
Master of Science in Computer Science
June 2011
Ian Bratt, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Parallel Algorithms for Neuronal Spike
Sorting

Thomas Stian Bergheim
Arve Aleksander Nymo Skogvold

Problem description

State-of-the-art algorithms will be studied for sorting spike data recorded
via tetrodes from living rats. Parallel algorithms will be implemented on
state-of-the-art parallel CPU hardware in order to improve performance of
existing algorithms, and increase the range of tractable algorithms.

Emphasis will be placed on tuning the algorithms to achieve maximum
performance from the hardware platform, and grasping a deep understanding
of programming practices needed to achieve high performance on parallel
hardware.

Detailed analysis will be performed to understand the trade-offs and qual-
ity of the algorithms, with regards to clustering quality and execution time.

The project should culminate in a working application with a graphical
user interface which will be used to perform spike sorting, and to experiment
with the different implemented algorithms.

Assignment given: 21. January 2011
Supervisor: Ian Bratt

i

ii

Abstract

Neurons communicate through electrophysiological signals, which may be
recorded using electrodes inserted into living tissue. When a neuron emits
a signal, it is referred to as a spike, and an electrode can detect these from
multiple neurons. Neuronal spike sorting is the process of classifying the
spike activity based on which neuron each spike signal is emitted from.

Advances in technology have introduced better recording equipment, which
allows the recording of many neurons at the same time. However, clustering
software is lagging behind.

Currently, spike sorting is often performed semi-manually by experts, with
computer assistance, in a drastically reduced feature space. This makes the
clustering prone to subjectivity. Automating the process will make classifi-
cation much more efficient, and may produce better results. Implementing
accurate and efficient spike sorting algorithms is therefore increasingly im-
portant.

We have developed parallel implementations of superparamagnetic clus-
tering, a novel clustering algorithm, as well as k-means clustering, serving
as a useful comparison. Several feature extraction methods have been im-
plemented to test various input distributions with the clustering algorithms.
To assess the quality of the results from the algorithms, we have also imple-
mented different cluster quality algorithms.

Our implementations have been benchmarked, and found to scale well
both with increased problem sizes and when run on multi-core processors.

The results from our cluster quality measurements are inconclusive, and
we identify this as a problem related to the subjectivity in the manually
classified datasets. To better assess the utility of the algorithms, comparisons
with intracellular recordings should be performed.

iii

iv

Acknowledgements

This thesis was written during spring 2011, as part of the course TDT4900
– Computer and Information science, master thesis. The project was carried
out in collaboration between Thomas Bergheim and Arve Skogvold.

We would like to thank our supervisors, Ian Bratt and Professor Lasse
Natvig at the Department of Computer and Information Science, Norwegian
University of Science and Technology, for invaluable feedback throughout the
project.

Our thanks also go to Albert Tsao at the Kavli Institute for Systems
Neuroscience for helpful insight on the manual spike clustering process.

Finally, we would like to thank our fellow students at the Fiol computer
lab, for interesting conversations and Stiga table hockey matches to help us
through the many long work days.

Trondheim, June 2011
Thomas Bergheim and Arve Skogvold

v

vi

Contents

1 Introduction 1

1.1 Spike sorting . 1

1.2 Problem interpretation . 6

1.3 Report outline . 8

2 Background 9

2.1 Neuroscience introduction . 9

2.2 Parallelism introduction . 11

2.2.1 Measuring parallelism 13

2.2.2 Limits to parallelization 14

2.3 Spike sorting . 15

2.3.1 Signal filtering . 16

2.3.2 Spike detection . 17

2.3.3 Feature extraction . 19

2.3.4 Clustering . 28

2.4 Spike recording equipment . 39

2.5 Computer hardware . 39

2.6 External libraries . 40

2.6.1 Intel Threading Building Blocks (TBB) 40

2.6.2 OpenMP . 42

2.6.3 Boost . 44

2.6.4 Qt . 45

2.6.5 GNU Scientific Library (GSL) 45

2.6.6 Approximate Nearest Neighbor library (libANN) 45

2.6.7 STANN . 46

vii

2.6.8 Google Performance Tools 46

2.7 Related work . 46

2.7.1 Wave Clus . 46

2.7.2 OSort . 48

2.7.3 KlustaKwik . 50

2.7.4 Klusters . 51

2.7.5 OpenElectrophy . 52

2.7.6 Tint . 53

2.7.7 Summary . 54

3 Methodology 57

3.1 Datasets . 57

3.1.1 Iris . 57

3.1.2 NTNU toy problem . 57

3.1.3 Three circles . 58

3.1.4 Three islands . 60

3.1.5 Datasets from the Kavli Institute 60

3.2 Cluster quality measurements 60

3.2.1 Cohesion and separation 62

3.2.2 Silhouette coefficient 63

3.2.3 Lratio . 65

3.2.4 Isolation distance . 66

3.2.5 F-measure . 66

4 Implementation 69

4.1 User interface . 70

4.1.1 Graphical user interface 70

4.1.2 Command line interface 71

4.2 File parsing . 72

4.3 Feature extraction . 72

4.3.1 Unreduced . 73

4.3.2 Peaks of channels . 73

viii

4.3.3 Wavelet transform . 73

4.3.4 Principal Component Analysis 74

4.3.5 Peak alignment . 75

4.4 Clustering . 75

4.4.1 K-means clustering . 75

4.4.2 Superparamagnetic clustering 79

4.5 Cluster Quality . 83

4.5.1 Lratio . 83

4.5.2 Isolation distance . 84

4.5.3 F-measure . 84

4.6 Optimization and parallelization 84

4.6.1 K-means . 85

4.6.2 SPC . 85

4.6.3 General remarks . 86

4.7 Development comments . 87

5 Results and evaluation 89

5.1 Cluster quality . 89

5.1.1 Silhouette coefficient 89

5.1.2 Lratio . 94

5.1.3 Isolation distance . 95

5.2 Clustering results . 95

5.2.1 K-means . 95

5.2.2 SPC . 99

5.3 Performance . 105

5.3.1 Speedup . 105

5.3.2 Scalability . 108

5.4 Implementation challenges . 113

5.4.1 Noise . 113

6 Conclusions and future work 115

6.1 Goals . 115

ix

6.2 Future work . 117

References 119

Appendices 127

A Implementation A-1

B Results B-1

B.1 Cluster quality . B-2

B.1.1 Sum of squares . B-6

B.1.2 Profiling results . B-8

C Screenshots C-1

D Source code D-1

D.1 Introduction to the code base D-1

D.2 Class diagrams . D-3

D.3 Source code listings . D-5

x

List of Figures

1.1 A single spike . 2

1.2 Triangulation – One versus several channels 4

1.3 Triangulation – Recording four channels 5

2.1 Neuron . 10

2.2 Cropped spikes . 17

2.3 Spike masked by noise . 19

2.4 Spikes visualized . 22

2.5 Haar wavelet . 26

2.6 Daubechies D8 wavelet . 26

2.7 Wavelet reverse . 27

2.8 Difficulties of clustering . 30

2.9 The Intel TBB runtime . 43

2.10 An Intel TBB task graph . 44

2.11 Wave Clus . 47

2.12 OSort . 49

2.13 Klusters . 51

2.14 OpenElectrophy . 52

3.1 NTNU toy problem unclustered 58

3.2 Three circles unclustered . 59

3.3 Separation and cohesion . 62

3.4 Silhouette plot . 64

3.5 Isolation distance . 66

4.1 The initial wireframe of the GUI. 70

xi

4.2 Class diagram for Reductions 73

4.3 Number of iterations in SPC 82

4.4 Increased step size in SPC . 83

5.1 Albert silhouette coefficient 91

5.2 Silhouette coefficient, k-means, Albert1 92

5.3 Albert1 silhouette coefficient. Noise cluster removed. 93

5.4 Silhouette on the 3Clusters set 94

5.5 NTNU toy problem clustered with k-means 96

5.6 K-means similarity plot with 200 dimensions, peaks aligned . . 97

5.7 Difficulties of clustering . 101

5.8 SPC circles plot . 102

5.9 K-means cutoff . 106

5.10 K-means speedup . 107

5.11 SPC Speedup . 109

5.12 SPC scalability . 111

5.13 SPC scalability II . 112

5.14 Noisy dataset . 114

A.1 Number of files by date. This includes the datasets. A-1

A.2 Number of lines of code by author. This includes the datasets. A-2

A.3 Number of lines of code. This includes the datasets. A-2

B.1 The silhouette coefficient on the Albert 3 dataset B-2

B.2 The silhouette coefficient on the Albert 4 dataset B-3

B.3 Albert2 silhouette coefficient. Noise cluster removed. B-4

B.4 Albert3 silhouette coefficient. Noise cluster removed. B-5

B.5 K-means similarity plot with 200 dimensions B-6

B.6 K-means callgraph . B-8

B.7 SPC callgraph . B-9

C.1 GUI: Main window. C-3

C.2 GUI: Comparing original signal and reverse of wavelet transform.C-4

xii

C.3 GUI: SPC . C-4

C.4 GUI: Results . C-5

C.5 GUI: 2D plot . C-6

D.1 Class diagram of GUI components D-3

D.2 Class diagram of clustering algorithms (overview) D-4

D.3 Class diagram of SPC . D-4

D.4 Class diagram of k-means . D-5

xiii

xiv

CHAPTER 1

Introduction

This chapter starts with briefly explaining the basic prerequisites needed
to understand this thesis. The background is described in further detail in
Chapter 2. We then extract the goals for our thesis. Finally, we describe the
outline of the rest of the report.

1.1 Spike sorting

In an effort to better understand how the brains of mammals work, re-
searchers try to map the cells in the hippocampus by recording the electro-
physiological activity. When the cells communicate, they “activate”, emit-
ting what is called an action potential or a spike, in the form of an electrical
discharge.

A visualization of a typical spike can be seen in Figure 1.1 on the following
page. The characteristic signature begins at around zero, where the cell is
idle. It them rises to a positive peak amplitude, where the action potential is
released. Finally, the discharge makes the cell reach a negative voltage state
before rising back to its idle state again.

A cell which communicates in this way is called a neuron. The chain
of events formed when multiple neurons communicate is of great interest to
neuroscientists. To record these spikes, one has to insert sensors directly into
the brain, which then record these signals. The location of such a sensor is
often called a recording site. Section 2.1 gives a more detailed introduction
to neuroscience.

There are two ways to record the signals that the cells emit. The most
accurate way is intracellular recording, which means inserting an electrode for
every cell that you want to monitor. This way you can be certain which cell

1

CHAPTER 1. INTRODUCTION

0 10 20 30 40 50
Sample

-60

-40

-20

0

20

40

60

80

Vo
lta

ge

Figure 1.1: A visualization of the waveform of a single spike. The x axis
represents time, while the y axis represents the voltage values recorded from
the system. Each step on the x axis corresponds to 20µs. The recording
system is calibrated to represent amplitudes within a range of -127 and 128,
so the actual voltages are not shown.

2

1.1. SPIKE SORTING

emitted which signal. However, given the number of cells, this is impractical,
as each electrode introduced inflicts damage to the surrounding tissue.

The much more common way to record signals is by extracellular record-
ing. The electrodes are implanted in close proximity to the firing cells. These
then record signals from several cells simultaneously. Recording from mul-
tiple cells poses a challenge as it might be difficult to identify the source of
a signal. If only one sensor is used, it can become impossible to identify
different cells if they fire within a similar distance from the sensor. To help
overcome this problem, the recording equipment has several electrodes in
close proximity. An example of this can be seen in Figure 1.2 on the next
page.

At the present time the sensors used usually contain four coupled elec-
trodes allowing for a much better precision when detecting signals. Sensors
containing four such electrodes are referred to as tetrodes. Using four seperate
channels allows for the triangulation of a signal in a three dimensional space,
because different electrodes will detect the same signal but with different
amplitudes (Buzsáki [20]). Figure 1.3 on page 5 displays two representations
of the same signal recorded by a tetrode. The recording equipment used is
described in Section 2.4.

Measuring biological signals is a challenging task, because the signals are
not completely reliable – the amplitude and frequency may vary slightly from
time to time. Adding to the complexity, the sensors can move slightly during
the experiment, introducing further distortions to the signals.

The sensors can only reliably record activity within a limited range. Ev-
erything outside of this range will add noise to the signal. Because the sensors
only see electrical signals in the form of voltage amplitudes, one has to deter-
mine how many cells were recorded, and from which cell every activity was
detected.

A spike lasts for a limited time, and, in most scenarios, is the only in-
teresting part of the signal. Thus it is needed to determine when a neuron
is spiking, and filter the spikes out from the rest of the signal. This is often
referred to as spike detection, which is described in Section 2.3.2.

When the spikes have been recorded, we have to choose a way to repre-
sent it, a process referred to as feature extraction. This may be the whole
array of samples from the raw signal, which leads to high dimensionality, or
the output of a reduction algorithm, which strives to extract only the im-
portant information of the signal. Feature extraction is further explained in
Section 2.3.3.

3

CHAPTER 1. INTRODUCTION

(a) Single recording site – notice that the two spikes on the right appear
similar

Spike recorded from electrode 1

Spike recorded from electrode 2

(b) Double recording site (stereotrode) – notice that the two spikes on
the right appear different, depending on which fires first

Figure 1.2: A sequence of two spikes from two similar neurons, at equal
distance from the recording site. With a single recording site, the spikes
seem to origin from the same neuron. With a stereotrode, the distances are
dissimilar for each electrode, and the difference becomes detectable.

4

1.1. SPIKE SORTING

0 10 20 30 40 50
Sample

0

0

0

0

Vo
lta

ge

(a) One spike, four channels, separated vertically

0 50 100 150 200
Sample

-60

-40

-20

0

20

40

60

80

Vo
lta

ge

(b) One spike, four channels, concatenated horizontally

Figure 1.3: An illustration of a sample as recorded by a tetrode. Notice that
they are both the same signal. (a) shows how they are actually recorded –
simultaneously. These four channels are then concatenated into one signal
as illustrated in (b). The red dots are there as visual aids only.

5

CHAPTER 1. INTRODUCTION

The next task is to classify the spikes according to which neuron was the
source of which signal. This is done on the presumption that a neuron will
emit a signal with a characteristic signature. The similar signals are classified
in groups called clusters, a process often called spike clustering, described in
Section 2.3.4.

Spike clustering can be performed either manually or automatically. The
motivation for our thesis is the Kavli Institute for Systems Neuroscience at St.
Olav’s Hospital (KI), who currently do this in a computer assisted manual
way. Using a program called Tint, they manually identify the clusters by
selecting a center and a radius, or drawing a polygon. Various techniques
are used to reduce the dataset down to two dimensions so that it can be
presented to the operator. This is explained further in Section 2.7.6.

The KI have provided us with spike data, as well as manually clustered
results, allowing us to compare our automated efforts with the results of
skilled experts. We also use other datasets to test the different algorithms.
All datasets are described in Section 3.1.

Our focus for this thesis is thus investigating algorithms for performing
spike clustering quickly and automatically, and to see if this approach may
give results comparable to those of skilled professionals. It is important that
it performs clustering fast, and should make use of parallel CPU hardware
where available. To verify the quality of the results from the different algo-
rithms, we evaluate the clustering results using cluster quality algorithms,
as well as comparing with the results of the manually performed clustering.
Cluster quality measurement is described in Section 3.2.

1.2 Problem interpretation

The problem description is included on the first page in the report. Spike
sorting may be considered as a pipeline consisting of four independent, but all
important, steps: signal filtering, spike detection, feature extraction (some-
times referred to as spike modeling or dimensional reduction) and spike clus-
tering. The hardware used to record the data used in this thesis performs
signal filtering and spike detection in hardware. These steps are explained
briefly in the thesis, but are not included in our implementation.

This leaves feature extraction and spike clustering. There are many ways
to perform both, and there is currently no agreed-upon best choice for how
to do this.

Because this is a cross-disciplinary problem, touching on both neuro-

6

1.2. PROBLEM INTERPRETATION

science and computer science, we aim to make this thesis understandable for
both audiences. We therefore include basic theory for both fields.

Implementing all of the interesting state-of-the-art algorithms is simply
not possible within the scope of this thesis. After an extensive literature
study, we have therefore selected the most promising algorithms in terms of
spike sorting quality. We then apply them to the datasets provided by the
Kavli Institute for Systems Neuroscience (KI), comparing the results of these
to human expertise.

To utilize state-of-the-art hardware, it is necessary to develop parallel
algorithms for the spike sorting process, which depending on the algorithm,
can be a challenge. The problem description states we use CPUs, and fo-
cus on the ability to utilize the processing power made available with the
increasing number of processor cores. Thus, using specialized hardware such
as GPUs is considered beyond the scope of our thesis.

We extract the following goals:

G1 Develop a graphical application for experimenting with the different al-
gorithms, and to enable visual inspection of results.

G2 Provide an introduction to the relevant aspects of neuro- and computer
science.

G3 Identify state-of-the-art algorithms for feature extraction and spike clus-
tering.

G4 Develop parallel implementations of the selected algorithms.

G4.1 Evaluate and optimize the performance of the implemented algorithms.

G4.2 Evaluate the quality of the clustering results performed by the im-
plemented algorithms. This includes comparing to results of human
experts, as provided by the KI.

The real-world datasets provided by the KI are bigger than what is nor-
mally described in the literature – usually at least ten times the size. How
our algorithms will perform on such large sets, especially given that the clas-
sification should be done quickly, is very interesting. This leaves the following
additional goals:

G5 Given the size of the KI datasets, determine if our algorithms can per-
form spike sorting in near real-time. With real-time we consider that

7

CHAPTER 1. INTRODUCTION

the operator should not be required to wait for an extended period of
time for the results to appear. This means that the entire process must
be completed within seconds – we have set an arbitrary limit of one
minute.

G6 Some of the datasets received from the KI have been labeled as either
easy or difficult by Tsao [69]. Our clustering efforts must classify the
easy sets near-perfect, while it must perform well on the difficult sets.

1.3 Report outline

Chapter 2 describes the general background, including neuroscience, spike
sorting, the need for parallelism, and the equipment used. The implemen-
tation relies on many external libraries for functionality such as task based
programming and visualization, and these are explained in detail here. Fi-
nally, related work in the field of spike sorting are explored. G2 and G3 are
covered in this chapter.

Chapter 3 describes the methodology, where we describe the datasets
used and the methods of how G5 and G6 are solved.

Chapter 4 describes the implementation of our application, covering G1
and G4. We also discuss optimization and make brief comments on our
development process.

Chapter 5 describes the results of our experiments, covering G4.1, G4.2,
G5 and G6. We also report on the challenges we met.

Finally, Chapter 6 wraps up the project with a conclusion and thoughts
about further work. We sum up how we have dealt with the goals specified
in the previous section.

8

CHAPTER 2

Background

In this chapter, we describe the prerequisites for understanding our work.
We begin with a superficial coverage of neuroscience, for readers who do not
work within this field. We then describe theory of parallel programming,
to set a context for further analysis, as well as providing an introduction
for readers who are unfamiliar with parallel programming. After introducing
these necessary concepts, we continue by describing the recording equipment,
computer hardware and software libraries which are used by the implemen-
tation. Finally, we describe related work in the field of spike sorting.

2.1 Neuroscience introduction

The following is a very brief introduction to the vast field of neuroscience. It
is only meant to give the reader a basic idea about why we are doing spike
sorting. For a much more comprehensive introduction, Fred Rieke and Bialek
[25] have written a well-known book on the subject.

Neuroscience forms the field of scientific study which tries to understand
how the nervous system carries out its functions. The nervous system is a
vastly complex system made up of about 100 billion neural components, with
hundreds of trillions of interconnections, and many thousand kilometers of
cabling (Koch and Laurent [45]).

A neuron is an excitable cell which communicates by electrical and chem-
ical signals. It is a principal component of the nervous system, which in-
cludes the brain, the spinal cord, and the peripheral ganglia. This makes it a
very interesting cell type, because it plays a part in how behavior is formed
(Roberts [57]). From perceptions and movement to thoughts and behavior,
the nervous system makes up a big part of what defines a consciousness.

9

CHAPTER 2. BACKGROUND

Figure 2.1: An illustration of a neuron. (Derivative work. Creative Com-
mons, by Quasar Jarosz at en.wikipedia).

A typical neuron is shown in Figure 2.1. A number of specialized neurons
exist. A sensory neuron responds to stimuli effects from the sensory organs,
such as sound and touch. Motor neurons cause muscle contractions based
on electrochemical from the brain and spinal chord. A neuron consists of a
cell body, dendrites and axons. The cell body is called the soma. The soma
is the central part of the neuron and contains the nucleus of the cell as well
as most of the genomic expression and synthetic machinery. The dendrites
are cellular extensions with many branches – often called the dendrite tree.
This is where most of the input to the neuron occurs. The axon usually
forms as a single cable-like structure from the soma. It can be tens or even
tens of thousands times the diameter of a soma in length, and propagates
electrochemical signals termed action potentials (nerve impulses) away from
the soma. This signal can excite or inhibit other neurons. The signals are
communicated between the neurons via connections called synapses, and this
is where the neurons are closest to each other – the neurons do not touch
each other directly.

It is these electrochemical signals communicated between neurons that
scientists capture and want to label. The action potential is a rapid all-or-
nothing signal and can travel long distances. It is a very stereotyped signal, so
discrimination can be based on the firing patterns. By sorting these signals,

10

2.2. PARALLELISM INTRODUCTION

it is possible to isolate cells and look at their behavior. Neurons do not
work in isolation, but form circuits of similar cells. This means that it is of
interest to observe how networks of neurons interact. This is the goal when
using tetrodes – observe and identify as many neurons as possible. Two
ways to record this neural activity is by performing extra- and intra-cellular
recording.

With intracellular recording, an electrode is placed inside a neuron. It can
measure smaller graded action potential changes, and can accurately label
the neurons.

Extracellular recording is performed by placing an electrode near a neu-
ron, which then can capture its action potentials. With current technology,
one can reliably separate signals within a radius of 50µm from the tetrode,
containing on the order of 100 neurons in a rat cortex [20]. With larger dis-
tances, the signal-to-noise ratio decreases, making it hard to separate signals
from background noise. Buzsáki [20] states that signals within 140µm from
the tetrode can be detected, and could be classified by improving recording
and clustering methods. This area corresponds to an order of 1000 neu-
rons in the rat cortex. A potential problem with extracellular recording is
that sometimes multiple neurons firing in close proximity might appear as
a single signal to the electrodes. This superimposed signal is referred to as
multi-units. Many automatic spike sorting algorithms make no distinction
between the two however, and there are no clear, objective and agreed-upon
criteria for making the distinction (Tankus et al. [67]), which is a problem
for quantifying the accuracy of different classifiers.

Sometimes, the observed signal can deviate from its stereotypical signa-
ture. This is usually the result of muscle twitches, for instance from chewing.

From the KI, we learned that they never record more than 20 neurons
in each recording, and that contribution from neurons farther away only
contribute to background noise. This could possibly be increased by using
other algorithms for signal filtering and spike detection (see Section 2.3), but
as filtering and spike detection have already been performed on the datasets
we use, we do not pursue this aspect further.

2.2 Parallelism introduction

In 1965, Moore [52] noted that the number of components in integrated cir-
cuits had doubled every year since it was invented 7 years earlier. Moore
predicted that this rate would continue for at least ten years. He later mod-

11

CHAPTER 2. BACKGROUND

ified his expectation to a doubling every two years. This has later been
referred to as Moore’s law, and has turned out to be a good estimation of
the increase in capacity of microprocessors. A bi-effect of this was that one
could expect computer programs to run with twice the performance, if one
upgraded the hardware two years later, without altering the software.

Today, this is no longer the case. The power consumption in a stan-
dard CMOS multiprocessor is proportional to the cube of the frequency, and
the heat production is proportional to the power consumption. Increasing
frequency therefore gives a disproportional increase in power consumption,
meaning that as the frequency is increased, performance per watt decreases.
Doubling the frequency results in an order of eight times the power consump-
tion. The power consumption has reached a top of a few hundred watts per
chip level that can practically be dissipated in a mass-market computing sys-
tem. This has resulted in a growth stop for single-core processor performance
[26].

To solve the problem, the focus today is on parallelization of computation.
We then increase the number of processors, rather than simply increasing
single processor performance. In addition to increasing performance, this
may lower the power consumption. Consider exchanging one processor with
two processors of 0.8 times the frequency. In theory, this will give 1.6 times
the performance, with 2 · 0.83 = 1.024 times the power consumption, i.e. a
60% performance increase, with only 2.4% increase in power consumption.
Fully utilizing the two cores in a program is however usually non-trivial, so
the maximal theoretic performance gain is rarely achieved.

The approach where two or more identical (homogeneous) processors are
used in parallel is referred to as symmetric multiprocessing (SMP). Today, it
is common to fit several processor cores on a single chip, which is referred to
as chip multiprocessing (CMP). Many-core systems are scheduled for release
in 2011, such as the Tilera TILE-Gx100 [12], which will have 100 identical
general purpose processor cores on a single chip.

An alternate approach is to combine different processors or cores, which
is referred to as heterogeneous systems. An example of this is the Cell
Broadband Engine (CBE) [3], which consists of one power processing element
(PPE) and eight synergistic processing units (SPU). The most well-known
system running the CBE is the PlayStation 3.

Performing scientific calculations on graphics cards may have seemed
strange ten years ago, but the graphics processing unit (GPU) has proved
to be a very capable compute platform, often outperforming the traditional
(x86) processor architectures in the order of magnitudes. Programs must be

12

2.2. PARALLELISM INTRODUCTION

explicitly programmed to run on these architectures, as they are not com-
patible with traditional processors. The GPUs are designed to be massively
parallel and are equipped with many cores. The Fermi architecture is a recent
GPU platform from NVIDIA, which supports up to 512 cores [4].

Traditional computer programs, which are not programmed to use sev-
eral processors or cores simultaneously, are unable to take advantage of the
increased number of processors. Their performance might even decrease, as
a single core may have lower performance than older single-core processors.
This means that these programs must be redesigned – often a non-trivial
task. Therefore, it is now important to write software which may scale au-
tomatically with the increased number of processors [22].

Heterogeneous systems may introduce even further challenges, to optimize
parts of the programs for different parts of the architecture. This also applies
to GPU programming. We will not describe these in further detail, as it is
beyond the scope of our project.

2.2.1 Measuring parallelism

To measure parallelism, two quantities are commonly used: parallel speedup
and parallel efficiency.

Parallel speedup is the measure of how many times faster an application
finishes, when executed in a parallel context. It is defined as:

Sp =
T1
Tp

(2.1)

Here, Sp is the speedup achieved when using p processors. Tp is the exe-
cution time when using p processors, meaning that T1 is the serial execution
time. T1 refers to the execution time of the best sequential implementation.
As the algorithm itself should not be altered by the parallelization, one often
considers T1 as the execution time of the parallel implementation, limited to
using one processor.

Parallel efficiency is related to the total utilization of resources.

E =
T1
Tp · p

=
Sp
p

(2.2)

In this formula, p still represents the number of processors, and efficiency
is thus a measure of how much speedup each added processor contributes. An

13

CHAPTER 2. BACKGROUND

efficiency of 100% means that all processors are completely utilized through-
out the execution time. This is what is referred to as linear speedup, where
all processors can do their work simultaneously. A speedup which is less
than linear is referred to as sub-linear. One may also achieve super-linear
speedup, where parallel efficiency is greater than 100%. This is often the case
in searching algorithms, where the entire search is stopped once the key is
found by one of the processor. Another common reason is that smaller prob-
lem sizes fit the caches of the processor cores, reducing the cost of memory
operations.

2.2.2 Limits to parallelization

Parallel programming is not the solution to every problem. Some tasks have
to be done serially, and cannot benefit from parallelization. Disk I/O usually
has to be done sequentially, meaning that it cannot be parallelized. Consider
a program which spends 20% of it’s execution time reading a file from disk.
No matter how efficient the remaining 80% is performed, the first 20% will
dictate a minimum execution time.

This was formalized by Gene Amdahl [14], and is commonly referred to
as Amdahl’s law, as shown in Equation (2.3).

S(p) =
p

1 + (p− 1)f
(2.3)

lim
p→∞

S(p) =
1

f
(2.4)

S(p) means the speedup with p processors. f is the fraction of the pro-
gram which has to be performed sequentially. This means that no matter
how fast the 80% are executed, our maximum speedup is 1

0.2
= 5.

Amdahl assumes that the problem size is constant. Instead of assuming
a constant problem size, Gustafson argued that a constant time constraint
was more realistic. When the number of available processors increases, the
problem size usually increases as well – keeping the total run time the same
as before. He also argued that the amount of sequential work is normally
fixed, and does not increase with a larger problem size.

This more optimistic outlook can be formulated as shown in Equation (2.5),
and is called Gustafson’s law [73].

Ss(p) =
fts + (1− f)ts
fts + (1− f)ts/p

= p+ (1− p)fts (2.5)

14

2.3. SPIKE SORTING

Here, f is the fraction of the program which has to be performed sequentially.
Note that it is not dependent on p. If we assume that the sequential part
has lower complexity than the parallelizable part, it is clear that the fraction
will decrease with larger problem sizes. This leads us to the following limit:

lim
s→∞

Ss(p) = p (2.6)

This tells us that we get increased speedup with increased problem sizes.
As an example, a program with a 10% serial fraction running on a system with
p = 12 cores will get no more than a 5.71x speedup according to Amdahl’s
law. Using Gustafson’s law and its time constraint assumption, we end up
with a 10.9x speedup however. A compute node in Kongull has 12 cores, and
is described in Section 2.5.

2.3 Spike sorting

Spike sorting is the process of modeling spikes using signal-processing meth-
ods in such a way that spikes which belong together, are isolated and labeled
as the same type, forming clusters of related spikes that originate from the
same neuron. The process consists of ordered steps, which will be explained
in the following sections:

1. Signal filtering

2. Spike detection

3. Feature extraction

4. Spike clustering

All of these steps are important for the final result – an efficient and
reliable clustering algorithm is of little use if one is unable to extract relevant
features from the relevant spikes.

Quiroga et al. [55] state that development of reliable and efficient spike
sorting algorithms is lagging behind the recent developments in recording
hardware, increasing the importance of improving the algorithms. Hundreds
of electrodes can now record signals simultaneously, allowing the recording of
many neurons, which helps in providing a bigger picture of the activity. How-
ever, being able to classify all the recorded neurons is non-trivial, especially
when they are being recorded simultaneously.

15

CHAPTER 2. BACKGROUND

A potential problem with neuronal activity recording is making a distinc-
tion between one or several close neurons. This is sometimes not possible,
and clusters are labeled either as single neurons or multi-units – collections
of several neurons which fire together. Many automatic spike sorting algo-
rithms make no distinction between the two, and there are no clear, objective
and agreed-upon criteria for making the distinction [67].

Finally, perhaps the biggest challenge in spike sorting is the lack of any
“ground truth”. How many spiking neurons are near the recording sites, and
which of the spikes belong to which neuron, is impossible to know for certain
without using both intra- and extracellular recording equipment for all the
experiments, such as done by Harris et al. [30]. The intracellular data can
realistically only be used in limited situations because of the complicated
setup. This means that it works as something to benchmark against – since
in these cases you do know the correct answer – but is not used in normal
recording sessions. Unfortunately, we were not able to obtain intracellular
recordings when working with our thesis.

2.3.1 Signal filtering

The first step is to process the signal, applying a band-pass filter to avoid
the low frequency activity. A narrow filter makes the spikes easy to visualize,
since some of the frequencies are removed, making the main spikes stand out.
On the other hand, this could remove important features of the different spike
shapes. Because of this, there is no universal solution to the problem, and
what is best depends on the situation. The Axona Dacq acquisition system [1]
that provides the recordings used in this project report does this in hardware,
enabling the users to tweak the filter window. Because all the datasets we are
working on have already been recorded and classified manually, this is not
explored further. We are comparing our automatic efforts to their manual
efforts, so we have to compare using the same data.

However, it should be noted that it is likely that the recorded samples
from the systems are not ideal. Looking at Figure 2.2 on the facing page, it
seems clear that the scale is not properly aligned to the most extreme peaks,
since the signal appears to be cropped at the highest peaks. We learned that
this is an intentional trade-off done to achieve a higher resolution for most of
the spike recording. This indicates that 8 bits is not really enough to capture
the signal. This is not as important when they do manual cluster cutting,
but could matter for unsupervised algorithms.

Closer inspection of the datasets shows that the problem looks worse in

16

2.3. SPIKE SORTING

Figure 2.2: The spikes from a single cluster. Notice how some of the recorded
spikes appear be cropped at the extreme amplitudes, where they flat out.

the figure, than it really is. Overflowing spikes are a low fraction of the
total spikes, and it is usually only 1-3 samples which overflow the limit. On
dataset 180501, described in Section 3.1, the maximum number of samples
overflowing the limit in each spike (all channels in total) is 16. The fraction
of spikes with four or more overflows is only 0.15%, and we therefore do not
consider this a problem in the dataset. The other datasets show the same
tendency.

2.3.2 Spike detection

To be able to classify and cluster spikes, it is important that the recordings
contain the relevant parts of the spike, and preferably nothing else. To remove
as much as possible from the waveform except the spike, it is necessary to
define what constitutes a spike start and spike end. Depending on the shape
of the spike and the background noise, this can be a challenge in itself. The

17

CHAPTER 2. BACKGROUND

idle parts of the signal, where no spikes are detected, is discarded in this
step.

A common way to identify the spikes is to check whether a signal crosses
a given amplitude threshold, and record the signal from the channels for the
duration of the spike. How to decide this threshold then becomes a challenge.
If the threshold amplitude is set too low, noise signals will be considered to
be spikes, resulting in false positives (type I error). If the threshold is set too
high, one will fail to detect spikes with lower amplitudes (type II error). In
many systems, the threshold is specified manually.

A fixed manually set threshold may be attractive for real-time applica-
tions, because of computational simplicity. However, it requires user input,
and may be sensitive to noise [68]. If the electrode moves during a recording,
this will also lead to an alteration of the signal, so that the chosen threshold
performs differently. Another common approach is to base the threshold on
statistical properties of the signals. Quiroga et al. [55] calculate the thresh-
old using an estimation of the standard deviation of the background noise,
by using the median of the filtered signal. Traver et al. [68] perform pre-
processing of the signal, and compare the preprocessed signal to an adaptive
threshold. They also describe how this could be used in real-time applica-
tions by considering 50ms frames at a time. Brychta et al. [19] describe the
use of wavelet decomposition to de-noise the signal before the next step.

Chelaru and Jog [21] perform additional filtering which discards every
spike recording that contains an amplitude larger than three standard de-
viations from the mean amplitude. They also discard any signals having a
peak at a time moment greater than one standard deviation compared to
the mean time moment. Their argument is that the first filtering eliminates
most of the artifacts caused by external electrical disturbances and rat mus-
cular activity, and that the second filtering eliminates most of the recordings
caused by superimposed spikes (multi-unit) or noise from distant units. This
results in discarding approximately 1

4
of the spike recordings.

Other notable filtering contributions include unsupervised amplitude dis-
criminator, power or energy detectors, and the matched filter [19]. The
unsupervised amplitude discriminator typically discards samples that devi-
ate from the mean signal by some multiple of the standard deviation. Power
detectors use a sliding window to compute the sum of squared amplitude,
and creates a threshold based on the standard deviation of the signal. The
matched filter uses template waveforms identified from the signal. Although
effective, this requires a manual identification of these waveforms, and is
therefore not relevant for us.

18

2.3. SPIKE SORTING

0 50 100 150 200
Sample

-60

-40

-20

0

20

40

60

80

Vo
lta

ge

Figure 2.3: An example of a spike recording that contains noise. The stereo-
typical spike signature with four similar spikes is not obvious. This could be
the effect of muscle twitches or multi-units.

The Axona Dacq system, used to provide the data used in this thesis,
uses manual hardware amplitude discriminators. When the signal in any
of the channels exceeds a given user specified threshold, the system stores
the signal from all channels for the 200µs preceding the trigger event, and
the following 800µs. This results in 50 samples per channel for each spike,
i.e. 200 samples using all four channels. For more information about the
recording equipment, see Section 2.4.

To see how a spike sample that contains noise can look like, see Figure 2.3.
Clearly, the spikes there are not as well isolated as in Figure 1.3 on page 5.

2.3.3 Feature extraction

Feature extraction (FE) refers to selecting the important features which iden-
tify a given spike. It is also referred to as spike modeling, as this decides

19

CHAPTER 2. BACKGROUND

how the spike will be represented (modeled) before clustering. The detected
spike contains a given number of samples for each channel. Feature extrac-
tion consists of representing the signal as robustly as possible, by extracting
the relevant information from the input data. Ideally, the spike should be
represented by as few features as possible, while remaining discriminative
enough to classify the different neurons. Fewer data points means less work
for the clustering algorithms, and may at the same time abstract away noise
which does not help identify the spike. Indeed, too many identifiers can ac-
tually lead to overfitting, where similar spikes are not detected as similar
because of many small variations. If the feature space is reduced, it is im-
portant to keep in mind that a dataset that was well-separated in its original
high-dimensional form might lose this property. This could require a differ-
ent, more capable clustering algorithm, which in turn might require more
computational effort.

Finally, being able to visualize the results is a desirable feature. Visualiza-
tion can be helpful not only for inspecting how well the clustering performs,
but also for fine-tuning the clusters, moving and merging points (spikes) as
desired. This introduces a need for dimensional reduction, as it is challenging
to visualize a feature space that exceeds three dimensions. There are various
tricks to add additional dimensions to the 3D visual representation, including
having colors, time or shape of points represent dimensions. However, it is
clear that this adds complexity to the image, especially if several of these
tricks are combined at the same time. This complexity could impact the
ability of a human operator to make a well-separated clustering. Thus it is
desirable to use few features for visualization as well.

Some of the options for feature extraction are:

• All the samples. Using the signal as-is (no reduction)

• Peaks of the available channels (four for a tetrode)

• Peak-to-peak amplitudes

• Principal component analysis (PCA)

• Domain transformations, such as

– Wavelet transform (frequency-time-domain)

– Fourier transform (frequency-domain)

To model the spikes, several approaches are investigated. The easiest
approach is to just use all the discrete samples as the basis for a 200 dimen-
sional feature vector. Another option is to use the peaks of each channel as a

20

2.3. SPIKE SORTING

four dimensional vector. As expected, this is much faster to work with than
the 200 dimensional case. More sophisticated methods are also explored.
Principal component analysis (PCA) is a tried and tested method which also
has a few known drawbacks, as described later in this chapter. These are
compared to the discrete wavelet transform, one of the current state of the
art ways to represent a spike.

Letelier and Weber [47] state that contrary to Fourier analysis, which
represents signals with functions bounded in frequency, wavelet functions
also bound the signal in time. This applies better to spikes, as each spike
lasts for only one period. Because of this, and to limit our scope, we do not
consider Fourier analysis further.

All the samples

The easiest approach is to use the signal as-is. The four channels are concate-
nated into one feature vector with 200 samples. With so many dimensions,
this is a very demanding representation for advanced clustering algorithms
such as SPC, which is described in Section 2.3.4. In addition to a high
computational demand, it has other drawbacks.

First, it ignores the time dimension. This means that if spikes are time-
skewed (shifted), but still similar, they may not be identified as similar. One
way to minimize the effect of this is to align the recordings according to
their highest peak. This means that some of the signal will be lost if it is
shifted. The resulting gap can be zero-filled as shown in Figure 2.4(b) on
the following page, or the signal can be interpolated in some way to try and
keep as much of the signal as possible [55]. This helps, but because the peaks
themselves can curve slightly differently, the problem is still present.

Second, comparing spikes sample-for-sample gives equal weight to all the
samples, even though high amplitude peaks are more important. However,
this is not as noticeable because the absolute difference between the high
peaks tends to be larger than the difference between the low amplitudes.

Finally, the samples at the beginning and the end of the signal are much
more likely to be unimportant noise, but they are given equal significance as
the rest of the signal.

Figure 1.3(b) on page 5 shows an example of such an unprocessed spike.
Using that many dimensions is computationally inefficient, the distances be-
come less meaningful (sometimes called the Hughes phenomenon, or the curse
of dimensionality [62]), and it is very hard to visualize the clustering. How-
ever, on an efficient clustering algorithm such as k-means (described in Sec-

21

CHAPTER 2. BACKGROUND

tion 2.3.4), this performs surprisingly well.

This representation is the only one which guarantees retaining all the
information, although some of the information might be of less interest.

(a) A single spike visualized

(b) A single spike with peaks aligned

Figure 2.4: (a): An unprocessed sample of a neuron spike with the four
channels listed in turn, as visualized in the program. The Axona Dacq system
records the four channels simultaneously, and the red dots are just visual
aids here to show the distinct channels. (b): The same spike, this time with
the highest peak centered at position 15 in each channel. Notice that the
translation of the signal means that some information is lost (here replaced
with zero).

Peaks of channels

Another simple representation is to use the peaks of each channel, which
gives four samples for a tetrode. This means we search through each spike,
and extract the highest amplitude in each channel. We reduce the number of

22

2.3. SPIKE SORTING

dimensions from 200 to 4, and may remove information which is important
for the signal.

However, this is one of the representations used by experts at the KI
for visualizing and performing manual cluster cutting. Therefore, we find it
interesting to include this representation, especially for comparing our results
to the ones of the experts. To visualize, they match each pair of peaks of a
tetrode, giving 6 2D plots.

Principal Component Analysis

Principal component analysis (PCA) is a useful technique for performing di-
mensional reduction. A nice introduction is provided by Smith [64]. PCA
can be used for many things, including image analysis and image compres-
sion. It is a statistical method which seeks to extract the most prominent
features by maximizing the variance of the reduced dataset.

To compute the PCA of a dataset, first the mean of each dimension is sub-
tracted from all the points. Then the covariance between all the dimensions
are computed. The covariance indicates how two dimensions are related. A
positive covariance means they are increasing together, a negative covariance
means that as the first dimension is increasing, the second is decreasing. A
higher value means a stronger relationship. If the variance is zero, or close to
it, it suggests the two dimensions are unrelated. The results of the covariance
between all the dimensions are stored in a covariance matrix. The eigenvec-
tors and eigenvalues from the covariance matrix are then extracted. The
eigenvectors are per definition perpendicular, and these form an orthogonal
basis for the dataset. If they are sorted by the eigenvalues, they are ordered
in decreasingly important dimensions. After sorting, the first component is
called the principal component, and so on.

In a 2D example, the first component would be the line which fitted
the data points the most, while the second component would indicate each
point’s variance relative to that line.

To derive the new dataset, the transposed matrix of eigenvectors is mul-
tiplied by the transposed of the original mean adjusted data. If all the eigen-
vectors are used, the result is simply the original dataset rotated so that the
eigenvectors are the axes. It is a reversible operation, by simply multiplying
both sides from the left by the inverse matrix of eigenvectors.

To achieve dimensional reduction, we must discard the least important
eigenvectors. If we start removing these eigenvectors (sorted using the eigen-
values), we are left with a reduced dataset, containing most of the energy of

23

CHAPTER 2. BACKGROUND

the signal and hopefully still representing the spikes accurate enough to be
used as a discriminator. Because the most important vectors appear first,
PCA is often used as an approximation tool for visualizing higher dimensional
data in 2D or 3D.

Although the first few PCA components the data is projected on max-
imizes the variance of the data, it does not necessarily provide an optimal
separation of the clusters. In the comparisons done by Quiroga et al. [55],
PCA features actually gave slightly worse results than the clustering using all
the samples from the spike recordings. This could be compensated for by us-
ing more PCA components, or a more computationally demanding clustering
algorithm which classifies better, since the number of features in the dataset
could still be drastically reduced from the original 200 features. Quiroga
et al. [55] also state that although PCA always uses the eigenvectors corre-
sponding to the highest values, these may not be the directions which best
separate the spike classes. The information which separates the classes may
also be represented by the components corresponding to lower eigenvalues,
which are disregarded.

Wavelet transform

The wavelet transform (WT) is an advanced signal representation algorithm
that performs a time-frequency decomposition of the signal. In addition to
providing resolution in both the time and the frequency domains, it elimi-
nates the requirement of periodic signals [55]. The addition of time resolu-
tion means that it should be better at determining similarities between spikes
which are time-skewed, than for instance the Fourier transform [70]. Com-
pared to PCA, it contains more information about the shape of the spikes in
several coefficients [55], which could be advantageous for cluster identification
(but not necessarily for visualization).

Technically, wavelets are a set of non-linear bases. A basis is a set of
linearly independent vectors which span a vector space – they define a coor-
dinate system. It is advantageous to match the bases to the dataset, because
that means the datapoints will require less information to be accurately rep-
resented. A static basis in a two-dimensional space �2 could be v1 = (1, 0)
and v2 = (0, 1). A dynamic basis could be v1 = (f, 0) and v2 = (0, g), which
will depend on a state. Wavelets use dynamic bases functions that repre-
sent the input in an efficient manner. This means that it is a great way to
compress a signal, and it is therefore popular in image and signal processing,
perhaps most notably in JPEG 2000 [6].

24

2.3. SPIKE SORTING

Wavelets are generally categorized as either continuous wavelet trans-
forms (CWT), discrete wavelet transforms (DWT) or multi-resolution dis-
crete wavelet transforms. The signals we work with in this thesis are already
discretized. Because it is desirable to be able to see the signal at different
resolutions, and it is difficult to know beforehand which set of coefficients
will prove most useful, a multi-resolution DWT is used in this thesis.

The wavelet transform is defined as the convolution between the signal
x(t) and a number of wavelet functions:

WψX(s, t) = 〈x(t) | ψs,τ (t)〉 (2.7)

ψs,τ (t) =
1√
|s|

ψ(
t− τ
s

) (2.8)

where the basis functions ψs,τ (t) are the decomposed (transformed and
shifted) versions of the so-called mother wavelet function ψ(t). s is the scale
of the transform, τ is the translation parameter. The mother function is an
integrable function which is dilated and shifted.

A contracted wavelet function (often called dilated) represents the high
frequency components, while an expanded function represents the low fre-
quency components. The expanded function creates a low pass result which
is a smoother version of the original signal. In the case of Haar wavelets,
they represent the average. This result is used recursively to input the next
wavelet step, where another set of high and low pass results are computed,
until only a single low pass result (20) is calculated. By correlating different
sizes of the wavelets with the original signal, you can obtain details at several
scales [55]. A small scale will show the details, a large scale will show the “big
picture”. The scales can be combined to perform a hierarchical clustering,
called a multiresolution decomposition.

The wavelet transform has proved to be quite capable at representing
spikes, and is used successfully in a number of published articles. Quiroga
et al. [55] use Haar wavelets, a four-level hierarchical decomposition using
rescaled square functions. The Haar wavelets enable a representation of
the spike recordings with few wavelet coefficients and make no assumptions
about the spike shape. For more information about the stationary wavelet
transform (SWT), [19, 36, 37, 44] provide details of implementations, and
demonstrate better results than conventional methods.

In addition to Haar wavelets, we use Daubechies wavelets. These exist
for different numbers of coefficients, named D2 and upwards. D2 is the
same as Haar wavelets. Scaling functions and wavelet functions for Haar and

25

CHAPTER 2. BACKGROUND

Daubechies are shown in Figure 2.5 and Figure 2.6

(a) Haar scaling function (b) Haar wavelet function

Figure 2.5: Haar wavelet [72]

(a) Daubechies D8 scaling function (b) Daubechies D8 wavelet function

Figure 2.6: Daubechies D8 wavelet [72]

As Daubechies wavelets contain more coefficients than Haar wavelets, sig-
nals going through a Daubechies transform and back again will look smoother
than when using Haar. This is demonstrated in Figure 2.7 on the facing page,
where a concatenated spike signal (200 samples) is sent through an 8-level
transform and reconstructed from the first 16 components (4 levels), and 32
components (5 levels). The step function shape from the Haar wavelet is
recognizable throughout the reconstructed signal.

After performing a wavelet transform, we have to choose the components
which represent the important features of the spike. Extracting the first n
components for each channel of the signal will represent the low-frequency
transitions for each channel well. Extracting the first n components for a

26

2.3. SPIKE SORTING

(a) Haar (16 components) (b) Daubechies D8 (16 components)

(c) Haar (32 components) (d) Daubechies D8 (32 components)

(e) Original signal

Figure 2.7: Result of transforming signal of 200 samples through an 8-level
wavelet transform (Haar and D8), and applying the reverse transform on the
first 16 or 32 components.

27

CHAPTER 2. BACKGROUND

concatenated signal will represent the low-frequency transitions for the signal
in total.

A possibly better approach is using the Lilliefors modification of the
Kolmogorov-Smirnov test for normality, as explained by Quiroga et al. [55].
It is based on finding the dimensions which to highest degree deviate from a
normal distribution. This should identify the dimensions which best separate
the different clusters. We first calculate the cumulative distribution function
for each dimension, and compare it to the Gaussian distribution with the
mean and variance equal to the samples in the dimensions. Then we extract
the dimensions with the highest difference between these functions for any
spike.

We have not dived into the depth of the mathematics for Wavelet trans-
forms, as the implementation is available to us through the GNU Scientific
Library, as described in Section 2.6, and for more information, see [29] and
[70].

2.3.4 Clustering

Cluster classification is the process of organizing a set of observations into
groups (clusters). Clustering is important for many fields of research, includ-
ing machine learning, data mining, statistics, pattern recognition and image
analysis. Spike clustering aims to group similar spikes together, based on the
assumption that similar spikes originate from the same neuron, so that each
cluster represents a neuron (or similar multi-unit).

Generally, there are three ways to classify a dataset. The first class assigns
all the points to a cluster. The second only assigns a cluster to points that
have a strong similarity to other points – high density regions. The last class
has degrees of membership to clusters; a single point can be 30% in cluster
A and 70% in cluster B, for instance. Such a fuzzy clustering is not relevant
to our problem and is not explored further; a spike can only originate from
a single neuron.

A parametric clustering makes assumptions about the structure of the
clusters. This could be the number of clusters present or how the clusters
are distributed. K-means, described in Section 2.3.4, is an example of a
parametric clustering algorithm. A nonparametric algorithm does not make
any assumptions and can thus be used when there is no a priori knowledge
about the data structure. SPC, described in Section 2.3.4, is an example of
a nonparametric algorithm.

Usually, what constitutes a good or bad clustering classification is highly

28

2.3. SPIKE SORTING

problem dependent. This is demonstrated in Figure 2.8 on the next page,
where all of the classifications appear perfectly valid. Which partitioning is
the better one is impossible to answer without domain-specific knowledge of
the problem.

A variety of clustering algorithms have been developed. Generally, it is
desirable that the algorithm does not assume a predefined number of clusters.
However, if the clustering algorithm is fast enough, it can be run multiple
times with a different amount of clusters each time. The different clusterings
can then be benchmarked against each other using a variety of cluster quality
metrics, of which we will describe some in Section 3.2. Many also assume a
typical Gaussian distribution, which depending on the dataset can make a
significant difference. If a dataset is linearly separable, it means that there
is a way to separate two groups of points by drawing a hyperplane between
them.

Tan et al. [66] group the different data distributions into the following
categories:

Well-separated a distribution where the distance between any two points
in different groups are larger than the distance between any two points
within a group.

Prototype-based a distribution where every data point is closer to the pro-
totype that defines the cluster than the prototype of any other cluster.
K-means is a prototype-based clustering algorithm.

Graph-based each point is closer to at least one point in its own cluster
than to any point in other clusters. SPC is a graph-based algorithm.

Density based clusters are defined by partitioning high density points that
are separated by regions of low density.

Conceptual clusters where points in a cluster together make up a concep-
tual figure.

Which algorithm is best will depend on the distribution. In this project,
two clustering algorithms are explored. The k-means clustering algorithm
was chosen due to its simplicity and computational efficiency, and that it
is a class of the partitioning clustering algorithms that classifies everything.
Superparamagnetic clustering (SPC) is a clustering algorithm which only
classifies points it thinks belong together. This means it will find the number
of clusters at runtime, and it should be less susceptible to outliers and noisy

29

CHAPTER 2. BACKGROUND

(a) The original datapoints

(b) After setting separate colors to the two “islands”, two clusters ap-
pears to be a good discriminator

(c) Adding more colors, and 4 clusters starts to look like a good clus-
tering.

Figure 2.8: Three examples of why clustering is a highly subjective discipline.
To the human eye, features such as shape, color and distance can make you
biased when choosing clusters. The significance of these features will depend
on the problem.

30

2.3. SPIKE SORTING

data. What is and is not noise is as mentioned a very subjective decision,
but we will evaluate how SPC handles noise, both with synthetic and real
datasets. After an extensive literature search, and advice from our supervisor,
this algorithm appears to be the most promising overall for this problem, and
was thus chosen for implementation.

The rest of this section will describe the two implemented clustering al-
gorithms, k-means and SPC.

K-means clustering

K-means clustering is a fast clustering algorithm which partitions P points
in D dimensions into K clusters, minimizing the sum of squares within each
cluster. With a large dataset, and when K > 2, it is not practical to require a
global minimum where the solution has the minimal sum of squares across all
clusters, because a local minimum in one cluster will affect another cluster
negatively. Instead, a local optimum is expected, where no movement of
points from one cluster to another will reduce the sum of squares within
the cluster [31]. In k-means, the mean of each cluster is called a centroid.
If the centroid is required to be on an actual datapoint, and not the true
mean, it is called k-medoids clustering. To compute similarity, some form
of distance metric must be used. We have used Euclidean distance in our
implementation, but other measures such as the Manhattan distance could
make more sense for other problems.

K-means is a fast, well-known algorithm. A high-level overview is shown
in Algorithm 2.1.

Algorithm 2.1 High-level serial k-means

1: Distribute K centroids according to some heuristic, as explained later in
this section.

2: repeat
3: for all point in points do
4: calculate which centroid is nearest, and assign point to that centroid
5: end for
6: for all centroid in centroids do
7: recalculate centroid position as a mean of all the current points in

its cluster
8: end for
9: until stop criteria (number of iterations, number of membership changes,

distance moved, etc)

31

CHAPTER 2. BACKGROUND

Algorithm 4.1 on page 77 lists the psuedo-code of our implementation of
algorithm, which uses two stop criterias – fraction of membership changes
per iteration, and a max total iteration threshold. The latter is there in case
the algorithm converges too slowly, something we rarely experienced.

Because each iteration only consists of a distance measure and compar-
ison between the P points and K centroids in D dimensions, and finally a
position update of just a few centroids (relative to the number of points in
the dataset), this is a very fast clustering algorithm. The distance calculation
requires an addition, two subtractions and a multiplication, N ·K ·D times,
every iteration. The centroid updates requires an addition, N ·D times, also
every iteration. Every iteration is O(N ·D ·K). The parallel implementation
is O(N ·D·K

P
), where P is the number of cores. Inaba et al. [38] found that

the entire algorithm was O(NDK). This is, however, a very hard thing to
estimate, because the number of iterations required for convergence depends
so much on the distribution of data, as well as how the centroids are placed
initially. Our implementation will be benchmarked to see how it scales in
practice.

Most of the demanding parts of the algorithm can be parallelized. The
expensive part of k-means is the distance calculation between points and
centroids - or N points times K centroids operations. It is clear that these
operations can be handled independently, so it also maps well to the parallel
paradigm.

However, k-means clustering comes with several drawbacks. The num-
ber of K clusters has to be specified a priori, it is dependent on where the
centroids are placed initially, it tends to create equally-sized clusters, it is
unduly influenced by points far away, and it can not be expected to converge
to a global minimum [63].

The need to specify the number of K clusters initially can be partly
averted by running the algorithm with K = {N . . .M} clusters, and then
using a cluster quality metric to automatically determine which clustering
appears to be the best. This of course makes the algorithm slower.

There are various heuristics to initially distribute the centroids, which
can help to give a good solution more often. A random distribution which
ignores actual point position and only regards the bounding box that the
datapoints create is fast but unfair. It completely ignores point density,
and several centroids could be placed in peripheral areas defined only by
a few datapoints. A random distribution which can only be placed where
actual datapoints lie should be better, because it will be influenced more by
point density. Another clever trick is to randomly place the first centroid,

32

2.3. SPIKE SORTING

then place each successive point on a datapoint as far away from the closest
centroid as possible. This should make the centroids more evenly spaced out,
and could make it converge faster (however, this is a consuming process in
itself). While it will distribute the clusters more evenly, it will be susceptible
to outliers. These initialization algorithms are implemented in our thesis.

Bisecting k-means [66] is an alternative which is less prone to the initial
centroid placement, which performs a series of recursive bisections until K
clusters have been produced. It works by performing several trial bisections,
computing the sum of squared errors between the centroids and the points,
and then selecting the the clustering which minimized this. This would
make it a more demanding algorithm, but it could certainly make the initial
centroid placement more robust.

The k-means implementation in this project is very fast, so multiple clus-
terings can be performed instead, making the initial centroid placement less
important. Although fast, k-means is sensitive to the initial centroid distri-
bution, so the convergence time will vary on the same dataset.

Because the more fundamental problems with k-means are not addressed,
such as how it tends to create equally sized clusters, this variation of k-means
is not explored further.

Superparamagnetic clustering

Superparamagnetic clustering (SPC) is a non-parametric clustrering algo-
rithm, presented by Blatt et al. [17, 18], and has been successfully applied
to spike sorting by Quiroga et al. [55]. It is based on theory from the Potts
model [74], which describes interaction between spins on a crystalline lattice,
and is used to describe behavior of ferromagnets in varying temperatures.

A spin is simply a point on the lattice with a state (“spin”) q, ranging
from 1 to Q. The points on the lattice are called spins because of the way they
will rotate to align with an external magnetic field. When two points have
the same spin, they are said to be aligned. Increasing the temperature will
increase the entropy, which reduces the influence of neighboring spins. This
is related to the Curie temperatures (Tc) of ferromagnets, which is where the
ferromagnet becomes paramagnetic. Above this temperature, alignment will
be random, and a ferromagnet no longer be influenced by a magnetic field
(magnetic susceptibility tends to 0). As an example, the Curie temperature
of iron (Fe) is 770◦C, and above this temperature, iron will no longer be
attracted to a magnet.

Blatt et al. [17] give a good description of the process, in an example with

33

CHAPTER 2. BACKGROUND

three dense regions:

At high temperatures, the system is in a disordered (paramag-
netic) phase. As the temperature is lowered a transition to a su-
perparamagnetic phase occurs; spins within the same high density
region become completely aligned, while different regions remain
unordered. As the temperature is further lowered, the effective
coupling between the three clusters (induced via the dilute back-
ground spins) increases, until they become aligned. [...] we call
this “phase” of aligned clusters ferromagnetic.

Hence, the algorithm consists of two major steps: locating the superpara-
magnetic phases, and determining how the points cluster together in these
phases. As some values used throughout the algorithm are determined by the
input data, and not dependent on other variables, we can consider preparing
these as a first step, giving us three parts of the algorithm:

1. Calculate values depending only on input

2. Locate the superparamagnetic regions

3. Perform clustering

Calculating values depending only on input The input to the algo-
rithm is a vector of size N , containing D-dimensional points, P1...PN . As the
calculations further down the algorithm only use the intra-point distances,
they are calculated in the beginning. Several options are available, but our
implementation uses Euclidean distance to determine how different two sam-
ples are.

Interaction happens between points which are defined as neighbors. There
are several ways to define neighborhood, including Voronoi tessellation and
k-nearest neighbors. We use the mutual K nearest neighbors, meaning two
points vi and vj are neighbors if and only if vj is one of vi’s K nearest
neighbors and vi is one of vj’s K nearest neighbors, according to Euclidean
distance. This is the same definition as used by Blatt et al. [18].

The next step is to calculate interaction strength Jij for every pair of
points. This is defined as

Jij =

{
1

K̂
exp(− d2ij

2a2
) if vi and vj are neighbors

0 otherwise
(2.9)

34

2.3. SPIKE SORTING

Here, K̂ is the average number of neighbors for all points, and a is the
average of all distances dij between all neighboring pairs of points vi and vj.

K̂ =
2× numNeighborEdges

numPoints
(2.10)

The interaction strength Jij between each pair of neighboring points (i, j)
is then the only quantity used from the input samples. For larger datasets,
these values may be stored for subsequent runs of the algorithm, saving
calculations.

Locating the superparamagnetic regions The goal for this step, is
to determine which of the temperatures give best results, so that one can
perform clustering using these temperatures. This can be calculated analyti-
cally, as demonstrated by Blatt et al. [18]. This means that for a selected set
of temperatures, each possible configuration of the system is checked, and
the thermal average of the magnetization is used to determine susceptibility,
χ, for the temperature. With each N point having one of Q possible spins,
this gives NQ configurations to check for each temperature. Even for small
datasets, this gives an impractically high number of configurations, resulting
in high complexity.

To solve this problem, we instead use Monte Carlo simulations, specifi-
cally the Swendsen-Wang (SW) method [65, 18], as described in Algorithm 2.2
on the next page.

Equation (2.11) shows the probability of two neighboring points with the
same spin state, being added to the same SW-cluster.

pij = 1− exp
(
−Jij
T

)
(2.11)

The quantity that we are interested in finding is the susceptibility, χ. This
is proportional to the variance in magnetization between the Monte Carlo
iterations. The magnetization is defined in Equation (2.12), where Nmax is
the maximum number of points in all spin states. N is the total number of
points in the dataset.

m =
qNmax −N
(q − 1)N

(2.12)

χ = m2 −m2 (2.13)

35

CHAPTER 2. BACKGROUND

Algorithm 2.2 Swendsen-Wang: Susceptibility

Require: points [1 . . . n]
Require: J [1 . . . n, 1 . . . n] : interactionStrengths
Require: temperature ∈ R+

Require: iterationCount ∈ N
1: for all (i, j) in J do
2: calculate probability P [i, j] {see Equation (2.11)}
3: end for
4: spins[1 . . . n] := random spin-values [1 . . . q]
5: for iteration := 1 to iterationCount do
6: g := graph, vertices[1 . . . n], edges[]
7: for all (i, j) in P do
8: if spins[i] = spins[j] and P [i, j] > uniformRandom(0.0, 1.0) then
9: add (i, j) to g.edges

10: end if
11: end for
12: for all connected subgraphs gc in g do
13: newSpin = random spin-value [1 . . . q]
14: for all i in gc do
15: spins[i] = newSpin
16: end for
17: end for
18: Nmax = number of points in largest spinState
19: mag[i] = calculateMagnetization(Nmax) {see Equation (2.12)}
20: magSq[i] = mag[i]2

21: end for
22: avgMag = average(mag)
23: avgSqMag = average(magSq)
24: susceptibility = N / temperature * (avgSqMag - avgMag2)
25: return susceptibility

36

2.3. SPIKE SORTING

We calculate the susceptibility, χ, for a range of temperatures, using the
definition in Equation (2.13) on page 35. This will give a graph which has
peaks at the temperatures where one should perform clustering in the final
step of the algorithm. As described by Blatt et al. [18], the average in the
physical model is a thermodynamic average, which should be calculated over
all possible spin configurations. This would also include improbable spin con-
figurations, which are then given lower weight in the thermodynamic average.
When using Monte Carlo iterations like the SW method, however, after a few
iterations, the system will change between probable configurations, reducing
the average to an arithmetic average, as described in Equation (2.14).

x =

∑
i xi

numIterations
(2.14)

If calculated analytically, the plot will be smooth, with defined peaks
visible only in transition phases. The plots shown in Blatt et al. [18] and Blatt
et al. [17] are smooth, indicating that they have been calculated analytically.
With Monte Carlo iterations, however, getting a smooth plot requires many
iterations. With fewer iterations, the plot will be noisy, but show the same
structure. Therefore, it is possible to reduce the number of iterations in a
first run, and then increase the number of iterations in a more focused area.
For examples of the plots, see Section 4.4.2.

Perform clustering The final step of the algorithm is to perform cluster-
ing with a given temperature. The algorithm is very similar to calculating
the susceptibility in Algorithm 2.2 on the facing page. It is shown in Algo-
rithm 2.3 on the next page for completeness.

Points are added to the same cluster if they have the same spin for more
than a given fraction, θ, of the iterations. Blatt et al. [18] demonstrate how
this value is not important for the results, as long as it is “bigger than 1/q
and less than 1-2/q”. Therefore, we have set this to 0.5.

For correctness, the correlation Cij should be used to calculate the corre-
lation function Gij. Instead, we have augmented θ to θm, so that the relation
is correct, as derived in the following equations.

Gij > θ (2.15)

Gij =
(q − 1)Cij + 1

q
(2.16)

37

CHAPTER 2. BACKGROUND

Algorithm 2.3 Swendsen-Wang: Clustering

Require: points [1 . . . n]
Require: J [1 . . . n, 1 . . . n] : interactionStrengths
Require: temperature ∈ R+

Require: iterationCount ∈ N
Require: θ : clustering threshold

1: for all (i, j) in J do
2: calculate probability P [i, j] {see Equation (2.11)}
3: end for
4: spins[1 . . . n] := random spin-values [1 . . . q]
5: correlation := [1 . . . n][1 . . . n] := 0
6: for iteration := 1 to iterationCount do
7: g := graph, vertices[1 . . . n], edges[]
8: for all (i, j) in P do
9: if spins[i] = spins[j] and P [i, j] > uniformRandom(0.0, 1.0) then

10: add (i, j) to g.edges
11: end if
12: end for
13: for all connected subgraphs gc in g do
14: newSpin = random spin-value [1 . . . q]
15: for all i in gc do
16: spins[i] = newSpin
17: end for
18: end for
19: for all (i, j) in P do
20: if spins[i] = spins[j] then
21: correlation[i][j] := correlation[i][j] + 1
22: end if
23: end for
24: end for
25: correlation := correlation / iterationCount
26: h := graph, vertices[1 . . . n], edges[]
27: for all (i, j) in P do
28: if correlation[i][j] ¿ θ then
29: add (i, j) to h.edges
30: end if
31: end for
32: clusters := connected subgraphs in h
33: return clusters

38

2.4. SPIKE RECORDING EQUIPMENT

Cij >
qθ − 1

q − 1
= θm (2.17)

The output from the final part of the algorithm is a collection of sets
containing point indices for each cluster.

2.4 Spike recording equipment

The datasets provided to us for this thesis have been recorded using the
Axona DacqUSB [1] recording system. It is a compact multi-channel data
acquisition system which is used with a PC. It is designed to record data from
twisted quadruple electrodes called tetrodes. The tetrodes are implanted into
living tissue, where it records electrophysiological signals. Spike events will
trigger simultaneous recording on all four channels.

The amplifier modules support 16 channels each, and four modules can be
set up in a group for a total of 64 channels. It performs peak detection using
a specified threshold. Using the digital oscilloscope, the user can control
settings such as filtering, gain and triggering. When the signal crosses the
threshold, all the channels will record for the 200µs preceding and 800µs
following the trigger event. The recording is captured in a fixed number of
50 samples per channel, or 200 in total for all four channels. Each sample is
stored using 8 bits.

The Axona system supports a directional video tracker, which enables
the recording of metrics such as position and orientation. In this thesis such
information is not relevant and thus not used.

Tint, a cluster cutting and analysis software, is provided to manage the
recorded data. It is reviewed in Section 2.7.6.

2.5 Computer hardware

Our program is developed on an Intel Core II Duo E6400, running GNU/Linux.
For testing, we have used Kongull, a super computer at NTNU. Kongull con-
sists of several nodes, which may be used for multi-node parallel program-
ming. Our program uses the shared memory model, meaning that we have
only implemented parallel utilization of the available processor cores in a
single node.

39

CHAPTER 2. BACKGROUND

The computer we have used to develop the application was provided by
IDI Drift, and is out-dated, as the processor is from 2006. Because of its
age, we also chose to run our application on a single node on Kongull, as its
specifications represent state-of-the-art to a much higher extent.

GPU could also be an attractive platform, especially given that most cal-
culations in this project are floating point operations, but requires a different
way of programming. As mentioned in Section 1.2, we consider GPU to be
beyond the scope of this thesis.

As our implementation will be programmed to utilize all available cores,
our ideal platform is any high-performing shared memory computer.

Hardware specifications are summarized in Table 2.1.

Table 2.1: Hardware
Desktop Kongull

CPU Intel Core II Duo E6400 2 × AMD Opteron 2431 (Istanbul)
Frequency 2.13 GHz 2.4 GHz
Cores 2 2× 6 = 12
L1 cache 64 kB per core 128 kB per core
L2 cache 4MB 512kB per core
L3 cache N/A 6MB

2.6 External libraries

In this section, we will describe the different libraries we have used to imple-
ment our program.

To make sure the application and code has as few restrictions as possible,
we have only used free, open-source libraries.

2.6.1 Intel Threading Building Blocks (TBB)

Intel TBB [39] is a library for developing multi-threaded C and C++ pro-
grams. It covers algorithms and data structures for efficient parallel program-
ming and parallel execution. It is designed to abstract threads away from the
user. The most basic feature is the parallel for construct, which allows
specifying that a for-loop may be executed in parallel, utilizing the available
processors/cores. This construct is similar to what is available with OpenMP,
described in the next section, but as TBB is a library, it does not use pragma

40

2.6. EXTERNAL LIBRARIES

statements, and does not depend on the compiler having built-in support for
the parallelization to work. However, the syntax is slightly different, and the
effort needed is a bit higher in TBB. On a lower level, the parallel for is
split in several tasks consisting of subranges of the for-loop-iteration.

Intel TBB also allows explicit coding of such tasks, enabling better control
with dependencies between tasks, as well as parallelizing code which is not
structured as simple loops.

When programming in the task based paradigm, you specify which part
of the code is parallelizable, and leave it up to the task scheduler to determine
how to execute these logical tasks. The task scheduler runtime will try to
create an optimal number of threads, and map these tasks to the threads
as they become available. This has a number of benefits. Since the task
scheduler will reuse threads, it allows for a faster startup and shutdown of
parallel sections. Because it creates a dependency graph of the tasks, it
load-balances the tasks automatically.

Forcing the programmer to think at a higher, task-based level may be
beneficial, because it allows one to disconnect from the mindset that there
is one logical thread per physical thread. The programmer specifies task
dependencies, and leaves the scheduling up to TBB.

The scheduler is one of the most important aspects of the library. It is
designed to evaluate a graph of tasks. One of the design goals of it is not
to be fair, because it has additional information it could exploit to create a
better overall performance.

In the graph, each task points to its successor, which is waiting for it to
complete, or NULL if it is finished. The result is a directed graph, which the
scheduler uses to determine which task to schedule next. For task selection, a
combination of breadth-first and depth-first is used: breadth-first is excellent
for parallel execution, while depth-first is better for serial execution.

Breadth-first is used to keep the maximum number of cores busy. It
will not create more tasks than what is needed to keep the cores busy, as a
breadth-first approach is very memory demanding.

Depth-first is used for serial execution because the deepest tasks are the
most recently created tasks, and therefore is more likely to have relevant data
in the caches (or as the manual calls this: “strike while the cache is hot”).
In addition it minimizes memory requirements because only a linear number
of tasks have to exist at the same time [40].

Figure 2.9 on page 43 provides a nice overview of the TBB runtime

41

CHAPTER 2. BACKGROUND

schematic. Each logical thread has its own deque1, containing tasks that
are ready to run. A task is run when its execute method is called. Initially
when a task is spawned, it is added to the bottom of the deque. The algo-
rithm for selecting a task from the deque, explained in detail in the TBB
tutorial [40], performs the following steps:

1. Unless execute returns NULL, grab the task returned.

2. Unless its own deque is empty, remove a task from the bottom of the
deque. This is its own most recent task.

3. Finally, if it still lacks a task, steal a task from the top of the deque of
another thread. If the deque is empty, continue trying until successful.

The manual calls this strategy “breadth-first theft, depth-first work”. If
the logical thread cannot work on tasks in its own deque, it will steal the
oldest one from one of the other threads. The oldest one is picked because
it is the least likely to disrupt the cache flow.

Notice that there is no single “master thread” managing which task should
go where. This means that the work assignment itself is distributed.

Finally, TBB supports several ways to control how the task graph is
created, such as recursive chain reaction, which creates a tree quicker, and
continuation passing, which allows the bulk of a parent task to continue
in a continuation task while it is waiting for its children. For a detailed
explanation, refer to the tutorial [40].

An example of a task graph is shown in Figure 2.10 on page 44. Here,
tasks A, B and C have spawned tasks they are waiting upon. Task D is a
running task which has not spawned any children, so its refcount is unset.
Tasks E, F and G are spawned, but not running yet.

The TBB version used is open source software, licensed under the GNU
GPLv2 license with the runtime exception. This means that the library may
be used without requiring the developed software to be released as open
source software, as long as TBB itself is not modified.

2.6.2 OpenMP

OpenMP [15] is an API for performing shared-memory multiprocessor pro-
gramming, supporting C, C++ and Fortran. By using compiler directives,

1Deque - a double ended queue

42

2.6. EXTERNAL LIBRARIES

Task queue

Core Core Core Core

Thread Thread Thread Thread

Oldest task

Newest task

Oldest task

Newest task

Oldest task

Newest task

Work Work Work

StealTask queue

Task queue

Task queue

Stolen task

Work

Figure 2.9: An illustration of the TBB runtime, courtesy of Hemmen [34].

43

CHAPTER 2. BACKGROUND

Figure 2.10: An example of a task graph in TBB, taken from the Fibonacci
example in [40]

sections of a program can easily be parallelized by simply annotating the
code. These directives will be ignored if the compiler does not understand
them.

OpenMP supports many platforms, including Linux, Unix, Windows and
OSX, which fits our multi-platform requirement.

We used OpenMP a few places where a simple loop-parallelization was all
that was needed. After reading the TBB manual [42], we found that mixing
these two libraries would not affect performance, as long as they were not
nested.

2.6.3 Boost

Boost [8] is a wide collection of separate C++ libraries, providing functional-
ity for different common tasks, including mathematical functions and string
tokenizers. We use Boost’s random library, which provides series of random
number generators. The random generators do not keep a global state, and
therefore several instances of the random generators may be used in parallel.
We also make sure to seed the generators differently, so that we do not create
identical random number sequences. In addition, we use Boost’s tokenizer
and string utilities, for reading and parsing the data sets.

Boost is licensed under the Boost Software License, which is similar to

44

2.6. EXTERNAL LIBRARIES

GPL, but allows proprietary modifications to source code.

2.6.4 Qt

Qt [54] is a cross-platform application framework, originally developed by
Norwegian Trolltech, now acquired by Nokia. It gives cross-platform ab-
stractions for common tasks like network access, file management and thread
management, as well as graphical user interface management. Qt is written
in C++, and has bindings for many languages, including C++, Java and
Python. Being cross-platform, the programs may be run on many different
platforms, including Windows, Linux and Mac OS X. We use Qt for the
graphical presentation, as well as managing the control flow between the
different parts of the application.

For 2D graph visualization, we use Qwt – Qt Widgets for Technical Ap-
plications [10].

Qt and Qwt are both licensed under GNU LGPL.

2.6.5 GNU Scientific Library (GSL)

The GNU Scientific Library [9] is a numerical library for C / C++. It pro-
vides a large collection of numerical functions, including statistics, linear
algebra and random number generation. We use GSL for its wavelet func-
tions, as well as a selection of BLAS routines. The library is thread safe [9],
and can therefore be used in parallel.

GSL is licensed under the GNU GPL.

2.6.6 Approximate Nearest Neighbor library (libANN)

libANN [53] is a C++ library providing algorithms and data structures for
finding nearest neighbors in arbitrarily dimensional spaces. It provides both
exact and approximate nearest neighbor searches, as well as different distance
functions.

This library is not thread safe, as the algorithms retain global state.
libANN is licensed under the GNU LGPL.

45

CHAPTER 2. BACKGROUND

2.6.7 STANN

STANN (Simple, Thread-safe Approximate Nearest Neighbor) [11] is a C++
library designed to perform nearest neighbor searches on point clouds. It is
parallelized with OpenMP, which means it will run in parallel if built using
a compiler with support for OpenMP pragmas. If the compiler does not
support OpenMP, the library will still compile, but parallel statements will
be ignored, and the code will be executed sequentially.

We use STANN’s functionality for building k-dimensional minimum span-
ning trees.

STANN is freely modifiable and redistributable for personal and academic
use, as long as its copyright notice is kept.

2.6.8 Google Performance Tools

To see which parts of the application needed attention, we used Google Per-
formance Tools [28] to profile our code. Google Performance Tools provides
us with a call graph which may be built for the whole, or parts of the ap-
plication. By inserting calls to the profiler within the source code, we may
tell the profiler which parts to focus on, such as the algorithm itself, even
when running the whole program. For an example of the output provided,
see Figure B.7 on page B-9. We only profiled the command line interface, as
we are mostly interested in the actual clustering algorithms.

2.7 Related work

In this section, we present existing applications in the domain of spike sorting.
The section ends with a discussion of how our application differs from the
existing applications, and what our contribution to the field is.

2.7.1 Wave Clus

Wave Clus [56] is a MATLAB program which implements SPC and wavelets
as discussed in the article by Quiroga et al. [55]. Its main view is shown in
Figure 2.11.

The program implements a number of interesting features. For feature
extraction, PCA and wavelets are supported. These features can be visu-
alized in a projection matrix, where each feature pair are combined for a

46

2.7. RELATED WORK

Figure 2.11: Wave Clus, displaying a signal that has had the spikes identified
and classified from a continuous dataset.

47

CHAPTER 2. BACKGROUND

two dimensional plot. For a four dimensional dataset, this will create six
2D plots, and can be used to manually inspect the clustering. Clustering is
performed by the super-paramagnetic clustering algorithm. To see at which
temperature it might be sensible to perform the clustering, a temperature
plot is provided, with graphs showing the different cluster sizes. To see a
cluster quality indication, an inter-spike interval (ISI) plot is provided per
cluster.

In addition to feature extraction and clustering, Wave clus performs both
spike detection and signal filtering. This means the program supports a
continuous stream of data, and it can extract spikes automatically.

It is possible to merge two clusters, but not part of clusters, or perform
operations on single points. This limits the possibilities of the manual aspect
of cluster cutting.

The source code does not contain the SPC algorithm, as it is only attached
as a binary executable. After conferring with Quiroga via email, we learned
that they got the SPC implementation from Eytan Domany’s group at the
Weizmann Institute. Domany is co-author of Blatt et al. [18], in which SPC
is presented. This is a serial SPC implementation.

The user interface is slow, and the last release is more than two years old
(January 2009).

2.7.2 OSort

OSort [59] is a MATLAB implementation of an online spike sorting algorithm.
The latest version is 2.1, released fall 2007. Rutishauser et al. [60] describe
the details on the implementation. The fact that it is online, means that it
could be used for real-time spike sorting, where spikes are sorted as they are
detected, based only on previously detected spikes.

OSort can receive data directly from a network stream or read from a file.
The program reads raw recorded data, and performs bandpass-filtering, spike
detection, feature extraction and clustering in real-time. Spikes are detected
using threshold crossings of a local energy measurement of the bandpass
filtered signal.

The spike is then upsampled four times using interpolation to smoothen
the waveform. This is done by first applying the Fourier transform, and
then applying the inverse transform, back to a longer sample. The first spike
is assigned to a new cluster. Subsequent spikes are compared to existing
clusters, and either added to an existing one, or becomes the first spike in

48

2.7. RELATED WORK

Figure 2.12: The OSort main window.

a new cluster. Similarity is calculated using a threshold, which is calculated
locally (sliding window) from the noise properties of the signal. For each
added spike, the mean waveform for the cluster is recalculated based on
the N last assigned spikes. This may make mean waveforms of two clusters
more similar over time. They will then be merged, if the distance between
the waveforms is lower than another locally calculated threshold. When the
execution is complete, clusters containing few spikes, or too low average firing
frequency, are discarded.

The article compares OSort with KlustaKwik and Wave Clus, and achieves
similar results using their test data. With increased noise, OSort gets better
results than the other two algorithms.

OSort only supports single-channel data, but the authors claim that it
should be straight-forward to extend the algorithm to use multi-channel data
[60]. The authors also state that the algorithm would perform much better
if written in a compilable language such as C++, and that “optimizing this
implementation will allow the realtime processing of many hundreds of chan-
nels” [60].

The application has evolved since the article was published, so the newer

49

CHAPTER 2. BACKGROUND

version could have changes to the algorithms used. However, we did not
inspect the source code to see if this is the case.

Figure 2.12 is a screenshot from the user interface. We tested OSort on the
dataset which is available from the program website, which is a continuous
single-channel raw signal lasting for approximately 8 minutes, with a sample
frequency of 25kHz. After running the program, it fails in the last step,
where results should be displayed, because of a MATLAB package we did
not have access to. We also tried different versions of MATLAB, but were
unable to use the whole program. Inspection while executing the application
shows that the program only utilizes one of the available cores, i.e. it is
not programmed for parallel execution. The process of detecting spikes and
performing clustering took about an hour on our desktop workstation, with
details as described in Section 2.5. For a recording of 8 minutes, this is close
to their reported performance in their article, where they say that OSort can
process a single channel in ten times the acquisition time. They claim that the
implementation is not optimized for speed, and that with optimization, the
algorithm should be able to sort “many hundreds of channels in realtime” [59].
We think this sounds extremely optimistic, given that this means a speedup
of more than 1000 times compared to the performance of the current version.

OSort is not released on a specific license, but is stated to be copyright
of the authors.

2.7.3 KlustaKwik

KlustaKwik [7] is a command line program which uses a Classification Expectation-
Maximation (CEM) clustering algorithm to classify spikes. CEM is a “winner-
take-all” version of the Expectation-Maximation algorithm, where no frac-
tional assignments of clusters are allowed [49, 43]. Although this will handle
non-Gaussian distributions better than k-means clustering, the benefits ap-
pear to be limited. First, its rate of convergence can be very slow. Second,
the numer of conditional probabilities associated with each observation is
equal to the number of components in the mixture, so it might not be practi-
cal for models with many components. Finally, the model breaks down when
the covariance matrix corresponding to one or more components becomes
ill-conditioned (singular or nearly singular) (Fraley and Raftery [24]). Our
datasets can be very big, and the covariance matrix can also be singular.

Because of the limited benefits of adapting CEM (SPC already handles
non-Gaussian distributions), and the limited user interface, this program is
not explored further. A quick inspection of the source code reveals that

50

2.7. RELATED WORK

KlustaKwik is not programmed for parallel execution.

2.7.4 Klusters

Klusters (Hazan [32], Hazan et al. [33]) is an open-source cluster cutting
program written for the KDE3 platform on GNU/Linux. The program is
not significantly updated since 2004, and depends on old libraries to build –
notably KDE3 and Qt3. Figure 2.13 shows the main window after a dataset
has been sorted.

Figure 2.13: Klusters and its main window.

It has several views. Clusters can be viewed in a 2D projection using PCA
to reduce the dataset. The spike waveforms for the selected cluster can be
displayed as overlapping spikes (top-right in Figure 2.13). Spikes from two
clusters can also be displayed either side by side or overlapped with different
colors, to help see if they should be merged. It can also display the mean
and standard deviation of the spikes. The correlation view displays auto-
and cross-correlograms between the selected clusters This view is useful to
distinguish medium to high firing neurons from neurons with a low firing
rate in a group, as well as gauging how noisy a cluster is (what fraction of
spikes belong to another cluster). Finally, a trace view, which displays the

51

CHAPTER 2. BACKGROUND

identified spikes on the continuous signal. This can be a helpful visualization
aid, but was unavailable to us because we lacked the necessary data. The
program supports merging of clusters, as well as changing or removing cluster
membership status on a point-by-point basis, but this did not work in our
build – it simply ignored our commands. For clustering it uses KlustaKwik.

Its strengths appear to be its GUI and support for doing manual cluster
cutting after the automatic suggestion, however as mentioned this part was
only partially working. Although the program has not been updated lately,
the authors state that it is used extensively in their research laboratory.

2.7.5 OpenElectrophy

OpenElectrophy [27] is an open-source program written to help with the
whole toolchain of cluster cutting. It is written in Python, and uses a selec-
tion of scientific libraries for effective calculations. A part of the philosophy
for the project is to provide a user friendly application in the open-source
scene of neuroscience applications, which according to the authors is missing
today. They have also spent time developing a neat-looking GUI, imple-
mented using Qt4. An example of this may be seen in Figure 2.14.

Figure 2.14: OpenElectrophy, displaying extracted waveforms colored by
manually allocated clusters, on a test dataset supplied with the application.

OpenElectrophy handles importing different file formats and storing large
datasets in different types of databases. There are a range of options for per-

52

2.7. RELATED WORK

forming all steps in cluster cutting: signal filtering, spike detection, feature
extraction and clustering.

It supports k-means clustering, and has a version of SPC implemented.
A closer inspection of the code shows that the algorithms could be optimized
to a larger extent – one example is that SPC calculates all-to-all distances
between all points, and then sorts the neighbors from closest to furthest,
to find the K nearest neighbors. This results in a higher complexity than
necessary (N2), as one should be able to prune large parts of the search
space. It also does not plot ranges of temperatures to help the user find
the right temperature to use for clustering, and the source code seems to be
experimental with many out-commented lines.

The program supports nice visualizations of the data in all steps of the
toolchain, as well as manual editing of cluster results, such as manually clas-
sifying a spike as noise, or belonging to another cluster. It is not always
intuitive to use, but it seems evident that persons who are trained in using
the program can work very efficiently with help from the provided tools.

A close inspection of the system while performing clustering reveals that
the program only uses one processor core. This suggests that the program
is not optimized for parallel execution, perhaps because of limits with the
python programming model. This would be a nice extension of the program.

Although OpenElectrophy supports importing many different data for-
mats, including datasets of spikes (non-contiguous data), we did not find
documentation for the applicable file formats. We therefore did not spend
time converting our datasets to be usable for the application, though this
would have been helpful to compare results, and for quick verification of
functionality.

Garcia and Fourcaud-Trocme [27] are the main authors of the program,
and two more contributors are mentioned on the project web page. The
project is active, and several changes seem to be made in the code base every
month.

2.7.6 Tint

Tint [13] is a cluster cutting and analysis software by Axona Ltd. It is
specialized for the analysis of spatially-specific neural activity, and the tool
used at the KI to perform manual spike sorting. It can display various
spike parameters and enable cluster cutting and determination of locational
variables such as position, heading and the speed of the rat.

53

CHAPTER 2. BACKGROUND

To facilitate cluster cutting, a cut window is available with two modes
of display. The first is a waveform view similar to Figure 2.2 on page 17.
The second mode is a two-dimensional scatter plot which shows points in a
two-dimensional section of a multi-dimensional space. The two-dimensional
section is derived by comparing one electrode against the others, according
to a selected metric. This creates six plots for a tetrode.

There are several options available for how to derive this two-dimensional
data. The default option computes each point by taking the peak-through
amplitude of one tetrode and matches it against another. Other options
include voltage at time t, peak height, trough depth, time of trough and
time of peak.

Cluster cutting can be done completely manually, where clusters are iden-
tified by eye and created by lassoing them together in the scatter plot. They
can also be adjusted manually after the automatic clustering is finished.

To perform automatic cluster cutting, centroids have to be identified.
These can either be specified manually, or Tint can guess them using the
k-means algorithm. The clusters are then defined by the centroid and a
rectangle or ellipse.

Tint appears to provide a decent interface for managing clusters manually,
and the scatter plot can provide sensible visualizations. However, it does not
support any advanced spike representations like wavelets, nor does it support
any advanced clustering algorithms such as SPC.

2.7.7 Summary

Both Wave Clus and OSort are MATLAB programs, with proprietary parts
which cannot be inspected or modified. This applies to the SPC methods in
Wave Clus, which could not be used directly to verify our own implementa-
tion. OSort first failed because of a mismatch between our 64 bit MATLAB,
and the provided 32-bit DLL files. We managed fixing this, but OSort still
failed when it should display the results, meaning we had little use of the
program.

Although MATLAB is excellent for doing mathematical operations, and
has built-in support for many different algorithms, this requires a MATLAB
license to use the program. This excludes users who do not use MATLAB,
and increases the threshold for people to experiment with the program. Also,
the two MATLAB applications seem to focus little on usability. Both require
that you manually set up a working folder for the applications. Specifying
input file paths has do be done manually – there is no “choose file” dia-

54

2.7. RELATED WORK

log. When the algorithms execute, you get no feedback on how much time
remains. Because of the way the figures are displayed when the algorithm
finishes, it keeps spawning windows which pop-up and stops you from doing
anything usual while waiting.

Tint is a proprietary program, which is supplied together with the record-
ing equipment, and is therefore not open for modification.

Klusters, KlustaKwik and OpenElectrophy are all open-source programs,
and users may submit changes or additions to the projects through their code
repositories. According to Tsao [69], KlustaKwik is the only program they
have tried, but they do not use it, citing poor performance.

The program which seems to be updated most frequently is OpenElectro-
phy. This, and the fact that the code, including the used scientific libraries,
is open-source, lowers the threshold for contributing to the project. It also
worked out-of-the-box on our computers, unlike all the others we tested, and
provides extra features for handling different databases. With an improved
documentation of the supported data formats, this program would be really
easy to use, as well as being easily extendable.

It is noteworthy that none of these programs appear to be parallel. We
examined the available source code, as well as analyzed the run-time per-
formance, and only one core was exploited. This means the programs are
ill-prepared for the automatic benefits new hardware will bring.

We will not make a program to compete with these existing solutions, but
will test our algorithms in a manner which is as efficient as possible. If our
program had a broader scope, we would have tried to include our parts as
modules in one of the existing solutions, instead of starting from scratch. To
make sure our program may be useful for others in the future, we aim to use
only open-source libraries, and to build the program as modular as possible.
We also focus on making the computation-heavy parts of the program as
efficient as possible, utilizing available hardware in parallel. Ultimately, we
will focus on the application being user friendly: it should give error messages
instead of crashing, and should provide the user with feedback such as time
remaining when running long-lasting algorithms.

55

CHAPTER 2. BACKGROUND

56

CHAPTER 3

Methodology

3.1 Datasets

In this section, we describe the datasets which will be used to test the algo-
rithms in use.

Lower dimensional datasets, which are not directly connected to the prob-
lem, are summarized in Table 3.1. These are used to test functionality.

Table 3.1: Summary of lower dimensional datasets
Dataset Classes Instances Features Noise
Three islands 3 10 1 No
Iris 3 150 4 No
NTNU toy problem 6 26553 2 Yes

3.1.1 Iris

The Iris dataset [23] is a dataset containing 3 classes of 50 instances each.
The features measured are sepal and petal lengths and widths for specimens
of three different species of the Iris flower. One class is linearly separable
from the two others, whereas the two latter are not.

3.1.2 NTNU toy problem

In order to easily see a visual result of our clustering efforts, we created a two
dimensional dataset with a cluster distribution that is not linearly separable.
It features the NTNU logo, as seen in Figure 3.1 on the next page.

57

CHAPTER 3. METHODOLOGY

The reason it is important to benchmark how we can handle datasets
which are not linearly separable is because a linearly separable dataset which
has gone though dimensional reduction could lose this property.

To make it more interesting, we applied a uniform noise distribution,
inverting the color of each pixel with a probability of 10%. When clustered
perfectly, the logo should consist of two clusters, while the text four, adding
up to six clusters in total.

This dataset also expresses the ambiguity of clustering. It would be per-
fectly reasonable to claim that the logo should be one cluster, and the text
another – or that they should comprise one big cluster, where the noise is
excluded.

Figure 3.1: The unclustered NTNU toy problem. Notice that randomized
noise is added to make cluster classification more difficult.

3.1.3 Three circles

We were given the dataset used by Blatt et al. [18] to compare our perfor-
mance to theirs. It is similar to the NTNU toy problem in that it has noise
added in addition to a non-Gaussian data distribution, as shown in Figure 3.2
on the facing page.

58

3.1. DATASETS

Figure 3.2: The unclustered three circles problem. Notice that the circles are
not completely separated, to make classification more challenging.

59

CHAPTER 3. METHODOLOGY

3.1.4 Three islands

We created a dataset with three highly separated clusters, used to verify
some of our algorithms. It consists of 10 points distributed in one dimension,
with cluster points in close proximity and large gap between the clusters.

3.1.5 Datasets from the Kavli Institute

The datasets received from the Kavli Institute are recorded from live rats,
with tetrodes implanted in the extracellular space of the brain. A recording
lasts for ten minutes, where the rat is exploring a given environment. The
recording equipment filters the signal, and detects and records spikes as they
happen. Positional information is saved for each spike, and is therefore also
available in the datasets. We ignore the positional information, as this is
used after clustering, to see if firing neurons correspond to specific positions
in the environment.

All the datasets provided also come with a cut file, which is a file that
describes the results of manual classification as done by the KI scientists.
Our automatic clustering efforts are compared to these. These clusters are
also analyzed by our cluster quality algorithms. Just as with the automatic
efforts, the manual clustering can contain classification errors.

As described in Section 2.4, each spike lasts for 1ms and is recorded in
4 channels, each with 50 samples of 1 byte each. The number of spikes in
the datasets vary, as different recording sites have differing counts of active
neurons. Also, the rat’s activity level affects spike frequency.

Table 3.2 on the next page lists the different datasets we got access to,
with information we found on classification and noise. The ones named
Albert come from a single recording of 8 different tetrodes, and 180501 is
from one tetrode in another recording.

3.2 Cluster quality measurements

Cluster quality measurements, or cluster evaluation, is important to quantify
the reliability of clustering results. Some clustering algorithms, such as k-
means, are dependent on an initial state. Cluster quality algorithms may be
used to identify poor clustering results, so that the clustering algorithm may
be run again to find better results. It is also useful to be able to say some-
thing about the quality of the clustering across different algorithms when

60

3.2. CLUSTER QUALITY MEASUREMENTS

Table 3.2: Summary of the recordings

Dataset Neurons Instances Noise Difficultya

Albert 1 3 931 88% Easy
Albert 2 3 771 46% Easy
Albert 3 3 685 31% Easy
Albert 4 6 4 178 43% Medium
Albert 5 1 7 385 96% Easy
Albert 6 3 4 577 61% Easy
Albert 7 2 5 992 54% Medium
Albert 8 1 1 980 88% Easy
180501 5 34 403 52%
a According to Tsao [69]

comparing their performance. Finally, it is interesting to run the algorithms
on the manually cut set, to see which score they get compared to our efforts.

We may separate the algorithms into two categories: supervised and un-
supervised cluster evaluation. The unsupervised algorithms are used to make
general assumptions about cluster quality, based on the results alone. Super-
vised algorithms make use of actual knowledge, such as manual classification
performed by experts.

Some measures, such as the Rand index, assume a degree-of-cluster mem-
bership. We can however only evaluate cluster quality based on absolute
membership, so such measures are ignored.

Two important features for unsupervised cluster evaluation are cohesion
and separation. High cohesion within a cluster means that the points in
the cluster are very similar to each other. High separation between clusters,
means that points in one cluster are not similar to points in other clusters.
This is illustrated in Figure 3.3 on the following page.

As the focus for our thesis is to perform unsupervised clustering, we
will implement unsupervised algorithms for cluster evaluation. However, as
we have access to manually classified datasets, we will also use F-measure,
which compares results to a known correct classification, as described in
Section 3.2.5. The rest of this section describes the algorithms we use.

61

CHAPTER 3. METHODOLOGY

(a) Separation (b) Cohesion

Figure 3.3: Separation between clusters, and cohesion within clusters. In-
spired by Tan et al. [66].

3.2.1 Cohesion and separation

Cohesion and separation are related to other algorithms, but may also be used
directly. Tan et al. [66] demonstrate different approaches for calculating clus-
ter validity based on cohesion and separation. They separate between graph
based and prototype based algorithms. As K-means is prototype based, and
SPC is graph based, we have both data structures available. However, as we
are working in the Euclidean space, we may easily calculate prototypes for
each cluster. We therefore focus on the prototype based algorithms.

The distance function used in the following equations is Euclidean dis-
tance.

Cohesion, I2 is calculated as the sum of distances of each data point to
its cluster center ci, as defined in Equation (3.1). Cohesion thus calculates
the within-cluster sum of squares. Higher value means lower cohesion. To
favor tightly packed clusters with many members, the result could be divided
by the number of points, although this is not done in our references.

I2 =
K∑
i=1

∑
x∈Ci

distance(x, ci) (3.1)

Separation, E1 is calculated as the sum of distances from each cluster
centroid ci to the centroid for all data c in total. Separation thus calculates
the between-cluster sum of squares. Each cluster is weighed by its number

62

3.2. CLUSTER QUALITY MEASUREMENTS

of points mi, as defined in Equation (3.2).

E1 =
K∑
i=1

mi × distance(ci, c) (3.2)

3.2.2 Silhouette coefficient

The silhouette coefficient (Rousseeuw [58]) is a way to visualize the cohesion
and separation. The author describes cohesion as tightness, which is the same
thing. The silhouette is based on a combination of separation and cohesion,
and can help the user identify the quality of the different clusters when they
are listed next to each other. An example plot is shown in Figure 3.4, which
is the result of a manual classification. Note that cluster 0 is classified by
Tsao [69] as a so called “noise cluster”, and is not used for further analysis.

In our implementation, we base the silhouette on the dissimilarity between
the points by using the Euclidean distance.

To define the cohesion, each point has its average distance a(i) to all the
other points in its cluster A computed, defined as:

a(i) =

∑
x∈Ci

euclideanDistance(i, x)

numObjects(A)
(3.3)

Separation is defined by comparing each point in a cluster to the average
distance of all the other clusters C – the closest cluster is defined to be its
neighboring cluster with distance b(i). For any cluster C, the distance is
defined as:

d(i, C) =

∑
x∈C euclideanDistance(i, x)

numObjects(C)
(3.4)

We then define b(i) as the minimum distance:

b(i) = min
A 6=C

d(i, C) (3.5)

The closest cluster can be thought of as the next best classification choice
for point i. s(i) is used to draw the silhouette and is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (3.6)

63

CHAPTER 3. METHODOLOGY

s(i) ranges from -1 to 1, where a high value implies that the intra-cluster
dissimilarity is much smaller than the dissimilarity to its closest cluster. From
this we can say that the point has been assigned to the correct cluster, as
its closest neighbor cluster is still not nearly as close as the cluster it was
assigned to. Conversely, a low value means that the point is actually much
closer to its nearest neighboring cluster than the one it was assigned to, and
thus has probably been misclassified. If s(i) lies around zero, it suggests that
the point lies between two clusters.

In addition to providing a visual feedback, it is possible to compute av-
erages to automatically be able to say something about a clustering result.
The average s(i) in each cluster can indicate how tightly packed the cluster
is – clusters with a high positive average s is a good cluster according to
this method. It is also possible to take the average of these numbers again –
resulting in a single real number for the entire clustering. This value can be
used to indicate the overall quality of the clustering result.

Figure 3.4: A silhouette plot of four clusters as performed by Tsao [69].
The Y axis denote points, the X axis silhouette value. Cluster 0 is by far
the largest cluster. In this recording, it is a so called noise cluster, which
contains data classified as noise.

64

3.2. CLUSTER QUALITY MEASUREMENTS

3.2.3 Lratio

Lratio is based on the assumption that the distribution of cluster spikes is mul-
tivariate normal [61]. It uses Mahalanobis distance, D2, a distance function
here used between a spike and a cluster center. If the spike distribution is
multivariate normal, then D2 will be distributed as χ2 with as many degrees
of freedom as the number of dimensions in the samples.

The Mahalanobis distance is defined as:

D2
i,C = (xi − µC)TΣ−1C (xi − µC) (3.7)

i is a spike, C is a cluster. xi denotes the feature vector for a spike, and µC
is the mean feature vector for the cluster. ΣC is the covariance matrix for
the spikes in the cluster.

Lratio for the cluster C is defined as:

Lratio(C) =

∑
i/∈C

1− CDFχ2
df

(D2
i,C)

nC
(3.8)

Here, CDFχ2
df

is the cumulative distribution function of χ2 with df degrees

of freedom. nC is the number of spikes in cluster C.

We calculate distances for each spike outside the cluster, which from the
cluster point of view may be considered “noise spikes”. Noise spikes close to
the cluster center will contribute strongly to the sum, while spikes far away
will contribute only little. A high Lratio value thus indicates that the cluster
is not well separated from the rest of the spikes. This means that there is a
higher probability that the cluster includes noise spikes, and excludes spikes
which should belong to it.

Ververidis and Kotropoulos [71] state that the Mahalanobis distance is
very dependent on having enough samples in each cluster, compared to the
number of dimensions. They use the fraction

NDc

D
as a measure for validity of

the Mahalanobis distance, where NDc is the number of samples (spikes) in a
cluster, and D is the number of dimensions. They cite one experiment which
found that the fraction should be at least 3, and another which demonstrates
that it should be at least 10. When the fraction approaches 1, error estimate
is said to approach that of random selection. This means that we cannot use
the measurements based on the Mahalanobis distance without reduction of
the datasets. For 200 dimensions, we would need 2000 spikes in each cluster.
As can be seen in Section 3.1, this is not the case for any of the datasets.
Therefore, we use different feature extractions to be able to calculate these
cluster quality measurements.

65

CHAPTER 3. METHODOLOGY

3.2.4 Isolation distance

Isolation distance is also based on calculating the Mahalanobis distance. A
cluster containing nC spikes has an isolation distance defined as the Maha-
lanobis distance to the nC ’th closest noise spike. Hence, isolation distance
is a measure of separation. It represents the radius of the smallest ellipsoid
from the cluster center, containing all of the cluster spikes and an equal num-
ber of noise spikes [61]. Figure 3.5 shows a plot of how the isolation distance
is calculated.

Schmitzer-Torbert et al. [61] successfully applied Lratio and isolation dis-
tance as cluster quality measures for data sets from rodent hippocampus, and
suggest that other researchers report their values of these quantities. We will
follow their suggestions for how to apply these quantities to our data sets.

100 101 102 103 104 105

Cumulative number of points

0

100

200

300

400

500

600

700

800

900

M
ah

al
an

ob
is

 d
is

ta
nc

e

Noise
Cluster

Figure 3.5: Isolation distance plot for the 180501 dataset. The second cluster
of the cut file is shown. Isolation distance is 287.

3.2.5 F-measure

F-measure is calculated for a cluster with respect to a correctly classified
cluster, which in our data sets means manually cut clusters. It is a com-
bination of two quantities: precision and recall. Precision is defined as the
fraction of samples in a cluster Ci which belongs to the correctly classified

66

3.2. CLUSTER QUALITY MEASUREMENTS

cluster Qj. Recall is the fraction of samples in the correctly classified cluster
Qj, which was clustered in cluster Ci. After calculating these, F-measure is
defined as:

F (i, j) =
2× precision(i, j)× recall(i, j)

precision(i, j) + recall(i, j)
(3.9)

67

CHAPTER 3. METHODOLOGY

68

CHAPTER 4

Implementation

This chapter will describe the implementation of our application, Paraspikes.
The application is developed separately from the recording system, and all
spike recordings are read from files delivered by the KI. For an explanation
of the recording system, see Section 2.4.

Paraspikes includes a graphical user interface, which gives access to load-
ing data files, selecting clustering algorithms, altering clustering parameters,
and performing clustering. There are also several options for visualizing
datasets and clustering results. In the following sections, we will describe
the system in the order it is accessed by a user.

The implementation has a main focus on ease of use, speed and utilizing
all the available processor cores in a system. It is programmed in C++,
and is coded to be highly portable. This has also affected which external
libraries we use, as they also need to be portable. All external libraries
which have been used are described in Section 2.6. Although only tested on
GNU/Linux, we only use standardized APIs, so compiling the application for
other architectures such as Windows or Mac OSX should be straight-forward.

To dynamically utilize all the available cores while keeping the overhead
low, the task based programming paradigm is used, here realized with Intel
TBB, as described in Section 2.6.1. For more trivial tasks, OpenMP described
in Section 2.6.2 is used.

This rest of this chapter will explain our implementation in more detail.
Section 4.1 gives a quick overview over the GUI and CLI. Section 4.2 de-
tails the two supported dataformats. The different ways the program can
represent spikes are explained in Section 4.3. Our k-means and SPC imple-
mentation follows in Section 4.4. Section 4.5 describe how we implemented
the algorithms that can give an indication of how well the clustering is. We
talk about our optimization efforts in Section 4.6. Finally, we make a short

69

CHAPTER 4. IMPLEMENTATION

comment on our project experience in Section 4.7.

4.1 User interface

The initial plan for Paraspikes was to provide only a graphical user inter-
face (GUI). After some experimenting, we found it necessary to include a
command line interface (CLI) as well, to enable batch processing on cluster
systems, and to support more efficient testing. In this section we will describe
the two interfaces.

4.1.1 Graphical user interface

The graphical user interface is realized using Qt4, which provides abstractions
for graphical presentation. We chose to split the interface in tabs ordered as
the process of spike sorting.

Figure 4.1: The initial wireframe of the GUI.

Figure 4.1 was the initial design. After adding features, a tab-based view
was adopted as shown in Figure C.1 in Appendix C, the final result. The
first tab covers file input, feature extraction, choice of clustering algorithm

70

4.1. USER INTERFACE

and parameters. One of the functions in the first tab, is to compare the
original and the reduced datasets. This allows for a visual verification of the
reduction. In Figure C.2, we see the original spike signal, compared with the
reverse of a wavelet transform configuration.

The second tab is specific to SPC, and allows the user to select which
temperature range to plot, and displays susceptibility and cluster sizes after
clustering. Here, the user chooses which temperature to use for clustering.
Figure C.3 displays this tab.

The third tab, as shown in Figure C.4, displays the waveforms of the
different clusters, including the average for the cluster, as well as coloring
the standard deviation. The user may select whether to plot the spikes, and
if the original spike, or the extracted features should be plotted. This also
includes plotting the reverse of the reduced dataset. In the same tab, there
are buttons for calculating cluster quality, loading cut files for matching, and
exporting the clustering results as a cut file which is readable for Axona Tint.

The final tab displays a 2D scatter plot of the clustering. This may be
done directly by plotting the two first features of each spike, or the user
could specify to use the PCA reduction down to two dimensions. There is
also an option to export a three dimensional PCA representation, and plot
the dataset using a python script. This tab is demonstrated in Figure C.5,
and Figure 5.14 on page 114 was generated using the 3D plot.

For interactions between the different GUI components, and for coupling
between the GUI layer and the logic layer, we use the pattern of signals and
slots, provided by Qt. In short, this means that you can connect components,
so that when an action is performed on one component, a method in another
component receives information about this, without the need of a separate
method to handle the routing of interaction. This is, for example, used
when comparing original and reduced dataset, as demonstrated in Figure C.2.
When the slider in one window is moved, the slider in the other window
follows, and the program makes sure that the same spike is shown in the two
representations, at any given time.

A class diagram of the GUI is shown in Figure D.1.

4.1.2 Command line interface

The command line interface enables the user to run the different clustering
algorithms without the need of the GUI libraries. This is mainly used to test
run time on the Kongull compute cluster, as well as quickly evaluating the
various clusterings using our cluster quality algorithms. By scheduling execu-

71

CHAPTER 4. IMPLEMENTATION

tion of several instances with different configurations, the different instances
may be run in parallel on different nodes, enabling multi-node execution
without explicitly coding for parallel execution. Listing C.1 shows the usage
help screen for the CLI.

4.2 File parsing

Paraspikes supports two different file formats: an ASCII format and the
Axona Dacq file format. The ASCII format starts with two integer values
N and D. N describes the number of spikes, and D describes the number
of dimensions, i.e. how many samples each spike has. Then follow N lines
with D comma separated floating point numbers. This is the format which
is used for all data not originating from the Axona Dacq system.

The Axona Dacq format is an ASCII/binary hybrid format which contains
some meta data about a recording, as well as a collection of spikes. It stores
the samples as a series of chars (bytes). These are converted to floating
point numbers for easier calculations.

4.3 Feature extraction

Because every spike is processed independently, the data decomposition pat-
tern [41] fits very well. In data decomposition, the same algorithm is applied
to each data item. In this case, that means that a serial feature extraction
algorithm is executed in parallel on several spikes.

To support easy extension of the application, we have used polymorphism
to define clustering algorithms and feature extraction (dimensional reduction)
algorithms. Figure 4.2 on the facing page shows how the ReductionService

keeps a list of available reduction schemes, and delivers a list of its names.
Based on indexes in this list, one can retrieve the different algorithms without
hard coding them in where they are used. This makes it easy to provide
new reduction schemes, without having to change neither the GUI nor the
command line implementations at all.

When reporting complexity in this section, N refers to the number of
spikes, and D refers to number of dimensions in the unreduced dataset.

72

4.3. FEATURE EXTRACTION

WaveletReduction

+ reduce(InputDataset)

+ reverse(InputDataset)

<<Interface>>

Reduction

PCAReductionPeaksOfChannelsReduction

+ availableReductions() : List<String>

+ getReduction(int index) : Reduction

ReductionService

Figure 4.2: Class diagram for three of the Reductions and the
ReductionService. ReductionService provides access to the available re-
ductions, without need for changing the code where they are used.

4.3.1 Unreduced

When using the unreduced dataset, the original input data is simply copied
into a new data structure, and is ready for clustering. With the KI datasets,
this means retaining all 200 dimensions. The operation is performed by
copying the dataset, and therefore has a complexity of O(ND).

4.3.2 Peaks of channels

Our peaks-of-channels implementation scans through the samples, and finds
the highest value in each channel. This gives a reduction from 200 dimensions
to 4 when used with tetrode data. As we scan through all samples, this has
a complexity of O(ND).

4.3.3 Wavelet transform

The wavelet transform is implemented using GSL. The implementation is
serial. However, this does not matter as the transform will be applied to
thousands of independent spikes. This means that while the transform itself
is serial, the process of converting all the spikes can be parallelized using
TBB. Profiling revealed that this step only took a tiny fraction of the time,
and the serial implementation was thus kept.

We have experimented with different wavelet representations, as well
as implemented the Lilliefors modification of the Kolmogorov-Smirnov test

73

CHAPTER 4. IMPLEMENTATION

(LKS) for normality, as described in Section 2.3.3. Figure 2.7 on page 27 con-
sists of screenshots from our application, and demonstrates how one may rep-
resent the signal using different levels of the Haar and Daubechies wavelets.
For verification, we have also implemented the reverse of these, which is also
shown in the figure.

Quiroga et al. [55] use 10 components from a Haar wavelet transform, cho-
sen according to the LKS. In addition to this, we have tested different wavelet
representations, such as keeping the first n components of the transformed
data in the concatenated signal, or when performing a wavelet transform of
each channel of the signal separately.

To make sure we use interesting wavelet components, we also tried calcu-
lating the LKS based on the Albert datasets, where the spikes belonging to
cluster 0 (noise) are removed. This reduction is called Wavelet KS (super-
vised).

Calculating the wavelet transforms is measured to scale with O(ND),
and on the desktop computer takes 0.2 seconds for 200 dimensions and 20 000
spikes. With the LKS, it still scales with O(ND), but has a higher constant
factor, and takes about 7 times as long.

The source code for the LKS wavelet transform and Waveleft first trans-
form is included in Listing D.4 on page D-28 and Listing D.5 on page D-32,
respectively. The other ones are not included because of code similarities,
but are available in the code archive submitted with the report.

4.3.4 Principal Component Analysis

Principal component analysis (PCA) is realized with the help of GSL. First,
the mean for each dimension is computed. We then compute the covariance
matrix, which is used to retrieve the eigenvectors and eigenvalues. The eigen-
values and eigenvectors are then sorted descending by the eigenvalues. This
is the step which ensures that the first component contains more information
than the next one. The eigenvectors are then stored in an eigenmatrix, which
is multiplied with the mean adjusted feature matrix, with the help of GSL
BLAS. Using the first n columns of the eigenmatrix gives a reduction to n
dimensions. The result is the PCA matrix, which is copied to the reduced
dataset.

Each of these steps are parallelized using OpenMP. On the dual-core
workstation, this resulted in a doubling of performance. Calculating PCA
was measured to scale with O(ND2).

74

4.4. CLUSTERING

Schmitzer-Torbert et al. [61] propose using a feature extraction consisting
of the first PCA component and the energy, per channel, giving a reduction
to 8 dimensions when working with tetrode data. We also implemented this
for comparison, and it is called Energy PCA in the application. Energy is
calculated in O(ND), and complexity of this reduction is therefore the same
as for PCA.

The source code for the PCA reduction is included in Listing D.6 on
page D-34.

4.3.5 Peak alignment

Peak alignment centers all the spikes according to each spikes’ highest peak.
This is done because even though the Axona recording system will record
200µs before it detects a spike, it is not necessarily exactly at the highest
spike. A high spike is a better discriminator, so aligning all according to this
can make the comparison better.

The alignment can be used in conjunction with other reductions. For
instance, peak alignment with a PCA transform performed afterwards. We
will benchmark a few of these combinations in Chapter 5.

We first iterate through all spikes to find the average index of the highest
value. Then, we shift all signals to left or right, so that the highest peak
aligns with this index. The shift in each channel is the same, so that the
timing between the channels is left unchanged. Any unfilled gap created as
a result of the translation is simply replaced with 0. The complexity of this
is O(ND).

4.4 Clustering

4.4.1 K-means clustering

The background for this algorithm is described in Section 2.3.4. Figure D.4
shows a class diagram for k-means.

A serial implementation was first created. This was a nice way to make
sure the k-means algorithm was fully understood, and as a way to validate the
parallel implementation. It was also used to measure the parallel speedup.
The code which does the actual cluster membership classification is shared
among the two implementations. While k-means results depend on the initial
centroid distribution, it should produce the same results every time given that

75

CHAPTER 4. IMPLEMENTATION

the initial centroid placements are equal. This holds for both the serial and
parallel implementation – because the initial step (cluster initialization) is
still done serially in our parallel implementation (in fact it is the same code).
The actual classification is “embarrisingly parallel”, because the points are
simply divided among the tasks and processed in isolation. We verified that
the parallel version produced the same results for a varying number of cores:
the results should be exactly the same as for the serial version, in the same
amount of iterations.

For the parallel implementation in our program, a recursive division
scheme is used, inspired by the Fibonacci example in the TBB tutorial [40].
We used this approach because it makes it very scalable, without making any
assumptions about the number of available cores. The choice as to whether
a subproblem should be split or not is distributed among the nodes, avoiding
the use of a master node which could be a potential bottleneck. The resulting
task graph will be a binary tree, where only the leaves do any actual clas-
sification, and the internal nodes subdivide the problem set. This is similar
to Figure 2.10 on page 44. Algorithm 4.2 contains a high-level description of
the algorithm. Note that after the points are split, they are simply added to
the TBB runtime. Whether this should be run in parallel or not is entirely
up to TBB. Most of the relevant source code is attached in Listing D.2 on
page D-8.

This approach scales really well both with regards to the size of the data,
and with the number of cores. The centroids are shared among the tasks,
and updated serially at the end of the task. However, this represents an
insignificant portion of the algorithm, so k-means has near-linear scalability.
This is demonstrated in our results in Section 5.3.1. Note that according
to Tsao [69] the number of clusters, and thus the number of centroids, will
rarely exceed 20. In the datasets we use, they never exceed 7.

Our implementation depends on three inputs: the dataset, the number of
centroids, and which initial centroid distribution method is to be used. The
centroids are then initialized, either randomly, or according to the algorithm
described in Section 2.3.4, which maximizes the distance between the points.
This is a serial task. Next, the classification iterations can begin.

The parallel version is realized using Intel TBB tasks. First, memory
is reserved, and a task is created (here as KMeansTask). This will be the
root-node of our task tree. It is spawned and executed, and the process is
repeated.

Inside the execute method, we first check if the number of N points in the
dataset is less than a threshold T – if it is, we stop splitting the dataset and

76

4.4. CLUSTERING

Algorithm 4.1 Serial k-means

Require: points [1 . . . n]
Require: centroids [1 . . . k]
Require: numDimensions, maxIterations
Require: threshold

1: numPointsUpdated := 0
2: repeat
3: for all point in points do
4: closestCentroidDistance :=∞
5: closestCentroid := −1
6: for all centroid in centroids do
7: tempDistance := 0
8: for all d in numDimensions do
9: tempDistance[d]+ = (point[d]− centroid[d])2

10: end for
11: if tempDistance < closestCentroidDistance then
12: closestCentroid = centroid
13: tempDistance = closestCentroidDistance
14: end if
15: end for
16: if cluster membership changed(point) then
17: update cluster membership(point)
18: numPointsUpdated+ = 1
19: end if
20: for all d in numDimensions do
21: newCentroids[closestCentroid][d]+ = point[d]
22: end for
23: newClusterSize[closestCentroid]+ = 1
24: end for
25: for all c in centroids do
26: for all d in numDimensions do
27: c[d] = newCentroids[c][d]/newClusterSize[c]
28: end for
29: end for
30: until numPointsUpdated/numPoints < threshold OR

numIterations > maxIterations

77

CHAPTER 4. IMPLEMENTATION

Algorithm 4.2 High-level parallel k-means

Require: points [1 . . . n]
Require: centroids [1 . . .m]

1: Distribute centroids according to a heuristic (serial).
2: repeat
3: instantiate TBB task
4: execute task with current dataset and a stop criteria
5: subdivide()
6: updateCentroids(points)
7: until stop criteria (number of iterations, membership changes, ...)
8:

9: procedure subdivide
10: if numberOfPoints > threshold then
11: (a, b) = subdivide(points)
12: create two tasks with a and b. Add to TBB scheduler.
13: else
14: classifyPoints(points)
15: end if

perform classification. If it is not, the current dataset is split in two, and two
new tasks are created and executed. At the end of the method, the number
of points updated are calculated.

This means that the task tree will have a depth of dlog2
N
T
e. In a D

dimensional space with C centroids, the leaf-nodes will need to do T · C ·D
distance calculation operations to perform classification. The total amount
of work for all the nodes in each iteration are then the following:

O(
N

T
· (T · C ·D)) = O(N · C ·D) (4.1)

We then wait for the root node to finish – which means that the en-
tire classification for this iteration is finished – and update the centroids, in
addition to recording how many points were updated. This is our main con-
vergence criteria – if the fraction of points changed in an iteration is below
a certain delta, we stop. In case convergence is too slow, we abort after a
maximum number of iterations. This very rarely happens. The number of
iterations are highly dependent on how the dataset is distributed, the num-
ber of K centroids, and where they are placed. The analysis for the number
of iterations required is therefore very hard to give a reasonable estimate of,
other than what was mentioned in Section 2.3.4.

78

4.4. CLUSTERING

4.4.2 Superparamagnetic clustering

The background for the algorithm is described in Section 2.3.4. Our imple-
mentation of the three listed steps of the algorithm will be described in this
section. A class diagram is included in Figure D.3, and an excerpt of the
source code is listed in Listing D.3 on page D-14.

Calculating the values depending only on input

The first step is to define which points are neighbors. A naive implementation
would be to calculate distances between all pairs of points, and then sort
these. This approach does not scale well, as it introduces a complexity of
O(N2). As we are only interested in a small subset of the neighbors of
each point, we can use properties of the Euclidean space to limit which
points we have to check. We use a data structure called a kd-tree [51],
a special case of binary space partitioning trees. Building the tree with
the N points has a complexity of O(N log2N), and searching for the K
nearest neighbors of a point has a complexity of O(K logN). This means
that the total complexity for finding the K nearest neighbors for all N points
is O(KN logN + N log2N). However, this complexity does not apply to
higher dimensional datasets, as observed in Section 5.3.2, and it seems to
approach O(N2). The library used to implement the neighborhood search,
libANN, is described in Section 2.6.

Ideally, we could search the kd-tree for neighbors in parallel, but the li-
brary uses global variables when searching, i.e. it is not thread safe. This
means we would have had to modify the library to parallelize the neighbor-
hood search. We had a plan of doing this, but as there were other challenges
to be addressed, we did not get the time to finish this task.

When K neighbor edges have been found, we remove edges which are not
mutual. To remove the possibility of a cyclic graph, and as an optimization
step, we only keep edges going from lower to higher indices, so that each
neighbor edge is only used once in following calculations.

In some datasets, where a subset of samples are very similar, this may
result in the neighborhood graph not being connected, making it impossible
to cluster these subsets together with more distant samples. To remove this
effect, we have also added the option to superimpose a minimum spanning
tree (MST) in the neighborhood graph. We found out this scales poorly
with higher dimensions, meaning that this is only practical for datasets of
few dimensions. The MST is calculated by STANN (see Section 2.6), which
requires that there are no overlapping points. We enforced this by calculating

79

CHAPTER 4. IMPLEMENTATION

a hash value for each spike, and then adding each spike to a hashmap. If the
hash value already exists in the hashmap, there is an identical spike, and we
move the latest spike a small step in a random dimension, before performing
the test again. The probability for overlapping points is very low, and the
augmented spike is very close to its original position. This step therefore
does not affect clustering negatively. The MST building method in STANN
is programmed with OpenMP, and is therefore already parallelized.

At the end of this section, we now have two two-dimensional vectors,
containing each point’s set of neighboring indices, and the corresponding
interaction strengths.

Locating the superparamagnetic regions and performing clustering

When the distances have been found, we follow the pseudo code in Algo-
rithm 2.2 on page 36. As the extra work necessary for clustering, described
in Algorithm 2.3, does not increase complexity, we have combined the two
parts of the algorithm. Hence, we always find cluster sizes and susceptibility
at the same time. We also added warm-up iterations, where susceptibility
is not calculated, but spin state is kept between each iteration. This should
reduce the amount of noise in the graph, as it is expected that the first itera-
tions describe a random state, before the spins of the different clusters start
aligning.

This part of the algorithm is trivially parallelizable, as long as one cal-
culates clustering and susceptibility for a higher number of temperatures
than available cores. We then use parallel for in TBB, which makes tasks
consisting of sub-ranges of temperatures. The use of TBB allows control of
granularity (how many temperatures should be calculated in each task), as
well as better control of local variables, such as spin states for each point.
This again allows a task to re-use the spin-configuration between subsequent
temperatures, reducing the need of warm-up iterations.

Each result is written to a class we called XYPlot, which encapsulates a
concurrent hashmap, provided by TBB. This takes care of synchronization
when writing the results, and makes sure that race conditions may not occur.
There is always an extra cost when performing synchronization, but as this is
one write operation per calculated temperature, the penalty is close to zero.

Random numbers are generated using the Boost library (Boost is de-
scribed in Section 2.6.3). We initialize one instance of the random generator
per task, using different seeds, so that there are no synchronization issues.
When used like this, the Boost random generators are thread safe. Different

80

4.4. CLUSTERING

generators are available, but we ended up using the fastest one (rand48), as
the range of random numbers to be generated is low.

Random number generation takes up a big part of Monte Carlo algo-
rithms. A possible further optimization of the algorithm, is to use processor
vendor specific routines for random number generation, which are optimized
for execution on given hardware. An example is Intel Math Kernel Library
(MKL) [5], which provides a series of random generators optimized for SIMD
execution, meaning it generates several random numbers in parallel. These
are written to a buffer, from which they quickly may be retrieved when
needed.

Verification and lessons learned

To test the implementation while developing, we mainly used the Iris set, as
described on Section 3.1.1. Figure 4.3 on the next page shows the effect of
reducing the number of iterations. With fewer iterations, the plot becomes
more jagged, but the main structure is kept. The interesting range seems to
lie between 0.12 and 0.16 in both plots, as this is where the susceptibility is
decreasing rapidly from the peak (superparamagnetic phase). This indicates
that it is possible to calculate susceptibility for larger ranges of temperatures
with few iterations first, and then focus on interesting ranges with an in-
creased number of iterations. Also, step size may be adjusted, to give more
details in interesting ranges, and save calculations in uninteresting ranges.
Figure 4.4 on page 83 demonstrates a step size increased by a factor of 10,
giving a less detailed plot, but in 1

10
of the time.

Because SPC is a stochastic method, it is difficult to make a perfect
verification. However, we eventually got the SPC program used by Quiroga
et al. [55] working with our datasets, and were able to compare results.
The clustering performance was very similar to ours. An example of the
three circles dataset explained in Section 3.1.3, can be seen in Figure 5.8 on
page 102. The graph is similar to the one reported by Blatt et al. [18]. Note
that to get an equally smooth graph we had to run the algorithm with many
Monte Carlo iterations, which makes the classification slower.

As the neighbor graph and MST are deterministic properties of each
dataset (after reduction), it would be beneficial to store this information for
future runs once it is calculated. The user could then schedule batch jobs to
build these graphs for several datasets over-night, to save time when loading
datasets.

81

CHAPTER 4. IMPLEMENTATION

(a) 10 000 iterations

(b) 500 iterations

Figure 4.3: Susceptibility and cluster sizes for different number of Monte
Carlo iterations with SPC on the Iris set. Step-size is 0.01 in both plots.

82

4.5. CLUSTER QUALITY

Figure 4.4: Increased step size in SPC on the Iris set. Step-size is 0.1, and
iteration count is 500.

4.5 Cluster Quality

To assess cluster quality, we implemented the algorithms described in Sec-
tion 3.2.

4.5.1 Lratio

To find the Lratio for a cluster C, we need to calculate the Mahalanobis
distance between the cluster and all spikes not belonging in the cluster. To
find the Mahalanobis distance, we first calculate the covariance matrix ΣC

using GSL. Second, we use LU-factorization (also provided by GSL) to find
the inverse of the covariance matrix, Σ−1. Finally, for each spike outside the
cluster, we now multiply its vector xi on both sides of the covariance matrix,
and get the Mahalanobis distance: D2 = xTi Σ−1xi. This multiplication is
performed using BLAS in GSL.

With the Mahalanobis distance calculated, we then check the probability
p for getting a value less than this in the cumulative χ2 distribution function
with as many degrees of freedom as we have dimensions. To verify our
implementation of the Mahalanobis distance, we compared the results with
MATLAB’s Mahalanobis functions, and obtained equal results.

83

CHAPTER 4. IMPLEMENTATION

For a cluster, L(c) =
∑

1− p for each spike not belonging to the cluster.

Lratio(C) is then calculated as L(C)
nC

, where nC is the number of spikes in the
cluster.

4.5.2 Isolation distance

When calculating the Lratio, we save the calculated Mahalanobis distances
in a list. This list is then sorted, and the isolation distance for each cluster
is found as the nC ’th lowest Mahalanobis distance.

4.5.3 F-measure

Precision, recall and F-measure are calculated for each cluster Ci, with re-
spect to clusters Cs in a manual (“correct”) classification. This results in a
matrix of nS × nC for each of these values, where nC is the number of clus-
ters, and nS is the number of manually classified clusters. The calculation is
straight-forward as explained in Section 3.2.5.

Note that for complete clusterings, each row in the precision matrix will
sum to 1, as will each column in the recall matrix. This is because every
point has belong to a cluster in both sets.

4.6 Optimization and parallelization

Exploiting available resources in multi-core CPUs was one of our main focus
points when developing the application.

Ideally, we would have programmed every parallelizable for-loop using
TBB, removing the OpenMP dependency. However, this results in a need
for a slight change in design. Every parallel for in TBB requires a separate
class specifying how it should be initialized, and the method to be applied
to each variable in the range. The need for this is removed with the new
standard of C++, named C++0x, which allows the use of lambda functions.
However, we chose not to use the C++0x standard, as only the newest com-
pilers support this syntax. The compilers available on Kongull were too old
to support it. For the smaller parallelizable for-loops, we have used OpenMP,
which requires only one added line per for-loop. The TBB reference manual
[42] states that mixing OpenMP and TBB is supported, and performs well as
long as one does not nest TBB and OpenMP parallelism within each other.
We have made sure not to mix these.

84

4.6. OPTIMIZATION AND PARALLELIZATION

We here describe our optimization of k-means and SPC, and then wrap
up with general remarks.

4.6.1 K-means

K-means is a fast algorithm, and with the parallel component it can han-
dle very large datasets. The code was profiled to see where time was spent.
Because of the near-linear speedup, it was expected that most of the time
was spent in classifyPoints(), where the calculations performed by each
thread is done. We profiled several datasets. To get stable results, we modi-
fied Paraspikes to run the classification 100 times, each time with a different
seed for the random generator. Indeed the profiling results showed that most
of the time was spent in this function. The appendix shows a call graph in
Figure B.6, which is hard to read on paper but attached for completeness.
98.4% of the time was spent in classifyPoints(), which was a very typical
output for k-means. 0.6% was spent initializing the centroids. The rest is
spent on general logic and TBB.

It is interesting to see that classifyPoints() takes so much of the time,
and KMeansTask::execute() so little, because the latter dynamically allo-
cates and frees memory every time the data is split. Clearly, this is a fast
operation.

As classifyPoints() exclusively performs floating point operations on
arrays, a natural next optimization step would be to use intrinsics to perform
several calculations at the same time on hardware which supports this. K-
means performed well enough in this thesis, so this was not explored further.

4.6.2 SPC

SPC proved to be a hard algorithm to optimize. The different steps of the
algorithm may be parallelized, but some operations also have to be done
serially, such as determining which spikes had the same spin with which
probability, and then build clusters of these. However, a complete clustering
based on a temperature is an independent operation, and clusterings based
on multiple temperatures can be done in parallel. We profiled the code
to identify hotspots in the code. The call graph for the inner part of the
algorithm is shown in Figure B.7. It is mainly included as an example of the
callgraph output, and most of it is not readable on paper. However, as the
size of the nodes corresponds to the amount of work performed in the given
function, we can see that random number generation is taking up most of

85

CHAPTER 4. IMPLEMENTATION

the time. We were aware of this, but the profiling results inspired us to find
a more efficient random generator. We generate random spins, which are
in the range 0 . . . 19, and random fractions (0.0 . . . 1.0), which are used for
generating probabilities. Initially, we used the Mersenne Twister generator,
but replaced it with Boost’s rand48, which is considered the fastest one
in Boost, and has 227% of the Mersenne Twister’s performance [2]. This
resulted in a speed-up of 18%.

4.6.3 General remarks

The most compute-intensive part of the application, which has not yet been
parallelized, is the neighbor search in SPC. This would require modifying
libANN, which in its current state is not thread-safe. We examined the source
code, and think this is an achievable task, as it seems that the algorithm
keeps global state for convenience only – to avoid having to pass parameters
between different functions in the library. As libANN is an open-source
project, anyone could take on this task, which would be helpful to all future
users of libANN who want to perform searches in parallel. Other parts of
the algorithm might also be explicitly parallelized, increasing benefit even
further, without changing the API.

Looking back at Amdahl’s and Gustafson’s laws (Section 2.2.2), we see
that our application contains serial parts which limit the parallelization.
Parsing input files is a serial task, but as it takes virtually no time, it does
not contribute to the serial fraction. The main limit is the neighborhood
search just mentioned. This also contributes to a large fraction of the run-
time, as demonstrated in Section 5.3.2. It seems to take about 5%-10% of
the execution time when the whole program uses one thread and we perform
clustering for ten temperatures with 1 000 iterations. This means that before
it is parallelized, parallel speed-up for the algorithm in total cannot exceed
a factor of 10-20.

However, it seems clear that the size of datasets will increase in the fu-
ture. Improved recording equipment may increase the number of spikes to
be sorted. If recording sessions last longer, there will also be more spikes.
We may also increase the number of Monte Carlo iterations, to give more
consequent results, or reduce the interval between temperatures to provide
better resolution. All these steps will decrease the serial part of the algo-
rithm, in the spirit of Gustafson’s law. Therefore, it seems clear that the
parallelization of the algorithm is beneficial, and that further developments
in parallel hardware will benefit the application.

86

4.7. DEVELOPMENT COMMENTS

4.7 Development comments

Programming the application and the algorithms has been very time-consuming,
which is reflected by the amount of code produced. Since there is so much
code, we chose to only include the most relevant parts of it in Appendix D.
The complete source code, delivered with this report, contains around 10
000 lines of code. In addition, numerous scripts were created to facilitate
benchmarking and graph creation. These were mostly written in Python or
Bash.

To keep a steady flow during this thesis, we used a time-based iterative
approach with two-week iterations and end-of-iteration goals. Each iteration
had a number of tickets describing the work associated. At the end of the
iteration, any incomplete tickets would be moved to later iterations. This
way, we could more easily see how much work was left. The iterations and
tasks were quite helpful near the end of the thesis, where we quickly saw that
we had to start working longer days to finish our planned work.

We often used pair programming when development was non-trivial. This
is a great way not only to solve the hard problems, but also to share knowl-
edge.

A few interesting development graphs are placed in Appendix A. These
count the total number of lines in the entire project, which include the
datasets, so it is not as useful as it could be. However, it seems clear that the
project has been active throughout the period, and that the work appears to
be evenly distributed. The big spikes at the end are the additional datasets
we imported for additional benchmarking.

87

CHAPTER 4. IMPLEMENTATION

88

CHAPTER 5

Results and evaluation

In this section we will report the results from our implemented algorithms.
We have chosen not to analyze each spike reduction independently, as it is
hard to say anything about the discriminating qualities without trying to
cluster them. They are therefore evaluated in tandem with the clustering
algorithms.

We first evaluate the cluster quality algorithms in Section 5.1. It is impor-
tant to know how these perform, before relying on their results in Section 5.2,
where we benchmark the clustering capabilities. We then talk about how the
two clustering algorithms perform and scale in Section 5.3. Finally, we talk
about the challenges during development in Section 5.4.

5.1 Cluster quality

5.1.1 Silhouette coefficient

The silhouette coefficient was computed for all of our KI datasets, with and
without the cut files, in addition to our synthetic datasets.

K-means was benchmarked using a k from 2 to 20. Each test configuration
was run 1000 times and then averaged to help ensure a more stable result.
We set k = 2 as a minimum because otherwise no clustering is necessary.
k = 20 was chosen as Tsao [69] told us this was the maximum number to
expect from the KI recordings.

The result of one of the recordings is shown in Figure 5.1. Here, the
silhouette is computed by comparing the points in the reduced dataset. The
peaks of channels and PCA-based reduction schemes perform best for select-
ing a k based on a peak in the plot. For additional plots from the Albert set,

89

CHAPTER 5. RESULTS AND EVALUATION

refer to Appendix B.

However, these also reduce the dataset greatly – down to between two
and four dimensions. We also tried a few more configurations than the ones
reported. We ran the PCA reductions with more components – 4 and 16.
We also changed the Wavelet KS reduction to use the Haar wavelet, which
is what Quiroga et al. [55] used. These modifications did not change the
classification results noteworthy, and were thus left out.

We wanted to see how the silhouette looks when comparing the different
representations but with the same unreduced dataset. That is, we perform
the clustering in the reduced dataspace, but then perform the silhouette
calculations in the original unreduced space. The idea is that it should be a
more fair evaluation across different representations, since they are compared
in the same dimensional space. Figure 5.2 on page 92 shows the result on
the first dataset. This actually made the silhouette coefficient less useful
as a discriminant, and we have not attached the results for the rest of the
datasets.

Note that although Rousseeuw [58] reports that this metric should be
usable to automatically choose a k, it does not give any meaningful hints on
our datasets. In fact, according to this metric, the number of clusters in the
dataset should often be 2, since the coefficient is usually just decreasing.

However, as we learned that cluster 0 in all the KI recordings is a so-
called noise cluster, we tried running this again, but with the noise cluster
removed. All the datasets were profiled again, with all the reduction schemes.
Sometimes it did improve the results in that the silhouette coefficient would
exhibit a peak, as observed in Figure 5.3 on page 93. A few more plots have
been attached in Section B.1. Notice how PCA often has a peak, indicating
the best number of clusters in this set, often matching the cut files. However,
for the noisy datasets this method proved too unreliable, and we were unable
to choose a k based on this metric.

90

5.1. CLUSTER QUALITY

2 4 6 8 10 12 14 16 18 20
clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
(i

)

Unreduced

WaveletFirst

WaveletFirstPerChan

WaveletKS

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure 5.1: The silhouette coefficient plot of k-means clustering the Albert 1
dataset. The coefficient is calculated in the reduced space. According to the
cut files, there should be 3 neurons and a noise cluster in this set.

91

CHAPTER 5. RESULTS AND EVALUATION

2 4 6 8 10 12 14 16 18 20
clusters

0.2

0.1

0.0

0.1

0.2

0.3

0.4

S
(i

)

Unreduced

WaveletFirst

WaveletFirstPerChan

WaveletKS

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure 5.2: The silhouette coefficient plot of k-means clustering the Albert
1 dataset. The dataset was reduced and clustered. Then the cluster clas-
sification was used on the original unreduced set, and the silhouette was
computed. According to the cut files, there should be 3 neurons and a noise
cluster in this set.

92

5.1. CLUSTER QUALITY

2 4 6 8 10 12 14 16 18 20
clusters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
(i

)

WaveletFirst

WaveletFirstPerChan

WaveletKS

WaveletKS(supervised)

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure 5.3: The silhouette coefficient on the Albert 1 dataset, with the noise
cluster removed. This metric suggests K = 3 clusters. According to the cut
files, this is correct.

To verify that this relates to the noisy dataset and not the algorithm,
we ran it on the synthetic dataset “Three islands”, which is a well-separated
dataset with three clusters. The result is shown in Figure 5.4 on the following
page. Here it it possible to say that k=3 is in fact best; k=10 is actually bet-
ter, but that is because the dataset only contains 10 points. This indicates
that the KI datasets are not separated enough to rely on the silhouette coeffi-
cient. Also, it requires the clusters to be linearly separable. To demonstrate,
we evaluated the three circles set after being correctly classified by SPC. The
silhouette coefficient claims that this is a bad clustering, because it is unable
to classify the discrete circles when one is contained within another, giving
negative averages to the outer circles.

93

CHAPTER 5. RESULTS AND EVALUATION

2 3 4 5 6 7 8 9 10
clusters

0.75

0.80

0.85

0.90

0.95

1.00

1.05
si

lh
ou

et
te

co
ef

fic
ie

nt
3 islands silhouette

Figure 5.4: The silhouette of the k-means clustered three islands dataset,
consisting of 10 points. The plot suggests k = 3 is the best.

5.1.2 Lratio

We have had problems using Lratio to assess quality in our datasets. This is
probably related to the way clustering is performed. K-means clustering will
always produce a clustering where all points are closer to its own center than
other clusters. This means that there will always be a convex hull which may
be wrapped around the cluster, and there will be no noise spikes within this
border. For most experiments, this seems to be the case for SPC as well.
The reported Lratio , as well as LC are then close to zero, meaning that there
is little noise within the border of the cluster. Hence, we were not able to
use Lratio for assessing our clustering results.

As mentioned in Section 3.2.3, there needs to be ten times as many spikes
in a cluster as the number of dimensions. This also means that it cannot be
used for high-dimensional feature extraction, especially the unreduced set.

We tried measuring this quantity on data from the cut files. This gave
a value of approximately 0 for the actual clusters, but a high value for the
noise cluster (cluster 0). With the dataset Albert3, LC = 281.608, and
Lratio = 1.309, when using the Energy PCA reduction.

Also, when used on the three circles dataset, clustered with SPC, the
clusters are not linearly separable. Here, the inner circle, which does not
contain noise, has LC = 0.0, which is good. The others are reported to have
higher numbers, 800 and 1 300, indicating bad clustering. The outer circles

94

5.2. CLUSTERING RESULTS

then get Lratio values of approximately 0.5.

Because of this, we have not reported Lratio in other experiments.

5.1.3 Isolation distance

We evaluated the isolation distance for the different clustering algorithms,
with different feature extraction algorithms. In addition, we did the same
for the cut files. The results we get are inconclusive, as we see no clear trend
in the isolation distance.

We believe that this and the Lratio problems are caused by a low degree
of separability in the datasets, as the Mahalanobis distance is based on the
inner distribution of datasets.

5.2 Clustering results

5.2.1 K-means

Figure 5.5 on the next page shows the result of running k-means on the
NTNU toy problem. It is obvious that k-means is unable to capture the
non-linear properties of the dataset.

We also tried comparing the clustering results directly to the cut files.
To do this, after performing the clustering we created a mean spike in each
cluster, both for our automatic clustering and their cut files, and compared
them using the sum of squares. The basic algorithm is:

• For each point in cluster A

• For each point in cluster B

• Sum the differences between the two clusters, in all dimensions

This will give a float value to every combination. A low score reflects
a high similarity, called a similarity score. Each combination through the
matrix creates a unique path. The path which has the lowest global simi-
larity score represents the combination of the best overall matching clusters
between the two clusterings.

Because you can not assume that the first cluster in the manually cut
dataset is the one that matches best with the first cluster in the unsupervised

95

CHAPTER 5. RESULTS AND EVALUATION

Figure 5.5: The NTNU toy problem clustered with k-means. Colors denote
cluster membership.

solution, every permutation must be compared. This creates a 2D similarity
matrix between the two types of clusterings, as shown in Table 5.1(a) on
page 98, where the best global match is highlighted. Notice that a global
match can mean that the best matching clusters are not always paired. In
this example, B3 is matched by A4, with a score of 45.84. The best local
match however is B3 to A0, which gives the lower value 44.87. But if B3 is
matched to A0, then B4 must be matched against another (worse matching)
cluster, and so on. This is once again one of the intricacies of clustering.
Which pairing is the best? To try and answer this, we compare these results
using precision, recall and finally the F-measure.

The precision tells us how many of the relevant spikes are in the cluster.
Looking at Table 5.1(b) it seems that A0 should indeed have been clustered
with B3. Looking at the recall in Table 5.1(c), which measures how much of
the correct data was actually put in the correct cluster, it is now clear that
A4 actually captures most of B3. This indicates that A0 contains more
than one cluster, compared to the B set.

The F-measure sums these up in Table 5.1(d), and actually tells us that
the automatic clustering did fairly well. The worst pairing is B3 and B4. It
could be that these two should be merged.

96

5.2. CLUSTERING RESULTS

0123
dimension

−100

−50

0

50

100

150

0123
dimension

−60

−40

−20

0

20

40

60

80

100

120

0123
dimension

−100

−50

0

50

100

150

0123
dimension

−60

−40

−20

0

20

40

60

80

100

0123
dimension

−60

−40

−20

0

20

40

60

80

100

0123
dimension

−40

−20

0

20

40

60

80

Figure 5.6: A similarity plot between the unsupervised k-means solution (red)
and the manually cut set (green). All 200 samples were used as a feature
vector, and had the peaks aligned. Each plot represents a cluster. Courtesy
of Bergheim [16].

For a visualization of this, we plotted the best matching mean spike from
our k-means result to the cut files. A plot with the peaks aligned can be seen
in Figure 5.6. For completeness, we a plot without the peaks aligned are
attached in Section B.1.1. You can see that some of the spikes match very
well. It is likely that noise is part of the reason for this, because we know
that a lot of the dataset is marked as noise in the manual cut files.

The code which generates the similarity matrix has been attached in
Listing D.1 on page D-5.

It is interesting to see how the different spike representations perform

97

CHAPTER 5. RESULTS AND EVALUATION

Table 5.1: Comparison of similarity matrix and F-measure for a clustering
performed on the 180105 dataset. Bold denotes the global best match ac-
cording to the similarity matrix in (a).

(a) Similarity matrix

B0 B1 B2 B3 B4 B5
A0: 108.79 122.75 116.82 44.87 39.35 97.50
A1: 156.97 16.52 242.46 116.59 138.57 135.34
A2: 147.98 115.73 184.55 139.18 109.28 14.22
A3: 159.22 244.78 14.07 132.30 118.06 175.53
A4: 188.14 148.76 101.33 45.84 110.66 165.41
A5: 4.67 143.42 162.28 144.85 77.96 154.89

(b) Precision matrix

B0 B1 B2 B3 B4 B5
A0: 0.17 0.41 0.33 0.86 0.92 0.18
A1: 0.00 0.43 0.00 0.00 0.00 0.00
A2: 0.00 0.17 0.00 0.00 0.00 0.81
A3: 0.00 0.00 0.65 0.00 0.03 0.00
A4: 0.00 0.00 0.02 0.14 0.00 0.00
A5: 0.83 0.00 0.00 0.00 0.05 0.00

(c) Recall matrix

B0 B1 B2 B3 B4 B5
A0: 0.07 0.06 0.10 0.35 0.37 0.04
A1: 0.00 0.98 0.00 0.01 0.00 0.01
A2: 0.00 0.12 0.00 0.00 0.00 0.88
A3: 0.00 0.00 0.95 0.00 0.05 0.00
A4: 0.00 0.00 0.11 0.88 0.01 0.00
A5: 0.94 0.00 0.00 0.00 0.06 0.00

(d) F-measure matrix

B0 B1 B2 B3 B4 B5
A0: 0.10 0.11 0.16 0.50 0.53 0.07
A1: 0.00 0.59 0.00 0.00 0.00 0.01
A2: 0.00 0.14 0.00 0.00 0.00 0.84
A3: 0.00 0.00 0.77 0.00 0.03 0.00
A4: 0.00 0.00 0.04 0.24 0.00 0.00
A5: 0.88 0.00 0.00 0.00 0.05 0.00

98

5.2. CLUSTERING RESULTS

compared to the cut files and the F-measure. Table 5.2 on the next page
lists the result for all our spike representations. The parenthesized numbers
represent the best matching clusters, which were not chosen because we are
seeking a global best match. Still, we opted to show them here, as they could
indicate that clusters should be merged.

The top performer is the peaks of channels. It not only beats every other
representation by a fair margin, it is the only reduction which did not have
a match collision. That is, we were able to always chose the best matching
clusters. It is no surprise that this reduction performs best – we are com-
paring our results to cutfiles created by humans based on a peaks of channel
reduction. Supervised wavelet KS is the only other representation which is
able to beat the unreduced representation. We tried running PCA with a
number of different components, but the results did not change noteworthy.

5.2.2 SPC

Figure 5.7 demonstrates SPC running on the same dataset. Here it is clear
that it is a capable algorithm when it comes to handling both non-Gaussian
distributions as well as noise. With the constraint that a cluster must have
8 or more members to be concidered a cluster, it performs very well. Notice
that the N, T and U are actually made up of two clusters each. This happened
because noise is not only added to the image, but random bits of the original
data was also removed. A comparison to Figure 3.1 on page 58 reveals that
the clusters broke up where the letter was at its thinnest. Without any noise
added, the dataset was clustered perfectly with six clusters.

The result of the clustering on the three clusters dataset was compared
to the result reported by Blatt et al. [18]. The plot in Figure 5.8 on page 102
shows similar results.

A graphical silhouette plot is not directly usable for the SPC algorithm
because the number of clusters found depends on the temperature and a
random element, instead of a predefined number of clusters.

We did however calculate the silhouette coefficient for a few sample clus-
terings. In general, SPC performed worse than k-means when compared
solely to the cut files. When using good temperatures, the global silhouette
value would be anywhere from 0.4 to 0.8. The reason for the low silhou-
ette value is likely caused by the fact that there are a lot of points that are
never clustered because of noise – these are still used when calculating the
silhouette coefficient however.

It is interesting to see how the clustering performs with regards to preci-

99

CHAPTER 5. RESULTS AND EVALUATION

T
ab

le
5.2:

A
su

m
m

ary
of

k
-m

ean
s

com
p
ared

again
st

th
e

cu
tfi

le
u
sin

g
th

e
F

-m
easu

re
m

etric
on

th
e

A
lb

ert3
d
ataset.

S
(i)

is
th

e
silh

ou
ette

co
effi

cien
t.

P
eak

s
of

ch
an

n
els

p
erform

s
b

est.
R

e
d
u
ctio

n
C

lu
ste

r
0

C
lu

ste
r

1
C

lu
ste

r
2

C
lu

ste
r

3
A

v
e
ra

g
e

S
(i)

U
n
red

u
ced

0.69
0.96

0.63
0.25

(0.56)
0.63

(0.71)
0.19

W
avelet

F
irst:

0.65
0.87

0.66
0.20

(0.52)
0.60

(0.68)
0.27

W
avelet

F
irst

p
er

ch
an

:
0.65

0.94
0.67

0.20
(0.51)

0.62
(0.69)

0.26
W

avelet
K

S
:

0.61
0.15

(0.60)
0.60

0.47
0.46

(0.57)
0.26

W
avelet

K
S

H
aar:

0.66
0.96

0.83
0.0

(0.18)
0.62

(0.66)
0.38

W
avelet

K
S

(su
p

erv
ised

):
0.66

0.98
0.83

0.22
(0.35)

0.68
(0.71)

0.31
P

C
A

:
0.69

0.94
0.65

0.28
(0.54)

0.64
(0.71)

0.38
P

C
A

16
com

p
on

en
ts:

0.69
0.96

0.65
0.24

(0.54)
0.64

(0.71)
0.38

P
C

A
p

er
ch

an
n
el:

0.68
0.19

(0.31)
0.41

0.25
(0.59)

0.39
(0.50)

0.37
P

e
a
k
s

o
f

ch
a
n

n
e
ls:

0
.6

8
0
.8

4
0
.9

1
0
.7

7
0
.8

0
0
.5

2
E

n
ergy

P
C

A
red

u
ction

:
0.68

0.19
(0.31)

0.40
0.25

(0.60)
0.38

(0.50)
0.38

S
cale

b
y

en
ergy

:
0.72

0.18
(0.55)

0.64
0.57

0.53
(0.62)

0.21

100

5.2. CLUSTERING RESULTS

(a) No small clusters are removed. The small clusters are formed because of the noise
distribution.

(b) Clusters with 8 or fewer members are removed.

Figure 5.7: The results from using super-paramagnetic clustering. As seen,
the algorithm fares much better than k-means on this dataset. Colors denote
cluster membership.

101

CHAPTER 5. RESULTS AND EVALUATION

(a) Top: The susceptibility plot. Bottom: The cluster sizes

(b) An example classification performed by SPC

Figure 5.8: The plot for the three circles problem as used by Blatt et al. [18].
The unclustered dataset is shown in Figure 3.2 on page 59. Notice how the
big cluster breaks down into three smaller clusters – the three circles.

102

5.2. CLUSTERING RESULTS

Table 5.3: Cluster analysis of the Albert3 set, compared to the cutfile.

(a) Precision

B0 B1 B2
A0: 0.97 0.00 0.03
A1: 0.03 1.00 0.00
A2: 0.00 0.00 0.97

(b) Recall

B0 B1 B2
A0: 0.68 0.00 0.03
A1: 0.02 0.77 0.00
A2: 0.00 0.00 0.96

(c) F-measure

B0 B1 B2
A0: 0.79 0.00 0.03
A1: 0.03 0.87 0.00
A2: 0.00 0.00 0.96

sion and recall. Table 5.3 shows that SPC has a very good precision. This
means that the clusters it found were parts of the clusters that the manual
operator found. Looking at the precision table, it is clear that where SPC
fails, if the manual cut clustering is to be believed, is that it does not capture
enough of some of the clusters. The F-measure sums this up – one clustering
is almost perfect (96%), while the other two are good, but not perfect.

As with k-means, we ran all of the reductions on the Albert 3 set, which
is summarized in Table 5.4 on the next page. Note that SPC will generate
an arbitrary number of clusters, but the three most similar ones were kept.
There are unclassified points in the set, which will affect the silhouette coeffi-
cient, S(i). Once again, the peaks of channels performed best. The silhouette
coefficient is fragile as a single bad cluster can ruin the global index. As an
example, the energy PCA reduction with a -0.08 average F-measure actually
has 7 clusters with an F-measure of more than 0.8. However, the first cluster
is the biggest, and it has an index of -0.18. If we discard this as a noise
cluster, then S(i) increases to 0.88.

As observed, a good average F-measure does not guarantee that S(i) will
be good. This could indicate that the cut files do not contain optimal clusters.

103

CHAPTER 5. RESULTS AND EVALUATION

Table 5.4: A summary of SPC compared against the cut file using the f-
measure metric on the Albert3 dataset. S(i) is the silhouette coefficient.
Peaks of channels performs best.

F-measure cluster #
Reduction method 0 1 2 Average S(i)
Unreduced 0.82 1.00 0.45 0.76 0.38
Wavelet First 0.83 0.05 0.47 0.45 0.49
Wavelet First per chan 0.82 0.41 0.08 0.44 0.50
Wavelet KS 0.82 0.49 0.03 0.45 0.54
Wavelet KS Haar 0.85 0.49 0.98 0.77 0.06
Wavelet KS (supervised) 0.83 0.91 0.43 0.72 0.44
PCA 2 components 0.85 0.55 0.86 0.75 0.48
PCA 16 components 0.85 0.98 0.50 0.78 0.48
PCA (2) per channel 0.83 0.58 0.03 0.48 0.00
Peaks of channels 0.86 1.00 0.55 0.80 0.59
Energy PCA reduction 0.83 0.03 0.59 0.48 -0.08
Scale by energy 0.44 0.76 0.92 0.71 0.12
Peaks of channels 0.76 0.88 0.37 0.67 0.32
Aligned Wavelet KS Haar 0.84 1.00 0.53 0.79 0.47
Aligned PCA 0.84 0.55 0.94 0.78 0.53

104

5.3. PERFORMANCE

5.3 Performance

5.3.1 Speedup

To calculate how the algorithms scale with the number of available processor
cores, we use the parallel speedup and parallel efficiency metrics, as explained
in Section 2.2.1.

K-means

The k-means algorithm is parallelized by subdividing the dataset until a
threshold value is reached. Once the size of the dataset is below this thresh-
old, the actual calculations are performed in serial. Specifying such a thresh-
old as a fixed value is not ideal, as it is bound to be influenced by the hardware
used at the time the program was built. But it is not easy to make this scale
with the increasing capabilities of a single core either – simply relying on the
CPU clock frequency, for instance, is brittle, as many things influence how
fast a processor is. As the processing power in a single core is increased, this
fixed number should be raised to fully exploit the available resources.

However, the Intel TBB runtime will dynamically try to keep the max-
imum number of cores busy by managing many more tasks than physical
threads. This means that if a core is not fully utilized because the serial
execution is not computationally demanding enough, it will simply run more
tasks on the same core. To see how this threshold could affect the perfor-
mance, we ran a series of benchmarks against the serial version on the 180501
dataset. Each configuration was run 100 times, and the minimum value was
kept. The benchmark was run on a Kongull node with 12 cores, where the
ideal speedup should be 12. The result was plotted on a graph using a loga-
rithmic scale in Figure 5.9 on the following page. Values between 10 and 1000
represent a nice speedup, and demonstrates TBB’s ability to handle tasks of
varying computational complexity. Even with a threshold of only 2 (the first
red dot), the speedup is 8.24, or a parallel efficiency of around 69%. This
is remarkably efficient. With a threshold of only 2, the 34 403 data points
are split 16 times, demanding 216 = 65 536 tasks. This beats a threshold of
4 000, which only creates 32 tasks. This is happening because TBB has such
a low overhead, and is able to utilize all the cores down to a fine-grained level.
The last point on the graph represents a threshold of 40 000, and performs
exactly like the serial version. This is as expected, as the dataset is smaller
than this, and no subdivision will occur. The same benchmark was run on a

105

CHAPTER 5. RESULTS AND EVALUATION

synthetic dataset, and similar results were produced.

The k-means algorithm exhibits a nice linear parallel speedup, as the
graph in Figure 5.10 on the next page shows. The efficiency is always close
to one, as it has to be in order to exhibit a linear speedup.

100 101 102 103 104 105

threshold value

0

2

4

6

8

10

12

sp
ee

du
p

Parallel speedup

Figure 5.9: K-means parallel speedup using Intel TBB and several threshold
values. The x-axis has a logarithmic scale.

SPC

We measured speedup by limiting the number of threads in use by TBB on
Kongull. Figure 5.11 on page 109 depicts the speedup when running SPC for
24 temperatures two datasets of different sizes. Note that the MST was not
included in this part of the measurements. To better see how TBB subdivides
the range of temperatures, we also print out each time a task is spawned for
a temperature subrange. We do not adjust the size of a task ourselves, but
rely on the default settings for granularity in TBB. With increasing number
of threads, the subranges become smaller, until a task consists of plotting
just one temperature. This is positive for better load balancing, as the work
in each temperature may differ slightly.

We clearly see that the best performance is achieved when TBB is allowed
to decide the number of threads itself. It is not far from linear, as the
factor is between 9.5

12
and 10

12
. This means a parallel efficiency measured to

be approximately 80%. With an increased number of temperatures, the
efficiency is expected to be higher. The reason for the sub-linear speedup

106

5.3. PERFORMANCE

0 2 4 6 8 10 12
cores

0

2

4

6

8

10

12

14

sp
ee

du
p

Actual speedup
Linear speedup

(a) Parallel speedup

2 4 6 8 10 12
cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ef
fic

ie
nc

y

Parallel efficiency

(b) Parallel efficiency.

Figure 5.10: K-means scalability from 1 to 12 cores, showing a linear speedup.
Each configuration (red dot) represents the minimum value from 100 runs
each.

107

CHAPTER 5. RESULTS AND EVALUATION

is explained in the next section, and is related to the serial fraction of the
algorithm.

5.3.2 Scalability

We consider scalability as the algorithm’s capability of handling increased
amounts of data. This is tightly related to complexity, as linear scalability
implies a complexity of O(n). With large datasets scalability is important.
The datasets used here are often much bigger than those used in the published
articles, where the number of members rarely exceed 4000. In comparison,
the 180501 dataset contains 34 403 spikes, and larger recordings exist. The
feature extraction scales linearly with the number of spikes, and does not
take a significant amount of time, so these are not detailed here. An analysis
of k-means and SPC follows.

K-means

To see how the k-means algorithm scales in practice, it was run on the KI
datasets. First, we modified the datasets so that the only stop-criteria was the
number of iterations performed. This was done because a higher dimensional
dataset might still converge in less iterations with the normal stop criterion.
We benchmarked the 180501 dataset on 50, 100 and 200 dimensions. From
our earlier analysis we know that the iteration itself should scale linearly, and
this was confirmed with an almost perfect speedup; each increase added 1.96
runtime. The small overhead comes from the centroid initialization, which is
serial.

To see how convergence time is affected by the number of iterations, we
ran the algorithm on all of our datasets with 10, 50, 100 and 200 dimensions.
Each configuration was run 100 times, and then averaged. The sublinear
scalability is reported in Table 5.5. We here use the term slowdown, which
intuitively is the opposite of speedup.

Table 5.5: K-means dimensional scalability
Dimensions Slowdown Stddev
10 1 0
50 3.8 0.73
100 6.5 1.32
200 10.9 3.49

108

5.3. PERFORMANCE

1 2 3 4 5 6 7 8 9 10 11 12Auto
Threads

0

2

4

6

8

10

12

Sp
ee

du
p

Experienced speedup
Linear speedup

(a) Albert 5: 7 385 spikes.

1 2 3 4 5 6 7 8 9 10 11 12Auto
Threads

0

2

4

6

8

10

12

Sp
ee

du
p

Experienced speedup
Linear speedup

(b) 180501: 34 403 spikes.

Figure 5.11: Measured Speedup for SPC on Kongull for different problem
sizes. 10 components of Haar Wavelet KS reduction was used, and MST was
not calculated. 109

CHAPTER 5. RESULTS AND EVALUATION

Note that even with 200 dimensions and our biggest dataset, the classifi-
cation is still done within seconds.

SPC

Figure 5.12 and Figure 5.13 illustrate performance for different input sizes to
the SPC algorithm, when run on the desktop computer. Neighbor search and
MST belong to the initial part of the algorithm, and should give deterministic
results. These are costly calculations, and are the limiting factors.

Finding nearest neighbors in high-dimensional Euclidean space is de-
manding. The performance seems to scale as badly as, or worse than, cal-
culating the distance between all pairs of points, and then sorting these lists
of distances. This gives a complexity of O(n2). With 200 dimensions, the
time for performing neighbor search was measured to increase with a factor
of 4.08 when increasing from 10 000 to 20 000 spikes. MST increased with
a factor of 7.47 in the same interval, giving an unacceptable scaling of close
to O(n3). For 50 dimensions, the growth was measured to 4.0 and 8.9 for
neighbor search and MST respectively. For 16 dimensions, we also measured
for a dataset of 40 000 spikes, and experienced a growth of 3.33 and 1.60 for
neighbor search and MST when moving from 20 000 to 40 000 spikes. Note
that total time in Figure 5.12(a) includes the wavelet transform from 200 to
16 dimensions, which is not included as a separate curve. Here, MST seems
to grow slower than the neighbor search, which could indicate that neighbor
searches could be sped up by using MST as basis. It should, however, be
noted that the MST library (STANN) is written as parallel code, while the
library used for neighbor searching (libANN) is not.

As the MST is an optional part of the algorithm, to ensure all points may
be clustered together, it is clear that it cannot be used for larger inputs, or
for high dimensions. However, for 16 dimensions, it is not the dominating
part, and is included.

The susceptibility plot is not dependent on the number of dimensions,
which is also evident from the figures, and scales better with larger inputs.
In these runs, we perform clustering for ten temperatures. Calculated with
the values from the run with 200 dimensions, it grows with a factor of 2.37
when increasing the number of spikes from 10 000 to 20 000, which is nearly
linear.

110

5.3. PERFORMANCE

1k 5k 10k 20k 40k
Spikes

1
2
4
8

16
32
64

128
256
512

Ex
ec

ut
io

n
tim

e
(s

)

total, 16 dimensions
susceptibility for 10 temperatures, 16 dimensions
MST, 16 dimensions
neighbor search, 16 dimensions

(a) 16 dimensions

1k 2k 4k 5k 10k 20k
Spikes

1
2
4
8

16
32
64

128
256
512

Ex
ec

ut
io

n
tim

e
(s

)

total, 50 dimensions
susceptibility for 10 temperatures, 50 dimensions
MST, 50 dimensions
neighbor search, 50 dimensions

(b) 50 dimensions

Figure 5.12: Scalability of SPC for different dimensions and spike counts

111

CHAPTER 5. RESULTS AND EVALUATION

1k 2k 4k 5k 10k 20k
Spikes

1
2
4
8

16
32
64

128
256
512

Ex
ec

ut
io

n
tim

e
(s

)

total, 100 dimensions
susceptibility for 10 temperatures, 100 dimensions
MST, 100 dimensions
neighbor search, 100 dimensions

(a) 100 dimensions

1k 2k 4k 5k 10k 20k
Spikes

1
2
4
8

16
32
64

128
256
512

Ex
ec

ut
io

n
tim

e
(s

)

total, 200 dimensions
susceptibility for 10 temperatures, 200 dimensions
MST, 200 dimensions
neighbor search, 200 dimensions

(b) 200 dimensions

Figure 5.13: Scalability of SPC for different dimensions and spike counts

112

5.4. IMPLEMENTATION CHALLENGES

5.4 Implementation challenges

Originally we planned on including an additional advanced clustering algo-
rithm in the program. However, the implementation of the super-paramagnetic
clustering (SPC) algorithm posed problems and ended up taking a lot of time
for our project. This was partly due to ambiguities in the articles describing
the algorithm, but also due to the sheer effort needed to make it run fast
and parallel. These ambiguities were attributed to definitions of concepts
such as “average neighbor distance” without specifying whether it is average
for each point’s neighbors, or the global average. The required number of
SW-iterations was not specified, and we got the impression that as few as 200
would be sufficient to produce a smooth susceptibility plot. Only when using
as many as 10 000 did we get a fairly smooth graph, which looked similar to
the ones in the article. If the authors had included a listing of pseudo code,
instead of mixing the description of the algorithm with text explaining the
background, there would likely be less ambiguities.

5.4.1 Noise

We first learned about the high noise levels in the datasets at a late stage
of the project. After a meeting with Tsao [69], we realized that cluster zero
from the manual clusterings were always a so called noise cluster – spikes
to be discarded. This was a big surprise to us, and meant that most of the
dataset was in fact noise, if the manual clustering is to be trusted.

However, a close inspection of the spikes in this cluster tells us that many
spikes here are spikes that probably should not be classified as noise – their
characteristic signature is similar to many classified spikes. It is likely that
the easy and interesting cells have been isolated, and the rest ignored. This
makes it harder to use unsupervised algorithms, as defining what is noise,
and what is an interesting signal, is based on subjective measures.

The cut files used to assess what is a correct clustering have been man-
ually classified, with the help of the peaks-of-channels reduction. With four
channels, this reduces the dataset to four dimensions, which cannot be di-
rectly displayed. To be able to visualize this, we used a PCA reduction from
four to three dimensions, and plotted the 3D representation. Figure 5.14 on
the following page demonstrates how noise in one dataset makes it harder to
discern between clusters, as the “moats” between clusters become filled with
noise.

113

CHAPTER 5. RESULTS AND EVALUATION

(a) Cutfile classification (red is noise) (b) Same as (a), rotated

(c) Cutfile classification, with noise re-
moved

Figure 5.14: Visualization of how the noise level in datasets makes cluster-
ing harder. Here, 180501 (see Section 3.1), in which 52% of the spikes are
considered noise by the cut file. The visualizations were made by extracting
peaks of channels (four dimensions) reduced to three dimensions using PCA.

114

CHAPTER 6

Conclusions and future work

In this chapter, we conclude our findings throughout the project. We first
describe how we have met our goals stated in Section 1.2, and then describe
what can be done in the future, to improve on our work.

6.1 Goals

Here, we describe how we have accomplished our different goals.

G1: Graphical application

With the help of Qt, we have developed a graphical front-end to our appli-
cation, Paraspikes, which lets the user experiment with the different feature
extractions and clustering algorithms. Much effort has been put into making
it portable, stable, and user friendly. A series of graphical representations of
results are available, and we export results in a format which may be read
by Tint, the cluster cutting software used at the KI. This application will be
helpful for domain experts who want to assess the performance and quality
of the algorithm, and may easily be extended with other algorithms.

G2, G3: Introduction and background

We have introduced the problem domain, both with regards to computer
scientists unfamiliar with neuroscience, and for neuroscientists unfamiliar
with computer science. A major part of the report is also spent describing
the algorithms and other available applications in the field of spike sorting.

115

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

G4: Parallel implementation of selected algorithms

We have taken care to parallelize compute-heavy parts of the application as
much as possible. This has been realized with the use of both Intel Threading
Building Blocks and OpenMP. Measurements of parallel speedup have been
performed, and we see a speed-up for both SPC and k-means when increasing
the number of processors. K-means achieves a linear speedup, while SPC
has a sub-linear speedup, with a parallel efficiency of around 80%. The steps
needed to improve the efficiency are mentioned in Section 6.2. We are not
aware of any other parallel implementations of SPC.

The results from the algorithms have also been evaluated, and we see that
in general we can not rely on the clusterings performed by humans as a “gold
standard”. Some of these appear to have only a few easily identifiable neurons
isolated, with the rest being labeled as noise. It is not only hard, but also not
worthwhile to try and replicate these results. The peaks of channel reduction
reduces 200 dimensions down to a simple few, and we believe automated tools
which can perform clustering in a higher dimensional space can do better.

We only late in the project found out that the Axona recording system
probably does not perform a good noise removal. In general, SPC appears
to make solid clusters, but it could benefit from noise reduction. K-means is
very fast, but since it does not handle noise at all, it should be paired with
a good noise reduction scheme.

G5, G6: Time constraints and result quality

We have evaluated the execution time for the possible sequences of algo-
rithms. For most datasets, the algorithms use less than the arbitrary limit
we set to one minute. The most compute heavy feature extraction, PCA,
spends 20 seconds to reduce the biggest dataset on our old workstation com-
puter, well below the limit. K-means always spends less than 5 seconds,
meaning that we with this algorithm easily fulfill the time constraint.

SPC requires much more work, and its execution time depends on different
parameters, such as the number of Monte Carlo iterations, and how many
temperatures to evaluate. Depending on which reduction is used, as well as
the size of the datasets, the algorithm might take on the order of seconds
to many minutes to complete. With the time measurements performed in
Section 5.3, we see that the algorithm scales well with a low number of
dimensions. However, for an input size of 40 000, even with few dimensions,
the algorithm takes several minutes, and does not meet our time constraint.

116

6.2. FUTURE WORK

The quality of the clustering results has been hard to determine, as the
cut file results we have used for comparison, can not be viewed as a perfect
clustering. This was also confirmed by Lisa Giocomo at the end of the
thesis, who said that the neurons which were hard to isolate are usually
just labeled as noise. To visualize the signals for an operator, a significant
dimensional reduction must be performed. Not only does this introduce
human bias, but this reduction could also discard important information
required to properly separate the spikes. Automatic clustering algorithms
may perform the classification in a high dimensional space, and may therefore
use more information to discriminate between the different clusters.

6.2 Future work

To make sure SPC can scale better when increasing the number of available
processor cores, it is necessary to parallelize the final part of the application.
This is the neighbor search in the first part of the algorithm, which utilizes the
libANN library. libANN is not thread safe, and can therefore not be used by
multiple threads at the same time. As the library is open-source, anyone may
take on this task, which will be helpful for all future users of the library. Our
inspection of the source code suggests that it should be possible, as the global
state which is retained seems to be caused by convenience in programming,
rather than the algorithm itself. With this in place, SPC should scale nearly
linearly when increasing available processor cores.

Random number generation is what takes the most time in SPC. An
important optimization would therefore be to increase the performance of
random number generation. We have used the quickest algorithm available
in the open-source Boost Random library. More effort could be put into
comparing its performance with vendor libraries such as Intel Math Kernel
Library or AMD Core Math Library. These also provide functions for gener-
ating vectors of random numbers, which take advantage of vector parallelism
on the processor.

Calculating the neighborhood graph and MST for SPC can consume a
significant part of the total running time. The result of this could be stored
the first time it is run, and simply loaded for subsequent uses. For our own
purposes, this would have been a useful feature to have, since we analyzed
the same datasets many times.

A next logical step should be a closer look at noise removal, although this
does not necessarily have to be integrated into the program itself, and can

117

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

be done separately, before importing it into Paraspikes.

It would be interesting to see how large the noise fraction really is, by
obtaining intracellular data. However, by inserting the probes necessary to
record this data, the extracellular recordings can become affected, so it is
difficult to determine exactly how much really is noise. We have argued
that the manually cut files are biased because of the spike representation.
Therefore, it would be helpful to compare the clustering algorithms to cut
files based on intracellular recordings. More ways to evaluate the clusterings
and reductions should also help to identify noise.

As for the GUI, being able to manually perform operations on the datasets
such as merging and creating clusters could be a desirable feature. However,
there are other applications which already support this. OpenElectrophy [27]
seems have the most promising implementation, providing a user friendly
interface for manually managing clusters.

We earlier mentioned that if our scope had been broader, we would have
put effort into integrating our algorithms as modules in existing open-source
applications, rather than developing our own application from scratch. It
could probably also mean less work, as APIs are defined up-front, and basic
application components are already available. Integrating the algorithms
as part of existing software means that one could quickly get many users,
who can provide valuable feedback, as well as contributing to improving the
algorithm. For someone taking on a similar task in the future, we would
recommend this approach.

Finally, comparing our algorithms to other clustering algorithms should
be very interesting. SPC is a very capable algorithm, but is not very quick,
and is still affected by noise.

118

References

[1] Axona – hardware and software for biomedical research. URL http:

//www.axona.com/. Cited on 14. April 2011.

[2] Boost random reference. URL http://www.boost.org/doc/libs/1_

46_1/doc/html/boost_random/reference.html. Cited on 1. June
2011.

[3] Cell broadband engine architecture and its first implementa-
tion. URL http://www.ibm.com/developerworks/power/library/

pa-cellperf/. Cited on 3. May 2011.

[4] NVIDIA Fermi. URL http://www.nvidia.com/object/fermi_

architecture.html. Cited on 3. May 2011.

[5] Intel Math Kernel Library. URL http://software.intel.com/en-us/

articles/intel-mkl/.

[6] Wavelet transform. URL http://www.jpeg.org/.demo/FAQJpeg2k/

wavelet-transform.htm. Cited on 7. February 2010.

[7] KlustaKwik. URL http://klustakwik.sourceforge.net/. Cited on
10. February 2011.

[8] Boost, . URL http://www.boost.org/. Cited on 28. March 2011.

[9] The GNU Scientific Library, . URL http://www.gnu.org/software/

gsl. Cited on 7. February 2010.

[10] Qwt – Qt Widgets for Technical Applications, . URL http://qwt.

sourceforge.net/. Cited on 14. April 2011.

[11] STANN, . URL https://sites.google.com/a/compgeom.com/stann/

Home. Cited on 14. April 2011.

[12] Tilera: Tile-Gx processor family. URL http://www.tilera.com/

products/processors/TILE-Gx_Family. Cited on 3. May 2011.

119

http://www.axona.com/
http://www.axona.com/
http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/reference.html
http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/reference.html
http://www.ibm.com/developerworks/power/library/pa-cellperf/
http://www.ibm.com/developerworks/power/library/pa-cellperf/
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://www.jpeg.org/.demo/FAQJpeg2k/wavelet-transform.htm
http://www.jpeg.org/.demo/FAQJpeg2k/wavelet-transform.htm
http://klustakwik.sourceforge.net/
http://www.boost.org/
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://qwt.sourceforge.net/
http://qwt.sourceforge.net/
https://sites.google.com/a/compgeom.com/stann/Home
https://sites.google.com/a/compgeom.com/stann/Home
http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family

REFERENCES

[13] Tint: cluster-cutting and place field analysis. URL http://www.axona.

com/html/tint.html. Cited on 2. May 2011.

[14] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS ’67 (Spring), pages 483–
485, New York, NY, USA, 1967. ACM. URL http://doi.acm.org/10.

1145/1465482.1465560.

[15] OpenMP ARB. OpenMP. URL http://openmp.org/wp/. Cited on 3.
June 2011.

[16] Thomas Bergheim. Parallel Algorithms for Neuron Spike Sorting.
TDT4590 - Complex Computer Systems, Specialization Project, De-
cember 2010.

[17] Marcelo Blatt, Shai Wiseman, and Eytan Domany. Superparamagnetic
clustering of data. Phys. Rev. Lett., 76(18):3251–3254, Apr 1996. URL
http://dx.crossref.org/10.1103%2FPhysRevLett.76.3251.

[18] Marcelo Blatt, Shai Wiseman, and Eytan Domany. Data clustering using
a model granular magnet. Neural Computation, 9(8):1805–1842, 1997.
URL http://dx.doi.org/10.1162/neco.1997.9.8.1805.

[19] R.J. Brychta, S. Tuntrakool, M. Appalsamy, N.R. Keller, D. Robertson,
R.G. Shiavi, and A. Diedrich. Wavelet methods for spike detection in
mouse renal sympathetic nerve activity. Biomedical Engineering, IEEE
Transactions on, 54(1):82–93, 2006. ISSN 0018-9294.

[20] György Buzsáki. Large-scale recording of neuronal ensembles. Nature
neuroscience, 7(5):446–451, May 2004. ISSN 1097-6256. URL http:

//dx.doi.org/10.1038/nn1233.

[21] Mircea I. Chelaru and Mandar S. Jog. Spike source localization with
tetrodes. Journal of Neuroscience Methods, 142(2):305–315, 2005. ISSN
0165-0270. URL http://dx.doi.org/10.1016/j.jneumeth.2004.09.

004.

[22] Marc Duranton, Sami Yehia, Bjorn De Sutter, Koen De Bosschere,
Albert Cohen, Babak Falsafi, Georgi Gaydadjiev, Manolis Katevenis,
Jonas Maebe, Harm Munk, and Nacho Navarro. Network of Excel-
lence on High Performance and Embedded Architecture and Compila-
tion THE HIPEAC VISION, 2010.

120

http://www.axona.com/html/tint.html
http://www.axona.com/html/tint.html
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://openmp.org/wp/
http://dx.crossref.org/10.1103%2FPhysRevLett.76.3251
http://dx.doi.org/10.1162/neco.1997.9.8.1805
http://dx.doi.org/10.1038/nn1233
http://dx.doi.org/10.1038/nn1233
http://dx.doi.org/10.1016/j.jneumeth.2004.09.004
http://dx.doi.org/10.1016/j.jneumeth.2004.09.004

REFERENCES

[23] R. A. Fischer. Iris data set, 1936. URL http://archive.ics.uci.edu/

ml/datasets/Iris. Cited on 28. March 2011.

[24] C. Fraley and A.E. Raftery. How many clusters? Which clustering
method? Answers via model-based cluster analysis. The Computer
Journal, 41(8):578, 1998. ISSN 0010-4620.

[25] Rob de Ruyter van Steveninck Fred Rieke, David Warland and William
Bialek. Spikes: Exploring the Neural Code. The MIT Presss, 1999. ISBN
978-0-262-68108-7.

[26] S.H. Fuller and L.I. Millett. Computing performance: Game over or
next level? Computer, 44(1):31 –38, jan. 2011. ISSN 0018-9162. doi:
10.1109/MC.2011.15.

[27] Samuel Garcia and Nicolas Fourcaud-Trocme. Openelectro-
phy: an electrophysiological data- and analysis-sharing frame-
work. Frontiers in Neuroinformatics, 3(0), 2009. URL http:

//www.frontiersin.org/Journal/Abstract.aspx?s=752&name=

neuroinformatics&ART_DOI=10.3389/neuro.11.014.2009.

[28] Google. Google Performance Tools. URL http://code.google.com/

p/google-perftools/. Cited on 1. June 2011.

[29] A. Graps. An introduction to wavelets, May 2004. URL http://www.

amara.com/IEEEwave/IEEEwavelet.html. Cited on 24. May 2011.

[30] Kenneth D. Harris, Darrell A. Henze, Jozsef Csicsvari, Hajime Hi-
rase, and Gyorgy Buzsaki. Accuracy of Tetrode Spike Separation as
Determined by Simultaneous Intracellular and Extracellular Measure-
ments. J Neurophysiol, 84(1):401–414, July 2000. ISSN 0022-3077. URL
http://jn.physiology.org/cgi/content/abstract/84/1/401.

[31] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clus-
tering Algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):pp. 100–108, 1979. ISSN 00359254. URL
http://www.jstor.org/stable/2346830.

[32] Lynn Hazan. Klusters. URL http://klusters.sourceforge.net/.
Cited on 10. February 2011.

[33] Lynn Hazan, Michaël Zugaro, and György Buzsáki. Klusters, neuro-
scope, ndmanager: A free software suite for neurophysiological data
processing and visualization. Journal of Neuroscience Methods, 155(2):

121

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://www.frontiersin.org/Journal/Abstract.aspx?s=752&name=neuroinformatics&ART_DOI=10.3389/neuro.11.014.2009
http://www.frontiersin.org/Journal/Abstract.aspx?s=752&name=neuroinformatics&ART_DOI=10.3389/neuro.11.014.2009
http://www.frontiersin.org/Journal/Abstract.aspx?s=752&name=neuroinformatics&ART_DOI=10.3389/neuro.11.014.2009
http://code.google.com/p/google-perftools/
http://code.google.com/p/google-perftools/
http://www.amara.com/IEEEwave/IEEEwavelet.html
http://www.amara.com/IEEEwave/IEEEwavelet.html
http://jn.physiology.org/cgi/content/abstract/84/1/401
http://www.jstor.org/stable/2346830
http://klusters.sourceforge.net/

REFERENCES

207–216, 2006. ISSN 0165-0270. URL http://dx.doi.org/10.1016/

j.jneumeth.2006.01.017.

[34] Peter Hemmen. Task-based Programming on a 64-core Tilera CPU.
TDT4590 - Complex Computer Systems, Specialization Project, De-
cember 2010.

[35] P.M. Horton, A.U. Nicol, K.M. Kendrick, and J.F Feng. Spike sorting
based upon machine learning algorithms (SOMA). Journal of Neuro-
science Methods, 160:52–68, 2006.

[36] E. Hulata, R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob.
Detection and sorting of neural spikes using wavelet packets. Physical
Review Letters, 85(21):4637–4640, 2000. ISSN 1079-7114.

[37] E. Hulata, R. Segev, and E. Ben-Jacob. A method for spike sorting and
detection based on wavelet packets and Shannon’s mutual information.
Journal of Neuroscience Methods, 117(1):1–12, 2002. ISSN 0165-0270.

[38] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted
voronoi diagrams and randomization to variance-based k-clustering:
(extended abstract). pages 332–339, 1994. doi: http://doi.acm.org/
10.1145/177424.178042. URL http://doi.acm.org/10.1145/177424.

178042.

[39] Intel. Intel threading building blocks for open source. URL http://

threadingbuildingblocks.org/. Cited on 1. February 2011.

[40] Intel. Intel threading building blocks tutorial, 2010. URL
http://www.threadingbuildingblocks.org/uploads/81/91/

Latest%20Open%20Source%20Documentation/Tutorial.pdf. Re-
trieved 18. November 2010.

[41] Intel. Data decomposition: Sharing the love and the data,
2011. URL http://software.intel.com/en-us/articles/

data-decomposition-sharing-the-love-and-the-data/. Retrieved
18. April 2011.

[42] Intel. Intel Threading Building Blocks Reference Manual, 2011. URL
http://threadingbuildingblocks.org/uploads/81/91/Latest%

20Open%20Source%20Documentation/Reference.pdf. Retrieved 2.
June 2011.

122

http://dx.doi.org/10.1016/j.jneumeth.2006.01.017
http://dx.doi.org/10.1016/j.jneumeth.2006.01.017
http://doi.acm.org/10.1145/177424.178042
http://doi.acm.org/10.1145/177424.178042
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Tutorial.pdf
http://www.threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Tutorial.pdf
http://software.intel.com/en-us/articles/data-decomposition-sharing-the-love-and-the-data/
http://software.intel.com/en-us/articles/data-decomposition-sharing-the-love-and-the-data/
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf

REFERENCES

[43] S. Jan, F. Urs, J. David, and H. Andreas. Independent-component-
analysis-based spike sorting algorithm for high-density microelectrode
array data processing. In Sensors, 2009 IEEE, pages 384–386. IEEE,
2010.

[44] K.H. Kim and S.J. Kim. A wavelet-based method for action potential
detection from extracellular neural signal recording with low signal-to-
noise ratio. Biomedical Engineering, IEEE Transactions on, 50(8):999–
1011, 2003. ISSN 0018-9294.

[45] Christof Koch and Gilles Laurent. Complexity and the nervous system.
Science, 284(5411):96–98, 1999. doi: 10.1126/science.284.5411.96. URL
http://www.sciencemag.org/content/284/5411/96.abstract.

[46] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):
1464–1480, September 1990. ISSN 0018-9219. URL http://dx.doi.

org/10.1109/5.58325.

[47] Juan Carlos Letelier and Pamela P. Weber. Spike sorting based on
discrete wavelet transform coefficients. Journal of Neuroscience Meth-
ods, 101(2):93 – 106, 2000. ISSN 0165-0270. URL http://www.

sciencedirect.com/science/article/pii/S0165027000002508.

[48] C. Meenderinck and B. Juurlink. (When) Will CMPs Hit the Power
Wall? In Euro-Par 2008 Workshops-Parallel Processing, pages 184–
193. Springer, 2009.

[49] Marina Meila and David Heckerman. An experimental comparison of
model-based clustering methods. Machine Learning, 42(1/2):9–29, 2001.

[50] Sturla Molden. Quantatitive analyses of single units recorded from the
hippocampus and entorhinal cortex of behaving rats. Paper IV, 2005.

[51] Andrew W. Moore. An intoductory tutorial on kd-trees. 1991.

[52] G. E. Moore. Cramming More Components Onto Integrated Circuits.
Proceedings of the IEEE, 86(1):82–85, 1998. URL http://dx.doi.org/

10.1109/JPROC.1998.658762.

[53] David M. Mount and Sunil Arya. Approximate nearest neighbors library,
Jan 2010. URL http://www.cs.umd.edu/~mount/ANN/. Cited on 14.
April 2011.

[54] Nokia. Qt 4. URL http://qt.nokia.com/. Cited on 14. April 2011.

123

http://www.sciencemag.org/content/284/5411/96.abstract
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1109/5.58325
http://www.sciencedirect.com/science/article/pii/S0165027000002508
http://www.sciencedirect.com/science/article/pii/S0165027000002508
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762
http://www.cs.umd.edu/~mount/ANN/
http://qt.nokia.com/

REFERENCES

[55] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul. Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering.
Neural Computation, 16:1661–1687, August 2004. ISSN 0899-7667. URL
http://dx.doi.org/10.1162/089976604774201631.

[56] Rodrigo Quian Quiroga. Wave Clus – Unsupervised detection and
sorting. URL http://www2.le.ac.uk/departments/engineering/

research/bioengineering/neuroengineering-lab/spike-sorting.
Cited on 10. February 2011.

[57] A. Roberts. How does a nervous system produce behaviour? A case
study in neurobiology. Science progress, 74(293 Pt 1):31, 1990. ISSN
0036-8504.

[58] Peter J. Rousseeuw. Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis. Journal of Com-
putational and Applied Mathematics, 20:53 – 65, 1987. ISSN
0377-0427. doi: DOI:10.1016/0377-0427(87)90125-7. URL http:

//www.sciencedirect.com/science/article/B6TYH-45GN65V-6/2/

18986ecfab1157f7f05da39a3b08ea73.

[59] Ueli Rutishauser. OSort – an online spike sorting algo-
rithm. URL http://www.urut.ch/new/serendipity/index.php?

/pages/osort.html. Cited on 10. February 2011.

[60] Ueli Rutishauser, Erin M. Schuman, and Adam N. Mamelak. On-
line detection and sorting of extracellularly recorded action potentials
in human medial temporal lobe recordings, in vivo. Journal of Neu-
roscience Methods, 154(1-2):204–224, 2006. ISSN 0165-0270. URL
http://dx.doi.org/10.1016/j.jneumeth.2005.12.033.

[61] N. Schmitzer-Torbert, J. Jackson, D. Henze, K. Harris, and A.D.
Redish. Quantitative measures of cluster quality for use in ex-
tracellular recordings. Neuroscience, 131(1):1 – 11, 2005. ISSN
0306-4522. URL http://www.sciencedirect.com/science/article/

B6T0F-4F6SSGV-4/2/5782dbaefa4f0f146a187dd6be5355ee.

[62] B.M. Shahshahani and D.A. Landgrebe. The effect of unlabeled samples
in reducing the small sample size problem and mitigating the Hughes
phenomenon. IEEE Transactions on Geoscience and Remote Sensing,
32(5):1087–1095, 1994. ISSN 0196-2892.

[63] Dan Siroker and Steve Miller. Drawbacks of k-means. 2008. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.3216.

124

http://dx.doi.org/10.1162/089976604774201631
http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting
http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting
http://www.sciencedirect.com/science/article/B6TYH-45GN65V-6/2/18986ecfab1157f7f05da39a3b08ea73
http://www.sciencedirect.com/science/article/B6TYH-45GN65V-6/2/18986ecfab1157f7f05da39a3b08ea73
http://www.sciencedirect.com/science/article/B6TYH-45GN65V-6/2/18986ecfab1157f7f05da39a3b08ea73
http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
http://dx.doi.org/10.1016/j.jneumeth.2005.12.033
http://www.sciencedirect.com/science/article/B6T0F-4F6SSGV-4/2/5782dbaefa4f0f146a187dd6be5355ee
http://www.sciencedirect.com/science/article/B6T0F-4F6SSGV-4/2/5782dbaefa4f0f146a187dd6be5355ee
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.3216
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.3216

REFERENCES

[64] Lindsay I Smith. A tutorial on principal components analysis,
February 2002. URL http://www.cs.otago.ac.nz/cosc453/student_

tutorials/principal_components.pdf. Cited on 24. May 2011.

[65] Robert Swendsen, Jian-Sheng Wang, and Alan Ferrenberg. New monte
carlo methods for improved efficiency of computer simulations in sta-
tistical mechanics. In Kurt Binder, editor, The Monte Carlo Method
in Condensed Matter Physics, volume 71 of Topics in Applied Physics,
pages 75–91. Springer Berlin / Heidelberg, 1995.

[66] P.N. Tan, M. Steinbach, and V. Kumar. Cluster analysis: basic concepts
and algorithms. Introduction to Data Mining, Addison-Wensley, 2006.

[67] Ariel Tankus, Yehezkel Yeshurun, and Itzhak Fried. An automatic mea-
sure for classifying clusters of suspected spikes into single cells versus
multiunits. Journal of Neural Engineering, 6(5):056001, 2009. URL
http://stacks.iop.org/1741-2552/6/i=5/a=056001.

[68] L. Traver, C. Tarin, P. Marti, and N. Cardona. Adaptive-threshold
neural spike detection by noise-envelope tracking. Electronics Letters,
43(24):1333–1335, 22 2007. ISSN 0013-5194. URL http://dx.doi.org/

10.1049/el:20071631.

[69] Albert Tsao. PhD candidate, Kavli Institute for Systems Neuroscience
and Centre for the Biology of Memory. Personal communication.

[70] C. Valens. A really friendly guide to wavelets. URL http://perso.

wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html. Cited
on 1. February 2011.

[71] Dimitrios Ververidis and Constantine Kotropoulos. Information loss of
the mahalanobis distance in high dimensions: Application to feature
selection. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 31:2275–2281, 2009. ISSN 0162-8828. URL http://doi.

ieeecomputersociety.org/10.1109/TPAMI.2009.84.

[72] Filip Wasilewski. Wavelet browser. URL http://wavelets.pybytes.

com/. Cited on 24. May 2011.

[73] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel Computers
(2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.
ISBN 0131405632.

125

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://stacks.iop.org/1741-2552/6/i=5/a=056001
http://dx.doi.org/10.1049/el:20071631
http://dx.doi.org/10.1049/el:20071631
http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html
http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.84
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.84
http://wavelets.pybytes.com/
http://wavelets.pybytes.com/

REFERENCES

[74] F. Y. Wu. The potts model. Rev. Mod. Phys., 54(1):235–268, Jan 1982.
doi: 10.1103/RevModPhys.54.235.

126

Appendices

127

APPENDIX A

Implementation

Figure A.1: Number of files by date. This includes the datasets.

A-1

APPENDIX A. IMPLEMENTATION

Figure A.2: Number of lines of code by author. This includes the datasets.

Figure A.3: Number of lines of code. This includes the datasets.

A-2

B-1

APPENDIX B. RESULTS

APPENDIX B

Results

B.1 Cluster quality

2 4 6 8 10 12 14 16 18 20
clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
(i

)

Unreduced

WaveletFirst

WaveletFirstPerChan

WaveletKS

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure B.1: The silhouette coefficient for all the reductions on the Albert 3
dataset. Notice that there is no clear trend among the reductions. However,
PCA suggests 4 clusters, while the peaks of channels and unreduced suggest
3. Tsao [69] identified 3 neurons in this set, in addition to the noise cluster

B-2

B.1. CLUSTER QUALITY

2 4 6 8 10 12 14 16 18 20
clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
(i

)

Unreduced

WaveletFirst

WaveletFirstPerChan

WaveletKS

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure B.2: The silhouette coefficient for all the reductions on the Albert 4
dataset. Here, some reductions, notably PCA and Wavelet KS suggests 3
clusters. The peaks of channels here suggests 4 clusters. Tsao [69] identified
6 neurons in this set, in addition to the noise cluster

B-3

APPENDIX B. RESULTS

2 4 6 8 10 12 14 16 18 20
clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
S
(i

)

WaveletFirst

WaveletFirstPerChan

WaveletKS

WaveletKS(supervised)

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure B.3: The silhouette coefficient on the Albert 2 dataset, with the noise
cluster removed. There is no clear indication of the number of clusters.
According to the cut files, there should be 3 clusters.

B-4

B.1. CLUSTER QUALITY

2 4 6 8 10 12 14 16 18 20
clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
(i

)

WaveletFirst

WaveletFirstPerChan

WaveletKS

WaveletKS(supervised)

PCA

PCAPerChannel

PeaksOfChannels

EnergyPcaReduction

ScaleByEnergy

Figure B.4: The silhouette coefficient on the Albert 3 set, with the noise
cluster removed. It is not clear how many clusters are best. PCA suggests
k = 3, which according to the cut file is correct.

B-5

APPENDIX B. RESULTS

B.1.1 Sum of squares

0123
dimension

−60

−40

−20

0

20

40

60

80

100

0123
dimension

−60

−40

−20

0

20

40

60

80

100

0123
dimension

−100

−50

0

50

100

150

0123
dimension

−40

−20

0

20

40

60

80

0123
dimension

−100

−50

0

50

100

150

0123
dimension

−60

−40

−20

0

20

40

60

80

100

Figure B.5: A similarity plot between the unsupervised k-means solution
(red) and the manually cut set (green). All 200 samples were used as a
feature vector. Each plot represents a cluster.

B-6

B.1. CLUSTER QUALITY

B-7

APPENDIX B. RESULTS

B.1.2 Profiling results

paraspikes
Total samples: 979
Focusing on: 979
Dropped nodes with <= 4 abs(samples)
Dropped edges with <= 0 samples

00007fb760d7261c
0 (0.0%)

of 968 (98.9%)

KMeansTask
execute

0 (0.0%)
of 968 (98.9%)

9166

KMeansTask
execute
(inline)

1 (0.1%)
of 968 (98.9%)

8203

KMeans
classifyPoints
963 (98.4%)

9631

tbb
task

spawn_and_wait_for_all
(inline)

0 (0.0%)
of 968 (98.9%)

8199

8198

963

__libc_start_main
0 (0.0%)

of 516 (52.7%)

main
0 (0.0%)

of 516 (52.7%)

516

_start
0 (0.0%)

of 516 (52.7%)

516

cliMain
0 (0.0%)

of 516 (52.7%)

runKmeansBenchmark
0 (0.0%)

of 516 (52.7%)

516

516

KMeans
loopParallel

0 (0.0%)
of 505 (51.6%)

505

vector
(inline)

0 (0.0%)
of 11 (1.1%)

5

KMeans
0 (0.0%)

of 6 (0.6%)

6

00007fb760d7124c
0 (0.0%)

of 505 (51.6%)

505

tbb
task

spawn_root_and_wait
(inline)

0 (0.0%)
of 505 (51.6%)

505

505

00007fb760d6da28
0 (0.0%)

of 463 (47.3%)

tbb
internal

tbb_thread_v3
join
0 (0.0%)

of 463 (47.3%)

463

00007fb760d6f10a
0 (0.0%)

of 463 (47.3%)

00007fb760d6f6ba
0 (0.0%)

of 463 (47.3%)

463

463

__clone
0 (0.0%)

of 463 (47.3%)

start_thread
0 (0.0%)

of 463 (47.3%)

463

463

tbb
internal

tbb_thread_v3
join

(inline)
0 (0.0%)

of 463 (47.3%)

463

463

6482

_Construct
(inline)

0 (0.0%)
of 11 (1.1%)

12

__uninit_copy
(inline)

0 (0.0%)
of 11 (1.1%)

12

__uninitialized_copy_a
(inline)

0 (0.0%)
of 11 (1.1%)

uninitialized_copy
(inline)

0 (0.0%)
of 11 (1.1%)

16

16

9

_Vector_base
(inline)

0 (0.0%)
of 8 (0.8%)

8

_IO_str_pbackfail
9 (0.9%) 9

malloc
0 (0.0%)

of 9 (0.9%)

9

operator
new

0 (0.0%)
of 9 (0.9%)

9

std
_Vector_base
_M_allocate

(inline)
0 (0.0%)

of 8 (0.8%)

8

__gnu_cxx
new_allocator

allocate
(inline)

0 (0.0%)
of 8 (0.8%)

8

8

std
vector

operator=
0 (0.0%)

of 6 (0.6%)

6

std
vector

_M_allocate_and_copy
0 (0.0%)

of 6 (0.6%)

7

6

Figure B.6: K-means callgraph

B-8

B.1. CLUSTER QUALITY

pa ra sp ikes
Total samples : 1452
Focusing on: 1452
Dropped nodes wi th <= 7 abs (samples)
D r o p p e d e d g e s w i t h < = 1 s a m p l e s

0 0 0 0 7 f f f f 6 e 4 6 7 7 e
0 (0 . 0 %)

o f 1 4 5 1 (9 9 . 9 %)

t b b
i n t e r n a l

s t a r t _ f o r
e x e c u t e

0 (0 . 0 %)
o f 1 4 5 1 (9 9 . 9 %)

1 4 5 1

Plo tSuscept ib i l i ty
o p e r a t o r

0 (0 . 0 %)
o f 1 4 5 1 (9 9 . 9 %)

Spc
calculateSusceptibili ty

234 (16 .1%)
of 1435 (98.8%)

1 4 3 5

s t d
__cxx1998

vec tor
opera tor []
136 (9 .4%)

of 144 (9.9%)

6

s t d
__cxx1998

vec to r
s ize

65 (4 .5%)
of 85 (5 .9%)

7

1 4 5 1

2 3 4

R a n d o m G e n e r a t o r
r andInRange

8 (0 .6%)
of 931 (64 .1%)

9 2 51 1 7

5 9

ClusterCollection
ass ign

2 (0.1%)
of 30 (2.1%)

3 0

R a n d o m G e n e r a t o r
r andFrac

1 (0.1%)
of 19 (1.3%)

1 9

ClusterCollection
s ta r tC lus te r

1 (0 .1%)
of 18 (1.2%)

1 7

ClusterCollection
r e s e t

9 (0.6%)
of 14 (1.0%)

1 3

s t d
_ D e s t r o y _ a u x

_ _ d e s t r o y
0 (0 . 0 %)

of 12 (0 .8%)

8

3

b o o s t
va r i a t e_genera to r

o p e r a t o r
5 (0 . 3 %)

o f 9 2 4 (6 3 . 6 %)

9 2 2

4

b o o s t
uniform_smallint

ope ra to r
690 (47 .5%)

of 914 (62.9%)

9 1 4

boos t
r andom

detai l
pass_ through_engine

m a x
21 (1 .4%)

of 66 (4.5%)

3

6 9 3

boos t
r a n d o m

detai l
pass_ through_engine

m i n
30 (2 .1%)

of 99 (6.8%)

9 6

b o o s t
r a n d o m

detail
pas s_ th rough_eng ine

o p e r a t o r
8 (0 .6%)

of 83 (5 .7%)

6 9

5 7

S p c
plo tSuscep t ib i l i ty

0 (0 . 0 %)
o f 7 4 4 (5 1 . 2 %)

t b b
pa ra l l e l_ fo r

0 (0 . 0 %)
o f 7 4 4 (5 1 . 2 %)

7 4 4

__ l ibc_s ta r t_main
0 (0 . 0 %)

o f 7 4 4 (5 1 . 2 %)

m a i n
0 (0 . 0 %)

o f 7 4 4 (5 1 . 2 %)

7 4 4

_ s t a r t
0 (0 . 0 %)

o f 7 4 4 (5 1 . 2 %)

7 4 4

cliMain
0 (0 . 0 %)

o f 7 4 4 (5 1 . 2 %)

7 4 4

7 4 4

t b b
i n t e r n a l

s t a r t _ f o r
r u n
0 (0 . 0 %)

o f 7 4 4 (5 1 . 2 %)

t b b
t a s k

s p a w n _ r o o t _ a n d _ w a i t
0 (0 . 0 %)

o f 7 4 3 (5 1 . 2 %)

7 4 3

7 4 4

0 0 0 0 7 f f f f 6 e 4 5 6 3 c
0 (0 . 0 %)

o f 7 4 3 (5 1 . 2 %)

7 4 3

7 4 3

0 0 0 0 7 f f f f 6 e 4 0 e e e
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

0 0 0 0 7 f f f f 6 e 4 2 d 4 a
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

7 0 8

0 0 0 0 7 f f f f 6 e 4 1 0 c 8
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

7 0 8

0 0 0 0 7 f f f f 6 e 4 3 5 5 4
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

7 0 8

7 0 8

__c lone
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

s t a r t _ t h r e a d
0 (0 . 0 %)

o f 7 0 8 (4 8 . 8 %)

7 0 8

7 0 8

1 1 5

8

7 0

b o o s t
r a n d o m

detai l
pass_ through_engine

b a s e
52 (3 .6%)

of 98 (6.7%)

5 0

5

5

b o o s t
r a n d o m

detai l
p t r_he lper

ref
40 (2 .8%)

of 47 (3 .2%)

5

boos t
r a n d o m

const_mod
m o d

17 (1 .2%)
of 22 (1.5%)

5

boos t
r a n d 4 8

m i n
1 1 (0 . 8 %)

of 18 (1 .2%)

6

7

4 4

1 1

2 8

2 0

4 9

1 5

6 2

3

b o o s t
r a n d 4 8

o p e r a t o r
5 (0 . 3 %)

o f 5 4 (3 . 7 %)

4 3

1 1

2

2 6

5 4

3

6

b o o s t
r a n d 4 8

m a x
10 (0.7%)

of 17 (1.2%)

1 0

2

boos t
r a n d o m

linear_congruential
opera to r

18 (1.2%)
of 51 (3.5%)

4 9

1 6

b o o s t
r a n d o m

cons t_mod
mult_add
16 (1 .1%)

of 33 (2.3%)

3 3

7

2 4

2 0

1 7

2

s t d
__cxx1998

vector
push_back

2 (0.1%)
of 29 (2.0%)

2 7

s t d
__cxx1998

vector
_M_insert_aux

2 (0.1%)
of 26 (1.8%)

2 6

2

s t d
__cxx1998

_Vector_base
_M_allocate

1 (0.1%)
of 9 (0.6%)

9

1 3

5

boos t
de ta i l

n e w _ u n i f o r m _ 0 1
o p e r a t o r

1 1 (0 . 8 %)
of 18 (1 .2%)

1 6

s t d
__cxx1998

v e c t o r
r e s i z e
0 (0 . 0 %)

of 16 (1 .1%)

1 5

7

1 0

6

7

3

s t d
numeric_limits

m a x
9 (0.6%)

2

2

s t d
__cxx1998

v e c t o r
i n s e r t
0 (0 . 0 %)

of 14 (1 .0%)

1 4

9

s t d
__cxx1998

vec to r
_M_fill_insert

1 (0 .1%)
of 12 (0.8%)

1 2

8

vector
2 (0.1%)

of 8 (0.6%)

5

__gnu_cxx
new_al locator

a l l oca t e
1 (0.1%)

of 8 (0.6%)

8

s t d
__unini t ia l ized_copy_a

0 (0 . 0 %)
of 9 (0 .6%)

s t d
uninitialized_copy

1 (0.1%)
of 8 (0.6%)

8

3

3

Figure B.7: SPC callgraph – inner part of the algorithm

B-9

APPENDIX B. RESULTS

B-10

APPENDIX C

Screenshots

This appendix contains screenshots from the different parts of the GUI
application, as well as a listing of output from the command line interface.

C-1

APPENDIX C. SCREENSHOTS

Listing C.1: Command line interface: help screen� �
1 $. / para sp ike s −h
2 Paraspikes , b u i l t : Jun 10 2011 1 7 : 5 6 : 14
3 ==========
4 Usage : . / para sp ike s [opt i ons]
5 No opt ions ==> GUI
6
7 −f [f i l ename] F i l e to load
8 −g [f i l ename] C u t f i l e
9 −r [reducIdx] Which reduct ion to use (s ee t r a i l i n g l i s t)

10 −c [c lu s tA lgo] Which c l u s t e r i n g a lgo to use
11 SPC (s)
12 −[f loat Le f t l i m i t
13 −] f loat Right l i m i t
14 − f loat Step
15 K means (k)
16 −n int Centro ids
17 −P int Cutof f
18 −a ASCII input (default : Axona)
19 −b Run benchmark s u i t e
20 −I Num i t e r a t i o n s
21 −S Srand (0)
22 −C Num cor e s enabled
23 −h You j u s t did
24
25 Reductions
26 0 : No reduct ion
27 1 : Wavelet trans form (f i r s t)
28 2 : Wavelet trans form (f i r s t per channel)
29 3 : Wavelet (KS)
30 4 : Wavelet (KS supe rv i s ed)
31 5 : Wavelet trans form (h ighe s t)
32 6 : PCA
33 7 : PCA per channel
34 8 : Peaks o f channe l s
35 9 : Energy PCA
36 10 : Sca l e by energy (no reduct ion)� �

C-2

Figure C.1: GUI: Main window.

C-3

APPENDIX C. SCREENSHOTS

Figure C.2: GUI: Comparing original signal and reverse of wavelet transform.

Figure C.3: GUI: SPC tab when run with Iris dataset.

C-4

Figure C.4: GUI: Clustering results tab, displaying results for a clustering of
the 180501 dataset.

C-5

APPENDIX C. SCREENSHOTS

Figure C.5: GUI: 2D plot of a clustering performed on the 180501 dataset.

C-6

APPENDIX D

Source code

This appendix describes the structure of the source code which makes
up our application. We have chosen only to include some excerpts from the
code, as we think reading source code on paper provides little benefit.

Instead, we give a short guide on how to compile and execute our source
code, so that the readers may try the application themselves. We also include
a few class diagrams to show dependencies between classes in the code base.

The code is delivered in an archive together with the report, and is made
available through DAIM1.

D.1 Introduction to the code base

The libraries needed to execute our code have been chosen because of porta-
bility and being open-source software. Hence, one should be able to compile
and run the program on both GNU/Linux, Windows and Mac OSX. We
have, however, only tested the application on Linux.

The libraries which usually are not installed by default, are supplied in
the archive submitted with the report. In addition, you may need to install
Qt4, depending on whether your OS distribution already has this installed.

Compilation may be done using any newer C++ compiler, but we have
only tested with GNU g++ 4.4.* and 4.5.*.

To build the application, extract the archive and go to the subfolder
libs. Here, type make to compile the necessary libraries. Then, go to
qtParaspikes/qtParaspikes, and type qmake; make. Depending on your
Qt4 settings, you will find the executable in either qtParaspikes/qtParaspikes/debug

1http://daim.idi.ntnu.no

D-1

http://daim.idi.ntnu.no

APPENDIX D. SOURCE CODE

or qtParaspikes/qtParaspikes-build-desktop/debug. When in this folder,
type LD LIBRARY PATH=. ./paraspikes to start the application. To use
the command line interface, add -h as a parameter, to get information about
usage.

D-2

D.2. CLASS DIAGRAMS

D.2 Class diagrams

The figures in this section are class diagrams describing interesting parts
of our application. We only include class methods, as including member
variables would make very verbose figures. See the next section for listing
of some source code, or see the previous section for information on how to
obtain and use the complete source code.

libQwt

Qt

QwtPlot

setData(XyCollectionPlot data)

signals:

temperatureChanged(double temperature)

slots:

handleClick(const QPointF &point)

setTemperature(double temperature)

ClusterSizePlot

setSuPlot(XyPlot &plot)

signals:

temperatureChanged(double temperature)

slots:

handleClick(const QPointF &point)

setTemperature(double temperature)

SusceptibilityPlotWidget

addFormats(QStringList formats)

signals:

fileNameChanged(QString filename, int index)

openFile(QString filename, int index)

slots:

on_pushButton_clicked()

on_selectFileButton_clicked()

FileChooser

signals:

fileNameChanged(QString filename, int index)

openFile(QString filename, int index)

slots:

on_pushButton_clicked()

on_selectFileButton_clicked()

ReductionChooser

QWidget

setData(XyCollectionPlot data)

signals:

viewDataset(InputDataset *dataset)

slots:

setDataset(InputDataset *dataset)

DatasetInformation

DatasetViewer(InputDataset *dataset)

DatasetViewer

QWindow

MainWindow

Figure D.1: Class diagram of GUI components

D-3

APPENDIX D. SOURCE CODE

vector<vector<int> > lastComputedClusters

vector<int> clusterIds

vector<vector<double> >points

<<Interface>>

ClusteringAlgorithm

MainWindow

Spc KMeans

Figure D.2: Class diagram of clustering algorithms (overview)

libTBB

Spc(vector<vector<double> > points)

XyPlot* plotSusceptibility(double minTemperature, double maxTemperature,

double step)

void buildKdtree()

void determineClosestNeighborsAndInteractionStrengths(int nNearestNeighbors)

void removeImmutualNeighborsAndBackNeighbors();

void searchKdTreeAndCopyNeighborData(unsigned int nNearestNeighbors)

void calculateInteractionStrengths(unsigned int pairs, double avgDistance)

vector<vector<double> > calculateProbabilityValues(double temperature)

double calculateEnergy(int *spins)

double calculateSusceptibility(const double temperature,

bool determineSpinSpinCorrelation, RandomGenerator *innerRandom,

bool printClusteringResults = false, int* spins = NULL);

Spc

RandomGenerator(double min, double max, int seed=0)

double randFrac()

int randInRange()

RandomGenerator

libBoost
ClusterCollection(int nPoints)

bool isAssignedToCluster(int index)

int getContainingCluster(int index)

int getAssignedClustersCount()

void assign(int clusterIndex, int pointIndex)

int startCluster()

void markMergeClustersForPointIndexes(int a, int b)

void doMerge()

void removeEmptyClusters()

ClusterCollection

void insert(double x, double y)

XyPlot

concurrent_hash_map

libANN

STANN

Figure D.3: Class diagram of SPC

D-4

D.3. SOURCE CODE LISTINGS

libTBB

KMeans(vector<vector<double> > points, int numCentroids, int cutoff)

void loopParallel()

void loopSerial()

void initCentroids()

void classifyPoints(int start, int count, int *pointsUpdated,

float *tempNewClusters,

Uint32 *tempNewClusterSize)

void OnLoop()

KMeans

task

KMeansTask(KMeans *_km, int start, int

_numPoints, int *_numUpdatedPoints,

int _serialThreshold,

float *_tempNewClusters,

Uint32 *_tempNewClusterSize)

task execute()

KMeansTask

Centroid

Figure D.4: Class diagram of k-means

D.3 Source code listings

Here follows a small subset of our source code, describing the most important
parts of the application.

Listing D.1: The code that matches two clusterings to each other� �
1 bool unique path (int ∗path , int v , int l e v e l)
2 {
3 for (int i = 0 ; i < l e v e l ; ++i)
4 i f (path [i] == v)
5 return fa l se ;
6
7 return true ;
8 }
9

10 void compute shor t e s t pa th rec (f loat ∗ t , int ∗path , f loat
l ength , int ∗ shortestPath , f loat ∗ shortestLength , int l e v e l ,
int manualCutMaxLevel , int autoCutMaxLevel)

11 {
12 f loat l o ca lLength ;
13
14 for (int a = 0 ; a < autoCutMaxLevel ; ++a) {
15 i f (! unique path (path , a , l e v e l))
16 continue ;

D-5

APPENDIX D. SOURCE CODE

17
18 int ∗ l o ca lPath = new int [manualCutMaxLevel] ;
19 memcpy(loca lPath , path , s izeof (int) ∗ manualCutMaxLevel) ;
20
21 loca lPath [l e v e l] = a ;
22 loca lLength = length + t [l oca lPath [l e v e l] +

autoCutMaxLevel∗ l e v e l] ;
23
24 i f (l oca lLength > ∗ shorte s tLength)
25 continue ;
26
27 i f (l e v e l == (manualCutMaxLevel−1)) {
28 i f (l oca lLength < ∗ shor te s tLength) {
29 ∗ shor te s tLength = loca lLength ;
30 for (int i = 0 ; i < manualCutMaxLevel ; ++i)
31 shorte s tPath [i] = loca lPath [i] + autoCutMaxLevel∗ i ;
32 }
33 } else {
34 compute shor t e s t pa th rec (t , loca lPath , loca lLength ,

shortestPath , shortestLength , l e v e l +1,
manualCutMaxLevel , autoCutMaxLevel) ;

35 }
36
37 delete l o ca lPath ;
38 }
39 }
40
41 // p r i n t s manual X auto (row X co l)
42 f loat s im i l a r i t ySumOfDi f f e r ence s (double ∗manualCutData ,

unsigned int numManualCutData , double ∗autoCutData , unsigned
int numAutoCutData , int numDimensions , std : : vector<int> &out)

43 {
44 int numAutoCutDataZeroPadded = numAutoCutData ;
45 i f (numAutoCutData < numManualCutData)
46 numAutoCutDataZeroPadded = numManualCutData ;
47
48 f loat ∗ s i m i l a r i t y M a t r i x = new float [numManualCutData ∗

numAutoCutDataZeroPadded] ;
49 memset (s im i l a r i t yMat r i x , 0 , s izeof (f loat) ∗ numManualCutData

∗ numAutoCutDataZeroPadded) ;
50
51 std : : cout << ”Sum of abso lu t e d i f f e r e n c e s (c u t t e r x kmeans in

” << numManualCutData << ” x ” << numAutoCutData << ”) : ”
<< std : : endl ;

52 std : : cout << ”\ t ” ;
53 for (int i = 0 ; i < numAutoCutDataZeroPadded ; ++i)
54 std : : cout << ” ” << std : : setw (10) <<

std : : s e t i o s f l a g s (std : : i o s : : f i x e d) <<
std : : s e t p r e c i s i o n (2) << i ;

D-6

D.3. SOURCE CODE LISTINGS

55 std : : cout << std : : endl ;
56
57 for (unsigned int a = 0 ; a < numManualCutData ; ++a) {
58 std : : cout << ”\ t ” << a << ” : ” ;
59 for (unsigned int b = 0 ; b < numAutoCutData ; ++b) {
60 f loat d i f f = 0 ;
61 for (int dimension = 0 ; dimension < numDimensions ;

++dimension) {
62 d i f f += fabs (manualCutData [a ∗ numDimensions +

dimension] − autoCutData [b ∗ numDimensions +
dimension]) ;

63 }
64 std : : cout << ” ” << std : : setw (10) <<

std : : s e t i o s f l a g s (std : : i o s : : f i x e d) <<
std : : s e t p r e c i s i o n (2) << (d i f f) ;

65 s i m i l a r i t y M a t r i x [a ∗ numAutoCutDataZeroPadded + b] = d i f f ;
66 }
67 std : : cout << std : : endl ;
68 }
69
70 int pathLength = numManualCutData ;
71
72 std : : cout << ” pathlength : ” << pathLength << std : : endl ;
73
74 int ∗path = new int [pathLength] ;
75 memset (path , −1, s izeof (int) ∗ pathLength) ;
76 f loat l ength = FLT MAX;
77
78 int ∗ l o ca lPath = new int [pathLength] ;
79 memset (loca lPath , −1, s izeof (int) ∗ pathLength) ;
80 f loat l o ca lLength = 0 ;
81 compute shor t e s t pa th rec (s im i l a r i t yMat r i x , loca lPath ,

loca lLength , path , &length , 0 , pathLength ,
numAutoCutDataZeroPadded) ;

82
83 std : : cout << ” Shor t e s t path :\n” ;
84 f loat t o t a l l e n g t h = 0 ;
85
86 out . c l e a r () ;
87 out . r e s i z e (pathLength) ;
88 for (int i = 0 ; i < pathLength ; ++i) {
89 out [i] = path [i] % numAutoCutData ;
90 std : : cout << ” (” << i << ” , ” << path [i] %

numAutoCutDataZeroPadded << ”) : ” <<
s i m i l a r i t y M a t r i x [path [i]] << std : : endl ;

91 t o t a l l e n g t h += s i m i l a r i t y M a t r i x [path [i]] ;
92 }
93
94 std : : cout << ” Total l ength : ” << t o t a l l e n g t h << std : : endl ;

D-7

APPENDIX D. SOURCE CODE

95
96 delete [] s i m i l a r i t y M a t r i x ;
97 delete [] l o ca lPath ;
98 delete [] path ;
99

100 return t o t a l l e n g t h ;
101 }� �

Listing D.2: The main parts of the k-means source code� �
1 int KMeans : : l o o p S e r i a l () {
2 int numUpdatedPoints = 0 ;
3
4 f loat ∗ tempNewClusters = new float [numCentroids ∗

nDimensions] ;
5 Uint32 ∗ tempNewClusterSize = new Uint32 [numCentroids] ;
6 memset (tempNewClusters , 0 , s izeof (f loat) ∗ numCentroids ∗

nDimensions) ;
7 memset (tempNewClusterSize , 0 , s izeof (Uint32) ∗ numCentroids) ;
8
9 c l a s s i f y P o i n t s (0 , numPoints , &numUpdatedPoints ,

tempNewClusters , tempNewClusterSize) ;
10
11
12 for (int c en t r o id = 0 ; c en t r o id < numCentroids ; ++cen t ro id)
13 for (int dimension = 0 ; dimension < nDimensions ; ++dimension)
14 c e n t r o i d s [c en t r o id] . pos [dimension] =

tempNewClusters [c en t r o id ∗nDimensions + dimension] /
tempNewClusterSize [c en t r o id] ;

15
16 convergenceStatus = ((f loat) numUpdatedPoints /(f loat) numPoints

< CONVERGENCE DELTA) ;
17
18 delete [] tempNewClusters ;
19 delete [] tempNewClusterSize ;
20
21 return ++numIterationsRun ;
22 }
23
24 int KMeans : : l o o p P a r a l l e l () {
25 int numUpdatedPoints = 0 ;
26
27 f loat ∗ tempNewClusters = new float [numCentroids ∗

nDimensions] ;
28 Uint32 ∗ tempNewClusterSize = new Uint32 [numCentroids] ;
29 memset (tempNewClusters , 0 , s izeof (f loat) ∗ numCentroids ∗

nDimensions) ;
30 memset (tempNewClusterSize , 0 , s izeof (Uint32) ∗ numCentroids) ;
31

D-8

D.3. SOURCE CODE LISTINGS

32 KMeansTask &a = ∗new (task : : a l l o c a t e r o o t ()) KMeansTask(this ,
0 , numPoints , &numUpdatedPoints , this−>cu to f f ,
tempNewClusters , tempNewClusterSize) ;

33 KMeansTask : : spawn root and wait (a) ;
34
35 convergenceStatus = ((f loat) numUpdatedPoints /(f loat) numPoints

< CONVERGENCE DELTA) ;
36
37 for (int c en t r o id = 0 ; c en t r o id < numCentroids ; ++cen t ro id)
38 for (int dimension = 0 ; dimension < nDimensions ; ++dimension)
39 c e n t r o i d s [c en t r o id] . pos [dimension] =

tempNewClusters [c en t r o id ∗nDimensions + dimension] /
tempNewClusterSize [c en t r o id] ;

40
41 delete [] tempNewClusters ;
42 delete [] tempNewClusterSize ;
43
44 return ++numIterationsRun ;
45 }
46
47 void KMeans : : OnLoop () {
48 stat ic boost : : t imer time ;
49
50 i f (convergenceStatus == 2)
51 return ;
52
53 i f (! numIterationsRun)
54 time . r e s t a r t () ;
55
56 i f (convergenceStatus == 0) {
57 numIterationsRun = l o o p P a r a l l e l () ;
58 } else i f (convergenceStatus == 1) {
59 std : : cout << ”Converged in ” << numIterationsRun << ”

i t e r a t i o n s . ” << std : : endl ;
60 std : : cout << ”Time taken : ” << time . e l apsed () << ” s e c s .\n”

<< std : : endl ;
61 convergenceStatus = 2 ;
62 }
63 }
64
65 void KMeans : : c l a s s i f y P o i n t s (int s ta r t , int count , int

∗pointsUpdated , f loat ∗ tempNewClusters , Uint32
∗ tempNewClusterSize) {

66 Uint32 po int = s t a r t ;
67 int dimension , c l o s e s tCent ro id , c en t r o id ;
68 f loat di s tance , tempDistance ;
69
70 for (std : : vector<std : : vector<double> > : : c o n s t i t e r a t o r i t =

po in t s . begin ()+s t a r t ; i t != po in t s . begin ()+s t a r t+count ;

D-9

APPENDIX D. SOURCE CODE

++it , ++point) {
71 d i s t ance = FLT MAX;
72 c l o s e s t C e n t r o i d = −1;
73 for (c en t r o id = 0 ; c en t r o id < numCentroids ; ++cen t ro id) {
74 tempDistance = 0 ;
75 for (dimension = 0 ; dimension < nDimensions ; ++dimension)
76 tempDistance += ((∗ i t) [dimension] −

c e n t r o i d s [c en t r o id] . pos [dimension]) ∗
((∗ i t) [dimension] −
c e n t r o i d s [c en t r o id] . pos [dimension]) ;

77
78 i f (tempDistance < d i s t anc e) {
79 c l o s e s t C e n t r o i d = cen t ro id ;
80 d i s t ance = tempDistance ;
81 }
82 }
83 i f (c l u s t e r I d s [po int] != c l o s e s t C e n t r o i d) {
84 c l u s t e r I d s [po int] = c l o s e s t C e n t r o i d ;
85 ++(∗pointsUpdated) ;
86 }
87 for (dimension = 0 ; dimension < nDimensions ; ++dimension) {
88 tempNewClusters [c l o s e s t C e n t r o i d ∗ nDimensions +

dimension] += (∗ i t) [dimension] ;
89 // tempNewClusters [c l o s e s tCen t r o i d ∗ nDimensions +

dimension] += arrayPoints [po in t ∗nDimensions +
dimension] ;

90 }
91 ++tempNewClusterSize [c l o s e s t C e n t r o i d] ;
92
93 a s s e r t (c l u s t e r I d s [po int] > −1) ;
94 }
95 }
96
97 void KMeans : : i n i t C e n t r o i d s () {
98 f loat ∗ c o l o r ;
99

100 i f (rawCentroids)
101 delete [] rawCentroids ;
102 rawCentroids = new float [numCentroids ∗ nDimensions] ;
103
104 i f (c e n t r o i d s)
105 delete [] c e n t r o i d s ;
106 c e n t r o i d s = new Centroid [numCentroids] ;
107
108 for (int c en t r o id = 0 ; c en t r o id < numCentroids ; ++cen t ro id)
109 c e n t r o i d s [c en t r o id] . pos =

&rawCentroids [c en t r o id ∗nDimensions] ;
110
111 std : : set<int> takenPoints ;

D-10

D.3. SOURCE CODE LISTINGS

112 for (int c en t r o id = 0 ; c en t r o id < numCentroids ; ++cen t ro id) {
113 //uncomment the f o l l ow i n g to ge t a random i n i t
114 int index = rand () % numPoints ;
115
116 //don ’ t i n i t >1 c l u s t e r to the same po in t
117 while (f i n d (takenPoints . begin () , takenPoints . end () , index)

!= takenPoints . end ())
118 index = rand () % numPoints ;
119
120 takenPoints . i n s e r t (index) ;
121
122 for (int dimension = 0 ; dimension < nDimensions ;

++dimension) {
123 // the f i r s t i n i t s a random place , the second on a random

po in t .
124 // the l a t t e r guarantees t ha t every cen t ro i d w i l l have at

l e a s t one po in t ass igned , GIVEN tha t each po in t i s
unique . . .

125 // c en t r o i d s [c en t ro i d] . pos [dimension] = ((rand () % 1000) /
1000.0 f) ∗ (maxPoints [dimension] −
minPoints [dimension]) ;

126 c e n t r o i d s [c en t r o id] . pos [dimension] =
po in t s [index] [dimension] ;

127 }
128
129
130 c o l o r = c e n t r o i d s [c en t r o id] . c o l o r ;
131 switch (c en t r o id) {
132
133 case 0 :
134 c o l o r [0] = 1 .0 f ;
135 c o l o r [1] = 1 .0 f ;
136 c o l o r [2] = 1 .0 f ;
137 break ;
138 case 1 :
139 c o l o r [0] = 1 .0 f ;
140 c o l o r [1] = 0 .0 f ;
141 c o l o r [2] = 1 .0 f ;
142 break ;
143 case 2 :
144 c o l o r [0] = 0 .0 f ;
145 c o l o r [1] = 1 .0 f ;
146 c o l o r [2] = 1 .0 f ;
147 break ;
148 case 3 :
149 c o l o r [0] = 0 .0 f ;
150 c o l o r [1] = 0 .0 f ;
151 c o l o r [2] = 1 .0 f ;
152 break ;

D-11

APPENDIX D. SOURCE CODE

153 case 4 :
154 c o l o r [0] = 1 .0 f ;
155 c o l o r [1] = 0 .0 f ;
156 c o l o r [2] = 0 .0 f ;
157 break ;
158 case 5 :
159 c o l o r [0] = 0 .0 f ;
160 c o l o r [1] = 1 .0 f ;
161 c o l o r [2] = 0 .0 f ;
162 break ;
163 default :
164 c o l o r [0] = (rand () % 100) / 100 .0 f ;
165 c o l o r [1] = (rand () % 100) / 100 .0 f ;
166 c o l o r [2] = (rand () % 100) / 100 .0 f ;
167 }
168 }
169 }
170
171
172 KMeansTask : : KMeansTask(KMeans ∗ km , int s t a r t , int numPoints ,

int ∗ numUpdatedPoints , int s e r i a l T h r e s h o l d , f loat
∗ tempNewClusters , Uint32 ∗ tempNewClusterSize) :

173 s e r i a l T h r e s h o l d (s e r i a l T h r e s h o l d) ,
174 numPoints (numPoints) ,
175 numUpdatedPoints (numUpdatedPoints) ,
176 s t a r t (s t a r t) ,
177 km(km) ,
178 tempNewClusters (tempNewClusters) ,
179 tempNewClusterSize (tempNewClusterSize)
180 {
181 }
182
183 task ∗KMeansTask : : execute () {
184 #ifde f PROFILEKM
185 P ro f i l e r Reg i s t e rTh re ad () ;
186 #endif
187 i f (numPoints < s e r i a l T h r e s h o l d) {
188 km−>c l a s s i f y P o i n t s (s ta r t , numPoints , numUpdatedPoints ,

tempNewClusters , tempNewClusterSize) ;
189 return NULL;
190 }
191
192 int spl itNumPoints = numPoints / 2 ;
193
194 int numUpdatedPointsTask1 = 0 ;
195 int numUpdatedPointsTask2 = 0 ;
196
197 int s i z e = km−>numCentroids ∗ km−>nDimensions ;
198

D-12

D.3. SOURCE CODE LISTINGS

199 f loat ∗ tempNewClusters1 = new float [s i z e] ;
200 Uint32 ∗ tempNewClusterSize1 = new Uint32 [km−>numCentroids] ;
201 memset (tempNewClusters1 , 0 , s izeof (f loat) ∗ s i z e) ;
202 memset (tempNewClusterSize1 , 0 , s izeof (Uint32) ∗

km−>numCentroids) ;
203
204 f loat ∗ tempNewClusters2 = new float [s i z e] ;
205 Uint32 ∗ tempNewClusterSize2 = new Uint32 [km−>numCentroids] ;
206 memset (tempNewClusters2 , 0 , s izeof (f loat) ∗ s i z e) ;
207 memset (tempNewClusterSize2 , 0 , s izeof (Uint32) ∗

km−>numCentroids) ;
208
209 KMeansTask &subTask1 = ∗new (a l l o c a t e c h i l d ())

KMeansTask(this−>km, s ta r t , spl itNumPoints ,
&numUpdatedPointsTask1 , s e r i a lThre sho ld , tempNewClusters1 ,
tempNewClusterSize1) ;

210
211 int o f f s e t = spl itNumPoints ;
212 i f (numPoints % 2)
213 o f f s e t += 1 ;
214
215 KMeansTask &subTask2 = ∗new (a l l o c a t e c h i l d ())

KMeansTask(this−>km, s t a r t+splitNumPoints , o f f s e t ,
&numUpdatedPointsTask2 , s e r i a lThre sho ld , tempNewClusters2 ,
tempNewClusterSize2) ;

216
217 s e t r e f c o u n t (3) ;
218 spawn (subTask2) ;
219
220 s p a w n a n d w a i t f o r a l l (subTask1) ;
221
222 ∗numUpdatedPoints = numUpdatedPointsTask1 +

numUpdatedPointsTask2 ;
223
224 for (int c en t r o id = 0 ; c en t r o id < km−>numCentroids ;

++cen t ro id) {
225 for (int dimension = 0 ; dimension < km−>nDimensions ;

++dimension) {
226 int index = cen t ro id ∗ km−>nDimensions + dimension ;
227 tempNewClusters [index] = tempNewClusters1 [index] +

tempNewClusters2 [index] ;
228 }
229 tempNewClusterSize [c en t r o id] =

tempNewClusterSize1 [c en t r o id] +
tempNewClusterSize2 [c en t r o id] ;

230 }
231
232 delete [] tempNewClusters1 ;
233 delete [] tempNewClusters2 ;

D-13

APPENDIX D. SOURCE CODE

234 delete [] tempNewClusterSize1 ;
235 delete [] tempNewClusterSize2 ;
236
237 return NULL;
238 }� �

Listing D.3: The main parts of the SPC source code� �
1 #define NDEBUG
2 #ifndef NDEBUG
3 #define D(a) std : : cout << (a) << std : : endl ;
4 #else
5 #define D(a) ;
6 #endif
7
8 #ifndef MST DIMENSION
9 #define MST DIMENSION 16

10 #endif
11
12 tbb : : mutex printMutex ;
13
14 typedef struct beginend {
15 const int a , b ;
16 int begin () const { return a ; }
17 int end () const { return b ; }
18 } beginend ;
19
20 #define SERIAL FOR START(s ta r t , end) beginend r = { s t a r t ,

end } ;
21 #define SERIAL FOR END()
22
23 Spc : : Spc (std : : vector<std : : vector<double> > po in t s) {
24 unsigned int nNearestNeighbors = 11 ;
25
26 i f (po in t s . s i z e () <= nNearestNeighbors) {
27 nNearestNeighbors = po in t s . s i z e () − 1 ; // can max have

nPoints − i t s e l f num of ne i ghbors
28 std : : cout << ”Reducing number o f ne ighbors to ” <<

nNearestNeighbors << ” because the datase t i s too
smal l . ” << std : : endl ;

29 }
30
31 thetaForGi j = (nSpinStates ∗ theta −1)/(nSpinStates −1) ;
32 this−>po in t s = po in t s ;
33 nPoints = (unsigned int) po in t s . s i z e () ;
34 nDimensions = (unsigned int) po in t s [0] . s i z e () ;
35
36 c l u s t e r I d s . r e s i z e (nPoints) ;
37

D-14

D.3. SOURCE CODE LISTINGS

38 s u s c e p t i b i l i t y P l o t = new XyPlot () ;
39 c o r r e l a t i o n C l u s t e r S i z e s P l o t = new XyCol l ec t ionPlot () ;
40 s h o u l d C a n c e l S u s c e p t i b i l i t y P l o t = fa l se ;
41
42 randomGen = new RandomGenerator (0 , nSpinStates −1) ;
43
44 bui ldKdtree () ;
45 D(” b u i l t t r e e ”) ;
46 dete rmineClose s tNe ighborsAndInteract ionStrengths (

nNearestNeighbors) ;
47 D(” found ne ighbors ”) ;
48
49 in i t i a lGuessTemperature = round (1000 .0 ∗ exp (−0.5) / (4∗ l og (1

+ s q r t (nSpinStates)))) / 1 0 0 0 . 0 ;
50 std : : cout << ”Guess temp : ” << in i t i a lGuessTemperature <<

std : : endl ;
51 }
52
53 void Spc : : bui ldKdtree () {
54 kdPoints = annAllocPts (nPoints , nDimensions) ; // data po in t s
55 for (int i = 0 ; i < nPoints ; i++) {
56 for (int j = 0 ; j < nDimensions ; j++) {
57 kdPoints [i] [j] = po in t s [i] [j] ;
58 }
59 }
60
61 kdTree = new ANNkd tree (kdPoints , nPoints , nDimensions) ;
62 }
63
64 void

Spc : : dete rmineClose s tNe ighborsAndInteract ionStrengths (unsigned
int nNearestNeighbors) {

65 searchKdTreeAndCopyNeighborData (nNearestNeighbors) ;
66 removeImmutualNeighborsAndBackNeighbors () ;
67 addMstToNeighborGraph () ; // comment to remove mst
68 checkConnectedNeighborGraph () ;
69
70 // Determine average neighbor−d i s t ance (a)
71 unsigned int p a i r s = 0 ;
72 double avgDistance = 0 . 0 ;
73 for (int i = 0 ; i < nPoints ; i++) {
74 p a i r s += (unsigned int) (((ne ighborDis tances [i] . s i z e ()))) ;
75 for (unsigned int j = 0 ; j < ne ighborDis tances [i] . s i z e () ;

j++) {
76 avgDistance += ne ighborDi s tances [i] [j] ;
77 }
78 }
79
80 avgDistance /= p a i r s ;

D-15

APPENDIX D. SOURCE CODE

81 c a l c u l a t e I n t e r a c t i o n S t r e n g t h s (pa i r s , avgDistance) ;
82 }
83
84 void Spc : : searchKdTreeAndCopyNeighborData (unsigned int

nNearestNeighbors) {
85 tbb : : t i c k c o u n t s t a r t = tbb : : t i c k c o u n t : : now () ;
86
87 unsigned int K1 = nNearestNeighbors + 1 ; // search f o r one

more , and then remove s e l f (in the rare case o f
ove r l app ing po in t s)

88
89 ne ighborIndexes . r e s i z e (nPoints) ;
90 ne ighborDis tances . r e s i z e (nPoints) ;
91 i n t e r a c t i o n S t r e n g t h s . r e s i z e (nPoints) ;
92
93
94 SERIAL FOR START(0 , nPoints) ; // t h i s i s to make i t e a s i e r to

p a r a l l e l i z e when thread sa f e implementat ion i s used .
95 ANNidx ∗kdIndexes = new ANNidx [K1] ; // WORK
96 ANNdist ∗ kdSquareDistances = new ANNdist [K1] ; // WORK
97 for (int i = r . begin () ; i != r . end () ; i++) {
98 ANNpoint queryPoint = kdPoints [i] ;
99 kdTree−>annkSearch (queryPoint , K1 , kdIndexes ,

kdSquareDistances , annErrorToleranceFract ion) ;
100 ne ighborIndexes [i] . r e s i z e (nNearestNeighbors) ;
101 ne ighborDis tances [i] . r e s i z e (nNearestNeighbors) ;
102 int sk ip = 0 ;
103 for (unsigned int j = 0 ; j < nNearestNeighbors ; j++) {
104 i f (kdIndexes [j] == i) {
105 sk ip = 1 ; // Used not to copy s e l f r e f e r ence
106 }
107 ne ighborIndexes [i] [j] = kdIndexes [j + sk ip] ;
108 ne ighborDis tances [i] [j] = s q r t (kdSquareDistances [j +

sk ip]) ; // | | x−y | | ˆ 2 == sum((xi−y i) ˆ2) , i f we s k i p
t h i s we dont have to square at the i n t e r a c t i o n s t r

109 }
110 }
111 delete [] kdIndexes ;
112 delete [] kdSquareDistances ;
113 SERIAL FOR END() ;
114
115 tbb : : t i c k c o u n t stop = tbb : : t i c k c o u n t : : now () ;
116 std : : cout << ” time f o r Neighbor search : ” << (stop −

s t a r t) . seconds () << std : : endl ;
117
118 }
119
120 void Spc : : removeImmutualNeighborsAndBackNeighbors () {
121 tbb : : t i c k c o u n t s t a r t = tbb : : t i c k c o u n t : : now () ;

D-16

D.3. SOURCE CODE LISTINGS

122 for (int i = 0 ; i < nPoints ; i++) {
123 for (unsigned int j = 0 ; j < ne ighborIndexes [i] . s i z e () ;

j++) {
124 int otherIndex = ne ighborIndexes [i] [j] ;
125 i f (otherIndex < i) {
126 // Remove back−ne ighbor s
127 ne ighborIndexes [i] . e r a s e (ne ighborIndexes [i] . begin () +

j) ;
128 ne ighborDis tances [i] . e r a s e (ne ighborDis tances [i] . begin ()

+ j) ;
129 j−−;
130 } else {
131 // Remove immutual ne i ghbors
132 bool mutual = fa l se ;
133 for (unsigned int k = 0 ; k <

ne ighborIndexes [otherIndex] . s i z e () ; k++) {
134 i f (ne ighborIndexes [otherIndex] [k] == i) {
135 mutual = true ;
136 break ;
137 }
138 }
139
140 i f (! mutual) {
141 ne ighborIndexes [i] . e r a s e (ne ighborIndexes [i] . begin () +

j) ;
142 ne ighborDis tances [i] . e r a s e (ne ighborDis tances [i] . begin ()

+ j) ;
143 j−−;
144 }
145 }
146 }
147 }
148 tbb : : t i c k c o u n t stop = tbb : : t i c k c o u n t : : now () ;
149 std : : cout << ” time f o r removeImmutualAndBackNeighbors : ” <<

(stop − s t a r t) . seconds () << std : : endl ;
150 }
151
152 void Spc : : checkConnectedNeighborGraph () {
153
154 C l u s t e r C o l l e c t i o n c l u s t e r s (nPoints) ;
155 for (int i = 0 ; i < nPoints ; i++) {
156 for (unsigned int j = 0 ; j < ne ighborIndexes [i] . s i z e () ;

j++) {
157 int neighborIndex = ne ighborIndexes [i] [j] ;
158
159 i f (! c l u s t e r s . i sAss ignedToCluster (i) &&

! c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
160 int c l u s t e r I n d e x = c l u s t e r s . s t a r t C l u s t e r () ;
161 c l u s t e r s . a s s i g n (c lu s t e r Index , i) ;

D-17

APPENDIX D. SOURCE CODE

162 c l u s t e r s . a s s i g n (c lu s t e r Index , ne ighborIndex) ;
163 } else i f (c l u s t e r s . i sAss ignedToCluster (i) &&

! c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
164 int c l u s t e r I n d e x = c l u s t e r s . ge tConta in ingClus te r (i) ;
165 c l u s t e r s . a s s i g n (c lu s t e r Index , ne ighborIndex) ;
166 } else i f (! c l u s t e r s . i sAss ignedToCluster (i) &&

c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
167 int c l u s t e r I n d e x =

c l u s t e r s . ge tConta in ingClus te r (ne ighborIndex) ;
168 c l u s t e r s . a s s i g n (c lu s t e r Index , i) ;
169 } else i f (c l u s t e r s . ge tConta in ingClus te r (i) !=

c l u s t e r s . ge tConta in ingClus te r (ne ighborIndex)) {
170 c l u s t e r s . markMergeClustersForPointIndexes (i ,

ne ighborIndex) ;
171 }
172 }
173 }
174 c l u s t e r s . doMerge () ;
175 c l u s t e r s . removeEmptyClusters () ;
176
177 std : : cout << ” Enforced connectedness . A l l po in t s are

connected in ” << c l u s t e r s . c l u s t e r s . s i z e () << ”
subgraphs : ” << std : : endl ;

178
179 }
180
181 unsigned long long int doubleHash (double d , unsigned int

l e f t R o t a t e) {
182 unsigned long long int hash = ∗(unsigned long long int ∗)(&d) ;
183 return (hash << l e f t R o t a t e) | (hash >> (64− l e f t R o t a t e)) ;
184 }
185
186 void Spc : : addMstToNeighborGraph () {
187
188 std : : cout << ”MST” << std : : endl ;
189 i f (nDimensions != MST DIMENSION) {
190 std : : cout << ”MST not added , as i t i s hard−coded f o r ” <<

MST DIMENSION << ” dimensions ” << std : : endl ;
191 return ;
192 }
193
194 tbb : : t i c k c o u n t startMst = tbb : : t i c k c o u n t : : now () ;
195
196 typedef r e v i v e r : : dpoint<double ,MST DIMENSION> StannPoint ;
197 std : : vector<StannPoint> stannPoints ;
198 stannPoints . r e s i z e (nPoints) ;
199 std : : set<unsigned long long int> uniqueXorSet ; // Because

STANN re qu i r e s unique da tapo in t s
200

D-18

D.3. SOURCE CODE LISTINGS

201 std : : pair<std : : set<unsigned long long int > : : i t e r a t o r , bool>
r e t ;

202
203 std : : cout << ”Copying in to STANN datatype ” << std : : endl ;
204 for (int i =0; i<nPoints ; i++) {
205 unsigned long long int xorValue = 0 ;
206 for (int currentDimension =0; currentDimension<nDimensions ;

currentDimension++) {
207 xorValue ˆ= doubleHash (po in t s [i] [currentDimension] ,

currentDimension) ;
208 }
209 r e t = uniqueXorSet . i n s e r t (xorValue) ;
210
211 while (r e t . second == fa l se) {
212 unsigned int changeDim = nDimensions ∗

randomGen−>randFrac () ;
213 std : : cout << ” Point ” << i << ” moved in dimension ” <<

changeDim << std : : endl ;
214 double currentValue = po in t s [i] [changeDim] ;
215 xorValue ˆ= doubleHash (currentValue , changeDim) ; //

r e v e r t o l d c on t r i b u t i on
216 currentValue += currentValue / 1e6 + 1e−10;
217 xorValue ˆ= doubleHash (currentValue , changeDim) ; // add

new con t r i b u t i on
218 po in t s [i] [changeDim] = currentValue ;
219 r e t = uniqueXorSet . i n s e r t (xorValue) ;
220 }
221
222 for (int j =0; j<nDimensions ; j++) {
223 stannPoints [i] [j] = po in t s [i] [j] ;
224 }
225
226 }
227
228 typedef std : : vector<StannPoint > : : s i z e t y p e stype ;
229
230 std : : vector< std : : pa ir<stype , stype> > outputmst ;
231
232 std : : cout << ” S ta r t i ng MST” << std : : endl ;
233 gmst (stannPoints , outputmst) ;
234 std : : cout << ”MST complete − adding edges ” << std : : endl ;
235
236 for (unsigned int i =0; i<outputmst . s i z e () ; i++) {
237 int from = outputmst [i] . f i r s t ;
238 int to = outputmst [i] . second ;
239 i f (from < to) {
240 connectPoints (from , to) ;
241 } else {
242 connectPoints (to , from) ;

D-19

APPENDIX D. SOURCE CODE

243 }
244 }
245
246 tbb : : t i c k c o u n t endMst = tbb : : t i c k c o u n t : : now () ;
247 std : : cout << ” time f o r MST: ” << (endMst−startMst) . seconds ()

<< std : : endl ;
248 }
249
250 void Spc : : connectPoints (int fromIndex , int toIndex) {
251 i f (std : : f i n d (ne ighborIndexes [fromIndex] . begin () ,

ne ighborIndexes [fromIndex] . end () , toIndex) ==
neighborIndexes [fromIndex] . end ()) {

252 ne ighborIndexes [fromIndex] . push back (toIndex) ;
253 ne ighborDis tances [fromIndex] . push back (d i s t anc e (fromIndex ,

toIndex)) ;
254 }
255 }
256
257 double Spc : : d i s t anc e (int fromIndex , int toIndex) {
258 double d i s t anc e = 0 ;
259 for (unsigned int i =0; i<po in t s [fromIndex] . s i z e () ; i++) {
260 d i s t ance += pow(po in t s [fromIndex] [i] −

po in t s [toIndex] [i] , 2 . 0) ;
261 }
262 return s q r t (d i s t anc e) ;
263 }
264
265 void Spc : : c a l c u l a t e I n t e r a c t i o n S t r e n g t h s (unsigned int pa i r s ,

double avgDistance) {
266 tbb : : t i c k c o u n t s t a r t = tbb : : t i c k c o u n t : : now () ;
267 double kHat = (2 . 0 ∗ p a i r s) / nPoints ; // B l a t t s e c t i on 4 . 1 . 3
268
269 for (int i = 0 ; i < nPoints ; i++) {
270 i n t e r a c t i o n S t r e n g t h s [i] . r e s i z e (ne ighborIndexes [i] . s i z e ()) ;
271 for (unsigned int j = 0 ; j < ne ighborDis tances [i] . s i z e () ;

j++) {
272 double J i j = (1 . 0 / kHat) ∗ exp(−(ne ighborDis tances [i] [j]

∗ ne ighborDis tances [i] [j]) / (2 . 0 ∗ avgDistance ∗
avgDistance)) ; // B l a t t eq 4 .1

273 i n t e r a c t i o n S t r e n g t h s [i] [j] = J i j ;
274 }
275 }
276 tbb : : t i c k c o u n t stop = tbb : : t i c k c o u n t : : now () ;
277 std : : cout << ” time f o r c a l c u l a t e I n t e r a c t i o n S t r e n g t h s : ” <<

(stop − s t a r t) . seconds () << std : : endl ;
278 }
279
280 XyPlot∗ Spc : : p l o t S u s c e p t i b i l i t y (double minTemperature , double

maxTemperature , double s tep) {

D-20

D.3. SOURCE CODE LISTINGS

281 #ifde f PROFILESPC
282 P r o f i l e r S t a r t (” p r o f i l e / p l o t S u s c e p t i b i l i t y ”) ;
283 #endif
284 tbb : : t i c k c o u n t s t a r t = tbb : : t i c k c o u n t : : now () ;
285 D(” S u s c e p t i b i l i t y ”) ;
286 int numResults = (int) ((maxTemperature − minTemperature) /

s tep) ;
287
288 int ∗ i t e r a t i on sPe r f o rmed = new int (0) ;
289
290 // t b b : : t a s k s c h e d u l e r i n i t i n i t (1) ;
291
292 tbb : : p a r a l l e l f o r (tbb : : b locked range<s i z e t >(0 , numResults) ,

P l o t S u s c e p t i b i l i t y (this , i t e ra t i onsPer fo rmed ,
minTemperature , step , numResults)) ;

293
294 delete i t e r a t i on sPe r f o rmed ;
295
296 s h o u l d C a n c e l S u s c e p t i b i l i t y P l o t = fa l se ;
297 #ifde f PROFILESPC
298 P r o f i l e r S t o p () ;
299 #endif
300 tbb : : t i c k c o u n t stop = tbb : : t i c k c o u n t : : now () ;
301 std : : cout << ” time f o r p l o t S u s c e p t i b i l i t y : ” << (stop −

s t a r t) . seconds () << std : : endl ;
302 return s u s c e p t i b i l i t y P l o t ;
303 }
304
305 double Spc : : c a l c u l a t e S u s c e p t i b i l i t y (const double temperature ,

bool determineSpinSpinCorre lat ion , RandomGenerator
∗ innerRandom , bool p r i n t C lu s t e r i n gR e s u l t s , int ∗ sp in s) {

306 i f (innerRandom == NULL)
307 innerRandom = randomGen ;
308
309 std : : vector<std : : vector<double> > probab i l i t yVa lue s =

c a l c u l a t e P r o b a b i l i t y V a l u e s (temperature) ;
310
311 bool sp in sWereSpec i f i edExte rna l l y = true ;
312
313 i f (sp in s == NULL) { // Local sp in s i f not reus ing from outer

scope
314 sp in s = new int [nPoints] ;
315 sp in sWereSpec i f i edExte rna l l y = fa l se ;
316 // Assign random i n i t i a l sp in
317 for (int i = 0 ; i < nPoints ; i++) {
318 sp in s [i] = innerRandom−>randInRange () ;
319 }
320 }
321

D-21

APPENDIX D. SOURCE CODE

322 double magnetizationSum = 0 . 0 ;
323 double magnetizationSquareSum = 0 . 0 ;
324
325 C l u s t e r C o l l e c t i o n c l u s t e r s = C l u s t e r C o l l e c t i o n (nPoints) ;
326 int spinCount [nSpinStates] ;
327
328 // Setup c o r r e l a t i o n sum
329 std : : vector<std : : vector<double> > corre lat ionSum (nPoints) ; //

can be i n t u n t i l averag ing
330 for (unsigned int i = 0 ; i < corre lat ionSum . s i z e () ; i++) {
331 corre lat ionSum [i] . r e s i z e (ne ighborIndexes [i] . s i z e () , 0 . 0) ;
332 }
333
334 for (int i t e r a t i o n = 0 ; i t e r a t i o n < nMonteCar lo I terat ions +

nWarmupIterations ; i t e r a t i o n++) {
335 // Empty c l u s t e r s
336 c l u s t e r s . r e s e t () ;
337
338 for (int i = 0 ; i < nPoints ; i++) {
339 for (unsigned int j = 0 ; j < ne ighborIndexes [i] . s i z e () ;

j++) {
340 int neighborIndex = ne ighborIndexes [i] [j] ;
341
342 i f (sp in s [ne ighborIndex] == sp in s [i] &&

probab i l i t yVa lue s [i] [j] > innerRandom−>randFrac ()) {
343 i f (! c l u s t e r s . i sAss ignedToCluster (i) &&

! c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
344 int c l u s t e r I n d e x = c l u s t e r s . s t a r t C l u s t e r () ;
345 c l u s t e r s . a s s i g n (c lu s t e r Index , i) ;
346 c l u s t e r s . a s s i g n (c lu s t e r Index , ne ighborIndex) ;
347 } else i f (c l u s t e r s . i sAss ignedToCluster (i) &&

! c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
348 int c l u s t e r I n d e x = c l u s t e r s . ge tConta in ingClus te r (i) ;
349 c l u s t e r s . a s s i g n (c lu s t e r Index , ne ighborIndex) ;
350 } else i f (! c l u s t e r s . i sAss ignedToCluster (i) &&

c l u s t e r s . i sAss ignedToCluster (ne ighborIndex)) {
351 int c l u s t e r I n d e x =

c l u s t e r s . ge tConta in ingClus te r (ne ighborIndex) ;
352 c l u s t e r s . a s s i g n (c lu s t e r Index , i) ;
353 } else i f (c l u s t e r s . ge tConta in ingClus te r (i) !=

c l u s t e r s . ge tConta in ingClus te r (ne ighborIndex)) {
354 c l u s t e r s . markMergeClustersForPointIndexes (i ,

ne ighborIndex) ;
355 }
356 }
357 }
358 }
359
360 c l u s t e r s . doMerge () ;

D-22

D.3. SOURCE CODE LISTINGS

361
362 // Change sp in s
363 for (int i = 0 ; i < nPoints ; i++) {
364 sp in s [i] = innerRandom−>randInRange () ;
365 }
366 for (unsigned int i = 0 ; i < c l u s t e r s . c l u s t e r s . s i z e () ; i++)

{
367 std : : vector<int> ∗ cu r r en tC lu s t e r = &c l u s t e r s . c l u s t e r s [i] ;
368 int newSpin = innerRandom−>randInRange () ;
369 for (std : : vector<int > : : c o n s t i t e r a t o r i t =

currentClus te r−>begin () ; i t != cur rentClus te r−>end () ;
++i t) {

370 sp in s [∗ i t] = newSpin ;
371 }
372 }
373
374 i f (i t e r a t i o n >= nWarmupIterations) {
375
376 // Spin−sp in c o r r e l a t i o n
377 i f (dete rmineSp inSp inCorre la t ion) {
378 for (int i = 0 ; i < nPoints ; i++) {
379 for (unsigned int j = 0 ; j <

corre lat ionSum [i] . s i z e () ; j++) {
380 i f (sp in s [i] == sp in s [ne ighborIndexes [i] [j]]) {
381 corre lat ionSum [i] [j] += 1 . 0 ;
382 }
383 }
384 }
385 }
386
387 // Count number o f sp in members
388 memset (spinCount , 0 , nSpinStates ∗ s izeof (int)) ;
389 for (int i = 0 ; i < nPoints ; i++) {
390 spinCount [sp in s [i]]++;
391 }
392
393 // Ca l cu l a t e magnetic p r o p e r t i e s
394 int Nmax = 1 ; // Number o f po in t s in ” b i g g e s t ” s p inS t a t e
395 for (int i = 0 ; i < nSpinStates ; i++) {
396 i f (spinCount [i] > Nmax) {
397 Nmax = spinCount [i] ;
398 }
399 }
400 // doub le currentEnergy = ca l cu l a t eEnergy (sp in s) ;
401 double currentMagnet i zat ion = ((double) nSpinStates ∗

Nmax − nPoints) / ((nSpinStates − 1 . 0) ∗ nPoints) ; //
B l a t t eq 2.4

402 magnetizationSum += currentMagnet i zat ion ;

D-23

APPENDIX D. SOURCE CODE

403 magnetizationSquareSum += currentMagnet i zat ion ∗
currentMagnet i zat ion ;

404 // s t d : : cout << ”Energy in i t e r a t i o n ” << i t e r a t i o n << ” :
” << currentEnergy << s t d : : end l ;

405 }
406 }
407 i f (! sp in sWereSpec i f i edExte rna l l y) {
408 delete [] s p in s ;
409 }
410 double averageMagnet izat ion = magnetizationSum /

nMonteCar lo I terat ions ;
411 double averageSquareMagnet izat ion = magnetizationSquareSum /

nMonteCar lo I terat ions ;
412
413 double s u s c e p t i b i l i t y = (double) nPoints / temperature ∗

(averageSquareMagnet izat ion − averageMagnet izat ion ∗
averageMagnet izat ion) ; // B l a t t eq 2 .6

414
415 i f (dete rmineSp inSp inCorre la t ion) {
416 for (int i = 0 ; i < nPoints ; i++) {
417 for (unsigned int j = 0 ; j < corre lat ionSum [i] . s i z e () ;

j++) {
418 corre lat ionSum [i] [j] /= nMonteCar lo I terat ions ;
419 }
420 }
421 a s s e r t (corre lat ionSum . s i z e () == neighborIndexes . s i z e ()) ;
422 // Perform c l u s t e r i n g based on spin−sp in c o r r e l a t i o n
423 C l u s t e r C o l l e c t i o n c o r r e l a t i o n C l u s t e r s =

C l u s t e r C o l l e c t i o n (nPoints) ;
424 for (int i = 0 ; i < nPoints ; i++) {
425 for (unsigned int j = 0 ; j < ne ighborIndexes [i] . s i z e () ;

j++) {
426 int neighborIndex = ne ighborIndexes [i] [j] ;
427 i f (corre lat ionSum [i] [j] > thetaForGi j) {
428 i f (! c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (i) &&

! c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (
ne ighborIndex)) {

429 int c l u s t e r I n d e x =
c o r r e l a t i o n C l u s t e r s . s t a r t C l u s t e r () ;

430 c o r r e l a t i o n C l u s t e r s . a s s i g n (c lu s t e r Index , i) ;
431 c o r r e l a t i o n C l u s t e r s . a s s i g n (c lu s t e r Index ,

ne ighborIndex) ;
432 } else i f (c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (i)

&& ! c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (
ne ighborIndex)) {

433 int c l u s t e r I n d e x =
c o r r e l a t i o n C l u s t e r s . ge tConta in ingClus te r (i) ;

434 c o r r e l a t i o n C l u s t e r s . a s s i g n (c lu s t e r Index ,
ne ighborIndex) ;

D-24

D.3. SOURCE CODE LISTINGS

435 } else i f
(! c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (i) &&
c o r r e l a t i o n C l u s t e r s . i sAss ignedToCluster (
ne ighborIndex)) {

436 int c l u s t e r I n d e x =
c o r r e l a t i o n C l u s t e r s . ge tConta in ingClus te r (ne ighborIndex) ;

437 c o r r e l a t i o n C l u s t e r s . a s s i g n (c lu s t e r Index , i) ;
438 } else i f

(c o r r e l a t i o n C l u s t e r s . ge tConta in ingClus te r (i) !=
c o r r e l a t i o n C l u s t e r s . ge tConta in ingClus te r (
ne ighborIndex)) {

439 c o r r e l a t i o n C l u s t e r s . markMergeClustersForPointIndexes (i ,
ne ighborIndex) ;

440 }
441 }
442 }
443 }
444 c o r r e l a t i o n C l u s t e r s . doMerge () ;
445 c o r r e l a t i o n C l u s t e r s . removeEmptyClusters () ;
446
447 std : : vector<std : : vector<int> > ∗ c l u s t e r s =

&c o r r e l a t i o n C l u s t e r s . c l u s t e r s ;
448
449
450 c l u s t e r I d s . r e s i z e (nPoints , −1) ;
451 for (unsigned int c l u s t e r = 0 ; c l u s t e r <

lastComputedClusters . s i z e () ; ++c l u s t e r) {
452 for (unsigned int po int = 0 ; po int <

lastComputedClusters [c l u s t e r] . s i z e () ; ++point) {
453 c l u s t e r I d s [lastComputedClusters [c l u s t e r] [po int]] =

c l u s t e r ;
454 }
455 }
456
457 i f (p r i n t C l u s t e r i n g R e s u l t s) {
458 std : : cout << ” Pr in t ing ” << c l u s t e r s−>s i z e () << ”

c l u s t e r s . . ” << std : : endl ;
459 for (unsigned int c l u s t e r = 0 ; c l u s t e r < c l u s t e r s−>s i z e () ;

++c l u s t e r) {
460 std : : cout << ” Clus te r #” << c l u s t e r << ” (” <<

(∗ c l u s t e r s) [c l u s t e r] . s i z e () << ”) : ” ;
461 std : : s o r t ((∗ c l u s t e r s) [c l u s t e r] . begin () ,

(∗ c l u s t e r s) [c l u s t e r] . end ()) ;
462 for (unsigned int po int = 0 ; po int <

(∗ c l u s t e r s) [c l u s t e r] . s i z e () ; ++point) {
463 std : : cout << (∗ c l u s t e r s) [c l u s t e r] [po int] << ” ” ;
464 }
465 std : : cout << std : : endl ;
466 }

D-25

APPENDIX D. SOURCE CODE

467 }
468
469 std : : vector<int> c u r r e n t S i z e s ;
470
471 for (unsigned int i =0; i<c l u s t e r s−>s i z e () ; i++) {
472 c u r r e n t S i z e s . push back ((∗ c l u s t e r s) [i] . s i z e ()) ;
473 }
474 std : : s o r t (c u r r e n t S i z e s . begin () , c u r r e n t S i z e s . end () ,

s td : : g r eate r<int>()) ;
475 c o r r e l a t i o n C l u s t e r S i z e s P l o t−>i n s e r t (temperature ,

c u r r e n t S i z e s) ;
476
477 lastComputedClusters = ∗ c l u s t e r s ;
478 }
479 i f (temperature == 0 . 0) {
480 return 0 . 0 ;
481 }
482 return s u s c e p t i b i l i t y ;
483 }
484
485 std : : vector<std : : vector<double> >

Spc : : c a l c u l a t e P r o b a b i l i t y V a l u e s (const double & temperature) {
486 // Determine p r o b a b i l i t i e s f o r temperature
487 std : : vector<std : : vector<double> > probab i l i t yVa lue s =

std : : vector<std : : vector<double> >(nPoints) ;
488 for (int i = 0 ; i < nPoints ; i++) {
489 probab i l i t yVa lue s [i] . r e s i z e (i n t e r a c t i o n S t r e n g t h s [i] . s i z e ()) ;
490 for (unsigned int j = 0 ; j <

i n t e r a c t i o n S t r e n g t h s [i] . s i z e () ; j++) {
491 i f (temperature == 0)
492 probab i l i t yVa lue s [i] [j] = 1 . 0 ;
493 else
494 probab i l i t yVa lue s [i] [j] = 1 .0 −

exp(− i n t e r a c t i o n S t r e n g t h s [i] [j] / temperature) ; //
B l a t t eq 3.2

495 }
496 }
497
498 return probab i l i t yVa lue s ;
499 }
500
501 double Spc : : ca l cu la t eEnergy (int ∗ sp in s) {
502 double energy = 0 ;
503 for (int current Index = 0 ; current Index < nPoints ;

current Index++) {
504 for (unsigned int j = 0 ; j <

ne ighborIndexes [current Index] . s i z e () ; j++) {
505 int neighborIndex = ne ighborIndexes [current Index] [j] ;
506 i f (sp in s [current Index] == sp in s [ne ighborIndex]) {

D-26

D.3. SOURCE CODE LISTINGS

507 energy −= i n t e r a c t i o n S t r e n g t h s [current Index] [j] ;
508 }
509 }
510 }
511 return energy ;
512 }
513
514 P l o t S u s c e p t i b i l i t y : : P l o t S u s c e p t i b i l i t y (Spc ∗ spc , int

∗ i t e ra t i onsPer fo rmed , double minTemperature , double step ,
int numResults) {

515 this−>spc = spc ;
516 this−>i t e r a t i on sPe r f o rmed = i t e ra t i on sPe r f o rmed ;
517 this−>minTemperature = minTemperature ;
518 this−>s tep = step ;
519 this−>numResults = numResults ;
520 }
521
522 void P l o t S u s c e p t i b i l i t y : : operator () (tbb : : b locked range<s i z e t >

&r) const {
523 {
524 printMutex . l o ck () ;
525 std : : cout << ”SPC task range : [” << r . begin () << ” , ” <<

r . end ()−1 << ”] (” << (r . end () − r . begin ()) << ”) ” <<
std : : endl ;

526 printMutex . unlock () ;
527 }
528 #ifde f PROFILESPC
529 P ro f i l e r Reg i s t e rTh re ad () ;
530 #endif
531 RandomGenerator ∗ innerRandom = new

RandomGenerator (spc−>randomGen) ;
532 int ∗ sp in s = new int [spc−>nPoints] ;
533 // Assign random i n i t i a l sp in
534 for (int i = 0 ; i < spc−>nPoints ; i++) {
535 sp in s [i] = innerRandom−>randInRange () ;
536 }
537
538 for (unsigned int i = r . begin () ; i != r . end () &&

! spc−>s h o u l d C a n c e l S u s c e p t i b i l i t y P l o t ; i++) {
539 double temperature = minTemperature + step ∗ i ;
540 double s u s c e p t i b i l i t y =

spc−>c a l c u l a t e S u s c e p t i b i l i t y (temperature , true ,
innerRandom , false , s p in s) ;

541 spc−>s u s c e p t i b i l i t y P l o t−>i n s e r t (temperature ,
s u s c e p t i b i l i t y) ;

542 spc−>f i n i s h n e s s =
(double) ((∗ i t e r a t i on sPe r f o rmed)++)/numResults ;

543 }
544 delete [] s p in s ;

D-27

APPENDIX D. SOURCE CODE

545 delete innerRandom ;
546 }� �

Listing D.4: Wavelet KS reduction� �
1 WaveletReductionKS : : WaveletReductionKS ()
2 {
3 outDimensions = 10 ;
4 waveletType = g s l w a v e l e t h a a r ;
5 k = 2 ;
6 }
7
8 WaveletReductionKS : : ˜ WaveletReductionKS ()
9 {

10 }
11
12 InputDataset ∗ WaveletReductionKS : : reduce (const InputDataset

∗ input) {
13 return reduce (input , fa l se) ;
14 }
15
16 InputDataset ∗ WaveletReductionKS : : reduce (const InputDataset

∗ input , bool manualIndexes)
17 {
18 int inputSampleSize = input−>data [0] . s i z e () ;
19 n = 1<< (int) c e i l (l og2 (inputSampleSize)) ; // pow2−padded
20
21 InputDataset ∗outData = new InputDataset (outDimensions ,

input−>nSamples , 1) ;
22 outData−>res i zeVectorsToParameters () ;
23
24 g s l w a v e l e t ∗wavelet = g s l w a v e l e t a l l o c (waveletType , k) ;
25 g s l wave l e t workspace ∗work = g s l w a v e l e t w o r k s p a c e a l l o c (n) ;
26
27 a s s e r t (wavelet != NULL) ;
28 a s s e r t (work != NULL) ;
29
30 double ∗data = new double [n] ;
31
32 std : : vector<std : : vector<double> > transformedData (

input−>nSamples , s td : : vector<double>(n , 0)) ;
33 std : : vector<double> means (n) ;
34 std : : vector<double> va r i ance s (n) ;
35 std : : vector<double> d i s t r i b u t i o n D i f f e r e n c e s (n) ;
36
37 //TODO cou ld be p a r a l l e l i z e d wi th some e f f o r t
38 for (unsigned int

sampleIndex =0; sampleIndex<input−>nSamples ; sampleIndex++) {
39 memset (data , 0 , n∗ s izeof (double)) ;

D-28

D.3. SOURCE CODE LISTINGS

40 std : : copy (input−>data [sampleIndex] . begin () ,
input−>data [sampleIndex] . end () , data) ;

41
42 g s l w a v e l e t t r a n s f o r m f o r w a r d (wavelet , data , 1 , n , work) ;
43 for (int i =0; i < n ; i++) {
44 transformedData [sampleIndex] [i] = data [i] ;
45 }
46 }
47
48 // means
49 for (int dim=0; dim < n ; dim++) {
50 double mean = 0 ;
51 for (unsigned int sample =0; sample < input−>nSamples ;

sample++) {
52 mean += transformedData [sample] [dim] ;
53 }
54 mean /= input−>nSamples ;
55 means [dim] = mean ;
56 }
57
58 // var iances
59 for (int dim=0; dim < n ; dim++) {
60 double var iance = 0 ;
61 for (unsigned int sample =0; sample < input−>nSamples ;

sample++) {
62 var iance += pow(transformedData [sample] [dim] −

means [dim] , 2) ;
63 }
64 va r i ance s [dim] = var iance / input−>nSamples ;
65 }
66
67 std : : vector<double> sortedSamples (input−>nSamples) ;
68 std : : vector<double> p r o b a b i l i t i e s (input−>nSamples) ;
69
70 // Empir ica l CDF and KS d i s t ance
71 for (int dim=0; dim < n ; dim++) {
72
73 for (unsigned int sample =0; sample < input−>nSamples ;

sample++) {
74 sortedSamples [sample] = transformedData [sample] [dim] ;
75 }
76 std : : s o r t (sortedSamples . begin () , sortedSamples . end ()) ;
77
78 for (unsigned int i =0; i< sortedSamples . s i z e () −1;) {
79 int forwardCounter = 0 ;
80 while (sortedSamples [i] == sortedSamples [i +

forwardCounter + 1] && (i + forwardCounter + 1) <
sortedSamples . s i z e ()−1) {

81 forwardCounter++;

D-29

APPENDIX D. SOURCE CODE

82 }
83 int maxIndex = i + forwardCounter +1;
84 for (int j=i ; j < maxIndex ; j++) {
85 p r o b a b i l i t i e s [j] = ((double) maxIndex) /

sortedSamples . s i z e () ;
86 }
87 p r o b a b i l i t i e s [sortedSamples . s i z e () −1] = 1 ;
88 i = maxIndex ;
89 }
90
91 double d i s t r i b u t i o n D i f f e r e n c e = 0 ;
92 i f (means [dim] == 0 | | va r i ance s [dim] < 0 .0010) {
93 d i s t r i b u t i o n D i f f e r e n c e s [dim] = 0 ;
94 } else {
95 for (std : : vector<double> : : i t e r a t o r i t =

sortedSamples . begin () ; i t != sortedSamples . end () ;
i t ++) {

96 double value = ∗ i t ;
97 double z = (value−means [dim]) / s q r t (va r i ance s [dim]) ;
98 int probab i l i t y Index =

std : : lower bound (sortedSamples . begin () ,
sortedSamples . end () , va lue) − sortedSamples . begin () ;

99 double l o c a l D i s t r i b u t i o n D i f f e r e n c e =
fabs (p r o b a b i l i t i e s [p r obab i l i t y Inde x] −
g s l c d f u g a u s s i a n P (z)) ;

100 i f (l o c a l D i s t r i b u t i o n D i f f e r e n c e >
d i s t r i b u t i o n D i f f e r e n c e) {

101 d i s t r i b u t i o n D i f f e r e n c e = l o c a l D i s t r i b u t i o n D i f f e r e n c e ;
102 }
103 }
104
105 d i s t r i b u t i o n D i f f e r e n c e s [dim] = d i s t r i b u t i o n D i f f e r e n c e ;
106 }
107 }
108
109 i f (! manualIndexes) {
110 indexes = new int [n] ;
111 double∗ devData = new double [n] ;
112
113 std : : copy (d i s t r i b u t i o n D i f f e r e n c e s . begin () ,

d i s t r i b u t i o n D i f f e r e n c e s . end () , devData) ;
114
115 for (int i =0; i < n ; i++) {
116 indexes [i] = i ;
117 }
118
119 // i n s e r t i o n sor t , to ob ta in s o r t i n g permutat ion
120 for (int j = 1 ; j < n ; j++){
121

D-30

D.3. SOURCE CODE LISTINGS

122 double key = devData [j] ;
123 int keyIndex = indexes [j] ;
124 int i = j − 1 ;
125
126 while (i >= 0 && devData [i] > key) {
127 devData [i + 1] = devData [i] ;
128 indexes [i + 1] = indexes [i] ;
129 i−−;
130 }
131 devData [i + 1] = key ;
132 indexes [i + 1] = keyIndex ;
133 }
134
135 } else {
136 std : : cout << ”Used manual indexes : ” ;
137 }
138 // Print the indexes
139 std : : cout << ”KS wavelet \nindexes= {” ;
140 for (int i =0; i < n−1; i++) {
141 std : : cout << indexes [i] << ” , ” ;
142 }
143 std : : cout << indexes [n−1] << ” } ; ” << std : : endl ;
144
145 // Now sor t ed
146 for (unsigned int dimIndex=0; dimIndex < outDimensions ;

dimIndex++) {
147 for (unsigned int sp ike =0; sp ike < input−>nSamples ; sp ike++)

{
148 outData−>data [sp ike] [dimIndex] =

transformedData [sp ike] [indexes [n−1−dimIndex]] ;
149 }
150 }
151
152 g s l w a v e l e t f r e e (wavelet) ;
153 g s l w a v e l e t w o r k s p a c e f r e e (work) ;
154 delete [] data ;
155
156 outData−>isReduced = true ;
157 outData−>reduceClass = this ;
158 return outData ;
159 }
160
161 InputDataset ∗ WaveletReductionKS : : r e v e r s e (const InputDataset

∗ input) {
162 int outN = ((WaveletReductionKS ∗) input−>reduceClass)−>n ;
163
164 InputDataset ∗outData = new InputDataset (outN ,

input−>nSamples , input−>nChannels) ;
165 outData−>res i zeVectorsToParameters () ;

D-31

APPENDIX D. SOURCE CODE

166
167 g s l w a v e l e t ∗wavelet = g s l w a v e l e t a l l o c (waveletType , k) ;
168 g s l wave l e t workspace ∗work = g s l w a v e l e t w o r k s p a c e a l l o c (n) ;
169
170 a s s e r t (wavelet != NULL) ;
171 a s s e r t (work != NULL) ;
172
173 double ∗data = new double [outN] ;
174
175 //TODO cou ld be p a r a l l e l i z e d wi th some e f f o r t
176 for (unsigned int

sampleIndex =0; sampleIndex<input−>nSamples ; sampleIndex++) {
177 memset (data , 0 , n∗ s izeof (double)) ;
178 for (unsigned int i =0; i < outDimensions ; i++) {
179 data [indexes [n−1− i]] = input−>data [sampleIndex] [i] ;
180 }
181
182 g s l w a v e l e t t r a n s f o r m i n v e r s e (wavelet , data , 1 , n , work) ;
183 for (int i =0; i < outN ; i++) {
184 outData−>data [sampleIndex] [i] = data [i] ;
185 }
186 }
187
188 g s l w a v e l e t f r e e (wavelet) ;
189 g s l w a v e l e t w o r k s p a c e f r e e (work) ;
190 delete [] data ;
191 outData−>reduceClass = this ;
192 return outData ;
193 }� �

Listing D.5: Wavelet first reduction� �
1 WaveletReduct ionFirst : : WaveletReduct ionFirst ()
2 {
3 outDimensions = 16 ;
4
5 waveletType = g s l w a v e l e t d a u b e c h i e s ;
6 k = 8 ;
7
8 }
9

10 InputDataset ∗WaveletReduct ionFirst : : reduce (const InputDataset
∗ input) {

11 int inputSampleSize = input−>data [0] . s i z e () ;
12 int n = 1<< (int) c e i l (l og2 (inputSampleSize)) ; // pow2−padded
13
14 InputDataset ∗outData = new InputDataset (outDimensions ,

input−>nSamples , input−>nChannels) ;
15 outData−>res i zeVectorsToParameters () ;

D-32

D.3. SOURCE CODE LISTINGS

16
17 g s l w a v e l e t ∗wavelet = g s l w a v e l e t a l l o c (waveletType , k) ;

//which to choose − suppor ted ones are 4 , 6 , 8 , . . . , 2 0 . See
h t t p :// wave l e t s . pyby t e s . com/wave l e t /db8/

18 gs l wave l e t workspace ∗work = g s l w a v e l e t w o r k s p a c e a l l o c (n) ;
19
20 a s s e r t (wavelet != NULL) ;
21 a s s e r t (work != NULL) ;
22
23 double ∗data = new double [n] ;
24
25 std : : vec to r <std : : vec to r <double > > transformedData ;
26
27 transformedData . r e s i z e (input−>nSamples , s td : : vector<double>(

n , 0)) ;
28
29 for (unsigned int

sampleIndex =0; sampleIndex<input−>nSamples ; sampleIndex++) {
30 memset (data , 0 , n∗ s izeof (double)) ;
31 std : : copy (input−>data [sampleIndex] . begin () ,

input−>data [sampleIndex] . end () , data) ;
32
33 g s l w a v e l e t t r a n s f o r m f o r w a r d (wavelet , data , 1 , n , work) ;
34 for (unsigned int i =0; i < outDimensions ; i++) {
35 outData−>data [sampleIndex] [i] = data [i] ;
36 }
37 }
38
39 g s l w a v e l e t f r e e (wavelet) ;
40 g s l w a v e l e t w o r k s p a c e f r e e (work) ;
41 delete [] data ;
42
43 outData−>isReduced = true ;
44 outData−>reduceClass = this ;
45 return outData ;
46 }
47
48 InputDataset ∗WaveletReduct ionFirst : : r e v e r s e (const InputDataset

∗ input) {
49 int n = 256 ; // pow2−padded
50 int outN = 200 ;
51
52 InputDataset ∗outData = new InputDataset (n , input−>nSamples ,

input−>nChannels) ;
53 outData−>res i zeVectorsToParameters () ;
54
55 g s l w a v e l e t ∗wavelet = g s l w a v e l e t a l l o c (waveletType , k) ; //

K/2 van i sh ing po in t s
56 gs l wave l e t workspace ∗work = g s l w a v e l e t w o r k s p a c e a l l o c (n) ;

D-33

APPENDIX D. SOURCE CODE

57
58 a s s e r t (wavelet != NULL) ;
59 a s s e r t (work != NULL) ;
60
61 double ∗data = new double [n] ;
62
63 for (unsigned int

sampleIndex =0; sampleIndex<input−>nSamples ; sampleIndex++) {
64 memset (data , 0 , n∗ s izeof (double)) ;
65 std : : copy (input−>data [sampleIndex] . begin () ,

input−>data [sampleIndex] . end () , data) ;
66
67 g s l w a v e l e t t r a n s f o r m i n v e r s e (wavelet , data , 1 , n , work) ;
68 for (int i =0; i < outN ; i++) {
69 outData−>data [sampleIndex] [i] = data [i] ;
70 }
71 }
72
73 g s l w a v e l e t f r e e (wavelet) ;
74 g s l w a v e l e t w o r k s p a c e f r e e (work) ;
75 delete [] data ;
76 outData−>reduceClass = this ;
77 return outData ;
78 }
79
80 WaveletReduct ionFirst : : ˜ WaveletReduct ionFirst () {
81
82 }� �

Listing D.6: PCA reduction� �
1 PcaReduction : : PcaReduction ()
2 {
3 }
4
5 InputDataset ∗PcaReduction : : reduce (const InputDataset ∗ input) {
6 return reduce (input , −1) ;
7 }
8
9 InputDataset ∗PcaReduction : : reduce (const InputDataset ∗ input ,

int numComponents)
10 {
11 i f (numComponents == −1) {
12 numComponents = 2 ;
13 }
14
15 int numSpikes = input−>data . s i z e () ;
16 int numFeatures = input−>data [0] . s i z e () ;
17

D-34

D.3. SOURCE CODE LISTINGS

18 g s l m a t r i x ∗mdev = g s l m a t r i x a l l o c (numFeatures , numSpikes) ;
19 g s l m a t r i x ∗m = g s l m a t r i x a l l o c (numFeatures , numSpikes) ;
20
21 double ∗mean = new double [numFeatures] ;
22 memset (mean , 0 , s izeof (double) ∗numFeatures) ;
23
24 #pragma omp p a r a l l e l for
25 for (int i = 0 ; i < numSpikes ; ++i) {
26 for (int j = 0 ; j < numFeatures ; ++j) {
27 mean [j] += input−>data [i] [j] ;
28 }
29 }
30
31 #pragma omp p a r a l l e l for
32 for (int j = 0 ; j < numFeatures ; ++j) {
33 mean [j] /= numSpikes ;
34 }
35 std : : cout << std : : endl ;
36
37 g s l m a t r i x ∗ covar ianceMatr ix = g s l m a t r i x a l l o c (numFeatures ,

numFeatures) ;
38 g s l v e c t o r v i e w a , b ;
39
40 #pragma omp p a r a l l e l for
41 for (unsigned int sp ike = 0 ; sp ike < input−>data . s i z e () ;

++sp ike) {
42 for (int f e a t u r e = 0 ; f e a t u r e < numFeatures ; ++f e a t u r e) {
43 g s l m a t r i x s e t (m, f ea ture , sp ike ,

input−>data [sp ike] [f e a t u r e]) ;
44 g s l m a t r i x s e t (mdev , f ea ture , sp ike ,

input−>data [sp ike] [f e a t u r e] − mean [f e a t u r e]) ;
45 }
46 }
47
48 // Ca l cu l a t e covar iance matrix (lower t r i an g l e , then copy to

o ther h a l f)
49 for (int dim1 = 0 ; dim1 < numFeatures ; dim1++) {
50 #pragma omp p a r a l l e l for
51 for (int dim2 = dim1 ; dim2 < numFeatures ; dim2++) {
52 double v ;
53 a = gs l mat r ix row (mdev , dim1) ;
54 b = gs l mat r ix row (mdev , dim2) ;
55 v = g s l s t a t s c o v a r i a n c e (a . vec to r . data , a . vec to r . s t r i d e ,

b . vec to r . data , b . vec to r . s t r i d e , a . vec to r . s i z e) ;
56 g s l m a t r i x s e t (covar ianceMatr ix , dim1 , dim2 , v) ;
57 }
58 }
59
60 #pragma omp p a r a l l e l for

D-35

APPENDIX D. SOURCE CODE

61 for (int dim1 = 1 ; dim1 < numFeatures ; dim1++) {
62 for (int dim2 = 0 ; dim2 < dim1 ; dim2++) {
63 g s l m a t r i x s e t (covar ianceMatr ix , dim1 , dim2 ,

g s l m a t r i x g e t (covar ianceMatr ix , dim2 , dim1)) ;
64 }
65 }
66
67 g s l v e c t o r ∗ e igenValues = g s l v e c t o r a l l o c (numFeatures) ;
68 g s l m a t r i x ∗ e igenVector s = g s l m a t r i x a l l o c (numFeatures ,

numFeatures) ;
69
70 gs l e igen symmv workspace ∗ work =

gs l e i g en symmv a l l o c (numFeatures) ;
71 gs l e igen symmv (covar ianceMatr ix , e igenValues , e igenVectors ,

work) ;
72
73 g s l e i g en symmv f r e e (work) ;
74
75 gs l e i g en symmv sor t (e igenValues , e igenVectors ,

GSL EIGEN SORT ABS DESC) ;
76
77 g s l m a t r i x ∗ subsetEigenVectorsMatr ix =

g s l m a t r i x a l l o c (numFeatures , numComponents) ;
78
79 #pragma omp p a r a l l e l for
80 for (int i =0; i<numFeatures ; i++) {
81 for (int j =0; j<numComponents ; j++) {
82 g s l m a t r i x s e t (subsetEigenVectorsMatr ix , i , j ,

g s l m a t r i x g e t (e igenVectors , i , j)) ; // TODO qu i c ke r
copying

83 }
84 }
85
86 g s l m a t r i x ∗pcaData = g s l m a t r i x a l l o c (numComponents ,

numSpikes) ;
87 gs l blas dgemm (CblasTrans , CblasNoTrans , 1 ,

subsetEigenVectorsMatr ix , mdev , 0 , pcaData) ;
88
89 InputDataset ∗outData = new InputDataset (numComponents ,

numSpikes , 1) ;
90
91 #pragma omp p a r a l l e l for
92 for (int i =0; i < numComponents ; i++) {
93 for (int j =0; j < numSpikes ; j++) {
94 outData−>data [j] [i] = g s l m a t r i x g e t (pcaData , i , j) ;
95 }
96 }
97
98 g s l m a t r i x f r e e (pcaData) ;

D-36

D.3. SOURCE CODE LISTINGS

99 g s l m a t r i x f r e e (covar ianceMatr ix) ;
100 g s l m a t r i x f r e e (subsetEigenVectorsMatr ix) ;
101 g s l m a t r i x f r e e (e i genVector s) ;
102 g s l v e c t o r f r e e (e igenValues) ;
103
104 delete [] mean ;
105 return outData ;
106 }
107
108 InputDataset ∗ PcaReduction : : r e v e r s e (const InputDataset ∗ input) {
109 return NULL;
110 }� �

D-37

APPENDIX D. SOURCE CODE

D-38

	Title Page
	Introduction
	Spike sorting
	Problem interpretation
	Report outline

	Background
	Neuroscience introduction
	Parallelism introduction
	Measuring parallelism
	Limits to parallelization

	Spike sorting
	Signal filtering
	Spike detection
	Feature extraction
	Clustering

	Spike recording equipment
	Computer hardware
	External libraries
	Intel Threading Building Blocks (TBB)
	OpenMP
	Boost
	Qt
	GNU Scientific Library (GSL)
	Approximate Nearest Neighbor library (libANN)
	STANN
	Google Performance Tools

	Related work
	Wave_Clus
	OSort
	KlustaKwik
	Klusters
	OpenElectrophy
	Tint
	Summary

	Methodology
	Datasets
	Iris
	NTNU toy problem
	Three circles
	Three islands
	Datasets from the Kavli Institute

	Cluster quality measurements
	Cohesion and separation
	Silhouette coefficient
	Lratio
	Isolation distance
	F-measure

	Implementation
	User interface
	Graphical user interface
	Command line interface

	File parsing
	Feature extraction
	Unreduced
	Peaks of channels
	Wavelet transform
	Principal Component Analysis
	Peak alignment

	Clustering
	K-means clustering
	Superparamagnetic clustering

	Cluster Quality
	Lratio
	Isolation distance
	F-measure

	Optimization and parallelization
	K-means
	SPC
	General remarks

	Development comments

	Results and evaluation
	Cluster quality
	Silhouette coefficient
	Lratio
	Isolation distance

	Clustering results
	K-means
	SPC

	Performance
	Speedup
	Scalability

	Implementation challenges
	Noise

	Conclusions and future work
	Goals
	Future work

	References
	Appendices
	Implementation
	Results
	Cluster quality
	Sum of squares
	Profiling results

	Screenshots
	Source code
	Introduction to the code base
	Class diagrams
	Source code listings

