
Master of Science in Computer Science
June 2011
Pauline Haddow, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Evolutionary Music Composition
A Quantitative Approach

Johannes Høydahl Jensen

i

Problem Description

Artificial Evolution has shown great potential for musical tasks. However, a
major challenge faced in Evolutionary Music Composition systems is finding
a suitable fitness function. The aim of this research is to devise an automatic
fitness function for the evolution of novel melodies.

Assignment given: 15. January 2011

Supervisor: Pauline Haddow, IDI

ii

iii

Abstract

Artificial Evolution has shown great potential in the musical domain. One
task in which Evolutionary techniques have shown special promise is in the
automatic creation or composition of music. However, a major challenge
faced when constructing evolutionary music composition systems is finding
a suitable fitness function.

Several approaches to fitness have been tried. The most common is interact-
ive evaluation. However, major efficiency challenges with such an approach
have inspired the search for automatic alternatives.

In this thesis, a music composition system is presented for the evolution of
novel melodies. Motivated by the repetitive nature of music, a quantitative
approach to automatic fitness is pursued. Two techniques are explored that
both operate on frequency distributions of musical events. The first builds
on Zipf’s Law, which captures the scaling properties of music. Statistical
similarity governs the second fitness function and incorporates additional
domain knowledge learned from existing music pieces.

Promising results show that pleasant melodies can emerge through the ap-
plication of these techniques. The melodies are found to exhibit several fa-
vourable musical properties, including rhythm, melodic locality and motifs.

iv

v

Preface

This master’s thesis presents the research completed during my final semester
at the Norwegian University of Science and Technology (NTNU). It was car-
ried out in the period January to June 2011 at the Department of Computer
and Information Science (IDI). It is a continuation of my project work done
as part of the preceding 2010 semester, which resulted in a paper submitted
to the Genetic and Evolutionary Computation Conference 2011.

I would like to thank my supervisor, professor Pauline Haddow, for invaluable
feedback and support. Our meetings were stimulating and always left me in
an uplifted state.

Bill Manaris deserves my gratitude for his help and advice. Credit is given
to Classical Archives (www.classicalarchives.com) for kindly providing
access to their collection of music files.

I would also like to thank my fellow students at the CRAB lab for their
friendship, advice and joyful social gatherings.

Thanks go to my family for their support and especially my father for his
valuable feedback. Finally, I wish to thank Mari for her help and constant
encouragement.

Johannes H. Jensen

Trondheim, 2011

www.classicalarchives.com

vi

Contents

1 Introduction 1

1.1 Goals and Limitations . 2

1.2 Overview of This Document 3

2 Background 5

2.1 Music Terminology . 5

2.2 Evolutionary Computation . 7

2.3 Evolutionary Art and Aesthetics 10

2.4 Evolutionary Music . 11

2.5 Music Representation . 12

2.5.1 Linear Representations 12

2.5.2 Tree-Based Representations 14

2.5.3 Phenotype Mapping 15

2.6 Fitness . 16

2.6.1 Interactive Evaluation 17

2.6.2 Hardwired Fitness Functions 18

2.6.3 Learned Fitness Functions 19

vii

viii CONTENTS

3 Methodology 21

3.1 Music Representation . 21

3.1.1 Introduction . 22

3.1.2 Parameters . 22

3.1.3 Functions and Terminals 23

3.1.4 Initialization . 23

3.1.5 Genetic Operators . 24

3.1.6 Parsing . 24

3.2 Fitness . 25

3.2.1 Metrics . 27

3.3 Fitness Based on Zipf’s Law 28

3.3.1 Zipf’s Law . 28

3.3.2 Zipf’s Law in Music . 30

3.3.3 Fitness Function . 32

3.4 Fitness Based on Distribution Similarity 34

3.4.1 Metric Frequency Distributions 34

3.4.2 Cosine Similarity . 35

3.4.3 Fitness Function . 36

3.4.4 Relationship to Zipf’s Law 37

3.4.5 Filtering . 38

CONTENTS ix

4 Experiments: Zipf’s Law 41

4.1 A Musical Representation . 41

4.1.1 Introduction . 42

4.1.2 Setup . 43

4.1.3 Experiment Setup . 45

4.1.4 Results and Discussion 46

4.1.5 Summary . 50

4.2 Tree-Based Composition . 51

4.2.1 Introduction . 51

4.2.2 Setup . 51

4.2.3 Results and Discussion 52

4.2.4 Summary . 53

4.3 Adding Rhythm . 53

4.3.1 Introduction . 54

4.3.2 Experiment Setup . 54

4.3.3 Results and Discussion 55

4.3.4 Summary . 57

4.4 Conclusions . 57

5 Experiments: Distribution Similarity 61

5.1 Basics . 61

5.1.1 Introduction . 62

5.1.2 Setup . 62

5.1.3 Experiment Setup . 66

x CONTENTS

5.1.4 Results and Discussion 69

5.1.5 Summary . 81

5.2 Improving the Basics . 82

5.2.1 Introduction . 82

5.2.2 Setup . 83

5.2.3 Results and Discussion 83

5.2.4 Summary . 85

5.3 Learning From the Best . 86

5.3.1 Introduction . 86

5.3.2 Setup . 87

5.3.3 Experiment Setup . 88

5.3.4 Results and Discussion 92

5.3.5 Summary . 94

5.4 Conclusions . 95

6 Conclusion and Future Work 97

Bibliography 99

Appendix 105

Chapter 1

Introduction

If a composer could say what he had to say in words he would not
bother trying to say it in music. (Gustav Mahler)

Artificial Intelligence concerns the creation of computer systems that perform
tasks that are normally addressed by humans. Music Composition is one such
area. The task of creating music which human listeners would appreciate has
been shown to be difficult with current AI techniques (Miranda and Biles,
2007). Although music exhibits many rational properties, it distinguishes
itself by also involving human emotions and aesthetics, which are domains
not fully understood and also difficult to describe mathematically.

What thought processes are followed when creating music? Asking an exper-
ienced composer is unlikely to yield a precise answer. The response might
contain some general rules of thumb: a melody should encompass a few cent-
ral motifs; the tones should fit the chord progression and so on. However,
there are few formal rules that explain the process of music composition.
The difficulty in formalizing music knowledge and understanding the process
of music creation, makes music a challenging domain for computers (Minsky
and Laske, 1992).

Evolutionary techniques have shown to be powerful for searching in complex
domains too difficult to tackle using analytical methods (Floreano and Mat-
tiussi, 2008). It is thus perhaps not so surprising that Artificial Evolution
has shown potential in the musical domain. The most popular task pursued
is Evolutionary Music Composition (EMC), where the goal is to create mu-
sic through evolutionary techniques. However, a major challenge with such
systems is the design of a suitable fitness function.

1

2 CHAPTER 1. INTRODUCTION

Some researchers have considered interactive fitness functions, i.e. fitness
assigned by humans. However, interactive evaluation brings many efficiency
problems and concerns (see Section 2.6.1). An automatic fitness function
would steer evolution towards pleasant music, without extensive human in-
put.

The term “pleasant” is chosen here instead of the subjective term “liking”
because pleasantness in contrast to preference, shows little variation among
subjects with different musical tastes (Ritossa and Rickard, 2004). In other
words, pleasantness is in essence more of an invariant measurement than
liking. For example, many people will admit that they find classical music
pleasant, but certainly not all will claim to like classical music.

It is however difficult, if not impossible, to be objective when discussing mu-
sic. There are simply too many factors that influence our musical perception.
Thus when music is described as “pleasant” in this thesis, it is done so in an
attempt to be as objective as possible.

1.1 Goals and Limitations

As stated in the problem description, the focus of this research is automatic
fitness functions for the evolution of music. In particular, a fitness function
is sought that can:

1. Capture pleasantness in music

2. Be applied to evolve music in different styles

An automatic fitness able to estimate the pleasantness of music would make
it possible to evolve music which is at least consistently appealing. In other
words, it may serve as a baseline for evolution of music with more sophistic-
ated properties.

Significant variation exists within the music domain. The ability to model
different musical styles would allow similar diversity in evolved music as well.
Assuming personal music taste is somewhat correlated to musical style, the
capability to evolve similar properties in music is a clear advantage.

Finally, in order to reduce the complexity and narrow the scope of this work,
the focus is restricted to evolution of short, monophonic melodies, i.e one
note played at a time.

1.2. OVERVIEW OF THIS DOCUMENT 3

1.2 Overview of This Document

The thesis is structured as follows. Chapter 1 gives an introduction to the
research domain, the motivation behind evolutionary music composition sys-
tems and the main problem areas explored by this research. In Chapter 2,
important background material used throughout the thesis is covered. Music
representation is discussed in detail in Section 2.5. An overview of the ap-
proaches to musical fitness functions, including a discussion of their strengths
and weaknesses, is given in Section 2.6.

In Chapter 3, the theory and concepts employed in this research are presen-
ted. The music representation employed is described in Section 3.1, followed
by the two approaches to fitness in Sections 3.3 and 3.4.

Chapters 4 and 5 presents the experiments performed with fitness based on
Zipf’s Law and distribution similarity, respectively. Conclusions from the
experiments are drawn at the end of each chapter.

Finally, Chapter 6 concludes the research and suggests areas of future work.

Many music examples are given throughout the thesis, which are presented as
printable music scores. The accompanying Zip-archive contains both MIDI
and audio renderings of all the music examples.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter covers important background material used throughout the rest
of the thesis. Section 2.1 gives a short introduction to basic music termino-
logy. Section 2.2 explains the main concepts behind Artificial Evolution. In
Section 2.3, a short overview of Evolutionary Computation applied to aes-
thetic domains is given. Section 2.4 gives a survey of related work in the
Evolutionary Music field.

Music representation schemes are covered in Section 2.5. Finally in Sec-
tion 2.6, approaches to music fitness are discussed.

2.1 Music Terminology

This section gives a short introduction to the basic music terminology used
throughout this document. If the reader is familiar with elementary music
terminology, the section can safely be skipped.

Music comes in many forms and flavours, and the styles and conventions vary
greatly across cultures. In Western music however, the common depiction
of music is that of a score. A music score represents music as sequences of
notes, rests, and other relevant information like tempo, time signature, key
and lyrics. Figure 2.1 shows an example music score, which has a tempo of
120 beats per minute (BPM).

Notes and rests are the primary building blocks in the music domain, much
as letters are the elementary units in language. The note value determines

5

6 CHAPTER 2. BACKGROUND

Twinkle Twinkle Little Star
= 120

4
4

Figure 2.1 Example music score with 4 bars, 4 beats per bar and a tempo of
120 beats per minute.

(a) Five common note values. From the
left: the whole note, half note, quarter
note, eight note and sixteenth note.

(b) Two note modifiers: An augmented
quarter note (left) and a quarter note tied
together with an eight note (right).

C D E F G A B C

(c) Note pitches ranging from Middle C to C5, i.e. a
one-octave C major scale.

Figure 2.2 Note values (a), note modifiers (b) and note pitches (c).

the duration of the note, while its vertical position in the score dictates the
pitch that should be played. Equivalently, the rest value denotes the length
of a rest (period of silence).

Note (rest) durations are valued as fractions of the whole note which typically
lasts 4 beats. The half note lasts 1/2 of the whole note, the quarter note is
1/4th of the whole note and so on. The shape of the note (rest) determines
its value (duration). Figure 2.2a shows the five most common note values.

Notes can also be augmented, denoted by a dot after the note. An augmented
note lasts 1.5 times its original note value. Two notes of the same pitch may
also be tied together, which indicates that they should be played as a single
note, but for the duration of both. These two note modifiers are shown in
Figure 2.2b. The resulting note value (duration) in both examples is the
same: 1.5

4
= 1

4
+ 1

8
= 3

8
.

Pitches are discretized into finite frequencies, corresponding to the keys on
a piano. Pitches are grouped into 12 classes ranging from C to B. The
accidentals modify a pitch: the sharp ♯ raises the pitch by a semitone (half-
step) and the flat ♭ lowers it by the same amount. The interval between two

2.2. EVOLUTIONARY COMPUTATION 7

pitches of the same class is called an octave, where the upper pitch has a
frequency that is twice that of the lower pitch. Figure 2.2c shows how the
different pitches are organized in a music score.

Musical phrases commonly follow a scale which denotes which pitches are to
be present. For instance, the C-major scale consists of all the white keys on
the piano, while the chromatic scale contains all keys (both white and black).

A music score divides time into discrete time intervals called bars (measures)
which are separated by a vertical line. The time signature appears at the
start of the score: the upper number specifies how many beats are in a bar and
the lower number determines which note value forms a beat. For instance, a
time signature of 3

4
(the waltz) means that there are 3 beats in a bar and the

quarter note constitutes a beat. The score in Figure 2.1 consists of 4 bars
and has a time signature of 4

4
.

Looser musical structures are also useful when describing music. Motifs are
short musical ideas, i.e. short sequences of notes which are repeated and
unfolded within a melody. Several motifs can be combined to form a phrase.
A theme is the central material, usually a melody, on which the music is
founded.

2.2 Evolutionary Computation

Evolutionary Computation (EC) incorporates a wide set of algorithms that
take inspiration from natural evolution and genetics. Applications include
solving hard optimization problems, design of digital circuits, creation of
novel computer programs and several other areas that are typically addressed
by human design. Most evolutionary algorithms are based on the same key
elements found in natural evolution: a population, diversity within the pop-
ulation, a selection mechanism and genetic inheritance (Floreano and Mat-
tiussi, 2008).

In an Evolutionary Algorithm (EA) a population of individuals is maintained
that represent possible solutions to a target problem. Each solution is en-
coded as a genome which, when decoded, yields the candidate solution. The
structure of the genomes is called its genotype, and a wide range of possible
representations exist. The phenotype describes the form of the individual and

8 CHAPTER 2. BACKGROUND

is mostly problem specific. While the phenotype directly describes a solu-
tion, the genotype typically employs a more low-level and compact encoding
scheme.

An EA typically operates on generations of populations. For each evolu-
tionary step, a selection of individuals are chosen for survival to the next
generation. The selection mechanism typically favours individuals according
to how well they solve the target problem; that is, according to their fitness.

Tournament selection is a popular selection mechanism, in which several
“tournaments” are held between k randomly chosen individuals. With prob-
ability 1 − e, the individual with the highest fitness wins the tournament.
With probability e, however, a random individual is chosen instead. This
mechanism promotes genetic diversity while at the same time maintaining
selection pressure.

The fitness function takes as input an individual which is evaluated to pro-
duce a numerical fitness score. As such it is highly problem specific and often
involves multiple objectives. A common technique is to combine several ob-
jectives as a weighted sum.

In order to explore the solution space, diversity is maintained within the
population through genetic operators like mutation and crossover. Random
mutations are introduced to the population in order to explore the close
neighbourhood of each solution, in search for a local optima. That is, muta-
tions cause exploitation of the best solutions found so far.

Many EAs also include a second selection phase called reproduction. During
reproduction, two (or more) parent individuals are chosen for mating, and
their genetic material is combined to produce one or more offspring. Each
offspring then inherits genetic material from its parents. The idea is that
combining two good solutions might result in an even better solution. The
combination of different genetic material is addressed by the crossover op-
erator, to which many variations exist. Crossover ensures exploration of the
solution space.

The evolutionary loop continues like this with selection, (reproduction) and
mutation through many generations until some stopping criterion is met,
and a satisfying solution emerges from the population. Figure 2.3 depicts
the evolutionary loop and its main components.

2.2. EVOLUTIONARY COMPUTATION 9

Initialization

Population

SelectionFitness

Diversity

Figure 2.3 A high level diagram of the evolutionary loop.

In general, the process of constructing an EA involves:

1. Design of a genetic representation (genotype) and its corresponding
genetic operators (mutation, crossover, etc.)

2. Creation of a mapping between the genotype to the phenotype

3. Choosing the selection mechanisms

4. Design of a fitness function which measures the quality of each solution

Different types of EAs mainly employ different genetic representations and
operators. Genetic Algorithms (GA) operate on binary representations, Ge-
netic Programming (GP) uses a tree-based scheme and Evolutionary Pro-
gramming (EP) operates directly on phenotype parameters. For a detailed in-
troduction to Evolutionary Computation, see Floreano and Mattiussi (2008).

10 CHAPTER 2. BACKGROUND

2.3 Evolutionary Art and Aesthetics

Music is an art form with and thus exhibits an important aesthetic aspect.
This section gives a brief overview of how evolutionary computation has been
applied in other aesthetic domains.

The first to utilize evolutionary techniques in the aesthetic field was Richard
Dawkins, the evolutionary biologist of later renown, who in 1987 devised
“Biomorphs”, a program that let the user evolve graphical stick figures. Since
then, a myriad of evolutionary art systems have been developed (Bentley and
Corne, 2002).

Another early pioneer in the field was Karl Sims, who applied interactive
evolution for computer graphics. Both 3D and 2D images as well as anima-
tions were explored, using a symbolic Lisp tree representation. Completely
unexpected images could emerge, some remarkably beautiful (Sims, 1991).
He presented his work at Paris Centres Pompidou in 1993. Named Genetic
Images, the artwork allowed museum visitors to serve as selectors for new
generations of evolved images.

Another similar example is NEvAr by Machado and Cardoso (2002), a system
which lets the user evolve colour images using Genetic Programming and
user-provided fitness assessment.

Secretan et al. (2008) take the concept a step further with Picbreeder – a
web-based service where users can evolve pictures collaboratively. It offers
an online community where pictures can be shared and evolved further into
new designs.

Common to these examples is the interactive approach to fitness, where hu-
mans pass aesthetic judgement on the generated pieces. Since humans act
as selectors for future generations, these systems are good demonstrations of
the power of evolutionary techniques in the aesthetic domains.

Evolution has also been applied in other areas where aesthetics play an im-
portant role. Architecture, sculptures, ship design and sound are just a few
examples. For a thorough overview of evolutionary art, see Bentley and
Corne (2002).

2.4. EVOLUTIONARY MUSIC 11

2.4 Evolutionary Music

One of the early examples of Evolutionary Computation applied for music is
Horner and Goldberg (1991), where a Genetic Algorithm was used to per-
form thematic bridging. Since then, EC has been used in a wide range of
musical tasks, including sound synthesis, improvisation, expressive perform-
ance analysis and music composition.

Evolutionary Music Composition (EMC) is the application of Evolutionary
Computation for the task of creating (generating) music. In EMC systems,
the genotype is typically binary (GA) or tree-based (GP). The phenotype is
the music score – sequences of notes and rests that make up the composition.

As mentioned earlier, the fitness function poses a significant challenge when
constructing evolutionary composition systems. Approaches include inter-
active evaluation, hardwired rules and machine learning methods.

One well-known EMC system is GenJam, a genetic algorithm for generating
jazz solos (Biles, 1994). A binary genotype is employed, with musical (domain
specific) genetic operators. GenJam uses interactive fitness evaluation, where
a human musical mentor listens through and rates the evolved music phrases.

Johanson and Poli (1998) developed a similar EMC system called GP-Music
which can evolve short musical sequences. Like GenJam, it relies on inter-
active fitness evaluation, but employs a tree-based genotype instead of a bit
string.

Motivated by subjectivity and efficiency concerns with interactive fitness as-
sessment, Papadopoulos and Wiggins (1998) developed an automatic fitness
function based on music-theoretical rules. It was applied in a GA for the
evolution of jazz melodies, with some promising results.

Another similar example is AMUSE, where a hardwired fitness function is
used to evolve melodies in given scales and chord progressions (Özcan and
Erçal, 2008).

Phon-Amnuaisuk et al. (1999) used a GA to generate traditional musical
harmony, i.e. chord progressions. A fitness function derived from music
theory was used and surprisingly successful results are reported.

The Swedish composer Palle Dahlstedt presents an evolutionary system which
can create complete piano pieces. By using a recursive binary tree repres-
entation, combined with formalized fitness criteria, convincing contemporary
performances have been generated (Dahlstedt, 2007).

12 CHAPTER 2. BACKGROUND

Some have considered probabilistic inference as framework for automatic fit-
ness functions. A recent example is Little Ludwig (Bellinger, 2011), which
learns to compose in the style of known music. Evolved music is evaluated
based on the probability of note sequences with respect to some inspirational
music piece.

This has been a short introduction to the EMC field and is by no means
exhaustive. For a more in-depth survey, the reader is referred to a book
dedicated to the subject – “Evolutionary Computer Music” (Miranda and
Biles, 2007).

2.5 Music Representation

The genotypes most commonly used in EMC systems are binary bit strings
(GA) and trees (GP). Although the choice of genotype differs, music domain
knowledge is commonly encoded into the representation in order to constrain
the search space and get more musical results.

Discrete MIDI1 pitches are usually employed instead of pitch frequencies.
They range from 0-127 and include all the note pitches possible in a music
score.

2.5.1 Linear Representations

Linear genotypes encode music as a sequence of notes, rests and other musical
events in an array-like structure. Binary genotypes fall under this category,
where the sequence is encoded in a string of bits. Symbolic vectors are also
common, which are at a higher level of abstraction and somewhat easier to
deal with. Linear genotypes fall under the Genetic Algorithm (GA) class of
EAs.

The genotype is typically of a fixed size specified by the user, dividing the
genotype into N slots which each can hold a musical event. This effect-
ively limits the length of the evolved music, either directly or implicitly. A

1MIDI (Musical Instrument Digital Interface) is a standardized protocol developed by
the music industry which enables electronic instruments to communicate with each other.
For more information see the website http://www.midi.org/.

http://www.midi.org/

2.5. MUSIC REPRESENTATION 13

1 0111100 1 0111100 1 1000000 0 . . . 1 1000011 0 . . .
no

te C no
te C no
te E ho
ld

no
te G ho
ld

Figure 2.4 Binary genome with implicit note durations. Each event is one byte
long. The first bit denotes the event type, either note (1) or hold (0). The remaining
seven bits contain the MIDI pitch to be played for the note event and are simply
ignored in the case of a hold event.

Figure 2.5 Music score corresponding to the genome in Figure 2.4, given that
event durations are one quarter note long.

position-based scheme is usually employed, i.e. a note’s position in the score
is implicitly determined by its location in the genome.

Musical events can include notes, rests, chords, dynamics (e.g. loud or soft),
articulation (e.g. staccato) and so on. The duration of an event is either
specified explicitly in the event, or determined implicitly, e.g. by the events
that follow.

Papadopoulos and Wiggins (1998) use a symbolic vector genotype, where the
duration of each event is explicitly defined. Rather than absolute pitches, a
degree-based scheme is used where the pitches are mapped to degrees of a
pre-defined scale. Genomes are thus sequences of (degree, duration) tuples.

An implicit duration scheme is found in GenJam’s binary genotype. Three
types of events are supported: note, rest and hold. A note specifies the start
of a new note. Similarly a rest event dictates the beginning of a rest. Both
events implicitly mark the end of any previous note or rest. Finally, a hold
event results in the lengthening of a preceding note (rest) by a fixed amount
(Biles, 1994).

A binary genome with an implicit duration scheme can be seen in Figure 2.4.
Each event is one byte long – one bit for the event type and seven bits for
the MIDI pitch to be played. In the case of a hold event, the pitch field is
simply ignored. Figure 2.5 shows the corresponding music score, given that
event durations are one quarter note long.

14 CHAPTER 2. BACKGROUND

Music knowledge is often embedded into the genetic operators. For example,
instead of the random point mutation traditionally employed in GAs, various
musical permutations can be used. Examples include reversing, rotating and
transposing random sequences of notes, as well as copying a fragment from
one location to another.

Finally, linear genotypes are simple to use, since their structure closely re-
sembles a music score. Interpretation of the genome is thus fairly straight-
forward for a human.

2.5.2 Tree-Based Representations

Tree-based genotypes encode music as a tree where the leaf nodes (the ter-
minals) contain the notes and rests, and the inner nodes represent operators
that perform some function on the contents of their sub-trees. The tree is
recursively parsed to produce a music score. The functions must minimally
include some form of concatenation to be able to produce sequences of notes,
but often other musical operators are used as well. Tree-based genotypes are
part of the Genetic Programming (GP) family of EAs.

Some argue that GP is well suited for music because the tree closely resembles
the hierarchical structure found in music, e.g. short sequences of notes make
a motif, several motifs form a phrase which combines into melodies and larger
sections (Minsky and Laske, 1992).

Johanson and Poli (1998) employ seven different operators (functions), in-
cluding concatenation, repetition, note elongation, mirroring and transpos-
ition of notes. Manaris et al. (2007) also include functions for polyphony,
retrograde and inversion.

Figure 2.6 depicts an example tree-based genome for music, with three differ-
ent operators. The leaf nodes are (pitch, duration) pairs. The repeat operator
causes the notes in its sub-tree to be played twice, while slow doubles their
duration. The corresponding music score can be seen in Figure 2.5.

As can be seen, music knowledge is embedded into the function nodes. As
such the complexity lies in the interpretation of the genome and the mapping
to a music score, i.e. in the phenotype, at a higher level of abstraction than
in the linear genotypes.

2.5. MUSIC REPRESENTATION 15

concatenate

repeat

C, 1
4

slow

concatenate

E, 1
4 G, 1

4

Figure 2.6 An example tree-based music genome. The leaves contain (pitch,
duration) pairs and the non-leaf operators perform concatenation, repetition or
slowing of the notes in their respective sub-trees. The corresponding music score
can be seen in Figure 2.5.

Since the domain knowledge lies at the phenotype level (when parsing the
tree), traditional genetic operators from GP can be used without further
modification. Mutation simply replaces a random node with a randomly
generated sub-tree, while crossover swaps two randomly selected sub-trees
between genomes. Care must be taken when performing these operations so
that the tree doesn’t grow out of bounds, resulting in extremely long pieces
of music. Typically a maximum depth parameter is implemented to limit the
height of the tree.

Tree-based genotypes are dynamic in size, meaning that the length of the
gnomes can change across generations. This in turn allows variation in the
length of the evolved music. Introducing new music knowledge or adding
more musical possibilities (like polyphony or dynamics) is also fairly straight-
forward, and simply involves implementation of a new function node. The
structure of the genotype remains the same.

It should be noted that trees are more complex structures than vectors and
are therefore more difficult to use. For a human, translation of a tree into a
music score is not exactly child’s play.

2.5.3 Phenotype Mapping

The translation from genotype to phenotype often adds further music know-
ledge to the system, often in the form of musical constraints.

16 CHAPTER 2. BACKGROUND

One common technique is to map the pitches in the genotype to a pre-defined
scale. The scale can either be kept the same for the entire score, or follow
some chord progression specified by the user.

GenJam makes use of this approach, where jazz melodies are mapped to
scales according to a predefined chord progression. This allows the melodies
to be applied to many different musical contexts. Since the notes are always
in scale, the system never plays a “wrong” note. This scheme effectively
reduces the amount of unpleasant melodies the mentor has to listen through
(Biles, 1994). In the context of EAs, the search space is reduced to melodies
in certain scales.

In many musical genres, however, breaking the “rules” from time to time is
encouraged and can give rise to much more interesting music. A jazz soloist
who always keeps to the “correct” scales usually results in a rather boring
performance.

Another feature often employed is that of a reference pitch which specifies
the lowest possible pitch to consider during the mapping process. A refer-
ence duration can also be considered, to effectively adjust the tempo of the
resulting score (given a fixed BPM).

2.6 Fitness

As mentioned, musical fitness is the primary focus of this research and has
proven to be the most challenging aspect of EMC systems. Some measure-
ment of the “goodness” of a music piece is required in order to guide evolution
towards aesthetically pleasing individuals. In other words, a fitness function
is needed which captures the human perception of pleasantness in music.

Unfortunately, as discussed in Chapter 1, human music creation is an elusive
process, and exactly what constitutes pleasant music is also not fully under-
stood. Furthermore, personal musical taste plays an important role in the
liking of a given piece of music. Certain styles of music will appeal to some
people, while not to others. A fitness function which can be tuned to favour
certain musical styles would certainly be beneficial, allowing the generation
of a wider spectrum of music.

2.6. FITNESS 17

The approaches to musical fitness can roughly be divided into three categor-
ies:

• Interactive evaluation: fitness assigned by humans, e.g. Biles, 1994.

• Hardwired fitness functions : rules based on music theory or experience,
e.g. Papadopoulos and Wiggins, 1998; Dahlstedt, 2007.

• Learned fitness functions : Artificial Neural Networks (ANNs), Machine
Learning, Markov Models, e.g. Bellinger, 2011.

A more detailed explanation of the different approaches to fitness follows,
with a discussion of their main strengths and weaknesses.

2.6.1 Interactive Evaluation

Probably the most precise fitness assessment available is from the target
audiences themselves. If humans evaluate the fitness of the music pieces, the
problem of formalizing music knowledge is avoided. Surely this produces a
much more accurate assessment of the “goodness” of a music piece than any
known algorithmic method?

With interactive fitness functions, one or more human mentors will sit down
and listen through each evolved music piece and give them a fitness score,
either explicitly or implicitly.

In GenJam, for example, the mentor will press ’G’ on his keyboard a number
of times to indicate that he likes what was just played. Similarly, to indicate
that a portion of the music was bad, he presses ’B’. Fitness is then simply
the number of Gs minus the number of Bs (Biles, 1994).

One of the main problems with the interactive approach is that for every
music piece in the population, the mentors must listen carefully through each
one and determine which ones are better. This process has to be repeated
for each generation.

In the visual art domains, this is less problematic because several images can
be presented to the mentor at the same time and thus be compared quicker
and easier. Music, however, is temporal in nature. A piece of music always
has to be presented in the correct tempo and the length of the piece dictates

18 CHAPTER 2. BACKGROUND

the minimum time required for evaluation. Finally, several music pieces can
not be presented simultaneously, making the evaluation process much more
time consuming than with images.

This issue has been termed “the fitness bottleneck” and is the main limiting
factor for the population size and number of generations (Biles, 1994). In-
teractive fitness might provide a good evaluation, but clearly at the expense
of efficiency.

Another important problem with the interactive approach is subjectivity. The
humans responsible for evaluating each music piece will most likely be biased
towards their own musical taste. This can be countered by increasing the
number of mentors to gain statistical significance. However, much care must
be taken when selecting the participants. The number of people, their age,
background etc. are parameters which will clearly affect the results. Determ-
ining the important parameters and gathering the right people is a challen-
ging task in itself.

Furthermore, providing consistent evaluation is hard and it is likely that the
mentors will be biased from previous listenings, mood or even boredom. Fi-
nally, interactive fitness tells us very little about the processes involved in
music composition. The music knowledge which is applied is hidden away in
the mentor’s mind and is for that reason of limited research value (Papado-
poulos and Wiggins, 1998).

2.6.2 Hardwired Fitness Functions

Another approach to musical fitness is to study music theory (or other
sources) for best practices in music composition. This typically involves
examination of relevant music theory and translation of this knowledge to
algorithmic fitness assessments. Such methods attempt to address the chal-
lenges found in interactive fitness functions.

A fitness function for melodies based on jazz theory was designed by Papado-
poulos and Wiggins (1998). The function consists of a weighted sum of eight
sub-objectives related to melodic intervals, pattern matching, rhythm, con-
tour and speed. The authors report that their system generated subjectively
interesting melodies, although few examples are provided. Noticeably the
more music knowledge which was encoded into the system, the better were
the results.

2.6. FITNESS 19

A similar rule-based approach is found in Özcan and Erçal (2008). A survey
performed with 36 students revealed that the subjects were unable to differ-
entiate between the melodies created by the system and those of a human
amateur musician. Further, tests showed a correlation between the fitness of
a melody and its statistical rank as given by the human evaluators.

As discussed above, hardwired fitness functions can yield good results. How-
ever, they can often be quite challenging to design. The rules of thumb found
in most music literature are often vague and hard to interpret algorithmic-
ally. They are only best practices and are certainly not followed rigidly by
most artists. Furthermore, sufficient knowledge might not even be available
in the literature for certain styles of music.

Another issue is scalability. Hardwired fitness functions tend to become
highly specialized towards some small subset of music. In order to evolve
music in another style, the rules that make up the fitness have to be altered
and redesigned by hand – a potentially challenging and time consuming pro-
cess.

2.6.3 Learned Fitness Functions

Because of the difficulty in hand-designing good fitness functions for music,
many researchers have turned to learned fitness functions for possible solu-
tions. In this approach, machine learning techniques are used to train the
fitness function to evaluate music pieces. Such systems learn by extracting
knowledge from examples (training data) which are utilized to evaluate new
unseen music pieces.

One of the main advantages of machine learning approaches is that they typ-
ically require less domain knowledge than hardwired fitness functions. Fur-
thermore, they might discover novel aspects of music which could otherwise
be missed by human experts.

Another important advantage is that of adaptability. Hardwired fitness func-
tions are challenging and time consuming to create, and the design process
has to be repeated for each musical style. A learned fitness function would
ideally only require a new set of training data for analysis.

Unfortunately, machine learning techniques are not powerful enough to pro-
cess raw music directly. For instance, passing an entire music score as the

20 CHAPTER 2. BACKGROUND

input to an ANN will not only require an infeasible number of neurons, but
the network is unlikely to succeed in extracting any relevant knowledge.

Some form of feature extraction is necessary to both reduce the dimensionality
of the problem and assist the algorithm by identifying potentially useful
musical characteristics. Identifying features which are musically meaningful
is crucial for the algorithm to successfully learn anything.

Relevant, unbiased training data is essential, as well as collecting the suffi-
cient amount of material in order to achieve good performance (Duda et al.,
2006). For instance, a collection of music pieces used as training data should
include music in all relevant musical styles and by many different authors.

In an attempt to improve the efficiency of GenJam, an ANN was trained
based on data gathered from interactive evaluation runs. The hope was that
the neural network would learn how to evaluate new music. However, the
results were unsuccessful, with diverging fitness for nearly identical genomes
(Biles et al., 1996). A similar attempt was made in Johanson and Poli (1998)
with inconclusive results – some of the evolved melodies were reportedly nice
while others rather unpleasant.

Even though learned fitness functions have great potential, they are challen-
ging to design and tune. As mentioned, the disadvantages include sensitivity
to the input data, many input parameters and difficult feature selection.

Chapter 3

Methodology

This thesis proposes a quantitative approach to Evolutionary Music Compos-
ition. That is, the fitness function operates on the frequency of music events.
The evolutionary system is designed to create short, monophonic melodies.

The term “event” is used broadly here, meaning an occurrence of any kind
within a music piece. In other words, an event is not restricted to single notes,
but can be the relationship between notes or pairs of notes, for example. The
types of events explored are covered in Section 3.2.1: Metrics.

Two different techniques for processing the frequency distributions are in-
vestigated, i.e. two fitness functions. The first builds on Zipf’s Law, which
measures the scaling properties in music and is described in Section 3.3. The
second technique is based on the similarity between frequency distributions
and is presented in 3.4.

A tree-based representation is employed based on Genetic Programming (see
Section 2.5.2). Many of the features described in Section 2.5.3 are also in-
cluded. A detailed description of the genotype and phenotype is given in
Section 3.1.

3.1 Music Representation

In previous work by the author (Jensen, 2010) a symbolic, vector-based gen-
otype was used to evolve music. As discussed in Section 2.5.1, linear repres-
entations (e.g. binary, vectors) are commonly found in the EMC literature.
They all fall under the Genetic Algorithm class of Evolutionary Computation.

21

22 CHAPTER 3. METHODOLOGY

The other type of representation commonly employed is the tree-based gen-
otype which falls under the Genetic Programming umbrella. It has been
argued that GP is more suitable because the tree closely resembles the hier-
archical structure found in music (see Section 2.5.2).

3.1.1 Introduction

In this work, a tree-based genotype is employed, which was shown to out-
perform the vector-based genotypes previously used (see Section 4.1). As
discussed earlier, music is encoded in a tree where the leaf nodes (terminals)
contain notes and the inner nodes represent functions that perform some op-
erations on their sub-trees. Recursively parsing a tree results in a sequence
of notes – the music score (see Section 2.5.2).

The following sections give an in-depth description of the tree-based repres-
entation used throughout this research.

3.1.2 Parameters

The genotype and phenotype take several parameters which determine vari-
ous aspects of the representation. They are summarized here and described
in more detail in the sections that follow.

Genotype Parameters

Pitches: Number of pitches (integer)

Durations: Number of durations (integer)

Max-depth: Maximum tree depth (integer)

Initialization method: Tree generation method (“grow” or “full”)

Function probability: Probability of function nodes (float)

Terminal probability: Probability of terminal nodes (float)

3.1. MUSIC REPRESENTATION 23

Phenotype Parameters

Pitch reference: Lowest possible pitch (integer)

Scale: A musical scale mapping (list)

Resolution: Base note duration (integer)

Duration map: Set of durations to use (list)

3.1.3 Functions and Terminals

Inner nodes have two children, i.e functions take two arguments, thus result-
ing in binary trees. The function set only contains one function, concaten-
ation, which is denoted by a “+”. Concatenation simply connects the notes
from its two sub-trees to a form a longer sequence. Although it would be
interesting to include other functions as well, it was decided to keep things
simple so that the fitness function would be responsible for most of the music
knowledge.

The set of terminals contain the notes, which are represented as (pitch, dur-
ation) tuples. Pitches and durations are both positive integers, which are in
the range [0, N) where N is dictated by the the pitches or durations para-
meters. The way the pitches and durations are interpreted depends on the
phenotype parameters and is detailed in Section 3.1.6. Note that rests are
not included in the representation.

3.1.4 Initialization

Initialization of random genome trees is performed in two different occasions:

1. When creating the initial population at the beginning of the EA.

2. When generating random sub-trees for mutation.

Trees are generated in a recursive manner, where in each step a random
node from either the function set or the terminal set is chosen. Tree growth
is constrained by the max-depth parameter, which determines the maximum
height of the generated trees.

24 CHAPTER 3. METHODOLOGY

The initialization method determines how each node is chosen. With the
full method, a function node is always chosen before the maximum depth
is reached, after which only terminals can be selected. This results in full
binary trees with 2D leaf nodes (notes), where D is the maximum depth.
With the grow method, function and terminal nodes are chosen randomly
according to the function- and terminal probability parameters, respectively.
The resulting trees are therefore of varying size and shape. See also Koza
(1992).

3.1.5 Genetic Operators

The traditional GP operators of mutation and crossover are adopted. Muta-
tion replaces a random node with a randomly generated sub-tree. Crossover
swaps two random sub-trees between genomes. Both operators conform to
the maximum depth, meaning that the resulting genomes will never be higher
than this limit.

For both operators, function and terminal nodes are selected according to the
function- and terminal probability, respectively. As suggested in Koza (1992),
the default function probability is 90% and terminal probability 10%.

3.1.6 Parsing

Parsing of the tree is done at the phenotype level, where the tree is recursively
traversed. The result is the sequence of notes that make up the music score.

Genotype pitches p in the terminal nodes are offset by the pitch reference
and mapped to the specified musical scale:

pitch = pitchref + 12 bp/Nc+ scale [p mod N]

where N is the length of the scale list. In words, the second term calculates
the octave while the last term performs the scale mapping. The resulting
integer is a MIDI pitch number.

The genotype durations d (positive integers) can be interpreted in two ways:

3.2. FITNESS 25

+

+

(0,2) (2,1)

+

(4,1) (5,0)

(a)

4
4

(b)

Figure 3.1 An example tree genome (a) and the resulting music score (b).

1. If the resolution parameter is specified, according to the equation: 2d

r
,

where r is the resolution. Thus for a resolution of 16, this would result
in the real-valued durations 1

16
, 1

8
, 1

4
, 1

2
for d ∈ [0, 3].

2. If a duration map is given, d is interpreted as the index of an element
in this map, i.e. duration [d]. This allows the use of durations that are
not easily enumerated.

Figure 3.1 shows an example tree genome and the resulting music score after
parsing, using a resolution of 16, pitch reference set to 60 (Middle C) and
the chromatic scale (no scale).

3.2 Fitness

As mentioned, two approaches to automatic fitness for music are explored.
The first is based on Zipf’s Law, and is described further in Section 3.3. The
second is based on distribution similarity and is detailed in Section 3.4.

Common to the two fitness functions is the quantitative approach – they
operate on the frequency of musical events. The difference is how these
frequency distributions are utilized to produce a fitness score. Figure 3.2
depicts the structure and relationship between the fitness functions. For
both functions, the fitness score is calculated with respect to a set of target
measurements.

26 CHAPTER 3. METHODOLOGY

Music

Metric frequency
distributions

Zipf SimilarityTarget
slopes

Target
distributions

Fitness score Fitness score

Figure 3.2 Diagram of the two fitness functions, the first based on Zipf’s Law and
the second on distribution similarity. The fitness score is calculated with respect
to a set of target measurements.

3.2. FITNESS 27

3.2.1 Metrics

The musical events are produced by different metrics which are summarized
here and described below. Most of the metrics are derived from Manaris
et al. (2007).

Pitch: Note pitches (p ∈ [0, 127])

Chromatic-tone: Note pitches modulo 12 (ct ∈ [0, 11])

Duration: Note durations (d ∈ R+)

Pitch duration: Note pitch and duration pairs (p, d)

Chromatic-tone duration: Chromatic tone and duration pairs (ct, d)

Pitch distance: Time intervals between pitch repetitions (tp ∈ R+)

Chromatic-tone distance: Time intervals between chromatic-tone repeti-
tions (tct ∈ R+)

Melodic interval: Musical intervals within melody (mi = pi − pi−1 or ab-
solute mi = |pi − pi−1|)

Melodic bigram: Pairs of adjacent melodic intervals (mii,mii+1)

Melodic trigram: Triplets of adjacent melodic intervals (mii,mii+1,mii+2)

Rhythm: Note durations plus subsequent rests (r ∈ R+)

Rhythmic interval: Relationship between adjacent note rhythms (ri =
ri

ri−1
)

Rhythmic bigram: Pairs of adjacent rhythmic intervals (rii, rii+1)

Rhythmic trigram: Triplets of adjacent rhythmic intervals (rii, rii+1, rii+2)

Pitches are positive integers corresponding to MIDI pitches, while durations
are positive real numbers denoting a time interval. Chromatic tone is simply
the octave-independent pitch, e.g. any C will have the chromatic tone number
0, Es will have the number 4 and so on. This is useful because pitches are
perceptually invariant (perceived as the same) over octaves (Hulse et al.,
1992).

28 CHAPTER 3. METHODOLOGY

Melodic intervals capture the distance between adjacent note pitches within
the melody. As such they provide melodic information independent of the
musical key, e.g. the same melody played in the C major and D major scale
will contain the same melodic intervals. Hulse et al. (1992) presents evidence
that melodies with the same sequence of intervals are perceptually invariant.

The melodic intervals come in two flavours: relative and absolute – the latter
discards information about the direction of the interval. The melodic bigrams
and trigrams produce pairs and triplets of melodic intervals, respectively.

The rhythm metric was created to describe rhythmic features formed by
notes followed by any number of rests. When there are no rests, rhythm is
equivalent to the duration metric. Since the genotype does not support rests,
this is always the case for the evolved music. Rhythm is however useful when
applied to real-world music which do contain rests.

Rhythmic intervals capture the relationship between two adjacent rhythms
as a ratio. They are therefore independent of tempo and are the rhythmic
equivalent of melodic intervals. Hulse et al. (1992) also demonstrates that
rhythmic structure is perceptually invariant across tempo changes.

A rhythmic interval of 1.0 indicates no rhythmic change between two notes.
An interval of less than 1.0 describes an increase in speed, while greater
than 1.0 indicates a decrease. Rhythmic bigrams and trigrams are pairs and
triplets of rhythmic intervals, respectively.

3.3 Fitness Based on Zipf’s Law

Research on Zipf’s Law has demonstrated that art tends to follow a balance
between chaos and monotony. Evidence shows that this is also the case
in music (Manaris et al., 2005, 2003, 2007). Building on this research, an
automatic fitness function based on Zipf’s Law is proposed for the evolution
of novel melodies.

3.3.1 Zipf’s Law

The Harvard linguist George Kingsley Zipf studied statistical occurrences
in natural and social phenomena. He defined Zipf’s Law which describes

3.3. FITNESS BASED ON ZIPF’S LAW 29

the scaling properties of many of these phenomena (Zipf, 1949). The law
states that the “frequency of an event is inversely proportional to its statistical
rank ”:

f = r−a (3.1)

where f is the frequency of occurrence of some event, r is its statistical rank
and a is close to 1 (Manaris et al., 2005).

For example, ranking the different words in a book by their frequency, the
most frequent word (rank 1) will occur approximately twice as often as the
second most frequent word (rank 2), three times as often as the third most
frequent word (rank 3) and so on. Plotting these ranks and frequencies on
a logarithmic scale produces a straight line with a slope of −1. The slope
corresponds to the exponent −a in equation (3.1). Such a plot is known as
a rank-frequency distribution.

Figure 3.3 shows the rank-frequency distribution of the 10,000 most frequent
words in the Brown Corpus text collection and a straight line which fits the
distribution. As predicted, the slope of the line is approximately -1.

Figure 3.3 Rank-frequency distribution of the 10,000 most frequent words in the
Brown Corpus and a straight line which fits the distribution. The slope of the line
is approximately -1 as predicted by Zipf’s Law.

30 CHAPTER 3. METHODOLOGY

Zipf’s Law is a special case of a power law. When a is 1, the distribution is
called 1/f noise, or pink noise. These 1/f distributions have been observed in
a wide range of human and natural phenomena, including language, city sizes,
incomes, earthquake magnitudes, extinctions of species and in various art
forms. Other related distributions are white noise (1/f 0 – uniform random)
and brown noise (1/f 2).

3.3.2 Zipf’s Law in Music

In his seminal book Human Behaviour and the Principle of Least Effort,
Zipf also found evidence for his theory in music. Analysis of Mozart’s Bas-
soon Concerto in Bb Major revealed an inverse linear relationship between
the length of intervals between repetitions of notes and their frequency of
occurrence (Zipf, 1949).

Vossa and Clarke (1978) studied noise sources for stochastic music compos-
ition. They generated music using a white, pink and brown noise source.
Samples of the results were played to several hundred people. They dis-
covered that the music from the pink noise source was generally perceived as
much more interesting than music from the white and brown noise sources.

Manaris et al. (2003) devised more metrics based on Zipf’s Law, and later
work expanded and refined them (Manaris et al., 2005, 2007). Each metric
counts the frequency of some musical event and plots them against their
statistical rank on a log-log scale. Linear regression is then performed on the
data to estimate the slope of the distribution. The slopes may range from zero
to negative infinity, indicating uniform random to monotone distributions,
respectively. The coefficient of determination R2 is also computed to see
how well the slope fits the data. R2 values range from 0.0 (worst fit) to 1.0
(perfect fit).

Some of the relevant metrics explored by Manaris include rank-frequency
distributions of: pitches, chromatic tones, note durations, pitch durations,
chromatic tone durations, pitch distances, melodic intervals, melodic bigrams
and melodic trigrams. Section 3.2.1 covers the metrics in more detail.

Figure 3.4 shows the rank-frequency distributions and slopes from all the
above metrics applied to The Beatles’ Let It Be. Most of the metrics display
slopes near -1 as predicted. Notice the rather steep slope of −2.0 for note
durations, something which suggests little variation in the music rhythm.

3.3. FITNESS BASED ON ZIPF’S LAW 31

Figure 3.4 Rank-frequency distributions and slopes for each metric applied to
The Beatles’ Let It Be. Most of the metrics display slopes near -1, as predicted by
Zipf’s Law.

32 CHAPTER 3. METHODOLOGY

A large corpus of MIDI-encoded music in different styles was analysed by
Manaris with the Zipf-based metrics. The results showed that all music pieces
displayed many near Zipfian distributions, with strong correlations between
the distribution and the linear fit. Non-music (random) pieces exhibited very
few (if any) distributions.

These results suggest that Zipf-based metrics capture essential aspects of
the scaling properties in music. They indicate that music tends to follow a
distribution balanced between chaos and monotony, i.e. between a near-zero
slope and a steep slope approaching negative infinity.

Studies showed that different styles of music exhibited different slopes and
demonstrated further that the slopes could be used successfully in several
music classification tasks. A connection between Zipf metrics and human
aesthetics was also revealed (Manaris et al., 2005).

3.3.3 Fitness Function

Since Zipf distributions are so prevalent in existing music, it seems reasonable
to assume that new music must also exhibit such properties. The obvious
question is then, can a fitness function based on Zipf’s Law guide evolution
towards pleasant music?

Some research exists in this area: Manaris et al. (2007) performed several
music generation experiments using Zipf metrics for fitness. Different melodic
genes were used for the initial population and successful results were repor-
ted when an existing music piece was used. In other words, variations of
existing music were evolved. The work presented herein, however, is focused
on creating new music from scratch.

Each Zipf-based metric extracts a slope from a music piece. Assume that the
value of some favourable slope is known a priori – that is, a target slope which
evolution should search for. The fitness is then a function of the distance
(error) to the target.

For a single metric, the target fitness is defined as a Gaussian:

fm(x;T) = e−(T−x
λ

)2 (3.2)

3.3. FITNESS BASED ON ZIPF’S LAW 33

Figure 3.5 Fitness plot of the target fitness fm for different tolerance values λ.

where m denotes the metric, T is the target slope for the given metric, x
is the metric slope of some evolved music piece and λ is the tolerance – a
positive constant. fm results in smooth fitness values ranging from 0.0 (when
|T − x| is above some threshold) and 1.0 (when T = x). The tolerance λ
adjusts this threshold (and the steepness of the fitness curve). Fitness will
approach zero when |T −x| is approximately 2λ. Figure 3.5 shows the fitness
curves of fm for different tolerance values.

Of course, a single metric is unlikely to be sufficient alone as the fitness
function. Several metrics should be taken into account. Thus instead of a
single target slope, a vector of target slopes is used. Combining the target
fitness of several different metrics as a weighted sum gives:

f(x;T) =
N∑
i=1

wifi(xi;Ti) (3.3)

where N is the number of metrics, i denotes the metric number, wi its weight
and fi the single metric target fitness function in equation (3.2). Finally f
is normalized to produce fitness values in the interval [0, 1].

34 CHAPTER 3. METHODOLOGY

3.4 Fitness Based on Distribution Similarity

Experiment results from Chapter 4 demonstrate that Zipf metrics can be
used successfully as fitness for evolution of pleasant melodies. Some musical
knowledge was necessary for evolution to produce coherent results, e.g. con-
straints in the form of a scale, the number of possible pitches and so on.
However, a majority of the evolved melodies were in fact rather unpleas-
ant. As discussed in Section 4.4, Zipf metrics capture scaling properties only,
which were shown to be insufficient for pleasant music alone.

Zipf’s Law in music seems to be universal in that it applies to many different
(if not all) styles of music. Musical taste, however, varies greatly from person
to person and depends on many factors such as nationality, culture and
musical background. Exposure to music will likely affect our musical taste,
e.g. an Indian is likely to prefer Indian music over country, simply because
he is more familiar with the style.

Thus, instead of attempting to model universal musical properties, it might
be more fruitful to model properties in certain styles of music.

Musicians usually focus on a few selected musical styles, but how does creativ-
ity come to the musician? An important part of the music creative process is
undoubtedly listening to a lot of music for inspiration. Musical concepts and
ideas are borrowed from music we like, either knowingly or subconsciously.
Either way, there is certainly an element of learning involved in musical cre-
ativity.

This chapter presents a more knowledge-rich approach to musical fitness.
The approach takes both contents and scaling properties into account, which
can be learned from existing music pieces.

3.4.1 Metric Frequency Distributions

Each metric (see Section 3.2.1) counts the occurrence of some type of musical
event, producing a frequency distribution of events. Figure 3.6 shows the
frequency distribution of chromatic tones used in Mozart’s Piano Sonata
No. 16 in C major (K. 545). From the distribution it is seen that the piece
mainly concerns the pitches C (0), D (2), E (4), ..., i.e. the C major scale.

3.4. FITNESS BASED ON DISTRIBUTION SIMILARITY 35

Figure 3.6 Frequency of chromatic tones from Mozart’s Piano Sonata No. 16.

(a) (b)

Figure 3.7 Melodic intervals from Mozart’s Piano Sonata No. 16 (a) and De-
bussy’s Prélude Voiles (b). Note the difference in shape and intervals used.

Perhaps more interesting is the frequency of melodic intervals (Figure 3.7a):
the major (±2) and minor second (±1) intervals dominate the melody, fol-
lowed by the minor third (±3), unison (0), perfect fourth (±5) and major
third (±4). Compare this to the melodic intervals in Debussy’s Prélude Voiles
(Book I, No. 2) shown in Figure 3.7b, where the major second is mainly used
– evidence of the whole tone scale that is employed.

As can be seen, there is a wealth of knowledge in such frequency distributions.
A fitness function which makes use of this knowledge could steer evolution
towards music that is statistically similar to some selected piece.

3.4.2 Cosine Similarity

The fitness function presented herein takes as input a set of discrete tar-
get frequency distributions, which can be learned from existing music. The

36 CHAPTER 3. METHODOLOGY

fitness score is calculated based on the similarity to these distributions.

Concepts from the field of Information Retrieval (IR) are borrowed, where a
common task is to score documents based on similarity. The standard tech-
nique operates on the frequency of different words in a document – term fre-
quencies. Each document is viewed as a vector with elements corresponding
to the frequency of the different terms in the dictionary. With the document
vector model, the similarity of two documents can be assessed by considering
the angle between their respective vectors – the cosine similarity :

sim(A,B) = cos(θ) =
A ·B
‖A‖ ‖B‖

(3.4)

A and B are the two document vectors, the numerator is their dot product
and the denominator is the multiple of their norms. Since the vector elements
are strictly positive, the similarity score ranges from 0 meaning completely
dissimilar (independent) to 1 meaning exactly the same. The cosine similarity
has the advantage of being unaffected by differences in document length –
the denominator normalizes the term frequencies.

In the musical domain, the documents are music scores. Instead of words,
musical features are considered: pitches, melodic intervals, rhythm etc. as
described in Section 3.2.1. For instance, the cosine similarity between the
melodic intervals in Mozart’s and Debussy’s pieces (Figure 3.7) is 0.92.

3.4.3 Fitness Function

For a given metric m, fitness is defined as the cosine similarity between the
frequency vectors of the music individual x and a target piece T:

fm(x;T) = sim(x,T) =
x ·T
‖x‖ ‖T‖

(3.5)

fm will thus reward music with features that are statistically similar to the
target piece with respect to the metric. In other words, music which exhibits
the same events at similar relative frequency. The target vector can stem
from a single music piece or a collection of pieces.

3.4. FITNESS BASED ON DISTRIBUTION SIMILARITY 37

For example, if the melodic intervals in Figure 3.7b were used as the tar-
get vector T, the fitness function would reward music in the whole tone
scale similar to Debussy’s Prélude Voiles. Furthermore, positive intervals are
approximately as frequent as negative intervals. Balanced melodies would
therefore be favoured, i.e. where upward and downward motions occur ap-
proximately as often.

For multiple features, the fitness is simply the weighted sum of the similarity
scores fm:

f(x1,x2, . . . ,xN ;T1,T2, . . . ,TN) =
N∑
i=1

wifi(xi;Ti) (3.6)

where i denotes the metric, xi and Ti are the metric frequency vectors and wi

is the weight (importance) of metric i. For convenience, the sum is normalized
to produce fitness values in the range [0, 1].

As mentioned, the fitness function rewards music which exhibits properties
that are statistically similar to a target music piece. The motivation for this
approach is not to copy, but rather to learn from existing music by extracting
common music knowledge plus a bit of inspiration. The amount of inspiration
depends on which metrics are included. For instance, higher level melodic
n-grams will reward music which mimics the melody in the target piece.

3.4.4 Relationship to Zipf’s Law

Zipf’s Law applies to rank-frequency distributions, i.e. only the relative fre-
quencies of events are considered. Cosine similarity, on the other hand, oper-
ates directly on frequency distributions and thus both relative frequency and
event content is taken into account. That is, cosine similarity incorporates
Zipf’s Law.

If the cosine similarity of two frequency distributions A and B is 1.0, it follows
that their respective rank-frequency distributions will have the same shape.
Consequently their Zipf slopes will also be identical:

sim(A,B) = 1.0⇒ slope(A) = slope(B)

Assuming that the target music piece exhibits Zipfian slopes, the similarity-
based fitness function (3.6) will thus promote music with similar slopes.

38 CHAPTER 3. METHODOLOGY

3.4.5 Filtering

When counting the many events in real-world music, there is likely to be some
events that occur very rarely, i.e. have low frequencies. In other words, there
is bound to be some noise. When target vectors are derived from a music
score, it is desirable to put emphasis on the most descriptive events. Given
the repetitive nature of music, it is reasonable to assume that important
events occur often. That is, events with very low frequencies are considered
of little value and can be filtered out.

A simple filtering method is to discard events whose frequency is below some
threshold. This has proven to be an effective method in text categorization,
where the dimensionality of document vectors can be greatly reduced by
isolating the most descriptive terms (Yang and Pedersen, 1997).

When real-world music is used for target vectors, events are filtered out whose
normalized frequency is below a threshold according to the criterion:

f

N
< p (3.7)

where f is the event frequency, N is the total number of events in the score
and p is the threshold in percent. For example, a threshold of p = 0.01 would
discard events whose frequency accounts for less than 1% of all events.

Figure 3.8a shows the frequency distribution of melodic bigrams from Moz-
art’s Piano Sonata No. 16. Applying a 1% threshold filter results in the
removal of 86 events, producing the much smaller distribution with 19 events
as seen in Figure 3.8b.

3.4. FITNESS BASED ON DISTRIBUTION SIMILARITY 39

(a) (b)

Figure 3.8 Frequency of melodic bigrams from Mozart’s Piano Sonata No. 16 :
full distribution (a) and after filtering events below a 1% threshold (b).

40 CHAPTER 3. METHODOLOGY

Chapter 4

Experiments: Zipf’s Law

Previous work by the author explored the use of Zipf’s Law as fitness for
evolution of short melodies (Jensen, 2010). Results showed that pleasant
melodies could indeed be generated with such a technique. Several favour-
able musical features were seen in the results including melodic motifs. Some
constraints were necessary to achieve any pleasant results, most notably re-
stricting note pitches to a pre-defined scale.

Several different target slopes were tried in order to improve the quality of the
evolved melodies, but it was difficult to find a good set of slopes. On average,
only 10% of the evolved melodies were perceived as pleasant. Furthermore,
the melodies lacked several important musical features, including rhythm and
structure.

In this chapter, experiments are presented where the goal was to improve
these results. In Section 4.1, the performance of the tree-based represent-
ation is investigated. Melodies evolved with the tree-based representation
are qualitatively compared to melodies from previous work in Section 4.2.
Finally, rhythmic qualities are introduced in Section 4.3.

4.1 A Musical Representation

In earlier work (Jensen, 2010), three linear genotypes were explored with
respect to the Zipf-based fitness function: An event-based binary genotype,

41

42 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

an event-based vector and a dynamic vector representation. All of these rep-
resentations fall under the GA umbrella and the event-based vector achieved
the best fitness of the three. However, a near-maximum fitness was never
achieved and convergence was relatively slow.

Experiments were therefore performed in an attempt to improve fitness and
convergence speed. Two options were investigated:

1. Test a new tree-based genotype.

2. Modify the old vector-based genotypes.

4.1.1 Introduction

As discussed in Section 2.5, two approaches to representation are commonly
found in the evolutionary music literature. The first is the linear binary/vector
genotype (GA) similar to what was already tried. The second is the tree-
based representation (GP), which some have argued is well suited for music
because of its hierarchical structure (see Section 3.1). It was therefore de-
cided to test a GP approach to see if it improved fitness and convergence
speed.

In summary, the event-based genotypes from previous work are similar to the
example shown in Figure 2.4, i.e. employing implicit note durations. How-
ever, the event-based vector is symbolic instead of binary and consistently
achieved better performance. The dynamic vector genotype is simply a list
of (enable, pitch, duration) triplets, i.e. with explicit note durations. The
first element, enable, is a flag which dictates whether the triplet should be
evaluated or ignored when interpreted by the phenotype. This allows for
variation in the number of notes.

The hypothesis was that the slow evolutionary convergence of the vector-
based genotypes was caused by low genetic diversity in the population. As
discussed in Section 2.2, diversity is a key element in Evolutionary Compu-
tation. The two vector-based genotypes were changed to see if this was the
case. As a first test, the mutation operator was modified so as to change an
entire gene instead of a single gene element. Another mutation variant was
also tried, where mutation changed a whole genome segment. Finally, the
mutation rate was increased to see if it improved the performance.

4.1. A MUSICAL REPRESENTATION 43

4.1.2 Setup

For all the experiments, evolution was run for 500 generations. For each
generation, the maximum fitness was averaged over 30 runs and plotted.
The choice of parameters is described in more detail in Section 4.1.3.

General Parameters

The evolutionary parameters listed below were identical for all experiments
unless otherwise noted:

• Population size: 100

• Mutation rate: 0.1

• Crossover rate: 0.9

• Tournament selection: k = 5, e = 0.1 (see Section 2.2)

• Fitness: Weighted sum with 10 Zipf metrics:

– Metrics: pitch, chromatic-tone, duration, pitch duration, chromatic-
tone duration, pitch distance, chromatic-tone distance, melodic
interval (absolute), melodic bigram (absolute), melodic trigram
(absolute)

– Target slopes: Ti = −1.0
– Tolerance: λ = 0.5

– Weights: uniform 1.0 for all metrics

Tree-Based Representation Parameters

The parameters for the tree-based representation (see Section 3.1) were se-
lected to closely match the properties of the vector-based genotypes:

• Pitches: 12

• Durations: 5

44 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

• Resolution: 16

• Functions: concatenation (+)

• Terminals: simple (pitch, duration) or event-based (event-type, value)

• Maximum tree depth: 5 or 6 resulting in maximum 25 = 32 or 26 = 64
notes, respectively

• Initialization method: grow or full

• Function probability: 0.9 (default)

• Terminal probability: 0.1 (default)

The event-based terminal scheme is similar to the event-based vector, i.e.
tuples of (event-type, value) where event-type is either note or hold and the
value holds the pitch.

Vector-Based Representation Parameters

The parameters for the vector-based representations were derived from the
previous work and are summarized below.

For the event-based vector, the parameters were:

• Bars (measures): 4

• Pitches: 12

• Resolution: 16

The following parameters were used for the dynamic vector :

• Length: 64

• Pitches: 12

• Durations: 5

• Resolution: 16

4.1. A MUSICAL REPRESENTATION 45

4.1.3 Experiment Setup

In total, 14 experiment runs were performed where different parameters were
tested. In six of the runs the tree-based genotype was used, while in eight runs
the vector-based genotypes were employed. The setup for each experiment
is detailed below.

Tree-Based Representation

For the tree-based representation, it was important that the parameters were
as similar to the vector-based genotype as possible. This was both to ensure
a fair comparison, but more importantly to isolate whether the tree structure
was beneficial for music.

As such, two different terminal schemes were tested: simple and event-based,
similar to the dynamic vector and event vector, respectively.

Another key parameter is the maximum tree depth, which dictates the max-
imum number of possible notes. Fewer notes results in less freedom for evol-
ution to find melodies with high fitness. It was therefore important that
the max-depth parameter was roughly equivalent to the number of possible
notes in the vector-based genotypes: 64. The max-depth was thus set to 6,
resulting in 26 = 64 number of notes. It was decided to also try a depth
of 5 (32 notes) to see how the tree-based genotype would perform with less
freedom than the vectors.

Finally, two different tree initialization methods were tested: grow and full,
to see if either method led to significant advantages with respect to fitness
and convergence speed.

As such, for both simple and event-based terminals, the following configura-
tions were tested:

1.1. Max tree depth: 6, initialization method: grow

1.2. Max tree depth: 6, initialization method: full

1.3. Max tree depth: 5, initialization method: grow

Resulting in a total of 6 experiment runs.

46 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

Vector-Based Representation

As mentioned, it was hypothesized that the genetic diversity was too low,
causing slow convergence for the vector-based genotypes. The mutation op-
erator previously employed was designed to mutate only part of the gene, i.e.
a single element of the tuple or triplet.

To increase genetic diversity, the mutation behaviour was changed so that
the entire gene was randomly changed, i.e. all elements of a tuple (triplet).
A second mutation variant was also explored where a whole genome segment
is altered, i.e. multiple sequential tuples (triplets), in order to boost genetic
diversity even more.

As a final measure, the mutation rate was increased to see if it improved the
performance. However, it was decided to only test the increased mutation
rate using the mutation operator with the best performance.

Thus, for both the event-based vector and dynamic vector, the following tests
were performed:

2.1. Mutation of entire gene

2.2. Mutation of genome segment

2.3. Using the best mutation operator from (2.1) and (2.2), increase muta-
tion rate to:

(a) 0.5

(b) 0.9

This resulted in a total of 8 experiment runs.

4.1.4 Results and Discussion

The results from the 14 experiments are presented below and compared to
earlier results. Finally, the best configurations of the three genotypes are
presented.

4.1. A MUSICAL REPRESENTATION 47

(a) Simple terminals (b) Event-based terminals

Figure 4.1 Fitness plots for the three different configurations of tree-based geno-
types with simple (a) and event-based (b) terminals. The event vector from earlier
work is also shown as reference (old).

Tree-Based Representation

Figure 4.1 shows the fitness plots from the 6 different tree-based configura-
tions tried, along with the old event vector from earlier work as reference.
Surprisingly, all variants of the tree-based genotypes yielded superior per-
formance compared to the vector representation. On average they converged
much faster and reached a higher maximum fitness.

From the fitness plots, it is evident that the best performer was the tree with
simple terminals (Figure 4.1a), which consistently reached better results than
the event-based counterpart (Figure 4.1b). Trees with a maximum depth of
5 also performed well (configuration 1.3), which signifies that even short
melodies could achieve a high fitness.

As can be seen, using the full method for initialization (1.2) seemed to result
in marginally higher fitness values. However, the melodies evolved using the
full method were generally longer than those evolved with grow (1.1): the
average number of notes was 45 and 29 for full and grow respectively (with
simple terminals). As such, the slight difference in fitness values was likely
related to melody length rather than the initialization method itself.

A similar trend was found with the event-based tree, where the average num-
ber of notes was 20 (full) and 16 (grow). This indicates that the worse per-
formance found with the event-based terminals was also due to the shorter

48 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

(a) 2.1. Mutation of entire gene (b) 2.2. Mutation of genome segment

Figure 4.2 Fitness plots for the vector-based genotypes using two different muta-
tion operators: 2.1. Mutation of entire gene (a) and 2.2. Mutation of genome
segment (b). For reference, the plots using the old mutation operator also shown.

melody lengths. Thus there seemed to be no significant difference between
the two terminal schemes, at least from a fitness perspective.

At this point, it was not evident why the tree-based representations per-
formed so much better than the vectors. Apart from the difference in struc-
ture, the mutation operator used for GP is more explorative than the GA’s,
in that it can alter many genes (nodes) at the same time as opposed to only
one. It was thus hypothesized that mutation was a key element to the success
of GP.

Vector-Based Representation

Figure 4.2 shows the fitness plots from the two mutation operators applied
to both vector-based genotypes: 2.1. Mutation of entire gene (4.2a) and 2.2.
Mutation of genome segment (4.2b). The fitness from using the old mutation
operator are also included for reference.

As shown in Figure 4.2a, mutation of the entire gene (2.1) resulted in a slight
improvement in fitness when applied to the event vector. For the dynamic
vector, however, entire-gene mutation drastically improved the performance;
much faster convergence and higher fitness was achieved, matching the per-
formance of the event-vector. These results confirmed the hypothesis that
more genetic diversity would improve performance. However, the fitness was
still not comparable to the tree-based representations.

4.1. A MUSICAL REPRESENTATION 49

(a) Event vector (b) Dynamic vector

Figure 4.3 Fitness for the two vector-based genotypes using entire-gene mutation
(2.1) and increased mutation rates 0.5 (2.3a) and 0.9 (2.3b).

The fitness plots from genome segment mutation (2.2) can be seen in Fig-
ure 4.2b. For the event vector, segment mutation lead to worse performance
compared to the old mutation operator, i.e. mutation was destructive in this
case. The dynamic vector displayed a performance increase, but results were
not as good as 2.1.

Since entire-gene mutation (2.1) resulted in better performance than segment
mutation (2.2), it was therefore used in test 2.3: increased mutation rate of
0.5 (2.3a) and 0.9 (2.3b). In Figure 4.3, the fitness plots from the four runs
may be seen, along with the results from experiment 2.1 for comparison.

As can be seen, a mutation rate of 0.5 further improved the performance
of both vector representations, with the dynamic vector now surpassing the
event vector. Increasing the mutation rate further to 0.9 did not seem to
improve results at this point.

A Final Comparison

Figure 4.4 shows the fitness plots for each genotype configuration yielding
the best performance, where the tree-based representation is the clear winner.
The genotype configurations are summarized below:

Tree: simple terminals, max-depth: 6, initialization method: full (1.2)

Vectors: entire-gene mutation, mutation rate: 0.5 (2.3a)

50 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

Figure 4.4 The best configurations found for the tree-based and vector-based
representations.

At this point, no further improvements were made. Why the GP approach
performed so well is not fully understood. One hypothesis is that the mod-
ular, hierarchical structure of the tree is particularly beneficial for music, at
least with respect to Zipfian properties. Another reason might be that trees
allow genomes of different lengths, while the vectors explored here did not.

Either way, the primary focus of this research is fitness for music and it was
therefore decided to use the tree-based genotype for future experiments.

It should be noted that these experiments by no means represent an exhaust-
ive comparison of GA versus GP for music. It is almost certain that a GA
expert would be able to design a genotype which is better able to match
performance of the GP presented herein. As such, these experiments are
primarily included to justify the choice of a tree-based representation for the
rest of this research.

4.1.5 Summary

The tree-based representation was shown to outperform the linear repres-
entations previously employed. Although improvements were achieved with
the vector-based genotypes, the tree was still clearly the best performer with

4.2. TREE-BASED COMPOSITION 51

higher fitness and faster convergence speed. Why the tree-based represent-
ation performed so well is not fully understood. It is hypothesized that the
modular, hierarchical structure of the tree is particularly beneficial for music.

4.2 Tree-Based Composition

In the previous experiment, tree and vector-based representations were com-
pared with respect to fitness performance. The results revealed that the tree
was able to reach a higher fitness than both vector-based representations.
However, such results do not necessarily imply that the tree-based genotype
yields more pleasant melodies.

4.2.1 Introduction

To test the ability of the Zipf-based fitness function to model music pleas-
antness, 30 melodies were evolved using the tree-based representation. A
qualitative analysis of the melodies was performed and compared to the old
vector-based results from Jensen (2010). The old melodies exhibited lower
fitness values than the results from Experiment 4.1. Some of the problems
found in these melodies were long repetitions of the same note and a bias
towards short notes.

4.2.2 Setup

As before, the parameters were chosen to be similar to what was used in the
previous work (Jensen, 2010):

• Pitches: 8 (one octave)

• Durations: 4

• Resolution: 16

• Functions: concatenation (+)

• Terminals: simple (pitch, duration)

52 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

• Maximum tree depth: 6

• Initialization method: grow

• Scale: C major scale

Otherwise, the parameters were the same as in Section 4.1, i.e. 30 runs of
500 generations each. The most fit melody was picked out at the end of each
run.

4.2.3 Results and Discussion

Table 4.1 lists some interesting statistics from the 30 melodies evolved using
the tree-based representation and the (old) event vector. As can be seen, the
melodies evolved with the tree have significantly higher fitness than that of
the event vectors, with both a higher mean and lower standard deviation.
The two representations resulted in approximately the same number of notes.
However, the tree-based melodies exhibit a much larger variation (σ = 16.6).

A qualitative comparison of the tree-based and event vector melodies revealed
that the former indeed sounded more musical. For instance, they exhibited
more motifs and repetitions, which made the music sound more coherent. In
addition, the melodies contained less of the overly repetitive sequences found
in the event-vector melodies, even though they were evolved using the same
target slopes of −1.0. Finally, since the tree-based representation make use
of explicit note durations (not event-based), there was no bias towards short
notes. This was seen as another favourable property.

Figure 4.5 shows one of the most pleasant melodies evolved – dubbed “Zelda”.
Notice the two recurring motifs marked in squares and circles.

Table 4.1 Evolved melody statistics using the old event vector and tree-based
representation: mean (standard deviation, σ).

Event vector Tree

Fitness 0.87 (0.05) 0.97 (0.01)
Number of notes 33.7 (3.7) 36.2 (16.6)
Melody length 16 (0) (fixed) 32 (13.3)

4.3. ADDING RHYTHM 53

= 120

4
4

Figure 4.5 Pleasant evolved melody with the tree-based genotype – “Zelda”.

However, although pleasant music was evolved, many of the melodies were
still rather unpleasant. A common feature was the lack of consistent rhythm,
which resulted in a rather choppy musical flow.

4.2.4 Summary

The tree-based representation indeed resulted in more pleasant melodies than
previously achieved with a vector-based genotype. An increased number of
melodic motifs and pleasant repetitive features improved their musical qual-
ities. However, lack of consistent rhythm was a common cause of unpleas-
antness.

4.3 Adding Rhythm

As stated, a characteristic of the evolved melodies from Experiment 4.2 was
the lack of a consistent rhythm. Of the ten metrics used for fitness so far,
seven measure some property related to note pitches. Only three operate on
note durations, which is the main ingredient in rhythm. Furthermore, none
of these duration metrics take contextual information into account. It is thus
perhaps not so surprising that the evolved melodies lacked rhythmic features.

In this experiment, four new metrics related to rhythm are explored.

54 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

4.3.1 Introduction

Rhythm, rhythmic interval, rhythmic bigram and rhythmic trigram were the
four new metrics that were tested (see Section 3.2.1). The hypothesis was
that these metrics would endorse consistent rhythmic features, in the same
way that metrics based on melodic intervals promoted melodic motifs.

As a first step, a collection of real-world music pieces were analysed with re-
spect to the four rhythm metrics to see if Zipfian distributions were prevalent.
Then the melodies evolved in the previous experiment (4.2) were analysed
in the same way. This would reveal whether the rhythm metrics captured
properties which were not already taken into account by the other metrics.

After the preliminary analysis, a set of melodies were evolved with the rhythm
metrics included in the fitness function. The results were then compared to
the melodies from Experiment 4.2, to see if there were any improvements.

4.3.2 Experiment Setup

As mentioned, the experiment was twofold. First, a preliminary analysis
of real-world music versus evolved music was performed, with respect to the
new rhythm metrics. Second, the rhythm metrics were included in the fitness
function and a new set of melodies were evolved.

1. Metric Analysis

For the first step, Mozart’s Piano Sonatas (19 pieces) were chosen. They
can be characterized as having a steady rhythm and easily separable melody.
For the melody of each piece, the mean slopes were calculated for each of the
rhythm metrics. The same was done for the evolved melodies from Experi-
ment 4.2.

However, Zipf metrics that yield sensible results on a global level might not
apply at a local level (subsection) of the same music (Jensen, 2010). There-
fore, Mozart’s pieces were also divided into smaller subsections of approx-
imately the same length as the evolved melodies (8 bars) and were analysed
individually for rhythmic slopes.

4.3. ADDING RHYTHM 55

Table 4.2 Rhythm metric slopes – mean (std. dev.) – from Mozart’s Piano
Sonatas and Evolved melodies from Experiment 4.2.

Mozart PS Mozart PS (local) Evolved (4.2)

Rhythm -2.42 (0.14) -1.85 (0.63) -1.02 (0.06)
Rhythmic interval -1.52 (0.13) -1.46 (0.52) -1.05 (0.41)
Rhythmic bigram -1.19 (0.08) -1.02 (0.41) -0.81 (0.18)
Rhythmic trigram -1.01 (0.07) -0.80 (0.38) -0.63 (0.23)

2. Melody Generation

A set of 30 melodies were evolved using the same setup as the previous
experiment, but with the four rhythm metrics included. In addition, the
duration metric was removed, since it is identical to rhythm when there are
no rests (which is the case for the representation used). The target slopes Ti
remained the same: uniform −1.0 for all metrics. In summary, fitness was
composed of 13 Zipf metrics:

• Metrics: pitch, chromatic-tone, pitch duration, chromatic-tone dura-
tion, pitch distance, chromatic-tone distance, melodic interval (abso-
lute), melodic bigram (absolute), melodic trigram (absolute), rhythm,
rhythmic interval, rhythmic bigram, rhythmic trigram

• Target slopes: Ti = −1.0

• Weights: uniform 1.0 for all metrics

Otherwise, the setup was the same as in Experiment 4.2.

4.3.3 Results and Discussion

The results of the experiment are presented in the following two sections: an
analysis of the rhythm metrics and the new set of evolved melodies.

1. Metric Analysis

Table 4.2 lists the mean slopes (and standard deviation) from Mozart’s Pi-
ano Sonatas (global and local) and from the melodies evolved in Experiment

56 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

Table 4.3 Slopes and fitness from evolved melodies with rhythm-based metrics.

Slope mean (std. dev.)

Rhythm -1.01 (0.09)
Rhythmic interval -1.05 (0.08)
Rhythmic bigram -1.02 (0.06)
Rhythmic trigram -0.86 (0.07)
Fitness 0.96 (0.02)

Section 4.2. As can be seen, the rhythm metrics display near-Zipfian distri-
butions in Mozart’s sonatas. Furthermore, the slopes from Mozart’s pieces
are steeper than in the evolved melodies, both at a global and local level.
Recall from Section 3.3.2 that steeper slopes indicate more monotonous (less
random) distributions.

In the previously evolved melodies, the rhythm slopes were all near -1.0,
since this specific metric is identical to duration when there are no rests in the
music. The other rhythmic metric slopes, however, are flatter when compared
to Mozart’s pieces, which indicates more randomness in the evolved music.
In other words, the evolved melodies lacked important rhythmic features, at
least when compared to Mozart’s pieces.

2. Melody Generation

In Table 4.3, slope and fitness statistics from the 30 melodies evolved with
the rhythm-based metrics are presented. As can be seen, evolution was able
to fully optimize all the rhythm metrics, except the rhythmic trigram. Com-
pared to the rhythmic slopes of the evolved melodies in Table 4.2, the new
melodies exhibited generally steeper slopes. In other words, less random
rhythmic features. Fitness was also consistently high across all the runs.

When listening to the evolved melodies, it was evident that they indeed
exhibited a more consistent rhythm than earlier results. An example melody
is shown in Figure 4.6, where a recurring rhythmic motif is found (𝅘𝅥𝅘𝅥𝅮𝅘𝅥𝅮𝅗𝅥).
Unfortunately, a majority of the melodies were still rather unpleasant mostly
because of the strange melodic intervals used.

4.4. CONCLUSIONS 57

= 120

4
4

Figure 4.6 Evolved melody with a rhythmic motif (circled).

4.3.4 Summary

The addition of metrics related to rhythmic intervals, bigrams and trigrams
did indeed result in a more consistent rhythm in the evolved melodies. Re-
curring rhythmic motifs were also found, which increased pleasantness.

4.4 Conclusions

The experiments and results presented in this chapter demonstrate that Zipf
metrics can be used to evolve pleasant music. A tree-based representation was
used, which was shown to outperform the linear representations previously
employed.

Music evolved using the tree-based approach were generally also perceived
as much more pleasant. The addition of metrics for rhythm further im-
proved results. Some musical knowledge was necessary for any pleasant res-
ults though (e.g. a pre-defined musical scale), which were implemented as
constraints in the representation.

However, a majority of the evolved melodies were in fact still rather unpleas-
ant (around 90%). Most notably, the “choice” of melodic intervals was often
strange and unmusical. Large, dissonant intervals were common and were
perceived as the main source of unpleasantness. It was as if the choice of
intervals was completely random, which is not far from the truth.

The poorly selected melodic intervals highlight an important limitation of
Zipf-based metrics: they only measure the scaling properties of the distribu-
tions, ignoring which data points (musical events) account for the different

58 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

(a) Mozart’s Piano Sonatas (b) Evolved melodies from 4.3

Figure 4.7 Frequency of (absolute) melodic intervals in real-world music (a) and
evolved using Zipf metrics (b). Notice the difference in the employed intervals.

frequencies. In other words, the fitness function is oblivious as to which
melodic intervals are used, as long as their rank-frequency distribution dis-
plays a Zipfian slope. As such, Zipf metrics are rather knowledge-weak and
are insufficient for musical fitness alone.

Plot the frequency of melodic intervals as a bar chart and this problem be-
comes abundantly clear. Figure 4.7 depicts the 13 most frequent (abso-
lute) melodic intervals in Mozart’s Piano Sonatas (4.7a) and in the evolved
melodies from Experiment 4.3 (4.7b). The intervals used by Mozart follows
a bell-like distribution, centred around the small intervals. For the evolved
melodies, however, the distribution is rather noisy. It is, in fact, uniform
random when realising that the evolved music was constrained to a single
octave in the C major scale. Consider which intervals are possible and es-
timate their probabilities, and it becomes clear why certain intervals appear
more than others.

There were several options at this point. One possibility was to tweak the
target slopes and/or add more metrics. But as discussed above, this would
only get us so far – more music knowledge was clearly necessary to increase
the amount of pleasant results. Furthermore, experience from earlier work
proved that finding a set of good slopes was difficult.

More knowledge could potentially be encoded into the genotype as fur-
ther constraints. However, selecting what knowledge to incorporate is quite
challenging (see Section 2.6.2). Furthermore, hard-coded music knowledge
doesn’t easily scale to different musical styles.

Another possibility that was considered, was to seed the population with
real-world music material. In other words, start with an initial population

4.4. CONCLUSIONS 59

of melodies that are already somewhat musical. However, this approach
is similar to Manaris et al. (2007) where inconclusive results are reported.
Nevertheless, this is a technique which deserves further work.

Finally it was decided to keep focus on the fitness function and try a dif-
ferent, but related approach that incorporates more knowledge based on the
similarity to a learned frequency distribution. The technique is detailed in
Section 3.4 and the next chapter presents the related experiments.

60 CHAPTER 4. EXPERIMENTS: ZIPF’S LAW

Chapter 5

Experiments: Distribution
Similarity

Chapter 5 presents the experiments that were performed with the similarity-
based fitness function proposed in Section 3.4. In total, three experiments
were carried out.

In the first experiment (5.1) the effects of each metric are analysed with
respect to a simple music target. Experiment 5.2 demonstrates how the
fitness performance was improved. Finally, in Experiment 5.3, two real-
world music pieces are used as inspiration (targets) for the evolution of new
melodies.

5.1 Basics

The goal of the first set of experiments presented herein was to see how evol-
ution performed with the similarity-based fitness function. An incremental
approach was taken, where initially only a few metrics were included. New
metrics were then added gradually. This made it possible to examine how
each metric affected the evolved music. In order to test and more easily
analyse the results, it was decided to apply a very simple music piece as
target.

61

62 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

= 120

4
4

Figure 5.1 Simple melody target, spanning the C major scale.

5.1.1 Introduction

With the incremental approach taken, each sub-experiment was identical
except for the number of metrics used for fitness. The initial set of metrics
was pitch and chromatic tone. Then, for each subsequent experiment, a
new metric was added to the list. This approach made it easy to compare
the evolved melodies from adjacent experiments with respect to the added
metric. It also gave an idea of how much knowledge was encoded into each
metric distribution.

For each experiment, a hypothesis was formulated in an attempt to predict
what musical features each metric would promote. For instance, the pitch
metric was thought to constrain the music to a certain scale. The full list of
experiments and hypotheses is presented in Section 5.1.3.

The target frequency vectors were extracted from a simple melody spanning
the C major scale, simply referred to as the target and shown in Figure 5.1.
The melody spans the scale up and down, with a few rhythmic features
included for good measure. Although rather boring, its simplicity allowed
for easier analysis and comparison of the evolved music: How similar are the
evolved melodies to the target piece? Is the target ever reproduced and if so
at what point?

5.1.2 Setup

For all the experiments, 30 evolutionary runs were performed, each 500 gen-
erations long. At the end of each run, the most fit melody was kept for
further analysis.

5.1. BASICS 63

The evolutionary parameters are listed below:

• Population size: 100

• Mutation rate: 0.1

• Crossover rate: 0.9

• Tournament selection: k = 5, e = 0.1

• Fitness: Cosine similarity to target piece (see below)

• Representation: Tree (see below)

Fitness

As mentioned in the introduction, the fitness function used for all the ex-
periments was the weighted sum of metric distribution similarities – equa-
tion (3.6). The metrics explored and general parameters are summarized
below.

• Metrics: pitch, chromatic tone, melodic interval, melodic bigram, melodic
trigram, rhythm, rhythmic interval, rhythmic bigram, rhythmic tri-
gram

• Target vectors: from simple melody (Figure 5.1)

• Weights: uniform (1.0)

• No filtering

For all the metrics, the target distributions were derived from the simple
melody in Figure 5.1. The full set of target distributions can be seen in
Figure 5.2 and are frequently referred to in the results.

The alert reader will notice that some of the metrics from Section 3.2.1 have
been left out. Regarding the two distance metrics, it was discovered that
they produced very flat distributions. In other words, they provided little
information and were therefore left out. Pitch duration and chromatic-tone
duration were believed to be less important and simply not prioritized.

64 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Figure 5.2 Metric frequency distributions from the simple target melody shown
in Figure 5.1.

5.1. BASICS 65

Figure 5.3 Pitch distributions from real-world music tends to have a bell-like
shape where the highest and lowest pitches have low frequencies. The distribution
shown here is from Mozart’s Piano Sonata No. 16.

Representation

The genotype and phenotype parameters were chosen to match the length,
pitches and durations of the target piece. The target consists of 15 notes,
so the maximum tree depth was set to 4, i.e. maximum 24 = 16 notes. The
initialization method was set to full to generate melodies of similar length as
the target piece. The function and terminal probabilities were left at their
default values.

The pitches in the target span from 60 (C4) to 72 (C5), i.e. one octave. Thus
the number of pitches was set to 13 and the pitch reference set to 60. The
chromatic scale was used, so all pitches were allowed in the interval [60, 72].
This made the fitness function responsible for promoting certain pitches.

Finally, the target contains four different note durations: 1/8 (eight note), 1/4
(quarter note), 3/8 (augmented quarter note) and 1/2 (half note). Since note
durations are real-valued, they cannot easily be enumerated (as opposed to
pitches). Hence these four durations were used as the duration map.

The restrictions presented above were employed to confine the search space
to the bounds of the target piece and thus speed up evolution. The con-
straints might seem too rigid, however, giving evolution little freedom – e.g.
allowing the use of tones outside the pitch range might be beneficial in order
to optimize other metrics, such as melodic intervals. However, in the case of
real-world music (which is usually much longer than the simple target piece),
the distributions tend to have a bell-like shape where the highest and lowest
pitches have very low frequencies (Figure 5.3). Therefore these restrictions
are in fact significantly less strict when longer target pieces are considered.

66 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

The full set of representation parameters are summarized below:

• Functions: concatenation (+)

• Terminals: simple (pitch, duration)

• Initialization method: full

• Max tree depth: 4

• Pitches: 13

• Pitch reference: 60

• Duration map: 1
8
, 1

4
, 3

8
and 1

2

• Scale: chromatic (no scale)

• Function probability: 0.9

• Terminal probability: 0.1

5.1.3 Experiment Setup

A total of eight experiments were performed, where in each experiment a
new metric was added to the fitness function. For each metric, a hypothesis
was formed regarding what main effect it would have on the evolved music.

The following eight sections cover the setup for the experiments 1 through 8
as well as their respective hypotheses.

1. Pitch and Chromatic Tone

Evolved music with similar pitch or chromatic tone distributions as the target
will necessarily employ the same musical scale. A similar pitch distribution
also signifies that the tones played are concentrated in the same pitch region.

In order to test whether the evolved music was indeed limited to a similar
pitch region, the number of pitches allowed in the genotype was expanded.
Thus for this particular experiment, an octave of padding (12 pitches) was
added above and below the pitch range, resulting in 37 pitches and a pitch

5.1. BASICS 67

reference of 48. It was thus expected that the notes would be located ex-
clusively in the centre octave, as in the target piece, and that the top and
bottom octaves (the padding) would be unused.

Hypothesis: Confines music to the scale and pitch region of the target piece.

Although in the correct scale, it was expected that the order of the notes
would be completely random.

2. Melodic Interval

It was decided to use the relative (non-absolute) version of the melodic in-
terval, since it accommodates more knowledge. Relative intervals convey
information about melody direction and balance, e.g it is likely that certain
intervals are used more frequently when moving up than down and vice versa.

The two melodic intervals found in the target piece are the major (±2) and
minor second (±1). Thus it was expected that the inclusion of melodic
intervals would result in melodies with similarly small changes in pitch.

Hypothesis: Ensures melodic locality – small changes in pitch.

It was however unknown how similar the evolved melodies would be to the
target.

3. Melodic Bigram

A melodic bigram describes two melodic intervals, i.e. three successive notes.
There are seven such bigrams in the target piece and each describe a three-
note motif.

Hypothesis: Promotes similar short melodic motifs (3 notes).

With the inclusion of melodic bigrams, it was expected that the evolved
melodies would be more similar to the target piece.

68 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

4. Melodic Trigram

Melodic trigrams consist of three melodic intervals – four successive notes.
Ten trigrams are found in the target piece which contain four-note motifs.

Hypothesis: Promotes melodic motifs (4 notes) derived from the target.

With the addition of melodic trigrams, the prediction was that the evolved
melodies would be very similar to the target piece.

5. Rhythm

Up to this point, note durations were not considered at all in the fitness
function. It was therefore expected that the durations were randomly chosen
by evolution. Adding rhythm to the fitness function would change this. The
target melody is dominated by quarter notes, so evolved melodies with similar
rhythm distributions would follow this trend.

Hypothesis: Enforces a similar tempo.

Although with a similar tempo, it was anticipated that the melodies would
contain a few of the other, less frequent durations scattered around.

6. Rhythmic Interval

The rhythmic interval measures the relationship between the duration of two
adjacent notes. It was therefore predicted to see some consistency in the
order notes appear. For instance, as in the target piece it was expected to
see a 3/8 note followed by a 1/8 note, but not the other way around.

Hypothesis: Promotes rhythm consistency.

It was however unknown how similar the evolved rhythm would be to the
target.

5.1. BASICS 69

7. Rhythmic Bigram

Rhythmic bigrams capture the relationship between three adjacent note dur-
ations. For example, the first three notes of the target piece (Figure 5.1)
forms a rhythmic motif which is repeated twice: 𝅘𝅥𝅭 𝅘𝅥𝅮𝅘𝅥 . With the addition
of rhythmic bigrams, it was expected to see motifs like these in the evolved
music.

Hypothesis: Promotes short rhythmic motifs (3 notes).

8. Rhythmic Trigram

The relationship between four adjacent note durations conveys even more
information about rhythm. The first four notes of the target piece (𝅘𝅥𝅭 𝅘𝅥𝅮𝅘𝅥 𝅘𝅥)
form a longer rhythmic motif, which hopefully also would appear in the
evolved music.

Hypothesis: Promotes rhythmic motifs (4 notes).

At this point, it was anticipated that the rhythm would be very similar to
the target piece.

5.1.4 Results and Discussion

Table 5.1 lists relevant data from the 8 experiments: the average maximum
fitness (and standard deviation) of the 30 melodies, the highest fitness and
the average target similarity of the new metric.

Interestingly, only the first experiment (pitch and chromatic tone) resulted
in any melodies with a perfect fitness of 1.0. Another observation was a
decrease in fitness as more context was taken into account, i.e. higher level
n-grams.

Answering the question posed in the introduction, the target piece was never
reproduced. Of the eight experiments with increasing number of metrics, only

70 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Table 5.1 Average maximum fitness (std. dev.), highest fitness and average
metric similarity of the 30 most fit melodies from the eight experiments.

Experiment Fitness Highest
fitness

Metric
similarity

1. Pitch and chromatic tone 0.990 (0.007) 1.0 0.987, 0.992
2. Melodic interval 0.967 (0.012) 0.989 0.933
3. Melodic bigram 0.921 (0.022) 0.964 0.822
4. Melodic trigram 0.827 (0.046) 0.903 0.655
5. Rhythm 0.867 (0.029) 0.939 0.975
6. Rhythmic interval 0.871 (0.036) 0.937 0.941
7. Rhythmic bigram 0.874 (0.035) 0.946 0.883
8. Rhythmic trigram 0.857 (0.036) 0.937 0.811

the first resulted in melodies with perfect fitness scores. This was somewhat
surprising, since the target melody was very simple and the evolved melodies
fairly short.

The sub-sections that follow provide more detailed results and analysis of
each experiment. Relevant metric frequency distributions from the evolved
music are included. When sensible, these plots show only the N most frequent
elements when there is a lot of noise present. This is done so that they are
easier to compare to their respective target distributions (Figure 5.2). An
example melody is also given for each experiment, which helps illustrate how
the melodies change with each additional metric.

1. Pitch and Chromatic Tone

As mentioned, the hypothesis was that pitch and chromatic tone would con-
fine music to the scale and pitch region of the target piece. In other words,
the evolved melodies were expected to have pitches between 60 and 72 and
be in the C major scale.

As can be seen from the first row of Table 5.1, the 30 evolved melodies had
very high fitness, indicating a close similarity to the target vector. Of the 30
melodies, nine had a perfect fitness score of 1.0, i.e. they had both the same
pitches and frequencies as the target piece.

Figure 5.4 shows the pitch and chromatic tone distributions of the 30 evolved
melodies. Compared to the target distributions (Figure 5.2), they are quite

5.1. BASICS 71

Figure 5.4 Frequency of pitch and chromatic tones in the 30 evolved melodies
from Experiment 1.

= 120

4
4

Figure 5.5 Example melody evolved with pitch and chromatic tone from Exper-
iment 1. It has a perfect fitness of 1.0.

similar in shape. As can be seen, all of the evolved melodies used the same
scale as the target – no pitches were outside of the pitch region or the scale.
This confirmed the initial hypothesis.

However, not all the melodies contained all of the pitches found in the target
piece. For instance, about one third of them did not include the highest pitch
(72). Although displaying most of the correct pitches, 21 of the melodies did
not use them at the target frequencies. In these cases, evolution was stuck
in a local maximum.

Finally, listening to a few of the evolved melodies confirmed that the pitches
appeared in seemingly random order, as was expected. Figure 5.5 shows one
of the 9 melodies with perfect fitness.

2. Melodic Interval

When the melodic interval metric was added, it was hypothesized that it
would ensure melodic locality, i.e. small changes in pitch. With the particular
target piece, it was expected to primarily see the major (±2) and minor
second (±1) intervals employed in the evolved melodies.

72 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Figure 5.6 Frequency of melodic intervals in the evolved melodies from Experi-
ment 2.

Rather surprisingly, none of the 30 evolutionary runs resulted in melod-
ies with perfect fitness (1.0). The average metric similarity was only 0.93,
demonstrating that melodic intervals are harder to satisfy since they include
note context.

The frequency of all melodic intervals in the evolved melodies is depicted
in Figure 5.6. Compared to the target melodic intervals in Figure 5.2, a
similarity in shape can be found in the centre. That is, the intervals most
frequently used in the evolved melodies are the major and minor second –
just as in the target piece. This confirmed the hypothesis.

The evolved melodies contained a total of 23 different melodic intervals, i.e. a
fair amount of noise compared to the four intervals in the target distribution.
There is also a deviation in the relative frequency of the minor and major
second: f1/f2. This ratio is 2/5 = 0.4 for the target and approximately 35/111 ≈
0.32 for the evolved music. So although the intervals were fairly similar to
the target, the evolved melodies did have a few discrepancies.

Listening to a selection of the evolved pieces revealed a much more local
melodic progression. Some melodies were even kind of pleasant, albeit with
a few strange intervals and a random rhythm. Figure 5.7 shows the melody
with the highest fitness. Note the small changes in pitch between notes.

3. Melodic Bigram

With the addition of melodic bigrams, it was expected to see shorter melodic
motifs in the evolved music. The target piece consists of the C major scale

5.1. BASICS 73

= 120

4
4

Figure 5.7 Evolved melody with the highest fitness when melodic intervals were
enforced by fitness (Experiment 2). Note the small changes in pitch between notes.

Figure 5.8 The seven most frequent melodic bigrams in the evolved music from
Experiment 3.

played up and down. It was therefore predicted that the evolved melodies
would show similar tendencies. How similar, however, would remain to see.

From Table 5.1 a decrease in fitness may be seen when melodic bigrams were
introduced. The average melodic bigram similarity was 0.82, which again
demonstrates that as more melodic context is taken into account, optimiza-
tion becomes increasingly difficult for the EA.

Figure 5.8 depicts the seven most frequent melodic bigrams in the evolved
music. In total, the 30 melodies contained 48 different bigrams – a consider-
able amount of noise. There is, however, a similarity between the the evolved
distribution and the target. The six most frequent bigrams in the evolved
music are all in the target distribution. Their relative frequencies are also
somewhat similar, especially for the top four bigrams.

Listening to some of the evolved melodies revealed a clear similarity to the
target piece. Although none were identical, they were consistently playing
variations of the C major scale up and down (or vice versa). Figure 5.9
shows the melody with the highest fitness (0.96). When compared with the
best melody from the previous experiment (Figure 5.7), it becomes clear that
bigrams add a significant amount of knowledge to the fitness function.

74 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

= 120

4
4

Figure 5.9 The melody with the highest fitness when melodic bigrams were
included in Experiment 3. Notice the similarity to the target piece in Figure 5.1.

4. Melodic Trigram

It was hypothesized that including melodic trigrams would promote melodic
motifs similar to those found in the target. As a consequence, the evolved mu-
sic was expected to become even more similar to the target piece. However,
the previous experiment revealed that melodic bigrams resulted in melodies
which were already very similar. It was therefore doubtful that the inclusion
of trigrams would increase similarity at this point.

When melodic trigrams were added, there was a drop in fitness of approxim-
ately 0.1 (Table 5.1). The average metric similarity was only 0.66.

A total of 30 melodic trigrams were found in the evolved music, which is
less noise compared to the bigrams in the previous experiment. In fact, the
number of bigrams had decreased to 20. This was probably due to the fact
that trigrams are composed of two adjacent bigrams – effectively doubling
the fitness reward for correct bigrams. In other words, a higher fitness reward
would be gained for correct bigrams than other metrics. In fact, the average
bigram similarity had increased to 0.84 from the previous 0.82.

Figure 5.10a shows the 10 most frequent trigrams. As can be seen, all are in-
deed in the target distribution. An agreement in shape between the evolved
and target distributions can also be observed. The relative frequencies, how-
ever, are deviating by a fair amount. In addition, Figure 5.10b depicts the
bigram frequencies. It is easy to see that this distribution is more similar to
the target, when compared to Figure 5.8.

There seemed to be an improvement in bigram similarity, but there was a
decrease in the overall fitness. Consequently it was expected to see a decrease
in some of the other metric similarities. This indeed proved to be the case
– the average pitch and chromatic tone similarity was only 0.84 and 0.86,
respectively. It seemed that evolution sacrificed a correct scale for similarity
in the melodic bigrams and trigrams. Whereas almost all of the melodies up
until now had followed the C major scale, ten pieces were now found to use
notes outside of the scale.

5.1. BASICS 75

(a) (b)

Figure 5.10 The 10 most frequent melodic trigrams (a) and 7 most frequent
melodic bigrams (b) in the evolved music from Experiment 4, where melodic tri-
gram similarity was included in the fitness function.

= 120

4
4

Figure 5.11 The most fit melody from Experiment 4, where melodic trigrams
were introduced.

Listening to the top melodies revealed no clear improvements. At least when
such a simple and short melody was used as the target, melodic bigrams
seemed to contain sufficient knowledge alone. In Figure 5.11, the most fit
melody can be seen. Notice how it resembles the target melody inverted
(turned upside-down).

5. Rhythm

So far, the evolved melodies displayed a rather random, inconsistent rhythm.
This came as no surprise, as none of the metrics had taken note durations
into account. Recall from Section 3.2.1 that the rhythm metric measures the
frequency of durations (since rests are not allowed in the genome). It was
estimated that rhythm would enforce a tempo similar to the target piece.

An overall increase in fitness can be seen in Table 5.1, which is due to the
high metric similarity of rhythm (0.975). As such, rhythm seemed to be a

76 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Figure 5.12 Frequency of rhythm (note durations) in the evolved music from
Experiment 5. Note that durations are in quarter notes.

= 120

4
4

Figure 5.13 Melody with the highest fitness after rhythm was added to the
fitness function in Experiment 5.

fairly easy objective. However, none of the runs resulted in perfect rhythm
similarity. This was surprising, given that none of the other metrics operate
on durations, i.e. there shouldn’t be any conflicts of interest. It was suspected
that the other metrics were given priority (being the majority) and that the
genetic operators were unable to fine-tune the duration of fit individuals.
This was partly confirmed by running the experiment with the rhythm metric
alone, which resulted in perfect similarity for all the melodies.

Figure 5.12 shows the rhythm frequency distribution of the evolved music.
Since durations were limited to the four found in the target piece, no noise
was present. Compared to the target distribution in Figure 5.2, there is
a clear similarity. Note that in the figures, durations are in multiples of
the quarter note, e.g. 0.5 is the eight note, 1.0 is the quarter note, 1.5 the
augmented quarter note (3/8) and 2.0 denotes the half note.

Listening to the most fit melodies indeed revealed a tempo more similar to
the target piece. Figure 5.13 shows the melody with the highest fitness. As
can be seen, it contains mostly quarter notes, as with the target melody. The
rhythm, however, is rather free (random) and somewhat inconsistent.

5.1. BASICS 77

Figure 5.14 Five most frequent rhythmic intervals in the evolved music from
Experiment 6. Note that durations are in quarter notes.

6. Rhythmic Interval

It was believed that the addition of rhythmic intervals would improve the
rhythmic consistency, as it measures the relationship between the duration
of adjacent notes. As mentioned, it was expected to see some pattern in
which notes follow each other, e.g. augmented quarter notes (1.5) would be
followed by eight notes (0.5), eight notes followed by quarter notes (1.0) and
so on, similar to the target piece.

As can be seen in Table 5.1, there was a high similarity of rhythmic intervals
in the evolved music (0.94). A total of 11 rhythmic intervals were found in
the evolved melodies, so some noise was present. Figure 5.14 shows the five
most frequent intervals. Although fairly similar to the target, the EA seemed
to struggle with the particular interval 0.33. This was likely due to the fact
that there is only one combination of the four note durations that results
in this particular interval – namely (1.5, 0.5). Another frequent interval was
0.5, which is not found in the target distribution.

After listening to the most fit melodies, it was easy to recognize several
rhythmic features derived from the target melody. Figure 5.15 shows the
melody with the highest fitness. Notice the familiar rhythmic motif at the
beginning of the melody – an augmented quarter note, followed by an eight
note and then a quarter note.

7. Rhythmic Bigram

The hypothesis was that rhythmic bigrams would promote short rhythmic
motifs. One such characteristic motif can be found in the first and third bar

78 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

= 120

4
4

Figure 5.15 The most fit melody evolved with rhythmic intervals from Experi-
ment 6. Notice the familiar rhythmic motif at the beginning.

Figure 5.16 The seven most frequent rhythmic bigrams in the evolved music
from Experiment 7. Note that durations are in quarter notes.

of the target music (5.1) – the note sequence 𝅘𝅥𝅭 𝅘𝅥𝅮𝅘𝅥 which corresponds to the
rhythmic bigram (0.33, 2.0).

Addition of rhythmic bigrams resulted in fitness values fairly similar to the
previous experiment. The average rhythmic bigram similarity was 0.88.

In total, 31 rhythmic bigrams were found in the evolved music, i.e. a fair
amount of noise compared to the six bigrams in the target distribution. Fig-
ure 5.16 shows the seven most frequently used bigrams. As can be seen, the
evolved melodies were dominated by the bigrams (1.0, 1.0) and (2.0, 1.0), sim-
ilar to the target (Figure 5.2). Although many of the other bigrams from the
target are present in the distribution, their relative frequencies are deviating
considerably. The bigram (0.33, 2.0), for instance, does not occur nearly as
often as in the target distribution.

Listening to the most fit melodies revealed a more consistent rhythm similar
to the target piece. The characteristic rhythm corresponding to the (0.33, 2.0)
bigram, however, was not as frequent as predicted. This is perhaps not so
surprising, since the EA was struggling with the 0.33 interval in the previous
experiment. Figure 5.17 shows the melody with the highest fitness. Notice
how the characteristic rhythmic motif (0.33, 2.0) is not present.

5.1. BASICS 79

= 120

4
4

Figure 5.17 Melody with highest fitness from Experiment 7, evolved with
rhythmic bigrams.

8. Rhythmic Trigram

Rhythmic trigrams were believed to promote longer rhythmic motifs. It was
thus anticipated to see more rhythmic similarity between the evolved music
and the target piece.

As observed in Table 5.1, the average rhythmic trigram similarity was 0.81
and a slight decrease in fitness was seen when rhythmic trigrams were in-
cluded.

The evolved music contained a total of 43 different rhythmic trigrams – a fair
amount of noise. As with the melodic trigrams in Experiment 4, the number
of rhythmic bigrams had decreased to 25 with the inclusion of rhythmic
trigrams. There was also an increase in average rhythmic bigram similarity –
0.92 compared to 0.88 from the previous experiment. As seen in Figure 5.18a,
the seven most frequent trigrams in the evolved music were the same trigrams
as in the target distribution. The relative frequencies are however not as
similar, with a clear bias towards (1.0, 1.0, 1.0). In the target distribution,
the (0.33, 2.0, 1.0) trigram is 50% as frequent as (1.0, 1.0, 1.0). However, for
the evolved music the equivalent number is only 16%.

Figure 5.18b shows the frequency of rhythmic bigrams from this experiment
(top 6). Note how the frequency of the bigram (0.33, 2.0) has increased
slightly compared to the previous results (Section 5.1.4). It is, however,
nowhere near the target frequency.

After listening to the most fit melodies, there were no clear rhythmic im-
provements. As the rhythmic trigram similarity was fairly low (0.81), this
was perhaps not so surprising. Figure 5.19 shows the melody with the highest
fitness. It illustrates an important limitation to the rhythm metrics: notes
are free to span across bars, which can often result in a strange rhythm. No-
tice how the target melody contains no such bar-spanning notes. Since time
signature is not captured by the rhythm metrics, this feature is lost.

80 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

(a) (b)

Figure 5.18 The seven most frequent rhythmic trigrams (a) and top six rhythmic
bigrams (b) in the evolved music from Experiment 8, where rhythmic trigrams were
included in the fitness function. Note that durations are in quarter notes.

= 120

4
4

Figure 5.19 The melody with the highest fitness from Experiment 8, evolved
with rhythmic trigrams included.

5.1. BASICS 81

5.1.5 Summary

Experiment 5.1 demonstrated the usefulness of the eight metrics explored.
By using a simple target melody, it was possible to study the effects of each
metric on the evolved music. An incremental approach was taken: the set of
metrics used for fitness was gradually expanded by adding one metric at a
time and analysing the results.

The pitch and chromatic tone metrics successfully confined the music to the
scale and pitch region of the target piece. Melodic locality was ensured by
the melodic interval metrics, which resulted in some rather pleasant melodies.
Melodic bigrams and trigrams were found to promote motifs. Results showed
that bigrams were sufficient to evolve melody-wise very similar pieces. The
addition of melodic trigrams resulted in higher bigram similarity, but no clear
improvement in the music was seen.

For the evolutionary algorithm, the rhythm-based metrics seemed to be a
tough nut to crack. The rhythmmetric enforced a tempo similar to that of the
target. Rhythmic consistency was improved with the addition of rhythmic
intervals, with the emergence of several rhythmic motifs similar to those
in the target. However, some intervals proved to be problematic, which
reduced the similarity as rhythmic bigrams and trigrams were introduced.
This resulted in considerably fewer rhythmic motifs than first predicted.

It seemed to be problematic for the EA to optimize several metrics at the
same time. A recurring observation was that the addition of a new metric
resulted in the decrease in similarity for the other metrics. This was especially
true for conflicting metrics, such as pitch and melodic interval, where the
increasing similarity of one often results in a decreased similarity in the other.

The EA failed to find any melodies with perfect similarity scores for rhythm
in Experiment 5. This was unexpected because, at that point, none of the
other metrics were operating on note durations, i.e. there were no conflicting
metrics. It was suspected that the EA was unable to fine-tune melodies which
already had high scores related to the pitch-based metrics.

82 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

5.2 Improving the Basics

The results of the previous experiment demonstrated the effects of each met-
ric on the evolved music. There were, however, some problems when using
many metrics at the same time for fitness. In particular, the EA seemed to
struggle with the metrics related to rhythm. It was suspected that mutation
was unable to fine-tune single notes and was the main cause for the failure.
In an attempt to improve the fitness, the function and terminal probabilities
were changed to make mutation more fine-grained.

5.2.1 Introduction

As mentioned, the hypothesis was that mutation was changing too many
notes at the same time. With high fitness individuals, this will in most cases
result in a fitness decrease. In other words, mutation was destructive in these
cases.

The first evidence of this phenomenon was found when the rhythm metric
was added (Section 5.1.4). At this point, it was the only metric operating
on note durations and a simple one at that. It was therefore expected that
achieving a near perfect rhythm similarity would be an easy task for the EA.
However, this proved not to be the case, with the average rhythm similarity
at 0.97 and no melodies with a perfect score of 1.0. The higher level rhythm
metrics (intervals and n-grams) also seemed to be problematic, with rather
poor similarity between the evolved frequency distributions and the targets.

As described in Section 3.1, the mutation operator selects a random node and
replaces it with a randomly generated tree. What type of node is selected, is
determined by the function and terminal probability parameters. By default,
these were set to 0.9 and 0.1, respectively, which causes mutation to choose
a function node 90% of the time and terminal node 10% of the time. It was
thus much more likely for mutation (and crossover) to affect many notes,
than it was to change a single note.

It was therefore decided to try different values for these two parameters to see
if improvements in fitness could be achieved. In particular, the goal was to
increase the similarity of the rhythm-based metrics, something which would
hopefully result in improved rhythmic characteristics of the evolved music.

5.2. IMPROVING THE BASICS 83

5.2.2 Setup

Experiment 8 from Section 5.1, i.e. using all nine metrics, was re-run with
the following function and terminal probabilities:

1. Both function and terminal probability at 0.5

2. Function and terminal probability at 0.1 and 0.9, respectively

The setup was otherwise the same as before (see Section 5.1.2). Evolution
was run for 500 generations, and the average maximum fitness was plotted
over 30 runs.

5.2.3 Results and Discussion

Figure 5.20 shows the fitness plots from the two configurations of function
and terminal probabilities. The fitness from the previous experiment is also
included, where the two parameters were at their default values. As can
be seen, there were significant improvement in fitness when the terminal
probability was increased. The best performer was configuration 2, i.e. a
very high terminal probability.

In Table 5.2, the average metric similarities from the previous experiment
(old) and configuration 2 are listed, as well as the relative fitness improvement
(difference). The overall fitness was improved considerably: from 0.857 to
0.911. As seen, similarity increased across all metrics. The metric with the
most change is rhythmic trigram, with an increased similarity of 0.106. It is
closely followed by melodic trigram, which had a growth of 0.087.

As mentioned, the main goal was to increase the rhythmic similarity of the
evolved music, something which would hopefully yield better rhythmic qual-
ities in the melodies. Examination of the evolved frequency distributions
revealed a general trend: there was a higher frequency of correct events and
consequently less noise. For instance, the evolved music now contained 28 dif-
ferent rhythmic trigrams, as opposed to 43 as previously seen (Section 5.1.4).

The rhythmic interval 0.33 had previously been problematic, with only 22
occurrences in the evolved music. Now it was much more frequent, appearing

84 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Figure 5.20 Fitness plots for the three different values of function and terminal
probabilities. As can be seen, a terminal probability of 0.9 resulted in the highest
fitness.

Table 5.2 The average metric similarities when using function and terminal prob-
abilities of respectively: 0.9 and 0.1 (old); 0.1 and 0.9 (2).

Metric 0.9 and 0.1 (old) 0.1 and 0.9 (2) Difference

Pitch 0.846 0.903 0.057
Chromatic tone 0.857 0.917 0.060
Melodic interval 0.952 0.963 0.012
Melodic bigram 0.823 0.874 0.052
Melodic trigram 0.595 0.682 0.087
Rhythm 0.946 0.991 0.045
Rhythmic interval 0.962 0.984 0.022
Rhythmic bigram 0.919 0.965 0.046
Rhythmic trigram 0.811 0.917 0.106

Fitness 0.857 0.911 0.054

5.2. IMPROVING THE BASICS 85

= 120

4
4

Figure 5.21 Evolved melody which exhibits two instances of the characteristic
rhythmic motif (0.33, 2.0, 1.0): 𝅘𝅥𝅭 𝅘𝅥𝅮𝅘𝅥 𝅘𝅥

41 times. Similar improvements were found for rhythmic bigrams and tri-
grams. The characteristic rhythmic motif (0.33, 2.0, 1.0) had a frequency of
35 as opposed to 15 as previously seen. In other words, most of the evolved
melodies now had at least one instance of this rhythmic motif. This was a
satisfying improvement.

Figure 5.21 shows one of the evolved melodies which exhibits two instances
of the characteristic rhythmic motif. It has a total fitness of 0.933 and high
rhythmic similarities: 1.0, 0.994, 0.968 and 0.946 for rhythm, rhythmic in-
tervals, rhythmic bigrams and rhythmic trigrams, respectively.

As with any computer system, there were still room for improvements. For
instance, adjusting the weights of each metric might help increase overall
fitness. Other types of function nodes in the representation might also yield
benefits, e.g. based on musical permutations such as transposition and inver-
sion. Another possibility could be to evolve melody and rhythm separately.

However, at this point it was concluded that the results were good enough.
It was time to expose the system to some real-world music.

5.2.4 Summary

Increasing the terminal probability from 0.1 to 0.9 greatly improved the
overall fitness of the evolved melodies. This allowed the EA to more eas-
ily fine-tune individual notes. In general, the evolved melodies had a higher
frequency of correct musical events and as a result less noise.

The main motivation for improving fitness was to increase the rhythmic sim-
ilarity of the evolved music. The results showed a significant improvement
for the rhythmic metrics, especially the rhythmic trigram. Further examina-
tion revealed a major increase in the frequency of the characteristic rhythmic
motif derived from the target melody.

86 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Piano Sonata No. 16
Wolfgang Amadeus Mozart

Allegro

Figure 5.22 The first eight bars of the first target piece: Mozart’s Piano Sonata
No. 16 in C major (K. 545).

5.3 Learning From the Best

So far, the similarity-based fitness function had been applied to a very simple
target melody, which was constructed specifically for testing purposes. In this
experiment, two real-world music pieces were used as targets. The artists
excel at quite different musical styles and lived in different centuries: Mozart
and The Beatles. The goal was to examine the fitness function’s ability to
capture the musical style of the pieces.

5.3.1 Introduction

Since the goal was to see how well the fitness function could model musical
style, two target pieces were selected that are easily distinguishable and have
several characteristic features.

The first target piece is Mozart’s Piano Sonata No. 16 in C major (K. 545),
first movement (Allegro), composed in 1788. The reader is likely familiar
with the melody – the first eight bars are shown in Figure 5.22. It can be
characterized as having ascending and descending melodic motions in a quick
tempo.

The Beatles’ Let it Be was used as the second target piece. The hit pop-song
from 1970 features a slow tempo and minimalist melody. Figure 5.23 shows
the first four bars of the song.

5.3. LEARNING FROM THE BEST 87

Let It Be
The Beatles

= 75

4
4

Figure 5.23 First four bars of the second target piece: The Beatles’ Let It Be.

5.3.2 Setup

The setup was similar to Experiment 5.1: For each target piece, evolution
was run for 500 generations and 30 runs were carried out. As before, the
most fit melody at the end of each run was kept for analysis.

The parameters are listed below:

• Population size: 100

• Mutation rate: 0.1

• Crossover rate: 0.9

• Tournament selection: k = 5, e = 0.1

• Fitness: Cosine similarity to target piece

– Metrics: pitch, chromatic tone, melodic interval, melodic bigram,
melodic trigram, rhythm, rhythmic interval, rhythmic bigram,
rhythmic trigram

– Target vectors: experiment dependent

– Filtering of target vectors: 1%

– Weights: uniform (1.0)

88 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

• Representation: Tree

– Functions: concatenation (+)

– Terminals: simple (pitch, duration)

– Initialization method: full

– Max tree depth: 6

– Pitches: experiment dependent

– Pitch reference: experiment dependent

– Durations: experiment dependent

– Scale: chromatic (no scale)

– Function probability: 0.1

– Terminal probability: 0.9

The maximum tree depth was set to 6, allowing for a maximum of 64 notes,
granting the EA more freedom than in the previous experiments. The func-
tion and terminal probability were based on the results from Experiment
5.2.

5.3.3 Experiment Setup

For each target piece the melody was identified and analysed by the nine
metrics, producing a set of target vectors that were used in the fitness func-
tion. The number of pitches, pitch reference and possible durations were
derived from each target piece, as described in Section 5.1.2.

Mozart

The genotype and phenotype parameters derived from Mozart’s piece were:

• Pitches: 25

• Pitch reference: 62 (D)

• Duration map: 1
32
, 1

16
, 1

8
, 1

4
, 5

16
, 1

2
, 9

16
and 3

4

5.3. LEARNING FROM THE BEST 89

Figure 5.24 shows the target frequency distributions from Mozart’s Piano
Sonata. Filtering resulted in the removal of 405 data points below the
1% threshold. Most notably, there were 167 melodic trigrams below the
threshold, which gives an indication of the melodic complexity of the piece.

Evidence of the ascending and descending melody (see Figure 5.22) can be
seen in the melodic interval distribution, where the major (±2) and minor
(±1) second have high frequencies.

The sonata exhibits a fast tempo, which is apparent in the rhythm distribu-
tion where the sixteenth note (0.25) is dominant. There is also little rhythmic
variation, evident from the clear majority of the rhythmic interval 1.0.

The Beatles

For Let it Be, the derived genotype and phenotype parameters were:

• Pitches: 18

• Pitch reference: 64 (E)

• Durations: 1
16
, 1

8
, 1

4
, 1

2
, 5

8
and 3

4
.

In Figure 5.25, the target distributions from The Beatles’ hit are depicted.
In contrast to Mozart’s piece, filtering only reduced the number of events by
5 due to the flatter bigram and trigram distributions.

Notice how the song contains only 9 different pitches, dominated by the G
(67), C (72), D (74) and E (76). The melody displays a fair amount of same-
note repetition, apparent from the melodic intervals where the unison (0) has
the highest frequency.

The eight note (0.5) is the duration most frequently used in the piece. Some
rhythmic variation is also found, illustrated by the diversity of rhythmic
intervals, bigrams and trigrams. Repetition of the same note duration, i.e.
rhythmic interval 1.0, is in clear majority though.

90 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Figure 5.24 Frequency of musical events in Mozart’s Piano Sonata No. 16 in C
major. Events that account for less than 1% of the distribution have been filtered
out.

5.3. LEARNING FROM THE BEST 91

Figure 5.25 Frequency of different types of musical events in The Beatles’ Let
it Be. Events with relative frequencies of less than 1% have been filtered out. For
the sake of readability, some values have been left out in the denser plots.

92 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

Table 5.3 Melody statistics from the two experiments using different target
pieces: average maximum fitness (std. dev.), highest fitness and the average num-
ber of notes.

Target Piece Fitness Highest fitness Number of notes

Mozart 0.949 (0.012) 0.972 46.87
The Beatles 0.960 (0.007) 0.972 45.63

5.3.4 Results and Discussion

Table 5.3 lists some interesting statistics from the two experiments. The
average fitness was consistently high for both target pieces. In general, the
music evolved with The Beatles’ song reached slightly higher fitness than
Mozart’s Piano Sonata, but the most fit melody from both sets had the same
fitness score. The number of notes were also approximately the same.

A higher variation in fitness was seen within the Mozart-melodies, where the
lowest fitness of the 30 melodies was 0.918. The equivalent number from The
Beatles-melodies was 0.945. As such, the target vectors from Mozart’s piece
provided a more difficult optimisation task.

Mozart

After listening to the melodies evolved with Mozart’s Piano Sonata No. 16
as target, it was clear that the 30 melodies were quite similar to each other.
As such, the fitness function seemed to produce fairly consistent results.
Figure 5.26 shows a typical example.

= 120

4
4

Figure 5.26 Typical example melody evolved with Mozart’s Piano Sonata No.
16 as inspirational target.

5.3. LEARNING FROM THE BEST 93

As can be seen, the music exhibits a fast tempo matching Mozart’s piece.
The melodic features are also periodically similar, with several ascending and
descending motions. These motions were, however, generally not as long as
in the original piece.

Another typical trait was alternation between two adjacent notes (circled in
the figure). These were likely due to the many trills found in the sonata,
which are rapid alternations between two adjacent notes. However, such
“trills” were also used with a slow tempo, which resulted in very monotone
phrases. In other words, there seemed to be no correspondence between
rhythm and melody. This uncovered an important limitation of the metrics
used: no correlation between pitch and duration is captured, since they all
operate exclusively on one or the other. It is hypothesized that the pitch
duration metric might help in this area.

Rhythmically, the melodies were perceived as very random and inconsistent.
When listening, there was no clear concept of a beat – the rhythm was float-
ing rather freely. Mozart’s piece, in contrast, displays a strict adherence to
the time signature. Metrics which take time signature into account might
improve the results in this aspect.

Another issue was seemingly random changes in tempo within melodies. Typ-
ical was the sudden change in note durations, which often occurred several
times within each short melody. This was likely due to the fact that the
piano sonata consists of several themes, some of which are slower than the
others. Given that the evolved melodies were much shorter than Mozart’s
piece, these themes were necessarily compressed in order to satisfy the target
distributions. In other words, the metrics were unable to capture the global
structure of Mozart’s piece.

Generally, the evolved pieces were rather unpleasant, with the random rhythm
emerging as the major issue. The Piano Sonata was simply too complex for
the metrics, resulting in rather chaotic melodies. At a local level, however,
it was clear that the music was Mozart-inspired.

The Beatles

The melodies evolved with Let it Be applied as target were also strikingly
similar to each other. However, compared to the Mozart results they were
much simpler. A typical example can be seen in Figure 5.27.

94 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

= 75

4
4

Figure 5.27 Typical melody evolved with The Beatles’ Let it Be applied as
target.

Like with The Beatles’ song, the evolved melodies featured a slow tempo and
were also quite minimalistic.

Many melodic motifs were easily recognized as derivatives from Let it Be. At
times though, the melody was perceived as too similar – small excerpts from
Let it Be would appear in between otherwise unfamiliar motifs. In these
cases the listener’s expectations were not fulfilled.

Unfortunately, the rhythm was often rather strange and inconsistent, with
no clear beat or time signature. There were also no apparent coherence
between rhythm and melody. Similar issues were also discovered in the
Mozart-melodies, as discussed earlier. Since Let it Be features a fairly uni-
form speed, there were no sudden changes in tempo, which resulted in a more
coherent musical structure than what was found in the Mozart-melodies.

Despite the problems outlined above, many of the melodies were in fact quite
pleasant. This was an improvement over the melodies evolved using Mozart
as target, which were mostly perceived as noisy and unpleasant. In other
words, the similarity metrics were more successful when the simpler melody
was applied as target.

5.3.5 Summary

The two experiments demonstrated that melodies with high fitness could be
evolved with two quite different real-world music pieces applied as targets.
Within each experiment, the evolved melodies were very similar to each other.

5.4. CONCLUSIONS 95

The first experiment created music that was, at least locally, somewhat sim-
ilar to the target Mozart piece. However, Mozart’s Piano Sonata was likely
too complex for the metrics applied, and the melodies were generally un-
pleasant.

Greater success was achieved with The Beatles song applied as target, which
is a lot simpler compared to Mozart. Quite a few of these melodies were
perceived as rather pleasant.

The experiments highlighted several issues with the current set of metrics.
The randomly floating rhythm was found to be the main source of unpleas-
antness. Another issue was no correlation between melody and rhythm.

Finally, from the Mozart results it became clear that the application of a long
target melody for the evolution of short melodies was challenging. Global
structure in the target piece was necessarily compressed into much shorter
time intervals.

5.4 Conclusions

The goal of the first experiment was preliminary testing of the similarity-
based fitness function. As such, a very simple target melody was applied,
constructed specifically for testing purposes. Furthermore, metrics were ad-
ded to the fitness function in an incremental fashion.

Analysis of the results revealed several interesting features in the evolved
pieces. As more metrics were applied, the evolved melodies became more and
more similar to the target piece, although identical melodies never emerged.
Metrics related to pitch yielded satisfactory results, but the rhythm metrics
proved to be problematic.

Issues with the genotype were also uncovered and performance was greatly
improved during the second experiment.

The most interesting results emerged from the last experiment, where real-
world music was applied as fitness. The high consistency observed within
the results was a valuable feature that made analysis much easier, which is
promising for future improvements.

Both target pieces resulted in melodies that exhibited similar musical prop-
erties, at least at a local level. Mozart’s piece was likely too complex for the

96 CHAPTER 5. EXPERIMENTS: DISTRIBUTION SIMILARITY

metrics, because of their inability to capture higher level musical structure.
Quite pleasant melodies were however evolved when The Beatles’ song was
applied as the target. The metrics seemed to perform better when applied
to the simpler piece.

Rhythmically, the evolved melodies lacked important features. Most import-
antly they did not display any clear beat. Although the rhythm-metrics were
shown to improve rhythmic consistency, none of them take the time signa-
ture into account. Future work should focus on improvements in this area
by devising new metrics. Counting note offsets within each bar might be a
viable technique.

Even though there were several weaknesses found in the evolved music, they
were generally much more pleasant than what was evolved with the Zipf
approach. For instance, the melodic intervals were significantly more musical
thanks to the knowledge-rich similarity-based fitness function.

Chapter 6

Conclusion and Future Work

Evolutionary techniques have shown great potential for musical tasks. Still, a
major challenge in Evolutionary Music Composition systems is the design of
a fitness function. Because human music creation is such an elusive process
that is not fully understood, formalizing music knowledge is particularly
difficult.

As stated in the introduction, the research goal was to design an automatic
fitness function which could capture music pleasantness and be applied to
evolve different styles of music.

This thesis presents a quantitative approach to automatic fitness, applied
for the evolution of novel monophonic melodies. Two fitness functions were
devised, both of which operate on frequency distributions of music events.
As such they both depend heavily on the set of metrics used to create the
distributions.

The first fitness function based on Zipf’s Law evaluates music solely based
on scaling properties. For this approach, it was necessary with additional
music knowledge which was implemented as constraints in the representation.
Although results revealed that pleasant music could be evolved with such a
technique, only a minority of the results were in fact perceived as pleasant.
In other words, the method proved to be insufficient for musical fitness alone.
Furthermore it was deemed far too knowledge-weak to capture musical style.

97

98 CHAPTER 6. CONCLUSION AND FUTURE WORK

Based on this experience, a new fitness function was devised which incorpor-
ates more music knowledge. The fitness is based on the similarity between the
metric frequency distributions of the evolved music and some inspirational
target piece. In other words, music with similar statistical properties as the
target piece is rewarded. The method evaluates both the scaling properties
and content of the evolved music. Furthermore, music knowledge encoded in
the representation was no longer necessary.

Application of the similarity-based fitness function greatly improved the qual-
ity of the evolved music. When real-world music pieces were used as targets,
quite a few pleasant results emerged from the population. The results were
also highly consistent, in contrast to the melodies evolved with Zipf-based
fitness which displayed significant variation. This consistency made analysis
much easier and is promising for future improvements.

Musical style was also captured to some extent by the similarity approach. At
a local level, the evolved melodies exhibited several features that resembled
those found in the target music. The technique proved to be most successful
when a fairly short music piece was used as the target. The application of a
longer and more complex target piece was more challenging and is unlikely
to yield satisfactory results at this point.

Still, more work is needed to improve the method. As mentioned, the tech-
nique is highly dependant on the metrics that are employed. Additional
metrics are necessary to incorporate other important musical properties. Of
particular interest are metrics for rhythm, melody-rhythm coherence and
higher level musical structure. It is unfortunately difficult to know which
features are sensible in the musical domain. In some cases, an educated
guess can be made, but often the only way to know is through trial and
error.

A hybrid approach would also be interesting to explore, with both Zipf and
similarity-based fitness applied on different metrics. The Zipf approach might
be particularly useful for higher level features such as melodic n-grams. By
looking only at the scaling properties in these features, plagiarism of the tar-
get piece would be reduced, thus improving originality. Lower level features
like melodic intervals are likely to be more general and should thus be applied
in a similarity-based manner.

99

Utilization of several target pieces at the same time would certainly also be
of interest. Imagine the learning potential in a large corpus of music. The
technique is however still in it’s infancy and requires much work before it can
be applied to large data sets.

Nevertheless, fitness based on statistical similarity is a promising technique
for evolutionary music systems. Advantages include learning from existing
music pieces and scalability to different musical styles.

100 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

Bellinger, E. (2011). Little Ludwig, an evolutionary learning machine for
musical composition. Journal of the ACM, 1(1).

Bentley, P. and Corne, D. (2002). Creative evolutionary systems. Morgan
Kaufmann, 1. edition.

Biles, J., Anderson, P., and Loggi, L. (1996). Neural network fitness functions
for a musical IGA. In International ICSC Symposium on Intelligent Indus-
trial Automation and Soft Computing. International Computing Sciences
Conferences (ICSC).

Biles, J. A. (1994). GenJam : A Genetic Algorithm for Generating Jazz
Solos. In Proceedings of the International Computer Music Conference.

Dahlstedt, P. (2007). Autonomous evolution of complete piano pieces and
performances. In Proceedings of Music AL Workshop.

Duda, R. O., Hart, P. E., and Stork, D. G. (2006). Pattern Classification,
volume 2. Wiley, 2. edition.

Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence:
Theories, Methods, and Technologies. The MIT Press.

Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer-
assisted music composition. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 437–441.

Hulse, S., Takeuchi, A., and Braaten, R. (1992). Perceptual invariances in the
comparative psychology of music. Music Perception: An Interdisciplinary
Journal, 10(2):151–184.

Jensen, J. H. (2010). Evolutionary Music Composition based on Zipf’s Law.
Technical report, Norwegian University of Science and Technology, NTNU.

101

102 BIBLIOGRAPHY

Johanson, B. and Poli, R. (1998). GP-Music : An Interactive Genetic Pro-
gramming System for Music Generation with Automated Fitness Raters.
In Proceedings of the Third Annual Conference: Genetic Programming.

Koza, J. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA.

Machado, P. and Cardoso, A. (2002). All the truth about NEvAr. Applied
Intelligence, 16(2):101–118.

Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W.,
and Davis, R. B. (2005). Zipf’s Law, Music Classification, and Aesthetics.
Computer Music Journal, 29(1):55–69.

Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., and Romero,
J. (2007). A Corpus-Based Hybrid Approach to Music Analysis and Com-
position. In Proceedings of the 22nd national conference on Artificial in-
telligence. AAAI Press.

Manaris, B., Vaughan, D., Wagner, C., Romero, J., and Davis, R. B. (2003).
Evolutionary Music and the Zipf-Mandelbrot Law: Developing Fitness
Functions for Pleasant Music. In Proceedings of EvoMUSART2003 - 1st
European Workshop on Evolutionary Music and Art, pages 522–534, Ber-
lin. Springer-Verlag.

Minsky, M. L. and Laske, O. (1992). A conversation with Marvin Minsky.
AI Magazine, 13(3):31–45.

Miranda, E. R. and Biles, J. A. (2007). Evolutionary Computer Music. Num-
ber 7. Springer.

Özcan, E. and Erçal, T. (2008). A Genetic Algorithm for Generating Impro-
vised Music. Lecture Notes in Computer Science, 4926/2008:266 – 277.

Papadopoulos, G. and Wiggins, G. (1998). A genetic algorithm for the gen-
eration of jazz melodies. In Proceedings of STeP.

Phon-Amnuaisuk, S., Tuson, A., and Wiggins, G. (1999). Evolving mu-
sical harmonisation. In International Conference on Adaptive and Natural
Computing Algorithms.

Ritossa, D. A. and Rickard, N. S. (2004). The Relative Utility of ’Pleasant-
ness’ and ’Liking’ Dimensions in Predicting the Emotions Expressed by
Music. Psychology of Music, 32(1):5–22.

BIBLIOGRAPHY 103

Secretan, J., Beato, N., D Ambrosio, D., Rodriguez, A., Campbell, A., and
Stanley, K. (2008). Picbreeder: evolving pictures collaboratively online. In
CHI 2008, pages 1759–1768, Florence. ACM.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graph-
ics, 25(4):319–328.

Vossa, R. F. and Clarke, J. (1978). "1/f noise" in music: Music from 1/f
noise. J. Acoust. Soc. Am, 63(1):258.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature se-
lection in text categorization. In International Conference on Machine
Learning (ICML).

Zipf, G. K. (1949). Human Behaviour and the Principle of Least Effort: An
Introduction to Human Ecology. Addison-Wesley.

104 BIBLIOGRAPHY

Appendix

The evolutionary music system was built in the programming language Py-
thon1, and a number of third-party libraries were employed:

• numpy2 provided various computational tools.

• matplotlib3 was used to create the various plots.

• pythonmidi4 allowed parsing of MIDI-encoded music files.

• celery5 was employed to run the experiments in parallel.

Experiments were run on the Kongull high performance Linux cluster at
NTNU, which sports 98 nodes with 12 available processor cores each. By
having 30 evolutionary runs in parallel, runtime was reduced from 6 hours
to about 15 minutes.

Analysis of existing music was performed on high quality MIDI files donated
by the Classical Archives (www.classicalarchives.com). The only excep-
tion is the song Let it Be, which was transcribed by the author since no high
quality MIDI recordings could be found.

1Python Programming Language – http://python.org/
2Scientific Computing Tools For Python – http://numpy.scipy.org/
3matplotlib: python plotting – http://matplotlib.sourceforge.net/
4Python MIDI Package – http://www.mxm.dk/products/public/pythonmidi
5Celery Distributed Task Queue – http://celeryq.org/

105

www.classicalarchives.com
http://python.org/
http://numpy.scipy.org/
http://matplotlib.sourceforge.net/
http://www.mxm.dk/products/public/pythonmidi
http://celeryq.org/

	Title Page
	Introduction
	Goals and Limitations
	Overview of This Document

	Background
	Music Terminology
	Evolutionary Computation
	Evolutionary Art and Aesthetics
	Evolutionary Music
	Music Representation
	Linear Representations
	Tree-Based Representations
	Phenotype Mapping

	Fitness
	Interactive Evaluation
	Hardwired Fitness Functions
	Learned Fitness Functions

	Methodology
	Music Representation
	Introduction
	Parameters
	Functions and Terminals
	Initialization
	Genetic Operators
	Parsing

	Fitness
	Metrics

	Fitness Based on Zipf's Law
	Zipf's Law
	Zipf's Law in Music
	Fitness Function

	Fitness Based on Distribution Similarity
	Metric Frequency Distributions
	Cosine Similarity
	Fitness Function
	Relationship to Zipf's Law
	Filtering

	Experiments: Zipf's Law
	A Musical Representation
	Introduction
	Setup
	Experiment Setup
	Results and Discussion
	Summary

	Tree-Based Composition
	Introduction
	Setup
	Results and Discussion
	Summary

	Adding Rhythm
	Introduction
	Experiment Setup
	Results and Discussion
	Summary

	Conclusions

	Experiments: Distribution Similarity
	Basics
	Introduction
	Setup
	Experiment Setup
	Results and Discussion
	Summary

	Improving the Basics
	Introduction
	Setup
	Results and Discussion
	Summary

	Learning From the Best
	Introduction
	Setup
	Experiment Setup
	Results and Discussion
	Summary

	Conclusions

	Conclusion and Future Work
	Bibliography
	Appendix

