
Master of Science in Computer Science
June 2011
John Krogstie, IDI
Bjørn Rustberggard, Inspera AS

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

An approach to rapid development of
modern ubiquitous Internet
applications
Exploring the benefits of reusable server side components

Martin Andreas Juell
Gaute Larsen Nordhaug

P R O B L E M D E S C R I P T I O N

Popular Internet applications can grow rapidly into having
millions of users. This is an important challenge for application
developers, as failing to handle increasing load can disrupt
an application’s popularity surge and cause massive monetary
losses.

Many popular applications are ubiquitous, meaning they are
used not only from web browsers on desktop computers, but
also handheld devices, as well as other services operating on
servers, connecting to the application via an Application Pro-
gramming Interface (API). For traditionally designed web ap-
plications, this ubiquity is hard to achieve, as the difference in
architecture creates a barrier for reusability of server side code.

The objective of the project is to design an API for rapid devel-
opment of modern ubiquitous applications, and a hyperscalable
backend for that API. The design should emphasize that the API
is for use by a variety of clients, based on differing technologies,
for different purposes.

Assignment given: Jan 2011

Supervisor: John Krogstie

i

A N A P P R O A C H T O R A P I D D E V E L O P M E N T O F
M O D E R N U B I Q U I T O U S I N T E R N E T A P P L I C AT I O N S

Exploring the benefits of reusable server side components

martin andreas juell, gaute larsen nordhaug

IDI
Norges Teknisk-Naturvitenskapelige Universitet

June 2011

Martin Andreas Juell, Gaute Larsen Nordhaug: An approach to
rapid development of modern ubiquitous Internet applications, Ex-
ploring the benefits of reusable server side components, © June
2011

A B S T R A C T

Popular Internet applications can grow rapidly into having
millions of users. This is an important challenge for application
developers, as failing to handle increasing load can disrupt
an application’s popularity surge and cause massive monetary
losses.

Many popular applications are ubiquitous, meaning they are
used not only from web browsers on desktop computers, but
also handheld devices, as well as other services operating on
servers, connecting to the application via an Application Pro-
gramming Interface (API). For traditionally designed web ap-
plications, this ubiquity is hard to achieve, as the difference in
architecture creates a barrier for reusability of server side code.

Using a design science research methology, this report details
an approach to solving scalability issues and greatly improving
reusability and development speed for modern ubiquitous in-
ternet applications. The crux of the approach is a bare-essentials
data access and user management API, whose implementation
is intended to serve as the entire server side of the application.

For applications that can cope with its reduced feature set,
it has several major advantages. API implementations are in-
terchangeable, eliminating vendor lock, and also completely
reusable across applications, saving development effort. Presen-
tation and application logic is shifted to the client side, reducing
server strain, and the API is easily implemented with a mod-
ern, hyperscalable data store in a cloud environment, providing
great elasticity and scalability.

The functionality of the API is derived from an analysis of
target applications, and the approach is evaluated through the
development of a prototype, a blog application with clients for
several platforms. The prototype development process reveals
some architectural and practical limitations to the design, but
also showcases the power of reusable components when those
components are readily available.

The approach presented here is not ideal for all types of
applications. However, when applicable, it helps developers save
time and overcome these important challenges in application
development.

v

P R E FA C E

This report is a documentation of the project work performed
as the Master’s thesis in Computer Science by Gaute Larsen
Nordhaug and Martin Andreas Juell in the spring of 2011. The
project work is carried out in the last semester of the five-year
integrated M.Sc. program in Computer Science at the Norwegian
University of Technology and Science (NTNU). The scope of the
project is 30 credits for each author, equivalent to one semester
of full course load.

The assignment was defined in cooperation with Inspera AS
and supervisor John Krogstie at the department of Computer
and Information Science (IDI). While the assignment was carried
out to solve some pressing problems for Inspera, it was designed
in such a way that others too may benefit from our efforts and
experiences.

We would like to thank our supervisors at Inspera, Sondre
Bjørnebekk, Bjørn Rustberggard, Naimdjon Takhirov and John
Arne Skjervold Pedersen, as well as IDI supervisor John Krogstie
for their invaluable feedback and support throughout the design
and writing process.

Trondheim, Norway, June 2011
Martin Andreas Juell and Gaute Larsen Nordhaug

vii

C O N T E N T S

i introduction 1

1 background and objective 3

1.1 Massively scalable ubiquitous applications 3

1.2 Case: Inspera . 5

1.3 Research approach and objectives 6

1.3.1 Research questions 6

1.3.2 Solution hypothesis 6

1.3.3 Solution approach 7

1.3.4 Research method: Design science 8

1.4 Thesis outline . 10

ii theoretical background 13

2 ensuring scalability 15

2.1 Cloud computing 15

2.1.1 Benefits . 17

2.1.2 Disadvantages 18

2.2 Designing a cloud back-end for scalability and
resilience . 19

2.2.1 General resilience 19

2.2.2 Databases 20

3 background on api design 25

3.1 General design principles 25

3.2 Industry standards for Internet APIs 27

3.2.1 SOAP and RPC 27

3.2.2 RESTful Web Services 28

3.2.3 Comparison/discussion 31

3.3 Example APIs . 32

3.3.1 HiFi API . 32

3.3.2 Twitter API 32

3.3.3 SnapBill API 33

3.3.4 WebDAV . 34

iii design & implementation 35

4 requirements 37

4.1 Background . 37

4.2 Functionality requirements for sample applications 37

4.2.1 Creaza . 37

4.2.2 A blog application 39

4.2.3 A simple CMS 40

ix

x contents

4.3 Nature of target applications 40

4.4 Summary of functional requirements 41

5 the moraxus platform 43

5.1 Features . 46

5.1.1 Data store 47

5.1.2 Queries . 47

5.1.3 Authentication 47

5.1.4 Access control 49

5.1.5 Groups and sharing 49

5.1.6 Application descriptors 49

5.1.7 Data migration 50

6 prototype 51

6.1 Prototype Moraxus implementation 51

6.2 Sample application: A simple blog 51

6.2.1 Functionality 53

6.2.2 Web client 54

6.2.3 Mobile client 56

iv evaluation and conclusion 57

7 evaluating moraxus 59

7.1 Evaluation method 59

7.2 Fulfillment of objectives 60

7.3 Architectural challenges 61

7.4 Practical challenges 61

7.5 Features . 62

7.6 Usability . 64

7.7 Discussion . 65

7.8 Further Work . 65

8 conclusion 67

bibliography 69

v appendix 75

a paas services 77

a.1 Google App Engine 77

a.2 Cloud Foundry . 77

a.3 Google Storage . 77

a.4 Storage Room . 78

b authentication tools 79

b.1 OpenID . 79

b.2 OAuth . 79

c moraxus documentation 81

c.1 Request URLs . 81

contents xi

c.2 Request Methods 81

c.2.1 Content Requests 81

c.2.2 ID Requests 83

c.2.3 User Requests 84

c.2.4 Group requests 84

c.3 Response Codes . 85

L I S T O F F I G U R E S

Figure 1.1 Traditional web application architecture . . 4

Figure 1.2 Typcial architecture for mobile client or
consuming service 4

Figure 1.3 Exchange of back-end for Creaza. 7

Figure 1.4 Design science workflow as described in[1] 8

Figure 2.1 Redundant server setup over 2 Availability
Zones (AZs). 21

Figure 5.1 The Moraxus platform 44

Figure 5.2 Moraxus architecture 45

Figure 5.3 Example data store organization for a blog
application 48

Figure 6.1 The JavaScript blog client 55

Figure 6.2 The Android blog client 55

Figure 7.1 The problem of cross-site JavaScript 62

Figure 7.2 Server push techniques 63

Figure A.1 Cloud Foundry 78

Figure B.1 An OpenID login form 80

L I S T O F TA B L E S

Table 1.1 Design science guidelines [2] 9

Table 3.1 Typical semantic interpretation of HTTP
methods in a RESTful web service[3] 30

Table 4.1 Requirements 42

Table 6.1 Requirements implemented in the prototype 52

Table 6.2 Some of the blog application’s API calls . . 53

xii

Listings xiii

L I S T I N G S

Listing 3.1 Code that reads like prose 26

Listing 3.2 A boilerplate method for the W3C XML API
for Java. 26

Listing 3.3 A SOAP message sent over HTTP 28

Listing 3.4 A simple query, getting all post objects. . . 32

Listing 3.5 A slightly more complex query. 32

Listing 5.1 An example XML configuration file 50

Listing 6.1 Code for posting a new comment 54

Listing 7.1 Posting a comment with the help of an API
wrapper. 65

Listing C.1 Sample GET object response 82

Listing C.2 Sample POST request 82

Listing C.3 Sample PUT request 83

A B B R E V I AT I O N S

2PC Two-Phase Commit

ACID Atomicity, Consistency, Isolation, Durability

ACL Access Control List

AMF Adobe Message Format

API Application Programming Interface

AWS Amazon Web Services

AZ Availability Zone

BASE Basically Available, Soft state, Eventually consistent

CAP Consistency, Availability, Partition Tolerance

CMS Content Management System

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

CTO Chief Technical Officer

DaaS Database as a Service

DBMS Database Management System

DNS Domain Name System

EC2 Elastic Compute Cloud

HATEOAS Hypermedia As The Engine Of Application State

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

ICS Inspera Content Server

IDI Institutt for Datateknikk og Informatikk/
Department of Computer Science

xiv

abbreviations xv

JSON JavaScript Object Notation

NTNU Norsk Teknisk-Naturvitenskapelig Universitet/
Norwegian University of Technology and Science

NoSQL Not Only SQL

PaaS Platform as a Service

PDA Personal Digital Assistant

RBAC Role Based Access Control Model

REST Representational State Transfer

RFC Request For Comments

RPC Remote Procedure Call

SaaS Software as a Service

SOAP Simple Object Access Protocol

SQL Structured Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

USD United States Dollars

W3C World Wide Web Consortium

WebDAV Web-based Distributed Authoring and Versioning

XML Extensible Markup Language

Part I

I N T R O D U C T I O N

1
B A C K G R O U N D A N D O B J E C T I V E

1.1 massively scalable ubiquitous applications

Many Internet applications have experienced rampant growth
over the last few years. Social media giant Facebook boasts over
500 million active users[4], and has had 2011 valuations ranging
from 50 billion[5] to 124 billion USD[6]. Microblogging service
Twitter is expected to pass 200 million registered users in 2011,
and has been valued at 8-10 billion USD[7].

These two applications, and many like them, represent a
new generation of Internet applications in that they are not only
available in web browsers on desktop computers. Their extensive
Application Programming Interfaces (APIs) allow access to native
applications running on mobile devices, and serve data to other
services running on servers.

These applications and services can be developed by the orig-
inal application’s developers, or by third parties. Twitter, for
instance, is easily integrated in news websites, games, and even
household appliances[8], adding value both to the third party
and to Twitter itself. Over 2.5 million websites have integrated
with Facebook[4].

This report will use the term ubiquitous application to mean
an application that is accessible from a variety of devices and
platforms, possibly for a variety of purposes.

Web vs other clients

Traditional web applications operate by generating HTML on
the server side that is displayed in a browser. The application
logic as well as the presentation (in the sense of generating
HTML for the browser to display) are handled on the server side,
see Figure 1.1 . Mobile applications and third-party services,
however, typically operate on raw data in a neutral format, and
handle presentation themselves, as illustrated in Figure 1.2. For
a ubiquitous application, the website requires a disproportionate
amount of special attention, and the code used to generate HTML
has no value to the other clients, as it is a very impractical format
for them to consume.

3

4 background and objective

Figure 1.1: Traditional web application architecture

Figure 1.2: Typcial architecture for mobile client or consuming service

1.2 case : inspera 5

Scaling and performance

As an Internet application becomes popular, its ability to handle
increasing amounts of load will be absolutely critical to its future
success. Early social networking pioneer Friendster has become
infamous for the website’s inability to handle traffic as load
increased, which ultimately led to it being far less successful
than stakeholders had hoped[9][10]. Google measured that an
added latency of 100 milliseconds on web searches is enough to
cause a statistically significant drop in search traffic [11] .

1.2 case: inspera

Inspera AS1 is a Norwegian technology company that makes
cross-media publishing tools geared towards education. All
Inspera software is based on Inspera Content Server (ICS), a
flexible XML-based content management system. However, an
interview with Inspera’s Chief Technical Officer (CTO) reveals
that there are some caveats to using ICS to build next-generation
Internet applications. ICS is designed to run on traditional, man-
ually configured web servers, which are currently hosted by
an expensive hosting provider. It also depends on expensive
per-CPU licenses such as Oracle Database and Oracle Coherence.
In addition, ICS operates in the traditional fashion shown in
Figure 1.1, which makes prototyping and developing ubiquitous
applications slower and more costly than it needs to be.

If an application made by Inspera experiences massive pop-
ularity growth, ICS will not be able to scale to meet demand,
at least not without Inspera suffering heavily from license and
operational costs.

Creaza Video

Creaza Video 2 is one of Inspera’s flagship applications. It
features a sophisticated timeline-based video editor that runs
within the user’s web browser. The user can upload their footage
and audio from a variety of devices and create high quality
productions without having to install any software on their com-

1 http://www.inspera.no
2 http://www.creaza.com

http://www.inspera.no
http://www.creaza.com

6 background and objective

puter. Completed productions can be downloaded or exported
to services like YouTube3 or Facebook4 for sharing.

Creaza was originally a product designed for licensing in the
educational market, but a new version is scheduled for launch
to the general consumer public in August 2011. Creaza is based
on ICS, which means that scalability issues are likely to occur if
Creaza is well received by consumers.

1.3 research approach and objectives

1.3.1 Research questions

This project aims to examine the problems described in Section
1.1, using ICS and Creaza as a study case. A design science
methodology (Section 1.3.4) is used, with the intention of pro-
ducing:

1. A contribution to solving the problems in the general case

2. A solution to help Inspera specifically in overcoming these
problems

a) In Creaza

b) In future applications.

The objective of the project is to outline an approach to Internet
application development which:

1. Allows reuse of components

a) across application clients

b) across applications.

2. Ensures scalability at low monetary cost.

3. Can be used for new applications as well as existing ones,
such as Creaza.

1.3.2 Solution hypothesis

The backing hypothesis in this project is that it is possible to
solve these problems by designing a new general API and a scal-
able implementation. The API should contain a core set of func-
tionality common to a class of applications, and its implemen-
tation should be reusable not only across different application

3 http://www.youtube.com
4 http://www.facebook.com

http://www.youtube.com
http://www.facebook.com

1.3 research approach and objectives 7

(a) Original situation (b) All communication
with ICS through
general-purpose
API with ICS
implementation

(c) Implementation
substituted for
simpler, more
scalable back-end.

Figure 1.3: Exchange of back-end for Creaza.

clients, but across applications as well. Reusable cross-platform
core functionality allows rapid prototyping of applications, and
reduces development and maintenance costs. The API should
allow for multiple implementations, so that new advances to
server side development can be adopted without having to
modify applications, and so that Inspera can create a transi-
tional implementation by using bindings to ICS. This will allow
Creaza and other legacy applications to be ported onto the new
architecture in a three-step process shown in Figure 1.3.

1.3.3 Solution approach

First, the functionality to be supported by the API must be
determined. The design should emphasize that the API is for
use by a variety of clients, based on differing technologies,
for different purposes. In addition, it is a goal for the API to
differentiate from competing offerings in a way that makes it
attractive to a fitting niche of developers. As research for both
these points, a few popular APIs that are similar to what Inspera
are planning should be examined, especially with regard to what
they do to attract developers in terms of support, documentation
and community management.

Given API functionality and a few demo applications, the
second part of the project should look into how to design a new,

8 background and objective

Figure 1.4: Design science workflow as described in[1]

lighter, scalable back-end. It should not depend on any licenses
payable per CPU, and the source code should be significantly
smaller in size and thus more maintainable than ICS.

Scope

It is not the goal of this project to implement the new plat-
form in code, but to perform a thorough analysis upon which
Inspera can base the development, which is planned to start
in the summer of 2011. The main target is to build a proof-of-
concept prototype of a platform based on the API, and evaluate
its viability.

1.3.4 Research method: Design science

Design science is a research approach in which problems are
solved by designing, creating, and evaluating artifacts. Its pro-
cess, outlined in Figure 1.4 starts with the awareness of a prob-
lem, possibly selected from a set of possible problems to solve.
Through application of previous knowledge and existing theory,
potential solutions are suggested, developed, and evaluated ac-
cording to a set of guidelines, presented in Table 1.1. Research
based on design in this manner produces four main types of
output, as first defined by March and Smith in [12]:

constructs are the conceptual vocabulary of the domain in
which the problem and solution exist. These may not be
clearly defined at first, but are refined as work progresses.

1.3 research approach and objectives 9

Guideline Description

Guideline 1:
Design as an
Artifact

Design-science research must produce a
viable artifact in the form of a construct, a
model, a method, or an instantiation.

Guideline 2:
Problem
Relevance

The objective of design-science research is to
develop technology-based solutions to
important and relevant business problems.

Guideline 3:
Design
Evaluation

The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods.

Guideline 4:
Research
Contributions

Effective design-science research must
provide clear and verifiable contributions in
the areas of the design artifact, design
foundations, and/or design methodologies.

Guideline 5:
Research Rigor

Design-science research relies upon the
application of rigorous methods in both the
construction and evaluation of the design
artifact.

Guideline 6:
Design as a
Search Process

The search for an effective artifact requires
utilizing available means to reach desired
ends while satisfying laws in the problem
environment.

Guideline 7:
Communica-
tion of
Research

Design-science research must be presented
effectively both to technology-oriented as
well as management-oriented audiences.

Table 1.1: Design science guidelines [2]

10 background and objective

models are sets of statements expressing relationships among
constructs. A model proposes a description of how the
domain, or aspects of it, work.

methods are defined ways to perform a task. Since design
science is conducted primarily for utility, methods can
not only be problem solving tools, but also the object of
research. In these cases, an improved method is often the
result.

instantiations are the final product of a design science ef-
fort. An instantiation operationalizes constructs, models,
and methods. It is the realization of the artifact in an envi-
ronment. Sometimes, an instantiation may precede a com-
plete articulation of the constructs, models, and methods
that it embodies, in the same way that flying aircraft were
constructed before flight was fully understood [13]. This
understanding arose with the help of the instantiations,
and is unlikely to have occurred without them.

Table 1.1 lists the design science guidelines followed through-
out this project. This project was conducted to solve a pressing
business problem: Scaling issues in applications, critical to prof-
itability (G2). The main artifact produced in this project(G1) is
the Moraxus API and sample implementation. The methods and
models this design entails, as well as details of the instantiation
prototype are described in chapters 5-6. The development of the
artifact was carried out in an iterative fashion, as encouraged by
G6. The work is analytically evaluated (G3, G5) in chapter 7.

In addition to solving Inspera’s scalability problems, the
method for solving them and the API can contribute to solv-
ing similar problems for other organizations (G4), or at the very
least, add to the base of knowledge in this domain. This re-
port has been composed to facilitate being read by audiences of
varying previous knowledge of the concepts discussed (G7).

1.4 thesis outline

Chapters 2 and 3 discuss underlying theoretical concepts in
scalability and API design, respectively. Chapter 4 describes the
requirements determined for the solution, while the solution
itself is presented in chapter 5. Chapter 6 discusses the prototype
that was implemented to evaluate the design, the evaluation

1.4 thesis outline 11

itself follows in chapter 7. Chapter 8 concludes the report and
outlines future work.

The report has three appendices. Appendix A contains a more
in-depth discussion of Platform as a Service (PaaS) providers
discussed as alternative approaches in Section 7.8 . Appendix B
documents the workings of the authentication mechanisms used
in the API. Finally, Appendix C contains the API documentation.

Part II

T H E O R E T I C A L B A C K G R O U N D

2
E N S U R I N G S C A L A B I L I T Y

Structural scalability is the ability of a system to expand in a cho-
sen dimension without major modifications to its architecture.
Load scalability is the ability of a system to perform gracefully
as the offered traffic increases [14]. If an Internet application
experiences vast growth over a relatively short time, it must be
scalable by both of these metrics. This chapter discusses how
one can ensure scalability in an Internet application by carefully
designing the hardware and software architecture on which it is
based.

Vertical vs horizontal scaling

Twitter had a 1382% growth in members from Feb 08 to Feb
09[15]. Accommodating extreme growth requires a carefully
crafted software architecture and hardware setup on the server
side. A vertical scaling approach, in which existing nodes are
made more powerful in order to accommodate growth, is ex-
pensive due to the cost of high performance servers, and 1382%
more powerful hardware can be hard to come by. The alternative
is horizontal scaling; adding more nodes and sharing load among
them.

2.1 cloud computing

Since the introduction of Amazon Elastic Compute Cloud (EC2)1 in
2006 [16], cloud environments have become widespread due to
their horizontal scaling capabilities. A cloud environment, as de-
fined in the US National Institute of Standards and Technology
working definition [17], has the following characteristics:

• On-demand self-service. A consumer can unilaterally provi-
sion computing capabilities, such as server time and net-
work storage, as needed automatically without requiring
human interaction with each service’s provider. Providers
have broad network access. Capabilities are available over
the network and accessed through standard mechanisms

1 http://aws.amazon.com/ec2/

15

http://aws.amazon.com/ec2/

16 ensuring scalability

that promote use by heterogeneous thin or thick client plat-
forms (e.g., mobile phones, laptops, and Personal Digital
Assistants (PDAs)).

• Resource pooling. The provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dy-
namically assigned and reassigned according to consumer
demand. There is a sense of location independence in that
the customer generally has no control or knowledge over
the exact location of the provided resources, but may be
able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, network bandwidth,
and virtual machines.

• Rapid elasticity. Capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out, and rapidly released to quickly scale in. To the con-
sumer, the capabilities available for provisioning often ap-
pear to be unlimited and can be purchased in any quantity
at any time.

• Measured Service. Cloud systems automatically control and
optimize resource use by leveraging a metering capabil-
ity2 at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active
user accounts). Resource usage can be monitored, con-
trolled, and reported, providing transparency for both the
provider and consumer of the utilized service.

The definition also divides cloud services into three service
models:

• Software as a Service (SaaS). The capability provided to the
consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

2 Typically through a pay-per-use business model

2.1 cloud computing 17

• Platform as a Service (PaaS). The capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed ap-
plications and possibly application hosting environment
configurations.

• Infrastructure as a Service (IaaS). The capability provided to
the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software,
which can include operating systems and applications.
The consumer does not manage or control the underly-
ing cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

For development of new software, PaaS and IaaS are the two
relevant categories to consider, and the developer must carefully
consider the needs of the application being developed in order
to choose between them.

IaaS: PaaS

Allows complete control over
what software technologies to
use.

Restricts languages and tools
to those supplied by the
provider.

Requires manual
administration of server
instances, typically charged
by the instance hour.

No such administration
necessary, payment typically
by the CPU hour.

Special care must be taken in
software design to ensure
resilience against node or
network failures (Discussed
in Section 2.2).

Failure resilience is built into
platform and is the
responsibility of the provider.

2.1.1 Benefits

The most important benefits to using cloud services are:

18 ensuring scalability

• Flexibility. A system’s capacity can be changed on a timescale
of minutes or seconds to accommodate increasing or de-
creasing load. This process is automated by the provider in
PaaS environments, and can be automated by the customer
in IaaS.

• Scalability. Providers have vast amount of computing, net-
work and storage resources available.

• Simplicity. No management of physical servers is necessary.
Failover procedures in the cloud setup protect against
system outages from hardware failure.

• Cost. In addition to the savings incurred through the pre-
vious points, the pay-per-use business model combined
with the savings of a multi-tenant setup provide for fa-
vorable pricing conditions. Deelman et al. [18] conclude
that cloud computing offers cost-effective solutions for
data-intensive applications with low CPU costs, such as the
platform presented in chapter 5.

For a small company like Inspera, these advantages are cur-
rently only attainable through purchasing cloud services from
a provider. Since the goals for the platform developed in this
project include reducing time to market for new application
ideas, as well as supporting near-infinite scalability for an appli-
cation gaining traction, it is essential that the platform is able
to run on a cloud environment. However, since different appli-
cations have different requirements, but ideally should be able
to use the same API, it is beneficial if the API is not tied to one
provider, or even to one of the PaaS or IaaS categories.

2.1.2 Disadvantages

Even though the use of cloud services can provide huge advan-
tages, there are some disadvantages as well. One of the most
criticized aspects of cloud computing is the possible lack of se-
curity and privacy. When storing information on remote servers,
other people will have access to it. And even though the cloud
computing service can be just as secure as other solutions, the
volume of data stored on the most prominent cloud service
providers make them a more interesting target for hackers. An
example of this would be the hacking of the PlayStation Net-
work in April 2011, where millions of users got their personal
information, and possibly credit card information, stolen [19].

2.2 designing a cloud back-end for scalability and resilience 19

Another source of concern is the lack of control over the
stability of the services. If a developer’s cloud provider has
trouble, his application will be down until they fix it, there is
nothing he can do.

2.2 designing a cloud back-end for scalability and

resilience

This section describes some of the challenges that come with
designing systems to run on a large number of commodity
servers.

2.2.1 General resilience

In a cloud environment, or any environment based on lots of
commodity computers, nodes may fail, as may the network
connecting them. If all traffic to the application passes through
a single node, such as a load balancer or database master, this
node is a single point of failure: If this node goes down for some
reason, as can happen, the entire application will suffer. The
ideal solution is to develop an architecture with no such single
points of failure. If this is not possible, an alternative is to use
one or more extra nodes that are kept exactly the same as the
first node through active replication, where only the master
node is used, and the job of the secondary node(s) is simply
to monitor the main node and take its place in the event of a
failure. An example of such a setup is the database master-slave
setup in Figure 2.1.

Rambo architectures and the Chaos Monkey

In [20], John Ciancutti of the on demand video streaming com-
pany Netflix 3 describes some important aspects of their sys-
tem’s fault-tolerance abilities. He refers to their Amazon Web
Services (AWS) architecture as their “Rambo architecture”, mean-
ing that each subsystem should be able to work on its own, even
if all the systems it relies on goes down.

If our recommendations system is down, we de-
grade the quality of our responses to our customers,
but we still respond. We’ll show popular titles instead

3 http://www.netflix.com

http://www.netflix.com

20 ensuring scalability

of personalized picks. If our search system is intol-
erably slow, streaming should still work perfectly
fine.

One of the first systems our engineers built in AWS
is called the Chaos Monkey. The Chaos Monkey’s
job is to randomly kill instances and services within
our architecture. If we aren’t constantly testing our
ability to succeed despite failure, then it isn’t likely
to work when it matters most – in the event of an
unexpected outage.

Regions and availability zones (AZs)

Cloud providers like Amazon often offer the opportunity to
distribute a customer’s server instances across fault-isolated
boundaries. Amazon, for instance, operates a number of re-
gions spread across the world, with a number of Availability
Zones (AZs) within each region. Data can be transmitted be-
tween availability zones at rates substantially lower than those
charged for ordinary Internet traffic. One can think of each zone
as a separate data center4, and if one AZ experiences some mal-
function, server instances in other AZs should still be fine, see
Figure 2.1.

However, just having different zones may not be enough in
the event of a major outage, like the one Amazon experienced in
April 2011, when the servers in an Availability Zone went down
for multiple days with the result that hundreds of application
and websites went down [21].

2.2.2 Databases

Most conventional Database Management Systems (DBMSs) give
a set of guarantees known as ACID; Atomicity, Consistency, Iso-
lation and Durability.

atomicity means that database transactions are either com-
pleted in full or, if they fail or are aborted, fail completely
and leave the database unchanged.

consistency ensures that any transaction the database per-
forms takes the it from one consistent state to another.

4 Amazon stresses that it does not guarantee any physical proximity or sepa-
ration between AZs

2.2 designing a cloud back-end for scalability and resilience 21

Figure 2.1: Redundant server setup over 2 AZs.
If US-EAST-1 fails, DNS will redirect all traffic to load-balancer-2,
the DB slave can be promoted to master, more instances can be
spawned, and service can resume as normal. This process can
be automated.

22 ensuring scalability

isolation ensures that transactions do not interfere with each
other (e.g. data in an unfinished transaction is not visible
to other transactions)

durability ensures that committed transactions endure any
kind of system failure.

Database vendors long ago recognized the need for partitioning
databases and introduced a technique known as Two-Phase
Commit (2PC) for providing ACID guarantees across multiple
database instances. The protocol is broken into two phases:
First, the transaction coordinator asks each database involved
to pre-commit the operation and indicate whether commit is
possible. If all databases agree the commit can proceed, then
phase 2 begins. The transaction coordinator asks each database
to commit the data. If any database vetoes the commit, then all
databases are asked to roll back their portions of the transaction.
[22]

2PC ensures that all copies of data are consistent, even if they
are partitioned. The problem with this, however, is that the
system is only able to accept transactions if all copies of the
transaction’s data are available, decreasing the overall avail-
ability of the system and partly defeating the purpose of the
replication.

The CAP theorem

The CAP theorem[23] states that it is impossible for a distributed
system to achieve both consistency, availability and partition
tolerance at the same time.

consistency All records should be the same in all replicas.

availability All replicas can accept updates or inserts.

partition tolerance The system still functions when dis-
tributed replicas cannot communicate due to network or
node failures.

BASE

ACID database systems using 2PC achieve consistency across par-
titioned, but sacrifice availability. Another option are so called
BASE databases : Basically Available, Soft state, Eventually consis-
tent. These data stores remain available despite partial failures,
but do not guarantee consistency across all replicas at all times.

2.2 designing a cloud back-end for scalability and resilience 23

These data stores typically control concurrency through locks on
small units of data, or multi-versioning of items, with older ver-
sions being discarded in favor of new ones as changes propagate
across replicas[24].

Scalable ACID

Thomson and Abadi [25][26] argue that NoSQL data stores5 are a
lazy solution, and that by tightening ACID’s Isolation argument
so that transactions are carried out in a deterministic order, one
can escape the need for Two-Phase Commit. Cattell [24] analyzes
and compares a total of 23 scalable data stores, 6 of which
provide ACID or ACID-like guarantees. Relational SQL databases
have been dominant on the database scene for decades, and
proponents argue that new SQL systems can perform as well as
NoSQL alternatives, and that there is no reason to switch. NoSQL
enthusiasts, on the other hand, prefer the flexible schemas and
proven scaling of those systems.

Cassandra6

In the interest of brevity, this report will not discuss all the
tens of different options for a suitable data store in an IaaS
environment. Bearing in mind both the specifics of this project
and the general Internet application case, Apache Cassandra
was selected as the data store to use in further experimentation.
The reasons for this are:

• Cassandra is truly decentralized. Nodes are organized in
a ring, with no node being the master or more significant
than others. This eliminates bottlenecks and ensures that
there is no single point of failure.

– New nodes can be added to the ring simply by start-
ing Cassandra on a machine/instance and pointing
it to a node currently in the ring. Cassandra handles
redistribution and replication itself.

• Cassandra allows flexibility along the CAP spectrum. For
any read and write operation, the developer can choose
how many replicas to read or write before the call should
return.

5 Not Only SQL data stores: common denominator for non-ACID data stores
6 http://cassandra.apache.org/

http://cassandra.apache.org/

24 ensuring scalability

– Writing one or two replicas allows operations that
need to be fast, but not consistent, to be so.

– Quorum reads and writes (reading or writing N/2

+ 1 replicas, where N is the total number of replicas)
are slower, but a quorum write will always be read
by a subsequent quorum read.

– The number of replicas to keep of any data is ad-
justable.

• Cassandra has a powerful, yet flexible, data model, based
on columns, supercolumns, and column families. Columns
consist of a name and a value, both binary types, as well
as a 64-bit timestamp used for version control. The larger
structures are arrays and containers of columns. Details
on the data model are available in [27].

3
B A C K G R O U N D O N A P I D E S I G N

This chapter describes some of the greatest challenges of API
design, and outlines the guidelines followed by the authors in
order to overcome them. It also examines some successful APIs
and published guidelines to determine industry best practices.
Section 3.1 draws heavily from [28].

The value of a quality API

For the developer, APIs are an investment in the sense that they
take a lot of time to develop. The rewards can be proportion-
ally great when customers in turn invest in the API by buying
licenses, learning the API, and writing software for it. An API
that provides great value will draw customers, and if it is well
written and able to evolve, the customers will stay. On the other
hand, a poorly written API will lead to frustrated customers,
high support costs, and lost business. To add to the risk of in-
vesting in developing an API, once an API has been released to
the public and software has been written for it, it cannot be
changed in any way that can break existing software written for
the API. In a public API, functionality can be amended, but never
changed or removed.

3.1 general design principles

In[28], Joshua Bloch outlines a few key goals to strive towards
in order for an API to succeed. It should be:

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to extend

• Appropriate to audience

25

26 background on api design

Some of the goals, such as ease of adaptation and use, are fairly
obvious goals, while others are more subtle. Bloch stresses that
sufficiently powerful does not mean that the API has to be pow-
erful in an absolute sense - it should only be powerful enough,
and as small as possible, but no smaller. More functionality can
always be added later, and the API should be built in such a way
that it does a few select things very well, while leaving room for
expansion. Being appropriate to audience is also somewhat of a
subtle point. Bloch’s example is that an API for stock analysts
should differ from an API for physicists, because their termi-
nology and mindset are different, as are the problems they are
looking to solve.

One of the most important ways to reach many of the above
goals is through proper naming. A good name will tell the user
what a component does, and makes it easy for him to write his
code without reading more documentation than necessary. It
also makes code written for the API easier to read. Ideally, every
component, method and parameter should have a good name,
and the code should read like prose, see Listing 3.1 . If it is hard
to come up with a good name for a component, then chances are
the component violates the principle of doing one thing well.

Listing 3.1: Code that reads like prose

if (car.speed() > 2 * SPEED_LIMIT){

generateAlert("Watch out for cops!")

} �
Listing 3.2: A boilerplate method for the W3C XML API for Java.

private static final void writeDoc(Document doc,

OutputStream out)throws IOException{

try {

TransformerFactory tf = TransformerFactory.newInstance()

;

Transformer t = tf.newTransformer();

t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,

doc.getDoctype().getSystemId());

t.transform(new DOMSource(doc), new StreamResult(out));

} catch(TransformerException e) {

throw new AssertionError(e); // Can’t happen!

}

} �
In order not to restrict one’s freedom to change implementa-

tions in future releases, it is important that the API does not leak

3.2 industry standards for internet apis 27

any more of its internals than it has to. Occasionally, this will go
hand in hand with another important aspect: Not making the
client do anything a module could have done for it. Listing 3.2 is
a method from a client using the W3C XML API for Java. Had this
method been a part of the API, the client programmer would
not have had to learn how to create and use a Transformer ob-
ject, and the implementors would have been free to change the
implementation to something different, possibly moving away
from the Transformer design for this task.

Finally, Bloch emphasizes the importance of following plat-
form customs. An API written for one platform should not
necessarily be ported to another by translating the code line by
line. Instead, the functionality should be reimplemented in a
way that is natural to use for a developer on the target platform.
The API developed in this project needs to be accessible from a
variety of clients including web browsers, mobile applications,
and other web servers using HTTP. One of the platform con-
ventions one might follow when developing an HTTP-based API
is Representational State Transfer (REST), discussed further in
Section 3.2.2.

3.2 industry standards for internet apis

This section provides a brief discussion on the two most popular
approaches for designing web services: SOAP and REST.

3.2.1 SOAP and RPC

Simple Object Access Protocol (SOAP)1 is a protocol for passing
XML formatted messages between applications or web services.
It is not tied to any particular transport protocol, though HTTP is
a popular choice, nor is it tied to any specific operating system
or programming language. The SOAP protocol specifies the mes-
sage format, message exchange patterns as well as several other
aspects of the message passing. A SOAP message itself consists
of three parts: an envelope, a header and a body. See Listing 3.3
for an example of a simple SOAP message sent over HTTP. An
advantage of using HTTP as the transport protocol is that it is
not normally filtered by firewalls.

1 http://www.w3.org/TR/soap12-part1/

http://www.w3.org/TR/soap12-part1/

28 background on api design

Listing 3.3: A SOAP message sent over HTTP

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 299

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-

envelope">

<soap:Header>

</soap:Header>

<soap:Body>

<m:GetStockPrice xmlns:m="http://www.example.org/stock">

<m:StockName>IBM</m:StockName>

</m:GetStockPrice>

</soap:Body>

</soap:Envelope> �
Remote Procedure Call (RPC) can also be used as the transport

protocol for SOAP. An RPC allows a program running on one
computer to call a function or program running on another
computer. The advantage of using RPC in combination with
SOAP is that is allows both parts of the interaction to initiate a
connection, while when relying on HTTP only the client can do
so.

3.2.2 RESTful Web Services

RESTful web services are web services that conform to the con-
straints of the Representational State Transfer (REST) paradigm.
These constraints were first set forth in chapter 5 of Roy Field-
ing’s dissertation [29], and include:

• Client-server architecture

• Stateless communication between client and server

• Uniform interface even for different clients

• Allowing for cache and/or a layered system

Fielding also emphasizes the notion of resources, identifiers and
representations.

3.2 industry standards for internet apis 29

The key abstraction of information in REST is a
resource. Any information that can be named can be
a resource: a document or image, a temporal service
(e.g. "today’s weather in Los Angeles"), a collection of
other resources, a non-virtual object (e.g. a person),
and so on. In other words, any concept that might
be the target of an author’s hypertext reference must
fit within the definition of a resource. A resource is a
conceptual mapping to a set of entities, not the entity
that corresponds to the mapping at any particular
point in time. [...]

REST uses a resource identifier to identify the par-
ticular resource involved in an interaction between
components. REST connectors provide a generic inter-
face for accessing and manipulating the value set of a
resource, regardless of how the membership function
is defined or the type of software that is handling the
request. The naming authority that assigned the re-
source identifier, making it possible to reference the
resource, is responsible for maintaining the semantic
validity of the mapping over time. [...]

A representation consists of data, metadata describ-
ing the data, and, on occasion, metadata to describe
the metadata (usually for the purpose of verifying
message integrity). Metadata is in the form of name-
value pairs, where the name corresponds to a stan-
dard that defines the value’s structure and semantics.
Response messages may include both representation
metadata and resource metadata: information about
the resource that is not specific to the supplied repre-
sentation.

In a RESTful web service, these ideas are implemented using
the HTTP protocol. Resources are identifiable through their URI,
and manipulated through HTTP requests. Typically, no special
methods are exposed, instead clients express their intent using
the methods described in RFC 2616[30], the most important of
which are GET, PUT, POST, and DELETE. The use of these methods
is illustrated in Table 3.1.

To conform to the RFC, the GET, PUT, and DELETE methods must
be idempotent, i.e. a sequence of identical calls to the method
should be equivalent to one call. The GET method also has the
constraint that it must be safe, i.e. that its calls should not have
user-noticeable side effects.

30 background on api design

Resource Collection URI, such as
http://site.com/res/

Element URI, such as
http://site.com/res/14

GET List the URIs and perhaps
other details of the

collection’s members.

Retrieve a representation
of the addressed member

of the collection,
expressed in an

appropriate Internet
media type.

PUT Replace the entire
collection with another

collection.

Replace the addressed
member of the collection,

or if it doesn’t exist,
create it.

POST Create a new entry in the
collection. The new

entry’s URL is assigned
automatically and is

usually returned by the
operation.

Treat the addressed
member as a collection in
its own right and create a

new entry in it.

DELETE Delete the entire
collection.

Delete the addressed
member of the collection.

Table 3.1: Typical semantic interpretation of HTTP methods in a RESTful
web service[3]

http://site.com/res/
http://site.com/res/14

3.2 industry standards for internet apis 31

Another important aspect of REST is called Hypermedia As The
Engine Of Application State (HATEOAS). In [31], Fielding describes
this as follows:

A REST API must not define fixed resource names or
hierarchies (an obvious coupling of client and server).
Servers must have the freedom to control their own
namespace. Instead, allow servers to instruct clients
on how to construct appropriate URIs, such as is done
in HTML forms and URI templates, by defining those
instructions within media types and link relations.
[...]

A REST API should be entered with no prior knowl-
edge beyond the initial URI (bookmark) and set of
standardized media types that are appropriate for the
intended audience (i.e., expected to be understood
by any client that might use the API).

Martin Fowler further elaborates on this in [32].

3.2.3 Comparison/discussion

While both SOAP and REST are viable alternatives, there are
definitely some advantages and disadvantages tied to each tech-
nology. For one, the HTTP request operations GET, POST, PUT and
DELETE map to the basic Create, Read, Update, Delete (CRUD)
operations used in data storage, which makes REST a nice choice
for applications that mostly deal with those kinds of operations.

The REST principle is also regarded as being easier to under-
stand than the SOAP protocol, and it also allows for arbitrary
data formats, while SOAP is tied to XML. On the other hand, SOAP
has better support for security, with the use of WS-Security (a
SOAP extension that focuses on assuring integrity and confiden-
tiality), atomic transaction and reliable messaging.

These enterprise level security features were not deemed nec-
essary for this project. However, having the opportunity to use
alternative data formats like JavaScript Object Notation (JSON)
and Adobe Message Format (AMF) for JavaScript and Flash
applications was considered a decisive advantage, as was the
ability to more easily access the API through a web browser. REST
is also a proven paradigm with widespread use in public APIs
(Google for instance, abandoned their SOAP API in 2006

2) . For

2 http://code.google.com/apis/soapsearch/

http://code.google.com/apis/soapsearch/

32 background on api design

these reasons, the API developed in this project is based on the
REST principles.

3.3 example apis

This section examines a selection of interesting aspects of various
existing APIs, some of which are present in the API designed in
this project.

3.3.1 HiFi API

HiFi 3 is a Content Management System (CMS)/web publishing
engine built upon and around a flexible API. This API is relevant
for this project for multiple reasons. First, HiFi designed its
API first, before building the application itself on top of the API
[33]. Second, they use a templating language to be able to easily
create powerful and complex queries with support for recursion
and object relationships. Listings 3.4 and 3.5 show a couple of
example queries.

Listing 3.4: A simple query, getting all post objects.

{"type":"post", "orderBy":"-publishedAt"} �
Listing 3.5: A slightly more complex query.

{"type":"page","orderBy":"-publishedAt","parent":

{"type":"feed","url":"/blog"}} �
The combination of powerful queries and a system that is

built on top of its own API makes it easy to create complex
applications running on the client side, which is something this
project would like tho achieve.

3.3.2 Twitter API

The Twitter API 4 is an example of a hugely successful REST
API, with more than 75% of Twitter’s traffic coming from out-
side twitter.com[34], and a majority of the status updates orig-
inating from third party applications. It is a relatively tradi-
tional REST API with the exception that POST requests both

3 http://www.gethifi.com/
4 http://dev.twitter.com/doc

http://www.gethifi.com/
http://dev.twitter.com/doc

3.3 example apis 33

can create, edit and delete data. A GET request to http://api.

twitter.com/version/statuses/show/:id.format will for in-
stance return the status update with the given ID in the se-
lected format, while a POST request to http://api.twitter.

com/version/statuses/update.format will create a new status
based on the request parameters.

Twitter shows how important an API can be for the process
of creating an active ecosystem surrounding the platform, with
third party developers creating additional services on top of it.

3.3.3 SnapBill API

The SnapBill API [35] has chosen to deviate from the REST stan-
dard on a few key points, while maintaining the spirit of its
hypermedia argument in a possibly more practical way. In the
SnapBill API, only the GET and POST verbs are used, and they
do not have the meanings specified in the Request For Com-
ments (RFC). The reason PUT and DELETE are omitted is that
there is no easy way to make these calls from a web browser
apart from executing a script that does so. The GET function
is not used to retrieve resources, but rather to discover the
API itself. Executing a GET to the application entry point (e.g.
https://api.snapbill.com/v1) returns a HTML page contain-
ing hyperlinks to similar pages representing the main sections of
the API. The pages returned from clicking these links are similar,
with links to API methods. A GET request (i.e. clicking on a link)
to an API method returns a HTML page containing a form with a
field for every argument the method can take, and a button to
POST to the same Uniform Resource Identifier (URI). All method
calls are made using POST, regardless of whether or not they
contain data or have side effects.

Benefits and drawbacks

Deviating from RESTful use of HTTP verbs also deviates from the
vision of one standardized way to manipulate web resources.
Using HTTP methods as stated in the RFC is an emerging norm
for web services, and deviating from that norm might be a dis-
advantage, as developers using the API will have to familiarize
themselves with a new way of working. The HTML form dis-
covery allows humans to discover the API in a HATEOAS-like
manner, and reduces the need for extra documentation.

http://api.twitter.com/version/statuses/show/:id.format
http://api.twitter.com/version/statuses/show/:id.format
http://api.twitter.com/version/statuses/update.format
http://api.twitter.com/version/statuses/update.format
https://api.snapbill.com/v1

34 background on api design

3.3.4 WebDAV

Web-based Distributed Authoring and Versioning (WebDAV) is
not an API, but rather an extension of the HTTP protocol with
additional methods and headers. [36] states that the basic goal
of WebDAV is to “support remote collaborative authoring of Web
sites and individual documents”, basically to let users edit and
collaborate on documents on remote servers. Features such
as creation/modifying/deletion of files, metadata like author
and creation time, locking of files to prevent overwrites and
moving/copying of files makes the protocol highly relevant for
this project.

Part III

D E S I G N & I M P L E M E N TAT I O N

4
R E Q U I R E M E N T S

The focus of this chapter is to determine the requirements
needed for a solution to the objective presented in Section 1.3.

4.1 background

Aside from the opportunity of opening the API developed to
third-party developers, the main purpose of developing the
API is for current and future rich media applications made by
Inspera to use it to scale without scaling costs. The most promi-
nent of these applications is Creaza, which will be discussed in
detail in Section 4.2.1. These applications are currently powered
by ICS (see Section 1.2) on the server side. ICS has a wide array
of features, only a few of which are actually used by the appli-
cations. Looking at the list of design guidelines in Section 3.1,
it’s clear that ICS is too powerful for its use, which also makes it
harder to learn than it has to be.

4.2 functionality requirements for sample applica-
tions

This section examines a few real and imagined scenarios for use
of the API in order to determine its requirements.

4.2.1 Creaza

Creaza’s sophisticated video editor uses Adobe Flash to do
all video operations (such as clipping, applying effects and
transitions) for preview on the client side. Creaza productions
are stored in an Extensible Markup Language (XML) format
containing references to media objects along with information
on how they are used. It is essential that there is some way
to refer to content that is not too different from how this is
currently done, i.e. by each content element and each revision
of an element having unique numeric identifiers.

One of Creaza’s core features is uploading media for use in
video productions, and the next version also allows users to or-

37

38 requirements

ganize their files in a directory tree. Upload functionality, as well
as the capability of organizing data in hierarchical collections
and being able to retrieve them by their paths is therefore nec-
essary. Tasks connected to organizing include moving, copying
and deleting content.

The consumer version of Creaza introduces a new concept, the
collaboration space. The idea is that a group of users, e.g. people
who attended the same event, shall be able to share some or
all their media from an event into a common pool, organized
as a directory tree to which all members of the group have
access. This allows them to use everything in the pool for their
productions, regardless of who originally added it. This poses
new requirements.

Permissions for content must be managed not only on a user
level, but it must also be possible to create groups and manage
permissions on the group level. In addition, to avoid replication
of content, it must be possible to have several paths point to
the same content, so that an object can be referred to both by
its path in the user’s folder, and also by its path in a group’s
collaboration space. In addition, it should be possible to tag
content with text tags, and search for content based on name,
tags or other metadata.

In order for users to easily invite contacts that are not yet
Creaza users into a collaboration space, Creaza wants to access
the user’s list of contacts from any applications such as Facebook
or Google that the user allows it to. This should happen without
the user disclosing his password for the third-party service to
Creaza. Users should be able to use the credentials of the third-
party service account through which they were invited to sign
in to Creaza.

Requirements

• Storage and retrieval of content

– Both text content like XML, and binary content like
video

– Must be able to associate metadata with content

– Content is uploaded via HTTP

– Content should be organized in a hierarchy

* Must be able to move and copy items across hier-
archy, as well as delete

4.2 functionality requirements for sample applications 39

– Content must be able to refer to other content by
hierarchy path or numeric ID

• User and permission management

– All content has an owner and/or a creator with full
access

– Any content that is part of a project is readable by
anyone in that project

– Must be able to set permissions by collection and by
group.

4.2.2 A blog application

The core feature of a blog is displaying the blog’s postings,
either in their entirety or short versions, in reverse chronological
order. In addition, any posting must be individually accessible
through a dedicated URL. The owner of a blog must be able
to make new postings, as should anyone they wish to allow
to do so. It is often possible for readers to make comments
on postings, which may have to be moderated before they are
visible to other readers. While the postings themselves are text,
they may contain attachments such as images or videos to be
displayed inline. The postings should be searchable.

Requirements

• Storage and retrieval of content

– Text content (blog data, posts etc) and binary data
(attached images/videos)

– Upload of binary data via HTTP

– Must be able to retrieve content by ID, retrieve all
objects of a certain type or with a certain parent ID.

– Should support text search

• User/permission management

– Logging in and out

– All content has an owner

– Different permissions for interaction with different
object types. Only the owner of a blog should be able
to create new posts, but everyone should be able to
comment on a blog post.

40 requirements

4.2.3 A simple CMS

Consider a mobile application with a need to regularly show
new information, in the form of announcements, support or
just new content. This could either be done by releasing new
versions of the application, requiring users to constantly update
them, or by having a central location the application could query
for new information each time it launched.

• Storage and retrieval of content

– Text content in addition to binary data such as images.

– Must be able to retrieve content by ID or type.

4.3 nature of target applications

The core functionality of many Internet applications is essen-
tially an Internet-based version of a traditional desktop appli-
cation. Examples of this include Google Documents1 (Word
processing, spreadsheet, etc.), Splashup2 (Image editor), and
Creaza3 (Video editing and rendering). In their desktop form,
these applications operate on files in some format, that are
loaded into the application, manipulated within it, and stored
to the filesystem. Changes to one such file does not propagate
to other parts of the filesystem, except for the case when one
file references or includes another. This differs from applica-
tions like warehouse management, where adding an order will
change the number of items remaining in the warehouse and
affect future orders, and where sums and other aggregations
and queries over all the data in the application are frequently
used. This nature is not unique to Internet applications that have
desktop equivalents, however one can argue that Creaza is part
of a group of applications that share a few key properties:

• Work is done on individual units of data, that do not
influence each other, apart from references.

• Changes to one such unit does not influence the applica-
tion as a whole.

– Aggregations of data across the whole application are
not used, or do not have great influence on application
behavior.

1 http://docs.google.com
2 http://www.splashup.com
3 http://www.creaza.com

http://docs.google.com
http://www.splashup.com
http://www.creaza.com

4.4 summary of functional requirements 41

Regardless of whether these applications have a desktop equiv-
alent or not, they tend to do most of their work on the client
side, and the most important abstraction the API must provide
to these applications is the notion of a “filesystem” in which
files can be stored, organized and retrieved. By using the cloud
as this filesystem the rest of the application can be implemented
on the client side, removing the need for application specific
programming on the server.

4.4 summary of functional requirements

The previous sections shows that the needs of the sample appli-
cations are centered around content. The main goal of the API
is thus to be a way to store and retrieve content, but it also has
to be able to handle user management and permissions. The
basic functional requirements from the previous discussion are
summarized in Table 4.1. These requirements also takes advan-
tage of the cloud computing model, with its cheap data storage
and its ability to scale. It should also be possible to download a
private version of the platform, to be able to test and develop
applications code on a local machine.

42 requirements

Requirement Description

R1
Interaction with the system should be done
through a REST API.

R2 Objects should be stored in a tree structure.

R3
It should be possible to refer to objects both by
their hierarchy path and their unique ID.

R4
Objects should contain metadata such as creation
time and owner.

R5
Each object can represent a collection/folder or a
content element/file.

R6

Content element objects can both contain text
information (such as XML) or binary data, such as
images or video.

R7
It should be possible to move/copy objects to
different locations in the tree.

R8
Objects should not be updated or deleted, instead
new revisions should be created.

R9
Objects should be queryable on their properties
and their relationship with other objects.

R10

It should be possible to set permissions for each
object (or sub tree), both for individuals and for
user groups.

R11
The system should be able to serve object data in
multiple formats, such as XML, JSON and AMF.

R12

Users should be able to authenticate themselves
using credentials they already have, e.g. Facebook,
Twitter, Google, Yahoo

R13
It should be possible to create and manage groups
of users.

R14

Users should be able to allow the API to use
information from their accounts on other services
by authenticating to that service, without disclosing
their password to the API.

Table 4.1: Requirements

5
T H E M O R A X U S P L AT F O R M

In order to overcome reusability and scalability challenges in a
way satisfying the requirements from Section 4.4, the Moraxus
platform was developed. Its core functionality is storage, man-
agement and retrieval of any kind of data, as well as manage-
ment of users and their access to the data. What sets Moraxus
apart from competing infrastructure and data store offerings,
such as Google App Engine, is that no server-side develop-
ment is necessary, or even possible. Once Moraxus is set up, the
developer only interacts with it through its REST interface 1.

Benefits

There are several reasons for this design:

• Scope. Allowing developers to develop their own server
side modules would drastically increase the amount of
work required to make Moraxus a reality.

• Differentiation. Providing infrastructure and a data store
while leaving server side development to the customer is
something several mature services such as Google App
Engine already provide, creating too similar a service with
no real competitive edge would be a waste.

• Encapsulation. All implementation details of Moraxus are
hidden behind the HTTP interface. This allows for changes
to anything about the implementation, no matter how
drastic.

• API centered. API centered platforms allows third-party
services to access its data, which is a desirable feature as
seen in Section 1.1.

• Freedom for developers. While developing an applica-
tion on Google App Engine requires knowledge of Java
or Python specifically, all a developer needs to know to
program for Moraxus is how to create HTTP requests and
parse JSON/XML using their favorite language or tool.

1 A web-based control panel is planned. It too, however, will interact with
Moraxus via the HTTP interface.

43

44 the moraxus platform

Figure 5.1: The Moraxus platform

• Reusability. Implementations are completely reusable across
applications and clients, and generic client side library
functions for making API calls are reusable by other Moraxus-
based clients written in the same language. See Figure 5.2
for an architectural overview of the components of a sam-
ple Moraxus applications, with samples of the type of code
present in each component.

As discussed in Section 1.1, the ability to scale is crucial
for any growing web application. To be able to do this in a
resilient and efficient manner, the platform is designed to run
in a cloud environment, as discussed in Section 2.2. Since its
API is HTTP only, it can be implemented in any language by any
suitable cloud platform or infrastructure, and implementations
are interchangeable, see Figure 5.1. It should be noted that
Moraxus not is a competitor to full fletched PaaS solutions, but
a platform where developers quickly and easily can connect to,
and use, a scalable back-end when developing new applications.

Previous work

Architectures similar to this have been described before. Chang
et al. [37] describe what they call a "2-tier cloud architecture",
for rich applications . They argue that rich applications are best

the moraxus platform 45

Fi
gu

re
5
.2

:M
or

ax
us

ar
ch

it
ec

tu
re

46 the moraxus platform

suited handling presentation and application logic on the client
side, as this allows a simpler API and reduces strain on the server.
The cloud tier, or server side, handles only storage and exposes
a REST API for interaction with the application.

Haselmann et al. [38] have attempted to design a generic REST
API for Database as a Service (DaaS) providers. While they found
Structured Query Language (SQL) to be a troubling element to
success they are optimistic about the feasibility of such an API
for NoSQL data stores.

Drawbacks

There are also some drawbacks to the platform design, most
notably that applications that require a lot of custom server side
processing and aggregation of data will not have a way to do so.
These applications should be developed by other means. The
applications that benefit the most from using Moraxus are those
that mostly modify their data on the client side, such as:

• Editors, such as spreadsheet applications, word processors,
image manipulation programs, video and audio editors.
Using Moraxus, one can enrich these applications with
cloud storage, allowing easy sharing, access control, ver-
sion control, and universal availability of content at very
little development cost.

• Games. A user’s game state can be kept with Moraxus,
and when he logs back on, regardless of where, he can
pick up playing where he left off. System-wide high score
lists can be kept.

• Applications that needs to synchronize data between all
application instances, for example announcements to mo-
bile apps.

• Any application that uses its server back-end in a similar
fashion.

5.1 features

While the key objective of the Moraxus platform is to store
and handle content, several complementary features, such as a
powerful query system, is available to make this more efficient
and flexible.

5.1 features 47

5.1.1 Data store

The data store is organized as a tree. A node can be a content
element, a collection of content, or both. Nodes can have any
number of fields containing any type of data, although they
must contain the field type. Nodes can be required to have
certain fields in order to be part of a collection or have a certain
type. Figure 5.3 on the following page shows an example of how
this might work in practice.

5.1.1.1 Versioning

A content element can have a set of revisions, and if desired,
some of the fields can be specific from revision to revision. To
be able to handle versioning of objects, the nodes itself does not
contain the object data. Instead the node contains a list of object
IDs, the revisions of the object, and the current active revision
ID.

5.1.1.2 File uploads

Moraxus allows for uploading of all kinds of files to its data
store. Uploaded files are stored as objects with a field of binary
data for the file content. Certain known file types, such as .png
or .bmp image files will be stored with a collection of metadata
in the form of name-value pairs. For an image file data such as
width and height will be stored, while data such as file size will
be stored for all uploads.

5.1.2 Queries

With no server side development possible, a flexible and pow-
erful query system is needed to be able to create complex ap-
plications. Moraxus will thus have a query system inspired by
the HiFi API (see Section 3.3.1). Objects can be queried on their
properties, their parent/child objects and, in the case of file
uploads, their file type. The results can be ordered on any field.
With the addition of recursive and nested queries, this system
should be easy to learn and use, yet flexible and useful.

5.1.3 Authentication

Authentication is the process of verifying a user’s identity, for
instance when logging into a website. Moraxus will not have

48 the moraxus platform

Figure 5.3: Example data store organization for a blog application

5.1 features 49

its own verification process, but will instead rely on third party
services and protocols to provide this functionality. Two such
services are OpenID and OAuth, see Appendix B.

5.1.4 Access control

Moraxus uses a Role Based Access Control Model (RBAC), as
discussed by Kumari[39], where users have given roles (owner,
editor etc) in relation to objects. Each role has a set of permis-
sions (read, write, delete etc) connected to it.

Access to objects and collections are controlled by Access
Control Lists (ACLs). An ACL specifies which users have which
roles in relation to an object. So an ACL list for a given object
could for instance contain the entries (Alice, Owner), (Bob,

Editor) which would give Alice the right to read, write, delete
or restructure the object, and Bob the right to read, edit or
overwrite it. If a user tries to something to an object which he
does not have permission to do a 403 Access Denied error is
returned.

5.1.5 Groups and sharing

Moraxus supports the creation of groups, which simply is a
list of users. The purpose of groups is to simplify the process
of sharing objects with multiple people, such as in Creaza’s
collaboration space (see Section 4.2.1). When sharing an object
with a group all group members can either be given READ access
or WRITE access to the object.

5.1.6 Application descriptors

With the goal of having the users do as little server side ad-
ministration and configuration as possible, finding an elegant
practical way to handle permissions and security is difficult.
Permission and access checks will have to made on the server
side as requests originating from the client side of course can
be manipulated. This will be done with the help of applica-
tion descriptors, application specific files with configuration
details about each application. See Listing 5.1 for an example
application descriptor.

50 the moraxus platform

Listing 5.1: An example XML configuration file

<app-descriptor>

<app-instance>

<name>PRO blog</name>

<version>1.0</version>

<url>http://moraxus-api.appspot.com/

blogClient/index.html</url>

<owner>Gaute</owner>

</app-instance>

<permissions>

<default>read</default>

<permission>

<url>content/comment</url>

<value>write</value>

</permission>

...

...

</permissions>

</app-descriptor> �
5.1.7 Data migration

Moraxus supports the transfer of its complete database from
one Moraxus implementation to another, for instance from one
running on Google App Engine to one running on Amazon EC2.
This will allow developers to move their application to other
infrastructures, if it should prove beneficial, and avoid vendor
lock-in.

6
P R O T O T Y P E

In order to investigate the viability of the Moraxus design, a
prototype was developed. The prototype consists of an imple-
mentation of the core functionality in the Moraxus API, as well
as a simple multi-platform application using that functionality.
Rather than implementing every last part of the specification,
emphasis was placed on completing functionality that would
help evaluate how effective development with Moraxus would
be in practice.

6.1 prototype moraxus implementation

While the Moraxus API can be implemented on a variety of
platforms and infrastructures, the prototype was implemented
on Google App Engine only. Arrangements were made for the
prototype to run on Amazon EC2 using Cassandra (Section
2.2.2) as the data store, but it was soon decided that basing
the prototype on a PaaS was preferable to an IaaS, as the time
spent setting up the environment before actual development is
significantly shorter. App Engine was chosen as it is known to
perform well, allows development in the favorite language of
the authors, and is free to get started with.

The prototype implements what are thought to be the most
important requirements, listed in Table 6.1. It is implemented in
Java and it is currently running at www.moraxus-api.appspot.
com. It uses Google’s BigTable1 NoSQL database system for data
storage and Google Accounts for user authentication.

6.2 sample application: a simple blog

The sample application implemented in the prototype is a simple
blog service. It contains a selection of blogs, each of which has
an owner, and a set of postings. Each posting is written by an
author, and has a title, a body, and optionally a category. It is
possible for users to leave comments on postings, which appear
underneath it. Each comment has an author and a body.

1 http://labs.google.com/papers/bigtable.html

51

www.moraxus-api.appspot.com
www.moraxus-api.appspot.com
http://labs.google.com/papers/bigtable.html

52 prototype

Requirement Description

R1
Interaction with the system should be done
through a REST API.

R2 Objects should be stored in a tree structure.

R3
It should be possible to refer to objects both by
their hierarchy path and their unique ID.

R5
Each object can represent a collection/folder or a
content element/file.

R9

Objects should be queryable on their properties
and their relationship with other objects. Partly
implemented, objects are not queryable on their
relationship with other objects.

R10

It should be possible to set permissions for each
object (or sub tree), both for individuals and for
user groups. Only possible for individuals

R11
The system should be able to serve object data in
multiple formats, such as XML, JSON and AMF.

Table 6.1: Requirements implemented in the prototype

In order to be allowed to make a posting, a user must have
write access to the collection object representing the blog to
which he wants to post. The default behavior in Moraxus is to
make objects private to the owner, which means that the creator
of a blog is the only person who can make postings on it. This
behavior was left unchanged, so only the owner of a blog can
make postings on that blog. This highlights an interesting aspect
what developing with Moraxus is like. Since the ability to grant
or revoke permission to objects is in the API, it is possible for
an end user to make a blog to which several people can post by
sending a correctly formatted API request modifying a blog’s
permission, even though there is no such functionality in the
application’s user interface.

This shows:

• That this kind of functionality is very easy to amend to
applications.

• That developers need to be careful about what they assume
about the objects in the data store.

6.2 sample application: a simple blog 53

Method URL Parameters Description

POST content/blog/ title, creator Creating a new entity
of type blog with the
given title and
creator.

GET content/blog/2/post Get all blog posts
from blog 2

DELETE content/blog/2/post/3 Delete blog post 3

from blog 2

GET user?method=getUser destinationUrl Handle the user login
process and redirect
the user back to the
destinationUrl when
he has logged in.

Table 6.2: Some of the blog application’s API calls

– In this case, the author of every posting is stored in
the posting, it is not inferred by checking who owns
the blog.

– This is more similar to working with a filesystem
than working with a database through an application-
specific API.

The API call used to create a posting makes the comments col-
lection in that posting writable to any user, allowing comments
to be submitted. Table 6.2 shows examples of other calls used in
the blog application.

6.2.1 Functionality

This blog application has the following functionality:

• Login (with the help of Google IDs)

• Logout

• Create a new post

• Comment on a post

• Delete/update a post

• Delete/update a comment

54 prototype

• Get latest posts

• Get all posts of a certain category

6.2.2 Web client

The web version of the blog is a JavaScript application that uses
the jQuery library 2 to simplify the code needed to make HTTP
requests. There are five pages, the front page, blog view (shows
the postings of a blog), posting view (shows a single posting
along with comments and a form to post a new comment), the
new post form, and the login page. The pages themselves do
are static, and contain JavaScript calls that fetch the actual data.
While this causes more than one HTTP request to the server
per page, each request can be cached if the exact URL has been
previously retrieved. This means that frequent visitors of the
blog will only load the HTML and JavaScript once, and only load
data on request.

Listing 6.1 shows the function for posting a new comment
to a post. All interaction with the Moraxus platform is done
through calls like this, while the rest of the code simply handles
the data returned from Moraxus. Figure 6.1 shows a screenshot
of the blog client.

Listing 6.1: Code for posting a new comment

function postComment(comment, name, postId){

$.ajax({

type: ’POST’,

url: BASE_URL + "id/postId",

data: {"type":"comment", "content": comment,

"name": name},

success: function(resp) {

//do something

},

dataType: "json"

});

} �

2 http://jquery.com/

http://jquery.com/

6.2 sample application: a simple blog 55

Figure 6.1: The JavaScript blog client

Figure 6.2: The Android blog client

56 prototype

6.2.3 Mobile client

A mobile client was also created, using the multi-platform mo-
bile toolkit Appcelerator Titanium. It’s communication layer
works in exactly the same way as the JavaScript client, however
it uses native UI controls for presentation and user interaction.
Its UI is designed to display well on smaller screens. Figure 6.2
shows the blog application running on an Android device.

Part IV

E VA L U AT I O N A N D C O N C L U S I O N

7
E VA L U AT I N G M O R A X U S

This chapter evaluates the output of this project:

• A model of content organization: the hierarchical Moraxus
data model.

• Methods for accessing and manipulating data stored in
such a model: The Moraxus API.

• A method for developing ubiquitous applications, where
application-specific code resides on the client side, and
a configured instance of a completely general Moraxus
implementation is used as the entire server side.

In this chapter, the above output is referred to collectively as
Moraxus. The prototype discussed in chapter 6 is an instantiation
of Moraxus, but is considered more of an evaluation tool than a
finished product to subject to scrutiny.

7.1 evaluation method

The basis for this evaluation is the prototype, the design itself
and our experiences from working with the prototype and devel-
oping the sample application. We will try to evaluate Moraxus
based on how well it solves the objectives presented in Section
1.3, which was to create a solution that:

1. Allows reuse of components

2. Ensures scalability at low monetary cost

3. Can be used by new applications as well as existing ones

Due to our approach of allowing Moraxus to run on almost any
platform, evaluating factors like the performance or scalability
of our system is a difficult or infeasible, as the performance is
entirely dependent on the underlying infrastructure.

With the evaluation being performed by the authors of this
report, and the designers of Moraxus, it is hard to quantify the
time needed to develop an application on Moraxus compared to
other frameworks, as we already know the details of the API and

59

60 evaluating moraxus

how to get started using it. We argue, however, that due to its
small feature set, adherance to REST principles, and straightfor-
ward organization, Moraxus is easy to learn for anyone familiar
with Internet application development.

7.2 fulfillment of objectives

Reusability and development speed

The prototype development process has revealed the biggest ad-
vantage to using Moraxus: code reusability. Given a server-side
implementation, client applications can be developed quickly,
even more so in the presence of a client side library. The reusable
components can be improved and the improvement will spread
to all applications. With a few general client side library func-
tions, interacting with the data store is about as easy as using a
filesystem or local database, with the added power of centralized
storage. This makes it very easy to get started developing on
the platform for new users, as there is no need to read through
complex documentation or to do any configuration before us-
ing Moraxus. With regard to objective 1, allowing reuse across
applications and platforms, Moraxus does very well for the
applications it supports.

Scalability and performance

The Moraxus API can be implemented using almost any plat-
form or infrastructure, and its scalability and performance de-
pends greatly on the implementation details of the underlying
technology. We argue, however, that this is an advantageous
design. Cloud infrastructure and scalable data stores are areas
of heavy development, and a design that eases interchange of
underlying components allows using the latest advances in these
fields, without reinventing the wheel or changing the interface. If
Moraxus gets widely adopted, open source implementations for
various platforms could be made available, facilitating switching
to cheaper, faster, or more reliable components and services as
they emerge.

The Google App Engine team[40] demonstrates that the Google
App Engine easily can handle traffic of more than 40 000 requests
per second (during the royal wedding in England, occurring at
the moment the Duke kissed the Duchess of Cambridge), so
while the prototype itself was not evaluated for performance, we

7.3 architectural challenges 61

argue that this performance should apply to Moraxus as well,
and that the design developed achieves the scalability required
for most applications.

7.3 architectural challenges

The architecture of Moraxus makes it excel for applications that
can manage without specific server side application logic. While
this pattern fits several classes of applications, there are other
applications which require more sophisticated functionality on
the server side that Moraxus is not a good fit for. There are also
other challenges with this architecture, especially related to the
fact that Moraxus should be able to run on most platforms and
infrastructures:

queries A complex query system allowing for recursive queries
on arbitrary attributes will have to be implemented in an
efficient manner, to secure good performance. This will
have to be done for every implementation of Moraxus,
as different platforms use different data storage solutions
and technologies.

consistency The behavior of Moraxus have to be consistent
across different platforms with different encoding systems
etc. Developers should not have to know anything about
the underlying infrastructure their Moraxus implementa-
tion is running on.

7.4 practical challenges

During the development of the prototype and sample appli-
cations, several practical problems with the solution became
apparent.

Cross-site JavaScript

As a security measure implemented in all modern web browsers,
JavaScript running on a page is not permitted to interact with
other web sites. This poses a problem for Moraxus. If Moraxus
is running at www.moraxus-api.appspot.com and a developer’s
JavaScript application is hosted at www.example.com, then the
application will not be allowed to write to Moraxus. Note that
this only is a problem for JavaScript applications.

www.moraxus-api.appspot.com
www.example.com

62 evaluating moraxus

Figure 7.1: The problem of cross-site JavaScript

There exists multiple workarounds for this problem, with
varying degrees of browser support and elegance. The most
promising solution is probably HTML5s postMessage 1, but this
feature is only implemented in the most recent browsers. An-
other possible solution would be to offer the Moraxus platform
as part of a hosting service.

Complex application descriptors

When developing anything else than very simple applications
configuring the application descriptor will be tedious work, with
different types of object having different default permissions for
different user groups (owner/logged in/anonymous). The blog
application would for instance only want to allow the owner of a
blog to POST to /content/post/<blogID>, but everyone should
be able to POST to /content/post/<blogID>/comment.

Finding a more elegant way to do this is an important task,
as Moraxus strives to be an easy to use and intuitive platform.

7.5 features

While limited, we argue that the feature set offered by Moraxus
makes it a good choice for applications such as those discussed
in Section 4.3. Recently released services such as Google Storage
(Appendix A.3) and Storage Room (Appendix A.4) shows that
services offering data storage and little else are viable. Still, with
an extremely minimalistic feature set the range of applications
that would benefit from running on the Moraxus platform is
limited. To increase the viability of the platform, we suggest
some additional features as future modules:

1 http://www.w3.org/TR/html5/comms.html

http://www.w3.org/TR/html5/comms.html

7.5 features 63

Figure 7.2: Server push techniques

Server push

The traditional event model of the web, that a client connects
to a server requesting a resource, for example a web page,
is called polling. However, the server has no way to initiate
contact with a client, or to push data to the client. ’Comet’
is an umbrella term for techniques that tries to achieve this,
either by the use of streaming or long polling. Streaming is
the process of creating a single persistent connection from the
client to the server which then can be used by the server to
send messages to the client. However, no standard for this is
defined and it does not work across all browsers. The second
option is the use of long polling, which essentially is the same
as traditional polling, except that the server does not respond
before something happens. However, this require the client to
make a lot of requests. See figure 7.2 for an illustration of these
techniques.

Giving Moraxus the ability to push information to connected
clients makes it viable to create a wider range of application on
the platform. An example of this would be a multiplayer game
(chess, tic-tac-toe, etc) implementation where both players listen
for changes to a game object.

Advanced Configuration Options

To address the needs of a wide variety of applications it would
be useful to allow developers more flexibility when configuring
their applications. Being able to select where their data should
be stored is one important aspect, a Norwegian company would
probably prefer their data to be stored somewhere in Europe
and not in the US, due to latency. Another interesting possibility

64 evaluating moraxus

is to choose where along the CAP spectrum (see Section 2.2.2)
an application should be.

7.6 usability

At the moment all communication with Moraxus goes through
HTTP requests or the application descriptor XML file, making
it unnecessary hard to define types, set URL permissions etc.
However, a web-based control panel, as mentioned in chapter 5

would help a lot with these issues.

Client libraries

Working with Moraxus involves making a lot of HTTP requests
and JSON/XML parsing. As most developers would agree with
these are not the most enjoyable tasks when programming, mak-
ing the use of Moraxus a tedious and monotone task. As the
goal of the Moraxus platform is to make it easy and conve-
nient to develop new applications, client libraries containing API
wrappers would greatly reduce these problems by making it
easier and faster to write code interacting with our platform. An
API wrapper is simply a layer between the application code and
the API in form of a language specific client library. Adding a
wrapper around the API interaction would make the application
code both cleaner and more elegant. Listing 7.1 shows how the
post comment call from Section 6.2.2 could be made simpler
with the help of the reusable helper function post.

Providing API wrappers for popular languages and platforms
would both lower the barrier of entry to use Moraxus and
simplify application development significantly.

7.7 discussion 65

Listing 7.1: Posting a comment with the help of an API wrapper.

function postComment(comment, name, postId){

post(postId, {"type":"comment", "content": comment,

"name": name});

}

function post(parentID, data, onSuccess){

$.ajax({

type: ’POST’,

url: BASE_URL + "id/" + parentID,

data: data,

success: function(resp) {

onSuccess();

},

dataType: "json"

});

} �
7.7 discussion

While Moraxus can support large, complex applications, its ad-
vantages are most apparent when using an existing Moraxus im-
plementation to quickly create new, smaller applications. Given
a client library and a working Moraxus instance, application
developers can create great cloud-enabled functionality with
very little effort or know-how. The ability to exchange the under-
lying infrastructure or platform also is the most effective when
a variety of platforms is already available. For Moraxus to really
shine as a platform, implementations should be open source, or
at least freely available. This will allow application developers
to choose freely between cloud providers, and encourage the
providers to compete on price.

7.8 further work

During the course of this project several services with similar
feature sets as Moraxus has been launched, which are discussed
in Appendix A. Storage Room (Appendix A.4), launched in the
same month as this report, is the most similar. It allows storage
of arbitrary data in a hierarchical structure with validatable
collections, and access to this data through a RESTful JSON API.

66 evaluating moraxus

It also includes a web-based control panel in which content can
be edited and organized. While this service is not an imple-
mentation of the Moraxus API exactly as described here, it is an
instantiation of the ideas which it embodies, and has been well
received2.

While Storage Room and services like it may offer developers
of this kind of application what they need, there is also room
for further development. Open source implementations of the
ideas presented here would give the all the same benefits, while
avoiding vendor lock to commercial services.

2 http://news.ycombinator.com/item?id=2616041

http://news.ycombinator.com/item?id=2616041

8
C O N C L U S I O N

At the start of this report, we highlighted scalability and lack
of code reusability as problems in traditionally designed Inter-
net applications. We proposed solving these problems using an
API containing essential server side functionality, whose imple-
mentations could be reused across different applications and
clients.

After a discussion of theory and the state of the art in API
design, data stores and infrastructure, we gathered requirements
for the API based on a generalized analysis of target applications.
Due to the nature of the target applications, and analyses per-
formed by previous work on closely related topics, we reasoned
that data management and user access control are the only truly
essential server side components of many applications. Remain-
ing application and presentation logic can be shifted to the client
side, which reduces server strain, improves cache efficiency and
saves development effort.

Based on this insight, we designed the Moraxus API. It con-
tains a generalized set of functionality centered around storage,
management and retrieval of arbitrary data, as well as managing
users, groups, and their access to the content. As it is designed
to serve as the entire server side of applications, no additional
server side development is necessary, or even possible. The API
can be implemented using a variety of cloud services and data
storage solutions, and has a mechanism for easy migration of
data between implementations.

We developed a prototype implementing essential API fea-
tures, and a multi-platform blog application using the prototype
for data storage and user authentication. Based on the prototype,
we evaluated the ability of the development approach to solve
the identified problems related to reusability and scalability. For
applications that do not require a complex back-end, using an
existing Moraxus implementation reduces development time by
a significant amount. Using client-side libraries for communi-
cating with Moraxus allows for further time savings. Moraxus’
ability to leverage advances in scalable data storage and high
performance cloud infrastructures makes it easy to develop and
reuse highly scalable application components.

67

68 conclusion

While Moraxus has some flaws and is not applicable in every
setting, we argue that it is a valuable contribution to solving
problems related to scalability and code reusability.

B I B L I O G R A P H Y

[1] Takeda H, Veerkamp P, Tomiyama T, Yoshikawa H. Mod-
eling design processes. AI Mag. 1990 October;11:37–
48. Available from: http://portal.acm.org/citation.

cfm?id=95788.95795.

[2] Hevner AR, March ST, Park J, Ram S. Design Science in In-
formation Systems Research. MIS Quarterly. 2004;28(1):pp.
75–105. Available from: http://www.jstor.org/stable/
25148625.

[3] Richardson L, Ruby S. RESTful Web Services. O’Reilly;
2007.

[4] Facebook. Facebook Statistics; 2011. [Cited May 30, 2011

]. Available from: https://www.facebook.com/press/info.
php?statistics.

[5] Craig S, Sorkin AR. Goldman Offering Clients a
Chance to Invest in Facebook. New York Times; 2011.
[Posted Jan 2, 2011 , cited May 30, 2011]. Avail-
able from: http://dealbook.nytimes.com/2011/01/02/

goldman-invests-in-facebook-at-50-billion-valuation/.

[6] Carlson N. Facebook Valued At $124 Billion In (Wacko)
Private Market Transaction. Business Insider; 2011. [Posted
Jan 6, 2011 , cited May 30, 2011]. Available from: http:
//read.bi/gB4D1j.

[7] Ante SE, Efrati A, Das A. Twitter as Tech Bub-
ble Barometer. Wall Street Journal; 2011. [Posted
Feb 10, 2011 , cited May 30, 2011]. Available
from: http://dealbook.nytimes.com/2011/01/02/

goldman-invests-in-facebook-at-50-billion-valuation/.

[8] Ganapati P. Toaster, Toilet Lead Appliance Invasion of Twit-
ter. Wired; 2009. [Posted Aug 5, 2009 , cited May 30, 2011].
Available from: http://www.wired.com/gadgetlab/2009/

08/twittering-toaster/.

[9] Hoff T. Friendster Lost Lead Because Of A Failure To Scale;
2007. [Posted Nov 13, 2007 , cited Apr 07, 2011]. Available

69

http://portal.acm.org/citation.cfm?id=95788.95795
http://portal.acm.org/citation.cfm?id=95788.95795
http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
https://www.facebook.com/press/info.php?statistics
https://www.facebook.com/press/info.php?statistics
http://dealbook.nytimes.com/2011/01/02/goldman-invests-in-facebook-at-50-billion-valuation/
http://dealbook.nytimes.com/2011/01/02/goldman-invests-in-facebook-at-50-billion-valuation/
http://read.bi/gB4D1j
http://read.bi/gB4D1j
http://dealbook.nytimes.com/2011/01/02/goldman-invests-in-facebook-at-50-billion-valuation/
http://dealbook.nytimes.com/2011/01/02/goldman-invests-in-facebook-at-50-billion-valuation/
http://www.wired.com/gadgetlab/2009/08/twittering-toaster/
http://www.wired.com/gadgetlab/2009/08/twittering-toaster/

70 bibliography

from: http://highscalability.com/blog/2007/11/13/

friendster-lost-lead-because-of-a-failure-to-scale.

html.

[10] Rivlin G. Wallflower at the Web Party. New York
Times; 2006. [Posted Oct 15 2001 , cited May 26 2011

]. Available from: http://www.nytimes.com/2006/10/15/
business/yourmoney/15friend.html?pagewanted=all.

[11] Levy S. In: In the Plex: How Google Thinks, Works,
and Shapes Our Lives. Simon & Schuster; 2011. p. 185–
188. Available from: http://books.google.com/books?id=
V1u1f8sv3k8C.

[12] March ST, Smith GF. Design and natural science research
on information technology. Decis Support Syst. 1995

December;15:251–266. Available from: http://portal.acm.
org/citation.cfm?id=222827.222832.

[13] Vaishnavi V, Kuechler W. Design Research
in Information Systems. Order. 2008;48(2):1–
393. Available from: http://desrist.org/

design-research-in-information-systems.

[14] Bondi AB. Characteristics of scalability and their impact
on performance. In: Proceedings of the 2nd international
workshop on Software and performance. WOSP ’00. New
York, NY, USA: ACM; 2000. p. 195–203. Available from:
http://doi.acm.org/10.1145/350391.350432.

[15] McGiboney M. Twitter’s Tweet Smell Of Suc-
cess. The Nielsen Company; 2009. [Posted March
18, 2009 , cited Apr 07, 2011]. Available from:
http://blog.nielsen.com/nielsenwire/online%

20mobile/twitters-tweet-smell-of-success/.

[16] Amazon Web Services Blog. Amazon EC2 Beta; 2006.
[Posted August 25, 2006 , cited May 05, 2011].
Available from: http://aws.typepad.com/aws/2006/08/

amazon_ec2_beta.html.

[17] Mell P, Grance T. The NIST Definition of Cloud Comput-
ing (Draft). National Institue of Standards and Technol-
ogy; 2011. [Posted Jan 2011 , cited May 07 2011]. Avail-
able from: http://csrc.nist.gov/publications/drafts/
800-145/Draft-SP-800-145_cloud-definition.pdf.

http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://www.nytimes.com/2006/10/15/business/yourmoney/15friend.html?pagewanted=all
http://www.nytimes.com/2006/10/15/business/yourmoney/15friend.html?pagewanted=all
http://books.google.com/books?id=V1u1f8sv3k8C
http://books.google.com/books?id=V1u1f8sv3k8C
http://portal.acm.org/citation.cfm?id=222827.222832
http://portal.acm.org/citation.cfm?id=222827.222832
http://desrist.org/design-research-in-information-systems
http://desrist.org/design-research-in-information-systems
http://doi.acm.org/10.1145/350391.350432
http://blog.nielsen.com/nielsenwire/online%20mobile/twitters-tweet-smell-of-success/
http://blog.nielsen.com/nielsenwire/online%20mobile/twitters-tweet-smell-of-success/
http://aws.typepad.com/aws/2006/08/amazon_ec2_beta.html
http://aws.typepad.com/aws/2006/08/amazon_ec2_beta.html
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

bibliography 71

[18] Deelman E, Singh G, Livny M, Berriman B, Good J. The
cost of doing science on the cloud: The Montage example.
In: High Performance Computing, Networking, Storage
and Analysis, 2008; 2008. p. 1.

[19] Seybold P. Update on PlayStation Network and Qrioc-
ity; 2011. [Posted Apr 26 2011 , cited May 25 2011].
Available from: http://blog.us.playstation.com/2011/

04/26/update-on-playstation-network-and-qriocity/.

[20] Ciancutti J. 5 Lessons We’ve Learned Using AWS;
2010. [Posted Dec 2010 , cited Apr 27 2011].
Available from: http://techblog.netflix.com/2010/12/

5-lessons-weve-learned-using-aws.html.

[21] Amazon Web Services Team. Summary of the Amazon
EC2 and Amazon RDS Service Disruption in the US East
Region; 2011. Available from: http://aws.amazon.com/

message/65648/.

[22] Pritchett D. BASE: An Acid Alternative. Queue. 2008

May;6:48–55. Available from: http://doi.acm.org/10.

1145/1394127.1394128.

[23] Lynch N, Gilbert S. Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-Tolerant Web Services;
2002. Available from: http://lpd.epfl.ch/sgilbert/

pubs/BrewersConjecture-SigAct.pdf.

[24] Cattell R. Scalable SQL and NoSQL Data Stores; 2011. [Re-
vised April 24, 2011 , cited May 10, 2011]. Available from:
http://www.cattell.net/datastores/Datastores.pdf.

[25] Thomson A, Abadi D. The problems with ACID,
and how to fix them without going NoSQL; 2010.
[Posted August 31, 2010, cited May 09, 2011]. Avail-
able from: http://dbmsmusings.blogspot.com/2010/08/

problems-with-acid-and-how-to-fix-them.html.

[26] Thomson A, Abadi DJ. The case for determin-
ism in database systems. Proc VLDB Endow. 2010

September;3:70–80. Available from: http://db.cs.yale.
edu/determinism-vldb10.pdf.

[27] Cassandra Wiki. Data Model;. [Updated Mar 7, 2011 , cited
June 10, 2011]. Available from: http://wiki.apache.org/
cassandra/DataModel.

http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
http://doi.acm.org/10.1145/1394127.1394128
http://doi.acm.org/10.1145/1394127.1394128
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://www.cattell.net/datastores/Datastores.pdf
http://dbmsmusings.blogspot.com/2010/08/problems-with-acid-and-how-to-fix-them.html
http://dbmsmusings.blogspot.com/2010/08/problems-with-acid-and-how-to-fix-them.html
http://db.cs.yale.edu/determinism-vldb10.pdf
http://db.cs.yale.edu/determinism-vldb10.pdf
http://wiki.apache.org/cassandra/DataModel
http://wiki.apache.org/cassandra/DataModel

72 bibliography

[28] Bloch J. How to design a good API and why it matters.
Google Tech Talks; 2007. [Talk given on Jan 24 2007,
uploaded Oct 08 2007, cited Jan 25 2010 - slides avail-
able at http://lcsd05.cs.tamu.edu/slides/keynote.pdf,
cited Jan 25 2010]. Available from: http://www.youtube.
com/watch?v=aAb7hSCtvGw.

[29] Fielding RT. Architectural Styles and the Design of
Network-based Software Architectures; 2000. [cited Mar
15, 2011]. Available from: http://www.ics.uci.edu/

~fielding/pubs/dissertation/top.htm.

[30] Internet Engineering Task Force. RFC 2616: Hypertext
Transfer Protocol – HTTP/1.1; 1999. [Posted Jun 1999 ,
cited Mar 15 2011]. Available from: http://www.ietf.org/
rfc/rfc2616.txt.

[31] Fielding RT. REST APIs must be hypertext-driven;
2008. [Posted Mar 20 2008 , cited Mar 16 2011].
Available from: http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven.

[32] Fowler M. Richardson Maturity Model: Steps toward the
glory of REST; 2010. [Posted Mar 18 2010 , cited Mar 16 2011

]. Available from: http://martinfowler.com/articles/

richardsonMaturityModel.html#level3.

[33] Jordan K. First we built an API, then we built a
CMS; 2010. [Posted 22 Dec 2010, cited Mar 3,
2011]. Available from: http://www.gethifi.com/blog/

first-we-built-an-api-then-we-built-a-cms.

[34] Adam DuVander. Twitter Reveals: 75calls per day);
2010. [Cited June 11, 2011]. Available from:
http://blog.programmableweb.com/2010/04/15/

twitter-reveals-75-of-our-traffic-is-via-api-3-billion-calls-per-day/.

[35] Yudaken J. A Browsable RESTish API; 2011. Posted
20 Feb 2011, cited Mar 10, 2011]. Available
from: http://developers.snapbill.com/2011/02/

a-browseable-restish-api/.

[36] Whitehead J. In: WebDAV: versatile collabora-
tion multiprotocol. vol. 9; 2005. p. 75–81. Avail-
able from: http://ieeexplore.ieee.org/xpl/freeabs_

all.jsp?arnumber=1407781.

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.youtube.com/watch?v=aAb7hSCtvGw
http://www.youtube.com/watch?v=aAb7hSCtvGw
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/articles/richardsonMaturityModel.html#level3
http://martinfowler.com/articles/richardsonMaturityModel.html#level3
http://www.gethifi.com/blog/first-we-built-an-api-then-we-built-a-cms
http://www.gethifi.com/blog/first-we-built-an-api-then-we-built-a-cms
http://blog.programmableweb.com/2010/04/15/twitter-reveals-75-of-our-traffic-is-via-api-3-billion-calls-per-day/
http://blog.programmableweb.com/2010/04/15/twitter-reveals-75-of-our-traffic-is-via-api-3-billion-calls-per-day/
http://developers.snapbill.com/2011/02/a-browseable-restish-api/
http://developers.snapbill.com/2011/02/a-browseable-restish-api/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1407781
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1407781

bibliography 73

[37] Zhang W. 2-Tier Cloud Architecture with maximized
RIA and SimpleDB via minimized REST. In: Computer
Engineering and Technology (ICCET), 2010 2nd Inter-
national Conference on. vol. 6; 2010. p. V6–52 –V6–56.
Available from: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5486290.

[38] Haselmann T, Thies G, Vossen G. Looking into a
REST-Based Universal API for Database-as-a-Service Sys-
tems. In: Commerce and Enterprise Computing (CEC),
2010 IEEE 12th Conference on; 2010. p. 17 –24. Avail-
able from: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5708388.

[39] Sirisha A, Kumari GG. API access control in cloud using
the Role Based Access Control Model. In: Trendz in In-
formation Sciences Computing (TISC), 2010; 2010. p. 135

–137.

[40] Peter S Magnusson. Royal Wedding Bells In The Cloud;
2011. [Posted May 6 2011 , cited June 6, 2011]. Avail-
able from: http://googleappengine.blogspot.com/2011/
05/royal-wedding-bells-in-cloud.html.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5486290
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5486290
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708388
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708388
http://googleappengine.blogspot.com/2011/05/royal-wedding-bells-in-cloud.html
http://googleappengine.blogspot.com/2011/05/royal-wedding-bells-in-cloud.html

Part V

A P P E N D I X

A
PA A S S E RV I C E S

In order to evaluate the viability of our platform and to be able
to compare it to other services, this appendix introduces a few
PaaS services and their feature sets.

a.1 google app engine

Google App Engine1 is a PaaS developed by Google which sup-
ports server side programming in Java, Python and Go. The
platform is well integrated with other Google products by al-
lowing authentication through Google Accounts and storage
through their BigTable technology. The platforms makes it very
easy to write scalable applications, but only a limited range of
applications are supported due to restrictions in the platform.

a.2 cloud foundry

Cloud Foundry2 is an open source PaaS product developed by
VMware3. Figure A.1 shows the three components of Cloud
Foundry.

The Cloud Provider Interface allows Cloud Foundry to run
on a multitude of different cloud solutions such as public clouds
(EC2), private cloud solutions and micro clouds, which essentially
is a sandbox solution that can be downloaded to run on a local
computer.

The application service interface provides access to different
applications and services, for instance MongoDB og MySQL
datastorage. And since Cloud Foundry is open sourced, missing
services can be implemented by anyone.

a.3 google storage

The beta version of Google Storage 4 was released for developers
in May 2011. Google Storage is a service that allows for storing

1 http://code.google.com/appengine/
2 http://www.cloudfoundry.com/
3 www.vmware.com/
4 http://code.google.com/apis/storage/

77

78 bibliography

Figure A.1: Cloud Foundry

data in Google’s cloud. It is accessible through a REST API, allows
for sharing of objects through Google Accounts and use OAuth
for authentication. However, it does not support any kind of
queries at all, making it impractical for anything else than data
storage and retrieval by object ID.

a.4 storage room

Storage Room5, launched in June 2011, focuses on content man-
agement for mobile applications. They allow users to create
and store their own data structures through a RESTful JSON API,
which also supports file uploads and authentication.

5 http://storageroomapp.com/

B
A U T H E N T I C AT I O N T O O L S

This appendix gives a short introduction to two of the most
widespread standards for authentication and authorization over
the internet, OpenID and OAuth.

b.1 openid

OpenID 1 is a standard that describes how users can be au-
thenticated in a decentralized manner. This allows a user to log
into a service with his credentials from an OpenID provider, for
instance Facebook or Google, without disclosing these to any
third parties. For the user this process works like this:

1. He will sign in with his OpenID on the website that sup-
ports OpenID (see figure B.1).

2. The browser will then take him to the OpenID provider’s
web site.

3. If he is not logged in to the providers web site he will have
to do so.

4. The user have now verified his identity and just have to al-
low the provider to share information with the requesting
web site.

5. He will then be sent back to the original site.

This process benefits both the users and the developers. Users
are allowed to use an existing account to sign into multiple
websites, avoiding the hassle of creating and remembering new
sets of usernames and passwords. And developers does not have
to write their own, hopefully secure, login systems, which often
can be both time consuming and difficult.

b.2 oauth

OAuth 2 is another open standard for authentication. It differs
from OpenID in the sense that OpenID mainly is for authenti-

1 http://openid.net/
2 http://oauth.net/

79

http://openid.net/
http://oauth.net/

80 bibliography

Figure B.1: An OpenID login form

cation (let www.moraxus.com know that I am me) where OAuth
also is designed to allow authorisation without giving away a
password. An example of this would be to allow a website to
Tweet on a user’s behalf or to allow a service to upload photos to
a user’s Flickr account. For the end user the authentication/au-
thorisation process is very similar to the OpenID authentication
process, even though the technical details are different.

www.moraxus.com

C
M O R A X U S D O C U M E N TAT I O N

This chapter describes how Moraxus is intended to be used, by
documenting the functionality of the REST API. It is assumed that
Moraxus is hosted on www.moraxus-api.appspot.com. A blog
application will be used as an example throughout this chapter,
where each blog has a collection of posts and each post has a
collection of comments.

c.1 request urls

Moraxus’ functionality can be accessed through four different
request endpoints:

/content/<path/to/object> This is the standard way to access
resources, in a very REST-like manner

/id/<objectid> An alternative way to access resources by their
ID, mostly useful in cases where the resource’s full path is
not known.

/user User operations.

/group Group operations

c.2 request methods

The request URLs supports the use of several HTTP request
methods, with this section describing the functionality of each
method. HTTP request headers are also used to offer additional
functionality.

c.2.1 Content Requests

GET

GET requests are used to get the data fields of an object or, if
the request is made to a collection, a list of the objects in the
collection. A request made to /content/blog/32/post/56 could
for instance return the result shown in Listing C.1.

81

www.moraxus-api.appspot.com

82 bibliography

Listing C.1: Sample GET object response

HTTP/1.1 200 OK

Content-Length: length

Content-Type: application/xml

Date: Mon, 23 May 2011 11:53:09 GMT

<?xml version="1.0" encoding="UTF-8"?>

<post>

<id>56</id>

<title>Hello World</title>

<creator>Kurt</creator>

<content>Dear diary, today I ate a dozen bullfrogs.

They were delicious</content>

</post> �
HEAD

HEAD requests are used to get metadata about an object or col-
lection, such as its creation time, when it last was modified and
who the owner is.

POST

New objects and collections are created through POST requests,
with object data sent as the request content. When posting to an
URL, the resource located at that URL will become the parent of
the new object. A sample POST request for the creation of a blog
post can be seen in Listing C.2. In this case, the resource located
at /content/blog/23/post will be the new post’s parent.

Listing C.2: Sample POST request

POST /content/blog/23/post HTTP/1.1

Host: moraxus-api.appspot.com

Content-Type: text/xml; charset=utf-8

Content-Length: length

{"type":"post",

"title": "Hello World",

"creator": "Kurt",

"content": "Dear diary, today I ate a dozen bullfrogs.

They were delicious"} �

bibliography 83

PUT

PUT requests are used to modify, move or create a copy of an
existing resource.

moving/copying When making a copy or moving an ob-
ject, the request should be made to the new location of
the object/copy. To indicate the wish to copy/move an
object an additional request header, inspired by WebDAV
(Section 3.3.4), is added to the request. “Copy-Source” to
copy an object, “Move-Source” to move an object, both
with the ID of the original object as their value. So to
move the blog post with ID 56 (which is currently located
at /content/blog/23/post) to the blog with ID 20, the
request shown in Listing C.3 would be sent. To do this,
WRITE access to the orginal object as well as to the new
location would be required.

Listing C.3: Sample PUT request

PUT /content/blog/20/post HTTP/1.1

Host: moraxus-api.appspot.com

Content-Type: text/xml; charset=utf-8

Content-Length: length

Move-Source: 56 �
updating When modifying an object a new revision is actually

created and added to the list of different revision of the
object. This new revision is then set as the active version
of the object.

DELETE

Resources are not actually deleted, they are just flagged as so
(and their entire sub tree). Users with the restructure permission
can then restore the resource. To permanently delete an object
the request header “Permanently-Delete” should be set to true.

c.2.2 ID Requests

Requests to /id/<objectID> works the same way as requests
to /content/<path/to/object >.

84 bibliography

c.2.3 User Requests

Requests to /user are used to create, edit, delete and authenti-
cate users. A user has a list of OpenID/OAuth (see Appendix B)
IDs that can be used to login with that user.

GET

GET requests to /user/<userID> are used to get information
about a user, such as username and other relevant fields.

POST

New users are created with POST requests to /user.

PUT

PUT requests are used to modify user information or to adding/re-
moving OpenID/OAuth IDs.

DELETE

DELETE requests delete users.

c.2.4 Group requests

Requests to /group are used to handle group operations. A
group is an entity with a name, and ID and a list of members.
Permissions for groups works the same way as permissions
for objects (a user would for instance need WRITE access for a
group to add new members to it).

GET

GET requests are used to get information about a specific group.
A request to /group/<groupID> would return information about
the group, such as name, members etc.

POST

New groups are created by POST requests to /group containing
information about the group and possibly a list of user IDs.

/user
/user/<userID>
/user
/group
/group/<groupID>
/group

bibliography 85

PUT

PUT requests are used to modify group info, add users or remove
users.

DELETE

DELETE requests delete groups.

c.3 response codes

Moraxus uses the standard HTTP status codes when respond-
ing. 404 means that resource not could be found, 401 means
that access to the object is denied etc. This makes it easier to
implement correct error handling on the client side.

	Title Page
	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	1 Background and objective
	1.1 Massively scalable ubiquitous applications
	1.2 Case: Inspera
	1.3 Research approach and objectives
	1.3.1 Research questions
	1.3.2 Solution hypothesis
	1.3.3 Solution approach
	1.3.4 Research method: Design science

	1.4 Thesis outline

	Theoretical background
	2 Ensuring scalability
	2.1 Cloud computing
	2.1.1 Benefits
	2.1.2 Disadvantages

	2.2 Designing a cloud back-end for scalability and resilience
	2.2.1 General resilience
	2.2.2 Databases

	3 Background on API design
	3.1 General design principles
	3.2 Industry standards for Internet APIs
	3.2.1 SOAP and RPC
	3.2.2 RESTful Web Services
	3.2.3 Comparison/discussion

	3.3 Example APIs
	3.3.1 HiFi API
	3.3.2 Twitter API
	3.3.3 SnapBill API
	3.3.4 WebDAV

	Design & implementation
	4 Requirements
	4.1 Background
	4.2 Functionality requirements for sample applications
	4.2.1 Creaza
	4.2.2 A blog application
	4.2.3 A simple CMS

	4.3 Nature of target applications
	4.4 Summary of functional requirements

	5 The Moraxus platform
	5.1 Features
	5.1.1 Data store
	5.1.2 Queries
	5.1.3 Authentication
	5.1.4 Access control
	5.1.5 Groups and sharing
	5.1.6 Application descriptors
	5.1.7 Data migration

	6 Prototype
	6.1 Prototype Moraxus implementation
	6.2 Sample application: A simple blog
	6.2.1 Functionality
	6.2.2 Web client
	6.2.3 Mobile client

	Evaluation and conclusion
	7 Evaluating Moraxus
	7.1 Evaluation method
	7.2 Fulfillment of objectives
	7.3 Architectural challenges
	7.4 Practical challenges
	7.5 Features
	7.6 Usability
	7.7 Discussion
	7.8 Further Work

	8 Conclusion
	Bibliography

	Appendix
	A PaaS Services
	A.1 Google App Engine
	A.2 Cloud Foundry
	A.3 Google Storage
	A.4 Storage Room

	B Authentication tools
	B.1 OpenID
	B.2 OAuth

	C Moraxus Documentation
	C.1 Request URLs
	C.2 Request Methods
	C.2.1 Content Requests
	C.2.2 ID Requests
	C.2.3 User Requests
	C.2.4 Group requests

	C.3 Response Codes

