
Master in Information Systems
June 2011
Hallvard Trætteberg, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Designing and Implementing Support
for Web Browser-Based UIs by Using
Ajax Technology

Asim Cihan Erdemli
Onur Hazar

Problem Description

One of the most important ability of Eclipse Modeling Framework (EMF)

with its tools is to view the runtime state of the application based on model-

driven runtime architecture. EMF supports wide range of technologies for

managing, navigating, querying, storing and sharing EMF object structures.

These technologies can enable and simplify the implementation of many

interesting functionalities. Regarding to its functionalities, Wazaabi repre-

sents a concrete user interface rendering engine for model-based applications

and it is an EMF-based user interface model, with editor and runtime sup-

port based on the Eclipse platform. The runtime allows the developer to

run user interfaces within Eclipse, however it does not have support for web

browser-based user interfaces currently.

Our aim is to design and implement support for web browser-based user in-

terfaces by using Ajax technology, while focusing on the Wazaabi framework

intensively.

TDT4900 Master Thesis

Designing and Implementing Support for Web
Browser-Based UIs by Using Ajax Technology

Asim Cihan Erdemli Onur Hazar

erdemli@stud.ntnu.no hazar@stud.ntnu.no

Master of Science in Information Systems

Submission date: 13th June, 2011

Supervisor: Hallvard Trætteberg, IDI

Norwegian University of Science and Technology

Department of Computer and Information Science

Abstract

Due to the advancements in graphical user interface design and modeling

technology, model-based user interfaces are becoming more dynamic and

modeling frameworks allow developers to focus more on abstract modeling

which means they can spend more time on user interface requirements rather

than focusing model interpretation of executable user interfaces and how

their codes are generated. Additionally, it can be noticed that the user

interfaces of desktop based applications are fairly faster, more responsive,

and more ubiquitous as they are compared with the user iterfaces of their

web based counterparts, even though web based applications are evolving

gradually in the last decades. With the introduction of Ajax technology, user

interfaces of web based applications has become as dynamic as the ones in the

desktop based counterpars. By using this advantage of Ajax technology, the

main objective is to implement support for modeling web browser-based user

interfaces to the existing work of �Wazaabi� project which is currently lack of

handling them in an adequate way. To sum up, this master thesis describes a

contribution to a new framework which is called �Wazaabi� by implementing

a web browser modeling support to its already de�ned architecture that does

not support modeling for web browser-based user interfaces as today.

Keywords: User Interfaces, Modeling, Eclipse Modeling Framework, Declar-

ative Live User Interface Models, Ajax Technology, Ajax Frameworks.

Preface

This report was written as a master thesis by Asim Cihan Erdemli and Onur

Hazar in the course TDT4900 Master Thesis at Department of Computer

and Information Science (IDI) at the Norwegian University of Science and

Technology in Spring 2011. The project was selected by the course supervisor

and was composed of two international master students from the Department

of Computer and Information Sciences, NTNU.

The project task was given by the course supervisor �Hallvard Trætteberg�.

This work is a contribution to Wazaabi framework, which contains the de-

sign and implementation details of a support for web browser-based user

interfaces.

The group wants to thank our supervisor Mr. Hallvard Trætteberg for his

important guidance and ongoing support as well as for giving useful advices

and feedbacks throughout the thesis.

Norwegian University of Science and Technology, Trondheim, Norway,

June 1, 2011

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Structure of Thesis . 5

2 State of the Art 9

2.1 Ajax Technology . 9

2.2 Ajax Architecture & Framework 15

2.2.1 Ajax Architecture . 15

2.2.2 Ajax Framework . 17

Why Do We Need an Ajax Framework? 18

Features of an Ajax Framework 18

2.2.3 Types of Ajax frameworks 19

Direct Ajax Frameworks 20

Indirect Ajax Frameworks 20

Ajax Component Frameworks 21

Server-Driven Ajax Frameworks 21

2.2.4 Comparison of Existing Ajax Frameworks 22

Google Web Toolkit (GWT) 22

ii

Rich Ajax Platform (RAP) 23

Dojo Toolkit . 23

Vaadin . 23

ZK . 24

2.2.5 Ajax Java Frameworks 26

Java Based Frameworks 26

Relation with Ajax and XUL 27

2.3 Wazaabi . 28

2.3.1 What is Wazaabi? 28

2.3.2 Wazaabi Framework 29

2.3.3 Editing UI's in Wazaabi 33

2.4 Constraints of Existing Frameworks 34

2.4.1 Constraints of Ajax 35

2.4.2 Constraints of Wazaabi 35

2.5 Chapter Summary . 36

3 Problem Analysis 38

3.1 Problem De�nition . 38

3.2 Relation with Wazaabi . 39

3.2.1 EMF Model . 40

3.2.2 SWT Model . 41

3.2.3 Wazaabi Scenario . 41

3.3 Relation with Ajax . 46

3.3.1 Ajax Support . 47

3.3.2 Proactive Ajax Approach 49

3.4 Ajax Scenarios & Sequence Diagrams 50

3.4.1 Ajax Scenarios . 51

Scenario 1: Ajax Push and Animation: Drag & Drop

List . 51

Scenario 2: Ajax Events and Scripts: Keystroke Events 56

Scenario 3: Inserting values with autocomplete feature

of Combobox 59

Scenario 4: Updating values of a Pie-Chart 3D 61

3.4.2 Sequence Diagrams 64

Scenario 1: Ajax Push and Animation: Drag and Drop

List . 64

Scenario 2: Ajax Events and Scripts: Keystroke Events 65

Scenario 3: Inserting values with autocomplete feature

of Combobox 66

Scenario 4: Updating values of a Pie-Chart 3D 67

3.5 Requirement Speci�cation 68

3.5.1 Functional Requirements 68

3.5.2 Non-Functional Requirements 71

3.6 Chapter Summary . 73

4 Proposed Solution 74

4.1 Solution Overview . 74

4.2 Desired Scenario . 75

4.3 Ajax Engine Design . 78

4.4 Overall Goals for Implementation 80

4.5 Chapter Summary . 81

5 Implementation 83

5.1 Implementation Overview 83

5.2 ZK Ajax Framework & Components 84

5.2.1 ZK Architecture . 87

ZK Loader . 88

ZK Client Engine . 89

ZK AU (Asynchronous Update) Engine 89

5.2.2 ZK Components . 91

Class Hierarchy of Components 94

Implementing the Components 95

Composing User Interfaces in ZK 97

Updating Pages . 98

5.3 Binding Ajax Support to Wazaabi 98

5.4 Integrating ZK Framework with Wazaabi 101

5.4.1 Ajax Engine Implementation 102

EditParts . 103

Views . 105

Adapters . 107

5.4.2 Execution of ZK Ajax Engine via Richlet 108

5.5 Software Technologies & Tools 111

5.5.1 Development Platforms & Softwares 111

Eclipse Helios . 111

ZK Studio . 111

Apache Tomcat 7 . 112

SVN . 112

Mozilla Firefox . 113

Microsoft Internet Explorer 113

Google Chrome . 113

5.5.2 Programing languages 113

HTML . 113

XML . 114

JavaScript . 114

Ajax . 114

5.5.3 Sharing Platforms & Tools 114

It's Learning . 115

GoogleDocs . 115

Microsoft Word . 115

5.6 Chapter Summary . 116

6 Evaluation 117

6.1 Evaluation Overview . 117

6.2 Evaluation Scenarios . 118

Scenario 1: Adding & Editing ZK Component 118

Scenario 2: Updating ZK Component via onClick Event120

6.3 Project Results . 122

6.4 Chapter Summary . 125

7 Conclusion 127

7.1 Summary of the Thesis . 127

7.2 Future Work . 128

A Source Codes 134

A.1 ZK Engine . 135

A.1.1 EditParts . 135

A.1.2 Views . 136

A.1.3 Viewers . 146

A.1.4 Adapters . 150

A.2 ZK Richlet . 153

B Project Partners and Contacts 154

C Glossary 155

CSS . 155

DOM . 155

DOJO . 155

DWR . 155

Eclipse IDE . 156

EMF . 156

GWT . 156

Java . 156

JavaScript . 156

RAP . 157

RCP . 157

SCD . 157

SDK . 157

SWT . 157

WPD . 158

XHTML . 158

XUL . 158

XML . 159

Vaadin . 159

ZK . 159

List of Figures

1.1 Existing Approach . 4

1.2 Ajax Approach . 5

2.1 Google Search Engine . 11

2.2 Google Maps . 12

2.3 Google Translate . 13

2.4 Standart Ajax Interaction 14

2.5 Traditional Web Application vs Ajax Web Application . . . 16

2.6 General Architecture of Ajax Framework 18

2.7 Diversity of Existing Ajax Frameworks 25

2.8 Wazaabi Stack Model . 29

2.9 Wazaabi Framework . 30

2.10 Platform Independent Models Hierarchy 31

2.11 Relationship between Models & Engines[2] 31

2.12 Wazaabi Core Model . 32

2.13 Editing with programming[27] 33

2.14 Editing Declaratively[27] . 34

3.1 EMF Tree . 40

3.2 SWT Tree . 41

i

3.3 Relationship between EMF and SWT Trees 42

3.4 Wazaabi Scenario[2] . 43

3.5 Sequence Diagram of Wazaabi Scenario 45

3.6 Hierarchical Structure of Wazaabi 46

3.7 Existing Model . 49

3.8 Proactive Ajax Approach . 50

3.9 Drag and Drop Case 1 . 52

3.10 Drag and Drop Case 2 . 53

3.11 Drag and Drop (Exception) 54

3.12 XML Code of ZK GWT Item 55

3.13 move(event.dragged) Method 56

3.14 KeyStroke (Event) . 57

3.15 KeyStroke Event Method . 59

3.16 Autocomplete with Combobox 60

3.17 isChangingBySelectBack Method 60

3.18 Pie Chart 3D(Before) . 61

3.19 Pie-Chart 3D(After) . 62

3.20 Sequence Diagram of Scenario 1 64

3.21 Sequence Diagram of Scenario 2 65

3.22 Sequence Diagram of Scenario 3 66

3.23 Sequence Diagram of Scenario 4 67

3.24 Sample Widget De�nition: SimpleLabel 70

4.1 Sequence Diagram of Desired Scenario 77

4.2 Hierarchical Structure of ZK Engine 78

4.3 Ajax Scenario . 79

5.1 ZK Ajax Framework System Diagram 85

5.2 Sample XML . 86

5.3 onChanging Event Listener in ZUML 87

5.4 Interactions of the ZK Archtitecture 89

5.5 ZK Framework Architecture[37] 90

5.6 ZK Generating an HTML Page[35] 91

5.7 Relationship between Components & Widgets 92

5.8 Invoking setSize() Method 92

5.9 Triggering onClick Event . 93

5.10 Relationship between components 93

5.11 getFellow() Method . 94

5.12 ID Space Example . 94

5.13 ZK Component Class Hierarchy 95

5.14 Implementing a ZK Component 96

5.15 Ways of composing UI in ZK[40] 97

5.16 Importing ZK Libraries . 99

5.17 Package org.zkoss.zul containing Components 100

5.18 Ecore Model of ZK Ajax Support 101

5.19 Packages of ZK Engine . 102

5.20 ZK Engine EditParts . 103

5.21 Comparing the Model Element 103

5.22 ZK Engine EditParts.Helpers and EditParts.Impl 104

5.23 Hooking widget to View . 105

5.24 Views and Viewers . 106

5.25 Adapter.Binding and Adapter.Eventhandlers 107

5.26 ZKRichlet as ZK Project . 109

5.27 Turning on ZKRichlet . 109

5.28 Mapping URL Pattern to ZKRichlet 110

5.29 Loading the EMF Resource 110

5.30 ZKRichlet.zkmodel . 111

6.1 Adding Button & Label via programming 119

6.2 Adding & Editing ZK Component via Editor 120

6.3 onClick event of org.zkoss.zul.Button 121

6.4 Changing ZK Label via onClick Event of ZK Button 121

6.5 ZK Components in the ZK User Interface 124

A.1 Source Code of AbstractZKWidgetEditPart.java 135

A.2 Source Code of ZKXulElementCtrlView.java Part 1 136

A.3 Source Code of ZKXulElementCtrlView.java Part 2 137

A.4 Source Code of ZKXulElementCtrlView.java Part 3 138

A.5 Source Code of ZKXulElementCtrlView.java Part 4 139

A.6 Source Code of ZKXulElementCtrlView.java Part 5 140

A.7 Source Code of ZKXulElementCtrlView.java Part 6 141

A.8 Source Code of ZKXulElementCtrlView.java Part 7 142

A.9 Source Code of ZKXulElementCtrlView.java Part 8 143

A.10 Source Code of ZKWidgetViewFactory.java Part 1 144

A.11 Source Code of ZKWidgetViewFactory.java Part 2 145

A.12 Source Code of ZKControlViewer.java Part 1 146

A.13 Source Code of ZKControlViewer.java Part 2 147

A.14 Source Code of AbstractZKViewer Part 1 148

A.15 Source Code of AbstractZKViewer Part 2 149

A.16 Source Code of ZKEventHandlerAdapter.java Part 1 150

A.17 Source Code of ZKEventHandlerAdapter.java Part 2 151

A.18 Source Code of ZKEventHandlerAdapter.java Part 3 152

A.19 Source Code of ZKRichlet.java 153

A.20 Source Code of ZKRichlet.zkmodel 153

List of Tables

2.1 Comparison of Existing Ajax Frameworks[20] 24

3.1 Functional Requirements 68

3.2 Non-Functional Requirements 71

4.1 Overall Goals For Implementation 80

6.1 Ful�llment Table of Requirements 123

vi

Chapter 1

Introduction

In our everyday life, computers are becoming more involved in our daily

routine and all of us as computer users expect more simplicity during inter-

action with computers. Computer users want more user friendly interfaces

when they are working. However, there are lots of information context, data

�owing into the computer monitor and these screens are the only output

computers have. Thus, user interfaces are playing a crucial role by becom-

ing a bridge between the computer applications and users to inform them

about what they are doing. Most of the applications have a graphical user

interface (GUI) and GUI's visual ability a�ects the information �ow in a

positive way. Using this ability not only the application can receive the

input from the user easily but can also provide the relevant information

in the timely manner and in a format user can understand. Users inter-

act with modern applications using graphical components such as windows,

textboxes, buttons and menus. Since, it would be complex to write a GUI

application by programming with code. Model-based user interface design

is an exciting �eld because it avoids the developer from intensive coding and

lets him think more about the concepts and models of components needed

for user interfaces.

There are well established modeling frameworks which have already de�ned

architecture for model-based user interface design. Furthermore, some of

them has strong data models of behaviour. For example, Eclipse Modeling

1

Framework supports modeling classes with multiple inheritance data types

and with its tools it provides runtime support for representing instance data.

1.1 Motivation

The world of web based applications development grows and grows. We

can read many articles and books that explain how to develop web based

applications. Nearly every week a new framework emerges in the sphere of

web based applications development. However, each new technology and

framework means that we have to learn it. Without learning, it is not

possible to leverage the complete power of the chosen technique. There

are some reasons for the emergence of such a wide range of possibilities

for developing web based applications. The evolution of technology is one

reason, and another is the demand for a faster and more e�cient way to

develop web based applications.

There are di�erent of methods to support the web based applications that

we already use today. When we consider about the traditional desktop based

applications, we can easily realize the fact that the desktop based applica-

tions are typically faster and more e�cient than web based applications.

Even though, the web based applications have continued to become more

advanced over the last years, this fact still remains that they are much less

responsive than the traditional desktop based applications.

With the introduction of using model based techniques for making web based

applications dynamic, the main distinction between the traditional desktop

based applications and the web based applications is started to close. That

is to say, the importance of building the web based applications as robust

as their desktop counterparts came into question in the last years. Because,

most of the users who use web based applications are only interested in

gathering information as quickly as possible, as well as avoiding the waiting

time which occurs in the traditional web based applications. Whereas, the

desktop based counterparts are performing their tasks even faster and in

a more ubiquitous way while the web servers in the traditional web based

2

applications are still performing theirs tasks in the background.

The key motivation for this master thesis[1] is to implement support for the

web browser based user interfaces by using the model based techniques of

the existing work of Wazaabi project[2] which is currently lack of supporting

them properly. Put in another way, our main motivation is to make sure

that the existing work of Wazaabi project will be able to handle with the

web browser based user interfaces faster, and more interactive and more

dynamic by using Ajax technology.

1.2 Objectives

This project as a master thesis is aimed to be developed as a support for

model-based user interface (UI) design in existing frameworks. Our main

objective is to design and implement web browser-based user interfaces by

using Ajax technology in order to facilitate and extend the usage of the

existing work of Wazaabi project which has no support for web browser-

based user interfaces currently.

Modeling has an ability to put two concepts (user interface design and data

binding) together. According to the Ajax technology in the �eld of web

application development as well as the improvements in GUI design and

modeling technology, the model-based user interfaces are becoming better,

faster, and more interactive and more dynamic. This results the development

of Wazaabi framework whose aim is to support model-based user interface

design for developers. Wazaabi framework supports di�erent user interface

models which are typically based on Eclipse Modeling Framework (EMF)

models [3].

The tools of EMF has an ability of displaying the runtime status of the ap-

plication which is based on model-driven architecture at runtime. According

to the functionalities of EMF, the existing work of Wazaabi project provides

a concrete user interface rendering engine for model-based applications as

well as it has an EMF based user interface model, with editor and runtime

3

support based on the Eclipse platform. The runtime allows the developer to

run user interfaces within Eclipse, however it does not have support for web

browser-based user interfaces currently.

Figure 1.1: Existing Approach

This thesis is connected to earlier works about model-based user interface

design techniques such as Wazaabi project developed by Olivier Moises who

is the chief architect of Wazaabi. Related to this thesis, the main contribu-

tion of Moises' project was designing and implementing a declarative user

interface framework based on live EMF models [4].

Since Wazaabi being an open source framework for supporting model-based

user interface design, it may also be extended with integrating certain tools

of other existing technologies. This is where Ajax technology comes in as a

support for possible integration that comprises di�erent tools.

Ajax is a technology which enables web based applications or rich internet

applications to call the web server without leaving the current page. It

is possible to do this in the background without any notice of the user

asynchronously. This avoids loading the same form or page including the

HTML codes multiple times, reduces the network tra�c and increases the

user acceptance. As a consequence, web based applications which use the

Ajax technology tend to be more responsive and have more interaction with

the user[5].

Wazaabi project has asserted that user interface design could be supported

by live user interface models as well as modding their containing data dy-

namically could be possible. But, the lack of supported components for the

user interface models a�ects developers negatively while building user inter-

faces. Therefore, our �rst objective is formed that a seamless integration

4

between Ajax toolkits and Wazaabi framework could be possible and these

tools must answer the developers' requests. With the help of the Ajax tech-

nology, second objective of this thesis is to develop a generic model for the

target technology (Ajax) and to develop speci�c support for web browser-

based user interfaces by using a new engine.

Figure 1.2: Ajax Approach

The ultimate goal of this master thesis is to implement our own Ajax engine

(render) which is targeting a server-driven Ajax framework instead of using

SWT (the current engine which is being used by the existing work of Wazaabi

project), with an initial aim of providing support for web based user interface

and model based toolkit by making use of Ajax technology and its relevant

frameworks. Clearly, the �gure above indicates the new approach which we

plan to implement as a support for the existing work.

1.3 Structure of Thesis

This section of the introduction chapter is reserved to give an overview of

the remaining chapters in the entire project report. Besides, it also provides

short summaries for quick references.

• Chapter 2 � State of the Art: This chapter is where we introduce

general information about some of the architectures and frameworks

of the existing applications which are necessary for the project task.

In other words, we also elaborate our knowledge about the problem

situation of the project task according to existing technologies and

5

frameworks. Therefore, the main objective of this chapter is to get an

understanding of general information about Ajax technology, its main

architecture and frameworks as well as the study of the existing work

of Wazaabi project, its main architecture, the Wazaabi framework and

including its core concepts. Finally, this chapter also covers some

possible constraints of existing frameworks that are relevant to our

project.

• Chapter 3 � Problem Analysis: The aim of the problem analysis

chapter is to describe brie�y the main task of this master thesis and its

relevant concepts in more detail by giving a comprehensive analysis for

the given problem. In addition, this chapter is where we highlight the

project task by relating it with di�erent modeling frameworks of the

existing work of Wazaabi project as well as explaining the relation of

the main task of this master thesis with the existing work of Wazaabi

project. In other words, this chapter is reserved to study the main

task of this master thesis in order to �nd out a possible solution which

can be found as a result of some theoretical discussions where we try

to ful�ll the objectives of the this master thesis. Finally, this chapter

also includes a section called requirements speci�cation where we elicit

the possible functional and non-functional requirements by elaborating

scenarios about the desired situation at the end.

• Chapter 4 � Proposed Solution: This chapter is reserved to elabo-

rate the solution that we propose for the project task which is already

described in chapter 3 in more detail. Therefore, the proposed solution

chapter is where we describe everything that constitutes our contribu-

tion for the project task in more detail. In addition, this chapter

expresses the desired scenario in order to give as realistic as possible

situation where the existing work of Wazaabi project could have been

used. In order to illustrate the way of use, some high level diagrams of

the important cases are also given in this chapter. Besides these, the

overall system architecture of our proposed solution and where all the

important and relevant components of the existing work of Wazaabi

6

project are situated in our proposed solution are also presented in this

chapter. Finally, there is also a part where we elaborate the overall

goals for the actual implementation of our proposed solution before we

closing this chapter.

• Chapter 5 � Implementation: The implementation chapter is ded-

icated to take into account the elaboration of how we actually imple-

ment the proposed solution which is already given in chapter 4 in more

detail. In addition, this chapter also emphasizes the inner functional-

ities of the most important and relevant components of the ZK Ajax

framework in more detail by giving various diagrams. Furthermore,

the implementation chapter is where we also give an overview of the

programming standards that we use, including the source code layouts

and the usage of existing libraries from the existing work of Wazaabi

project. In other words, this section of the report describes how the

implementation phase is carried out, how well the work is integrated

and above all, �rst and foremost how well our proposed solution is

re�ected in the actual Wazaabi project. Finally, this chapter also in-

cludes the discussion of di�erent software applications, programming

technologies and computer programs that are being used during the

implementation of our proposed solution for the main project task.

• Chapter 6 � Evaluation: This chapter contains information about

the evaluation of the project by giving the description of how we evalu-

ate the implementation of the proposed solution. Additionally, the aim

of this chapter is to verify how well the main objectives of the project

task are solved as well as to what extent the requirements are met

throughout the development stage of the entire project. The evalua-

tion chapter also gives two sample scenarios as well as explaining what

the di�erent aspects of the project are by showing them how they are

accomplished according to the ful�llment criterias of the requirements

speci�cation.

• Chapter 7 � Conclusion: This chapter is reserved to conclude

the project report by summarizing the contribution we made for the

7

project task as well as it contains the re�ections about all aspects of

the project (both the positive and negative experiences) by explain-

ing the main project outcome. In addition to them, there is a section

called future work which contains suggestions of the ideas for possi-

ble improvements by giving examples of how we would accomplish the

project task in di�erent ways in a possible future project. To sum up,

the conclusion and future work chapter marks an end to this report.

8

Chapter 2

State of the Art

This chapter of the report introduces a general information about some of

the existing application frameworks. The purpose of this section is to get

an understanding of the general Ajax architecture and possible constraints

of existing frameworks. First, we are going to explain Ajax technology by

describing how its architecture is developed. Then, we will give a brief

information about an open source framework called Wazaabi and its core

concepts that are relevant to our project.

2.1 Ajax Technology

With the new emerging technologies in the �eld of web application develop-

ment part of software engineering which is progressing day by day, there is

a new coding technique which is becoming quite popular in this area, it is

called Ajax technology. The word Ajax stands for Asynchronous JavaScript

and XML which has been around since 1998. This new coding technique

has a main objective to make traditional client-server communication more

e�cient. In other words, Ajax is a new coding technique for creating better,

faster, and more interactive web applications with the help of XML, HTML,

CSS and JavaScript languages. Ajax technology uses XHTML for content

and CSS for presentation, and JavaScript for dynamic content display.

9

The motivation of why Ajax was created was the idea of making the client

part communicate with the server part, without any need of a di�erent page

or refreshing. Therefore, the Ajax technique is mainly used on the client part

in order to create interactive web applications. By using the Ajax technology,

the client part of a web application can retrieve data asynchronously from

the server part which works in the background without making any change

of display and behavior of the existing pages [6].

In the traditional approach of web applications, the information is trans-

mitted between client and server by using synchronous requests. As an

illustration to this, when a user �lls out a form and then clicks on submit

button, the user is directed to a new screen with new information that came

from the server part. Whereas, with the usage of Ajax technique, when

the user clicks on submit button, the JavaScript makes a request to the

server part, interprets the outcomes and updates the current screen without

even directing the user to a new screen. Simply, the user does not know

that anything was even transmitted to the server part. Therefore, we can

say that, Ajax is a web application technology which is independent of web

server software. That is to say, the user can still continue using the web

application while the client part requests the information from the server

part working in the background. Moreover, in some web applications which

use Ajax technique, only a mouse movement is su�cient to trigger an event

without any necessity to click a button. Therefore, Ajax also provides not

only an interactive web application but also an intuitive and natural user

interaction in it.

To make the long story short, the client parts of the web applications which

use Ajax technique can interact with the server part without making a typ-

ical refreshment of the current screen or redirecting a new screen which is

done in the traditional web applications[24]. Because, Ajax technique allows

the content on web pages to update themselves immediately when the user

performs an action, unlike an HTTP request, during which users must wait

for a whole new page to load. Additionally, Ajax can also gather information

from other sources. The web applications can have Ajax code in order to

10

validate if the correct information has been entered into a given text �eld by

the user. Furthermore, the web applications that use Ajax can dynamically

warn the user if the username that the user has entered is already in use, the

e-mail that the user has entered is not valid, the passwords that the user has

entered do not match with each other, or the web page itself can give some

hints about the security level of passwords that the user has entered[7].

We would like to give some well known examples about the Ajax technique

which can help any type of web pages and web applications. Google has

implemented the Ajax technique to their maps, e-mail and other tools that

they o�er. Additionally, some e-commerce web sites are frequently using the

Ajax technique for credit card submissions. On the client side of your page

is your visitor that has more interaction and quicker results.

• Google Search Engine: Google Web Search which is owned by

Google, is the most famous and the most used web search engine that

uses the Ajax technique on the internet world. It currently receives

several hundred million queries everyday through its various services.

The following �gure shows the real time search suggestions of Google,

which provides the Ajax technique. The Google search engine can be

accessed via [11].

Figure 2.1: Google Search Engine

11

• Google Maps: Google Maps is one of the well known web applica-

tions which uses Ajax technique o�ered by Google. The user can drag

the entire map by using the mouse rather than clicking on a button.

So, the interface of the application allows the user to change views and

manipulate the map in real time. The application can be accessed via

[12].

Figure 2.2: Google Maps

• Google Translate: Google Translate can be an another example for

the well known Ajax based web applications. It is a free statistical ma-

chine translation service which uses Ajax technique o�ered by Google.

It has a main functionality of translating a section of text, document

or website into another language. The application can be accessed via

[13].

12

Figure 2.3: Google Translate

The web applications which are created by using Ajax technique use an

engine that has a role like a mediator between the client part (in general,

the user's web browser) and the server part from which it is requesting

the relevant information. Rather than loading a traditional web page, the

client part loads the Ajax engine which displays the web page that the user

sees. The engine keeps running in the background by using JavaScript to

communicate with the client part. When the user performs an action by

clicking on the web page, a JavaScript call is sent to the Ajax engine which

is responsible for responding back to the client part instantly. If the Ajax

engine requires an additional data to perform its action, then it requests the

relevant data from the server part by using XML, while it is simultaneously

updating the website or the current screen of web application. The following

�gure illustrates the standart Ajax interaction between the client part (the

web browser) and the server part in a general manner.

13

Figure 2.4: Standart Ajax Interaction

Before we dive into the archtitecture of Ajax and the features of its frame-

work, we would like to sum up everything again. As we mentioned before,

the rising Ajax technique is becoming one of the best internet technology

for creating dynamic web pages[8]. It is done by embedding JavaScript code

into the HTML based web pages in order to send requests to the server part.

In the server part, some processing is required to handle the requests which

are coming from the client part. To handle the requests of �nding out the

information or just storing the data, we need for a specialized Ajax frame-

work in the server part. The Ajax frameworks have always a JavaScript

part in themselves, and they sometimes also have a server part in another

scripting language like XML. A lot of them exist in various programming

languages working on all programming environments around but we would

like to keep in mind only the most widely used ones in our report. Therefore,

in the following section, we will continue our discussion by elaborating the

architecture of Ajax itself as well as covering the Ajax frameworks and their

signi�cant aspects.

14

2.2 Ajax Architecture & Framework

In this section, we will discuss what the architecture of Ajax is, the main

components of it and what makes Ajax based web applications di�erent than

traditional web applications �rstly. Then, we will continue our discussion

with Ajax frameworks that are used for developing Ajax based web applica-

tions as well as giving brief explanations of what the di�erent types of Ajax

frameworks and their main features are. Finally, we will mention about the

various existing Ajax frameworks as a quick review for being a part of the

background knowledge in this master thesis.

2.2.1 Ajax Architecture

Ajax has a browser-side technology stack and architectural style which inter-

acts with the server part to update the user interface without refreshing the

entire web page. Even though, it is more complicated to code, it can o�er a

faster and smoother user experience. When we consider ajax technology, we

should also mention the di�erences between a traditional web application

and an Ajax application. The following �gure shows that di�erences as well

as the architectural implications of Ajax technique.

15

Figure 2.5: Traditional Web Application vs Ajax Web Application

The traditional web application approach simply does everything on the

server part. Occasionally, the application emits script code to run a task

on the client part for only special circumstances, for example to handle

data validation. Whereas, an Ajax application approach uses a client part

framework which takes care of issuing calls to the web server. An Ajax server

part framework then takes care of the request and returns data feed to the

client part. This will often be a JavaScript Object Notation (JSON) data

stream, but other formats such as XML, RSS, and CSV can be also used.

The client part receives data feeds and updates the user interface by using

JavaScript. The server part responds to requests by returning raw data

which are encoded in a given format. With the usage of Ajax technique,

the bandwidth consumption is minimized, the speed of the web application

increases since the requests take less time to complete, and user interface

updates are able to take e�ect with no visible postback. Even though,

the usage of Ajax technique solves many problems, the increasement in the

16

actions on the client part also brings about new critical issues, such as new

coding practices, new security hazards, accessibility concerns, and so on[9].

2.2.2 Ajax Framework

The Ajax framework is a web application framework which assists to develop

web applications that use Ajax technique. As we already metioned in the

previous section, the Ajax technique is a collection of di�erent technologies

which are used to build dynamic web pages on the client part. The data

is read from the server part or sent to the server by JavaScript requests

dynamically. Nevertheless, some additional processing at the server part

may be required to handle some kind of JavaScript requests, such as �nding

and storing the data. This is accomplished more easily when a framework

is dedicated to process those kind of JavaScript requests. Therefore, the

main objective of the Ajax framework is to provide the Ajax engine and

the associated server part and the client part functions. In other words, the

Ajax framework is an application framework that takes the di�culties out

of building web applications that use Ajax technique, both at the client part

and server parts. The following �gure shows how the architecture of an Ajax

framework is structured in a general manner.

17

Figure 2.6: General Architecture of Ajax Framework

Why Do We Need an Ajax Framework?

An Ajax framework is essentially an Ajax engine which is intended to sup-

press the time elapsed and the processes done in the waiting time for the

user while client part is accessing the server part[10]. Even though, the

Ajax frameworks generally provide classical, cross-browser functions to use

the XMLHttpRequest objects, they can go beyond that, and allow us to

build rich web based applications, the applications with a graphical user in-

terface and the other features of desktop software which run through a web

browser while exchanging data with a remote server part.

Features of an Ajax Framework

Every Ajax frameworks are able to communicate with the server part, and

therefore, they can read data or send their data or requests. In the last

case, a script code which is running on the server part is required. The

frameworks often add components that make use of the asynchronous com-

munication with the server part. The traditional examples can be buttons,

18

tabbed panels, grids, listboxes and other such widgets[21]. A more innova-

tive example, the boxes are more and more often implemented, and lightbox

and slimbox are two of them. There are image galleries that place them

side by side on the screen and that are making use of the Ajax technique

to display them instantaneously. Frameworks can also be server-driven, and

in this case, components are created on the server part with a scripting

language such as PHP, and sent to the web browser (the client part). The

Ajax is used to transmit user actions to the server part, and to handle the

results[22].

2.2.3 Types of Ajax frameworks

There are four di�erent types of Ajax frameworks which di�er in the amount

of coding expertise required, as some necessity of extensive knowledge, while

others frameworks use pre-built components that require less experience.

The Ajax frameworks can be grouped into four di�erent categories according

to the features they o�er and the skills required of the user. Therefore, in

this section, we will discuss the four di�erent types of Ajax frameworks which

are available for developing Ajax based web applications. According to the

di�erent features of the Ajax framework, there are four di�erent types which

are[20]:

1. Direct Ajax frameworks

2. Indirect Ajax frameworks

3. Ajax component frameworks

4. Server-driven Ajax frameworks

Now, we will be brie�y elaborating about these four di�erent type of Ajax

frameworks one by one in the rest of this section. Later on, we will explain

why we select the server-driven type of Ajax frameworks out of these four

di�erent types of Ajax frameworks for making a contribution to the aim of

our master thesis.

19

Direct Ajax Frameworks

This type of Ajax frameworks require some skills and knowledge of HTML,

CSS, JavaScript as well as expertise in Ajax technique. In this type of Ajax

framework, the developer writes web pages in the HTML and the framework

Application Programming Interfaces (APIs) directly interacts with HTML

elements. This type of Ajax frameworks provides the APIs which have a

variety of di�erent purposes, generally including communications, DOM ma-

nipulation, event handling, and animation support in HTML elements. Ad-

ditionally, this type of Ajax frameworks are commonly smaller so that they

are mostly used for shopping websites. Nevertheless, this type of Ajax frame-

works are not suitable enough to be used for the complex web applications

such as Ajax web based email client as long as there does not exist further

Ajax frameworks that are layered on top.

Indirect Ajax Frameworks

This type of Ajax frameworks rely on compiler technology that actually

converts the high level language into Ajax, HTML and JavaScript rather

than writing directly in Ajax, HTML and JavaScript. In other words, this

type of Ajax frameworks includes a high level language is used together

with a corresponding compiler which generates the JavaScript from the high

level language. Therefore, in this type of Ajax frameworks, some skill and

knowledge of the high level language such as CSS and HTML are necessary

for the developer. However there is no requirement of knowing a great deal

of Ajax and expertise in JavaScript, since the framework itself generates the

Ajax and JavaScript code. This type of frameworks are mostly used with the

appropriate libraries, modules and classes which are written in the high level

language in order to handle communications, DOM manipulation, HTML

element manipulation, and event handling.

20

Ajax Component Frameworks

This type of Ajax frameworks provide lots of pre-made components, such as

grids, tabbed panels, trees, comboboxes, date pickers, HTML editors which

automatically generate and manage their own HTML codes. All of these

pre-made components can be used while the user interfaces of the web ap-

plications are being developed via only adding a few lines of JavaScript, XML

tags or via adding some special attributes to regular HTML elements. This

type of Ajax frameworks are usually larger, and used for web based applica-

tions instead of websites. Furthermore, some of the Ajax component frame-

works require expretise in Ajax, HTML, CSS, and cross-browser testing.

As an illustration to this, grids, tabs, and buttons can be provided by the

framework itself but the user input forms are expected to be created directly

in HTML or CSS and manipulated by Ajax technique. Whereas, the other

Ajax component frameworks can provide a complete component palette so

that it makes only some general skills in XML or JavaScript required. As

an advantage, the Ajax component framework allows the developers to de-

velop web based applications rapidly. This kind of Ajax frameworks support

tailorable APIs and event handling functions, new facilities for making web

pages eye-catching, programmatic control of the pre-made components, the

extensibility facility which makes the Ajax framework practical as well as

providing the possibility of creating new components by extending the ex-

isting ones.

Server-Driven Ajax Frameworks

This type of Ajax frameworks rely on the server part components for the

Ajax functionality as well as providing more e�ciency and performance

for server part. In this type of framework aims developing and managing

the server part components where the server part itself generates necessary

HTML and JavaScript for Ajax support. Therefore, the server-driven Ajax

framework renders the components and handles the client-server requests

& responses by data handling. The Ajax frameworks which handle pre-

sentations completely within the web browser can provide greater ability to

21

response when they are able to manage more user interactions without server

intervention. In the server-driven Ajax frameworks, some user interface in-

teractions may react slowly such as when an input �eld is automatically

enabled according to the server part requests. This approach is still quite

popular for the cases where the usability of a complete Ajax architecture

can not be covered or where the server part interaction is required anyway.

Extending the framework requires a well understanding of which parts of the

interactions are managed on the client part and which parts of the interac-

tions are managed on the server part, plus some coding skills in JavaScript

and Ajax.

2.2.4 Comparison of Existing Ajax Frameworks

In this section, we will continue our discussion with the comparsion of the

most widely used existing Ajax frameworks that are used for developing

Ajax based web applications as well as giving brief explanations and the

main features of them one by one. Additionally, we will provide a table as

a quick reivew of what kind of Ajax frameworks they are, for being a part

of the background knowledge.

Google Web Toolkit (GWT)

Google Web Toolkit (GWT) is an open source set of tools that allows web

developers to create and maintain complex JavaScript front end applica-

tions in Java. Other than a few native libraries, everything is Java source

that can be built on any supported platform with the included GWT Ant

build �les. It is licensed under the Apache License version 2.0. GWT em-

phasizes reusable, e�cient solutions to recurring Ajax challenges, namely

asynchronous remote procedure calls, history management, bookmarking,

internationalization and cross-browser portability[14].

22

Rich Ajax Platform (RAP)

Rich Ajax Platform (RAP) is an open source software project under the

Eclipse technology project which aims to enable software developers to build

Ajax enabled rich internet applications by using the Eclipse development

model, plug-ins and a Java only APIs. It can be considered as a counterpart

for web development to the Rich Client Platform (RCP). The API is very

similar to RCP, so developers who are familiar with RCP can reuse their

existing knowledge. RAP encourages the sharing of source code between

RCP and RAP applications in order to reduce the development e�ort for

business applications that require both a desktop based and a web based

front end[15].

Dojo Toolkit

Dojo Toolkit is an open source modular JavaScript library (or more specif-

ically JavaScript toolkit) designed to ease the rapid development of cross

platform, JavaScript, Ajax applications and web pages. It uses packages

with a mechanism to load them together along with the page. It can build

reusable components and widgets, a lot of them is provided on the site. It

allows to manipulate the DOMmore easily, and to make graphical e�ects[16].

Vaadin

Vaadin is an open source web application framework for rich internet appli-

cations. In contrast to JavaScript libraries and browser plug-in based solu-

tions, it features a server part architecture which means that the majority

of the logic runs on the server part. Ajax technology is used at the browser

part to ensure a rich and interactive user experience. On the client part,

Vaadin is built on top of and can be extended with Google Web Toolkit[17].

23

ZK

ZK is an open source Ajax web application framework, written in Java that

enables creation of rich graphical user interfaces for web applications with-

out JavaScript and programming knowledge. The core of ZK consists of an

Ajax based event-driven mechanism, XML User Interface Language (XUL)

and eXtensible HyperText Markup Language (XHTML) based components,

and a markup language for designing user interfaces. Programmers design

their application pages in feature rich XUL & XHTML components, and

manipulate them upon events triggered by end user's activity. It is similar

to the programming model found in desktop GUI based applications. ZK

takes the server-driven approach that the content synchronization of com-

ponents and the event pipelining between client part and server part are

automatically done by the engine and Ajax plumbing codes are completely

transparent to web application developers. Therefore, the end users get

the similar engaged interactivity and responsiveness as a desktop applica-

tion, while programmers' development retains a similar simplicity to that of

desktop applications[18].

Framework Direct Indirect Component Server-Driven

GWT
RAP
Dojo
Vaadin
ZK

Table 2.1: Comparison of Existing Ajax Frameworks[20]

So far we have mentioned about the di�erent types of Ajax frameworks

and the existing Ajax frameworks which are being widely used today. In

order to relate the di�erent types of Ajax frameworks with the existing Ajax

frameworks that we examined as well as making a comparison among them

in a better way, the table above was given.

24

Figure 2.7: Diversity of Existing Ajax Frameworks

25

In the �gure above, the existing Ajax frameworks are compared with regard

to their relationship with user interface, business object and business object

persistent by taking into consideration of client-server architecture.

2.2.5 Ajax Java Frameworks

Before we start our discussion about the existing work of Wazaabi project

and its features, we would like to mention about Ajax Java frameworks in

general and the relation with Ajax and XML User Interface Language (XUL)

brie�y.

Java Based Frameworks

Java is the programming language that is the more often used to build web

services. Therefore, a Java framework permits to use Java web services

interactively within a web page. They are more commonly used as in Direct

Web Remoting (DWR)[19] which allows coding in a web browser to use

Java functions running on a web server as if those functions were within the

browser. Therefore, the JavaScript part is used to update the web page and

to gather data with servlets which are Java applications that are di�erent

from applets, so that they run on the server part and generate HTML pages

that are sent to the client part servlets which can run on web browsers that

are not Java enabled. The technique in generating real time Java codes from

JavaScript codes sends it to the server part and runs it.

Google Web Toolkit includes a toolbox to develop Java applications, which

are then compiled into JavaScript code, and this code processes the HTML

page through Document Object Model (DOM) methods. Therefore, the

elements in the HTML page can be may be addressed and manipulated

within the syntax of the programming language in use[23].

Legacy Java software for the web based applications now is moving to Ajax

technique and already started to include features of Ajax so that all the logic

behind is being executed by the server part, and the selected Ajax framework

26

encapsulates the web rendering (the main function of the Ajax engine) as

well as communication layers. In this manner, the Ajax can be thought as a

unique approach in which the web based application can be thought that, it

was written as if it was a desktop application which is typically more robust

and e�cient than its web based counterpart.

Relation with Ajax and XUL

The Ajax technique makes use of the JavaScript programming language

when the XML User Interface Language (XUL) embeds also JavaScript into

XML in order to de�ne the interaction with the user interface. Since XUL

is an XML user interface markup language developed by the Mozilla, the

two distinct systems work on the Firefox web browser. Brie�y, the Ajax

technique allows communicating with the server part from a remote web

page when the XUL displays a user interface either in a local computer or

through the internet, within the same web browser (or in the client part

generally).

The main di�erence is in the use of HTML tags to extend Ajax and to extend

XUL. Therefore, ZK Ajax Framework is designed for allowing Ajax and

XUL to communicate each other properly. XUL relies on multiple existing

web standards and web technologies, including CSS, JavaScript, and DOM.

Such reliance makes XUL relatively easy to learn for the developers with a

background in web based application programming and design.

Mozilla provides experimental XULRunner which is a runtime environment

to provide a common back-end for XUL applications as well as letting the

developers to build their web based applications on top of the Mozilla ap-

plication framework and of XUL in particular. Additionally, XUL provides

a portable de�nition for common widgets, allowing them to move easily to

any platform on which Mozilla applications are able to run. While the XUL

serves primarily for constructing Mozilla applications and their extensions,

it may also feature in web applications which are transferred over HTTP

[36].

27

2.3 Wazaabi

This section presents Wazaabi's framework and how it is closely connected

to EMF which can be called as an essential framework of the live modeling

using EMF tools and meta-models. We will indicate the bene�ts of Wazaabi

while how editing user interfaces is being done in Wazaabi. Wazaabi makes

user interface design doable by closing the gap between the user interface

design and running time of an application user interface.

2.3.1 What is Wazaabi?

Wazaabi is a set of Eclipse plugins allowing the use of EMF based models

for building parts of an application GUI[2]. It is designed as an open source

framework for building declarative user interface models dynamically. For

example, user interface models in SWT, SWING, and JSF are supported by

Wazaabi which can also be applied to other user interface technologies.

Regarding to its functionalities, we can mention about two issues which are

di�erent from each other. First, it is possible to build declarative user inter-

faces which implies that the designer is allowed to design the user interface

declaratively. In Wazaabi, we can declare an instance of user interface model

which is a representation of the real user interface. In other words, the user

interface is a running instance of the model and it is a live model which

means it is not necessary to generate code from the model itself. In addi-

tion, there is an engine responsible for rendering the model of target user

interface technology like SWT, SWING. The following �gure illustrates the

architecture of Wazaabi as a stack structure;

28

Figure 2.8: Wazaabi Stack Model

2.3.2 Wazaabi Framework

There are four di�erent sections of Wazaabi Framework: the user interface

models, the Editor, Architect and Engines. The user interface models rep-

resent the target user interface and they contain all the data which needs

for building components of the target user interface[26].

29

Figure 2.9: Wazaabi Framework

Meanwhile, the Editor serves as a generic EMF generated editor which is

designed to support di�erent kinds of user interface model. The other part is

called as the Architect which is the user interface modeler working with the

principle �WYSIWYG�. User interface models are loaded by the Architect

with the corresponding render for simulating the user interface rendering

during the edition. As a last component, the Engines render user interface

models for speci�c target user interface technology. See Figure 2.11. For

example, an engine for SWT, SWING, Nebula can be provided. JSF and

GWT will also be supported soon.

In Wazaabi, the model of a GUI can be called as an instance of an under-

lying model. Wazaabi architecture supports three GUI underlying models;

SWT, SWING and JSF model. By de�ning an instance of those models, it

is possible to create a model of a GUI which de�nes the GUI itself. Further-

more, there is a basic model called core model provided by Wazaabi. The

other models inherit from this core model. The main goal is to separate the

user interface and their behaviours of the target technology and deal with

them independently.

30

Figure 2.10: Platform Independent Models Hierarchy

Actually, the Wazaabi core model can be called as root model of GUI because

it aims to identify di�erent objects which compose a default GUI consisting

of graphical elements like widgets. Most of them are abstract because of their

platform dependent de�nition. At the same time, other elements which are

platform independent like column, stylesheet are concrete and can become

instances of the model for other derived platforms.

Figure 2.11: Relationship between Models & Engines[2]

In Wazaabi, everything belongs to a model: widgets, databinding and ap-

plication work�ow etc. There are �ve divided packages in the Wazaabi core

model; Widgets, Layouts, Viewables, Styles, Actions, Resources. Shortly,

31

the Widgets package keeps the abstract de�nition of the graphical elements

of user interface like widget, layout, style, action. On the other hand, Layout

package is responsible for locating the widgets.

Figure 2.12: Wazaabi Core Model

The Viewable package is responsible for Table elements. It deals with �lling

and rendering of table elements. Table which applies the Viewable interface,

gets an object as an input from the underlying model. The styles package

shows the CSS behaviour on EMF. The Actions package is responsible for

related actions on button or actions performed by other elements. The

Resources package handles fonts, colours and images.

32

2.3.3 Editing UI's in Wazaabi

Practically, there are three ways to de�ne GUIs in Wazaabi;

1. Graphically with the Architect (still developing).

2. Programming with code.

3. Building with declarative Editor.

By now, we know that user interface models are rendered at runtime by

targeted engines. To create a GUI, Architect can be used as a graphical

editor. It is a still developing module and it is reported that it will be

replaced instead of the editor itself. The user interface model is built behind

and rendered by a speci�c engine which is loaded according to target user

interface technology. At the same time, it is also possible for developers to

directly build traditional user interfaces by programming[27].

Figure 2.13: Editing with programming[27]

Editing declaratively means that we can declare the content of the GUI and

change the design by declarative editor instead of programming the user

interface such as XML-based user interface with the code.

33

Figure 2.14: Editing Declaratively[27]

The user interface of an application may include many di�erent components,

windows or forms. Documentation is generated as a separated document.

Wazaabi lets the developer combine the document with the model by putting

it inside the model.

To sum up, Wazaabi is an fully dynamic open source framework based on

EMF models including one abstract model besides having concrete models.

Developers changes and modi�cations re�ect into models by updating the

view.

2.4 Constraints of Existing Frameworks

Before closing to the State of the Art chapter by giving its summary, this

section is where we are going to mention about the general constraints of

the Ajax technique and the existing work of Wazaabi project respectively.

While, these di�culties in both Ajax technique and Wazaabi typically con-

34

cern only to developers, on the other hand some of these negative aspects

that we will present here are still remaining unsolved.

2.4.1 Constraints of Ajax

Even though, the Ajax technique provides an ideal case in the development

of web applications as well as it is a new technique which is growing rapidly,

the new technology also comes with new issues that are needed to be solved

with it. So, in this section, we would like to list down some issues in which

Ajax has challenges[25]:

• Increasement in Complexity: The developers of the server part

have to understand that the presentation logic is needed in the HTML

client part as well as in the server part. Additionally, web application

developers must have JavaScript technology skills.

• Di�culty in Debuging, Testing and Maintenance: JavaScript

code is di�cult to test, the automated testing for JavaScript is also

di�cult.

• Immaturity of Toolkits and Frameworks: Most of the frameworks

are still in beta phase.

• JavaScript Technology Dependency and Incompatibility: It

must be enabled for applications to function properly.

• JavaScript Code can be Visible to Hackers: If JavaScript code

is poorly designed, then it can invite some security problems.

2.4.2 Constraints of Wazaabi

User interface design is divided into di�erent practices and techniques. Live

user interface models became necessary by the demand of many developers

who are working with web technologies and these live models allow us to

35

focus on just user interface design beyond the rest of the application archi-

tecture. For example, in Wazaabi, every changes of the model is re�ected

into the user interface immediately. Thus, changes can be made at run time.

It does not show the details of the platform and developers do not need to

know any speci�c knowledge about SWT or SWING. At �rst sight, here are

the possible constraints of Wazaabi framework has:

• Limited Number of Generic Elements: The observations that we

made from Wazaabi is that the framework has one concrete model,

however it has extensibility to create other type of widgets. But, the

user interface model elements of Wazaabi need to be extended rather

using the core generic elements.

• Incompatibility of Java Platforms: It is realized that Wazaabi is

able to work on J2ME when using SWT. But, the major constraint

seems that most of the J2ME platforms are based on JDK 1.4. There-

fore, it is not clear that some packages in the core should be changed

or not for the further versions of JDK.

• Ongoing Development of Framework: Wazaabi 2.0 is recently

introduced and still has developing modules.

• IDE Platform Dependency: It is not a standalone development

environment. It can be installed only in Eclipse IDE as a plugin.

2.5 Chapter Summary

In this chapter, we started our discussion by giving a general information

about Ajax technology in order to provide a fully understanding before we

dive into the architechture and various frameworks of Ajax as a background

information. That is to say, we elaborated what exactly the architecture

of Ajax was, what the main components of Ajax were and how the Ajax

technique made web based applications di�erent from conventional ones by

explaining the client server methodology in Ajax based web applications.

36

Then, we continued our discussion with examining the di�erent types of

Ajax frameworks as well as making a comparison between the existing and

widely used Ajax frameworks brie�y. At that point, we also gave brief in-

formation about Java based frameworks besides the former Ajax ones. In

addition to the Java based frameworks, we explained the relation between

Ajax and XML User Interface Language (XUL) brie�y, since ZK Ajax frame-

work utilizes XUL in the development of Ajax based web applications. After

that, we started mentioning about the existing work of Wazaabi project,

how it works and we explained the necessary parts of the framework to un-

derstand brie�y which components does what. We also presented how the

Wazaabi was closely dependent on EMF as well as mentioning about the

advantages of Wazaabi while editing user interfaces and the logic behind

making user interface design feasible in the user interface of an application

at run time. Finally, the last issue of State of the Art chapter was providing

the constraints of the existing frameworks, both the Ajax frameworks and

the Wazaabi's framework itself as a background knowledge in this master

thesis.

37

Chapter 3

Problem Analysis

This chapter gives a comprehensive analysis of the given problem. First,

we are going to describe the problem brie�y and continue to relate it with

di�erent modeling frameworks. Then, possible functional and non-functional

requirements are elaborated by giving a short scenario about the desired

situation.

3.1 Problem De�nition

Model based user interface design is an important aspect of user interface

design in order to acquire user choices for a system or to provide relevant

information to the user in an e�ective way. Naturally, information about

user input is required. It is usual for a human computer interaction scenario

to have a GUI which has many di�erent components interacting with the

users to ful�ll their requirements.

The advancement in user interface design techniques makes it possible to

build well equipped GUIs which are able to make the data accessible for the

user and gather vast amount of information about the user. This information

from di�erent inputs taking part in the user interface of the system comprises

the context. But, there can be di�erent contexts of use. Hence, while

developing data-oriented applications, user interface should work as a layer

38

of the current architecture providing concrete widgets from the abstract

views and relating them to underlying domain data by using data binding.

However, there are models which supports data binding, there exists a gap

between modeling and the runtime architecture. Moreover, some frameworks

which have already de�ned architecture may not support modeling.

3.2 Relation with Wazaabi

One of the most important ability of Eclipse Modeling Framework (EMF)

with its tools is to view the runtime state of the application based on model-

driven runtime architecture. EMF supports wide range of technologies for

managing, navigating, querying, storing and sharing EMF object structures.

These technologies like EMF can enable and simplify the implementation of

many interesting functionalities. Regarding to its functionalities, with the

help of EMF, Wazaabi framework represents a java XUL engine for building

concrete user interfaces by having an EMF based user interface model with

the editor and runtime support based on the Eclipse platform.

The runtime allows the developer to run user interfaces within Eclipse, how-

ever it does not support all web components for web browser based user

interfaces. Therefore, it is necessary to design and implement a web tech-

nology support for building web browser based user interfaces, for example

by using Ajax technology.

While focusing on the Wazaabi framework intensively, we realized that

Wazaabi gives an opportunity to build live user interface models on its

framework. It is known that it supports targeted user interface's models

based on EMF to build real user interface of an application, but it is obvi-

ously a question that should be answered how Wazaabi can support various

user interface models rendered by its core engine. In addition, it is also

necessary that how the Ajax tools and its framework can be integrated to

Wazaabi. This will be mentioned in the next chapter in detail.

39

3.2.1 EMF Model

EMF allows the developers to create various domain models which contains

data related to speci�c domain. For example, in your domain model, nor-

mally you can create classes as well as de�ning properties or adding new

children to them. In eclipse while dealing with EMF, there is a di�erence

between the underlying model and the current one. As we mentioned be-

fore, EMF has a model notion and a model is the instance of this core model

which describes structure of the model. In fact, EMF has two models which

are Ecore model and Genmodel. Ecore model shows the details of already

created classes and lets us to de�ne di�erent elements. Genmodel has in-

formation about generation of the code and the path of the �le. Basically,

EMF provides the ability to declare model element;

Figure 3.1: EMF Tree

The EMF tree shows a root element representing the whole model. This

model can have more than one child which is based on the packages and

thereby represents the classes they are belong to. Meanwhile, the attributes

of these classes are represented by their children. As an advantage, EMF

allows you to create explicit domain tree models as well as generating the

Java code from the model at any time.

40

3.2.2 SWT Model

Since Wazaabi simpli�es the complexity of creating underlying models of

the existing platform, the designers do not need to know any speci�c knowl-

edge about SWT. Thus, designers become developers who can edit di�erent

kinds of supported user interface models. With convertions, they are able to

modify their model through an SWT model. Behind this simpli�cation, the

related engine renders a view of the EMF model by converting it to SWT

model. See Figure 3.3. Then, this SWT model is rendered in a Wazaabi

view which updates the real user interface.

Figure 3.2: SWT Tree

3.2.3 Wazaabi Scenario

In this section, in order to gain a better understanding about the rela-

tionship between EMF and SWT models, we will give a scenario that can

be considered as a SWT implementation for the rest of the section. This

scenario allows the reader to elaborate the intended functionalities of the

existing framework and how the model based support bene�ts the user dur-

ing the design. This scenario will also be used to determine functional and

non-functional requirements.

41

Figure 3.3: Relationship between EMF and SWT Trees

In this scenario, we assume the SWT Text widget as a user interface element.

Then, we will show how the Editpart will deal with the SWT widget and

how the user interface will be changed according to updates coming from

the model side.

When modeling a user interface in Wazaabi, it means that an underlying

model is designed. After the Wazaabi palette is loaded with user interface

components of a target model, the Wazaabi engines are formed by Editpart

(true controller) realizing the relationship between the user interface model

and the real user interface.

The engines are designed with core Editpart connecting to the core model

and they have target user interface Editpart (in this case for SWT) which

connects to SWT model. A hierarchy can be seen clearly between the Ab-

stract Editparts and Widgetviews.

42

Figure 3.4: Wazaabi Scenario[2]

The Wazaabi editor allows the user to make live changes according to target

model. On the other hand, Wazaabi works with two viewers; the Waza-

abi viewer (hidden) and Graphical Editing Framework (GEF) based viewer

(main editor). The target model (in this case SWT) is rendered in Wazaabi

viewer then the same changes from this viewer is copied to GEF viewer.

Actually, Target model (it can be SWT or JSF) is rendered into the GEF

editor, however it is not the main source model. The target model is in the

View that is shown, but the real edited model is the source model (EMF

tree) that is edited.

1. A user edits a user interface element from the palette in the editor.

2. A modi�cation is issued on the editor.

3. This update in user interface is re�ected to EMF tree by modifying

the child on the parent component of the EMF tree automatically.

43

4. Render (Engine) traverses the EMF tree in order to �nd which node

is changed.

5. EditPart listens any node changes in EMF tree and it makes sure that

the View is updated.

6. When the View is updated, it informs the Render (Engine) that the

model has modi�ed. Then, the View updates the user interface ac-

cording to changes in EMF tree.

7. Consequently, the Wazaabi viewer redraws the user interface and these

changes are shown in the user interface dynamically.

44

Figure 3.5: Sequence Diagram of Wazaabi Scenario

45

With respect to the sequence diagram of Wazaabi scenario above, the follow-

ing �gure elaborates the hierarchical relationship between the crucial parts

in Wazaabi. When a change is occured in the model, the following parts are

a�ected by the change because any of the nodes in the model instance are

mapped into the other parts in hierarchy respectively. For instance, when

View of the component draws the SWT component, it needs to retrieve the

corresponding Editpart of the current component.

Figure 3.6: Hierarchical Structure of Wazaabi

3.3 Relation with Ajax

As we already mentioned about the Ajax technology which is a new trend

in the �eld of web application development, such that it enables web based

applications or web pages to call the web server without any need to refresh

or leave the actual web page. This main mechanism is generally done in

the background (asynchronously) without notifying to the user in order to

provide both more user friendly and natural interaction in the user interface

as well as making more interactive web based applications. Additionally,

web pages which are embedded with snippets of Ajax code blocks, are able

to access remote services such as web services or databases while avoiding

to refresh the actual web page as well as preventing slow response times in

the web based applications. One of the most important feature that Ajax

based applications use is the XMLHttpRequest object which allows access

to remote services either synchronously or asynchronously.

46

The main objective of the Ajax frameworks is to provide the engine with

functions that are triggered by the events which are coming from the client

part. Besides, there are other advantages in using Ajax frameworks. In the

client part, variety of Ajax events will be triggered that will send various

requests to the server part. In the server part, the requests will be processed

according to the pre-de�ned rules of the engine, such as the data will be

searched and transported. Eventually, the workload of the programming

will be greatly reduced.

Without using any frameworks, the Ajax technique would be much more dif-

�cult to work with. Because, these frameworks are powerful, and they bring

a great deal of functionality to the whole system. Plus, the Ajax frameworks

are used to ease many of the technical problems that Ajax technique usually

faces with.

3.3.1 Ajax Support

There are a number of ways in which Ajax technique can be used to support

the web based applications that we already use today. If we take into ac-

count the desktop counterparts of the web based applications, we can easily

understand the fact that the desktop applications are generally more robust

and e�cient than web based ones. While the web based applications have

continued to become more advanced over the last decade, this fact remains

that they are much less responsive than desktop tools. With the introduc-

tion of Ajax technique, the gap between the things that users experience

on the desktop applications and the things that they experience on the web

based applications is started to close. Real time suggestions of the Google

Web Search can be a good example to this, if we think about how the sug-

gestions for keywords are updated as fast as we type. Google Maps can

be an another well-known example to this, as long as we use the cursor to

scroll around the map and zoom in, all updates happens so quickly without

waiting for new web pages to load.

At this point, we would like to put emphasis on the proper de�nition of

Ajax again which is not technically a single technology itself. In fact, it is a

47

group of technologies, and all of them can be used independently from each

other. In order to understand how Ajax support the web based applications

impressively, we would like to bring back how the existing web operates

shortly.

With the classic web, most interactions are carried out by the user will

initiate a request via HTTP. This request will go through the web server,

and the server part will be responsible for processing the information such

as gathering data, and communicating with multiple legacy systems. Once

it has done all of these things, it will send the information back to the client

part in the form of HTML.

It must be noted that, the classic web processes can be useful from a tech-

nical approach. Nevertheless, the majority of the users who use web based

applications are not interested in technical issues as long as they do not

make any sense to focus on the experience of the users. Because, the user is

still waiting, while the server part performs various tasks in the background.

Additionally, we all know that the users are always looking to gather infor-

mation as rapidly as possible, and the waiting has always been an annoying

thing that we want to avoid.

As we already mentioned before, the usage of the Ajax technique is very

crucial for the web based applications to make them become faster and more

interactive. For all these reasons, Ajax support is very signi�cant, because

it supports an engine that can act as a mediator between the server part

and the user's web browser (or the client part generally). Incidentally, it can

be thought that adding an Ajax engine to the web based applications could

slow down the response time, in fact, this is not the case. As the user starts

new sessions, the Ajax engine will be reloaded rather than the web browser.

It will be concealed in a frame as well as it will assist in loading the user

interface in order to communicate with the server part.

Finally, we can say that, the Ajax support provides to bring back the user

friendly features of the desktop applications and utilize them over the web

based applications as well as making the internet faster, more dynamic, and

more interactive.

48

3.3.2 Proactive Ajax Approach

To bind user interface design and relevant data together is a result of the

modeling. As we already mentioned before, the main objective of the existing

work of Wazaabi project is to assist user interface design for the developers.

It generally supports the variety of user interfaces which are all based on

EMF model. Additionally, the Wazaabi has its own engine which is based

on SWT, and it acts as a mediator between EMF models and SWT models

of the same user interface. Before the implementation of our support to the

existing project of Wazaabi, its general model can be �gured as the following;

Figure 3.7: Existing Model

Since, the current version of the existing Wazaabi project is lack of web

browser support and the main logic behind the architecture of the Ajax

engine is to make use of an Ajax framework that we can reuse it every time

when we want some asynchronous processing or when we need a smarter

way to refresh information on the current web page. We would like to go

beyond the idea in the current version of the Wazaabi project by combining

it with Ajax support in order to use its functionalities in the web browser

based user interfaces with the power of Ajax technology. Additionally, the

proactive Ajax approach will also be the simpli�cation of the code parts,

where is needed for particular functions on the client part according to the

main bene�t of the Ajax engine.

As we already mentioned in the previous sections, the existing engine of

the Wazaabi project is based on SWT. Even though, the existing work of

Wazaabi project supports model based user interface design properly, it still

49

needs to be extended with the Ajax technology in order to fully provide

the required support for making its user interface to become similar to its

counterparts which are running on the web based applications. Shortly,

we would like to put this idea into practice by replacing the existing SWT

engine of the Wazaabi with an Ajax engine by using ZK Ajax framework.

Therefore, after the implementation of the Ajax support to the existing

project of Wazaabi, the proactive model can be �gured as the following;

Figure 3.8: Proactive Ajax Approach

3.4 Ajax Scenarios & Sequence Diagrams

This section provides all of the scenarios in order to give as realistic as possi-

ble situations where the Ajax technique is being used. In order to illustrate

the way of use, screenshots of the running web applications and their all

feasible cases are also given in this section. Later on, the sequence diagrams

of each scenario will also be provided in order to elaborate the Ajax logic

behind the web applications that we selected to explain in a more detailed

approach. Finally, to get a fully understanding of how the Ajax technique

50

works in our scenarios which are based on various web applications, their all

related code groups (XMLs and Java source codes) can be found in references

which are located in the end of the entire report.

3.4.1 Ajax Scenarios

The Ajax scenarios is where we introduce generic possible cases about Ajax

based web applications which can be found in most websites. We will also

elaborate our knowledge about the logic of Ajax behind each scenario which

are necessary to get a fully understanding of how they actually work step

by step. Finally, this section also covers the relevant screenshots of the

running Ajax based web applications which we selected to examine as our

Ajax scenarios for making them more sense.

Scenario 1: Ajax Push and Animation: Drag & Drop List

The �rst scenario demostrates a realistic and widely used case where the

items of two listboxes can be reordered by dragging and dropping the list-

box items around dynamically by using its model. In other words, it is

a comprehensive illustration of the ZK components can be draggable and

droppable.

In this Ajax scenario, we have two seperated listboxes which both includes

various dynamic (draggable and droppable) ZK items. According to the

main logic behind the Ajax technique, any changes in the order or item(s)

each listboxes are shown immediately without refreshing the entire web page.

In this simple and widely used scenario, there are two main options for the

user, which are either moving the item from one listbox to another by using

both listboxes while doing the drag and drop operation or reordering the

items in the current listbox by doing the same drag and drop operation in

the same listbox. Therefore, we will elaborate them separately to make the

�rst Ajax scenario more sense.

To make it more sense, we would like to illustrate how ZK GWT item can be

moved from the left listbox to the right listbox, then how the new position

51

of ZK GWT item can be reordered in the right listbox. The �rst case and

the new position of the ZK GWT item are both shown in the �gure below;

Figure 3.9: Drag and Drop Case 1

After moving the ZK GWT item to the right listbox, we would like to reorder

the current items of the right listbox by dragging and dropping the ZK GWT

item upward. The second case and the new position of the ZK GWT item

are both shown in the �gure below;

52

Figure 3.10: Drag and Drop Case 2

Apart from these two possible cases that we have shown in the �rst scenario

above, there is an additional but, an exceptional case which can be tried

to do by the user. Even though it is an exception, we think that it is as

important to cover as the other two possible cases above. The user can

try dragging and dropping the item towards the outside of the listboxes,

despite of it is not allowed to do. Therefore, we would like to illustrate this

exceptional case by taking into account in the �gure below;

53

Figure 3.11: Drag and Drop (Exception)

In order to get a fully understanding of how actually the drag and drop list

scenario works step by step, we are going to explain the Ajax logic behind it

which is dependent on the ZK Ajax framework now. The sequence diagram

of this scenario illustrates the steps of the mechanism in Figure 3.20.

1. The user selects a random item from one of the listboxes and either

drags and drops it to the other listbox or reorders it in the current

listbox.

2. Therefore, the onDrop event of the selected item is triggered and the

ZK Client engine sends a request to the server part in order to execute

the relevant method for triggered event.

3. In the server part, the ZK Asynchronous Update Engine receieves the

request which is sent by the ZK Client engine.

4. Then, The the ZK Asynchronous Update Engine updates the event

queue of the server part by adding the triggered event in order to �nd

the relevant method of move(event.dragged) and sends it as a response

to the client part.

5. The ZK Client engine receives the response and updates the content of

the web page by executing the method of move(event.dragged) without

refreshing the web page entirely.

54

At this point, we would like to give the XML structure of the ZK GWT item

which we selected to illustrate our scenario. In order to implement the drag

and drop feature properly, we need to assign the method ofmove(event.dragged)

to the onDrop event of each item. The following �gure shows how the XML

structure of the ZK GWT item is;

<l i s t b o x id=" l e f t " he ight="250px" width="200px"
onDrop="move(event . dragged) " droppable=" true " oddRowSclass="non−odd">
. . .
<l i s t i t em
draggable=" true " droppable=" true " onDrop="move(event . dragged) ">
< l i s t c e l l s r c="/img/Centigrade−Widget−I cons / Br i e f c a s e −16x16 . png"
label="ZK GWT"/> </l i s t i t em >
. . .
</ l i s t box >

Figure 3.12: XML Code of ZK GWT Item

Additionally, we would like to mention about how the method ofmove(event.dragged)

works. If the dragged item's parent exists in the same listbox, we insert it

before its parent as a new sibling (the reordering case) when it is dropped.

Otherwise, we insert it as a new child of the other listbox (the moving case)

when it is dropped. Therefore, the method of move(event.dragged) is given

in the following �gure and the full version of the source code can be found

in [28].

55

void move(Component dragged) {
i f (s e l f instanceof Li s t i t em) {
i f (dragged . getParent () . ge t Id () . equa l s (" r i g h t ")) {
s e l f . parent . i n s e r tB e f o r e (dragged , s e l f . g e tNextS ib l ing ()) ;
} else {
s e l f . parent . i n s e r tB e f o r e (dragged , s e l f . g e tNextS ib l ing ()) ;
}
} else {
s e l f . appendChild (dragged) ;
}
}

Figure 3.13: move(event.dragged) Method

Scenario 2: Ajax Events and Scripts: Keystroke Events

In the second Ajax scenario, we have a simple textbox which requires the user

to enter a random password. As soon as the user presses particular keys, the

relevant messageboxes are shown according to the pre-de�ned methods for

each particular key. According to the main logic behind the Ajax technique,

the relevant messageboxes are shown immediately without refreshing the

entire web page. In order to be more speci�c, we would like to demostrate

four main optional cases of the KeyStroke event which are all triggered

after each particular key press of the user in the rest of the scenario. The

user can press Enter, Escape (esc), Ctrl+A and F8 keys to receive relevant

messageboxes for each key respectively. The resulted screens of the running

methods which are all triggered by the KeyStroke event are shown in the

�gure below;

56

Figure 3.14: KeyStroke (Event)

In order to get a fully understanding of how actually the keystroke events

scenario works step by step, we are going to explain the Ajax logic behind it

which is dependent on the ZK Ajax framework now. The sequence diagram

of this scenario illustrates the steps of the mechanism in Figure 3.21.

1. The user starts entering a random password by pressing keys from

the keyboard as inputs until pressing particular keys which are Enter,

Escape (esc), Ctrl+A and F8 keys.

57

2. As soon as the user presses a pre-de�ned key, the KeyEvent of the

pressed key is triggered and the ZK Client engine sends a request

to the server part in order to execute the relevant code part for the

triggered event..

3. In the server part, the ZK Asynchronous Update Engine receieves the

request which is sent by the ZK Client engine.

4. Then, The the ZK Asynchronous Update Engine updates the event

queue of the server part by adding the triggered event in order to �nd

the relevant method of ((KeyEvent) event) and sends it as a response

to the client part.

5. The ZK Client engine receives the response and updates the content of

the web page by executing the method of ((KeyEvent) event) without

refreshing the web page entirely.

In this scenario, we have focused on the input as key presses by the user

and have tried the particular keys Enter, Escape (esc), Ctrl+A and F8 keys

in order to see the relevant response which are supposed to come from the

server part. The KeyStroke events are only supported for the Enter, Escape

(esc), Ctrl+A keys which are handled by onOK, onCancel, and onCtrlKey

respectively. The F8 key is treated as the same with Ctrl+A key. In order

to get a fully understanding of how exactly this Ajax scenario works, the

required method of KeyStroke event which is embedded in the XML struc-

ture of the textbox component is given in the following �gure and the full

version of the source code can be found in [29].

58

<textbox id=" inp" ct r lKeys="^a#f8 " type="password"
value="123456789" width="150px">
<a t t r i b u t e name="onOK"><![CDATA[
Messagebox . show ("ENTER key i s pre s sed " , "OK" ,
Messagebox .OK, Messagebox .EXCLAMATION) ;
s e l f . f o cu s () ;
]]></ at t r i bu t e >
<a t t r i bu t e name="onCancel "><![CDATA[
Messagebox . show ("ESC key i s pre s sed " , "CANCEL" ,
Messagebox .OK, Messagebox .EXCLAMATION) ;
s e l f . f o cu s () ;
]]></ at t r i bu t e >
<a t t r i bu t e name="onCtrlKey"><![CDATA[
int keyCode = ((KeyEvent) event) . getKeyCode () ;
S t r ing s = "" ;
switch (keyCode){
case 65 : s = "Ctr l+A" ; break ;
case 119 : s = "F8" ; break ;
}
Messagebox . show (s+" i s pre s sed " , "CtrlKey" ,
Messagebox .OK, Messagebox .EXCLAMATION) ;
inp . f o cus () ;
]]></ at t r i bu t e >
</textbox>

Figure 3.15: KeyStroke Event Method

Scenario 3: Inserting values with autocomplete feature of Com-

bobox

In this scenario, we are going to present how to input in Combobox via

autocomplete feature. Nowadays, almost every website uses autocomplete

feature in their search options and this feature has quickly been popular

and become a standard. Generally, there can be seen as a combination of a

textbox with a listbox which allows us to select items from the list or to enter

a new item. If the user enters a single letter into the textbox then suggested

items related to user input are arranged in the listbox automatically.

59

To implement the autocomplete feature, we need to listen the onChanging

event and change di�erent child elements in the combolist according to re-

lated content of the input that the user is entering so new suggested items

can show up automatically for each key pressing.

Figure 3.16: Autocomplete with Combobox

1. The user enters one or more letters or a text in the Combobox.

2. Each triggered events are detected and sent by the engine in the

browser to the server.

3. The server side has a dictionary consisting of all possible suggestions

that are used to speed up the search. Normally, the suggestions are

loaded from a database or a web service.

4. The server receives and updates the content of the search and then

sends a response to the client.

5. The engine at client receives the response and updates the content of

the HTML page.

public void onChanging (InputEvent evt)
{

i f (! evt . isChangingBySelectBack ())
r e f r e s h (evt . getValue ()) ;

}

Figure 3.17: isChangingBySelectBack Method

60

As we can see in the code above, it is possible to provide autocomplete

feature with the onChanging event. In the code, the suggestion list can be

generated according to most hits on the search engines or an existing list

can be loaded from a web service. Here is the part of the code that explains

how to use the onChanging event to implement it with a combobox. The

full version of the source code can be found in [30].

Scenario 4: Updating values of a Pie-Chart 3D

This scenario shows a realistic situation where a basic pie chart can be edited

dynamically by using its model. In order to explain how the Ajax technology

works, related code groups (XML and Java source code) are also given in

[31].

Figure 3.18: Pie Chart 3D(Before)

As we see in the �gure above, there are four programming languages as

categories of a simple pie chart. Both categories have di�erent values and

they are displayed as set of data graphically. In this scenario, updates from

the value of the category on the control panel a�ect the chart immediately

61

without refreshing the site completely. As the changes are occurred over

time, the chart will be redrawn continously. Actually, updating is based on

the onChange event which is �red to trigger an update when the value is

changed on the control panel. We can also hover the cursor on the categories

or click the portions on the pie and get desired values of clicked category

with a messagebox at the same time.

Figure 3.19: Pie-Chart 3D(After)

Behind the scene, logic varies depending on which Ajax framework we used

and in our case we are dealing with ZK Ajax Framework. Thus, we are

going to explain the mechanism step by step in a recursive manner (it can

be repeated during the updating process). The sequence diagram of this

scenario illustrates the steps of the mechanism in Figure 3.23.

1. The loader gets and interprets the URL request and generates a HTML

page which contains di�erent standards including Javascript and ZK

components at the server side.

2. The loader sends the HTML page to the client and its ZK engine.

62

The engine detects Javascript events occurring in the browser and it

is responsible for receiving events and updating the content of the web

page.

3. The triggered events are sent by ZK engine back to the server which

has another ZK engine called AU (asynchronous update) engine.

4. The engine at server side takes this request and updates the properties

of components then sends a response back to the client.

5. The engine at client side takes the response and updates the content

in the DOM (Document Object Model) tree.

63

3.4.2 Sequence Diagrams

Scenario 1: Ajax Push and Animation: Drag and Drop List

Figure 3.20: Sequence Diagram of Scenario 1

64

Scenario 2: Ajax Events and Scripts: Keystroke Events

Figure 3.21: Sequence Diagram of Scenario 2

65

Scenario 3: Inserting values with autocomplete feature of Com-

bobox

Figure 3.22: Sequence Diagram of Scenario 3

66

Scenario 4: Updating values of a Pie-Chart 3D

Figure 3.23: Sequence Diagram of Scenario 4

67

3.5 Requirement Speci�cation

This section is separated into two parts in order to emphasize the situations

in which the user can bene�t from using the proposed support. Generally,

these requirements that we found help us for gaining a better understanding

about the actual needs of the problem. They are analyzed in two parts;

the one for the functionalities of Ajax frameworks provided in various alter-

natives like ZK, and the other one is the speci�c requirements that are for

the desired scenario (wanted situation) which is derived from the Wazaabi

scenario that we stated in the last section. Both of them will be shown in

the same requirements table which contains di�erent abbreviations. Each

requirement has a short id which symbolizes its name and requirement type.

For example, FR-AJX1 means �rst functional requirement of Ajax frame-

work which is decided to implement.

3.5.1 Functional Requirements

Requirement Priority Description
FR-AJX1 High A new Ajax engine (render) is

required.
FR-AJX2 High Editparts must be changed speci�c to

Ajax framework.
FR-AJX3 Medium Ajax widgets must be integrated into

the new engine.
FR-WZB1 High Wazaabi must support to create new

Ajax UIs.
FR-WZB2 Medium Wazaabi must be able to edit

di�erent Ajax UI components.

Table 3.1: Functional Requirements

Before we begin to work properly with Ajax technique, JavaScript must be

enabled on all kind of browsers of which Ajax works on all Internet Explorer

7.0 or newer and in Mozilla browser 3.0 or newer, Netscape 7.0 or newer and

Safari 1.2 or newer versions. Browser scripting caching on all kind of web

68

browsers must be activated. Even though, Ajax where JavaScript drives the

data, has lot of advantages over other old HTML applications, there is a

big drawback for Search Engine Optimization (SEO) of a website, because

unfortunately the search engine does not index pages which are dynamically

generated by Ajax.

According to the de�ned requirement FR-AJX1, we should �rst take into

account that setting up a new Ajax engine (render) from the scratch is a

very di�cult thing to do. Because of this, there are lot of pre-made engines

(render) where developers can download and use. The di�erence that will

emerge with the implementation of Ajax will be the coding method, the type

of data transmission between the client part and server part and the way in

resulting the changes properly in the web browser based user interfaces.

For the de�ned requirement FR-AJX2, we all know that the Ajax technique

is using XHTML in the view layer, Dom and SDOM for the data presenta-

tion. Therefore, it uses XML data exchange and XMLHttpRequest as the

exchange engine which combines everything into one part. Traditionally,

what happens in the HTML code will send JavaScript requests to the server

part, then the server part will elaborate and process it or send out to an

another scripting language which returns it to an HTML page which is sup-

posed to be shown in client's web browser. This method usually retrieve

the most up-to-date data from the server part, and it normally refreshes or

reloads another HTML �le.

Regarding to the de�ned requirement FR-AJX3, In the ZK Ajax framework,

there exists a �le which is called Widget Package Descriptor (WPD) [32] with

an aim to describe the information of a package, such as its widget classes and

external JavaScript �les. In ZK Ajax framework, the word �package� stands

for the root element which denotes the package name and the language it

belongs to, while the word �widget� stands for the widget class name without

the package name, and if the package contains multiple widgets it lists them

one by one. The following �gure shows how to de�ne a sample widget in ZK

and its required elements which are needed to be used within the XML.

69

<<package name=" zu l . g r i d " language="xul /html">
<widget name="SimpleLabel "/>
</package>

Figure 3.24: Sample Widget De�nition: SimpleLabel

By doing so, we completed the con�guration the basic implementation of

our component even though, it does not have any interactive events for now.

In that respect, the next logical step will be to start adding events to the

component that we created.

According to the de�ned requirement FR-WZB1, Wazaabi needs to provide

more target models implementation and it should allow the designer to cre-

ate new user interfaces by editing target models. We understand that any

changes by the designer triggers a model change. Since Wazaabi provides

currently basic underlying model (core model) and three inherited models;

SWT, SWING and JSF which let creating instances build a model for GUI,

it is known that for a new inherited model of target technology (Ajax in our

case) a concrete implementation of the new framework in the core must be

provided.

For the requirement FR-WZB2, we need to de�ne only speci�c elements for

the target Ajax technology however we need to consider that most of the

user interface elements provided in the core model are already de�ned as

abstract which means that they are platform dependent.

70

3.5.2 Non-Functional Requirements

Requirement Priority Description
NF-AJX1 High Ajax support must be integrated into

Wazaabi.
NF-AJX2 Medium Ajax must be able to identify current

changes.
NF-AJX3 Low Ajax Security Issues must be

properly de�ned.
NF-WZB1 High Wazaabi must conform to the

technical constraints put by Ajax.
NF-WZB2 High Target model(Ajax) must be shown

in Web Browser.
NF-WZB3 Medium An editor which allows changes in

the Wazaabi Viewer.

Table 3.2: Non-Functional Requirements

Regarding to the de�ned requirement NF-AJX1, a new rendering framework

which is totally based on Ajax technique is needed to be integrated into

the existing framework of Wazaabi project. In order to accomplish this,

our strategy is to replace a new Ajax engine which is based on ZK Ajax

framework with the existing SWT engine as our main contribution for the

implementation. Therefore, we aim at, the existing work of Wazaabi project

will be supported in web browser based user interfaces through using ZK

Ajax framework and its relevant components. To sum up, coping with the

web browser based user interfaces which is the main drawback of Wazaabi

project will be solved as the Ajax support will be fully integrated.

According to the de�ned requirement NF-AJX2, as a matter of fact in the

Ajax technique, JavaScript requests from the client part are sent to the server

part which is responsible to interpret them in order to update the current

page without directing the user to a new page. Thus, the Ajax technique

is a web application technology which is independent of web server software

so that it creates a more ubiquitous and responsive user interaction in the

web like the traditional desktop based applications. Put in another way, the

71

client part can still use the Ajax based web application as it requests the

information from the server part which is working in the background.

For the de�ned requirement NF-AJX3, security is always an important fac-

tor of Ajax technology that must be taken into consideration. In other

words, Ajax technique is the subject of a lot of hype, so that the issue of se-

curity is something which the developers must consider carefully. This new

technology is popular because of its ability to create pages which are highly

dynamic and interactive. It has also been popularized because of its abil-

ity to generate pages that do not need to be reloaded. However, it has also

been the subject of controversy due to its vulnerability to hackers. While the

truth of this is up for debate, the issue of security is something that should

be discussed, both by developers and companies that are interested in using

Ajax technique for their web applications or web pages. Additionally, it

should �rst be noted that Ajax technique is not the single most important

factor in determining whether or not a web page or a web application will

be secure. However, we must have knowledge of what it is responsible for.

Ajax technique is a collection of technologies that are closely related to web

browsers.

In NF-WZB1, we need to understand the technical constraints of Ajax well

in order to integrate with Wazaabi properly. Wazaabi concept takes the real

user interface into consideration as a declared model. It is already known

that this model is rendered by the engine and any changes are detected by

the editor but we need to customize these modules to support Ajax model so

that a new requirement for how we are able to adapt with the components of

Wazaabi arises. This is obviously a precise requirement because it directly

refers to our main task in this project. The implementation of our Ajax

framework will be indicated brie�y in the solution chapter.

The requirement for how to show target model in Wazaabi viewer (NF-

WZB3) and what kind of components (for ex: a web browser) or plugins

we need to implement Ajax framework into Wazaabi (NF-WZB2) has also

a high priority for this project.

72

3.6 Chapter Summary

We started the Problem Analysis chapter by giving the general de�nition

of the problem that we were going to deal with. Then, we explained our

focus by relating it with the existing work of Wazaabi project and the Ajax

technique respectively. We elaborated Wazaabi by explaining its important

concepts which were EMF and SWT models as well as providing a sample

Wazaabi scenario which includes a SWT engine implementation in order to

give a better understanding about the relationship between these models.

Therefore, we elaborated the intended functionalities of the existing work of

Wazaabi project and explained how the model based support could bene�t

the user interface design at runtime of an application. After that, we contin-

ued our discussion with explanation of the Ajax support as well mentioning

about our intention by using the Ajax technique in order to achieve our ul-

timate goal in this master thesis and also we kept in mind that, what kind

of Ajax scenarios can be adapted. At that point, we also explained the dif-

ferences between the existing model of the Wazaabi which lacks of the web

browser based user interfaces and our approach: Proactive Ajax Approach

brie�y. Then, we provided four di�erent Ajax scenarios by giving all pos-

sible cases and relevant screenshots of the running Ajax based applications

in order to give realistic situations where and how the Ajax technique can

be used. Not only the details of four scenarios were discussed but also we

gave the sequence diagrams for each scenario to have a better look about

how Ajax technique were involved as well as elaborating the Ajax logic be-

hind the web applications that we selected to explain in a more detailed

approach. Finally, we moved on to the requirement speci�cation section

and had a quick look of the requirements table which clearly shows the need

of how the Ajax support could be implemented. While exploring the require-

ments, we also considered how Ajax framework could support user interface

scenarios as a more comprehensive analysis by giving the possible functional

and non-functional requirements.

73

Chapter 4

Proposed Solution

The purpose of this chapter is revealing possible solutions under the lights

of group's knowledge about the problem situation. In other words, possible

solutions are found as the results of deep analysis of theoretical concepts by

the group. Especially, an already given scenario which we named �Proactive

Ajax Approach� will be considered throughout this project as a desired sit-

uation. We have tried to ful�ll both the objectives of the project and how

they can be accomplished in a sensible manner.

Next chapter will present the implementation phase of the selected solution

in more detail. Therefore, we will keep on this chapter by giving a solution

overview, a new engine de�nition and we will wrap up the chapter by taking

pros of all possible solutions together in overall goals section that will also

de�ne our work for the implementation.

4.1 Solution Overview

This section is reserved to provide a brief description of the possible solution

for the given project. For designing and implementing Ajax support for

Wazaabi plugin has been explained and new user interfaces based on the core

engine of Wazaabi has also been presented for supporting Ajax framework.

For creating new user interfaces, a new Ajax model which shows detailed

74

information about the components has also been proposed. In order to

implement the framework to the existing work Wazaabi smoothly and to

avoid expressing unnecessary information, we tried to keep the model simple

as much as we can.

As we discussed in the chapter 3: Problem Analysis, the possible issues about

how an Ajax support can be adapted and what kind of Ajax user interface

components can be supported in Wazaabi are explained. In addition, we

focused on clarifying the requirements that are rised from possible Ajax

scenarios, thus we will be able to establish goals for the implementation by

also analyzing the core points of these possible situations in di�erent aspects

both from Wazaabi and Ajax. To consolidate our Ajax approach which is

going to support our implementation as well, we need to develop a set of

speci�c goals related to giving scenarios which its details will be mentioned

in the end of the chapter 4.

4.2 Desired Scenario

In this section, the possible scenario where an expected case can occur is

given. The following scenario analyzes Ajax case step by step and shows

the Ajax interactions between client and server parts as sequence diagram.

Additionally, we will elaborate how the Ajax engine can support the existing

work of Wazaabi and how the web user interface components in the web

browser are manipulated by the new engine. The �gure 4.3 illustrates the

following steps;

1. A user edits an element in the web user interface by using web browser.

2. DOM tree is modi�ed according to the changed element in the web

user interface. This update in DOM tree is also re�ected in the EMF

tree.

3. A request is sent to the server part and the Engine traverses the EMF

tree to �nd changes in the EMF tree.

75

4. Then, EditPart notices any node changes in the EMF tree and makes

sure the WidgetView is updated.

5. Once the WidgetView is updated, EditPart informs the Ajax engine

that the EMF tree has been modi�ed.

6. Then, the Ajax WidgetView updates the changed component in the

web user interface according to changes in the EMF tree.

7. Consequently, the Wazaabi Viewer reloads the web user interface and

the change is shown in web browser dynamically.

76

Figure 4.1: Sequence Diagram of Desired Scenario

77

According to the sequence diagram of desired scenario above, the following

�gure illustrates the hierarchical structure of ZK engine. In addition to

the Wazaabi hierarchy 3.6that we mentioned previously in chapter 3, we

introduce a ZK framework which is consisted of ZK Ajax components and

a browser including DOM tree. As we said before, all nodes in the model

instance are matched with the nodes of other parts in the newly implemented

ZK engine.

Figure 4.2: Hierarchical Structure of ZK Engine

4.3 Ajax Engine Design

The purpose of the new engine presented in this section is to give users an

ability about how to create and edit user interfaces as well as their com-

ponents based on the new Ajax engine. Since the new model we are going

to create is based on EMF model, provides a way for us to associate com-

ponents with each other in a tree hierarchy just like the previous existing

SWT model. The point is that these components are gathered from a new

resource containing Ajax libraries.

As we already mentioned before in the previous chapters, our main objective

is to support the existing work of Wazaabi project by using an Ajax frame-

work to build its dynamic web based application part, therefore making

the Wazaabi capable of dealing with the web browser based user interfaces.

78

On the dynamic web based applications, the users can make requests of a

database contained on a server part. Within an Ajax framework, data is

sent to or read by the server part through the use of JavaScript. This allows

users to make speci�c requests that are processed and implemented using

dynamic factors like speci�c user input, time of day or search history to

determine the content of the web page. While Ajax is primarily a client

part set of technologies, the Ajax framework facilitates server part process-

ing such as the �nding and storage of data. The goal of the Ajax framework

is to function as a communication layer between client (the web browser,

the user) and server parts. This framework, which is specially designed to

handle Ajax requests, lets Ajax perform its function of reducing user wait

time while the web page accesses the server part.

Figure 4.3: Ajax Scenario

We choose the server-driven approach for the Ajax framework which uses

its components that are developed by the server part and using server part

languages. The client part requests are communicated to the server part

through Ajax techniques. Recall from the Wazaabi scenario in the Prob-

79

lem Analysis chapter, the existing work of Wazaabi project has an already

existing engine which is based on SWT architecture in order to handle the

interactions between its client and server parts. Now, we are going to give

our own Ajax scenario which replaces the SWT based old engine with an

Ajax based new engine in order to make the Wazaabi capable of handling

with the web browser based user interfaces properly. Additionally, the in-

teractions between the client and server parts in the Ajax scenarios was

already given in the desired scenario of this chapter to make more sense for

the readers.

4.4 Overall Goals for Implementation

These are the main goals which covers the core parts of our contribution. In

addition, we are going to explain the important tasks which are emerged from

speci�c requirements of the project that we already discussed. Generally,

we concern about the implementation of how the Ajax components can be

applied to the existing Wazaabi framework and with its abilities how the

new system can ful�ll the aforementioned requirements.

These goals are divided into three main following tasks and each one be-

low represents an overview of what the future sections discuss in the next

chapter.

Goal Description
1 Binding Ajax support to Wazaabi

framework.
2 Generate an Ajax engine inherited

from Wazaabi core engine.
3 Integrating ZK Ajax components

with Wazaabi framework.

Table 4.1: Overall Goals For Implementation

The Ajax support which we are going to explain, is planned for the work

�Wazaabi framework� which is mentioned in chapter 2. The main purpose

80

behind this support is to provide Ajax technology to Wazaabi framework

by implementing it as a standard to be used easily. Relating to the Ajax

support, one of the critical points is the typical Ajax architecture and how

it should be implemented in this work. Generating an Ajax engine based on

the core engine of Wazaabi is our main approach for the proposed solution.

Moreover, our approach will handle the implementation by taking advantage

of Wazaabi core engine as well as using an important Ajax framework called

ZK. The �eld of ZK Ajax framework presents us a well structured Ajax

architecture with various usable ZK components. In chapter 5, we will focus

them with their properties separately. In our case, this Ajax framework is

selected to be used for the implementation of Ajax components into Wazaabi

framework. In addition, Ajax components will be de�ned in this new ZK

Ajax engine by gathering already existing de�nitions from ZK Ajax libraries.

4.5 Chapter Summary

In this chapter, we started our discussion with the solution overview which

gives a very brief description of the possible solution for the given project

and how the new Ajax approach could be designed. Then, we continued

our discussion with the desired scenario which simply depicts the desired

case as in the Ajax engine integrated Wazaabi interactions. To make it

more sense, we not only gave the step by step explanation of the desired

case but also the sequence diagram of the desired case was provided as

well. After that, we elaborated the main part of this chapter which was

�Proactive Ajax Engine� based on our scenario which we previously named

as �Proactive Ajax Approach� in the Problem Analysis chapter. Therefore,

we depicted how using the new Ajax engine instead of the existing SWT

engine can support the existing work of Wazaabi in handling with the web

browser based user interfaces and how the web user interface components

in the web browser are manipulated by the new Ajax engine by providing a

�gure of the Ajax scenario. Finally, we wanted to touch on the overall goals

which were based on the analysis of the already de�ned requirements for the

81

implementation chapter which will present the actual case for the selected

solution in more detail.

82

Chapter 5

Implementation

In this chapter, we are going to discuss how the implementation phase can be

adapted and the work was organized. A new approach which is planned to

serve as a possible solution can handle the desired situations that are already

explained in the scenarios. The aim is to ful�ll most of the requirements in

expected conditions by depicting various diagrams of the new integration.

These diagrams are able to give the whole idea as a summary to the reader

easily.

5.1 Implementation Overview

This section is reserved to provide a brief description of the implementation

for the proposed solution which was explained in the previous chapter in

more detail. As we already mentioned before, our ultimate goal in this

master thesis is to support the existing work of Wazaabi project with Ajax

technique in order to make it be able to handle with the web browser based

user interfaces which is a major de�ciency in its current version. Therefore,

the existing engine of Wazaabi which is based on SWT will be replaced with

an Ajax based engine to cope with this drawback. In order to do this, we

are going to create our own Ajax engine by using the ZK Ajax framework

and its relevant features. To integrate the new Ajax engine into the existing

83

work of Wazaabi project properly as well as taking into consideration the

requirements that are rised from Ajax, we will keep the model that we will

deal with very simple as much as we can, and also focusing on the only

relevant parts of the Wazaabi.

In the rest of this chapter, we are going to elaborate how the ZK Ajax

framework can be used to support the existing work of Wazaabi project for

the issue of web browser based user interfaces in more detail. Still, before we

dig into the implementation of Ajax technique into the Wazaabi itself, we are

going to provide information about the ZK Ajax framework, its architecture

and components in more detail �rstly, so that we will be able to relate them

more easily with the Wazaabi in the rest of this chapter. And �nally, to

reinforce our Ajax implementation and the new approach for supporting

Wazaabi with web browser based user interfaces, we will also mention about

main development platforms, programming languages, software applications

that we used to accomplish our main objectives in this master thesis one by

one to make it more sense for the readers in the end of the chapter 5.

Before we dive into the architecture of the ZK framework, it is important to

say that the aim of this introductory section of the whole implementation

is reserved to provide an understanding of the basics and some important

aspects of ZK framework which are essential for development with the Ajax

framework.

5.2 ZK Ajax Framework & Components

Now, we are starting our discussion about the architecture of the ZK Ajax

Framework brie�y, then we will provide the information about the compo-

nents of the ZK Ajax Framework by illustrating the system diagram.

ZK is an open source Ajax web application framework which is written in

Java, and it enables creation of rich graphical user interfaces for web based

applications without using JavaScript. ZK takes the so called server-driven

approach that the content synchronization of components and the event

84

pipelining between clients and servers are automatically done by the engine,

and Ajax plumbing codes are completely transparent to web application

developers[33].

The ZK framework is both component based and server-driven Ajax frame-

work, which means it is driven through events while all processes are done

at the server part. There are three essential components:

1. An Ajax based event-driven engine

2. A rich set of XUL and XHTML components

3. ZUML (ZK User Interface Markup Language)

The following �gure shows the system diagram of the ZK Ajax Framework

which depicts the general interactions between client and server parts in ZK.

Figure 5.1: ZK Ajax Framework System Diagram

• XUL is the abbreviation for XML User Interface Markup Language.

This "language" is not a new invention from the ZK team. It was

originally de�ned by the Mozilla team [36]. The intention of Mozilla

is to have a platform independent language to de�ne user interfaces.

And therefore, a ZK developer can bene�t from the big community

around XUL, and can use XUL widgets.

85

<?xml ve r s i on=" 1 .0 "?>
<?xml−s t y l e s h e e t h r e f="chrome :// g l oba l / sk in /" type=" text / c s s "?>
<window
id=" f i n d f i l e −window"
t i t l e="Find F i l e s "
o r i e n t=" ho r i z on t a l "
xmlns="http ://www. moz i l l a . org /keymaster / gatekeeper
/ the re . i s . only . xul ">
<button id=" f ind−button" label="Find"/>
<button id=" cance l−button" label="Cancel "/>
</window>

Figure 5.2: Sample XML

• ZUML is the abbreviation for ZK User Interface Markup Language

and it is based on XUL. There are some extensions to the XUL stan-

dard like the possibility of embedding program code. For the user, the

application feels like a desktop based application. For the developer,

the programming is like a standalone application. ZK Ajax frame-

work uses an event-driven paradigm which encapsulates the request

& response paradigm from a web based application. These technical

infrastructure things are done through the Ajax framework. There-

fore, no JavaScript usually needs to be written for the client part (the

web browser). Here, it is important to say that the Ajax framework

automatically includes some JavaScript libraries, and generates the

JavaScript code for the user. Therefore, the developer has nothing to

do with JavaScript.

The following �gure show a sample event listener of the onChanging at-

tribute for the textbox username in ZUML.

86

<?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
<zk xmlns="http ://www. zkoss . org /2005/ zu l ">
<window t i t l e="My F i r s t window"
border="normal" width="400px">
<label value=" In s e r t your name : " />
<textbox width="60%" id="username">
<!−− implement an event l i s t e n e r for the event onChanging −−>
<at t r i b u t e name="onChanging"><![CDATA[
i f (event . getValue () . l ength () > 0 && event . getValue ()
. tr im () . l ength () > 0)
{
buttonToSayHello . s e tV i s i b l e (true) ;
}
else
{
buttonToSayHello . s e tV i s i b l e (fa l se) ;
}
]] >
</at t r i bu t e >
</textbox>
<button id="buttonToSayHello " label="Say He l lo " v i s i b l e=" f a l s e ">
<a t t r i bu t e name="onCl ick "><![CDATA[
a l e r t (' He l lo '+username . va lue) ;
]] >
</at t r i bu t e >
</button>
</window>
</zk>

Figure 5.3: onChanging Event Listener in ZUML

5.2.1 ZK Architecture

As we already mentioned before that the ZK Ajax framework uses the server-

driven approach. Therefore we can say that, a ZK application runs at the

server part. It could access the back-end resources, assemble user interface

with its components, listen to the activity of the user, and then manipulate

components to update the user interface. In order words, everything is done

87

at the server part, because of being a server-driven Ajax framework. The

synchronization of the states of the components between the web browser

and the server part is done automatically by ZK Ajax framework in the

background of the application.

While running at the server part, the application can access the full stack

of Java technology. User activities are, including Ajax and Server Push,

abstracted to event objects. User interfaces are composed by components

which is one of the most productive approach to develop a modern web based

application.

With the client-server fusion architecture of ZK Ajax framework, the ap-

plication will not stop running at the server part. The application could

enhance the interactivity by adding optional client part functionality, such

as client part event handling, visual e�ect customizing, and even user inter-

face composing without the server part code. ZK Ajax framework enables

the seamless fusion ranging from pure server-driven to pure client-driven.

In order to understand the architecture of the ZK Ajax framework smoothly,

we should mention about its three essential and internal components which

makes it work properly. The main elements of the ZK Ajax framework

are[34];

1. ZK Loader

2. ZK Client Engine

3. ZK AU (Asynchronous Update) Engine

ZK Loader

This component is responsible for the loading and interpretation of a ZK

based web page. The selection of the web page is done based on the incoming

URL request from the client part (the web browser). The result is rendered

as an HTML based web page and sent back to the the client part (the web

browser).

88

ZK Client Engine

This component sends �ZK Requests� to the server part, and receives "ZK

Responses" from the server part. With these responses, the DOM (Docu-

ment Object Model) tree on the client part is updated. Therefore, we could

call it as the client part of the Ajax.

ZK AU (Asynchronous Update) Engine

The ZK AU Engine simply constitutes the server part of the Ajax. The

following �gure shows the interactions between these three essential compo-

nents of the ZK Ajax framework.

Figure 5.4: Interactions of the ZK Archtitecture

As we can see from the �gure above, the sending of ZK Requests and ZK

Responses, and the resulting updates constitute the mentioned event driven

programming model. On the user side, there are only HTML pages. By

using ZK, these pages are build on desktops, pages, and components[35].

• Desktop (Framework: org.zkoss.zk.ui.Desktop) It is possible for

a ZUML page to include another ZUML page. This is because, these

pages are available under the same URL and they are grouped into a

desktop. Therefore, a desktop is a container for the pages.

• Page (Framework: org.zkoss.zk.ui.Page) It contains the compo-

nents. Therefore, a page is a container for the components. If the ZK

loader is interpreting a ZUML page, a org.zkoss.zk.ui.Page is created.

89

• Component (Framework: org.zkoss.zk.ui.Component) A com-

ponent is a user interface object such as button, textbox, or label.

Besides being a Java object on the server, the component has a visual

representation in the web browser. This is created at the moment of

attachment to a page. At the moment of detachment, the visual part

is removed. A component can have children. Otherwise, a component

without any parent is called the root component.

The following �gure shows the architecture of ZK framework as well as the

main interactions between the web browser (client) side and the server side.

Figure 5.5: ZK Framework Architecture[37]

Since the ZK Ajax framework utilizes the server-driven logic, the ZK Ajax

framework based application runs at the server part. Put in another way,

everything is done at the server part by the ZK Update Engine. The syn-

chronization of the ZK requests via HTTP and ZK responses in XML be-

tween the web browser and the server part is done automatically by ZK Ajax

framework in the background as sending events and updates.

Furthermore, the following �gure shows real interactions between the web

browser (client) part and the server part in great detail, while a ZK Ajax

framework based application is generating an HTML page. In the following

90

�gure, ZK Layout Engine is a representative of the ZK Update Engine which

resides in the server part;

Figure 5.6: ZK Generating an HTML Page[35]

5.2.2 ZK Components

Every user interface object in ZK Ajax framework is represented with a com-

ponent and a widget[33]. Consequently, building the user interface means

compiling the whole components. In order to change the user interface, we

need to modify states of the components and relationship between them. In

other words, a component is inherently a user interface object, for example,

it can be a window component or a button component. Moreover, it rep-

resents a graphical view and shows behaviours of a speci�c user interface

object. A component can be a Java object which is running at server side

or it can be created in the web browser when it is attached to the page. On

the other hand, a widget which runs at the client side is a JavaScript object.

It allows interaction with the user by representing the user interface object

and manipulating events at the client. These two objects work together to

provide a fully interactive user interface experience to the user.

91

Figure 5.7: Relationship between Components & Widgets

In the �gure above, the widget detects the events and sends a correspond-

ing request to the component. Then, the component communicates with

the application and sends a response back to the widget to update. When

the attribute of a component is changed, then the widget of the related

component is triggered at the client side and its graphics are automatically

changed[38].

The �gures below give a better understanding about how the ZK components

work and show the noti�cation between the server and the client when the

button widget is clicked at the client side. An event called onClick is invoked

and noti�es the application.

Figure 5.8: Invoking setSize() Method

92

Figure 5.9: Triggering onClick Event

Every ZK components are obtained from org.zkoss.zk.ui.Component. It is

possible to manage graphical interface of an application at client side by edit-

ing these components or changing their properties. Pages which come from

the class of org.zkoss.zk.ui.Page, comprise components that are distributed

in a web browser. When the ZK loader interprets a ZUML page, a page is

created and components are added or removed in that page. The collection

of pages compose a desktop during providing the same URL request. While

we are using the application, pages can be added to the desktop or removed.

Figure 5.10: Relationship between components

The �gure above illustrates an example of how the component are structured

in ID spaces which are composed of a space owner and their children. In

this case, the window A is the owner of the ID space and there are three

window components on this Page1. Both of the ID spaces contains label and

93

button component. In some cases, the same component can be located in

two di�erent ID spaces. If we want to get a component from one ID space

to another, the getFellow() method should be used. For example;

getFe l low ("winB") . getFe l low (" l ab e l 3 ")

Figure 5.11: getFellow() Method

Here is the structure of various components; As we see in the �gure below,

page component is the another space owner. Actually, there are three ID

spaces; two window components: winA, winB and a page component, Page1.

<?page id="page1"?>
<zk>

<window id="winA">
<window id="winB">

<window id="winC">
</window>
<label id=" l ab e l 3 " value="Label 3"/>

</window>
<label id=" l ab e l 2 " value="Label 2"/>
<button id="button2">

</window>
<label id=" l ab e l 1 " value="Label 1"/>
<l i s t b o x id=" l i s t b o x 1 ">
<button id="button1">

</zk>

Figure 5.12: ID Space Example

Class Hierarchy of Components

As the hierarchy of components is seen on the Figure 5.13, components are

derived from AbstractComponent class. As you can see, di�erent classes

provide di�erent functionalities. For example, A Java class called XulEle-

ment is used to provide elements including various methods for attributes

of the components such as get and set. HtmlBasedComponent Java class is

94

used for de�ning some attributes of HTML based components such as width,

height and style.

Figure 5.13: ZK Component Class Hierarchy

We already mentioned that a user interface object is composed of a server

side component written in Java and a client side widget written in Javascript.

Moreover it is also known that the Java class of the component is derived

from AbstractComponent and several classes in the Figure 5.13. Now, we

are going to talk about how a simple component is implemented and how

user interfaces are created.

Implementing the Components

In order to implement a component, a speci�c class name should be identi�ed

and the attributes of the components should be decided. An example for

the component attribute is shown in the Figure 5.14.

95

package org . implement ;
public class SimpleLabel extends
org . zkoss . zk . u i . HtmlBasedComponent
{
private St r ing _value = "" ; // a data member
public St r ing getValue () {
return _value ;
}
public void setValue (S t r ing value){
i f (! _value . equa l s (va lue))
{ _value = value ;

smartUpdate (" value " , _value) ;
}

}
protected void r ende rPrope r t i e s

(org . zkoss . zk . u i . sys . ContentRenderer r ende re r)
throws java . i o . IOException
{ super . r ende rPrope r t i e s (r ende r e r) ;

render (renderer , " va lue " , _value) ;
}

}

Figure 5.14: Implementing a ZK Component

In the code above, there are get and set methods for getting and setting

the value of the attribute called setValue() and getValue(). The setValue()

method informs the client by using the function smartUpdate() from Ab-

stractComponent class. It has two parameters; String for the name of the

attribute and object for the value. This function updates values of spe-

ci�c attributes of the associated widget at client side so the DOM tree can

be changed by the client. The renderProperties() method is used to ren-

der all required attributes which are sent to client for creating the widget

when the associated component is attached to the page. To render all at-

tributes, super.renderProperties should be called at �rst before using the

render method.

96

Composing User Interfaces in ZK

There are two approaches to compose user interface in ZK Ajax framework;

one is normal Java approach by de�ning user interface in pure Java[39] and

the other one is XML-based approach. As we already mentioned, the dec-

laration language which is ZUML (ZK User Interface Markup Language) is

based on XML. Basically, the ZK Loader is informed by the XML instruc-

tions about what kind of components are supposed to create and how their

properties are de�ned. For example, what should be written for the text

attribute of the button is decided.

Figure 5.15: Ways of composing UI in ZK[40]

Now, we are going to explain the life cycle of a ZUML page, how ZK com-

ponents are created in the mechanism of ZK Ajax framework.

The life cycle of a ZUML page;

1. Page initialization : In this �rst phase, the processing instructions are

executed by ZK and the initialization of the page is started.

2. Component creation : ZK Loader interprets ZUML page. When the

components are created in the page, for each element, their attributes

are speci�ed in ZUML page one by one. The ZK loader processed any

97

elements and the procedure are repeated to initialize the content of

additional elements.

3. Event processing : ZK calls listener for each event which is waiting for

the desktop.

4. Rendering : ZK embeds the components into a HTML page and sends

it to the browser.

Updating Pages

There are three steps for the ZK AU engine at server side to receive requests

from client side;

1. Request processing : Requests are stored in queues by ZK AU engine.

For the same desktop, they are processed sequentially. ZK AU engine

updates the content of related components.

2. Event processing : Since related events are posted in the queue, they

are also processed sequentially for each unit.

3. Rendering : ZK renders the updated components and send speci�c

responses back to the client side.

After these three steps, the ZK engine at client side updates the DOM tree

in the web browser according to type of the responses. This update can

recreate the whole component or just change one of its attributes.

5.3 Binding Ajax Support to Wazaabi

This section is one of the most important sections in the entire thesis because

it elaborates the core idea of how we are going to implement our selected Ajax

framework (ZK) to Wazaabi, the framework which we studied on previous

chapters.

98

Since there are several advantages of using ZK Ajax framework such as

providing detailed speci�cation of declarative rich user interfaces, ZK Ajax

framework also includes support for embedding various scripts which are

crucial for user interface and back-end programming. Moreover, this Ajax

framework is feasible enough for integrating with existing web frameworks

such as Hibernate and Spring via a Servlet �lter, JSF support and a JSP

tag library. During the implementation, we should also pay attention to the

server side logic. This is where asynchronous update comes forward. After

all, ZK Ajax framework lets us deal with these updates at the server side by

abstracting them via its components.

Figure 5.16: Importing ZK Libraries

As it is seen in the �gure above, it is easy to integrate ZK with other frame-

works like Wazaabi. ZK provides a web support in the view layer of Wazaabi.

Embedding a component is important because importing ZK libraries and

specifying Java classes to embed ZK component as a native component help

us to deal with using these native elements without knowing the existence

99

of ZK. The following �gure illustrates the existing native ZK components in

org.zkoss.zul package;

Figure 5.17: Package org.zkoss.zul containing Components

After importing the referenced libraries that are needed for ZK Ajax frame-

work, it is possible to move on to the next level which shows the way of

implementation for this possible integration between these frameworks.

100

5.4 Integrating ZK Framework with Wazaabi

This section covers the design and speci�cations of the new engine in order

to give a better understanding about how we are going to support di�erent

Ajax components for rendering.

Firstly, we need to create a speci�c Ajax model based on EMF ecore for

the selected Ajax framework (ZK) including its components. Secondly, we

need to create a genmodel so that we can generate the code of the ecore

model itself. As we said before, all elements of the user interface are binded

to a speci�c model instance which is the subset of and inherited from the

core model of Wazaabi. This new ecore model consists of di�erent packages

containing layouts, resources, and widgets like Textbox or Button which is an

Abstract component controlled by ZK control class named ZKXulElement.

Figure 5.18: Ecore Model of ZK Ajax Support

In widgets package, the de�nitions of the widgets are inherited from ab-

stract ones which are located in the core model. The resources and layouts

package are created for image and layout elements, whereas the ZKLayout is

formed to locate the widgets. In addition, Panel element of ZK Ajax frame-

work is integrated into the ecore model as a container called ZKContainer

which is also inherited from AbstractContainer to wrap other elements in

its structure.

101

5.4.1 Ajax Engine Implementation

The ZK Ajax engine is built same as the Ajax model is. Moreover, it is

built for rendering the model instance in order to create the real user inter-

face. Mainly, the project �org.eclipse.pmf.wazaabi.engine.zk� contains the

ZK Ajax engine's behaviour for user interfaces based on Ajax and contains

the real implementation of the Editparts for the target Ajax technology

(ZK). Figure5.19 illustrates the general con�guration and packages that are

needed for the new ZK Ajax engine project.

Figure 5.19: Packages of ZK Engine

In the �gure above, we can declare that the most crucial packages in order

of importance for the engine are; the editparts to make the engine awake for

changes in ZK components as well as creating new ones, the editpart helpers

to make the view updated according to these changes, the views for updating

102

the real user interface according to changes in the existing model, and lastly,

the adapters including event handlers to bind them all changing behaviours

properly. The detailed code information is attached to the AppendixA.

EditParts

All the editparts for each elements that constitute interfaces, are inherited

from one control editpart called ZKControlEditPart which extends to ZK-

WidgetEditPart. Moreover, that interface also extends to WidgetEditPart

which is used in the core engine for EditPart creations. ZKWidgetEditPart

has an abstract method which calls the EditPart helper.

Figure 5.20: ZK Engine EditParts

WazaabiEditPartFactory creates editparts for the speci�c elements accord-

ing to the model instance by mapping and stores the model element in the

related editpart. If the element is matched with the model element of in-

stance, then it automatically returns a new LabelEditPart.

i f (modelElement instanceof
org . e c l i p s e . pmf . wazaabi . model . zk . widgets . Label){

return new LabelEditPartImpl () ;
}

Figure 5.21: Comparing the Model Element

103

EditPart helpers are supportive classes to get the model elements and their

styles from the model. They are controlled by the ZKControlEditPartHelper.

For example, LabelEditPartHelper gets the element and returns it into ZK

Label component type. ZKControlEditPartHelper controls the editparts by

checking the widget model and noti�es any node changes immediately. It

uses hooking and unhooking widget methods from its super class called ZK-

WidgetEditPartHelper.

Figure 5.22: ZK Engine EditParts.Helpers and EditParts.Impl

These three abstract classes in �org.eclipse.pmf.wazaabi.engine.zk.editparts.impl�

have various declared methods like hook(), unhook() widgets, notifychanged()

which are used by their derived classes in editparts package. For example,

AbstractZKWidgetEditPart has methods to notify the new elements in the

model, gets the ZK widgets and hooks them into the appropriate view. The

following code group shows the widget hook process to the view;

104

public void hookWidgetView (WidgetView widgetView){
super . hookWidgetView (widgetView) ;
getEditPartHe lper () . hookZKWidget (

((ZKXulElementCtrlView) widgetView) . getZKWidget ()) ;
}

Figure 5.23: Hooking widget to View

Views

The views package of ZK Ajax engine is where we implemented our main

methods that are being used for creating the views of selected ZK com-

ponents which are Window, Panel, AbstractButton, Label, and Textbox.

Moreover, the methods that we created in each Java class of ZK compo-

nents are also aimed to deal with editing such as setting and getting the

text attributes of the selected ZK components. In order to adhere the ex-

isting code base of Wazaabi views, we wanted to keep the methods of each

component seperately. Additionally, the �ve selected ZK components inten-

sively correlate with the XulElement control view which is our own super

class of all ZK components according to the type hierarchy of ZK Ajax

framework. Moreover, the XulElement control view is itself dependent on

the widget view of the core engine from Wazaabi as well as AbstractButton,

Label, and Textbox are dependend on AbstractButton view, Label view,

and Text view of the core engine from Wazaabi respectively.

The main functionality of XulElementCtrlView is to make sure that a new

child (ZK widget) is binded to its corresponding parent in its own tree

typed widget hierarchy according to the ZK ecore model. As we already

mentioned before, all ZK components of the user interface are binded to a

speci�c model instance which is inherited from the core model of Wazaabi.

Another important task of the XulElementCtrlView is to create and get

ZK widgets in the type of AbstractComponent which is also the super class

of XulElement with regard to the type hierarchy of the components in ZK

Ajax framework. Finally, the WidgetViewFactory which is also intensively

dependent on the view part of the Wazaabi core engine and that is an another

105

crucial part in views package of ZK Ajax engine. Its ultimate functionality is

to create instances of new widget views for each �ve selected ZK components

according to their separate editparts. The packages of ZK views and viewers

can be seen in the following �gure;

Figure 5.24: Views and Viewers

In the viewers package of ZK Ajax engine, we implemented our methods

which are concerning the parents of each child widgets such as getting the

parent of a speci�c widget in the type of AbstractComponent which is the

main super class of all ZK components according to the type hierarchy of

ZK Ajax framework. Besides the main functionality of AbstractZKViewer,

the main functionality of AbstractWazaabiViewer is to initialize the Edit-

PartFactory which is intensively dependent on the WazaabiEditPartFactory

from the Wazaabi core engine. Lastly, the ZKControlViewer which has an

important role in the viewers package of ZK Ajax engine, aims to deal with

setting the RootEditPart for the main parent of all ZK widgets which is

de�ned as a window in the AbstractComponent type as well as setting the

contents of the window. Ultimately, to provide a better understanding of

how the viewers package of ZK Ajax engine are structured and coded, its all

related source codes can be found in the appendix A which is located in the

end of the entire report.

106

Adapters

The adapters package of ZK Ajax engine has �ve main subpackages which

are in turn binding, eventhandlers, layouts, resources, and widgets. Because

of we have focused on only bindings and eventhandlers in the integration of

ZK Ajax framework with the existing code base of Wazaabi project, we are

going to examine the �rst two subpackages of the adapters. However, the

entire view of all adapter packages of ZK Ajax engine can be seen in the

following �gure.

Figure 5.25: Adapter.Binding and Adapter.Eventhandlers

In the binding subpackage of adapters, we have focused on user interface

event adapter which is dependent on the abstract user interface event adapter

from the Wazaabi core engine, as well as user interface event adapter fac-

tory which is dependent on the platform speci�c component factory from

the Wazaabi core engine. The main functionality of user interface event

adapter is to provide getControl() function which returns the speci�c wid-

get edit part in the type of desktop from the user interface library of ZK

Ajax framework. Besides, it also deals with hooking and unhooking the

current widget, with regard to the current event type. Apart from this, the

factory is responsible for creating a new user interface event adapter.

In the eventhandlers subpackage of adapters, the ZK event handler adapter

has not only the same methods with user interface event adapter from the

107

binding subpackage, but also it has a NotifyChanged() method which has

a vital role in the whole implementation. As we already explained in the

sequence diagram of Wazaabi, the NotifyChanged() method uses both the

EMF libraries of Eclipse and the existing Wazaabi core model. Additionally,

it has a role to inform relevant edit parts in case of an alteration in the EMF

trees of Wazaabi components such as adding a new element, or deleting an

existing element, or updating an attribute of an existing element. In our

implementation, they are replaced with the ZK components for adhering

our ultimate goal in this master thesis. Ultimately, to provide a better

understanding of how the adapters package of ZK Ajax engine are structured

and coded, its all related source codes can be found in the appendix A which

is located in the end of the entire report.

5.4.2 Execution of ZK Ajax Engine via Richlet

In this section, we are going to elaborate how our ZK Ajax engine will be

run in a realistic case and the main requirements for having it run as a ZK

project in Eclipse properly. To do this, we �rst needed to have our own

executable .jar �les of the Wazaabi model, core engine, ZK Ajax engine, and

core model. Therefore, we already exported our source codes as executable

.jar �les and imported them as referenced web application libraries in a

sample ZK project which can run on the localhost from Apache Tomcat

Server 7 which provides a Java servlet for the web environment.

After an investigation from the web as well as information obtained from

our supervisor, we had to implement a ZKRichlet which is a small Java

code block that creates all necessary components in response to user request.

First, we used the �org.zkoss.zk.ui.Richlet� interface, then we declared the

association of our richlet with the URL for the actual implementation. The

appearance of ZKRichlet project and the required libraries to run it properly

are shown in the following �gure;

108

Figure 5.26: ZKRichlet as ZK Project

After that, we had to map the URL to our ZKRichlet via two successive

steps which are turning on the ZKRichlet and then mapping URL pattern

to it. By default, the ZKRichlet was disabled. In order to enable it, we have

added the following declaration by editing the generated web.xml �le in the

WEB-INF folder of our ZK project[41]. The required declaration to enable

ZKRichlet is shown in the following �gure;

<s e r v l e t−mapping>
<se r v l e t−name>zkLoader</s e r v l e t−name>
<url−pattern >/zk/∗</ur l−pat tern>
</s e r v l e t−mapping>

Figure 5.27: Turning on ZKRichlet

Once the ZKRichlet was enabled, we had to map a URL pattern to it by edit-

ing the generated zk.xml �le in the WEB-INF folder of our ZK project [41].

So that, we could request our ZKRichlet by running the ZK application on

Apache Tomcat Server 7 and visiting �http://localhost:8080/ZKRichlet/zk/test�

109

in our web browser The required declaration to map a URL to the ZKRichlet

is shown in the following �gure;

<r i c h l e t >
<r i c h l e t−name>Test</r i c h l e t−name>
<r i c h l e t−class>org . zkoss . zk . r i c h l e t . ZKRichlet</r i c h l e t−class>
</r i c h l e t >

<r i c h l e t−mapping>
<r i c h l e t−name>Test</r i c h l e t−name>
<url−pattern >/te s t </ur l−pattern>
</r i c h l e t−mapping>

Figure 5.28: Mapping URL Pattern to ZKRichlet

After that, it is necessary to load ZK model for embedding de�nitions and

properties of the ZK components such as Label, Panel, Textbox and Button.

By doing this, we can set the model elements from the resource as a content

for the viewer. In order to get a fully understanding, this will be explained

in more detail in the evaluation scenarios. In the following �gure, the code

block in ZKRichlet which are used to load the EMF resource is given;

Resource . Factory . Reg i s t ry .INSTANCE
. getExtensionToFactoryMap ()
. put ("zkmodel" , new XMIResourceFactoryImpl ()) ;
org . e c l i p s e . pmf . wazaabi . model . zk . widgets
. WidgetsPackage . eINSTANCE. eClas s () ;
Resource r e s ou r c e = new ResourceSetImpl () . getResource (URI

. createURI ("models /ZKRichlet . zkmodel") , true) ;
v iewer . setContents (r e s ou r c e . getEObject ("/")) ;

Figure 5.29: Loading the EMF Resource

In addition, the �gure below shows the structure of ZK model instance by

using sample re�ective ecore model editor in Eclipse;

110

Figure 5.30: ZKRichlet.zkmodel

5.5 Software Technologies & Tools

This section discusses the di�erent programs (software applications and tech-

nologies) which were used during the project.

5.5.1 Development Platforms & Softwares

This section would describe the di�erent development platforms and software

applications which were used during the development phase.

Eclipse Helios

The popular development platform Eclipse created by the open source group

with the same name. It provides additional features for Java and web de-

velopment to the existing Eclipse application such as code completion and

manual lookup. Eclipse was used by the members of the development team

for the implementation of the Java client part.

ZK Studio

ZK studio of Potix corporation is an open source Ajax application develop-

ment environment having user interface development tools which supports

WYSIWYG visual development.

111

Apache Tomcat 7

Apache Tomcat is an open source servlet container which provides Java

servlets and support HTTP web server environment. It contains web tools

for XML con�guration �les and server management.

Latex

Latex is a document markup language and document preparation system.

Latex simpli�es the process of organizing and compiling large individual

documents into a single contiguous representation. The project report is

written in several di�erent text editors and then compiled into a single doc-

ument by using latex. Several smaller documents were also written using

this technique like the meeting minutes and agendas. This was done to pre-

serve formatting across some documents produced during the project. We

used LYX as our document processor for the project report.

SVN

SVN is an abbreviation for Subversion, which is a version tracking system for

all types of �les. SVN also resolves most situations where several di�erent

people might be writing on the same document by allowing di�erent changes

to be merged together without loss of data. Merging features works in trivial

cases and for text �les only. For binary �les no merging is done. For text

�les the merging needs to be done manually if the operation is not trivial.

Our project requires simultaneous development of both the project report

and the source code, which makes SVN feasible. The repository was used for

distributing background material, meeting summaries, images, �gures and

the project report. The group members uses di�erent tools for connecting to

the SVN repository during the project, including through the Eclipse plugin

Subclipse and using the command line client.

112

Mozilla Firefox

Mozilla Firefox is a web browser released by Mozilla Corporation. It is one

of the most widely used free and open source browser which has functions

that can be added through extensions which are created by developers.

Microsoft Internet Explorer

Internet Explorer (IE) is Microsoft's free web browser provided by Microsoft

Windows operating systems. It is the most widely used graphical web

browser since 1999.

Google Chrome

Google Chrome is a web browser developed by Google that uses the We-

bKit layout engine. As 2011, Google Chrome is the third most widely used

browser with a 12 percent worldwide usage share of web browsers, according

to Net Applications.

5.5.2 Programing languages

This section describes the di�erent programming languages utilized for de-

velopment. It also includes markup languages such as HTML and XML.

HTML

HTML is an acronym for Hypertext Markup Language and is a markup

language that only allows certain tags to be used and tags are only allowed

to be used in certain scopes. HTML is the standard language for website

development.

113

XML

XML is an acronym for e-Xtensible Markup Language and is a speci�cation

for representing data using markup language. It builds on the same ideas as

those behind HTML. XML describes a data structure that is highly �exible

and relatively easy to read yet simple for a computer to understand and

process. Our solution uses XML in several places, the most prominent being

the communication between the client side and server side.

JavaScript

JavaScript is a client side scripting language most often used for client side

dynamic web development. JavaScript enables the creation of web applica-

tions that are able to respond to the users' inputs without requesting a new

page from the server. This is especially useful when one wishes to create

a page that is user friendly and does not require redirection to a new page

each time the user performs an action.

Ajax

Asynchronous JavaScript and XML which can be abbreviated as Ajax is a

technique used in web application development. Generally, Ajax technique

is mainly used on the client part in order to create interactive web applica-

tions. By using Ajax, the client part of a web application can retrieve data

asynchronously from the server part which works in the background without

making any alterations of display and behavior of the existing pages.

5.5.3 Sharing Platforms & Tools

NTNU Student E-Mail Service

This service is used for sharing documents and communication about the

status between group members and the supervisor with getting an access by

using a browser or an email client such as Microsoft Outlook.

114

It's Learning

It's learning is a web based learning platform to support students with dif-

ferent kinds of academic education all around the world. We used for sharing

the resources between the group members and posting the related articles

we found.

Assembla

Assembla which is a collaborative project management service was used as

a sharing platform for the documents and a repository of the source code

related to the project.

GoogleDocs

GoogleDocs is a document sharing service from Google that allows uploading

and editing documents online by using di�erent computers. This service is

used for making backups of the document versions in order to secure the

documents of the project report.

Microsoft Word

Microsoft Word is a word processing program from Microsoft. It is used

extensively for proofreading and writing documents before they were imple-

mented in latex.

Notepad++

Notepad++ is a free editor which allows viewing the source code with syntax

of many programming languages. It is used for editing Java source codes

and XML con�guration �les.

115

5.6 Chapter Summary

We started the Implementation chapter by giving the implementation overview

which gives a very brief description of how we could contribute to the existing

work of Wazaabi project according to our main goals as well as taking into

account the proposed solution chapter. Therefore, our aim of this chapter

was to explain how we could support the existing work of Wazaabi project

with Ajax technique in order to make it be able to deal with the web browser

based user interfaces via setting up our own Ajax engine instead of using

the existing Wazaabi engine which was based on SWT. Then, we continued

our discussion with studying the architechture of ZK Ajax framework as well

as its relevant and various components as a whole. We also elaborated the

main interactions of the ZK archtitecture, the relationship between its com-

ponents, the hierarchy of its components, how to implement ZK components,

setting up user interfaces via ZK and updating web pages according to the

ZK asynchronous update engine at server part which receives the requests

from client part. At this point, according to our goals for the implementation

phase which we already comprised, the signi�cant details about the binding

process of Ajax support to the existing framework of Wazaabi project was

discussed in general. Then, as a main contribution to our project, the major

aspects of the new Ajax approach was described in detail. Additionally, the

section which we cover that how we could integrate the ZK framework with

the existing work of Wazaabi project was one of the most important sections

in the entire thesis report. Since, not only it puts emphasis on the main idea

of our master thesis but also it elaborated the main possible contribution

which we formerly studied on the previous chapters. At that point, we also

mentioned about how we implemented our ZKRichlet for executing our own

ZK Ajax engine within the Wazaabi framework in detail. Before we close

the implementation chapter and dive into the evaluation section, we wanted

to touch on brie�y the di�erent software technologies and development tools

that we had used during the research, implementation and documentation

phases of our master thesis.

116

Chapter 6

Evaluation

This chapter of the report is reserved for the evaluation of the processes

within the project and the results that we have obtained. The purpose of

this chapter is to verify how well our proposed solution and the objectives

in the project are achieved. Doing a deep analysis of the results will bene�t

us by pointing out and analysing how di�erent parts of the project work

a�ected the overall results.

6.1 Evaluation Overview

The aim of the evaluation chapter is to illustrate the general assessment

activities that have taken place right after the implementation part as well

as documenting the test results about our contribution for the existing work

of Wazaabi project. Therefore, the evaluation section may also be considered

as a set of formal methods and assessment criterias which have to be followed

for revealing to what extent the requirements and main goals are ful�lled in

our master thesis.

In the rest of the evaluation chapter, our general scope will be to cover

all the assessment criterias which are performed on the resulted work of

our master thesis as well as ful�lling the requirement speci�cations. Since

the �nal implementation is an Ajax contribution to an existing project in

117

this �eld, our evaluation plan will be supposed to test new functionalities

introduced by the resulted implementation under the category of two main

evaluation scenarios. In other words, our testing activities will not be focused

on existing functionalities of Wazaabi project.

The assessment criterias are not aimed to go into every detail of the ex-

isting implementation, but they are still concerning about larger parts of

the project. In this manner, we can verify our resulted implementation is

able to integrate Ajax technology into the existing work of Wazaabi project

properly.

6.2 Evaluation Scenarios

This section is based on two main evaluation scenarios that shows the pos-

sible behaviours of the implemented ZK Ajax engine. The implemented

solution is evaluated using these two scenarios which mention about adding

or editing ZK Ajax components which come from model instance to be re-

�ected in the user interface and updating properties of ZK Ajax components

by using onClick events.

Scenario 1: Adding & Editing ZK Component

This scenario presents how to add or edit a ZK Ajax component in the user

interface via our ZK Ajax engine. Basically, we can get the components by

programming in the ZK richlet such as creating component instances one by

one and setting their parent to panel as a ZK container.

118

ZKControlViewer viewer = new ZKControlViewer (window) ;
Panel panel = WidgetsFactory . eINSTANCE. createPane l () ;
f ina l Label label = WidgetsFactory . eINSTANCE. c r ea t eLabe l () ;
label . setText (" h e l l o wazaabi ! ") ;
Button button = WidgetsFactory . eINSTANCE. createButton () ;
button . setText ("ZK BUTTON") ;
label . s e tParent (panel) ;
button . se tParent (panel) ;
v iewer . setContents (panel) ;

Figure 6.1: Adding Button & Label via programming

However, adding or editing a model instance with ecore editor is more use-

ful way than programming. Firstly, we need to implement a ZK richlet

which is already explained in the previous chapter then we need to cre-

ate a dynamic instance called �ZKRichlet.zkmodel� from the ZK model

(org.eclipse.pmf.wazaabi.model.zk). By opening this created model instance

via sample re�ective ecore model editor, we are allowed to create new model

elements and edit existing ones. Later, the EMF source of the created ZK

model instance should be loaded in the richlet5.29. The main point is that

this load process must be done in order to get the proper ZK Ajax compo-

nents by the help of our ZK Ajax engine (org.eclipse.pmf.wazaabi.engine.zk)

which updates the view according to the hierarchy of model elements in the

model instance. In addition, setting the contents into the window by the

help of ZK control viewer should be done in the richlet so that the ZK Ajax

components can be retrieved properly. The adding a sibling next to child

process is illustrated in the following �gure;

119

Figure 6.2: Adding & Editing ZK Component via Editor

The places in the red mark show how to make changes in the properties

of one of the ZK Ajax components. In this scenario, the text of the label

component is changed from the default to �Hello Wazaabi!�. The detailed

code group of this scenario can be found in Appendix A:A.2.

Scenario 2: Updating ZK Component via onClick Event

In the second evaluation scenario, we aim to illustrate how a ZK Ajax com-

ponent can a�ect the user interface elements which are in type of Wazaabi

model widgets. By doing this, we have a ZK button component where we

imported and de�ned it as �org.zkoss.zul.Button� in our source code and a

couple of various Wazaabi model widgets which are located in a panel ele-

ment. In addition, we also used the EventListener feature of the ZK button

as well as its onClick event in order to change text attribute of the label

which is located in a panel element. To make it more sense as well as get-

ting a fully understanding of how it performs, we would like to provide the

code block which is responsible for changing the text attribute of the label

element in the following �gure;

120

f ina l org . zkoss . zu l . Button button =
new org . zkoss . zu l . Button ("Change Label ") ;
button . addEventListener (Events .ON_CLICK,
new EventLis tener () {
public void onEvent (Event evt) {
label . setText ("Goodbye wazaabi ! ") ;
}
}) ;

Figure 6.3: onClick event of org.zkoss.zul.Button

According to the main logic behind the Ajax technique used in this evalua-

tion scenario, the relevant property of the label which is �text� in this case

will be changed and the change is shown immediately as the user clicks on

the ZK Button named �Change Label� without refreshing the entire web

page as expected.

Figure 6.4: Changing ZK Label via onClick Event of ZK Button

As soon as we run our code on the server which works on localhost, the

resulted screen that is triggered by the onClick event is depicted in the

�gure above.

121

6.3 Project Results

According to the motivation and the main objectives as well as the infor-

mation and the feedback obtained from the supervisor during the time span

of this master thesis, the result was expected to be the Proactive Ajax Ap-

proach which enables Ajax technology in order to make the Wazaabi project

have support for the web browser based user interfaces. Therefore, our ini-

tial and ultimate aim was to embed Ajax technique into the existing work of

Wazaabi project and make sure that the resulted implementation has sup-

port for the web browser based user interfaces which was a de�ciency in the

Wazaabi formerly.

In the project results section, our general scope will be to elaborate all re-

sults from our former research, our own Ajax approach3.3.2, the resulted

implementation with Wazaabi5.4.1, and even our own experiences in sup-

porting the web based user interfaces by using Ajax technique3.4.1. In this

manner, we can verify that our contribution to the existing work of Waza-

abi project was based on binding ZK Ajax framework to the Wazaabi as

an extension, like opening a new chapter in a book as well as adhering to

our ultimate aim in supporting web based user interfaces successfully in the

Wazaabi. Now, we are going to illustrate the accomplishment status of the

requirements that we are supposed to achieve. The table below covers both

functional and non-functional requirements of the current project.

122

Requirement Priority Succeeded Description
FR-AJX1 High A new Ajax engine (render) is

required.
FR-AJX2 High Editparts must be changed speci�c to

Ajax framework.
FR-AJX3 Medium Ajax widgets must be integrated into

the new engine.
FR-WZB1 High Wazaabi must support to create new

Ajax UIs.
FR-WZB2 Medium Wazaabi must be able to edit

di�erent Ajax UI components.
NF-AJX1 High Ajax support must be integrated into

Wazaabi.
NF-AJX2 Medium Ajax must be able to identify current

changes.
NF-AJX3 Low Ajax Security Issues must be

properly de�ned.
NF-WZB1 High Wazaabi must conform to the

technical constraints put by Ajax.
NF-WZB2 High Target model(Ajax) must be shown

in Web Browser.
NF-WZB3 Medium An editor which allows changes in

the Wazaabi Viewer.

Table 6.1: Ful�llment Table of Requirements

To adhere our ultimate goal in this master thesis, we created a new Ajax

engine (a new rendering system) which was embeded into the Wazaabi's

framework and replaced with the existing SWT engine by using ZK Ajax

framework in the implementation phase of this master thesis. In our new

Ajax engine, Editpart module is also created by matching with existing

ZK Ajax components. Then, it is fully integrated into the new Ajax engine

whereas Editparts for controling ZK Ajax components is recreated according

to the newly created ZK ecore model and binded to Wazaabi core engine.

Thus, the other Ajax requirement FR-AJX3 for our engine is also satis�ed.

Despite not all Ajax widgets are used, most important Ajax widgets as

examples are integrated to the engine. This leads us to create other Ajax

widgets in the future in a more stable way.

123

With the help of our own ZK Ajax engine, Wazaabi can associate user in-

terface information while creating a new user interface and editing di�erent

Ajax user interface components. Our newly created Views and Adapters in

the ZK Ajax engine supports di�erent kinds of Ajax user interface compo-

nents like Textboxes, Labels, Buttons and Panels as container. ZKEditparts

takes important role while editing ZK Ajax components by making a bridge

between the user interface and the ZK model instance. The structure of the

engine is also well binded to the Wazaabi core engine so that we can say

this kind of Ajax technology (ZK Ajax Framework) starts to be supported

by Wazaabi. The requirement NF-AJX3 is dropped out of the project be-

cause our main focus has become implementing the engine, not testing the

Ajax security issues while executing the engine. Although it is not in our

scope, the security is an important topic which should be focused as a type

of requirement that may be ful�lled in the future work.

Naturally, every framework has di�erent structure and used methods in their

own architecture so that Wazaabi must have conformed to the technical

constraints put by Ajax. In other words, there were conditions which ZK

Ajax framework did not have any methods to support these conditions. It is

also realized that there were incompatible parts which are irrelevant for our

integration and we had to clarify the technical constraints to be more precise

in our work. For example, we saw that not every methods of Wazaabi are

fully matched with methods in the libraries of ZK Ajax framework.

Figure 6.5: ZK Components in the ZK User Interface

With the execution of a richlet modi�ed with our ZK Ajax engine, the

instance of the target (Ajax) model has been displayed in a web browser

properly. To implement the richlet, it needs Java code rather than XML and

124

ZK Loader which processes the richlet and creates components handled by

the richlet. Integrated ZK Ajax components are loaded from model resource

by the help of our ZK Ajax engine.

The engine needed to be aware of the model which is being used in and if

possible posses the ability to adapt the user interface according to the model

instance. Moreover, information about the user interface a�ects the model

context. Our last requirement here was to supply an editor to allow changes

in the Wazaabi Viewer but on the other hand as the project is evolved,

the importance of this requirement is slightly decreased because it is still

possible to utilize the existing re�ective ecore model editor and palette as

long as they are based on the EMF.

The extraction from the reviews on the requirement table show that through

using ZK Ajax framework and its relevant features, the existing work of

Wazaabi project was supported in web browser based user interfaces and

this drawback of the Wazaabi was properly solved with Ajax technique.

6.4 Chapter Summary

We started this chapter with the evaluation of the succeeded objectives for

measuring the success in this project. An introduction on the evaluated sec-

tions of the project is given to acquire an overview of the in�uential, both

negative and positive aspects of the project. Especially, what kind of objec-

tives are motivated and how they are studied under the light of researches

about Ajax frameworks and Ajax techniques. We discussed a set of for-

mal methods which are supposed to be followed to accomplish the tasks we

gained in the beginning of our master thesis. Two related scenarios which

are performed on the project work are evaluated as well as our own contri-

bution: the ZK Ajax engine and the ZK model which introduces Proactive

Ajax Approach. The evaluation continued with project results including the

table of ful�llment of the requirements to verify our resulted implementation

which integrates Ajax technique into the existing work of Wazaabi project

properly. In other words, the signi�cant results about the integration of

125

frameworks are given to what extent the requirements are met throughout

the implementation phase of the entire project. This leads us to know what

contributions are properly made by us and what missing tasks are skipped

and left for forthcoming improvements as a future work.

126

Chapter 7

Conclusion

This last chapter explains the contributions which the group performed

throughout the project by summarizing the report and also gives re�ned

re�ections on all aspects of the project. In addition, there will be a part

about the future work which shares further ideas for the possible future

work including our positive and negative experiences about how we can do

it in di�erent ways in a later project.

7.1 Summary of the Thesis

In the rest of this paper, we are going to wrap up whole topics in the project

chapters and give a short summary of what we have contributed with this

master thesis. First, we de�ned our objectives with the help of our supervi-

sor by discussing the existing Ajax frameworks and which one we are going

to focus on. At the same time, we studied the Wazaabi framework which

was totally a new framework for us and it can be said that there was so

little documentation about the framework. Especially, we had di�culties

while learning the concept and reading the source code. In chapter 2: State

of the Art, we gave a general information about Ajax technology and men-

tioned di�erent Ajax frameworks. We also gave a brief explanation of what

we understand about Wazaabi framework. Moreover, the constraints of the

127

both frameworks are explained. In order to make our task more clear, we

have de�ned the problem relating with both existing frameworks and how

models are supported in these frameworks, we gave four di�erent Ajax sce-

narios to show the Ajax techniques which are used as a mechanism in various

situations. Then, to see the big picture of the road ahead, we de�ned a re-

quirement table which contains functional and non functional requirements

of the given frameworks. These requirements re�ected to our proposed so-

lution in a sense that it created a guideline for our approach: Proactive

Ajax Approach. The extension of the existing Wazaabi framework which

we called �Proactive Ajax Approach� is a combination of all Ajax ideas that

we we discussed during the project. The solution was to bind Ajax frame-

work to Wazaabi to support Ajax user interface components. As a result

of this approach, we created a new Ajax engine to implement into Waza-

abi's framework. Last but not least, some of the components of the selected

Ajax framework (ZK) were integrated into the existing framework (Waza-

abi). Clearly, our own ZK Ajax engine with using Ajax techniques o�ered

the required Ajax support for Wazaabi project which now can support web

browser based user interfaces.

Our approach is a starting point for those wishing to embed Ajax frameworks

into Wazaabi or integrate di�erent web technologies to extend the Wazaabi

framework. All in all, we gained a valuable experience in the area of Ajax

technology as well as learning a new declarative user interface modeling

framework called Wazaabi. Revisions between the draft and the �nal version

of this report were in�uenced by discussions as well as comments made by

our supervisor, Hallvard Trætteberg.

7.2 Future Work

In the last section, we are going to explain feasibility issues of the frame-

works for the future improvements including shortcomings of the existing

technologies that we analyzed during the project. We will also present our

recommendation about what should be done in the future.

128

The �rst issue is about ZK Ajax components in the market to create Ajax

based user interfaces. ZK provides this support by giving the framework

releases periodically. The basic version has a disadvantage because it has

only a small amount of components and to access to premium version which

contains whole ZK components and tools requires license payment. Never-

theless, it is still possible to integrate di�erent ZK components into Wazaabi

framework like ComboBox, CheckBox, Toolbar, etc.

The second issue is that currently, most of the websites are accessed by com-

puter users so that the user interfaces of web applications are designed for

computer screens. But innovative web technologies are taking to web into

the next level, from our computer screens to mobile devices. Developing

user interfaces for mobile web applications becomes more and more popular.

Most of the popular websites have their own mobile websites which makes

them really accessable at any time. After analyzing the Wazaabi, we real-

ized that the framework has drawbacks when it comes to developing mobile

user interfaces. Neither its editor nor architect component (UI modeler) is

ready for supporting mobile user interfaces. The Wazaabi framework may

be modi�ed in a sense that it can support editing user interfaces of mo-

bile applications. In addition to the existing framework, new mobile user

interface technologies can also be supported with their own components.

The last issue which needs to be considered for the future work is the security

aspect of Ajax frameworks in creating dynamic and interactive web pages.

As we already mentioned before this new technology of Ajax also brings

drawbacks such as vulnerabilities occured during autogenerated pages with-

out need to be refreshed.

129

Bibliography

[1] IDI, NTNU Master Thesis Website.

(http://www.idi.ntnu.no/education/prosjektoppgaver.php?p_id=819)

Accessed on 17th January 2011.

[2] Wazaabi Website. (http://wazaabi.org/) Accessed on 17th January

2011.

[3] Eclipse Modeling Website. (http://www.eclipse.org/modeling/emf/)

Accessed on 21st January 2011.

[4] Wazaabi Website Documentation (http://wazaabi.org/documentation)

Accessed on 17th January 2011.

[5] Wikipedia - Ajax Programming (http://en.wikipedia.org/wiki/Ajax_(programming))

Accessed on 19th January 2011.

[6] Hertel, M. (2007) Aspects of Ajax

(http://www.mathertel.de/AJAX/AJAXeBook.aspx) Accessed on

28th January 2011.

[7] Johnson, D., White, A., Charland, A. (2008) Enterprise Ajax: Strate-

gies for Building High Performance Web Applications. Prentice Hall.

Accessed on 1st February 2011.

[8] What is Ajax Technology? (http://www.webhostdesignpost.com/website/webtechnology-

ajax.html) Accessed on 3rd February 2011.

[9] AJAX Application Architecture (http://msdn.microsoft.com/en-

us/magazine/cc163363.aspx) Accessed on 3rd February 2011.

130

[10] Schutta, N., Asleson, R. (2006) Pro Ajax and Java Frameworks. Apress.

Accessed on 16th February 2011.

[11] Google Search Engine. (http://www.google.com) Accessed on 17th

February 2011.

[12] Google Maps. (http://www.maps.google.com) Accessed on 17th Febru-

ary 2011.

[13] Google Translate. (http://www.translate.google.com) Accessed on 17th

February 2011.

[14] Google Web Toolkit. (http://code.google.com/intl/en-EN/webtoolkit/)

Accessed on 17th February 2011.

[15] Rich Ajax Platform. (http://www.eclipse.org/rap/) Accessed on 17th

February 2011.

[16] Dojo Toolkit. (http://dojotoolkit.org/) Accessed on 17th February

2011.

[17] Vaadin Framework. (http://vaadin.com/home) Accessed on 17th

February 2011.

[18] ZK Ajax Framework. (http://www.zkoss.org/) Accessed on 17th Febru-

ary 2011.

[19] Direct Web Remoting. (http://getahead.org/dwr) Accessed on 21st

February 2011.

[20] Wikipedia Ajax Framework. (http://en.wikipedia.org/wiki/Ajax_framework)

Accessed on 11th February 2011.

[21] Ajax Frameworks. (http://www.xul.fr/ajax-frameworks.html) Accessed

on 12th February 2011.

[22] Ajax Frameworks. (http://ajaxwith.com/Ajax-Frameworks.html) Ac-

cessed on 12th February 2011.

131

[23] Open Source Ajax Frameworks. (http://www.java-source.net/open-

source/ajax) Accessed on 13th February 2011.

[24] Ajax Programming. (http://www.e�ectivesoft.com/ajax_development.html)

Accessed on 19th February 2011.

[25] What is AJAX? (http://www.pritambaldota.com/index.php/what-is-

ajax/) Accessed on 24th February 2011.

[26] Wazaabi Framework Overview. (http://wazaabi.org/documentation/framework-

overview) Accessed on 16th February 2011.

[27] Editing UIs inWazaabi. (http://wazaabi.org/documentation/framework-

overview/editing-wazaabi-ui) Accessed on 16th February 2011.

[28] Ajax Push & Animation: Drag & Drop List.

(http://www.zkoss.org/zksandbox/#a2) Accessed on 2nd March

2011.

[29] Ajax Events & Scripts: Keystroke Events.

(http://www.zkoss.org/zkdemo/event/keystroke_event) Accessed

on 3rd March 2011.

[30] Ajax Comboxes: AutoComplete Combobox.

(http://www.zkoss.org/zkdemo/combobox/autocomplete) Accessed on

2nd March 2011.

[31] Ajax Charts: PieChart. (http://www.zkoss.org/zkdemo/chart/pie_chart)

Accessed on 3rd March 2011.

[32] ZK Client Side Reference: Widget Package De-

scriptor. (http://books.zkoss.org/wiki/ZK_Client-

side_Reference/Widget_Package_Descriptor) Accessed on 5th

March 2011.

[33] ZK Ajax Framework Developers Reference.

(http://books.zkoss.org/wiki/ZK_Developer%27s_Reference) Ac-

cessed on 13th March 2011.

132

[34] Stauble, M., Schumacher, H. (2008) ZK Developer's Guide. Packt Pub-

lishing. Accessed on 17th March 2011.

[35] Chen, H., Cheng, R. (2007) ZK Ajax Without JavaScript Framework.

Apress. Accessed on 20th March 2011.

[36] The project page of XUL (http://www.mozilla.org/projects/xul/) Ac-

cessed on 25th March 2011.

[37] ZK Ajax Framework Architecture. (http://books.zkoss.org/wiki/

Small_Talks/2007/July/Behind_The_Scene:_Integrating_Ext_Grid)

Accessed on 26th March 2011.

[38] ZK Essentials. (http://books.zkoss.org/wiki/ZK_Essentials) Accessed

on 26th March 2011.

[39] ZK Getting Started Tutorial. (http://books.zkoss.org/wiki/ZK_Getting_Started

/Tutorial#De�ne_UI_in_pure_Java) Accessed on 25th March 2011.

[40] Composing UIs in ZK Framework.

(http://books.zkoss.org/images/d/d6/ZKEssentials_Intro_Hello.png)

Accessed on 26th March 2011.

[41] Implementing a ZK Richlet (http://books.zkoss.org/wiki/ZK%20Developer's

%20Reference/UI%20Composing/Richlet) Accessed on 12th May 2011.

133

134

Appendix A

Source Codes

A.1 ZK Engine

A.1.1 EditParts

Figure A.1: Source Code of AbstractZKWidgetEditPart.java

135

A.1.2 Views

Figure A.2: Source Code of ZKXulElementCtrlView.java Part 1

136

Figure A.3: Source Code of ZKXulElementCtrlView.java Part 2

137

Figure A.4: Source Code of ZKXulElementCtrlView.java Part 3

138

Figure A.5: Source Code of ZKXulElementCtrlView.java Part 4

139

Figure A.6: Source Code of ZKXulElementCtrlView.java Part 5

140

Figure A.7: Source Code of ZKXulElementCtrlView.java Part 6

141

Figure A.8: Source Code of ZKXulElementCtrlView.java Part 7

142

Figure A.9: Source Code of ZKXulElementCtrlView.java Part 8

143

Figure A.10: Source Code of ZKWidgetViewFactory.java Part 1

144

Figure A.11: Source Code of ZKWidgetViewFactory.java Part 2

145

A.1.3 Viewers

Figure A.12: Source Code of ZKControlViewer.java Part 1

146

Figure A.13: Source Code of ZKControlViewer.java Part 2

147

Figure A.14: Source Code of AbstractZKViewer Part 1

148

Figure A.15: Source Code of AbstractZKViewer Part 2

149

A.1.4 Adapters

Figure A.16: Source Code of ZKEventHandlerAdapter.java Part 1

150

Figure A.17: Source Code of ZKEventHandlerAdapter.java Part 2

151

Figure A.18: Source Code of ZKEventHandlerAdapter.java Part 3

152

A.2 ZK Richlet

Figure A.19: Source Code of ZKRichlet.java

Figure A.20: Source Code of ZKRichlet.zkmodel

153

Appendix B

Project Partners and Contacts

Following are the project partners and their contacts that were involved in

the development of this project.

• Supervisor: Hallvard Trætteberg, Associate Professor

� O�ce: 115 IT-bygget

� Tel: 735 93443 / 918 97 263

� E-Mail: hal@idi.ntnu.no

• Group Member: Asim Cihan Erdemli, Master Student

� E-Mail: erdemli@stud.ntnu.no

• Group Member: Onur Hazar, Master Student

� E-Mail: hazar@stud.ntnu.no

154

Appendix C

Glossary

CSS

CSS is a cascading style sheet language which express the semantics of a

document written in a markup language (HTML, XHTML, XML).

DOM

The Document Object Model is a cross-platform and language-independent

tradition for representing and interacting with objects or so-called elements

in HTML, XHTML and XML documents in order to address and manipulate

them within the syntax of the programming language in use.

DOJO

Dojo is an open source JavaScript toolkit which contains speci�c JavaScript

library for developing JavaScript and Ajax web sites and applications.

DWR

Direct Web Remoting, is a Java open source library which assists software

developers to write web pages that include Ajax technology.

155

Eclipse IDE

Eclipse is a software development environment which has extensible plug-ins

supporting di�erent programming languages.

EMF

Eclipse Modeling Framework is a modeling framework for building various

applications and tools based on Eclipse.

GWT

GWT is google's open source web toolkit which gives a set of tools that are

needed to build di�erent JavaScript applications.

HTML

HyperText Markup Language is a markup language used on websites.

Java

Java is a high level programming language developed by Sun Microsystems

as a core component of their platform in 1995.

JavaScript

JavaScript is a dynamic scripting language based on object-oriented and

functional programming.

JSON

JavaScript Object Notation is a kind of data interchange format which is a

text based open standard designed for human readable data interchange.

156

LATEX

LATEX is a document markup language and document preparation system.

RAP

Rich Ajax Platform is a open source Eclipse project which uses Eclipse and

its plugins to build rich internet applications based on Ajax.

RCP

Rich Client Platform is a software consisting of a core lifecycle manager,

a standard bundling framework, a portable widget toolkit, �le bu�ers, text

handling, text editors, a workbench, a data binding and an update manager.

SCD

A System Context Diagram in software engineering and systems engineering

is a diagram that represents the actors outside a system that could interact

with that system.

SDK

A software development kit is typically a set of development tools that allows

to create applications for a given software package, software framework,

hardware platform, computer system, operating system, or similar platform.

SWT

Standard Widget Toolkit is a graphical widget toolkit developed by IBM for

the Java platform.

157

SVN

Subversion (SVN) is a version control system initiated in 2000 by CollabNet

Inc. It is used to maintain current and historical versions of �les such as

source code, web pages, and documentation.

Wazaabi

Wazaabi is a set of eclipse plugins with EMF based models for building parts

of an application GUI.

WPD

WPD stands for the Widget Package Descriptor which is a �le for describ-

ing the information of a package, such as its widget classes and external

JavaScript �les.

WYSIWYG

Acronym for �What You See Is What You Get�. User interface principle

which recommends that where the content shown while editing must be

exactly the same as the �nal output.

XHTML

XHTML means eXtensible HyperText Markup Language which is an ex-

tended version of HTML for building web pages.

XUL

XUL is a user interface markup language based on XML developed by

Mozilla.

158

XML

XML means Extensible Markup Language which contains rules decided by

W3C for encoding documents into meaningful form for machines.

Vaadin

Vaading is an open source Ajax framework for building rich web applications.

ZK

ZK is an alternative open source Ajax framework written in Java that creates

graphical user interfaces for rich web applications.

159

	Title Page
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of Thesis

	2 State of the Art
	2.1 Ajax Technology
	2.2 Ajax Architecture & Framework
	2.2.1 Ajax Architecture
	2.2.2 Ajax Framework
	Why Do We Need an Ajax Framework?
	Features of an Ajax Framework

	2.2.3 Types of Ajax frameworks
	Direct Ajax Frameworks
	Indirect Ajax Frameworks
	Ajax Component Frameworks
	Server-Driven Ajax Frameworks

	2.2.4 Comparison of Existing Ajax Frameworks
	Google Web Toolkit (GWT)
	Rich Ajax Platform (RAP)
	Dojo Toolkit
	Vaadin
	ZK

	2.2.5 Ajax Java Frameworks
	Java Based Frameworks
	Relation with Ajax and XUL

	2.3 Wazaabi
	2.3.1 What is Wazaabi?
	2.3.2 Wazaabi Framework
	2.3.3 Editing UI's in Wazaabi

	2.4 Constraints of Existing Frameworks
	2.4.1 Constraints of Ajax
	2.4.2 Constraints of Wazaabi

	2.5 Chapter Summary

	3 Problem Analysis
	3.1 Problem Definition
	3.2 Relation with Wazaabi
	3.2.1 EMF Model
	3.2.2 SWT Model
	3.2.3 Wazaabi Scenario

	3.3 Relation with Ajax
	3.3.1 Ajax Support
	3.3.2 Proactive Ajax Approach

	3.4 Ajax Scenarios & Sequence Diagrams
	3.4.1 Ajax Scenarios
	Scenario 1: Ajax Push and Animation: Drag & Drop List
	Scenario 2: Ajax Events and Scripts: Keystroke Events
	Scenario 3: Inserting values with autocomplete feature of Combobox
	Scenario 4: Updating values of a Pie-Chart 3D

	3.4.2 Sequence Diagrams
	Scenario 1: Ajax Push and Animation: Drag and Drop List
	Scenario 2: Ajax Events and Scripts: Keystroke Events
	Scenario 3: Inserting values with autocomplete feature of Combobox
	Scenario 4: Updating values of a Pie-Chart 3D

	3.5 Requirement Specification
	3.5.1 Functional Requirements
	3.5.2 Non-Functional Requirements

	3.6 Chapter Summary

	4 Proposed Solution
	4.1 Solution Overview
	4.2 Desired Scenario
	4.3 Ajax Engine Design
	4.4 Overall Goals for Implementation
	4.5 Chapter Summary

	5 Implementation
	5.1 Implementation Overview
	5.2 ZK Ajax Framework & Components
	5.2.1 ZK Architecture
	ZK Loader
	ZK Client Engine
	ZK AU (Asynchronous Update) Engine

	5.2.2 ZK Components
	Class Hierarchy of Components
	Implementing the Components
	Composing User Interfaces in ZK
	Updating Pages

	5.3 Binding Ajax Support to Wazaabi
	5.4 Integrating ZK Framework with Wazaabi
	5.4.1 Ajax Engine Implementation
	EditParts
	Views
	Adapters

	5.4.2 Execution of ZK Ajax Engine via Richlet

	5.5 Software Technologies & Tools
	5.5.1 Development Platforms & Softwares
	Eclipse Helios
	ZK Studio
	Apache Tomcat 7
	SVN
	Mozilla Firefox
	Microsoft Internet Explorer
	Google Chrome

	5.5.2 Programing languages
	HTML
	XML
	JavaScript
	Ajax

	5.5.3 Sharing Platforms & Tools
	It's Learning
	GoogleDocs
	Microsoft Word

	5.6 Chapter Summary

	6 Evaluation
	6.1 Evaluation Overview
	6.2 Evaluation Scenarios
	Scenario 1: Adding & Editing ZK Component
	Scenario 2: Updating ZK Component via onClick Event

	6.3 Project Results
	6.4 Chapter Summary

	7 Conclusion
	7.1 Summary of the Thesis
	7.2 Future Work

	A Source Codes
	A.1 ZK Engine
	A.1.1 EditParts
	A.1.2 Views
	A.1.3 Viewers
	A.1.4 Adapters

	A.2 ZK Richlet

	B Project Partners and Contacts
	C Glossary
	CSS
	DOM
	DOJO
	DWR
	Eclipse IDE
	EMF
	GWT
	Java
	JavaScript
	RAP
	RCP
	SCD
	SDK
	SWT
	WPD
	XHTML
	XUL
	XML
	Vaadin
	ZK

