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Problem description

This project focuses on developing parallel codes for rigid body interactions.
The focus will be on parallelization in Open CL for GPUs using a fairly simple
graphics interface. Two or more rigid bodies will be interacting in this real-time
simulation.
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Abstract

Rigid body simulations are useful in many areas, most notably video games and
computer animation. However, the requirements for accuracy and performance
vary greatly between applications.

In this project we combine methods and techniques from different sources to
implement a rigid body simulation. The simulation uses a particle representa-
tion to approximate objects with the intent of reaching better performance at
the cost of accuracy. We simulate cubes in order to showcase the behavior of
our simulation, and also to highlight its flaws.

We also write a graphical interface for our simulation using OpenGL which al-
lows us to move and zoom around our simulation, and choose whether to render
cube geometry or the particle representations. We show how our simulation
behaves in a realistic way, and when running our simulation on a CPU we are
able to simulate several hundred cubes in real-time.

We use OpenCL to accelerate our simulation on a GPU, and take advantage
of OpenCL/OpenGL interoperability to increase performance. Our OpenCL
implementation achieves speedups up to 12 compared to the CPU version, and
is able to simulate thousands of cubes in real-time.
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Chapter 1

Introduction

In this chapter we briefly explain what a rigid body simulation is, and our
motivations for creating one. We also explain what contributions our work
brings to the field.

In simple terms, a rigid body simulation is a simulation of interacting objects
that do not deform when they collide. In real life such objects do not exist,
as all objects will deform when they collide with something. However, this
deformation can be computationally expensive to calculate.

In some cases the deformation of an object is an important factor in the physical
behavior of the object. In these cases rigid body simulation is not appropriate.
Examples of an object like this is a piece of cloth, or jelly.

However, for many objects the deformation is very insignificant. When simulat-
ing such objects it can be a good idea to simplify the simulation by assuming
that the objects cannot be deformed at all, in other words to do a rigid body
simulation.

1.1 Motivation

One area where rigid body simulations is particularly useful is computer ani-
mation. Even with sophisticated software, animation is often a long and work
intensive process. While manually animating realistic physics for a couple of
objects is no problem, animating thousands of them is. For such a task, sim-
ulation is the only feasible option. Computer animation does not require the
rigid bodies to be simulated in real time. However, good performance is still
important. The simulation time will directly influence the productivity of the
animator. A fast simulation will allow him or her to discover problems faster,
and allows for more experimenting for better results.

A second important area for rigid body simulations is video games. A com-
mon trait for all rigid body simulation in video games is that they have to be
real-time. This effectively limits the complexity of the simulation to something
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that looks and feels right, rather than being absolutely physically correct. How-
ever, between different games, the requirement for complexity in the rigid body
simulation can vary.

Sometimes the rigid body simulation can be important to the gameplay itself.
An example of this could be an adventure game where you have to move objects
around and jump on them to reach your goal. In other cases the rigid body
simulation is only for visual effect. An example of this could be the falling
debris from a destroyed unit in a strategy game. Clearly, the first example
requires a more accurate rigid body simulation than the latter.

In this thesis we want to especially focus on the last example; simulations which
do not require very fine accuracy. Instead we aim for these simulations to be
very fast, while at the same time look and feel correct.

1.2 Contributions

We provide a full open source implementation of a rigid body simulation, using a
particle method. The source code can be found at http://code.google.com/
p/particle-rigid-body/. We combine techniques from different sources to
create a fast and stable simulation. We accelerate our simulation with OpenCL,
and show how OpenCL is well suited to this task.
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Chapter 2

Rigid Body simulation

In this chapter we describe what a rigid body simulation entails, and present
some of the existing techniques and methods available.

A rigid body simulation can be roughly divided into two parts, collision detec-
tion and collision response [3]. The purpose of collision detection is to check
whether the rigid bodies are in contact. If they are in contact, the simulation
should also at this point extract any information about the collision necessary
for the next step, collision response. This information can vary depending on
the techniques used, but examples might be information such as intersection
points and penetration depths.

Collision response is about creating appropriate forces and impulses between
the colliding rigid bodies, to make the objects behave in accordance with the
laws of physics.

The computation time spent for each of these two parts is roughly equal, making
it important to be able to efficiently perform both.

2.1 Techniques and methods

Most collision detection algorithms use polyhedron representations for the rigid
bodies. This means the bodies are made of vertices, edges and faces, just like the
representation used by 3D graphics libraries such as OpenGL. Many algorithms
also require that the bodies are convex. Fortunately, non-convex models can
always be split into a group of convex ones. One technique to do this is using
binary space partitioning [9]. However, finding a minimal partitioning is NP-
hard, and many partitioning methods often produce a large number of convex
smaller bodies, which is inefficient.

It is important for collision detection to limit the search somehow. Testing every
single pair of objects for a possible collision is very computationally intensive.
Considerable time can be saved by using a space partition. There are various
different ways to do this, and some of the most notable are voxel grids, octrees,
k-d trees and BSP trees [3].
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Another technique to improve the performance of collision detection is to use a
bounding volume of the body, such as a sphere or box. Detecting collisions with
these shapes is a lot simpler and faster, however, they often do not provide a
good approximation of the original shape.

The most accurate methods for collision response are the Finite Element Meth-
ods. They work by decomposing the body into a large number of smaller ele-
ments and then calculate the stress and strain on each of these smaller elements.
However, these methods are computationally expensive and can not be used in
real-time simulations. They are fine for testing engineering structures, but can
not be used in interactive applications.

One of the most popular group of methods are Penalty Methods, largely because
they are easily implemented. When two objects are found to be colliding, these
methods use information about the collision to calculate an appropriate force
between them. A common example is the spring model, in which a spring force
is used to force contacting points apart.

A problem with these methods is that they often require tuning of several vari-
ables to create realistic results, such as spring coefficients in the case of the spring
model. There is also little evidence to suggest that these methods accurately
simulate what happens in real life. However, they can readily be applied where
accuracy is not as important as simply getting realistic looking results.

Impulse-Based Methods model the forces between bodies through a series of
impulses. An object resting on the ground will actually be vibrating up and
down in a tiny movement, due to repeated impulses from the ground.

2.2 Bullet Physics Library

Bullet Physics Library [1, 5] is an open source physics engine featuring collision
detection, soft body and rigid body dynamics. The library is widely used for
video games, movies and 3D modelling software. Examples of products that have
used Bullet include the video game Grand Theft Auto IV by Rockstar Games,
the benchmarking utility 3D Mark 2011 by Futuremark, the Hollywood movie
2012 by Sony Pictures Imageworks, and the 3D modelling tools Blender 3D and
Cinema 4D.

We have chosen to compare our results with the Bullet Physics Library be-
cause it is free, open source, cross platform, and consequently in widespread
use.
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Chapter 3

Parallel computing and
GPU programming

3.1 Parallel Computing

Parallel computing is a form of computation in which multiple calculations are
performed simultaneously. This is based on the principle that large problems
can often be divided into smaller problems, which can be solved concurrently,
opposed to sequentially like traditional non-parallel computing.

The main driving force between the recent development into parallel computing
comes from the stagnation of the frequency of modern processors. The power
density in modern processors are approaching the limit of what silicon can han-
dle with current cooling techniques. This is known as the power wall.

Parallel computing can be embodied in many different forms, many of which
do not exclude each other. The following are some of the layers of parallelism
exposed by modern hardware [4]:

Multi-chip parallelism This means having several physical processor chips
in a single computer. These chips share resources such as system memory
through which the chips can relatively inexpensively communicate.

Multi-core parallelism This is similiar to multi-chip parallelism, with the
distinction that the cores are all contained in a single chip. This lets
the cores share resources like on-chip cache, allowing for less expensive
communication.

Multi-context (thread) parallelism This is when a single core can switch
between multiple execution contexts with little or no overhead.

Instruction parallelism This is when a single processor can execute more
than one instruction simultaneously.

Traditionally, floating-point operations were considered expensive, while mem-
ory accesses were considered cheap. These roles have since been reversed, and

17



memory has become the limiting factor in most applications. Data has to be
transferred through a limited number of pins at a limited frequency, causing
what is known as the von Neumann bottleneck.

3.1.1 Heterogeneous Computing

Recent developments are also showing rising interests in heterogeneous com-
puting. Heterogeneous computing refers to systems that use a combination of
different types of computational units.

The motivation for using heterogeneous systems is that although problems can
be divided into smaller problems, all these smaller problems might not be of the
same nature, and might benefit from different hardware architectures.

In the past, advances in technology and frequency scaling allowed most appli-
cations to increase in performance without structural changes. However, today,
the effect of these advances are less dramatic since new obstacles such as the
von Neumann bottleneck and the power wall have been introduced. Brodtkorb
et al. [4] mentions the combination of a Central Processing Unit (CPU) and
a Graphics Processing Unit (GPU) as one of the most interesting examples of
heterogeneous systems for node level heterogeneous computing.

While neither the CPU or the GPU are heterogenous systems by themselves,
they form a heterogeneous system when they are used together.

3.2 GPGPU

Using the GPU for computations traditionally handled by the CPU is known as
General Purpose computing on Graphics Processing Units (GPGPU). The GPU
is a specialized accelerator, designed for the acceleration of graphics computa-
tions. Their parallel nature allows them to efficiently perform large numbers of
floating-point operations.

In terms of Floating Point Operations per Second (FLOPS), the GPU has has
far surpassed the CPU, as can be seen in figure 3.1.

The reason for this huge discrepancy in floating-point capability is that the GPU
is specialized for intensive, highly parallel computation, and is designed such
that more transistors are devoted to data processing rather than flow control
and data caching.

An illustration of the distribution of transistors in a CPU and a GPU can be
seen in figure 3.2.

The GPU also has much higher memory bandwidth than the CPU, which can
be seen in figure 3.3.

These two factors make the GPU a very interesting platform for computationally
intense applications. A GPU can almost be seen as a small supercomputer,
allowing a single computer to perform simulations that previously belonged to
the domain of larger clusters of computers.
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Figure 3.1: Development of Floating Point Operations per Second (FLOPS) in
NVIDIA GPUs and Intel CPUs. [8]

Figure 3.2: Distribution of transistors in a CPU and a GPU [8].

This has created ample new possibilities for the scientific community. Problems
such as fluid simulation, molecular dynamics, medical imaging and many more
are experiencing drastic performance improvements. This can often mean the
difference between seeing the results of an operation almost immediately, as
opposed to waiting for hours or even days.

However, a downside to using GPUs is that they typically use a PCI express bus,
which can become a very serious bottleneck in cases where the entire problem
does not fit in the GPUs memory. A second generation PCI express x16 bus
allows a theoretical maximum of 8 GB/s of data transfer between CPU and
GPU memory.

Initially, GPUs were not designed for GPGPU. GPUs were programmed using
shaders, a set of software instructions performed on the GPU. These shaders
are tightly knit to graphical concepts such as vertices and pixels. In order to
perform operations that were not related to graphics, the problem had to be
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Figure 3.3: Development of Memory Bandwidth for NVIDIA GPUs and Intel
CPUs. [8]

transformed so that the GPU could solve it as if it were graphics-related. This
was often not only difficult, but also very limited, since a problem could not
always be solved efficiently with the limitations of the shaders.

Today however, we have frameworks and languages tailored especially for GPGPU.
Examples of these are NVIDIAs Compute Unified Device Architecture (CUDA),
and OpenCL. While CUDA is limited to NVIDIA devices, OpenCL is a com-
pletely open standard, and has implementations across a wide range of de-
vices and vendors, including NVIDIA and AMD. We go into more detail about
OpenCL in chapter 4.
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Chapter 4

OpenCL and OpenGL

In this chapter we briefly describe two of the core technologies we are using
in our application. First we describe OpenCL, which we use to accelerate our
simulation on the GPU. Then we describe OpenGL, which we use to render our
simulation, and see how OpenCL and OpenGL can work together.

4.1 OpenCL

OpenCL (Open Computing Language) is a framework suited for parallel pro-
gramming of heterogenous systems [12]. The framework includes the OpenCL
C language, which is a language based on C99, for writing kernels, functions
that execute on OpenCL devices such as a GPU.

An OpenCL device consists of multiple Compute Units, which in turn consists
of multiple Processing Elements. These correspond to the streaming multipro-
cessors and scalar processors of a GPU respectively. When a kernel is to be
executed it is put into a command queue, and then assigned to appropriate
compute units and processing elements.

OpenCL supports two different programming models. They are a Data Paral-
lelÂămodel, and a Task parallel. In the data parallel model the same kernel is
executed simultaneously across the compute units or processing elements. In the
task parallel model different kernels are executed. For our application we want
to use the data parallel model. This is because we will be simulating many ele-
ments, and want to use the same kernel for every element. Filling the command
queue with a kernel for each simulation element is very inefficient.

The data parallel kernel is divided into Work Items. A work item is the share
of the kernel executed by a single processing element. When enqueueing a data
parallel kernel the user has to specify the total number of work items the kernel
should have, and also how many of these work items should be given to each
compute unit. The group of work items given to a compute unit is called a
Workgroup. The user has to take care to provide reasonable numbers, since the
memory available in a compute unit is limited. The total number of work items
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also needs to be divisible by the number of work items given to each compute
unit, in other words the size of the workgroup.

4.2 OpenGL

OpenGL, short for Open Graphics Library, is a software interface to graphics
hardware [10]. It is a 3D graphics and modeling library, which is very fast,
and also very portable. OpenGL implementations can be found on all major
platforms and operating systems, including of course Windows, Mac OS and
Linux.

OpenGL is intended to be used with hardware designed and optimized for dis-
playing and manipulating 3D graphics. Software-only implementations do ex-
ist, however they generally do not perform as well, and may lack special ef-
fects.

OpenGL is procedural rather than descriptive. What this means is that instead
of describing the scene and how it should look, the programmer instead writes
step by step the operations required to create the desired appearance. These
steps are calls to the many OpenCL functions which are used to draw graphics
primitives such as points, lines and triangles in three dimensions.

OpenGL does not include any sort of window management, or user interac-
tion. Each operating system has its own functions for this purpose and has the
responsibility of giving OpenGL the control to draw images in a window. How-
ever there are cross platform libraries for this, such as GLUT (OpenGL utility
toolkit) and SDL (Simple DirectMedia Layer).

4.2.1 Vertex Buffer Objects (VBOs)

A Vertex Buffer Object is an OpenGL extension that provides functions for up-
loading graphics data, such as vertex positions, normal vectors, color values etc.,
to a video device for non-immediate-mode rendering. Non-immediate-rendering
basically means that the graphical elements are not rendered immediately as
they are calculated. Instead the values are saved in a buffer on the device until
all elements in the buffer are ready to be rendered. Then they are all rendered
at once. This offers better performance, primarily because the data is located
in video device memory rather than ordinary system memory, which allows the
device to render it directly.

4.2.2 OpenCL/OpenGL interoperability

When using OpenCL there is an even greater incentive for using VBOs. Since
calculations are performed on the GPU there should no longer be necessary to
upload the data to the VBO buffers from system memory. Indeed, OpenCL
and OpenGL offers interoperability which allows VBO buffers to be read and
written to directly by the OpenCL kernels.
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Chapter 5

Physical Model

In the following sections we present the physical model we have chosen for our
implementation and go through the physics equations that govern the movement
and behavior of the rigid bodies. Our physical model is mostly based on the
work of Takahiro Harada in the book GPU Gems 3 [7].

5.1 Particle approach

In our implementation we use particles to calculate the physical behavior of the
rigid bodies, similar to the approach taken by Tanaka et. al [11], and Harada
[7]. This approach offers both advantages and disadvantages compared to the
alternative approach of using more complex geometry defined by vertices, edges
and faces for calculations. Many of these advantages and disadvantages are
discussed in the following sections.

The particles of a body have a fixed position relative to each other. It’s worth
noting that although we use the term particle throughout this report, a more
correct term would have been sphere since the particles have a radius. However,
in order to use the same terminology as previous works, and avoid confusion
with a spherical rigid body, the term particle will be used.

We chose to let our rigid bodies be cubes, represented by 27 particles in a 3*3*3
formation. An illustration of this can be seen in figure 5.1.

The motivations for this are numerous. First of all cubes are quite simple to
model, having only 6 faces. Secondly, humans are quite familiar with how a
cubic rigid body moves in real life, namely a dice. This is makes it easy to spot
whether the simulation is behaving as expected. Finally, and perhaps most
importantly, cubes have the ability to stack on top of each other. Poor support
for stacking rigid bodies is a weakness of using particles to represent the rigid
bodies. By choosing a shape that normally stacks very easily we can explore
this limitation and its implications.

However, the particle approach also has some benefits that warrants its use.
Collision detection is greatly simplified. We only need to detect collisions be-
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Figure 5.1: Cube with 27 internal particles

tween particles. Detecting a collision between to spheres is as simple as checking
whether the distance between the center points is less than the sum of the ra-
diuses of the spheres. The particle approach is also well suited for a GPU since
it is easily parallelizable.

5.2 Physics

5.2.1 Movement

For the translation of a body, the following equations hold. When a force F
acts on a rigid body, it gives the body impulse, which is change of the linear
momentum of the rigid body, P. In other words, the time derivative of P is
equal to F:

dP
dt

= F (5.1)

The definition of momentum is:

P = Mv (5.2)

where M is the mass of the rigid body, and v is its linear velocity. Through this
definition we can obtain the velocity as
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v = P
M

(5.3)

and, of course, velocity is the time derivative of the position x:

dx
dt

= v (5.4)

The following equations govern the rotation of a rigid body. When a force acts
on a point of a rigid body that is different from the center of mass, it also gives
the rigid body torque. Torque is the rate of change of angular momentum L,
like impulse is to linear momentum.

The amount of torque depends on the relative position r of the point where the
force acts compared to the center of mass. More specifically, torque τ is defined
as the cross product of r and the acting force F.

dL
dt

= τ = r× F (5.5)

The angular velocity w is obtained through the following equation:

w = I(t)−1L (5.6)

where I(t) is the inertia tensor of the rigid body at time t, and is a 3 ∗ 3 matrix,
and I(t)−1 is its inverse. Inertia is a measure of an objects resistance to change
to its rotation, and the inertia tensor contains the objects inertia around all 3
axes.

Inertia, and thus the inertia tensor, depends on the shape, size and mass of an
object. For a cuboid object, the inertia tensor looks like the following:

I =

 1
12m(h2 + d2) 0 0

0 1
12m(w2 + d2) 0

0 0 1
12m(w2 + h2)

 (5.7)

where h is the height, w is the width and d is the depth of the cuboid object.
For a cube where height, width and depth are equal to the cube side s, the
inertia tensor becomes:

I =

 1
6ms

2 0 0
0 1

6ms
2 0

0 0 1
6ms

2

 (5.8)

Inverting this matrix yields the inverse inertia tensor used in equation 5.6:

I−1 =

 6
ms2 0 0
0 6

ms2 0
0 0 6

ms2

 (5.9)

25



However, the inertia tensor only looks like this if the body is positioned such
that its edges are parallel to the xyz-axes, like in figure 5.2.

Figure 5.2: Cube with zero rotation

With time, as the rigid body rotates this will not be the case. The inertia tensor
therefore has to be recalculated using the following equation:

I(t)−1 = R(t)I(0)−1R(t)T (5.10)

where R(t) is the rotation matrix representing the rotation of the rigid body
at time t. In our implementation, however, we don’t use rotation matrices
to store and calculate rotations. We instead use quaternions. A quaternion
q = [s,v] represents a rotation of s radians about an axis defined by the vector
v = [vx, vy, vz].

Quaternions are used for a number of reasons. They are more compact and
faster to work with than rotation matrices since they only have 4 elements,
compared to the 9 elements of the matrix. More importantly, however, there
is no real difference between a rotation matrix and any other transformation
matrix, which means a rotation matrix is capable of storing transformations
other than rotation, such as translation, scaling and shearing. Numerical errors
which add up during calculations can cause these transformations to build up in
the rotation matrix, distorting the shape and size of the rigid body. Quaternions
do not have this problem since they are not capable of representing anything
other than rotation.

Since were not using a rotation matrix in the rest of our program, we have to
convert our quaternion to a rotation matrix before calculating the inverse inertia
tensor in equation 5.10. We calculate the rotation matrix R(t) from quaternion
q = [s, vx, vy, vz] as follows:

R(t) =

1− 2v2
y − 2v2

z 2vxvy − 2svz 2vxvz + 2svy

2vxvy + 2svz 1− 2v2
x − 2v2

z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2
x − 2v2

y

 (5.11)
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We can then calculate the inverse inertia tensor at time t using equation 5.10,
and then calculate the angular velocity w using equation 5.6. We then want
to use the angular velocity to update our rotation quaternion. The variation
of quaternion q with angular velocity w is calculated using the following equa-
tion:

dq =
[
cos
(
θ

2

)
,a sin

(
θ

2

)]
(5.12)

where a = w
|w| is the rotation axis and θ = |wdt| is the rotation angle. The

quaternion at time t+ dt is calculated by the following equation:

q(t+ dt) = dq × q(t) (5.13)

where the multiplication of two quaternions q0 = [s0,v0] and q1 = [s1,v1] is
defined as follows:

q0 × q1 = [s0s1 − v0 · v1, s0v1 + s1v0 + v0 × v1] (5.14)

5.2.2 Collisions between particles

With the movement of the rigid bodies in place, the next thing to consider is
the detection and reaction of collisions. As mentioned earlier, collision detection
between particles is trivial. We only need to check whether the distance between
two particles is less than the sum of their radiuses. In our implementation we
subtract a small number from this check to avoid particles within the same cube
to register a collision with each other. The particles within a cube are positioned
perfectly close to each other, however numerical inaccuracies can cause this to
be detected as a collision.

When a collision occurs the particles are pushed away from each other by a force
modeled by a linear spring, as illustrated in figure 5.3.

Figure 5.3: Collision between particles modeled by a spring

This force is calculated with the following equation:
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fi,spring = −k (d− |rij |)
rij

|rij |
(5.15)

where k is the spring coefficient, d is the particle diameter, i is the index of the
particle on which the force is acting, jÂăis the index of the colliding particle,
and rij is the relative position of particle j with respect to particle i.

In addition to this spring force, we add a damping force which opposes the
velocity of the particle. This force causes energy to dissipate and makes the
rigid bodies come to rest, rather than bouncing around forever.

This force is modeled by a dashpot and is calculated using the following equa-
tion:

fi,damping = cvij (5.16)

where c is the damping coefficient, and vij is the relative velocity of particle
jÂăwith respect to particle i.

To calculate this we need the velocities of the particles. The velocity of a particle
is equal to the linear velocity of the rigid body it is a part of, plus the tangential
velocity caused by the rotation of the rigid body.

We use the following equation to calculate the tangential velocity of a parti-
cle:

vtangent = w×
(

r−w · w · r
|w2|

)
(5.17)

where r is the particle position relative to the center of the rigid body, and w
is the angular velocity of the body.

5.2.3 Collision between a particle and a boundary

Similar forces are applied at the boundaries of the domain to keep the rigid
bodies inside. However, since the domain does not move, the equations can be
simplified somewhat. The boundary spring forces are calculated individually
for each axis, since the force at a boundary only affects the force along the axis
which is parallel to the normal of the boundary face, as seen in figure 5.4.

As an example, the equation for a particle colliding with the boundary whose
normal is along the x-axis, and will be pushing the particle in the negative
direction, looks like the following:

fi,boundary−springx
= k(lx − px − r) (5.18)

where lx is the boundary position on the x-axis, px is the particle position on
the x-axis, r is the particle radius, and the expression inside the parentheses is
the position of the colliding point of the particle with respect to the boundary.
We don’t have a minus in front of k in this equation because we multiply with
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Figure 5.4: Three example boundaries and their normals

the position of particle i with respect to the colliding object, while in equation
5.15 we did it the other way around.

Similar forces work at each boundary wall, although for the opposite wall,
where the particle will be pushed in the positive direction, the expression inside
the parentheses changes slightly. The radius is negated, since we have to go
the “other way” to find the point where the particle collides with the bound-
ary.

fi,boundary−springx−opposite = k(lx − px + r) (5.19)

Lastly, as far as the boundaries are concerned, the damping force in equation
5.16 is applied. Again this is simplified somewhat by the fact that the boundaries
don’t move, and thus have a velocity of 0.

fi,damping−boundary = c (0− vi)
= −cvi (5.20)

5.2.4 Summing the forces

When the forces on each particle have been calculated, the resulting total force
and torque on the rigid body can be found. The force F on a rigid body is found
by simply adding the forces on all its particles.
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F =
∑

i∈RigidBody

fi (5.21)

where fi is the total force acting on particle i. The torque T on a rigid body
is calculated by summing the cross product of the relative position of a particle
to the center of the rigid body and the total force on the particle:

T =
∑

i∈RigidBody

(ri × fi) (5.22)

where ri is the position of particle i relative to the center of the rigid body.
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Chapter 6

Implementation

We have implemented a rigid body simulation in C++ and OpenCL. In the
last chapter we presented the physical model, and the equations that govern the
behavior of our implementation. In this chapter we describe how these equations
come together to create a rigid body simulation. We begin by describing the
sequential version written in C++. We then describe the OpenCL version, how
it has been modified compared to the C++ version, and what considerations
affected this process.

However, first of all we describe a grid structure we use in our application which
greatly improves the time complexity of the simulation. This is vital for being
able to simulate a large number of rigid bodies in real time.

6.1 Grid

Naively checking every other particle in the simulation when detecting collisions
does not scale very well. In fact it carries a time complexity of O(n2). In order
to improve this we implement a grid structure described in the paper Particle
Simulation using CUDA by Simon Green [6].

The simulation world is divided into a uniform grid, and at the beginning of
every iteration we check the position of every particle in order to determine
which grid cell it belongs to. We find the cell index i = (ix, iy, iz) with the
following equation [7]:

i = (p−min)
d

(6.1)

where p is the position of the particle, and min is the position of the grid
corner with the smallest coordinates in all dimensions. In our case the leftmost,
backmost, lower corner. Finally, d is the cell size (cell side length).

By setting the grid cell size equal to twice that of the particle radius, we know
that a cell will hold a maximum of 4 particles [6]. We also know that in order
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to find all particles colliding with a given particle, it suffices to search the cell
which holds the particle itself, and the 26 cells that directly surround it. Figures
6.1, 6.3 and 6.2 show two-dimensional examples of the grid and illustrate how
different cell sizes affect collision detection.

Figure 6.1: Grid with cell size equal to twice the particle radius

Figure 6.1 shows the grid cell size that we use, with cell size equal to twice the
particle radius. If we imagine that neither particles reside in the center cell,
we can see that the distance where the particles no longer reside in neighboring
cells coincides perfectly with the distance where they no longer collide. Using a
larger cell size would clearly result in checking unnecessary particles.

Figure 6.2: Grid with cell size equal to particle radius, with particles close

Figures 6.2 and 6.3 show what would happen if we used a smaller cell size,
in this case equal to the particle radius. Imagine again that neither of the
particles occupy the center cell. By only checking directly surrounding cells
during collision detection these two particles would not be checked against each
other, even though they clearly intersect. In figure 6.3 we see that there are
now two cell lengths between two touching particles. We would therefore have
to check an additional “layer” of cells when checking for colliding particles, for
a total of 5 · 5 · 5 = 125 cells.

The grid structure brings the simulation down to a complexity of O(n), since
each of the n particles no longer has to check all n − 1 other particles, but
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Figure 6.3: Grid with cell size equal to particle radius, with particles far apart

only a constant number. Although the grid generation at the beginning of each
iteration adds a considerable overhead, the performance gained by using the
grid during collision detection is much, much greater. The implementation with
the grid outperforms the naive approach even at quite small problem sizes of
only a couple hundred particles.

6.2 Sequential version

We have created a simple class hierarchy consisting of Body, Cube and Particle
classes. The Body class is an abstract class and cannot be instantiated. It con-
tains data structures to contain all properties that are present with all rigid bod-
ies, such as mass, position, velocity, momenta, rotation and a list of Particle
objects, representing the particles that belong to the rigid body. The Body class
will make it easier to extend the application with differently shaped rigid bodies
in the future.

The Cube class extends the Body class and contains functionality that is specific
to cubic rigid bodies. Most of this is related to how to properly render a cube,
but it also needs to set the inertia tensor to its correct initial non-rotated state,
which as mentioned in section 5.2.1 will differ for differently shaped objects. The
Cube class also needs to instantiate a Particle object for every particle that
makes up the cube. Although the list of particles belong to the Body superclass,
it is the responsibility of the subclass to fill this list with the correct number of
particles and position these particles correctly.

Finally the Particle class, as mentioned, represents the particles of the rigid
bodies. It contains properties such as mass, position and velocity, as well as
functions for calculating the grid cell of a particle. This is also where we find
all the calculations of collision detection and reaction.

A UML diagram for the three classes can be seen in figures 6.4 and 6.5. In
these diagrams public fields and functions are denoted by a + sign, protected
are denoted by # while private by a -. Static fields are underlined, while virtual
functions that have to be overridden by a subclass are written in italics.

33



Figure 6.4: Body and cube UML class diagram

6.2.1 Initialization

The user enters the number of rigid body cubes to simulate as an argument
when running the application. E.g. executing the command
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Figure 6.5: Particle UML class diagram

./rigidbody 1000

will launch a simulation of 1,000 cubes, which corresponds to 27,000 particles.
The first thing that happens is that Cube objects representing these cubes are
instantiated, as well as Particle objects for their particles. Static counters are
used to keep track of how many cubes and particles have been created at all
times. This information is used to fill global arrays that hold references to every
cube, and every particle. This is needed to iterate over all cubes and particles
later. As they are created, we place the cubes above each other while moving
them back and forth between 4 different positions along the ground plane. A
screenshot of the resulting initial position for the cubes can be seen in figure
6.6.

The reason for this is simply to create interesting behavior. The cubes are moved
only so much that their sides and corners still slightly overlap, causing inevitable
rotation when they collide with each other at the ground. We use a random
number generator to generate colors for the rigid bodies. Since this has no
significant importance for the simulation other than visuals the standard C++
rand function is good enough for this. However, we seed the random number
generator with a timestamp to avoid generating the same color combinations
every time the application is executed.

6.2.2 Iteration walkthrough

In this section we walk through all the calculations that are performed in an
iteration. A flowchart showing a quick overview of an iteration can be seen in
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Figure 6.6: Initial simulation state

figure 6.7.

1. Update grid
Every iteration begins with updating the grid structure described in sec-
tion 6.1. This three-dimensional grid is represented by two one-dimensional
arrays, which we call indexGrid and countGrid.

Let’s say there are m3 cells in the grid. Then the countGrid is an integer
array of size m3, with one integer for each cell, representing the number of
particles currently registered to each cell. indexGrid is an integer array
of size (m3 · 4), holding 4 integers for each cell, representing the indices
of the particles currently registered to each cell. When we update the
grid, countGrid first needs to have all its members reset to 0. We then
iterate over all the particles in the simulation and calculate which cell they
belong to. When we calculate the cell of a particle, we use the countGrid
value for that cell to find out where to insert the particle index in the
indexGrid.
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Figure 6.7: Flowchart showing a simulation iteration

For example, we calculate that a particle i belongs to grid cell k and we
check the value of countGrid[k] to find that there are 0 particles regis-
tered to cell k so far. We then put the index i into indexGrid[4k + 0],
and increment countGrid[k] by one. If there had been 2 particles regis-
tered to cell k already, we would insert i into indexGrid[4k + 2] instead.
We multiply k by 4 when indexing indexGrid because the array holds 4
integers for each grid cell.

2. Particle collision detection and force calculation
Once the grid has been updated, we can perform collision detection. For
every particle we check its grid position and then iterate over its grid cell
and the 26 grid cells directly surrounding it, extracting the indices of the
contained particles.

We then iterate over all the particles whose indies we extracted checking
for collisions. In case of a collision we calculate the resulting force imme-
diately using equations 5.15 and 5.16. We then add this force to the total
force on the particle. Of course, we have to take care to reset the force
on the particle to 0 before starting adding these new forces, so that the
calculated force from a previous iteration does not propagate.

3. Rigid body linear and angular momenta calculation
The previous step calculated all the forces for all the particles, however,
to calculate the linear and angular momenta on the rigid bodies we need
the force and torque on the rigid bodies themselves. For each rigid body
we iterate over all 27 particles of the rigid body and add the contribution
to force and torque from each particle to a total. Equations 5.21 and 5.22
are applied here.

Once the total force and torque for each rigid body has been found, we
have found the rate of change for linear and angular momenta respectively,
according to equations 5.1 and 5.5. Combined with the value for the time
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delta, ∆t, (which is defined by the user) we can then update the linear
and angular momenta by P← P + F ·∆t and L← L + τ ·∆t.

However, before we move on we check whether the absolute value of the
linear momentum in each direction is greater than a maximum value
calculated from a user defined terminal momentum. If it is, we set it
to the maximum value, or negative the maximum value, depending on
whether the momentum is positive or negative. This is called a clamp
operation. In this case we clamp the momentum between the range
[−maximum momentum,maximum momentum]. We do this to prevent
the rigid bodies from accelerating to unrealistically great speeds when
they fall for a long time. This is similar to how in real life air resistance
would prevent objects from accelerating past a terminal velocity, however
our approach is a little simplified. Air resistance would build up as the
velocity of the object increased, slowing acceleration gradually. Our ap-
proach allows the object to accelerate unhindered up until it hits terminal
velocity, upon which time acceleration halts completely.

4. Rigid body position and rotation update
Once we have the linear and angular momenta we can find the linear and
angular velocities of the rigid bodies. We iterate over all the rigid bodies in
the simulation and for each we calculate their linear and angular velocity
as follows. Finding the linear velocity is easily done simply by dividing
the linear momentum by the mass of the rigid body, in accordance with
equation 5.3. Finding the angular velocity is a more extensive operation.

To calculate the angular velocity we need to update the inverse inertia
tensor for the objects current rotation. To calculate the inverse inertia
tensor we need the rotation matrix for the objects current rotation. But
as mentioned in section 5.2.1 we use quaternions to represent rotation.
Therefore we first have to convert our quaternion to a rotation matrix
using equation 5.11. However, equation 5.11 requires that the quaternion
q is normalized, meaning that |q| = 1. We check whether |q| is more than
a small threshold unequal to 1. If it is, we normalize it as if it were any
other vector: q← q

|q| . We can then calculate the new inverse inertia tensor
using equation 5.10, and consequently we can find the angular velocity
with equation 5.6.

We have the velocities of the rigid body and can update the position.
There are many possible ways to do this, using different numerical inte-
gration methods. In this implementation we simply use Euler method,
and update position x by x← x + v ·∆t. We update rotation using equa-
tion 5.13. Using a more advanced integration method could be a part of
future work, explored in more detail in section 8.2.

5. Particle position and velocity update
We now have everything we need to update the positions and velocities
of the particles. This operation could technically be performed at the
beginning of the iteration instead of at the end. The particles would then
receive the changes from the previous iteration at the beginning of the
next, which would be fine if we only rendered the cube geometry. However,
we have added the ability to render the particles themselves instead of the
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cubes for the purpose of visually demonstrating how the simulation works.
If we did not update the particles before rendering there would be a single
frame of delay of the visualized particles compared to their computation.
This is minuscule of course, especially at small time steps, but there is no
downside to updating the particles at the end of the iteration instead, so
we might as well do so.

To calculate the position of a particle we need the current position and
rotation of the rigid body it belongs to, as well as the initial position of the
particle relative to the center of the rigid body at zero rotation. It is the
responsibility of the rigid body subclass to convey these initial positions to
the particles when updating their current positions. We therefore iterate
over all rigid bodies, and for each rigid body iterate over their particles
when performing this operation. The new particle position is found by
applying the rotation to the initial relative position and adding the rigid
body position. We apply the rotation by multiplying the initial relative
position vector by the rotation matrix, yielding a new position vector. We
then add the rigid body position vector to this.

We update the particle velocity by applying equation 5.17, which is straight
forward to calculate tangential velocity, and then adding the linear veloc-
ity of the rigid body itself. The only thing to consider is that we must
check whether the angular velocity is zero before dividing by the square of
its size. This would of course would also be zero, causing an error due to
division by zero. If the angular division turns out to be zero, the tangen-
tial velocity is simply zero also. However the linear velocity of the rigid
body is still added.

6. Render results
When all the calculations of an iteration are completed, we need to render
the results to the screen. For rendering we use OpenGL and vertex buffer
objects (VBOs) explained in section 4.2. We use two separate VBOs in
our implementation. One for rendering cubes, and one for rendering par-
ticles. We go into more detail about rendering in section 6.2.3. For now,
suffice to say that we update only the VBO for the currently chosen ob-
ject representation. If complete cubes are chosen the vertex positions and
normals have to be recalculated using their original position and the cur-
rent rotation. If particles are chosen we already have the vertex positions,
since these are simply the particle positions, and we only need to insert
these values into the VBO. Once the VBO values have been updated we
need to copy them to the device, before we draw the chosen VBO to the
screen.

6.2.3 Rendering

We use three two-dimensional arrays when drawing cubes. We call them normals,
faceIndices and vertices. We present these arrays as matrices in figure 6.8.
To help make sense of these arrays we have figure 6.9 which shows a wireframe
cube with numbered vertices.

The vertices array contains the positions of the vertices themselves. There are
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8 vertices in a cube, and each vertex has 3 coordinate values. The vertices are
ordered by ascending index in figure 6.8, with the top row representing vertex
0, the next representing vertex 1 and so on.

A cube has 6 faces, and each face is defined by 4 vertices. The array faceIndices
holds the indices of the vertices that define each face. As you can see the first
face is defined by vertices 0, 1, 2 and 3.

Finally the normals array holds the unit vectors that define the direction of the
normal for each face. The first face has a normal which goes along the negative
x-direction, represented by the values -1.0 for x, and 0.0 for y and z.

We use OpenGL Quads rather than Triangles when we draw our cubes, meaning
we define four vertices for every face, rather than three. As mentioned earlier
we use a VBO for rendering. For rendering cubes we put vertex data, normals
and colors after each other in a single long array. With 6 faces in each cube, 4
vertices per face, and 3 values per vertex, each cube requires 72 values for their
vertex data. Since the normals and color data also work with individual vertices
rather than faces, they also need 72 values each. This results in a total of 216
values for each cube in the cube rendering VBO. With n cubes, we have a total
of 216n values. The first 72n values are vertex data, the next 72n values are
normal data and the final 72n are color data, and we set the OpenGL vertex
pointer, normal pointer and color pointer accordingly.

When we draw our particles we use OpenGL Points. OpenGL then draws a
point for every single vertex we define. Points do not have normals, so unlike
when drawing cubes, we do not need space for normal data in our particle VBO.
With 27 particles in every cube, and 3 values for each particle, each cube requires
81 values for their vertex data. Again, as with the cube VBO, color data works
with individual vertices and also requires 81 values. Total values for each cube
is then 162. Similar to before, with n cubes, there are a total of 162n values in
the particle VBO. The first 81n of which are vertex data, and the last 81n are
color data. We set the OpenGL vertex pointer and color pointer accordingly.
We do not use the normal data, nor the normal pointer, in the case of rendering
particles.

6.3 OpenCL version

In order to run our implementation on the GPU with OpenCL, a number of
modifications had to be made. Perhaps the most significant difference is that
OpenCL does not support classes in the kernel code, which is the code executed
by the device. To circumvent this limitation we create numerous new arrays
containing the attributes in the classes. We call these arrays OpenCL arrays.
We create one OpenCL array for each attribute.

For example we have an array clBodyMass containing the mass values for
all the rigid bodies. To get the mass belonging to rigid body i we look up
clBodyMass[i].

For attributes that consist of multiple values, such as position and velocity,
which are vectors with 3 elements, we use the OpenCL vector types cl_floatn,
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vertices[8][3] =



−0.5s −0.5s 0.5s
−0.5s −0.5s −0.5s
−0.5s 0.5s −0.5s
−0.5s 0.5s 0.5s
0.5s −0.5s 0.5s
0.5s −0.5s −0.5s
0.5s 0.5s −0.5s
0.5s 0.5s 0.5s



faceIndices[6][4] =


0 1 2 3
3 2 6 7
7 6 5 4
4 5 1 0
5 6 2 1
7 4 0 3



normals[6][3] =


−1.0 0.0 0.0
0.0 1.0 0.0
1.0 0.0 0.0
0.0 −1.0 0.0
0.0 0.0 1.0
0.0 0.0 −1.0


Figure 6.8: Two-dimensional arrays used to draw cubes, where s is the side
length of the cube

where n is a power of 2, or the number 3. However, in the case of the inverse
inertia tensor and rotation matrix, which are matrices with 9 elements, we would
need to use cl_float16 to fit all the values. Since we only need 9 values, this
would be a considerable waste of space. We therefore use multiple cl_float,
and make the OpenCL array 9 times as long instead, with 9 elements for each
rigid body.

During initialization we add a phase where we iterate over all the bodies and
particles and insert their attribute values into their respective OpenCL arrays.
These arrays are located in host memory. The device, the GPU, which will
be doing all the computations, cannot read from host memory directly. We
therefore have to create memory buffers on the device corresponding to the
OpenCL arrays on the host, and copy the OpenCL array contents to the device
buffers.

6.3.1 Kernels

We saw in section 6.2.2 that during an iteration we sometimes have to iter-
ate over the rigid bodies and sometimes over the particles. When it comes to
iterating over particles, we have two basic choices when writing our OpenCL
kernels.

Our first choice is to write kernels which spawns a thread for each rigid body.
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Figure 6.9: Cube wireframe with numbered vertices

In this case each thread has to iterate over all the particles of their respective
rigid bodies during the iteration phases that require iteration over all particles.
This results in a fewer amount of more computationally expensive kernels. Also,
the iteration over particles drastically increases the number of memory accesses
performed by the kernel, potentially decreasing performance.

An illustration of the resulting kernels and which parts of an iteration they
complete can be seen in figure 6.10

Our second choice is to create kernels which spawn threads for each rigid body
when required, but otherwise use kernels which spawn threads for each particle.
This results in a larger quantity of kernels, however each kernel is less com-
putationally expensive. An illustration of the resulting kernels and how they
complete the iteration can be seen in figure 6.11.

We tried both approaches in our implementation, and discovered that the sec-
ond approach, i.e. the one illustrated in figure 6.11, performed better in all
circumstances, and will be the approach used in any further discussion about
the implementation.

6.3.2 Grid

As can be seen in figures 6.10 and 6.11, the operation of updating the grid uses
two kernels. One for resetting the grid and one for updating it. The first, which
we call the resetGrid kernel spawn a thread for each grid cell, while the second,
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Figure 6.10: OpenCL kernels performing a simulation iteration, with kernels
iterating over rigid bodies

which we call the updateGrid kernel spawns a thread for each particle.

The resetGrid kernel simply sets every countGrid value to 0, and every indexGrid
value to -1.

Then the updateGrid kernel updates the two arrays as explained in section
6.2.2. However, doing this update for each particle in parallel requires some
synchronization. If two particles were to belong to the same grid cell and they
tried to register themselves to this cell at the same time, we could experience
problems. More specifically the problem occurs when both threads try to read
and write to the countGrid array entry corresponding to the aforementioned
grid cell. Each thread tries to read the value, increment it, and use the old value
to know which entry of indexGrid to write the index of its particle to. The
problem is that by using ordinary reads and writes this operation is not atomic.
Another thread could read the countGrid value after the first thread reads it,
but before the first thread increments it. The result is that both threads read
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Figure 6.11: OpenCL kernels performing a simulation iteration, with kernels
iterating over rigid bodies when necessary, but otherwise over particles

the same value, and consequently write to the same indexGrid entry. This
means that one unfortunate particle, the one that writes its index first, will get
its index overwritten, and will not be available for collision detection by other
particles.

6.3.3 Rendering

While there does not seem to be any change to the rendering according to
figures 6.10 and 6.11, there is actually a very important difference in how the
OpenGL VBOs are updated. In the sequential CPU version, the new values
were calculated on the CPU and then copied over to the GPU for rendering. In
the OpenCL version, however, since computation and rendering both happen on
the GPU, it would be wasteful to copy back and forth from the host memory. We
use the OpenCL/OpenGL interoperability described in section 4.2.2 to update
the VBOs on the GPU directly.
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Using the kernels in figure 6.11 we update the VBO for rendering cubes in kernel
5, while we update the VBO for rendering particles in kernel 6.

The final render stage is then only comprised of correctly setting vertex, color
and normal pointers, and drawing the VBO arrays.

6.4 User Interface

We have created a simple user interface for our simulation using freeglut, an
open source alternative to GLUT, the OpenGL Utility Toolkit [2].

The interface we have created allows us to spin around the scene and zoom in
and out using the mouse. We have also added functionality for resetting the
simulation without having to restart the application. By pressing the numbers
1 through 5 on the keyboard, the simulation is reset to one of five different
formations. One of these is the formation shown in figure 6.6. The other options
are to place the cubes in towers of various sizes. An image of these towers can
be seen in figure 6.12.

Figure 6.12: The user can reset the simulation to one of these four different size
towers.

By pressing the letter P on the keyboard the user switches between rendering
particles and cubes. A screenshot of the two different rendering options can be
seen in figure 6.13.

Figure 6.13: The two different render options in our application
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Chapter 7

Results

In this chapter we present and discuss the results from our application. In the
first section we focus on the behavior of the simulation. We explore some of the
strengths and weaknesses of the choices we have made.

Next we take a look at the performance of our application, and especially how
the OpenCL version performs compared to the CPU version.

Finally we compare our results to the Bullet Physics Library.

7.1 Behavior

Like we mentioned in section 5.1 people are very familiar with the movement
of a rolling dice, so it’s easy to visually determine whether the simulation is
behaving as expected. When running our application we can indeed see that
the cubes are rolling, colliding and coming to rest on one of their flat sides, as
expected. A series of snapshots from a running simulation with 2000 cubes can
be seen in figure 7.1. This is too many cubes to run in real time on the CPU,
however the GPU can easily handle it. We will be explored in more detail in
section 7.2

We have also recorded and uploaded two videos demonstrating our applica-
tion.

• http://www.youtube.com/watch?v=DvgEk_8DFOk

This video shows a simulation of 300 cubes running on an AMD X6 1055T
CPU.

• http://www.youtube.com/watch?v=48vqOGJaDgc

This video shows a simulation of 3000 cubes running on an AMD HD5870
GPU.

The videos illustrate the basic movement and behavior of the cube. They
demonstrate how the user can spin around the simulation, zoom in and out, and
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Figure 7.1: Four snapshots from a running simulation

reset the simulation to several different starting positions. They also demon-
strate how the user can switch between the two different rendering methods,
rendering cubes, and rendering particles.

The videos also show how the cubes are unable to stay stacked in a large tower,
causing a collapse. In the rest of this section we will explore this issue, as well
as some other problems with our simulation.

Let us first begin with the inability to stack properly. We mentioned this already
in section 5.1, and it was indeed one of the reasons for choosing cubic rigid bodies
for our simulation.

The inability to stack is caused by a combination of factors. We think one
factor is the way forces are modeled between particles. Since they are modeled
by a spring, stacking multiple cubes on top of each other is like creating a long
vertical spring. This will inevitably become unstable, especially when the cubes
are not placed perfectly straight on top of each other. This brings us over to
another factor, which is probably the most influential one and has to do with
the particle approach itself. Since the cubes are made out of particles, their
sides are not completely flat, and when cubes rest on top of each other they will
slide into the grooves created by the spherical particles. An illustration of this
can be seen in figure 7.2.

An example of how this looks in the application itself when rendering cubes can
be seen in figure 7.3.

Needless to say, this is not ideal behavior, and is one of the prices that has to
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Figure 7.2: Particle cubes stacked on top of each other

be paid when using this particle approach.

Another problem we discovered with the particle approach was that the particle
cubes could get interlocked with each other. An illustration of how this happens
can be seen in figure 7.4, and an example of how it looks in the simulation can
be seen in the screenshot in figure 7.5. Although not visible in these pictures,
the biggest problem with this scenario is actually not the interlocking itself, but
rather the erratic movement exercised by the interlocked bodies. This is caused
by the fact that there is not enough room for the entire between the particles
in the other rigid body. The particle will be pushed back and forth, and that
same force will affect the rigid body.

The best way to fix this problem would be to prevent the interlocking from
occuring in the first place. One way to do this is to limit the mass or speed of
the rigid bodies. The rigid bodies need a certain amount of momentum in order
for their particles to force their way into another rigid body. However, this is
not an ideal solution since we would like to be able to simulate bodies of any
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Figure 7.3: Screenshot of simulation where cubes are stacked on top of each
other

mass and speed.

Using a different model for the forces between particles may produce a more
stable situation when the interlock occurs. This could also help with the stacking
problem mentioned earlier, and could an interesting topic for future work.

Fortunately this does not occur very often during normal conditions in our
simulation. However, the final issue we will take a look at in this section unfor-
tunately causes it to happen quite often.

Our final issue is what happens when a tower of cubes goes outside the grid
borders. In our implementation we choose to ignore particles that are not inside
the grid when it comes to collision detection. In our first simulation state this is
not a problem since cubes will never collide outside the grid unless we create so
many cubes that they eventually fill up the entire grid. However, when creating
a tower, the cubes at the top of the grid will stay put, since they are standing
on top of the cubes directly underneath. The cubes above them then fall into
them, since they are not considered in collision detection. The result is that a
layer of cubes start clumping up at the top of the grid. A screenshot of this in
action can be seen in figure 7.6.

A possible solution to this could be to calculate collisions for particles outside
the grid as if there were no grid at all. However, this would slow the simulation
down to a halt when many cubes are outside the grid. We do not really think
this is that much of a problem, since if this simulation was applied in any real
scenario there should not be any cubes outside the grid at all.
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Figure 7.4: Two particle cubes interlocked

Figure 7.5: Screenshot of simulation where two cubes are interlocked
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Figure 7.6: Screenshot of cubes colliding and clumping up at the grid border
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7.2 Performance

To measure performance we use timer functions included in GLUT. One of the
functions allows us to get the time elapsed since the application started. We
get this time at the beginning of a frame, and then again at the end of a frame.
The difference tells us how long this particular frame lasted. We then add this
time to a sum of frame times. Every 50 frames we use this sum to calculate the
average framerate, or FPS (frames per second), during the time used by those
50 frames. For the performance measurements in this section, we wait until all
cubes are inside the grid, and then calculate an average FPS from ten of these
50 frame intervals.

Our implementation provides a stable simulation when the timestep is set to
0.01s. In order for the simulation to be real-time it needs to render 100 frames
per second.

All the tests were run on a computer with an AMD X6 1055T CPU, 4 GB of
RAM, an AMD Radeon HD 5870 graphics card with Catalyst 10.12 drivers, and
running Ubuntu Linux 10.10 32-bit.

The parameters used in the test simulation can be seen in table 7.1. These
parameters create a nice and stable simulation.

Table 7.1: Parameters used for simulation performance testing
Parameter name Value

worldSize 15.0
springCoefficient 100.0

dampingCoefficient 0.5
timeDelta 0.01

particleRadius 0.20
terminalVelocity 20.0

7.2.1 Sequential CPU version

A purely sequential version of the simulation running on the CPU manages
to simulate 300 cubes at 100 frames per second, which corresponds to 8100
particles.

Performance results for four selected problem sizes can be seen in table 7.2 and
figure 7.7.

Table 7.2: CPU performance for 4 selected problem sizes
Number of cubes 100 500 1000 3000

Frames per second 153.2 56.0 29.1 9.2
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7.2.2 OpenCL version

The OpenCL version running on an AMD Radeon HD5870 manages to simulate
3300 cubes at 100 frames per second. This corresponds to a total of 89100
particles.

Performance results for four selected problem sizes can be seen in table 7.3 and
figure 7.7

Table 7.3: GPU performance for 4 selected problem sizes
Number of cubes 100 500 1000 3000

Frames per second 571.4 377.8 253.3 110.5

Figure 7.7: Graph showing difference in performance between CPU and GPU
for 4 selected problem sizes

The GPU speedup over CPU from these test runs can be seen in table 7.4 and
figure 7.8.

Table 7.4: GPU speedup over CPU from test runs
Number of cubes 100 500 1000 3000

Speedup 3.7 6.7 8.7 12.0

As expected we can see that the speedup rises as the problem size increases,
which is in accordance with Gustafson’s law.

7.3 Bullet Comparison

We have also implemented a variation of our application which uses the Bullet
Physics Library to perform the rigid body simulation. All other parts of the
application such as rendering and user interface remain the same. The first
thing to notice about the Bullet simulation is that it uses the actual geometry
of the cubes, and thus provides a more accurate simulation than our own. It
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Figure 7.8: Graph showing GPU speedup over CPU simulation at various prob-
lem sizes

also supports stacking cubes far better, as can be seen in the screenshot in figure
7.9.

Figure 7.9: Screenshot of stacked cubes in Bullet rigid body simulation

Since the behavour of the Bullet simulation is better than our simulation, our
simulation should hopefully at least have better performance.

We test the performance of the Bullet simulation the same way we did our own,
and compare the results. One thing we quickly discover is that the performance
of the Bullet simulation greatly increases once the rigid bodies settle down and
stop moving. This is likely the result of some sort of optimization performed by
Bullet. When we measure the performance of the Bullet simulation we therefore
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test 2 times for each problem size. Once while the rigid bodies are still moving
around, and then once after they have stopped moving. The resulting framerate
results can be seen in table 7.5.

Table 7.5: Performance of Bullet rigid body simulation on CPU
Number of cubes 100 500 1000 3000

FPS during movement 417.2 132.1 44.8 11.0
FPS when still 796.7 381.3 136.4 55.2

The performance when the bodies are still greatly outperform our own, however,
moving rigid bodies are far more interesting so we will focus on that. Bullet
still outperforms our CPU simulation while the problem size is small, but the
difference shrinks as the problem size increases. This probably has to do with
the broadphase, the way collision detection is reduced by excluding bodies that
cannot possibly be intersecting. At low problem sizes there are few collisions
and Bullet successfully excludes many bodies.

While our grid stucture performs much the same function we currently have no
way of distinguishing particles belonging to the same rigid body as those be-
longing to different ones. Therefore, even while no collisions are going on, all the
particles discover several nearby particles which they check for collisions.

Although the Bullet simulation seems better than ours in all aspects, we may
have given ourselves some unfair advantages. It turns out Bullet has functions
written specifically for cuboid objects which are faster than other general shapes.
One of the advantages of the particle approach is that the formation of the par-
ticles does not affect performance, and should therefore be good for simulating
objects with shapes that are less efficient than cubes. While cubes are good
for checking whether the simulation is behaving as expected, they are not what
would ideally be simulated in a practical application. Secondly, we could have
used a fewer number of particles to represent our bodies. A single particle for
each cube would be no good, since it would never gain any rotation, however
a 2x2x2 cube would work fine. This would of course lower the accuracy of the
simulation, and cause even worse stacking problems. It might however be worth
it if performance is important and accuracy is not. Lastly, Bullet is a big project
which has been developed for years and is well optimized. Our simulation has
received very little attention when it comes to optimization, so it is safe to say
that there is a lot of untapped potential when it comes to performance.

Bullet is able to use OpenCL to accelerate simulations, however this is not
supported under Linux. Our application currently only runs under Linux so
we were unfortunately unable to try OpenCL Bullet to compare with our own
OpenCL simulation.
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Chapter 8

Conclusions

In this chapter we summarize what we have accomplished and what we have
learned from it. We also discuss how the work could be improved by future
work.

8.1 Summary

We have implemented a rigid body simulation using a particle approach in the
hope of achieving high performance. We have shown that our simulation behaves
well, with the exception of some acceptable expected problems. We discovered
that the performance of our simulation running on a CPU is comparable to that
of the Bullet Physics Engine for larger problem sizes. And, last but not least,
we have managed to accelerate our simulation by up to a factor of 12 by porting
it to OpenCL and running it on a GPU.

We believe the methods we have used for our rigid body simulation could be
applied well to visual elements in video games that do not affect the gameplay
itself. Such elements do not require a lot of accuracy, but it is important that
they look and feel correct. Certain objects are better suited for the approach
than others however. Using fewer particles to represent an object will result in
a faster simulation. Therefore, objects that can be represented by few particles
while still be able to largely retain their behavior are best. The objects should
also not be able to stack easily, since stacking is not well supported by the
particle approach.

Well suited objects tend to be rounded, and not too thin. An example of a very
well suited object can be seen in figure 8.1.

An example of an object which is very poorly suited to the particle approach
can be seen in figure 8.2.

This object, a desk, requires a lot of particles, which results in sub-optimal per-
formance. The biggest problem is still that a desk should be able to have things
placed on top of it, which is poorly supported by the particle method.
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Figure 8.1: A banana is very well suited for particle representation.

Since many objects are so ill suited, the viability of the particle approach prob-
ably largely rests on its ability to interact with other rigid body methods. With
different methods interacting in the same simulation, the particle method could
deal with the small clumpy items such as bananas, while geometry based meth-
ods deals with the remaining objects.

8.2 Future work

There are a lot of ways in which our simulation could be improved and ex-
plored further. First of all is the interaction with geometry based methods, as
mentioned in the previous section.

However, the simulation can also be improved as a standalone simulation in a
number of ways. We currently use a simple Euler integration. Using a more
sophisiticated integration method, such as Runge-Kutta, the simulation should
become more stable and accurate. This could allow the simulation to use a larger
timestep. This reduces the framerate needed to produce a real-time simulation,
and might allow a larger problem size to be simulated in real-time.

Finding a different way to model the forces between particles might also increase
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Figure 8.2: A desk is very poorly suited for particle representation.

the stability of the simulation, especially when it comes to stacking objects.
Our simulation also lacks friction, which could make the behavior of the rigid
bodies more realistic. With friction, the cubes in figure 8.3 will be at rest and
stay in their current position. This is how the objects would behave in real
life. However, in our simulation, since there is no friction, the middle cube
will slowly push the other two cubes away from it, creating a space where it
eventually slides down.

Figure 8.3: With friction, these 3 cubes will rest in the current position. Without
friction, the middle cube will slowly slide down and push the other 2 cubes to
the side.

Currently our simulation only supports cubes, and we use the assumption that
there are only 27 particles in each rigid body in order to calculate which particle
is the first particle of a rigid body based on its index. Extending the simulation
to support arbitrarily shaped rigid bodies, with an arbitrary number of particles
is an important next step. One way to do this could be to keep an additional
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array which holds the index of the first particle of each rigid body.

Lastly, of course, things can always go faster. We have not spent much time
optimizing our code, so there is sure to be a lot of untapped potential in our
simulation when it comes to performance.
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Appendix A

Source Code Samples

A.1 Kernels

k e r n e l
void r e s e t G r i d (

g l o b a l int∗ countGrid ,
g l o b a l i n t 4 ∗ indexGrid

) {
unsigned int f l a t G r i d I n d e x = g e t g l o b a l i d (0 ) ;

countGrid [ f l a t G r i d I n d e x ] = 0 ;
indexGrid [ f l a t G r i d I n d e x ] . x = −1;
indexGrid [ f l a t G r i d I n d e x ] . y = −1;
indexGrid [ f l a t G r i d I n d e x ] . z = −1;
indexGrid [ f l a t G r i d I n d e x ] . w = −1;

}

k e r n e l
void updateGrid (

g l o b a l int∗ countGrid ,
g l o b a l i n t 4 ∗ indexGrid ,
g l o b a l f l o a t 3 ∗ p a r t i c l e P o s i t i o n ,

f l o a t 3 minimumPosition ,
f loat voxelSideLength ,
int gr idSideLength ,

g l o b a l i n t 3 ∗ p a r t i c l e G r i d I n d e x
) {

unsigned int p a r t i c l e I n d e x = g e t g l o b a l i d (0 ) ;

p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . x = ( int ) ( ( p a r t i c l e P o s i t i o n [
p a r t i c l e I n d e x ] . x − minimumPosition . x ) / voxe lS ideLength ) ;

p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . y = ( int ) ( ( p a r t i c l e P o s i t i o n [
p a r t i c l e I n d e x ] . y − minimumPosition . y ) / voxe lS ideLength ) ;

p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . z = ( int ) ( ( p a r t i c l e P o s i t i o n [
p a r t i c l e I n d e x ] . z − minimumPosition . z ) / voxe lS ideLength ) ;

bool va l id Index = ( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . x > 0) &&
( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . x < gr idSideLength −1) &&
( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . y > 0) &&
( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . y < gr idSideLength −1) &&
( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . z > 0) &&
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( p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . z < gr idSideLength −1) ;

i f ( va l id Index ) {
int x S t r i d e = gr idS ideLength ∗ gr idSideLength ;
int y S t r i d e = gr idS ideLength ;
int f l a t G r i d I n d e x = p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . x∗ x S t r i d e

+
p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . y ∗ y S t r i d e +
p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] . z ;

int p a r t i c l e s I n C e l l = atomic inc (&countGrid [ f l a t G r i d I n d e x ] ) ;

i f ( p a r t i c l e s I n C e l l == 3) {
indexGrid [ f l a t G r i d I n d e x ] . w = p a r t i c l e I n d e x ;

} else i f ( p a r t i c l e s I n C e l l == 2) {
indexGrid [ f l a t G r i d I n d e x ] . z = p a r t i c l e I n d e x ;

} else i f ( p a r t i c l e s I n C e l l == 1) {
indexGrid [ f l a t G r i d I n d e x ] . y = p a r t i c l e I n d e x ;

} else i f ( p a r t i c l e s I n C e l l == 0) {
indexGrid [ f l a t G r i d I n d e x ] . x = p a r t i c l e I n d e x ;

}
}

}

k e r n e l
void c o l l i s i o n D e t e c t i o n (

g l o b a l f l o a t 3 ∗ part i c l eMass ,
g l o b a l f l o a t 3 ∗ p a r t i c l e P o s i t i o n ,
g l o b a l f l o a t 3 ∗ p a r t i c l e V e l o c i t y ,
g l o b a l f l o a t 3 ∗ p a r t i c l e F o r c e ,

f loat par t i c l eRad iu s ,
f loat worldSize ,
f loat s p r i n g C o e f f i c i e n t ,
f loat dampingCoef f i c i ent ,

g l o b a l i n t 3 ∗ par t i c l eGr id Index ,
g l o b a l int∗ countGrid ,
g l o b a l i n t 4 ∗ indexGrid ,

int gr idSideLength
) {

unsigned int p a r t i c l e I n d e x = g e t g l o b a l i d (0 ) ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x = 0 .0 f ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . y = 0 .0 f ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z = 0 .0 f ;

i n t 3 gr id Index = p a r t i c l e G r i d I n d e x [ p a r t i c l e I n d e x ] ;

// Pretend border c e l l i s 1 p o s i t i o n inwards to avoid check ing
o u t s i d e bounds f o r ne ighbors

gr id Index = clamp ( gr idIndex , 1 , gr idSideLength −2) ;

int x S t r i d e = gr idS ideLength ∗ gr idSideLength ;
int y S t r i d e = gr idS ideLength ;

int f l a t G r i d I n d e x = gr idIndex . x ∗ x S t r i d e +
gr idIndex . y ∗ y S t r i d e + gr idIndex . z ;

i n t 4 n e i g h b o r C e l l s [ 2 7 ] ;
int c e l l I n d e x J = 0 ;
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f l a t G r i d I n d e x −= x S tr i d e ;
f l a t G r i d I n d e x += 2∗ y S t r i d e ;
f l a t G r i d I n d e x += 2 ; // z S t r i d e

for ( int x=0; x<3; x++) {
f l a t G r i d I n d e x −= 3∗ y S t r i d e ;

for ( int y=0; y<3; y++) {
f l a t G r i d I n d e x −= 3 ;

for ( int z =0; z <3; z++) {

n e i g h b o r C e l l s [ c e l l I n d e x J ] = indexGrid [ f l a t G r i d I n d e x ] ;
c e l l I n d e x J ++;
f l a t G r i d I n d e x++;

}
f l a t G r i d I n d e x += y St r i d e ;

}
f l a t G r i d I n d e x += x St r i d e ;

}

for ( int j =0; j <27; j++) {
int n e i g h b o r P a r t i c l e s [ 4 ] = {

n e i g h b o r C e l l s [ j ] . x ,
n e i g h b o r C e l l s [ j ] . y ,
n e i g h b o r C e l l s [ j ] . z ,
n e i g h b o r C e l l s [ j ] . w } ;

for ( int k=0; k<4; k++) {
int o t h e r P a r t i c l e = n e i g h b o r P a r t i c l e s [ k ] ;
i f ( ( o t h e r P a r t i c l e != p a r t i c l e I n d e x ) && ( o t h e r P a r t i c l e !=

(−1) ) ) {
f l o a t 3 d i s t a n c e = p a r t i c l e P o s i t i o n [ o t h e r P a r t i c l e ] −

p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] ;

f loat absDistance = s q r t ( d i s t a n c e . x∗ d i s t a n c e . x +
d i s t a n c e . y∗ d i s t a n c e . y +
d i s t a n c e . z∗ d i s t a n c e . z ) ;

i f ( ( absDistance + 0.000001 f ) < ( 2 . 0 f ∗ p a r t i c l e R a d i u s ) ) {
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x −= s p r i n g C o e f f i c i e n t ∗

( p a r t i c l e R a d i u s+p a r t i c l e R a d i u s − absDistance ) ∗( d i s t a n c e
. x/ absDistance ) ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . y −= s p r i n g C o e f f i c i e n t ∗
( p a r t i c l e R a d i u s+p a r t i c l e R a d i u s − absDistance ) ∗( d i s t a n c e

. y/ absDistance ) ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z −= s p r i n g C o e f f i c i e n t ∗

( p a r t i c l e R a d i u s+p a r t i c l e R a d i u s − absDistance ) ∗( d i s t a n c e
. z/ absDistance ) ;

f l o a t 3 r e l a t i v e V e l o c i t y = {
p a r t i c l e V e l o c i t y [ o t h e r P a r t i c l e ] . x − p a r t i c l e V e l o c i t y [

p a r t i c l e I n d e x ] . x ,
p a r t i c l e V e l o c i t y [ o t h e r P a r t i c l e ] . y − p a r t i c l e V e l o c i t y [

p a r t i c l e I n d e x ] . y ,
p a r t i c l e V e l o c i t y [ o t h e r P a r t i c l e ] . z − p a r t i c l e V e l o c i t y [

p a r t i c l e I n d e x ] . z } ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x += dampingCoe f f i c i ent ∗
r e l a t i v e V e l o c i t y . x ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . y += dampingCoe f f i c i ent ∗
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r e l a t i v e V e l o c i t y . y ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z += dampingCoe f f i c i ent ∗

r e l a t i v e V e l o c i t y . z ;

}
}

}
}

//Boundary f o r c e s
{

bool c o l l i s i o n O c c u r e d = fa l se ;
// Ground c o l l i s i o n
i f ( p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . y−p a r t i c l e R a d i u s < 0 .0 f ) {

c o l l i s i o n O c c u r e d = true ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . y += s p r i n g C o e f f i c i e n t ∗

( pa r t i c l eRad iu s−p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . y ) ;
}

// X−a x i s Wall C o l l i s i o n
i f ( p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x−p a r t i c l e R a d i u s < −

wor ldS ize ) {
c o l l i s i o n O c c u r e d = true ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x += s p r i n g C o e f f i c i e n t ∗

(−wor ldS ize − p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x +
p a r t i c l e R a d i u s ) ;

} else i f ( p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x+p a r t i c l e R a d i u s >
wor ldS ize ) {

c o l l i s i o n O c c u r e d = true ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x += s p r i n g C o e f f i c i e n t ∗

( wor ldS ize − p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x −
p a r t i c l e R a d i u s ) ;

}

// Z−a x i s Wall C o l l i s i o n
i f ( p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z−p a r t i c l e R a d i u s < −

wor ldS ize ) {
c o l l i s i o n O c c u r e d = true ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z += s p r i n g C o e f f i c i e n t ∗

(−wor ldS ize − p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z +
p a r t i c l e R a d i u s ) ;

} else i f ( p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z+p a r t i c l e R a d i u s >
wor ldS ize ) {

c o l l i s i o n O c c u r e d = true ;
p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z += s p r i n g C o e f f i c i e n t ∗

( wor ldS ize − p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z −
p a r t i c l e R a d i u s ) ;

}

// Damping
i f ( c o l l i s i o n O c c u r e d ) {

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . x −= dampingCoe f f i c i ent ∗
p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . x ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . y −= dampingCoe f f i c i ent ∗
p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . y ;

p a r t i c l e F o r c e [ p a r t i c l e I n d e x ] . z −= dampingCoe f f i c i ent ∗
p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . z ;

}
}
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}

k e r n e l
void updateMomenta (

g l o b a l f loat ∗ mass ,
g l o b a l f l o a t 3 ∗ f o r c e ,
g l o b a l f l o a t 3 ∗ p o s i t i o n ,
g l o b a l f l o a t 3 ∗ linearMomentum ,
g l o b a l f l o a t 3 ∗ angularMomentum ,
g l o b a l f l o a t 3 ∗ p a r t i c l e P o s i t i o n ,
g l o b a l f l o a t 3 ∗ p a r t i c l e F o r c e ,

f loat de l ta ,
f loat t e r m i n a l V e l o c i t y

) {
unsigned int bodyIndex = g e t g l o b a l i d (0 ) ;
unsigned int tota lNumberOfPart i c l e s = g e t g l o b a l s i z e (0 ) ∗ 27 ;
unsigned int p a r t i c l e I n d e x = bodyIndex ∗ 27 ;

f o r c e [ bodyIndex ] . x = 0 .0 f ;
f o r c e [ bodyIndex ] . y = mass [ bodyIndex ] ∗ −9.81 f ; // f o r c e o f g r a v i t y
f o r c e [ bodyIndex ] . z = 0 .0 f ;

f l o a t 3 torque = {0 .0 f , 0 . 0 f , 0 . 0 f } ;

// Ca l cu la t e body f o r c e and torque
for ( int i =0; i <27; i++) {

f o r c e [ bodyIndex ] += p a r t i c l e F o r c e [ p a r t i c l e I n d e x+i ] ;
f l o a t 3 r e l a t i v e P o s = p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x+i ] −

p o s i t i o n [ bodyIndex ] ;
torque += c r o s s ( r e l a t i v e P o s , p a r t i c l e F o r c e [ p a r t i c l e I n d e x+i ] ) ;

}

f loat terminalMomentum = t e r m i n a l V e l o c i t y ∗ mass [ bodyIndex ] ;

linearMomentum [ bodyIndex ] . x += f o r c e [ bodyIndex ] . x ∗ d e l t a ;
linearMomentum [ bodyIndex ] . y += f o r c e [ bodyIndex ] . y ∗ d e l t a ;
linearMomentum [ bodyIndex ] . z += f o r c e [ bodyIndex ] . z ∗ d e l t a ;

// Limit momentum by termina l momentum
linearMomentum [ bodyIndex ] = clamp ( linearMomentum [ bodyIndex ] , −

terminalMomentum , terminalMomentum ) ;

angularMomentum [ bodyIndex ] . x += torque . x ∗ d e l t a ;
angularMomentum [ bodyIndex ] . y += torque . y ∗ d e l t a ;
angularMomentum [ bodyIndex ] . z += torque . z ∗ d e l t a ;

}

k e r n e l
void performStep (

g l o b a l f loat ∗ mass ,
g l o b a l f l o a t 3 ∗ p o s i t i o n ,
g l o b a l f l o a t 3 ∗ v e l o c i t y ,
g l o b a l f l o a t 3 ∗ linearMomentum ,
g l o b a l f l o a t 4 ∗ quaternion ,
g l o b a l f loat ∗ rotat ionMatr ix ,
g l o b a l f l o a t 3 ∗ angu larVe loc i ty ,
g l o b a l f l o a t 3 ∗ angularMomentum ,
g l o b a l f l o a t 3 ∗ i n i t i a l I I T D i a g o n a l ,
g l o b a l f loat ∗ i n v e r s e I n e r t i a T e n s o r ,
g l o b a l f loat ∗ bodyVBO,

f loat de l ta ,
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f loat par t i c l eRad iu s ,
int bodyVBOStride

) {
unsigned int bodyIndex = g e t g l o b a l i d (0 ) ;
unsigned int bodyVBOIndex = bodyIndex ∗ 24 ∗ 3 ;
unsigned int matrixIndex = bodyIndex ∗ 9 ;

//Update i n v e r s e i n e r t i a tensor
{

f loat a = rotat ionMatr ix [ matrixIndex ] ;
f loat b = rotat ionMatr ix [ matrixIndex +1] ;
f loat c = rotat ionMatr ix [ matrixIndex +2] ;
f loat d = rotat ionMatr ix [ matrixIndex +3] ;
f loat e = rotat ionMatr ix [ matrixIndex +4] ;
f loat f = rotat ionMatr ix [ matrixIndex +5] ;
f loat g = rotat ionMatr ix [ matrixIndex +6] ;
f loat h = rotat ionMatr ix [ matrixIndex +7] ;
f loat i = rotat ionMatr ix [ matrixIndex +8] ;

f loat u = i n i t i a l I I T D i a g o n a l [ bodyIndex ] . x ;
f loat v = i n i t i a l I I T D i a g o n a l [ bodyIndex ] . y ;
f loat w = i n i t i a l I I T D i a g o n a l [ bodyIndex ] . z ;

i n v e r s e I n e r t i a T e n s o r [ matrixIndex ] = u∗a∗a + b∗b∗v + c∗c∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +1] = a∗d∗u + b∗e∗v + c∗ f ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +2] = a∗g∗u + b∗h∗v + c∗ i ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +3] = a∗d∗u + b∗e∗v + c∗ f ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +4] = u∗d∗d + e∗e∗v + f ∗ f ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +5] = d∗g∗u + e∗h∗v + f ∗ i ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +6] = a∗g∗u + b∗h∗v + c∗ i ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +7] = d∗g∗u + e∗h∗v + f ∗ i ∗w;
i n v e r s e I n e r t i a T e n s o r [ matrixIndex +8] = u∗g∗g + h∗h∗v + i ∗ i ∗w;

}

//Perform l i n e a r s t e p
{

v e l o c i t y [ bodyIndex ] . x = linearMomentum [ bodyIndex ] . x / mass [
bodyIndex ] ;

v e l o c i t y [ bodyIndex ] . y = linearMomentum [ bodyIndex ] . y / mass [
bodyIndex ] ;

v e l o c i t y [ bodyIndex ] . z = linearMomentum [ bodyIndex ] . z / mass [
bodyIndex ] ;

p o s i t i o n [ bodyIndex ] . x += v e l o c i t y [ bodyIndex ] . x ∗ d e l t a ;
p o s i t i o n [ bodyIndex ] . y += v e l o c i t y [ bodyIndex ] . y ∗ d e l t a ;
p o s i t i o n [ bodyIndex ] . z += v e l o c i t y [ bodyIndex ] . z ∗ d e l t a ;

}

//Perform angular s t e p
{

//Update angular v e l o c i t y
{

f loat a = i n v e r s e I n e r t i a T e n s o r [ matrixIndex ] ;
f loat b = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +1] ;
f loat c = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +2] ;
f loat d = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +3] ;
f loat e = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +4] ;
f loat f = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +5] ;
f loat g = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +6] ;
f loat h = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +7] ;
f loat i = i n v e r s e I n e r t i a T e n s o r [ matrixIndex +8] ;
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f loat u = angularMomentum [ bodyIndex ] . x ;
f loat v = angularMomentum [ bodyIndex ] . y ;
f loat w = angularMomentum [ bodyIndex ] . z ;

angu la rVe loc i ty [ bodyIndex ] . x = a∗u + b∗v + c∗w;
angu la rVe loc i ty [ bodyIndex ] . y = d∗u + e∗v + f ∗w;
angu la rVe loc i ty [ bodyIndex ] . z = g∗u + h∗v + i ∗w;

}
f loat a n g u l a r V e l o c i t y S i z e = s q r t (

angu la rVe loc i ty [ bodyIndex ] . x∗ angu la rVe loc i ty [ bodyIndex ] . x +
angu la rVe loc i ty [ bodyIndex ] . y∗ angu la rVe loc i ty [ bodyIndex ] . y +
angu la rVe loc i ty [ bodyIndex ] . z∗ angu la rVe loc i ty [ bodyIndex ] . z )

;

i f ( a n g u l a r V e l o c i t y S i z e > 0 .0 f ) {
f l o a t 3 r o t a t i o n A x i s = {

angu la rVe loc i ty [ bodyIndex ] . x / a n g u l a r V e l o c i t y S i z e ,
angu la rVe loc i ty [ bodyIndex ] . y / a n g u l a r V e l o c i t y S i z e ,
angu la rVe loc i ty [ bodyIndex ] . z / a n g u l a r V e l o c i t y S i z e } ;

f loat ro tat ionAng le = a n g u l a r V e l o c i t y S i z e ∗ d e l t a ;

f loat ds = cos ( ro tat ionAng le /2 .0 f ) ;
f loat dvx = r o t a t i o n A x i s . x∗ s i n ( ro tat ionAng le /2 .0 f ) ;
f loat dvy = r o t a t i o n A x i s . y∗ s i n ( ro tat ionAng le /2 .0 f ) ;
f loat dvz = r o t a t i o n A x i s . z∗ s i n ( ro tat ionAng le /2 .0 f ) ;

f loat s = quatern ion [ bodyIndex ] . x ;
f loat vx = quatern ion [ bodyIndex ] . y ;
f loat vy = quatern ion [ bodyIndex ] . z ;
f loat vz = quatern ion [ bodyIndex ] . w;

quatern ion [ bodyIndex ] . x = s ∗ds − vx∗dvx − vy∗dvy − vz∗dvz ;
quatern ion [ bodyIndex ] . y = ds∗vx + s ∗dvx + dvy∗vz − dvz∗vy ;
quatern ion [ bodyIndex ] . z = ds∗vy + s ∗dvy + dvz∗vx − dvx∗vz ;
quatern ion [ bodyIndex ] . w = ds∗vz + s ∗dvz + dvx∗vy − dvy∗vx ;

}
}

//Update r o t a t i o n matrix
{

// Normalize quaternion
{

f loat mag2 = quatern ion [ bodyIndex ] . x∗ quatern ion [ bodyIndex ] . x
+

quatern ion [ bodyIndex ] . y∗ quatern ion [ bodyIndex ] . y +
quatern ion [ bodyIndex ] . z∗ quatern ion [ bodyIndex ] . z +
quatern ion [ bodyIndex ] . w∗ quatern ion [ bodyIndex ] . w;

i f (mag2 !=0.0 f && ( fabs (mag2 − 1 .0 f ) > 0.00001 f ) ) {
f loat mag = s q r t (mag2) ;
quatern ion [ bodyIndex ] . x /= mag ;
quatern ion [ bodyIndex ] . y /= mag ;
quatern ion [ bodyIndex ] . z /= mag ;
quatern ion [ bodyIndex ] . w /= mag ;

}
}
f loat w = quatern ion [ bodyIndex ] . x ;
f loat x = quatern ion [ bodyIndex ] . y ;
f loat y = quatern ion [ bodyIndex ] . z ;
f loat z = quatern ion [ bodyIndex ] . w;
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f loat xx = x ∗ x ;
f loat yy = y ∗ y ;
f loat zz = z ∗ z ;
f loat xy = x ∗ y ;
f loat xz = x ∗ z ;
f loat yz = y ∗ z ;
f loat wx = w ∗ x ;
f loat wy = w ∗ y ;
f loat wz = w ∗ z ;

ro tat ionMatr ix [ matrixIndex ] = 1 .0 f −2.0 f ∗( yy+zz ) ;
ro tat ionMatr ix [ matrixIndex +1] = 2 .0 f ∗( xy−wz) ;
ro tat ionMatr ix [ matrixIndex +2] = 2 .0 f ∗( xz+wy) ;
ro tat ionMatr ix [ matrixIndex +3] = 2 .0 f ∗( xy+wz) ;
ro tat ionMatr ix [ matrixIndex +4] = 1 .0 f −2.0 f ∗( xx+zz ) ;
ro tat ionMatr ix [ matrixIndex +5] = 2 .0 f ∗( yz−wx) ;
ro tat ionMatr ix [ matrixIndex +6] = 2 .0 f ∗( xz−wy) ;
ro tat ionMatr ix [ matrixIndex +7] = 2 .0 f ∗( yz+wx) ;
ro tat ionMatr ix [ matrixIndex +8] = 1 .0 f −2.0 f ∗( xx+yy ) ;

}

//Update body VBO
{

f loat s i d e = p a r t i c l e R a d i u s ∗ 3 .0 f ;

f loat normals [ 6 ] [ 3 ] = { // Cube face normals
{ −1.0 f , 0 . 0 f , 0 . 0 f } , { 0 .0 f , 1 . 0 f , 0 . 0 f } , { 1 .0 f , 0 . 0 f ,

0 . 0 f } ,
{ 0 .0 f , −1.0 f , 0 . 0 f } , { 0 .0 f , 0 . 0 f , 1 . 0 f } , { 0 .0 f , 0 . 0 f ,

−1.0 f } } ;
int f a c e I n d i c e s [ 6 ] [ 4 ] = { // Cube f a c e s ’ v e r t e x i n d i c e s
{ 0 , 1 , 2 , 3 } , { 3 , 2 , 6 , 7 } , { 7 , 6 , 5 , 4 } ,
{ 4 , 5 , 1 , 0 } , { 5 , 6 , 2 , 1 } , { 7 , 4 , 0 , 3 } } ;

f loat v e r t i c e s [ 8 ] [ 3 ] = { // Cube v e r t e x p o s i t i o n s
{ −s ide , −s ide , s i d e } , { −s ide , −s ide , −s i d e } , { −s ide ,

s ide , −s i d e } ,
{ −s ide , s ide , s i d e } , { s ide , −s ide , s i d e } , { s ide , −s ide ,

−s i d e } ,
{ s ide , s ide , −s i d e } , { s ide , s ide , s i d e } } ;

for ( int i =0; i <6; i++) { // f o r every face
for ( int j =0; j <4; j++) { // f o r every v e r t e x in the face

f loat r0 = rotat ionMatr ix [ matrixIndex ] ;
f loat r1 = rotat ionMatr ix [ matrixIndex +1] ;
f loat r2 = rotat ionMatr ix [ matrixIndex +2] ;
f loat r3 = rotat ionMatr ix [ matrixIndex +3] ;
f loat r4 = rotat ionMatr ix [ matrixIndex +4] ;
f loat r5 = rotat ionMatr ix [ matrixIndex +5] ;
f loat r6 = rotat ionMatr ix [ matrixIndex +6] ;
f loat r7 = rotat ionMatr ix [ matrixIndex +7] ;
f loat r8 = rotat ionMatr ix [ matrixIndex +8] ;

f loat v0 = v e r t i c e s [ f a c e I n d i c e s [ i ] [ j ] ] [ 0 ] ;
f loat v1 = v e r t i c e s [ f a c e I n d i c e s [ i ] [ j ] ] [ 1 ] ;
f loat v2 = v e r t i c e s [ f a c e I n d i c e s [ i ] [ j ] ] [ 2 ] ;

bodyVBO [ bodyVBOIndex ] = r0 ∗v0 + r1 ∗v1 + r2 ∗v2 + p o s i t i o n [
bodyIndex ] . x ;

bodyVBO [ bodyVBOIndex+1] = r3 ∗v0 + r4 ∗v1 + r5 ∗v2 + p o s i t i o n [
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bodyIndex ] . y ;
bodyVBO [ bodyVBOIndex+2] = r6 ∗v0 + r7 ∗v1 + r8 ∗v2 + p o s i t i o n [

bodyIndex ] . z ;

f loat n0 = normals [ i ] [ 0 ] ;
f loat n1 = normals [ i ] [ 1 ] ;
f loat n2 = normals [ i ] [ 2 ] ;

bodyVBO [ bodyVBOIndex+bodyVBOStride ] = r0 ∗n0 + r1 ∗n1 + r2 ∗n2
;

bodyVBO [ bodyVBOIndex+bodyVBOStride+1] = r3 ∗n0 + r4 ∗n1 + r5 ∗
n2 ;

bodyVBO [ bodyVBOIndex+bodyVBOStride+2] = r6 ∗n0 + r7 ∗n1 + r8 ∗
n2 ;

bodyVBOIndex += 3 ;
}

}
}

}

k e r n e l
void u p d a t e P a r t i c l e s (

g l o b a l f l o a t 3 ∗ bodyPosit ion ,
g l o b a l f l o a t 3 ∗ bodyVelocity ,
g l o b a l f loat ∗ rotat ionMatr ix ,
g l o b a l f l o a t 3 ∗ angu larVe loc i ty ,
g l o b a l f loat ∗ particleVBO ,
g l o b a l f l o a t 3 ∗ p a r t i c l e P o s i t i o n ,
g l o b a l f l o a t 3 ∗ p a r t i c l e V e l o c i t y ,

f loat p a r t i c l e R a d i u s
) {

unsigned int p a r t i c l e I n d e x = g e t g l o b a l i d (0 ) ;
unsigned int bodyIndex = p a r t i c l e I n d e x / 27 ;
unsigned int matrixIndex = bodyIndex ∗ 9 ;

f l o a t 3 o r i g i n a l R e l a t i v e P o s ;
// Ca l cu la t e o r i g i n a l r e l a t i v e p o s i t i o n
{

int r e l a t i v e I n d e x = p a r t i c l e I n d e x % 27 ;

int xIndex = r e l a t i v e I n d e x / 9 ;
r e l a t i v e I n d e x −= xIndex ∗ 9 ;

int yIndex = r e l a t i v e I n d e x / 3 ;
r e l a t i v e I n d e x −= yIndex ∗ 3 ;

int zIndex = r e l a t i v e I n d e x ;

f loat space = 2 .0 f ∗ p a r t i c l e R a d i u s ;

xIndex−−;
yIndex−−;
zIndex−−;

o r i g i n a l R e l a t i v e P o s . x = xIndex∗ space ;
o r i g i n a l R e l a t i v e P o s . y = yIndex∗ space ;
o r i g i n a l R e l a t i v e P o s . z = zIndex ∗ space ;

}

//Update p a r t i c l e p o s i t i o n
{
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p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x =
o r i g i n a l R e l a t i v e P o s . x∗ ro tat ionMatr ix [ matrixIndex ] +
o r i g i n a l R e l a t i v e P o s . y∗ ro tat ionMatr ix [ matrixIndex +1] +
o r i g i n a l R e l a t i v e P o s . z∗ ro tat ionMatr ix [ matrixIndex +2] ;

p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . y =
o r i g i n a l R e l a t i v e P o s . x∗ ro tat ionMatr ix [ matrixIndex +3] +
o r i g i n a l R e l a t i v e P o s . y∗ ro tat ionMatr ix [ matrixIndex +4] +
o r i g i n a l R e l a t i v e P o s . z∗ ro tat ionMatr ix [ matrixIndex +5] ;

p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z =
o r i g i n a l R e l a t i v e P o s . x∗ ro tat ionMatr ix [ matrixIndex +6] +
o r i g i n a l R e l a t i v e P o s . y∗ ro tat ionMatr ix [ matrixIndex +7] +
o r i g i n a l R e l a t i v e P o s . z∗ ro tat ionMatr ix [ matrixIndex +8] ;

p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x += bodyPos i t ion [ bodyIndex ] . x ;
p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . y += bodyPos i t ion [ bodyIndex ] . y ;
p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z += bodyPos it ion [ bodyIndex ] . z ;

}

//Update p a r t i c l e v e l o c i t y
f loat s c a l a r = s q r t (

ang u la rVe loc i ty [ bodyIndex ] . x∗ ang u la rVe loc i ty [ bodyIndex ] . x +
ang u la rVe loc i ty [ bodyIndex ] . y∗ angu la rVe loc i ty [ bodyIndex ] . y +
ang u la rVe loc i ty [ bodyIndex ] . z∗ angu la rVe loc i ty [ bodyIndex ] . z ) ;

s c a l a r ∗= s c a l a r ;

p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . x = bodyVeloc ity [ bodyIndex ] . x ;
p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . y = bodyVeloc ity [ bodyIndex ] . y ;
p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . z = bodyVeloc ity [ bodyIndex ] . z ;

i f ( s c a l a r > 0 .0 f ) {
f l o a t 3 r e l a t i v e P o s i t i o n = {

p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x−bodyPos i t ion [ bodyIndex ] . x ,
p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . y−bodyPos i t ion [ bodyIndex ] . y ,
p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . z−bodyPos i t ion [ bodyIndex ] . z

} ;

f loat s c a l a r 2 = (
ang u la rVe loc i ty [ bodyIndex ] . x∗ r e l a t i v e P o s i t i o n . x +
ang u la rVe loc i ty [ bodyIndex ] . y∗ r e l a t i v e P o s i t i o n . y +
ang u la rVe loc i ty [ bodyIndex ] . z∗ r e l a t i v e P o s i t i o n . z
) / s c a l a r ;

f l o a t 3 term = {
r e l a t i v e P o s i t i o n . x − angu la rVe loc i ty [ bodyIndex ] . x∗ s c a l a r2 ,
r e l a t i v e P o s i t i o n . y − angu la rVe loc i ty [ bodyIndex ] . y∗ s c a l a r2 ,
r e l a t i v e P o s i t i o n . z − angu la rVe loc i ty [ bodyIndex ] . z∗ s c a l a r 2 } ;

p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . x += ( an gu la rV e loc i ty [ bodyIndex
] . y∗ term . z − ang u la rVe loc i ty [ bodyIndex ] . z∗ term . y ) ;

p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . y += ( an gu la rV e loc i ty [ bodyIndex
] . z∗ term . x − ang u la rVe loc i ty [ bodyIndex ] . x∗ term . z ) ;

p a r t i c l e V e l o c i t y [ p a r t i c l e I n d e x ] . z += ( angu l a rVe l oc i ty [ bodyIndex
] . x∗ term . y − ang u la rVe loc i ty [ bodyIndex ] . y∗ term . x ) ;

}

//Update p a r t i c l e VBO
unsigned int particleVBOIndex = p a r t i c l e I n d e x ∗ 3 ;
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particleVBO [ particleVBOIndex ] = p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x ] . x
;

particleVBO [ particleVBOIndex +1] = p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x
] . y ;

particleVBO [ particleVBOIndex +2] = p a r t i c l e P o s i t i o n [ p a r t i c l e I n d e x
] . z ;

}
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