
Master of Science in Computer Science
June 2011
Asbjørn Thomassen, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Adaptive Aggregation of Recommender
Systems

Olav Frihagen Bjørkøy

Problem Description

Study how to adaptively aggregate recommender systems on a per-user and per-item
basis when combining results from complementing prediction methods. Create a flexible
algorithm that combines multiple predictions into one coherent result. Utilize the resulting
aggregation algorithm to provide personalized search in an information retrieval system.

Assignment given: January 17th, 2011
Supervisor: Asbjørn Thomassen

Adaptive Aggregation of
Recommender Systems

o

By Olav Frihagen Bjørkøy
(olavfrih@stud.ntnu.no)

Supervised by Asbjørn Thomassen
(asbjornt@idi.ntnu.no)

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract

In the field of artificial intelligence, recommender systems are methods for predicting the
relevance items to a users. The items can be just about anything, for example documents,
articles, movies, music, events or other users. Recommender systems examine data such
as ratings, query logs, user behavior and social connections to predict what each user will
think of each item.

Modern recommender systems combine multiple standard recommenders in order
to leverage disjoint patterns in available data. By combining different methods, complex
predictions that rely on much evidence can be made. These aggregations can for example
be done by estimating weights that result in an optimal combination.

However, we posit these systems have an important weakness. There exists an
underlying, misplaced subjectivity to relevance prediction. Each chosen recommender
system reflects one view of how users and items should be modeled. We believe the
selection of recommender methods should be automatically chosen based on their predicted
accuracy for each user and item. After all, a system that insists on being adaptive in one
particular way is not really adaptive at all.

This thesis presents a novel method for prediction aggregation that we call adaptive
recommenders. Multiple recommender systems are combined on a per-user and per-item
basis by estimating their individual accuracy in the current context. This is done by
creating a secondary set of error estimating recommenders. The core insight is that
standard recommenders can be used to estimate the accuracy of other recommenders. As
far as we know, this type of adaptive prediction aggregation has not been done before.

Prediction aggregation (combining scores) is tested in a recommendation scenario.
Rank aggregation (sorting results lists) is tested in a personalized search scenario. Our
initial results are promising and show that adaptive recommenders can outperform
both standard recommenders and simple aggregation methods. We will also discuss the
implications and limitations of our results.

Preface

This is a Master Thesis in the field of Artificial Intelligence, as part of my degree in
Computer Science at the Norwegian University of Science and Technology (NTNU). My
specialization is in the field of intelligent systems, at the Department of Computer and
Information Science (IDI), in the faculty of Information Technology, Mathematics and
Electrical Engineering (IME).

Parts of this thesis is based on my previous work in the same field, User Modeling
on The Web: An Exploratory Review. A short version of this thesis is also available. See
Appendix B for more information.

I would like to thank my supervisor, assistant professor Asbjørn Thomassen, for
valuable guidance and feedback throughout the process. In addition, thanks are in order
for my fellow students Kim Joar Bekkelund and Kjetil Valle, who helped me formulate
my thoughts and provided feedback on the work represented by this thesis.

To limit the scope of an already extensive topic, this document assumes a basic
knowledge of set theory, graph theory, linear algebra and fundamental concepts in artificial
intelligence on behalf of the reader.

Trondheim, June 13th, 2011,
Olav Frihagen Bjørkøy

Contents

1 Introduction 1

2 Background Theory 5
2.1 Information Overload . 5
2.2 User Modeling . 9
2.3 Recommender Systems . 11
2.4 Personalized Search . 22
2.5 Recommender Aggregation . 29

3 Methods & Implementation 33
3.1 Latent Subjectivity . 33
3.2 Three Hypotheses . 35
3.3 Adaptive Recommenders . 36
3.4 Prediction Aggregation . 43
3.5 Rank Aggregation . 47

4 Experiments & Results 53
4.1 Three Experiments . 53
4.2 Recommenders . 55
4.3 Evaluation Strategies . 57
4.4 Prediction Aggregation . 58
4.5 Rank Aggregation . 63

5 Discussion & Conclusion 71
5.1 Implications & Limitations . 71
5.2 Prediction Aggregation . 74
5.3 Rank Aggregation . 75
5.4 Future Work . 76
5.5 Conclusion . 78

A Implementation 81

B Resources 87

References 89

1

Introduction

As people get access to more and more information, a common problem often occurs.
Having too much information can be as harmful as having no information at all. While
having too little is an obvious problem, too much leads to information overload, where
relevant content drowns in irrelevant noise. Our ability to make informed decisions is
often the first thing to go (Davenport and Beck, 2001, p.1).

While people struggle with excessive information, many algorithms in artificial
intelligence can increase their performance by accessing more information. Halevy and
Norvig (2009) calls this the “unreasonable effectiveness of data”. Perhaps surprisingly,
more data often trumps more efficient algorithms. For example, Banko and Brill (2001,
p.3) show how common algorithms in AI can substantially improve by giving them a lot
more data to work with. As much as researchers chase elegant algorithms, finding more
data to work with may be time better spent.

Few places is this difference of users and computers more apparent than in recom-
mender systems. A recommender system is a technique in user modeling to estimate the
relevance of an item to a user (see Figure 1.1). The items can be just about anything, for
example documents, websites, movies, events or other users. These systems use data such
as search query logs, ratings from similar users, social connections and much more to
predict unknown relevance, as we shall see. Recommender systems are especially prolific
on the Web, for example in personalized recommendations of news, books, movies, articles,
social connections, search results, et cetera. Unlike search engines, which lets users search
for known or desired information, recommender systems strive to present each user with
previously unknown yet interesting items.

Modern recommender systems often embrace the unreasonable effectiveness of data
by combining multiple algorithms that predict relevance in various ways. By considering
different aspects of users and items when making predictions, aggregation methods provide
quite complex predictions that rely on much evidence. For example, Bell et al. took this
approach to its logical conclusion by combining 107 different recommender systems when
winning the Netflix movie recommender challenge (see Bennett and Lanning (2007)).

While the name “recommender systems” might seem limiting, they are incredibly
powerful tools. If we can accurately predict how users will react to items, we will have
come a long way towards solving the information overload problem.

Despite their apparent power, recommender systems are often confined to simple
tasks like creating small lists of recommended items or computing similar items to the ones
being considered. Examples include recommending new social connections, or suggesting
news articles based on previous reading. Seldom are the full potential of recommender
systems reached by creating completely adaptive systems that work hard to mitigate any
signs of information overload.

2 INTRODUCTION

predictions:

modeling:

user, item

data

recommender model

recommender system

predicted rating

recommender model

Figure 1.1: A simplified view of recommender systems: Ratings of items by users are used to
create a model. This model is then used to predict unknown ratings between users and items.
Note that many recommender systems work differently, as we shall see later in this thesis.

We posit that traditional recommender systems have an important weakness. There
exists an underlying, misplaced subjectivity to relevance prediction. We believe this
fundamental weakness hinders their usefulness, as there is a mismatch between how
recommender systems perform predictions, and how predictions actually should be made
for each user and item.

Consider this: when an algorithm is selected for use in a recommender system, there
is a concious decision of which predictive data pattern to use. Before any user modeling
is performed, the researcher or developer selects one or more methods that is thought
to best model every user and item in the system. While the methods themselves may
perform well, their selection reflects how whoever created the system assumes how each
user can and should be modeled. This underlying subjectivity is not desirable. We call
this the latent subjectivity problem.

Examples are not hard to come by. For instance, while one user might appreciate
social influence in their search results, another user might not. While one user might
find frequency of communication maps well to relevance, another might not. One user
may think the similarity of movie titles is a good predictor, while another might be more
influenced by their production year. Some users may favor items rated highly on a global
scale, while others are more interested in what users similar to themselves have to say.

The same problem exists for the items that should be recommended. For example,
while one item might best be judged by its content, another might be better described by
previous ratings from other users. One item’s relevance may be closely tied to when it
was created, while other items may be timeless. The exact differences are not important,
only that they exist.

Another way to put this is that recommender systems are dependent on the subjective
assumptions of their creators. A recommendation method use certain aspects of available
data to make predictions, and these aspects are chosen by whoever creates the system.

Modern aggregation approaches face the same problem. Aggregation is done on
a generalized, global level, where each user and item is expected to place the same
importance on each modeling method. While the aggregation is selected to minimize
some error over a testing set, the subjective nature remains. The generalized aggregation
treats all users and items the same — hardly a goal of user modeling.

3

Should it not be up to the users to implicitly decide which method best describes
their preferences? And, considering the vast scope of items we can come by, will the
selected methods perform optimally for every item? We believe the priority of each
algorithm should be implicitly and automatically based on how well they have previously
worked for individual users and items. Without this adaptability, it may be hard for
recommender systems to perform well in scenarios with widely differing users and items.
The scope of users and items is simply too great for any one or generalized combination
of methods to capture the nuanced nature of relevance prediction.

This thesis proposes a novel aggregation method that we call adaptive recommenders,
where the selection of algorithms is implicitly made by the users and items. This provides
an extra level of abstraction and personalization. The selection decisions are implicit,
and happens in the background, without any extra interaction required. This leaves the
subjective nature of selecting ways to model users and items where it should be. That is,
in the hands of individual users, and dependent on specific items.

This adaptive selection has an important consequence. If an algorithm is contextually
used based on how well it performs, any possibly useful recommender algorithm suddenly
becomes a worthy addition. Algorithms of the system are only used in situations they
work well, and those that do not will be used in other situations where they might be
better suited.

As far as we know, this kind of adaptive prediction aggregation has not been done
before. The main research question of this thesis is whether or not adaptive recommenders
can outperform traditional approaches.

o

This thesis is structured as follows. Chapter 2 will present background theory and previous
work for the information overload problem, recommender systems, prediction aggregation
(combining scores) and rank aggregation (combining sorted lists). We will also briefly
introduce the topics of information retrieval and personalized search, that will serve as a
case study in later chapters.

Chapter 3 will further discuss the latent subjectivity problem, and build the adaptive
recommenders approach from the ground up. We will show how this approach can be
used for both prediction aggregation and rank aggregation.

Chapter 4 will test three hypotheses and experiment with our newly built method.
We will experiment with prediction aggregating for singular items, and explore rank
aggregation for personalized search. Finally, Chapter 5 will discuss the implications of
our results, important limitations, contributions and suggest future work.

2

Background Theory

This chapter will introduce previous work and background theory needed to develop our
approach to relevance prediction. We will first describe the information overload problem,
before delving into how user modeling and recommender systems are currently used to
solve this problem. This chapter will also introduce the field of personalized search, where
adaptive recommenders will be especially applicable.

2.1 Information Overload

Information overload conveys the act of receiving too much information. The problem
is apparent in situations where decisional accuracy turns from improving with more
information, to being hindered by too much irrelevant data (Bjørkøy, 2010, p.13). This is
a widespread phenomenon, with as many definitions as there are fields experiencing the
problem. Examples include sensory overload, cognitive overload and information anxiety
(Eppler and Mengis, 2004, p.2). When this happens, two common tasks become difficult:

1. Consumption of relevant content is hindered by irrelevant noise.
2. Discovering new and interesting content is difficult due to the amount of information.

Finding contemporary examples is not difficult:

• Missing important news articles that get drowned out by irrelevant content.
• Forgetting to reply to an email as new messages keep arriving.
• Consuming sub-par entertainment because the most relevant is never discovered.
• Reformulating search queries because the results include irrelevant items.
• Browse through much information to find what one is actually looking for.

Information overload is often likened to a paradox of choice, as there may be no
problem acquiring the relevant information, but rather identifying this information once
acquired. As put by (Edmunds and Morris, 2000, p.6): “The paradox — a surfeit of
information and a paucity of useful information.” While normal cases of such overload
typically result in feelings of being overwhelmed and out of control, Bawden and Robinson
(2009, p.5) points to studies linking extreme cases to various psychological conditions
related to stressful situations, lost attention span, increased distraction and general
impatience.

Kirsh (2000) argues that “the psychological effort of making hard decisions about
pushed information is the first cause of cognitive overload.” According to Kirsh, there
will never be a fully satisfiable solution to the problem of overabundant information, but
that optimal environments can be designed, in order to increase productivity and reduce

6 BACKGROUND THEORY

the level of stress. This is achieved through careful consideration of each user’s needs.
To solve the problems of information overload, applications must be able to individually
adapt themselves to individual users.

An insightful perspective on information overload comes from the study of attention
economy. In this context human attention is seen a scarce commodity, offset by how much
irrelevant noise is present at any given time. Davenport and Beck (2001, p.1) defines
attention as “[...] focused mental engagement on a particular item of information. Items
come into our awareness, we attend to a particular item, and then we decide whether to
act”. To evade information overload means maximising the available attention, allowing
more focus on the most important items in each situation.

THE GOALS

Intention
to act

Sequence
of actions

Execution of
the action sequence

Evaluation of
interpretations

Interpreting
the perception

Perceiving the
world state

THE WORLD

Figure 2.1: Stages of Action

Conceptual models used in interac-
tion design can also help us see when and
where information overload interferes with
a user’s experience. Norman (2002) advo-
cates a model called the seven stages of
action, that describes how each user goes
through several states while using a sys-
tem (see Figure 2.1, adapted from Norman
(2002)). First, the user forms a goal and an
intention to act. The user then performs a
sequence of actions on the world (the inter-
face) meant to align the perceived world
and the goals. After performing a set of
actions, the new world state is evaluated
and perceived. At last, the user evaluates
the perception and interpretation of the
world in accordance with the original goal.

As apparent from this model, infor-
mation overload can interfere both before
and after any action is taken. For exam-
ple, if the application presents too much
content, or presents content in a confusing manner, it can be difficult for the user to
identify which actions that would help achieve the current goal. Likewise, after actions
are taken, the new world state can suffer the same shortcomings of overwhelming scope
or lack of presentations, leading to information overload. This precludes the user from
properly evaluating the resulting application state.

In short, an application interface can fail both before and after a user tries to
interact with it. Information overload can happen throughout the interaction process.

INFORMATION OVERLOAD 7

Figure 2.2: Complex Networks, from the left: a random network, a small-world network and a
scale-free network (which is a type of small-world network). Figure adapted from Huang et al.
(2005, p.2).

2.1.1 Online Overload

The Web is a common source of information overload, and a good example of how and why
the problem occurs. Online information overload is especially pervasive when considering
content aggregating websites, i.e. sites that combine information from multiple other sites
and sources. Online information retrieval systems (search engines) are in this category, as
are online newspapers, feed readers and portal sites.

The wealth and scope of data on the Web are natural culprits of information
overload, as well as the varying qualities of websites publishing the information. However,
the problem is also a result of the fundamental observed structure of the Web. Graph
theory presents applicable models that characterize how people navigate between websites,
and show how content aggregators form important hubs in the network. These models
give a theoretical foundation for why information overload occurs on the Web.

In the Web graph, nodes correspond to websites and directed edges between nodes
are links from one page to another. The degree of a node is defined as its number of
edges. It has been observed that this graph has the properties of a small-world network
((Newman et al., 2000), (Huang et al., 2005, p.2)), a type of random graph, where most
nodes are not neighbors, but most nodes are reachable through a small number of edges
(See Figure 2.2). This is because of important random shortcuts differentiating the graph
from a regular lattice. The graph is not random, but neither is it completely regular. As
described by Barabási (2003, p.37), the average number of outbound links from a web
page is around 7. From the first page, we can reach 7 other pages. From the second, 49
documents can be reached. After 19 links have been traversed, about 1016 pages can be
reached (which is more than the actual number of existing web pages, since loops will
form in the graph).

The high degree of the Web graph would suggest that finding an optimal path to
your desired page is quite difficult. Yet, while it is true that finding the optimal path
is hard, finding a good path is not that big a challenge. When people browse the Web,

8 BACKGROUND THEORY

links are not followed blindly — we use numerous heuristics to evaluate each link, often
resulting in quite a good path to where we want to go. So why is the Web still quite
challenging to navigate?

As discovered by Albert et al. (1999), the Web also exhibits properties of a Scale-Free
Network (SFN). They found that in some natural observed networks, there exists a small
number of nodes with an extremely high degree. This is also true on the Web — some
websites have a huge number of outbound links. For comparison, while a random network
is similar to a national highway system, with a regular number of links between major
cities, scale-free networks are more like an air traffic system, with central hubs connecting
many less active airports (Barabási, 2003, p.71).

These highly connected nodes, called hubs, are not found in small-world networks
or random graphs. As demonstrated by the presence of hubs, the degree distribution
of a scale-free network follows a power law, P (k) ∼ k−γ , where P (k) is the probability
of a node having k connections and γ is a constant dependent on the type of network,
typically in the range 2 < γ < 3. Since the Web has directed edges, we have two power
laws: Pin(k) ∼ k−γin and Pout(k) ∼ k−γout .

Albert et al. (1999) describes a number of studies placing the γ values for the Web
in the [2, 3] range, with γout being slightly higher than γin. Both these probabilities
exhibit power tails (or long tails). A few important nodes have a huge number of inbound
and outbound links, i.e. the hubs.

Barabási (2003, p.86) proposed that hubs emerge in a scale-free networks because
of two factors. (1) Growth: nodes are added to the network one by one, for example
when new websites are added to the Internet. (2) Preferential attachment: when new
nodes are created, they connect to existing nodes. The probability that the new node
will connect to an existing node is proportional to the number of links the existing node
has. Older, more established and central nodes are preferred neighbors.

This is called the Barabási-Albert model (Albert et al., 1999). The probability for
a new node connecting to an existing node is given by

∏
ki, where ki is the number of

links pointing to node i, in the following equation:∏
i

ki =
ki∑N
j kj

.

Search engines, social link aggregators, news portals, et cetera are all hubs of the
Internet, emerging from the preferential link attachment of newly created nodes, that
make navigating the Web less easy as it might appear. What does seem clear is that
these content aggregating hubs are prime candidates for overwhelming their users with
information.

The fundamental observed structure of the Web creates the need for information
brokers that link the net together, and the need for techniques to display a lot of data,
adapted to each user and each item. In other words, we need user modeling methods that
can predict how relevant an item will be to a user.

USER MODELING 9

2.2 User Modeling

The term user modeling (UM) lacks a strict definition. Broadly speaking, when an
application is adapted in some way based on what the system knows about its users,
we have user modeling. From predictive modeling methods in machine learning, to how
interface design is influenced by personalization, the field covers a lot of ground.

It is important to differentiate between adapting the interface of an application and
the content of an application. Many user modeling methods strive to personalize the
interface itself, e.g. menus, buttons and control elements (e.g. Jameson (2009); Fischer
(2001)). Adapting the content, on the other hand, means changing how and what content
is displayed. For instance, interface adaption might mean changing the order of items in
a menu, while content adaption might mean changing the order and emphasis of results
in a web search interface (e.g. Xu et al. (2008); Qiu and Cho (2006); Rhodes and Maes
(2000)).

In this thesis, we are interested in adapting the content of an application. We
believe the information overload problem often stems from a mismatch between presented
content and desired content. Examples of adaptive content include:

• Suggesting interesting items based on previous activity.
• Reorganizing or filtering content based on predicted user relevance.
• Translating content based on a user’s geographical location.
• Changing the presentation of content to match personal preferences or abilities.
• Personalizing search results based on previous queries and clicks.

The fields of Artificial Intelligence (AI) and Human-Computer Interaction (HCI)
share a common goal solving information overload through user modeling. However, as
described by (Lieberman, 2009, p.6), they have different approaches and their efforts are
seldom combined. While AI researchers often view contributions from HCI as trivial
cosmetics, the HCI camp tends to view AI as unreliable and unpredictable — surefire
aspects of poor interaction design.

In AI, user modeling refers to algorithms and methods that infer knowledge about a
user based on past interaction (e.g. Pazzani and Billsus (2007); Smyth (2007); Alshamri
and Bharadwaj (2008); Resnick et al. (1994)). By examining previous actions, predictions
can be made of how the user will react to future information. This new knowledge is then
embedded in a model of the user, which can predict future actions and reactions. For
instance, an individual user model may predict how interesting an unseen article will be
to a user, based on previous feedback on similar articles or the feedback of similar users.

HCI aims to meet user demands for interaction. User modeling plays a crucial role
in this task. Unlike the formal user modeling methods of AI, user models in HCI are
often cognitive approximations, manually developed by researchers to describe different
types of users (e.g. Fischer (2001); Jameson (2009); Cato (2001)). These models are then
utilized by interaction designers to properly design the computer interface based on a

10 BACKGROUND THEORY

NO AUTONOMY SEMIAUTONOMOUS FULLY AUTONOMOUS

CUSTOMIZABLE INTERFACES ADAPTIVE INTERFACES INTELLIGENT INTERFACES

Figure 2.3: Levels of Interface Autonomy: Interfaces range from those only customizable by the
user, to intelligent systems takes the initiative on their own accord.

models predictions of its user’s preferences. Totterdell and Rautenbach (1990) describes
user modeling in interaction design as a collection of deferred parameters:

“The designer defers some of the design parameters such that they can be
selected or fixed by features of the environment at the time of interaction
[...] Conventional systems are special cases of adaptive systems in which the
parameters have been pre-set.”

This thesis is concerned with the AI approach to user modeling, and in particular,
the use of recommender systems (RSs).

2.2.1 Interface Autonomy

Using AI to adapt an interface raises important questions with regard to usability, privacy
and usefulness. These questions are rooted in the autonomy expressed by each interface.
An autonomous interface is one that takes initiatives on its own, regardless of whether the
user has asked for it (Lieberman, 1997, p.2). Naturally, any application that automatically
personalizes its content will be autonomous to some degree.

Adaptive interfaces can be classified into increasing order of autonomy (see Figure
2.3). At the order of least autonomous systems, we have customizable interfaces. These
are interfaces that the user may customize themselves, but that do not take the initiative
or change anything without explicit user action. For example, an interface might have a
settings panel where users can change the order of items in a menu.

At the next level of autonomy, we have adaptive interfaces that suggest to the user
possible changes or actions that might be beneficial. For example, an email application
could suggest which folder an email should be moved to. At the most autonomous level,
intelligent interfaces implicitly and automatically customize the interface or content based
on passive observation of the user. This could for instance entail automatic filing of emails
based on content classification and data mining of previous user actions with similar
messages.

An application that personalizes content automatically will fall somewhere in the
two last categories and present either an adaptive or intelligent interface, depending on
the extent and transparency of its autonomy.

In this thesis, we are only interested in fully autonomous, intelligent interfaces. We
will create a system that implicitly, and without any effort from each user, can adapt the

RECOMMENDER SYSTEMS 11

content of an application based on previous behavior. Other examples of such implicit
user modeling include Qiu and Cho (2006), Shen et al. (2005) and Carmel et al. (2009).

As our goal is to adaptively combine different RSs based on each user and item, we
shall now describe what makes a recommender system, and introduce some of the many
algorithms they employ.

2.3 Recommender Systems

Recommender systems are powerful and versatile approaches to user modeling. Whenever
we wish to predict the relevance of an item to a user, recommender systems are the tools
to use. Such systems are commonly used on the Web to provide a host of functionality,
for example:

• Suggesting new social connections based on an existing social graph.
• Recommending new and unseen products based on past purchases.
• Ordering news articles by predicted individual relevance.
• Recommending items based the activity of similar or like-minded users.
• Personalizing search results based on the current user’s preferences.

Note that although we use the terms ratings, utility, preference, relevance and
connection strength depending on the context, they all refer to the same measure. The
terms are measures for what a user thinks of an item, using the domain language of the
application in question.

Common to our examples are a set of users, a set of items, and a sparse set of
known ratings or relevance measures. The operations of a recommender system is best
described through graph operations, although the underlying algorithms might not use
this as the representation at all. Mirza and Keller (2003) explain how any RS can be
expressed as a graph traversal algorithm. In this graph structure, items and users are
nodes, while ratings, social connections et cetera are edges between the nodes. An RS
performs predictive reasoning by estimating the strengths of hypothetical connections
between nodes that are not explicitly connected.

For example, if a user has rated a subset of the movies in a movie recommendation
system, algorithms can use these ratings to predict how well the user will like unseen
movies. This inference can for instance be based on each movie’s ratings from similar
users. In social networks, recommender systems can be used to infer new social relations
based on existing connections. The principle is the same. By evaluating current explicit
connections, and the connections of similar users, new connections can be predicted.

As evident by the examples, recommender systems are powerful methods for user
modeling, personalization and for fighting information overload. Their ability to infer
unknown relevance between users and items makes them useful in many situations, as we
shall see.

12 BACKGROUND THEORY

2.3.1 Aspects of Recommender Systems

Formally, a recommender system can be seen as a quintuple, RS = (I, U,R, F,M), where
I is the set of items and U is the set of users. R is the set of known ratings or relevance
scores, for example explicit preferences given by users for certain items, or connections in
a social graph. We have explicit ratings whenever the user provides their own ratings (e.g.
product purchases), and implicit ratings when the system infers ratings from behavior
(e.g. query log mining). F is a framework for representing the items, users and ratings,
for example with a graph or matrix. M is the actual user modeling algorithm used to
infer unknown ratings for predicting a user’s preference for an unrated item. This is
where AI comes in.

In Adomavicius and Tuzhilin (2005, p.2), M is seen as a utility (the rating, in AI
terms) estimation function p : U × I → S. Here, p (for prediction) is a function that
maps the set of users and items into a fully ordered set of items S, ranked by their utility
to each user. In other words, S is the completely specified version of R, where every user
has either an explicit, implicit or predicted preference for every item in I. To predict the
most relevant unrated item for a user, we simply find the item with the highest expected
utility:

∀u ∈ U, i′u = arg max
i∈I

p(u, i)

The utility function p depends on the modeling method being used. The reason for
using a recommender system is that the utility is not defined for the entire U × I space,
that is, the system does not know the utility of every item to every user. The point of a
recommender system is then to extrapolate R to cover the entire user-item space. To be
able to rank items according to user preferences, the system must be able to predict a
user’s reaction to items they have not yet explicitly or implicitly rated themselves.

Another common way of describing and implementing an RS is using a simple
matrix. This is what we shall use in this thesis. In this matrix, one dimension represents
users and the other represents items. Each populated cell corresponds to a known rating.
This matrix corresponds to the framework variable F in our RS quintuple:

Ru,i =

r1,1 r1,2 · · · r1,i
r2,1 r2,2 · · · r2,i
...

...
. . .

...
ru,1 ru,2 · · · ru,i

Critically, these matrices are usually extremely sparse (most of the cells are empty).

While there may be a large number of users and items, each individual user only rates,
connects to or uses a few items. This is true for any scenario where users explicitly rate
items, access items in search results, or connect to each other in a social network. For

RECOMMENDER SYSTEMS 13

example, in the seminal Netflix Challenge movie recommender dataset, almost 99% of the
potential user/item pairs have no rating (Bell and Koren, 2007a, p.1). These recommender
systems had to be able to produce results from a matrix where only 1% of the cells had
meaningful values.

This is often the defining characteristic of a recommender system. An RS is defined
by its ability to extract meaningful patterns from sparse data, through dimensionality
reduction, neighborhood estimation and many other methods, as we shall see. Naturally,
much research looks at ways to best tackle this sparsity problem (e.g. Pitsilis and
Knapskog (2009), Claypool et al. (1999, p.3), Ziegler (2005, p.19)).

Recommender systems face many challenges other than this sparsity problem. A
directly related problem is the need for large datasets. Since the data is often sparse,
the systems will most often perform well if used on large numbers of items and users. In
addition, as in many machine learning methods, concept drift (Widmer and Kubat, 1996,
p.1), where the characteristics of a user or item changes over time, is another recurring
problem.

Another potential problem is that the performance of RSs is often closely tied to
their computational complexity (as mentioned in Adomavicius and Tuzhilin (2005, p.6)).
Real world usage of the most precise methods can be hindered by the computational
power needed to actually put them into production.

Finally, the scale of the data in question should be a concern. If the ratings are
ordinal data (e.g. 1-5) input directly by users, the RS should take into account the domain
specific meaning of these intervals. For example, in a system for rating movies, the jump
between ratings 4-5 might not have the same significance as the jump from 2-3. However,
this is a fact seldom mentioned in the literature. Most RSs employ metrics that assume a
normal distribution, and even the common evaluation measures such as the RMSE treat
ordinal data as a continuous scale. We will get back to these problems in Chapters 4 & 5.

2.3.2 Predicting Ratings

The crucial part of any RS is how it predicts unknown ratings. Because of this, each
method may be categorized based on certain dimensions of its predictive capabilities (see
Table 2.1). In this thesis we will use a taxonomy where these dimensions are (1) the
available data, (2) the prediction method, (3) the model granularity, (4) the knowledge
temporality and (5) the knowledge gathering agents.

(1) The data variable represents what data an RS uses to perform predictions.
Content-Based (CB) methods use only items, intra-item relations, and an individual user’s
past history as predictive signals of future actions (Pazzani and Billsus, 2007, p.1). By
only considering the individual user in adapting an application, highly personal models
can be created. However, such methods may require a lot of interaction before reliable
models can be created (Adomavicius and Tuzhilin, 2005, p.4). The problem of having
to do complex inference from sparse data, as it often is in CB methods, is called the

14 BACKGROUND THEORY

Variable Possible values

Data Content-based | Collaborative | Hybrid
Method Heuristic | Model-based
Granularity Canonical | Typical | Individual
Temporality Short-term | Long-term
Agents Implicit | Explicit

Table 2.1: A taxonomy of recommender systems. From Bjørkøy (2010).

cold start or new user problem. This is closely related to the common AI problem of
overfitting, where the algorithms creates models that match the training data, but not the
actual underlying relationships. As with the sparsity problem, a lot of research looks at
ways to overcome the new user problem, i.e. achieving “warmer” cold start (e.g. Umbrath
and Hennig (2009), Lilegraven et al. (2011)).

Formally, when using content-based predictions, the utility function p(u, i) of user
u and item i is extrapolated from p(u, ix), where ix is an item similar to i and p(u, ix) is
known (Adomavicius and Tuzhilin, 2005, p.2).

Collaborative Filtering (CF) methods build predictive models for users based on
the actions of similar users (Schafer et al., 2007). The key observation is that similar
users share a common taste in items. By using data from more than one user, expansive
models that rely on actual user preferences may be built. These methods are especially
useful when considering new users arriving in a system. A central problem with CF
methods is that the resulting model is not as individually tailored as one created through
CB methods. CF models must be careful not to represent the average user, but a single
individual.

Formally, when using a collaborative method, the utility p(u, i) of item i for user u
is extrapolated from the known p(ux, i) where ux is a user similar to u (Adomavicius and
Tuzhilin, 2005, p.4).

Because of the new user problem of content-based prediction and the average user
problem of collaborative prediction, many systems use a hybrid approach (as introduced
by Burke (2007)). By combining content-based and collaborative methods, systems that
properly handle predictions for new users and avoid too much generalization in the models
can be achieved. We will discuss hybrid aggregation systems later in this chapter.

(2) The method variable is another way to classify recommenders. Orthogonal to
what data the method uses, this variable concerns how the data is used. First, we have the
model-based approach, where the recommender system builds predictive models based on
the known data. Unseen items can then be fed into this model to compute its estimated
utility score (Adomavicius and Tuzhilin, 2005, p.5). For example, creating a Bayesian
networks from past interaction is a model-based approach.

The other category is the heuristic or memory-based approach (Adomavicius and

RECOMMENDER SYSTEMS 15

Tuzhilin, 2005, p.5). These methods use the raw data of items, users and ratings to
directly estimate unknown utility values. For example, recommending items similar to
the ones already rated by computing the cosine similarity of their feature vectors is a
heuristic approach.

(3) The granularity variable tells whether this approach creates models for the
canonical user, stereotypical users or individual users. The canonical user is another term
for the average user, indicative of systems that adapt by seeing all users as a single entity.
Stereotypical systems look at groups of users. For example, Rich (1979) presented one of
the first user modeling systems based on stereotypes, used to predict which books in a
library the users would most enjoy. Here, a dialogue between the system and the user
was performed to place the user into a set of stereotypes. Each stereotype has a set of
facets which is then used to match books and users. This created user models of typical
granularity, as opposed to common individual approaches.

(4) Temporality refers to how volatile the gathered knowledge will be. While most
RSs produce long term, relatively stable knowledge based on lasting user preference and
taste, some systems use fluctuating parameters such as the time of day, exact location
and the current context to produce recommendations. For example, Horvitz et al. (2003)
used clues from a user’s calendar, camera and other sensors to determine the attentional
state of the user before delivering personalized and contextual notifications.

(5) The agents variable signifies whether the knowledge gathering and presentation
is implicit and opaque, or explicit and requires dedicated user interaction. Explicit
feedback through ratings is common in movie, product or music rating services (e.g. Bell
et al. (2007b); Basu et al. (1998); Hotho et al. (2006)). However, for other services such
as personalized search, implicit mining of query logs and user interaction is often used
to build predictive models (e.g. Shen et al. (2005); Agichtein et al. (2006); Speretta and
Gauch (2000); Teevan et al. (2005)).

2.3.3 Examples of Recommender Systems

As our solution will combine different recommender systems, we need a short introduction
to some of the approaches we will use. This section takes a closer look at (1) baseline ratings,
(2) neighborhood estimation, (3) dimensionality reduction, and (4) network traversal. This
is by no means an exhaustive list, but rather a quick rundown of common approaches in
recommender systems that we will use in the Chapter 3. See Adomavicius and Tuzhilin
(2005), Pazzani and Billsus (2007), Schafer et al. (2007) or Bjørkøy (2010) for a more
comprehensive exploration of different types of recommenders. Segaran (2007) gives a
good introduction to how RSs are used in practice.

(1) Baseline ratings are the simplest family of recommender systems. These methods
compute predictions through varying types of averages of known data. The data is

16 BACKGROUND THEORY

content-based, and used to compute heuristic predictions. While simple in nature, these
methods are often helpful starting points for more complex systems, or as benchmarks
for exploring new approaches. For example, Koren (2008, p.2) computes the baselines
for items and users, and use more involved methods to move this starting point in some
direction. The baseline (predicted relevance) for a user/item pair is given by

bui = µ+ bu + bi.

Here, µ is the average rating across all items and users, bu is the user baseline and bi
is the item baseline. The user and item baselines correspond to how the user’s and item’s
ratings deviate from the norm. This makes sense as some items may be consistently rated
higher than the average, some users may be highly critical in their assessments, and so
on. Koren computes these baselines by solving the least squares problem

min
b∗

=
∑

(u,i)∈R

(rui − µ− bu − bi)2 + λ(
∑
u

b2u +
∑
i

b2i).

This equation finds baselines that fit the given ratings while trying to reduce
overfitting by punishing greater values, as weighted by the λ parameter. By using
baselines instead of simple averages, more complex predictors gain a better starting point,
or in other words, a better average rating.

Another approach based on simple averages is the Slope One family of recommender
algorithms. As introduced by Lemire and Maclachlan (2005), these algorithms predict
unknown ratings based on the average difference in ratings between two items. For
example, if item i is on average rated δ points above item j, and user u has rated item j,
that is, we predict r̂u,i (the estimated rating) to be ru,j + δ, for all the user’s ratings that
match this pattern,

r̂u,i =

∑
j∈Ru

ratings(j)× (ru,j + δ(i, j))∑
j∈Ru

ratings(j)
.

Here, r̂ui is the estimated rating, Ru is the items rated by user u, ratings(i) is the
number of ratings for item i, and δ(i, j) is the average difference in ratings for items
i and j. While simplistic, Slope One is computationally effective and produces results
comparable to more complex methods (Lemire and Maclachlan, 2005, p.5).

(2) Neighborhood estimation is at the core of many recommendation systems. This is
the basic principle behind most collaborative filtering algorithms. Unknown ratings are
estimated by averaging the ratings of similar items or users, weighted by their similarity.
Neighborhood-based approaches often work in two steps. First, a neighborhood of similar

RECOMMENDER SYSTEMS 17

elements is computed. Second, the similarities and connections within this neighborhood
is used to produce a predicted relevance score.

A common method for computing user similarity is the Pearson Correlation Co-
efficient (PCC) (Segaran, 2007, p.11). While simple, the PCC compares favorably to
more complex approaches, and is often used as a benchmark for testing new ideas (e.g. in
Lemire and Maclachlan (2005); Ujjin and Bentley (2002); Konstas et al. (2009)).

The PCC is a statistical measure of the correlation between two variables. In
our domain, the variables are two users, and their measurements are the ratings of
co-rated items. The coefficient produces a value in the range [−1, 1] where 1 signifies
perfect correlation (equal ratings), 0 for no correlation and −1 for a negative correlation.
The negative correlation can signify two users that have diametrically opposing tastes.
We compute PCC by dividing the covariances of the user ratings with their standard
deviations:

pcc(u, v) =
cov(Ru, Rv)

σRu
σRv

.

When expanding the terms for covariance and standard deviations, and using a
limited neighborhood size n, we get

pccn(u, v) =

∑n
i∈K(Rui − R̄u)(Rvi − R̄v)√∑n

i∈K(Rui − R̄u)2
√∑n

i∈K(Rvi − R̄v)2
.

The limited neighborhood size becomes the statistical sampling size, and is a useful
way of placing an upper bound on the complexity of computing a neighborhood. n does
not have to be a stochastic sampling — it can also be limited by the number of ratings the
two compared users have in common, the number of ratings each user have, or something
similar, as denoted by K in the formula.

After a neighborhood is determined, it is time to predict the unknown rating. For
Collaborative filtering approaches, we are interested in the similarity of users, which
means averaging the user neighborhood ratings weighted by similarity (Segaran, 2007,
p.16):

r̄ui =

∑
v∈K(u,i) sim(u, v)×Rvi∑

v∈K(u,i) sim(u, v)
.

Here, sim(u, v) is the similarity between two users, K(u, i) is the set of users in the
neighborhood of u that have rated item i. This is one of the simplest ways of computing
a neighborhood-based prediction. Most systems use more complex estimations. For
instance, Koren (2008) uses the baseline ratings discussed above instead of plain user and
item ratings, to remove what they call global effects where some users are generous or

18 BACKGROUND THEORY

strict in their explicit preferences, and some items are consistently rated differently than
the average.

Content-based recommenders compute neighborhoods of items instead of users.
The simplest approach is to find items highly rated by the current user, compute the
neighborhood by finding items similar to these, and produce ratings by weighting the
initial rating with the similarity of the neighboring items.

The PCC is but one of many methods used to compute neighborhoods. Other
simple measures include the euclidean distance (Segaran, 2007, p.10), Spearman’s or
Kendall Tau rank correlation coefficients (Herlocker et al., 2004, p.30) — variations on the
PCC. Of course, user similarity does not have to rely on ratings. If the system has access
to detailed user profiles, these can be used to estimate the similarity of users. Similarity
metrics from the field of information retrieval (IR), such as the cosine correlation of rating
vectors, or content-based similarity metrics are applicable, as we shall see in Section 2.4.

Bell and Koren (2007b) shows a more sophisticated neighborhood estimation which
computes global interpolation weights, that can be computed simultaneously for all nearest
neighbors. Combinations of different types of neighborhoods are also possible. Ujjin and
Bentley (2002) use a simple euclidean metric to gather a larger neighborhood, which is
then refined using a genetic algorithm. Another common way of computing neighborhoods
is by reducing the dimensions of the ratings matrix, as we will now describe.

(3) Dimensionality reduction is an oft-used technique when creating recommender systems.
The ratings matrix is factored into a set of lower dimension matrices, that can be used
to approximate the original matrix. By reducing the noise in the ratings matrix, and
keeping those ratings that contribute to global patterns, we can identify groups of users,
items or combinations that have something in common. This can then be used to find
neighborhoods, compute similarities and estimate unknown ratings.

Singular Value Decomposition (SVD) is a common method for such matrix fac-
torization (e.g. Billsus and Pazzani (1998, p.5), Sun et al. (2005), Bell et al. (2007b)).
This is the same underlying technique used by latent semantic indexing in information
retrieval (Baeza-Yates and Ribeiro-Neto, 1999, p.44). Formally, SVD is the factorization
R = UΣV T . R is an m× n matrix, in our case the ratings matrix, with m users and n
items. U is an m×m factor, V T (the transpose of V) is an n× n factor. Σ is a m× n
diagonal matrix. Σ is a diagonal matrix, made up of what is called the singular values of
the original matrix.

The dimensionality reduction can be performed by truncating the factor matrices
each to a number of rows or columns, where the number is a parameter depending on the
current domain and data, called the rank (r). The truncated matrix is Rr = UrΣrV

∗
r ,

where Ur are the first r columns of U , V Tr are the first r rows of V T and Σr is the top-left
r × r sub-matrix of Σ. There are many more complex ways of compressing the matrix
than pure truncation, but this is a common way of reducing the factors. By truncating

RECOMMENDER SYSTEMS 19

Figure 2.4: SVD-Based Image Compression: a variation of using SVD to compress an image,
from Ranade et al. (2007). The original image is on the left, and successive images use an
increasing number of factors (2, 8 and 30) when performing compression. Figure adapted from
Ranade et al. (2007, p.4).

the factors, we in essence create a higher-level approximation of the original matrix that
can identify latent features in the data. With the factors reduced to r dimensions, the
resulting matrices are compressed: Rm,n

 ⇒

Um,r

[
Σr,r

] [
V ∗r,n

]

Two important transformations happen in this dimensionality reduction. First,
ratings that do not contribute to any greater pattern are removed as noise. Second,
ratings that in some way correlate to each other are enhanced, giving more weight to the
actual predictive parts of the data. This means that the reduced factors can for instance
identify features that correspond to correlations between items or users. These features
are comparable to the mapping of terms to concepts in LSI.

Because SVD can find the most descriptive parts of a matrix, this technique is often
used for image compression. The image we wish to compress is treated as an N ×M
matrix, which is run through an SVD factorization. The factors are truncated, and the
result expanded to a matrix that is much simpler to represent than our original image
matrix. As seen in Figure 2.4, how close the compressed image resembles the original
image depends on the chosen rank, i.e. how many rows and columns we keep during
truncation. A higher rank means less dimensionality reduction and less compression of
the image.

The key question for any SVD algorithm is how it performs the factorization, and
which rank the original matrix is reduced to. Two common factorization methods are the
EM and the ALSWR algorithms. An EM factorizer uses the Expectation-Maximization
algorithm to find the factors. An ALSWR factorizer performs the same factorization
with a least-squares approach (Zhou et al., 2008). The number of features refers to

20 BACKGROUND THEORY

the truncation of the factors in order to reduce the concept-space. These features then
correspond to the number of latent taste categories we wish to identify. Naturally, different
numbers of features will yield different recommenders. The SVD factorization algorithms
are iterative methods, where each iteration yields more accurate results.

In recommender systems, SVD is used to compress the ratings space into what is
sometimes called a taste space, where users are mapped to higher-level taste categories
(e.g. Ahn and Hong (2004, p.5), Brand (2003, p.4) or Liu et al. (2006, p.2)). In a taste
space, the collections of individual ratings are reduced to groups of users, items and
combinations that have patterns in common. This reduction makes it easy to find similar
users that share some global characteristic. We can also find similarities between items,
clusters of items and user and so on, all based on latent categories discovered by the
automatic identification of patterns in the data. SVD is then an ingenious way of dealing
with the commonly sparse ratings data, by identifying latent correlations and patterns in
the data, which is exactly what we need to predict unknown ratings or connections.

(4) Network traversal recommenders refers to estimating predictions by traversing a graph
of users and items to provide recommendations. The connections between nodes can
be any type of relation that makes sense to the RS. Examples include linking item and
user nodes based on purchases or explicit ratings, linking user nodes from asymmetrical
(directed edges) symmetrical (undirected edges) relations, or linking items based on some
similarity metric. Recommender systems can use common graph-traversal algorithms to
infer unknown connections in this graph.

Huang et al. (2002) used network traversal to create a simple system for recom-
mending books to customers. Here, edges between items and users correspond to ratings,
and edges connecting nodes of the same type are created by connecting elements that
have similarity above a certain threshold. Predictions are generated by traversing the
graph a preset number of steps starting at the current user, and multiplying the weights
of paths leading to the target item (see Figure 2.5).

The complexity of recommender systems based on networks are only limited by
the kinds of relations we can produce. For example, recommending other users in social
networks can easily utilize friend or friend-of-a-friend relations to find others the current
user might be interested in connecting to. Indeed, any relevant similarity metric can be
used to connect nodes of the same type, or nodes of different types.

One variation comes from Walter et al. (2008), who create a network of transitive
trust to produce recommendations. Here, the neighborhood of users is determined by
traversing through users connected by a level of trust. The trust can for example be a
function of how many agreeable results the connection to a user has produced. Users
trust each other’s recommendations based on previous experience.

Konstas et al. (2009) takes yet another approach that measures the similarity
between two nodes through their random walks with restarts (RWR) technique. Starting

RECOMMENDER SYSTEMS 21

(a) (b)

Figure 2.5: Network Traversal Example: (a) A graph with two kinds of nodes, e.g. items and
users. (b) A graph with books and customers, where recommendations can be made by traversing
the weighted connections. Connections between nodes of the same type represent similarity, while
connections between books and customers represent purchases. Figures from Huang et al. (2002).

from a node x, the RWR algorithm randomly follows a link to a neighboring node. In
every step, there is a probability α that the algorithm will restart its random walk from
the same node, x. A user-specific column vector P (t) stores the long term probability
rates of each node, where P (t)

i represents the probability that the random walk at step t is
at node i. S is the column-normalized adjacency-matrix of the graph, i.e. the transition
probability table. Q is a column vector of zeroes with a value of 1 at the starting node
(that is, Qi is 1 when the RWR algorithm starts at node x). The stationary probabilities
of each node, signifying their long term visiting rate, is then given by

P (t+1) = (1− α)SP (t) + αQ.

This algorithm is then run to convergence (within a small delta). Then, the
relatedness of nodes x and y is given by Py where p is the user model for the user
represented by node x. Konstas et al. found that this approach outperformed the PCC,
as long as the social networks were an explicit part of the system in question. The
connections between users had to be one actively created by the users to be of such quality
and precision that accurate predictions could be made.

After this whirlwind tour of recommender systems, it is time to look at some closely
related topics: information retrieval and personalized search. This will form the basis for
the case study performed in Chapter 4.

22 BACKGROUND THEORY

2.4 Personalized Search

Personalized search means adapting the results of a search engine to each individual
user. As we shall see, this field has a lot in common with recommender systems. In both
situations, we wish to predict how relevant each item will be to each user. Before delving
into the techniques of personalizing search results, we will quickly present the basics of
information retrieval (IR).

2.4.1 Information Retrieval

Manning et al. (2008, p.1) define IR as “finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers)”.

How does this relate to recommender systems? There is an important distinction.
The purpose of recommendations is twofold. (1) To show the user items similar to another
item, and (2) to allow discovery of relevant items the user did not know exist. The purpose
of search is a bit different. To allow the user to find the location of information he or
she knows (or hopes) exists. The defining separator is often the knowledge of existence.
However, as we shall see, the two fields employ similar methods and terminology. In the
next chapter, we will show how these can work together, by allowing an IR method to
constrain the item-space worked on by our recommender system.

Baeza-Yates and Ribeiro-Neto (1999, p.23) presents a formal definition of an IR
system: IR = (Documents,Queries, Framework, ranking(qi, di)).

As evident by the scope of IR literature, these elements can be just about anything
that has to do with retrieving information. However, in what is often called classic IR,
the documents contain free text with little internal structure, and the queries are short
user-initiated descriptions of an information need (Baeza-Yates and Ribeiro-Neto, 1999,
p.19). For example, this model describes Web search engines, where the documents are
web pages and queries are short sentences or keywords input by users.

The Framework in our quadruple refers to how documents are stored and retrieved.
Basic approaches to IR split each document into a set of terms (e.g. words), and create
an inverted index (Manning et al., 2008, p.22), that lists documents by terms. There are
numerous extensions to this framework, including:

• Positional information for phrase search (Manning et al., 2008, p.39)
• Stop word removal (removing the most common terms) (Manning et al., 2008, p.27)
• Stemming (reducing words to their root forms) (Manning et al., 2008, p.32)
• Lemmatisation (contextual inflection removal) (Manning et al., 2008, p.32)
• Query reformulation (Baeza-Yates and Ribeiro-Neto, 1999, p.117)

PERSONALIZED SEARCH 23

All these techniques help improve (among other things) the recall and precision
of the retrieval engine. Recall, precision and relevance are well defined measures for
evaluating the quality of a search engine (Manning et al., 2008, p.5):

• A document is relevant if it satisfies the user’s information need.
• Recall is the fraction of relevant documents retrieved by the system.
• Precision if the fraction of retrieved documents that are relevant.

There are many more measures, but recall and precision succinctly define what
a search engine must to to be successful — retrieve many relevant documents and
few irrelevant documents. Failing this test is to neglect the main purpose of IR: to
prevent information overload by allowing efficient access to relevant parts of an otherwise
overwhelming collection of information.

In relation to this thesis, the most interesting part of any IR system is its ranking
function. This function computes the score of each document relative to the current query.
The relation to recommender systems is quite clear. Both the ranking function and RSs
compute the relevance of items in the current context, either based on a query or the
current user. Indeed, IR systems use many of the same metrics to measure the similarity
of queries and documents, as RSs measure the similarity of items.

A common framework for storing and ranking documents is the vector space model
(VSM). This model stores documents as term vectors. Each term represents a dimension,
and documents are vectors in this term-space. When performing a query, the query terms
are also represented as a vector in the same space. By computing the cosine similarity
between the query and each document, we get a good estimate of how well a document
matches a query (Baeza-Yates and Ribeiro-Neto, 1999, p.29).

The next question is what to store at each (document, term) coordinate in the
vector space (called the document/term weights). Storing simple 1 or 0 values repre-
senting whether or not terms are present gives a model where a document’s relevance is
proportional to how many query terms it includes. However, this is not very precise. For
example, by this definition, a document containing every conceivable query term would
be the most relevant to any query. A better idea is to use something like the TF-IDF
weighting scheme (Baeza-Yates and Ribeiro-Neto, 1999, p.29):

wt,d = tft,d × idft =
f(t, d)∑
k∈d f(k, d)

× log
N

nt
.

The final weight is computed by multiplying the term frequency score (TF) tft,d
with the inverse document frequency (IDF) idft. TF evaluates how well the term describes
the document contents, while IDF punish terms that appear in many documents. f(t, d)

gives the frequency of a term in a document. N is the total number of documents, and nt
the number of documents in which t appears. The effect of the IDF factor is dampened
by taking its log-value. Together, TF and IDF ranks documents higher by words that

24 BACKGROUND THEORY

discriminate well within the document corpus, and ignores words that appear in so many
documents that they have little to no predictive capacity.

While simple, TF-IDF has proven itself resilient when compared to more complex
methods, and many more complex methods have been built on its foundations (e.g. BM25,
one of the most successful probabilistic weighting algorithms (Robertson, 2010)).

There are as many IR models as there are domains that need search. Even the
basic VSM can be constructed in a myriad of ways. Other models include the simple
boolean search model, where queries are based on boolean algebra. Probabilistic models
frame the similarity question as the probability that the document is relevant. Latent
Semantic Indexing (LSI) is the application of SVD to IR by performing dimensionality
reduction of the term-space into concept-space. See Manning et al. (2008), Robertson
(2010) or Baeza-Yates and Ribeiro-Neto (1999) for a more comprehensive introduction to
models in IR.

The important take-away is that, while serving different use cases, RSs and IR
systems employ much of the same technology, only with different input and expected
output.

2.4.2 Ranking Signals

Modern Web search engines have long ago moved on from simple ranking metrics such as
TF-IDF. While traditional metrics may form the foundation of modern search engines,
a lot more thought go into the final results. Different types of ranking functions are
combined to produce the final search engine results page (SERP), with each ranking
function often being referred to as a signal. Alternate names include re-ranking or
re-scoring functions.

Google, the company behind the popular online search engine, writes that “Today
we use more than 200 signals, including PageRank, to order websites, and we update these
algorithms on a weekly basis. For example, we offer personalized search results based on
your web history and location.”1 Bing, a Web search engine from Microsoft, uses the same
terminology: “We use over 1,000 different signals and features in our ranking algorithm.”2

Signals are often products of the document structure of the current domain. Sergey
and Lawrence (1998, p.5) points to the use of the proximity of query terms in matching
documents. Those where the terms appear close together are natural candidates for a
higher ranking. Other signals, still reliant on the documents themselves, are more domain
oriented. One signal they point out is how words in a larger or bold font can be weighted
higher than normally typeset words. In this way, the design of a document is used to
choose the most important terms.

(1) google.com/corporate/tech.html — accessed 11.04.2011
(2) bing.com/community/site_blogs/b/search/archive/2011/02/01/thoughts-on-search-quality.aspx —

accessed 11.04.2011

google.com/corporate/tech.html
bing.com/community/site_blogs/b/search/archive/2011/02/01/thoughts-on-search-quality.aspx

PERSONALIZED SEARCH 25

Signals can also depend on the query. Manning et al. (2008, p.145) describes a
system that takes multi-word queries, breaks them up into different permutations and
runs the new queries against the same document index and ranking function. Each query
corresponds to its own ranked set of results, which are sent to a rank aggregation function
which turns the accumulated ranking evidence into one coherent result. We will have
more to say on rank aggregation in Section 2.5.

Signals can also be external to the collection or relational within the collection.
PageRank (Sergey and Lawrence, 1998, p.4) is perhaps the best known of the relational
signals. The algorithm forms a probability distribution over web pages, ranking their
perceived authority or importance according to a simple iterative estimation. Every
web site is given its rank based on how many pages that link to it. For each page that
provides links, the score it contributes to the linked-to page is its own page rank, inversely
proportional to the number of outbound links the page has. Another intuitive justification
for a site’s PageRank is the random surfer model (Sergey and Lawrence, 1998, p.4). The
probability that the random surfer visits a page is its PageRank. The randomness is
introduced by a damping parameter d, which is the probability that a user will stop
browsing and start at a new random page:

PageRank(x) =
1− d
N

+ d
∑
y∈Bx

PageRank(y)

Links(y)
.

Bx is the set of pages linking to page x, and Links(y) is the number of outbound
links from page y. The first term distributes an equal PageRank score to all pages that
have no outbound links, as N is the total number of pages. This iterative algorithm is
run until convergence inside a small delta.

Let us now finally take a look personalized search, a field where such signals may
play an important part.

2.4.3 Personalizing Search Results

Search engines, especially online search engines, face a huge challenge. In addition to the
wide range of websites, the ambiguity of language and the restricted nature of queries
comes the wildly differing users. Each user is unique. Even when considering one user,
there might be many different use cases, for example when using the same search engine
at work and at home. Another identified problem is that users use search engines for
navigation as well as pure search. Teevan et al. (2007) found that as many as 40% of
all queries to the Yahoo! search engine were “re-finding queries”, i.e. attempts to find
information the user had accessed before.

Personalized search attempts to solve these problems by introducing individually
adaptive search results. These techniques are based on user modeling (as introduced in
Section 2.2), and attempts to build predictive models based on mined user preferences.

26 BACKGROUND THEORY

Commonly, this is done through query log analysis (e.g. Liu et al. (2002); Sugiyama et al.
(2004); Shen et al. (2005); Speretta and Gauch (2000)). These are often model-based
techniques with implicit knowledge gathering agents, that create individual, long-term
user models (these terms are described in Section 2.3).

There are two leading approaches to personalizing search results (Noll and Meinel,
2007, p.2). The first method is query reformulation, where the actual user query is
enhanced in some way, before traditional IR retrieves and ranks documents. The second
method is results re-ranking, where the IR results are sorted based on personalized metrics.
This section describes the latter approach.

To demonstrate how these methods compare to traditional recommendation systems,
we will explore a few different approaches to personalized search. (1) Personalized topic-
sensitive PageRank, (2) folksonomy-based personalization and (3) social network search
ranking.

(1) Personalized topic-sensitive PageRank Haveliwala (2003) introduced a topic-sensitive
PageRank algorithm, that they found to “generate more accurate rankings than with
a single, generic PageRank vector”. They show how to create topic-specific PageRank
vectors for a number of pre-set topics, creating many rankings per page, one per topic.
This new PageRank is computed based on an existing set of websites that belong to one
or more topics. Qiu and Cho (2006) achieved “significant improvements” to this approach
by adding a personally adaptive layer to the topic-sensitive PageRank algorithm, creating
a personalized PageRank algorithm.

In addition to the topic vector, Qiu and Cho creates a topic-preference vector for
each user. When the user has clicked on a few search results, a learning algorithm kicks in
and estimates approximately how likely the user is to be interested in the pre-set topics,
creating the topic-preference vector T . When it is time to rank a page p in response to
the query q, they compute the personalized ranking:

PersonalizedRanking(T, p, q) =

m∑
t=1

T (i)× Pr(q|T (i))× TSPRi(p)

We will not deduce this equation here (see Qiu and Cho (2006, p.5)), but let us
explain it. T is the user-specific topic preference vector. i is the index of a topic and
m the total number of topics. Pr(q|T (i)) is the probability that the query belongs in
topic i. This can be as simple as the total number of times the query terms appear in
websites under topic i. TSPRi(p) is the topic-sensitive PageRank score for page p in
topic i. Basically, this is the normal PageRank vector computed within a pre-set topic i.

The construction of T (i), i.e. the training phase of the algorithm, is performed by
mining the query logs from individual users. By identifying how many sites the user has
visited in per topic, computing T can be done through linear regression or by using a

PERSONALIZED SEARCH 27

Maximum-likelihood estimator. Qiu and Cho (2006, p.10) reports improvements of 25%
to 33% over the Topic-sensitive PageRank approach, which Haveliwala (2003) reports
outperformed the original PageRank algorithm.

(2) Folksonomy-based personalization Web applications often have more information
about users and items (documents, sites or articles) than simple ratings. One of these
extra resources are tags, simple keywords assigned from users to items. The collection of
users, items, tags and user-based assignment of tags to resources is called a folksonomy.

Hotho et al. (2006) defines a folksonomy as a tuple F = (U, T,R, Y,≺). Here, U ,
T and R are finite sets of users, tags and resources (items), respectively. Y is a ternary
relation between users, tags and resources, called tag assignments. ≺ is a user-specific tag
hierarchy, applicable if the tags are organized as super- and sub-tags. The personomy Pu
is a user-specific part of F , i.e. the tags, items and assignments related to one user u. In
our terms, this personomy would be the user model. Hotho et al. use folksonomies to do
information retrieval based on their FolkRank search algorithm, a derivative of PageRank.

Bao et al. (2007) shows how folksonomies can be used to personalize search. They
first create a topic-space, where every user and document are represented. Each tag in the
system is a dimension in this topic-space, or tag-space. Whenever a new query is issued,
two things happen. First, a regular IR method computed a standard, non-personalized
ranking of documents. Second, a personalized ranking list is computed by performing
a simple vector-space model matching in the topic-space, for example by using cosine
similarity (as previously explained). The personalized list is then unrelated to the actual
query, and is simply a ranking of the most relevant pages to the current user.

The two ranks are aggregated by a simple consensus-metric, the Weighted Borda-
Fuse aggregation method (Xu et al., 2008, p.3), which is another name for weighted
combination of the rankings:

rank(u, q, p) = α× rankIR(q, p) + (1− α)× rankRS(u, p)

Xu et al. tried many combinations of weights, topic selection and datasets, with
the general conclusion that folksonomy-based personalized search has great potential. If
nothing else, this example shows how easily tags can be integrated to provide an individual
searching experience.

(3) Social network search ranking Carmel et al. (2009) developed a personalized search
algorithm based on a user’s social network. By re-ranking documents according to their
relation to with individuals in the current user’s social network, they arrived at a document
ranking that “significantly outperformed” non-personalized social search (Carmel et al.,
2009, p.1). Note the qualifier “social search”. Their project searches through social
data within an enterprise, naturally conducive to algorithmic alterations based on social

28 BACKGROUND THEORY

concepts. However, as social data is data just as well, seeing how a personalized approach
improves standard IR in this domain, is helpful.

Their approach: first, documents are retrieved by a standard IR method. Second,
the user’s socially connected peers are also retrieved. Third, the initial ranked list of
documents is re-ranked based on how strongly they are connected to the user’s peers, and
how strongly those peers are connected to the user. The user-user similarity is computed
based on a few signals (Carmel et al., 2009, p.2), e.g. co-authoring of documents, the use
of similar tags (see Example 2 in this section), or leaving comments on the same content.
The user model also includes a list of terms the current user has employed in a social
context (profile, tags, et cetera). This is all done to infer implicit similarity based on
social connections.

The algorithm is quite powerful, and combines three types of rankings. The initial
IR score, the social connection score, and a term score, where the terms are tags and
keywords used by a user. The user model is U(u) = (N(u), T (u)), where N(u) are the
social connections of u and T (u) the user’s profile terms. The function sim(x, y) measures
the similarity of two elements, either users or items.

The re-scoring is performed in two steps. First, the score based on connections and
terms is computed, weighted by β which determines the weighting of both approaches:

SP (q, d, U(u)) = β
∑

v∈N(u)

sim(u, v)× sim(v, d) + (1− β)
∑

t∈T (u)

sim(u, t)× sim(t, d)

Finally, the results are combined with the ranking returned by the IR method (RIR).
A parameter α is used to control how much each method is weighted:

S(q, d, U(u)) = α×RIR(q, d) + (1− α)× SP (q, d, U(u))

This approach, while simple, shows how social relations and social annotations can
easily be used to personalize a search experience. However, Carmel et al. (2009, p.10)
notes that the high quality data in their enterprise setting were important to achieve the
improved results.

RECOMMENDER AGGREGATION 29

2.5 Recommender Aggregation

So far we have seen a lot of modeling methods, both for recommender systems (RS)
and for personalized search (PS). Aggregate modeling is the act of merging two or more
modeling methods in some way. A proper aggregation method creates a combined result
that is better than either of the individual methods, where the sum is greater than the
parts. We have already seen a few examples of aggregate modeling:

• Koren (2008) aggregates global, individual and per-item averages to a baseline.
• Huang et al. (2002) aggregates different types of graph relations into one prediction.
• Haveliwala (2003) combined their personalized PageRank with another approach.
• Carmel et al. (2009) combined classic IR with social relations and annotations.
• Sergey and Lawrence (1998, p.5) aggregates signals measured from website structure.

The reason for combining different approaches is that no one method can capture
all the predictive nature of available data. For example, Bell et al. (2007a) created a
recommender system where the neighborhood- and SVD-based approaches complement
each other. While the neighborhoods correspond to local effects where similar users
influence each other’s predictions, the dimensionality reduction finds regional effects, i.e.
major structural patterns in the data (Bell et al., 2007a):

“Both the local and the regional approaches, and in particular their combi-
nation through a unifying model, compare favorably with other approaches
and deliver substantially better results than the commercial Netflix Cinematch
recommender system [...].”

An interesting question is whether or not all hybrid recommenders, that combine
content-based and collaborative methods, are aggregators. This is mostly a question of
semantics and implementation. Burke (2007, p.4) liberally defines a hybrid system as
“any recommender system that combines multiple recommendation techniques together to
produce its output”. Some hybrid methods combine stand-alone methods, and are definitely
aggregations. Other methods merge the methods themselves into one implementation
that uses the data in different ways. Burke describes a few types of hybrid recommenders:

• Weighted combinations of recommenders.
• Switching and choosing one recommender in different contexts.
• Mixing the outputs and presenting the result to each user.
• Cascading, or prioritized recommenders applied in succession.
• Augmentation, where one recommender produces input to the next.

However, without being to pedantic, these can all be seen as aggregations. In each
case, there are two main use cases for recommender aggregation Liu et al. (2007):

30 BACKGROUND THEORY

(1) Rank (or order-based) aggregation (RA) lets a set of methods produce a sorted
list of recommendations or search results. These lists are then combined into one final
list, through some aggregation method (see Dwork et al. (2001) or Klementiev et al.
(2008)). These methods only require the resulting list of items from each method Aslam
and Montague (2001, p.2).

(2) Prediction (or score-based) aggregation (PA) works on the item- or user-level by
combining predicted scores one-by-one, creating an aggregated result for each element
that should be evaluated. These methods require the actual prediction scores for any
item from the recommender methods (Aslam and Montague, 2001, p.2).

2.5.1 Rank Aggregation

RA combines multiple result lists into one list through aggregation. Dwork et al. (2001)
shows a few metrics applicable to meta-search, the combination of results from multiple
search engines. For example, Borda’s method (Dwork et al., 2001, p.6) is based on
positional voting, where each result gets a certain number of points from each result set,
based on where it appears in the sorted list. Items at the top gets the most points, while
lower items gets fewer points. This is in essence an approach where the predictors have a
set number of votes (c, the number of results) that they give to the items.

As we saw in Section 2.4, Xu et al. (2008, p.3) used a weighted version of this
approach to combine an IR and personal approach to result ranking. Aslam and Montague
(2001, p.3) calls their version of this Weighted Borda-Fuse, where the points given from a
method to an item is controlled by the weights estimated for the methods. Aslam and
Montague (2001, p.4) also explain a Bayesian approach (bayes-fuse), that combined with
the naive Bayes independence assumption produce the following formula:

relevance(d) =
∑

i∈Methods

log
Pr(ri(d)|rel)
Pr(ri(d)|irr)

.

Here, Pr(ri(d)|rel) is the probability that document d is relevant given its ranking
by method i. Conversely, Pr(ri(d)|irr) is the probability that the document is irrelevant.
The probability values are obtained through training, and evaluating the results against
known relevance judgements. An interesting note is that the standard Borda method
does not require training data, while the weighted version and the Bayesian approach do.
Aslam and Montague (2001) achieved positive results with these methods:

“Our experimental results show that meta-search algorithms based on the
Borda and Bayesian models usually outperform the best input system and are
competitive with, and often outperform, existing meta-search strategies.”

Liu et al. (2007) presents a rank-aggregation framework, where the task of estimating
a ranking function by using training data. They treat this task as a general optimization

RECOMMENDER AGGREGATION 31

problem, with results showing that this framework can outperform existing methods (Liu
et al., 2007, p.7).

Rank aggregation is a substantial topic, with many approaches. The main take-away
is that this approach combines list of results into one single results, and experiments show
that results superior to the best of the combined methods are attainable. See Aslam and
Montague (2001), Liu et al. (2007) or Klementiev et al. (2008) for more information.

2.5.2 Prediction Aggregation

Unlike rank aggregation, prediction aggregation (PA) does not deal with lists of results.
PA works on the item-level, collecting scalar predictions of an item’s relevance from a
number of methods, and combining these predictions into a final score. This thesis is most
concerned with prediction aggregation, and it is where we shall evaluate the performance
of our approach.

Aslam and Montague (2001) describe a number of simple approaches. For example,
minimum, maximum and sum aggregations combine the individual predictions based on
simple arithmetics, or select one or more of the results as the final prediction. Other
models use the average, or log-average of the different methods. Another example is the
linear combination model, that trains weights for each predictor and weighs predictions
accordingly. At slightly more complex approach is to train a logistic regression model
(Aslam and Montague, 2001, p.3) over a training set, in an effort to find the combination
that gives the lowest possible error. This last method improved on the top-scoring
predictor by almost 11%, showing that even fairly simple combinations have merit.

Early approaches to recommender systems experimented with aggregating content-
based and collaborative approaches. Claypool et al. (1999) combined the two approaches
in an effort to thwart problems with each method. CF methods have problems rating
items for new users, radically different users or when dealing with very sparse data. CB
methods do not have the same problems, but are less effective than CF in the long
run, as CB does not tap into the knowledge of other users in the system — knowledge
that out-performs simple content analysis. In Claypool et al. (1999), the two types of
recommenders were used to create a simple weighted result.

Generally, methods for aggregating predictions in the field of machine learning is
called ensemble methods Dietterich (2000). While most often used to combine classifiers
that classify items with discrete labels, these methods are also used for aggregating
numerical values (see the numerical parts of Breiman (1996)). Approaches include
bootstrap aggregation (bagging) and boosting for selecting proper training and testing sets,
and creating a mixture of experts for combining the predictors (Polikar, 2006, p.27).

Bell et al. took method aggregation to its logical conclusion when winning the
Netflix Challenge, by combining 107 individual results from different recommenders. They
found this to significantly outperform each standard recommender (Bell et al., 2007b,
p.6):

32 BACKGROUND THEORY

“We strongly believe that the success of an ensemble approach depends on the
ability of its various predictors to expose different, complementing aspects of
the data. Experience shows that this is very different from optimizing the
accuracy of each individual predictor. Quite frequently we have found that the
more accurate predictors are less useful within the full blend.”

Both rank and prediction aggregation are extensive topics. In both cases, the
take-away stays the same. By combining different modeling methods, more patterns in
the data can be mined, and the resulting combination can outperform the best performing
method. This is key to the model we shall build in the next chapter.

3

Methods & Implementation

In this chapter we will build our approach to relevance prediction, which we call adaptive
recommenders. We will first explain why a new approach is needed, and develop three
hypotheses based on our assumptions. The two final sections will show how adaptive
recommenders can perform prediction aggregation in a recommendation scenario, and
rank aggregation in a personalized search scenario.

3.1 Latent Subjectivity

As described in the previous chapter, there are many ways of predicting the relevance
of an item to a user. In fact, judging by the number of different approaches, the only
limiting factor seems to be the different patterns researchers discover in available data.

As described in Section 2.5, modern approaches to recommender systems try to
combine many of these methods. By leveraging so called disjoint patterns in the data,
several less than optimal predictors can be combined, so that the combination outperforms
the individual algorithms. Moderns search engines work much in the same way, combining
multiple ranking signals into a final results list (see Section 2.4.2).

Why then, when we have all these valid approaches, would we need yet another
technique? As explained in Chapter 1, we believe the latent subjectivity problem is a
fundamental issue with each approach described so far. Consider the following examples
of relevance judgement:

• PageRank (Sergey and Lawrence, 1998) assumes that the relevance of a web page is
represented by its authority, as computed from inbound links from other sites.
• Some systems considers a user’s social connections to be important in ranking search

results, when performing personalized search (e.g. Carmel et al. (2009)).
• When recommending movies, one predictor may be based on the ratings of users
with similar profile details. Another predictor might be dependent on some feature,
e.g. production year of well liked movies.
• SVD-based approaches assume global patterns and groups of users and items are

best suited to produce predictions (see Section 2.3.3).
• Recommendations based on the Pearson Correlation Coefficient (Segaran, 2007,

p.11) assumes that the statistical correlation between user ratings is a good measure
for user similarity.

While these methods may perform well, their selection reflects how whoever created
the system assumes how users can and should be modeled. This underlying subjectivity is
not desirable. We see two different approaches one can take when creating a recommender
system, represented by two questions:

34 METHODS & IMPLEMENTATION

1. What combination of which methods will accurately predict unknown scores?
2. Which methods could possibly help predict a score for a user or an item?

The first question is what has to be considered in traditional modeling aggregation.
First, a set of applicable methods leveraging disjoint patterns must be selected. Then,
an optimal and generalized combination of these must be found, most often through
minimizing the average error across all users.

The second question is quite different. Instead of looking for an optimal set of
methods and an optimal combination, we look for the set of any applicable methods that
some users might find helpful, or that might work for some items. We believe this is a
much simpler problem. Instead of trying to generalize individuality, it can be embraced,
by allowing users to implicitly and automatically select which methods they prefer, from
a large set of possible predictors.

As explained in Chapter 1, assuming that users will place similar importance on
each modeling method is contrary to the goals of user modeling. Our goal should instead
be a system which can leverage the differences between users and employ the available
algorithms based on their individual preferences.

Just as users are different, items have their own characteristics. Needless to say,
items are often quite different from another, along a myriad of dimensions. For example,
if items correspond to websites, the number of metrics we can use to judge the relevance
of an item is immense. If items are indeed as different as the users themselves, it stands
to reason that the same modeling method will not perform as well for every item.

An approach where we only need to consider the second question is desirable.
Regardless, both traditional, single-approach modeling methods, and modern aggregation
approaches often treat every user and item the same. No matter its intrinsic qualities, an
element will be judged by the same methods as every other element.

This chapter will develop a way to aggregate a host of modeling methods on a
per-user and per-item basis. By adapting the aggregation to the current item and user,
we should be able to mitigate the latent subjectivity problem. This adaptive aggregation
is performed implicitly and automatically, without any extra interaction required from
each user.

As mentioned in Chapter 1, this has an important consequence. If each algorithm is
only used in situations it will probably perform well, any possible recommender algorithm
becomes a worthy addition. In other words, instead of finding an optimal combination,
we can use any algorithm that might work for some elements in our aggregation.

With adaptive recommenders, the users are in control of which methods best fit
their needs, and a method’s priority is influenced by how well it performs for the current
item. However, in order to test whether or not these assumptions hold, we need a set of
testable hypotheses.

THREE HYPOTHESES 35

3.2 Three Hypotheses

Our research goal is to develop the adaptive recommenders technique, and determine
if this is a viable approach. To solve the subjectivity problem we need our modeling
method to adaptively aggregate a set of predictions based on the current context. By
automatically adapting how a set of disjoint recommenders are combined, based on
individual users and items, we should be able to achieve a result that is better than any
of the stand-alone recommenders. This adaptive method should also outperform other,
generalized aggregation approaches.

In order to achieve our goal, this thesis will consider three hypotheses (H1-H3). H1
and H2 will consider the approach in regard to prediction aggregation in a recommendation
scenario. H3 will consider using this approach for rank aggregation in an information
retrieval scenario. Let us start with prediction aggregation:

H1: Adaptive recommender aggregation can achieve higher accuracy than each
of the combined recommenders.

It stands to reason that if a recommender system is indeed impaired by the subjective
selection of modeling methods, an adaptive combination of these methods, based on
individual users and items, should outperform the individual approaches. Second:

H2: Adaptive recommender aggregation can achieve higher accuracy than
generalized aggregation methods.

If our assumption that model aggregation inherits the subjective nature of its chosen
parts, an adaptive aggregation without such misplaced subjectivity should outperform a
generalized combination. Third:

H3: The ordering of results from an information retrieval query can be per-
sonalized by using adaptive recommenders.

As described in Section 2.4.2, modern search engines combines multiple ranking functions
called signals into a final results list. We shall use H3 to see whether or not adaptive
recommenders can be used for this type of rank aggregation, where a set of recommender
systems constitute a set of input signals. Unlike the experiments for the other hypotheses,
the experiments for H3 will be a qualitative exploration of personalized search. A
quantitative performance measure of personalized search is outside the scope of this
thesis.

By answering these three hypotheses, it should become clear whether or not our
approach is a viable technique for improved relevance predictions between users and
items.

36 METHODS & IMPLEMENTATION

3.3 Adaptive Recommenders

Adaptive Recommenders (AR) is our technique for combining many recommender systems
in a way that is optimal for each user and item. Given that we wish to predict the
relevance of an item to a user, using many methods that consider disjoint data patterns,
there are two important questions:

1. What rating does each method predict?
2. How accurate will each of these predictions be?

Recommender systems traditionally only care about the first question. A single
method is used to predict an unknown rating. Modern aggregation techniques goes one
step further, and combine many methods using a generic (often weighted) combination.
We wish to make the aggregation adaptive, so that the aggregation itself depends on
which user and which item we are considering.

Formally, we define adaptive recommenders as adapting a set of recommender
systems with another complementary set of recommender systems (see Figure 3.2). This
then is a form of meta-modeling, where one set of modeling methods is adapted by another
set of modeling methods. The first set creates standard prediction scores, and answers
the first question. The second set predicts how accurate each method will be for the
current user and item, answering the second question. The interesting bit is that AR can
use recommender systems for both these tasks, as we shall see.

A system for adaptive recommenders can be specified by the following 6-tuple:

AR = (Items, Users,Ratings, Framework,Methods,Adapters)

= (I, U,R, F,M,A).

We have sets of Users and Items, and a set of Ratings. Any user u ∈ U can produce
a rating r ∈ R of an item i ∈ I. As mentioned, items can be just about anything, for
example documents, websites, movies, events, or indeed, other users. The ratings can
be explicitly provided by users, for example by rating movies, or they can be implicitly
extracted from existing data, for example by mining query logs.

As before, we use the term rating loosely. Equivalent terms include relevance, utility,
score or connection strength. This is still a measure of what a user thinks of an item in
the current domain language. However, since rating will match the case study we present
in the next chapter, we will be using this term.

The Framework variable specifies how the data is represented. The two canonical
ways of representing users, items and ratings are graphs and matrices (see Section 2.3).
We shall use a matrix, where the first dimension corresponds to users, the second to items,
and each populated cell is an explicit or implicit rating:

ADAPTIVE RECOMMENDERS 37

m1 m2 m3 · · · mn

w1 w2 w3 · · · wn

Σ

r̂

m1 m2 m3 · · · mn

a1 a2 a3 · · · an

Σ

r̂

Figure 3.1: Comparison of generalized aggregation and adaptive recommenders. (left) Modern
aggregation approaches uses a set of pre-trained weights to prioritize each modeling method. The
weighted predictions are aggregated into a final prediction r̂. (right) Adaptive user modeling
employs secondary modeling methods instead of weights. These estimate the accuracy of the
initial method for the current user and item.

Ru,i =

r1,1 r1,2 · · · r1,i
r2,1 r2,2 · · · r2,i
...

...
. . .

...
ru,1 ru,2 · · · ru,i

 .

As we wish to leverage disjoint data patterns, we have a set of modeling Methods,
with their own ways of estimating unknown ratings. Each modelm ∈M is used to compute
independent and hopefully complimentary predictions. In our case, these methods are
recommender systems.

As demonstrated in Chapter 2, there are many different recommendation algorithms.
Examples include Slope One predictions, SVD factorization and Nearest Neighbor weighted
predictions (see Section 2.3.3). These methods predict unknown connections between
users and items based on some pattern in the data, for example user profile similarity,
rating correlations or social connections. As previously explained, to achieve the best
possible combined result, we wish to use methods that look at disjoint patterns, i.e.
complementary predictive parts of the data (see Section 2.5).

The Adapters part of our 6-tuple refers to the second level of recommender systems.
In traditional prediction aggregation this step is a simple linear function for combining
the different predictions, for example by pre-computing a set of weights, one per method.
As found by Bell et al. (2007b, p.6) the accuracy of the combined predictor is more

38 METHODS & IMPLEMENTATION

(u, i)

m1

...

mn

p1

...

pn

a1

...

an

(p1, w1)

...

(pn, wn)

Σ r̂

methods layer adaptive layer aggregation

Figure 3.2: Layers of recommenders: The method layer consists of ordinary modeling methods,
each predicting the rating between a user and an item. This produces a set of predicted ratings
(p). The adaptive layer estimates how well each modeling method will perform for the current
user and item, and weighs the predictions accordingly. This produces a set of predictions and
weights [(p, w)]. The aggregation weighs the predictions into a final score r̂.

dependent on the ability of the various predictors to expose different aspects of the data,
than on the individual accuracy of the predictors. As described in Section 2.5, a set of
recommender systems can be combined by estimating generalized weights that minimize
the prediction error across all users.

With adaptive recommenders, the Adapters are themselves recommender systems
(see Figure 3.1). However, instead of modeling users, we wish to model the behavior
of the recommender systems. More specifically, we wish to model the accuracy of our
recommender systems. Methods in this second layer are used to predict how accurate
each of their corresponding basic recommenders will be. It is these methods that will
allow us to do adaptive aggregation based on the current user and item. We then have
two distinct layers of recommender systems (see Figure 3.2):

1. The methods layer consists of traditional recommender systems, that use a single
aspect of the data to produce predictions. When presented with an item and a user,
these methods produce a predicted rating r̂u,i based on their algorithms.

2. The adaptive layer is another set of corresponding recommenders that work a bit
differently. These methods take an item and a user and estimates how well its
underlying method will perform this prediction. The accuracy estimations are then
combined with the predictions by aggregation. However, each of these adaptive
methods do not have to employ the same algorithm as their corresponding methods.

Another way of describing (and implementing) the two levels is with the map and
reduce functions of functional programming. We can express prediction aggregation as:

r̂u,i = reduce(u, i,map(M,u, i)).

ADAPTIVE RECOMMENDERS 39

First, each modeling method is applied by the map function, with the current
user, item and set of modeling methods as input. This operation returns a set of scalar
prediction values. These values are then combined by the reduce function, which also
takes the current user and item as input. In our terms, map is the methods layer, and
reduce is the adaptive layer. If we wish to do rank aggregation, the equation is a bit
different:

τu,n = reduce(u,map(M,u, n)).

Here, τu is the list of recommended items for user u (following the notation in
Dwork et al. (2001, p.3)). Note that there is no input item in this formula as we wish to
produce a ranking of the top n recommended items. The result is an adaptively sorted
list of the top n items for the current user. A common use case for rank aggregation is
personalized search: an IR algorithm restricts the item space, which is then adapted by
recommender systems, as we shall see.

Expressing ourselves in terms of map and reduce is helpful as this will guide our
implementation. Note that our terminology is a bit different from the proper MapReduce
framework for parallel computation (as explained in Manning et al. (2008, p.75)). However,
as with the standard key/value approach to MapReduce, the fact that our tasks can be
run in parallel will help us implement efficient algorithms.

3.3.1 Adaptive Aggregation

To perform adaptive recommender aggregation, we need the Adapters to be actual
recommender systems. Until now we have talked about both prediction aggregation
(scores) and rank aggregation (sorted lists). For now we shall stick to scalar predictions,
but will return to rank aggregation in Section 3.5.

The simplest generalized way of prediction aggregation is to take the average of all
predictions made by the different methods (e.g. Aslam and Montague (2001, p.3)):

r̂u,i =
1

N

∑
m∈M

p(m,u, i).

Here, r̂u,i is the estimated rating from user u to item i, N is the number of methods
in M , and p(m,u, i) is the predicted rating from method m. To achieve an even more
optimal result, many aggregators weigh each method differently (e.g. Claypool et al.
(1999)):

r̂u,i =
∑
m∈M

wm × p(m,u, i) where 0 ≤ wm ≤ 1,
∑
m∈M

(wm) = 1.

40 METHODS & IMPLEMENTATION

(u,i)
error model

ratings model

predicted error

predicted rating
adaption p̂r

Figure 3.3: Multiple models for adaptive weights: The data flow through the adaption of a single
recommender method. The current user and item is fed into two distinct models. The ratings
model, which predicts unknown ratings, and the error model, which predicts how accurate this
rating will be for the current input. The two predictions are then aggregated into a final part of a
rating (p̂r). Each of the recommenders contribute parts to the final rating.

In this equation, wm is the weight applied to modeling method m. These weights
fall in the range [0, 1] and sum up to 1. As described in 2.5, these weights can be estimated
by different machine learning methods. However, as discussed in Section 3.1, this is still
a generalized result, averaged across every user and item. The system assumes that the
best average result is the best result for individual users and items. This means that, even
with method-specific weights, we are still hindered by the latent subjectivity problem.

In order to leverage as many patterns as possible while sidestepping any latent
subjectivity, we need adaptive weights that are computed specifically for combinations of
users and items. This is more difficult than simply estimating generalized weights. If we
wish the weights to be combination-specific, then pre-computing weights for each method
becomes unfeasible. We would have to compute a weight for every method for every
possible rating. The adaptive weights also have to be estimated just as the unknown
ratings:

r̂u,i =
∑
m∈M

pw(m,u, i)× pr(m,u, i) where
∑
m∈M

(pw(m,u, i)) = 1.

Here, pw(m,u, i) is the predicted optimal weight for method m when applied to
user u and item i. Adaptive recommenders is one way to estimating these weights, i.e.
one way to implement pw.

We wish to use standard recommender systems for predicting optimal adaptive
weights. To do this, we need to create a matrix (or graph) that stores known values of
how accurate some of the rating predictions will be.

The key insight is that the predicted accuracy of a method is the opposite of its
predicted error. By modeling the errors of a method through standard recommender
systems, we can in turn predict errors for untested combinations (see Figure 3.3). If we
predict the error of a recommender system for a user and an item, we have also predicted
its accuracy. To achieve this, we create an error matrix :

ADAPTIVE RECOMMENDERS 41

Eu,i =

e1,1 e1,2 · · · e1,i
e2,1 e2,2 · · · e2,i
...

...
. . .

...
eu,1 eu,2 · · · eu,i

Creating an error matrix for each modeling method is done by splitting the ratings

data in two. The first set can be used for the actual RS modeling, and the second can be
used to populate an error matrix for each RS.

With adaptive recommenders, the standard modeling methods produce error ma-
trices, where some of the cells have values. A value in this matrix corresponds to the
prediction error for a combination of a user and an item. To achieve this, each modeling
method is only trained with a part of the ratings data. The error matrix is populated
from the rest of the data, by computing the error of every known rating the method was
not trained for:

∀(u, i, r) ∈ (de − dm) : E(m)u,i = |r − p(m,u, i)| where de, dm ⊂ D

Here, D is the current dataset, and dm and de are subsets of D. m is a modeling
method trained with the subset dm. To populate the error matrix for this method, we
take every rating which have not been used to train the method and calculate the error
of the method on this combination. Since we are only interested in the magnitude of the
error, we take the absolute value of the measurements. The result is a sparse error matrix
we can use to predict unknown errors.

Notice the similarity of this matrix and the previously introduced ratings matrix.
This similarity is what will allow standard recommender systems to perform adaptive
aggregation. Whenever we wish to train a new modeling method, we apply the following
algorithm:

1. Split the ratings data into two sets for training and error estimation.
2. Train the modeling method in its specific way with the first training set.
3. Use the error estimation data set to create the error matrix.
4. Train an error model based on the error matrix.

The error models are trained using standard recommender systems. After all, the
expected input and output is the same. We have two dimensions, with a sparse set of
known connections, and wish to predict unknown connections from this data.

The result is a set of modeling methods that can predict the error of a recommender
system when its used on a particular user and item combination.

42 METHODS & IMPLEMENTATION

What will happen when we train a recommender system with the error matrix?
First of all, the errors will be on the same scale as the initial ratings. Second, just as
the ratings matrix will include noise (ratings that do not contribute to any underlying
pattern), this will be true for the error matrix as well.

For example, one method might have a large error for a particular user and item
combination, yet still work well for both these elements. However, this is just the kind
of noise recommender systems are good at pruning away. What we are interested in are
situations where a method has stable and significant errors for many ratings from a user,
or many ratings of an item. In this case, there is a pattern where this method does not
work well for the element in question. This is exactly the kind of pattern recommender
systems are good at identifying.

The same capabilities that makes recommender systems work well on the ratings
matrix, will also make them work well on the error matrix. The properties we need for
predicting ratings are the same as those needed to predict accuracy.

Of course, some recommender systems will work better than others for the adaptive
layer. Most often we are seeking global patterns in the data. We are looking for groups
of users or items (or both) that suite some recommenders especially well, or that some
recommenders will not work for. SVD-based recommenders is one type of RS that can be
used for this purpose. By reducing the method-error space into an error category space,
we can identify how well a set of groups suite the available methods. We will get back to
this when performing experiments in the next chapter.

When we have an error model for each modeling methods we can estimate optimal
weights. Whenever we wish to create an adaptive aggregate prediction, we apply the
following algorithm:

1. Collect predictions from the modeling methods for (u, i).
2. Collect estimated errors for each method for (u, i).
3. Compute weights for the methods based on their relative predicted errors.
4. Sum the weighted predictions to get the adaptively predicted rating.

The next section will explain these steps in detail. We can now express the prediction
phase of adaptive recommenders as an equation. Each rating/relevance prediction is
weighted by its predicted accuracy, conditioned on the current user and item:

r̂u,i =
∑

(me,mr)∈M

(1− p(me, u, i)

error(u, i)
)× p(mr, u, i) where error(u, i) =

∑
me∈M

p(me, u, i)

In this equation, each recommender method has two corresponding models: mr is
the ratings model, used to predict ratings, and me is the error model, used to predict
errors. p(m,u, i) is the prediction of the model m (a recommender system) for the
relevance of item i to user u. This means that a method is weighted by its predicted

PREDICTION AGGREGATION 43

accuracy. The weights are computed by taking the opposite of a methods predicted error.
The errors are normalized across users and items by the errors(u, i) function, which is
the sum of the errors of the methods for the current combination. This gives us weights
in the range [0, 1] ensuring final rating predictions on the same scale as that returned by
the basic recommenders.

Notice that the only difference between me and mr is how they are created. mr is
trained with the standard ratings matrix, and me is trained using the error matrix. This
means we can use any standard recommender system to perform adaptive aggregation.
Hence, the name adaptive recommenders: a set of secondary recommenders is used to
adapt a set of standard recommenders to each user and item.

It is also important to note that the types of recommenders used for the adaptive
layer is independent of the basic recommenders. The adaptive recommenders need only
predicted ratings from the basic recommenders, and does not care which algorithms they
employ. When making predictions, the calculations in the methods layer and adaptive
layer are independent, as both use pre-computed models: the method layer use the ratings
matrix, or their own models created during training, while the adaptive layers use the
error matrices for the basic methods.

The result of this is a system that does not only aggregate a number of predictions
for unknown combination of users and items, but that also combines these methods based
on how accurate each prediction is likely to be.

Let us now see how adaptive recommenders may be implemented. We shall first
do prediction aggregation in a recommendation scenario, then rank aggregation in an
information retrieval scenario.

3.4 Prediction Aggregation

Adaptive prediction aggregation means combining the results from multiple scalar predic-
tors conditioned on the current context. As mentioned, we have two levels of predictors.
The first level is a set of traditional recommender systems that produce estimations of
unknown ratings between users and items. The second level is another set of recommender
systems that predict how accurate each of the first level recommenders will be. There are
two distinct phases when using adaptive recommenders:

1. The modeling phase creates the user models for both levels.
2. The prediction phase uses the created models to estimate ratings.

We shall first explain the modeling phase, then the prediction phase. The next
section will explain a similar situation where we wish to do adaptive rank aggregation by
combining ordered lists of results, depending on the current user and item.

44 METHODS & IMPLEMENTATION

3.4.1 Modeling Phase

Listing 1 gives the basic algorithm for training our models. The input to this method
is the standard ratings matrix, and a set of untrained modeling methods (in this case,
untrained recommender systems).

Algorithm 1 Adaptive Prediction Aggregation Modeling
Input: ratings: The ratings matrix
Input: methods: The set of modeling methods
Output: rating_models, error_models: trained rating and error models
1. rating_models← ∅
2. error_models← ∅
3. for all m ∈ methods do
4. sample← BootstrapSample(ratings)
5. rating_modelsm ← TrainModel(m, sample)
6. error_modelsm ← TrainErrorModel(rating_modelsm, ratings)
7. end for
8. return (rating_models, error_models)

An important question is how we should split the ratings data. In this scenario,
we need to split the data for a number of purposes. The following sets must be created
during training:

1. Training sets for the standard recommenders.
2. Training sets for the error estimation models.
3. A testing set to measure the performance of our final system.

Constructing these subsets of the available data is a common task in ensemble
learning (Polikar, 2006, p.7). As seen in Listing 1, we use an approach called bootstrap
aggregation, also known as bagging (introduced by Breiman (1996)). Originally, bagging
is used by ensemble learning classification methods, where multiple classifiers are trained
by uniformly sampling a subset of the available training data. Each model is then trained
on one of these subsets, and the models are aggregated by averaging their individual
predictions.

Formally, given a training set D with n items, bagging creates m new training sets
of size n′ ≤ n by sampling items from D uniformly and with replacement. In statistics,
these types of samples are called bootstrap samples. If n′ is comparable in size to n, there
will be some items that are repeated in the new training sets.

Bagging suits our needs for a few reasons. First, it helps create disjoint predictors,
since the predictors are only trained (or specialized for) a subset of the available data.
When using multiple similar recommenders, this means we can create specialized models
for parts of the data with a higher performance than if they were trained on the entire
dataset. Second, bagging allows us to easily train the underlying modeling methods

PREDICTION AGGREGATION 45

without any complex partitioning of the data. To partition and use the available data,
we use the following algorithm:

1. Split the entire dataset into a training and testing set.
2. Train modeling methods through bootstrap aggregation of the training set.
3. Train error models from the complete training set.
4. Test the resulting system with the initial testing set.

Each modeling method is trained in ways specific to their implementation. Model-
based approaches create pre-built structures and provide offline training, while heuristic
methods simply store the data for future computation. Either way, it is up to each
modeling method what it does with the supplied training data. The result of this
algorithm is a set of trained rating models and error models.

Algorithm 2 Prediction Error Modeling
Input: ratings: the ratings matrix
Input: rating_model: a recommender system user model
Output: error_model: a trained error model for this method
1. errors← [[]]
2. for all user, item, rating ∈ ratings do
3. errorsuser,item ← |ratingsuser,item − Predict(rating_model, user, item)|
4. end for
5. error_method← NewModelingMethod(SV D)
6. error_model← TrainModel(error_method, errors)
7. return error_model

Listing 2 shows an algorithm for training the error models. The input is the entire
ratings matrix, and a trained recommender model that this error model should represent.
We first create the aforementioned error matrix by estimating predictions for each known
combination in the ratings data. The NewModelingMethod call simply creates a new,
untrained recommender model of some pre-specified type (in this case, a new SVD-based
model, but any applicable RS will do). A new model is then trained based on the created
error matrix, and returned as our new error_model.

When the computations of the algorithm in Listing 1 is complete, we have a set
of trained recommender systems, and a set of trained error models. Each recommender
model has a corresponding error model, forming two layers, that we shall use when
performing predictions.

3.4.2 Prediction Phase

In the prediction phase of adaptive prediction aggregation, we wish to use our layers of
trained models to produce adaptive combinations of multiple predictions and accuracy
estimations. Listing 3 gives the basic algorithm.

46 METHODS & IMPLEMENTATION

Algorithm 3 Adaptive Prediction Aggregation
Input: user, item: a user and an item
Input: rating_models: the set of trained modeling methods
Input: error_models: the set of trained error models
Output: prediction: the predicted relevance of the item to the user
1. ratings← ∅
2. errors← ∅
3. for all m ∈ rating_models do
4. ratingsm ← Predict(rating_modelsm, user, item)
5. errorsm ← Predict(error_modelsm, user, item)
6. end for
7. errors← Normalize(errors)
8. prediction← 0
9. for all m ∈ rating_models do

10. weightm ← 1− errorm
11. prediction← prediction+ weightm × ratingsm
12. end for
13. return prediction

The first input is the user and item for which we wish to predict a rating. We
assume that this rating is unknown — predicting ratings for known combinations would
mean recommending items the user has already seen and considered (however, if we are
dealing with a task such as personalized search, these known ratings are important, as we
shall see in the next section).

The other inputs are the trained rating models, and the corresponding error models.
The algorithm begins by creating empty sets for predicted ratings and errors. Next, the
modeling methods are used to predict ratings, and their error models to predict errors.
Note that the step in the first for-loop are independent, and both steps inside the for
loop are also independent. This is then an algorithm well suited for parallelization. In
a MapReduce framework, this for loop would be run as a map operation, where the
input user and item is mapped over the sets of modeling methods (see Appendix A for
implementation details).

After the predictions have been collected, the errors are normalized, i.e. converted
to the range [0, 1], so that they sum to 1. This is vital before last stage of the prediction
algorithm, which weighs the predictions from the different rating models. The last step
corresponds to the previously explained reduce operation, that combines multiple scores
into one final result. The weights of the methods are computed as 1 − error, where
error is the normalized error for this method, for the current user and item. The rating
predictions are then multiplies with their weight, and combined to form the final adaptively
aggregated prediction.

There is an important performance different between the modeling and prediction
phases: While the modeling phase is the most computationally expensive, it can be

RANK AGGREGATION 47

performed independently of making predictions. As the prediction phase is when the user
has to wait for the system, this is where performance is most important.

As users rate more items and new items arrive, the models have to be recreated
based on this new reality. However, as the modeling phase is an offline operation, the
training can be performed in the background, while new and computationally efficient
predictions are always available.

3.5 Rank Aggregation

It is time to see how to do adaptive rank aggregation. Rank aggregation means combining
sorted lists of items. In this scenario, the modeling methods take the current user as
input, and produce lists of items ranked in order of rating (see also Section 2.5.1).

Aggregating lists is desirable in a number of situations. Often we wish to produce
lists of recommended items, not just estimate the rating of a single user/item pair.
Consider the task of personalizing a list of search results (see Section 2.4). The important
part is not the score given to each result, but rather the order in which they appear. The
underlying technology stays the same. A number of recommenders are used to predict
the ratings of items to users. However, to do rank aggregation, another layer is added,
that requests lists from each method, not only singular items.

Because it is such an important use case, we shall use personalized search to present
our approach to adaptive rank aggregation. In addition to the standard recommenders,
we have an information retrieval method, as introduced in Section 2.4.1. The IR method
takes in a user-initiated query (a collection of words or a sentence), and returns a number
of search results, in an ordered list. In traditional personalized search, a recommender
system can then be used to estimate a rating for each of the returned items, and re-sort,
or re-score, the results list (e.g. Xu et al. (2008, p.3)).

The key insight is that both the IR method and the recommender systems form
input signals (see Section 2.4.2). An input signal is some measure of how an item should
be ranked in the final results list. The relevance scores returned from our IR ranking
functions are signals, and the predicted ratings from the recommender systems are signals.
Adaptive aggregation then entails estimating how accurate each of these signals are likely
to be for the current user and item. This is almost the same task as in adaptive prediction
aggregation, only in a list-oriented fashion.

There is an important difference. The IR methods should be used to constrict the
range of items worked on by the recommender systems. As the IR methods identify items
that may be relevant to the users query, these are the items we wish the recommender
systems to work on. This goes back to the previously mentioned difference between search
and recommendations:

48 METHODS & IMPLEMENTATION

IR(q) τIR

m1

...

mn

τ1

...

τn

a1

...

an

τ ′1

...

τ ′n

Σ τ̂

methods layer adaptive layer aggregation

Figure 3.4: Example of Adaptive Rank Aggregation: An IR method returns a results list of possibly
related items, together with a ranking score. The methods layer estimates ratings for items in the
results list. The adaptive layer predicts how accurate these ratings are likely to be. Finally, the
ranking scores, ratings and accuracy estimations are combined into one result list, τ̂ .

• Recommenders find relevant items the user does not already know exists.
• Search engines find relevant items the user knows or hopes exists.

The difference lies in the knowledge of existence. As personalized search is still a
search task, the IR methods should determine the set of items that might be relevant.
Their relevance scores for these items becomes the first input signals. The recommender
systems works on this set of items, re-scoring them as needed. We still have the adaptive
layer that estimates how well the signals will perform for the current user and item. This
is especially important considering that we may have multiple IR methods that define
multiple sets of relevant items. The final result is an adaptive combination of the rating
and accuracy predictions for each signal, as seen in Figure 3.4. Let us now see how the
modeling and prediction phases are performed in adaptive rank aggregation.

3.5.1 Modeling Phase

We shall only deal with settings where we have a single IR method. While multiple IR
methods and corresponding error models is an interesting setting, we are most interested
in using the IR method for constraining the Item-space considered by the recommender
systems. As we shall see, this does not introduce many changes to our algorithms.

The modeling phase for the recommender system stays almost the same, with one
important change. As we are dealing with a search engine, we might not have an explicit
ratings matrix to rely on. Most feedback we can gather from user initiated searches
are from query logs. These logs show the current user, query, and the item that is
finally selected after the query is performed. Query log mining is a common approach
in personalized search (e.g. Liu et al. (2002); Sugiyama et al. (2004); Shen et al. (2005);
Speretta and Gauch (2000)). By mining query logs we can create an implicit ratings
matrix. Each populated cell represents a selected item.

RANK AGGREGATION 49

For example, Venetis et al. (2011) shows an interesting approach where they use
requests for directions from online map services to infer implicit ratings: when a user asks
for the directions from A to B, this is taken as a vote from this user that location B is
interesting. This is just one of many ways implicit ratings matrices can be mined.

The values in this implicit ratings matrix can take many forms. If we only care
about selected items, binary ratings may suffice: selected items are then represented by a
1 in the ratings matrix. These ratings can be further improved by considering different
metrics, including:

• Time spent before selecting the item.
• The items initial placement and the effort required to identify it.
• How far the user was willing to scroll before clicking the item.
• Whether or not the user resubmitted the same query shortly after.

Based on these and other similar metrics, one can achieve quite accurate implicit
ratings. Naturally, ratings can also be gathered from other sources. If we have more data
on each user, or know of secondary systems such as social networks or other systems
where ratings are present, these can be used to augment the implicit ratings matrix (e.g.
Carmel et al. (2009)). There are also search systems where we already have explicit
ratings. Consider, for instance, the use case of searching for movies on a movie rating
site, or searching for people in a social network. In these cases, we have explicit ratings
that can be used to train the recommender models.

A thorough explanation of turning query logs into ratings matrices is beyond
the scope of this thesis. Extensive research already looks at how implicit user model
information may be gleaned from simple query logs. Examples include Joachims et al.
(2007), Lee and Liu (2005), Agichtein et al. (2006), Mobasher et al. (2000) and Speretta
and Gauch (2000).

As in prediction aggregation, the strength of our resulting system is in large part
dependent on the accuracy of our ratings. This means that deciding and understanding
how implicit ratings are created, or finding auxiliary sources to provide explicit ratings,
is a critical step. The algorithms are only as strong as the data they use. Methods for
personalized search may work best in settings where we have explicit ratings, or can
gather explicit ratings from secondary sources, for example from external social networks
or publishing platforms.

When we have the implicit or explicit ratings matrix, the modeling phase consists
of two parts. Training the IR models and the recommender models. The recommender
models are trained as before, given in Listing 1. The one or more IR methods are not
trained with a ratings matrix, but with the items and their respective data. Of course,
the actual IR modeling method depends on the IR system itself. However, as a through
explanation of IR systems is outside our scope, we assume that the IR model is trained
with the system’s items, and that it returns relevant items when given a query.

50 METHODS & IMPLEMENTATION

Algorithm 4 Adaptive Rank Aggregation
Input: user: the current user
Input: items: the set of all items and their meta-data
Input: query: the user initiated query
Input: ir_model: a trained IR model
Input: rating_models: the set of trained modeling methods
Input: error_models: the set of trained error models
Output: results: the adaptively sorted list of results
1. ratings← ∅
2. errors← ∅
3. results← Search(ir_model, items, query)
4. for all item ∈ results do
5. for all m ∈ rating_models do
6. ratingsm,item ← Predict(rating_modelsm, user, item)
7. errorsm,item ← Predict(error_modelsm, user, item)
8. end for
9. end for

10. errors← Normalize(errors)
11. for all item, ir_score ∈ results do
12. prediction← wIR × ir_score
13. for all m ∈ rating_models do
14. weightitem ← 1− errorm,item
15. prediction← prediction+ weightm × ratingsm,item
16. end for
17. itemprediction ← prediction
18. end for
19. results← SortByPredictions(results)
20. return results

3.5.2 Prediction Phase

The prediction phase is where adaptive rank aggregation differs most from adaptive
prediction aggregation. Listing 4 gives the basic algorithm. As input, instead of one item,
we have the entire set of items, and a query. We run the query and items through the IR
model to get the constrained set of items (results). Each of the recommender methods is
then run for the items in the results list. As before, the first for-loop can be performed in
parallel. The calls to Predict are independent of the other calls, allowing us to perform
it as a map operation.

As before, the error estimations are normalized before converting them to weights.
Since we are dealing with two dimensions of errors, for each item and method, the errors
are normalized across items. For items, the errors from the recommenders fall in the
range [0, 1] and sum to 1.

After the items in the results list have an IR score, a set of predictions, and a
corresponding set of error predictions, the adaptive aggregated prediction is computed.

RANK AGGREGATION 51

Because we do not care of the final score we set the initial predictions to be the IR scores.
The recommender systems simply add or subtract from this initial score. This means that
the resulting predictions will not be in the same range as the known ratings, but since we
are only interested in the order of the items, not the actual rating, this is not a problem.

An important coefficient is the wIR (IR weight), which determines how much the IR
method should decide of the final ranking. This is first and foremost adjusted to ensure
that the IR scores are on a similar scale as the predicted ratings. At the same time, this
weight determines how much the IR score influences the final placement of an item in the
results list. In the next chapter, we shall see how the choice this parameter influences the
ranked results lists.

After computing the predictions for each item in the results list, we sort the list by
the item predictions, and return the list. The resulting list is adaptively sorted based on
the current user and the specific items in the list, achieving adaptive rank aggregation.

Listing 4 considers rank aggregation in a scenario with a single IR model. In the
case of more IR models, we would combine the scores for the items returned by the
different models. In this case, estimating the accuracy of each IR model in the same
way as the recommender systems would provide another level of personalization. Just as
varying RSs work differently for elements, each IR model may have varying applicability
to individual items. At the same time, users might place a different importance on the
varying IR models.

This would be a simple extension of our prediction algorithm. The most important
question becomes how to estimate the error matrix for an IR model. There are many
ways to do this. For example, the error for a query could be based on how how often
the element in question is selected for the current query. Another error might be based
on the difference between the optimal placement (based on click-through rates) and the
actual placement of an item in the result list.

However, as this is outside the scope of this thesis, we shall stick to situations where
we have a single IR model. Experiment 3 in the next chapter will show how this IR model
can be used in different ways by varying the IR weight.

The implications of adaptive rankings of search results are considerable. By esti-
mating how accurate each algorithm will for current user, we get a list of results that
is sorted based on how the user should be modeled. At the same time, by estimating
accuracies for the current item, the items are sorted by the algorithms that can best
predict their relevance.

This is the main strength of adaptive recommenders. Instead of a generic and
averaged sorting, we achieve an adaptive sorting that creates an optimal algorithmic
combination based on the current context. We shall discuss this further in the Chapter 5.

4

Experiments & Results

This chapter will perform experiments to find out whether or not adaptive recommenders
is a viable technique. We will perform three experiments to test the three hypotheses
outlined in Section 3.2. The first two experiments will take a quantitative look at
prediction aggregation, while the last will be a case study of using adaptive recommenders
for personalized search. The next chapter will discuss the implications and limitations of
each experiment.

4.1 Three Experiments

Table 4.1 shows the experiments that will test our technique. Experiments 1 & 2 will
test hypotheses H1 & H2. We will measure the performance of adaptive recommenders
compared to standard and aggregate recommenders. Experiment 3 will test hypothesis
H3. We will try using our method to personalize sets of search results in a number of ways.
The first two experiments will be quantitative measurements of prediction aggregation
performance. The last experiment will be a qualitative exploration of personalized search
with adaptive recommenders. In particular, we will look at how different prioritizations
of the IR model scores influence the final rankings.

mission hypotheses dataset users items ratings

Experiment 1 pred.agg. H1, H2 MovieLens 943 1,682 100,000
Experiment 2 pred.agg. H1, H2 Jester 24,983 100 1,832,275
Experiment 3 rank.agg. H3 MovieLens 6,040 3,900 1,000,000

Table 4.1: List of Experiments performed in this chapter.

As seen in Table 4.1, we will use two distinct datasets in the experiments. Each dataset
have different numbers of items, users and ratings. This is a desirable property. Testing
adaptive recommenders in different scenarios will help us achieve more reliable results.

First is the MovieLens dataset1. This dataset is often used to test the performance
of recommender systems (as described in Alshamri and Bharadwaj (2008, p.9), Lemire
and Maclachlan (2005, p.4), Adomavicius and Tuzhilin (2005, p.1) and Herlocker et al.
(2004, p.2)). It consists of a set of users, a set of movies, and a set of movie ratings from
users, on the scale 1 through 5. We chose two subsets of the entire MovieLens collection.
For Experiment 1 we use a subset of 100,000 ratings from 943 users on 1,682 movies. For

(1) See http://www.grouplens.org/node/73 — accessed 10.05.2011

54 EXPERIMENTS & RESULTS

Experiment 3 we use a much larger subset in order to have more items available for the
IR model. This subset has 1,000,000 ratings from 6,040 users of 3,900 movies.

The MovieLens dataset also comes with meta-data on users, such as gender, age
and occupation. There is also meta-data on movies, such as its title, release date and
genre. In Experiment 1, we are only interested in the ratings matrix of this dataset. The
titles of movies will be used in Experiment 3.

Our second set of ratings comes from the Jester dataset2. This is a set of 100 jokes
rated by users on a continuous scale. As with MovieLens, this dataset is also commonly
used to test recommender systems (as described in Goldberg et al. (2001), Herlocker et al.
(2004, p.14), Adomavicius and Tuzhilin (2005, p.5) and Ahn and Hong (2004, p.30)). This
dataset has many more users than those used in the other experiments. On the other
hand, there are significantly fewer items than in the other dataset. The widely varying
number of items, users and ratings in our selected datasets will give us more dimensions
along which to verify our results.

Jester also has ratings on a different scale than the MovieLens dataset. While the
movies are rated on a discrete scale from 1 through 5, the items in Jester are rated on a
continuous scale from −10 to 10. However, in order to easily compare the measurements
on both datasets, the ratings in Jester were converted to be on the scale 1 − 5. Still,
the difference between ordinal and continuous ratings remains, and will give us another
differing quality to verify our results.

In another effort to achieve reliable results, both datasets were split into multiple
disjoint subsets. We need disjoint subsets in order to perform cross-validation testing.
This entails running the same experiments across all subsets and averaging the results.
Each dataset is split into five sets which are again split into training and testing sets:

Dn = {d1 = {base1, test1}, d2 = {base2, test2}, ..., d5 = {base5, test5}}

The basex and testx pairs are disjoint 80% / 20% splits of the data in the subsets.
We shall perform five-fold cross-validation across all these sets in our experiments. This
way we can be more certain that our results are reliable, and not because of local effect in
parts of the data. As previously explained, the base sets are further split using bootstrap
aggregation, into random subsets for training the standard recommender models. The
entire base set is then used to train the adaptive error estimating recommenders. The
corresponding test sets will be used to evaluate our performance on the subsets.

Before performing our experiments, let us take a closer look at the different types
of recommender systems we will use.

(2) See eigentaste.berkeley.edu/dataset/ — accessed 22.05.2011

eigentaste.berkeley.edu/dataset/

RECOMMENDERS 55

method algorithm description

S svd1 SVD ALSWR factorizer, 10 features.
S svd2 SVD ALSWR factorizer, 20 features.
S svd3 SVD EM factorizer, 10 features.
S svd4 SVD EM factorizer, 20 features.
S slope_one Slope One Rating delta computations.
S item_avg Baseline Based on item averages.
S baseline Baseline Based on user and item averages.
S cosine Cosine similarity Weighted ratings from similar items.
S pcc Pearson Corr. Weighted ratings from similar users.

A median Aggregation Median rating from the above methods.
A average Aggregation Average rating from the above methods.
A adaptive Adaptive agg. Accuracy predictions from error models.

Table 4.2: Adaptive modeling methods: a short overview of the recommender methods used in
our experiment. Each recommender is used in every experiment. See Section 2.3 for more
information.

4.2 Recommenders

Standard recommender systems will be used for both the basic predictions, and the
accuracy estimations, as described in Chapter 3. Naturally, we need a number of different
RSs, preferably ones that consider disjoint patterns in the data. Table 4.2 gives a short
overview of the recommender systems we shall employ. All three experiments will use
every recommender in this table. This section gives a short introduction to these methods.
See Section 2.3 for more information on RSs, and Appendix A for details on how these
were implemented in this system.

4.2.1 Basic Recommenders

As seen in Table 4.2, we have two types of recommenders. First, we have the basic
recommenders, denoted by S in the table. Each of these systems look at varying data
patterns to predict ratings. We chose this wide range of recommenders for just this reason.
As previously explained, the performance of aggregation methods are more dependent on
the dissimilarity of the basic recommenders than their individual performance (Bell et al.,
2007b, p.6).

Let us briefly explain how each basic RS works. The SVD methods look for global
patterns in the data by reducing the ratings-space into a concept-space. By reducing this
space, the algorithm is able to find latent relations, such as groups of movies that has
the same rating pattern, or groups of users that often rate in a similar manner. For the
SVD methods, the factorizers refers to algorithms used to factorize the ratings matrix
(see Section 2.3.3).

56 EXPERIMENTS & RESULTS

The Slope One and baseline algorithms look at average ratings for items and from
users, and use these to predict ratings. These are simple algorithms that often perform
as well as more complex approaches.

The cosine similarity algorithm looks for items that are rated similarly by the same
users, and infers item similarity from this measure. New ratings are then predicted by
taking known ratings of other items, weighted by their item’s similarity to the new item.
This is based on the same method used in the previously introduced vector space model.

The PCC algorithm employs yet another approach. This algorithm, similar in
strategy to the cosine similarity algorithm, looks for users with similar rating patterns.
The similarity is measured with the Pearson Correlation Coefficient. Predictions are
created by collecting ratings from similar users of the item in question, weighted by
their respective similarity. See Section 2.3 for more detailed information on how these
recommenders work.

The main difference between our recommenders are the scope of the patterns they
leverage. The SVD and baseline methods look at global effects, such as latent categories
and overall rating averages. The cosine similarity and PCC algorithms look at smaller
clusters of similar users and items, and compute an average rating weighted by similarities
of elements. This wide range of recommender should give us the desired effect of looking
at disjoint rating patterns.

4.2.2 Adaptive Recommenders

The second type of recommenders are the aggregation methods, that combine the result
of each of the basic system (the methods below the middle line in Table 4.2, denoted “A”).

The first two of these methods are simple aggregation approaches. These will be used
to test hypothesis H2. The median aggregation method choses the median value of the
predictions produced by the standard recommenders. Similarly, the average aggregation
method takes the mean of the standard predictions. While not complex in nature, these
methods will help us see how our method compares to simple aggregation techniques.

The last entry in Table 4.2 refers to our technique. This is the recommender outlined
by the algorithms in Chapter 3, that create secondary accuracy estimating recommender
systems, in order to adaptively weigh the basic recommenders. All the aggregation
approaches, including our technique, employ every basic recommender system described
so far.

As explained in Section 3.3, any basic recommender system can be used for the
adaptive method. The only difference is how this method is trained. While the basic
methods are trained using the ratings matrix, the adaptive methods are trained using
the error matrix, as seen in Listing 1. We have as many possibilities for choosing the
adaptive recommenders as the basic recommenders.

For our experiment, we chose SVD recommenders for the adaptive models. That is,
the basic recommender methods get secondary accuracy predicting recommenders, which

EVALUATION STRATEGIES 57

in this case are standard SVD-based recommender systems. The SVD recommender is a
natural choice in this case, since we wish to uncover latent patterns of accuracy for each
model. SVD recommenders look for global patterns in the data, which in this case would
mean situations where a standard RS works especially well for, or does not work for, a
set of users, items, or a combination of these.

It is important to note that the same configuration of recommenders was used for
all three experiments. Neither the basic nor the aggregate or adaptive recommenders
were heavily tailored to the datasets. To be sure, higher performance could probably
have been achieved by tailoring the recommenders to the available data. However, as our
goal is to compare our finite set of methods, we are currently only interested in how they
perform compared to each other.

As with the basic recommenders, the same SVD recommender configuration was used
for the adaptive layer in every experiment. We chose to use en EM-factorizer to perform
the actual decomposition, consisting of 20 features. The decomposition was performed
by 20 iterations. See 2.3.3 for more information on how SVD-based recommenders work.
The choices of recommenders will be further discussed in Chapter 5.

4.3 Evaluation Strategies

To evaluate how our model performs during prediction aggregation, we need a measure for
computing the total error across a large number of estimations. The canonical measure for
estimating the error of a recommender system is the Root Mean Squared Error (RMSE)
measure (for example in Herlocker et al. (2004, p.17), Adomavicius and Tuzhilin (2005,
p.13) and Bell et al. (2007b, p.6)). We shall use this measure to estimate the performance
of our adaptive prediction aggregation algorithm. The RMSE of a set of estimations R̂,
compared the correct rating values R, is defined as:

RMSE(R̂, R) =

√
E((R̂−R)2) =

√∑n
i=1(R̂i −Ri)2

n
.

Here, n is the total number of predictions. The RMSE combines a set of errors into
one single combined error. A beneficial feature of the RMSE is that the resulting error
will be on the same scale as the estimations. For example, if we are predicting values on
the scale 1− 5, the computed error will be on this scale as well. In this case, an error of 1

would then say that we are on average 1 point away from the true ratings on our 1− 5

scale.
RMSE is a non-linear error estimator. This means that larger errors are harshly

punished. Because the differences are squared by the formula, many small errors are much
less significant than a few big errors. The RMSE will judge methods that provide stable
predictions more favorably than methods that, while precise, have a few items or users for

58 EXPERIMENTS & RESULTS

which the method breaks down. For example, when RMSE was used in the Netflix movie
recommender challenge (Bennett and Lanning, 2007), the participating teams found that
a few hard to predict movies often single-handedly severely impacted their total error.

While the RMSE works well for evaluating scalar predictions, we need another
measure for evaluating rank aggregation methods. Here, we are not interested in the
predicted scores, but rather in which position each item appears in a sorted list of results.
This is for instance needed when measuring the performance of a personalized search
engine. However, H3 does not state anything regarding explicit performance, only that
our method should be applicable in an information retrieval scenario.

The performance of personalized search is hard to determine, as there are many
types of rankings that make sense in a number of different use cases, as we shall see.
In light of this, H3 will be experimented with as a case study, by looking at how our
algorithm performs personalized search in a number of use cases.

4.4 Prediction Aggregation

Our first hypothesis, H1, states that adaptive recommender aggregation can achieve higher
accuracy than each of the combined recommenders. The second hypothesis, H2, states
that adaptive recommender aggregation can achieve higher accuracy than generalized
aggregation methods.

In order to test these hypotheses, we performed adaptive prediction aggregation
on the two datasets previously described. Five-fold cross validation was performed to
further verify the result.

Table 4.3 gives the results from Experiment 1 (MovieLens). Table 4.4 gives the
results from Experiment 2 (Jester). A cell corresponds to the RMSE values for a dataset,
for each recommender and aggregation approach. The bottom entry in this table refers
to our adaptive recommenders method. As seen in this table, the adaptive recommender
achieved lower RMSE values than any of the other applied methods.

Statistics for the experiments are given in the last parts of Tables 4.3 & 4.4. The
statistical values are the minimum, maximum and mean values for the methods. We also
include the standard deviation (σ) across the collections of subsets. This table confirms
the results from the full results table. Our adaptive recommenders approach improves
the mean performance of our system. The mean RMSE values of Experiment 1, along
with their standard deviation are shown in Figure 4.1.

Let us take a look at the standard deviation measures from the different methods.
As seen in Figure 4.1, most of the methods, including the adaptive models, exhibit quite
a lot of variation in their results. If these variations occurred as a result of unstable
predictions of the same dataset, this would be a substantial problem, resulting in unreliable
predictions. However, as seen in Figure 4.2 (based on Experiment 1), the standard
deviation is mostly caused by the differing performance across the varying datasets. As we

PREDICTION AGGREGATION 59

Results from Experiment 1

method d1 d2 d3 d4 d5

S svd1 1.2389 1.1260 1.1327 1.1045 1.1184
S svd2 1.2630 1.1416 1.1260 1.1458 1.1260
S svd3 1.0061 0.9825 0.9830 0.9815 0.9797
S svd4 1.0040 0.9830 0.9849 0.9850 0.9798
S slope_one 1.1919 1.0540 1.0476 1.0454 1.0393
S item_avg 1.0713 0.9692 0.9662 0.9683 0.9725
S baseline 1.0698 0.9557 0.9527 0.9415 0.9492
S cosine 1.1101 0.9463 0.9412 0.9413 0.9382
S pcc 1.4850 1.1435 1.1872 1.2156 1.2022

A median 0.9869 0.8886 0.8857 0.8857 0.8855
A average 0.9900 0.8536 0.8525 0.8525 0.8519
A adaptive 0.9324 0.8015 0.7993 0.8238 0.8192

method min max mean σ

S svd1 1.1045 1.2389 1.1441 0.2197
S svd2 1.1260 1.2630 1.1605 0.2277
S svd3 0.9797 1.0061 0.9865 0.0991
S svd4 0.9798 1.0040 0.9873 0.0924
S slope_one 1.0393 1.1919 1.0756 0.2415
S item_avg 0.9662 1.0713 0.9895 0.2023
S baseline 0.9415 1.0698 0.9738 0.2196
S cosine 0.9382 1.1101 0.9754 0.2595
S pcc 1.1435 1.4850 1.2467 0.3487

A median 0.8855 0.9865 0.9065 0.2005
A average 0.8519 0.9900 0.8801 0.2344
A adaptive 0.7993 0.9324 0.8352 0.2225

Table 4.3: Results from experiment 1 (MovieLens): The cells give RMSE values for a method.
The first table gives errors for subsets of the data (dx). Lower values indicate better results. Bold
values indicate the best result in a column. S refers to singular methods, and A to aggregation
methods. σ refers to the standard deviation of each method across the subsets.

60 EXPERIMENTS & RESULTS

Results from Experiment 2

method d1 d2 d3 d4 d5

S svd1 1.0866 1.0815 1.0741 1.0823 1.08179
S svd2 1.0831 1.0833 1.0739 1.0897 1.09024
S svd3 0.9499 0.9440 0.9420 0.9480 0.94595
S svd4 0.9508 0.9469 0.9430 0.9479 0.94688
S slope_one 1.1015 1.1017 1.0978 1.1140 1.12536
S baseline 1.1006 1.0866 1.0859 1.0933 1.10122
S item_avg 1.0023 0.9990 0.9965 0.9997 0.99446
S cosine 1.0746 1.0734 1.0702 1.0797 1.08452
S pcc 1.1836 1.1780 1.1708 1.1672 1.17731

A median 0.9199 0.9170 0.9136 0.9213 0.92005
A average 0.9168 0.9131 0.9108 0.9175 0.91678
A adaptive 0.9016 0.9092 0.8929 0.8994 0.87823

method min max mean σ

S svd1 1.0741 1.0866 1.0812 0.063377
S svd2 1.0739 1.0902 1.0840 0.076837
S svd3 0.9420 0.9499 0.9460 0.052801
S svd4 0.9430 0.9508 0.9471 0.050071
S slope_one 1.0978 1.1253 1.1081 0.101039
S baseline 1.0859 1.1012 1.0935 0.080985
S item_avg 0.9944 1.0023 0.9984 0.052021
S cosine 1.0702 1.0845 1.0765 0.0709
S pcc 1.1672 1.1836 1.1754 0.0758

A median 0.9136 0.9213 0.9184 0.052478
A average 0.9108 0.9175 0.9150 0.051037
A adaptive 0.8782 0.9092 0.8962 0.102056

Table 4.4: Results from experiment 2 (Jester): The cells give RMSE values for a method. The
first table gives errors for subsets of the data (dx). Lower values indicate better results. Bold
values indicate the best result in a column. S refers to singular methods, and A to aggregation
methods. σ refers to the standard deviation of each method across the subsets.

PREDICTION AGGREGATION 61

pc
c

sv
d2

sv
d1

slo
pe
on
e

ite
ma
vg

sv
d4

sv
d3

co
sin
e

ba
sel
ine

a:m
ed
ian

a:a
ve
ra
ge

a:a
da
pt
ive

0.8

1

1.2

1.4

Figure 4.1: Average RMSE plot: This plot shows the average RMSE for the recommenders and
the aggregators (denoted “a:”). The actual numbers are given in Table 4.3. The error bars indicate
the standard deviation for the methods. Note the scale on the y-axis — the errors are not as
pronounced as they might seem. See also Figure 4.2.

see, the performance of the aggregation methods, as well as the best performing standard
recommender, follow each other closely. At the same time, performance varies across the
different datasets, which results in high values for σ.

What does this mean for hypotheses H1 and H2? Expressed in terms of this
experiment, H1 posits that adaptive recommenders should outperform the standard
modeling methods in Table 4.2. The adaptive methods blend the results of multiple
predictors by estimating the accuracy on a per-item and per-user basis, satisfying the
formulation of H1.

By outperform we mean that our model should have a lower mean RMSE score
than the other singular methods. As we can see in Tables 4.3 & 4.4, H1 is confirmed for
these methods and these datasets. While we can not generalize too much on this basis,
the fact that this dataset is a common testing ground for recommender systems, that
RMSE is the de facto measure for determining performance, and because of our five-fold
cross-validation, the results allow us to confirm hypothesis H1 in these conditions, and
likely for other, similar scenarios. We shall discuss this result in Chapter 5.

Similarly, expressed in the same terms, H2 posits that our adaptive recommenders
should outperform the aggregation approaches given in Table 4.2. The median and
average aggregation methods serve as global and generalized aggregation methods. Our

62 EXPERIMENTS & RESULTS

d1 d2 d3 d4 d5

0.8

0.85

0.9

0.95

1

1.05

baseline
a:median
a:average
a:adaptive

Figure 4.2: RMSE Variations: This plot shows that, while the standard deviation of each method
may be high, this has more to do with the selected dataset than with their performance in
comparison with each other. The performance of each of the aggregate methods, as well as the
baseline standard method, follow similar performance paths across the disjoint datasets.

adaptive recommenders are adaptive in that each prediction is aggregated based on the
current user and item, satisfying the language of H2.

As we can see in Tables 4.3 & 4.4, H2 is confirmed for these methods and these
datasets. However, as our collection of aggregation methods is a lot simpler than our
collection of recommender systems, the strength of this result is notably weaker than that
of H1. Still, the fact that a adaptive recommender outperforms these simple aggregation
approaches is a positive result warranting further experiments. This will also be discussed
in Chapter 5.

Our system performs better in Experiment 1 than Experiment 2. While better
performance in Experiment 2 would have been desirable, the results fit our original
assumptions. The Jester dataset, used in Experiment 2, have very few items (100). This
would intuitively mean that there are fewer disjoint patterns for the adaptive layer to
leverage. As described in the previous chapter, adaptive recommenders are mostly mean
for scenarios where we have a wide range of different users and items. However, as in
Experiment 1, our method outperforms the standard and aggregate recommenders, if
only by a small margin.

It would seem then that, based on our experiments, available data and assumptions
of evaluation measures, both H1 and H2 are confirmed. Our adaptive aggregation approach
outperforms both standard recommender methods and simple generalized aggregation
methods.

Notably, our approach is more complex than the methods it outperforms, so the

RANK AGGREGATION 63

question whether the extra performance is worth its extra complexity becomes important.
We shall discuss this, and other implications and limitations of these results in the next
chapter. For now, let us proceed to the third experiment and hypothesis H3.

4.5 Rank Aggregation

Let us see how adaptive recommenders can be used for personalized search. While the
previous experiment was a quantitative exploration of RMSE values, this experiment will
focus on qualitative traits of rank aggregation.

The MovieLens dataset fit the needs of this experiment. Searching through movies
is a scenario where the actual predicted rating of each movie could be a welcome signal for
ranking results. We have a database of movies the user wishes to search through, where
the results are ranked both by how well they match the free text query, and according to
the predicted rating of each movie for the current user. The value of letting predicted
ratings re-rank search results of movies is entirely dependent on the actual system and
use case, but it presents a probable situation where personalized search may be employed.

Hypothesis H3 states that the ordering of results from an information retrieval
query can be personalized by using adaptive recommenders. We wish to check if the
prediction algorithm in Listing 4 performs personalized search in a meaningful way. There
are a few important limitations to this experiment:

• We are not interested in measuring the actual performance of the IR system. It us
assumed that the IR model returns items relevant to the current query, ranked by
their individual relevance.

• We are not interested in measuring the performance of the resulting personalized
search. This experiment will only show whether or not personalized search is
achievable by using adaptive recommenders, as per our hypothesis.

This means that Experiment 3 is not statistically significant in any way, but rather
a case study where we investigate the implications of using adaptive recommenders for
personalized search.

To be sure, there are many ways of determining the accuracy of a personalized
search algorithm. Examples include the mean average precision of the results list (the
mean of the precision averaged over a set of queries). As always when dealing with
personalization, these are subjective measures based on relevance judgements from each
user.

Our hypothesis only states that our algorithm should be usable for such a system,
which is what we shall explore in this section. To quantitatively measure the performance
of personalized search, one would need detailed query logs, user profiles and click-through
information.

64 EXPERIMENTS & RESULTS

Results and their IR ranking score for the query [“new york” or washington]:
score title

1 2.8419 New York Cop (1996)
2 2.8419 King of New York (1990)
3 2.8419 Autumn in New York (2000)
4 2.8419 Couch in New York
5 2.4866 Escape from New York (1981)
6 2.4866 All the Vermeers in New York (1990)
7 2.1314 Home Alone 2: Lost in New York (1992)
8 1.0076 Saint of Fort Washington
9 1.0076 Washington Square (1997)
10 0.8816 Mr. Smith Goes to Washington (1939)

Predicted ratings from the adaptive recommenders method for each item:
score title ∆IR

1 3.7255 Mr. Smith Goes to Washington (1939) ↑ 9
2 3.1430 Escape from New York (1981) ↑ 3
3 3.0003 King of New York (1990) ↓ 1
4 2.9498 Washington Square (1997) ↑ 5
5 2.7258 Saint of Fort Washington ↑ 3
6 2.6862 Couch in New York ↓ 2
7 2.6380 All the Vermeers in New York (1990) ↓ 1
8 2.1601 Home Alone 2: Lost in New York (1992) ↓ 1
9 1.7241 Autumn in New York (2000) ↓ 6
10 0.0 New York Cop (1996) ↓ 6

Final results list with IR and adaptive predictions combined:
score title ∆IR

1 5.8422 King of New York (1990) ↑ 1
2 5.6297 Escape from New York (1981) ↑ 3
3 5.5281 Couch in New York ↑ 1
4 5.1247 All the Vermeers in New York (1990) ↑ 2
5 4.6072 Mr. Smith Goes to Washington (1939) ↑ 5
6 4.5661 Autumn in New York (2000) ↓ 3
7 4.2915 Home Alone 2: Lost in New York (1992) =
8 3.9575 Washington Square (1997) ↑ 1
9 3.7334 Saint of Fort Washington ↓ 1
10 2.8419 New York Cop (1996) ↓ 9

Table 4.5: Complex IR query: The first table shows the results returned by our IR model, defining
the item-space for the following tables. The middle table shows the predicted ratings for each of
the items in the results set. ∆IR shows how much each item has moved compared to the initial
IR results. Notably, the recommenders were not able to predict the rating for the movie "New
York Cop", which results in a low final placement for this item.

RANK AGGREGATION 65

It is important to note that any recommender system can be used for personalized
search. The interesting bit in regards to adaptive recommenders is what happens under
the hood. First, the information retrieval score is itself treated as an input signal, just
as the user modeling methods. Second, by using adaptive recommenders, the user is in
control of which methods that actually determine how the final results are ranked.

We have considered four use cases to see how our algorithm performs in a number
of scenarios. Each case presents a query and shows how a certain IR weight influences
the final ranking.

To reiterate, the IR weight is the scalar value multiplied with the IR score before
the adaptive recommender scores are incorporated in the result (see Listing 4). The
actual choice of weight depends on scale of scores returned by the IR method, and how
much the IR model should influence the final ranking. If the scores are on the same
scales as the ratings themselves, an IR weight of 1 signifies that the IR score should have
equal importance as each recommender score. Any higher, and the IR model should
be prioritized above the recommenders. Any lower, and the recommender scores will
dominate the initial IR rankings.

The actual IR weight must be calculated based on the scale of the IR scores. In this
chapter, the scores returned by our IR model is normalized to the scale of our ratings.
We then adapt the IR weight to achieve differing prioritisations of the IR scores.

We consider the following use cases: (1) searching for multiple topics, (2) searching
for a series of movies, (3) searching for one particular topic, and (4) searching for a
particular attribute. The first two use cases merge the IR and recommender scores into
a combined ranking. The last two will let the recommender systems do the ranking in
situations where the IR model is not able to properly rank the results.

(1) Searching Through Multiple topics Let us start with a simple use case. A user
wishes to find movies about two separate topics, ranked by query match and predicted
ratings. This is a realistic use case, for example if a user is interested in a few topics and
wants to see the movie within these categories he or she will probably like the most. The
IR algorithm takes care of finding the items within the categories, while the adaptive
recommenders finds the most enjoyable movies, according to the metrics most preferred
by this user in the past.

Table 4.5 shows this use case and how our algorithm performs. The results are for
the query [“new york” or washington]. The first table shows the IR scores for the first 10
results, and their rank (position in the list) according to these scores. The second table
shows the predicted rankings for each of these items. Finally, the third table shows the
ranking after the IR scores and predicted ratings have been combined. The final column
shows how each item have moved in relation to the IR results list.

In this run of the algorithm, the IR weight (wIR) was set to 1.0, instructing the
algorithm place about the same importance on the IR score and the predicted ratings.
As we can see in the last section of Table 4.5 the final result list is a blend of the IR

66 EXPERIMENTS & RESULTS

Results and their IR ranking score for the query [star trek]:
score title

1 4.2288 Star Trek: Generations
2 3.7002 Star Trek: First Contact
3 3.7002 Star Trek: The Wrath of Khan
4 3.7002 Star Trek: The Motion Picture
5 3.1716 Star Trek VI: The Undiscovered Country
6 3.1716 Star Trek III: The Search for Spock
7 3.1716 Star Trek IV: The Voyage Home
8 3.1716 Star Trek V: The Final Frontier
9 0.9670 Star Wars
10 0.9670 Lone Star

Predicted ratings from the adaptive recommender method for each item:
score title ∆IR

1 4.8232 Star Wars ↑ 9
2 4.6016 Lone Star ↑ 8
3 4.2192 Star Trek: The Wrath of Khan =
4 4.0324 Star Trek: First Contact ↓ 2
5 3.8667 Star Trek: Generations ↓ 4
6 3.7100 Star Trek IV: The Voyage Home ↑ 1
7 3.5604 Star Trek VI: The Undiscovered Country ↓ 2
8 3.4420 Star Trek: The Motion Picture ↓ 4
9 3.4242 Star Trek III: The Search for Spock ↓ 3
10 2.5249 Star Trek V: The Final Frontier ↓ 2

Final results list with IR and adaptive predictions combined:
score title ∆IR

1 5.5507 Star Trek: The Wrath of Khan ↑ 2
2 5.5205 Star Trek: First Contact =
3 5.3157 Star Trek: Generations ↓ 2
4 5.1187 Star Wars ↑ 5
5 4.9744 Star Trek IV: The Voyage Home ↑ 2
6 4.7596 Star Trek III: The Search for Spock =
7 4.7595 Star Trek: The Motion Picture ↓ 3
8 4.7553 Star Trek VI: The Undiscovered Country ↓ 3
9 4.6376 Lone Star ↑ 1
10 4.0934 Star Trek V: The Final Frontier ↓ 2

Table 4.6: These three table show adaptive rank re-scoring for the query [star trek]. In this
example, an IR weight of 0.3 was used, instructing the algorithm to put about the same confidence
in the IR score and recommender scores. Each score is considered an input signal, and each
signal is weighted the same.

RANK AGGREGATION 67

rankings and prediction rankings. In other words, we have achieved personalized search.
The results from the IR method are re-ranked according to personal preferences.

(2) Searching for Series of Items Let us consider another use case. A user wishes to see
a movie in a certain series of movies, but does not know which one. In this case, the IR
method can find all movies within this series, while the recommender systems ranks the
result list according to the user’s preferences.

Table 4.6 shows the intermediary and final rankings for the query [star trek], which
refers to a collection of movies within the same series. The IR method returns all items
that match this query, and the recommenders predict the rating for each of these items.
However, since the IR method only ranks results based on how well they match the query,
and the recommenders only care about the predicted rating, the combined result list can
get the best of both worlds: the top ranked items are the ones that both match the query
and are probable good fits for the current user.

(3) Searching in a Singular Topic What happens when the IR weight is set to 0? In
this use case, the predicted ratings alone sort the final list. Consider the following use
case. A user wishes to see a movie related to a certain topic, e.g. a city. Table 4.7 shows
two results lists for the query [paris]. On the left are the standard ranking as returned by
the IR model for this query, along with their respective scores. On the right we see the
same results, re-ranked by user preferences.

For simple one-word queries, ignoring the IR score seems to give us the desired effect.
If we can be sure that all items returned by a search have the same textual relevance (IR
score), the IR method does not have any more information on which to rank the results.
The ranking then becomes the task of the recommender systems. By employing adaptive
recommenders, the results are not only ranked by one or more recommenders as chosen
by the system, but by those of the recommenders best suited to the current user. At the
same time, each of these recommenders are used differently for items in the list, based on
how well they have previously performed in this context.

(4) Attribute-Based Search As we can see, ignoring the IR score gives us quite a different
algorithm. Now, the search part is only performed to constrain the item-space worked
on by the recommender systems. Another example of this is shown in Table 4.8. In this
scenario, the user wishes to see a movie from a certain year, and issues the query [1998].
Naturally, the IR algorithm returns a whole lot of items, and each movie can be said to
be perfect answers to the query, as they were all made in 1998.

In this case, setting the IR weight to 0 allows us to rank the results purely by
predicted preference, which makes sense when the IR algorithm can not rank the results
in any meaningful way. Note that the items in the left and right table are non-overlapping.
This is because only the first 10 results are shown. The IR model returns a large number

68 EXPERIMENTS & RESULTS

score title

1 3.0149 An American in Paris
2 3.0149 Paris Is Burning
3 3.0149 Paris - Texas
4 3.0149 Paris Was a Woman
5 3.0149 Forget Paris
6 3.0149 Window to Paris
7 3.0149 Jefferson in Paris
8 3.0149 Paris - France
9 2.6648 Rendezvous in Paris
10 2.2611 Last Time I Saw Paris

rating title ∆

1 3.5277 An American in Paris =
2 3.3416 Forget Paris ↑ 3
3 3.2037 Paris - Texas =
4 3.1870 Window to Paris ↑ 2
5 3.1409 Paris Is Burning ↓ 3
6 3.1059 Last Time I Saw Paris ↑ 4
7 2.7940 Rendezvous in Paris ↑ 2
8 2.2964 Paris - France =
9 1.7984 Jefferson in Paris ↓ 2
10 0.9420 Paris Was a Woman ↓ 6

Table 4.7: Completely adaptive ranking: With the IR weight set to 0, the adaptive recommender
is alone responsible for sorting the results. In this example, the IR model returns a list of items
for the query [paris], and the adaptive user models sorts the results according to the user’s
preferences. The top 10 results are shown.

score title

1 2.7742 Fallen (1998)
2 2.7742 Sphere (1998)
3 2.7742 Phantoms (1998)
4 2.7742 Vermin (1998)
5 2.7742 Twilight (1998)
6 2.7742 Firestorm (1998)
7 2.7742 Palmetto (1998)
8 2.7742 The Mighty (1998)
9 2.7742 Senseless (1998)
10 2.7742 Everest (1998)

rating title

1 3.8694 Apt Pupil (1998)
2 3.4805 The Wedding Singer (1998)
3 3.1314 Fallen (1998)
4 3.1225 Tainted (1998)
5 2.9442 Blues Brothers 2000 (1998)
6 2.9046 Sphere (1998)
7 2.8842 Desperate Measures (1998)
8 2.8798 Firestorm (1998)
9 2.8633 Vermin (1998)
10 2.8511 The Prophecy II (1998)

Table 4.8: Ranking many results: In this example, the user search for the query [1998], to get
movies from that year. The top 10 of these are shown in the left table. As this query matches
a lot of movies, the IR method returns a large number of results. By setting the IR weight to
0, and letting the adaptive recommenders do the ranking, the top 10 results change completely,
while still being good matches for the current query.

of items, all with the same ranking score. The recommender systems do the final ranking,
and actually push every item in the top 10 IR ranking below the top 10 final results.

RANK AGGREGATION 69

4.5.1 Adaptive IR Weights

As we have seen in this section, adaptive recommenders can provide personalized search
in multiple ways. By varying the IR weight we can create quite a range of systems. On
the one hand, an IR weight of 0 will let the recommenders do all the ranking. On the
other hand, by increasing the IR weight, the recommenders will carefully adapt parts of
the IR results list by moving some of the items.

We have not considered which IR weight or other parameters would result in the best
performing personalized search system. However, this is completely dependent on the type
of system and types of queries. By varying the IR weight, a number of different systems
that work for different use cases can be constructed. For systems with simple one-word
queries, setting the weight to 0 leaves ranking to the recommenders. For systems with
more complex queries, an IR weight of 1.0 orders items both by IR score and predicted
rating. This weight is then the defining characteristic of any personalized search based on
adaptive recommenders.

An adaptive adjustment of the IR weight based on the current query and use case
would seem to be the best choice for a system that should handle every scenario. When
we have a short, specific query, the IR ranking function have little to no basis for ranking
the items differently. In this case, a weight of 0 allows the recommenders to perform the
ranking of a constrained item space.

In systems with complex queries, where the IR model can rank items based on
their similarity to the information need, an IR weight of 1.0 gives us the desired result.
Items are ranked both by their match to the query, and based on how users and items
should be modeled. The most interesting bit happens under the hood By using adaptive
recommenders, the re-scoring functions are conditioned on how well they have previously
worked for the current item, and how well they suit individual users.

The performance of personalized search is hard to judge without extensive query
logs with click-through information. While we had no access to such data, we have been
able to show that adaptive recommenders can be used to provide personalized search. This
positive result for Experiment 3 confirms hypothesis H3, at least for this dataset, this IR
system and our chosen recommender algorithms. By confirming H3, we have shown that
adaptive recommenders can be used for personalized search.

This results in a search engine results page that inherits the strengths of adaptive
recommenders. The items on the result list is ranked not just based on query matching,
but based on a number of signals, represented by recommender systems. The signals are
adaptively used based on how well it suits the current user, and how well it has worked
in the past for individual items.

By creating an adaptive results page, we help mitigate the latent subjectivity
problem, by ranking each element based on the current context. We will discuss this
further in the next chapter.

5

Discussion & Conclusion

This chapter will discuss the implications and limitations of our results. While our
hypotheses may be confirmed, it is important to clarify what we have actually found out,
and what limits there is to this knowledge. We will also summarise the contributions of
this thesis, and suggest possible future work.

5.1 Implications & Limitations

Let us first discuss some general implications and limitations of our approach.
Our central assumption is that modern recommender systems are constrained by

their misplaced subjectivity. Each system selects some measures to model its users, based
on how they think users and items should be modeled. We believe this selection should
be left to individual users. Different users and items will require adaptive recommender
algorithms that consider the context before making predictions.

Adaptive recommenders can help solve this problem. In a collection of possible
recommender algorithms, each is adaptively used based on how well it performs for the
item and user in question. The experiments of the previous chapter shows the promise of
this technique. At the same time, there are lots of use cases not yet considered.

It should be clear that adaptive recommenders would work best in situations where
we have a wide range of diverse algorithms that can infer the relevance of an item to a
user. For users, social connections is a good example. Whether or not social connections
should influence recommendations or personalized search results is a contentious topic.
Naturally, a system where every user’s personal opinion determines if these connections
are used is desirable.

This implication extends to the items that should be recommended. As evident
by the field of information retrieval, there exists many ways of considering the relevance
of an item. These algorithms can be based on a number of attributes, for example
temporal information, geography, sentiment analysis, topic or keywords. It is not a huge
leap to assume that these algorithms may have varying levels of accuracy for individual
items. Adaptive recommenders can help solve this problem by adaptively combining the
recommenders based on individual item performance.

The use of error models has an important implication. With adaptive recommenders,
both the methods layer and the adaptive layer consists of standard recommender algo-
rithms. Because we use ratings matrices for the taste models and error matrices for
the weight estimations, we can use the same algorithms for both tasks. Using known
algorithms for this new task is beneficial. They are known to work, enjoy multiple
implementations and are already understood and battle-tested in many different systems.

72 DISCUSSION & CONCLUSION

There are some important general limitations to our research related to the com-
plexity of our method, our choice of data and evaluation metrics, and common issues
with recommender systems.

5.1.1 The Complexity of Adaptive Recommenders

As our approach is more complicated than standard recommenders, it is worth questioning
if its gains are worth the extra complexity. This depends on the basic recommenders that
are to be combined. If the system is made up by many different recommenders, that users
might place varying importance on, and that may have varying success with individual
items, adaptive recommenders may provide gains in accuracy.

On the other hand, if the recommenders are simple in nature, and look at similar
patterns in the data, generalized aggregation methods might be more applicable. Clearly,
the performance gains in our experiments are not substantial enough to declare anything
without reservation. While we believe this technique has potential, without real-world
success stories, it is hard to suggest that our method is particularly better than a simple
standard recommender.

When considering the additional complexity of our approach, a natural response is
whether or not current approaches to recommender systems are good enough. We do not
think so. Information overload is such a nuanced problem that the only solution lines in
intelligent, adaptive systems. However, as most of today’s recommender systems perform
quite simple tasks, they may be more than good enough for their purpose.

This will always be a trade-off, between complexity and required accuracy. As in
many other scenarios, the systems described in this thesis have their use cases. In the end,
the requirements of the current system must decide which method best suit their needs.

5.1.2 Evaluation Measures

To evaluate our approach, we chose datasets and evaluation measures that are commonly
used to test recommender systems. By choosing traditional measures, our experiments
can be compared to other research in the same field.

While our initial results are promising, it is important to stress the fact that only a
few datasets were used in our testing. Because of the vast scope of users and items such
a system might use, any real world application would need to test each approach with
their actual data. Our results must be seen for what they are: initial and preliminary
explorations of a new technique that has only been proven useful in a few use cases.

As mentioned in Chapter 2, the scale of known data points is an important concern.
When we have a set of explicit ratings given by users, these are often given in discrete
steps, and not on a continuous scale. As known from the field of statistics, when using
ordinal scales, the significance of every step are not necessarily equal.

IMPLICATIONS & LIMITATIONS 73

For instance, on a scale from 1 through 5, the difference between 2 and 3 might
not be as significant as the difference between 4 and 5. This is a limitation of many
recommender system, apparent by the algorithms they use. Most do not consider the
implications of ordinal data. Naturally, in a real-world system, this limitation has to be
considered.

5.1.3 Common Limitations of Recommender Systems

The topic of recommenders and adaptive systems in general raise a number of questions
which is outside the scope of this thesis. For example, user privacy is a big issue. Whenever
we have a system that tries to learn the tastes, habits and traits of its users, how they
will react to this must be considered. This is often a trade-off between adaptability and
transparency. The most adaptive systems will not always be able to explain to the users
what is going on and what it knows about each person, especially when dealing with
emergent behavior based on numerical user models.

Another important issue is the usability of autonomous interfaces. Whenever
recommenders are used for more than simple lists of items, there is a question of how
easy the resulting system will be to use. As mentioned in Chapter 2, unpredictability
is the enemy of usability. Creating an autonomous system that is also predictable is a
serious challenge, and a common trade-off.

The question of whether or not recommenders systems really will be able to curb
information overload is another important discussion. The problem is especially apparent
when considering information such as news articles. An RS will attempt to rank news
articles based on previously read news, while a user might be as interested in other
articles of an unknown nature. If the personalization of information is too comprehensive,
information on seldom viewed topics may be wrongly deemed irrelevant. This is antithetical
to the main purpose of an RS: discovery of unknown relevant content.

This problem is also apparent when the information at hand contains opinions and
debates. An RS might strive to filter out information that the user does not “like”, i.e.
information that is contrary to the user’s own views or opinions. Clearly, this would not
be desirable. It should not be the goal of an RS to shield users from differing opinions, or
constrain the range of information the user is exposed to. When considering employing
an RS, these questions must be taken into account, or one might end up with a system
that works against the wishes of each user.

While a thorough discussion of privacy, usability and information scope is outside
the purview of this thesis, they are all important limitations to considered when using a
recommender system.

Let us now take a look at some important implications and limitations of the
experiments from Chapter 4.

74 DISCUSSION & CONCLUSION

5.2 Prediction Aggregation

Hypothesis H1 was confirmed by showing that adaptive recommenders can outperform
standard single-approach recommenders. We achieved lower total RMSE scores across our
datasets, which would imply that adaptive recommenders reliably performs better than
our tested standard recommenders, at least with these datasets and this error measure.
This is the most basic test that could be done to evaluate the performance of adaptive
recommenders. The real test would be to use our approach in a situation with even more
differing recommender systems.

Crucially, H1 was only tested against a limited number of standard recommenders.
The key word here is standard. These recommenders were not heavily customized
to fit the available data. As in much of machine learning, achieving relatively good
performance is quite simple. Any improvements above this standard requires deep domain
knowledge, and methods customized to the problem at hand. In an actual system, the
adaptive recommenders should be tested against carefully selected standard recommenders,
optimized for the current domain.

Hypothesis H2 was confirmed by showing that adaptive recommenders can outper-
form simple, generalized aggregation approaches. While our aggregators were simple, this
result is promising. It remains to test our method against more complex generalized ag-
gregation functions. However, the main point of adaptive recommenders should still hold
against complex approaches. For example, a complex weight estimation to achieve an opti-
mal combination is still a generalized result, averaged across all users. Whenever we have
a situation where users and items will prioritise the available recommenders differently,
adaptive recommenders should be able to provide this extra level of personalization.

It is important to note that H2 was only tested against simple aggregators. Many
more complex aggregations are possible. While our tests show the basic viability of
our approach, more testing against complex aggregation functions is still required. For
example, adaptive recommenders should be tested against more complex weight estimation
functions, that solve the problem by computing optimal and generalized weights.

However, the main strength of adaptive recommenders should still remain. Each
of the modern approaches to recommender aggregation are generalized and averaged
combinations. Adding another layer of personalization should result in better matches
between how elements are modeled and how they wish to be modeled, no matter how
complex the comparative averaged aggregation may be.

Both H1 and H2 was only tested with two datasets, and with a single error measure.
While its true that these datasets and this error measure are the canonical ways of
estimating the performance of recommender systems, more research is required to further
verify these results. In particular, both datasets exhibit quite homogeneous types of items,
while our approach may have different characteristics in scenarios with widely differing
items and users.

Experiment 1 gave better performance results than Experiment 2. The differing

RANK AGGREGATION 75

variable was the dataset used in each experiment. The main difference between the
datasets was that in experiment 1, we had many more items than in Experiment 2.
However, given that the datasets contain different kinds of items, we can not generalize
on this basis alone. Clearly, our method will perform differently depending on the data in
question, as one would expect.

While our experiments with prediction aggregation were simple, they show the
potential of adaptive recommenders. As explained in Chapter 1, the mismatch between
how users and items should be modeled and how each system actually does represent
elements hinders the full adoption of recommender systems for creating truly adaptive
content, i.e. systems that adapt all their content based on the current user and items.
By adaptively combining multiple prediction algorithms, this latent subjectivity can be
overcome. However, much research still remains, as we shall describe in Section 5.4.

5.3 Rank Aggregation

Hypothesis H3 was confirmed by showing that our approach can be used to provide
personalized search. While we did not evaluate the quantitative performance of this
approach, our results show that adaptive recommenders can provide many types of
personalized search. The different kinds of systems were created by varying the importance
of the scores returned by our information retrieval system. The key insight is that the IR
score can be seen as a signal on the same level as the adaptive recommenders, gaining
the power of query matching and relevance matching in the same results set.

There are many ways in which a list of search results can be personalized, and users
will have individual preferences as to how they should be modeled. At the same time,
different recommenders will have varying performance across the many types of items
such a system might encounter. Adaptive recommenders may allow personalized search
systems to get even more adaptive, by customizing their internal workings to each user
and item.

Crucially, H3 was only tested in a qualitative way. Ideally, if one has access to
detailed query logs, user profiles and click-through information, a quantitative experiment
should be performed. Such an experiment would have to be done to compare our approach
to other ways of performing personalized search. However, we believe these initial results
help demonstrate the probable value of our approach in this domain.

This is the core limitation of Experiment 3. Before employing personalized search
with adaptive recommenders, this technique should be evaluated towards the result of
other personalized search algorithms. This will in large part entail setting the IR weight
of our algorithm, which decides how the resulting ranking functions should sort search
results. Despite its limitations, our experiment shows that adaptive recommenders can
be used to provide personalized search.

76 DISCUSSION & CONCLUSION

We have only touched the surface of whats possible when using recommender
systems together with information retrieval systems. While it is true that search and
recommendations are widely different use cases, a combination can get the best of both
worlds. The IR system can constrain the universe of items based on the actual current
information need, and the RS can estimate how well each element fit the current user.

Although not attempted in this thesis, by using multiple IR models, adaptive
recommenders can be used to automatically estimate the accuracy of each IR model for
each user and item. This would allow for truly adaptive information retrieval. We have
not performed experiments with such a system in this thesis, but it is a logical extension
of the personalized search system presented in the previous chapter. We will discuss this
further in the next section.

5.4 Future Work

We have only shown the basic viability of adaptive recommenders, and how they can
outperform traditional approaches on traditional datasets. This section outlines five
interesting research topics which would shed more light on the subject.

(1) Quantitative Performance of Personalized Search We did not test how well adaptive
recommenders would work for personalized search. Our third experiment was a case study,
detailing how this might be done. With more data or test subjects, it would be possible
to measure actual performance gains (or setbacks) by using adaptive recommenders to
achieve personalized search.

To measure the performance of personalized search one would need detailed query
logs with click-through information. By this we mean logs that show the queries from
individual users, and which search result they selected for every query. These logs can be
mined to create implicit ratings matrices, which can be split into training- and testing
sets. However, as this is outside our scope, and we lack the necessary data, we leave this
experiment to future research.

(2) Choosing Different Adaptive Recommenders We chose to use SVD-based recom-
menders for the adaptive part of our adaptive approach. The main reason for this is that
we are looking for global traits of the data when performing accuracy estimations. We
wish to identify clusters of users and items for which the algorithms may or may not be
suited.

As the adaptive recommenders can utilize any standard recommender system to
model the errors of another recommender, it would be interesting to perform a more
in-depth study of how different choices for the adaptive layer influence the final system.
There are many more recommenders that also look at global patterns that might be
well suited for this task. Another interesting question is whether other machine learning

FUTURE WORK 77

methods can be used for the adaptive layer. For example, using neural networks to
estimate non linear aggregation functions for individual users would be an interesting
approach. This was attempted earlier in our research, but abandoned when recommenders
were found to produce better results in a more elegant way.

(3) Using Adaptive Recommenders in Other Domains We chose to use the MovieLens
dataset and the RMSE evaluation measure for testing our approach. The primary reason
was to be able to directly evaluate our results towards those of other research thesis. As
this dataset and this error measure is widely used to evaluate recommender systems, it is
natural for a first look at a new approach to use the same notions of accuracy.

As mentioned above, the main strength of adaptive recommenders may be in
situations with much more diverse data sources. Social networks or systems with widely
varying sets of items would provide an interesting use case for adaptive recommenders.
The main premise of our approach is that users and items have differing preferences for
each algorithm. Naturally, the more diverse the data and algorithms get, the more dire
the need for adaptive aggregation becomes. Because of this, using adaptive recommenders
in other domains with more variation in the data and combined algorithms would be an
interesting topic.

(4) Multiple IR Models as Signals As mentioned in Chapter 4, we only tried rank
aggregation in a scenario with one IR model. Other systems may use multiple IR models
that return a set of ranked items in response to a query. In the case of personalized search
with multiple IR models and RSs, we would have a large set of differing input signals:
one from each IR model and one from each RS.

In this case, adaptive recommenders could be used to combine both the RSs and IR
models. In the same way different RSs have varying performance for individual users and
items, the same should hold for different IR models. By using adaptive recommenders
we would be able to adaptively restrict the item space based on the current user. While
outside the scope of this thesis, using multiple IR models would add another adaptive
aspect to the final results list in personalized search.

(5) Using Adaptive Recommenders in Other AI Fields We have only considered the
notion of latent subjectivity within the field of recommender systems. However, as briefly
mentioned above, the technique should be applicable to many more situations. Whenever
there is a set of prediction algorithms that use different data to produce results, an
adaptive aggregation should be able to combine these in a more nuanced way.

Ensemble learning is a big topic, used in many situations. By layering recommenders
on top of the methods in an ensemble, we get a system capable of predicting the accuracy
of the basic methods. Naturally, it would be interesting to see how this approach would
fare in other fields such as document classification, document clustering, curve fitting
(Polikar, 2006, p.7), and other fields of ensemble learning.

78 DISCUSSION & CONCLUSION

5.5 Conclusion

We have made two main contributions with this thesis: (1) described the latent subjectivity
problem and (2) developed the technique of adaptive recommenders.

(1) The latent subjectivity problem is an issue we think hinders standard recommender
systems reaching their full potential. As far as we know, this problem has not been
described in the context of recommender systems. The main choice for any such system is
how to predict unknown ratings. To do this, a pattern in the available ratings data must
be leveraged. These patterns are plentiful, and their individual performance depends
on the users and items of the system. Modern aggregation recommenders utilize many
patterns, but on a generalized level, where each user and item is treated the same. This
underlying subjectivity leads to a mismatch between the notions of whoever developed
the systems, and the users and items of the service.

The latent subjectivity problem extends to any ensemble learning system (as
those described in Polikar (2006)) that blends multiple algorithms to leverage patterns.
Whenever we have multiple algorithms that work on a set of items (and possibly users),
there is a question of how accurate each approach will be for any individual item.
Averaged or generalized weighted approaches will always chose the combination that
performs best on average, with little concern to the uniqueness of items (and users). This
is a comprehensive problem that may be discovered amongst many machine learning
techniques.

(2) Adaptive recommenders is our attempt to solve the latent subjectivity problem. As
far as we know, this type of adaptive prediction aggregation has not been done before.
Chapter 4 showed that an aggregation that combines predictions based on estimated
accuracy can outperform both standard recommenders and simple aggregation approaches.
Our technique is strengthened by the fact that standard recommender algorithms are used
for the accuracy estimations. This is the core insight of this thesis. We can use standard
recommender systems to create error models for other recommender systems, that can be
used to estimate the accuracy of each system for all possible relevance predictions.

As far as the latent subjectivity problem extends to any ensemble learning system,
the adaptive aggregation part of adaptive recommenders can be used to create better
combinations of many types of predictors. Whenever we have a set of algorithms producing
a set of predicted values based on items, a set of aggregating recommenders can model
the probable errors of these approaches, based on individual items. This leads to adaptive
ensembles that should outperform generalized approaches. Because of this, the technique
build in this thesis should be applicable in situations other than recommender systems.

CONCLUSION 79

While the experiments of Chapter 4 show the general viability of adaptive recom-
menders, we believe there are greater opportunities in systems where there are even more
diverging patterns to be leveraged. The prime examples of this are systems that may or
may not use social connections between users, and systems which predict the relevance of
widely varying items.

We have only tested our method in a limited number of use cases, with a few specific
datasets. This is an important limitation. Until a method is successfully applied in a real
world situation, claiming progress is premature. However, we believe more research into
internally adaptive recommender systems would be a worthwhile effort.

On a more general note, we think our notion of adaptive model aggregation is key
to stopping information overload, regardless of how it is done. Generalized methods is not
enough. To curb the problem, systems must be able to adapt their internal algorithms
based on a wide variety of users and items.

The information overload problem will always be present. No matter how elegant
solutions one may find, the fact is that the overwhelming amount of available data quickly
outgrows our ability to use it. We believe artificial intelligence is crucial to finding a
solution. Only by creating intelligent systems that help us filter, sort and consume
information can we hope to mitigate the overload.

Adaptive recommender show how applications can adapt their internal algorithms
based on each user and item. As we have shown in this thesis, this extra layer of
personalization leads to a better match between how users should be modeled and how the
system actually performs this modeling. Applications should not only predict relevance of
information items to users, but also allow flexible and adaptive usage of their algorithms.
After all, a system that insists on being adaptive in one particular way is not really
adaptive at all.

A

Implementation

This appendix describes how we implemented adaptive recommenders. This is a short
description of the most important features and considerations made when implementing
the system. While quite specific and not important to the viability of the technique in
itself, this should give a short introduction to how it can be put into practice.

A.1 Libraries

The most important part of the implementations are the recommender systems. These are
used for the basic ratings predictions, and to create the adaptive aggregation by predicting
the accuracy of other recommenders. At the same time, these different recommenders
need to have the same interface for training and testing, regardless of which context the
experiments places them into. Our implementation makes use of a number of external
libraries, as seen in Figure A.1.

To quickly get a large number of recommenders up and running, the system was
linked with the Apache Mahout machine learning library (See Appendix B). Mahout
provides a number of machine learning algorithms, amongst which a set of recommender
systems. Examples include SVD- and neighbor-based recommenders, baseline recom-
menders, a Slope One recommender, cluster-based recommenders, and various generic
recommenders for mixing different similarity and neighborhood measures. Mahout is a
young project, launched in 2008, but was found to be quite mature and feature-rich in
our experience.

Mahout is build on top of Apache Hadoop, a system for creating scalable and dis-
tributed data processing systems (See Appendix B). This is important to the performance
of our system. As mentioned, a lot of the operations performed in layering recommenders
are independent and lend themselves well to parallelization. By building on Hadoop, the
recommenders are already implemented in a proper MapReduce framework for parallel
computation (as explained in Manning et al. (2008, p75)). Each of the basic recommenders
and adaptive aggregators can then be modeled at the same time, making the most out of
whatever hardware is present.

For our IR tasks, we chose to build on another library. Apache Lucene (See
Appendix B) is an open-source search engine, also built on top of Hadoop, gaining the
same performance wins as Mahout. Lucene provides powerful methods for creating indexes
of items, and for querying these indexes.

Mahout, Lucene and Hadoop are all written in the Java Programming Language,
and runs on the Java Virtual Machine (JVM). To facilitate rapid prototyping, the Ruby
scripting language was chosen as a “glue” language, for interfacing with the libraries. By
using the JRuby implementation of Ruby, Java libraries can be imported directly into

82 IMPLEMENTATION

Figure A.1: Library layers: Tasks and experiments are performed by the custom JRuby glue
layer. Recommenders are created by the Mahout machine learning library. IR models are based
on the Lucene search engine library. Recommender evaluators are created in Ruby. Each of
the intermediary layers are built on the Hadoop MapReduce framework for efficient parallel
computation.

the language, allowing us to use Mahout and Hadoop almost as if they were written in
the same language. The use of Ruby allowed us to quickly develop different combinations
of recommenders and perform varying experiments in a short amount of time.

A.2 Task Structure

Our system is built around a few core concepts that can be used together in different ways.
Everything the system does is considered a task. A task is a collection of settings and
directives that serves as an instantiated configuration of the system. Tasks are created
beforehand, and fed into the system, which carries them out. Tasks specify what the
system should do, which dataset should be used, and other options. See Figure A.2 for
the overall structure.

The most important task is creating a recommender. As recommenders are used
both for the standard rating predictions, and for the adaptive error estimations, creating
recommenders are the most common and important task of this system. Another important
task is creating evaluators. An evaluator takes a set of recommenders as input, tests them
against the dataset specified in the task, and returns the results of the evaluation.

A.3 Modeling & Prediction

The modeling phase consists of running our modeling algorithms and storing the resulting
models. A task is created for each of the basic recommenders, and for each of the adaptive
recommenders. If this is a rank aggregation scenario, an IR model is also created, based
on the data specified by the current task. As mentioned, this is an offline approach, so

MODELING & PREDICTION 83

Figure A.2: Task structure diagram: A task (instantiated configuration) is passed to the perform
module. This module creates a number of modules: recommenders, aggregators, evaluators and
information retrieval models. Each module takes a set of inputs (bottom row), which are specified
by the current task. These modules are then used as needed by the experiments.

that the models can be computed and recomputed, independent of making any actual
predictions.

Our experiments required us to measure the performance of the basic recommenders,
and the adaptive recommender, for every combination of a user and an item. In order
to perform these experiments, an evaluator module was built. As both the standard
recommenders and the adaptive recommender system presents the same interface, the
evaluators simply takes a set of recommenders as input, and measures their accuracy
across the dataset specified by the current task.

This prediction phase, where each user is compared to every unrated item, is not
comparable to the prediction phase of a real-world system based on adaptive recommenders.
In a real world application of this technique, a prediction is made whenever a user’s
actions requires it, e.g. when we need to know what a user will think of an item.

This is where the MapReduce operations previously mentioned come into play. Each
of the basic recommenders and adaptive recommenders can be applied in parallel. The
basic recommenders are applied through a map operation, where the current user and item
(the input) is given to the modeling methods. These methods return a number of scalar
predictions. The next step is the reduce operation, which is the adaptive layer. Here, the
scalar predictions are reduced to one prediction by computing weights based on probable
accuracy. These computations can for example be cached, if certain combinations of users
and items often need predictions.

84 IMPLEMENTATION

As mentioned, none of these aspects have any bearing on the viability of adaptive
recommenders. However, as this does provide an example of how to implement such a
system. See Appendix B for links to other resources.

A.4 Example Task

This section gives an example of an experiment run through our system. In this experiment,
we wish to create our adaptive recommender and test it on the MovieLens dataset. The
task specifications are written in JRuby, just as in the implementation.

First, we create our tasks and run these tasks to create the recommenders. We then
create an evaluator to test our resulting adaptive recommender. The resulting RMSE
values are output to the screen (see Listing A.1).

1d_m = "movielens/base/1"
2d_t = "movielens/test/1"
3
4# Standard recommenders
5recommender_tasks = {
6pcc: Task.new(recommender: :generic_user, dataset: d_m),
7item_avg: Task.new(recommender: :item_average, dataset: d_m),
8slope_one: Task.new(recommender: :slope_one, dataset: d_m),
9baseline: Task.new(recommender: :item_user_average, dataset: d_m),
10cosine: Task.new(recommender: :generic_item, dataset: d_m)
11}
12rs = Perform.perform(recommender_tasks)
13
14# Aggregate recommenders
15aggregate_tasks = {
16average: Task.new(recommender: :aggregate, method: :average, recommenders: rs),
17median: Task.new(recommender: :aggregate, method: :median, recommenders: rs)
18}
19aggregate_recommenders = Perform.perform(aggregate_tasks)
20
21# Adaptive recommender
22adaptive_task = Task.new(recommender: :adaptive, recommenders: rs)
23adaptive_recommender = Perform.perform(adaptive_task)
24
25# Merge all recommenders
26all = rs.merge(aggregate_recommenders).merge(adaptive_recommender)
27
28# Evaluation
29evaluator_task = Task.new(mission: :rmse_evaluator, recommenders: all, dataset: d_t)
30evaluator = Perform.perform(evaluator_task)
31
32# Run experiment
33result = evaluator.evaluate
34Log.evaluation(result)

Listing A.1: Example code showing a test of adaptive recommenders.

Each of our experiments were run with a similar task structure. The specifics of
our experiments can be seen in the implementation code, links to which are given in
Appendix B.

RUNNING THE EXPERIMENTS 85

A.5 Running the Experiments

To run the experiments, a few libraries must be installed. First, JRuby must be available
(see links in Appendix B). This has to be a version capable of running code conforming
to Ruby version 1.9 (e.g. JRuby 1.6). The rake build library should also be installed, as
it is used to start and run the experiments.

To get the system up and running in a POSIX-based environment, the following
steps should be run. The $ refers to the prompt in a terminal window. All commands
should be run from the top-level folder of the implementation source code.

1. Install JRuby (version >= 1.6) from their website.
2. Install rake: $ jruby -S gem install rake
3. Run the first experiment: jruby -S rake e1
4. Substitute e1 with e2 or e3 to run each experiment.

On some systems, the JRuby VM might run out of memory due to its low default
setting. To manually allow more memory to be used, the following command can be
substituted in when running each experiment:

jruby --1.9 -J-Xmn512m -J-Xms2048m -J-Xmx2048m -S rake e1

The first parameter specifies that this application should be run with version 1.9 of
the Ruby language specification. The second specifies the minimum garbage collection
memory size. The two following gives the minimum and maximum heap memory size.
The last part of this command is the file that should be run. Each experiment has its
own file.

Due to the different dataset sizes, Experiment 1 takes little time to run compared
to Experiments 2 or 3. Neither experiment is optimized for speed, but the comparably
limited dataset of the first experiment makes it a lot faster than the others.

A.6 Customizing the Experiments

Each experiment can be customized and adapted in a number of ways. Experiments 1
through 3 can be found in three separate files in the top-level code directory.

The set of recommenders and aggregators, and their individual settings are the
same in every experiment. These settings are customized in the code/experiments.rb file.
The settings not given in this file take the default values for each setting, as given in the
code/lib/ar/task.rb file.

The datasets used in this thesis is bundled together with the implementation code,
and can be found in the code/data folder. Experiment 1 use the standard recommenders,
aggregate recommenders, and the adaptive recommender on the MovieLens dataset.
Experiment 2 runs the same recommenders on the Jester dataset.

86 IMPLEMENTATION

Experiment 3 is a bit different, as it uses the Lucene IR model on the MovieLens
dataset to create an IR system for searching through movie titles. As this experiment
is a case study, it does not test every combination of users and items, but rather some
queries for some users. The actual query and user that are considered when running the
experiment are set in the file code/experiment3.rb. See the comments in this file for more
information.

The file structure for the most important files of the implementation is given in
Listing A.2. This listing also gives a short description of each file.

1code/
2experiments.rb # common settings for all experiments
3experiment1.rb # prediction aggregation with movielens
4experiment2.rb # prediction aggregation with jester
5experiment3.rb # rank aggregation with movielens
6Rakefile # used to run each experiment with jruby
7
8data/
9ir/ # contains the IR models for Experiment 3
10movielens/ # raw data for the movielens dataset
11jester/ # raw data for the jester dataset
12tmp/ # tmp files created by the adaptive recommender
13
14lib/
15ar.rb # main library file
16ar/
17ext/ # core extensions for the ruby language
18lucene/ # the lucene IR library
19mahout/ # the mahout machine learning library
20
21adaptive.rb # the adaptive recommender
22aggregate.rb # the aggregate recommenders
23exceptions.rb # custom exceptions for our library
24log.rb # custom logging to stdout
25lucene.rb # integration with the lucene library
26mahout.rb # integration with the mahout library
27perform.rb # executes task objects
28rank_eval.rb # evaluation of rank aggregation
29ranker.rb # adaptive rank aggregation algorithm
30recommender.rb # creates all types of recommenders
31rmse_eval.rb # evaluation of prediction aggregation
32scale.rb # utilities for scaling rating values
33task.rb # default settings for tasks

Listing A.2: Files and folders of the implementation.

See Appendix B for links to the implementation and other resources.

B

Resources

This appendix gives pointers to additional resources mentioned throughout this thesis.

Implementation Code The code for the implementation outlined in Appendix A is
available online. It resides in version control at github.com/olav/thesis/tree/master/code.

The implementation is built on three open-source libraries from the Apache Project1.
The Hadoop distributed computing library2, the Mahout machine learning library3, and
the Lucene information retrieval library4.

Specific versions of these libraries are bundled together with the source code as
JAR-files, that run on the JVM. Note that these libraries are released under their own
terms, namely the Apache License5. The repository also includes the glue-code, written
in ruby and run on the JRuby6 interpreter.

Previous Work Parts of this thesis is based on a previous work in the same field: Bjørkøy
(2010). This report is available from github.com/olav/papers/raw/master/user.modeling.
on.the.web.pdf. A short version of this thesis is also available: github.com/olav/thesis/
raw/master/paper/dist/paper.pdf

Document Details This thesis is written in the LaTeX document preparation system. It
is based on a LaTeX-template called Memoir7. Most of the figures and graphs are made
with the TikZ and PGF graphics libraries8.

The entire source code for this document can be found at github.com/olav/thesis/
tree/master/thesis. The most current PDF-version is also available from this site. For
citation purposes, use the following BibTex entry:

@mastersthesis{Bjørkøy2011,

address = {Trondheim, Norway},

author = {Bjørkøy, Olav},

school = {NTNU},

year = {2011},

title = {{Adaptive Aggregation of Recommender Systems}}

}

(1) See www.apache.org — accessed 19.05.2011
(2) See hadoop.apache.org — accessed 19.05.2011
(3) See mahout.apache.org — accessed 19.05.2011
(4) See lucene.apache.org — accessed 19.05.2011
(5) See www.apache.org/licenses — accessed 19.05.2011
(6) See www.jruby.org — accessed 09.05.2011
(7) See www.ctan.org/tex-archive/macros/latex/contrib/memoir — accessed 19.05.2011
(8) See www.texample.net/tikz — accessed 23.05.2011

github.com/olav/thesis/tree/master/code
github.com/olav/papers/raw/master/user.modeling.on.the.web.pdf
github.com/olav/papers/raw/master/user.modeling.on.the.web.pdf
github.com/olav/thesis/raw/master/paper/dist/paper.pdf
github.com/olav/thesis/raw/master/paper/dist/paper.pdf
github.com/olav/thesis/tree/master/thesis
github.com/olav/thesis/tree/master/thesis
www.apache.org
hadoop.apache.org
mahout.apache.org
lucene.apache.org
www.apache.org/licenses
www.jruby.org
www.ctan.org/tex-archive/macros/latex/contrib/memoir
www.texample.net/tikz

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749.

Agichtein, E., Brill, E., Dumais, S., and Ragno, R. (2006). Learning user interaction
models for predicting web search result preferences. Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval - SIGIR ’06, page 3.

Ahn, J. and Hong, T. (2004). Collaborative filtering for recommender systems: a
scalability perspective. International Journal of Electronic Business, 2(1):77–92.

Albert, R., Jeong, H., and Barabási, A. (1999). The diameter of the world wide web.
Arxiv preprint cond-mat/9907038, pages 1–5.

Alshamri, M. and Bharadwaj, K. (2008). Fuzzy-genetic approach to recommender
systems based on a novel hybrid user model. Expert Systems with Applications,
35(3):1386–1399.

Aslam, J. a. and Montague, M. (2001). Models for metasearch. Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval - SIGIR ’01, pages 276–284.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern information retrieval, volume 463.
ACM press New York.

Banko, M. and Brill, E. (2001). Mitigating the paucity-of-data problem: Exploring the
effect of training corpus size on classifier performance for natural language processing.
In Proceedings of the first international conference on Human language technology
research, pages 1–5. Association for Computational Linguistics.

Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., and Su, Z. (2007). Optimizing web search
using social annotations. In Proceedings of the 16th international conference on World
Wide Web, pages 501–510. ACM.

Barabási, A. (2003). Linked: The new science of networks. American journal of Physics.

Basu, C., Hirsh, H., and Cohen, W. (1998). Recommendation as Classification: Using
Social and Content-Based Information in Recommendation. In Proceedings of the
National Conference on Artificial Intelligence, pages 714–720. JOHN WILEY & SONS
LTD.

Bawden, D. and Robinson, L. (2009). The dark side of information: overload, anxiety
and other paradoxes and pathologies. Journal of Information Science, 35(2):180–191.

Bell, R., Koren, Y., and Volinsky, C. (2007a). Modeling relationships at multiple scales
to improve accuracy of large recommender systems. Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD
’07, page 95.

90 REFERENCES

Bell, R., Koren, Y., and Volinsky, C. (2007b). The BellKor solution to the Netflix prize.
KorBell Team’s Report to Netflix.

Bell, R. M. and Koren, Y. (2007a). Lessons from the Netflix prize challenge. ACM
SIGKDD Explorations Newsletter, 9(2):75.

Bell, R. M. and Koren, Y. (2007b). Scalable Collaborative Filtering with Jointly Derived
Neighborhood Interpolation Weights. Seventh IEEE International Conference on Data
Mining (ICDM 2007), pages 43–52.

Bennett, J. and Lanning, S. (2007). The netflix prize. In Proceedings of KDD Cup and
Workshop, volume 2007, page 8. Citeseer.

Billsus, D. and Pazzani, M. (1998). Learning collaborative information filters. In
Proceedings of the Fifteenth International Conference on Machine Learning, volume 54,
page 48.

Bjørkøy, O. (2010). User Modeling on The Web: An Exploratory Review.

Brand, M. (2003). Fast online SVD revisions for lightweight recommender systems.
SIAM International Conference on Data Mining.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Burke, R. (2007). Hybrid web recommender systems. In The adaptive web, pages 377–408.
Springer-Verlag.

Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E.,
Yogev, S., and Chernov, S. (2009). Personalized social search based on the user’s
social network. Proceeding of the 18th ACM conference on Information and knowledge
management - CIKM ’09, page 1227.

Cato, J. (2001). User-centered web design. Addison Wesley Longman, 1st edition.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M.
(1999). Combining Content-based and collaborative filters in an online newspaper. In
Proceedings of ACM SIGIR Workshop on Recommender Systems, number June, pages
60–64. Citeseer.

Davenport, T. and Beck, J. (2001). The attention economy: Understanding the new
currency of business. Harvard Business Press.

Dietterich, T. (2000). Ensemble methods in machine learning. Multiple classifier systems,
pages 1–15.

Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank aggregation methods
for the Web. Proceedings of the tenth international conference on World Wide Web -
WWW ’01, pages 613–622.

Edmunds, A. and Morris, A. (2000). The problem of information overload in busi-
ness organisations: a review of the literature. International Journal of Information
Management, 20(1):17–28.

REFERENCES 91

Eppler, M. and Mengis, J. (2004). The concept of information overload: A review
of literature from organization science, accounting, marketing, MIS, and related
disciplines. The Information Society, 20(5):325–344.

Fischer, G. (2001). User modeling in human–computer interaction. User modeling and
user-adapted interaction, 11(1):65–86.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste: A constant
time collaborative filtering algorithm. Information Retrieval, 4(2):133–151.

Halevy, A. and Norvig, P. (2009). The unreasonable effectiveness of data. Intelligent
Systems, IEEE, 24(2):8–12.

Haveliwala, T. (2003). Topic-sensitive pagerank: A context-sensitive ranking algorithm
for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784–
796.

Herlocker, J., Konstan, J., Terveen, L., and Riedl, J. (2004). Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS),
22(1):5–53.

Horvitz, E., Kadie, C., Paek, T., and Hovel, D. (2003). Models of attention in computing
and communication: from principles to applications. Communications of the ACM,
46(3):52–59.

Hotho, A., J, R., Schmitz, C., and Stumme, G. (2006). Information Retrieval in
Folksonomies: Search and Ranking.

Huang, C., Sun, C., and Lin, H. (2005). Influence of local information on social
simulations in small-world network models. Journal of Artificial Societies and Social
Simulation, 8(4):8.

Huang, Z., Chung, W., Ong, T.-H., and Chen, H. (2002). A graph-based recommender
system for digital library. Proceedings of the second ACM/IEEE-CS joint conference
on Digital libraries - JCDL ’02, page 65.

Jameson, A. (2009). Adaptive interfaces and agents. Human-Computer Interaction:
Design Issues, Solutions, and Applications, page 105.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., and Gay, G. (2007).
Evaluating the accuracy of implicit feedback from clicks and query reformulations in
Web search. ACM Transactions on Information Systems, 25(2):7–es.

Kirsh, D. (2000). A few thoughts on cognitive overload. Intellectica, 1(30):19–51.

Klementiev, A., Roth, D., and Small, K. (2008). A Framework for Unsupervised Rank
Aggregation. Learning to Rank for Information Retrieval, 51:32.

Konstas, I., Stathopoulos, V., and Jose, J. (2009). On social networks and collaborative
recommendation. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages 195–202. ACM.

92 REFERENCES

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 426–434. ACM.

Lee, U. and Liu, Z. (2005). Automatic identification of user goals in web search.
international conference on World Wide Web, (1):391–400.

Lemire, D. and Maclachlan, A. (2005). Slope one predictors for online rating-based
collaborative filtering. Society for Industrial Mathematics.

Lieberman, H. (1997). Autonomous interface agents. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 67–74. ACM.

Lieberman, H. (2009). User interface goals, AI opportunities. AI Magazine, 30(2).

Lilegraven, T. N., Wolden, A. C., Kofod-Petersen, A., and Langseth, H. (2011). A
design for a tourist CF system. In The Eleventh Scandinavian Conference on Artificial
Intelligence, pages 193–194, Trondheim.

Liu, F., Yu, C., and Meng, W. (2002). Personalized web search by mapping user queries
to categories. Proceedings of the eleventh international conference on Information and
knowledge management - CIKM ’02, page 558.

Liu, H., Maes, P., and Davenport, G. (2006). Unraveling the taste fabric of social networks.
International Journal on Semantic Web and Information Systems, 2(1):42–71.

Liu, Y., Liu, T., Qin, T., Ma, Z., and Li, H. (2007). Supervised rank aggregation. In
Proceedings of the 16th international conference on World Wide Web, pages 481–490,
New York, New York, USA. ACM.

Manning, C., Raghavan, P., Schutze, H., and Corporation, E. (2008). Introduction to
information retrieval, volume 1. Cambridge University Press Cambridge, UK.

Mirza, B. and Keller, B. (2003). Studying recommendation algorithms by graph analysis.
Journal of Intelligent Information.

Mobasher, B., Cooley, R., and Srivastava, J. (2000). Automatic personalization based
on Web usage mining. Communications of the ACM, 43(8):142–151.

Newman, M., Moore, C., and Watts, D. (2000). Mean-field solution of the small-world
network model. Physical Review Letters, 84(14):3201–3204.

Noll, M. and Meinel, C. (2007). Web search personalization via social bookmarking and
tagging. In Proceedings of the 6th international The semantic web and 2nd Asian
conference on Asian semantic web conference, pages 367–380. Springer-Verlag.

Norman, D. (2002). The design of everyday things, volume 16. Basic Books New York.

Pazzani, M. and Billsus, D. (2007). Content-based recommendation systems. In The
adaptive web, pages 325–341. Springer-Verlag.

REFERENCES 93

Pitsilis, G. and Knapskog, S. (2009). Social Trust as a solution to address sparsity-
inherent problems of Recommender systems. Recommender Systems & the Social
Web.

Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems
Magazine, IEEE, 6(3):21–45.

Qiu, F. and Cho, J. (2006). Automatic identification of user interest for personalized
search. Proceedings of the 15th international conference on World Wide Web - WWW
’06, page 727.

Ranade, a., Mahabalarao, S., and Kale, S. (2007). A variation on SVD based image
compression. Image and Vision Computing, 25(6):771–777.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). GroupLens :
An Open Architecture for Collaborative Filtering of Netnews.

Rhodes, B. J. and Maes, P. (2000). Just-in-time information retrieval agents. IBM
Systems Journal, 39(3):685–704.

Rich, E. (1979). User modeling via stereotypes. Cognitive science, 3(4):329–354.

Robertson, S. (2010). The Probabilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends in Information Retrieval, 3(4):333–389.

Schafer, J., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering
recommender systems. The adaptive web, pages 291–324.

Segaran, T. (2007). Programming collective intelligence. O’Reilly Books, 1st edition.

Sergey, B. and Lawrence, P. (1998). The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30(1-7):107–117.

Shen, X., Tan, B., and Zhai, C. (2005). Implicit user modeling for personalized search.
Proceedings of the 14th ACM international conference on Information and knowledge
management - CIKM ’05, page 824.

Smyth, B. (2007). Case-based recommendation. The adaptive web, pages 342–376.

Speretta, M. and Gauch, S. (2000). Personalized Search Based on User Search Histories.
The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05),
pages 622–628.

Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004). Adaptive web search based on user
profile constructed without any effort from users. Proceedings of the 13th conference
on World Wide Web - WWW ’04, page 675.

Sun, J., Zeng, H., Liu, H., and Lu, Y. (2005). CubeSVD: a novel approach to personalized
Web search. on World Wide Web, pages 382–390.

94 REFERENCES

Teevan, J., Adar, E., Jones, R., and Potts, M. (2007). Information re-retrieval: repeat
queries in Yahoo’s logs. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 151–158.
ACM.

Teevan, J., Dumais, S. T., and Horvitz, E. (2005). Personalizing search via automated
analysis of interests and activities. Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval - SIGIR ’05,
page 449.

Totterdell, P. and Rautenbach, P. (1990). Adaptation as a problem of design. Adaptive
user interfaces, pages 61–84.

Ujjin, S. and Bentley, P. (2002). Learning user preferences using evolution. In Proceedings
of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL’02),
pages 6–10. Citeseer.

Umbrath, A. and Hennig, L. (2009). A hybrid PLSA approach for warmer cold start in
folksonomy recommendation. Recommender Systems & the Social Web, pages 10–13.

Venetis, P., Gonzalez, H., and Jensen, C. (2011). Hyper-local, directions-based ranking
of places. Proceedings of the VLDB, pages 290–301.

Walter, F., Battiston, S., and Schweitzer, F. (2008). A model of a trust-based recom-
mendation system on a social network. Autonomous Agents and Multi-Agent Systems,
16(1):57–74.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden
contexts. Machine learning, 23(1):69–101.

Xu, S., Bao, S., Fei, B., Su, Z., and Yu, Y. (2008). Exploring folksonomy for personalized
search. Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval - SIGIR ’08, page 155.

Zhou, Y., Wilkinson, D., Schreiber, R., and Pan, R. (2008). Large-Scale Parallel
Collaborative Filtering for the Netflix Prize. In Algorithmic aspects in information
and management: 4th international conference, AAIM 2008, Shanghai, China, June
23-25, 2008. proceedings, volume 5034, page 337. Springer-Verlag New York Inc.

Ziegler, C. (2005). Towards decentralized recommender systems. PhD thesis, Universi-
tatsbibliothek Freiburg.

	Title Page
	Introduction
	Background Theory
	Methods & Implementation
	Experiments & Results
	Discussion & Conclusion
	Implementation
	Resources
	References

