@ NTNU

Norwegian University of
Science and Technology

The Lattice Boltzmann Simulation on
Multi-GPU Systems

Thor Kristian Valderhaug

Master of Science in Computer Science
Submission date: June 2011
Supervisor: Anne Cathrine Elster, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

The Lattice Boltzmann Method (LBM) is a fluid simulation algorithm which
is used to simulate different types of flow, such as water, oil and gas in
porous reservoir rocks. Some of the biggest challenges of Lattice Boltzmann
algorithms are resolution and memory requirements when simulating large,
irregular geometries. Modern GPUs have a limited amount of memory, which
severely restricts the domain size which can be simulated on a single GPU.
Spreading the domain over multiple GPUs will thus open for larger more
realistic domains to be simulated.

This project will investigate how to utilize multiple GPUs when doing LBM
simulation on large datasets. The investigations will include comparing
thread-only vs. threading and MPI implementations in order to evaluate
suitability for LBM on a cluster with GPUs.

The following issues may be further investigated: domain decomposition,
overlapping computation and communication, modeling of communication
and computation, auto tuning and load balancing. The code is expected
to be developed in OpenCL making the work applicable to both ATI- and
NVIDIA-based GPUs systems.

Assignment given: 17. January 2011
Supervisor: Anne Cathrine Elster, IDI

1

Abstract

The Lattice Boltzmann Method (LBM) is widely used to simulate different
types of flow, such as water, oil and gas in porous reservoirs. In the oil indus-
try it is commonly used to estimate petrophysical properties of porous rocks,
such as the permeability. To achieve the required accuracy it is necessary to
use big simulation models requiring large amounts of memory. The method is
highly data intensive making it suitable for offloading to the GPU. However,
the limited amount of memory available on modern GPUs severely limits the
size of the dataset possible to simulate.

In this thesis, we increase the size of the datasets possible to simulate us-
ing techniques to lower the memory requirement while retaining numerical
precision. These techniques improve the size possible to simulate on a single
GPU by about 20 times for datasets with 15% porosity. We then develop
multi-GPU simulations for different hardware configurations using OpenCL
and MPI to investigate how LBM scales when simulating large datasets. The
performance of the implementations are measured using three porous rock
datasets provided by Numerical Rocks AS. By connecting two Tesla S2070s
to a single host we are able to achieve a speedup of 1.95, compared to using
a single GPU. For large datasets we are able to completely hide the host to
host communication in a cluster configuration, showing that LBM scales well
and is suitable for simulation on a cluster with GPUs. The correctness of the
implementations is confirmed against an analytically known flow, and three
datasets with known permeability also provided by Numerical Rocks AS.

il

iv

Acknowledgements

This report is the result of work done at the HPC laboratory at the Depart-
ment of Computer and Information Science (IDI) at the Norwegian University
of Science and Technology (NTNU) in Trondheim, Norway.

I would like to thank my supervisor Dr. Anne C. Elster for introducing me
to high-performance computing and enabling me to realize this project. This
project would not have been possible without the resources and equipment
she have made available for the HPC laboratory. Some of the GPUs used
in this work was donated to the laboratory by NVIDIA, I wish to thank
NVIDIA for their suport of the laboratory.

I would also like to thank Atle Rudshaug at Numerical Rocks AS for providing
me with the datasets used to evaluate the implementations. Erik Ola Aksnes
for providing me with his source code and answering questions about details
in his implementation. I would like to thank Ian Karlin for giving me feedback
on the content and writing style of this report. I would also like to thank
Jan Christian Meyer for guidance, technical support and many interesting
and helpful discussions during this project.

My greatest gratitude goes to Jan Ottar Valderhaug Anne Haagensen and Eli
Maritha Carlsen for having the patience to prof-read this report and correct
my many spelling errors.

Finally, I would like to thank my fellow students at the HPC group for great
ideas and support during those long hours at the lab.

Thor Kristian Valderhaug
Trondheim, Norway June 20, 2011

vi

Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1
1.2

Project goal
Outline.

2 Parallel Computing and The Graphical Processing Unit

2.1

2.2

2.3

24

2.5

2.6
2.7

Parallel computing
2.1.1 Forms of Parallelism
Hardware configuration
2.2.1 Shared Memory Multiprocessor
222 Cluster.
GPGPU Programming
OpenCLo
2.4.1 OpenCL Architecture
Programming Models in Parallel Computers
Modeling Execution of Parallel Programs
Tesla S1070 o

3 Computational Fluid Dynamics and Porous Rocks

3.1

Computational Fluid Dynamics

vii

iii

ix

xi

xii

xiii

3.2 Lattice Boltzmann Method

3.2.1

Fundamentals

3.3 Related Work
3.4 Porous Rocks

4 Implementation
4.1 Issues With Naive LBM on GPU
4.2 Tuning LBM for Executionon GPU
4.3 General implementation, .

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

Initialisation phase
Collision phase
Streaming phase,
Border exchange phase
Boundary Conditions
Calculating Permeability
Convergence Check

4.4 Thread Implementation.
4.5 MPI Implementation
4.6 Hybrid Implementation

5 Results and Discussion
5.1 Test Environments and Methodology
5.2 Validation

5.2.1
5.2.2

Validation Against Poiseuille Flow
Porous Rock Measurements

5.3 Performance Measurements

5.3.1
5.3.2
5.3.3
5.3.4

Single GPU oo
Thread Implementation
MPI Implementation
Hybrid Implementation

5.4 Discussion

6 Conclusions and Future Work
6.1 Future Work

Bibliography

A Hardware Specification

B Detailed Timings
B.1 Single GPU
B.2 Thread Implementation.

47
47
49
49
51
52
52
54
o7
99
60

63
64

64

70

B.3 MPI Implementation 82

B.4 Hybrid Implementation 86
Selected Source Code 89
C.1 Collision Phase 89
C.2 Streaming Phase 90
C.3 Border Exchange Phase 92

X

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

4.4
4.5

5.1
5.2

9.3

A comparison of SIMD and SPMD kernels 5
Conceptual drawing of a shared memory multiprocessor 6
The thread model of OpenMP 7
Conceptual drawing of a cluster 8
Conceptual drawing of a shared memory multiprocessor cluster 9
OpenCL platform model 11
OpenCL execution model 12
OpenCL context with command queues and devices 12
OpenCL memory model 13
NVIDIA Tesla S1070 architecture 18
NVIDIA Tesla S1070 connection configuration 18
The three phases applied in every time step of LBM. 21
The LBM collision phase 21
The LBM streaming phase 22
The LBM Boundary condition. 22
Basic algorithm of the LBM 25
Memory requirement for D3Q19 LBM model, using double

precision and temporary values. L. 30
Comparing the memory requirement of our and a naive imple-

mentation of LBM with the D3Q19 model. 33
The main phases in our implementations 34
Domain decomposition 35
The interleaved sequential copy pattern used in the border

exchange phase 41
Fluid flow between two parallel plates 50
Comparison of known and simulated velocity profile for the

Poiseuille flow using the three implementations 51
Speedup of using two Tesla C2070, Tesla C1060 and T10 com-

paredtoone 57

5.4 Speedup of using four T10 compared to one and two
5.5 Single iteration time of the MPI and thread implementations
using 2 GPUs oo

x1

List of Tables

5.1
5.2
5.3
5.4
9.5
5.6
5.7
0.8
5.9
5.10
5.11
5.12
5.13

5.14
5.15

Al
A2
A3
A4

Specifications of the three GPU typesused 48
Technical data about the datasets used 48
Parameter values used during the Poiseuille flow simulations . 50
Parameter values used during the porous rocks measurements 52

Known and calculated permeability for Symetrical Cube, Square

Tube and Fontainbleau 52
Time consumption in ms for the different phases of simulation
on a single NVIDIA Tesla C2070 53
Time consumption in ms for the different phases of simulation
on a single NVIDIA Tesla C1060 53
Time consumption in ms for the different phases of simulation
on a single NVIDIA Tesla T10 53
Time consumption in ms for the different phases of simulation
on a shard memory system with 2 Tesla C2070 55
Time consumption in ms for the different phases of simulation
on a shard memory system with 2 Tesla 1060 55
Time consumption in ms for the different phases of simulation
using two of the GPUs in the NVIDIA S1070. 55
Time consumption in ms for the different phases of simulation
using four GPUs on the NVIDIA S1070 56
Timings in ms on the cluster using all 4 GPUs (2 x Tesla 2070
on one node and 2 x Tesla 1060 onone) 99
Timings on a GPU cluster using 2 GPUs 59
Timings of using the hybrid implementation with 2 nodes and
4 GPUs 60
Shared memory multiprocessor multi-GPU feature 70
Cluster file server 71
Cluster compute node 1 71
Cluster compute node 2 72

Xii

List of Abbreviations

CFD Computational Fluid Dynamics

LBM Lattice Boltzmann Method

LGCA Lattice Gas Cellular Automata
MLUPS Million Lattice Updates Per Second
MFLUPS Million Fluid Lattice Updates Per Second
SLR Sparse Lattice Representation

OpenCL Open Computing Language

PE Processing Element

CU Compute Units

API Application Programming Interface
CUDA Compute Unified Device Architecture
SM Streaming Multiprocessors

DSP Digital Signal Processor

GPU Graphics Processing Unit

CPU Central Processing Unit

HPC High-Performance Computing

RAM Random Access Memory

HIC Host Interface Card

MPI Message Passing Interface

ILP Instruction-level Parallelism

xiil

MIMD Multiple Instruction Multiple Data
SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data stream
MISD Multiple Instruction Single Data stream

SPMD Single Program Multiple Data

Xiv

Chapter 1

Introduction

In recent years, the Graphics Processing Unit (GPU) has received a great
deal of attention from the High-Performance Computing (HPC) commu-
nity. Modern GPUs typically have hundreds of compute elements capable
of performing operations in parallel. The high level of parallelism together
with a high memory bandwidth makes the GPU particularly suited for data
parallel computation. The introduction of frameworks such as NVIDIA’s
Compute Unified Device Architecture (CUDA) and Open Computing Lan-
guage (OpenCL) made it possible to control the GPUs through high level C
like programming languages. This makes it easier to use the highly parallel
GPU to solve many compute and data intensive problems faced in HPC.

The lattice Boltzmann method for fluid simulation is frequently used to sim-
ulate physical phenomenas, in a wide variety of industries. In the oil industry
the method is used to estimate the petrophysical properties, such as the per-
meability in porous rocks, to get a better understanding of the conditions
that affect the oil production. The lattice Boltzmann method is highly data
parallel, thereby making it suitable for acceleration on the GPU.

It is of great importance to the oil industry that the results obtained with
the simulation are accurate, making it necessary to use big models requiring
a large amount of memory. The limited amount of memory available on
modern GPUs severely restricts the domain size that can be simulated on a
single GPU.

1.1. PROJECT GOAL

1.1 Project goal

The main goal of this thesis is to investigate how to utilize multiple graphical
processing units when doing LBM simulations on large datasets of porous
rocks. The implementation is done in OpenCL making the work applica-
ble for both ATI- and NVIDIA-based systems. First, to maximize the size
possible to simulate on a single GPU, techniques for minimizing the mem-
ory footprint are implemented. Then the scalability properties of connecting
multiple GPUs to a single host is investigated. Finally, the scaling properties
of a cluster with GPUs is investigated.

1.2 Outline

The rest of this report is structured as follows:

In Chapter 2 we present some of the relevant background material and con-
cepts in the field of parallel computing and GPU programming.

In Chapter 3 we give a brief introduction to the lattice Boltzmann method, as
well as related work performed with LBM on GPU and multi-GPU systems.
Techniques for calculation of permeability of porous rocks are also presented.

In Chapter 4 we describe the different multi-GPU implementations of the
lattice Boltzmann method used in this thesis.

In Chapter 5 we present and discuss the validation and performance mea-
surements of the implementations presented in the previous chapter.

In Chapter 6 we conclude with a summary of the results obtained in this
thesis, and suggest areas of future work.

In Appendix A the specification and configurations of the hardware used in
the simulations are presented.

In Appendix B more detailed timings from the test done are presented.

In Appendix C we present source code of the main GPU kernels developed
for this thesis.

Chapter 2

Parallel Computing and The
Graphical Processing Unit

This chapter introduces some of the important concepts for this thesis. In
section 2.1 basic concepts of parallel computing are presented. Section 2.2
presents how parallel computers can be configured. Section 2.3 gives a brief
summary of how GPU programming has evolved over time. Section 2.4 intro-
duces some of the abstractions in OpenCL. In section 2.5 the programming
models used as an inspiration for the implementations done in this thesis
are presented. Section 2.6 highlights some of the aspects connected to mod-
eling execution time on parallel systems. The chapter ends with a section
describing one of the GPU systems used in the testing.

2.1 Parallel computing

From the very beginning of computer programming the trend has been to
use a serial model to design and implement programs. However, modern
computer hardware is inherently parallel. Even simple modern computers
typically have five to six forms of parallelism [28]. To increase performance,
compiler and hardware designers have tried to exploit implicit Instruction-
level Parallelism (ILP) in serial code. ILP enables the processor to execute
multiple instruction in parallel, but still preserving the serial programming
model.

Unfortunately, ILP has reached the point of diminishing returns [4], and
modern machines add more and more cores to increase compute capabilities.

3

2.1. PARALLEL COMPUTING

Therefore, programmers need to explicitly express the parallelism withing the
program, giving a renewed interest in ways for the programmer to control
the parallelism within the program.

2.1.1 Forms of Parallelism

Parallel computing can be done in many different ways. The two most com-
mon classifications are task parallelism and data parallelism.

In task parallelism, the work is divided into independent tasks that can be
performed in parallel by different processing elements. Separate instruction
streams work on separate data streams in parallel. This parallelism form is
usually called Multiple Instruction Multiple Data (MIMD). It is often hard
to find a large number of separate tasks inside a program limiting the number
of processing elements that can be used. Also these tasks are also usually
not completely independent, making communication and synchronization be-
tween tasks necessary.

In data parallelism the data elements in a collection can be decomposed into
chunks, where the same operation is performed on one or more elements
from the different chunks in parallel. Data parallelism makes it possible to
divide the work load among all processing elements available by decomposing
the data collection into a appropriated number of chunks. The simplest
form of data parallelism is called Single Instruction Multiple Data (SIMD)
where the same instruction is preformed on multiple data elements in parallel.
SIMD parallelism has many advantages both from the programming and the
hardware point of view. For the programmer it is a natural extension to
the serial programming model and from a hardware perspective it is easily
implemented because only the data path has to be duplicated. As there is
only one control flow, it is difficult to take advantage of special cases to avoid
extra work when the amount of required computation differ between the data
elements. A slightly more powerful model than SIMD is the Single Program
Multiple Data (SPMD) model, a subcategory of the more general MIMD
model. In SPMD the same program is applied to multiple data elements. As
each program has its own control flow, it is easier to differentiate the amount
of work done on each data element. Figure 2.1 shows how a SPMD kernel
can take a different route trough the program based on the data, while a
SIMD program has to apply the same instruction to every data element.

The SIMD and MIMD model together with the two other models, Single
Instruction Single Data stream (SISD) and Multiple Instruction Single Data

4

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

stream (MISD) originate from Flynn’s taxonomy [13]. SISD is the normal
serial execution model, where a single instruction stream is applied to a single
data element. In the fourth category MISD multiple instructions are applied
to a single data element. This processing model is not widely used today
[41], but as Flynn notes, it is found in ancient plug-board machines [13].

SIMD SPMD

Figure 2.1: A comparison of SIMD and SPMD kernels. (Illustration based
on [28])

2.2 Hardware configuration

There are multiple ways to build a parallel computing system. The two
most common are shared memory multiprocessors and clusters. These two
configurations can also be combined into clusters where each node is a shared
memory multiprocessor.

2.2.1 Shared Memory Multiprocessor

A shared memory multiprocessor system, also called a shared memory sys-
tem, is comprised of a set of processors and a set of memory modules that
are connected through a interconnection network as shown in Figure 2.2. A
shared memory multiprocessor system employs a single address space where

5

2.2. HARDWARE CONFIGURATION

each location in main memory has a unique address used by every proces-
sor in the system to access that specific location. As every process in the
system has access to the same memory, synchronization and communica-
tion between processes can be implemented simply by reading and writing
to the same memory location. As the number of compute elements in the
shared memory multiprocessor systems increases, it becomes harder to de-
sign certain components of the system, such as the interconnect between the
processing and memory modules, making the shared memory multiprocessor
model unsuitable for big systems [41].

[meJ [mEmJ [Mem

L/

Interconnection

cPU | |CPU]| ... | CPU

Figure 2.2: Conceptual drawing of a shared memory multiprocessor

Since each processor in a shared memory system has access to the same
memory it is usual to use thread based programming on these systems. In
thread based programming the same program is executed by all threads and
resides in the shared memory. Each thread runs on its own core in the system
and usually works on its own set of data.

Programming Shared Memory Systems

OpenMP is the de facto standard for easy parallel programming on shared
memory systems [5]. It is based on a set of compiler directives, library
routines, and environment variables giving the programmer the ability to
parallelize a sequential code by injecting compiler directives in the areas that
benefit from parallelization. The use of compiler directives makes it possible

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

to incrementally introduce parallelism into a sequential program with little
implementation effort.

Figure 2.3 shows the fork-join threading model used by OpenMP. At the top
we see the serial execution where each parallel task is preformed sequentially.
The bottom part shows how the master OpenMP thread forks a set of worker
threads when a parallel task is encountered. The parallel tasks are then
divided among the working threads. When the tasks are completed, control
is returned to the master thread.

Parallel Task | Parallel Task Il Parallel Task Il

-
Master Thread

Parallel Task | Parallel Task Il Farallel Task I
Master Thread TR B
]
e e
] Ce]

Figure 2.3: Thread model of openMP Figure from [40]

If the programmer needs more explicit control over the parallelization, one
commonly used alternative is POSIX threads (Pthreads). In Pthreads the
programmer has explicit control over creation, synchronization and termina-
tion of threads. The usage of Pthreads requires more effort in the develop-
ment and debugging phase as the introduction of multiple threads can result
in hard to find errors, such as race conditions.

2.2.2 Cluster

Another approach to building parallel systems is to connect several individual
nodes each with its own computing element, memory module and memory
address space, as shown in Figure 2.4. As each node in the cluster is a
complete computer and has its own flow of control, it is common to use the
Single Program Multiple Data (SPMD) processing model. Since each node
of the system is completely independent from the other nodes, the cluster
configuration is highly scalable and easy to construct and extend.

2.2. HARDWARE CONFIGURATION

Qterconnection

cru (i i|crpu|i i]|cPu

Mem I Mem Mem |

Figure 2.4: Conceptual drawing of a cluster

Clusters represent a large family of systems classified by how they are imple-
mented. Beowulf clusters use low cost off-the-shelf components and connect
the nodes with a low cost interconnect such as Ethernet, making it possible
to design a powerful cluster at a relative low cost [41]. Another approach is a
shared memory multiprocessor cluster, where each of the nodes in the cluster
is a shared memory system, as shown in Figure 2.5. A shared memory mul-
tiprocessor cluster is usually constructed with a certain application in mind
and usually use specially designed interconnects to lower the communication
overhead.

Message Passing Interface

The de facto standard for programming communication and synchronization
between nodes in a cluster is the Message Passing Interface (MPI). MPI is an
Application Programming Interface (API) specification for how different in-
vocations of the same program (processes) can communicate through sending
and receiving of messages. Multiple implementations of the MPI specification
exist, and vendors of high performance computing systems usually include
an implementation of MPI specifically tuned to their hardware.

At the base of MPI is the concept of a communicator. A communicator is
a group comprised of a subset, or all of the processes. Within the group
each process is assigned a unique rank (number). Communication between

8

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

Q’Lerconnection

[y CPU cPu CPy CPU o=l

Figure 2.5: Conceptual drawing of a shared memory multiprocessor cluster

processes usually takes place within a single communicator and can either
be point-to-point operations (e.g. send, receive) or collective operations (e.g.
broadcast, reduce) [41].

The same communication patterns often occur multiple times within a pro-
gram (e.g. the exchange of data between processes at the end of each itera-
tion within a simulation). For such a situation MPI has functions for binding
the argument list used in the communication to a persistent communicator
request once, and then reusing this request. This construct allows for reduc-
tion of the overhead associated with the setup of communication between
processes.

2.3 GPGPU Programming

This section is taken from the fall specialization project done by the author
[39], and used with some changes.

The GPU was originally developed to offload the compute intensive work as-
sociated with 2D and 3D graphics from the Central Processing Unit (CPU).
Graphical computation often involves performing the same operations on dif-
ferent elements of the input data. These operations are usually independent
and can be performed in parallel.

2.4. OPENCL

The early GPU was a fixed-function pipeline processor, capable of perform-
ing common graphical operations with a high degree of hardware parallelism
[33]. The stages of the pipeline later become programmable. The GPU was
still designed for graphical processing. But the introduction of programmable
pipeline stages meant that the HPC community could express their problems
as sets of graphical operations to take advantage of the highly parallel GPU.
Frameworks such as NVIDIA’s CUDA [30] and the ATI Stream technology
2] enable the programmer to control the GPU through C like general purpose
programming languages. This makes GPU programming more accessible to
the HPC community. To ease the development for heterogeneous systems,
frameworks such as OpenCL have been introduced making development in-
dependent of the underlying hardware.

2.4 OpenCL

This section is taken from the fall specialization project done by the author
[39], and used with some changes.

Open Computing Language (OpenCL) is an open royalty-free standard for
general purpose computing on heterogeneous platforms. OpenCL consists of
an architecture, a programming language and an API. Implementations of
OpenCL are available on NVIDIA devices supporting the CUDA architecture
[31] and ATT devices with the ATI Stream technology SDK [1].

2.4.1 OpenCL Architecture

The OpenCL architecture defines three models depicting: the computation
environment containing the host and the compute devices (platform model),
the execution model and the memory hierarchy.

Platform Model

The OpenCL platform model is depicted in Figure 2.6. The host system
is connected to one or more devices. Each device consists of one or more
Compute Units (CU) each having a number of Processing Element (PE).
On the devices the actual computation is done by the PEs. Typical devices
include GPUs, Digital Signal Processor (DSP), IBM and Sony’s CELL BEs
and multicore CPUs.

10

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL

PROCESSING UNIT
device
DDDDj |
device
compute | 0 T:l T] T] ﬂ host

units

processing T

device
elements ,—ﬁ
0000

Figure 2.6: OpenCL platform model (from [27], used with permission)

Execution Model

A program written for OpenCL consists of two parts: a host program that
executes on the host and a set of kernels that execute on one or more de-
vices. The OpenCL execution model, as depicted in Figure 2.7, defines the
execution of kernels on a device. The kernel is executed simultaneously by
multiple threads, called a work-item in OpenCL. Work-items are organized
into one, two or three dimensional groups, in OpenCl called a work-group.
These work-groups are organized into a NDRange of the same dimension
as the work groups. Each work-item is assigned a unique index within the
work-group, local work-item ID, and a unique index within the NDRange,
global work-item ID.

The host program creates and maintain a contezt, as shown in Figure 2.8,
holding information about devices, command queues and memory, available
to the host. To assign work to the device the host code enqueues command
onto the command queue, the commands available in OpenCL are: Kernel
execution, memory transfer, and synchronization. The execution of com-
mands can be either in-order - commands are executed and finished in the
order they appear in the queue, or out-of-order - the commands are started
in the order they appear in the queue, but not guaranteed to complete in
order. Transferring data between host and device can be made either non-
blocking or blocking depending on whether the control should be returned to

11

2.4. OPENCL

NDRange ~

NDRange size y

| NDRange size x

Figure 2.7: OpenCL execution model (from [27], used with permission)

N

N

work-group size X

work-group

work-item | ® ® @ | work-item
[o []
o o o
[o []
=~ ~
work-item | @ @ @ | work-item

AN

N

work-group size y

the host code as soon as the command has been placed on the queue. Ker-
nel execution is always non-blocking returning the control to the host code
immediately after the command has be placed on the queue.

context

queues

command . -

[
commands
| > :
device
I I |
commands
[
I I I
commands device
[

Figure 2.8: OpenCL context with command queues and devices (from [27],
used with permission)

12

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

Memory Hierarchy Model

The memory hierarchy of OpenCL, shown in Figure 2.9 is divided into four
distinct parts: Global, constant, local and private. Private and local mem-
ory are not directly accessible by the host. Global memory together with
the read-only constant memory is shared among all the work-groups and is
directly accessible by the host system. Private memory is individual to each
work-item, while local memory is shared between the work-items within a
work-group. Global memory is the main memory of the device and is large,
but with a low bandwidth. Local and constant memory are often small
amount of on-chip memory with a high bandwidth.

To control the device memory the host code uses Memory objects, which
are parts of device memory together with its attributes. OpenCL defines
two types of memory objects Buffers and Images. Buffers store data in a
sequential array, and are accessed as a stream of bytes. Images are two or
three dimensional arrays intended for storing images and textures, and are
usually optimized for two and three dimensional access patterns.

compute unit compute unit
processing processing processing processing
element element element element
A A A A
s e eee
Y Y Y Y
private private private private
memory memory memory memory
A A A A
Y Y

local memoryl local memory

| global memory |

host «—»
| constant memory |

device memory

Figure 2.9: OpenCL memory model (from [27], used with permission)

13

2.5. PROGRAMMING MODELS IN PARALLEL COMPUTERS

2.5 Programming Models in Parallel Com-
puters

When programming systems with multiple forms of parallelism, like the
shared memory multiprocessor cluster, the programmer needs to combine
the programming style for the different parts of the system. In the shared
memory multiprocessor cluster case the problem is to combine the distributed
memory programming used in inter-node communication, usually programmed
with MPI, with the shared memory programming used inside the node, usu-
ally programmed with OpenMP. A classification on MPI and openMP based
parallel programming schemes for hybrid system is given by Rabenseifner
[35]. One can use pure MPI, pure OpenMP on top of a virtual distributed
shared memory system or some combination of MPI and OpenMP.

Pure MPI: Each CPU in each node in the cluster runs its own MPI process.
The MPI library can be optimized to use the shared memory between MPI
processes within the same node, and the interconnect between MPI processes
located on different nodes. The main drawback of a pure MPI approach is
that it adds unnecessary complexity to the intra-node communication. This
drawback becomes less off a performance issue when the intra-node commu-
nication is significantly faster than inter-node communication.

Pure OpenMP: Requires a single memory address space shared between
every CPU in the system. The single address space has to be simulated
by making what is called a virtual distributed memory system. The main
drawback with a pure openMP approach is that the simulation of a single
address space introduce extra overhead, and also makes the execution time
dependent on where in memory the data is located.

Hybrid: One MPI process is executed on each node in the system. The com-
munication between nodes is handled by the MPI process, while the work
done on a single node is parallelized with OpenMP. This category can be
subdivided into two. One where the OpenMP threads are sleeping while the
communication is taking place, and one where calls to the MPI routines are
overlapped with application code preformed by the OpenMP threads. The
latter subcategory requires that the application code be divided into two
parts: the code that is not dependent on the data exchange and therefore
can be overlapped with the communication, and the code that depends on
data exchange and has to be deferred until the data is received. The main
drawback with both of the hybrid models is that as only one thread on each
node is communicating they are not able to fully utilize the inter-node band-
width [35]. The non-overlapping model also suffers from bad load balancing,

14

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

as most of the threads are idle for large amounts of the execution time.

A recent trend in HPC is to build clusters where most of the computational
power comes from GPUs connected to some or all of the nodes. When using
multiple GPUs in a computing system there are three principal components:
host nodes, GPUs and interconnect. Since most of the calculation is supposed
to be preformed by the GPUs the support infrastructure, (host systems and
interconnection) has to be able to match the performance characteristics of
the GPUs in order not to create bottlenecks. Kindratenko el al. [23] argue
than in order to fully use the system it is important to have a one-to-one
mapping between the CPU and GPU count in the system. Also that the total
amount of host memory is at least as much as the the combined amount of
memory on the GPUs.

Spampinato [36] argues that a multi-GPU system has many similarities to a
cluster of shared memory nodes. It follows from his arguments that multi-
GPU systems can be programmed using the same models as used for a cluster
of shared memory multiprocessor nodes.

2.6 Modeling Execution of Parallel Programs

When the execution of a single program is distributed across multiple pro-
cessing elements, the run time can be divided into two components: the time
used for computation and the time used for communication. On a shared
memory system the communication part consists mainly of the synchroniza-
tion overhead, while on a cluster the communication part is dominated by
the inter node message passing. The amount of time spent computing and
communicating depends on the application, but is usually related to the size
of the problem and the number of processes used. A simple model for the
time usage for a parallel program is given in [41] as:

Tpar - Tcomp(n7p> + Tcomm(”aP) (21)

where n is the problem size parameter, p is the number of processes used,
Teomp is the time used in computation and 7., is the time spent commu-
nicating.

The communication of an application is usually composed of multiple com-
munication flows between different nodes of the system. The total commu-
nication time is therefore calculated as the sum of the time spent in each

15

2.6. MODELING EXECUTION OF PARALLEL PROGRAMS

flow. The time used in a single communication flow can be modelled, by the
Hockney model [18] as Equation 2.2:

Tcomm = tstartup + w X tyord (22>

where tgqrup is the time used to send a message of zero bytes. This time
includes the time used by both parties in packing and unpacking the message.
This time is usually called the latency of the communication system, and is
assumed to be constant. t,,.¢ is the time to send one data word over the
communication channel. This value is usually given as the inverse bandwidth
of the communication channel and usually assumed to be constant. w is the
number of data words to be sent.

If the application code can be divided into, a data exchange dependent part
and a non data exchange dependent part then it is possible to use the parts of
the system not communicating to overlap some or all of the work independent
of data exchange with the communication, thus decreasing the amount of
time used.

A more detailed model taking the overlap between computation and com-
munication into account, is presented by Barker et al. [7], and shown in
Equation 2.3

Tpar - Tcomp(nap) + Tcomm(n7p) - TOU@?"laP (23>

where Tyyeriqp 15 the time when the system is both communicating and per-
forming computation at the same time.

When analysing a system where most of the computational power comes
from GPUs, it is necessary to extend the model for communication time to
take account for the time spent transferring data between GPUs and hosts.
As pointed out by Spampinato [36], the communication between two GPUs
in a system can be estimated as Equation 2.4.

Tcomm =2x TGPUfhost + Thostfhost (24>

When transferring contiguous parts of memory between host and GPU Spamp-
inato [36] finds that T py_nest can be estimated as Equation 2.5

TGPU—host == tstartup +w X tword (25)

16

CHAPTER 2. PARALLEL COMPUTING AND THE GRAPHICAL
PROCESSING UNIT

where tg4rtup, W and ty,0rq are the startup and the inverse bandwidth for the
interconnect between the host and GPU.

2.7 Tesla S1070

In this thesis, we use a Tesla S1070 computing system as a multi-GPU shared
memory system. In this section, we describe the system because its structure
has a direct influence the results obtained in our experiments.

The Tesla S1070 system is a 1U rack-mount system with four Tesla T10
GPUs. Each of the four GPUs contain 240 compute cores (in OpenCl
termenology PEs) organized into 30 Streaming Multiprocessors (SM) (in
OpenCl terminology CU).

Figure 2.10 shows a schematic view of the architecture of the NVIDIA Tesla
S1070 computing system. As shown in the figure each GPU is connected to
4GB of Random Access Memory (RAM), giving the system as a total access
to 16 GB RAM. Pairwise the GPUs are connected together in a NVIDIA
switch that again is connected to the host via a Host Interface Card (HIC)
connected to a PCI Express 1x or PCI Express 2x expansion slot on the host
system. The HIC is capable of providing a transfer rate of up to 12.8 GB/s.
To fully utilize the system from a single host both NVIDIA switches have to
be connected to the same host as depicted in Figure 2.11 [32].

17

2.7. TESLA S1070

Power
Supply

Thermal
Management

System

4.0 GB DRAM
4.0 GBE DRAM
Tesla
Tesla GPU
GPU
[petex16
4 [>
s
| »
/ '— s
Tesla 4
GPU
Tesla
4.0GB DRAM

Monitoring

GPU
4.0GB DRAM

NVIDIA
Switch

NVIDIA
Switch

—/

PCI-Express Cables
to Host System(s)

—

Figure 2.10: Schematic of NVIDIA Tesla S1070 architecture (from [32], used

with permission)

Host System
w/ 2 PCle slots

Tesla S1070

PGle Host

Interface

BCle Host
Interface

Card

Card

NVIDIA
Switch

NVIDIA
Switch

Figure 2.11: NVIDIA Tesla S1070 connection configuration (from [32], used

with permission)

18

Chapter 3

Computational Fluid Dynamics
and Porous Rocks

In this chapter, we present an introduction of the theoretical background
behind the lattice Boltzmann method used to simulate flow through porous
rocks. In Section 3.1 we give a brief introduction to the field of computational
fluid dynamics. Section 3.2 presents the theory and equations behind the
lattice Boltzmann method. Section 3.3 presents some of the related work
done using LBM simulation on GPUs. The chapter ends with a section
describing the process of calculating the permeability of porous rocks.

3.1 Computational Fluid Dynamics

Fluid dynamics, the study of how fluid flows, is of great interest to both
academics and industry. The large number of molecules, even in a small
amount of fluid, makes it infeasible to track the movement of each individual
molecule. Therefore, in continuum mechanics, the existence of molecules is
ignored and the matter is treated as a continuous medium. Applying the
laws of mass, momentum and energy conservation at sufficiently large time
scales and distances eliminate the effect of the individual molecules, giving
rise to a set of nonlinear partial differential equations known as the Navier-
Stokes equations. These equations, also known as the conservation equations,
describe the flow of fluids. Unfortunately, these equations can only be solved
analytically if the geometry of the domain and the boundary conditions are
not too complicated [26].

19

3.2. LATTICE BOLTZMANN METHOD

Computational Fluid Dynamics (CFD) is the use of computers to solve the
Navier-Stokes equations numerically. One way these equations can be solved
numerically is by using Lattice Gas Cellular Automata (LGCA) models. In
LGCA the domain is divided into a lattice grid. Each lattice location, also
known as cell, represents a location in space and is either a fluid or solid
element. Within each cell the particles move along a set of distinct velocity
vectors occupied by either zero or one particle. At each time step particles
propagate to the neighboring lattice cell. When two or more particles collide
at a lattice location particles, exchange momentum while conserving total
mass and momentum [42].

One of the earliest attempts to numerically solve the Navier-Stokes equations
based on LGCA was the HPP model by Hardy, Pomeau and de Pazzis [17].
This model used a square lattice grid with four velocity vectors at each cell
connected to the closest neighbors, but not on the diagonal. The usage of
square lattices and only four particles per location makes the model suffer
from lack of rotational invariance [17]. To overcome the rotational invariance
of the HPP model Frisch et al. [14] proposed the FHP model using a trian-
gular lattice grid with six velocity vectors per cell. However, since some of
the collisions in FHP have more than one outcome the model suffers from
static noise.

3.2 Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) was introduced by McNamara and
Zanetti [29] to remove statical noise from the LGCA methods. In LBM the
boolean particle distributions (velocity vectors) used in LGCA is replaced
with real number particle distribution functions. The flow of a fluid is then
described as the interaction between these particle distribution functions in
three separate phases, shown in Figure 3.1.

The collision step is designed to simulate the interaction between particles
inside a lattice location. The existing and incoming particles collide and are
distributed among the discrete velocities, see illustration 3.2. The collision is
constructed to conserve mass, energy and momentum within the simulation.
In the streaming step the particle distribution functions propagate to the
neighbor lattice as shown in Figure 3.3.

Special care needs to be taken when handling lattice nodes either at the
edge of the simulation domain or lattices adjacent to a solid lattice location.

20

CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS AND POROUS
ROCKS

Figure 3.1: The three phases applied in every time step of LBM.

N Y

-) -

ZAAN

Y
°
[

Collide \
— i

TN

Figure 3.2: The LBM collision phase (based on [24])

The standard way of handling the interface between fluid and solid cells is a
no-slip boundary condition (also called a bounce back boundary condition),
shown in Figure 3.4. With this boundary condition particles moving into
a solid cell are reflected back in the opposite direction. The result is zero
velocity at the wall, located half-way between the last fluid cell and the first
wall node, and ensures that there is no flux across the wall [24]. Tt is also
common to use a periodic domain, with particles exiting through one side of
the domain being reinserted at the opposite side.

3.2.1 Fundamentals

The LBM is not just an extension of the LGCA methods. It has been shown
(e.g. Korner et et al. [24]) that LBM can be derived directly from the
underlying physical model, the Boltzmann equation, and that the Navier
Stokes flow can be recovered in the macroscopic limit [24].

21

3.2. LATTICE BOLTZMANN METHOD

\ Stream
> Vd —)

LA B B B\

Figure 3.3: The LBM streaming phase (based on [24])

~ i
Stream }
- '\-

Figure 3.4: The LBM Boundary condition (based on [24])

The Boltzmann equations without external forces can be written as Equation
3.1 [24]:
of , of _

a1 Ta; = QUL (3.1)

where f is the particle distribution function, e is the particle velocity and
Q(f, f) is the collision operator describing the interaction between colliding
particles. The collision operator consists of a complex intergrodifferential
expression, and is often simplified with the Bhatnagar-Gross-Krook (BGK)
operator, Equation 3.2 [24]:

QU1 = —5(f = 1) (32

where f° is the Maxwell-Boltzmann equilibrium distribution function, and
A is the relaxation time controlling the rate of approaching equilibrium. By
applying the BGK approximation to Equation 3.1 we get Equation 3.3 [24]

22

CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS AND POROUS
ROCKS

of of 1 0
To solve Equation 3.3 numerically we first discretize the velocity into a finite
set of velocity vectors e;(i = 0,..., N). A common classification of the dis-
cretization used is the DaQb model, where Da is the number of dimensions
and Qb is the number of distinct velocities ¢€;. Typical discretizations are
D2Q9, D3Q15 and D3Q19. Applying a velocity discretization to Equation
3.3 give us the discrete Boltzmann equation Equation 3.4 [24]:

ofi of; 1 .
8]7: + € 8£ = _X(f_fiq) (3.4)

where f{? is the equilibrium particle function in the ¢ direction. For all the
DaQb models described here the equilibrium function in direction ¢ becomes
Equation 3.5:

3 9 - 3
= pw; 1+ 56U+ (e 0)’ — - u 35
where ¢ = %f, and w; is a weighting for each distribution function, dependent

on the lattice model. ¢ is normally normalized to 1.

The macroscopic values of the density p, momentum pu, velocity « and kine-
matic viscosity v can be calculated from the lattice locations using Equations
3.6, 3.7, 3.8 and 3.9.

N
p=> fi (3.6)
=0
N
pii="3 é&fi (3.7)
=0
1 N
Pizo
= 276_ ! (3.9)

where IV is the number of distinct vector velocities.

23

3.2. LATTICE BOLTZMANN METHOD

The next step in solving Equation 3.3 numerically is to discretize Equation
3.4 in time and space, giving rise to Equation 3.10

— — — 1 — e —
fil@+ et + At) = fi(d@ 1) = —— [fi(Z,) = fi*(@, V)] (3.10)
where 7 = ﬁ is the single relaxation parameter ¥ is a point in the discretized
space.

When implementing the LBM it is often advantageous or necessary to split
Equation 3.10 into a collision and a streaming step. The splitting results in
Equations 3.11 and 3.12

inUt(fa t) _ f;n(f7 t) . 71_ {f:n(f’ t) _ fieq(j’7 t)} (3.11)

FiM@ + e, t+ At) = fP(E, 1) (3.12)

where f2% is the distribution values after the collision step, but before the
streaming step, and f/™ is the distribution values after both the collide and
streaming step are completed.

The bounce back boundary condition applied at the interface between fluid
and solid cells can then be expressed by applying Equation 3.13 instead of
Equation 3.11 at the solid cells [24].

@) = i (@) (3.13)
Applying the bounce back boundary condition temporary stores the distri-
bution function in the solid cell and returns the distribution back to the fluid
cell with the opposite momentum in the next time step.

A basic implementation of the LBM consists of a series of nested loops, over
the three dimensions, treating the collision and streaming phase separately.
First a nested loop would apply the collision phase to each cell writing the
result back to a temporary array (f°“). In a separate nested loop the values
in the temporary array would be propagated to the neighboring cell in the
original array (f). Figure 3.5 shows the operations involved in each phase.

24

CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS AND POROUS
ROCKS

Initialization
phase

Collision
phase

Next
time step

Streaming
phase

Boundary
condition
phase

Figure 3.5: Basic algorithm of the LBM (based on [24])

25

3.3. RELATED WORK

3.3 Related Work

In this section, we present some of the related work performed in the field
of LBM. Since this thesis investigate how to use multiple GPUs when sim-
ulating LBM, the focus is on LBM on GPU and multi-GPU systems. Two
common metric used to evaluate and compare the performance of different
LBM implementation is Million Lattice Updates Per Second (MLUPS) and
Million Fluid Lattice Updates Per Second (MFLUPS). MLUPS indicate the
number of lattice elements, including solids, that is updated in one second.
While MFLUPS indicate the number of fluid elements updated in one second.

Tolke [38] implemented the Lattice Boltzmann method using the D2Q9 model
and CUDA on a NVIDIA 8800 Ultra card, achieving a peak performance of
670 MLUPS. Toélke and Krafczyk [37] implemented the LBM method on
a NVIDIA GeForce 8800 Ultra, using the D3Q13 model. By using single
precision and paying special attention to the memory layout and the mem-
ory access pattern they where able to achieve a maximum performance of
592 MLUPS. Habich [16], implemented the D3Q19 model using CUDA on
a GeForce8800 GTX achieving 250 MLUPS. Bailey el al. [6] improved the
performance of the implementation used by Habich [16] to 300 MLUPS. Bai-
ley et al. [6] also propose a space-efficient storage method reducing the GPU
RAM requirement by 50%, doubling the size of domain possible to solve
on the GPU. By using Bastien’s technique for reducing the round off error
when using single precision, Aksnes [3] was able to use single precision in
the D3Q19 model to estimate the permeability of porous rocks, achieving a
maximum of 184 MLUPS on a NVIDIA Quadro FX 5800 card.

The higher performance of the implementation by To6lke and Krafczyk and
Tolke, is partially explained by the D2Q9 and D3Q13 models requiring less
memory traffic than the D3Q19 model.

Fan et al. [11] used a 32 node cluster with each node containing a GeForce FX
5800 Ultra, to simulate the dispersion of airborne contamination in the Times
Square area. The simulation was performed using the LBM and the D3Q19
model. Communication between nodes was handled by MPI resulting in a
speedup of 4.6 compared to their CPU cluster implementation. Feichtinger et
al. [12] implement a heterogeneous solver capable of running on both GPUs
and CPUs. On a single Tesla C1060 they are able to achieve 300 MFLUPS.
The implementation also achieves almost perfect weak scaling. Xian and
Takayuki [43] report on the impact of different domain decomposition con-
figurations when using a multi-GPU implementation of LBM using a D3Q19
model and MPI to communicate between nodes.

26

CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS AND POROUS
ROCKS

3.4 Porous Rocks

Permeability is a measure of how easily fluid flows through a porous rocks.
In a rock with low permeability it is only possible to extract oil in close
proximity to the well bore, while in a rock with high permeability oil can
flow to the well bore from thousands of meters away [10]. By calculating the
permeability and other petrophysical properties, the oil industry is able to
better understand the factors that affect the production. It is therefore of
great interest to be able to calculate the permeability of porous rocks from
a simulation. The permeability of a rock can be calculated from the flow of
fluid using Darcy’s law expressed in Equation 3.14 [19]

k AP
=2 14
1= (3.14)

where k is the permeability of the porous medium, p is the fluid density,
v is the fluid kinematic viscosity, % is the total pressure drop along the
sample length L, and ¢ is the volumetric fluid flux. In porous media ¢ can
be expressed as ¢ = ¢u where ¢ is the sample porosity and u is the average
velocity of the fluid. The porosity of a rock is defined as Equation 3.15.

Vo

T

(3.15)

where V, is the volume of the pore space, and V; is the total volume of the
rock. The permeability of the rock can be found by Equation 3.16

uppr
k=—%p (3.16)

L

27

3.4. POROUS ROCKS

28

Chapter 4

Implementation

This chapter presents our three LBM implementations. Section 4.1 describes
some of the performance and space issues a naive LBM implementation has
on a GPU. Section 4.2 presents the three techniques used to improve the
performance of LBM on GPUs. Section 4.3 describes the parts common to all
our implementations, before the chapter ends with three sections describing
each implementation in more detail.

4.1 Issues With Naive LBM on GPU

Normally, in order to get the required accuracy, double precision is required
in LBM simulations. There are mainly two problems with a naive imple-
mentation: First the usage of double precision decreases the performance
of modern GPUs as they usually have significantly lower peak performance
when using double precision as compared to single precision. Second the
amount of memory used severely limits the size of the domain it is possible
to simulate on a GPU.

Since real numbers are stored using a limited number of bits in a computer,
approximations and rounding errors occur. These round off errors are great-
est when the value of the numbers involved differ greatly, especially when
using single precision. In the collision phase of LBM the equilibrium function
is calculated from values with large differences making this phase particu-
larly vulnerable for round off errors, and normally making it necessary to use
double precision to store the particle distributions.

When discretizing the velocity space in a LBM simulation a smaller model

29

4.2. TUNING LBM FOR EXECUTION ON GPU

(e.g. D3Q15) means a smaller memory footprint, but less accuracy. To
achieve the needed accuracy it is common to use the D3Q19 model. The
usage of double precision and 19 particle distribution functions per lattice
location consumes a large amount of memory. In a naive implementation
it is also common to store a temporary value of each particle distribution,
to avoid losing data in the streaming phase, further increasing the memory
requirement. Figure 4.1 shows how the memory consumption increases with
lattice size, when using the D3Q19 model with double precision and tem-
porary values. In the figure we see that the largest simulation that fits on
a single modern GPU contains approximately 256 lattice locations, as the
largest total memory available in current GPUs are 6 GB.

40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00 B— ——
32 64 128 256 512

GB

Cubic lattice size

Figure 4.1: Memory requirement for D3Q19 LBM model, using double pre-
cision and temporary values.

4.2 Tuning LBM for Execution on GPU

To maximize the size of the dataset that can fit on a single GPU we used
a series of performance tuning techniques to reduce the memory footprint
without significant loss of accuracy.

By swapping data between the source and destination during the streaming
phase [25], we were able to implement the streaming step without using
temporary space, reducing the memory requirement by 50%.

To reduce rounding errors and make it possible to use single precision and
still achieve high accuracy, we used the technique described by Bastien [§].

30

CHAPTER 4. IMPLEMENTATION

Bastien’s approach makes the factors in the collision operator (Equation 3.11)
closer to each other, thereby decreasing round off errors. Bastien achieves
this by subtracting the constant pyw; from each term of the equation, where
po corresponds to the average density of the system, and w; is the weighting
of the particle distribution function. After variable substitution the equation
for the collision operator becomes Equation 4.1

Bt = B = — b =] (4.1)
where h" = o — w;pg, hy = fi — wipe and i’ = f£7 — w;po

The macroscopic values of the density p and velocity @ can the be expressed
in terms of h; as Equations 4.2 and 4.3

N
Ap = Z h;
=0
p = Ap+p (4.2)
N h.e
g= ZimoliG (4.3)
po + Zi:o hi

The original equilibrium function (Equation 3.5) can be rewritten as Equa-
tion 4.4

fi' = pw; [1+ Fy(u)] (4.4)
with

e - u

1
F(u) = + TCQQiOABuauB (45)

2
CS
where ¢? is the speed of sound in the fluid medium, in our simulations given

the value /(%) [24]. By substituting Equation 4.4 into the expression for A,
the new equilibrium distribution function becomes Equation 4.6

h{" = Apw; + w;(Ap + po) Fi(u) (4.6)

By setting F'(u) equal to the corresponding part of the original equilibrium

function (in our D3Q19 model this corresponds to % ¢é; -+ 5 (€;-1)* — 55 U- 1)

31

4.2. TUNING LBM FOR EXECUTION ON GPU

€q
]

and solving for Qinpuaus the final version of h;", used in our simulation,

becomes Equation 4.7

S

1
hi® = Apw; + wi(Ap + po) (56 @+ (& - 1)° — c3u -) (4.7)
CS

By using this technique we were able to use single precision while retaining
numerical precision. Saving memory and increasing the performance of the
implementation.

In a naive implementation it is common to always store 19 particle distri-
butions for each lattice whether it is a solid or fluid cell. Storing all values
greatly simplifies the implementation by simplifying the mapping between
domain positions and memory location of the particle distribution functions.
However, the distribution functions in a solid cell are always zero, thereby
making it unnecessary to store solid cells. By only storing the fluid cells we
lose the simple mapping between lattice position and memory position, mak-
ing an indirect addressing scheme necessary. However, since the porosity of
rocks interesting to the petroleum industry is relatively small, usually around
10% - 15%, the gains of only storing fluid cells overcomes the added memory
requirement due to the needed addressing scheme. The addressing scheme
used in this thesis is based on the Sparse Lattice Representation (SLR) im-
plementation by Pan et al. [34] and is described in more detail in Section
4.3.1.

Figure 4.2 shows the memory requirements of our solution and a naive one,
when simulating a dataset with a porosity of 15%. In the figure we see that
we are able to reduce the memory requirement by about 20 times.

32

CHAPTER 4. IMPLEMENTATION

40.00
35.00
30.00
25.00
20.00 & Naiv implementation
15.00 -~ Our implementation
10.00
5.00

0.00 & o= *
32 64 128 256 512

GB

Cubic lattice size

Figure 4.2: Comparing the memory requirement of our and a naive imple-
mentation of LBM with the D3Q19 model.

4.3 General implementation

In this section, we describe how we implemented the different phases of LBM.
Figure 4.3 shows that we add an extra Border exchange phase, to the usual
phases described in Section 3.2.1. All three implementations use the same
OpenCL Kernels, which are described in this section. The main differences
between the implementations is the way the GPUs is controlled and how
the communication between the GPUs is handled, and this is described in
the following sections. The code implemented for this thesis is based on the
CUDA code created by Aksnes [3]. Therefore, some parts of the code have
some similarities with the code used in his work.

33

4.3. GENERAL IMPLEMENTATION

Initialization
phase

Border
exchange
phase

Collision
phase

Streaming
phase

Next

time

Figure 4.3: The main phases in our implementations

step

CHAPTER 4. IMPLEMENTATION

4.3.1 Initialisation phase

In the initialisation phase the domain (of lattice size d, x d,, x d) is split into
equal sub domains, each with [, x [, x [, lattice cells. As shown in Figure
4.4 we use a striped partitioning along the z axis, because this results in a
simple decomposition and a sequential access pattern when transferring data
to and from the device. All other possible decompositions, including a block
partition, result in strided access patterns, increasing the time it takes to
transfer data between the GPU and the host [36].

jon
‘m'%
. — ¥-D%

Figure 4.4: Domain decomposition used in our implementations. The gray
layer in each sub domain is the ghost layer from the neighbors

As stated earlier, to save storage, only the fluid elements within the domain
are stored on the GPU, making a mapping between lattice location and mem-
ory location necessary. This mapping is implemented as a three dimensional
integer lookup table, (solid_d in the pseudo code for Algorithm 1).

The geometry information for each sub domain, including the ghost layers of
the north and south neighbors, is used by the host to calculate the number
of fluid elements and create the lookup table for each sub domain. As shown
in Algorithm 1, the host iterates through the domain, including ghost layers,
setting the lookup value of each cell. The lookup value of each solid cell is set
to —1, while the value of a fluid cell is set to the next number in a sequence.
For storing the particle distribution functions we use a structure-of-array
layout with 19 Buffers, one for each particle distribution function. By saving

35

4.3. GENERAL IMPLEMENTATION

the lookup table as an Image we are able to use the caching capabilities
usually implemented on reads and writes of Images.

Algorithm 1 Pseudo code of the SLR lookup table.
1: fluidIndex < 0
2: antFluids < 0
3: index < 0
4: for z=0to [, do

5. for z =0 to [, + ghostLayersNorth 4 ghost LayersSouth do
6: for x =0 to [, do

7 if dataset[index] is fluid then
8: solid_d[index] + fluidIndex
9: fluidIndex <+ fluidIndex + 1
10: antFluids < antFluids + 1
11: else

12: solid_d[index] +— —1

13: end if

14: index + +

15: end for

16: end for

17: end for

4.3.2 Collision phase

Pseudo code for our implementation of the collision phase is shown in Al-
gorithm 2. First the density p and the velocity u are calculated (Algorithm
2: Line 7-15). Then these two values are used to calculate the equilibrium
function (Algorithm 2: Line 17), and the particle distribution function is
relaxed against the equilibrium (Algorithm 2: Line 18). Finally, the particle
distribution functions are locally swapped inside the cell (Algorithm 2: Line
22).

The flow in the simulation is created by applying an external force F to
the fluid. The force is constructed to produce the same momentum as a
true pressure gradient %, which is the total pressure drop along the sample
length L. To achieve this a constant value is added to each particle distri-
bution moving along the pressure gradient and subtracted from the particle
distribution in the opposite direction.

There are several methods for incorporating the external force into the par-
ticle distribution. The most commonly used method is described by Guo et

36

CHAPTER 4. IMPLEMENTATION

al. [15] where the value added to the distribution functions (Algorithm 2:
Line 19) is expressed as Equation 4.8.

(4.8)

where F is the external force, e; is the direction of the i particle distribution
and w; is the weighting of the ¢ particle distribution. The method described
above is the one used in this thesis.

The rate of change towards the equilibrium state is controlled by the re-
laxation parameter 7. Due to stability requirements in the simulation, the
relaxation parameter is chosen between 0.51 < 7 < 2.5 [19].

From Algorithm 2 we see that the computation done on every lattice cell
is independent and therefore can be done in parallel. The collision phase is
implemented as a OpenCL kernel. The kernel is invoked in a 3D NDRange
with the same dimension as the sub domain, including the ghost layers from
the neighbors, each work-item performed the collision phase for a single cell.

On GPUs the global memory has a much higher latency and lower bandwidth
than on-chip memory, so a typical programming pattern is to minimize the
number of global memory accesses by loading data from global memory into
the local memory [31]. In our implementations each work-item loads the
19 particle distribution functions into local memory before performing any
calculations. To use the maximum amount of memory bandwidth it is im-
portant to get coalesced memory accesses, so the hardware is able to serve
multiple work-items in a single memory transaction. Coalesced memory ac-
cesses are obtained differently on different hardware, but generally coalescing
is obtained by letting successive work-items access data sequentially. Since
we only store the fluid elements, the memory access pattern is directly de-
pendent on the geometry of the dataset being simulated. Only storing fluid
elements makes it difficult, if not impossible, to design a memory layout
giving coalesced memory access in every situation. Non-coalesced memory
access decreases the performance, but since the goal of this thesis is to sim-
ulate large datasets, the increased maximum size gained with only storing
fluid elements is valued higher than the decrease in performance.

The large amount of local memory used per work-item severely limits the
number of work-items that can be scheduled per compute unit, lowering the
performance. Because the latency of local memory is orders of magnitude
smaller than the latency of global memory, the reduction in global memory
accesses makes this trade off profitable. By reversing the order in which the

37

4.3. GENERAL IMPLEMENTATION

Algorithm 2 Pseudo code of the collision phase.

1: for z=0to d, do

2: for z=0tod, do
3: for + =0 to d, do
4: solidIndex <— x +y X d + 2 X dy X d,,
5: current < solids|solidIndex]
6: if current # —1 then
7: for i =0 to 18 do
8: p < p+ filcurrent]
9: Uy — Uy + filcurrent] X e,
10: Uy < uy + filcurrent] x e;,
11: U, < u, + filcurrent] x e;,
12: end for
13: Uy < %
14: Uy
15: Uy %
16: for i =0 to 18 do
17: 78— w; x px (1.04 3.0 X (€5 X Uy + €5y X Uy + €5, X Uy)
+ 4.5 X (€5 X Uy + €5y X Uy + €55 X u,)?
— 1.5 X (uy X Uy + Uy X uy +u, X uy))
18: fileurrent] < fileurrent] — £ x (filcurrent] — f;7)
19: fileurrent] < filcurrent] + w;e;, x %
+ Wiy X %
+ wier, X IF
20: end for)
21: fori=1to 9 do
22: swap(f;[current], firo[current])
23: end for
24: end if
25: end for
26: end for
27: end for

38

CHAPTER 4. IMPLEMENTATION

particle distribution functions are copied back from local to global memory,
we were able to implement the local swapping without extra memory traffic.

4.3.3 Streaming phase

In the streaming phase the movement of the fluid is created. The movement
is achieved by letting each lattice cell interact with its neighbors swapping
particle distribution functions (Algorithm 3: Line 9). As shown in Algorithm
4 the periodic boundary condition is implemented into the getNeighbor
function by either allowing or disallowing interaction with the opposite side.
The triple for loops in Algorithm 3 are completely independent of each other
and can be done in any order. The streaming phase is implemented as a
kernel on the GPU that is invoked in the same 3D NDRange as the collision
phase.

Algorithm 3 Pseudo code of the streaming phase.
1: for z =0 to d, do

2: for z=0tod, do

3: for + =0 to d, do

4: thisIndex <— x +y X d + 2 X dy X d,

5: if solids[thisIndex] # —1 then

6: for i =11to9do

7 neighborIndex < getNeighbor(z,y, z,1,d,, dy, d., Dy, Dy, P2)
8: if solids|neighborIndez| # —1 then

9: swap(firo[thisIndex], f;[neighborIndex])
10: end if

11: end for

12: end if

13: end for

14: end for

15: end for

39

4.3. GENERAL IMPLEMENTATION

Algorithm 4 Pseudo code of the getNeighbor function.

1. getNeighbor(z,y, z,i,dy, dy, d., P, Py, D2)
2: neghbour, < x + e,
3: meghbour, < y + e,
4: neghbour, < z + e;,
5: if p, then
6: if neghbour, = —1 then
7 neghbour, < d, — 1
8: end if
9: if neghbour, = d, then
10: neghbour, < 0
11: end if
12: end if
13: if p, then
14: if neghbour, = —1 then
15: neghbour, < d, — 1
16: end if
17: if neghbour, = d, then
18: neghbour, < 0
19: end if
20: end if
21: if p, then
22: if neghbour, = —1 then
23: neghbour, < d, — 1
24: end if
25: if neghbour, = d, then
26: neghbour, < 0
27: end if
28: end if
29: return neghbour, x d, x d, + neghbour, x d, + neghbour,

40

CHAPTER 4. IMPLEMENTATION

4.3.4 Border exchange phase

Since the domain is split across multiple GPUs, possibly located on differ-
ent physical hosts, border information needs to be exchanged between each
iteration of the solver. Since GPUs can not directly communicate with each
other, this exchange is handled by the hosts connected to the GPUs. Since
the PCI bus has a relative high latency it is important to decrease the num-
ber of transfers. To decrease the number of transfers the exchange phase has
been implemented in five steps: In the first step the 19 particle distribution
functions for the elements designated to be sent to the north and south neigh-
bor are copied, in a interleaved sequential way, into two temporary buffers,
as shown in Figure 4.5. The step is implemented as a simple kernel launched
twice. One invocation containing as many work-items as there are fluid ele-
ments that are transferred to the north neighbor, and the other invocation
with as many work-items as the are elements to send to the south neighbor.
Each work-item then loops through the 19 particle distributions and copies
the values into the appropriate buffer. In the second step the two buffers are
transferred to the host. In the third step the data are sent to the respective
neighbors. When the transfer finishes the first two steps are preformed in
the reverse order, constituting steps four and five of the exchange phase.

Figure 4.5: The interleaved sequential copy pattern used in the border ex-
change phase

4.3.5 Boundary Conditions

In addition to the periodic boundary condition implemented in the stream-
ing phase we have implemented a bounce back boundary condition to handle
interaction between fluid and solid cells. The bounce back boundary condi-
tion, as shown in Figure 3.4, is partly implemented in the collision phase and
partly in the streaming phase. At the end of the collision step each particle

41

4.3. GENERAL IMPLEMENTATION

distribution, except the center one (particle distribution 0), is swapped with
the particle distribution in the opposite direction. The streaming step only
swaps particle distribution functions if both cells are fluid. A particle distri-
bution going into a solid cell end up pointing in the opposite direction after
the locale swapping at the end of the collision phase.

4.3.6 Calculating Permeability

The approach used to calculate the permeability of porous rocks in this thesis
is taken from Guodong et al. [19]. The permeability of the porous rock is
found by applying Darcy’s law to the flow obtained from the lattice Boltz-
mann simulation. In our simulation the flow is created by an external force
used to simulate a pressure drop % along the sample length L. By adapting
Equation 3.14 to take into account this force, the permeability of a porous
rock is calculated using Equation 4.9

a2 uppv

E=—
F

(4.9)
where a is the cell spacing in the lattice. It is common to add extra layers
containing only fluid cells at both sides in the direction of the flow, so that
the periodic boundary can be applied. It is also usual to add an extra layer
of solid elements on the other four boundaries [19]. In this thesis, we have
used the definition of porosity given in Equation 3.15, taking into account
both connected and disconnected (percolating) pore space. To get a better
estimate of the permeability it is possible to use the Hoshen-Kopelman algo-
rithm to identify the percolating pore space [19]. In this thesis permeability
is only used to validate that the implementations are correct, thus the values
could be further improved by using only the percolating pore space.

4.3.7 Convergence Check

Before applying Darcy’s law to find the permeability of a rock the system
has to reach a steady state. Several different approaches can be used to
determine if the system has reached a steady state. A common method is
to require that the change in average fluid velocity is smaller than a certain
value [19, 3].

When using the method used by Aksnes [3] we observed that the computed
average fluid velocity still fluctuates after the system has reached a steady

42

CHAPTER 4. IMPLEMENTATION

state. These fluctuations were temporary and dependent on the geometry of
the dataset. The fluctuations are probably a consequence of the accumulative
error associated with the global summation over all the fluid nodes in the
system. By requiring that the convergence is stable for a period of time it is
possible to somewhat eliminate the effect of random fluctuation. Checking
that the system is stable for a period of time has the unwanted effect of
altering the computation and communication ratio, since the convergence
has to be checked at short intervals, and the computation of the fluid average
velocity requires communication between all GPUs in a multi-GPU system.

In this thesis we use a different approached in the convergence check. We
check the change in the maximum difference between two particle distribution
functions in the streaming phase, using Equation 4.10

|max M ovement (t)| e (4.10)

 |maxzMovement(ts)|

where mazMovement(t,) and maxMovement(ty) represent the maximum
difference between two particle distributions swapped in the streaming step in
two iterations, and € is the convergence criteria given as an input parameter to
the simulation. By this method we eliminate the fluctuations and are able to
run many iterations between each convergence check, thus saving time since
the convergence check involves both calculation and global communication.

4.4 Thread Implementation

The original plan for the thread implementation was to use POSIX threads
to create as many threads as there are GPUs in the system, with each thread
controlling a single GPU. Unfortunately, this was not feasible because of
the fact that in the current stable implementation of OpenCl from NVIDIA
(version 1.0) not all of the API calls are thread safe [21]. Thread safe versions
of all functions are required in the latest version of the OpenCL spec (version
1.1) [22]. NVIDIA’s current implementation of OpenCl 1.1 still is in beta,
and therefore using multiple threads is not investigated in this thesis.

Both functions for enqueueing kernel execution, and reading/writing from
the memory of the GPU can be made non-blocking, returning the control
to the host code as soon as the commands are successfully added to the
queue. By creating a set of command queues, one per GPU, the host is able
to control each GPU individually. By first iterating through all the GPUs,

43

4.5. MPI IMPLEMENTATION

enqueueing the appropriate amount of work, we are able to let all GPUs do
work simultaneously. Then a new loop calls the finish function on each
queue, causing the host to wait for all the GPUs to finish the enqueued
work. By using the non-blocking capabilities of OpenCL we are able to let
the GPUs work in parallel, but still have a simple means of synchronization.

By using the in-order execution mode of OpenCL the host code is able to
enqueue both the collision and the streaming step on every GPU, and rely
on OpenCL to enforce the internal dependency within the two phases, max-
imizing the amount of time the GPUs work simultaneously. Since most of
the work is done by the GPUs, the single thread is able to coordinate all of
the GPUs without being the bottleneck. Tests showing that this works well
are performed with up to four GPUs, the largest number of GPUs connected
to a single host available to us.

Since the GPUs are connected to the same host the exchange of ghost layers
is handled by memcpy between the different buffers. Because the amount of
data in each ghost area is relatively small, the host to host communication
time becomes insignificant, leaving only the host to GPU communication as
the overhead. Since this involves both the GPU and the host we are not
able to hide this overhead. In the exchange phase we once again rely on the
in-order execution and enqueue the gathering and scattering of data and the
transfer from host to device before waiting for all GPUs to finish.

4.5 MPI Implementation

The MPI implementation is intended for use on a cluster where each node
contains one or more GPUs. Each GPU in the system is controlled by its
own MPI process, so communication and synchronization between GPUs is
handled by the hosts through MPI. The MPI implementation take advantage
of the in-order execution mode of OpenCL to transfer as much work as possi-
ble to each GPU before waiting for it to finish. Since multiple processes can
be executed on a single node we use processor affinity to pin each process
to a single processor core, thereby eliminating the possibility of processes
destroying each others cached data.

During the initialization phase the process with rank 0 is responsible for
reading in the rock geometry. The data for each sub domain along with
information about the global size of the rock are then distributed to the
other ranks through MPI. By using the parallel I/O feature of MPI version

44

CHAPTER 4. IMPLEMENTATION

2.0, and letting all ranks participate in reading the rock geometry, eliminating
the need to distribute the sub domains from rank 0, it would be possible to
lower this startup time. since the focus of this thesis is on the core simulation
this has not been looked into.

The communication pattern used in the border exchange phase is the same for
each iteration making it possible to use the persistent handler functionality of
MPI. By setting up the necessary handlers in the initialization phase, via the
MPI Send init and MPI Recv_init functions, and then reusing this handle
for every iteration, we are able to eliminate some of the overhead associated
with communication between the process and the communication controller.

As explained in Section 2.6 the total execution time of an application on
a multi-GPU system can be modeled using Equation 2.3. In a pure MPI
configuration at least one pair of GPUs communicates over the inter-node
interconnect, making host to host communication the dominating part of
Teomm(n, p) in Equation 2.3. Since only the host is involved in the exchange
we are able to hide some of the communication cost by starting the collide
phase on the inner lattice locations, making the T,crqp equal to the minimum
of the time used by the GPU to compute the collide phase of the inner lattice
locations and the time to communicate the ghost layers between the hosts.

4.6 Hybrid Implementation

The Hybrid implementation is a combination of the thread and the MPI
implementation. It is intended used on distributed memory systems where
each node has multiple GPUs. The idea is to eliminate the overhead as-
sociated with using MPI to communicate internally on a single node. One
MPI process is executed on each node handling the inter node communica-
tion, while internally on a node the control and communication is handled
as in the thread implementation. This eliminates the MPI overhead between
GPUs internally inside the node, but also increases the complexity of the
implementation.

45

4.6. HYBRID IMPLEMENTATION

46

Chapter 5

Results and Discussion

In this chapter we present and discuss the validation and performance mea-
surements done in this thesis. In section 5.1 we give a presentation of the
test environments and test methodology used. Section 5.2 gives a descrip-
tion of how the results from the different implementations have been checked
for correctness against the velocity profile of the known Poiseuille flow and
datasets with known permeability. Section 5.2.2 presents and discusses the
the performance measurements from different system configurations. The
chapter ends with a section comparing the performance obtained with the
three implementations.

5.1 Test Environments and Methodology

Table 5.1 gives the specifications of the three different types of GPU cards
used to test the three implementations of LBM described in the previous
chapter. During the testing we used two NVIDIA Tesla C2070 cards, two
NVIDIA Tesla C1060 cards and four Tesla T10 cards. The four T10s were
in form of a Tesla S1070 computing system connected to a single host. The
two Tesla C2070 cards and the two Tesla C1060 cards were configured as a
multi-GPU cluster with 2 nodes and 2 GPUs in each node. A more detailed
description of the supporting hardware and connections can be found in
Appendix A. The nodes in the cluster were connected to each other via a
1GB Ethernet switch. As can be seen from Table 5.1 we have only used
NVIDIA based cards during the performance testing. The development has
been done on a AMD ATT Radeon HD5870, but as we only had access to one
ATTI card this card has not been used during the performance testing.

47

5.1. TEST ENVIRONMENTS AND METHODOLOGY

Table 5.1: Specifications of the three GPU types used

’ GPU \ Tesla 2070 \ Tesla 1060 \ Tesla T10 ‘
Cores 448 240 240
Clock frequency 1.5 GHz 1.3 GHz 1.3 GHz
Memory 6 GB 4 GB 4 GB
Memory bandwidth | 144 GB/s 102 GB/s 102 GB/s
Shared memory 48 KB 16 KB 16 KB

To validate our implementations and investigate how to utilize multiple GPUs
in a LBM simulation five datasets provided by Numerical Rocks AS were
used. The technical data for each of the datasets is presented in Table 5.2.
The column Memory usage shows the amount of memory needed to store
the datasets without ghost layers. From the table we see that all datasets,
except Grid800 fit in the memory of a single GPU.

As explained in Section 4.3.2, the memory access pattern and performance
depends on the geometry of the dataset. Therefore, to show how the im-
plementations preform on realistic porous rocks, the three biggest datasets,
Fontainebleau, Grid500 and Grid800 were used during the performance mea-
surements. Fontainebleau, Symetrical Cube and Square Tube have known
permeabilities and were used to validate the correctness of the implementa-
tions.

Table 5.2: Technical data about the datasets used

Name Lattice size Porosity | Known Memory
permeability | usage

Symetrical| 80 x 80 x 80 16% 22 mD 0.01 GB
Cube

Square 200 x 100 x 100 81% 216 D 0.13 GB
Tube

Fontaine- | 300 x 300 x 300 16% 1300 mD 0.42 GB
bleau

Grid500 500 x 500 x 500 15% not known 1.86 GB
Grid800 800 x 600 x 900 15% not known 6.44 GB

As described in Section 3.3, two commonly used metrics for measuring the
performance of a LBM implementation are the Million Lattice Updates Per
Second (MLUPS) and the Million Fluid Lattice Updates Per Second (MFLUPS).
Since only fluid elements require computation in our implementations we re-
port the MFLUPS, as this gives a better indication of the utilization of the

48

CHAPTER 5. RESULTS AND DISCUSSION

GPU. In this thesis MFLUPS is calculated using Equation 5.1

MFELUPS = nxm (5.1)

streaming + tcollision + tborder exchange

where n is the number of fluid nodes in millions, m is the number of iterations,
and tsireaming, teollision N thorder ezchange 15 the time in seconds spent in the
streaming, collision and border exchange phases.

To get a high resolution measurement of the time spent in each phase we
used cl_events [21] to time the execution of the collision and streaming
kernels. To time the border exchange phase we use a combination of cl_events
and gettimeofday. cl_events was used to measure the execution time of the
distribution /reduction kernels and the time to transfer data to and from GPU
(see section 4.3.4) we used the gettimeofday function to measure the time
spent sending data from host to host. The total simulation time is determined
by the GPU finishing last, therefore all reported timings are taken form this
GPU. The reported timings are the arithmetic average of 500 iterations.

5.2 Validation

The numerical correctness of our three implementations, thread, MPI, and
hybrid were validated in two ways. First, the simulated velocity field from the
Poiseuille flow was compared with the known analytically calculated velocity
field. Second, the obtained permeability for each dataset was compared with
the known permeability.

5.2.1 Validation Against Poiseuille Flow

One flow that it is possible to calculate numerically via the Navier-Stokes
equations is the Poiseuille flow, which is the flow between two parallel plates
with a distance of 2L between each other.

Figure 5.1 shows an example of a Poiseuille flow with a lattice dimension of
323,

The velocity profile of the Poiseuille flow can be calculated using Equation
5.2 [42, 9]

49

5.2. VALIDATION

Figure 5.1: Fluid flow between two parallel plates

Table 5.3: Parameter values used during the Poiseuille flow simulations
’ Parameter \ Value ‘

T 0.63

F, 0.00001
F, 0.0

F, 0.0
Dimension 323
Convergence | 2.5e=%

uely) = 5 (12—) (52

where F'is a constant external force working on the fluid, v is the kinematic
viscosity of the fluid and L is half the distance between the two plates.

During the simulation of the Poiseuille flow both types of boundary condi-
tions were used: the solid elements in the plates (top an bottom) implemented
the complete bounce back boundary condition, whereas the other dimensions
(the sides) were periodic. The other parameters used during the simulation
are given in Table 5.3.

To validate that the border exchange phase was correctly implemented in
all our implementations, we ran each implementation using four GPUs. Fig-
ure 5.2 compares the simulated velocity profile with the known analytical
solution. From the figure we see that all three implementations compute
an identical velocity profile. The flow is simulated (squares in figures) with
a deviation of 3.55¢7% compared to the known analytical solution (line in
figures). As explained in Section 4.3 all three implementations use the same
Kernels, and, therefore, produce the same numerical results during simula-

50

CHAPTER 5. RESULTS AND DISCUSSION

tion, if the exchange of data between GPUs is correctly implemented.

Threading MPI
0.03 | 0.03
0.025 0.025
0.0z 0.0z
2 0015 2 0015
3 3
0.01 0.01
0.005 0.005
0 0
5 10 15 20 25 30 5 10 15 20 25 30
Y Y
Hybrid
0.03 |
analytical
0.025 calculated o
0.02
2 0015
3

0.01

0.005

Figure 5.2: Comparison of known and simulated velocity profile for the
Poiseuille flow using the three implementations

5.2.2 Porous Rock Measurements

In order to validate that our implementations calculate the permeability of
porous rock correctly, the three datasets with known permeability were sim-
ulated. During the simulations five extra layers of fluid elements were added
to the inlet and outlet, and one extra layer of solid elements was added to

51

5.3. PERFORMANCE MEASUREMENTS

the other four sides. Table 5.4 gives the value of the relaxation parameter,
force and convergence criterion used during the simulations.

Table 5.4: Parameter values used during the porous rocks measurements

’ Parameter \ Value ‘
T

T 5

F, 0.00001
F, 0.0

F, 0.0
Convergence | 2.5¢3

Table 5.5 shows the known and simulated permeability values along with
the deviation from the known permeability. From the table we see that the
deviation is at most 7.8% between simulated and known permeability.

Table 5.5: Known and calculated permeability for Symetrical Cube, Square
Tube and Fontainbleau

Name Known Obtained Deviation
permeability | permeability

Symetrical Cube | 22 mD 23.72 mD 7.8%

Square Tube 216 D 203.55 D 5.8%

Fontainebleau 1300 mD 1253.03 mD 3.6%

5.3 Performance Measurements

In this section we present the performance of simulating oil flow for the three
largest datasets using the three implementations described in the previous
chapter. The tests were run on the hardware described in Section 5.1.

5.3.1 Single GPU

To get a baseline to compare the performance of our three multi-GPU imple-
mentations against, we ran the kernels for the collision and streaming phase
on each of the three card types presented in Table 5.1. Tables 5.6, 5.7 and
5.8 show the amount of time spent in each phase during a single iteration
on each card. Since the Grid800 dataset requires 6.43 G B of memory, it was

52

CHAPTER 5. RESULTS AND DISCUSSION

too big to fit on a single GPU and we therefore do not have a single GPU
baseline for it.

Table 5.6: Time consumption in ms for the different phases of simulation on

a single NVIDIA Tesla C2070

’ \ Fontainebleau \ Grid500 ‘
Collide 46 (65.06%) 210 (63.81%)
Streaming 25 (34.94%) 119 (36.19%)
Total 71 (100.00%) | 330 (100.00%)
MFLUPS | 62.94 \ 58.22

Table 5.7: Time consumption in ms for the different phases of simulation on
a single NVIDIA Tesla C1060

’ \ Fontainebleau \ Grid500 ‘
Collide 98 (65.06%) 445 (67.26%)
Streaming | 52 (34.94%) 217 (32.74%)
Total [150 (100.00%) | 662 (100.00%)
MFLUPS | 29.95 \ 28.99

Table 5.8: Time consumption in ms for the different phases of simulation on
a single NVIDIA Tesla T10

’ \ Fontainebleau \ Grid500 ‘
Collide 103 (66.79%) 465 (68.89%)
Streaming 51 (33.21%) 210 (31.11%)
Total 154 (100.00%) | 676 (100.00%)
MFLUPS | 29.14 \ 28.41

Based on the cards’ specifications we expected the Tesla C2070 should have
the best performance and that the Tesla 1060 and Tesla T10 should performe
similarly to each other. As shown in Tables 5.6, 5.7 and 5.8 this is the case,
with the performance of the C2070 more than double of the two other cards.
The tables also show that the T10 and C1060 have similar performance.

The specifications for the cards in Table 5.1 provides the explanation for this
better performance. The Tesla C2070 has almost double the amount of cores

53

5.3. PERFORMANCE MEASUREMENTS

and three times the amount of shared memory compared to the other two.
As explained in Section 4.3.2, the implementation of the collision phase uses
a lot of local memory, limiting the number of work-groups per compute unit.
The extra local memory available on the Tesla C2070 increased the number
of work-groups per CU from 4 to 8, increasing occupancy from 25% to 33%,
when simulating the Grid500 dataset. The calculation of work-groups per
CU and occupancy were done using the NVIDIA Occupancy calculator. The
differences in GPU performance creates load balancing issues when different
GPUs are used together in the same system as shown in Section 5.3.3.

Table 5.7 shows that we are able to achieve a maximum of 29.85 MFLUPS
when using a Tesla C1060, falling short of the 300 MFLUPS reported by
Feichtinger et al. [12]. The difference in performance can be attributed
to two factors: First, the performance of OpenCL kernel is less than the
equivalent CUDA kernel when executed on NVIDIA cards [20]. Second, as
described in section 4.3.2, we only store fluid elements making it impossible
to achieve coalesced memory access which is a key factor in obtaining the high
performance reported by Feichtinger et al. [12]. The main focus of this thesis
is to investigate how to simulate large realistic domains. By only storing fluid
elements we are able to lower the memory requirement, increasing the domain
size possible to simulate on a single GPU.

5.3.2 Thread Implementation

As described in Section 4.4 the thread implementation uses one host thread
to control all GPUs connected to a single host. Tables 5.9, 5.10, 5.11 and
5.12 show the timings for a single iteration of the three datasets using four
configurations: two Tesla C2070s (compute node 2 in the cluster), two Tesla
1060s (compute node 1 in the cluster), two and four of the GPUs in the Tesla
1070 system. As described in Section 2.7 the GPUs in the Tesla 1070 pairwise
share a PCI connection to the host. To ensure maximum performance we
used GPUs from different connections when using only two GPUs.

o4

CHAPTER 5. RESULTS AND DISCUSSION

Table 5.9: Time consumption in ms for the different phases of simulation on
a shard memory system with 2 Tesla C2070

’ \ Fontainebleau \ Grid500 \ Grid800 ‘
Collide inner 23 (62.15%) 106 (62.76%) 314 (47.63%)
Collide border 0 (0.50%) 0 (0.27%) 1(0.11%)

Streaming 13 (33.60%) 60 (35.48%) 340 (51.67%)
Communication 1 (3.75%) 2 (1.48%) 4 (0.59%)
Total 38 (100.00%) | 166 (100.00%) | 659 (100.00%)
MFLUPS | 119.43 | 113.84 \ 99.35

Table 5.10: Time consumption in ms for the different phases of simulation
on a shard memory system with 2 Tesla 1060

| | Fontainebleau | Grid500 | Grid800 |
Collide inner 49 (62.51%) 230 (66.77%) 868 (69.93%)
Collide border 0 (0.44%) 1 (0.27%) 2 (0.15%)
Streaming 27 (34.73%) 110 (31.91%) 365 (29.42%)
Communication 2 (2.32%) 4 (1.04%) 6 (0.50%)
Total 78 (100.00%) | 345 (100.00%) | 1241 (100.00%)
MFLUPS | 57.51 \ 56.65 \ 52.75

Table 5.11: Time consumption in ms for the different phases of simulation
using two of the GPUs in the NVIDIA S1070

’ \ Fontainebleau \ Grid500 \ Grid800 ‘
Collide inner 51 (63.92%) 241 (67.95%) 891 (71.22%)
Collide border 0 (0.46%) 1 (0.28%) 2 (0.16%)

Streaming 27 (33.19%) 110 (30.95%) 353 (28.23%)
Communication 2 (2.42%) 3 (0.82%) 5 (0.39%)
Total 80 (100.00%) | 355 (100.00%) | 1251 (100.00%)
MFLUPS | 55.92 \ 54.12 \ 52.31

95

5.3. PERFORMANCE MEASUREMENTS

Table 5.12: Time consumption in ms for the different phases of simulation

using four GPUs on the NVIDIA S1070

’ \ Fontainebleau \ Grid500 \ Grid800 ‘
Collide inner 31 (60.09%) 118 (65.79%) 453 (66.41%)
Collide border 1 (1.69%) 2 (1.08%) 4 (0.59%)

Streaming 17 (32.55%) 53 (29.74%) 198 (29.07%)
Communication 3 (5.67%) 6 (3.39%) 27 (3.93%)
Total 52 (100.00%) | 180 (100.00%) | 683 (100.00%)
MFLUPS | 85.85 \ 106.79 \ 95.85

From Tables 5.9 - 5.12 we see that GPU to GPU communication is less
significant, consuming less than 4% (Table 5.9) of the total simulation time
when using two GPUs and less than 6% (Table 5.12) when using four GPUs.
We also see that the percentage of the time used in communication reduces
as the dataset increases, becoming less than 1% when using two cards in the
simulation of Grid800.

By comparing the time spent in communication when using two and four of
the GPUs on the Tesla S1070 we see the effect of GPUs sharing connection
to the host. When the load on the connection is small (Fontainebleau and
Grid500) the communication time doubles, as expected, when we use four
instead of two GPUs. When the load gets large (Grid800) the communication
time increase by a factor of more than five. A doubling of the communication
time is expected as two of the GPUs in a four GPU configuration would have
two neighbors. The simulation has also been performed using two GPUs from
the same connection, shown in Appendix B, giving execution times almost
identical to the ones using two GPUs from different connection. It appears
that as the load gets large the performance of the PCI express bus is strongly
reduced. We can not see any obvious reason for this, but the same findings
have been reported by Spampinato [36].

Figure 5.3 shows the speedup of using two GPUs as compared to one. From
the figure we see that we achieve near linear speedup, with a maximum of
1.95 when using two Tesla 2070s in the simulation of Grid500. It cal also
be noted that the speedup of using the Tesla C2070s is smaller than the two
others for Fontainebleau. Even though the C2070 has higher performance
than the two others, they all use the same bus between host and device,
thus the percentage of time spent in communication for the Tesla C2070s is
greater resulting in a smaller speedup.

56

CHAPTER 5. RESULTS AND DISCUSSION

1.96
1.95
1.94
1.93

25

1.92

15 1.91
1.9

1.89

W Speedup 2070
H Speedup 1060
O Speedup T10

N

1.88
05

1.87

1.86
0
Fontainebleau Grid 500 Fontainebleau Grid 500

Figure 5.3: Speedup of using two Tesla C2070, Tesla C1060 and T10 com-
pared to one

Figure 5.4 shows the speedup of using four GPUs in the simulations compared
to one. Since the Grid800 dataset does not fit on a single GPU the speedup
for this dataset is compared to using two GPUs. As shown in the figure we
achieve a speedup of 2.94, 3.75 and 1.83 when simulating the Fontainebleau,
Grid500 and Grid800 datasets respectively.

5.3.3 MPI Implementation

In the MPI implementation each GPU is controlled by its own MPI process.
Tables 5.13 and 5.14 show the timings of a single iteration of the simulation
for the three datasets using two different two node configurations: one using
all four of the GPUs in the system and one using only one GPU on each
node.

As explained in Section 4.5 we are able to overlap some of the host to host
communication with computation by starting the next iteration while the
communication is taking place. Both tables show that the total simulation
time is dominated by the communication, using up to 95.96% (87.85% when
excluding the overlap) of the run time for four GPUs to simulate the Fontain-
bleau dataset.

Another point to notice is that as the dataset increases, the percentage of
time spent in communication decreases. As the dataset increases we are,

57

5.3. PERFORMANCE MEASUREMENTS

4 2
1.8

35
1.6

3
14
2.5 12
2 1
15 0.8
0.6

1
04
0.5 0.2
0 0

Fontainebleau Grid 500 Grid 800

(a) Speedup of using four T10 compared to one (b) Speedup of using four T10
compared to two

Figure 5.4: Speedup of using four T10 compared to one and two

therefore able to hide more of the communication with computation to the
point where we are able to completely hide the communication when using
two GPUs for the simulation of Grid800.

By looking at the detailed timings for the simulations (Appendix B), we
observe two things. First, in the simulation using two GPUs we see that the
Tesla C2070 always uses significantly less time to complete the iteration. As
every GPU in the system has to complete each iteration before any GPU
can continue the Tesla C2070 spends large amounts of time idle. Second,
when using two GPUs on a single node we see that as one of the GPUs
only communicate internally inside the node, this GPU uses less time on
communication, and therefore, completes earlier resulting in idle time for
this GPU. Information about the underlying hardware, obtainable through
the OpenCL API, could be used to give the cards different amount of work
resulting in a better load balancing. Because of time constraints this has not
been looked into, and is left for further work.

58

CHAPTER 5. RESULTS AND DISCUSSION

Table 5.13: Timings in ms on the cluster using all 4 GPUs (2 x Tesla 2070
on one node and 2 x Tesla 1060 on one)

| | Fontainebleau | Grid500 | Grid800 |
Collide inner 15 (8.92%) 113 (27.27%) 440 (51.68%)
Collide border 0 (0.27%) 2 (0.44%) 4 (0.46%)

Streaming 7 (4.04%) 55 (13.23%) | 199 (23.33%)
Communication | 159 (95.96%) 368 (86.33%) 649 (76.21%)
Overlap 15 (—8.92%) | 112 (—27.27%) | 440 (—51.68%)

Total 166 (100.00%) | 413 (100.00%) | 851 (100.00%)

MFLUPS | 27.52 \ 46.51 \ 76.88

Table 5.14: Timings on a GPU cluster using 2 GPUs (Tesla 2070 on one
node and Tesla 1060 in one)

] \ Fontainebleau \ Grid500 \ Grid800 ‘
Collide inner 49 (30.93%) 222 (48.47%) 855 (69.96%)
Collide border 0 (0.22%) 1 (0.20%) 2 (0.16%)

Streaming 57 (17.19%) | 106 (23.20%) | 365 (29.83%)
Communication | 130 (82.59%) 351 (76.60%) 625 (51.17%)
Overlap 19 (—30.93%) | 222 (—48.47%) | 625 (—5L.17%)
Total 158 (100.00%) | 458 (100.00%) | 1222 (100.00%)
MFLUPS | 28.46 \ 41.89 \ 53.57

5.3.4 Hybrid Implementation

As described in Section 4.6 the hybrid implementation is intended to be
executed on clusters with more than one GPU per node. Table 5.15 shows
the timings from a single iteration of simulation for three datasets when using
all four GPUs in the cluster.

By comparing the communication steps in Table 5.13 and Table 5.15 we
see that the hybrid implementation eliminates the overhead introduced by
using MPI to communicate between GPUs internally on one node. By using
threaded GPU to GPU communication within nodes communication time is
reduced from 649 ms to 622 ms (Grid800). The hybrid implementation is
more complex than using only MPI, and hence one should consider carefully
whether the improved performance is worth the extra programming effort.

59

5.4. DISCUSSION

Table 5.15: Timings of using the hybrid implementation with 2 nodes and 4

GPUs
\ Fontainebleau \ Grid500 \ Grid800 \
Collide inner 30 (20.03%) 112 (27.20%) 433 (52.86%)
Collide border 1 (0.56%) 2 (0.44%) 4 (0.47%)

Streaming 17 (11.26%) 55 (13.30%) 194 (23.72%)

Communication | 133 (88.18%) 354 (86.26%) 622 (75.81%)
Overlap 30 (—20.03%) 112 (—27.20%) | 433 (—52.86%)
Total 151 (100.00%) | 411 (100.00%) | 820 (100.00%)

MFLUPS | 29.72 \ 46.75 \ 79.82

5.4 Discussion

In the previous section we presented the timings for the three different ap-
proaches to multi-GPU LBM simulation. In this section we discuss some of
the advantages and disadvantages of the different approaches.

As shown in Section 5.3.4 the hybrid implementation have almost identical
execution time as MPI. Hybrid only eliminates the overhead of using MPI
between GPUs internally on one node, resulting in a small improvement of
the communication time. The result of eliminating the overhead was smaller
than first expected. As the hybrid implementation is more complex and gives
only minor improvements over MPI, the hybrid will therefore be eliminated
from further discussion.

The results show that the MPI and thread implementations have different
performance characteristics, and therefore are suited for different scenarios.
MPI is generally best suited for large datasets while thread implementation
is best suited when the dataset fit the GPUs connected to one host.

Section 5.3.2 shows that the thread implementation achieves almost linear
speedup up to four GPUs. The result of using four GPUs over two PCI
connections show that it is important to have enough bandwidth between
the host and GPUs, ideally a dedicated PCI slot to each GPU. Since the
thread implementation depends on a single address space there is a physical
limit on how many PCI express slots possible to connect to such systems.
This limits the domain size possible to solve, but as long as the dataset fits
in the memory of the GPUs possible to connect to a single host this is the
preferred way.

60

CHAPTER 5. RESULTS AND DISCUSSION

1400
1200
1000

800 H MPI12 GPU

600 B Thread 2 1060

milliseconds

400
200

o

Fontainebleau Grid 500 Grid 800

Figure 5.5: Single iteration time of the MPI and thread implementations
using 2 GPUs

Figure 5.5 shows the total execution time of one iteration when using two
GPUs in the MPI and thread implementation. From the figure we see that
as the dataset increases the difference in execution time becomes smaller,
resulting in the same execution time when simulating the Grid800 dataset.
This indicates that as long as each GPU is given enough work the potential
for overlapping can be exploited to completely hide the host to host commu-
nication resulting in perfect weak scaling. This conclusion is also reached by
Feichtinger el al. [12] who achieve perfect parallel efficiency up to 60 GPUs
on 30 nodes.

61

5.4. DISCUSSION

62

Chapter 6

Conclusions and Future Work

In this thesis we investigated how to utilize multiple GPUs in Lattice Boltz-
mann simulations of large datasets. To show how different hardware configu-
rations impact the performance three different multi-GPU LBM simulations
were implemented: one with communication handled via MPI on the host,
one using the shared memory of the host, and a hybrid combining the two
others.

Three techniques were applied to lower the memory requirement while retain-
ing numerical precision. Bastien’s approach to reduce the round off errors
associated with the collision phase was applied [8]. We also eliminated the
need for double buffering, using Latt’s approach of swapping particle distri-
bution functions in the streaming phase [25]. Combined with storing only
fluid elements, this reduced the mermory requirement by about 20 times for
rocks of 15% porosity, increasing the domain size possible to simulate on a
single GPU.

By connecting multiple GPUs to a single host we were able to achieve near
linear speedup for large datasets. Our tests show that a single host thread
is sufficient to coordinate up to four GPUs without the host becoming the
bottleneck.

Simulation on GPU-enhanced clusters showed that by providing enough work
for each GPU, we are able to completely hide the cost of host to host com-
munication. By exploiting the potential for overlapping communication with
computation we were able to show that LBM has favorable weak scaling
characteristics for clusters with GPUs.

Our tests showed that LBM is well suited for simulation of porous rocks

63

6.1. FUTURE WORK

on clusters with GPUs, and that the preferred implementation in a cluster is
MPI. A hybrid implementation performs slightly better, but is more complex.

6.1 Future Work

Our results present several interesting directions for future work. Current
implementations only support a single layer of border communication. Vary-
ing the border thickness would alter the communication to computation ra-
tio, which may reveal performance improvements. Domain decomposition
is presently restricted to a striped partitioning. An interesting extension
would be to investigate how alternative decompositions impact the balance
of computation and communication. Timings of the MPI and hybrid imple-
mentations indicate that GPU idle time is significant on configurations where
GPUs differ, or when subsets of GPUs share system buses. Incorporating a
load balancing scheme in the domain decomposition could reduce this effect.
There are also other areas that could benefit from auto tuning, e.g finding
the domain decomposition resulting in the least amount of communication
time. The available systems restricted our experiments to scaling only to
systems of four GPUs. An attempt to verify our scalability results on larger
systems would be informative. Moreover, although development was done on
an AMD GPU, all performance testing was restricted to NVIDIA hardware.
A performance comparison using AMD cards would be interesting.

64

Bibliography

1]

Advanced Micro Devices, Inc. ATI Stream Computing OpenCL Pro-
gramming Guide, 2010. http://developer.amd.com/gpu_assets/
ATI Stream_ SDK_OpenCL_Programming Guide.pdf, retrieved 2010-07-
06.

Advanced Micro Devices, Inc. ATI Stream SDK Release Notes,
2011. http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD _
Accelerated_Parallel_Processing OpenCL_Programming Guide.
pdf, retrieved 2011-05-14.

Erik Ola Aksnes and Anne C. Elster. Simulation of fluid flow through
porous rock on modern gpus. Master’s thesis, Norwegian University of
Science and Technology (NTNU), 2009.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. The landscape of parallel computing research:
A view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Yuan Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan, and Guansong Zhang. The design
of openmp tasks. Parallel and Distributed Systems, IEEE Transactions
on, 20(3):404 —418, march 2009.

P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar. Accelerating
lattice boltzmann fluid flow simulations using graphics processors. In
Parallel Processing, 2009. ICPP °09. International Conference on, pages
550 —557, sept. 2009.

65

http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/gpu/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

BIBLIOGRAPHY

[7]

[10]

[11]

[12]

[18]

[19]

K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, and
J.C. Sancho. Using performance modeling to design large-scale systems.
Computer, 42(11):42 —49, nov. 20009.

Bastien Chopard. How to improve the accuracy of lattice boltzmann
calculations. Technical report, LBMethod.org, 2008.

Simon T. Engler. Benchmarking the 2D lattice boltzmann BGK model.
Complex Simulation Report, 2008.

Alphonsus Fagan. An introduction to the petroleumindustry.
http://www.nr.gov.nl.ca/nr/publications/energy/intro.pdf, re-
trieved 2011-05-09, November 1991.

Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. Gpu
cluster for high performance computing. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, SC ’04, Washington, DC,
USA, 2004. IEEE Computer Society.

Christian Feichtinger, Johannes Habich, Harald Kostler, Georg Hager,
Ulrich Riide, and Gerhard Wellein. A flexible patch-based lattice boltz-
mann parallelization approach for heterogeneous gpu-cpu clusters. Par-
allel Computing, In Press, Accepted Manuscript:—, 2011.

Michael J. Flynn. Some computer organizations and their effectiveness.
Computers, IEEE Transactions on, C-21(9):948 — 960, sept. 1972.

U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
navier-stokes equation. Phys. Rev. Lett., 56(14):1505-1508, Apr 1986.

Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects
on the forcing term in the lattice boltzmann method. Phys. Rev. E,
65(4):046308, Apr 2002.

Johannes Habich. Performance evaluation of numeric compute kernels
on nvidia gpus. Master’s thesis, Friedrich-Alexander-Universitat, 2008.

J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-

dimensional model system. i. invariant states and time correlation func-
tions. J. Math. Phys., 14(12):1746-1759, 1973.

Roger W. Hockney. The communication challenge for mpp: Intel
paragon and meiko cs-2. Parallel Computing, 20(3):389 — 398, 1994.

Guodong Jin, Tad W. Patzek, and Dmitry B. Silin. Direct prediction of
the absolute permeability of unconsolidated and consolidated reservoir
rock. September 2004.

66

http://www.nr.gov.nl.ca/nr/publications/energy/intro.pdf

BIBLIOGRAPHY

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance
comparison of cuda and opencl. CoRR, abs/1005.2581, 2010.

Khronos Group. The OpenCL Specification 1.0, 2010. http://www.
khronos.org/registry/cl/specs/opencl-1.0.pdf, retrieved 2011-
05-02.

Khronos Group. The OpenCL Specification 1.1, 2010. http://www.
khronos.org/registry/cl/specs/opencl-1.1.pdf, retrieved 2011-
05-02.

Volodymyr V. Kindratenko, Jeremy Enos, Guochun Shi, Michael T.
Showerman, Galen W. Arnold, John E. Stone, James C. Phillips, and

Wen mei W. Hwu. Gpu clusters for high-performance computing. In
CLUSTER, pages 1-8, 2009.

Carolin Korner, Thomas Pohl, Ulrich Riide, Nils Thiirey, and Thomas
Zeiser. Parallel lattice boltzmann methods for CFD applications. In
Numerical Solution of Partial Differential Fquations on Parallel Com-

puters, Lecture Notes in Computational Science and Engineering, pages
439-466. Springer Berlin Heidelberg, 2006.

Jonas Latt. Technical report: How to implement your DdQq dynamic
with only ¢ variables per node (insted of 2q). Technical report, Tufts
University Medford, USA, 2007.

Davidson David Lee. The role of computational fluid dynamics in process
industries. The Bridge, 32(4), 2002.

Holger Ludvigsen and Anne C. Elster. Real-time gpu-based 3d ultra-
sound reconstruction and visualization. Master’s thesis, Norwegian Uni-
versity of Science and Technology (NTNU), 2010.

M.D. McCool. Scalable programming models for massively multicore
processors. Proceedings of the IEEE, 96(5):816 —831, May 2008.

Guy R. McNamara and Gianluigi Zanetti. Use of the boltzmann equa-
tion to simulate lattice-gas automata. Phys. Rev. Lett., 61(20):2332—
2335, Nov 1988.

Nvidia Corporation. NVIDIA CUDA C Programming Guide,

2010. http://developer.download.nvidia.com/compute/cuda/3_2_
prod/toolkit/docs/CUDA_C_Programming Guide.pdf, retrieved 2011-
05-14.

67

http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY

[31]

[37]

[38]

Nvidia Corporation. OpenCL Programming Guide for the CUDA Ar-
chitecture, 2010. http://developer.download.nvidia.com/compute/
cuda/3_2/toolkit/docs/0OpenCL_Programming Guide.pdf, retrieved
2010-07-06.

Nvidia Corporation. Tesla S1070 GPU Computing System,
2010. http://www.nvidia.com/docs/I0/43395/SP-04154-001_vO03.
pdf, retrieved 2011-03-12.

J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879 —899,
may. 2008.

Chongxun Pan, Jan F. Prins, and Cass T. Miller. A high-performance
lattice boltzmann implementation to model flow in porous media. Com-
puter Physics Communications, 158(2):89 — 105, 2004.

Rolf Rabenseifner. Hybrid parallel programming: Performance problems
and chances, 2003.

Daniele Spampinato and Anne C. Elster. Modeling communication on
multi-gpu systems. Master’s thesis, Norwegian University of Science and
Technology (NTNU), 20009.

J. Tolke and M. Krafczyk. Teraflop computing on a desktop pc with
gpus for 3d cfd. Int. J. Comput. Fluid Dyn., 22:443-456, August 2008.

Jonas Tolke. Implementation of a lattice boltzmann kernel using the

compute unified device architecture developed by nvidia. Comput. Vis.
Sci., 2008.

Thor Kristian Valderhaug. Real-time gpu-based freehand 3D ultrasound
reconstruction, December 2010. Fall specialization project.

Wikipedia. File:fork_join.svg. http://en.wikipedia.org/w/index.
php?title=File:Fork_join.svg&oldid=339669228, retrieved 2011-
06-13.

Barry Wilkinson and Michael Allen. Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel Computers
(2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice
Boltzmann Models: An Introduction. Springer, 2005.

68

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v03.pdf
http://www.nvidia.com/docs/IO/43395/SP-04154-001_v03.pdf
http://en.wikipedia.org/w/index.php?title=File:Fork_join.svg&oldid=339669228
http://en.wikipedia.org/w/index.php?title=File:Fork_join.svg&oldid=339669228

BIBLIOGRAPHY

[43] W. Xian and A. Takayuki. Multi-gpu performance of incompressible
flow computation by lattice boltzmann method on gpu cluster. Parallel
Comput. (2011), doi:10.1016/j.parco.2011.02.007.

69

Appendix A

Hardware Specification

On the following pages are the specification and configuration of the different
hardware used to simulate LBM on multiple GPUs.

Table A.1 gives the specification of the host and the biggest shared mem-
ory system comprised of one host and four GPUs in form of a Tesla S1070

Computing system

Host
CPU Intel Core i7 965
Clock speed 3.20 GHz
Cores 4, with two threads per core
Memory 12 GB DDR3
OS Ubuntu 09.10, Linux kernel 2.6.31-22

Device (Tesla S1070)

Number of GPUs

Clock speed

Number of SPs

Device memory

GPU-device memory bandwidth
GPU-host bandwidth
Connection to the host

4, Tesla T10

1.30 GHz

960 (240 SPs per GPU)

16 GB (4 GB dedicated per GPU)

up to 408 GB/s (102 GB/s per GPU)

up to 12.8 GB/s

Through 2 PCle channels pairwise shared.

Table A.1: Shared memory multiprocessor multi-GPU feature

Tables A.2, A.3 and A.4, gives the configuration of the test cluster used in
this thesis. Each node of the cluster was also used as a shared memory system

with two GPUs.

70

APPENDIX A. HARDWARE SPECIFICATION

Host
CPU Intel Core 2 Quad 9550
Clock speed | 2.83 GHz
Cores 4
Memory 4 GB DDR3
OS Ubuntu 10.04 , Linux kernel 2.6.32-24
Table A.2: Cluster file server
Host
CPU Intel Core i7 950
Clock speed 3.07 GHz
Cores 4, with two threads per core
Memory 6 GB DDR3
OS Ubuntu 10.04 , Linux kernel 2.6.32-24

Device 1

(Tesla C1060)

Clock speed

Number of SPs

Device memory

GPU-device memory bandwidth
GPU-host bandwidth
Connection to the host

1.50 GHz

448

3 GB

up to 144 GB/s
up to 8 GB/s
Through PCle x16

Device 2

(Tesla C1060)

Clock speed

Number of SPs

Device memory

GPU-device memory bandwidth
GPU-host bandwidth
Connection to the host

1.3 GHz

240

4 GB

up to 102 GB/s
up to 8 GB/s
Through PCle x16

Table A.3: Cluster compute node 1

71

Host

CPU

Clock speed
Cores
Memory

(O

Intel Core i7 970

3.20 GHz

6, with two threads per core

24 GB DDR3

Ubuntu 10.04 , Linux kernel 2.6.32-24

Device 1

(Tesla C2070)

Clock speed

Number of SPs

Device memory

GPU-device memory bandwidth
GPU-host bandwidth
Connection to the host

1.50 GHz

448

6 GB

up to 144 GB/s
up to 8 GB/s
Through PCle x16

Device 2

(Tesla C2070)

Clock speed

Number of SPs

Device memory

GPU-device memory bandwidth
GPU-host bandwidth
Connection to the host

1.50 GHz

448

6 GB

up to 144 GB/s
up to 8 GB/s
Through PCle x16

Table A.4: Cluster compute node 2

72

Appendix B

Detailed Timings

On the following pages are the timings form each GPU in the different tests
performed in this thesis.

B.1 Single GPU

B.1. SINGLE GPU

Single GPUs

Fontainebleau

Ant iter 500
Ant lattice 4485814
2070 1060 T10

total Per iter total periter total periter
Collide Inner 23180 46,360 65,06% 48890 97,780 65,29% 51411 102,821 66,79%
Collide border 0 0,000 0,00% 0 0,000 0,00% 0 0,000 0,00%
Streaming 12450 24900 34,94% 25990 51,980 34,71% 25566 51,132 33,21%
Communication 0 0,000 0,00% 0 0,000 0,00% 0 0,000 0,00%
Total 35630 71,260 100,00% 74880 149,760 100,00% 76976 153,953 100,00%
MFLUPS 62,95 29,95 29,14
Grid500
Ant iter 500
Ant lattice 19197136

2070 1060 T10

total Per iter total per iter total periter
Collide Inner 105190 210,380 63,81% 222640 445,280 67,26% 232722 465,445 68,89%
Collide border 0 0,000 0,00% 0 0,000 0,00% 0 0,000 0,00%
Streaming 59660 119,320 36,19% 108350 216,700 32,74% 105098 210,197 31,11%
Communication 0 0,000 0,00% 0 0,000 0,00% 0 0,000 0,00%
Total 164850 329,700 100,00% 330990 661,980 100,00% 337821 675,642 100,00%
MFLUPS 58,23 29 28,41

74

APPENDIX B. DETAILED TIMINGS

B.2 Thread Implementation

I6)

B.2. THREAD IMPLEMENTATION

Thread Two Tesla C2070

Fontainebleau
Ant iter 500
Ant lattice 4485814

2070 2070

total Periter total Periter
Collide Inner 11671,05 23,342 62,15% 115637,27 23,075 62,18%
Collide border 94,45 0,189 0,50% 95,43 0,191 0,51%
Streaming 6310,94 12,622 33,60% 6234,04 12,468 33,60%
Communication 703,73 1,407 3,75% 686,97 1,374 3,70%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 18780,162 37,560 100,00% 18553,707 37,107 100,00%
MFLUPS 119,43 120,89
Grid500
Ant iter 500
Ant lattice 19197136

2070 2070

total Periter total Periter
Collide Inner 52922,68 105,845 62,76% 52822,87 105,646 62,74%
Collide border 229,53 0,459 0,27% 228,62 0,457 0,27%
Streaming 29920,18 59,840 35,48% 2994262 59,885 35,56%
Communication 1246,96 2,494 1,48% 1201,98 2,404 1,43%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 84319,341 168,639 100,00% 84196,084 168,392 100,00%
MFLUPS 113,84 114,00
Grid800
Ant iter 500
Ant lattice 65450258

2070 2070

total Per iter total Per iter
Collide Inner 156713,3 313,427 47,61% 156889,47 313,779 47,63%
Collide border 359,68 0,719 0,11% 361,36 0,723 0,11%
Streaming 170111,69 340,223 51,68% 170179,96 340,360 51,67%
Communication 1975,33 3,951 0,60% 1957,57 3,915 0,59%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 329159,995 658,320 100,00% 329388,352 658,777 100,00%
MFLUPS 99,42 99,35

76

APPENDIX B. DETAILED TIMINGS

Thread Two Tesla C1060

Fontainebleau
Ant iter 500
Ant lattice 4485814
1060 1060
total Per iter total Per iter
Collide Inner 24461,33 48,923 63,61% 24377,89 48,756 62,51%
Collide border 170,27 0,341 0,44% 173,01 0,346 0,44%
Streaming 12931,1 25,862 33,62% 13545,69 27,091 34,73%
Communication 894,97 1,790 2,33% 903,32 1,807 2,32%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 38457,661 76,915 100,00% 38999,924 78,000 100,00%
MFLUPS 58,32 57,51
Grid500
Ant iter 500
Ant lattice 19197136
1060 1060
total Per iter total Per iter
Collide Inner 115168,05 230,336 66,77% 111061,89 222,124 66,71%
Collide border 474,24 0,948 0,27% 462,89 0,926 0,28%
Streaming 55032,72 110,065 31,91% 53158,95 106,318 31,93%
Communication 1798,4 3,597 1,04% 1804,29 3,609 1,08%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 172473,408 344,947 100,00% 166488,015 332,976 100,00%
MFLUPS 55,65 57,65
Grid800
Ant iter 500
Ant lattice 65450258
1060 1060
total Per iter total Per iter
Collide Inner 431130,27 862,261 70,52% 433839,2 868 69,93%
Collide border 960,16 1,920 0,16% 959,92 2 0,15%
Streaming 176218,56 352,437 28,82% 182553,81 365 29,42%
Communication 3033,82 6,068 0,50% 3074,14 6 0,50%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 611342,800 1222,686 100,00% 620427 1241 100,00%
MFLUPS 53,53 52,75

7

B.2. THREAD IMPLEMENTATION

Thread Two Tesla T10 Different PCI

Fontainebleau

Ant iter 500
Ant lattice 4485814
T10 T10
total Per iter total Per iter
Collide Inner 25775,75 51,552 64,90% 25639,77 51,280 63,92%
Collide border 182,65 0,365 0,46% 184,47 0,369 0,46%
Streaming 12973,06 25,946 32,66% 13313,69 26,627 33,19%
Communication 787,52 1,575 1,98% 972,15 1,944 2,42%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 39718,98 79,438 100,00% 40110,07 80,220 100,00%
MFLUPS 56,47 55,92
Grid500
Ant iter 500
Ant lattice 19197136
T10 T10
total Per iter total Per iter
Collide Inner 120518,83 241,038 67,95% 116074,47 232,149 68,45%
Collide border 497,57 0,995 0,28% 485,46 0,971 0,29%
Streaming 54888,43 109,777 30,95% 51599,65 103,199 30,43%
Communication 1453,9 2,908 0,82% 1424,88 2,850 0,84%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 177358,725 354,717 100,00% 169584,456 339,169 100,00%
MFLUPS 54,12 56,6
Grid800
Ant iter 500
Ant lattice 65450258
T10 T10
total Per iter total Per iter
Collide Inner 443441,39 886,883 71,32% 445516,66 891,033 71,22%
Collide border 991,2 1,982 0,16% 986,97 1,974 0,16%
Streaming 174953,73 349,907 28,14% 176615,51 353,231 28,23%
Communication 2417,33 4,835 0,39% 2463,16 4,926 0,39%
Overlap 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 621803,640 1243,607 100,00% 625582,291 1251,165 100,00%
MFLUPS 52,63 52,31

78

APPENDIX B. DETAILED TIMINGS

Thread Two Tesla T10 Same PCI

Fontainebleau
Ant iter 500
Ant lattice 4485814
T10 T10
total Per iter total Per iter
Collide Inner 25775,68 51,551 64,75% 25637,94 51,276 63,92%
Collide border 182,57 0,365 0,46% 184,5 0,369 0,46%
Streaming 12972,98 25,946 32,59% 13313,66 26,627 33,20%
Communication 874,98 1,750 2,20% 971,28 1,943 2,42%
Overlapp 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 39806,21 79,612 100,00% 40107,38 80,215 100,00%
MFLUPS 56,35 55,92
Grid500
Ant iter 500
Ant lattice 19197136
T10 T10
total Per iter total Per iter
Collide Inner 120521,91 241,044 68,51% 116084,02 232,168 68,44%
Collide border 497,77 0,996 0,28% 486,43 0,973 0,29%
Streaming 54886,31 109,773 31,20% 51599,22 103,198 30,42%
Communication 1456,69 2,913 0,83% 1438,46 2,877 0,85%
Overlapp 0,000 2,913 -0,83% 0,000 0,000 0,00%
Total 177362,675 351,812 100,00% 169608,133 339,216 100,00%
MFLUPS 54,12 56,59
Grid800
Ant iter 500
Ant lattice 65450258
T10 T10
total Per iter total Per iter
Collide Inner 443448,79 886,898 71,32% 445506,49 891,013 71,22%
Collide border 990,54 1,981 0,16% 987,31 1,975 0,16%
Streaming 174961,18 349,922 28,14% 176609,52 353,219 28,23%
Communication 2375,34 4,751 0,38% 2425,61 4,851 0,39%
Overlapp 0,000 0,000 0,00% 0,000 0,000 0,00%
Total 621775,84 1243,552 100,00% 625528,93 1251,058 100,00%
MFLUPS 52,63 52,32

79

THREAD IMPLEMENTATION

B.2.

Thread Four Tesla T10

LEELL €1°201 6.'901 16601 SdNT1dN
%0000} SZE'69L LP‘Z99¥8 %00°00L L6L'6LL L£°G6S68 %O00°00L S9.°6LL 2G'T8868 %00°00L ZIS‘V.lL 86°'G8Z.8 lejol
%000 000°0 0000 %000 0000 000°0 %000 000°0 000°0 %000 0000 000°0 depano
%96'L 9Le'e 12°/991 %9€'€ 1209 89°0L0€ %6E'C 9609 90°8¥0€ %Z6'L 8SE'E 91’6291 uojjedlunwiwoy
%90°0€ 206°0S 90°LSYST %LT0E L¥Z'¥S EV'ETLLC %VL'6C GSY'ES T9'LT/9C %8Y'0E 9LZ'ES 60°80992 Buiweans
%950 60 L6°LLY %.0°L 616} 99'656 %80°L 8€6'L €1'696 %9S5'0 ¥/6°0 10'/8¥% Japlog ap||jo)
%Cv'L9 €9L'VLL ¥2°180/G %0E'S9 €00°ZLL 9°10S8S %6169 9/2'8LL 9L°LEL6S %E0°L9 €20°/ZLL G9'L1G8S Jauuj apl||0Q
18}l 18d |ejo} I8y 18d |ejo} I8y lad [ej0} J8)led [ejo}

oLL oLt oL oL
9€LL6161 Sde| Uy
00s J8y juy
00SPHO
8'cll 6.'G8 1266 69°0L1 SdN1dN
%00°00L 8L¥'6E 680,61 %00°00L 682°2S €'PY1L9Z %00°00L 096‘vy 28°6.¥2Z %00°00L 1ZS‘0¥ 2S‘€9202 lejoL
%000 000°0 0000 %000 000°0 000°0 %000 000°'0 000°0 %000 0000 000°0 depano
%89'€ LS¥L e¥'ses %.9'S G96'C LE'T8YL %.LL'L TTT'E L0°LL9L %.8'€ 19S°L 62'€8. uonedlunwwoy
%66°LE 119CL €£°'S0€9 %SS2€ 810°ZL 90°60S8 %00°LE ZEB'EL Z2€'8969 %8LLE 088'CL 92'6E¥9 Buiweans
%€E€6'0 890 9L'v8l %69'L ¥88°0 68'Lvy %041 €920 8€'L8E %16°0 29€°0 G9'e8l Japlog ap||jo)
%6E€E9 886'VC 88'E6VCL %60°09 ZZvLE ¥O'LLISL %¥L'09 8€0°/Z ZL'6LGEL %SP'€9 PLL'GZ €8'958Z) Jauuj apl||0Q

18}l 18d |ejo} I8y 18d |ejo} I8y led [ej0} J8)Jed [ejo}

oLL oL oL oL
v18581Y 9de| Uy
00s I8y juy

nesjqaulejuo4

80

DETAILED TIMINGS

APPENDIX B.

Thread Four Tesla T10

20'001 6'G6 20201 ¥8'v01 SdN1dN
%00°00L 8.EVS9 ¥60°681LLZE %00°00L S05289 L9£°ZSZLYE %00°00L ¥¥S‘Ly9 6¥6°LLLOZE %00°00L SLEYZ9 S69°LG1ZLE 1ejol
%000 0000 000°0 %000 000°0 0000 %000 0000 0000 %00'0 0000 0000 depano
%SL'e 1S0'vL 92'Ge0L %E6'E 118°9¢ LL'SovEl %09 L1129l 2L'G5e8 %LL'0 0€8'v 6'vive uojjediunwwiod
%9062 ¥SL061 122056 %106 ¥6£'86l €6°'96166 %ee‘LC ¥0€'GLL 11°259.8 %08°2C 19G'€/l 2.'08.98 Buiweans
%lE€'0 200'C €£°€00l %650 €S0'v L¥'9202 %290 186°¢ 61'066 1 %c2E'0 286°lL 9/'066 18pJoq apl|jo)
%6V'89 L9L'8vY ¥'€80¥2C %lV¥'99 L¥Z'€Sy 1E'€2992C %Sv'69 LYS'Svy €9'€L/222 %lLL'LL EV6'EVy €E€°Ll6leT Jauuj apljjoD
18y 18d |ejo) ey ied e} o) Jed ()0} 1) led |ej0)

oLl oLl oLl oLl
8G20S¥S9 901)1e| JUY/
00S 18}l Juy
008PHD

81

B.3. MPI IMPLEMENTATION

B.3 MPI Implementation

82

APPENDIX B. DETAILED TIMINGS

MPI Two GPUs

Fontainebleau
Ant iter 500
Ant lattice 4485814
2070 1060
total Per iter total Per iter
Collide Inner 11667,71 23,335 14,96% 24376,95 48,754 30,93%
Collide border 94,13 0,188 0,12% 172,94 0,346 0,22%
Streaming 6271,13 12,542 8,04% 13545,88 27,092 17,19%
Communication 71619,92 143,240 91,84% 65100,09 130,200 82,59%
Overlap 11667,712 23,335 -14,96% 24376,953 48,754 -30,93%
Total 77985,18 155,970 100,00% 78818,9 157,638 100,00%
MFLUPS 28,76 28,46
Grid500
Ant iter 500
Ant lattice 19197136
2070 1060
total Per iter total Per iter
Collide Inner 52923,77 105,848 25,19% 111057,11 222,114 48,47%
Collide border 228,5 0,457 0,11% 463,16 0,926 0,20%
Streaming 29715,49 59,431 14,14% 53156,71 106,313 23,20%
Communication 180159,31 360,319 85,75% 175519,25 351,038 76,60%
Overlap 52923,770 105,848 -25,19% 111057,108 222,114 -48,47%
Total 210103,296 420,207 100,00% 229139,113 458,278 100,00%
MFLUPS 45,68 41,89
Grid800
Ant iter 500
Ant lattice 65450258
2070 1060
total Per iter total Per iter
Collide Inner 156740,95 313,482 31,68% 427354,9 854,710 69,96%
Collide border 357,64 0,715 0,07% 946,93 1,894 0,16%
Streaming 170184,76 340,370 34,40% 182552,29 365,105 29,88%
Communication 324202,64 648,405 65,53% 312559,66 625,119 51,17%
Overlap 156740,953 313,482 -31,68% 312559,664 625,119 -51,17%
Total 494745,037 989,490 100,00% 610854,119 1221,708 100,00%
MFLUPS 66,15 53,57

83

MPI IMPLEMENTATION

B.3.

MPI Four GPUs

LLLL 1G9% 8Ly G2'05¢ SdN1diN
%00°00L 60S°€9L SS.LL8 %00°00L 9LLCLY 85€902 %00°00L 28.°L0Y 80S°€6800Z %0000l ZLL'9L 9SE8E lejol
%97~ 608'9 ¥S'¥OVE %L2'L2- 9€S'ClL)L 1G8°2929S %lS'LL- S¥C'Or 99€'CCLEC %lv'S- 86LvY 0€Z'6602 depanQ
%9l 6089 S0V e %€EE'98 ¥62°9SE 80°L¥L8LL %lZ'Z6 96%¥°0.E 6°/2S8L %.L¥'S 86LY £2°660C uonediunwwoy
%L0°2€ 0€¥'cS L0'Gl29Z %ET'EL 18S'VS ¥S'€62.C %6S'L ¥8¥'0€ 8‘L¥esSl %EE'6E 6910 8Z'¥80SL Puiwesys
%950 0L60 90°GSY %vy'0 GE8‘L 62°/16 %020 8080 18°€0¥ %S0 00%'0 28'661 18pJoq apljjoD
%8€°29 69L°0LL 8G'¥80SS %.Z'/T 9€S'CLL 98°19Z9S %LS'LL SYZ'Ov 1€C2LET %SL09 €vL'9y 69°L.0€C Jauu| apl||oQ
181 lad |e10) J81 led |e10) J81 lad [e10} J81 lad |e10)
090} 0901 0202 0,02
9€1 /6161 201e| Juy|
00S 18}l Juy|
00SPHD
6276 2s‘'le 86'0¢ zlLzie SdN1diN
%00°00) ¥.S'Ly L18Ll€C %00°001 ¥86°C9L Z6V18 %00°00L 852°99L 621€8 %00°00L 8Ll ¥.SO0L lejol
%LV LL- €1€'8 €8G'9GLY %cCE'OL- 665'9C 6l1'662EL %<C6'8- 128Vl 199'€lv. %GE'Q- G9.°L €l¥'z8es depanQ
%LY'LL €LES 8G‘0GL ¥ %YE'L6 G988l 89°TEVYL %69'G6 06065l €6't7S6. %GE'8 G9/°L 11'288 uonediunwwoy
%68'€E €219l 951908 %lec'8 /8€'€l S¥'€699 %¥0'y GLL'9 GZ'lSe€ %0S'0€ 0Sv'9 68'veze Buiwesss
%¥6'0 9vP0 G.'zee %S¥'0 2eL0 6'G9¢ %120 ¥S¥0 98922 %90°L ¥2Z'0 9L‘ZLL 18pJoq apljj0D
%ZLL'G9 900°LE ¢8°C0SSL %cCE'9L 6659 Cv'66ZEl %c6'8 L28'vl 99ClLyl %¥v'89 €lv'vl ¢l'9gTl Jauu| apl||oQ
J8n lad |e10) J81 led |B10) J81 lad [e10} J81 lad |e10)
090} 0901 0202 0,02
718598y 201e| Juy|
00S 18}l Juy|

nesjqaulejuo4

84

DETAILED TIMINGS

APPENDIX B.

MPI Four GPUs

L1€0l 889 L1'6L €666l SdN1dIA
%00°00L €LY'VE9 8ZL'90CLLE %00°00L 99€°LS8 868°C89S2y %00°00L 969928 ZZZ'8YEELY %00°00L S9€°L2E 2.2°289¢9l lejol
%€0€- ¥S2¢'6L 012296 %89°LG- 266'6EY 216'G666LC %P¥8'8L- €11°GGL 1G¥'988LL %20C- 6299 8LE'VLEE depang
%€E0'C ¥SC'6L 012296 %129, S088¥9 62°T0¥PCZE %90°6L 18S'€S9 6206192 %20T 6299 zZEvlLEE uopjedlunuiwod
%1l6°0E 280°906) 8E'€Y086 %EE'CZ 9€9'86) €6'LLE66 %ZLL'0C 999°'LLL G8CTE8S8 %c0°ZS 00€°0LL +Z'0S51S8 Puiwessys
%LE0 9¥6‘L S0€l6 %9%'0 GZ6'€ 89C96L %810 0S¥l 80'Gz. %220 22l'0 €0°L9¢ J8pJoq apl||0D
%8.89 18€9Ey €0618lC %89°LS T666EV 16'G666LC %P¥88L €12°GSL G¥'988LL %9.L¥ ZPE'9SL LO'LLL8L Jauuj apljjoQ
J9) Jad |ej0} J9) Jad [Bj0} J9) 1ad [B10} J9) 184 |e10}
0901 0901 0202 0202
856206159 2ohie| Juy|
00S 18)1 JUyY|
008PHD

85

B.4. HYBRID IMPLEMENTATION

B.4 Hybrid Implementation

86

DETAILED TIMINGS

APPENDIX B.

Hybrid Four GPUs

229l GLO¥ 718y ge'Lee SdN1diN
%00°00} 28L°G9L ¥¥Z°16S28 %00°00L ¥6S‘0Ly 0€0°L62S0Z %00°00L 28.°86€ LLLL6E66L %00°00L ¥L0°€8 066°90SL¥ lejol
%9lc- 19S'€ GeL'esll %02'L2- 269°'LLL G18'GY8SS %9Z'Cl- 098°CS 20862792 %ll'€- ¥80°C 9LL°L¥SL depanQ
%9L‘c 195°'C .'€8.1 %92'98 69LVSE €LV80/LL %SL'26 1L9¥/9€ 1G'0€/€8L %lLL'€ $80°C 8/°L¥SL uonediunwwoy
%0¥'2€ L1S'€S G6'GG.92 %0€'€l 009'vS 9L°00€LC %29°L ¥OV'0E 6.°102S1 %88'GE €8L.'6¢ ¥S°L68YI Puiwesys
%GS'0 2060 79GP %Yy'0 ¥zZ8‘lL 71216 %€C'0 8160 18'8GY %¥S'0 LS¥'0 ge‘see 18pJoq apljjoD
%9029 ¥92°0L1 1°Z8ESS %02'/2 269'LLL 28'G¥8SS %9Z'€l 098°CS 8'6¢v9C %8G‘€9 082S 1°06£92 Jauu| apl||oQ
J8)lad 210} J8)Jad 210} 18l lad |e10} I8l 1ad |e10)
090} 0901 0202 0,02
9€1/6161 201e| Juy|
00S 18}l Juy|
00SPHD
9902l zlL'6e y¥'6C 144 SdN1diN
%00°00}L 8LL°LE ¥88°8858L %00°00L LL6°0SL CEV'SSYSL %00°00L SLE°TSL $9S°L8L9L %00°00L 880°8L 6.8°Ct06 lejol
%ey'y- G¥9'L 8lg'ges %€0°02- €220 €LV LLLGL %EL'L- 6LL°LL 8599'688S %.8'L- vev'L SI8'LLL depanQ
%ey'y Sv9'l [A44]] %8188 1/0‘€El 29°8€S599 %SY'S6 9ev'Syl Le'8LlgL %.8'L ¥Z¥'l 28‘LLL uonediunwwoy
%8Y'vE 618°CL €£'60¥9 %9Z'LL 886'9L SO'v6¥8 %LEY 199'9 G¥'08Z€ %l8'VE 1629 6¥'87LE Buiwesss
%G6'0 ¢SG€'0 96°G/L %950 9¥8°0 9/.°2ey %G2'0 8/€0 16'881 %c0'L S8L°0 A4 18pJoq apljj0D
%.S'¥9 200'¥¢ 9°€002Z| %€0'0Z €220 LV'LLLSL %EL'L 6LL°LL 99'688S %9L‘¥9 909°'LL 16°T08S Jauu| apl||oQ
J8)lad 210} J8)lad 210} 18 lad |e10} I8l 1ed |e10)
090} 0901 0202 0,02
718598y 201e| Juy|
00S 18}l Juy|

nesjqaulejuo4

87

HYBRID IMPLEMENTATION

B.4.

Hybrid Four GPUs

62°201 28'6. Ze'L8 89'661 SdNT14N
%00°001 €02°209 ZSE'L09EOE %00°00L LZ6°6L8 ZLE'€96607 %00°00L 298'V08 L6E‘SEPZOV %00°00L 6.L°LZE TLE'688€E91L 1ejol
%LLL- 880°L 9SLVYSE %98°TS- TYY'EEY SG¥0LZIILT %LE'6L- 62V'SSL ¥ZEVLLLL %9Z'L- 9Ll ¥60'8502 depano
%L 880°L 9L'¥YSE %18°'GL 919°129 ¥8°/080LE %9G'8L 2ZETE9 82'0919LE %9Z'L 9Ll 60'850C uonedlunwwoy
%€9'6C LL6'6LL ¥P'GG668 %Cl'€CT GOY'V6L ZP'TETL6 %92 960°LLL Z1'8¥SS8 %L6°LG 9¥E'0LL €1°€LLS8 Buiweans
%LE0 168t ZV'G6 %.Lv'0 9¥8'€ ZL'eZ6l %8L°0 6¥¥'L 8v'¥zTL %220 ¥L2'0 L0°LGE Japlogq apl|jo)
%90°0L LOY'SZY 6V°00L2LC %98CS ZYY'EEy SO0°LZL91ZT %LE'6L 62V'SSL 2EVLLLL %l8°Ly 811°9GL 81°65€8. Jauuj apljjoQ
J9) Jad |ej0) J9) Jad |Bj0) 18}l 184 |ejo} 18}l 184 |ejo}
090} 0901 0.0C 020¢
85205159 dde| Uy
00s I8y Juy
008PMO

88

Appendix C

Selected Source Code

In this appendix the main GPU kernels used in this thesis are listed. Com-
plete source code is available upon request to thor.kristian@tksoftware.no

C.1 Collision Phase

The following code listing shows the kernel implementing the collision phase.

1 __kernel void collide_and_swap(--read_only image3d_t solids ,
2 _-global real_t *f0,
3 _-global real_t =fl,
4 --global real_t =*=f2,
5 --global real_t =*f3,
6 --global real_t *f4,
7 --global real_t *f5,
8 --global real_t *f6,
9 --global real_t =f7,
10 --global real_t =*f8,
11 --global real_t *f9,
12 --global real_t *f10,
13 --global real_t *fl11,
14 --global real_t *f12,
15 --global real_t *f13,
16 --global real_t *fl14,
17 _-global real_t *fl15,
18 _-global real_t *f16,
19 _-global real_t =f17,
20 _-global real_t *f18,
21 _-local real_t =xlattice ,
22 real_t omega,

23 real_t force,

24 real_t avrage_dencity ,
25 int ant_vec,

26 int offset_x ,

27 int offset_y ,

28 int offset_z)

29 {

30

31 const int x = get_global_id (0) + offset_x;

32 const int y = get_global_id (1) + offset_y;

33 const int z = get_global_id (2) 4+ offset_z;

34

35 const int nx = get_global_size (0);

36 const int ny = get_global_size (1);

37 const int nz = get_global_size (2);

38

89

C.2. STREAMING PHASE

39 const int Inx = get_local_size (0);

40 const int Iny = get_local_size (1);

41 const int Inz = get_local_size (2);

42

43 const int Ix = (get-local_-id(2) * Iny * Inx) + (get-local_id (1) * Inx) +
get_local_id (0);

44

45 int4 this_coord = (int4) (x,y,z,0);

46 int this_index = read_imagei(solids ,sampler,this_coord) .x;

47

48 const int local_index = lx * ant_vec;

49

50 //Make pointer to this threads starting pos in the shared lattice memory

51 _-local real_t xlocal_lattice = &lattice[local_index];

52

53 if (this_index != —-1) {

54 copy-to_shared (f0,f1 ,f2,f3,f4 ,f5,f6 ,f7,f8 ,f9,f10,

55 f11,f12,f13 ,f14 ,f15,f16 ,f17 ,f18 ,

56 local_lattice ,this_index);

57 }

58 barrier (CLK_.LOCALMEM_FENCE) ;

59

60 if (this_index == —1) {

61 return;

62 !

63

64 // Compute density from the particle distribution functions

65 real_t delta_.rho = get_rho_shared(local_lattice);

66 real_t rho = delta_rho + avrage_dencity;

67

68 //Compute wvelocity in =z, y, and z directions from the particle distribution
functions

69 real_t ux = get_ux_shared (local_lattice ,rho);

70 real_t uy = get_uy_shared(local_lattice ,rho);

71 real_t uz = get_uz_shared (local_lattice ,rho);

72

73

74 //precalculeting some of the constants wused later

75 real_-t uSqr = ux*ux + uyxuy + uz*uz;

76 real_t u-sqr = (1.0f/3.0f) % uSqr;

s real_-t f_eq;

78 real_t cu;

79 real_t external_force = 0.0f;

80

81

82 #define C3D(i,j) c-3d[3x(i)+(j)]
83 for (int i = 0; i < 19 ; i++){

84

85 //Compute local equalibrium

86 cu = C3D(i,0)*ux + C3D(i,1l)*uy + C3D(i,2)%*uz;

87 f_eq = t-3d[i]*delta_rho + t_-3d[i]*rho=*((3.fxcu) + (cuxcu) — u_sqr);

88 external_force = C3D(i,0) = 3.0f * force * t_.3d[i] % avrage_dencity; //Flyttall
89

90 local_lattice [i] += omega * (f_eq — local_lattice[i]) 4+ external_force;
91 }

92 #undef C_3D

93

94 barrier (CLK.LOCAL.MEM._FENCE) ;

95

96 //swap when coppying back to global memory
97 copy-to_global (f0,f10,f11 ,f12,f13 ,f14 ,f15 ,f16 ,f17,

98 f18 ,f1,f2 ,f3 ,f4 ,f5,f6 ,f7 ,f8 ,f9,
99 local_lattice ,this_index);
100 }

C.2 Streaming Phase

The following code listing shows the kernel implementing the streaming
phase.

1 __kernel void stream_and_swap(--read_only image3d_-t solids ,
2 _-global real_t *f0,
3 _-global real_t =fl,
4 _-global real_t =*f2,

90

APPENDIX C. SELECTED SOURCE CODE

5 --global real_t =f3,
6 --global real_t *f4,
7 --global real_t *f5,
8 --global real_t *f6,
9 --global real_t =*f7,
10 --global real_-t *f8,
11 --global real_-t *f9,
12 --global real_-t *fl10,
13 _-global real_t =fl1l,
14 _-global real_t *fl12,
15 _-global real_t *fl13,
16 __global real_t =xfl14,
17 _-global real_t *fl5,
18 _-global real_t =*=f16,
19 --global real_t =f17,
20 --global real_t =f18,
21 _-global real_t *xmax_change)
22

23 {

24 const int x = get_global_id (0);

25 const int y = get_global_id (1);

26 const int z = get_global_id (2);

27

28 const int nx = get_global_size (0);

29 const int ny = get_global_size (1);

30 const int nz = get_global_size (2);

31

32 int4 this_coord = (int4) (x,y,z,0);

33 int4 neighbour_coord;

34 real_t _max = 0.0;

35

36 int this_index = read_imagei(solids ,sampler,this_coord).x;
37 int neighbour_index;

38

39 if (this_index == —1) {

40 return;

41 !

42

43

44 #define periodicX true
45 #define periodicY true
46 #define periodicZ false

47

48 // Swap 1 and 10

49 neighbour_coord = (int4)(get_-next_x(x,nx,1,periodicX),

50 get_next_y (y,ny,1l,periodicY),

51 get_next_z (z,nz,1,periodicZ),

52 0);

53 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

54 neighbour_index = read_imagei(solids ,sampler ,neighbour_coord) .x;
55 if (neighbour_index >= 0){

56 swap-global(&fl10[this_index],&fl [neighbour_index],&_max) ;
57 !

58 !

59 // Swap 2 and 11

60 neighbour_coord = (int4)(get-next_x(x,nx,2,periodicX),

61 get_next_y (y,ny,2, periodicY),

62 get_next_z (z,nz,2, periodicZ),

63 0);

64 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

65 neighbour_index = read_-imagei(solids ,sampler,neighbour_coord) .x;
66 if (neighbour_index >= 0){

67 swap-global(&fll [this_index],&f2[neighbour_index],& _max) ;
68 }

69 1

70 // Swap 3 and 12

71 neighbour_coord = (int4)(get_-next_x(x,nx,3,periodicX),

72 get_next_y (y,ny,3,periodicY),

73 get_next_z (z,nz,3,periodicZ),

74 0);

75 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

76 neighbour_index = read_-imagei(solids ,sampler,neighbour_coord) .x;
77 if (neighbour_index >= 0){

78 swap-global(&fl12[this_index],& f3 [neighbour_index],&_max) ;
79 !

80 !

81 // Swap 4 and 18

82 neighbour_coord = (int4)(get_-next_x(x,nx,4,periodicX),

83 get_next_y (y,ny,4,periodicY),

84 get_next_z (z,nz,4,periodicZ),

85 0);

86

87 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

91

C.3. BORDER EXCHANGE PHASE

88 neighbour_index = read_-imagei(solids ,sampler,neighbour_coord) .x;
89 if (neighbour_index >= 0){

90 swap-global(&f13[this_index],& f4 [neighbour_index],& _max) ;
91 }

92 3

93 // Swap 5 and 14

94 neighbour_coord = (int4)(get-next_-x(x,nx,5,periodicX),

95 get_next_y (y,ny,5, periodicY),

96 get_next_z (z,nz,5,periodicZ),

97 0);

98

99 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

100 neighbour_index = read_imagei(solids ,sampler,neighbour_coord) .x;
101 if (neighbour_index >= 0){

102 swap-global(&fl4[this_index],&f5[neighbour_index],& _max) ;
103 }

104 }

105 // Swap 6 and 15

106 neighbour_coord = (int4)(get_next_x(x,nx,6,periodicX),

107 get_next_y (y,ny,6,periodicY),

108 get_next_z(z,nz,6,periodicZ),

109 0);

110

111 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

112 neighbour_-index = read-imagei(solids ,sampler,neighbour_coord) .x;
113 if (neighbour_index >= 0){

114 swap_global(&fl15[this_index],& f6 [neighbour_index],& _max) ;
115 }

116 }

117 // Swap 7 and 16

118 neighbour_coord = (int4)(get_next_x(x,nx,7,periodicX),

119 get_next_y (y,ny,7,periodicY),

120 get_next_z(z,nz,7,periodicZ),

121 0);

122

123 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

124 neighbour_index = read-imagei(solids ,sampler,neighbour_coord) .x;
125 if (neighbour_index >= 0)

126 swap-global(&f16[this_index],& f7 [neighbour_index],& _max) ;
127 }

128 3

129

130 // Swap 8 and 17

131 neighbour_coord = (int4)(get_next_x(x,nx,8,periodicX),

132 get_next_y (y,ny,8, periodicY),

133 get_next_z(z,nz,8,periodicZ),

134 0);

135

136 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

137 neighbour_index = read_imagei(solids ,sampler,neighbour_coord) .x;
138 if (neighbour_index >= 0){

139 swap-global(&f17 [this_index],& f8 [neighbour_index],& _max) ;
140 }

141 }

142 // Swap 9 and 18

143 neighbour_coord = (int4)(get-next_x(x,nx,9,periodicX),

144 get_next_y (y,ny,9, periodicY),

145 get_next_z(z,nz,9,periodicZ),

146 0);

147 if (neighbour_coord.z >= 0 && neighbour_coord.z < nz){

148 neighbour_index = read_imagei(solids ,sampler,neighbour_coord) .x;
149 if (neighbour_index >= 0){

150 swap-global(&fl18[this_index],&f9 [neighbour_index],& _max) ;
151 }

152 }

153 max_change[this_index] = _max;

154 }

C.3 Border Exchange Phase

The following code listing shows the kernel used to gather and scatter the
particle distribution function into a single buffer for transferring to and from
the host in the border exchange phase.

92

APPENDIX C. SELECTED SOURCE CODE

OO U s WN

93

*f0 ,

_-kernel void copy-to_from_ghost_layer(_-_global real_t
--global real_t *f1,
--global real_t *f2,
--global real_t *f3,
--global real_t =*f4,
--global real_-t *f5,
--global real_-t *f6,
--global real_t *f7,
_-global real_t =*f8,
_-global real_t *f9,
_-global real_t *fl10,
_-global real_t =*fl1,
_-global real_t =*=f12,
_-global real_t =*=f13,
--global real_t =fl4,
--global real_t *=fl15,
--global real_t xf16,
--global real_t *f17,
--global real_t *f18,
--global real_t xbuffer,
int ant_-vec,
int start_index ,
int to)
const int offset = get_global_id (0);
const int ant_element = get_global_size (0);
const int index = start_index 4+ offset;
__global real_t =xf[19];
f 0] = f0;
£ 1] = f1;
£ 2] = f2;
f[3] = £3;
f[4] = f4;
f[5] = f5;
f[6] = f6;
fl 7] = £7;
f[8] = 83
f 9] = f9;
£[10] = f10;
f£{11] = f11;
f(12] = f12;
f[13] = f13;
fl14] = f14;
f[15] = f15;
f(16] = f16;
fl17] = f17;
f(18] = f18;
for (int i = 0 ; i <ant_vec; i++){
if(to == 1
buffer [(i * ant_element) + offset] = f[i][index];
}else{
fli][index] = buffer[(i * ant_element) + offset];

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Project goal
	Outline

	Parallel Computing and The Graphical Processing Unit
	Parallel computing
	Forms of Parallelism

	Hardware configuration
	Shared Memory Multiprocessor
	Cluster

	GPGPU Programming
	OpenCL.2
	OpenCL Architecture

	Programming Models in Parallel Computers
	Modeling Execution of Parallel Programs
	Tesla S1070

	Computational Fluid Dynamics and Porous Rocks
	Computational Fluid Dynamics
	Lattice Boltzmann Method
	Fundamentals

	Related Work
	Porous Rocks

	Implementation
	Issues With Naive LBM on GPU
	Tuning LBM for Execution on GPU
	General implementation
	Initialisation phase
	Collision phase
	Streaming phase
	Border exchange phase
	Boundary Conditions
	Calculating Permeability
	Convergence Check

	Thread Implementation
	MPI Implementation
	Hybrid Implementation

	Results and Discussion
	Test Environments and Methodology
	Validation
	Validation Against Poiseuille Flow
	Porous Rock Measurements

	Performance Measurements
	Single GPU
	Thread Implementation
	MPI Implementation
	Hybrid Implementation

	Discussion

	Conclusions and Future Work
	Future Work

	Bibliography
	Hardware Specification
	Detailed Timings
	Single GPU
	Thread Implementation
	MPI Implementation
	Hybrid Implementation

	Selected Source Code
	Collision Phase
	Streaming Phase
	Border Exchange Phase

