

B
SD

-
Ja
va
Sc
ri
pt

In
br
ow

se
rc

Ta
bl
e
5.
1:

G
en
er
al

ch
ar
ac
te
ri
st
ic
s
of

co
m
bi
ne
d
fr
am

ew
or
ks
.

a
W

he
re

an
ad

di
ti
on

al
lib

ra
ry

is
pr
es
en
t,
th
e
lib

ra
ry
’s

lic
en
se

is
st
at
ed
.
A
ll
lic
en
se
s
ar
e
op

en
so
ur
ce
[7
2,

73
,7

4,
75
]

b J
as
m
in
e
al
so

ha
s
ve
rs
io
ns

fo
r
M
av
en
,J

sT
es
tD

ri
ve
r
an

d
R
ub

y.
c O

th
er

op
ti
on

s
ex
is
t,
re
fe
r
to

Se
ct
io
n
5.
10

Fram
ew

ork
A
d
d
ition

al
lib

rary
a

S
tab

le
release

S
u
p
p
ort

C
om

m
u
n
ity

b

Jasm
ine

-
9
M
ar

2011[77]
Sinon.JS

2
M
ay

2011

JSpec
-

30
Sep

2010
[78]

JsTestD
river

-
H
igh

Sinon.JS
2
M
ay

2011

JsU
nit

-
18

Feb
2010

nodeunit
-

17
M
ar

2011

Q
U
nit

-
20

A
pr

2011[79]
FuncU

nit
2
M
ay

2011[80]
P
avlov

29
M
ar

2011
Sinon.JS

2
M
ay

2011

Screw
.U

nit
-

29
D
ec

2010

Y
U
I
Test

-
18

A
pr

2011[81]

Table
5.2:

R
elease,support

and
com

m
unity

characteristics
ofcom

bined
fram

ew
orks.

aW
here

an
additionallibrary

is
present,the

follow
ing

colum
ns

w
illcontain

info
about

the
library.

bLatest
G
itH

ub
update

or
G
oogle

G
roup

activity
levelas

of
2
M
ay

2011.

Fr
am

ew
or
k

A
d
d
it
io
n
al

li
b
ra
ry

S
tu
b
s

M
oc
ks

S
p
ie
s

P
au

se

te
st
s

Fa
ke

ti
m
e

Fa
ke

A
ja
x

E
xc
ep

ti
on

te
st
in
g

F
ix
tu
re
sa

E
ve
nt

te
st
in
g

Ja
sm

in
e

- Si
no

n.
JS

JS
pe

c
-

Js
Te

st
D
ri
ve
r

- Si
no

n.
JS

Js
U
ni
t

-

no
de
un

it
-

Q
U
ni
t

-
b

c

Fu
nc
U
ni
t

P
av

lo
v

Si
no

n.
JS

Sc
re
w
.U

ni
t

-

Y
U
I
Te

st
-

d

Ta
bl
e
5.
3:

Li
br
ar
y
fe
at
ur
es

of
co
m
bi
ne
d
fr
am

ew
or
ks
.

a
In

br
ow

se
r
te
st

ru
nn

er
s,

H
T
M
L
fix

tu
re
s
ca
n
be

ac
hi
ev
ed

th
ro
ug

h
m
an

ua
ls

et
up

an
d
te
ar
do

w
n.

b T
he

Q
U
ni
t
ru
nn

er
ev
en

ha
s
a
sp
ec
ia
l
#q

un
it

-f
ix

ur
e
el
em

en
t
se
t
up

fo
r
th
is

pu
rp
os
e
w
hi
ch

is
re
se
t
fo
r
ea
ch

te
st
.
T
hi
s

al
so

ap
pl
ie
s
fo
r
Q
U
ni
t
in

co
m
bi
na

ti
on

w
it
h
ot
he
r
lib

ra
ri
es
.

c T
hr
ou

gh
jQ

ue
ry
.
T
hi
s
ap

pl
ie
s
fo
r
Q
U
ni
t
in

co
m
bi
na

ti
on

w
it
h
P
av
lo
v
an

d
Si
no

n
as

w
el
l.

d
T
hr
ou

gh
Y
U
I
E
ve
nt
[6
4,

63
].

80 State of the art

5.13 Summary

This chapter has dived into the state of the art; the actual libraries, frame-
works and runners available for TDD and BDD in JavaScript. They have
been explained based on the framework differentiators, library, syntax, execu-
tion and environment, found in Chapter 4. As a summary, Tables 5.1 to 5.3
give a comparative, but non-exhaustive, overview of complete frameworks
available to developers today. Other libraries and tools were considered, but
found out of scope due to multiple factors, described in Section 5.11.

Chapter 6

Results

This chapter describes the results achieved when applying the research method
outlined in Chapter 3. Section 6.1 introduces the test cases and Section 6.2
discusses the programmatic results of applying the cases to a selected subset
of the frameworks described in Chapter 5.

6.1 Test cases

Four test cases were found to cover both the general issues and the issues
specially related to unit testing in JavaScript. The test cases are created
to test the frameworks as a proof of concept. They are not extensive nor
complicated cases, so they will be easy to repeat when new frameworks need
to be evaluated.

In order to get a complete picture of a framework, all the cases need to be
executed. An exception could be the FizzBuzz case presented in Listing 6.1,
as its goal mainly is to explore the basic features, setup and execution in
a framework. An experienced developer might feel that the features will be
familiarized through the remaining test cases and can choose to skip this test
case.

82 Results

The pseudocode presented is not intended as a template for the program,
as that would be against the design techniques of TDD. It is meant as a high
level description and to give the developer enough knowledge of the program
in order to start the TDD process.

The tests are run in a single browser, unless anything else is specified.
This is because each test case only cover a subset of the issues related to
JavaScript, and cross-browser1 discrepancies are one of them.

6.1.1 FizzBuzz

Covers setup, asserts, test organization and execution.

Listing 6.1 contains the pseudocode for a popular TDD code kata2 named
FizzBuzz. In the context of applying TDD to a new JavaScript framework,
this test case allows a developer to get to know the configuration and in-
stallation, execution, syntax, assertion mechanisms and test case structure
before diving into more complicated problems. It is possible to explore cross-
browser running as well, but does not have to be a part of the execution, as
no cross-browser issues exist.

1 SET number = user inputted number

2 CASE number OF

3 modulo 3 : Print Fizz

4 modulo 5 : Print Buzz

5 modulo 3 and modulo 5 : Print FizzBuzz

6 OTHERS

7 Print number

8 ENDCASE

Listing 6.1: Pseudocode for test case 1: "FizzBuzz".

1Cross-browser issues are covered in Section 2.3.1 and 4.1.
2A code kata is an exercise in programming which helps hone your skills through

practice and repetition[82].

Test cases 83

6.1.2 Alias

Covers testing of time and stubbing.

Listing 6.2 contains the logic for a round of the Alias board game. The
game gives a team member 60 seconds to explain as many words as possible
to his or her teammates without saying the word itself. Answers given after
60 seconds should not be awarded points. The words are read from a deck
of cards.

An implemented version will have a call to setTimeout to invoke the
end of a round after 60 seconds, and it will need to connect to an external
database to fetch new words.

The framework will need to provide a solution to the timer without hav-
ing the developer wait 60 seconds3. The framework also needs to stub the
database to allow the test to run isolated. If not, the test would be hard to
write due to setup of a word database. Since this is only testing the timing
mechanism, stubbing the database will give the timing sufficient validation.

1 SET points = 0

2 SET timer to 60 seconds

3 REPEAT

4 Fetch new word

5 IF right answer THEN increment points by one ENDIF

6 IF wrong answer THEN decrement points by one ENDIF

7 UNTIL timer ends

Listing 6.2: Pseudocode for test case 2: "Alias".

3As this would be against the unit testing requirement of speed, described in Section 2.1.

84 Results

6.1.3 Twitter

Covers testing of Ajax calls and exceptions.

Listing 6.3 shows the logic of a function that uses Ajax to retrieve the
current Twitter trends in JSON format. If a failure occurs, the string ’Unable
to connect to Twitter’ will be printed.

Ajax are one of the main usages for JavaScript and needs to be faked
or otherwise abstracted to achieve repeatable tests4. If a failure occurs on
a Twitter server, our tests should not fail, indicating proper test isolation.
Neither should the test need to wait for the result of the call, as this is against
the unit test requirement of speed.

The code in Listing 6.3 will test the framework’s ability to deal with an
Ajax request. It will also test how well the framework handles throwing
exceptions and tests where exceptions are the correct result.

1 BEGIN

2 fetch Twitter trends

3 Print: top 2 trends

4 EXCEPTION failed fetch or empty result

5 Print Unable to connect to Twitter

6 END

Listing 6.3: Pseudocode for test case 3: "Twitter".

6.1.4 DOM manipulation

Covers cross-browser issues and HTML fixtures.

Listing 6.4 is the only test case that interacts with the DOM. The program
fetches the element where id = "text", validates its content and changes its
text.

4As discussed in Section 2.1.

Execution 85

The framework will be tested for its ability to include fixtures, in this case
an HTML element. It will also test how easy it is to discover cross-browser
issues. innerText is a property containing the text content of a node and
it exists in all browsers, but Firefox[83]. This test case will need to run in
Firefox and at least one more browser in order to evaluate the framework.

1 Find HTML element with id = text

2 Check that content of element is ’SomeContent ’

3 Update text content of element through innerText

Listing 6.4: Pseudocode for test case 4: "DOM".

To be able to test this correctly, the browser’s same-origin policy5 needs to
be disabled in order to access the attributes of the XHR object. This can be
done in Chrome by opening the program with the –disable-web-security
flag.

6.2 Execution

To decide which frameworks should be used for executing the test cases, the
important characteristics in Section 5.12 were reviewed. Rather than an opt-
in solution, opt-out was chosen. Characteristics that singled out a framework
would be the absence of support, community or stable release and missing
library functions6. Also, some testing frameworks targeted testing on a higher
level than the xUnit frameworks7 and were as such disregarded. In total, the
following frameworks were opted out:

5A policy that only allows scripts from the same site to access each other’s methods
and parameters. Scripts from different sources cannot access each other.

6As summarized in Table 5.3
7Discussed in Section 2.1.1.

86 Results

• Standalone JsTestDriver - Table 5.3 reveal few library functions and
the framework is most interesting when paired with a more feature-
rich library, as Sinon.JS.

• JsUnit - the framework is no longer supported and is outdated both in
runner and features, as seen in Table 5.2 and 5.3.

• nodeunit - the framework does not yet have a stable release and is pri-
marily written to test node.js. It also has a minimal notion of features.

• QUnit and Pavlov - Pavlov only adds a BDD syntax and minor varia-
tions to QUnit, so testing standalone QUnit is sufficient to demonstrate
its capabilities.

• QUnit and FuncUnit - FuncUnit provided scripted UI testing on a
coarser granularity8, and is such out-of-scope for unit testing through
API.

• Screw.Unit - it is no longer supported and also lacks all features dis-
cussed in Table 5.3.

• TestSwarm and any additional test framework - since it only distributes
the tests, it is considered out of scope.

The remaining frameworks are used to create the test cases in Section 6.1
using a TDD approach. The source code for the test cases can be found in
attached to the thesis.

The frameworks were not executed in the order that follows in the re-
maining section, rather it was done iterative as described by the process in
Chapter 3.

In the evaluation of each framework, each section is built on the following
layout:

8Referring to Figure 2.1 on page 7.

Execution 87

• Getting started: setup, syntax and execution through the FizzBuzz test
case.

• Execution of test cases 2 to 4.

• Documentation.

• Issues and/or oddities.

• Summary

6.2.1 Standalone Jasmine

Setting up Jasmine is easy as it has an in-browser test runner and a test
project available for download from GitHub[77]. Figure 6.1 shows an example
of the test runner after a passed run of the FizzBuzz test case.

Figure 6.1: The FizzBuzz test case passed in Jasmine.

The Jasmine framework can test asynchronous code, but is dependent on
wait and run methods that pauses the tests for a given time. This period of

88 Results

waiting, which in the Alias test case is 60 seconds, feels wasted and there is
a risk that the developer writes more code, either in tests or source, before
the test result returns.

A partial solution is that a test can be excluded from running. This is
done by changing the test function it() to xit(). This is not a recommended
practice, but it means that you can write one async test case, run it, then
skip it, instead of not running tests at all because they are slow.

A way of solving the problem is to abstract away the use of timeouts,
as done in Appendix Section B.1.1. This is a solution were the call to the
timeout function is ignored, but the inner function of the timeout mechanism
is executed. This gives lower test coverage, but allows a faster progress. The
original implementation is attached in Section B.1.

The stubbing of the word database works nicely due to the
spyOn(object, method).andReturn(value) functionality.

The Twitter test case is performed using Jasmine’s spying function, which
essentially are stubs and spies bundled together. By stubbing the XHR ob-
ject, behavior verification is performed on the fetchTrends open and send

methods. The onreadystatechange is not tested through the browser im-
plementation, rather it is triggered manually by a lightweight fake XHR. The
spy methods of Jasmine made a difference here, easing a lot of the testing,
especially of exception handling.

The DOM test case has some interesting aspects. Since Jasmine has
no support for fixtures, care must be taken to make the tests isolated from
each other. The setup and teardown must insert and delete a node in a
way that works the same across all browsers in order not to introduce more
dependencies and different behavior.

As Jasmine has a in-browser test runner, all browser tabs needed a manual
refresh to rerun the tests in the DOM test case. This was a hamstring as

Execution 89

the number of browsers increases and the screen space available lessened for
each.

1 insert = document.createElement(’div’);

2 insert.id = ’text’;

3 var insertText = document.createTextNode(’SomeContent ’);

4 insert.appendChild(insertText);

5 document.body.appendChild(insert);

Listing 6.5: Part of the setup method in Jasmine

An inconvenience with the Jasmine test runner is that is shows only a
failed assertion. If a test has some passing assertions and some failing, only
the failing ones will be shown, hiding potentially important information. It
has some oddities with regards to vocabulary, the implemented spy object
incorporates spies, stubs and mocks9. Also errors in the async test cases are
not revealed until the test has finished. So if test breaks on the first line of
code, the runner still waits the given time seconds before reporting it.

Summarizing, Jasmine has a lot of functionality and is easy to use, but
is missing support for faking Ajax and time, as well as HTML fixtures.

6.2.2 Jasmine and Sinon.JS

In these tests Jasmine was run through its Ruby gem. The gem allows you
to make a .yml file that defines what folders should be monitored and files
imported, alleviating the need for script tags for test and source files as in
the HTML test runner. Adding Sinon comprises of saving the sinon.js file in
the right folder and potentially add a set of matcher fitting to the Jasmine
syntax[84]. This has been done in the following tests. A problem with these
matchers is that they override Jasmine’s own functions toHaveBeenCalled
and toHaveBeenCalledWith, so it forces the developer to use Sinon’s stubs,
mocks and spies.

9Jasmine mocks are discussed in Section 7.5 on page 128.

90 Results

Running the tests consider of a rake10 command which continuously up-
dates a Jasmine in-browser test runner. The test runner is opened in the
browser and is rerun on refresh. This is very convenient, because it automat-
ically discovers new files and this alleviates the risk of loosing tests due to
missing script tags or misspelled file paths.

The Alias test case uses the Sinon methods for faking time, not the Jas-
mine waits and runs methods, alleviating the need to wait 60 seconds to see
the results. Setting up the timers can be a bit difficult and combined with
closure issues it has been one of the biggest challenges: setTimeout does not
maintain a reference to this, meaning the inner function in the timeout call
can only see the global scope.

1 var alias = (function () {

2 [....]

3 var inPlay = false;

4 return{

5 newGame : function () {

6 this.points = 0;

7 this.inPlay = true;

8
9 setTimeout(function () {

10 alias.endGame ();

11 }, this.SIXTY_SECONDS);

12 },

13 endGame : function () {

14 this.inPlay = false;

15 }

16 }

17
18 })();

Listing 6.6: Invoking endGame from the setTimeout function through the
global scope.

10rake is a Ruby utility that, among others, automatically builds executable programs.

Execution 91

This is simple JavaScript, but demonstrates the difficulties with closures,
as described in Section 2.3.2.

The Twitter test case could test the onreadystatechange attribute, due
to Sinon’s faking of Ajax requests. The earlier printTrends method was
changed into a parse method, which had functions for returning the top n
trends. Since the return object had associated methods, the exception return
string "Unable to connect to Twitter" had to be remade into an object with
a message attribute containing the same text.

The setup of the fake XmlHttpRequest object can be difficult. There are
a lot of functionality to keep up with, and making mistakes is easy. At one
point support functions were made to make sure that the this references
were correct, and this can be an idea to keep clutter out of the test functions
and improve readability.

The DOM test case is the same as with standalone Jasmine, and such it
is not presented.

Adding Sinon.JS to Jasmine alleviates most of the original shortcomings
of Jasmine. It is still missing HTML fixtures, but is a powerful testing tool
and with the gem, the risk of loosing tests is minimal.

6.2.3 JSpec

Setup is easy due to the JSpec .zip file containing an executable. To create a
new project, JSpec has an init command that initializes a directory contain-
ing a test project. Further, the command jspec monitors the JavaScript files
and opens the HTML test runner in a new browser tab whenever a change
occurs. The test and source files also need to be referenced in the dom.html
file and such, when adding a file, the file must be added here and the jspec
command run again.

92 Results

JSpec has a custom DSL and a JavaScript syntax, where the former is
used in the test cases. An example can be seen in Listing 6.7.

1 describe ’FizzBuzz ’

2 describe ’.fizzbuzz ()’

3 it ’should return null on null’

4 fizzbuzz (0).should.equal 0

5 end

6 end

7 end

Listing 6.7: The first test in the FizzBuzz test case in JSpec.

The grammar is easy to read, but it can be difficult to grasp the syntax
rules, especially on the use of semicolons and var statements. This part of
the framework is sparsely documented, but the site contains some helping
examples.

The second test case, the Alias game, had the smoothest coding of all the
frameworks; tick(sec) worked on the first try, faking the implementation
of time. The stubbing of newWord works easily with the built-in stubs.

The mocked Ajax object is created by a single line:
mock_request().and_return() and is restored automatically. The mocked
object works as expected and with no hassle. One test is done with a success-
ful response and one is done with an empty response. Two ways of testing an
unsuccessful fetching were done, one with an empty response text and one
by manually stubbing the fetchTrends method.

The fourth test case utilizes the fixture() method in JSpec. As ex-
pected, the tests behave differently in the different browsers. The use of the
fixture can be seen in the extract in Listing 6.8. A setup and teardown still
has to be done, but the creation of the inner HTML content is all in the
node.html file, making it significantly more readable, and a lot simpler than
the setup in Jasmine shown on page 89. The possibility of writing HTML to

Execution 93

create the fixtures, and not creating it with JavaScript is an advantage that
grows as the HTML gets more complicated.

1 \\In the test file

2
3 before_each

4 x = document.createElement(’div’)

5 x.innerHTML = fixture(’node.html’);

6 document.body.appendChild(x);

7 end

8
9 \\In node.html

10 <div id="text">SomeContent </div >

Listing 6.8: Setup with the use of JSpec’s fixture method.

A problem occurring with the jspec command has to do with the number
of files in the project. When this number gets too high, the monitoring for
changes fails and has to be restarted with a smaller number of files under
surveillance. Also, test runner has a way of invoking the tests that triggers
the cross-site scripting protection in Chrome, so another browser had to
be used, except for the Alias test case where Chrome was run with the
–disable-web-security flag.

The init command did not add all the library files necessary to fake Ajax
calls and the timing functions. This was also not documented on the site,
which caused some frustration at the beginning.

JSpec has some difficulties with lack of documentation on syntax and
setup, but when this is done, it supports both fake Ajax and faking of time
as well as having a rich set of library functions. It also has a great advantage
when working with large HTML files with its fixture function.

94 Results

6.2.4 JsTestDriver and Sinon.JS

The setup with this framework is a bit more complicated than the others. A
ruby gem can bee used, the jstdutil from Christian Johansen[85], to make
the process a bit less tedious11. Adding Sinon meant only to download the
JavaScript source code and add it to the .config file, as well as minor changes
to the setup of test cases.

The FizzBuzz test case revealed that tests had to start with the word
’test’, causing some initial fury prior to the discovery. Also some JavaScript
errors are not displayed, but it helps that the framework provides a jstestdriver.console.log()
that outputs to terminal.

The Alias test case used Sinon’s methods for faking the native browser
timers. Getting this right proved difficult for the same reasons as the Jasmine
case. The setTimeout function was not understood well enough, and so it
tried to reach variables bound to this12. When these difficulties were sorted
out, the timing functions worked as expected. The stubbing of the word
database worked very well with the Sinon stub functions.

The third test case also posed some challenges. Sinon has both a fake
server and fake XHRs making it difficult to choose the best for testing. The
fake server was used and even though the setup was easy enough, it took a lot
of effort before it worked correctly. This had to do with the combination of
the server.respond() method, which triggered the Ajax response and the
global trend variable that was used to record the responses. The original
design did not consider the asynchronous behavior, but the manual response
invocation in test made this emergent, causing the design to change.

11But JsTestDriver and the code examples can be run with the standard setup found
on the Google Group[86].

12this is bound to the global scope in the setTimeout function.

Execution 95

Figure 6.2: The DOM test case in with JsTestDriver and Sinon.

The result of the DOM test case can be seen in Figure 6.2. It is easy to see
how it fails in Firefox and passes in Safari, indicating a cross-browser issue.
Listing 6.9 shows the setup function with DOM insertion of the node. This
is easy and very readable as long as the HTML is this small. No teardown
is needed.

1 setUp: function (){

2 /*: DOC += <div id="text">SomeContent </div> */

3 },

Listing 6.9: Insertion of a div element in setup before each test method.

An annoyance became apparent when the test suite changed frequently,
as this requires the runner to be restarted and all browsers captured again.

JsTestDriver diverges from the other frameworks with its console runner,
which provides easier cross-browser testing, but lacks the interactive explo-
ration found in browser consoles. Sinon provides all the features necessary
and with the HTML fixture syntax, the framework is easy to use. Personal
preferences and experience would decide how well this framework appeals.

96 Results

6.2.5 Standalone QUnit

QUnit has a very minimalistic syntax with the least functions and syntac-
tic sugar of all the tested framework. The setup is easy, downloading from
GitHub and open the index.html in a browser. QUnit automatically out-
puts errors to the browser’s console, making a significant improvement to
debugging.

The Alias test case utilizes the async test case option of QUnit. This
means that a wait of sixty seconds is needed in order to validate the cor-
rectness of the tests. This forces ahead a design decision of not hiding the
game.inPlay variable. By setting this manually, the content of the timeout
is tested and the test run with no waiting time. This exposure of the variable
cannot always be done and it also does not test the actual invocation of the
setTimeout call. The problem is the same as in the standalone Jasmine; it
does not test that the call to timeout actually happens and if the containing
function is correctly implemented in this scope. To do this, an asynchronous
test, an abstraction or a way of faking time is needed. QUnit has no way
of selecting which tests to be run in a module, so if complete test coverage
needs to be achieved, the programmer must wait 60 seconds for each result.

The third test case was different, as QUnit has no support for faking Ajax
calls. The fetchTrends method got an extra input, an XmlHttpRequest,
done in order to use behavior verification to assure the send and open calls.
This could have been done differently, e.g. by faking the prototype of the
real XmlHttpRequest.

In the fourth test case the HTML element is inserted in the HTML test
runner as a child element of <div id=’qunit-fixture’>. QUnit automat-
ically resets the contents of this element before each test, relieving the pro-
grammer of manually cleaning up. The pure HTML test runner has the same
issues as Jasmine, when testing needs to be done on a number of browsers
for each test.

Execution 97

The QUnit test runner has a readability that stands out and the pre-
sentation of messages in tests and assertions are well worth writing. A
minor annoyance and hinder to readability is QUnit’s insistence on writing
equals(actual, expected), instead of the more standardized equals(expected,
actual).

The test runner also has some other nice features, among them automatic
failure if a global variable or any try-catch statement is introduced. The
problem with global variables was introduced in Section 2.3.2, so this feature
can help enforce code standards and increase quality of the tested code. The
test runner also has a nice way of showing the differences between expected
and actual values, as shown in Figure 6.3.

QUnit is lacking support for testing time and Ajax calls, but has good
support for HTML fixtures. Its test runner appeals with its readability and
easy syntax and setup makes this easy to use for testing simple JavaScript
application.

6.2.6 QUnit and Sinon.JS

Adding Sinon to QUnit means downloading Sinon source and a QUnit ex-
tension and loading these in script tags in QUnit’s in-browser test runner.
The test methods are wrapped in a Sinon test object, making the functions
of Sinon available.

The Alias test needed reworking for the fake timers to work. The clock
needed to be stored in a separate object, created by an immediately executed
function, as shown in Listing 6.10. This was different from the other frame-
works with Sinon, and created a lot of initial confusion. The remaining test
case worked as expected, with faking the timers and avoiding the 60 seconds
wait.

98 Results

Figure 6.3: The test runner in QUnit. Note the presentation of differences of
expected and actual result and the presentation of all assertions in a failed
test.

Execution 99

1 var tinesfakeClock = (function () {

2 var fakeClock;

3 return { useFake : function () {

4 this.fakeClock = sinon.useFakeTimers ();

5 },

6 restore : function () {

7 this.fakeClock.restore ()

8 },

9 get : function () {

10 return this.fakeClock;

11 }

12 }

13 })();

Listing 6.10: Creating a common this environment for the fake timers.

The Twitter test case tests all method calls and invocations with Sinon’s
capabilities for simulating XHR objects. Even the onreadystatechange

method that was difficult with the standalone QUnit tests, are tested.

The DOM test case is the same as with standalone QUnit, and is not
presented.

Adding Sinon to QUnit extends the frameworks ability to test asyn-
chronous functions and leaves an almost complete framework for unit testing
with TDD.

6.2.7 YUI Test

The setup of YUI Test was supposedly simple; create an HTML page, include
a given set of dependencies, create a global YUI instance and run the tests.
What is completely missing is how to display the results. A lot of time was
spent digging through examples and looking at source code before it was
found that an extra module, the YUI Console, needed to be imported before.
It has to be mentioned that outputting to a browser console was managed

100 Results

pretty fast, but this is not a viable option in all browsers. The setup can be
seen in the attached source code, as the YUI Test does not need anything
else than the .html test runner file.

It was also discovered that the test names needed test or should in them
in order for the test runner to recognize the tests.

The second test case, Alias, uses the wait function, that works the same
way as the native JavaScript setTimeout. This means a wait of 60 seconds
is needed before the results are done and published. This gives the same
problems as with standalone Jasmine and QUnit.

The third test case uses the same approach as the standalone QUnit, only
that it uses a built-in mock for verifying the open and send calls. Since the
send calls only are mocked with a fake XHR there are no way of testing
the invocation of the onreadystatechange event, as this is triggered in the
browser. This has resulted in a design that invokes the saveLastResponse

with the response text or null if no response text is given. This implies that
the onreadystatechange function will trigger one of the calls to
saveLastResponse. With this in mind, testing for exceptions and correct
results is done by faking calls to the saveLastResponse method, as if the
fetch was already done and the save was triggered from there.

The fourth case, the DOM test case, suffers from the same problems as
standalone Jasmine, as the fixture elements need to be created by hand. The
setup of the fixture increases the chances of introducing errors or depen-
dencies across tests. The in-browser runner in YUI Test also suffers from
the same problems as the other in-browser test runners; as the number of
browsers increase, it is harder to see a correct result at a glance. This is
heightened even more with the problematic size and need for scrolling with
YUI’s test runner, as described below.

Execution 101

Figure 6.4: The Console module in the test runner outputting YUI test
results.

102 Results

When the console is set up, and the tests start to populate, the test
viewer is too small by far. Looking at Figure 6.4, the DOM test case contains
three tests, and only two are possible to see. This means that the developer
actively needs to scroll to see if any test cases failed. It was tried to change
the height of the console object and verbose output was specifically turned
off, but nothing worked. It is possible to output the test in "newest first"
order, but developers are still unable to see if this breaks an existing, older
test without scrolling. This is very much against the TDD process and unit
testing properties described in Section 2.2 and 2.1.

Other oddities consist of

• Test cases need to be added to a special runner object, which heightens
the chance of "loosing a test" by forgetting to add it to the runner.

• The tests are written in script tags inside the HTML, lowering read-
ability and acting against the separation of concern.

• The syntax is very verbose, YUI Test uses Y.Assert.isTrue as op-
posed to JsTestDriver’s assert or QUnit’s ok.

YUI Test has some oddities making it difficult to work with on a regular
and effective basis. It also lacks an option for faking time and Ajax calls, and
an option to add fixtures. The lack of separation between the test runner
and the test code also proved a hindrance to readability.

6.3 Summary

To cover general issues and problems related to JavaScript, four test cases
were developed to cover the areas of

• Testing time

Summary 103

• Testing Ajax calls

• HTML fixtures

• DOM manipulation

• Exception testing

• Cross-browser testing and issues

General tools like stubs, mocks and spies were indirectly used, as these
are the tools used to achieve the above tests.

The tests cases were applied to a subset of the frameworks presented in
Chapter 5. The selection was done on an opt-out basis with the feature
mapping in Section 5.12 as a backdrop.

The result of applying the tests was noted, and both expected and un-
expected problems emerged. A broad category was issues related to testing
of time and Ajax, and the coverage of these tests in frameworks with no or
poor solutions for asynchronous testing.

When testing cross-browser issues, the in-browser test runners repre-
sented an issue, but also the general presentation of the test results was
surprisingly different and could act as a deal-breaker when testing the frame-
work.

Chapter 7

Discussion

This section reflects and discusses around the results presented in Chapter 6
and uses these to answer the Research Questions 2 and 3. It also discusses
the chosen method and its limitation when looking at the results.

7.1 Limitations of the research design and ma-

terial

The limitation of the research method was its novelty. No known testing had
been done on JavaScript unit testing frameworks, so the research method
had little basis in applied research, though the notion of proof-of-concept
and test cases are a documented approach.

Since no previous studies were found, a threat to the validity of the project
is the risk of undiscovered studies or JavaScript unit testing frameworks.

Given that the level of personal experience was low when starting this
thesis, other developers might execute the cases and get results that differ-
entiate. This is a drawback of the research method and must be considered
when discussing and concluding the findings.

106 Discussion

Other limitations are the areas where the frameworks have not been ex-
ercised, such as:

• No connection to CI systems.

• No running on remote machines or different OS’s.

• No real code dependencies from the code under test.

• No testing in other environments, like Rhino with Env.js.

A missing aspect of in the test cases is interaction with CSS properties.
These could have be included in order to gain a more complete insight on
the interaction characteristic of JavaScript testing. On the other hand, CSS
properties are used for manipulation of UI, which indicates testing on a higher
level than the xUnit frameworks that have been considered for this project.

The level of the test cases can also be discussed. The Twitter test case
tests the invocation of the open and send methods on an XHR object. This
is not a level an application programmer would usually test on, it is more a
level for a learner to get to know behavior verification through mocks and
the inner workings of the XHR object itself.

Note that explicit use of mocks and spies is not an element in any of the
test cases, but is used as a result of the TDD process in all frameworks that
provides them.

7.2 Personal experiences

This section will explain the personal experiences of developing unit tests
with TDD in JavaScript.

Getting started proved easy because of the simplicity in the FizzBuzz test
case. Some issues were met1, but these were resolved fairly quickly. Many

1These are referred to in the corresponding Result Section of the framework.

Personal experiences 107

errors were made on referencing source code in the in-browser test runners.
The file path was spelled wrong or the wrong files were loaded. The test
frameworks that had an associated gem for file discovery proved the simplest
test runner in my opinion. The JsTestDriver runner also worked, but it had
to be restarted to discover new file, and the recapturing of browsers did not
always work smoothly.

7.2.1 Difficulties

The difficulties described in this section were the major ones met during the
development of the test cases.

Timing functions

A bit into the Alias test case, it was found that the timing function setTimeout
had not been well enough researched and a naming collision had happened.

This had happened because a string was given as an input to the timing
function:

1 setTimeout(’variable.methodname ’, milliseconds);

The methodname was evaluated in the global scope, not in the function
scope where the function was initiated. A collision happened as the first
variable was named the same in the test’s global scope and source code’s
functional scope, which created a lot of confusion on why the code suddenly
worked and then failed when other approaches was tried. When the anony-
mous inner functions were resolved as an input to the timing functions and
the scope was sorted out, the timing and accompanying functions worked as
intended.

108 Discussion

Sinon integration

Getting the Sinon functions to work, both with time and faking server re-
sponses, was difficult due to many issues. Firstly, it was due to wrong usage
of the timing functions as described above. Then it was getting to grips with
the setup in the different frameworks. Jasmine and JsTestDriver, does not
need customization to the Sinon test, but it needs a wrapper to work with
the QUnit test cases.

This made the QUnit result from Section 6.2.6 stand out. Sinon auto-
matically inserts fake timers on the this.clock variable in the test itself.
This has three implications: 1) call to timing functions in setup or teardown
need are not automatically faked 2) if setup calls a timeout function, the
fake timers need to be inserted manually before any such call 3) own fake
timers must be bound to another variable that this.clock. This indicates
the function for creating a tinesFakeClock could have been replaced with
a normal setup on fake timers on another variable, e.g. this.time.

The difference in the application of the frameworks functions and the lack
of documentation, create some frustration when trying to learn JavaScript
with unit testing. In general, dynamic languages are harder to learn, as
the source of an error can appear many places. Experience makes your own
JavaScript less error-prone and gives more insight in where to look when
problems arise.

7.2.2 Experiences with TDD in JavaScript

It is difficult to evaluate own progress and application of a methodology, but
some examples can be seen as explanatory for application of TDD in the test
cases.

Personal experiences 109

XHR

When learning about the XHR object, a tutorial on W3Schools[87] were used.
The tutorial presented this case on the XHR onreadystatechange:

1 xmlhttp.onreadystatechange=function ()

2 {

3 if (xmlhttp.readyState ==4 && xmlhttp.status ==200)

4 {

5 //Some manipulation of the reponse text

6 document.getElementById("myDiv").innerHTML=xmlhttp.

responseText;

7 }

8 }

Listing 7.1: Excerpt from a w3schools tutorial on Ajax.

This was used as a skeleton for receiving objects in the Twitter test
case. Later, it was discovered that this code makes two assumptions; the
readyState attribute needs to be 4 and the status needs to be 200. The
first is assumption is valid, but the second is not. In the case of the test case
running in a browser with enabled same-domain policy, the status cannot
be accessed at all. These assumptions were used when writing the tests as
well, returning an empty response text and a 200 status. The tests worked
fine, but the when the code was run in a real environment it failed due to
the assumptions made in the tests and code.

Had this been done in a correctly TDD manner, the test would have
been written first and only the ready state attribute would have been added
to the if-statement, and it would likely have been discovered that the XHR
status would be a non-readable attribute. Another possibility would be that
it never was discovered, as the code would have worked with the readyState
attribute alone, and no test would introduce a need to look at the status

attribute.

110 Discussion

This can refer back to Section 2.2.3 and what was posed as one of the
risks in TDD, namely "getting the methodology right". In the case shown
above the application of the methodology fails as a tutorial is being used to
help with a problem. This leads to a breach of the TDD process, the test is
not written first, which again gives tests that pass, but code that does not
work in a real browser environment. To be able to avoid these assumptions in
tests, careful consideration is required by the developer when learning new
things and rewriting code from the outside to fit into the product. Other
methods, like code review can alleviate this risk.

The problem above arose from an initial run of the Twitter test case in
standalone Jasmine. In this framework there is no way to test Ajax, and
only the correctness of the content within onreadystatechange be tested,
not the invocation itself. This entails that it is very difficult to unit test for
the XHR status issues.

That this issue has been introduced in the test cases that contain options
for Ajax testing is likely a result from transfer of parts of former executions
of test cases on to the same test case in other frameworks.

Refactoring

A major part of the TDD process is the Refactoring - step. This step is
somehow harder to do right as the IDEs for JavaScript provides less help.
Changing a variable name, extracting an interface and other patterns have
dedicated functions in Java IDEs, but has to be done manually in JavaScript.
As the type checking is dynamic, no warnings are given in case a variable
is forgotten, in most cases it will be added as an implicit global variable.
This can have consequences, such as a naming collision. QUnit was ahead
of the others with its check of introduced global variables, but the other
frameworks largely ignored this. This can be due to the fact that neither

Personal experiences 111

of the frameworks tries to be an IDE, but some support could increase a
framework’s usefulness.

Code kata

An interesting aspect was the application of code katas in TDD. The code
kata FizzBuzz was used as the first test case to get to know setup, execution
and syntax through an easy test case. In a code kata, the developer are
encouraged to analyze and improve the solution on each repetition, and this
fits very well with the incremental process in TDD. Looking at this in action,
the FizzBuzz test case changed minimally over the course of the different
framework. This is a totally different experience when looking at the Alias
and Twitter test cases. They have has gone from utilizing a shared global
variables to self-invoking functions and advanced closures. The test cases
could definitely be used to learn JavaScript and its application in a test-
driven manner. It is also an argument for the size of code katas; the FizzBuzz
case might have exceeded its usefulness when the syntax is learnt, but the
Twitter and Alias cases use JavaScript special features and are more complex,
inviting to a wider range of possible solutions.

7.2.3 Effects from TDD in JavaScript

Using TDD has definitely given a lot of experience when learning JavaScript.
Development has gone from making it work, to trying to utilize more ad-
vanced features and more object-oriented design.

This section will try to answer Research Question 3 on the background of
the experience gained executing the test cases in Chapter 6. As discussed in
Chapter 3 and Section 7.1 this section will only give a general heeding and
a personal answer, as a scientific conclusion would have needed a different
research method.

112 Discussion

When using TDD, the method encourages taking as small step as nec-
essary to accomplish the task. This acts as a comfort when the problem at
hand seems impregnable. It also encourages the developer to change a work-
ing code, through refactoring, into something better. This led to the case of
self-invoking function and advanced closures in my case. This is one of the
greatest advantages when using TDD as an individual.

The issue when trying to learn JavaScript and TDD at the same time
occurs when you do not know how to test the problem at hand. Resolving to
tutorials, as described in Section 7.2.2, resulted in my case to a short-term
accomplishment, but introduced a bug in the form of an assumption, which
was only discovered after a long time. So when using other’s code to learn
JavaScript with TDD; always pluck the code apart to see how it functions and
introduce only what you really need. This applies for experienced developers
as well, as they may copy and paste code to save time.

When finding issues, it can be difficult to see whether they are introduced
in the test or in the code, often due to the dynamic nature of JavaScript.

On a group basis, theory suggests that new developers will have an easier
time taking over a project with a high test coverage gained from TDD2.

7.3 Level of testing

When entering this project, it was believed that the TDD to be tested would
be on an unit level. Instead, it was found that some of the characteristics
of JavaScript are so tightly bound to the browser, resulting in an arguable
degree of isolation. It is possible to claim that all form of browser interaction
is a form of integration testing3, as there are events happening in the browser
that are beyond control and demands more sophisticated mechanisms in or-

2As discussion in Section 2.2
3Described in Section 2.1.2 on page 8.

Level of testing 113

der to achieve isolation. Even libraries as Sinon.JS which provides a fake
implementation for the timing mechanisms and Ajax though XHR manipu-
lation, are doing integration testing, as they are dependent on the browser
firing the faked events, and it is the browser that controls the execution stack
and provides limitations to, e.g. the XHR object.

Many of these mechanisms are in the crossing between unit and integra-
tion testing, but this thesis argues that it is convenient to do this as a part
of a unit test. This is because the cooperation between JavaScript and the
browser are tight, and the resulting script would benefit from integration
between the two parts. Many JavaScript applications contain Ajax or timing
functions, and testing this on a integration level would be a artificial section-
ing of tests. Testing JavaScript and the browser on a unit level can compare
to utilizing another framework or utility; the exception is that some of the
control is passed to the browser. But there is not way to attain a high test
coverage and ensure correct behavior without testing these interaction points
between JavaScript and the browser.

The JavaScript tested in the test cases is on a very low level. It would not
be a common practice to verify that the send and open calls of an XHR object
is performed. Using jQuery, the developer can move one level up as jQuery
takes care of the most common cross-browser errors and discrepancies4, e.g.
jQuery.ajax, but still do testing on a unit level.

The level of testing, as presented by the framework themselves, is dis-
cussed in Section 7.7.

4This is called browser normalization.

114 Discussion

7.4 Reviewing JavaScript characteristics

This section refers back to the characteristics that were discussed in Chapter 4
and discusses these in the light of the result found in Chapter 6. Respon-
siveness is not discussed as this was not considered a relevant aspect for unit
testing5.

Interaction

Interaction refers to JavaScript’s modification of, and access to HTML and
CSS elements through the DOM. The test cases have not tested CSS inter-
action, so this is not taken into account.

An important tool in order not to introduce any cross-browser errors in
the tests, is the use of HTML fixtures. HTML fixtures allow a developer to
insert HTML code that are removed and reinserted before each test. This
leaves the framework responsible for not introducing errors and allows the
tests to be isolated instead of running on an existing webpage.

The importance of being able to write HTML as HTML code, not with
insertion through JavaScript, was found to be important. Referring to the
standalone Jasmine version, where the setup was five lines of code versus
JsTestDriver’s one line, and JSpec’s three. This does not seem too much,
but looking at the code, the Jasmine version will increase faster than the
other two, due to its usage of JavaScript. Possibilities exist for the developer
to modify the framework or add their own fixture node, such as in QUnit,
but this decrease the life of the software and its readability, as parts of the
code are not documented and are created by one person only.

Combining Interaction and Complex logic, another feature is emer-
gent. In larger test suites, the HTML might need to be set up on a test basis.
In QUnit, the HTML fixtures are added on a test runner basis. This can lead

5Referring to Section 4.1 on page 47.

Reviewing JavaScript characteristics 115

to a lot of unnecessary fixture code for each test, and it would be possible
that the code affected each other and created dependencies and other side
effects.

Cross-browser execution

Testing in a cross-browser environment has a lot of issues around setup, exe-
cution and how to view results, which is covered in Chapter 6 and Section 7.5.

A cross-browser error happens when a property or method is specific to
one ore more browsers. The web contains a lot of these examples and it is
easy to get tangled. Discovering these errors can be difficult, especially if
the tests are executed in one browser only, if your tests coverage is low or
the tests cover the wrong thing. An example would be a modified DOM test
case, as seen in Listing 7.2, where the second line is taken out. When using
only the innerText attribute to insert and test for the text content, the tests
pass in all browsers. Still it introduces a cross-browser error in Firefox, which
is not discovered due to the dynamic creation of variables in JavaScript, as
demonstrated in Listing 7.3. This cannot be seen in the browser as the result
of the test run is the only content displayed on the site.

1 Find HTML element with id = text

2 \\ Check that content of element is ’SomeContent ’

3 Update text content of element through innerText

Listing 7.2: Pseudocode for test case 4: "DOM" with line 2 commented out.

1 //code

2 var fetchNode = function () {

3 var node = document.getElementById(’text’);

4 node.updateText = function(text){

5 node.innerText = text;

6 }

7 }

116 Discussion

8 //test

9 test(’update text content ’, function () {

10 var node = fetchNode ();

11 node.updateText("newText");

12 equal(node.innerText , ’newText ’);

13 });

Listing 7.3: Testing the changed DOM test case in QUnit.

The innerText variable will exist for all browsers but Firefox, and in
these it will change the DOM element as expected. In Firefox, the variable
will be created at runtime in line 5. The assert statement on line 13 will
check that the variable exists and contain the expected string, which it will
in Firefox as it was just created by the test. But will not change the text of
the DOM element, hence the wrong thing is tested.

If the test had done the assert like the following

1 equal(node.innerHTML , ’newText ’);

the assertion in line 12 in Listing 7.3 would fail. But given that the cross-
browser error is not already known, testing with innerHTML would be a very
unnatural way to test.

Instead of using alternative references like this, it might be needed to test
on a higher level, like FuncUnit, to ensure that the test covers the intended
area or use a library, like jQuery, for browser normalization.

A second approach would be encapsulation of all areas that touch the
DOM and have these fully tested for cross-browser errors.

Features for HTML fixtures in a framework will provide help in preventing
new cross-browser errors and dependencies in tests, as the developer does not
need to do a manual setup and teardown of HTML fixtures.

Reviewing JavaScript characteristics 117

Complex logic

Custom matchers can be a good feature when complex application logic needs
to be tested. Imagine a scenario where JavaScript uses person objects in a
JSON format between clients. To ensure that an object is correct, a developer
can create a matcher isValidPerson that asserts a certain set of properties,
instead of writing more asserts to check this.

A problem with complex logic, especially if it demands a lot of files, would
be use of in-browser test runners needing script references. This could
quickly lead to missing files, lost tests and a lot of clutter in the process.
On the other hand, we have the problems with monitoring a large number
of files, as experience with the jspec command.

Tip Mitigation of this problem can be through a Ruby gem that does not
monitor files for changes, only monitors specific folders to see if new files are
present. This means that the developer must run the tests manually6, but
the risk of lost test is significantly reduced. The Jasmine gem works this way,
and no problems were met here when the number of files increased.

Asynchronous code

Asynchronous code referred to JavaScript timing mechanisms and ability to
perform Ajax calls.

Time

In Section 4.1, three ways of testing time was discussed, waiting a given
amount of time, faking the duration of the interval or abstracting away the
dependency. Table 5.3 showed which of the framework that contained the

6See page 125 for a tip on mitigating this.

118 Discussion

given functionality. The Alias test case was developed specifically to inves-
tigate the timing feature and from the results in Chapter 6, three points an
be emphasized:

• Pausing test is not a viable option, as it breaches both unit testing
characteristic and the red/green/refactor - mantra. It also causes a lot
of side effect that have a negative impact on TDD, like producing code
before the test results have returned.

• Faking time works efficiently, but can be difficult to achieve, as dis-
cussed in Section 7.2.

• It is possible to test only the inner content of the timeout function.

• Abstracting away time, as done in Section B.1.1, changes the design of
the code.

Another variation of abstraction can be found when looking at the Java
language. By creating an interface and replacing this with a stub imple-
mentation, this is another way to build fake timer. An example of this in
JavaScript can be found in Appendix C. This example, together with Sec-
tion B.1.1, shows that it is possible to achieve testing of time without support
in a framework. Though this encourages a change from the natural design
of JavaScript, which is considered to be a negative factor.

Discarding pausing of tests due to the introduced wait and abstracting due
to the design it encourages, only two options remain for testing JavaScript
timing functions; 1) a fake timer 2) calling the content of the timing function’s
function parameter directly in the test. Both are exemplified in Listing 7.4.

1 //in code

2 var bool = false

3 function someFunction () {

4 [....]

Reviewing JavaScript characteristics 119

5 bool = true;

6 }

7 setTimeout(function (){

8 someFunction ();

9 }, 1000)

10
11 // test code with Alternative 1

12 fakeClock.tick (1000);

13 assert bool == true

14
15 //test code with Alternative 2

16 someFunction.apply(window);

17 assert bool == true

Listing 7.4: Examples of testing with fake timers and content of parameter.

Alternative 2 with the apply function, evolved from the test cases to add
correct scope to the test7.

The code coverage will decrease when using Alternative 2, because the
setTimeout call is never invoked.

In a test with the code coverage module in JsTestDriver the coverage
changed from 94.4 % when using Sinon (Alt. 1) to 88.9% without (Alt. 2).

Dissecting further, duplication is seen between the source code and the
test with Alternative 2. If the content of the timeout is changed, the test
must be changed to reflect this. This is against the rules of TDD8. This
would not be the case with Alternative 1, as no duplication exists between
test and implementation.

It would be possible to change the inner workings of someFunction, or
encapsulate the changes in a new method, but one line of duplication will
still exist.

7The apply function calls its object with the given parameter as this. window is the
global scope, the same scope that setTimeout is evaluated in.

8Described in Section 2.2.1.

120 Discussion

Depending on the effects of someFunction in Listing 7.4, it may also
be difficult to validate the effect. If someFunction only has indirect ef-
fects, Alternative 1 can validate by spying on someFunction. Alternative 2,
which must invoke someFunction from the test, must find another change or
method invocation introduced by someFunction to be able to validate the
call. Depending on the function at hand, the difficulty can range from easy
to untestable.

In total, this leads to the conclusion that a mechanism for faking time is
necessary to perform testing of JavaScript’s timing functions.

Ajax

With Ajax, there are three ways of testing 1) fake the XHR object to it is
possible to trigger onreadystatechange from the test 2) invoke the content
of the onreadystatechange method with a modified XHR 3) pause the test
and make real calls to the URL, waiting a given time for the answer.

Alternative 3, pausing the test, is not an applicable solution. The prob-
lems around waiting are the same as with timing explained above, and making
a real call is against the test isolation demanded from unit testing.

Alternative 1 and 2 both demand that the developer gets to know the
inner workings of the XHR object and how it interacts with the browser
during an Ajax call.

Alternative 1 can be done in two different ways, either by having the
framework taking control and trigger the onreadystatechange or manually
invoke xhr.onreadystatechange from the test. The former can trigger the
same-origin policy in the browsers, which can result in hindrances when it
comes to cross-browser testing, while the latter can be create a lot of confu-
sion when the XHR object is managed manually.

Alternative 2 has the same issues as invoking the content of a timing
function, it creates duplication between test and source code, which is against

Reviewing frameworks characteristics 121

the TDD imperatives. It also shares the issues of manually altering the XHR
object, which can quickly lead to errors

Duplication of code, problems with manual XHR objects and the impos-
sible wait time leads to the conclusion that a mechanism for faking Ajax calls
must also be a part of a unit testing framework for JavaScript. This will help
ensure that a unit will function correctly on different responses, and as such
providing developers with tools encouraging robust code.

7.5 Reviewing frameworks characteristics

This section discusses the four defining categories of frameworks, as found in
Section 4.3 and their fit after the execution and result of the test cases.

Environment

The environment used in all the test cases was the browser, even though
several had option for Rhino. This may be different if the system were
to be integrated in a CI system or were completely disconnected from the
browser. In general though, the browser environment may be the best fit for
most developers. On this background, it would be proper to say that the
execution environment is the browser, unless project specification opens for
or have a need for otherwise.

Execution

The execution of the tests are bound to whether the tests run in-browser or
headless.

An in-browser runner has access to the console.log function, which
is important for debugging. Most browser consoles also have options for
interactive exploration of a object, as opposed to a method outputting a

122 Discussion

string. This was a disadvantage for JsTestDriver, as it only had a static
function outputting to strings to the terminal. This lead to a large number
of log strings, which made it harder to keep up with the execution flow.

As a note, JSpec was found not to be functional in Chrome due to its mode
of execution. It needed to load the source files from specified directories,
which invoked a cross-origin request. This is not favorable, as the framework
would need to be run with the cross origin policy disabled on a permanent
basis. The problem is mitigated if another browser is used as backup to make
sure no unintended cross origin requests are made without the explicit need.

Setup

In the test runners where the source files needed to be referenced in script

tags, this turned out to be a source of error. This was needed for JSpec,
standalone Jasmine9 and QUnit. Suddenly, tests were running or all failing
because a name was wrongly spelled or the originating folder were wrong.
With the jspec command this was even worse, as the command needed to
be rerun for each time the test runner were updated.

YUI Test had runner code and test code in the same HTML file. Here
it would have been appropriate with higher separation of concern to avoid
cutter in the test and improve readability.

As a default setup and test, a assert true == true test as a starting
point can be added. This gives a test that should always run and always
pass. If the test does not run, it may indicate a wrong setup or syntax error.

Lifecycle

Two things determine the lifecycle of a test run: the implementation of fail-
ures, and setup and teardown. The latter is determined by the test library

9But not with the Jasmine gem.

Reviewing frameworks characteristics 123

and usually tied to its methodology10. The former refers to how the frame-
work reacts to failing assertions, either by stopping or continuing the test
currently being executed. Listing 7.5 shows a simple example of pseudocode
that can reveal a lot about this.

1 assert true === true

2 assert true === false

3 assert true === true

4 assert ’thisString ’ === ’thatString ’

Listing 7.5: A test to reveal the lifecycle of a framework.

Performing this test in multiple frameworks yields very different results,
as shown in Figure 7.1.

Figure 7.1c and 7.1e show that YUI and JsTestDriver stop at the first
failing assertion. Figure 7.1b shown how Jasmine shows both failing asser-
tions, but none of the passing ones. Jasmine has an option for showing all
passed tests, but none for showing all passed assertions. Figure 7.1a and 7.1d
show that QUnit and JSpec present both the failing and passing assertions.

Stopping at the first failing assertion and providing no way of seeing the
other assertions, hide potentially important information when debugging a
failed test. Hiding passed assertion forces the developer to go back to the
code to see the assertions that did not fail, and although this is not as severe
as the first case, it is still unnecessary information hiding.

A minor difference is how the runners count the passed tests or assertions.
QUnit and JSpec count assertions, JsTestDriver and YUI count tests and
Jasmine counts number of tests run and number of failing assertion.

The test runners have much in common with the other runners supporting
the same methodology, but this seems not to apply for the lifecycle.

10TDD has setup and teardown on a single test basis, while BDD usually has nested
setup and teardown.

124 Discussion

(a) QUnit (b) Jasmine

(c) JsTestDriver (d) JSpec

(e) YUI Test

Figure 7.1: Result of Listing 7.5 implemented and executed in the different
test runners.

Reviewing frameworks characteristics 125

Running and viewing results

When viewing results, the general execution of all test cases was important,
but especially the DOM case. This was because it was set to run in four
major browsers; Firefox, Safari, Chrome and Opera. The main problem had
to do with the execution characteristic mentioned in Section 4.1, namely
in-browser and headless testing. With headless testing there are an opportu-
nity to capture multiple browsers and run all tests on them simultaneously.
The results of the execution will be returned to a common interface that
summarizes the results, usually the terminal.

The in-browser runners had issues, as expected, with the refresh needed to
rerun the scripts. A manual refresh had to be triggered in all four browsers,
requiring a lot of tabbing. This changed quite when it was found that the
text writer TextMate[88] had scripts the could be loaded on commands. A
script to update all running browser pages was inserted on cmd-R. With
two screens, the actual screen space ended up being the limiting factor, as
a simple shortcut or command in the chosen IDE made the browser refresh
and present results.

Tip Check if your text writer or IDE can load scripts on command. If
not, external tools, like XRefresh and browser add-ons, can provide similar
functionality11.

A note on personal preferences was the jspec gem, which opened a new
tab containing the script each time a save was done. I save a lot more often
than I would like to test. I like to write the code I expect to work and
then press run. Combined with the annoying tab mechanism, the jspec gem
was dropped in favor of TextMate’s customized cmd-R. In general it was the
gems that kept track of the files to include, that was the most useful ones,

11This has not been testing during this thesis.

126 Discussion

alleviating the need for editing script tags, rather than gems for refreshing
on save.

The design of the result viewer was important, especially when trying
to keep in a red/green/refactor-rhythm. The runner in YUI Test made it
difficult to see the actual result of the running tests, or if the newly introduced
test broke existing functionality. This is very against a TDD process, as any
failures in existing functionality should have a high priority. With the DOM
test case, this became even more significant.

The design of the result viewer also had some unexpected results, apart
from the bad design of the YUI Test console. The QUnit test runner had
an easy and elegant way to present the passed and failed assertions with a
diff viewer and presentation of messages. I started writing more messages on
each assert, especially when loops were tested.

Using the code in Listing 7.5 can also help visualize the difference in the
result viewer, as it can show how the different assertions and assert messages
are visualized on both passing and failing tests.

Syntax

In general, the differences between BDD and TDD frameworks were less
that expected. It was mainly the syntax differences and the presentation of
the result that changed. When reviewing back to the documentation and
research from Chapter 5, the BDD libraries had nested describes, setup and
teardown, but otherwise were quite similar to the TDD frameworks.

Some of the explanation may come when considering the level of testing.
On a unit level, the tests are written by the programmer and provide doc-
umentation for other programmers, as well as validation of the small parts,
often on a method level, in the system. Customers usually do not operate on
this level, as the DSL here is the programmer’s domain. When the system

Reviewing frameworks characteristics 127

is put together as a whole, it usually requires adaption to fit the business
problem, and this is where the BDD DSL comes into play. On this level the
customer can explain in its domain language how the system should act, and
easier communicate with the developers through a natural language, close to
the BDD syntax.

Test library

The library functions were mapped in Section 5.12 and a great deal of vari-
ation was seen in the supported functionality.

Dedicated test libraries introduce spies and stubs that help return special
values or to check if a method has been executed. Unlike mocks, stubs and
spies can be created by the developer, making a test a more standalone and
easier to read for someone who does not know the framework. Whether you
need the stubs and spies would depend on personal preferences and the size
of the application to test, and this needs to be kept in mind when choosing
a framework for testing.

In general, libraries with general unit testing functionality can be seen
to improve readability to those fluent in its terminology. But due to the
differences in invocation of the functions, documentation is still vital. Of the
validation features, stubs, spies and mock does not all have to be included,
but combination tools to provide state and behavior validation is necessary.
Stubs are also needed to preform a range of unit testing patterns. This means
that a combination of stub and spies or stub and mocks need to be present.
Providing all three give developers a wider range of tools, and is certainly
only positive for the framework.

The differences in methods and how the libraries were built could be seen
influencing the design of tests and source code. Sinon had a server.respond
method that made the solution of the Twitter test case change due to this

128 Discussion

invocation of the return of an asynchronous event. In JSpec, this was differ-
ent, as it provided a mock().andRespond() method that returned the object
on response at once.

Methods needed to test asynchronous JavaScript and HTML fixtures have
been discussed in Section 7.412 and found to be necessary for a JavaScript
unit testing framework.

Naming confusion

With regards to naming, especially around mocking, there is some confusion.
Jasmine has implemented jasmine.spy as a common denominator, described
as such:

Jasmine Spies are test doubles that can act as stubs, spies, fakes
or when used in an expectation, mocks.

Firstly, this leads to confusion around the original name, spies. Even in their
own description, test double, is used as a denominator, and a suggestion would
be to stick with this, if they insist on mixing the stub and spy implementation.

Furthermore, it is stated that it can be used as mocks together with
expectations. Their example are as following[89]

1 // foo.not(val) will return val

2 spyOn(foo , ’not’).andCallFake(

3 function(value) {return value;}

4);

5
6 // mock example

7 foo.not(7 == 7);

8 expect(foo.not).toHaveBeenCalled ();

9 expect(foo.not).toHaveBeenCalledWith(true);

Listing 7.6: Jasmine mocks.

12Page 114, 117 and 120.

Reviewing frameworks characteristics 129

The example in Listing 7.6 are quite similar to Sinon’s spy example seen
in Listing 7.7[60].

1 var spy = sinon.spy();

2
3 PubSub.subscribe("message", spy);

4 PubSub.publishSync("message", undefined);

5
6 assertTrue(spy.called);

Listing 7.7: Sinon spy.

Sinon spies also have an advanced API to assert if a method was called,
number of calls and arguments, the same thing Jasmine does with its mocks.

Referring to Meszaros[5], a mock behaves as following

When called during SUT13 execution, the Mock Object compares
the actual arguments received with the expected arguments us-
ing Equality Assertions (see Assertion Method on page 362) and
fails the test if they don’t match. The test need not make any
assertions at all!

This leads to the conclusion that the Jasmine mocks are not mocks at
all, they are spies! Mocks are objects that verifies a run by comparing pre-
stated expectations to the actual run, usually triggered by a verify method.
A correct mock implementation would be as the one in Listing 7.8. The
programmer provides no assertions, but the mock has stated expectations,
which it compares to the actual run. This validation is usually triggered by
call to a dorm of mock.verify.

13 System under test (SUT).

130 Discussion

1 var myAPI = { method: function () {} };

2
3 var mock = sinon.mock(myAPI);

4 mock.expects("method").once();

5
6 PubSub.subscribe("message", myAPI.method);

7 PubSub.publishSync("message", undefined);

8
9 mock.verify ();

Listing 7.8: Sinon mocks[60].

Issues with add-on libraries

It was a general trend that adding Sinon made the development process
harder. It might be that the background for this is small, as there was only
one other framework with time and Ajax mocking built in, namely JSpec.
It must also be mentioned, that it may possibly be a drawback that the
same test cases were executed across different runners with the same add-on
library. This may have given ground for believing that Sinon worked one
way, and that it would be the same with another test framework. This can
also be seen as a drawback for Sinon; what works in one framework, does
not necessarily work in another. The lack of documentation is a source of
frustration as well, and an improvement here would likely make it easier to
integrate the library.

With Sinon, the issue manifested with the QUnit/Sinon combination.
Section 6.2.6 and 7.2.1 showed how the clock variable was automatically
faked with QUnit and Sinon, but only in the test scope itself, not in the
setup.

Reviewing frameworks characteristics 131

7.5.1 Redefining framework characteristics

Based on the experience with the test cases, a modified version of important
framework characteristics differentiator is:

• Execution

– Setup

– Environment

– Lifecycle

– Result viewer

• Test library

• Documentation

Syntax is taken out as a characteristic, as it did not contribute on a unit
level14.

Environment is made less important, running Rhino was not needed in
the test cases, but it is still important to be conscious about alternatives to
the browser. Rhino and other environments supporting CI only grow more
important as the JavaScript code reaches an enterprise level.

Setup, lifecycle and result viewer is taken into account as areas where the
frameworks differ a lot from each other. The test library should contain the
recommended set of features presented in Section 7.6.

Documentation is added as an important point to the list of characteristic.
At many points during the work with this thesis, a lack of documentation
made the process a lot harder that necessary.

14As discussed in Section 7.5 on page 126.

132 Discussion

7.6 Recommended test library features for unit

frameworks

The recommendations have emerged from the experience with the test cases
and the previous sections of the discussion. The set of requirements will
depend on the characteristics of the project to test, as well as personal pref-
erences.

The general features of unit testing frameworks, setup, teardown and
test organization are needed. A combination of stubs and spies or stubs
and mocks are also needed to perform general unit testing patters. Event
though some of these can be created by hand, the readability, lifespan and
correctness of the code increases when using a publicly available library. It
also allows developers to use patterns developed by unit testing experts.

The JavaScript unit testing framework should also contain the following
mechanisms:

• A method for faking Ajax: As discussed in Section 7.2.2 page 117, code
coverage decrease if this option is not present and mistakes are easily
made invoking the onreadystatechange function manually.

• Options for faking time: Also due to discussions from Section 7.2.2
page 117; code coverage decrease if this option is not present and it
does not force unnatural design.

• Option for adding HTML fixtures: Because setup of HTML in JavaScript
is error-prone as discussed in Section 7.2.2, page 114.

This entails that QUnit with Sinon, JsTestDriver with Sinon and JSpec
are relevant options. Depending on whether you would need to add fixtures
or possibly add few, Jasmine with Sinon can also be considered. JSpec are

Recommended test library features for unit frameworks 133

no longer supported, so depending on the lifetime of the project to test, this
might need to be reconsidered.

Jasmine recently launched a jasmine.Clock class for faking time, and
other actively maintained framework might also see how the other imple-
mentations are changing, and adapt accordingly.

As seen, the thesis arguments for a set of requirements for JavaScript unit
frameworks, but on the other hand, e.g. HTML fixtures can be created by
the programmer and the same with simple stubs and spies. These recom-
mendations must always, due to the extensibility of JavaScript, be compared
against developer experience and project requirements.

Having the test framework features described in this section is important,
as well as knowing the framework through research on the factors from Sec-
tion 7.5.1. This is important because changing a framework halfway through
a project can be difficult. If the existing functionality can be found in the
new framework, there is a possibility of writing a custom adapter to map the
old methods onto the new ones. But if currently utilized functionality cannot
be matched in the new framework, the tests may need to be rewritten line
by line.

7.6.1 A Discovery test case

The experience with the test cases as a way to get to know a framework, were
positive. The code in Listing 7.9 can help to see how configuration, running,
test cycle and presentation are in a framework.

The first test is fairly simple and allows the developer to get to know the
test setup, syntax and assertion mechanism. The second and third test case
uses fake timers both in test and setup to see how this integration is done. If
this had been the first test case instead of the FizzBuzz kata, I believe that
I would have saved a couple of days of work.

134 Discussion

For completion, an Ajax call should have been added as well, but this
demands more code, which is not convenient for a this proposal. The test
case seeks to give a lot of information in a short time, not a complete review.
If you need to utilize fake Ajax functionality, this test case will only provide
a good starting point.

Recommended test library features for unit frameworks 135

1 //1.st test

2
3 //test

4 assert true == true

5 assert false == false

6 assert true == true

7 assert ’thisString == ’thatString ’

8
9 //2.nd test

10
11 //test

12 setup false timers

13 fake ’numberOfSec ’ amount of time

14 assert bool == false

15
16 //3.rd test

17 //in setup:

18 setup false timers

19 timeout(numberOfSec);

20
21 //in test

22 fake ’numberOfSec ’ amount of time

23 assert bool == false

24
25 //in source file for 2.nd and 3.rd test

26 var bool = true;

27 function timeoutThenChangeBool(sec) {

28 setTimeout(function (){

29 bool = false;

30 }, sec);

31 }

Listing 7.9: A test case to get to know the features of a new framework.

136 Discussion

7.7 Testing terminology for JavaScript

When looking for JavaScript unit testing frameworks, little was found. Self-
descriptions were often "testing framework" or BDD framework. Some of the
frameworks mentions their roots in unit testing, but other JavaScript test-
ing framework seem generally unaware of the terminology connected to unit
testing. Apart from FuncUnit, which provides higher-level testing through
UI15, all the frameworks provide mechanisms for testing on unit level only16.

The non-BDD frameworks described do not force TDD as a method and
could very well be used for regression testing and test-last methods. This is
another matter for the BDD style frameworks. They emphasize on the BDD
features and does not present themselves as general unit testing framework.
Referring to the background covered on BDD in Section 2.2.4, this indicates
a misunderstanding. BDD is a methodology and not a framework. As men-
tioned earlier, this thesis regards BDD as less important on a unit level as this
is the domain of the programmer, not necessarily the customer. Unit tests
act as documentation for other programming peers, and this does not require
a natural language, rather it may benefit from a precise, technical language.
The BDD style frameworks can be used as a test-last and regression testing
suite and even with a TDD methodology.

This confusion emphasizes the original motivation of the thesis; that
traditional development and testing methods have not yet caught up with
JavaScript, and that traditional unit testing have been encompassed by newer
methodologies as TDD and BDD. Applicants today should strive to bring the
terminology down to a unit testing level. This will help new users to reap
benefits of existing knowledge through the use of general patterns, and expert
users can use this vocabulary to discuss and pass on knowledge. This will

15Rather interaction through an API as the xUnit frameworks.
16This will depend on the following the level classification in Section 7.3 and seeing event

testing as disconnected to the core frameworks.

Summary 137

also help when discussion testing issues specific to JavaScript, and potentially
add a new patterns to the existing set.

7.8 Summary

This section has discussed the results from Chapter 4 in light of the results
uncovered in Chapter 6. Important changes have been discussed relating
to how unit testing must be performed and what the different JavaScript
characteristics demands of the framework. The differentiators in a frame-
work have also been revised and are presented in Section 7.5.1. The most
important changes were adding documentation, lowered weight on execution
environment and removing syntax. Minor additions have also be made on
subsections on both test library and execution.

A recommended set of test library features has been identified in Sec-
tion 7.6 to answer Research Question 2. Here it is important to remember
that project specific needs must be taken into account and these can change
the requirements to find the framework with the best fit.

In Section 7.6, the Discovery test case was created to provide develop-
ers with a simple test to discover general settings, lifecycle, execution and
presentation as well as testing of time in both setup and test. This case
can save developers from initial issues when using a new framework, as the
test case is easy and allows focus to be on the inner workings of the new
framework.

Research Question 3 have been discussed, but not answered in Section 7.2.3.
This is due to the research method chosen in Chapter 3. The method used
will only reflect personal views, and cannot scientifically answer the question,
but can provide an incentive for further research on the topic.

Chapter 8

Conclusion

During the work with this thesis, Sinon.Js released a new version, Jasmine
released a module for faking time and BDD framework Cucumber1 was ported
to JavaScript. This shows that the area is of interest to the industry and
developers, and it is likely that the topic will gain even more publicity in the
time to come.

The project has contributed to the body of knowledge within unit testing
with TDD in JavaScript and this chapter will suggest how the thesis can be
elaborated in the future. As discussed in Chapter 3, the goal of this thesis
was to act as a demonstration of new aspects within the domain. This is
elaborated in Section 8.1.

1Originally a Ruby framework for automation of plain text tests.

140 Conclusion

Research Question 1: What available frameworks exist for unit

testing TDD in JavaScript? Eight frameworks were found and two test
libraries. Five frameworks and all the libraries are still actively maintained.
The most important with regards to functionality, community and support
were, in alphabetical order:

• Jasmine

• JSpec2

• JsTestDriver

• QUnit

• Sinon.JS3

• YUI Test

Some BDD frameworks are present on this list as well, due to the fact that
BDD has TDD as its originating methodology[13]. A description of the
remaining frameworks can be found in Chapter 5.

Research Question 2: Which test features are recommended for a

JavaScript unit testing framework? To discover these, a set of test
cases was developed to cover testing issues in JavaScript and get to know
the different aspects of a framework. Information and research was done in
Chapter 4 and the test cases presented and justified in Chapter 6.

Executing the tests in Chapter 6 gave new insight, and based on the
discussion in Chapter 7 the following recommendations for necessary library
features in JavaScript unit testing frameworks:

2No longer supported.
3Test library.

141

• General unit testing features

– Test organization; setup, teardown and test

– Stubs and spies, or stubs and mocks

• JavaScript specific test features

– Faking Ajax

– Faking time

– HTML-fixtures

This entails that the best suited frameworks are JsTestDriver with Sinon.JS
and QUnit with Sinon.JS. JSpec also fulfills the recommendations, but is
no longer supported, and Jasmine fulfills all recommendations, apart from
HTML fixtures. When choosing a framework, it is important to consider
unique factors of the project as well.

Research Question 3: What effect does TDD have on JavaScript

development? Personal experiences with TDD in JavaScript testing an-
swered this research question. It was an inherent limitation of the research
method, as resources and other constraints did not allow a more scientific
approach to this question. Personally, TDD allowed progress to be achieved
in steps that felt comfortable and the structured approach helped provide
a starting point when a task seemed to big or too difficult. It was also
experienced what happens when TDD slips, as an unintended assumption
came through when using a tutorial. Other effects were increased confidence
and a support for experimentation with more advanced features, not only
encouraging to make it work.

From earlier research, TDD has been proven to decrease mean time be-
tween failures and time spent for quality assurance. Experts argue that is

142 Conclusion

also lowers the bug mean time to fix (MTTF). Researchers have not found
concrete evidence for higher (nor lower) productivity and lower coupling and
cohesion. Long time effects like higher maintainability and code reuse has
not been found researched.

Even through research does not fully support the benefits of TDD, soft-
ware experts like Robert Martin and Kent Beck vouch for methodology[3, 12]
and researches found that developers who learned TDD stuck to the practice
after the TDD project was at an end[8].

Other contributions During the work with this thesis, multiple contri-
butions have been made apart from the above mentioned. This is due to the
lack of previous research and industrial application of the combined methods
and technology. It is believed that the work done in this thesis is in front
on this area. When regarding the interest and contacts that have been met
during the course of this thesis, personal experiences vouch for this.

The terminology on the existing frameworks has discussed and it have
been suggested that these should move closer to the terms found among
xUnit frameworks. This will allow JavaScript unit testing to learn from the
existing knowledge and pattern library within unit testing, as well as helping
beginners and providing a consistent terminology for experts

The differentiating factors in the frameworks have been discussed and
revised with the experience gained from executing the test cases. The differ-
entiators suggested are:

• Execution

– Setup

– Environment

– Lifecycle

– Result viewer

143

• Test library

• Documentation

As a response to the differentiators in the framework, the Discovery test
case was proposed in Listing 7.9. This allows developers to explore the execu-
tion factors in a quick and consistent way. It also has two tests on JavaScript
timing mechanisms, checking the ability to fake timing methods initiated by
both test and setup. As an endnote, it is important to stress the fit between
the project to be tested and the framework, and these considerations can
give way to other priorities.

This thesis has resulted in a novel and practical approach, through the
Discovery test case, to quickly gain an understanding of a new frame-
work. When adding the recommended library features and differentiator is
a JavaScript unit testing framework, a more complete view can be achieved
as developers know what to look for. Combined with knowledge of his or her
own project, it is believed that the contents of this thesis can help developers
make an informed decision when choosing a unit testing framework.

Further contributions are:

• As new frameworks emerge, the four test cases can be used to assessing
these, making comparisons easier and more consistent.

• Hints for smoother development have been posed, a automatic browser
refresh tools was introduced and the use of Ruby gems to relive the
risk of loosing tests with an in-browser test runner.

• For beginners in JavaScript, hints on how to start can be used, and
lessons can be learned from the mistakes made with TDD in the process
with these thesis.

144 Conclusion

8.1 Further work

Referring to the research method described in Chapter 3, the thesis will
aims to act as a incentive to further studies and background for industrial
application. Below are suggestions that were out of scope for this thesis, but
could be interesting for further research:

• Performing the four test cases with different groups, e.g. with and
without TDD.

• Research on the effects of TDD in a dynamic versus static language.
Some patterns, like interfaces, are not applicable in dynamic languages.
How does this affect the emerging design?

• Quantitative analysis of JavaScript unit testing, e.g. code coverage.

• Qualitative studies interviewing a team using JavaScript unit testing
with or without TDD.

• Unit testing with browser normalization through jQuery: what differ-
ence does it make?

• Acceptance testing in JavaScript.

• Component or system level testing of Javascript, e.g. with FuncUnit.

• How to use TDD for learning JavaScript?

• Compare the existing framework to the xUnit family to investigate the
terminology confusion deeper and see the degree of alignment possible.

• Empirical research on the effect of TDD in JavaScript for a test case
or set of tasks.

Further work 145

• Research on patterns specific for JavaScript; can existing ones be adapted
or does it demand an expanded set of patterns?

• Performing the test cases in Rhino with env.js and explore the differ-
ences.

As this section illustrates, the area still has a wide rage of topics that can
interest researchers and practitioners in a long time to come.

Appendices

Appendix A

JavaScript support functions

1 Object.method("superior", function(name){

2 var that = this ,

3 method = that[name];

4 return function () {

5 function.apply(that , arguments);

6 };

7 });

8
9 Function.prototype.method = function(name , func){

10 this.protype[name] = func;

11 return this;

12 }

Listing A.1: An implementation of super in JavaScript by Douglas
Crockford[90].

Appendix B

Source code

An extract of the source code for the test cases. The remaining is found in
the attached .zip file.

B.1 Jasmine timing

1 var SIXTY_SECONDS = 60 *1000;

2
3 describe("startGame", function () {

4 it("should start with 0 points", function () {

5 var game = startAlias ();

6 expect(game.points).toEqual (0);

7 });

8 });

9 describe("ALIAS round", function () {

10 var g;

11 beforeEach(function () {

12 g = startAlias ();

13 g.newWord = function () {};

14 });

15

152 Source code

16 it("should have 1 point if one 1 word is correct", function

() {

17 var game = startAlias ();

18 game.newWord = function () {};

19 runs(function (){

20 game.newWord ();

21 game.ok();

22 });

23 waits(SIXTY_SECONDS);

24 runs(function (){

25 game.ok();

26 expect(game.points).toEqual (1);

27 });

28 });

29
30 it("should have -1 point if no words are correct", function

() {

31 runs(function (){

32 g.newWord ();

33 g.pass();

34 });

35 waits(SIXTY_SECONDS);

36 runs(function (){

37 g.pass();

38 expect(g.points).toEqual (-1);

39 });

40 });

41
42 it("should have 1 point after a a round of 6 ok and 5 pass"

, function () {

43 var alias = startAlias ();

44 alias.newWord = function () {};

45 runs(function (){

46 round(alias , 6, 5);

47 });

Jasmine timing 153

48 waits(SIXTY_SECONDS);

49 runs(function (){

50 round(alias , 6, 5);

51 expect(alias.points).toEqual (1);

52 });

53 });

54 });

55
56 var round = function (game , accepts , passes){

57 for (var i=0; i < accepts; i++) {

58 game.newWord ();

59 game.ok();

60 };

61 for (var i=0; i < passes; i++) {

62 game.newWord ();

63 game.pass();

64 };

65 };

Listing B.1: Tests for Alias in Jasmine.

1 function startAlias () {

2 var SIXTY_SECONDS = 60 *1000;

3 var game = {};

4 game.points = 0;

5 game.inPlay = true;

6
7 game.ok = function (){

8 if (game.inPlay) {

9 game.points += 1;

10 };

11 };

12 game.pass = function (){

13 if (game.inPlay) {

14 game.points -= 1;

15 };

154 Source code

16 };

17
18 setTimeout(function () {game.inPlay = false;},

SIXTY_SECONDS);

19
20 return game;

21 };

Listing B.2: Source code for Alias in Jasmine.

B.1.1 Abstracting away time

In the following code session, the timing function is abstracted away. The
test that is skipped ’should have 1 point if one 1 word is correct: async’ is
to give confidence, but the test ’should have 1 points, 6 ok, 5 pass’ gives the
same confidence when testing needs to be fast.

1 describe("startGame", function () {

2 it("should start with 0 points", function () {

3 var alias = startAlias ();

4 expect(alias.points).toEqual (0);

5 });

6 });

7
8 describe("ALIAS round timing", function () {

9 var alias;

10 var newWordToRestore;

11 beforeEach(function (){

12 alias = startAlias ();

13 alias.newRound ();

14 newWordToRestore = alias.newWord;

15 alias.newWord = function (){return "test"};

16 });

17 afterEach(function (){

18 alias.newWord = newWordToRestore;

19 });

Jasmine timing 155

20 it("should give 1 points if one word is correct", function

() {

21 alias.ok();

22 expect(alias.points).toEqual (1);

23 });

24 it("should give no points if time is up", function () {

25 alias.ok();

26 expect(alias.points).toEqual (1);

27
28 alias.timeleft = 0;

29 alias.ok();

30 expect(alias.points).toEqual (1);

31 });

32 xit("should have 1 point if one 1 word is correct: async",

function () {

33 runs(function (){

34 alias.ok();

35 });

36 waits (60*1000);

37 waits (500);

38 runs(function (){

39 alias.ok();

40 expect(alias.points).toEqual (1);

41 });

42 });

43
44 it("should have 1 points , 6 ok , 5 pass", function () {

45 round(alias , 6, 5);

46 expect(alias.points).toEqual (1);

47 alias.timeleft = 0;

48 round(alias , 6, 5);

49 expect(alias.points).toEqual (1);

50 });

51 });

52

156 Source code

53 function round(game , okays , passes){

54 for(var i = 0; i < okays; i++){

55 game.ok();

56 };

57 for(var i = 0; i < passes; i++){

58 game.pass();

59 };

60 };

Listing B.3: Tests for Alias with time abstracted away.

1 function startAlias () {

2 var game = {};

3 game.points = 0;

4 game.timeleft = 60;

5
6 game.newRound = function (){

7 game.timeleft = 60;

8 setTimeout(game.updateTime , 1000)

9 };

10
11 game.updateTime = function (){

12 if(game.timeleft > 0){

13 game.timeleft -= 1;

14 setTimeout(game.updateTime , 1000);

15 };

16 };

17
18 game.ok = function (){

19 if(game.timeleft > 0){

20 game.points += 1;}

21 };

22 game.pass = function (){

23 if(game.timeleft > 0){

24 game.points -= 1;

25 }

Jasmine timing 157

26 }

27
28 return game;

29 }

Listing B.4: Source code for Alias with time abstracted away.

Appendix C

Encapsulating timeouts

This listing shows the pseudocode on how you can create an encapsulated
time block able to fake progression of time.

Note that it demands the source code to encapsulate the call to setTime-
out in a method that can be stubbed by the test.

1 //In source

2
3 [...]

4 startGame (){

5 [...]

6 wait(game.endGame , SIXTY_SECONDS);

7 };

8
9 function wait(fun , ms){

10 setTimeout(fun , ms);

11 };

12
13 //In test

14
15 //Setup

16 timer = {

17 var now = 0;

160 Encapsulating timeouts

18 var queue = [];

19 this.enqueue = function(a){

20 queue.add(a)

21 };

22 this.tick = function(ms) {

23 now = now + ms;

24 //sort queue in ascending order for any s > now then

remove from array and

25 f.apply(window);

26 };

27 };

28 wait = function(fun , ms){

29 this.enqueue ({f : fun , s : ms});

30 };

Listing C.1: Encapsulating time.

Bibliography

[1] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, and H. Erdogmus,

“What Do We Know about Test-Driven Development?,” IEEE SOFTWARE,

vol. 28, pp. 16–19, 2010.

[2] K. Beck, “Aim, fire [test-first coding],” IEEE SOFTWARE, vol. 18, p. 87,

2001.

[3] K. Beck, Test-Driven Development By Example. Addison-Wesley, 2003.

[4] R. Osherove, The Art of Unit Testing: with Examples in .NET. Manning

Publications, 2009.

[5] G. Meszaros, xUnit Test Patterns : Refactoring Test Code. Addison-Wesley,

2007.

[6] Selenium, “Platforms Supported by Selenium.” http://seleniumhq.org/

about/platforms.html#programming-languages, 2011. [cited 3 May 2011].

[7] K. Beck, Test-Driven Development By Example. Addison-Wesley, 2003.

[8] D. S. Janzen and H. Saiedian, “Does Test-Driven Development Really Improve

Software Design Quality?,” IEEE SOFTWARE, vol. 25, pp. 77–84, 2008.

[9] L. Crispin, “Driving Software Quality: How Test-Driven Development Impacts

Software Quality,” IEEE SOFTWARE, vol. 23, pp. 70–71, 2006.

[10] D. S. Janzen and H. Saiedian, “Test-driven development concepts, taxonomy,

and future direction,” IEEE SOFTWARE, vol. 38, pp. 43–50, 2005.

http://seleniumhq.org/about/platforms.html#programming-languages
http://seleniumhq.org/about/platforms.html#programming-languages

162 Bibliography

[11] M. F. Aniche and M. A. Gerosa, “Most Common Mistakes in Test-Driven

Development Practice: Results from an Online Survey with Developers,” in

Third International Conference on Software Testing, Verification, and Valida-

tion Workshops, 2010.

[12] R. C. Martin, The Clean Coder : A Code of Conduct for Professional Pro-

grammers. Prentice Hall, 2011.

[13] D. North, “Introducing BDD.” http://dannorth.net/introducing-bdd/,

Mar. 2007. [cited 13 May 2011].

[14] D. North, “BddWiki : Behavior-Driven Development.” http:

//behaviour-driven.org/, Jan. 2009. [updated 2 Jan. 2009; cited 14

May 2011].

[15] cucumber / cucumber, “Cucumber.” https://github.com/cucumber/

cucumber/wiki, May 2011. [updated 13 May 2011; cited 14 May 2011].

[16] D. Crockford, “The World’s Most Misunderstood Programming Language

Has Become the World’s Most Popular Programming Language.” http:

//javascript.crockford.com/popular.html, Mar. 2008. [updated 3 Mar.

2008; cited 4 Jun. 2011].

[17] D. Crockford, “JavaScript: The World’s Most Misunderstood Programming

Language.” http://www.crockford.com/javascript/javascript.html,

2001. [cited 8 Apr. 2011].

[18] Mozilla Foundation, “About JavaScript.” https://developer.mozilla.org/

en/About_JavaScript, Oct. 2010. [updated 22 Oct. 2010; cited 21 Mar. 2011].

[19] R. Allen, “Self - the power of simplicity.” http://selflanguage.org/. [up-

dated 8 Dec. 2010; cited 4 Jun. 2011].

[20] D. Crockford, “Crockford on JavaScript – Volume 1: The Early Years.”

http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-1,

Jan. 2010. [updated 26 Jan. 2010, cited 21 Mar. 2011].

http://dannorth.net/introducing-bdd/
http://behaviour-driven.org/
http://behaviour-driven.org/
https://github.com/cucumber/cucumber/wiki
https://github.com/cucumber/cucumber/wiki
http://javascript.crockford.com/popular.html
http://javascript.crockford.com/popular.html
http://www.crockford.com/javascript/javascript.html
https://developer.mozilla.org/en/About_JavaScript
https://developer.mozilla.org/en/About_JavaScript
http://selflanguage.org/
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-1

Bibliography 163

[21] D. Crockford, “Crockford on JavaScript – Chapter 2: And Then There

Was JavaScript.” http://developer.yahoo.com/yui/theater/video.php?

v=crockonjs-2, Feb. 2010. [updated 7 Feb. 2010; cited 21 Mar. 2011].

[22] Netscape Press Release, “INDUSTRY LEADERS TO ADVANCE

STANDARDIZATION OF NETSCAPE’S JAVASCRIPT AT STAN-

DARDS BODY MEETING : NETSCAPE TO POST JAVASCRIPT

SPECIFICATION AND LICENSING INFORMATION ON INTER-

NET SITE.” http://web.archive.org/web/19981203070212/http:

//cgi.netscape.com/newsref/pr/newsrelease289.html. [updated 15

Nov. 1996; cited 4 Jun. 2011].

[23] United States Patent and Trademark Office, “Trademark Electronic Search

System (TESS).” http://tess2.uspto.gov/, Dec. 1995. A search was done

on the trademark ’JavaScript’ [cited 21 Mar. 2011].

[24] Oracle Press Release, “Oracle Completes Acquisition of Sun.” http://www.

oracle.com/us/corporate/press/044428, Jan. 2010. [updated 27 Jan. 2010;

cited 4 Jun. 2011].

[25] D. Crockford, “Crockford on JavaScript – Episode IV: The Metamor-

phosis of Ajax.” http://developer.yahoo.com/yui/theater/video.php?v=

crockonjs-4, Mar. 2010. [updated 3 Mar 2010; cited 21 Mar. 2011].

[26] J. J. Garrett, “Ajax: A New Approach to Web Applications.” http://www.

adaptivepath.com/ideas/essays/archives/000385.php, Feb. 2005. [up-

dated 13 Mar. 2005; cited 21 Mar. 2011].

[27] D. Crockford, JavaScript : The Good Parts. OÂťReilly and Yahoo! Press,

2008.

[28] IEEE, “IEEE Xplore Digital Library.” http://ieeexplore.ieee.org/, 2011.

[29] Springer, “SpringerLink.” http://springerlink.metapress.com/, 2011.

[30] ACM, “ACMDigital Library.” http://springerlink.metapress.com/, 2011.

http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-2
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-2
http://web.archive.org/web/19981203070212/http://cgi.netscape.com/newsref/pr/newsrelease289.html
http://web.archive.org/web/19981203070212/http://cgi.netscape.com/newsref/pr/newsrelease289.html
http://tess2.uspto.gov/
http://www.oracle.com/us/corporate/press/044428
http://www.oracle.com/us/corporate/press/044428
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-4
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-4
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://ieeexplore.ieee.org/
http://springerlink.metapress.com/
http://springerlink.metapress.com/

164 Bibliography

[31] G. Benoit, “Systems Analysis.” http://web.simmons.edu/~benoit/LIS486/

SystemsAnalysis.html. [cited 10 Jun. 2011].

[32] Wikipedia, “Systems Analysis.” http://en.wikipedia.org/wiki/Systems_

analysis, Mar. 2002. [updated 26 May 2011; cited 10 Jun. 2011].

[33] J. Lu, “Introduction to Computer Science.” http://www.jiahenglu.net/

course/researchmethod/slides/lec9.pdf. [cited 21 Jun. 2011].

[34] G. DODIG-CRNKOVIC, “Scientific Methods in Computer Science.” http:

//www.mrtc.mdh.se/publications/0446.pdf. [cited 21 Jun. 2011].

[35] S. Stefanov, Object-Oriented JavaScript. Packt Publishing, 2008.

[36] C. Johansen, Test-Driven JavaScript Development. Addison-Wesley Profes-

sional, Sept. 2010.

[37] E. Schurman and J. Brutlag, “The User and Business Impact of Server

Delays, Additional Bytes, and HTTP Chunking in Web Search.” http:

//velocityconf.com/velocity2009/public/schedule/detail/8523, June

2009. [cited 15 Jun. 2011].

[38] C. Johansen, Test-Driven JavaScript Development, pp. 60–69. Addison-Wesley

Professional, Sept. 2010.

[39] joyent, “joyent / node.” https://github.com/joyent/node/wiki, 2011. [up-

dated 5 Apr. 2011; cited 11 Jun. 2011].

[40] Mozilla Foundation, “FireBug : Web Development Evolved.” http://

getfirebug.com/, 2011. [cited 26 Apr. 2011].

[41] Mozilla Foundation, “Rhino : JavaScript for Java.” http://www.mozilla.

org/rhino/. [cited 14 May 2011].

[42] J. Resig, “Envjs.” http://www.envjs.com/. [cited 14 May 2011].

[43] C. Johansen, Test-Driven JavaScript Development, pp. 5–14. Addison-Wesley

Professional, Sept. 2010.

http://web.simmons.edu/~benoit/LIS486/SystemsAnalysis.html
http://web.simmons.edu/~benoit/LIS486/SystemsAnalysis.html
http://en.wikipedia.org/wiki/Systems_analysis
http://en.wikipedia.org/wiki/Systems_analysis
http://www.jiahenglu.net/course/researchmethod/slides/lec9.pdf
http://www.jiahenglu.net/course/researchmethod/slides/lec9.pdf
http://www.mrtc.mdh.se/publications/0446.pdf
http://www.mrtc.mdh.se/publications/0446.pdf
http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://velocityconf.com/velocity2009/public/schedule/detail/8523
https://github.com/joyent/node/wiki
http://getfirebug.com/
http://getfirebug.com/
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://www.envjs.com/

Bibliography 165

[44] D. Chelimsky, “rspec-1.3.1 | rspec-rails-1.3.3.” http://rspec.info/

documentation/, 2011. [cited 26 Apr. 2011].

[45] C. Johansen, Test-Driven JavaScript Development, pp. 257–263. Addison-

Wesley Professional, Sept. 2010.

[46] Pivotal Labs, “Jasmine : BDD for JavaScript.” http://pivotal.github.com/

jasmine/, 2011. [cited 26 Apr. 2011].

[47] M. Hevery and J. Lenfant-Engelmann, “Yet Another JavaScript Test-

ing Framework.” http://googletesting.blogspot.com/2009/05/

yet-another-javascript-testing.html, May 2009. [updated 22 May

2009; cited 21 Mar. 2011].

[48] M. Hevery, “Google Group on JsTestDriver.” http://code.google.com/p/

js-test-driver/wiki/AsyncTestCase, Jan. 2011. [updated 14 Jan. 2011;

cited 3 May 2011].

[49] M. Hevery, “Google Group on JsTestDriver.” http://code.google.com/p/

js-test-driver/, Apr. 2011. [updated 29 Apr. 2011; cited 2 May 2011].

[50] Pivotal Labs, “JsUnit : Introduction.” http://www.jsunit.net/, 2001. [cited

26 Apr. 2011].

[51] Pivotal Labs, “pivotal/jsunit.” https://github.com/pivotal/jsunit, 2010.

[updated 18 Feb. 2010, cited 26 Apr. 2011].

[52] C. McMahon, “caolan / nodeunit.” https://github.com/caolan/nodeunit,

2011. [updated 17 Mar. 2011; cited 2 May 2011].

[53] K. Kawaguchi, “Meet Hudson : Features.” http://wiki.hudson-ci.org/

display/HUDSON/Meet+Hudson, 2011. [updated 15 Mar. 2011; cited 3 May

2011].

[54] The jQuery Project, “QUnit.” http://docs.jquery.com/QUnit, 2010. [cited

2 May 2011].

http://rspec.info/documentation/
http://rspec.info/documentation/
http://pivotal.github.com/jasmine/
http://pivotal.github.com/jasmine/
http://googletesting.blogspot.com/2009/05/yet-another-javascript-testing.html
http://googletesting.blogspot.com/2009/05/yet-another-javascript-testing.html
http://code.google.com/p/js-test-driver/wiki/AsyncTestCase
http://code.google.com/p/js-test-driver/wiki/AsyncTestCase
http://code.google.com/p/js-test-driver/
http://code.google.com/p/js-test-driver/
http://www.jsunit.net/
https://github.com/pivotal/jsunit
https://github.com/caolan/nodeunit
http://wiki.hudson-ci.org/display/HUDSON/Meet+Hudson
http://wiki.hudson-ci.org/display/HUDSON/Meet+Hudson
http://docs.jquery.com/QUnit

166 Bibliography

[55] Jupiter IT, “FuncUnit.” http://javascriptmvc.com/docs/FuncUnit.html#

&who=FuncUnit, 2011. [cited 3 May 2011].

[56] Jupiter IT, “JavaScriptMVC.” http://javascriptmvc.com/index.html,

2011. [cited 1 Jun. 2011].

[57] M. Monteleone, “mmonteleone / pavlov.” https://github.com/

mmonteleone/pavlov, 2011. [updated 29 Mar. 2011; cited 2 May 2011].

[58] N. Sobo, “screw-unit / README.txt,” 2009. [updated 16 Feb 2009; cited 2

May 2011].

[59] N. Sobo, “nathansobo / screw-unit .” https://github.com/nathansobo/

screw-unit, 2010. [updated 29 Dec. 2010; cited 2 May 2011].

[60] C. Johansen, “Sinon.JS.” http://sinonjs.org/, 2010. [cited 26 Apr. 2011].

[61] jquery, “TestSwarm.” https://github.com/jquery/testswarm/wiki, Sept.

2010. [updated 2 Apr. 2011; cited 5 Apr. 2011].

[62] Yahoo! Inc, “Yahoo! Developer Network : YUI Library.” http://developer.

yahoo.com/yui/, 2011. [cited 25 Apr. 2011].

[63] Yahoo! Inc, “Yahoo! Developer Network : YUI3: Event.” http://developer.

yahoo.com/yui/3/event/, 2011. [cited 25 Apr. 2011].

[64] Yahoo! Inc, “Yahoo! Developer Network : YUI 3: Test.” http://developer.

yahoo.com/yui/3/test/, 2011. [cited 25 Apr. 2011].

[65] J. DeWind, “Jsmock.” http://jsmock.sourceforge.net/. [updated 20 May

2007; cited 1 Jun. 2011].

[66] K.-E. Rønsen, “jack.” https://github.com/keronsen/jack#readme, 2009.

[updated 10 Nov. 2009; cited 3 May 2011].

[67] A. Kang, “JJSpec.” http://jania.pe.kr/aw/moin.cgi/JSSpec/

ReleaseNote?highlight=%28%28JSSpec%29%29, 2008. [updated 23 Sep.

2008; cited 3 May 2011].

http://javascriptmvc.com/docs/FuncUnit.html#&who=FuncUnit
http://javascriptmvc.com/docs/FuncUnit.html#&who=FuncUnit
http://javascriptmvc.com/index.html
https://github.com/mmonteleone/pavlov
https://github.com/mmonteleone/pavlov
https://github.com/nathansobo/screw-unit
https://github.com/nathansobo/screw-unit
http://sinonjs.org/
https://github.com/jquery/testswarm/wiki
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/3/event/
http://developer.yahoo.com/yui/3/event/
http://developer.yahoo.com/yui/3/test/
http://developer.yahoo.com/yui/3/test/
http://jsmock.sourceforge.net/
https://github.com/keronsen/jack#readme
http://jania.pe.kr/aw/moin.cgi/JSSpec/ReleaseNote?highlight=%28%28JSSpec%29%29
http://jania.pe.kr/aw/moin.cgi/JSSpec/ReleaseNote?highlight=%28%28JSSpec%29%29

Bibliography 167

[68] TheFrontside.net, “Crosscheck.” http://sourceforge.net/projects/

crosscheck/, 2009. [updated 17 Jul. 2009; cited 3 May 2011].

[69] A. Kent, “andykent / smoke.” https://github.com/andykent/smoke, 2009.

[updated 21 May 2009; cited 3 May 2011].

[70] appendTo, “appendto / jquery-mockjax.” https://github.com/appendto/

jquery-mockjax. [updated 26 Mar. 2011; cited 1 Jun. 2011].

[71] M. James, “Silk Icons.” http://www.famfamfam.com/lab/icons/silk/.

[cited 27 Jun. 2011].

[72] Open Source Initiative, “The MIT License (MIT).” http://www.opensource.

org/licenses/mit-license.php. [cited 11 Jun. 2011].

[73] Open Source Initiative, “The BSD 2-Clause License.” http://www.

opensource.org/licenses/bsd-license.php. [cited 11 Jun. 2011].

[74] The Apache Software Foundation, “Apache License, Version 2.0.” http://

www.apache.org/licenses/LICENSE-2.0, Jan. 2004. [cited 11 Jun. 2011].

[75] Free Software Foundation, Inc., “GNU GENERAL PUBLIC LICENSE.”

http://www.opensource.org/licenses/mit-license.php, June 2007. [up-

dated 29 Jun. 2007; cited 11 Jun. 2011].

[76] The jQuery Project, “jQuery project : Licence.” http://jquery.org/

license/, 2010. [cited 2 May 2011].

[77] Pivotal Labs, “pivotal / jasmine.” https://github.com/pivotal/jasmine,

2011. [updated 9 Mar. 2011, cited 26 Apr. 2011].

[78] visionmedia, “visionmedia / jspec.” https://github.com/visionmedia/

jspec, 2010. [updated 30 Sep. 2010; cited 2 May 2011].

[79] jquery, “jquery / qunit.” https://github.com/jquery/qunit, 2011. [updated

20 Apr. 2011; cited 2 May 2011].

http://sourceforge.net/projects/crosscheck/
http://sourceforge.net/projects/crosscheck/
https://github.com/andykent/smoke
https://github.com/appendto/jquery-mockjax
https://github.com/appendto/jquery-mockjax
http://www.famfamfam.com/lab/icons/silk/
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.opensource.org/licenses/mit-license.php
http://jquery.org/license/
http://jquery.org/license/
https://github.com/pivotal/jasmine
https://github.com/visionmedia/jspec
https://github.com/visionmedia/jspec
https://github.com/jquery/qunit

168 Bibliography

[80] jupiterjs, “jupiterjs / funcunit.” https://github.com/jupiterjs/funcunit,

2011. [updated 2 May 2011; cited 2 May 2011].

[81] Yahoo! Inc, “yui / yuitest.” https://github.com/yui/yuitest, 2011. [up-

dated 18 Apr. 2011; cited 2 May 2011].

[82] Wikipedia, “Kata (programming).” http://en.wikipedia.org/wiki/Code_

Kata, Mar. 2002. [updated 26 May 2011; cited 10 Jun. 2011].

[83] P.-P. Koch, “W3C DOM Compatibility - HTML.” http://www.quirksmode.

org/dom/w3c_html.html, 2011. [updated 4 Apr. 2011; cited 4 Jun. 2011].

[84] J. Newbery, “froots / jasmine-sinon.” https://github.com/froots/

jasmine-sinon. [updated 11 Feb. 2011; cited 29 May 2011].

[85] C. Johansen, “Jstdutil - A Ruby wrapper over JsTestDriver.”

http://cjohansen.no/en/javascript/jstdutil_a_ruby_wrapper_over_

jstestdriver. [updated 4 Nov. 2009; cited 1 Jun. 2011].

[86] M. Hevery, “Google Group on JsTestDriver.” http://code.google.com/p/

js-test-driver/wiki/GettingStarted, Jan. 2010. [updated 21 Oct. 2010;

cited 21 Mar. 2011].

[87] W3Schools, “AJAX Tutorial.” http://www.w3schools.com/Ajax/Default.

Asp. [cited 20 Jun. 2011].

[88] Macromates Ltd., “textmate the missing editor.” http://lincoln.gsfc.

nasa.gov/trl/Nolte2003.pdf. [cited 20 Jun. 2011].

[89] Pivotal Labs, “Class jasmine.Spy.” http://pivotal.github.com/jasmine/

jsdoc/symbols/jasmine.Spy.html, Feb. 2011. [updated 27 Feb. 2011; cited

20 Jun. 2011].

[90] D. Crockford, JavaScript : The Good Parts, ch. 4-5. OÂťReilly and Yahoo!

Press, 2008.

https://github.com/jupiterjs/funcunit
https://github.com/yui/yuitest
http://en.wikipedia.org/wiki/Code_Kata
http://en.wikipedia.org/wiki/Code_Kata
http://www.quirksmode.org/dom/w3c_html.html
http://www.quirksmode.org/dom/w3c_html.html
https://github.com/froots/jasmine-sinon
https://github.com/froots/jasmine-sinon
http://cjohansen.no/en/javascript/jstdutil_a_ruby_wrapper_over_jstestdriver
http://cjohansen.no/en/javascript/jstdutil_a_ruby_wrapper_over_jstestdriver
http://code.google.com/p/js-test-driver/wiki/GettingStarted
http://code.google.com/p/js-test-driver/wiki/GettingStarted
http://www.w3schools.com/Ajax/Default.Asp
http://www.w3schools.com/Ajax/Default.Asp
http://lincoln.gsfc.nasa.gov/trl/Nolte2003.pdf
http://lincoln.gsfc.nasa.gov/trl/Nolte2003.pdf
http://pivotal.github.com/jasmine/jsdoc/symbols/jasmine.Spy.html
http://pivotal.github.com/jasmine/jsdoc/symbols/jasmine.Spy.html

	Title Page
	Abstract
	Preface
	List of tables
	List of figures
	List of listings
	Glossary
	Abbreviations and acronyms
	Introduction
	Motivation
	Research question
	Contributions
	Outline

	Background
	Unit testing
	Unit testing frameworks
	Integration testing

	Test-Driven Development
	The rules of TDD and their implications
	Programming with TDD
	Research results
	Behavior-Driven Development

	JavaScript
	History
	The language

	Summary

	Research method
	Literature study
	Research methods
	Qualitative methods
	Quantitative methods
	Feasibility prototyping

	Adopting demo and proof of concept - methods
	Process description

	Limitations
	Summary

	An introduction to JavaScript and testing
	Characteristics affecting tests
	Vocabulary
	Examining a JavaScript framework
	Summary

	State of the art
	Jasmine
	JSpec
	JsTestDriver
	JsUnit
	nodeunit
	QUnit
	FuncUnit
	Pavlov

	Screw.Unit
	Sinon.JS
	TestSwarm
	YUI Test
	Others
	Feature mapping
	Summary

	Results
	Test cases
	FizzBuzz
	Alias
	Twitter
	DOM manipulation

	Execution
	Standalone Jasmine
	Jasmine and Sinon.JS
	JSpec
	JsTestDriver and Sinon.JS
	Standalone QUnit
	QUnit and Sinon.JS
	YUI Test

	Summary

	Discussion
	Limitations of the research design and material
	Personal experiences
	Difficulties
	Experiences with TDD in JavaScript
	Effects from TDD in JavaScript

	Level of testing
	Reviewing JavaScript characteristics
	Reviewing frameworks characteristics
	Redefining framework characteristics

	Recommended test library features for unit frameworks
	A Discovery test case

	Testing terminology for JavaScript
	Summary

	Conclusion
	Further work

	Appendices
	JavaScript support functions
	Source code
	Jasmine timing
	Abstracting away time

	Encapsulating timeouts

	Bibliography

