
Master of Science in Informatics
May 2011
Tor Stålhane, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Random Testing versus Partition
Testing

Kristian Oftedal

Problem Description

In the Software Engineering discipline of testing it has for the past 30 years been
a discussion on the effectiveness of random testing compared to the effectiveness of
partition testing. A new article by D. Rombach et al. claims that partition testing
is more efficient, while there is a statistical model that shows the two strategies to
be equal. The assignment consists of experimenting with the two test strategies on a
program with known errors and analyze the results.

i

Abstract

The difference between Partition Testing and Random Testing has been thoroughly
investigated theoretically. In this thesis we present a practical study of the differences
between random testing and partition testing. The study is performed on the open-
source project Buddi with JUnit and Randoop as test tools. The comparison is made
with respect to coverage rate and fault rate. The results are discussed and analyzed.
The observed differences are statistically significant at the 10% level with respect to
coverage rate, in favour of partition testing, and not statistically significant at the
10% level with respect to the fault rate.

ii

Contents

1 Introduction and Problem Statement 1
1.1 Introduction . 1
1.2 Problem Definition: . 1
1.3 Outline . 2

2 State of the Art 3
2.1 State of the Art Overview . 3
2.2 Test Techniques . 3
2.3 Partition Testing versus Random Testing 14
2.4 Testing Tools . 15

3 Experiment 23
3.1 Experimental Subject . 23
3.2 Test Metrics . 27
3.3 Manual Category-Partition testing . 28
3.4 Randoop Testing . 29

4 Test results 33
4.1 Overview of Test Results . 33
4.2 Coverage Results . 33
4.3 Failures Found . 36

5 Data Analysis 43
5.1 Paired T Test Coverage Results . 43
5.2 Paired T Test Fault Results . 44
5.3 Comparison with Another Study . 46

iii

iv

5.4 Threats to Validity . 47
5.5 Assumptions of Theoretical Research 48

6 Conclusion 49

A Buddi Specifications 55
A.1 Specifications . 55

B Primes 61

C Test Specifications Buddi ModelImpl Package 63
C.1 Account . 63
C.2 Account Type . 65
C.3 BudgetCategories . 66
C.4 Day & Time . 68
C.5 DocumentImpl . 69
C.6 FilteredLists . 75
C.7 ModelFactory . 79
C.8 ScheduledTransactionImpl . 82
C.9 SourceImpl . 84
C.10 Transaction . 84

1
Introduction and Problem Statement

1.1 Introduction

Software Testing is performed to give confidence that the software under test (SUT)
behaves as expected and to assess the SUT’s quality by detecting defects and failures.
The impact of faulty software may be the loss of lives, as in the Therac-25 case [22], or
an accidental financial loss [27]. “Testing shows the presence, not the absence of bugs.”
[26] to quote Dijkstra opinion about testing. But proving the correctness of a program
may be costly if not impossible [37]. Therefore, the most common testing activity
is to write tests that verify a certain level of quality in the software. The research
community has come up with many testing strategies and tools to perform testing. A
significant question is if one strategy is more effective than another. Particular, many
theoretical and statistical comparisons have been performed between the Random
test strategy and the Partition test strategy, but the question if random testing is
more efficient than partition testing have not been tested empirically yet. In this
thesis I will compare random testing with partition testing implemented in testing
tools. I have chosen to test tools for the object-oriented language Java and I will test
an open-source project. Bacchelli et. al. [5] has done a similar study, but my focus
will be the nature of the testing strategy instead of automatic testing versus manual
testing.

1.2 Problem Definition:

How effective is random testing compared to partition testing with respect to coverage
rate and fault rate?

1

2 CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

1.3 Outline
The outline of this thesis is the following : Chapter 2 contains a summary of a
discussion from the research community regarding the effectiveness of random testing
versus the effectiveness of partition testing. A brief discussion of the two testing
methods is also provided. The chapter also contains a discussion of available testing
tools. Chapter 3 discuss the experiment. Results are analyzed in chapter 4 and the
conclusion is provide in chapter 5

2
State of the Art

2.1 State of the Art Overview

In this chapter a survey of related works from the software engineering literature
is provided to give a picture of how this experiment is related to previous works.
First a description of software testing techniques will be given before a summary of
the partition testing versus random testing discussion. Relevant tools to the testing
techniques and the experiment are also discussed.

2.2 Test Techniques

2.2.1 Black-Box Testing

In Black-box testing, test cases are designed based on external properties of the SUT
that the testers can find without taking the SUT’s implementation into account. This
can either be through inspection of the specifications belonging to the SUT [12] or
through execution of the functions followed by an analysis of their input and output
data, as in functional testing [18]. The advantage of black-box testing is that the
program is tested according to how the SUT is expected to behave. For example, if
a function called addInteger(int a, int b) was black-box tested, the tester could input
the pair (1,2) and validate that the output to be 3.

Examples of black-box testing include partition testing [37], which can also be a
white-box technique, category-partition testing [31], random testing, and boundary
value analysis [25]. This thesis will be concerned with category-partition testing and
random testing. A description of category-partition and random testing will be given
below.

3

4 CHAPTER 2. STATE OF THE ART

Figure 2.1: SUT treated like a black-box

2.2.2 White-Box Testing

White-box testing is the opposite of black-box testing. Instead of taking the specifi-
cations into consideration and treating the SUT as a black-box, the goal of white box
testing is to examine the structure of the SUT and design the test cases based on this
information. The white-box test cases are constructed to test the SUT exhaustively
by executing all branches, paths and statements at least once. An advantage with
structural testing is that you will know which part of the code that fails, which is not
possible with black-box testing. Examples of white-box testing techniques are control
flow testing, path analysis [19] and coverage testing (path coverage, statement cov-
erage, statement coverage). Coverage testing is a technique where we identify which
parts of a SUT a test suite actually executes. This thesis will use statement coverage
as a test metric.

Figure 2.2: Overview of White-box testing

2.2. TEST TECHNIQUES 5

2.2.3 Partition Testing
In partition testing, which is considered both a white-box and black-box technique,
the SUT’s input domain is divided into classes or partitions. Ideally these partitions
are mathematically disjoint. To define these partitions a tester will have to utilize all
available information about the SUT, as done in the structural testing technique [14].
Partition testing was first introduced by Weyuker and Ostrand as a “revealing subset
of the input” [37]. They proved that if an input from a revealing subset produced
an incorrect output of the program, then any input from that distinct subset would
produce an incorrect input. For example, in branch testing the input of the program
is divided into subdomains, were a particular subdomain executes a branch of the
SUT. [36].

2.2.4 Category-Partition Testing
Category-partition testing provides a systematic method to generate tests and can be
best summarized by the abstract of the original article [31]:

“A method for creating functional test suites has been developed in which
a test engineer analyzes the system specifications, writes a series of formal
test specifications, and then uses a generator tool to produce test descrip-
tions from which test scripts are written. . . ”

The following are the main steps of category-partition testing [31]:

Analyze Analyze the specifications. Identify functional units. Determine the pa-
rameters of the functional units.

Categorize Find characteristics of the parameters and possible environmental bi-
ases, which will be the categories.

Partition Determine boundary values and possible situations that might occur and
partition these into choices that represents values of equivalence classes.

Constraints Decide how the choices interacts and if the choices could restrict each
other.

Test specification Generate a formal test specification based on the categories,
choices and constraints. P Test frames is then produced
based on the test specifications.

Evaluate Determine if the tests produced are sufficient or if some changes should
be applied. For example, the absence of a constraint or a too larger number of
test were produced

Test Cases Convert the test frames into test cases and produce test scripts that
covers all the choices.

6 CHAPTER 2. STATE OF THE ART

Illustration:

Below is a basic specification for a function called find. Find takes as input a
pattern and a file and will search for instances of the pattern in the provided file [31].

Specification:

Command
find

Syntax
find <pattern> <file>

Function
The find command is used to locate one or more instances of
a given pattern in a text file. All lines in the file that contain the
pattern are written to standard output. A line containing the pattern is
written only once, regardless of the number of times the pattern occurs.

The pattern is any sequence of characters whose length does not exceed the
maximum length of a line in the file. To include a blank in the pattern, the
entire pattern must be enclosed in quotes (“). To include a quotation mark
in the pattern, two quotes in a row(“”) must be used.

Example Input
find john myfile

displays lines in the file myfile which contains john.
find "john doe" myfile

displays lines in the file myfile which contains john doe.
find "john ""doe"" myfile

displays lines in the file myfile which contains john “doe”.

The following properties can be identify about the input parameter [31] :

• pattern length;

• pattern enclosed in quotes;

• embedded blanks in pattern;

• embedded quotes in pattern.

In this example, file is the environment and the following characteristics have been
identified:

• number of occurrences of pattern in file;

2.2. TEST TECHNIQUES 7

• number of occurrences of pattern in a target line, which is the line that contains
the pattern;

• maximum line length in the file.

A test specification is then developed based on the characteristics. The test spec-
ification below contains properties, constraints and selection expressions within the []
notation. This ensures that no test frame will have contradictory properties [31].

Formal Test Specification for the find command:

Parameters:
Pattern size:

empty [property empty]
single character [property NonEmpty]
many characters [property NonEmpty]
longer than any line in the file [property NonEmpty]

Quoting:
pattern is quoted [property Quoted]
pattern is not quoted [if NonEmpty]
pattern is improperly quoted [error]

Embedded blanks:
no embedded quotes [if NonEmpty]
one embedded quote [if NonEmpty & Quoted]
several embedded quotes [if NonEmpty & Quoted]

File name:
valid file name
no file with this name [error]
omitted [error]

Environments:
Number of occurrences of pattern in file:

none [if NonEmpty] [single]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
Assumes line contains the pattern

one [if Match]
more than one [if Match] [single]

8 CHAPTER 2. STATE OF THE ART

Below is a potential test frame that includes choices from the test specification.
Since the choices NonEmpty and Quoted have been selected, the choices several em-
bedded blanks and one embedded quote are allowed. In the file environment this allows
for the choices exactly one which means that the pattern also occurs on a line.

Test Frame:

Test Case 28: (Key = 3.1.3.2.1.2.1.)

Pattern size : many characters
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : one embedded quote
File name : valid file name
Number of occurrences of pattern in file : exactly one
Pattern occurrences on target line : one

find command to perform test:

find "has " " one quote" testfile

2.2.5 Random Testing
Random testing is a test technique where test cases are chosen at random from the
input domain of the program. As explained above, random testing uses a minimum
of knowledge about the SUT and is therefore considered to be a black-box testing
technique. Sometimes an unsystematic approach to selecting test data is appealing
[16]. It could be the case that a systematic plan is hard to develop [15] or too expensive
to perform functional or structural testing and therefore a random test approach is
preferred.

To increase its relevancy, Random Testing may choose the input according to an
operational profile. An operational profile is a list of operations and the probability of
the operation taking place. The operational profile concept was introduced by Musa
et. al. [24] in 1987 to make the testing emphasize realistic usage patterns of the SUT.
This is important because most programs do not have an uniform distribution of its
input and usage. A classic example of why testing should be done according to an
operational profile is the Ariane 5 accident [23]. The Ariane 5 rocket exploded 39
seconds into its flight. An operand error occurred because of a 64-bit floating point
to a 16 bit integer conversion was done with an unexpected high value. Much of the
software used in the design was taken from the previous Ariane 4 rocket, but the early
trajectory of Ariane 5 differed from that of Ariane 4 [23]. One of the findings of the
investigation committee was that the software had not been tested with the actual

2.2. TEST TECHNIQUES 9

trajectory of Ariane 5 [23]. If the software had been tested with a operation profile
of Ariane 5, the accident could probably have been avoided.

Figure 2.3: The Ariane 5 explosion

It has been in pointed out several times in the literature that obtaining an op-
erational profile often is infeasible. But most of these papers are from the mid 90’s
and much have happened in software engineering since then. The traditional water-
fall method has in many cases been replaced by agile methodologies [1], where small
incremental parts of a particular system are released as often as every week. This
means that the tester have a much higher chance of obtaining usage patterns and
provide an extensive operational profile towards the end of the project.

2.2.6 Example of Path Coverage Testing

To give an example of the partition testing strategy path coverage, consider the
following program: The program “midval” in figure 2.4 takes as input three integers
and then computes the middle value of the triple. The program has four different
execution paths and table 2.1 gives an example of four test cases that will cover the
four execution paths. Figure 2.5 shows the paths of the program.

10 CHAPTER 2. STATE OF THE ART

public int midval (int x , y , z) {
if (x > y)

if (y > z)
return y ;

else
return x ;

else
if (x > z)

return z ;
else

return y ;
}

Figure 2.4: Implementation of midval

Figure 2.5: Paths of midval

1 . int x=3, y=2, z=1
2 . int x=3, y=2, z=4
3 . int x=2, y=3, z=2
4 . int x=2, y=3, z=4

Table 2.1: Possible test cases

In the third test case the program will encounter an error, as it will compute y
to be the middle value of the triple. This error was not difficult to detect with path
coverage testing. If we on the other hand would have tried to perform random testing
on the program the probability of detecting this error would be low. In fact, if no
operational profile was available and no other knowledge about the program would
be taken into account the efficiency would be dependent on the intervals used to
generated random inputs. Given that the range is set to [1, 100], the probability to
generate three numbers with the same properties as test case three :

2.2. TEST TECHNIQUES 11

{x | x >= 1 and x <= 100, y | y >= 1 y <= 100 and y 6= x, z | z >= 1 and z <=
100 and z = x}

would be 0.0099.
However, it would be more complex to generate a random input if the input to

a function was for instance a data structure. Consider, for example, generating an
input to the function:

Graph shortestPathAlgorithm (Graph graph , Vertex source) {
for each vertex v in Graph :

dist [v] := infinity ;
previous [v] := undefined ;

end for ;
dist [source] := 0 ;
.
.

}

A possible approach would be to generate random binary random representations, for
example:
Graph as 000111001111010111001100111011011010010101010000111101110101 and
Vertex as 1011011011101001100110011 and hope that the representations are legal
instances of the inputs Graph and Vertex and that Vertex indeed exists in Graph.
Another would be to identify properties of the data structure that could be generated
randomly, but this would give no guarantee of a uniform sampling of the input domain.

2.2.7 Example of Random Testing

To give an example of random testing, consider the following program: The program
“MortageCalc” computes the expected mortgage to a person based on the gender,
age and salary of that particular person. Table 2.2 contains the specification to the
program and Figure 2.6 contains a possible Java implementation:

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

Table 2.2: Mortgage program specification

12 CHAPTER 2. STATE OF THE ART

public int MortgageCalc (boolean gender , int age , int salary) {
if (gender) {

if (18 <= age && age < 35)
return 75 ∗ salary ;

else if (36 <= age && age < 45)
return 55 ∗ salary ;

else if (46 <= age && age < 55)
return 30 ∗ salary ;

} else {
if (18 <= age && age < 30)

return 75 ∗ salary ;
else if (31 <= age && age < 40)

return 50 ∗ salary ;
else if (41 <= age && age < 50)

return 35 ∗ salary ;
}
return 0 ;

}

Figure 2.6: Mortgage program implementation

At first this seems to be a situation where partition testing would be the ideal test
strategy. But in this case, selecting boundaries could be more difficult. For age you
could try 17, 18, 34 and 35 for instance. Salary boundary values of positive integers
within a reasonable range could be suggestions to define an artificial boundary. With
gender there are just two different values to choose between. However, since there is
a dependency between age and gender a more fine grain partition would be necessary.
So we have identified four candidates for the two first inputs. In addition we should
include boundary values for the Middle and Old categories in the specification. If
we also include some nominal values, the total of test cases would be the results in
table 2.3, but it might not be necessary to cover all the paths:

Parameter Categories Cases per category Total
Age 3 4 12
Salary 3 4 12
Gender 2 24 48

Table 2.3: Test cases needed for proper coverage

Because of the dependencies between the parameters and combinations available
at least 48 test cases would be necessary to test all the boundaries. To manually design
48 different test cases would not be efficient and a random generation of the input

2.2. TEST TECHNIQUES 13

values would be better. It is assumed that the generator would allow you to specify
an upper bound, as in Java Random nextInt(n). The results would then have to be
validated by the ‘Specification Oracle’. The Specification Oracle determines whether a
test is correct or not. In the literature it is always assumed that an oracle is available.
However, in practice this is often not the case [16].The only program that would
produce the correct output that program is in fact the program itself. There exists the
possibility of a manual inspection the results, but this would compromise the original
advantage of automated generation of test data versus a manual generation [16]. In
the case described above, however, a manual inspection would not be overwhelming.

If we continue the example with the partition testing we will notice that it will
fall short, because it only tests code that is already part of a program. But what if
there is a branch missing or a statement missing or the branches are wrong [28]? You
will not be able to test for this because you are not looking for it. In the example
above, there is not a path to cover ages that does not fit with one of the categories.
Instead they will be wrongly assigned the value of the Old category.

Customer
Sex Age Salary Occurrence Probability
Male 16-35 100k-200k 0.08
Female 16-30 100k-200k 0.09
Male 16-35 200k-400k 0.13
Female 18-30 200k-400k 0.12
Male 36-45 200k-400k 0.23
Female 31-40 200k-400k 0.21
Male 46-60 200k-400k 0.07
Female 41-55 200k-400k 0.06

Table 2.4: Potential operational profile

Table 2.4 shows a potential operation profile for MortageCalc. It can be stated
that MortageCalc has constant failure rate θ. We can than compute that MortageCalc
will succeed with 1− θ probability. If tested N independent times with respect to the
operation profile the success probability will be (1 − θ)N and the probability of at
least one observed failure would be p = 1− (1− θ)N [16]. In 1/θ runs, the confidence
probability is that at least 1− θ failures will be observed. This is also known as the
mean time to failure (MTTF)[16] and it solves to:

1
θ ≥

1
1−(1−p)1/N

To assess confidence 1− p the number of tests required with the MTTF is
log(1−p)
log(1−θ) ≈

p
θ for small values of p and θ

If for example N = 1000 and MTTF is 300, it can be computed that 1− p ≈ .98.

14 CHAPTER 2. STATE OF THE ART

2.3 Partition Testing versus Random Testing

In the Software Engineering discipline of testing it has for the past 30 years been
a discussion on the effectiveness of random testing compared to the effectiveness of
partition testing. In his book, “The Art of Software testing” Myers [25] claims that
random testing is the least effective testing methodology, because you will not able
to select an optimal set of test data [25]. This statement was followed by a number
of papers during the 80’s favoring random testing to partition testing. In 1984 Duran
and Ntafos showed that “random testing can find a lot of subtle errors without a
great deal efforts” [10]. The effort required to generate test data can be high with
partition testing [10]. A critique of partition testing also came from Hamlet [14],
who through a combination of statistical analysis and theoretical proofs showed that
random testing could be more efficient than partition testing given that the domains
with high failure rate could not be identified [14]. Similar results were also shown by
Weyuker and Jeng [36]. Proportional partition testing [7] were suggested to overcome
some of the problems shown with partition testing and in 1994 T. Y. Chen and Y.
T. Yu found that partition testings worst case could be as good as random testing
if the number of test cases picked within a domain were proportional to its size [7].
A problem with this strategy was shown by Ntafos [29], since the number of test
cases needed to maintain the proportion could reach an infeasible size [29]. Gutjahr
[13] went over Weyuker and Jeng’s model and used their approach to show that
partition testing would always be a better choice than random testing [13]. Endres
and Rombach [11] then stated this as a law in their book “A Handbook of Software
and Systems Engineering: Empirical Observations, Laws and Theories” [11]. The
efficiency of random testing has also been revisited as late as 2010 [4].

A common property shared by all of these papers is that they are theoretical
research with a basis in theoretical and statistical analysis. For example Duran and
Ntafos “consider programs in which the domains of error do not intersect” and assume
that the operational profile of the program under test is available[10]. Further Duran
and Ntafos assume that the ideal partition of choice would include one error in each
sub-domain [10]. Overall, a lot of assumptions that makes the theoretical research
easier to perform is done. Often it will be difficult to implement these in practice.
Chan, Chen, Mak and Yu[6] points out that the results found in Weyuker and Jeng’s
paper[36] could be difficult to apply in practice because a program’s input is not
often dividable into equal-sized partitions [6]. As mentioned in Wohlin [38], software
engineering is subject to human influences and therefore you cannot find any formal
rules or laws. At the end of the experiment I will assess if the SUT inhabits any of
the assumptions made in the literature.

2.4. TESTING TOOLS 15

2.4 Testing Tools

2.4.1 JUnit

JUnit is a unit testing framework used to write regression tests. Regression testing is
performed to determine that changes done to a system does not introduce new errors
[25].. The programmer specifies classes to test, input of the test and the expected
output. The actual output is then usually compared to the expected output and the
success of the test is determined. Many of the tools and frameworks described below
implements JUnit in some way. Figure 2.7 shows an example of JUnit test script
and 2.8 shows the test validation output.

public void testGetBalanceDate () {
Account a = new Account () ("Test" , AccountType at) ;
Date startDate = DateUtil . getDate (2007 , Calendar . JUNE , 3) ;
a . setStartDate (startDate) ;
assertEquals (startDate , a . getStartDate ()) ;

}

Figure 2.7: Example of JUnit test script

Figure 2.8: Example of JUnit test validation output

16 CHAPTER 2. STATE OF THE ART

2.4.2 JCrasher

JCrasher [9] provides automated random testing of Java classes. JCrasher takes as
input the Java class under test in byte code and produces possible test suites. The byte
code is analyzed using the java reflection API. JCrasher analyses the class, methods
and identifies the method parameter types and return types. When JCrasher has
determined the number of test cases to generate, JCrasher writes the test cases as
JUnit tests. Illegal inputs are collected at runtime by JCrasher and are Exceptions
that the test cases throw. Thus, JCrasher is a robustness tester that will try to crash
the program under test. The fact that JCrasher only recognizes exceptions as illegal
inputs is a weakness of the testing approach since it will not be able to detect illegal
outputs according to the specification of the SUT. Also JCrasher does not support
regression test, as all of its test are generated at random and therefore repeating a
test suite is very unlikely [9].

2.4.3 Randoop

Randoop [32] is an automated testing tool that performs Feedback-directed random
test generation. In Feedback-directed random test generation new tests are gener-
ated based on the feedback given from previously computed values to ensure that
the next tests to be produced contains new and legal inputs and states of the class
[33]. Randoop generates sequences of random method calls and test them against
exceptions and contracts that the tester optionally can implement [32]. Contracts are
specified with a special contract interface called @CheckRep. @CheckRep allows you
to specify a property that should hold for a class under test such as a post-condition
or an object invariant [33]. This is implemented as method, boolean check(Object
o), that will return true or false. For example, for a sorted list you could check that
the list actually was sorted[32]. Pacheco et. al. proved that Feedback-directed ran-
dom testing outperformed systematic and undirected random testing [33]. Randoop
scales well and achieves the same coverage as systematic approaches [32]. Randoop
provides two different type of test generation. The first is regression testing. This
means in Randoop case that once you have generated a set of regression tests you can
keep them. The other type is fail testing. In fail testing, Randoop will test poten-
tial @CheckRep methods mentioned above and a set of default contracts. Table 2.5
contains the default contracts that Randoop will check for.

2.4. TESTING TOOLS 17

Data type Values
byte -1 0 1 10 100
short -1 0 1 10 100
int -1 0 1 10 100
long -1 0 1 10 100
float -1 0 1 10 100
double -1 0 1 10 100
char: ’#’ ’ ’ ’4’ ’a’
java.lang.String ”” ”hi!”

Table 2.6: Overview of Randoop primitive values pool

Name Expected behaviour
Equals to null o.equals(null) should return false

Reflexity of equality o.equals(o) should return true
Symmerty of equality o1.equals(o2) implies o2.equals(o1)

Equals-hashcode o1.equals(o2) == true, then o2.equals(o1) == true
No null pointer exceptions No NullPointerException is thrown if no null point-

ers are used in test

Table 2.5: Contracts of Randoop

To make the most of Randoop, an operation-profile must be implemented in the
classes. In Randoop this is called contracts [32]. A contract specifies a property which
is either an object invariant or a post-condition to a method [32]. Also Randoop is
“pseudo random” in its true nature. Unless specified, Randoop will choose values
from a pool. Most of these values are boundary values. Table For example the int
values are -1, 0, 1, 10, & 100.

18 CHAPTER 2. STATE OF THE ART

Figure 2.9: Example of Randoop output

2.4.4 JWalk (Extended)

JWalk (Extended) is an automatic category partition tool [20]. It is based on JWalk
[35], which is a lazy semi-automatic systematic testing tool. The JWalk extension
includes a category partition technique that partitions Java methods according to
arguments of the method and chooses appropriate values for the arguments. JWalk
also makes use of the Java Reflection API to analyze the code during execution.
However it will not output any JUnit tests.

Figure 2.10: Example of JWalk output

2.4. TESTING TOOLS 19

2.4.5 EclEmma

EclEmma is an Eclipse plug-in of the open-source coverage testing tool Emma. Emma
measures the statement, branch, loop and basic block of the supplied jUnit tests [8].
It will instrument .class files and output the results in a report [8]. Instrumentation
is the process of manupulating code by injecting reporting code a certain positions
of the code you are testing. Basic block coverage is an aggregation of a sequence of
non-branching statements.

Figure 2.11: Example of EclEmma output

2.4.6 FindBugs

FindBugs [17] is a static analysis tool that inspects software for bug patterns. Hov-
emeyer defines bug patterns as “error-prone coding practices that arise from the use
of erroneus design patterns, misunderstanding of language semantics, or simple and
common mistakes.”. Static analysis is the process of reviewing code without actu-
ally executing it. Techniques include data flow analysis which is the tracing of data
through the methods and classes and model checking. Through what is called a bug
pattern detector, FindBugs looks for bug patterns suggested by books [3], bug pat-
terns observed and bug patterns suggested by the users [17]. FindBugs could be used
to assess bugs located in the SUT.

20 CHAPTER 2. STATE OF THE ART

Figure 2.12: Example of FindBugs output

2.4.7 MuJava
MuJava [39] is an automated object oriented software mutation testing tool. It takes
Java class files as input and mutates them. MuJava will mutate on the intra-method
level, which will inject faults in the implementation of functionality in methods, and
the inter-class level, which is injection of faults in the integration of classes. Tradi-
tionally Mutation testing is performed to assess the quality of the test cases, or how
many mutant it kill. The potential use of MuJava in the experiment is to seed faults
into the program.

2.4. TESTING TOOLS 21

Figure 2.13: Example of mutant created by MuJava

22 CHAPTER 2. STATE OF THE ART

3
Experiment

3.1 Experimental Subject
“Buddi is a personal finance and budgeting program, aimed at those who have little
or no financial background” [30] and it is released under the GNU General Public
License [30]. Buddi won the about.com readers’ choice award, Best Mac Personal
Finance Software 2011 [2]. The main properties of Buddi are the following:

• Allow user to create accounts to store money. The sum of money in accounts is
the net worth.

• Associate accounts with Budget Categories to track the money flow and what
you plan to spend. Categorize the money flow as income or expenses and specify
the budget category the flow belongs to.

• Record the source and sink of the money flow with transactions. For example,
specifying which account you payed a bill with.

• Define repeating transactions with scheduled transactions. For example, defin-
ing the day of the month you receive your salary.

• Transactions and account balances may be saved and loaded for later use.

This open source product was chosen for a number of reasons. First of all with its
20k LOC the project is of a medium size, which meant it would reduce the spent time
studying the source code. Buddi is also a popular application with around one million
downloaders and the development community is active. The bug tracker latest update
was provided the same day as the decision to select the project (08.12.10) was taken.
In appendix A the following documentation about Buddi is provided: an UML model,
data model and some basic requirements of the program is provided. The consists

23

24 CHAPTER 3. EXPERIMENT

of 28 packages. I have therefore narrowed the scope of the experiment down to the
model implementation package. The reason for this is that the classes contained in
this package is decoupled from the rest of the system, which will help isolating the
functions and test them. It is also the largest package with 3k LOC. Table 3.1 shows
the classes of the package. Figures 3.1, 3.2 and 3.3 shows the main screens of Buddi.

Figure 3.1: Overview of accounts

3.1. EXPERIMENTAL SUBJECT 25

Figure 3.2: Overview of budget categories

Figure 3.3: Overview of transactions

26 CHAPTER 3. EXPERIMENT

Name
AccountImpl
AccountTypeImpl
BudgetCategoryImpl
BudgetCategoryTypeMonthly
BudgetCategoryTypeQuarterly
BudgetCategoryTypeSemiMonthly
BudgetCategoryTypeSemiYearly
BudgetCategoryTypeWeekly
BudgetCategoryTypeYearly
ConcurrentSaveException
Day
DocumentImpl
FilteredLists
ModelFactory
ModelObjectImpl
ScheduledTransactionImpl
SourceImpl
SplitImpl
Time
TransactionImpl
TransactionSplitImpl

Table 3.1: Classes in the model implementation package

3.2. TEST METRICS 27

3.2 Test Metrics

3.2.1 Independent Variables
• Random Testing

• Partition Testing

3.2.2 Dependent Variables
• Coverage rate

• Fault rate

3.2.3 Failure Definition
Failures have many definitions in the literature, but I will settle for the definition
given by Laprie: “A system failure occurs when the delivered service deviates from
the specified service, where the service specification is an agreed description of the
expected service.” [21]

3.2.4 Statement Coverage Rate Calculation
The most common formula to calculate statement coverage for component i is the
following:

Number of executable statements executed = ni
Total number of executable statements = ti

Coverage ci = ni

ti

× 100

Which means that:

ni = ti × ci

100

In this experiment I will use the following formula to calculate the total statement

coverage.

c =
∑
tici/100∑
ti
× 100 =

∑
tici∑
ti

28 CHAPTER 3. EXPERIMENT

3.2.5 Environment
The experiment has been executed on a Mac OS X 10.6.7 64-bit operating system
with one Intel Core i5 CPU @ 2.53 GHz processor with two cores and RAM size of
4.00GB, L2 cache size of 256k KB per core, Java 6 SE Update 25, Eclipse Helio IDE
3.6.2, JUnit 4.8.2, EclEmma 1.5.3 and Randoop 1.3.2.

3.2.6 Tool Selection
After the review of potential tools in chapter 2, we narrowed the selection down to
Randoop and JUnit. FindBugs were ruled out because it would involve a comparison
between random testing, partition testing and Statistic Analysis, which would be
outside the scope of the thesis. We decided to not use JWalk because it does not
produce any JUnit cases, which makes it impossible to measure the coverage rate
of the tests. JCrasher only provokes exceptions and is therefor not suited for the
experiment. We also decided to leave out fault injection with MuJava because the
tracker of Buddi was active with many open bugs (25).

3.2.7 Hypothesis
Based on the problem statement given in 1.2 we have formulated the following hy-
pothesis: The null hypothesis is that there is no difference in the number of failures
found by random testing and partition testing and that the two achieves the same
amount of coverage. The alternate hypothesis is that partition testing achieve a higher
coverage rate and reveals a higher number of failures than random testing. Stated:

H0 : µrandom = µpartition
H1 : µrandom < µpartition

A paired t test will be performed since two paired samples will be the results of the
experiment. The criterion is H1 : µrandom < µpartition: rejects H0 if |t0 > tα/2,n−1.
Alpha(α) has been set to = 0.1. This level has been chosen to reflect that the
experiment performed on a open-source program.

3.3 Manual Category-Partition testing
The first testing activity we did was manual category-partition testing. This would
ensure that we would early on gain a good overview of the code and how it worked.
Another reason for choosing to perform the experiment in this order was to avoid
potential bias.

The steps explained in chapter 2 was followed. In the analysis phase, info on the
Buddi web page [30] and the UML diagrams provided in appendix A was studied.
We discovered that the documentation provided was not adequate. For example,
in the UML diagram over the system, the class FilteredLists was not included. To

3.4. RANDOOP TESTING 29

compensate the lack of documentation we borrowed the concept of path domain from
Equivalence testing [34]. A path is considered to be a “. . . sequence of statements
through the implementation” [34] and the path domain is the set of paths. In the
categorize phase it is allowed to take the code into consideration[31]. Since we did
not have a test generator available, I generated the test cases by hand. Appendix C
contains the formal test specifications of Buddi produced with category-partition.

3.4 Randoop Testing
Because of Randoop’s random basis we experimented with the test generation prior
to conducting the experiment. Randoop takes as input a given amount of time to
generate test cases or a number of test cases to generate. Narrowing the input range
on values that would provide maximum coverage would optimize the execution of the
experiment. Figure 3.4 show the input screen with the available parameters.

Figure 3.4: Overview of Randoop input

I experimented with different seeds chosen randomly from a list of primes, which
is provided in appenidx B, to make sure that all the test sequences generated was not
the same. We also experimented with the amount of test cases needed to reach the
maximum possible width coverage of the class under test (CUT), but found it more
useful to input the amount of seconds you want Randoop to generate tests. I also
experimented with the @CheckRep annotation (contract interface mentioned in 2) to

30 CHAPTER 3. EXPERIMENT

write contracts. We did not find this option valuable as most of the classes in Buddi
already had the proper logic to check that they their state was legal.

3.4.1 Code Changes
The following changes have been made to make the code to fit Randoop. Without
these changes Randoop was not able to test the clone method or instantiate the
objects properly.

• The tag public has been added to the method clone() to the
following classes: AccountImpl, AccountTypeImpl, BudgetCategoryImpl,
DocumentImpl, ModelObjectImpl, SchedueledTransactionImpl, SplitImpl,
TransactionImpl and TransactionSplitImpl.

• A constructor has been made to replace ModelFactory instantiation of the
following classes: AccountImpl, AccountTypeImpl, BudgetCategoryImpl,
DocumentImpl, SchedueledTransactionImpl, SplitImpl, TransactionImpl
and TransactionSplitImpl.

3.4.2 Randoop Regression Testing
The steps below explains how regression testing was performed in this experiment
with Randoop Testing

• The package of the classes under test was targeted with test type pass. (Mod-
elImpl Package)

• A seed was chosen randomly from the list in appendix B.

• Execution time was set to 180 seconds.

• EclEmma was executed to measure the coverage provided by the generated test
cases.

• This was repeated three times, and the results was averaged class wise.

3.4.3 Randoop failure testing
The steps below explains how fail testing was performed in this experiment with
Randoop Testing:

• The package of the classes under test was targeted with test type fail. (Mode-
lImpl Package)

• A seed was chosen randomly from the list in appendix B.

• Execution time was set to 180 seconds.

3.4. RANDOOP TESTING 31

• Output report was examined and reported errors were checked to validate.

• This was repeated three times, and the results was averaged class wise.

32 CHAPTER 3. EXPERIMENT

4
Test results

4.1 Overview of Test Results
Table 4.1 contains the results found with random testing as test strategy. It contains
both the coverage rate and fault rate. Table 4.2 contains the results found with
partition testing as testing strategy.

4.2 Coverage Results
The component coverage rate for partition testing is better than the component cov-
erage rate of random testing. With random testing, three classes in table 4.1 stand
out with less than half the coverage of the other classes. A common property shared
by these three classes are methods that take as input a file in a special format the
program uses to save a current session for later use. The issue with random testing
and complex input types were discussed in section 2.2.5 and in DocumentImpl for
instance, a total of 98 LOC is missed because they are related to a file format which
Randoop cannot instantiate.

4.2.1 Complexity
In most of the other cases 100% coverage is not reached because of complex combi-
nations of conditions. Figure 4.1 is an example of this. It shows the logic performed
to determine if an instance of the Transaction Class is valid. The code snippet below
is not performed by TransactionImpl. Instead it resides within DocumentImpl. Nine
different paths must be executed by the test suite to make sure that all illegal states
will be discovered.

Many of the paths interact with the classes Splits and BudgetCategory, which

33

34 CHAPTER 4. TEST RESULTS

Name Coverage Number of Bugs
AccountImpl 65.5% 0
AccountTypeImpl 94.4% 1
BudgetCategoryImpl 80.4% 2
BudgetCategoryTypeMonthly 100% 0
BudgetCategoryTypeQuarterly 100% 0
BudgetCategoryTypeSemiMonthly 100% 0
BudgetCategoryTypeSemiYearly 100% 0
BudgetCategoryTypeWeekly 100% 0
BudgetCategoryTypeYearly 100% 0
ConcurrentSaveException 100% 0
Day & Time 100% 0
DocumentImpl 43.5% 2
FilteredLists 31.5% 0
ModelFactory 39.3% 0
ModelObjectImpl 100% 1
ScheduledTransactionImpl 91.1% 0
SourceImpl 100% 0
SplitImpl 88.9% 0
Time 100% 0
TransactionImpl 67.7% 0
TransactionSplitImpl 88.4% 0
WrapperLists 88.9% 0
Component Coverage rate 57.8% 6

Table 4.1: Random testing statistics

add additional environmental conditions. Category-partition testing has properties
to handle situations like these, but it is up to the tester to identify them. With random
testing, the internal workings of Randoop dictates the probability of generating an
environment with properties that allows the paths to be executed. To raise the
probability multiple test runs should be performed, but no guarantees of execution
can be provided.

Also in the class DocumentImpl, 124 LOC is missed due to logic regarding updat-
ing of Scheduled Transactions. A scheduled transaction works as this:

• A start date and end date is given to indicate the period of time this transaction
will be scheduled.

• Three integers specify day, month and/or week when the scheduled transaction
will be committed.

• Which integer DocumentImpl takes into account is dependent on which one of

4.2. COVERAGE RESULTS 35

Name Coverage Number of bugs
AccountImpl 90.3% 1
AccountTypeImpl 90.9% 0
BudgetCategoryImpl 91.6% 4
BudgetCategoryTypeMonthly 100% 0
BudgetCategoryTypeQuarterly 100% 0
BudgetCategoryTypeSemiMonthly 93.9% 0
BudgetCategoryTypeSemiYearly 90.9% 0
BudgetCategoryTypeWeekly 100% 0
BudgetCategoryTypeYearly 100% 0
ConcurrentSaveException 100% 0
Day & Time 100% 0
DocumentImpl 75.4% 3
FilteredLists 86.2% 3
ModelFactory 61.2% 0
ModelObjectImpl 87.5% 0
ScheduledTransactionImpl 93.4% 0
SourceImpl 100% 0
SplitImpl 88.9% 0
Time 100% 0
TransactionImpl 89.2% 0
TransactionSplitImpl 88% 0
WrapperLists 88.9% 0
Component Coverage rate 81.7% 10

Table 4.2: Category Partition test statistics

nine possible filters that the scheduled transaction specified.

• If a date provided as parameter to the updateScheduledTransactions(Date date)
method matches a scheduled transaction, then it is updated.

In random testing this means that four different randomly generated parameters
must match. The probability of this condition taking place with the default inte-
ger generator of Randoop, listed in 2.6, is 0.0. Assuming an integer generator that
generates numbers in the range [1, 2011], so this year may be represented, and in-
stantiation is done with the method DateUtil.getDate(int year, int month, int day),
the probability of generating two tuples of equal numbers where the day and month
numbers are valid equals to:

(1
2011 ×

30
2011 × 1)× (1

2011 ×
1

2011 ×
1

2011) ≈ 0.0000000441

36 CHAPTER 4. TEST RESULTS

Class Method Description
Accounts getStartDate() Nullpointer Exception
BudgetCategories getChildren & getAllChildren Nullpointer Exception
DocumentImpl removeBudgetCategory() Nullpointer Exception

Table 4.3: Intersection of failures

To complicate Scheduled Transaction further, the nine filters mentioned above are
defined as enums, but the class ScheduledTransactions takes the Enum input as a
string, and as you can see in figure 4.2, the comparison is done with the enum as a
string. Given a random string generator that generates random strings with length
in the range [0,40] and that the characters in the string is generated from the last 96
symbols of the ASCII table, the string representation of a filter:
“SCHEDULE FREQUENCY MONTHLY BY DATE”
has the following probability of being generated at random:

1
40 × (1

96)34 ≈ 4.006 ∗ 10−68

So the probability of generating a match with date and filter is:

0.0000000441× 4.006 ∗ 10−68 ≈ 1.76× 10−75

Figure 4.2 and 4.3 shows the implementation.
Another shared property of DocumentImpl, FilteredLists and ModelFactory is

that some methods have been omitted by the random generator. Figure 4.4, 4.5
and 4.6 shows example outputs from the test runs. Since the generator used for this
experiment is feedback based, a possible explanation could be that a false positive
were given as feedback and the generator skipped the methods. This is also backed
up by the fact that the same classes were missed when the test run was repeated
with another seed. Another possible explanation is that the generator ran out of
time slated for that class and skipped the method. Since Randoop does not output
any information about the test run these qualified guesses are all I can provide. In
table 5.7 it can also be seen that some classes tested with Randoop stands out with
notable lower coverage rate than the other classes.

ModelFactory is also subject to the special file format and an auto save property
it has. The method createDocument(File file) misses 118 LOC because of this. The
whole class is 196 LOC. Most of these lines are parsing of the file, which will contain
a possible state of the program.

4.3 Failures Found
With category-partition testing 10 failures were revealed, while random testing re-
vealed 6 failures (tables 4.2 and 4.1. The failures revealed with category-partition

4.3. FAILURES FOUND 37

testing are concentrated in the classes FilteredLists, DocumentImpl and Budget Cat-
egory. The faults found in FilteredLists is related to objects that should be or not in
the list. These were not found by Randoop, because it will not check for it. Man-
ual testing has the advantage of discovering non-computational errors such as faulty
design practices, inconsistencies and interface errors. Such a failure is for instance in
Accounts. If you set the date to be null you will be allowed to do so. If you then call
the getDate() function it will not return null, but today’s date. If you are not allowed
to set date to null then it would be the setters task to determine a legal instance
and not the getter. Figure 4.7 shows a failure in DocumentImpl that both strategies
found. Source s is set to null if there exists no budget categories or accounts, which
makes sense, because these are objects that are sources. However, when concatenating
the string message, s.getFullName() will of course give a nullpointer exception.

4.3.1 Java API Failure Found
Figure 4.8 shows a snippet from a Randoop test case showing two odd failures found in
the Java API. It violates the Java contract Symmetry of Equality & the java contract
Equals-hashcode. The pre-condition for this to happen is that both lists are empty.
If this could affect the program is highly unlikely since Hashcodes are not used and
lists are not compared to each other. According to the failure definition given in 3
this should not be considered a failure in Buddi, but rather in the Java API, which is
not under test in this experiment. It seems that the contracts of Randoop does not
fit every program.

38 CHAPTER 4. TEST RESULTS

if (object instanceof Transaction) {
Transaction t = (Transaction) object ;
if (t . getFrom () instanceof Split && t . getFromSplits () != ←↩

null) {
long splitSum = 0 ;
for (TransactionSplit split : t . getFromSplits ()) {

splitSum += split . getAmount () ;
if (split . getSource () == null)

throw new ModelException ("...") ;
if (split . getAmount () == 0)

throw new ModelException ("...") ;
if (split . getSource () instanceof BudgetCategory

&& ! ((BudgetCategory) split . getSource ()) .←↩
isIncome ())

throw new ModelException ("...") ;
}
if (splitSum != t . getAmount ())

throw new ModelException ("...") ;
else

if (t . getFrom () instanceof BudgetCategory
&& ! ((BudgetCategory) t . getFrom ()) . isIncome←↩

())
throw new ModelException ("...") ;

if (t . getTo () instanceof Split && t . getToSplits () != ←↩
null) {
long splitSum = 0 ;
for (TransactionSplit split : t . getToSplits ()) {

splitSum += split . getAmount () ;
if (split . getSource () == null)

throw new ModelException ("...") ;
if (split . getAmount () == 0)

throw new ModelException ("...") ;
if (split . getSource () instanceof BudgetCategory
&& ((BudgetCategory) split . getSource ()) . isIncome←↩

())
throw new ModelException ("...") ;

}
if (splitSum != t . getAmount ())

throw new ModelException ("...") ;
} else {

if (t . getTo () instanceof BudgetCategory
&& ((BudgetCategory) t . getTo ()) . isIncome ())

throw new ModelException ("...") ;

Figure 4.1: Transaction validation check

4.3. FAILURES FOUND 39

if (s . getFrequencyType () . equals (ScheduleFrequency .←↩
SCHEDULE_FREQUENCY_MONTHLY_BY_DATE . toString ())

&& (s . getScheduleDay () == tempCal . get (Calendar .←↩
DAY_OF_MONTH) | |

(s . getScheduleDay () == 32 && tempCal . get (Calendar .←↩
DAY_OF_MONTH)

== tempCal . getActualMaximum (Calendar . DAY_OF_MONTH)))) {
todayIsTheDay = true ;

} else if
(s . getFrequencyType () . equals (ScheduleFrequency .←↩

SCHEDULE_FREQUENCY_MONTHLY_BY_DAY_OF_WEEK . toString ()) && s .←↩
getScheduleDay () + 1 == tempCal . get (Calendar . DAY_OF_WEEK) &&

tempCal . get (Calendar . DAY_OF_MONTH) <= 7) {
todayIsTheDay = true ; }else

if (s . getFrequencyType () . equals (ScheduleFrequency .←↩
SCHEDULE_FREQUENCY_WEEKLY . toString ())

&& s . getScheduleDay () + 1 == tempCal . get (Calendar .←↩
DAY_OF_WEEK)) {

todayIsTheDay = true ; }
else if (s . getFrequencyType () . equals (ScheduleFrequency .←↩

SCHEDULE_FREQUENCY_BIWEEKLY . toString ()) && s . getScheduleDay ()←↩
+ 1 == tempCal . get (Calendar . DAY_OF_WEEK) && ((DateUtil .←↩

getDaysBetween (lastDayCreated , tempDate , false) >= 13= | | ←↩
isNewTransaction)) { todayIsTheDay = true ; lastDayCreated = (←↩
Date) tempDate . clone () ; if (isNewTransaction) isNewTransaction←↩
=false ; } else if

(s . getFrequencyType () . equals (ScheduleFrequency .←↩
SCHEDULE_FREQUENCY_EVERY_X_DAYS . toString ()) && DateUtil .←↩
getDaysBetween (lastDayCreated , tempDate , false) >=

s . getScheduleDay ()) {
todayIsTheDay = true ;
lastDayCreated = (Date) tempDate . clone () ;

}
else if
(s . getFrequencyType () . equals (ScheduleFrequency .←↩

SCHEDULE_FREQUENCY_EVERY_DAY . toString ())) {
todayIsTheDay = true ;

}

Figure 4.2: Scheduled Transaction Update Method part 1.

40 CHAPTER 4. TEST RESULTS

else if (s . getFrequencyType () . equals (ScheduleFrequency .←↩
SCHEDULE_FREQUENCY_EVERY_WEEKDAY . toString ())

&& (tempCal . get (Calendar . DAY_OF_WEEK) < Calendar .←↩
SATURDAY)

&& (tempCal . get (Calendar . DAY_OF_WEEK) > Calendar . SUNDAY)←↩
) {

todayIsTheDay = true ;
}else if (s . getFrequencyType () . equals (ScheduleFrequency .←↩

SCHEDULE_FREQUENCY_MULTIPLE_WEEKS_EVERY_MONTH . toString ()) && ←↩
s . getScheduleDay () + 1 == tempCal . get (Calendar . DAY_OF_WEEK)) ←↩
{
int week = s . getScheduleWeek () ;
int weekNumber = tempCal . get (Calendar . DAY_OF_WEEK_IN_MONTH) ←↩
− 1 ;

int weekMask = (int) Math . pow (2 , weekNumber) ;
if ((week & weekMask) != 0)

todayIsTheDay = true ;
}else if (s . getFrequencyType () . equals (ScheduleFrequency .←↩

SCHEDULE_FREQUENCY_MULTIPLE_MONTHS_EVERY_YEAR . toString ()) && ←↩
s . getScheduleDay () == tempCal . get (Calendar . DAY_OF_MONTH)) {
int months = s . getScheduleMonth () ;
int monthMask = (int) Math . pow (2 , tempCal . get (Calendar . MONTH←↩

)) ;
if ((months & monthMask) != 0)

todayIsTheDay = true ;
}
if (todayIsTheDay) {

for (Transaction t : getTransactions (tempDate , tempDate)) {
if (DateUtil . isSameDay (t . getDate () , tempDate) && t .←↩

isScheduled ()
&& t . getFrom () . equals (s . getFrom ()) && t . getTo ()←↩

. equals (s . getTo ())
&& t . getDescription () . equals (s . getDescription ())←↩

) {
todayIsTheDay = false ;

Figure 4.3: Scheduled Transaction update method part 2.

4.3. FAILURES FOUND 41

Figure 4.4: Test output of DocumentImpl

Figure 4.5: Test output of FilteredLists

42 CHAPTER 4. TEST RESULTS

Figure 4.6: Test output of ModelFactoryImpl

.

.
if (t . getTo () == null) {

Source s = null ;
if (getBudgetCategories () . size () > 0)

s = getBudgetCategories () . get (0) ;
else if (getAccounts () . size () > 0)

s = getAccounts () . get (0) ;
else

s = null ;
String message = "Transaction with description '" +
t . getDescription () + "' of amount '"+ t . getAmount ()
+ "' on date '" + t . getDate ()
+ "' does not have a To source defined.
Setting this to '" + s . getFullName () ;

Figure 4.7: Example of failure both strategies found

.

.
DocumentImpl var1 = new DocumentImpl () ;
java . util . List var2 = var1 . getTransactions (. . .) ;
java . util . List var3 = var1 . getAccountTypes () ;
assertTrue (var3 . equals (var2) ? var3 . hashCode () == var2 . hashCode←↩

() : true) ;
assertTrue (var3 . equals (var2) ? var2 . equals (var3) : true) ;

Figure 4.8: Code revealing Java.util.AbstractList failure

5
Data Analysis

5.1 Paired T Test Coverage Results
Based on the two samples shown in table 5.1 the results from the experiment have
been compared with a paired t test. Table 5.2 contains a review data and table 5.3
contains intermediate values used in the calculations.

Group Random Partition
Mean 85.4182 91.6500
SD 21.8821 9.3643
SEM 4.6653 1.9965
N 22 22

Table 5.2: Summary of data

t0 = 1.8619
df = 21
t0.05,21 = 1.721

Table 5.3: Intermediate values used in calculations

5.1.1 P Value and Statistical Significance
The two-tailed P value equals 0.0767. By conventional criteria, this difference is
not considered to be quite statistically significant. t0 > t0.05,21 means that the null
hypothesis can be rejected at the 0.1 level.

43

44 CHAPTER 5. DATA ANALYSIS

Test Strategy
Random Testing Partition Testing
65.5 90.3
94.4 90.9
80.4 91.6
100 100
100 100
100 93.9
100 90.9
100 100
100 100
100 100
100 100
43.5 75.4
31.1 86.2
39.3 61.2
100 87.5
91.1 93.4
100 100
88.9 88.9
100 100
67.7 89.2
88.4 88
88.9 88.9

Table 5.1: Input paired t test coverage rate

5.2 Paired T Test Fault Results

Based on the two samples shown in table 5.4 the results from the experiment have
been compared with a paired t test. Table 5.5 contains a review data and table 5.6
contains intermediate values used in the calculations.

5.2. PAIRED T TEST FAULT RESULTS 45

Test Strategy
Random Testing Partition Testing
1 1
2 0
0 4
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2 3
0 3
0 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Table 5.4: Input paired t test fault rate

Group Random Partition
Mean 0.2727 0.50
SD 0.6311 1.8529
SEM 0.1345 0.2527
N 22 22

Table 5.5: Summary of data

t0 = 1.22
df = 21
t0.05,21 = 1.721

Table 5.6: Intermediate values used in calculations

46 CHAPTER 5. DATA ANALYSIS

5.2.1 P Value and Statistical Significance

The two-tailed P value equals 0.2336. By conventional criteria, this difference is
considered to be statistically significant. t0 < t0.05,21 means that the null hypoth-
esis cannot be rejected at the 0.1 level. This makes it impossible to reject the null
hypotheses.

5.3 Comparison with Another Study

Table 5.7 shows results from the study done by Bacchelli et. al. mentioned in the
introduction [5]. Bacchelli et. al. does not mention specifically how the manual
JUnit tests have been written, but states that the tests has been based on the white-
box testing techniques of boundary-value analysis, data structure analysis, control
path execution, error management path execution, mock objects and environments
generation[5]. Many of these can be defined as partition testing. How the coverage
has been calculated is also not mentioned. I have performed a paired t test on the
coverage rate. Data showing failures per class have not been available but manual
testing found a total 14 failures, while Randoop found 7 failures. Table 5.7 shows
the input samples, table 5.8 reviews data of the samples and table 5.9 shows the
intermediate values used in the calculation.

Coverage rate
Name Manual Randoop
Base64 79.5 93.2
BitArray 71 87.7
HTMLDecoder 55.9 26.7
HTMLEncoder 71.1 85.5
HTMLNode 96.96 80.9
HexUtil 73.9 68.3
LRUHashtable 83 74.2
LRUQueue 83 88.9
Multivalue 84.4 73.9
SimpleField 53.8 64.6
SizeUtil 82.6 53.4
TimeUtil 94.8 55.5
URIPreCode 78.7 46.1
URLDecoder 67.5 46.6
URLEncoder 85.7 88.8
Average 77.46 68.95

Table 5.7: Bacchelli et. al results

5.4. THREATS TO VALIDITY 47

Group Partition Random
Mean 77.4573 68.9533
SD 12.2742 19.7288
SEM 3.1692 5.0940
N 15 15

Table 5.8: Summary of data

t0 = 1.7475
df = 14
t0.05,14 = 1.761

Table 5.9: Intermediate values used in calculations

5.3.1 P Value and Statistical Significance
The two-tailed P value equals 0.1024. By conventional criteria, this difference is not
considered to be statistically significant. t0 < t0.05,14 means that the null hypothesis
cannot be rejected at the 10% level.

5.4 Threats to Validity
I will now give a brief discussion about the internal and external threats to the validity
of this experiment

5.4.1 Internal Validity

Maturation

Prior to this experiment I had no knowledge of category-partition testing and this
may have effected the first test cases produced. To reduce this threat I began with
the smallest and least classes.

5.4.2 External Validity

Random Test Tool

The main strength of using Random testing is that it can provide a statistical predi-
cation of the significance to a successful random test. [15]. However, Randoop do not
allow input of usage statistics. As Hamlet states: “. . . without a profile, reliability
is not a meaningful idea” [15]. Instead reliability is offered through regression tests.
An oracle was also not provided. This may have affected the the results and at least

48 CHAPTER 5. DATA ANALYSIS

they are valid for Randoop. Therefore a random test tool with the characteristics
identified below should be built to elaborate the validity to random testing.

• Operational Profile provided.

• Oracle available.

Generalizability

This study was performed on one open-source program with one M.Sc student. The
tests were also written at a late stadium of the development of the program. The
results are therefore at least valid for testing performed by an M.Sc. on an open-source
project. The tester risk have been reduced by comparing the results with another
similar study. If the study is valid for an industry program should be investigated.

5.5 Assumptions of Theoretical Research
As mentioned earlier, Duran and Ntafos [10] assumed that failures do not intersect
the defined partitions. How to define this in practice is difficult. For example, Buddi,
contained an failure in the method getChildren() that belongs to the class BudgetCat-
egoryImpl. If no child exists a nullpointer exception will occur that is not handled.
This behavior will affect the method removeBudgetCatory(BudgetCategory) in the
class DocumentImpl. When DocumentImpl attempts to remove a budget category
it will check if it contains any children and a nullpointer exception will occur if the
budget category contains no children and DocumentImpl will not be able to remove
the budget category from its list. This failure clearly intersects between the partitions
made in this experiment.

The assumption of uniform distribution of failures does not fit with the program
tested in this experiment. This is showed in table 5.4. Instead failures seems clustered
in classes with complex logic and a high number of LOCS. For example, four failures
reside in the most complex class, DocumentImpl, while smaller classes such as Day
and Time do not have any failures. The only assumption that seems to hold is that
a program contains at least one failure.

6
Conclusion

Partition testing out-performed random testing 81% versus 57.8% with respect to the
coverage rate and 10 versus 6 with respect to the fault rate. However the statistical
difference was only able to reject the null hypothesis with respect to coverage rate
at the 10% level. The data from the study performed by Bacchelli rejected the null
hypothesis at the 10% level and partially supports the conclusion. The coverage rate
was rejected due to a difference of 0.014 between t0 and t0.05,14. This was rather
unexpected as the random test tool did not have all the properties suggested as
necessary for Random Testing to be efficient [16], since an operational profile and
an oracle is not provided. Another reason for the difference in total coverage of
the component is that the classes that Random Testing missed, were the ones that
contains the most LOC. This will not be detectable when calculating the arithmetic
mean for the paired t test.

Even though Randoop only will check for a reduced set of faults, no statistical
difference between partition testing and random testing was proved regarding the fail-
ures found, but partition testing found more bugs. As expected, Randoop discovered
some odd failures, such as the Java API related failure.

Randoop allows you to produce vast amounts of test cases for many classes within
a short period of times and is time efficient compared to manual writing of test cases.
A drawback is that the tests should be reviewed for quality assurance as well as to
pinpoint the cause and location of potential failures.

Handling of dates and matching of input parameters seems to be a weakness of
random testing. Another weakness is when a data type is used to represent some-
thing else like the string for enum and int for day, month and week because, at least
Randoop, will not let you specify three different integer generators.

A weakness of category-partition testing is that the quality of the tests is depen-
dent on the accuracy of the specification belonging to the SUT. In this case this was
not accurate and the code had to be taken into consideration. Improvisation of the test

49

50 CHAPTER 6. CONCLUSION

specification was also necessary because the complexity, especially in DocumentImpl,
made it difficult to specify all environmental biases in the test specification.

The strength of category-partition testing is the produced test specification that
allows you to specify characteristics of both the input domain as well as the environ-
ment. By combining these a thorough test suite is produced. This is indicated by the
average component coverage rate of 91.65 % that category-partition achieved.

Bibliography

[1] Manifesto for Agile Software Development. http://agilemanifesto.org, 2001.
Last visited 9.11.10.

[2] About.com. Best personal finance software and tax software.
http://financialsoft.about.com/od/reviewsfinancesoftware/
ss/Best-Personal-Finance-Software-Best-Tax-Software_3.htm, 2011.
Last visited 18.05.11.

[3] Eric Allen. Title. APress, 2002.

[4] Andrea Arcuri, Muhammad Zohaib Z. Iqbal, and Lionel C. Briand. Formal
analysis of the effectiveness and predictability of random testing. In Paolo Tonella
and Alessandro Orso, editors, ISSTA, pages 219–230. ACM, 2010.

[5] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. On the effectiveness of
manual and automatic unit test generation. In Proceedings of the 2008 The
Third International Conference on Software Engineering Advances, pages 252–
257, Washington, DC, USA, 2008. IEEE Computer Society.

[6] F.T. Chan, T.Y. Chen, I.K. Mak, and Y.T. Yu. Proportional sampling strategy:
guidelines for software practitioners. Information and Software Technology 38,
1996.

[7] T. Y. Chen and Y. T. Yu. On the relationship between partition testing and
random testing. IEEE Transactions on Software Engineering, Vol. 20, No. 12,
1999.

[8] Mountainminds GmbH & Co. Eclemma. http://www.eclemma.org/, 2006. Last
visited 15.05.11.

51

52 BIBLIOGRAPHY

[9] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software—Practice & Experience, 34(11):1025–1050, 2004.

[10] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing. Software
Engineering, IEEE Transactions on, SE-10(4):438 –444, 1984.

[11] Albert Endres and Dieter Rombach. A Handbook of System and Software Engi-
neering: Empirical Observations, Laws and Theories. Addison-Wesley, 2003.

[12] D. Gelperin and B. Hetzel. The growth of software testing. Commun. ACM,
31:687–695, June 1988.

[13] Walter J. Gutjahr. Partition testing vs. random testing: The influence of uncer-
tainty. IEEE Transactions on Software Engineering, Vol. 25, No. 5, 1999.

[14] D. Hamlet and R. Taylor. Partition testing does not inspire confidence [program
testing]. Software Engineering, IEEE Transactions on, 16(12):1402 –1411, 1990.

[15] Dick Hamlet. When only random testing will do. In When Only Random Testing
Will Do, 2006.

[16] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering,
pages 970–978. Wiley, 1994.

[17] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not.,
39:92–106, December 2004.

[18] William Howden. Functional program testing. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. SE-6, NO. 2, MARCH 1980, 1980.

[19] William E. Howden. Reliability of the path analysis testing strategy. IEEE
Trans. Software Eng., 2(3):208–215, 1976.

[20] Peter Lamb. Extending the jwalk testing tool by addition of ory partition testing.
Master’s thesis, University of Sheffield, 2007.

[21] J-C. Laprie. Dependable computing and fault tolerance : Concepts and terminol-
ogy. In Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’.,
Twenty-Fifth International Symposium on, page 2, jun 1995.

[22] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26:18–41, July 1993.

[23] J. L. Lions. Ariane 5 flight 501 failure. Technical report, Independent Inquire
Board, 1996.

[24] John D. Musa, Anthony Iannino, and Kazuhira Okumoto. Software reliability:
measurement, prediction, application. McGraw-Hill, Inc., New York, NY, USA,
1987.

BIBLIOGRAPHY 53

[25] Glenford J. Myers. The Art of Software Testing, Second Edititon. John Wiley &
Sons, Inc., 2004.

[26] NATO. Software engineering techniques. In SOFTWARE ENGINEERING
TECHNIQUES, 1969.

[27] Peter G. Neumann. Accidental financial losses. Commun. ACM, 35:194–, Septem-
ber 1992.

[28] S. C. Ntafos. A comparison of some structural testing strategies. IEEE Trans.
Softw. Eng., 14:868–874, 1988.

[29] Simeon C. Ntafos. On comparisons of random, partition, and proportional par-
tition testing. IEEE Transactions on Software Engineering, Vol. 27, No. 10,
2001.

[30] Wyatt Olson. Buddi. http://buddi.digitalcave.ca, 2007. Last visited
15.05.11.

[31] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, 31:676–686, June 1988.

[32] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random test-
ing for Java. In OOPSLA 2007 Companion, Montreal, Canada. ACM, October
2007.

[33] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering, Minneapolis, MN, USA, 2007.
IEEE Computer Society.

[34] Debra J. Richardson and Lori A. Clarke. A partition analysis method to increase
program reliability. In Proceedings of the 5th international conference on Software
engineering, ICSE ’81, pages 244–253, Piscataway, NJ, USA, 1981. IEEE Press.

[35] Anthony Simons. Jwalk: a tool for lazy, systematic testing of java classes by de-
sign introspection and user interaction. Automated Software Engineering, 14:369–
418, 2007.

[36] E.J. Weyuker and B. Jeng. Analyzing partition testing strategies. Software
Engineering, IEEE Transactions on, 17(7):703 –711, July 1991.

[37] E.J. Weyuker and T.J. Ostrand. Theories of program testing and the appli-
cation of revealing subdomains. Software Engineering, IEEE Transactions on,
SE-6(3):236 – 246, 1980.

[38] Claes Wohlin, Per Runeson, Martin HÃűst, Magnus C. Ohlsson, BjÃűrn Reg-
nell, and Anders WesslÃľn. Experimentation in Software Engineering. Kluwer
Academic Publishers, 2003.

54 BIBLIOGRAPHY

[39] Yu-Seung, Jeff Offutt, and Yong Rae Kwon. Mujava : An automated class
mutation system. Software Testing, Verification and Reliability, 15(2):97-133,
2005.

A
Buddi Specifications

This appendix contains information about the Buddi implementation[30].

A.1 Specifications

A.1.1 Accounts
How the balance should be displayed according to account type and value

Debit Credit
Value >= 0 Black
Value < 0 Red, Negative
Value > 0 Black, Negative

Value <= 0 Red

Table A.1: Accounts specification categories

55

56 APPENDIX A. BUDDI SPECIFICATIONS

ImmutableSource
<<Interface>>

+isDeleted()
+getStartDate()
+getSource()
+getNotes()
+getName()
+getFullName()

ImmutableAccountType
<<Interface>>

+getName()
+getType()
+isCredit()

ImmutableAccount
<<Interface>>

+getAccount()
+getAccountType()
+getBalance()
+getBalance(Date)
+getStartDate()
+getStartingBalance()

ImmutableBudgetCategory
<<Interface>>

+getAmount(Date)
+getAmount(Date, Date)
+getBudgetCategory()
+getBudgetPeriodType()
+getImmutableChildren()
+getAllImmutableChildren()
+getParent()
+isIncome()

MutableSource
<<Interface>>

+setNotes(String)
+setName(String)
+setDeleted(boolean)

MutableAccountType
<<Interface>>

+setName(String)

MutableAccount
<<Interface>>

+setStartingBalance(long)
+setAccountType(MutableAccountType)

MutableBudgetCategory
<<Interface>>

+getMutableChildren()
+getAllMutableChildren()
+setParent(MutableBudgetCategory)
+setIncome(boolean)
+setBudgetCategoryType(ImmutableBudgetCategoryType)
+setAmount(Date, long)

ImmutableBudgetCategoryType
<<Interface>>

+getBudgetCategoryType()
+getBudgetPeriodOffset(Date, int)
+getDateFormat()
+getDaysInPeriod(Date)
+getEndOfBudgetPeriod(Date)
+getName()
+getStartOfBudgetPeriod(Date)

MutableModelFactory

+createMutableTransaction(Date, String, long, MutableSource, MutableSource)
+createMutableScheduledTransaction()
+createMutableBudgetCategory(String, BudgetCategoryType, boolean)
+createMutableAccountType(String, boolean)
+createMutableAccount(String, long, MutableAccountType)
+createDocument(File)
+createDocument()

ImmutableSplit
<<Interface>>

A.1. SPECIFICATIONS 57

ImmutableDocument
<<Interface>>

+getAccount(String)
+getImmutableAccounts()
+getImmutableBudgetCategories()
+getBudgetCategory(String)
+getModel()
+getImmutableTransactions()
+getImmutableTransactions(Date, Date)
+getImmutableTransactions(ImmutableSource)
+getImmutableTransactions(ImmutableSource, Date, Date)
+getType(String name)
+getImmutableTypes()

ImmutableTransaction
<<Interface>>

+isScheduled()
+isReconciledTo()
+isReconciledFrom()
+isInflow()
+isClearedTo()
+isClearedFrom()
+getTransaction()
+getTo()
+getNumber()
+getMemo()
+getFrom()
+getDescription()
+getDate()
+getBalanceTo()
+getBalanceFrom()
+getAmount()
+getFromSplits()
+getToSplits()

ImmutableModelObject
<<Interface>>

+getRaw()
+getUid()

MutableDocument
<<Interface>>

+removeType(MutableAccountType)
+removeTransaction(MutableTransaction)
+removeScheduledTransaction(MutableScheduledTransaction)
+removeBudgetCategory(MutableBudgetCategory)
+removeAccount(MutableAccount)
+addTransaction(MutableTransaction)
+addScheduledTransaction(MutableScheduledTransaction)
+addBudgetCategory(MutableBudgetCategory)
+addAccountType(MutableAccountType)
+addAccount(MutableAccount)
+getImmutableAccounts()
+getImmutableBudgetCategories()
+getImmutableTransactions()
+getImmutableTransactions(Date, Date)
+getImmutableTransactions(ImmutableSource)
+getImmutableTransactions(ImmutableSource, Date, Date)
+getImmutableTypes()

MutableTransaction
<<Interface>>

+setTo(MutableSource)
+setScheduled(boolean)
+setReconciledTo(boolean)
+setReconciledFrom(boolean)
+setNumber(String)
+setMemo(String)
+setFrom(MutableSource)
+setDescription(String)
+setDate(Date)
+setClearedTo(boolean)
+setClearedFrom(boolean)
+setAmount(long)
+addFromSplit(ImmutableTransactionSplit)
+removeFromSplit(ImmutableTransactionSplit)
+addToSplit(ImmutableTransactionSplit)
+removeToSplit(ImmutableTransactionSplit)

ImmutableScheduledTransaction
<<Interface>>

+getStartDate()
+getScheduleWeek()
+getScheduleName()
+getScheduleMonth()
+getScheduledTransaction()
+getScheduleDay()
+getMessage()
+getLastDayCreated()
+getFrequencyType()
+getEndDate()

MutableScheduledTransaction
<<Interface>>

+setStartDate(Date)
+setScheduleWeek(int)
+setScheduleName(String)
+setScheduleMonth(int)
+setScheduleDay(int)
+setMessage(String)
+setLastDayCreated(Date)
+setFrequencyType(String)
+setEndDate(Date)

ImmutableTransactionSplit
<<Interface>>

+getAmount()
+getSource()

MutableTransactionSplit
<<Interface>>

+setAmount(long)
+setSource(MutableSource)

58 APPENDIX A. BUDDI SPECIFICATIONS

AccountType
<<Interface>>

+setName(String)
+setCredit(boolean)
+isCredit()
+getName()

Account
<<Interface>>

+updateBalance()
+setStartingBalance(long)
+setAccountType(AccountType)
+getStartingBalance()
+getStartDate()
+getBalance(Date)
+getBalance()
+getAccountType()

BudgetCategory
<<Interface>>

+setPeriodType(BudgetCategoryType)
+setParent(BudgetCategory)
+setIncome(boolean)
+setAmount(Date, long)
+isIncome()
+getParent()
+getBudgetPeriodType()
+getAmount(Date, Date)
+getAmount(Date)

ModelObject
<<Interface>>

+setDocument(Document)
+setChanged()
+getUid()
+getDocument()

ScheduledTransaction
<<Interface>>

+setStartDate(Date)
+setScheduleWeek(int)
+setScheduleName(String)
+setScheduleMonth(int)
+setScheduleDay(int)
+setMessage(String)
+setLastDayCreated(Date)
+setFrequencyType(String)
+setEndDate(Date)
+getStartDate()
+getScheduleWeek()
+getScheduleName()
+getScheduleMonth()
+getScheduleDay()
+getMessage()
+getLastDayCreated()
+getFrequencyType()
+getEndDate()

Expandable
<<Interface>>

+isExpanded()
+setExpanded(boolean)

BudgetCategoryType
<<Interface>>

+getStartOfBudgetPeriod(Date)
+getName()
+getEndOfBudgetPeriod(Date)
+getDaysInPeriod(Date)
+getDateFormat()
+getBudgetPeriodOffset(Date, int)

Document
<<Interface>>

+updateAllBalances()
+saveToString()
+removeTransaction(Transaction)
+removeScheduledTransaction(ScheduledTransaction)
+removeBudgetCategory(BudgetCategory)
+removeAccountType(AccountType)
+removeAccount(Account)
+refreshUidMap()
+getTransactions(Source, Date, Date)
+getTransactions(Source)
+getTransactions(Date, Date)
+getTransactions()
+getSources()
+getScheduledTransactions()
+getObjectByUid(String)
+getBudgetCategory(String)
+getBudgetCategories()
+getAccountTypes()
+getAccountType(String)
+getAccounts()
+getAccount(String)
+addTransaction(Transaction)
+addScheduledTransaction(ScheduledTransaction)
+addBudgetCategory(BudgetCategory)
+addAccountType(AccountType)
+addAccount(Account)

ModelFactory

+getGeneratedUid(ModelObject)
+createTransaction(Date, String, long, Source, Source)
+createScheduledTransaction()
+createDocument(File)
+createDocument()
+createBudgetCategory(String, BudgetCategoryType, boolean)
+createAccountType(String, boolean)
+createAccount(String, AccountType)

StandardDocument
<<Interface>>

+startBatchChange()
+setFile(File)
+setChanged()
+saveAs(File, int)
+save()
+resetChanged()
+removeDocumentChangeListener(DocumentChangeListener)
+isChanged()
+getFile()
+finishBatchChange()
+addDocumentChangeListener(DocumentChangeListener)

Transaction
<<Interface>>

+setTo(Source)
+setScheduled(boolean)
+setReconciledTo(boolean)
+setReconciledFrom(boolean)
+setNumber(String)
+setMemo(String)
+setFrom(Source)
+setDescription(String)
+setDate(Date)
+setClearedTo(boolean)
+setClearedFrom(boolean)
+setBalanceTo(long)
+setBalanceFrom(long)
+setAmount(long)
+setFromSplits(List<TransactionSplit>
+setToSplits(List<TransactionSplit>)
+isScheduled()
+isReconciledTo()
+isReconciledFrom()
+isInflow()
+isClearedTo()
+isClearedFrom()
+getTo()
+getNumber()
+getMemo()
+getFrom()
+getDescription()
+getDate()
+getBalanceTo()
+getBalanceFrom()
+getAmount()
+getFromSplits()
+getToSplits()

Source
<<Interface>>

+setNotes(String)
+setName(String)
+setDeleted(boolean)
+isDeleted()
+getNotes()
+getName()
+getFullName()

TransactionSplit
<<Interface>>

+getAmount()
+getSource()
+setAmount(long)
+setSource(Source)

A.1. SPECIFICATIONS 59

Income Expense
Value >= 0 Black Red, Negative
Value < 0 Red, Negative Black

Table A.2: Categories specification

]

From To +/− Color
A A + Black
A A - Red
A C + Red
A C - Black
C A + Black
C A - Red

Table A.3: Implementation wise: if ((To == Category AND Value >= 0) OR (To
== Account AND Value < 0)) then Color = Red else Color = Black

60 APPENDIX A. BUDDI SPECIFICATIONS

B
Primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583

61

62 APPENDIX B. PRIMES

1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053
2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357
2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531
2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819
2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079

C
Test Specifications Buddi ModelImpl Package

C.1 Account

C.1.1 Starting Balance
Parameters:

Starting balance:
Negative
Positive
Empty

C.1.2 Start Date
Parameters:

Date:
Valid [property valid]
null

Environments:
Related Transactions:

None [single]
Exactly one [if valid]
More than one [if valid]

C.1.3 Update Balance
Environments:

Related Transactions:

63

64 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

None [single]
Exactly one [if valid]
More than one [if valid]

Movement of Transactions:
To account [if valid]
From account [if valid]

C.1.4 Get Balance

Parameters:
Date:

Valid [property valid]
null

Environments:
Related Transactions:

None [single]
Exactly one [if valid]
More than one [if valid]

C.1.5 Overdraft Credit Limit

Parameters:
Limit:

Negative [error]
Positive
Empty

C.1.6 Interest rate

Parameters:
Rate:

Negative [error]
Positive
Over 100% [error]

C.1.7 Account Type

Parameters:
AccountType:

C.2. ACCOUNT TYPE 65

Credit
Cash
Other
Empty [error]

C.1.8 Compare To
Parameters:

Account’s account tyep:
Credit set [property credit]
Credit not set [property nocredit]
null [error]

ModelObject:
UidSet [property uid]
null [error]

Environments:
This account’s account type:

Credit set [if credit]
Credit set [if nocredit]
Different name [if uid]
Same name [if uid]

C.2 Account Type

C.2.1 Account Type
Parameters:

Name:
Valid String
Empty [error]

Environments:
Document:

Set [property doc]
Not set

Other Account Type Names:
None [if doc]
one or more with same name [if doc][error]

66 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

C.2.2 Credit

Parameters:
Credit:

True
False

C.2.3 Expanded

Parameters:
Expanded:

True
False

C.2.4 Compare To

Parameters:
Account type:

Credit set [property credit]
Credit not set [property nocredit]
null [error]

ModelObject:
UidSet [property uid]
null [error]

Environments:
This account type:

Credit set [if credit]
Credit set [if nocredit]
Different name [if uid]
Same name [if uid]

C.3 BudgetCategories

C.3.1 Get Amount

Parameters:
Date:

C.3. BUDGETCATEGORIES 67

Valid date [property valid]
Start date before end date [property sequenced]
End date before end date [property nonsequenced][single]
Start date in same budget period
as end date

[property period]

Start date and end date area over-
lap two periods

[property overlap]

Not Valid [error]

Environments:
Number of amounts related to date:

none [if valid and sequenced]
one or more [if valid and sequenced]
one or more [if valid and period]
one or more [if valid and overlap]

C.3.2 Income

Parameters:
Income:

True
False

C.3.3 Expanded

Parameters:
Expanded:

True
False

C.3.4 Budget Category Type

Parameters:
Type:

Monthly
Quarterly
SemiMonthly
SemiYearly
Weekly
Yearly

68 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

C.3.5 Family
Environments:

Number of children:
none
one or more

C.3.6 Get Budget Period Type
Parameters:

Start Date and End Date:
Valid date [property valid]
Start date before end date [property sequenced]
End date before end date [property nonsequenced][single]

Environments:
Number of amounts related to date:

none [if valid and sequenced]
one or more [if valid and sequenced]

C.3.7 Delete
Environments:

Number of children:
none
one or more

C.4 Day & Time

C.4.1 Constructor
Parameters:

Date:
As integers
Date format
Null

Time:
As long
Date format
Zero

C.5. DOCUMENTIMPL 69

C.5 DocumentImpl

C.5.1 Remove Transaction:
Parameters:

Transaction:
Valid [property valid]
null [error]

Environments:
Number of transactions in transaction list:

none [if valid][singel]
one [if valid]

C.5.2 Remove ScheduledTransaction:
Parameters:

ScheduledTransaction:
Valid [property valid]
null [error]

Environments:
Number of scheduled transactions in scheduled transaction list:

none [if valid][singel]
one [if valid]

C.5.3 Remove BudgetCategory:
Parameters:

BudgetCategory:
Valid [property valid]
null [error]

Environments:
Number of budget categories in budget category list:

none [if valid][singel]
one [if valid]

Referring transactions:
none [if valid][singel]
one or more [error]

Containing scheduled transactions:

70 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

none [if valid][singel]
one ore more [error]

C.5.4 Remove Account:
Parameters:

Account:
Valid [property valid]
null [error]

Environments:
Number of accounts in account list:

none [if valid][singel]
one [if valid]
more than one [if valid]

Contains Transactions:
none [if valid][singel]
one or more [error]

Contains Scheduled Transactions:
none [if valid][singel]
one or more [error]

C.5.5 Remove AccountType:
Parameters:

AccountType:
Valid [property valid]
null [error]

Environments:
Number of account types in account type list:

none [if valid][singel]
one [if valid]

Environments:
Referring accounts:

none [if valid][singel]
one or more [error]

C.5.6 Get Transactions:
Parameters:

C.5. DOCUMENTIMPL 71

Source:
Valid [property valid]
Account [property account]
BudgetCategory [property budgetcategory]
null [error]
none [property nosource]

Start Date:
null [error]
none [property nostart]
Before End date [property start]
After End date [error]

End Date:
null [error]
none [property noend]
After Start date [property end]
Before Start date [error]

Environments:
Number of transactions in transaction list:

none [if valid and start and end][singel]
one [if account and valid]
one [if budget and valid]
one [if account and valid and start and end and]
one [if budget and valid and start and end]
more than one [if account and valid]
more than one [if budget and valid]
more than one [if account and valid and start and end]
more than one [if budget and valid and start and and end]

C.5.7 Get Sources:

Environments:
Number of sources in sources list:

Valid
Account
BudgetCategory
null [error]
none

72 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

C.5.8 Get Accounts:
Environments:

Accounts:
Initialized
un-initialized

C.5.9 Get Account Types:
Environments:

Accounts:
Initialized
un-initialized

C.5.10 Get Budget Categories:
not applicable

C.5.11 Get Scheduled Transactions:
Environments:

Scheduled Transactions:
Initialized
un-initialized

C.5.12 Get Transactions:
Environments:

Transactions:
Initialized
un-initialized

C.5.13 Get Account:
Parameters:

Name:
Empty [property empty]
one or more characters [property nonempty]

Environments:
Number of occuring accounts:

none [error]
one [if nonempty]

C.5. DOCUMENTIMPL 73

C.5.14 Get Account Type:

Parameters:
Name:

Empty [property empty]
one [property nonempty]

Environments:
Number of occuring account types:

none [error]
one or more [if nonempty]

C.5.15 Get Budget Category:

Parameters:
Name:

Empty [property empty]
one or more characters [property nonempty]

Environments:
Number of occuring budget categories:

none [error]
one or more [if nonempty]

C.5.16 Update All Balances

Environments:
Number of accounts:

one or more

C.5.17 Add Transaction

Parameters:
Transaction:

From Split [property from]
To split [property to]
Not Valid [error]

Environments:
Properties of the Transaction:

74 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

split source is null [if from][error]
split amount equals zero [if from][error]
split source is not an income bud-
get category

[if from][error]

from split sum differs transaction
sum

[if from][error]

split source is null [if to][error]
split amount equals zero [if to][error]
split source is not an income bud-
get category

[if to][error]

to split sum differs transaction
sum

[if to][error]

C.5.18 Add Scheduled Transaction
Parameters:

Scheduled Transaction:
Valid [property valid]

Environments:
Scheduled Transactions Already in list:

same name [if valid][error]

C.5.19 Add Budget Category
Parameters:

Budget Category:
Valid [property valid]

C.5.20 Add Account Type
Parameters:

Account Type:
Valid [property valid]

Environments:
Account Types Already in list:

same name [if valid][error]

C.5.21 Add Account
Parameters:

Account:
Valid [property valid]

C.6. FILTEREDLISTS 75

Environments:
Accounts Already in list:

same name [if valid][error]

C.5.22 Save
Parameters:

File:
none [property nofile]
one [property file]

Environments:
File match:

one [if valid]

C.6 FilteredLists

C.6.1 Account List Filtered By Delete:
Parameters:

Account List:
One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Deleted accounts in list:

none [if nonempty]
one or more [if nonempty]

C.6.2 Account List Filtered By Type:
Parameters:

Account Type List:
One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Type of accounts in list:

none [if nonempty]
one or more [if nonempty]

76 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

C.6.3 Budget Category List Filtered By Children:

Parameters:
Budget Category List:

One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Budget Categories with parents in list:

none [if nonempty]
one or more [if nonempty]

C.6.4 Budget Category List Filtered By Parent:

Parameters:
Budget Category List:

One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Budget Categories with children in list:

none [if nonempty]
one or more [if nonempty]

C.6.5 Budget Category List Filtered By Delete:

Parameters:
Budget Category List:

One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Deleted budget categories in list:

none [if nonempty]
one or more [if nonempty]

C.6.6 Budget Category List Filtered By Type:

Parameters:
Budget Category Type List:

C.6. FILTEREDLISTS 77

One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Type of budget categories in list:

none [if nonempty]
one or more [if nonempty]

C.6.7 Transaction List Filtered By Source:
Parameters:

Transaction List:
One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Matches in list:

none [if nonempty]
one or more [if nonempty]

C.6.8 Transaction List Filtered By Date:
Parameters:

Transaction List:
One [property nonempty]
Many [property nonempty]
Empty [property empty]

Parameters:
Start date and end date:

Start date before end date [property date]
end date before start date [error]

Environments:
Matches in list:

none [if nonempty and date]
one or more [if nonempty and date]

C.6.9 Transaction List Filtered By Search:
Parameters:

Transaction List:

78 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

One [property nonempty]
Many [property nonempty]
Empty [property empty]

Parameters:
Cleared Filter Key:

All cleared [if nonempty]
cleared [if nonempty]
not cleared [if nonempty]

Parameters:
Reconciled Filter Key:

All reconciled [if nonempty]
reconciled [if nonempty]
not reconciled [if nonempty]

Parameters:
Search Text:

good text
empty
null [error]

Parameters:
Date Filter:

All dates [if nonempty]
today [if nonempty]
yesterday [if nonempty]
this week [if nonempty]
this semi month [if nonempty]
last semi month [if nonempty]
this month [if nonempty]
last month [if nonempty]
this quarter [if nonempty]
last quarter [if nonempty]
this year [if nonempty]
last year [if nonempty]

Environments:
Matches in list:

none [if nonempty]
one or more [if nonempty]

C.7. MODELFACTORY 79

C.6.10 Scheduled Transaction List Filtered By Before today:
Parameters:

Scheduled Transaction List:
One [property nonempty]
Many [property nonempty]
Empty [property empty]

Environments:
Matches in list:

none [if nonempty]
one or more [if nonempty]

C.7 ModelFactory

C.7.1 Create Document:
Parameters:

File:
good file name [property name]
omitted [property empty]

Environments:
Matching fields:

none [if name]
one or more [if name]

Auto save:
true [if name]
false [if name]

C.7.2 Create Transaction:
Parameters:

Date:
Valid
not valid [error]

Description:
one or more characters
omitted

Amount:

80 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

Positive
Negative

To:
Budget Category
Account

From:
Budget Category
Account

C.7.3 ModelObjectImpl

C.7.4 Create Scheduled Transaction:
Parameters:

Name:
Valid
not valid [error]

Message:
one or more characters
omitted

Start date:
Valid
not valid [error]

End Date:
Valid
not valid [error]

Frequency:
Positive
Negative [error]

Schedule day:
In range
out of range [error]

Schedule Week:
In range
out of range [error]

C.7. MODELFACTORY 81

Schedule Month:
In range
out of range [error]

Description:
one or more characters
omitted

Amount:
Positive
Negative

To:
Budget Category
Account

From:
Budget Category
Account

C.7.5 Create Budget Category:

Parameters:
Name:

Valid
not valid [error]

Budget Category Type:
Valid
not valid [error]

Income:
true
false

C.7.6 Create Account Type:

Parameters:
Name:

Valid
not valid [error]

Credit:

82 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

true
false

C.7.7 Create Account:
Parameters:

Name:
Valid
not valid [error]

Type:
Valid
not valid [error]

C.8 ScheduledTransactionImpl

C.8.1 Name
Parameters:

Name:
Valid
not valid [error]

C.8.2 Message
Parameters:

Message:
one or more characters
omitted

C.8.3 Start Date
Parameters:

Date:
Valid
not valid [error]

C.8.4 End Date
Parameters:

End Date:
Valid
not valid [error]

C.8. SCHEDULEDTRANSACTIONIMPL 83

C.8.5 Frequency
Parameters:

Frequency:
Positive
Negative [error]

C.8.6 Schedule Day
Parameters:

Schedule day:
In range
out of range [error]

’

C.8.7 Schedule Week
Parameters:

Schedule Week:
In range
out of range [error]

C.8.8 Schedule Month
Parameters:

Schedule Month:
In range
out of range [error]

C.8.9 Description
Parameters:

Description:
one or more characters
omitted

C.8.10 Amount
Parameters:

Amount:
Positive
Negative

84 APPENDIX C. TEST SPECIFICATIONS BUDDI MODELIMPL PACKAGE

C.8.11 To
Parameters:

To:
Budget Category
Account

C.8.12 From
Parameters:

From:
Budget Category
Account

C.9 SourceImpl

C.9.1 Name
Parameters:

Name:
Valid
not valid [error]

C.9.2 Notes
Parameters:

Name:
Valid
not valid [error]

C.9.3 Deleted
Parameters:

Deleted:
true
false

C.10 Transaction

C.10.1 Create Transaction:
Parameters:

Date:

C.10. TRANSACTION 85

Valid
not valid [error]

Description:
one or more characters
omitted

Amount:
Positive
Negative

To:
Budget Category
Account

From:
Budget Category
Account

	Title Page
	masteroppgave.pdf

