
Master of Science in Computer Science
June 2011
Tor Stålhane, IDI
Ole Christian Rynning, BEKK Consulting AS

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Decreasing Response Time of Failing
Automated Tests by Applying Test Case
Prioritization

Sveinung Dalatun
Simon Inge Remøy
Thor Kristian Ravnanger Seth
Øyvind Voldsund

Problem Description

Slow running test suites are sometimes a problem in the software industry. Having a

system for prioritizing test cases would to some extent solve this problem. If devel-

opers were to receive the failing tests first (fast feedback), they could save time, stay

in context and not get disturbed while waiting for large test suites to run.

Assignment

• Develop several techniques for prioritizing test cases within a test suite according

to their likelihood of failing.

• Implement the techniques as a tool.

You can implement the tool in whatever programming language wanted, but Ruby

and/or Java is preferred.

Submission date: June 6th 2011.

Internal supervisor: Prof. Tor St̊alhane, NTNU.

External supervisor: Ole Christian Rynning, Senior Consultant at BEKK Consulting AS.

ii

Acknowledgements

We would like to thank our internal supervisor Prof. Tor St̊alhane for his assistance

to the thesis and several reviews of the report during the project. We also appreci-

ate the meetings and workshops with our external supervisor Ole Christian Rynning

from BEKK Consulting AS. Both Ole Christian and Christian Schwarz from BEKK

have been of great help with fast replies to e-mails when we encountered problems.

We thank Ole Christian and Jøran V. Lillesand for participating in the first experi-

ment.

We would also like to thank the firms that participated in our survey. Surveys were

sent out to several IT companies, and we know that at least six of them participated;

BEKK Consulting, Steria, Statoil, IT-Verket, Miles and Visma Sirius.

For the research part of our project we highly appreciate the help from Jari Bakken

(test developer at Finn.no) and Gregg Rothermel (professor and Jensen chair of soft-

ware engineering, University of Nebraska).

iii

Abstract

Running automated tests can be a time-consuming task, especially when doing re-

gression testing. If the sequence of the execution of the test cases is arbitrary, there is

a good chance that many of the defects are not detected until the end of the test run.

If the developer could get the failing tests first, he would almost immediately be able

to get back to coding or correcting mistakes. In order to achieve this, we designed

and analyzed a set of test case prioritization techniques. The prioritization techniques

were compared in an experiment, and evaluated against two existing techniques for

prioritizing test cases.

Our implementation of the prioritization techniques resulted in a tool called Pritest,

built according to good design principles for performance, adaptability and main-

tainability. This tool was compared to an existing similar tool through a quality

analysis.

The problem we address is relevant for the increased popularity of agile software

methods, where rapid regression testing is of high importance.

The experiment indicates that some prioritization techniques perform better than

others, and that techniques based on code analysis is outperformed by techniques

analyzing code changes, in the context of our experiment.

iv

Contents

1 Introduction 1

1.1 Problem Specification . 2

1.2 Motivation . 4

1.3 Problem Scenarios . 5

1.4 Introduction to Pritest . 6

2 Methodology and Report Design 9

2.1 Methodology . 9

2.2 Report Design . 10

3 Literature Research 12

3.1 Related Work . 13

3.1.1 Test Case Management Categories 13

3.1.2 Prioritization Techniques . 15

3.1.3 Comparator techniques . 17

3.1.4 Methods for Evaluating Test Case Management Techniques . . 18

3.1.5 Test Suite Granularity . 20

3.1.6 JUnit Max . 21

3.2 Industrial Survey . 21

3.2.1 Introduction . 21

3.2.2 Survey Theory . 22

v

3.2.3 Design and Questions . 23

3.2.4 Distribution . 25

3.2.5 Results . 25

3.2.6 Lessons Learned . 31

3.3 Technical Prestudy and Theory . 33

3.3.1 Effective Java . 33

3.3.2 Big-O Analysis Method . 35

3.3.3 Adaptability . 36

3.3.4 Maintainability . 38

3.3.5 Software and Testing . 43

3.3.6 Java Source Code Analysis . 46

3.3.7 Java Git Libraries . 48

4 Own Contribution 51

4.1 The Pritest Tool . 54

4.2 Implementing our Prioritization Techniques 62

4.3 Online Prioritization Techniques . 63

4.3.1 Counting Failing Tests . 63

4.3.2 Code Changes . 66

4.4 Local Prioritization Techniques . 70

4.4.1 Local Code Changes . 70

4.4.2 Additional Method Coverage 76

4.4.3 Total Method Coverage . 87

4.5 Hybrid Prioritization Techniques . 90

4.5.1 Local Code Changes with Failure Counting 90

4.6 Control Techniques . 94

4.6.1 Untreated Order . 94

4.6.2 Random Order . 94

4.6.3 Optimal Order . 95

vi

4.7 Evaluating Technique Time Complexity with Big-O Analysis 95

5 Experiment 109

5.1 Experiment Theory . 109

5.2 Experiment Introduction . 112

5.3 Definition . 112

5.3.1 Goal Definition . 112

5.3.2 Summary of Definition . 113

5.4 Planning . 113

5.4.1 Context Selection . 113

5.4.2 Hypothesis Formulation . 114

5.4.3 Variables Selection . 115

5.4.4 Selection of Subjects . 116

5.4.5 Experiment Design . 117

5.4.6 Instrumentation . 118

5.4.7 Validity Evaluation . 120

5.5 Operation . 122

5.5.1 Preparation . 122

5.5.2 Execution . 122

5.5.3 Data Validation . 123

5.6 Analysis and Interpretation . 124

5.6.1 Descriptive Statistics . 125

5.6.2 Data Reduction . 127

5.6.3 Hypothesis Testing . 128

5.7 Secondary Experiment . 129

5.7.1 Context . 130

5.7.2 Variables . 130

5.7.3 Execution . 130

5.7.4 Descriptive Statistics . 131

vii

5.7.5 Hypothesis Testing . 133

5.7.6 Validity Evaluation . 135

5.8 Summary and Conclusions . 135

6 Evaluation and Discussion 137

6.1 Comparison with Existing Techniques 137

6.2 Post-Experiment Interview . 138

6.3 Quality Analysis - Comparing Pritest to JUnit Max 139

6.4 Rationale for Chosen Techniques . 140

6.4.1 Improving the Existing Techniques 140

6.4.2 The Choice of Prioritization Techniques to Implement 140

6.4.3 Potential Prioritization Techniques 142

6.5 The Choice of Evaluation Metric . 144

6.6 Abandoning Technique Counting Failing Tests the Last Three Days . 145

6.7 Benchmark - Custom JUnit Runner 146

6.8 Continuous Integration . 148

7 Conclusion and Future Work 150

7.1 Conclusion . 150

7.2 Future Work . 154

8 Appendices 157

8.1 Survey Free Text Replies . 157

8.2 UML Diagrams for Pritest . 163

8.3 Post-Experiment Interview Replies 172

8.4 Experiment Results . 174

8.4.1 Minitab Hypothesis Testing 174

8.4.2 APFD Values . 176

Bibliography 179

viii

List of Tables

3.2 Free-text question categorization labels. 30

3.3 Techniques for writing effective Java. 34

3.4 Relative dominance of common algorithm complexity terms. 36

3.5 Code Smells and mitigations. 41

3.6 Unit test benchmark projects. 45

3.7 Unit test vs. integration test run time. 45

4.1 Pritest modules properties. 53

4.2 Overview of applied technology. 54

4.3 Techniques summary. 62

4.4 Big-O Calculations. 96

5.1 Scale Types by Wohlin et al. [22]. 117

5.2 Prioritization techniques numbering. 124

5.3 Hypothesis test - primary experiment. 128

5.4 Hypothesis test - primary experiment. 129

5.5 Hypothesis test - secondary experiment. 134

5.6 Hypothesis test - secondary experiment. 134

6.1 Custom JUnit runner benchmark. 148

8.1 APFD result from the primary experiment. 176

ix

8.2 APFD result from the secondary experiment. 177

x

List of Figures

1.1 Relation between test suites, test cases and tests. 3

3.1 Test case selection. 14

3.2 Free-text question categorization. 31

3.3 Factory pattern example [54]. 37

3.4 UML diagram - strategy pattern. 38

3.5 The V-Model of software testing. 43

3.6 The visitor pattern. 47

3.7 Supported commands by JGit library 49

4.1 Overview of Pritest. 52

4.2 Priority List. 57

4.3 UML Class diagram of the new pritest-junit-runner. 58

4.4 Organization of packages in our pritest-junit-runner. 60

4.5 Using the git status command in a bash command. 70

4.6 Technique Local Code Changes prioritization list selection process. . . 71

4.7 Additional Method Coverage illustration 78

4.8 Total Method Coverage illustration 88

4.9 Illustration of hybrid technique prioritization list. 90

4.10 Big-O illustration: Counting Failing Tests and Code Changes are red,

and the two Local Code Changes techniques are green. 96

xi

4.11 Big-O illustration of Total Method Coverage. 97

4.12 Big-O illustration of Additional Method Coverage. 97

5.1 Experiment principles [29]. 110

5.2 Experiment process [22]. 111

5.3 Example of APFD graph generation - using a single technique. 119

5.4 Example of APFD graph generation - using multiple techniques at once.119

5.5 A boxplot of the results - primary experiment. 125

5.6 APFD instrumentation graph example - primary experiment. 127

5.7 A boxplot of the results - secondary experiment. 131

5.8 APFD instrumentation graph example - secondary experiment. 133

6.1 Weighted relationships between code changes and test failures. 143

6.2 Local code changes and dependencies. 144

6.3 Bash script run. 147

8.1 Minitab output - primary experiment. 174

8.2 Minitab Output - secondary experiment. 175

xii

Chapter 1

Introduction

This report reflects the work of four master students from the computer science de-

partment. The project is carried out in cooperation with BEKK Consulting AS with

Ole Christian Rynning as our external supervisor. The internal supervisor is Prof.

Tor St̊alhane from NTNU.

Regression testing is a common task for developers when developing software, both

to ensure that new functionality works as expected, and to test that older code still

work after changes [24]. Testing can be a time-consuming task, especially when the

system grows big, and we have thus investigated the possibilities of reducing time

spent on automated testing.

Last semester, for the specialization project [1], we developed a system named Pritest

1. Pritest offers a service for prioritizing test cases for developers during development

of an information system. The specification of Pritest, the architecture and reasoning

of applied technology are discussed in the specialization project report [1]. In the

1In the specialization project it was called Citrus, but this semester we changed the name of our

tool to Pritest This was due to a naming conflict with another open source project.

1

CHAPTER 1. INTRODUCTION

master thesis we have focused on improving Pritest, researching prioritization tech-

niques, evaluation methods and existing solutions as well as conducting an experiment

on the final result.

1.1 Problem Specification

The project concerns automated testing in software development, with a special em-

phasis on unit and integration tests. We will investigate the possibilities of reducing

the time spent waiting for feedback when performing automated testing. In order to

achieve this, we will investigate several techniques for prioritizing test cases with re-

spect to their likelihood of failing. We will compare these techniques in an experiment

(Chapter 5), and compare the ones we develop ourselves to existing techniques.

We will implement our techniques as a tool (Pritest). Our second goal is to develop

this tool according to good design principles, with focus on efficiency, adaptability

and maintainability. This tool will not be compared to existing tools through an

experiment, but rather through a quality analysis Chapter 6.

Goal Summary

1. Research and implement techniques for prioritizing a test suite (a set of test

cases) according to their likelihood of failing. Compare these techniques through

an experiment, and evaluate them against existing prioritization techniques.

2. Implement the techniques as a tool designed for efficiency, adaptability and

maintainability. Compare the tool to existing solutions through a quality anal-

ysis.

2

CHAPTER 1. INTRODUCTION

The terms test suite, test case and test are used throughout this report, and the

distinction between them is illustrated in Figure 1.1.

Figure 1.1: Relation between test suites, test cases and tests.

The test suite can be viewed as a set of classes, each test case is a class, and each test

is a method in a class [14].

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

From discussions with our external supervisor at BEKK Consulting, we identified

slow automated test runs as a problem in the software industry. This problem has

evolved over the last years, due to the interest in agile development methodologies

and techniques like Test Driven Development (TDD). TDD practitioners want to see

their tests fail before they make them succeed [64], and slow running test suites is a

problem. With agile and TDD comes the paradigm of running tests both before and

after writing code [28], in contrast to development methodologies built on waterfall

models where the tests only are executed after writing code [15] 2. The need for—and

problems regarding—automated testing today, was investigated through a survey in

Section 3.2.

Software development is an abstract process that requires concentration, and the fact

that programmers have to build up a complex mental model of the programming

problem makes them vulnerable to interruptions. Interruptions often lead to the

developer performing slower, and perceives the interrupted task to be more difficult

to complete [5]. The severity of an interruption depends on several aspects, such as

how long the interruption goes on, the person causing it, its subject and the type

of work it disrupts [6]. The type of work being interrupted is an important factor,

and work like designing algorithms and writing code are sensitive to interruptions

[6].

This thesis address an important aspect of software development in seeking to improve

the efficiency of developers with more rapid feedback from automated testing. In the

field regarding the first fragment of our goal (prioritization techniques) there exists

some research, especially from Gregg Rothermel [4, 9, 12, 13, 14]. For the second part

2Dr. Royce however, considered the original waterfall model as a risky development process that

needed modifications to transform into a process that will provide desired products.

4

CHAPTER 1. INTRODUCTION

of our goal—tools for test prioritization—there exist only one other solution: JUnit

Max by Kent Beck [33].

1.3 Problem Scenarios

To illustrate the problems we seek to solve, we have constructed two scenarios de-

scribing the problem and a desired situation.

Current Situation

• A developer is working on a project, and has started working on a class.

• The developer writes a unit test, implements the code, and is ready to run the

tests to see if the implementation makes the test pass.

• The tests are run, but the new test is located at the end of the test suite, and

thus the developer has to wait for all the older tests to be run before he is

presented with the result of his new test.

• In the meantime, trying to kill the unnecessary waiting time, he lost focus and

began surfing the web. Thus, he wasted even more time.

Desired Situation

• A developer is working on a project, and has started working on a class.

5

CHAPTER 1. INTRODUCTION

• The developer writes a new unit test, implements the code, and is ready to run

the tests to see if the implementation makes the test pass.

• The tests are run, and since the system can evaluate the tests’ likelihood of

failing, the new test is placed first in the test suite. Hence, the developer can

see if the test has passed or not immediately.

• The developer instantly gets feedback, and is able to continue his work with

minimal distractions.

1.4 Introduction to Pritest

Pritest offers a service that can be reached through a REST interface [63] when

developing software, recording several metrics which Pritest evaluate, before it delivers

a prioritized list of the test cases to the test runner when called upon.

The pritest-junit-runner module is the client part of our system, and is responsible for

executing JUnit tests in the order specified by Pritest, and then sending the results

back to the server. It is implemented as a Maven plugin. The pritest-junit-runner

can be configured to use one out of six techniques to generate a prioritized list of tests

to run:

1. Counting Failing Tests (Section 4.3.1)

Favors test cases with highest amount of historical failures.

6

CHAPTER 1. INTRODUCTION

2. Code Changes (Section 4.3.2)

Makes use of a post-receive hook from the online version control host Github

[37]. Github automatically sends a report to Pritest when receiving new code

changes.

3. Local Code Changes (Section 4.4.1)

Uses a Java library for conducting a equivalent command to git status, and

running the most recently added or modified local test cases first.

4. Local Code Changes with Failure Counting (Section 4.5.1)

Same as Local Code Changes, but with an additional prioritization on the re-

maining test cases using technique Counting Failing Tests.

5. Total Method Coverage (Section 4.4.3)

The concepts of this technique is developed by Rothermel et al., and imple-

mented by us.

6. Additional Method Coverage (Section 4.4.2)

The second technique designed by Rothermel et al., and implemented by us.

Our techniques will be compared to this one and Total Method Coverage in the

experiment.

From the list above, technique Counting Failing Tests and Code Changes are online

techniques—they need to contact Pritest to get prioritized lists. Technique Local

Code Changes, Total Method Coverage and Additional Method Coverage are local

techniques—only running locally on the pritest-junit-runner maven plugin we devel-

oped. We also implemented one hybrid technique, using both local techniques and

prioritization from Pritest; Local Code Changes with Failure Counting.

7

CHAPTER 1. INTRODUCTION

The pritest-server module is responsible for storing data about changes to source

code, results from tests that have been run, and for providing lists of tests that the

client should run, which can be reached through a REST interface on the server.

For more details concerning Pritest and its architecture, technology and components

see Chapter 4, or the specialization project report [1]. All the techniques we imple-

mented are described in detail in Chapter 4.

8

Chapter 2

Methodology and Report Design

2.1 Methodology

When deciding on which methodology to use to solve our problem, we had to look

at the nature of the problem at hand. We had to employ an empirical strategy to

compare our designed solution to other similar solutions developed earlier. According

to Claes Wohlin et al. [22] empirical strategies or investigations can be divided into

three major types: survey, case study and experiment.

Problem Facts

• Something needs to be developed.

• There exist some similar solutions.

• A comparison of our solution and existing ones must be performed.

9

CHAPTER 2. METHODOLOGY AND REPORT DESIGN

In the research part of this thesis (Chapter 3) we conducted a survey to gain knowl-

edge about the problem domain. The remaining parts of the thesis is written as an

empirical study using experiment as observation technique. Empirical studies exist in

both qualitative and quantitative forms, but experiments are purely quantitative since

they have focus on measuring variables, change them and measure again [22]. Our ex-

periment measures the techniques we developed for prioritizing test cases—comparing

them to existing techniques—and is presented in Chapter 5. Details regarding the

experiment is also found in this chapter (such as definitions of context, hypothesis,

variables, subjects and selected hypothesis testing technique).

2.2 Report Design

The thesis follows a standard structure for reports written for empirical studies [65],

and the remaining chapters of this report mainly consist of research, descriptions of

implementations and an experiment.

Chapter 3 describes the literature research we have done in advance of the imple-

mentation and experimentation. We investigate existing work in the field, conduct a

survey and a prestudy of technologies needed later in the thesis.

Chapter 4 presents the implementations and design of our techniques and tool. The

techniques are categorized into online, local and hybrid prioritization techniques,

depending on their need for contacting our online service (pritest-server) for retrieving

the prioritization lists.

In Chapter 5 we present our experiment and its results. The evaluation and discussion

regarding our findings is found in Chapter 6.

10

CHAPTER 2. METHODOLOGY AND REPORT DESIGN

Chapter 7 contains a conclusion and proposals for further improvements to the tool

and the prioritization techniques.

11

Chapter 3

Literature Research

This chapter describes our research regarding published work on the subject, as well

as some research on technologies done in advance of improving the Pritest system.

There are a lot of empirical studies in this field, but none of them offer a tool like the

one we plan to deliver with Pritest. The majority of the studies are conducted on

the programming language C, and could not be generalized to e.g Java and testing

frameworks like JUnit [45] which we are using. JUnit Max (Section 3.1.6) is the only

solution similar to Pritest, but this also have some drawbacks that we have described

in Chapter 3.1.6. JUnit Max is compared to Pritest in Section 6.3.

12

CHAPTER 3. LITERATURE RESEARCH

3.1 Related Work

There are several empirical studies in the field of test efficiency and test case prioriti-

zation. However, the vast majority of these are based on the programming language

C, and does not consider the history of failing test cases. Our study is focused on

Java technology, and uses a history-based approach to test case prioritization.

The number of studies based on selecting techniques for prioritization and selection

of test cases is large. Especially Elbaum and Rothermel have written many articles

on this topic [4, 9, 12, 13, 14]. All of these articles have in common that they do not

generalize well to all sizes of projects, types of software or test suite characteristics.

They conclude that different types of prioritization techniques should be used for

different types of systems, but that using any technique at all is better than using

none.

3.1.1 Test Case Management Categories

According to Yoo and Harman [3] the existing literature on the management of test

cases can be categorized into three classes: test suite reduction (or minimization),

test case prioritization and test case selection.

In test suite reduction, some test cases are permanently removed from the suite.

The goal is to reduce the cost of running the suite, which requires that the cost of

reduction is less than the gain achieved by omitting certain test cases. However, there

is a possibility that by removing some test cases the ability of the suite to detect faults

is reduced.

Test case selection is similar to test suite reduction, but the changes to the test suite

13

CHAPTER 3. LITERATURE RESEARCH

are not permanent. A subset of test cases is selected based on some criteria to reduce

the costs (Figure 3.1).

Figure 3.1: Test case selection.

In test case prioritization, the goal is to find an execution order of test cases that

is optimal according to some criterion. Some prioritization techniques, along with

methods for evaluating the test execution orders given by them, are explained be-

low.

Kim and Porter [2] conducted a study on history-based test selection techniques. The

study was empirical and did not result in a working tool. The study had, however,

a large threat to external validity, since the experiments were conducted in strictly

controlled environments and could not be generalized. The study did indicate that

heuristics based on history improved efficiency through test case selection.

Many approaches have been made at ranking test cases in a test suite. Mende and

Koschke [8] utilized an effort-aware model to select modules based on their related

risk and the effort required to test them. Many effort-aware models assume that there

is some budget involved, e.g. that we only want to run 20% of the test cases. The

goal is then to select those 20% that will detect the largest amount of faults.

14

CHAPTER 3. LITERATURE RESEARCH

3.1.2 Prioritization Techniques

In most of the articles we have found, the studies are based on a common set of

techniques for ranking and prioritizing tests. The article Selecting a Cost-Effective

Test Case Prioritization Technique [9] summarizes these common techniques as total

function coverage, additional function coverage and one technique family that does

not involve coverage at all (the number of code statements, functions or blocks the

test executes).

According to Elbaum et al., prioritization techniques can vary along several dimen-

sions [13]. The dimensions they identified are the following:

• Technique granularity, which is the level at which the technique performs its

analysis and gathering of information to be used as a basis for the prioritization.

E.g. some techniques work at the statement-level and some at the function-level.

A technique with a lower-level granularity has more information at its disposal

than a higher-level technique, and can therefore make more informed decisions.

It does however require more processing.

• Whether or not the technique uses feedback, or in other terms: whether it is

“total” or “additional”. A “total” technique bases its prioritization on informa-

tion available at the beginning of the process, while an “additional” technique

gathers feedback as the test cases are prioritized, and uses this feedback to

prioritize the remaining test cases.

• Whether or not the technique employs information about the modified version

of the source code.

Total function coverage ranks the test cases’ importance by the order of the number

of functions the individual test case covers. If multiple test cases cover the same

15

CHAPTER 3. LITERATURE RESEARCH

amount of functions, these are ranked randomly.

Additional function coverage iteratively selects the tests with the greatest function

coverage, and then recursively runs additional function coverage on the remaining

test cases and the remaining uncovered functions, until all of them have been cov-

ered.

There are also techniques similar to total and additional function coverage, but that

consider blocks or methods instead of functions [14]. These are called total and

additional block coverage, and total and additional method coverage. Blocks in this

sense are sequences of statements with single entry and exit points.

The last category mentioned in the article is concerned with non-coverage techniques

like code modifications. This is one of the techniques used by Pritest, in addition to

a few other non-coverage techniques.

In addition to the function-level techniques mentioned above, there are also more

low-level techniques such as total and additional statement coverage. Total state-

ment coverage orders the test cases descendingly by the number of statements they

cover. Additional statement coverage is to total statement coverage and statements

as additional function coverage is to total function coverage and functions.

Sherriff et al. presented a history-based prioritization technique using three elements:

association clusters, the relationships between test cases and files, and a modification

vector [10]. The association clusters are made by grouping files that often are modified

together as fixes of a defect. E.g. if fixing a bug requires modifying three files, those

three will be placed in the same cluster. Additionally, by keeping record of the

relationships between test cases and files, the test cases testing those modified files

can easily be identified. A key point of this technique is that any software artifact

can be subject to prioritization.

16

CHAPTER 3. LITERATURE RESEARCH

A Requirement-based approach was presented by Srikanth et al [11], where test cases

are mapped to requirements. The prioritization is based on factors such as customer-

assigned implementation complexity and priority. This method allows us to give

critical requirements a higher priority, but a potential weakness is the estimation and

subjectivity involved when assigning the priorities.

One of the drawbacks of test case prioritization—compared to test suite reduction and

test case selection—is that its basic definition does not involve excluding test cases. If

the testing activity involves a budget, running all the test cases can be unrealistic. To

satisfy this need, a number of cost-aware techniques have been proposed. To evaluate

cost-aware techniques, Elbaum et al. [12] developed a metric which we will discuss in

Section 3.1.4.

3.1.3 Comparator techniques

For experimental control we can employ the comparison techniques used by Hyunsook

Do et al. [14]. The techniques are as following:

• Random ordering : This technique simply reorganizes the tests randomly.

• Optimal ordering : If the experiment uses seeded faults, an optimal ordering can

give an upper bound on the effectiveness of the techniques we use.

• Untreated ordering : This one is merely the ordering without any prioritization

technique employed.

17

CHAPTER 3. LITERATURE RESEARCH

3.1.4 Methods for Evaluating Test Case Management Tech-

niques

There are several techniques that can be used when evaluating a selected subset of

test cases [8]. First of all, we are interested in finding as many faults as possible. One

alternative for this is recall, which is the percentage of defective files that are detected.

recall =
| {defective files} ∩ {files marked as defective} |

| {defective files} |

An alternative to recall is defect detection rate (ddr), which is the ratio of the number

of detected defects compared to the total number of defects. Mende and Koschke pre-

fer ddr, as they argue “it better captures the cost-effectiveness of a model” [8].

Not only do we want to find as many faults as possible, we also want as few false-

positives as possible. To measure this we can employ precision. Precision is the

fraction of files marked as defective that actually are defective.

precision =
| {defective files} ∩ {files marked as defective} |

| {files marked as defective} |

As an alternative to precision, we have false-positive ratio (fdr), which is the ratio of

non-defective files marked as defective. Mende and Koschke prefer precision.

One metric that can be used to evaluate prioritization techniques is the average per-

centage of faults detected (APFD) a metric developed by Elbaum et al. [4]. The

APFD measures the average rate of fault detection per percentage of test suite exe-

cution, and favors orderings that detect faults early during the execution of the test

18

CHAPTER 3. LITERATURE RESEARCH

suite. APFD can be calculated using the following notation:

• T is a test suite containing n test cases.

• F is the set of m faults revealed by T.

• For a test case ordering T’, let TFi be the order of the first test case that reveals

the ith fault.

The APFD value for T’ is calculated as following:

APFD = 1− TF1 + . . . + TFm

nm
+

1

2n

Elbaum et al. incorporated the severity of detected faults and the execution cost of

test cases into the APFD [12]. The resulting metric, APFDc, favors prioritizations

that detect severe faults at a low cost.

APFDc =

∑m
i=1

(
fi ×

(∑n
j=TFi

tj − 1
2
tTFi

))
∑n

i=1 ti ×
∑m

i=1 fi

T is a test suite of n test cases, where each has an associated cost t1, t2, . . . , tn; F is

the set of m faults with severities of f1, f2, . . . , fm; and TFi is the order of the first

test case to expose the ith fault.

In our experiment we used APFD as instrumentation for evaluating the ordering of

each prioritization technique. This choice is discussed in Section 6.5.

19

CHAPTER 3. LITERATURE RESEARCH

3.1.5 Test Suite Granularity

When using a test framework such as JUnit, we also need to consider the granularity

of the test suite. JUnit organizes test suites in test cases—which are classes—at

the top level, and test methods—which are methods—at the lowest level and are

located in test cases (Figure 1.1). A study by Rothermel et al. [14] showed that test

suites with finer granularity gave better support for prioritization than more coarse

test suites, when using the techniques such as total function coverage and additional

function coverage.

We chose to implement our solution on a “test case” level, even though this is not

the finest granularity possible (that would be on a “method/test” level). The reason

for this is primarily that JUnit (one test framework for Java) accepts test cases

by default, and implementing a custom JUnit runner that runs on a method/test

level would probably not be beneficial for our objective. Instead of jumping between

specific tests inside a test case, we simply run the whole test case before proceeding

to the next in the prioritization list. Also, if we were to run single tests inside a test

case separately, a new JUnit runner would have to be instantiated for each test to

run, which would cost more than only instantiating new JUnit runners for each test

case in the test suite.

20

CHAPTER 3. LITERATURE RESEARCH

3.1.6 JUnit Max

JUnit Max [33] is a solution developed by Kent Beck for test prioritization. This is a

tool that provides test prioritization based on recent history of failed tests, as well as

the principle of running a lot of small tests first, and the larger tests afterwards. Beck

emphasizes that test runs follow a power law distribution [16]; a lot of small tests and

a few large ones. JUnit Max is a plugin developed for the Integrated Development

Environment (IDE) Eclipse [34], and is therefore not applicable for other IDEs.

3.2 Industrial Survey

3.2.1 Introduction

To confirm that the problem we were trying to solve was a legitimate one, we con-

ducted an industrial survey. Surveys are normally conducted when the use of a

technique or tool already has taken place or before it is introduced [21]. Wohlin et

al. [22] describes a survey as a snapshot of the current situation, and this was our

goal for this survey. We wanted to find out to what extent our problem actually was

a relevant one for developers dealing with automated testing every day.

Another motivation for this survey was to gain insight into how the industry cope

with automated testing, which tools were used and which standards and routines they

followed.

21

CHAPTER 3. LITERATURE RESEARCH

3.2.2 Survey Theory

Surveys are usually carried out in one of two forms: interviews or questionnaires [23].

The basic method for data collection through questionnaires is distributing it with

instructions on how to fill it out, and the participators return it to the researcher

when completed. According to Claes Wohlin et al. [22], there are some advantages

for interviews over questionnaires:

• Interview surveys typically achieve higher response rates than, for example, mail

surveys.

• An interviewer generally decreases the number of “do not know” and “no an-

swer”, because the interviewer can answer additional questions about the survey.

• It is possible for the interviewer to observe and ask follow-up questions.

On the other hand, there are also disadvantages to using interviews over question-

naires, like time and cost. We decided to design a questionnaire, and distributed it

through the social network Twitter [49], and to several well-known IT companies in

Norway. The companies we know participated are mentioned in .

Claes Wohlin et al. also point out three categories—or purposes—of surveys: the

descriptive survey, the explanatory survey and the explorative survey. These three

serve different purposes in a research environment, respectively enabling assertions

about some population, making explanatory claims about the population, or finally

using a survey as a pre-study to more thorough investigation later on [22]. Our survey

is an explorative survey.

22

CHAPTER 3. LITERATURE RESEARCH

3.2.3 Design and Questions

When designing our questionnaire we had two things especially in mind: not making

it too large, and ask questions that did not “fish” for anticipated answers. The survey

came with instructions, and the subjects were informed that it was an anonymous

survey and that the results would be published in this thesis. The subjects were asked

a series of questions regarding automated testing in software development, and a few

introduction questions like experience level were included. The table below contains

all the questions and options in our questionnaire.

Questions Options

What is your current occupation / studies? Beginner, Bachelor studies,

Master studies, Professional

developer

What is your experience level with Test Driven Devel-

opement/Design (TDD)?

No experience, Read a book

/ Took a course / Learned

in school, Work experience

0-1 years, Work experience

more than one year

Do you use TDD or other test oriented methodologies

in the project/course you are in now?

Yes, No

When using TDD—or similar techniques—how many

test failures do you usually get within each test run

0-2, 3-4, 5-10, >10

Which test frameworks are you familiar with? JUnit, Cucumber, TestNG,

NUnit, Rspec, JSpec,

JSUnit, PHPUnit, None,

Other

23

CHAPTER 3. LITERATURE RESEARCH

When developing software, how often do you normally

run through your unit tests?

After each implementation,

About once each hour,

Twice a day, Once a day,

Other

How much do you agree to the following statement:

“Waiting for slow test runs is a problem for me”?

Totally disagree, Disagree,

Partially agree, Agree, To-

tally agree

How many times a day do you approximately run

through your unit tests?

<5, 5-10, 11-20, 21-30, >30

How much do you agree to the following statement:

“The test I am interested in is often run last, or late,

in the test suite”?

Totally disagree, Disagree,

Partially agree, Agree, To-

tally agree

If your test suite takes a long time to execute, do you

get something useful done while waiting for test runs to

complete?

Usually not, Yes, Some-

times

What is the worst part(s) of waiting for test runs to

complete?

Context switching, Annoy-

ing, Time consuming, Noth-

ing, Other

Which of the following automated tests would you clas-

sify the slowest to run generally?

Unit test, Integration test,

System test, Don‘t know

Anything else? (optional) Free text area

24

CHAPTER 3. LITERATURE RESEARCH

3.2.4 Distribution

The questionnaire was first distributed using the social network Twitter [49]. By using

a social network as a distribution channel we could not be sure that the subjects were

actually developers that knew of automated software testing. About ten subjects

answered the survey from our initial Twitter distribution.

We then decided to send e-mails to several well-known IT companies in Norway,

asking them to contribute with some developers for our survey. After a short while

we received a total of 172 replies. The companies we know participated, is mentioned

in Acknowledgements.

3.2.5 Results

We found the results from the survey interesting, and they confirmed some of the

assumptions we had regarding automated testing, as well as uncovered some new

aspects of the problem. Most of the assumptions we had regarding automated testing

and its challenges were confirmed by the multiple choice questions in the survey. The

“free-text” question at the end revealed a few elements that we were not aware of.

The results from the multiple choice or check-box questions are presented below:

25

CHAPTER 3. LITERATURE RESEARCH

26

CHAPTER 3. LITERATURE RESEARCH

27

CHAPTER 3. LITERATURE RESEARCH

28

CHAPTER 3. LITERATURE RESEARCH

29

CHAPTER 3. LITERATURE RESEARCH

Free-Text Question

Included in the survey was a field where the participants could insert other issues

regarding automated testing, or the survey. 32 of the subjects used this option, and

a lot of interesting topics were highlighted. A list of all the replies to this question

are shown in Appendices (Section 8.1).

To analyze the replies to the free-text question, we categorized them into nine cate-

gories, to identify the most recurring topics. We then assigned labels to the different

categories (Table 3.2).

Category # Replies Alias

Continuous integration 10 C1

Question formulation 4 C2

TDD downsides 4 C3

Assignment praise 3 C4

Research tip 3 C5

Web test slowness 3 C6

Integration test slowness 2 C7

Test scope separation 2 C8

Test process tip 1 C9

Table 3.2: Free-text question categorization labels.

30

CHAPTER 3. LITERATURE RESEARCH

Figure 3.2: Free-text question categorization.

The category with the most mentions is Continuous Integration (CI). Ten of the

participants who answered the optional free-text questions mentioned CI as a partial

mitigation to the problem we are trying to solve. This finding is further discussed in

Section 6.8.

3.2.6 Lessons Learned

We got some feedback through the free-text question that the question ”How many

times a day do you approximately run through your unit tests?” was ambiguous. A

lot of the subjects wondered if we meant the entire test suite, or tests related to the

code being implemented at the time. We wanted to find out how often a developer

31

CHAPTER 3. LITERATURE RESEARCH

was running any unit test at all. We see that this question could be hard to interpret,

and was not well formulated.

The question ”How many times a day do you approximately run through

your unit tests?” is unclear to me; I run parts of the test suite lots of

times a day, but I only run the entire suite a few times a day. The answer

I gave is how often I run a part of the suite.

- Survey participant

Also, some participants commented that TDD could not be used with tests as slow

as mentioned in the survey. The survey was intended to be focused on automated

software testing and not TDD as a methodology, so this was a small survey design

slip from our side. The heading of the survey was not that well formulated—“Master

thesis survey - Unit Testing & TDD”.

What we should have done was to differentiate on unit, integration and system tests.

Equally to the question “How many times a day do you approximately run through

your unit tests?”, we should ask the same question regarding integration tests and

system tests.

However, we find the survey well enough designed, and it verified some of our earlier

assumptions. We gained knowledge on how the industry treats automated testing,

and how they handle the problems that follow.

Several participants commented these minor issues in the free-text field, and explained

how they interpreted the questions they found unclear. From these comments, we see

that most of the participants understood the questions the way we intended them to;

hence, these issues have not had substantial effect on the survey results.

32

CHAPTER 3. LITERATURE RESEARCH

3.3 Technical Prestudy and Theory

We have studied several technologies as a basis for design decisions in our implementa-

tion of Pritest. The studies are mostly concerned with the effectiveness of algorithms

and the applied programming language; Java, as well as techniques for writing a so-

lution that is prepared for future development and adaptable for new environments

and configurations.

The theory presented in this chapter is mostly conceptual, and cover all the areas

that arose during the pre-study, while Chapter 4 present the actual implementation

of the theory applied to our solution, and contains reasoning for the chosen technolo-

gies.

3.3.1 Effective Java

As Pritest is a tool aiming for rapid feedback to the user, it should have efficient

techniques for prioritizing test cases and be optimized on the programming language

level. There exist several literature studies on how to optimize Java code. “Effective

Java” by Bloch [18]—one of the best known books in this field—contains a total of

78 techniques for writing effective Java, considering both run-time efficiency of code

and development efficiency (number of features implemented per time unit).

The book is intended for experienced Java developers trying to becoming even better

developers, but the techniques are based on fundamental principles, and clarity and

simplicity is especially emphasized by the author. Bloch stress that the book is not

primarily about writing high performance code, but about writing code that is clear,

correct, usable, robust, flexible and maintainable, and if one can do that, it is usu-

ally a relative simple matter to get the performance needed. Figure 3.3 represent a

33

CHAPTER 3. LITERATURE RESEARCH

selection of the techniques presented in the book.

Avoid creating unnecessary objects

Consider implementing Comparable

Minimize the accessibility of classes and members

In public classes, use accessor methods, not public fields

Prefer interfaces to abstract classes

Use interfaces only to define types

Use function objects to represent strategies

Eliminate unchecked warnings

Prefer lists to arrays

Favor generic types

Favor generic methods

Use enums instead of int constants

Consistently use the Override annotation

Design method signatures carefully

Return empty arrays or collections, not nulls

Prefer for-each loops to traditional for loops

Know and use the libraries

Avoid float and double if exact answers is required

Prefer primitive types to boxed primitives

Adhere to generally accepted naming conventions

Avoid unnecessary use of checked exceptions

Favor the use of standard exceptions

Do not ignore exceptions

Use lazy initialization judiciously

Table 3.3: Techniques for writing effective Java.

34

CHAPTER 3. LITERATURE RESEARCH

Other research papers exist on the field of high performance Java code, but these

are mostly concerned with concurrency systems, and systems that require atomic

behavior, like a service intended to handle multiple user requests at the same time.

Such features are not required of Pritest at the moment.

3.3.2 Big-O Analysis Method

Big-O Analysis (O: Order of Magnitude) is a method used to evaluate functional

relationships that arise in all fields of engineering [19]. In computer science it can

be used to evaluate, either the relative speed or the absolute speed of an algorithm.

Relative speed is used to compare two or more algorithms, while the absolute speed

is the actual execution time. Which measure to use depends on the application of the

algorithms, and the goal of the evaluation. The analysis of relative speed is regarded

as the simplest to perform, since absolute speed depends on variables like platform

and hardware.

Big-O evaluate the upper limit of a mathematical function, and is based on the

principle of having a dominant term present in a function of several terms. When

values get large, the dominant term will be sufficient to represent the approximate

value of the original function being evaluated.

35

CHAPTER 3. LITERATURE RESEARCH

Table 3.4 present the most common occurrences of dominant terms in algorithms [19].

The table is ranked according to dominance, with the least dominant term first and

the most dominant term in the bottom of the table.

Dominant Term Name of Dominant Term

c Constant

log2 n Logarithmic

n Linear

n log2 n Linear Logarithmic

n2 < n3 < ... < ni(i < n) Polynomial

cn Exponential

n! Factorial

Table 3.4: Relative dominance of common algorithm complexity terms.

To get a picture of the time complexity of each technique in our solution, we performed

a big-O Analysis in Section 4.7.

3.3.3 Adaptability

In addition to writing efficient Java code, we would like to implement our solution as

adaptable as possible. We found that most of the techniques for achieving adaptability

were through implementation of one or more suitable design patterns. A design

pattern is a programming specific common solution to a well known problem or task

[20].

36

CHAPTER 3. LITERATURE RESEARCH

One way of obtaining adaptability is the use of one or more abstract factory patterns.

The classic example of an abstract factory is painting of operating system specific GUI

elements. The application simply calls a createButton() method in the factory, not

specifying which operating system the application is running on, but depending on

the actual operating system, the factory creates the correct button design. This is

one way of achieving adaptability, and could be used in areas like database access,

database determination and GUI applications. Another example can be seen in Fig-

ure 3.3.

Figure 3.3: Factory pattern example [54].

The use of configuration files is another tactic which enhance both the adaptability

and the modifiability of software [20]. One way of implementing this, is instantiating

the Configuration class in Java, and passing the singleton class PropertiesHolder

as parameter. PropertiesHolder is reading a “.properties” file from the file system,

where the configuration is set.

We discovered one last pattern that was particularly interesting: the strategy pattern.

37

CHAPTER 3. LITERATURE RESEARCH

We were advised to take a look at this pattern by our external supervisor. This pat-

tern is intended to alter the behavior of an application with respect to what context

it is operating in. This is a way to adapt the run-time behavior, and this enables

us to swap between different techniques based on the input at runtime, and select a

strategy for running the tests based on the context. Our implementation is described

in Section 4.1. Figure 3.4 shows a conceptual UML diagram of the strategy pattern.

Figure 3.4: UML diagram - strategy pattern.

3.3.4 Maintainability

Maintainability is “a set of attributes that bear on the effort needed to make specified

modifications” (ISO/IEC 9126-1:2001). The factor consists of four criteria [17]:

• Analyzability, the effort needed to analyze the software, e.g. to identify what

parts to be modified.

• Changeability, the effort needed to change the code in order to attain the desired

effect, e.g. fault removal.

• Stability, the effort needed to modify the code in such a way that the modifica-

tions do not have any unintended side effects.

38

CHAPTER 3. LITERATURE RESEARCH

• Testability, the effort needed to validate modifications.

When software goes from development to production, it needs to be maintained. The

main reasons for this is summarized by Vandegriend [55]:

1. Defect fixing.

2. Changed or new business requirements.

3. Changes to the software execution context.

When researching techniques for building maintainable software, we found that this

is a somewhat subjective matter, and that there is no clear theory on how to obtain

this software quality factor.

One recurring topic is to write readable code [18, 56], Bloch [18] emphasizes the use of

generally accepted naming conventions, and using logical naming of classes, variables

and methods. When designing for maintainability, one of the goals is that developers

should be able to modify code written by others, and this is simplified by adhering

to conventions and standards.

The use of automated testing is a factor to improve modifiability. Automated test

suites does not only serve as a safety net when implementing new features, but also

as a form of documentation for new developers for understanding the work flow and

intentions of the system being tested [56].

39

CHAPTER 3. LITERATURE RESEARCH

Riley has written an article named “The Four Pillars of Maintainable Software”

[61], where he points out the most important factors for writing maintainable soft-

ware.

• Pillar 1: Keep it simple, stupid (KISS1).

• Pillar 2: You ain’t gonna need it.

• Pillar 3: Don’t repeat yourself (DRY2).

• Pillar 4: Stay organized.

Riley describes that maintainability is driven by soft factors—factors that often can-

not be quantified or easily measured. Pillar one of Rileys four pillars urge simplicity.

You should always strive for simplicity to every aspect of your product, from design,

to architecture and implementation.

Pillar two tells us that we should not implement features just in case we should need

them later on. Only what is needed at the moment should be implemented, and with

the least effort possible. One should always ask if the functionality really is needed

for the application to perform its tasks properly.

The next pillar emphasizes the use of design patterns and recommends refactoring of

repeated tasks in the program. And finally, pillar four says stay organized. Organiza-

tion should be in all parts of the project, both in processes and code structure.

Code Smell was a term introduced in an essay by Beck and Fowler published as chap-

ter 3 in the book “Refactoring: Improving the Design of Existing Code” [27]. Deciding

1The acronym was first coined by Kelly Johnson.
2The principle has been formulated by Andy Hunt and Dave Thomas in their book “The Prag-

matic Programmer” [30].

40

CHAPTER 3. LITERATURE RESEARCH

whether or not code falls into this category is, however, a subjective matter depending

on the developer, programming language and development methodology.

A quick reference guide to “code smells” was developed by Industrial Logic [57].

Reducing “code smell” increase readability and thereby maintainability. The “code

smells” we have focused on when developing our solution is summarized in Table

3.5.

Code Smell Mitigation

Long Method : Fowler and Beck means that short

methods are superior to large methods, and have

some reasons for this. The most important one is

sharing of logic. Two long methods may contain

duplicated code, and by dividing methods into de-

fined areas of responsibility, and keeping this re-

sponsibility at a minimum, duplications may be

mitigated.

Extract method, compose

method, introduce parame-

ter object.

Large Class : Too many instance variables, often

indicate that a class is trying to do too much, and

in general too large classes contain too much re-

sponsibilities

Extract class, extract sub-

class, extract interface.

Comments : Comments are described by Fowler

and Beck as used to cover existing “smell”, and

they advice trying to rename variables, classes and

methods to make comments superfluous.

Rename method, extract

method, introduce asser-

tion.

Table 3.5: Code Smells and mitigations.

41

CHAPTER 3. LITERATURE RESEARCH

When we were developing our solution, we put a lot of effort into making the code as

readable and understandable as possible. This meant that we avoided writing com-

ments as much as possible, and would rather extract the unreadable code and place

it in a method with a descriptive name. Consider Listing 3.1:

1 i f (c l a s s e s I n P r o j e c t . get (v a r i a b l e . getType ()) != n u l l) {

2 . . .

3 }

Listing 3.1: Code smell example.

It is not immediately clear what the if expression means. However, if we extract a

method, like in Listing 3.2, the if expression becomes more comprehensible.

1 i f (i s C l a s s I n P r o j e c t (v a r i a b l e)) {

2 . . .

3 }

4 . . .

5 p r i v a t e boolean i s C l a s s I n P r o j e c t (ReferenceType v a r i a b l e) {

6 re turn c l a s s e s I n P r o j e c t . get (v a r i a b l e . getType ()) != n u l l ;

7 }

Listing 3.2: Code smell mitigated.

The alternative to using method names for making the code readable is using com-

ments. We also made an effort of keeping the number of Long Methods and Large

Classes to a bare minimum.

42

CHAPTER 3. LITERATURE RESEARCH

3.3.5 Software and Testing

We have previously stated that our thesis has a special emphasis on unit tests, but

what about all the other types of tests? It is normal to separate software tests with

respect to the scope of the test. On the lowest level—and closest to implementation—

we find the unit tests. The V-Model [24] of software development divides tests into

development tests, system tests and acceptance tests.

Figure 3.5: The V-Model of software testing.

The unit and integration tests (development tests) are the tests closest to the devel-

oper, and is normally written by the developer during implementation. These are also

commonly fully automated. The focus of this thesis is on unit and integration tests,

partially because system and acceptance tests are not always fully automated, and

partially because such tests are not always performed by the developer itself. Pritest

43

CHAPTER 3. LITERATURE RESEARCH

is a tool for the developer to use during development. When using agile development

methodologies, the V-Model can be applied for each iteration of development, but

normally only using the development test phase; unit and integration tests [24].

In the specialization project we decided to use the frameworks JUnit for unit testing

and Cucumber for integration testing [1]. We found that the next version of Cucum-

ber would comply with JUnit, so we only needed to make support for JUnit in our

solution—Pritest, and integration tests written in Cucumber will automatically be

supported in the next update of Cucumber. We also found that integration tests are

often written in JUnit as well, and Cucumber is often used for writing automated

system and acceptance tests [25]. Thus, Pritest would support most of the V-Model

test scopes with the next update of Cucumber.

From the survey (Section 3.2) we see that integration testing is generally more time

consuming than unit testing. The reason for this is that integration tests test inter-

action between modules and systems, and normally include establishing connections

between components. However, we conducted a small benchmark case study on this

field as well. We collected a few open source projects (Table 3.6) containing a lot

of unit tests, and compared the average test run time to the integration tests in our

pritest-server module. To see a general tendency of time consumption of the two test

scopes, we simply calculated the average run time value of all the unit tests, and the

average run time value of our integration tests. Table 3.6 present the projects we

found to represent the unit tests.

44

CHAPTER 3. LITERATURE RESEARCH

Project Name Number of Unit Tests Run Time

apache-commons-codec 380 9 seconds

apache-commons-lang3 1850 20 seconds

maven-core 236 48 seconds

Total Tests 2466 77 seconds

Average test run time 0.03 seconds

Table 3.6: Unit test benchmark projects.

In pritest-server we only have a total of three integration tests. They ran in a total

of 11 seconds, resulting in an average test run time of 3.66 seconds.

Unit tests Integration tests

0.03 seconds 3.66 seconds

Table 3.7: Unit test vs. integration test run time.

Based on this we believe that the average run time for an integration test is substan-

tially larger than for a unit test, as suspected. We selected several types of projects

when collecting our sets of unit tests, but the results should not be generalized from

this comparison. Still, it seems to be well known among software developers that

integration tests take longer time to run than unit tests, but it is not always a clear

distinction between the two test types.

45

CHAPTER 3. LITERATURE RESEARCH

3.3.6 Java Source Code Analysis

To be able to implement techniques such as total and additional function coverage,

we need to have a library capable of analyzing code. The specific requirements are as

follows: isolating the individual classes and their member methods and fields, finding

references for each method and method calls to other classes implemented in the

development project of study. We have looked at the following tools:

Byte Code Engineering Library (BCEL)

BCEL is a library for static code analysis, and dynamic creation and manipulation of

java byte code [50]. Since BCEL uses byte code in its analysis of code, the source code

must be compiled first. The library can parse java class files and retrieve methods

and fields; however, BCEL is seemingly unable to give information about method

calls within the member methods of a class. Therefore, BCEL is not suitable for the

function coverage techniques.

Eclipses ASTParser

Eclipse’s ASTParser class is used by the Eclipse IDE to generate abstract syntax

trees (AST) from java source code [51]. These ASTs are used by Eclipse to provide

functionality such as code completion and syntax highlighting. The ASTParser is

found in the package org.eclipse.jdt.core.dom.

To give developers the possibility of adding functionality to the parser, ASTParser

implements the visitor pattern (Figure 3.6). The visitor pattern is a behavioral de-

sign pattern—like the strategy pattern. The library exposes a set of visit methods

46

CHAPTER 3. LITERATURE RESEARCH

which are triggered at certain points throughout the parsing of a class: e.g. there

are one visit method that is triggered at each class declaration, and one that is trig-

gered at each method call. Developers can then add functionality by implementing

a subclass of a visitor and overriding the desired visit methods. Objects that require

extendable behavior can then be given an implemented visitor via the accept method.

Figure 3.6: The visitor pattern.

The drawback of the Eclipse ASTParser is that it can only be used within an Eclipse

plugin. Since our solution is not an Eclipse plugin, ASTParser cannot be em-

ployed.

47

CHAPTER 3. LITERATURE RESEARCH

JavaParser

The JavaParser is a parser with similar capabilities as the Eclipse ASTParser; that

is, AST generation and visitor support [52]. The project is licensed under the LGPL

license, and is maintained by Júlio Vilmar Gesser.

According to the project homepage, the main features of JavaParser are that it:

1. is light-weight,

2. has good performance,

3. is easy to use,

4. can modify and build ASTs from scratch.

The three first points are of special importance to us, as the technique using the

parser must be quick so as not to offset the gain we get by prioritizing the test cases.

The fact that our thesis project is operating on a limited time span also makes it all

the more important that the libraries and frameworks we use are easy to use.

3.3.7 Java Git Libraries

In the specialization project [1], we identified an area of improvement regarding tech-

nique Code Changes (Section 4.3.2) for retrieving prioritization lists. Technique Code

Changes is concerned with using the version control system GitHub [37] for priori-

tizing the test cases to be run. GitHub sends a message to Pritest after receiving a

push commit from a developer, whereas Pritest records this, and the technique Code

Changes uses these recordings to run the most recently edited classes’ tests first.

48

CHAPTER 3. LITERATURE RESEARCH

However, in most cases there will exist some local classes that Pritest already know

about, that have been edited, but not yet committed—thus Pritest does not know

that they have been edited yet. This is handled by a new technique called Local Code

Changes (Section 4.4.1).

To be able to implement this feature, we needed a Java Library for detecting the al-

tered classes locally by using the equivalent command to git status. This command

returns a list of files that is ready to be committed (the files that have been edited

and added). We found only one Java Library for this task: JGit [53]. The figure

below present all the common git commands that is available in this Java library.

Figure 3.7: Supported commands by JGit library

Note that this illustration displays the features supported by version 0.9, and that

the library is now at version 0.12.1 (May 18th 2011). No diagram was found for the

present version of the library, but nevertheless the git status command—which we

49

CHAPTER 3. LITERATURE RESEARCH

will need—is supported in both versions. Since this was the only library we found for

git support in Java, and it supported the simple operation we needed, we chose this

one for further implementation of the technique.

50

Chapter 4

Own Contribution

The resulting product from this thesis and the previous specialization project is a

system called Pritest. Pritest is a tool that provides recording of test runs and code

changes for a project under development, analysis of recorded data, and generation

of prioritized lists of test cases. As developers are about to run the project’s tests,

the Pritest JUnit runner contacts Pritest server to retrieve the list of tests ranked

according to their likelihood of failing. The solution uses several techniques for calcu-

lating the prioritized lists. These are evaluated in Chapter 5. The plugin can also be

run in offline mode, without using the Pritest server, rather using local prioritization

techniques like Local Code Changes, Total Method Coverage and Additional Method

Coverage. A big-O analysis will be performed on the techniques in Section 4.7.

51

CHAPTER 4. OWN CONTRIBUTION

Figure 4.1: Overview of Pritest.

Figure 4.1 displays the overall architecture of Pritest and its modules. pritest-server

is the online service of Pritest, and is responsible for retrieving reports from a lo-

cal project and sending prioritized lists to requesters. The pritest-junit-runner is a

Maven [38] plugin to be used in local Maven projects on a developer’s computer when

developing software. The runner is responsible for running the project’s tests. Before

this, it contacts the pritest-server to get the list of prioritized tests, and afterwards

it sends a report from the test run to pritest-server.

A lot of time was spent developing the tool, and designing our prioritization tech-

niques. To illustrate this, we have summarized some properties of the Pritest modules

we developed in Table 4.1. All the metrics in the table are based on source code, ex-

cluding comments and test code such as unit and integration tests written while

developing the modules.

52

CHAPTER 4. OWN CONTRIBUTION

pritest-server pritest-core pritest-junit-runner

SLOC (Source Lines Of CodFiguree) 795 516 1847

Packages 4 2 8

Classes 20 10 46

Methods 56 112 145

Table 4.1: Pritest modules properties.

Another part of the Pritest architecture is the use of the online version control host

Github [37], which is required by the prioritization technique Code Changes. The de-

veloper can configure his Github account to forward a “post-receive-hook” to a Pritest

server after code has been pushed to the repository. The information is sent in the

JSON format [42] to Pritest, and stored for future use. In addition, we implemented

some local test prioritization techniques (Section 4.4) that construct prioritization

lists directly in our pritest-junit-runner (the plugin).

53

CHAPTER 4. OWN CONTRIBUTION

4.1 The Pritest Tool

The main concepts of Pritest were partially implemented during the specialization

project, and the system was further improved during our work with the master the-

sis. Several areas of improvement were identified in retrospect of the specialization

project, and the improvements are described in detail in this chapter. For a full view

of the Pritest architecture, technology and reasoning behind the applied technology,

we refer to the specialization project report [1]. Table 4.2 present the chosen tech-

nologies for the different areas of our application.

Area Chosen Technology

Programming Language Java [39]

Build Server Hudson [40]

Project Management Tool Maven [38]

Web Server and Web Service Jersey [41]

XML and JSON Parsing JAXB [42]

Analytics and Statistics Sonar [43]

Issue Tracking Github [37]

Version Control Git [44]

Test Frameworks JUnit and Cucumber [45], [46]

Storage MongoDB [47]

Table 4.2: Overview of applied technology.

Some low-level improvements have been done this semester, most of them regarding

Java implementations, and improvements of the Pritest code. The improvements are

based on the post-mortem analysis from the last report, and from the research chapter

in this thesis. One improvement is the use of dependency injection. We made use of

54

CHAPTER 4. OWN CONTRIBUTION

the PropertiesHolder class and the Configuration class in Java. By instantiating

the Configuration class and passing a PropertiesHolder object as parameter, we

set the configuration in a file that is read by PropertiesHolder at instantiation.

1 p r i v a t e Proper t i e sHo lde r () {

2 t ry {

3 Fi leInputStream inStream = new Fi leInputStream (” . / p r i t e s t .

p r o p e r t i e s ”) ;

4 p r o p e r t i e s = new P r o p e r t i e s () ;

5 p r o p e r t i e s . load (inStream) ;

6 inStream . c l o s e () ;

7 } catch (FileNotFoundException e) {

8 e . pr intStackTrace () ;

9 } catch (IOException e) {

10 e . pr intStackTrace () ;

11 }

12 }

Listing 4.1: The constructor of the PropertiesHolder class.

Listing 4.1 shows the implementation of the PropertiesHolder constructor. As we

can see, the file “pritest.properties” is read, and used as a configuration file.

1 pub l i c s t a t i c Proper t i e sHo lde r ge t In s tance () {

2 i f (i n s t ance == n u l l) {

3 i n s t anc e = new Proper t i e sHo lde r () ;

4 }

5 re turn in s t anc e ;

6 }

Listing 4.2: The getInstance method of PropertiesHolder.

The object of PropertiesHolder is a singleton object, and the implementation in

55

CHAPTER 4. OWN CONTRIBUTION

Listing 4.1 assures that only one object of the class is made.

Listing 4.3 shows how the configuration is used in practice. The example is from

the instantiation of a Mongo Database [47], based on the information found in the

instance of the PropertiesHolder.

1 p r i v a t e MongoDBProvider () throws MongoException , UnknownHostException {

2 Conf igurat ion c o n f i g = new Conf igurat ion (Proper t i e sHo lde r .

g e t In s tance ()) ;

3 Mongo mongo = new Mongo(c o n f i g . getDatabaseURL () , c o n f i g .

getDatabasePort ()) ;

4 db = mongo . getDB(c o n f i g . getDatabaseName ()) ;

5 }

Listing 4.3: Using the configuration file.

As an improvement we also decided to write a new custom JUnit Runner module

that works as a plugin to a Maven project. We called our new runner pritest-junit-

runner. The runner we used in the specialization project was somewhat inefficient

and bloated with a lot of unnecessary code re-used from the surefire-maven plugin

[48]. As a comparison the old runner module contained 1337 source lines of code

(SLOC), while the new runner contains 294 SLOC1. The results from a benchmark

study of the new runner compared to the old one is discussed in Section 6.7.

The new runner is also improved by implementing the strategy pattern (Section 3.3.3).

This pattern consist of an online strategy, and an offline strategy. The prioritization

lists generated by the pritest-junit-runner will depend on the internet connection and

the connection to Pritest.

1Source code lines of the actual runner, excluded the implementation of the local prioritization

techniques located in this module.

56

CHAPTER 4. OWN CONTRIBUTION

The new runner localizes the folder where the unit tests are placed in a Maven project,

and checks if the classes in that folder actually are JUnit-4 test cases. This is done

by looking through the classes for the presence of the @Test annotation, using the

method isAnnotationPresent2 which takes an annotation as argument. All test

cases in Junit-4 contain the annotation @Test before each test method.

The runner also detect test cases where the annotation @RunWith is present. This

annotation indicates that this test case should be run with another custom JUnit

runner, and it is therefore excluded from our further prioritization evaluation. Ide-

ally, our runner should have a spawn mechanism for the results from this test case,

and measures should be recorded for future prioritization of such test cases. This

improvement is described in Section 7.2.

The tests are organized by our custom runner. The classes that exist locally, but are

not found by the runner on the pritest-server are placed first in the list3 (Figure 4.2).

The reason for this is that these classes are probably newly created (since Pritest

server does not know of them yet), and are most likely to fail.

Figure 4.2: Priority List.

2Present in the java.lang.reflect.Method class.
3This applies only for our online techniques (Section 4.3).

57

CHAPTER 4. OWN CONTRIBUTION

However, we do not fully know that local test cases are the ones most likely to fail.

It could be possible to maintain a local database of test cases that are sent to Pritest

in advance of a test run, and is equally evaluated on pritest-server to be merged

with the test cases present in pritest-server. This idea is further discussed in Section

6.4.

Figure 4.3 illustrates the classes in the new custom Junit Runner implementation.

Figure 4.3: UML Class diagram of the new pritest-junit-runner.

58

CHAPTER 4. OWN CONTRIBUTION

To obtain a maintainable solution we applied principles both from “The Four Pillars of

Maintainable Software” [61], and “Clean Code: A Handbook of Agile Software Crafts-

manship” by Martin [26]. He introduced principles such as good naming conventions

regarding classes, interfaces, methods and variables, following policy throughout the

entire project, organizing modules in a logical manner, keeping it simple and not

implementing features “just in case” we may need them later. Our representation of

maintainability relies a lot on the readability of our code. Also the configuration file

patterns presented previously is part of our effort to attaining maintainability. We

developed and applied the maintainability policy described below:

• Naming conventions:

Classes must start with an upper-case letter, and by camel-casing4 every new

word in the method name. Naming classes to tell what they do is important.

Methods must start with a lower-case letter, and by camel-casing every new

word in the method name. The method names should be descriptive, and tell

what they do.

Variables must start with a lower-case letter, and by camel-casing every new

word in the variable name. The variable name must be descriptive enough to

tell what the variable actually holds.

Examples: TotalMethodCoverage.java, getPriorityList(), getMeasureListAsXML(),

fileName, listToAddStringTo.

4Also known as medial capitals - the practice of joining words in phrases without spaces, but

with the initial letter of each element capitalized. E.g. thisTextIsCamelCased.

59

CHAPTER 4. OWN CONTRIBUTION

• Keeping it organized:

One important factor for high maintainability is to keep the project organized,

both on a process level and code level. By dividing our classes and imple-

mentation into logically named packages, we improved the organization of the

code.

Example:

Figure 4.4: Organization of packages in our pritest-junit-runner.

• Unit testing conventions:

To address our goal concerning maintainability, we decided that the words of the

test case names should be separated with underscores instead of using capital

letters. This was a tip we got from our external supervisor in order to write

readable unit tests. This is merely a matter of taste, but based on our own

experience, this makes test method signatures more readable.

60

CHAPTER 4. OWN CONTRIBUTION

Example:

should support test cases not covering any methods() instead of

shouldSupportTestCasesNotCoveringAnyMethods()

We use standard JUnit4 naming conventions concerning annotation.

61

CHAPTER 4. OWN CONTRIBUTION

4.2 Implementing our Prioritization Techniques

In this section, we will present all the techniques implemented for prioritizing test

cases. Most of the techniques are designed by us (Table 4.3). In addition—based on

research (Section 3.1)—we implemented two techniques designed by Rothermel et al.

(Total Method Coverage 4.4.3 and Additional Method Coverage 4.4.2). We will run

an experiment to compare the techniques (Chapter 5).

We also developed a set of control techniques (Section 4.6), to be used in the experi-

ment. These prioritize the test cases in original, random and optimal order.

Our techniques Techniques designed by others

Counting Failing Tests Total Method Coverage

Code Changes Additional Method Coverage

Local Code Changes

Local Code Changes with Failure Counting

Table 4.3: Techniques summary.

For choosing the design of our prioritization techniques, we performed several brain

storming meetings and discussions, with the intention of inventing concepts for high

precision techniques. The discussions and decisions were based on our own experi-

ence, the industrial survey conducted in Section 3.2 and with help from our external

supervisor.

62

CHAPTER 4. OWN CONTRIBUTION

4.3 Online Prioritization Techniques

4.3.1 Counting Failing Tests

This technique was added to Pritest because of its simplicity. The rationale is that a

quick technique giving suboptimal prioritizations can be better than a slow technique

giving optimal prioritizations.

The Algorithm

With this technique, test cases are prioritized descendingly by the number of test

failures they have caused in the past (Procedure 1).

Procedure 1 Prioritize based on number of failures
Input: A list of test cases ti in T , a list of the numbers of failures for each test case

fi in F

Output: A list of prioritized test cases T ′

An empty PriorityQueue pq

An empty list of test cases T ′

T ′ ← null

for ti ∈ T do

pq.insertWithPriority(ti, fi)

end for

while pq is not empty do

t← pq.pullHighestPriority()

T ′.insert(t)

end while

return T ′

63

CHAPTER 4. OWN CONTRIBUTION

The Implementation

As this technique must store the number of test failures for each test case over time,

some sort of persistence is needed. Currently we only support MongoDB [47], but

adding support for other types is made easy by using the factory pattern.

The implementation of the technique itself can be seen in Figure 4.7 below.

1 pub l i c c l a s s TestOrderResource {

2 . . .

3 p r i v a t e Lis t<Str ing> method1 () {

4 TestDataDAO tdDAO = DAOFactory . getDatabase () . getTestDataDAO () ;

5 List<TestData> t e s t s = tdDAO. g e t L i s t () ;

6 C o l l e c t i o n s . s o r t (t e s t s) ;

7

8 List<Str ing> testNames = new ArrayList<Str ing >() ;

9 f o r (TestData t e s t : t e s t s) {

10 testNames . add (t e s t . getClassName ()) ;

11 }

12

13 re turn testNames ;

14 }

15 . . .

16 }

Listing 4.4: The technique Counting Failing Tests.

All sorting is done by the method sort(List list) in the utility class Collections

found in the standard Java library. This requires that the sorted objects implement

the Comparable interface, as shown in Listing 4.7.

64

CHAPTER 4. OWN CONTRIBUTION

1 pub l i c c l a s s TestData implements Comparable<TestData> {

2 p r i v a t e St r ing className ;

3 p r i v a t e i n t f a i l s ;

4

5 . . .

6 // Constructors , g e t t e r s and s e t t e r s

7

8 @Override

9 pub l i c i n t compareTo (TestData arg) {

10 re turn t h i s . f a i l s − arg . g e t F a i l s () ;

11 }

12 }

Listing 4.5: The TestData class.

A reporting mechanism is also necessary, since the results from the test run must

be stored for future use. This is done by sending a HTTP POST [59] to the Pritest

server with the results formatted as XML [60]. Upon receival, the results are used to

update the database.

1 @Path(”/measure”)

2 pub l i c c l a s s MeasureResource {

3 @POST

4 @Consumes({ ” a p p l i c a t i o n /xml” })

5 pub l i c Response post (MeasureList measures) {

6 . . .

7 re turn Response . ok () . bu i ld () ;

8 }

9 }

Listing 4.6: The MeasureResource REST interface.

65

CHAPTER 4. OWN CONTRIBUTION

4.3.2 Code Changes

This technique utilizes data about changes made to the code base when prioritizing

test cases. A corollary of this is that code change data should be available for every

test case for this technique to function properly. This again means that the technique

might give better results when being used from the beginning of a project, than if it

is introduced in the later stages of the project’s lifecycle (Section 5.4.7).

The Algorithm

As can be seen in the algorithm below (Procedure 2), this technique takes as its in-

put a set of test cases and data about when they last were affected by a change, and

then prioritizes them descendingly by the date of the change. By being affected by

a change we mean that it does not matter whether it is the test case itself that is

changed, or the class being tested by it.

Procedure 2 Prioritization algorithm based on code changes.

Input: A list of test cases ti in T , a list of the most recent code changes ci in C for

each class

Output: A list of prioritized test cases T ′

An empty list of test cases T ′

C ′ ← sortedDescendinglyByDate(C)

for c′
i ∈ C ′ do

T ′.insert(ti)

end for

return T ′

66

CHAPTER 4. OWN CONTRIBUTION

The Implementation

Like the Counting Failing Tests technique in Section 4.3.1, this one requires a database,

this time for storing the time and date a test case was last affected by a change. The

prioritization can be seen in Listing 4.7.

1 pub l i c c l a s s TestOrderResource {

2 . . .

3 p r i v a t e Lis t<Str ing> method3 () {

4 ChangeDataDAO cdDAO = DAOFactory . getDatabase () . getChangeDataDAO () ;

5 List<ChangeData> changes = cdDAO. g e t L i s t () ;

6 C o l l e c t i o n s . s o r t (changes) ;

7

8 List<Str ing> testNames = new ArrayList<Str ing >() ;

9 f o r (ChangeData change : changes) {

10 testNames . add (change . getSource ()) ;

11 }

12

13 re turn testNames ;

14 }

15 }

Listing 4.7: The Code Changes technique.

This technique also implements the Comparable interface to make it easier to sort

the test cases (Listing 4.8).

67

CHAPTER 4. OWN CONTRIBUTION

1 pub l i c c l a s s ChangeData implements Comparable<ChangeData> {

2 p r i v a t e St r ing source ;

3 p r i v a t e Date lastChange ;

4

5 . . .

6 // Constructors , g e t t e r s and s e t t e r s

7

8 @Override

9 pub l i c i n t compareTo (ChangeData arg) {

10 re turn lastChange . compareTo (arg . getLastChange ()) ;

11 }

12 }

Listing 4.8: The ChangeData class.

In this case, the reporting must be done by the version control system, and a report

must be sent every time someone commits source code to the central repository. With

Git, this can be done with a post-receive hook 5. The git push command sends local

changes to a remote repository. GitHub provides its own post-receive hook, which

given a URL sends information about the push to the specified destination. GitHub is

an online service that provides public Git repositories for free, and private repositories

for a fee. The information sent by the hook includes lists of added, removed and modi-

fied files. Upon receival this information is converted to a Change object (Listing 4.9).

5A post-receive hook is a little program that is triggered each time someone pushes code to the

remote repository.

68

CHAPTER 4. OWN CONTRIBUTION

1 pub l i c c l a s s Change {

2 pub l i c S t r ing a f t e r ;

3 pub l i c S t r ing be f o r e ;

4 pub l i c no . c i t r u s . r e s t a p i . model . Repos i tory r e p o s i t o r y ;

5 pub l i c S t r ing r e f ;

6 pub l i c S t r ing compare ;

7 pub l i c boolean f o r c ed ;

8 pub l i c Pusher pusher ;

9 pub l i c L i s t<Commit> commits ;

10 // . . . Constructors , g e t t e r s and s e t t e r s

11 }

Listing 4.9: The Change class.

Each Change consists of—among other things—a list of the commits made by the

developer (Listing 4.10).

1 pub l i c c l a s s Commit {

2 pub l i c L i s t<Str ing> added ;

3 pub l i c S t r ing id ;

4 pub l i c S t r ing message ;

5 pub l i c L i s t<Str ing> modi f i ed ;

6 pub l i c L i s t<Str ing> removed ;

7 pub l i c Date timestamp ;

8 pub l i c S t r ing u r l ;

9 pub l i c Author author ;

10 // . . . Constructors , g e t t e r s and s e t t e r s

11 }

Listing 4.10: The Commit class.

A Commit object has lists of the removed, added and modified files.

69

CHAPTER 4. OWN CONTRIBUTION

4.4 Local Prioritization Techniques

4.4.1 Local Code Changes

Figure 4.5: Using the git status command in a bash command.

Figure 4.5 shows a typical result of a git status command. We implemented a

technique for running the test cases of the most recent modified and untracked (not yet

committed) classes. This was implemented using the JGit [53] library as mentioned

in the research (Chapter 3).

The idea is to make a list of three sequential parts: untracked classes, modified classes

and all the local test cases in the project. The untracked classes are placed first in

the final prioritization list, then the modified classes, and at the end all the remaining

local test cases that have not yet been added to the list. The process is visualized

in Figure 4.6. Thus, this is our first technique that does not require contact with

Pritest. It runs locally just using the pritest-junit-runner as a plugin to Maven.

70

CHAPTER 4. OWN CONTRIBUTION

Figure 4.6: Technique Local Code Changes prioritization list selection process.

71

CHAPTER 4. OWN CONTRIBUTION

The Algorithm

Procedure 3 addTestCaseToList(c, L)

Input: A class c, a list of test cases L

Output: A list of test cases L

if c is a test case then

L.add(c)

else

t← test case testing c

if t 6= null then

L.add(t)

end if

end if

return L

72

CHAPTER 4. OWN CONTRIBUTION

Procedure 4 Prioritize based on local changes

Input: A list of classes C

Output: A list of prioritized test cases T ′

An empty list of test cases T ′

An empty list of untracked test cases U

An empty list of modified test cases M

An empty list of unchanged test cases R

for ci ∈ C do

if ci has not yet been added to the remote repository then

U ←addTestCaseToList(c, U)

else if ci has been modified then

M ←addTestCaseToList(c, M)

else

R←addTestCaseToList(c, R)

end if

end for

T ′.append(U)

T ′.append(M)

T ′.append(R)

return T ′

The Implementation

The implementation of this technique will currently only support Git [44]; though

ideally it should be version control system agnostic. It should not care whether it

is Git, SVN or any other version control system. Every call to JGit is made in

the method callGitStatus(). JGit starts by finding the local Git repository, and

proceeds by retrieving the status. This status contains, among other things, one list

73

CHAPTER 4. OWN CONTRIBUTION

for untracked files and one for modified files. Both of these lists are then traversed, and

their content added to a list of test cases, assuming they are Java classes. If they are

not test cases, “Test” is appended to the class name. We do this as many developers

name their test cases like this: “[class name]Test.java”, where “class name” is the

name of the class being tested by the given test case. If no test case with that name

is found, it will be ignored when running the test cases in the list. The remaining test

cases unaffected by any change, are added to the list by iterating through all local test

cases, and adding them if they are not already added as untracked or modified.

The direct mapping from class name to test case by simply adding “Test” at the end,

is a potential shortcoming to the implementation of this technique. In some cases,

altered classes would have an effect on test cases that are not directly coupled to the

class itself, and then this technique would perform poorly. An improvement to this

is discussed in Section 6.4.3.

1 pub l i c c l a s s Technique4Ranker {

2

3 p r i v a t e Lis t<Str ing> l o c a l T e s t C l a s s e s = new ArrayList<Str ing >() ;

4 p r i v a t e F i l e ba s ed i r ;

5

6 // Constructor

7

8 pub l i c L i s t<Str ing> ge tTechn ique4Pr i o r i t yL i s t () throws

NoWorkTreeException , IOException {

9 List<Str ing> g i t S t a t u s L i s t = new ArrayList<Str ing >() ;

10 g i t S t a t u s L i s t = c a l l G i t S t a t u s () ;

11 List<Str ing> f i n a l L i s t = new ArrayList<Str ing >() ;

12

13 f i n a l L i s t . addAll (g i t S t a t u s L i s t) ;

14

15 f o r (S t r ing l o c a l T e s t C l a s s : l o c a l T e s t C l a s s e s) {

74

CHAPTER 4. OWN CONTRIBUTION

16 i f (! f i n a l L i s t . conta in s (l o c a l T e s t C l a s s)) {

17 f i n a l L i s t . add (l o c a l T e s t C l a s s) ;

18 }

19 }

20 re turn f i n a l L i s t ;

21 }

22

23 pub l i c L i s t<Str ing> c a l l G i t S t a t u s () throws NoWorkTreeException ,

IOException {

24 List<Str ing> g i t S t a t u s L i s t = new ArrayList<Str ing >() ;

25

26 F i l e repoPath = new F i l e (ba s ed i r . getAbsolutePath () + ” / . g i t ”) ;

27 Repos i to ryBui lder repoBui lder = new Repos i to ryBui lder () ;

28 Repos i tory repo = repoBui lder . s e tGi tDi r (repoPath) . bu i ld () ;

29 Git g i t = new Git (repo) ;

30 Status s t a t u s = g i t . s t a t u s () . c a l l () ;

31

32 f o r (S t r ing untrackedFi l e : s t a t u s . getUntracked ()) {

33 addI f JavaSu f f i x (untrackedFi le , g i t S t a t u s L i s t) ;

34 }

35 f o r (S t r ing mod i f i e dF i l e : s t a t u s . getModi f i ed ()) {

36 addI f JavaSu f f i x (mod i f i edF i l e , g i t S t a t u s L i s t) ;

37 }

38 re turn g i t S t a t u s L i s t ;

39 }

40

41 p r i v a t e boolean addI f JavaSu f f i x (S t r ing fi leName , Lis t<Str ing>

l i stToAddStringTo) {

42 // Adds the f i l e to the l i s t i f i t i s a java f i l e ,

43 // appends ”Test ” i f i t i s not a t e s t case

44 }

45 }

Listing 4.11: The Technique4Ranker class; prioritization based on local changes.

75

CHAPTER 4. OWN CONTRIBUTION

The technique can be called like this, as in the PriorityList2 class:

1 pub l i c c l a s s P r i o r i t y L i s t 2 {

2 . . .

3 p r i v a t e Lis t<Str ing> t echn ique4Strategy (Lis t<Str ing> l o c a l T e s t C l a s s e s)

throws NoWorkTreeException , IOException {

4 Technique4Ranker t4 = new Technique4Ranker (l o c a l T e s t C l a s s e s , t h i s .

baseDir) ;

5 re turn t4 . g e tTechn ique4Pr i o r i t yL i s t () ;

6 }

7 . . .

8 }

Listing 4.12: Calling the technique.

4.4.2 Additional Method Coverage

According to Rothermel et al., techniques using feedback tend to give the best re-

sults more often than other techniques [13]. Additionally, they argue that techniques

having a low-level granularity, such as statement coverage, tend to be more efficient.

However, implementing techniques operating at a low level will probably require more

code-writing, and we will therefore focus on high-level techniques, such as Additional

Method Coverage.

76

CHAPTER 4. OWN CONTRIBUTION

The Algorithm

Additional Method Coverage iteratively selects the test case that covers the most

methods that have not yet been covered. If every statement have been covered by

a test case and there are still test cases to prioritize, all statements are set to “not

covered”, and then covered by calling additionalMethodCoverage recursively with the

same statements and the remaining test cases.

Procedure 5 Prioritize based on Additional Method Coverage

Input: A list of test cases T , a list of possible methods M

Output: A list of prioritized test cases T ′

An empty list of test cases T ′

while T is not empty and every method in S is not yet covered do

t← testCaseCoveringTheMostMethods(T , M)

T ′.insert(t)

M ← markCoveredMethodsAsCovered(T ′, M)

end while

if Every method in M is covered and T is not empty then

set every method in M as not covered

T ′ ← additionalMethodCoverage(T ′, M)

end if

return T ′

An example of Additional Method Coverage being used on a test suite is shown below

(Figure 4.7). The test suite has 3 test cases and 7 methods. First, test case A will

be chosen, as it covers 4 methods versus B ’s 3 and C ’s 2. Those 4 methods are then

marked as “covered”, which leaves B with 1 method. Secondly, C is selected, and

then lastly, B is selected.

77

CHAPTER 4. OWN CONTRIBUTION

Figure 4.7: Additional Method Coverage illustration

78

CHAPTER 4. OWN CONTRIBUTION

The Implementation

Before the technique can be executed, the source code must be analyzed. That is,

each test case must be associated with a set of covered methods. Since we are mainly

interested in methods declared in the development project we are currently testing,

calls to methods belonging to standard or third party libraries will not be included.

The reason for this is that these libraries most likely will have their own test suites,

and therefore will be tested separately.

This analysis process is divided into three successive steps:

1. Finding each class (and test case) in the project, along with their field variables

and method declarations.

2. For each of the classes discovered in the previous step, and for each of their

declared methods: find calls to the methods belonging to this project within

that method.

3. For each test case in the project, recursively find the set of methods covered by

that test case. E.g. if test case A covers method a(), and a() covers b(), then

A covers both a() and b().

The data collected by these three steps are used both by this technique, and Total

Method Coverage (Section 4.4.3).

The source code of Total and Additional Method Coverage is located in the package

no.pritest.localprioritization, with the visitors in no.pritest.localprioritiz-

ation.visitor, model classes in no.pritest.localprioritization.model and al-

gorithms in no.pritest.localprioritization.algorithm. The visitors are used in

step 1 and 2 to extract data from the source code being tested, such as: method calls,

79

CHAPTER 4. OWN CONTRIBUTION

method declarations, variables and class declarations. no.pritest.localprioritiz-

ation.algorithm contains the actual techniques: Total Method Coverage and Ad-

ditional Method Coverage, contained in the class MethodCoverageAlgorithm. The

algorithms in this class have been decoupled from the visitor classes, which requires

I/O, to make them more testable and modifiable.

1 pub l i c c l a s s MethodCoverageAlgorithm {

2 . . .

3 pub l i c s t a t i c L i s t<SummarizedTestCase> addit ionalMethodCoverage (

4 Map<Str ing , ClassCover> testSuiteMethodCoverage ,

5 Map<Str ing , ClassCover> sourceMethodCoverage) {

6 List<SummarizedTestCase> p r i o r i t i z e d T e s t C a s e s =

sortTestCasesByCoverage (testSuiteMethodCoverage ,

sourceMethodCoverage) ;

7 List<SummarizedTestCase> r e s u l t s =

8 new ArrayList<SummarizedTestCase >() ;

9

10 r e s u l t s . addAll (addit ionalMethodCoverageHelper (

11 sourceMethodCoverage , p r i o r i t i z e d T e s t C a s e s)) ;

12

13 re turn r e s u l t s ;

14 }

15

16 p r i v a t e s t a t i c L i s t<SummarizedTestCase> addit ionalMethodCoverageHelper

(

17 Map<Str ing , ClassCover> sourceMethodCoverage ,

18 List<SummarizedTestCase> p r i o r i t i z e d T e s t C a s e s) {

19

20 List<SummarizedTestCase> r e s u l t s =

21 new ArrayList<SummarizedTestCase >() ;

22

23 i n t amountOfCoveredMethods =

24 coveredMethodsInSource (sourceMethodCoverage) ;

80

CHAPTER 4. OWN CONTRIBUTION

25

26 whi le (! p r i o r i t i z e d T e s t C a s e s . isEmpty () && amountOfCoveredMethods >

0) {

27 SummarizedTestCase mostCoveringTestCase =

28 C o l l e c t i o n s . max(p r i o r i t i z e d T e s t C a s e s) ;

29 p r i o r i t i z e d T e s t C a s e s . remove (mostCoveringTestCase) ;

30

31 r e s u l t s . add (mostCoveringTestCase) ;

32

33 Map<Str ing , MethodCover> alreadyCoveredMethods =

34 mostCoveringTestCase . getSummarizedCoverage () ;

35 amountOfCoveredMethods −= mostCoveringTestCase . coveredMethods () ;

36

37 markMethodAsCovered (p r i o r i t i z e d T e s t C a s e s , alreadyCoveredMethods) ;

38 }

39

40 i f (! p r i o r i t i z e d T e s t C a s e s . isEmpty () && amountOfCoveredMethods == 0)

{

41 unMarkCoveredMethods (p r i o r i t i z e d T e s t C a s e s) ;

42

43 r e s u l t s . addAll (addit ionalMethodCoverageHelper (

44 sourceMethodCoverage , p r i o r i t i z e d T e s t C a s e s)) ;

45 }

46

47 re turn r e s u l t s ;

48 }

49 . . .

50 }

Listing 4.13: The MethodCoverageAlgorithm class: the Additional Method Coverage

part.

81

CHAPTER 4. OWN CONTRIBUTION

1 pub l i c c l a s s MethodCoverageAlgorithm {

2 . . .

3 p r i v a t e s t a t i c L i s t<SummarizedTestCase> sortTestCasesByCoverage (

4 Map<Str ing , ClassCover> testSuiteMethodCoverage ,

5 Map<Str ing , ClassCover> sourceMethodCoverage) {

6 List<SummarizedTestCase> p r i o r i t i z e d T e s t C a s e s = new ArrayList<

SummarizedTestCase >() ;

7

8 Co l l e c t i on <ClassCover> t e s t C a s e C o l l e c t i o n = testSuiteMethodCoverage .

va lue s () ;

9 f o r (ClassCover te s tCase : t e s t C a s e C o l l e c t i o n) {

10 MethodCoverageSummarizer mcs = new MethodCoverageSummarizer (

sourceMethodCoverage , t e s tCase) ;

11 Map<Str ing , MethodCover> summarizedCoverage = mcs .

getSummarizedCoverage () ;

12 SummarizedTestCase summarizedTestCase = new SummarizedTestCase (

testCase , summarizedCoverage) ;

13 p r i o r i t i z e d T e s t C a s e s . add (summarizedTestCase) ;

14 }

15

16 C o l l e c t i o n s . s o r t (p r i o r i t i z e d T e s t C a s e s) ;

17 C o l l e c t i o n s . r e v e r s e (p r i o r i t i z e d T e s t C a s e s) ;

18

19 re turn p r i o r i t i z e d T e s t C a s e s ;

20 }

21 . . .

22 }

Listing 4.14: The MethodCoverageAlgorithm class: sorting test cases by the number

of covered methods.

The implementation for the Additional Method Coverage algorithm can be found in

Listing 4.13 and Listing 4.14. The method additionalMethodCoverage() takes as

82

CHAPTER 4. OWN CONTRIBUTION

parameters the classes in the source code and the test cases, and returns a list of

test cases. These classes and test cases are contained within two maps, where each

test case and class is represented by a ClassCover object. The ClassCover contains

information about the method coverage of a given class or test case. As described

in Section 3.1.2, the technique runs recursively if all methods have been covered and

there are still unprioritized test cases. This recursive part of the algorithm is located

within the method additionalMethodCoverageHelper().

To analyze the source code we use the JavaParser library (Section 3.3.6). Initially, the

class ClassListProvider will give a list of all the files in a given directory of a given

type (e.g. Java files). These files will then be given to CompilationUnitProvider,

which parses them using JavaParser and returns a list of CompilationUnits, which

are ASTs capable of accepting visitors.

In the analysis process defined above, the CompilationUnits will only be used in

the first two steps: firstly, in step 1 by ClassTypeProvider, and secondly in step

2 by MethodCoverageProvider. ClassTypeProvider’s responsibility is to retrieve

information about field variables and method declarations in each class, and re-

turn that information as a list of ClassTypes. This information is then used by

MethodCoverageProvider to produce a list of ClassCover objects, which store in-

formation about method calls within a given class. The sequence of these method

calls can be seen in Listing 4.15, which shows how a map of ClassCover objects is

retrieved given a path to the source code.

83

CHAPTER 4. OWN CONTRIBUTION

1 pub l i c ab s t r a c t c l a s s MethodCoverage {

2 . . .

3 p r i v a t e Map<Str ing , ClassCover> sourceMethodCoverage ;

4 . . .

5 p r i v a t e void r e t r i eveC la s sCove rage (S t r ing pathToProjectSource)

6 throws ParseException , IOException {

7

8 List<Fi l e > f i l e L i s t =

9 Cla s sL i s tProv ide r . g e t F i l e L i s t (

10 new F i l e (pathToProjectSource) , new St r ing [] {” . java ” }) ;

11

12 List<CompilationUnit> compi la t ionUni t s =

13 Compi lat ionUnitProvider . getCompi lat ionUnits (f i l e L i s t) ;

14

15 ClassTypeProvider c lassTypeProv ider =

16 new ClassTypeProvider (compi la t ionUni t s) ;

17 pro jectSourceClassTypes = classTypeProv ider . getClassTypes () ;

18

19 MethodCoverageProvider mcp =

20 new MethodCoverageProvider (pro jectSourceClassTypes ,

compi la t ionUni t s) ;

21

22 sourceMethodCoverage = mcp . getMethodCoverage () ;

23 }

24 . . .

25 }

Listing 4.15: MethodCoverage: getting method coverage.

This coverage information will then be used by MethodCoverageSummarizer to find

all transitive method calls executed by a given test case. Afterwards, the test cases

are ready to be prioritized, as shown in Listing 4.13.

84

CHAPTER 4. OWN CONTRIBUTION

Shortcomings of the Implementation

As mentioned earlier, we implemented our own visitors for extracting method calls

from the code being tested. As a result, we would have to consider every syntactic

rule in the language if we desired a complete method coverage. Unfortunately, we

were—due to time limitations—only able to implement some of the most basic and

common rules. These shortcomings also apply for Total Method Coverage (Section

4.4.3).

These are the shortcomings we have been able to identify:

• Only calls to methods declared in the class being referenced are discovered.

E.g., calls to inherited methods are not discovered.

• Method calls must have an adjoined object. E.g. a.doSomething() is discov-

ered, while doSomething() is not.

• Method calls with parameters belonging to a subtype of the type referenced in

the method declaration. E.g. given a method declaration doSomething(A a)

and two classes A and B, where B inherits A, and an object b of type B; then the

method call doSomething(b) will not be found.

• Method calls with a null parameter are not found.

• Polymorphism is not supported. Dynamic binding makes it hard to find the

correct method calls during a static code analysis. E.g., an abstract class A, an

object of that type calling a method a.doSomething(), and some subclasses

B and C overriding that method. The code analysis is currently done on a

per-module basis, i.e. analysis data from one module are not accessible during

the analysis of another module, which makes it impossible to support dynamic

85

CHAPTER 4. OWN CONTRIBUTION

binding across modules. For example, if we have a module which updates

some database, but the database driver implementation is given by the calling

module—and is therefore unknown at compile time by the former module—then

method calls to the database driver will not be discovered.

• Dependency injection is not supported, as this requires support for polymor-

phism.

• Mocking in tests can also present some problems for the code analysis, at least

when Mockito [67] is used to generate mock objects at run-time.

• Methods and fields declared within enumerations are not supported.

Implementing analysis support for every syntactic rule regarding method calls in a

language might not even be desirable. Code analysis requires time for processing, and

if support for too many rules is implemented, the prioritization process might negate

any benefit earned by finding failures earlier.

86

CHAPTER 4. OWN CONTRIBUTION

4.4.3 Total Method Coverage

Additional Method Coverage was the primary technique we wanted to implement, but

as Total and Additional Method Coverage have a lot of code in common, we decided

to implement this one as well. In fact, Additional Method Coverage uses every bit of

code that Total Method Coverage uses.

The Algorithm

Procedure 6 Prioritize based on Total Method Coverage

Input: A list of test cases T , a list of possible methods M

Output: A list of prioritized test cases T ′

An empty list of test cases T ′

while T is not empty and every method in S is not yet covered do

t← testCaseCoveringTheMostMethods(T , M)

T ′.insert(t)

end while

return T ′

An illustration of a Total Method Coverage run can be seen in Figure 4.8. We have

three test cases: A, B and C, where A covers 4 methods, B covers 3 and C covers 2.

Therefore, the test suite execution order will be: A, B and C.

87

CHAPTER 4. OWN CONTRIBUTION

Figure 4.8: Total Method Coverage illustration

88

CHAPTER 4. OWN CONTRIBUTION

The Implementation

Listing 4.16 shows the method in MethodCoverageAlgorithm that returns a list pri-

oritized based on this technique.

1 pub l i c c l a s s MethodCoverageAlgorithm {

2 . . .

3 pub l i c s t a t i c L i s t<SummarizedTestCase> totalMethodCoverage (

4 Map<Str ing , ClassCover> testSuiteMethodCoverage ,

5 Map<Str ing , ClassCover> sourceMethodCoverage) {

6

7 re turn sortTestCasesByCoverage (testSuiteMethodCoverage ,

sourceMethodCoverage) ;

8 }

9 }

Listing 4.16: The MethodCoverageAlgorithm class: the Total Method Coverage part.

89

CHAPTER 4. OWN CONTRIBUTION

4.5 Hybrid Prioritization Techniques

A hybrid is a technique that uses the principles of at least two other techniques to

prioritize test cases.

4.5.1 Local Code Changes with Failure Counting

When considering Figure 4.6, you can expect to get the desired test cases from the git

status command, either from the untracked files or from the modified ones. If that

is not the case (e.g. if you are looking for an old test to see if it still passes after the

recent code changes), it would improve the prioritization to rank the local test cases

internally. This technique builds the prioritization list by putting untracked files first

in the queue, then modified files, followed by the remaining test cases present in the

project, which are ranked internally according to technique Counting Failing Tests

(Section 4.3.1).

This will enhance the prioritization in precision, but not necessarily when considering

efficiency (since the technique contacts our online service: pritest-server). This will

be further investigated in the experiment in Chapter 5. Figure 4.9 illustrates the

prioritization list retrieved by this technique.

Figure 4.9: Illustration of hybrid technique prioritization list.

90

CHAPTER 4. OWN CONTRIBUTION

The Algorithm

The algorithm for this technique is quite similar to the algorithm for Local Code

Changes (Procedure 4), except that the list of unchanged test cases is prioritized

descendingly by the number of failures for each test case.

Procedure 7 Prioritize based on local changes.

Input: A list of classes C

Output: A list of prioritized test cases T ′

An empty list of test cases T ′

An empty list of untracked test cases U

An empty list of modified test cases M

An empty list of unchanged test cases R

for ci ∈ C do

if ci has not yet been added to the remote repository then

U ←addTestCaseToList(c, U)

else if ci has been modified then

M ←addTestCaseToList(c, M)

else

R←addTestCaseToList(c, R)

end if

end for

R←prioritizeTestCasesByCountingFailingTests(R)

T ′.append(U)

T ′.append(M)

T ′.append(R)

return T ′

91

CHAPTER 4. OWN CONTRIBUTION

The Implementation

The main difference between this technique and Local Code Changes (Section 4.4.1), is

that this one does not merely append the remaining test cases to the list, as is done in

the latter (Listing 4.11), but uses a Pritest server to prioritize them beforehand (List-

ing 4.17). The list is retrieved from the server by calling the method getClassList()

on the object onlineClassService, which is of the type ClassService.

1 pub l i c c l a s s P r i o r i t y L i s t 2 {

2 . . .

3 p r i v a t e Lis t<Str ing> t echn ique5Strategy () throws NoWorkTreeException ,

IOException {

4 Technique5Ranker t5 = new Technique5Ranker (t h i s . baseDir) ;

5 List<Str ing> t 5G i tS ta tu sL i s t = t5 . g e tTechn ique5Pr i o r i t yL i s t () ;

6

7 List<Str ing> c o n t a c t C i t r u s L i s t = new ArrayList<Str ing >() ;

8 t ry {

9 c o n t a c t C i t r u s L i s t = t h i s . o n l i n e C l a s s S e r v i c e . g e t C l a s s L i s t () ;

10 } catch (Exception e) {

11 // Handling e xc ep t i on s

12 }

13

14 f o r (S t r ing s : c o n t a c t C i t r u s L i s t) {

15 i f (! t 5G i tS ta tu sL i s t . conta in s (s)) {

16 t 5G i tS ta tu sL i s t . add (s) ;

17 }

18 }

19 re turn t5G i tS ta tu sL i s t ;

20 } . . .

21 }

Listing 4.17: The TestOrderResource class.

92

CHAPTER 4. OWN CONTRIBUTION

Listing 4.18 shows the part of the server that accepts requests for prioritized lists.

If a request with the parameter “5” is made, the server returns a list prioritized by

the technique Counting Failing Tests (Section 4.3.1). The plugin will then append

all test cases from this list that are not appended.

1 pub l i c c l a s s TestOrderResource {

2 . . .

3 pub l i c L i s t<Str ing> get (@PathParam(”method”) i n t method) {

4 List<Str ing> t e s t C l a s s e s = new ArrayList<Str ing >() ;

5

6 switch (method) {

7 . . . // The o ther on l ine t e chn i que s

8 case 5 :

9 t e s t C l a s s e s = method1 () ;

10 break ;

11 }

12

13 re turn t e s t C l a s s e s ;

14 }

15 . . .

16 }

Listing 4.18: Calling the technique

93

CHAPTER 4. OWN CONTRIBUTION

4.6 Control Techniques

Rothermel et al. introduced a group of ordering techniques called control techniques

in his articles [4, 7]. This group contains the ordering techniques called untreated,

random and optimal. Each of these orderings techniques will be described in the

following sections.

By having these techniques we can compare them with our own techniques. This will

give us a measure of how well our techniques sort the test cases relative to the control

techniques. The control techniques are included in our experiment.

4.6.1 Untreated Order

This technique returns the list of test cases in a specific order. In this case, we will

just use the local test cases.

4.6.2 Random Order

This technique uses the shuffle method in Java’s Collections class. The result is a

randomized list of the local test cases.

1 p r i v a t e Lis t<Str ing> randomLocalTestClasses (L i s t<Str ing>

l o c a l T e s t C l a s s e s) {

2 C o l l e c t i o n s . s h u f f l e (l o c a l T e s t C l a s s e s) ;

3 re turn l o c a l T e s t C l a s s e s ;

4 }

Listing 4.19: Method for randomize local test classes.

94

CHAPTER 4. OWN CONTRIBUTION

4.6.3 Optimal Order

The optimal test case order is calculated after the test suite run. The measure ob-

jects, equal to test case, is then sorted by the measure “containing most failed tests”.

1 p r i v a t e Lis t<Str ing> ge tOpt im i z edPr i o r i t yL i s t (L i s t<Measure> l i s t) {

2 C o l l e c t i o n s . s o r t (l i s t) ;

3 C o l l e c t i o n s . r e v e r s e (l i s t) ;

4 List<Str ing> opt imizedL i s t = new ArrayList<Str ing >() ;

5 f o r (Measure measure : l i s t) {

6 opt imizedL i s t . add (measure . getSource ()) ;

7 }

8 re turn opt imizedL i s t ;

9 }

Listing 4.20: Method returning optimized test order.

4.7 Evaluating Technique Time Complexity with

Big-O Analysis

To get a picture of the time complexity of each technique in our solution, we performed

a big-O Analysis (introduced in Section 3.3.2). The calculations are described in detail

in the following sections, and the results are summarized in Table 4.4 below:

95

CHAPTER 4. OWN CONTRIBUTION

Technique Time complexity

Counting Failing Tests O(n log n)

Code Changes O(n log n)

Local Code Changes O(n2)

Total Method Coverage O(m + mn + n log n)

Additional Method Coverage O(n3m)

Local Code Changes with Failure Counting O(n2)

Table 4.4: Big-O Calculations.

The big-O orders of techniques are illustrated in Figure 4.10, Figure 4.11 and 4.12.

Figure 4.10: Big-O illustration: Counting Failing Tests and Code Changes are red,

and the two Local Code Changes techniques are green.

96

CHAPTER 4. OWN CONTRIBUTION

Figure 4.11: Big-O illustration of Total Method Coverage.

Figure 4.12: Big-O illustration of Additional Method Coverage.

97

CHAPTER 4. OWN CONTRIBUTION

As can be seen in the illustrations, the order of Additional Method Coverage and Total

Method Coverage (especially the former) grows much faster than the others. However,

these time complexities are both worst-case, so we did not deem it necessary to remove

them.

Counting Failing Tests

1 p r i v a t e Lis t<Str ing> method1 () {

2 TestDataDAO tdDAO = DAOFactory . getDatabase () . getTestDataDAO () ;

3 List<TestData> t e s t s = tdDAO. g e t L i s t () ;

4 C o l l e c t i o n s . s o r t (t e s t s) ;

5 List<Str ing> testNames = new ArrayList<Str ing >() ;

6 f o r (TestData t e s t : t e s t s) {

7 testNames . add (t e s t . getClassName ()) ;

8 }

9 re turn testNames ;

10 }

Listing 4.21: Technique summary Counting Failing Tests.

Technique Counting Failing Tests mainly consist of three parts:

1. Get a list from the database.

2. Sort the list.

3. Add the class names to a list.

The first part would result in an complexity of n. The second part guarantees a

complexity of nlog(n) [58]. The third part results in a complexity of n.

n + nlog(n) + n = 2n + nlog(n)⇒ O(nlog(n))

98

CHAPTER 4. OWN CONTRIBUTION

Code Changes

1 p r i v a t e Lis t<Str ing> method3 () {

2 ChangeDataDAO cdDAO = DAOFactory . getDatabase () . getChangeDataDAO () ;

3 List<ChangeData> changes = cdDAO. g e t L i s t () ;

4 C o l l e c t i o n s . s o r t (changes) ;

5

6 List<Str ing> testNames = new ArrayList<Str ing >() ;

7 f o r (ChangeData change : changes) {

8 testNames . add (change . getSource ()) ;

9 System . out . p r i n t l n (change . getSource ()) ;

10 }

11

12 re turn testNames ;

13 }

Listing 4.22: Technique summary Code Changes.

Technique Code Changes mainly consist of three parts:

1. Get a list from the database.

2. Sort the list.

3. Add the class names to a list.

The first part would result in an complexity of n. The second part guarantees a

complexity of nlog(n) [58]. The third part results in a complexity of n.

n + nlog(n) + n = 2n + nlog(n)⇒ O(nlog(n))

99

CHAPTER 4. OWN CONTRIBUTION

Local Code Changes

1 p r i v a t e Lis t<Str ing> t echn ique4Strategy (Lis t<Str ing> l o c a l T e s t C l a s s e s)

throws NoWorkTreeException , IOException {

2 GitStatusProv ider gsp = new GitStatusProv ider (baseDir ,

sourceDi rec tory , t e s tSou r c eD i r e c t o ry) ;

3 List<Str ing> g i t S t a t u s P r i o r i t y L i s t = gsp . g e t G i t S t a t u s P r i o r i t y L i s t () ;

4

5 f o r (S t r ing l o c a l T e s t C l a s s : l o c a l T e s t C l a s s e s) {

6 i f (! g i t S t a t u s P r i o r i t y L i s t . conta in s (l o c a l T e s t C l a s s)) {

7 g i t S t a t u s P r i o r i t y L i s t . add (l o c a l T e s t C l a s s) ;

8 }

9 }

10 re turn g i t S t a t u s P r i o r i t y L i s t ;

11 }

Listing 4.23: Technique summary Local Code Changes.

Technique Local Code Changes mainly consist of three parts:

1. Get a list of the local test classes recently modified or added.

2. For each local test class sent in as parameter, check if it exists in the list of

modified or added classes.

3. If it does not exist, add it to the list.

The first part would result in an complexity of n. The second and third part combined

result in a time complexity of n2.

n + n ∗ n = n + n2 ⇒ O(n2)

100

CHAPTER 4. OWN CONTRIBUTION

Total Method Coverage

As already mentioned in Chapter 4, the implementation of Total Method Coverage

and Additional Method Coverage does some static code analysis prior to executing

the techniques. This part will be analyzed separately from the implementation of the

techniques.

The Time Complexity of the Static Code Analysis Phase

A step-wise description of the process follows, the time complexities are at the end

of the lines in parentheses. A given class is denoted with the index i, and a given

method declaration by the index j.

1. Retrieve Java files in project using ClassListProvider.getFileList(...).

(m)

2. Retrieve CompilationUnits using CompilationUnitProvider.getCompilationUnits(...).

(m)

(a) Parse code into CompilationUnits using JavaParser.parse(...)6.

3. Iterate through each CompilationUnit with ClassTypeProvider.getClassTypes().

(m)

(a) Retrieve imports. (t)

(b) Retrieve package declaration. (1)

6It should be noted that the time complexity of JavaParser.parse(...) is unknown

101

CHAPTER 4. OWN CONTRIBUTION

(c) Retrieve ClassTypes with ClassOrInterfaceDeclarationVisitor. (n)

i. Retrieve class name. (1)

ii. Retrieve extend declaration. (1)

iii. Retrieve fields with ClassOrInterfaceDeclarationVisitor.visit(

FieldDeclaration ...). (fi)

iv. Retrieve member method declarations with MethodDeclarationVisitor.

(ki)

A. Retrieve return type. (1)

B. Retrieve parameters with MethodDeclarationVisitor.extractParameter(...).

(pi,j)

4. Iterate through each CompilationUnit and retrieve method coverage informa-

tion with MethodCoverageProvider and MethodCoverageVisitor. (m)

(a) Retrieve package declaration. (1)

(b) Retrieve a ClassCover for each class using MethodCoverageVisitor.visit(

ClassOrInterfaceDeclaration ...). (n)

i. Retrieve a MethodCover for each declared method in that class using.

MethodCoverageVisitor.visit(MethodDeclaration ...). (ki)

A. Retrieve a MethodDecl object for each method declaration, con-

sisting of: the method name (1), return type (1) and parameters

(pi,j). (1 + 1 + pi,j)

102

CHAPTER 4. OWN CONTRIBUTION

B. Retrieve local variables. (vi,j)

C. Retrieve raw method calls (as RawMethodCalls) within this method

body using MethodCallVisitor, with each raw method call con-

sisting of: method name (1), parameters (pi,j) and scope (1) (e.g.

the object reference the method call is made on). (1 + pi,j + 1)

D. For each raw method call find the class the called method belongs

to, using processRawMethodCall(...). (1)

The steps above are the same for the analysis of both source code and test source

code.

m+m+m∗(t+1+n∗(1+1+f+k∗(1+p)))+m∗(1+n∗(k∗(1+1+p+v+1+p+1+1))) =

2 ∗m + m ∗ (t + 1 + n ∗ (2 + f + k ∗ (1 + p))) + m ∗ (1 + n ∗ (k ∗ (2 ∗ p + v + 5)))

As we are more interested in classes than java files, we will ignore m, which is the

number of CompilationUnits, and also import statements:

1 + n ∗ (2 + f + k ∗ (1 + p)) + 1 + n ∗ (k ∗ (2 ∗ p + v + 5))

Then we introduce indices for classes and method declarations, i for classes and j for

method declarations:

1 + n ∗ (2 + fi + ki ∗ (1 + pi,j)) + 1 + n ∗ (ki ∗ (2 ∗ pi,j + vi,j + 5))

A method will usually not have more than a few parameters; therefore, we will ignore

the number of parameters a method declaration has. We will also ignore the number of

field variables and local variables, as a high number of these can indicate the presence

of “code smell”. Large Class and Long Method respectively (Chapter 3).

103

CHAPTER 4. OWN CONTRIBUTION

1+n∗(2+ki∗1)+1+n∗(ki∗(2+5)) = 2+n∗(2+ki)+n∗ki∗7 = 2+n∗2+n∗ki+n∗ki∗7 =

2 + n ∗ 2 + 8 ∗ n ∗ ki

Asymptotically, this becomes:

O(n ∗ ki)

Or, the number of method declarations in the project being tested:

O(|k|)

The Time Complexity of the Technique

When executing the Total Method Coverage technique, the total set of methods being

called by each test case will be found (Listing 4.14 and Listing 4.16). Since each

method call will only be analyzed once, the total number of covered methods a test

case can have equals the number of methods in the project being tested. The other

extreme is zero method calls found, something that can happen if the test case uses

a feature not supported by the code analysis. Hence, we have a best case:

O(1),

and a worst case, where m is the number of method declarations:

O(m),

when counting method calls of a single test case. The best and worst cases for n test

cases are then, respectively:

O(n) and O(nm)

104

CHAPTER 4. OWN CONTRIBUTION

Afterwards, the list of test cases is sorted by the number of covered methods using

Collections.sort(...), which has a time complexity of O(n log n). If we substitute

O(|k|) with O(m) the best and worst case for Total Method Coverage becomes:

O(m + n + n log n)⇒ O(n log n) and O(nm + n log n)

Additional Method Coverage

In addition to the static code analysis and sorting the test cases by the number of

covered methods, Additional Method Coverage must recalculate the coverage for each

chosen test case (Listing 4.13).

The process is described below; n is the number of test cases, and m is the number

of declared methods.

1. Run the static code analysis and sort test cases by coverage.

2. Count the number of method declarations in the project, using coveredMethodsInSource(...)

in the class MethodCoverageAlgorithm (m)

3. Iterate through the test cases descendingly by the number of covered methods

for as long as there are unprioritized test cases and uncovered methods. (n)

(a) Select test case with the highest number of covered methods using Collections.max(...)

from the standard library. (n)

(b) Remove the selected test case using List.remove(...). (n)

(c) Decrement the number of uncovered methods. (1)

105

CHAPTER 4. OWN CONTRIBUTION

(d) Mark the covered methods using markMethodAsCovered(...). (nm)

4. Run Additional Method Coverage again on any remaining test cases if all meth-

ods have already been covered. In the best case scenario none remains, and in

the worst case scenario n− 1 test cases remains.

(a) Mark all methods as not yet covered using unMarkCoveredMethods(...).

((n− 1) ∗m)

(b) Run additionalMethodCoverageHelper(...) with the remaining test

cases. Will be called recursively at most n − 1 times, which means that

every test case covers the same methods.

If we summarize this, and exclude everything not specific to the Additional Method

Coverage implementation, we get in the best case and worst case, respectively:

m + n ∗ (n + n + 1 + nm) = m + 2n2 + n + n2m

and

(m+n∗ (n+n+ 1 +nm) + (n−1)∗m)∗n = nm+n2(n+n+ 1 +nm) +nm(n−1) =

nm + 2n3 + n2 + n3m + n2m− nm = 2n3 + n2 + n3m + n2m

Then we introduce the time complexities of the static code analysis and Total Method

Coverage and get:

O(n log n) + m + 2n2 + n + n2m⇒ O(2m + n log n + 2n2 + n + n2m)⇒ O(n2m)

and

O(nm + n log n) + 2n3 + n2 + n3m + n2m⇒ O(n3m)

106

CHAPTER 4. OWN CONTRIBUTION

Local Code Changes with Failure Counting

1 p r i v a t e Lis t<Str ing> t echn ique5Strategy () throws NoWorkTreeException ,

IOException {

2 GitStatusProv ider gsp = new GitStatusProv ider (baseDir ,

sourceDi rec tory , t e s tSou r c eD i r e c t o ry) ;

3 List<Str ing> g i t S t a t u s P r i o r i t y L i s t = gsp . g e t G i t S t a t u s P r i o r i t y L i s t () ;

4

5 List<Str ing> c o n t a c t P r i t e s t L i s t = new ArrayList<Str ing >() ;

6 t ry {

7 c o n t a c t P r i t e s t L i s t = t h i s . o n l i n e C l a s s S e r v i c e . g e t C l a s s L i s t () ;

8 } catch (ConnectException e) {

9 e . pr intStackTrace () ;

10 } catch (JSONException e) {

11 e . pr intStackTrace () ;

12 } catch (Exception e) {

13 e . pr intStackTrace () ;

14 }

15

16 f o r (S t r ing s : c o n t a c t P r i t e s t L i s t) {

17 i f (! g i t S t a t u s P r i o r i t y L i s t . conta in s (s)) {

18 g i t S t a t u s P r i o r i t y L i s t . add (s) ;

19 }

20 }

21

22 re turn g i t S t a t u s P r i o r i t y L i s t ;

23 }

Listing 4.24: Technique summary Local Code Changes with Failure Counting.

107

CHAPTER 4. OWN CONTRIBUTION

Technique Local Code Changes with Failure Counting mainly consist of four parts:

1. Get a list of the local test classes recently modified or added.

2. Contact Pritest for remaining internal prioritization.

3. For each class retrieved from Pritest, check if it exists in the list of modified or

added classes.

4. If it does not exist, add it to the list.

The first part would result in a time complexity of n. The second part results in a

time complexity of n. The third and fourth part combined result in a time complexity

of n2.

n + n + n ∗ n = 2n + n2 ⇒ O(n2)

108

Chapter 5

Experiment

5.1 Experiment Theory

In order to perform a complete and good experiment, we applied principles from “Ex-

perimentation in Software Engineering - An Introduction” by Wohlin et al. [22].

According to Wohlin et al., there are two types of research approaches to empirical

studies: qualitative and quantitative. Qualitative research is concerned with studying

objects in their natural setting, whereas quantitative research focus on quantifying

a relationship or compare two or more groups. An experiment is a quantitative

empirical research method.

Experiments are often carried out in a laboratory environment, and provide a high

level of control throughout the execution. The purpose is to manipulate a few vari-

ables with different treatments to the subject, and observe how the subject reacts to

these treatments. The variables not being manipulated, must be controlled to ensure

that the reactions from the subject are due to the variables being manipulated and

109

CHAPTER 5. EXPERIMENT

not anything else.

The experiment process must be planned in detail to ensure valid results. A theory

must be developed, and a cause-effect relationship between treatments and expected

outcome must be constructed (Figure 5.1).

Figure 5.1: Experiment principles [29].

The process proceeds with selecting independent and dependent variables, context,

subjects, hypotheses, experiment design, etc. (Figure 5.2).

110

CHAPTER 5. EXPERIMENT

Figure 5.2: Experiment process [22].

111

CHAPTER 5. EXPERIMENT

5.2 Experiment Introduction

The purpose of the experiment is to test whether or not sorting the test suite according

to one of the techniques described in Chapter 4, will make the failing tests occur earlier

in the test suite.

5.3 Definition

5.3.1 Goal Definition

• Object of study:

The object of study is the APFD values recorded in each test run.

• Purpose:

The purpose of the experiment is to evaluate the performance of each prioriti-

zation technique for a test suite.

• Perspective:

The perspective is from the point of view of the researchers, i.e. we want to

know if there is any significant difference in APFD values depending on which

prioritization technique is used.

• Quality focus:

The effect studied is the APFD values of the test runs.

112

CHAPTER 5. EXPERIMENT

• Context:

The experiment is run within the context of professional developers performing

a development project, and using JUnit for testing.

5.3.2 Summary of Definition

Analyze the execution of test suites

for the purpose of evaluation

with respect to the test case ordering

from the point of view of the researchers

in the context of professional developers using Pritest over a period of time.

5.4 Planning

5.4.1 Context Selection

The context of the experiment is industrial software development (online). The ex-

periment will be run by two developers at BEKK, on the actual development project

they are employed at the moment. As the experiment is run in this context, we will

gain external validity which is elaborated below when discussing threats to validity.

This context enables us to test our tool on real problems.

113

CHAPTER 5. EXPERIMENT

5.4.2 Hypothesis Formulation

One of the most important parts of an experiment is to know, and formulate the

hypotheses. The hypotheses tell us what we want to evaluate in the experiment,

and define the success factors. We want to observe if there is any difference in how

the prioritization techniques rank the test cases with likelihood of failing; if there is

difference in feedback quality of the different techniques.

1. Null hypothesis:

H0: There is no difference in the feedback quality (APFD value) resulting from

each prioritization technique.

2. Formal null hypothesis:

H0 : APFD(technique1) = APFD(technique2) = · · · = APFD(tecniquen)

3. Alternative hypothesis:

There exist at least one APFD value that is different from the others.

4. Formal alternative hypothesis:

H1 : ∃xiAPFD(xi) > Average(T), T = {APFD(x1), APFD(x2), · · · , APFD(xn)}, xi /∈

T.

114

CHAPTER 5. EXPERIMENT

If at least one of the techniques provides a different APFD value than the others, the

null hypothesis can be rejected. We define risks to the hypothesis testing during the

experiment as Type-1-error and Type-2-error [22]:

• Type-1-error:

P (Type− 1− error) = P (rejectH0 | H0true)

• Type-2-error:

P (Type− 2− error) = P (notrejectH0 | H0false)

In our case a Type-1-error occurs if we say that there is a difference in the APFD values

to the different technique, even though it is not. A Type-2-error would occur if we

find that there is no difference in the feedback quality using the different techniques,

when it actually is. We consider a Type-1-error the most critical since it confirms that

our system improves feedback from automated tests, when it actually does.

5.4.3 Variables Selection

The independent variable, or variables, are the ones that can be controlled and

changed during the experiment. A factor is an independent variable that can re-

ceive a treatment.

The independent variables in our experiment are: applied prioritization technique to

the test suite run (subject), how the developers work and the development project.

The way the developers work can affect the performance of some of the prioritization

techniques, e.g. the Local Code Changes technique (Section 4.4.1) might perform

differently depending on how often the developers commit code. This variable is to a

115

CHAPTER 5. EXPERIMENT

degree controlled, as the experiment will only have two developers. The development

project can also affect the outcome, as the prioritization techniques might perform

differently when used in different projects (Section 5.4.7).

The dependent variable is the APFD value. One should be able to draw the dependent

variable directly from the hypothesis.

5.4.4 Selection of Subjects

A clear definition of subjects in the experiment is important. When selecting subjects,

it is important to remember that to be able to generalize to the desired population,

the sample from the population (group of subjects) must be a representative sample

from this population.

Our subjects in this experiment are test runs. Our developers will use our system

in a real-life project over a period of time, and every time they run their test suites,

we will record a new subject and results from the dependent variable. Hence, we do

not know yet how many subjects we will have, but the longer our developers run our

application, the more subjects—and more valid—our results will get.

Whether or not the sample is representative for the population is hard to tell. Our

population is every kind of test suite run imaginable, and whether the test runs in

our experiment project are representative samples is an area for discussion. However,

there are some test suite characteristics that are more “common” than others, and the

project we will perform our experiment on is a rather “common” Norwegian software

project (large scale, public sector and hired consultants).

116

CHAPTER 5. EXPERIMENT

5.4.5 Experiment Design

As previously mentioned, a factor is an independent variable that can receive a form

of treatment. In our case that is prioritization techniques. We have five prioritization

techniques that will be used in this experiment. The choice of experiment design

limits the statistical analysis methods that can be applied to the hypothesis later

on.

When determining which statistical test to use, we have to look at the data rep-

resented in the dependent variable after retrieving different treatments. This is

the APFD value, and can be classified as an interval scale or ratio scale (Table

5.1). Statistical hypothesis testing can again be divided into parametric and non-

parametric tests. When having an interval scale or ratio scale parametric tests can

be applied.

Scale Type Characteristics

Nominal Scale Maps the attribute of the entity into a name or symbol.

Typically classification and labeling.

Ordinal Scale Ranks the entities after an ordering criterion. Typically

grades and software complexity.

Interval Scale The difference between two measures are meaningful,

but not the value itself. Typically Celsius temperature

or Fahrenheit.

Ratio Scale There exists a meaningful null value, and the ratio be-

tween two measures is meaningful. Typically Kelvin

temperature.

Table 5.1: Scale Types by Wohlin et al. [22].

117

CHAPTER 5. EXPERIMENT

In our experiment it is clear that we have a design consisting of one factor with

more than two treatments. And since we have a dependent variable with (at least)

an interval scale, we can apply a parametric hypothesis test. We will perform an

ANOVA test on our data to check our hypothesis.

5.4.6 Instrumentation

The instrumentation in an experiment can be of three types: objects, guidelines and

measurement instruments [22].

The executor of the experiment, our external supervisor, will be supplied with guide-

lines on how to set up, execute and handle the responses the application gives through

the experiment.

The measurement instruments are implemented as a feature in the application, and

are handled automatically by our plugin. We record APFD values to files when the

test suites are run. This feature is provided with information from the test run, such

as failing tests, and calculates a APFD value. We also implemented a feature for

generating graphs from the APFD values, an example can be seen in Figure 5.3 and

5.4.

118

CHAPTER 5. EXPERIMENT

Figure 5.3: Example of APFD graph generation - using a single technique.

Figure 5.4: Example of APFD graph generation - using multiple techniques at once.

119

CHAPTER 5. EXPERIMENT

5.4.7 Validity Evaluation

It is essential to evaluate the question of validity of the results we can expect. Ex-

amples of threats to the validity of the results are maturation among the subjects,

subjects guessing what the hypothesis might be or if the experiment is designed in

a way that it sort of “fishes” for anticipated answers. When evaluating validity of

an experiment, you can divide it into to four categories conclusion validity, internal

validity, construct validity and external validity [22].

Conclusion Validity

• Reliability of measures. APFD might not be a perfect measure, as it does not

consider the processing time a technique requires. This is however mitigated to

some extent by the big-O analysis we performed (Section 4.7). In addition, as

we only support tests written as JUnit test cases, errors in layers that are not

covered by unit tests will then not give any results.

• Random irrelevancies in experiment setting. The developer performing the ex-

periment can get distracted with other work during the experiment execution.

• Low statistical power. The development project might not generate enough test

failures, giving us too few data.

Internal Validity

• Selection of developers. As mentioned in Section 5.4.3, the way the developer

work can affect the results of the test executions. The developer should ide-

ally be representative of the whole population. The fact that our experiment

has only two developers can therefore be a threat. Although they should be

representative of BEKK.

120

CHAPTER 5. EXPERIMENT

• Selection of development project. The development project can also affect the

outcome of the experiment. The development methodology, architecture, and

the type of the project can all have an impact on the performance of each

technique. Like the selection of developers above, we are only executing the

experiment in one project; though it should be representative for the projects

in BEKK.

Construct Validity

• Erroneous implementation of techniques. If the implementation of a prioritiza-

tion technique contains faults the results would potentially also contain faults.

We have, however, tested the techniques on some dummy projects, so we have

at least reduced the amount of possible faults. The shortcomings that we know

about, but are unable to correct at the current time, are described in Chapter

4.

External Validity

• Interaction of selection and treatment. As the experiment only has two devel-

opers, we get a limited amount of subjects (i.e. test executions). It is therefore

a possibility that these are not representative of test executions in general.

• Interaction of setting and treatment. A threat is that the project used in the

experiment is different from the projects usually performed at BEKK.

• Interaction of history and treatment. If the experiment is conducted at a special

time in project, the results might not be what they would have been at another

time. E.g. if the experiment is conducted at a time when the coding is not very

unit test oriented.

121

CHAPTER 5. EXPERIMENT

5.5 Operation

5.5.1 Preparation

The experiment executors were given instructions on how to set up the system, and

install instructions. They were briefed on how the system works, and what had to

be in place for the system to work properly. In advance of the experiment period,

we tested the techniques ourselves to ensure that the techniques were properly im-

plemented according to their intentioned heuristics, and that they gave reasonable

results.

We prepared the APFD calculator in our tool, to automatically generate APFD values

for each technique, in addition to the APFD values for the untreated ordering, random

ordering and the optimal ordering (Section 3.1.3). These values will be used for

analysis later on in the experiment.

When running a test suite in the experiment project, the test suite is only run once,

and the APFD values for every technique are then calculated using the results from

the test suite. The experiment executors should work as they normally would in the

project.

5.5.2 Execution

The experiment was executed on a real industry software project over three days,

and data were collected automatically through our own implementation for collecting

APFD values (Section 3.1.4).

122

CHAPTER 5. EXPERIMENT

The techniques that were evaluated in the experiment were the following:

• Counting Failing Tests

• Local Code Changes

• Local Code Changes with Failure Counting

• Total Method Coverage

• Additional Method Coverage

These techniques were evaluated against the following orderings:

• Untreated ordering

• Random ordering

• Optimal ordering

Technique Code Changes was excluded from the experiment due to firewall issues

at the project site where the experiment was executed. The firewalls did not allow

Github to send the “post-receive hooks” to Pritest needed by this technique.

5.5.3 Data Validation

To ensure that the data being collected was reasonable, and gave expected values,

we implemented a logging feature in the experimental source code. These loggings

were inspected before the actual experiment was initialized to see that values in

fact were recorded, and that the source code analysis part of technique Additional

123

CHAPTER 5. EXPERIMENT

Method Coverage (Section 4.4.2) and Total Method Coverage (Section 4.4.3) were

correct.

Failing test runs should result in recording of APFD values between 0 and 1, whereas

test runs without failures should record APFD values saying “NaN”. The inspections

in advance of the experiment confirmed this rule.

5.6 Analysis and Interpretation

Several diagrams and statistics are presented in this sections. The diagrams refer to

our techniques with the numbering displayed in Table 5.2.

Technique Alias #

Counting Failing Tests 1

Code Changes 3

Local Code Changes 4

Local Code Changes with Failure Counting 5

Total Method Coverage 6

Additional Method Coverage 7

Untreated Order 8

Random Order 9

Optimal Order 10

Table 5.2: Prioritization techniques numbering.

124

CHAPTER 5. EXPERIMENT

5.6.1 Descriptive Statistics

The results from the experiment are shown in the boxplot in Figure 5.5 below.

Figure 5.5: A boxplot of the results - primary experiment.

Technique 1 (Counting Failing Tests) has the best performance among our techniques.

The reason for this is likely that test failures were occurring in some of the same test

cases during the experiment.

Technique 4 and 5 (Local Code Changes and Local Code Changes with Failure Count-

ing respectively) gave suspicious results—something that must be investigated fur-

ther. Giving further proof that something was not right with the results, was that

the two control techniques Untreated and Random Order performed better.

Technique 6 and 7 (Total Method Coverage and Additional Method Coverage) did

well, compared with the controll techniques. According to the boxplot, Additional

125

CHAPTER 5. EXPERIMENT

Method Coverage did better than Total Method Coverage, which complies with the

findings of Do et al. [14].

These two techniques each have two outliers, which have the same values: 0.0937500000

and 0.4279279279. The former value is almost the same as the outlier in the results

of Local Code Changes, which might be related. These are possibly caused by code

changes resulting in errors in other parts of the system than usual. Another possibil-

ity might be actual code changes in another part of the system. In any case, these

outliers can happen again, and will therefore not be eliminated.

In the instrumentation definition (Section 5.4.6) we explained how we implemented

an automatic APFD value graph generator, being generated after each complete test

run. These were mainly used by us to inspect the results faster when receiving APFD

values from our test executor, but an example from a experiment test run can be

viewed below (Figure 5.6).

126

CHAPTER 5. EXPERIMENT

Figure 5.6: APFD instrumentation graph example - primary experiment.

5.6.2 Data Reduction

The very first APFD values recorded for each technique was removed from our dataset.

The reason for this is that the first test run using our system will not have the

history of former test runs (which some of the techniques base their prioritization

on), and is therefore representative to measure the prioritization quality of these

techniques.

In addition, test runs without failures record NaN as APFD value. These were also

removed from our dataset. The experiment is concerned with examining the prioriti-

zation quality of failing tests, and test runs without failures are not of interest.

127

CHAPTER 5. EXPERIMENT

5.6.3 Hypothesis Testing

Table 5.3 summarize our hypothesis test. It was a one-way ANOVA test, with tech-

nique number as factor, and APFD value as the dependent variable. The chosen

significance level was 5%. From the rightmost column, we see that the p-value is

0.000, so the results are highly significant, and the null hypothesis H0 (Section 5.4.2)

can be rejected.

Source Degrees of

freedom

(DF)

Sum of Squares Mean Square F-value p-value

Technique Number 7 6.7022 0.9575 45.37 0.000

Error 120 2.5324 0.0211

Total 127 9.2346

Table 5.3: Hypothesis test - primary experiment.

We had a total of 16 subjects (test runs) in this experiment. Table 5.4 sum up the

mean APFD values for each technique, and its standard deviation.

Since technique 10 is a control technique, technique 1 —Counting Failing Tests —

performed best in this experiment.

128

CHAPTER 5. EXPERIMENT

Technique # Occurrences Mean APFD Standard Deviation

1 16 0.9911 0.0040

4 16 0.3763 0.0656

5 16 0.4375 0.0044

6 16 0.7213 0.1910

7 16 0.7860 0.2162

8 16 0.7792 0.0961

9 16 0.4550 0.2683

10 16 0.9946 0.0017

Table 5.4: Hypothesis test - primary experiment.

5.7 Secondary Experiment

From the experiment, we found the results from using technique Local Code Changes

suspicious. We predicted it to do well in the experiment, due to its ability to run

newly added and modified test cases first. In most cases these would be the ones

containing test failures.

After code review, we found the implementation error, and we performed an additional

experiment on the hypothesis with a different context than defined in our primary

experiment in this chapter. All the definitions of hypotheses, subjects, experiment

design, instrumentation still account for this secondary experiment. The context is

different in the way that it is not an industrial online experiment, rather an offline

laboratory study.

We ran a secondary experiment partly to examine if we are able to generalize the

129

CHAPTER 5. EXPERIMENT

results better to different types of software projects, and partly due to the suspicious

results of technique Local Code Changes in the main experiment. Hence, this ex-

periment has a different design than the primary experiment. We focus on inserting

errors in an existing open source project (sonar-squid [66]), instead of developing a

system using unit tests.

5.7.1 Context

The context of this experiment is offline and performed as a laboratory experi-

ment.

5.7.2 Variables

The independent variable is applied prioritization technique. The dependent variable

is the resulting APFD values of a test run.

5.7.3 Execution

We will randomly1 insert errors in the test cases and classes already present in sonar-

squid. Afterwards, the test suite is run with the same prioritization techniques as in

the primary experiment. APFD values are recorded and used as instrumentation to

analyze the results. After the test run, we will discard the changes, and randomly

pick new test cases or classes to alter, and run the tests again. Before each test run

1We made a numbered list of all the Java classes in the project. We used a random number

generator to pick random classes from this list.

130

CHAPTER 5. EXPERIMENT

we insert a random number of errors2 between one and three in randomly selected

classes and/or test cases present in the project.

5.7.4 Descriptive Statistics

Figure 5.7: A boxplot of the results - secondary experiment.

The boxplot (Figure 5.7) gives us an overview of the dispersion and skewedness of

the samples. There are some values outside the lower and upper tails of technique

4 (Local Code Changes), technique 5 (Local Code Changes with Failure Counting)

and technique 10. The reason for the outliers on technique number 4 and 5, are

most likely that Pritest did not find any test cases covering the given classes. Pritest

assumes that every class SomeClass has a test case SomeClassTest. If that test case

either does not exist or is named differently, the error may show up as a test failure

2We used a random number generator to determine how many classes to insert errors to for each

test run.

131

CHAPTER 5. EXPERIMENT

that Pritest was unable to give a fitting priority. How Pritest looks for the test case

covering a given class is described in Section 4.4.1.

The two outliers of technique number 10 are caused by some inserted errors causing

a chain reaction of failures in a series of test cases. None of the outliers in the two

cases will be removed, as they are likely to happen again and must therefore be

considered.

Considering the APFD values, we see that technique 4 and 5 (the techniques based

on local code changes) performed better than all the others, except technique 10

(Optimal Order).

In Figure 5.8, you can see an example of the auto-generated APFD value graphs we

used for instrumentation and inspection of results.

132

CHAPTER 5. EXPERIMENT

Figure 5.8: APFD instrumentation graph example - secondary experiment.

5.7.5 Hypothesis Testing

Table 5.5 summarize our hypothesis test. It was a one-way ANOVA test, with tech-

nique number as factor, and APFD value as the dependent variable. The chosen

significance level was 5%. From the rightmost column, we see that the p-value is

0.000, so the results are highly significant, and the null hypothesis H0 (Section 5.4.2)

can be rejected.

133

CHAPTER 5. EXPERIMENT

Source Degrees of

freedom

(DF)

Sum of Squares Mean Square F-value p-value

Technique Number 7 11.6796 1.6685 39.92 0.000

Error 272 11.3679 0.0418

Total 279 23.0476

Table 5.5: Hypothesis test - secondary experiment.

We had a total of 35 subjects (test runs) in this experiment. Table 5.6 sum up

the mean APFD values for each technique, and its standard deviation. We see that

technique 5 and 4 performed well in this experiment.

Since technique 8, 9 and 10 are control techniques, technique 4 and 5 — respectively

Local Code Changes and Local Code Changes with Failure Counting — performed

best in this experiment.

Technique # Occurrences Mean APFD Standard Deviation

1 35 0.5615 0.2436

4 35 0.8676 0.1574

5 35 0.8687 0.1764

6 35 0.4429 0.2252

7 35 0.4429 0.2252

8 35 0.5195 0.2560

9 35 0.4607 0.2249

10 35 0.9547 0.0406

Table 5.6: Hypothesis test - secondary experiment.

134

CHAPTER 5. EXPERIMENT

5.7.6 Validity Evaluation

As this experiment was not conducted on a project during development, but by

inserting random errors into an open source project, some special considerations must

be made. Most of these concern external validity, more specifically the interaction of

setting and treatment. The main issue with this experiment is that the test failures

are not caused by naturally occurring errors in the code, and generalization of the

results should be done with some care.

Due to the randomized errors, the technique Counting Failing Tests will probably

perform badly in this experiment. As the errors are randomized it is possible that a

given test will not fail again.

5.8 Summary and Conclusions

Both experiments have a p-value of 0.000; hence, the results are significant, and the

null hypothesis H0 can be rejected. The null hypothesis stated that “there is no

difference in the feedback quality (APFD value) resulting from each prioritization

technique”, but the experiment results show that there is.

In both the experiments, we included a set of control techniques (technique 8, 9 and

10). Besides from these, we see that technique Counting Failing Tests performed

the best in the first experiment, and technique Local Code Changes with Failure

Counting) performed slightly better than technique Local Code Changes in the second

experiment.

The two experiments do however show quite different results. Techniques that per-

formed well in the first experiment, performed poorly in the second, and vice versa.

135

CHAPTER 5. EXPERIMENT

We know that we had an implementation failure in technique Local Code Changes

and its hybrid version in the first experiment, and this was partly the reason for

running an additional experiment. The second experiment had a different design; in-

serting errors to an existing system, rather than developing one from the beginning.

This resulted in some differences in performance for the techniques from the first

experiment to the second. Local Code Changes and Local Code Changes with Fail-

ure Counting performed really well in this experiment, and Counting Failing Tests

performed poorly. This is natural due to the heuristic nature of the technique—as it

uses previous history of failing tests—and the failures were inserted randomly in the

second experiment.

The techniques from Rothermel et al. (Total Method Coverage and Additional Method

Coverage) did well in the first experiment, and not that well in the second. This was

somewhat expected as well, since inserting errors randomly in an existing system does

not provide any new method calls, and these techniques will therefore have a “random

performance”.

Since there was an implementation mistake in technique Local Code Changes and

Local Code Changes with Failure Counting in the first experiment, and that we im-

plemented the techniques from Rothermel et al. ourselves, we will be careful to draw

any substantial conclusions. However, from the experiment results, we see that we

have one technique performing better than Total Method Coverage and Additional

Method Coverage in the first experiment, and three of our techniques performed

better in the second experiment. We will emphasize that our implementations of

techniques designed by Rothermel et al. is far from optimal, and their shortcomings

are discussed in Section 4.4.2.

136

Chapter 6

Evaluation and Discussion

6.1 Comparison with Existing Techniques

The techniques developed by Rothermel et al. that we employed seems to be better

at detecting a large amount of failures as early as possible, than detecting errors

caused by recent changes—which is often the case when writing code in a TDD

fashion [32]. The prioritizations made by techniques such as Total Method Coverage

does not change much when a single new method is implemented; because of this, it is

possible for two prioritizations to be identical (or close to identical) even when changes

have been made to different parts of the system. Our implementations of Total and

Additional Method Coverage had their shortcomings though (Section 4.4.2), which

resulted in test cases without any discovered method calls, which again resulted in the

same test cases not being prioritized and merely added to the end of the prioritization

list.

137

CHAPTER 6. EVALUATION AND DISCUSSION

6.2 Post-Experiment Interview

To find out how the experiment executors experienced using Pritest, we carried out

an interview in retrospect of the experiment. Some of the replies are highlighted

below, and the rest are found as appendices (Section 8.3).

Question: Do you see any use for a product like Pritest?

“Absolutely. It does need some IDE support (IDEA & Eclipse-plugins) in order to

get mainstream usage. The runner should probably be decoupled from maven. I

think projects with a very long runtime would love to use it on their CI servers to get

quicker responses.”

Question: Do you have any suggestions to improvements of

Pritest?

• Plugin for IDEA and Eclipse.

• Decouple the runner from Maven (makes it easier to develop said plugins).

• Support for Maven multi-module projects.

• Fail-fast mechanism.

• Fail-after-running-all-previously-failing-tests (if any failed) mechanism.

• Support for tags/annotations for the test running phase.

138

CHAPTER 6. EVALUATION AND DISCUSSION

6.3 Quality Analysis - Comparing Pritest to JUnit

Max

Based on our research, we found that JUnit Max was the only tool similar to Pritest.

The two have quite differing features, which makes them difficult to compare and

evaluate against each other. Pritest needs Maven and JUnit 4 to work, the way it

is designed today. JUnit Max is an Eclipse plugin, and is not applicable for other

IDEs. Also, it runs tests when the test case is saved in Eclipse, which is quite a handy

feature.

As mentioned earlier, Max runs a lot of small tests first, and the larger, slower ones

in the end, in addition to running recently failed tests before tests that have passed

several times in the past. Thus, Max does not allow configuring which techniques to

use (e.g., if different prioritization techniques is best with different types of projects).

The selection of prioritization techniques is an advantage of Pritest, and the tool

allows the users to develop their own custom techniques for developers seeing special

needs for their project.

To summarize, a drawback to JUnit Max is that it can only be used with the Eclipse

IDE. An advantage is that it is well integrated with this IDE, and it is seamless

to run also during development of non-Maven projects. Pritest offers features like

choosing what prioritization technique to use when configuring the plugin, as well

as custom development of prioritization techniques. In addition, it runs simply by

typing mvn test in console from within a Maven project directory. When running

Maven projects—maybe larger projects with a lot of test case—and when in need for

special types of prioritization algorithms, Pritest would be the best choice.

139

CHAPTER 6. EVALUATION AND DISCUSSION

6.4 Rationale for Chosen Techniques

6.4.1 Improving the Existing Techniques

In Section 4.1 we described how the Pritest JUnit Runner treats test cases that

are unknown to the Pritest Server when running online techniques (Section 4.3), by

running them before the other test cases. This is not necessarily the best solution.

A better alternative could be to send the necessary information about each test case

to the server, and utilize it together with the information already available at the

server.

With the technique Counting Failing Tests (Section 4.3.1) this could be realized by

having a local database where data about the failures of test cases not yet committed

to the central repository are stored. These local failure data would be sent to the

server when requesting a prioritized list of test cases. That being said, the data

should not be stored on the server before it is certain that the new code is to be

included in the code base. That is, not before it has been committed to the central

repository.

6.4.2 The Choice of Prioritization Techniques to Implement

The techniques we chose to implement were selected for different reasons. The online

techniques, Counting Failing Tests (Section 4.3.1) and Code Changes (Section 4.3.2),

were selected for their simplicity. The rationale behind this is that a sub-optimal

technique might give good enough results.

The Local Code Changes technique (Section 4.4.1) and its derivative (Section 4.5.1)

140

CHAPTER 6. EVALUATION AND DISCUSSION

were developed, and selected, based on our experience with developing software.

When developing software, we tend to use a version control system—like Git—and

work in short iterations. We often commit code to the central repository, for every

new feature implemented or so. This way, we put a limit on the amount of code that

gets wasted if a roll-back must be performed. A consequence of this is that you work

on only a few classes and test cases at a time. Any test failures are therefore likely

to happen in these test cases.

In addition to coming up with techniques of ourselves, we had to run some techniques

developed by others too, in order to compare our techniques with existing ones.

Our primary choice fell on Additional Method Coverage (Section 4.4.2), developed by

Rothermel et al. Other alternatives were techniques analyzing statement coverage

and block coverage (Section 3.1.2). Although Rothermel et al. argues that the more

low-level techniques (e.g. those operating on the statement level) perform better than

high-level ones (e.g. those on the method level), we decided to implement a method

coverage technique, as a low-level code analysis require more implemented code than a

high-level one, and we operate with a limited time budget. Therefore, we implemented

Additional Method Coverage. Implementation-wise, this technique shares a lot with

Total Method Coverage; as a result, we also implemented this one.

We also needed some control techniques to compare our techniques with during the

experiment (Section 4.6), so we implemented the techniques used by Rothermel et al.

in their studies. These are: untreated (or original) order, random order and optimal

order.

• Optimal ordering was implemented because it gives us an upper limit on how

good a technique can possibly perform on a given test run.

• As untreated ordering shows us how a test run would look like without any

141

CHAPTER 6. EVALUATION AND DISCUSSION

prioritization, we used this one as well.

• Random ordering was selected because it gives us a lower bound for how good

our techniques should be able to perform. Much like untreated ordering.

There are probably many more techniques we could have included in the experiment—

something that will be discussed shortly, in Section 6.4.3—but we had to set a bound-

ary somewhere due to time limitations.

6.4.3 Potential Prioritization Techniques

Considering the prioritization techniques we implemented, new hybrid techniques

can be designed based on the existing ones, including some completely different. For

example:

• Finding correlations between changed code and failing tests. One possibility

would be to assign a weight to each test case–code change relationship. A test

failure that happens right after a code change would consequently increase the

weight. Test cases would then be prioritized by the weights they have with the

changed code. E.g. if we have three classes (Figure 6.1): A, B and C; each with

their own test case. As class C is modified, the test cases will be executed in

the following order: test case C, with a weight of 0.9; test case A, with a weight

of 0.8; test case B, with a weight of 0.6. Weights could be assigned by giving

points to the relevant class–test case association when a code change correlates

with a test failure. For example, if class A has just been changed, and then test

case C fails, the weight between that class and that test case is increased. By

normalizing the weights we avoid large values. The challenge with a technique

like this, is to develop a fitting formula for adjusting the weights.

142

CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.1: Weighted relationships between code changes and test failures.

• Using code dependencies with information about local code changes. Related

to the Local Code Changes technique (Section 4.4.1), but also uses code de-

pendencies to prioritize test cases not directly affected by a change, that have

dependencies on changed code. E.g.: if we have a development project with

four classes: A, B, C and D (Figure 6.2). A depends on B, and B depends on C and

D. If B then gets changed, this could potentially affect both A and B; therefore,

A’s and B’s test cases should be executed first. The set of test cases affected

by a change could also be prioritized internally. For example, by their distance

to the change. The closer a test case is to the changed class, the higher is its

priority. Given the example in Figure 6.2, B would have a higher priority than

A, which in turn would have a higher priority than the rest.

143

CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.2: Local code changes and dependencies.

6.5 The Choice of Evaluation Metric

To address our problem definition and compare the effectiveness of several test case

prioritization techniques, we needed a measure of how rapidly a prioritized test suite

detects faults. We chose to use a weighted average of the percentage of faults detected

(APFD) during execution of the suite [7].

This measure does not incorporate the cost of performing the prioritizations, but our

goal was only to evaluate the prioritization of test cases according to their likelihood of

failing. When concerning time cost of the techniques, we compensated by evaluating

this in Section 4.7, using big-O analysis as described in Section 3.3.2.

Other measurement techniques that were up for evaluation was interpolated precision

[31] (Section 3.1.4). However, since this metric does not provide a single value, rather

one value for each 10% of the test suite being run (0%, 10%,...,100%), we decided to

go with the APFD metric.

144

CHAPTER 6. EVALUATION AND DISCUSSION

6.6 Abandoning Technique Counting Failing Tests

the Last Three Days

In the specialization project [1] we designed and implemented a version of technique

Counting Failing Tests with a three day cut-off. This technique prioritized test cases

by counting the test cases history of failing the last three days, and ordering them

descendingly. The technique is still present in the Pritest source code, and can be

configured, but it was not further improved or altered this semester, and it was not

included in our experiments.

This technique did not perform very well due to its simple binary cut-off, and we

decided to not focus on it this semester. However, in retrospect we can think of

several areas for possible improvements to this technique. E.g., if the cut-off value

were a parameter that could be set in a configuration file, and not just hard coded

as three days, the technique would be much more useful. In addition if not calendar

days were the cut-off object, but rather the number of test runs since the last failure

would probably be better. The reason for this is that days when there is no activity

in the code base also are included in the cut-off in the present solution, with the same

priority as days when the code is altered a lot. One could also think of a solution

where some kind of weighting were involved. E.g., if a weight in inverse ratio were

assigned to test cases, so that a test case gets a lower weight if it failed a long time

ago.

145

CHAPTER 6. EVALUATION AND DISCUSSION

6.7 Benchmark - Custom JUnit Runner

Last semester we developed a custom JUnit runner for our Pritest project. This

semester, we decided to improve it, and ended up building a brand new one. We

performed a benchmark for comparing the performance of the new custom JUnit

runner against the old one. The goal for this benchmarking is to evaluate the test

scheduling performance of the runners, and not their ability to detect failing tests or

the quality of prioritization lists. Hence, we simply created a test suite of 7000 test

cases, each containing five tests.

The test cases were auto-generated, and were of various complexities (e.g., some tests

were simple mathematical addition functions, and others were mathematical power

calculations). The test cases were generated using a bash script (Listing 6.1), which

manipulated a set of existing test cases with new numerations of the same class with

the same test cases inside. The script also alters the source code by editing the class

signature header to comply with the new generated test class name.

146

CHAPTER 6. EVALUATION AND DISCUSSION

1 #!/ bin /bash

2 COUNTER=1

3 i f [−e ” $1Test . java ”] ; then

4 whi le [$COUNTER − l e $2] ; do

5 echo ”Copying $1 . java to 1{COUNTER}Test . java ”

6 cp $1Test . java 1{COUNTER}Test . java

7 echo −e ” Replac ing $1Test with 1{COUNTER}Test in 1{COUNTER}Test .

java \n”

8 sed − i ” s / $1Test /$1${COUNTER}Test /g” 1{COUNTER}Test . java

9 l e t COUNTER=COUNTER+1

10 done

11 e l s e

12 echo ” J a v a f i l e $1Test . java does not e x i s t ”

13 f i

Listing 6.1: Bash script generating multiple test cases.

The script requires two arguments ($1 and $2), respectively the file to alter, and the

number of test cases to generate. Figure 6.3 visualizes the command that runs the

script, with two arguments FactorialTest and 3.

Figure 6.3: Bash script run.

147

CHAPTER 6. EVALUATION AND DISCUSSION

The benchmarks were carried out in a controlled environment, using the same com-

puter, hardware and software for both the new and the old runner. Table 8.2 displays

a summary of the results from the benchmark.

New custom JUnit runner Old custom JUnit runner

Source lines of code (SLOC) 294(*) 1337

Total test run time 31 seconds 53 seconds

Tests pr. second 71.9 42.1

Table 6.1: Custom JUnit runner benchmark.

* Source lines code of the actual runner, excluded the implementation of local priori-

tization techniques located in this module.

This shows that our new custom JUnit runner improves the scheduling of test cases,

and would certainly improve the efficiency when running large test suites.

6.8 Continuous Integration

Continuous Integration (CI) is a software development practice where developers

integrate their work frequently, and each integration is validated by an automated

build in order to detect errors as quickly as possible [36]. CI embraces the idea of

running the entire test suite only after code check-ins on a shared server. This enables

the individual developer to only run tests that covers the features being implemented

at the time, and not the entire test suite of the project each time. This would to

some extent lower the need for a system like Pritest.

148

CHAPTER 6. EVALUATION AND DISCUSSION

However, CI is meant to be used as a safety net, and would ideally not find any errors

when building [36], all though this is often hard to obtain. One way of preventing

it is by running the entire test suite locally on the individual developers’ machine in

advance of committing code. Pritest would be of much use when doing so. When

running the test suite locally, especially if it is a large test suite, it is useful to get

the test results e.g. within three seconds rather than 30 seconds. If we additionally

implemented a “failfast flag”, a mechanism for instantly exiting test runs when failures

occur, the usability would be further improved (discussed in Section 7.2).

149

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this project we have researched the possibilities of prioritizing test cases within

a test suite, so that test cases with a high probability of failing will be run first in

the test execution. We implemented prioritization techniques in a tool called Pritest.

The assignment was given by BEKK Consulting AS, and the motivation behind it

was the increased popularity of using automated testing throughout the development

lifecycle. Prioritizing test cases according to their likelihood of failing, would lower

the feedback time for developers writing a lot of unit tests.

We started our work by researching previous and related work on the topic, and

found that Rothermel et al. [4, 9, 12, 13, 14] have developed techniques with a

similar purpose. In addition we conducted an industrial survey to gain a better

understanding of the problem domain. The results show that slow test runs are in

fact a challenge in the Norwegian software industry, and that there is a market for

150

CHAPTER 7. CONCLUSION AND FUTURE WORK

a product like Pritest. We also did a technical prestudy to improve our skills and

knowledge in the technologies we were about to use.

We designed four techniques for prioritizing test cases. In addition, we implemented

two techniques designed by Rothermel et al. for comparison, as well as three “con-

trol techniques” used only for experimental purposes. The design of the techniques

we implemented ourselves was determined through discussions, consultation with our

external supervisor, partially based on our own experience with software development

and automated testing, as well as the results from the industrial survey. Our tech-

niques were divided into three categories: online, local and hybrid techniques, where

online techniques make use of a service using a REST interface for sending test case

priority lists to requesters and receiving reports after test runs. Local techniques

prioritize test cases based on information available locally, and hybrids consist of two

or more existing techniques.

After we finished implementing the tool, we ran an experiment to investigate if any

of the prioritization techniques are better than the others. This was done by having

two developers at BEKK use the tool in their everyday work for three days. The

techniques are listed descendingly, by performance:

1. Counting Failing Tests.

2. Additional Method Coverage.

3. Total Method Coverage.

4. Local Code Changes with Failure Counting.

5. Local Code Changes.

151

CHAPTER 7. CONCLUSION AND FUTURE WORK

We ran the secondary experiment using our tool after introducing errors in the

code, and collecting the results. The techniques are listed descendingly, by per-

formance:

1. Local Code Changes with Failure Counting.

2. Local Code Changes.

3. Counting Failing Tests.

4. Additional Method Coverage.

5. Total Method Coverage.

The results from both experiments were significant, with p-values of 0.000. The

null hypotheses could therefore be rejected, i.e. there are differences between the

techniques.

In the introduction we stated our goals as researching and implementing a set of tech-

niques for test case prioritization, compare them in experiments, and evaluate them

against existing techniques. This solution should be implemented as a tool designed

for software qualities like efficiency, adaptability and maintainability. Regarding the

second part of our goal—the tool—we achieved the desired software qualities by

implementing several design patterns and complying with best practices. Our tool

was compared to JUnit Max, the only tool we found similar to Pritest. Pritest is not

IDE-dependent like Max is, and provides better support for customizing prioritization

techniques with respect to what is needed in the actual development project.

Due to the increased popularity in agile software methodologies and practices like

TDD, where automated testing is widely used, the problem of slow running test suites

152

CHAPTER 7. CONCLUSION AND FUTURE WORK

becomes a larger problem. At the same time, tools and technologies for mitigating

such a problem emerge—Pritest being one of them.

153

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 Future Work

Although we are quite pleased with the results, we still see some areas of improve-

ment.

1. When selecting what technique to use when configuring the plugin, it would

improve usability and readability to name the techniques instead of just using

numbers as we do now. It could even be possible to use several techniques at

the same time, or define certain “fall-back” techniques if the primary technique

fails to execute, e.g., if a online technique is used, and there is no internet con-

nection. This could probably look something like this:

1 <primaryTechnique>count ingFa i l ingTes t s </primaryTechnique>

2 <fa l lbackTechnique>codeChanges</fa l lbackTechnique>

Listing 7.1: Possible implementation of primary and fall-back techniques

configuration.

1 <techniques>

2 <count ingFa i l ingTes t s >true </count ingFa i l ingTes t s >

3 <codeChanges>f a l s e </codeChanges>

4 <localCodeChanges>true </localCodeChanges>

5 . . .

6 <totalMethodCoverage>true </totalMethodCoverage>

7 </techniques>

Listing 7.2: Possible implementation of using several techniques at once

configuration.

154

CHAPTER 7. CONCLUSION AND FUTURE WORK

2. Pritest is today not able to handle multiple projects at the same time. When de-

veloping different solutions simultaneously, the database that comes with Pritest

must be cleaned and restored for each project. This was sufficient for our ex-

perimental development in this thesis, but if the service should be used com-

mercially, multiple projects must be supported.

3. It would improve maintainability to gather all the techniques in one module, and

having every technique implementing a common interface. This interface could

e.g. have a method getPriorityList() that every technique implementation

should override. The techniques should probably be located in our pritest-core

module.

4. Our APFD values are now written to a file in the file system. This could be

improved by writing the values to a log instead. The tool should also be able

to turn off logging and APFD recording through logging configuration.

5. It should be simple to expand the system with new techniques as the need for

new heuristics emerge, and software development trends change. Suggestions

for new techniques are discussed in Section 6.4.

6. To reduce the threats to validity we encountered in this experiment, we can see

a few more experiments that could have been run. E.g. it would be interesting

to explore whether or not different techniques are suitable for different types

of projects (small vs. big projects, build server vs. developers pc, old vs. new

code, when in the development cycle Pritest is applied).

155

CHAPTER 7. CONCLUSION AND FUTURE WORK

7. Support custom JUnit runners used in the project where Pritest is plugged

in. The Pritest plugin should detect test cases with the @RunWith-annotation

present, and use the custom runner defined in this annotation1 to run these test

cases. Today, Pritest avoids running test cases that should be run with custom

JUnit runner.

8. It could improve the usability of Pritest to implement a so-called failfast flag.

This is a method for instantly terminating an application without throwing any

exceptions [62]. The test run could be terminated at the first failed test case

found, so that the developer can get right back to correcting that failure without

having to manually stop the test run when failing tests occur.

1A typical RunWith annotation looks like this: @RunWith(MyCustomRunner.class), and tells

the test case which JUnit Runner it should be run with. This annotation is placed before the class

construct of the test case.

156

Chapter 8

Appendices

8.1 Survey Free Text Replies

• You should take a look at JUnit Max, which is the latest work from Kent Beck

(who is behind Test Driven Development and JUnit):

http://www.threeriversinstitute.org/junitmax/subscribe.html

• We usually solve the problem of slow running tests by separating unit tests and

integration tests in the build process. Unit tests are fast and runs frequently,

integration tests are slower and run less frequently

• Awesome topic for a master’s thesis! Good luck!

• I only run the nearby tests as i develop.

157

CHAPTER 8. APPENDICES

Before checkin i run all unit tests. At my current solution this is 4200 tests in

63 sec.

I usualy let the build server run the integration tests when i know i havent made

any big changes.

• Ved å benytte continuous integration og verktøy for dette (f.eks teamcity) og

staged checkin s̊a slipper man å kjøre testene lokalt og dermed vente p̊a at disse

skal kjøre ferdig før man utvikler videre.

• I run all test for a feature all the time and all unit tests before each checkin.

• Integration tests slower cause they have to be run so often (much more often

that system tests). And when you first run your system tests you know you

have to wait for them.

There are also many more integration tests than system tests

• Automated testing is a must.

• TDD on web is usually the slowest parts. Even large integration tests tend to

take less time than running through a large suite of Web tests.

• The more experience I get with testing, the more meaningless and harmful the

158

CHAPTER 8. APPENDICES

classification of ”unit test”, ”integration test” and ”system test” becomes.

• We don’t wait for the tests to run. They Are run asynch on the server by Team

City before each check-in.

• TDD is very useful when done right, but it’s time consuming and is therefore

often not prioritized

• Related to: ”How much do you agree to the following statement: ”The test I

am interested in is often run last, or late, in the test suite”; I usually select the

test I am interested in to run independent of the test suite.

• The problem of long-running tests are to a certain degree mitigated by having

a Continuous Integration server. We do this by running unit tests only in the

module we are working on locally, while the CI runs the entire test suite (includ-

ing time consuming integration/system tests) on checkin/push to source-control.

• The question ”How many times a day do you approximately run through your

unit tests?” seems ambiguous. Does it refer to ”all tests” like a test suite, or

”some tests/tests you believe are relevant to what you are working on”? I in-

terpreted it as ”all tests/test suite”.

• When working with legacy applications, it is often difficult to work test driven.

We often end up fixing the bug and writing the test afterwards.

159

CHAPTER 8. APPENDICES

• Svarene p̊a frekvens kan være misvisende da dette er basert p̊a erfaring fra

smidig utvikling ved bruk at unittester, men ikke ren TDD.

• Test suite and a unit test for the specific code you are implementing should be

differentiated in this quiz.

• ”Waiting for slow test runs is a problem for me”: Unit tests are usually fast.

Integration and System tests are usually painful.

• The question ”How many times a day do you approximately run through your

unit tests?” is unclear to me; I run parts of the test suite lots of times a day,

but I only run the entire suite a few times a day. The answer I gave is how

often I run a part of the suite.

• ”Michael Fogus: I’ve found many Scala and Haskell programmers who posses

an extremely acute sense of humor. Is it static typing that attracts these minds,

or does it create them?

Martin Odersky: Maybe it’s the creative pauses forced on them when they wait

for the type-checker to finish ;-)” - http://blog.fogus.me/2010/08/06/martinodersky-

take5-tolist/

Could the same be true for slow running tests?

160

CHAPTER 8. APPENDICES

• Du kan ikke gjøre TDD med tester som g̊ar s̊a sakte som dere antyder i disse

spørsmålene.

• During development, only the tests pertinent to the change in question is run.

CruiseControl run the full set of tests, including integration tests. We do not

have any automatic systems test.

• It’s not enough: you need at least static code analysis and mutation testing too.

• If you use continuous integration slow tests are less of an issue

Any question just ask

knutbo@ifi.uio.no

• Usually, I only run the unit tests that directly target the code I’m currently

developing; I run the full test suite only a few times each hour. Waiting for the

code to build (which takes 10+ seconds in large .NET projects, even if you have

only changed a few lines and want to run a couple of tests) is usually a greater

problem than waiting for the tests themselves to complete.

• We don’t really differentiate between unit tests and other test, we put the slow-

est tests by them self. Can usually run over 1000 tests in less than 10 seconds.

Also use Mighty Moose(http://continuoustests.com/) to run only the affected

tests.

161

CHAPTER 8. APPENDICES

• TDD is the only way to do professional software development. If you do not

use TDD, you should be sued for negligence when the software fails.

• For meg er det selenium som bruker tid da den skal laste nettsiden og utføre

klikk p̊a siden, vente p̊a respons osv... Enhetstester g̊ar raskt.

• Web tests are not worth the effort (watir, selenium etc). Too rigid tests are

worse than no tests, makes trivial changes complicated. Need something in be-

tween. If you need to touch the tests during refactoring, then the value of the

tests are lost.

• The tests have very limited value once the feature is completed and checked in.

I see the real value in speeding up my development

162

CHAPTER 8. APPENDICES

8.2 UML Diagrams for Pritest

pritest-junit-runner : no.pritest

163

CHAPTER 8. APPENDICES

pritest-junit-runner : no.pritest.localprioritization

164

CHAPTER 8. APPENDICES

pritest-junit-runner : no.pritest.localprioritization.visitor

165

CHAPTER 8. APPENDICES

pritest-junit-runner : no.pritest.localprioritization.model

166

CHAPTER 8. APPENDICES

pritest-junit-runner : no.pritest.localprioritization.algorithm

167

CHAPTER 8. APPENDICES

pritest-core: no.pritest.restapi.model

168

CHAPTER 8. APPENDICES

pritest-server: no.pritest.restapi

169

CHAPTER 8. APPENDICES

pritest-server: no.pritest.restapi.model

pritest-server: no.pritest.restapi.configuration

170

CHAPTER 8. APPENDICES

pritest-server: no.pritest.restapi.rest

171

CHAPTER 8. APPENDICES

8.3 Post-Experiment Interview Replies

Question: How did the setup and configuration of Pritest

go?

Simple once the class loading issues were figured out. The plugin unfortunately

only supports single-module maven builds at the moment, so we chose to manually

configure Pritest for the webapp module, which is most heavily developed at the

moment.

Question: How was it to use Pritest in your everyday work?

Unfortunately Pritest does not have support for tracking our JavaScript-unit tests

(which are run by another maven plug-in), so according to test data sent from us it

was not so representative of the development changes that had been done during the

testing period (as most were web front end related changes).

Question: Compared to how you run your tests today (sure-

fire), were there any differences using Pritest?

Surefire supports multi-module maven builds a bit better. Thus we can run that from

the root project, while Pritest needs to be run inside single sub-modules.

Due to some custom JUnit runners used by some integration-tests, we do not run

Pritest for integration tests as we do with surefire.

172

CHAPTER 8. APPENDICES

Question: Have you used JUnit Max?

Yes.

Question: If ”Yes”, how would you compare Pritest to JUnit

Max?

Pritest is a good start, and the architecture resembles JUnit Max. However JUnit

Max is a lot further in development and stability (having been developed for over

three years that would be natural). I like that Pritest is open source, thus the whole

community can contribute to it.

173

CHAPTER 8. APPENDICES

8.4 Experiment Results

8.4.1 Minitab Hypothesis Testing

Figure 8.1: Minitab output - primary experiment.

174

CHAPTER 8. APPENDICES

Figure 8.2: Minitab Output - secondary experiment.

175

CHAPTER 8. APPENDICES

8.4.2 APFD Values

Each line in the following tables correspond to a single test run and gives an APFD

value for each technique.

Techniques

1 4 5 6 7 8 9 10

0.9925595238 0.3913690476 0.4360119048 0.7723214286 0.8169642857 0.8020833333 0.3229166667 0.9925595238

0.9955357143 0.3913690476 0.4389880952 0.7723214286 0.8169642857 0.8020833333 0.4836309524 0.9925595238

0.9866071429 0.3973214286 0.4330357143 0.7544642857 0.8348214286 0.7991071429 0.7276785714 0.9955357143

0.9866071429 0.3883928571 0.4330357143 0.7723214286 0.8348214286 0.8080357143 0.7366071429 0.9955357143

0.9955357143 0.3883928571 0.4330357143 0.7544642857 0.8348214286 0.7991071429 0.7098214286 0.9955357143

0.9866071429 0.3973214286 0.4419642857 0.7544642857 0.8526785714 0.8080357143 0.4508928571 0.9955357143

0.9895833333 0.3883928571 0.4419642857 0.0937500000 0.0937500000 0.7991071429 0.0491071429 0.9955357143

0.9955357143 0.3938053097 0.4419642857 0.8008849558 0.9062500000 0.8080357143 0.5491071429 0.9955752212

0.9910714286 0.3928571429 0.4375000000 0.8080357143 0.8451327434 0.8080357143 0.0223214286 0.9955357143

0.9910714286 0.3973214286 0.4330357143 0.8080357143 0.9062500000 0.7991071429 0.1902654867 0.9955357143

0.9955357143 0.3883928571 0.4375000000 0.8035714286 0.9062500000 0.8035714286 0.9866071429 0.9955357143

0.9866071429 0.3928571429 0.4369369369 0.4279279279 0.9062500000 0.8008849558 0.2276785714 0.9910714286

0.9954954955 0.3883928571 0.4330357143 0.8080357143 0.8750000000 0.8080357143 0.5178571429 0.9955357143

0.9866071429 0.3973214286 0.4330357143 0.8080357143 0.8750000000 0.8035714286 0.6294642857 0.9910714286

0.9866071429 0.1306306306 0.4419642857 0.7991071429 0.4279279279 0.7991071429 0.4285714286 0.9955357143

0.9955752212 0.3973214286 0.4469026549 0.8035714286 0.8437500000 0.4189189189 0.2477477477 0.9954954955

Table 8.1: APFD result from the primary experiment.

176

CHAPTER 8. APPENDICES

Techniques

1 4 5 6 7 8 9 10

0.5844444444 0.9629629630 0.9629629630 0.0555555556 0.0555555556 0.5740740741 0.1666666667 0.9814814815

0.2407407407 0.7169312169 0.9567901235 0.4135802469 0.4135802469 0.2345679012 0.4506172840 0.9444444444

0.2407407407 0.9814814815 0.9629629630 0.3148148148 0.5370370370 0.6604938272 0.5493827160 0.9629629630

0.6569664903 0.9629629630 0.9148148148 0.4111111111 0.3148148148 0.5370370370 0.3518518519 0.9691358025

0.8333333333 0.9567901235 0.9567901235 0.3888888889 0.4111111111 0.7666666667 0.2901234568 0.9469135802

0.5592592593 0.8888888889 0.9444444444 0.1296296296 0.3888888889 0.3271604938 0.3148148148 0.9814814815

0.7074074074 0.8148148148 0.9814814815 0.5370370370 0.5370370370 0.8148148148 0.2222222222 0.9629629630

0.7222222222 0.9814814815 0.9814814815 0.3703703704 0.3703703704 0.8333333333 0.0925925926 0.9814814815

0.8518518519 0.8851851852 0.7777777778 0.5740740741 0.1296296296 0.3333333333 0.2037037037 0.9814814815

0.3148148148 0.7962962963 0.8777777778 0.6407407407 0.0185185185 0.2777777778 0.7148148148 0.9592592593

0.7962962963 0.8597883598 0.9814814815 0.4703703704 0.5740740741 0.4259259259 0.0925925926 0.9814814815

0.6851851852 0.8777777778 0.9518518519 0.5740740741 0.6407407407 0.9074074074 0.5355555556 0.8007407407

0.1203703704 0.9629629630 0.9629629630 0.4629629630 0.4703703704 0.3148148148 0.2037037037 0.9814814815

0.3600823045 0.9814814815 0.8068783069 0.2936507937 0.5740740741 0.7148148148 0.7777777778 0.9629629630

0.4259259259 0.9222222222 0.6481481481 0.5972222222 0.4629629630 0.9074074074 0.4074074074 0.9567901235

0.1913580247 0.7074074074 0.6944444444 0.8827160494 0.2901234568 0.5370370370 0.6172839506 0.9382716049

0.7469135802 0.7037037037 0.9320987654 0.2901234568 0.2936507937 0.5987654321 0.3703703704 0.9629629630

0.5138888889 0.9320987654 0.8456790123 0.5370370370 0.5972222222 0.6640211640 0.3994708995 0.9338624339

0.5864197531 0.8703703704 0.9320987654 0.0555555556 0.8827160494 0.6898148148 0.7592592593 0.9814814815

0.2777777778 0.8950617284 0.9814814815 0.3888888889 0.3888888889 0.6481481481 0.3818342152 0.9629629630

0.6111111111 0.9814814815 0.3148148148 0.3888888889 0.3888888889 0.3077601411 0.2222222222 0.9518518519

0.6851851852 0.6111111111 0.9814814815 0.5592592593 0.6851851852 0.4814814815 0.4259259259 0.9814814815

0.6481481481 0.9814814815 0.6622574956 0.2716049383 0.5592592593 0.3395061728 0.5000000000 0.9814814815

0.2962962963 0.3130511464 0.9419753086 0.5740740741 0.2716049383 0.1203703704 0.8549382716 0.9666666667

0.9814814815 0.9814814815 0.9228395062 0.4037037037 0.5740740741 0.9074074074 0.5370370370 0.9444444444

0.6666666667 0.8876543210 0.6362433862 0.5158730159 0.4037037037 0.9000000000 0.8777777778 0.9518518519

0.4444444444 0.9228395062 0.8259259259 0.6037037037 0.5158730159 0.6494708995 0.3444444444 0.9398148148

0.8777777778 0.8991769547 0.9814814815 0.0555555556 0.6037037037 0.3888888889 0.3518518519 0.9814814815

0.2037037037 0.9814814815 0.9814814815 0.5987654321 0.0555555556 0.0555555556 0.5026455026 0.9691358025

0.5833333333 0.9814814815 0.9814814815 0.7962962963 0.5987654321 0.7469135802 0.6555555556 0.9660493827

0.1296296296 0.9814814815 0.9814814815 0.1666666667 0.7962962963 0.1666666667 0.7592592593 0.9003527337

0.9814814815 0.9629629630 0.9629629630 0.6851851852 0.0555555556 0.0555555556 0.1666666667 0.9814814815

0.7592592593 0.4259259259 0.9156378601 0.5658436214 0.1666666667 0.6111111111 0.7962962963 0.8187830688

0.7000000000 0.8111111111 0.2777777778 0.0185185185 0.5658436214 0.4794238683 0.6481481481 0.9629629630

0.6666666667 0.9814814815 0.9814814815 0.9074074074 0.9074074074 0.2037037037 0.5781893004 0.9814814815

Table 8.2: APFD result from the secondary experiment.

177

CHAPTER 8. APPENDICES

Introduction to Bibliography

This section presents our complete list of references. The bibliography consists of

resources from articles, books and the internet, and is divided in that order throughout

this chapter. The bibliography includes a rather large amount of web references. The

reason for this is that this area is not that well researched in the past, and several

technologies and concepts are not yet written in literature. This research area is

viewed as “cutting-edge”.

178

Bibliography

[1] S. Dalatun, S. I. Remøy, T. K. R. Seth and Ø. Voldsund, Decreasing Response

Time of Failing Automated Tests Using Heuristic Functions, Unpublished, Special-

ization Project Computer Science - NTNU, http://www.norsk-web.com/, Trond-

heim, Norway, December 2010.

[2] J. M. Kim and A. Porter, A History-Based Test Prioritization Technique for Re-

gression Testing in Resource Constrained Environments, Proceedings of the 24th

International Conference on Software Engineering, New York, USA , May 2002,

pages 119-129.

[3] S. Yoo and M. Harman, Pareto Efficient Multi-Objective Test Case Selection,

Proceedings of the 2007 international symposium on Software testing and analysis,

New York, USA, 2007, pages 140-150.

[4] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, Test Case Prioritiza-

tion: An Empirical Study, Proceedings of the International Conference on Soft-

ware Maintenance, Oxford, UK, September 1999, pages 179-188.

[5] B. P. Bailey, J. A. Konstan and J. V. Carlis, The Effects of Interruptions on

Task Performance, Annoyance, and Anxiety in the User Interface, Proceedings of

INTERACT, Vol. 2, Nebraska, USA, 2001, pages 757-762.

179

http://www.norsk-web.com/

BIBLIOGRAPHY

[6] S. B. Jenkins, Concerning Interruptions, COMPUTER-IEEE COMPUTER SO-

CIETY, Vol. 39, No. 39, Ontario, Canada, 2006, pages 1-5.

[7] G., Roland, H. Untch, C. Chu and M. J. Harrold, Prioritizing Test Cases For

Regression Testing, IEEE Transactions on Software Engineering, Vol. 27, No. 10,

Washington, USA, October 2001, pages 929-948.

[8] T. Mende and Rainer Koschke, Effort-Aware Defect Prediction Models, 14th Eu-

ropean Conference on Software Maintenance and Reengineering, Madrid, Spain,

March 2010, pages 107-116.

[9] S. Elbaum, G. Rothermel, S. Kanduri and A. G. Malishevsky, Selecting a Cost-

Effective Test Case Prioritization Technique, Software Quality Journal, Vol. 12,

No. 3, September 2004, pages 185-210.

[10] M. Sherriff, M. Lake and L. Williams, Prioritization of Regression Tests using

Singular Value Decomposition with Empirical Change Records, The 18th IEEE

International Symposium on Software Reliability, Trollhättan, Sweeden, Novem-

ber 2007, pages 81-90.

[11] H. Srikanth, L. Williams and J. Osborne, System Test Case Prioritization of New

and Regression Test Cases, 2005 International Symposium on Empirical Software

Engineering, Noosa Heads QLD, Australia, November 2005, page 10.

[12] S. Elbaum, A. Malishevsky and G. Rothermel, Incorporating Varying Test Costs

and Fault Severities into Test Case Prioritization, Proceedings of the 23rd Interna-

tional Conference on Software Engineering, Washington, USA, May 2001, pages

329-338.

180

BIBLIOGRAPHY

[13] S. Elbaum, A. Malishevsky and G. Rothermel, Test Case Prioritization: A Fam-

ily of Empirical Studies, IEEE Transactions on Software Engineering Vol. 28, No.

2, Nebraska University, Lincoln, USA, February 2002, pages 159-182.

[14] H. Do, G. Rothermel and A. Kinneer, Empirical Studies of Test Case Prioriti-

zation in a JUnit Testing Environment, Proceedings of the International Sympo-

sium on Software Reliability Engineering, Saint-Malo, Bretagne, France, Novem-

ber 2004, pages 113-124.

[15] Dr. W. W. Royce, Managing the development of large software systems, Proceed-

ings of IEEE WESCON, California Institute of Technology, San Francisco, USA,

1970, pages 328-338.

[16] A. Clauset, C. R. Shalizi and M. E. J. Newman, Power-Law Distributions in

Empirical Data, Unpublished, Cornell University Library, Cornell University, New

York, USA, June 2007.

[17] ISO/IEC 9126-1: Software enginnering – Product quality – Part 1: Qual-

ity model, 2001-06-21, International Organization for Standardization, Geneva,

Switzerland.

[18] J. Bloch, Effective Java, Prentice Hall, Second Edition, May 2008, ISBN: 978-

0321356680.

[19] W. McAllister, Data Structures and Algorithms using Java, Jones and Bartlett

Publishers, First Edition, December 2008, ISBN: 978-0-7637-5756-4.

[20] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison-

Wesley Professional, Second Edition, April 2003, ISBN: 0-321-15495-9.

181

BIBLIOGRAPHY

[21] S. L. Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, Fourth

Edition, February 2009, ISBN: 978-0136061694.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén,

Experimentation in Software Engineering — An Introduction, Springer, Kluwer

Academic Publishers, First Edition, December 1999, ISBN: 0-7923-8682-5.

[23] E. Babbie, Survey Research Methods, Wadsworth Publishing, Second Edition,

February 1990, ISBN: 0-524-12672-3.

[24] T. Koomen, L. van der Aalst, B. Broekman and M. Vroon, TMap Next—

for result-driven testing, UTN Publishers, First Edition, December 2006, ISBN:

9072194802.

[25] D. Chelimsky, D. Astels, Z. Dennis, A. Hellesøy, B. Helmkamp and D. North,

The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and

Friends, Pragmatic Bookshelf, First Edition, December 2010, ISBN: 978-1-93435-

637-1.

[26] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Pren-

tice Hall, First Edition, August 2008, ISBN: 978-0132350884.

[27] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improv-

ing the Design of Existing Code, Addison-Wesley Professional, First Edition, July

1999, ISBN: 978-0201485677.

[28] R. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-

Hill Science/Engineering/Math, Seventh Edition, January 2009, ISBN: 978-

0073019338.

182

BIBLIOGRAPHY

[29] W. Trochim, The Research Methods Knowledge Base, Atomic Dog, Third Edi-

tion, December 2006, ISBN: 978-1592602919.

[30] A. Hunt, The Pragmatic Programmer: From Journeyman to Master, Addison-

Wesley Professional, First Edition, October 1999, ISBN: 978-0201616224.

[31] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison-

Wesley, First Edition, May 1999, ISBN: 978-0201398298.

[32] K. Beck, Test Driven Development: By Example, Addison-Wesley Professional,

First Edition, November 2002, ISBN: 978-0321146533.

[33] JUnit Max,

http://www.junitmax.org/, Retrieved February 9, 2011.

[34] Eclipse Foundation IDE,

http://www.eclipse.org/, Retrieved February 9, 2011.

[35] JUnit,

http://www.junit.org/, Retrieved February 9, 2011.

[36] Continuous Integration,

http://martinfowler.com/articles/continuousIntegration.html, Retrieved March

28, 2011.

[37] Github,

https://github.com/, Retrieved March 7, 2011.

[38] Maven,

http://maven.apache.org, Retrieved March 7, 2011.

183

http://www.junitmax.org/
http://www.eclipse.org/
http://www.junit.org/
http://martinfowler.com/articles/continuousIntegration.html
https://github.com/
http://maven.apache.org

BIBLIOGRAPHY

[39] Java SDK,

http://www.oracle.com/technetwork/java/index.html, Retrieved March 7, 2011.

[40] Hudson,

http://java.net/projects/hudson/, Retrieved March 7, 2011.

[41] Jersey,

http://jersey.java.net/, Retrieved March 7, 2011.

[42] JAXB,

http://jaxb.java.net/, Retrieved March 7, 2011.

[43] Sonar,

http://www.sonarsource.org/, Retrieved March 7, 2011.

[44] Git,

http://git-scm.com/, Retrieved March 7, 2011.

[45] JUnit,

http://www.junit.org/, Retrieved March 7, 2011.

[46] Cucumber,

http://cukes.info/, Retrieved March 7, 2011.

[47] MongoDB,

http://www.mongodb.org/, Retrieved March 7, 2011.

[48] Surefire Maven Plugin,

http://maven.apache.org/plugins/maven-surefire-plugin/, Retrieved March 7,

2011.

184

http://www.oracle.com/technetwork/java/index.html
http://java.net/projects/hudson/
http://jersey.java.net/
http://jaxb.java.net/
http://www.sonarsource.org/
http://git-scm.com/
http://www.junit.org/
http://cukes.info/
http://www.mongodb.org/
http://maven.apache.org/plugins/maven-surefire-plugin/

BIBLIOGRAPHY

[49] Twitter - About us,

http://twitter.com/about, Retrieved March 21, 2011.

[50] Byte Code Engineering Library,

http://jakarta.apache.org/bcel/index.html, Retrieved March 25, 2011.

[51] Eclipse ASTParser,

http://help.eclipse.org/helios/nftopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html,

Retrieved March 25, 2011.

[52] javaparser,

http://code.google.com/p/javaparser/, Retrieved March 28, 2011.

[53] JGit,

http://www.eclipse.org/jgit/, Retrieved March 29, 2011.

[54] Factory Pattern,

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/factory.html,

Retrieved April 4, 2011.

[55] The Importance of Maintainable Software,

http://www.basilv.com/psd/blog/2006/the-importance-of-maintainable-

software, Retrieved April 26, 2011.

[56] How to Create Maintainable Software,

http://www.basilv.com/psd/blog/2006/how-to-create-maintainable-software,

Retrieved April 26, 2011.

185

http://twitter.com/about
http://jakarta.apache.org/bcel/index.html
http://help.eclipse.org/helios/nftopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
http://code.google.com/p/javaparser/
http://www.eclipse.org/jgit/
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/factory.html
http://www.basilv.com/psd/blog/2006/the-importance-of-maintainable-software
http://www.basilv.com/psd/blog/2006/the-importance-of-maintainable-software
http://www.basilv.com/psd/blog/2006/how-to-create-maintainable-software

BIBLIOGRAPHY

[57] Smells to Refactorings,

http://industriallogic.com/papers/smellstorefactorings.pdf, Retrieved May 5,

2011.

[58] Collections JavaDoc,

http://download.oracle.com/javase/1.4.2/docs/api/java/util/Collections.html#

sort(java.util.List), Retrieved May 10, 2011.

[59] Oracle Sun Developer Network,

http://developers.sun.com/mobility/midp/ttips/HTTPPost/, Retrieved May 18,

2011.

[60] W3C,

http://www.w3.org/XML/, Retrieved May 18, 2011.

[61] R. Riley - The Four Pillars of Maintainable Software,

http://www.codeproject.com/KB/architecture/maintainablesw.aspx, Retrieved

May 19, 2011.

[62] Stack Overflow,

http://stackoverflow.com/questions/564581/what-is-environment-failfast, Re-

trieved May 20, 2011.

[63] Oracle Sun Developer Network,

http://www.oracle.com/technetwork/articles/javase/index-137171.html, Re-

trieved May 23, 2011.

[64] Rail Spikes Blog,

http://railspikes.com/2009/3/10/slow-tests-are-a-bug, Retrieved May 23, 2011.

186

http://industriallogic.com/papers/smellstorefactorings.pdf
http://download.oracle.com/javase/1.4.2/docs/api/java/util/Collections.html# sort(java.util.List)
http://download.oracle.com/javase/1.4.2/docs/api/java/util/Collections.html# sort(java.util.List)
http://developers.sun.com/mobility/midp/ttips/HTTPPost/
http://www.w3.org/XML/
http://www.codeproject.com/KB/architecture/maintainablesw.aspx
http://stackoverflow.com/questions/564581/what-is-environment-failfast
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://railspikes.com/2009/3/10/slow-tests-are-a-bug

BIBLIOGRAPHY

[65] Wire Researchers,

http://wire.rutgers.edu, Retrieved May 23, 2011.

[66] SonarSource,

https://github.com/SonarSource/sonar, Retrieved June 1, 2011.

[67] Mockito,

http://mockito.org/, Retrieved June 5, 2011.

187

http://wire.rutgers.edu/research_assignments_empirical_link.html
https://github.com/SonarSource/sonar
http://mockito.org/

	Title Page
	Introduction
	Problem Specification
	Motivation
	Problem Scenarios
	Introduction to Pritest

	Methodology and Report Design
	Methodology
	Report Design

	Literature Research
	Related Work
	Test Case Management Categories
	Prioritization Techniques
	Comparator techniques
	Methods for Evaluating Test Case Management Techniques
	Test Suite Granularity
	JUnit Max

	Industrial Survey
	Introduction
	Survey Theory
	Design and Questions
	Distribution
	Results
	Lessons Learned

	Technical Prestudy and Theory
	Effective Java
	Big-O Analysis Method
	Adaptability
	Maintainability
	Software and Testing
	Java Source Code Analysis
	Java Git Libraries

	Own Contribution
	The Pritest Tool
	Implementing our Prioritization Techniques
	Online Prioritization Techniques
	Counting Failing Tests
	Code Changes

	Local Prioritization Techniques
	Local Code Changes
	Additional Method Coverage
	Total Method Coverage

	Hybrid Prioritization Techniques
	Local Code Changes with Failure Counting

	Control Techniques
	Untreated Order
	Random Order
	Optimal Order

	Evaluating Technique Time Complexity with Big-O Analysis

	Experiment
	Experiment Theory
	Experiment Introduction
	Definition
	Goal Definition
	Summary of Definition

	Planning
	Context Selection
	Hypothesis Formulation
	Variables Selection
	Selection of Subjects
	Experiment Design
	Instrumentation
	Validity Evaluation

	Operation
	Preparation
	Execution
	Data Validation

	Analysis and Interpretation
	Descriptive Statistics
	Data Reduction
	Hypothesis Testing

	Secondary Experiment
	Context
	Variables
	Execution
	Descriptive Statistics
	Hypothesis Testing
	Validity Evaluation

	Summary and Conclusions

	Evaluation and Discussion
	Comparison with Existing Techniques
	Post-Experiment Interview
	Quality Analysis - Comparing Pritest to JUnit Max
	Rationale for Chosen Techniques
	Improving the Existing Techniques
	The Choice of Prioritization Techniques to Implement
	Potential Prioritization Techniques

	The Choice of Evaluation Metric
	Abandoning Technique Counting Failing Tests the Last Three Days
	Benchmark - Custom JUnit Runner
	Continuous Integration

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Survey Free Text Replies
	UML Diagrams for Pritest
	Post-Experiment Interview Replies
	Experiment Results
	Minitab Hypothesis Testing
	APFD Values

	Bibliography

