
Master of Science in Computer Science
June 2011
Øivind Kure, ITEM
Audun Jøsang, UNIK

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

LogWheels: A Security Log Visualizer

Vegard Egeland

Problem Description

The use of information systems has become a given in any modern orga-
nization. Security is a fundamental requirement for most of these systems,
and the default behavior when encountering potential security incidents is to
document them in textual logs.

Experience from the industry indicates that these incident logs are poorly
monitored. Perhaps the most important reason is the poor usability: each
organization is faced with a variety of different log formats and unclear re-
sponsibilities. Poor security usability leads directly to vulnerabilities that
can be exploited by hackers and criminals.

The student is tasked with examining how the security usability of incident
logs can be improved. One or more of these techniques can be demonstrated
experimentally by analyzing and visualizing real or simulated security data.

Assignment given: 15. January 2011
Supervisor: Øivind Kure, NTNU and UNIK

Audun Jøsang, UiO and UNIK

Abstract

Logging security incidents is a required security measure in every moderately
complex computer system. But while most systems produce large quantities
of textual logs, these logs are often neglected or infrequently monitored by
untrained personnel.

One of the reasons for this neglect is the poor usability offered by distributed
repositories of plain text log data, using different log formats and contradic-
tory terminology.

The use of security visualization has established itself as a promising research
area, aiming to improve the usability of security logs by utilizing the visual
perception system’s abilities to absorb large data quantities.

This thesis examines the state of the art in security log usability, and proposes
two ideas to the areas of security log usability and security visualization:

First, we introduce LogWheels, an interactive dashboard offering remote mon-
itoring of security incident logs, through a user friendly visualization inter-
face. By offering three levels of granularity, LogWheels provides both an
overview of the entire system, and the opportunity to request details on
demand.

Second, we introduce the incident wheel, the core visualization component
of LogWheels. The incident wheel presents three key dimensions of security
incidents – ’what’, ’when’, and ’where’ – all within a single screen.

In addition to a specification of LogWheels architecture and visualization
scheme, the thesis is accompanied by a functional proof-of-concept, which
allows demonstrations of the system on real or simulated security data.

Acknowledgements

This report is the final delivery of the master’s program in computer science
at The Norwegian University of Science and Technology (NTNU).

The project was undertaken at the University Graduate Center at Kjeller
(UNIK), under the guidance of professor Audun Jøsang and professor Øivind
Kure. I would like to thank both supervisors for their feedback and support
throughout the course of the project.

A special gratitude goes to Andreas Hegna at Watchcom Security Group, for
the inspiring discussions leading up to this thesis. The ideas put forth during
our discussions were instrumental in carving out the final problem statement,
and provided valuable insight into the pragmatics of security visualization.

I would also like to thank Geir Mork at Norman for our meeting and discus-
sion about the security industry, his helpful suggestions towards the proto-
type and potential applications of the thesis.

While I greatly appreciate all the help and suggestions, any errors, oversights
or omissions are mine and mine alone.

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 3

1.2 Project Goals . 4

1.3 Project Scope . 4

1.4 Research Method . 5

1.5 Report Outline . 5

2 Background 7

2.1 Security Logs . 8

2.1.1 Terminology . 8

2.1.2 Technical Infrastructure 10

2.2 Log Usability . 12

2.2.1 Challenge . 12

2.2.2 Situational Awareness 13

2.2.3 Security Usability . 14

2.2.4 Specific Techniques . 16

2.3 Visualization . 20

2.3.1 Foundations . 20

2.3.2 Visual Transformation 22

2.3.3 View Transformation 23

3 State of the Art 25

3.1 Log Infrastructure . 26

3.1.1 Syslog . 26

3.1.2 SIEM Tools . 27

3.2 Visualization . 28

3.2.1 Standard Components 28

3.2.2 Custom Components 30

3.2.3 Solutions . 31

4 LogWheels 33

4.1 Conceptual Drivers . 34

4.2 System Description . 35

4.3 Architecture . 37

4.3.1 Overview . 37

4.3.2 Modules . 38

4.3.3 Communication . 40

4.3.4 Data Structures . 43

4.3.5 Protocol . 46

4.3.6 Security . 48

4.4 Visualization . 50

4.4.1 World Map . 50

4.4.2 The Incident Wheel . 53

4.4.3 Threat History . 56

4.4.4 Gauge . 56

4.5 User Interface . 57

4.5.1 Overview . 57

4.5.2 Filter View . 58

4.5.3 Detail View . 60

4.5.4 Interpanel Navigation 61

5 Proof-of-Concept 63

5.1 Overview . 64

5.2 Infrastructure . 65

5.2.1 Server Setup . 65

5.2.2 Log Producers . 66

5.2.3 Filter Configuration . 68

5.3 LogWheels Setup . 69

5.4 Use Cases . 70

5.4.1 Daily Routine . 70

5.4.2 Screenshots . 71

6 Discussion 75

6.1 Goal Achievement . 76

6.2 Limitations . 78

7 Conclusion 81

7.1 Conclusion . 82

7.2 Further Work . 83

Bibliography 85

A User Guide 95

A.1 Installation . 95

A.2 Execution . 95

A.3 Troubleshooting . 97

B Implementation Details 99

B.1 Folder Structure . 99

B.2 Package Structure . 100

B.3 Architecture . 101

B.4 Libraries . 103

C Off-the-Shelf Implementation 105

C.1 Server . 105

C.2 Client . 107

D Syslog Details 109

List of Figures

2.1 Example of a log generated by sshd 9

2.2 Three-tiered log consolidation architecture 11

2.3 The information visualization process 21

3.1 Example of a link graph . 29

3.2 Livnat et al.’s visualization paradigm 30

3.3 Architecture of Takada and Koike’s Tudumi 32

4.1 Conceptual model of LogWheels 36

4.2 Server architecture . 38

4.3 Recommended initialization routine 42

4.4 Geolocation and transformation 52

4.5 The incident wheel (not to scale) 54

4.6 Overview panel with tasks . 58

4.7 Filter panel with tasks . 59

4.8 Detail panel with tasks . 60

4.9 Interpanel navigation . 61

5.1 Excerpt from rsyslog’s MySQL database 66

5.2 Overview screen . 71

5.3 Closeup on Europe . 72

5.4 Closeup on history and gauge 72

5.5 Filter screen . 73

5.6 Report screen . 73

B.1 Model-view-controller architectural pattern 101

List of Tables

2.1 Techniques to increase usability 16

2.2 Presentation matrix for security log data 18

2.3 Shneiderman’s task taxonomy 23

4.1 Supported JSON fields . 44

4.2 Syslog severity levels . 45

4.3 Version request . 47

4.4 Update request . 47

4.5 Detail request . 47

4.6 Filter constraints . 59

B.1 Prototype directories . 99

B.2 Client package structure . 100

B.3 Server package structure . 100

B.4 External libraries used in prototype 103

D.1 Syslog facilities . 110

D.2 Syslog severity levels . 111

Chapter 1

Introduction

The first chapter provides an introduction to the report.

Divided into five sections, this chapter explains the
motivation for choosing security log usability as a research
area, specifies the project goals, and describes the scope of
the report. Insight into the chosen research method is given,
and finally a roadmap for the thesis is provided.

«Read them,» said the King.

The White Rabbit put on his spectacles. «Where shall

I begin, please your Majesty?» he asked.

«Begin at the beginning,» the King said gravely, «and

go on till you come to the end; then stop.»

– from “Alice’s Adventures in Wonderland” by Lewis Carroll

1.1. Motivation 3

1.1 Motivation

Logging – the act of recording events occurring in a system – is a mandatory
security measure in any moderately complex digital environment. Logs can
be used to detect and investigate incidents after they have occurred, but also
to assist in the prevention of harmful incidents, by revealing use and abuse
patterns and increasing situational awareness [7].

While large organizations can hire dedicated security personnel to monitor
the logs, the strategy in smaller organizations is often reminiscent of the con-
versation between the King and the White Rabbit in the introductory quote.
Logs are stored as chronological lists of textual data, and are infrequently
skimmed through using basic command line tools [35]. As a consequence,
the organizations are at risk of missing both specific security incidents and
the big picture [41].

The challenge for these organizations is to balance limited time and resources
with the steadily increasing amounts of textual log data being produced [46].
In order to face this challenge, there is a need for user friendly log monitoring
tools. Security measures do not provide their intended protection unless
the end users know how to use them correctly [44], and in order to utilize
the potential of security logs, monitoring them ought to be intuitive and
pleasurable, without sacrificing any detail.

A promising perspective on security log usability is the emerging research
field of security visualization. Security visualization systems utilize the pat-
tern seeking abilities of the visual perception system, allowing rapid discovery
of deviating behavior [50]. By including a well-designed interaction interface,
users are encouraged to monitor logs both holistically and in detail [69].

The motivational driver for this thesis was to design a new visualization
scheme for security incident logs, firmly rooted both in the worlds of infor-
mation security and usability. The idea appeared during the author’s own
period as a system administrator in a small startup company, and was mo-
tivated by the desire to get an overall view of the system’s security state,
rather than occasionally investigating bits and pieces in detail.

4 1. Introduction

1.2 Project Goals

Three high-level goals served as the basis for this project:

PG1 Examine the state of the art in security log usability

PG2 Propose a mechanism to improve the usability of security logs

PG3 Develop a proof-of-concept, illustrating the ideas proposed

In addition to the academic goals, the report was written as a documenta-
tion of the final project of the master’s program in computer science at The
Norwegian University of Science and Technology (NTNU). The university
encourages students to take on scientific and technological challenges, show-
ing originality while building on state of the art research, and presenting the
project in a structurally clear fashion.

1.3 Project Scope

The project was executed during a 20 week period in the spring of 2011. Due
to the limited time frame, a narrow focus was necessary, and some interesting
examinations of the ideas proposed had to be left out.

First, the idea has not been empirically tested, nor exposed to a proper
real-world feasibility study. These activities are required before taking the
concept any further. The focus of the report is on the ideas, and although
they were based on state of the art research, and exposed to critical thoughts
(chapter 6), this is not a replacement for an empirically driven exploration.

Second, while one of the goals was to develop a proof-of-concept, it was
beyond the scope of this project to develop a software tool of production
quality. The prototype attached to the report should not be expected to
satisfy all the demands being made in a professional setting, but rather to
serve as a basis for further investigation on the ideas presented in the text.

Section 7.2 suggests a roadmap for future development of the solution.

1.4. Research Method 5

1.4 Research Method

As indicated by the high-level goals, this project is primarily one of theoretical
studies and construction work.

The main driver of the theoretical study was an examination of state of
the art literature, and two meetings with representatives from the security
industry. Before the project started, Andreas Hegna fromWatchcom Security
Group was consulted about the security visualization field [35], and after the
completion of the preliminary study, Geir Mork from Norman contributed
with industry experience on logging and security usability [58].

While the focus of the report is on ideas and implementations, we hope to see
the project move into an empirical phase in the future. The report outlines
some of the necessary considerations in chapter 6 and 7.

1.5 Report Outline

The report is divided into seven chapters, including this introduction:

Ch 2 Presents the theoretical foundation of logging, log usability, and
visualization.

Ch 3 Examines specific implementations of the ideas outlined in ch 2.

Ch 4 Proposes a new visualization scheme, intended to increase usability
of security incident logs in small organizations.

Ch 5 Describes the proof-of-concept implementation of the proposition
from ch 4, with specific use cases.

Ch 6 Discusses the experiences learned from the proof-of-concept imple-
mentation and execution.

Ch 7 Concludes the report and provides a roadmap for the further work
required to turn the idea into successful software.

Chapter 2

Background

This chapter provides the theoretical foundation required to
understand security logs and log usability, and introduces
the principles used to design the system proposed in chapter 4.

Section 2.1 presents security incident logs, and how
they are produced and consumed in a computer system.

Section 2.2 proceeds by introducing the usability chal-
lenges caused by standard log implementations, and suggests
a framework for techniques which can improve log usability.

Section 2.3 examines how visualization can be used to
improve usability, and presents some key principles used in
LogWheels’ visualization and user interaction schemes.

8 2. Background

2.1 Security Logs

The following sections provide an introduction to the concept of security
logs, why they are being used, and how a security log infrastructure can be
implemented.

2.1.1 Terminology

In its most general sense, a log is the written record of events occurring in
a system [75]. An event can be any observable situation, ranging from ex-
pected state changes to suspected intrusion attempts or unexpected internal
failures [22].

Information about a single event is stored in a log record. The record is
structurally divided into fields, each field storing a single property of the
event [22]. Examples of fields include timestamps, user agent identifiers, and
a descriptive message indicating what happened.

The record and field concepts intuitively correspond to database rows and
columns, but there are no general standard as to how they should be stored.
Logs must therefore be associated with a log format, which specifies how
the records and fields are encoded.

An example of a log with a common log format is presented in figure 2.1.

This thesis will focus exclusively on security incident logs. In this context, a
security incident is an event which was determined by a non-human entity,
such as an intrusion detection system or a firewall, to be a potential threat
to the security of a computing system.

The formal definition can be derived from the National Institute of Standards
and Technology’s work on security log management [46]:

Security incident log A record of security related events occurring within
an organization’s systems and networks

2.1. Security Logs 9

The hardware and software involved in the log generation and analysis pro-
cess is referred to as the log management infrastructure [46]. The entities
of the infrastructure can be subdivided into two main classes: producers and
consumers.

Producers are hardware and software generating log data. They can be
hardware (e.g. routers), operating systems, designated security software (e.g.
firewalls), or regular applications (e.g. web servers) [22, 56].

Consumers are software tools perform work on existing log data [22]. They
serve several purposes, such as consolidating different log formats, performing
automatic analyses, or presenting log data visually.

The default behavior of log producers is to continuously append log data to a
plain text file on the local file system. The consumers read the files in batch
or real time, parse them according to the given log format, and analyze or
present the data.

Apr 23 08:12:49 server sshd[535]: PW-ATTEMPT: root
Apr 23 08:12:49 server sshd[535]: Failed password for root from
 10.0.160.14 port 39529 ssh2
Apr 23 08:13:02 server sshd[535]: Illegal user administrator from
 10.0.160.14
Apr 23 08:13:02 server sshd[535]: PW-ATTEMPT: administrator
Apr 23 08:13:02 server sshd[535]: Failed password for illegal
 user administrator from 10.0.160.14 port 40444 ssh2
Apr 23 08:13:57 server sshd[535]: PW-ATTEMPT: root
Apr 23 08:13:57 server sshd[535]: Failed password for root from
 10.0.160.14 port 39529 ssh2
Apr 23 08:14:04 server sshd[535]: Illegal user administrator from
 10.0.160.14
Apr 23 08:14:04 server sshd[535]: PW-ATTEMPT: administrator
Apr 23 08:14:04 server sshd[535]: Failed password for illegal
 user administrator from 10.0.160.14 port 40444 ssh2
Apr 23 08:14:04 server sshd[535]: PW-ATTEMPT: administrator
Apr 23 08:14:04 server sshd[535]: Failed password for illegal
 user administrator from 10.0.160.14 port 40444 ssh2

Figure 2.1: Example of a log generated by sshd

10 2. Background

2.1.2 Technical Infrastructure

Log production is rarely the problem [7]. Most applications have sensible
default settings, which can be customized if required. Unless precautions are
taken to prevent logging, both server software and hardware will produce
most of the security data required, and store it on the local file system.
Adding a new producer is usually as simple as installing a new piece of
software and configuring it according to the documentation.

Consuming logs is harder. Any reasonably advanced computing system gen-
erate several logs, but they are stored in different locations, using inconsistent
log formats and different interpretations of similarly named fields [46].

These challenges can be solved by a good log management infrastructure.
NIST suggests a three-tiered infrastructure [46], an approach which was de-
scribed in detail by Phillip Q. Maier [54]. As illustrated in figure 2.2, this
model divides the log management infrastructure into three abstract tiers:

1. The first tier contains all log producers, which are observing events
and generating raw log data.

2. The second tier contains log consumers responsible for data consolida-
tion, normalization, and early filtering techniques.

3. The third tier contains another set of log consumers, responsible for
storing the normalized log data, and potentially perform automatic anal-
ysis of the logs, or presenting them to an end user.

More complex architectures are available for high-volume systems or widely
distributed networks, but the fundamental principles remain the same [54].

Ideally, different physical machines are used at each tier. This prevents the
log consumers from interfering with the performance of the system. Commu-
nication between the different devices can be handled by standard TCP/IP
connections.

In smaller systems, the entire process can be replicated by a software stack.
As long as the underlying hardware is able to handle the load, the three-tiered
architecture can be executed on a single machine.

2.1. Security Logs 11

The log management infrastructure is implemented through a set of software
tools. Three popular approaches can be identified:

• In simple systems, the entire infrastructure can be developed in-house, e.g.
using shell scripts and a relational database.

• More complex systems can benefit from commercial off-the-shelf software
solutions, commonly referred to as SIEM solutions [46].

• A popular compromise is to use a tool chain based on syslog, a communi-
cation protocol describing a high-level log format and how to transport log
data between different tiers [60]. Syslog data is produced by most popular
log producers, and compatible log consumers are widely available [1, 32].
With good library support, it’s easy to develop new syslog tools.

This thesis will be neutral with regards to the implementation, but will as-
sume the availability of a single repository of similarly formed log records. A
more comprehensive overview can be found in [46] and [54].

Log producers

Consolidation,
normalization,
and filtering Storage and analysis

Tier 1 Tier 2 Tier 3

Figure 2.2: Three-tiered log consolidation architecture

12 2. Background

2.2 Log Usability

A properly implemented log management infrastructure ensures that log data
is available on a common format in a single repository, but still leaves large
quantities of textual log data to be interpreted.

This section presents the main challenge of log monitoring, how the principles
of security usability can be applied to face these challenges, and a framework
of specific techniques used to increase the usability of log consumers.

2.2.1 Challenge

Security incident logs serve several purposes, even in small organizations.
Some organizations may be exclusively motivated by legal requirements, but
the main objective should be to increase the security of the system.

While large organizations can hire dedicated IT security personnel, indus-
try experience indicate that smaller organizations lack the knowledge and
resources to handle the continuous supply of log data sufficiently [35, 46, 58].
As a consequence, no long term trends are identified, resulting in a scheme
where the understanding of the system is low, discovery of incidents is subject
to the forces of luck, and investigation performed ad hoc [56].

In the words of Mica Endsley: “the problem is no longer lack of information,
but finding what is needed when it is needed” [21]. This applies directly
to security logs. While there is no lack of high quality log producers, the
industry suffers from a lack of user friendly log consumers targeted towards
small organizations.

One of the most important tasks for a log management infrastructure is en-
suring that the security operator has a high situational awareness [50]. Log
consumers targeted towards small organizations must therefore be designed
to increase the situational awareness and the security usability, without sac-
rificing the details needed to make informed decisions.

The concepts of situational awareness and security usability will be presented
in the following sections.

2.2. Log Usability 13

2.2.2 Situational Awareness

Livnat et al. defines situational awareness as “the ability to identify, process,
and comprehend the critical elements of information about what is happen-
ing” [50]. In layman terms, situational awareness is a measurement of an
operator’s knowledge about what’s going on in their system.

According to the Endsley model, there are three levels of situational aware-
ness, growing from low to high understanding of the system [20]:

Level 1 - Perception Important information about the environment must
be observed by the end user.

Level 2 - Comprehension The end user must be able to interpret and
understand the perceived information.

Level 3 - Projection A practioneer should be able to project future sta-
tuses of the system, guiding decision making.

In their research on situational awareness failures of pilots, Jones and Ends-
ley discovered that 76.3 % of all errors were caused by failure to perceive the
situation correctly, 20.3 % by failure to interpret the perceived information
correctly, and 3.4 % by failure to project future situations [42]. In total,
it’s been shown that 88 % of all accidents among air carriers involve situ-
ational awareness problems, and reviews indicate that these importance of
situational awareness is not unique to pilots, but that it applies any operator
of complex systems [21].

Lakkaraju et al. [48], Yin et al. [79], and Livnat et al. [50] are among the
growing body of security researchers looking for techniques to improve sit-
uational awareness among security operators. By improving the situational
awareness, the operators are more likely to discover security incidents early,
defend the system against incidents before any damage occurs, and under-
stand which parts of the system are being threatened [79].

Security logs provide the data needed to provide situational awareness, but
the usability of this data does not appear to be adequate.

14 2. Background

2.2.3 Security Usability

In order to properly address the usability of security logs, it’s necessary
to take a step back and investigate the fundamental principles of security
usability.

The term “user-centered security” was introduced by Zurko and Simon in
1996, in an effort to include user needs as a primary design goal during the
development of security systems [81]. Their claim was that security systems
have a tradition for ignoring the user, leading the industry to accept that
security and usability were somehow contradictory terms.

Ka-Ping Yee is among the researchers who followed up on the challenge,
claiming that security and usability can be aligned [78]. Both factors must
be ingrained in the development process of a tool, but if done properly, the
added usability will increase the security, rather than obstructing it.

A more concrete effort was put forth by Jøsang et al [44]. They take the
alignment idea a step further, claiming that security systems are unable
to provide intended protection unless people understand how to use them
correctly, and that significant risks are caused by poor security usability.
They provide specific case studies, demonstrating the principles in the cases
of identity management [44, 45] and online bank security systems [5].

After accepting the idea that usability often is the weakest link in the security
chain, Jøsang et al. suggest a set of principles for security usability. First,
they define security actions and security conclusions [44]:

Security action When users are required to produce information and
security tokens, or to trigger some security relevant mechanism. For
example, typing and submitting a password is a security action.

Security conclusion When users observe and assess security relevant
evidence in order to derive the security state of systems. For exam-
ple, observing a closed padlock on a browser, and concluding that the
communication is protected by TLS is a security conclusion.

2.2. Log Usability 15

Based on Kerckhoffs’ security principles, dating more than 100 years back,
Jøsang et al. proceed to introduce eight principles for security usability [44]:

Security Action Usability Principles

A1. Users must understand which security actions are required of them.

A2. Users must have sufficient knowledge and the ability to take the
correct security action.

A3. The mental and physical load of a security action must be tolerable.

A4. The mental and physical load of making repeated security actions
for any practical number of instances must be tolerable.

Security Conclusion Usability Principles

C1. Users must understand the security conclusion that is required for
making an informed decision.

C2. The system must provide the user with sufficient information for
deriving the security conclusion.

C3. The mental load of deriving the security conclusion must be tolerable.

C4. The mental load of deriving security conclusions for any practical
number of instances must be tolerable.

Examining a security log is an example of drawing a security conclusion.
The four security conclusion usability principles all apply to security log
consumers, which must provide sufficient detail, while simultaneously being
simple enough to encourage frequent observation.

Principle C1 is primarily directed at educating security personnel, which
is outside the scope of this thesis. Principles C2, C3 and C4 should be
instrumental in the development of any log consumer aiming to improve log
usability, and will serve as the basis for the solution proposed in this thesis.

16 2. Background

2.2.4 Specific Techniques

The principles of security usability are important, but still abstract. By
studying their practical applications, a framework of specific techniques can
be created. These techniques are added to the tool chain described in section
2.1.2, and improves the usability of the log scrutinizing process.

The framework used in this thesis is listed in table 2.1, and is based on similar
frameworks by Phillip Q. Maier [54], Raffael Marty [56], and Kent et al. [46].
The techniques are implemented through log consumers, located in tier 2 or
3 of the log management infrastructure.

Group Technique Tier

Add data
Using third-party sources

2
Internal correlation

Reduce data
Aggregation

2Filtering
Normalization

Present data

Alerts

3
Reports
Historical analysis
Dashboard

Table 2.1: Techniques to increase usability

Note that these techniques both can and should be combined.

Add Data

The first group of techniques results in new log records being added, or
existing log records being expanded with new fields.

Records can be expanded by adding data from third-party sources. As an
example, using IP address geolocation, the system can add a city and country
name in addition to the numerical IP address [38].

2.2. Log Usability 17

New records can be made by using internal correlation. Correlation is used
to find relationships between events, preferably from different security logs
[54]. If one IP address is registered with illegal requests to several services,
it’s valuable to be informed of this directly, rather than having to inspect
every log and manually notice these trends.

Reduce Data

Data reduction is often used in combination with data addition, but the
fundamental idea is the polar opposite. By removing irrelevant log records
or fields, these techniques intend to increase the signal-to-noise ratio of logs.

The filter suppresses low-risk log records [46]. As an example, the majority of
requests to a web server is likely to be for static resources in public folders,
requests which are highly unlikely to be malicious. Requests with special
characters directed at dynamic resources are more important to report.

Another approach to data reduction is aggregation, where a collection of
events are merged into a single record [46]. For instance, the number of
failed logins per IP address is more helpful than a list of every single failed
request, surrounded by irrelevant events [56].

Finally, normalization removes systematic variation from a data set [77]. This
can be used to eliminate mistakes by underlying log producers or threats the
system has proved to handle, and instead focus on highlighting statistically
unusual incidents.

Data reduction is challenging, as it depends on the system’s ability to predict
patterns of events. Great care should be taken before permanently removing
data [41].

Present Data

In contrast to the other two groups, presentation occurs on the third tier in
the consolidation architecture. Presentation tools can be appended to an al-
ready existing log management infrastructure by accessing the log repository
directly.

The four presentation techniques in this group can be classified in a two-
dimensional matrix, as illustrated by table 2.2.

First, a distinction is made between batch and real-time processing. The
former parses new log data on a time periodic basis. For instance, data can
be processed every 24th hour, during a time of day when the system is under
light load [54]. Real-time analysis is more demanding on the system, but in
return it provides immediate feedback.

Second, presentations can be static or interactive. The former provides a
single view, e.g. a generated e-mail or PDF file, while the latter allows the
user to interact with the data, using techniques such as hypertext, zooming
or animation. The latter increases the design and implementation effort, but
is richer in functionality and improves usability [69].

Real-time Batch
Static Alerts Reports
Interactive Dashboard Historical analysis

Table 2.2: Presentation matrix for security log data

(a) Alerts The simplest presentation addition to security logs are alerts.
This scheme constantly parses the logs looking for incidents, and warns the
user immediately if it detects a security breach. Alerts can be sent through
e-mail, SMS, or similar communication devices. Alert systems are often incor-
porated in dedicated security software, such as intrusion detection systems,
and reduce the need to constantly monitor the logs [54].

While alerts are helpful in systems that are not constantly monitored, they
are not a replacement for a comprehensive usability solution. Defining the
thresholds is a continuing challenge [48]. If too many alerts are reported,
they will eventually be ignored. If too few alerts are sent, the system admin-
istrator will not only risk missing bigger trends, but complete attacks may
go unnoticed because they never cross the threshold for sending a warning.

2.2. Log Usability 19

(b) Reports A slightly more advanced way to improve the log scrutinizing
process, is by generating reports in batch. A report solution can use addi-
tion and reduction techniques, and summarize a days worth of data using a
graphical or textual summary [56].

Reports increases situational awareness, but less so than real-time systems.
They provide an overview of critical system information, but by the time a
report is received, the only viable strategies are investigation and recovery.
Reports are a good supplement to real-time dashboards, as they can cover
trends over larger time frames.

(c) Historical Analysis Historical analysis expands the static reports by
introducing interactivity. Historical analysis systems parse logs in batch, and
present them in a dynamic user interface, allowing the user to interact with
the graphical components and further investigate anomalous values without
leaving the report.

A good log analysis scheme should make comparisons with historical data,
clearly presenting deviations from the norm [56]. The report should be kept
small enough to encourage frequent usage, while simultaneously containing
all necessary data

(d) Dashboard The most advanced log presentation technique is the dash-
board. It expands the interactive historical analysis system by introducing
real-time data parsing, which provides the user with continuous situational
awareness through a constantly moving interface [56]. The interface can be
monitored at a glance, and events can be examined the moment they occur.

While dashboards are the presentation tactic best suited for situational aware-
ness applications, they are harder to implement, and may cause a significant
performance penalty on the system. Large amounts of log data must be
parsed in real time, memory must be available to store temporary data, and
the machine must be able to present data to the user while simultaneously
handling interface requests. For this reason, it’s not recommended to run
dashboards on production servers, but on a designated piece of hardware.

20 2. Background

2.3 Visualization

While the usability techniques suggested at tier 2 (addition and reduction)
are helpful, their end result is still a repository of plain text data. The
presentation techniques at tier 3 can use visualization to improve usability.

This section presents the fundamentals of data visualization, and how it can
be used to increase security log usability.

2.3.1 Foundations

Plain text logs are not ideal when aiming for high situational awareness.
While plain text is easy to parse computationally, the human brain is poorly
equipped for processing large text quantities [56].

Fortunately, absorbing large amounts of data is a task almost perfectly
adapted to another part of the brain: the visual perception system [50]. With
an appropriately designed data visualization scheme, the average human can
sift through gigabytes of log data, while discovering anomalous trends, all
with a single glance on a computer screen [48, 79].

Visualization can be informally defined as the presentation of abstract data
using computer graphics [73], or more formally as “the use of interactive
visual representations of abstract data to amplify cognition” [69]. The study
of visualization is well established, with statistical data being represented
visually as early as in the 1750s, and the growth of the computing business
have provided a wide array of digital applications of the original research
[8, 74].

Security log visualization is an exciting application of the visualization re-
search field, showing promising results. By taking advantage of the brain’s
ability to rapidly perceive and comprehend information, visualization in-
creases the situational awareness in a security system [50].

Raffael Marty, one of the pioneers in the field of security visualization, devel-
oped the information visualization process as a formalized method to present
data graphically [56]. The process is illustrated in figure 2.3.

2.3. Visualization 21

The process follows a conceptual path similar to the previously presented
three-tiered log management infrastructure. A separation is made between
the data itself, its processing, and finally the visualization.

As the process was designed for specific visualization challenges, rather than
the generic approach of this thesis, the first two steps have been generalized
in the following description.

Step 1, the problem definition, is to increase the situational awareness of
the operator by improving the security usability (see section 2.2.2). Step 2,
assessing available data, is covered by the first tier (log producers) in section
2.1.2. The visualization scheme is neutral with regards to the nature of the
underlying data, and will only assume a minimal set of expected fields.

The information processing described in step 3 is covered in detail by section
2.2.4. Data addition and reduction techniques occur on tier 2, together with
normalization.

The two remaining steps, visual transformation and the view transformation,
are located in tier 3, and was party covered by section 2.2.4. With the
foundations of visualization in place, the two are covered in more detail later
in the following sections.

?
1. Define

the problem

2. Assess
available data

Filter Normalize

3. Process information

4. Visual
transformation

5. View
transformation

Graph

Figure 2.3: The information visualization process

22 2. Background

2.3.2 Visual Transformation

The visual transformation is a mapping between raw data and a graphical
representation [56]. The data is transformed into a set of shapes or images
in a two dimensional plane, using spacial and temporal properties [38].

In the spacial domain, properties such as position, color, size and shape can
be used to separate events. In the temporal domain, animation, data replay
and association highlighting are potential tactics [41, 79]. In the context
of this thesis, the goal of the transformation is to increase the value of the
available screen estate, maximizing situational awareness for the operator.

A challenge when visualizing complex data sets is the dimensional reduction.
Security incidents have dozens of interesting properties, but it’s necessary for
the visualization tool to determine which properties are needed to provide
the necessary comprehension [21].

In their work on situational awareness for network intrusion detection, Livnat
et al. presented the w3 premise. This principle suggests three data dimen-
sions considered to be required in a visualization scheme aiming to provide
a satisfying level of situational awareness [50]:

The w3 premise
Each event must have at least the What, When and Where attributes

’What’ is a high level event classification, usually relating to the severity or
category of the incident. ’When’ indicates the time of the event occurrence,
while ’where’ describes the physical or topological location of the event. The
user can see what’s going on, where it is happening and when it happened,
all within the context of a single visualization component.

If properly applied, this will provide the user with high situational awareness,
and utilize the pattern seeking abilities of the human brain, allowing them
to quickly discover anomalous behavior in the system [50, 69].

2.3. Visualization 23

2.3.3 View Transformation

Static reports can be made to include both overviews and detailed compo-
nents, but the key to balancing situational awareness and a detailed under-
standing of the system’s inner state is interactivity.

The underlying data model of any visualization is a data element or data
collection. When working with view transformations, it’s common to envision
the interface as a set of tasks, each task allowing the user to modify which
parts of the underlying data collection to observe [69]. Different visualization
paradigms can be used for different zoom levels.

Usability pioneer Ben Shneiderman proposed a taxonomy of important tasks
in information visualization [68]:

Task Description
Overview Gain an overview of the entire collection
Zoom Zoom in on items of interest
Filter Filter out uninteresting items
Details-on-demand Select an item or group and get details when needed
Relate View relationships among items
History Keep a history of actions to support undo, replay,

and progressive refinement
Extract Allow extraction of subcollections and of the

query parameters

Table 2.3: Shneiderman’s task taxonomy

Based on the task taxonomy, Shneiderman illustrated the main flow of a
visualization interface by defining the visual information seeking mantra [68]:

Visual information seeking mantra
Overview first, zoom and filter, then details-on-demand

Chapter 3

State of the Art

This chapter introduces some of the practical applications of
security log management, usability and visualization, in the
form of techniques researched or tools implemented.

Section 3.1 presents the two main classes of log man-
agement infrastructures – syslog and SIEM – and refers to
more comprehensive sources on how to implement them.

Section 3.2 introduces visualization components used in
the security business, and outlines a few dashboard solutions
developed academically or commercially.

26 3. State of the Art

3.1 Log Infrastructure

If more than one log requires monitoring, it’s necessary to have a working log
management infrastructure. As mentioned in section 2.1.2, three implemen-
tation approaches stand out: in-house development, SIEM tools and a syslog
based tool chain. This section will examine some of the existing solutions
available for the latter two approaches.

3.1.1 Syslog

To reiterate, syslog is a communication protocol describing a high-level log
format and how to transport log data between different tiers [60]. In daily
speech, syslog refers both to the protocol and the set of tools supporting it.

The first tier is already covered by the log producers. Most popular log
producers can be configured to output syslog data, either locally or directly
to a remote server [31].

On the second tier, the syslogd daemon is used to receive and consolidate
the output from the log producers [3]. Syslog data is already normalized
by definition, and can be filtered using configuration files. The syslogd tool
is installed by default on most UNIX compatible operating systems, and
fully functional ports are available for Windows based systems as well (e.g.
syslog-win32 [2]).

The received log data is stored in flat files by default, but external tools can
be used to store it in a database. Another alternative is to install one of
the syslogd replacements. Due to the open standards, improved versions of
syslogd are available, supporting enhanced features commercially or for free.

The most prominent syslogd replacements are syslog-ng and rsyslog. They
both adhere to the standard, while providing features such as reliable TCP
transfer (rather than unreliable UDP), TLS support for secure transfers (as
specified by RFC 5425 [57]), database integration, content-based filtering,
and support for proprietary formats [64, 66]. These tools can therefore cover
both tier two and three in a single installation.

3.1. Log Infrastructure 27

Setting up a log management infrastructure using syslog consists of modifying
configuration files, and using open source tools likely to be preinstalled on
the server in question. A detailed account of setting up a syslog based log
management infrastructure can be found in [27].

Once the infrastructure is ready, adding new syslog tools is done by simple
software installation, or in-house development using well supported libraries,
such as Syslog4j [71] or the Python syslog library [23]. At the time of writing,
the Syslog Wiki contained an overview of 58 commercial and open source
tools, including event notifiers, log analyzers, correlation engines, and web
logs, all ready to “plug-and-play” [1].

3.1.2 SIEM Tools

Security Information and Event Management (SIEM) solutions are central-
ized logging software, implementing the entire stack required to analyze real-
time log data [46, 53]. As opposed to the open syslog toolkit, SIEM tools tend
to be commercially wrapped, and often depend on proprietary standards.

SIEM has been embraced by several large security companies. ArcSight, a
leading SIEM producer, was acquired by Hewlett-Packard for $1.5 billion in
2010 [39], allowing the computer giant to enter a market already inhabited
by companies such as CISCO (Security MARS [72]) and RSA (enVision [63]).

While most SIEM tools are commercial, there are open source options, such
as Cyberoam iView [15] and OSSIM Snare [59].

SIEM tools are usually complex, putting a great emphasis on rich presenta-
tion techniques and the ability to collect log data from as many log producers
as possible, including official support for proprietary log formats. This is a
benefit for large organizations, but may be perceived as an overkill for a
simple Internet startup company. In any case, the end result should be
equivalent to a syslog based solution, albeit easier to configure, with better
support, and, in most cases, a high initial cost.

Due to the maturity of the log management infrastructure field, the rest of
this thesis will assume a pre-existing infrastructure.

28 3. State of the Art

3.2 Visualization

Regardless of the underlying log management infrastructure, the information
visualization process remains essentially the same. Its fundamental building
block is the visualization component - a spatially confined representation of
a specific data set. Components are usually combined into a presentation
solution, as demonstrated in this section.

3.2.1 Standard Components

The most basic visualization components are charts. Charts use properties
such as size, shape, and color to represent one or two dimensions of data, and
have the benefit of being well known and easy to understand [56]. Common
charts include line charts, bar charts, pie charts, and histograms.

While charts are appropriate for representing simple data (e.g. registered
incidents per day), they are unable to cope with more complex problems,
such as properly addressing the w3 premise. Adjustments may be made, for
instance by expanding the charts to stacked charts, but the benefits gained
must be weighted against the disadvantage of a more complex presentation.

Charts, therefore, are recommended to present simple, categorical data, but
should be supplemented by more advanced components when dealing with
larger amounts of multi-dimensional data [56].

Several visualization components support multi-dimensional data. When
working with relationships, as is common in network security visualization,
the link graph is a handy tool. The link graph draws nodes connected
by edges on a 2D canvas, and, if properly executed, provides an easy-to-
understand illustration of communication patterns or data flow.

Another way to add dimensions is to use a geographical map. The map
can illustrate spatially distributed data, and is a candidate for the ’where’
attribute of the w3 premise. The disadvantage of maps is their tendency
to cause clutter in high traffic areas while leaving other areas empty, thus
poorly utilizing the canvas [56].

3.2. Visualization 29

A map can be combined with a link graph to create a spacial and temporal
visualization of data, adhering to the ’what’ and ’where’ attributes of the
w3 premise in a single screen [38]. Using a two dimensional canvas allows
significantly larger data amounts to be presented, and the result is often more
aesthetically pleasing than lists of charts [56].

Examples of successful utilizations of the map/link graph combination for
security visualization purposes can be seen in [36], [38], [49] and [50].

An alternative when working with multi-dimensional data is a treemap.
Treemaps visualize hierarchical structures in data, by dividing tree nodes
into blocks, and subdividing according to need [56]. In the security field, an
example can be to use IP addresses for top blocks, and ports for subblocks,
then fill each port block with color coded requests, e.g. green representing
safe and red unsafe.

The toolkit of standard components is large, and will not be examined in
further detail. For a comprehensive overview of the components mentioned
in this section and more, Raffael Marty’s “Applied Security Visualization”
[56] is recommended.

Figure 3.1: Example of a link graph

30 3. State of the Art

Figure 3.2: Livnat et al.’s visualization paradigm

3.2.2 Custom Components

As the security visualization field has progressed, practitioners have moved
from the common toolkit and onto the more advanced practice of designing
their own visualization components.

An example of this is Livnat et al.’s work on situational awareness [50]. Their
paper introduced the w3 premise (see section 2.3.2), and presented VisAware:
a visualization component presenting the ’what’, ’when’, and ’where’ of in-
cidents discovered by network intrusion detection systems.

VisAware uses a circular visualization component, as illustrated in figure 3.2.
The inner ring is dedicated to a map of geographical locations or network
topology, while the outer ring contains a classification scheme of potential
attacks on the network. Each incident is represented by two nodes, one in
the inner and one in the outer ring, and a line connecting the two. The
’what’, ’when’, and ’where’ attributes are mapped to line angle, line radius,
and inner ring coordinates respectively.

3.2. Visualization 31

Custom components are usually made to serve a specific purpose. More than
100 of these components are available at [55]. Inspecting them in detail is
outside the scope of this thesis, but several components have been used in
the design process of the incident wheel, which is presented in chapter 4.

3.2.3 Solutions

Components are useful when present log data, but it’s unlikely that a single
component can satisfy all the aspects of security usability. In order to satisfy
the information-seeking mantra, a solution is introduced. A solution is a set
of components, presented in a unified interface.

As previously mentioned, most SIEM tools are delivered with integrated
dashboards. As an example, RSA enVision uses a web based dashboard,
mostly depending on hypertext and standard charts [63]. Using the browser
is a popular approach among commercial SIEM vendors, as it uses well known
usability paradigms and make the logs universally accessible.

Similar tools exist for the syslog toolkit. An example is Kiwi Log Viewer, a
Windows application using standard GDI components to visualize text based
log files in a tabular, color coded format [47].

Specific dashboard solutions are also made independently of underlying log
management infrastructures. A classical academic approach is James A.
Hoagland’s Visual Audit Browser Toolkit, which discusses and experiments
with graphing and hypertext browsing in detail [41].

Architecturally, one of the most interesting approaches developed academi-
cally is Takada and Koike’s Tudumi. Their proposed system is a client-server
based data collector and visualizer, gathering data from several different
sources and aggregating them in a single client visualization [73].

One of the architectural choices of Tudumi was to re-implement parts of
the log management infrastructure in the tool, making it more holistic, but
also more redundant. More specifically, the client fetches data from several
servers, thus doing part of the work assigned to tier 2 in the log management
infrastructure. It also employs a technique called “data summarization”,

32 3. State of the Art

Figure 3.3: Architecture of Takada and Koike’s Tudumi

which closely resembles the reduction technique presented as normalization
in section 2.2.4 of this report.

The visualization of Tudumi focus on three activities: “accessing the server
from other computers, logging in to the server and substituting a user to
another user” [73].

After gathering all data, a visual image is created in the form of a three-
dimensional spiral, illustrating the relationship between hosts and logged in
users with lines and icons. The end result looks interesting, but is not likely
to be intuitively understood by untrained users. In addition, the system
scope is quite narrow, as opposed to the more general visualizers presented
earlier in this section.

The architecture of Tudumi, which inspired the technical aspect of this re-
port, is illustrated in figure 3.3.

More solutions are presented in [55] and [56]. These solutions have been used
for inspiration, but will not be further examined in this thesis.

Chapter 4

LogWheels

This chapter contains a proposal for a new security log
visualization system called LogWheels.

LogWheels is an interactive dashboard for remote ob-
servation of security incident logs. It lends itself to the
theoretical foundations given in chapter 2, and is inspired by
the state of the art research presented in chapter 3.

Section 4.1 presents the conceptual drivers considered in
the development of the architecture and visualization scheme.

Section 4.2 outlines the system from a non-technical
point of view, emphasizing the practical applications of the
system and how it differs from existing solutions.

Section 4.3, 4.4, and 4.5 proceeds to walk through the
details of the system, presenting the technical software
architecture, the visualization scheme, and the user interface
respectively.

34 4. LogWheels

4.1 Conceptual Drivers

Much effort has been put into the log management infrastructure, providing
several well documented approaches to create a consolidated and normalized
database of security incidents [54]. Several solutions are available for the
visualization of data as well, but this fast growing field is still in need of
new and creative approaches, guiding its practitioners towards a rich set of
empirically tested, high quality visualization solutions [56].

The development of LogWheels was based on a purely theoretical founda-
tion, borrowing principles from the fields of security usability and security
visualization, but also human-computer interaction and user interface design.

A set of high level conceptual drivers can be extracted from the theoretical
investigations in chapter 2 and 3:

• Increase the situational awareness of end users

• Address security usability principles C2-C4

• Present data in a real-time, interactive dashboard using visualization

• Extend, not re-implement, the log management infrastructure

• Visual transformation should adhere to the w3 premise

• View transformation should adhere to the information-seeking mantra

• Navigation should be based on Shneiderman’s task taxonomy

In addition to the theoretically based drivers, the system was adapted to
small organizations, with simplicity and security in mind.

The intention was not to make a stand-alone product ready for commercial
use, but to propose an architecture and a visualization scheme which can be
embedded in other applications, or made part of a stand-alone toolkit (see
section 7.2).

4.2. System Description 35

4.2 System Description

LogWheels is an interactive dashboard, allowing remote monitoring of secu-
rity incident logs in near real-time. The system is appended to a pre-existing
log management infrastructure, and works independently of the nature of the
incidents.

A driving force of the system design was to make security interesting and
understandable for organizations without dedicated IT security personnel. It
was not designed to handle large and complex computer networks or huge
amounts of log data, but challenges commercial SIEM tools on simplicity and
usability.

The interface uses well-known usability paradigms, and includes a special
purpose visualization component designed to correspond with the concep-
tual drivers listed in section 4.1. A deliberate choice was made to avoid an
enterprise look-and-feel, at the expense of a fresh and intuitively appealing
approach. If security monitoring stops being a chore, the situational aware-
ness should be drastically improved.

Due to its use of standard Internet protocols and file formats, the system
interoperates with existing tools created for the World Wide Web, including
web browsers. Users can connect to a LogWheels server using any Internet
enabled device. Data is transferred in real-time, but it’s possible to review
former states. All connections used between the client and the server are
secured, preventing eavesdropping and data manipulation.

While the server does not intend to re-implement the consolidation efforts of
the underlying tiers, it provides basic configuration opportunities, allowing
rough filtering based on severity levels and log sources. Most of the configu-
ration is done client side, supporting the creation of different “nodes” serving
different needs. For instance, a home computer can be setup to display only
emergencies, while an office monitor can be used to display all warnings oc-
curring in the system.

A high-level conceptual model is illustrated in figure 4.1.

36 4. LogWheels

Log producers

Consolidation

Storage
and analysis

Tier 1

Tier 2

Tier 3

Server

Client Client Client

Internet

Figure 4.1: Conceptual model of LogWheels

4.3. Architecture 37

4.3 Architecture

Before introducing the visualization scheme, the suggested architecture for
LogWheels will be briefly described. Readers who are only interested in the
visualization scheme can safely skim through this section.

4.3.1 Overview

As illustrated in figure 4.1, LogWheels is based on the client-server architec-
ture. A server module is located at tier 3, with direct access to the storage
used by the log management infrastructure, while the client can be executed
on any device allowing custom software execution and Internet access.

A key design decision was to use the HTTPS protocol for communication
between the client and the server. This choice partly lends itself to the
advantage of using a trusted industry standard, which may ease the process
of using the application through firewalls or other network systems, and
partly allows the system to utilize existing software written for the World
Wide Web infrastructure, raging from web servers and browsers to proxy
servers, web accelerators, web cache et cetera.

The server can be implemented as a stand-alone application, or be an add-on
to any modern web server through the use of server-side scripts. Similarly, the
client can be stand-alone or be implemented through a web browser, through
plugins (e.g. Adobe Flash or Flex) or using web technological standards such
as HTML and AJAX.

Security is provided through the use of the secure HTTPS standard, in ad-
dition to Basic Access Authentication. Data is transferred using the popular
format language JSON, which has extensive library support.

The client-server architecture is inspired by Tudumi (see section 3.2.3), with
a few significant changes. First, LogWheels extends the log management
infrastructure, without making any efforts to re-implement it. Second, it
uses standard formats to maximize interoperability.

The following section presents these architectural choices in detail.

38 4. LogWheels

4.3.2 Modules

LogWheels consists of two separate applications: a server and a client.

Server

The server is a thin wrapper, accepting requests from the client and serving
log records back. It assumes the existence of a consolidated log database, and
its only function is to transmit these records to the client. Simple data struc-
ture translation and addition of external data can be added, if it’s infeasible
to include these features in tier 2 of the infrastructure.

The current LogWheels specification does not describe a stand-alone appli-
cation, and must be tailored to work with an existing tool chain to be a
deployable production system. The final step of the roadmap presented in
section 7.2 is to integrate the solution with a log management infrastructure.

Request Listener Connection Instances

Database Abstraction Layer

...

Log Database

Log Management Infrastructure

Figure 4.2: Server architecture

4.3. Architecture 39

The server has a dedicated thread listening for incoming request, and gen-
erates new threads for each connection. The protocol is stateless, so it’s
not a requirement to keep a session going for more than one request, but
as discussed in section 4.3.5, it’s recommended to use the HTTP keep-alive
mechanism to reduce connection overhead [10].

Each connection thread serves one purpose: to access and retransmit log
records through a database abstraction layer. The complexity of this layer
depends on the underlying infrastructure.

Since the protocol used is HTTPS, a server can be implemented using a
scriptable web server, such as Apache or Microsoft IIS [24]. A minimum
implementation of the server is given in appendix C, in less than 100 lines of
PHP code. Using libraries for database access and HTTP transportation, it
should be possible to implement comparably sized servers in other languages.

Client

The client is responsible for requesting log data and presenting it to the end
user. Different clients can be constructed for different devices, all they need
is the ability to read plain text data over a HTTPS connection.

The recommended visualization scheme requires graphical abilities which
may be hard to implement directly in HTML, but other presentation mech-
anisms can be created within the same architecture. The upcoming canvas
technology is likely to provide the functionality needed to implement the
visualization directly in a browser [40].

All configuration is done on the client. The user can choose how often to
request new data, and how severe a log entry must be to be transmitted.
This allows the end user to create “nodes” with different profiles without any
modifications to the server.

The architecture of the client will depend on the implementation platform,
and no requirements are made.

40 4. LogWheels

4.3.3 Communication

All communication between the client and the server is executed using the
HTTPS protocol. Choosing the common protocol rather than designing a
special purpose protocol was a key design decision in this system.

The Hypertext Transfer Protocol (HTTP) was first documented in 1991,
and is currently standardized through RFC 2616 [10]. The protocol is the
backbone of the Internet, and much of the traffic between web browsers and
servers are performed using it.

HTTPS is the secure extension of HTTP, and extends HTTP by channeling
all data through the secure TLS protocol [62]. This security enhancement is
described in section 4.3.6.

The main advantage of using HTTP(S) rather than designing a special pur-
pose protocol, is the opportunity to utilize the already existing infrastructure
of the Internet. This opportunity is further examined in appendix C.

Client Sessions

A challenge when using HTTP(S) is the stateless request/response nature of
the protocol [10]. For a near real-time, session based system, it’s natural to
consider a stateful push-protocol, where data is pushed from the server to
the client through a persistent connection channel.

Bozdag et al. described how a push protocol can be implemented over HTTP,
using a technique called long polling, where pending requests are responded
to when new data appears [12]. But even though this protocol intuitively
is closer to LogWheels’ nature, it’s not necessarily an improvement to the
system.

On the contrary, it turns out using a stateless pull protocol has some useful
side effects, primarily a reduction of server complexity and simpler commu-
nication. At the same time, it maintains client customizability through the
use of request parameters. If real-time capabilities are absolutely required,
the pull interval can be set in the subsecond range, and the overhead is still

4.3. Architecture 41

unlikely to be an issue due to the low number of expected connections. As
the LogWheels client only provides visualization intended for humans, hard
real-time response requirements are unnecessarily complex.

In order to keep interoperability with web servers and browsers at an ac-
ceptable level, it was chosen to avoid too large deviations from the original
standard.

The biggest performance penalty is the overhead of frequent HTTPS con-
nection establishment [6]. This can, in part, be solved using the HTTP
keep-alive flag [10]. The technique increases memory use on the server, but
reduce the necessary bandwidth and processing power.

Initialization Routine

Despite the stateless communication, an initialization routine is recommended.
This routine is executed on application level, and its only benefit is increased
usability for the end user. The three-step routine is illustrated in figure 4.3.

The first step consists of the client requesting a certificate and displaying
its content to the user. The certificate details are displayed on the screen,
together with a color coded warning specifying whether the certificate is
trusted, untrusted, or potentially revoked.

After validating the certificate, the user enters a username and a password.
The authentication details are validated by the server, and if valid, stored in
the client memory to prevent the user from having to repeat the authenti-
cation procedure on each update. This leaves the application vulnerable to
memory scan attacks [52], and the developers of a production system ought
to look into ways of hiding the authentication details.

Once the authentication process is complete, the rest of the session consists of
the client asynchronously requesting updates from the server. The user is not
required to verify the certificate or enter authentication data for the duration
of the process, but behind the scenes, the client is strongly recommended to
pay attention to the certificate on each request, and abort the connection if
it changes. This is discussed further in section 4.3.6.

42 4. LogWheels

Client Server

...

Request
certificate

<Certificate>

Verify
authentication

<Verification>

Request
updates

<Updates>

{

{

{

Prompt user
for URL of
log server

Display
certificate,
prompt for

authentication

Open main
application,

automatically
request updates

Figure 4.3: Recommended initialization routine

4.3. Architecture 43

4.3.4 Data Structures

Requested logs are transferred between the client and the server using the
data interchange format JSON (JavaScript Object Notation). JSON is stan-
dardized through RFC 4627, and is based on the principles of minimal data
overhead and easily readable formatting [14].

Compared to the industry standard XML, JSON reduces the markup over-
head, and allows even simpler parsing, through standard libraries. The added
functionality offered by XML is not needed by LogWheels, as the only data
transmitted is similarly formed log records.

A simple example of a JSON file can be seen below:

{"name": "John␣Doe", "age": 40, "manager": true}

An advantage of using JSON is its derivation from JavaScript literals, which
allows simple deserialization both to Java beans (e.g. using google-gson [34]),
or JavaScript objects (e.g. using jQuery [43]). This facilitates for seamless
integration with both a Java front-end and a browser based client.

Data Fields

Each log record consists of fields, holding key attributes of the incident. It is
important to keep the number of mandatory fields to a minimum, in order to
allow different underlying log management infrastructures to be supported.

The terminology used is derived from the syslog standard [31, 51]. A complete
overview of syslog fields, and a database scheme for the extended rsyslog
daemon, can be found in appendix D.

Different log producers will produce different log formats. In order to include
as many formats as possible, the log format used by LogWheels is kept simple.
This is the format exchanged between the client and the server, intermediate
systems may use different formats.

This solution should not be responsible for consolidating different log formats,
but will support translation from common repositories to its internal format.

44 4. LogWheels

Name Status Description
id Mandatory Numerical, unique identifier
timestamp Mandatory UNIX timestamp
severity Optional Importance of event, as listed below
facility Optional Name of source application/service
ipaddress Optional IP address of the threat source
message Optional Textual description of the incident

Table 4.1: Supported JSON fields

The available fields are listed in table 4.1, and described in the list below:

id A unique numerical identifier for each incident. A simple auto incre-
mented integer is sufficient. Notice that the id should be unique on
the entire system, so it should be assigned by the server wrapper, not
imported from the log producers.

timestamp Indicates when the incident was registered by the log pro-
ducer. It’s denoted as a UNIX timestamp, which numerically represents
the number of seconds since the “UNIX epoch” at midnight of January
1, 1970, UTC [19].

severity A numerical value derived from the syslog standard. Some log
producers assign their own values, depending on internal configuration.
If the log producer does not specify severity, the log management infras-
tructure or the server wrapper can determine its value based on other
metrics associated with the incident. It could also be possible for users
to configure severity modifications, for instance stressing the importance
of one log producer. The severity levels from RFC 5424 are given in table
4.2 [31].

facility The source of the event, given as a textual name. Syslog provides
a list of facilities, which is supported by many popular log producers, but
the field does not have to correspond to the syslog standard. Any name
can be given, representing an application, such as "sshd", "intrusion
detection system", or the name of an internal network component. This
field is exclusively used for filtering and searching on the client side, and

4.3. Architecture 45

Severity Description
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

Table 4.2: Syslog severity levels

is not used to prioritize incidents, unless specified on the server side. A
complete list of syslog facilities can be found in appendix D.

ipaddress IPv4 or IPv6 address of the user agent suspected of causing the
incident, given as a textual dot-decimal notation [17, 61]. If no address
is provided directly by the source application, attempts can be made to
extract it from the textual message. A complete lack of IP addresses
should cause the incident to be registered as an internal event. This is
discussed in chapter 6.

message A raw textual description of the log record. If it’s desired to
reduce traffic, the message can be left empty, forcing the client to request
the message specifically. This reduces traffic overhead by preventing the
transfer of large textual messages that are never displayed to the end
user.

A simple example of a response is listed below:

{"id": 500, "timestamp": 1301753520 , "facility": "sshd", "severity": 2,
"ipaddress": "192.0.32.10", "message": "Failed␣login␣from␣[...]"}

The JSON representation can be converted to one of many internal data
structures, such as an object or an associative array, using library functions.

46 4. LogWheels

4.3.5 Protocol

The protocol used is a subset of the HTTPS protocol. It’s highly recom-
mended to use HTTP libraries for this communication, rather than relying
on a re-implementation of parts of the HTTPS protocol, to avoid a reliance
on the current prototypical specification and support communication with
third party software, such as web browsers or servers.

Three primitives are required: ’version’, ’update’, and ’detail’. All primitives
are stateless, and contain the authentication string and necessary parameters.
They return an HTTP status code [10], in addition to content, if available.

Primitives are sent as GET requests to a base URL entered by the user, as
specified by RFC 1738 [11]. An example is given below:

https:// 192.168.10.1/? action = update & timeFrom =1301753500& timeTo =1301754700

The initial URL entry by the user should be a base URL – which in the
above example would be “https://192.168.10.1/”. The additional parameters
are added by the application when required. The ’action’ parameter is alway
mandatory, and is used to separate between different primitive actions. Each
action may require further parameters to valid.

The ’version’ primitive serves three purposes. First, it verifies that the client
is talking to a LogWheels server (or a destination claiming to be a LogWheels
server). This is not an act of security, but an act of error prevention. When
the user enters a URL, this request can verify that the URL exists and hosts
a server. Second, it can be used to verify the authentication string (the
request will fail if the username or password is wrong). Third, it returns
a version number, which can be used to provide backward compatibility in
future versions of the application.

The ’update’ primitive will return all incidents recorded in a specified time
frame, exceeding a specified severity level. The LogWheels client will have
a configurable polling interval, and at the end of every interval, it should
request new updates:

(lastT imestamp, lastT imestamp + pollInterval]

4.3. Architecture 47

This will ensure that all incidents are returned once and only once, regardless
of changes to the polling interval.

Finally, the ’detail’ primitive is used to get a full log record. The server
can choose to return full records in the ordinary ’update’ request, but if the
polling interval is long or the data amount large, the textual message can be
left out. The client must then ask specifically for the full record every time
the user attempts to view the record details.

Request
action version

Response content
Version string

Table 4.3: Version request

Request
action update
timeFrom timestamp
timeTo timestamp
(minSeverity) severity (int)

Response content
JSON log records
separated by newlines

Table 4.4: Update request

Request
action detail
entry id (int)

Response content
JSON log record

Table 4.5: Detail request

48 4. LogWheels

4.3.6 Security

LogWheels makes two security enhancements to the default behavior of
HTTP. The first is the use of HTTPS (secure HTTP), which negotiates
an encrypted communication channel and provides protection against eaves-
droppers and man-in-the-middle attacks [62]. The second is the use of Basic
access authentication, which extends HTTP or HTTPS with stateless client
authentication [26].

HTTPS

A disadvantage of the HTTP protocol, is that it only supports unencrypted
communication [10].

The increased need for sensitive applications on the web created the demand
for a secure HTTP standard. A first edition was first developed by Netscape
in 1994, then using SSL encryption, a protocol which was formally specified
in 2000 using TLS [62]. The concept is simple: regular HTTP traffic is run
over the secure Transport Layer Security (TLS) protocol. The transport layer
TLS protocol is designed to prevent eavesdropping, tampering, or message
forgery [18].

While the prototype accompanying this report supports plain-text HTTP
communication, it’s important to note that this scheme should not be con-
sidered secure, and never be used in a production system. HTTP support
can be disabled in the source code by modifying a single line of code in the
Configuration class.

Certificates

When using the HTTPS standard, public key certificates are used to identify
the server. Using public key cryptography, the server transmits a digitally
signed document, containing an identifier and a public key [33].

Ordinary web sites relies on a web of trust, where more trusted entities are
used to verify less trusted entities, with a handful of certificate authorities

4.3. Architecture 49

serving as root nodes [13]. LogWheels can use self-signed certificates, as long
as a secure distribution channel for keys is found. For small organizations,
this is no problem, as the keys can be distributed offline. By ordering the
client only to trust servers with known certificates, man-in-the-middle attacks
and impersonator servers are mitigated.

LogWheels uses standard X.509 certificates. The client should not require
revalidation of the certificate on each request. If, however, the certificate is
modified during a single session, a visual indicator should warn the user, as
this may indicate an attack.

Basic access authentication

Basic access authentication was specified by RFC 2617 [26], and works by
appending a header containing a base 64-encoded username and password in
every request. Used in conjunction with HTTP, the authentication data is
sent in plain text, which adds little security, but when used in combination
with the encrypted HTTPS standard, the standard is a secure transportation
of authentication details.

This authentication mechanism has been in use for many years on the World-
Wide Web. It is included in most modern browsers, using a dialog based login
scheme, and can easily be configured into most modern web servers, such as
Apache (through mod_auth_basic [25]).

By default, basic access authentication is vulnerable to eavesdropping and
repeat attacks, but these threats are mitigated by the use of HTTPS [28].
Its main weaknesses are the use of a single authentication string which can
be used indefinitely by a malicious user if compromised.

A newer standard, called Digest access authentication, was defined by RFC
2617, and is based on sending cryptographic hashes and nonce values rather
than the easily reversible base 64-encoding [26]. However, the need for hash-
ing the authentication string is of less importance when used in combination
with an encrypted communication channel, and the protocol never caught on
in real-world applications [28].

50 4. LogWheels

4.4 Visualization

While the architecture is rather conventional for a client-server application,
the novelty of the solution lies in the visualization scheme.

The goal of the visualization process was to increase situational awareness
in a user friendly manner. In order to assure that a minimum of necessary
data was available, the w3 premise was used. In addition to the chosen
combination of existing visualization components, this section introduce the
incident wheel, which is a new addition to the visualization scene.

4.4.1 World Map

The dominant component in the visualization solution, and the backdrop for
the incident wheel, is a world map. The map covers the ’where’ attribute of
the w3 premise, by mapping security incidents to geographical locations.

Geographical location is a simple classification of incidents, but the classifi-
cation itself is not the main driver to use a map. In distributing the incidents
on a canvas, the pattern seeking abilities of the human brain is being utilized,
using an easily recognizable component [50].

Projection

When representing the three-dimensional globe in a two-dimensional plane,
there are several projections to choose from. Some are area conserving, some
are distant preserving, other are compromises between these or other projec-
tions [70].

For this application, the most interesting option is the equirectangular projec-
tion. In this projection, the lines of latitude and the meridians of longitude
are both straight, parallel, equidistant lines, forming a perfect grid of rectan-
gles [70]. These properties are beneficial in computer visualizations, as the
relationship between a longitude-latitude pair and a map position is always
a simple, linear transformation.

4.4. Visualization 51

The disadvantage of forcing an almost perfectly circular area into a rect-
angular grid, is the poor area preservation [70]. While the equator has a
circumference of roughly 40 000 kilometers, this figure declines until hitting
the pole points, where the circle of latitude is a single point. As all latitude
lines are mapped to the length of the image projection, this causes distortions
to areas away from the equator.

While the sociopolitical consequences of distorted map projections have been
discussed, and usage of the projection in navigation dismissed, the side effect
can, in fact, be beneficial to a security visualization [35]. The areas decreased
are primarily in Africa and Central America, while countries such as South
Korea, China, and the United States have their areas exaggerated [9]. These
hotspots will therefore tolerate more traffic without being cluttered.

Geolocation

A security incident is converted to a geographical location by the use of a
technique known as geolocation. While serious proposals have been made
to incorporate location information in the Domain Name System (see RFC
1876 [16]), the closest approximation today relies on active probing of single
hosts, or building tables based on IP address ranges [37].

No geolocation scheme is bulletproof. This is partly caused by inaccuracies or
gaps in the tables themselves, partly by the habit of attackers to use proxies,
botnets, or zombies to execute their attacks [37]. As long as the incidents
are distributed across the map, this should not interfere with the pattern
seeking abilities, nor should the incidents position in a map alone determine
the course of action for the operators.

Implementation

The geolocation process, which is illustrated in figure 4.4, consists of three
main steps. First, extract an IP address from the log record, second, con-
vert the IP address into a geographical location, and third, transform the
geographical location into a location on the screen.

52 4. LogWheels

The map is placed in a two-dimensional cartesian reference frame, with the
origin located in the upper left corner. This is a standard viewport for
computerized graphics [8]. A translation function can be defined:

f : (longitude, latitude)→ (xCoord, yCoord)

An equirectangular map has the 0 meridian (Greenwich) located in the cen-
ter, and spans +/- 180 degrees. Similarly, equator is located in the center,
spanning +/- 90 degrees [70]. This gives f a domain: [(-180, 180),(-90,90)]
and a co-domain: [(0, imgWidth), (0, imgHeight)], resulting in the function:

f(x, y) = [(imgWidth/360) ∗ longitude + (imgWidth/2)),

−(imgHeight/180) ∗ latitude + (imgHeight/2)]

Log record

192.0.32.10... ...

Geolocation f(x, y)

Geolocation
table

Figure 4.4: Geolocation and transformation

4.4. Visualization 53

4.4.2 The Incident Wheel

The world map provides a spatially distributed view of events, classified by
their geographical properties. It is, however, not sufficient for presenting
security incidents [50]. The map lacks the ’what’ and ’when’ attributes of
the w3 premise, and experiences heavy cluttering once several incidents occur
in the same general area.

One of the contributions of this thesis is a new visualization component – the
incident wheel – which attempts to satisfy the w3 premise within the context
of a world map. The incident wheel is a representation of a set of security
incidents occurring in the same geographical area, and presents the severity
and quantity of the incidents in the area. Through the use of zooming and
panning, the user is free to choose the granularity, which allows the incident
wheel to provide information about areas ranging from continents to single
cities or even neighborhoods.

The incident wheel has three properties, derived from Livnat et al’s w3

premise [50]. These are defined as follows:

(where) → (position in map)

(what) → (color/icon)

(when) → (angle)

Where Instead of placing security incidents directly in the map, the oc-
currence of an incident will either spawn a new incident wheel, or attach
the incident to a previously created incident wheel, depending on whether a
wheel was covering the location of the new incident or not.

The wheel spans a certain geographical area, determined by the zoom level
of the surrounding map, and contains all incidents which occurs within that
region in a defined time frame. Once the last incident leaves the time frame,
the incident wheel disappears. As a consequence, the world map will, at any
given time, be populated by a set of incident wheels, all containing one or
more incidents.

54 4. LogWheels

Time
(when)

Incidents

Severity
(what)

Start / End point
Position
(where)

Figure 4.5: The incident wheel (not to scale)

What As indicated by the name, the body of the incident wheel is a circle.
The inner area of the circle is used to give a rough classification of the
incidents the wheel contains. Since the wheel can contain several different
incidents, the classification must be a function converting an incident set to
a single parameter.

The recommended function is maximum severity, that is, how severe is the
worst incident in this area. This allows users to rule out insignificant incident
wheels, and rather investigate the serious ones further.

Within the limited space, a small icon or letter can be placed in the center
of the circle. Alternatively, color can be used to separate different classes.
An example can be to place the number of incidents in the wheel, as it can
be hard to count incidents in a populated area.

When Along the circumference of the circle, smaller dots are used to rep-
resent incidents. Each incident contained by the wheel is given a separate
dot. This gives a visual representation of incident quantity in a geographical

4.4. Visualization 55

region: the more dots, the more incidents.

When an incident occurs, the dot is placed at the top of the circle. As time
passes, the dot rotates clockwise around the circumference, until it ends up in
the topmost point again, and disappears. This mechanism has the advantage
of using the well known clock metaphor, and the visualization can benefit
greatly from using an interval corresponding to one of the clock hands, such
as 12 hours, 60 minutes, or 60 seconds.

The movement is given by a simple parametric function:

(x, y) = (−r cos
[

2πt
T

+ π
2

]
, r sin

[
2πt
T

+ π
2

]
), t = [0, T]

The time frame T depends on how many incidents are registered by the
system, and should be configurable or automatically adjusted by the system.

Example An incident wheel is illustrated in figure 4.5. The wheel is shown
out of context, but would be placed in a map to illustrate the geographical
position of its contained incidents.

This wheel contains five incidents, each represented by a black dot. The top
left dot is the oldest incident, which will disappear as soon as it hits the
topmost mark. The rightmost dot is the most recent. Assuming a one hour
rotation cycle, the incidents happened roughly 13, 22, 29, 38, and 54 minutes
ago. The color of the central area can be used to indicate the severity of the
most severe incident, leaving a quick impression of whether this is routine
log records or if something serious may have happened.

The combination of the world map and the incident wheels thus fulfills the
w3 premise [50]. By a single glance on a computer screen, it is possible to
detect where security incidents have occurred in a given time frame, when
they happened, and what they are, in terms of severity to the system being
observed.

This component therefore serves as a complete implementation of the overview
stage on Shneiderman’s information seeking mantra, thereby utilizing the hu-
man brain’s perceptual abilities [69].

56 4. LogWheels

4.4.3 Threat History

The world map and incident wheel fulfills the w3 premise, but does not
support all of Shneiderman’s recommended tasks. The main weakness of the
overview is its limited time frame. If the time span is too long, the map will
clutter up. Unfortunately, in most networks this time frame will be shorter
than the intervals at which logs are observed.

For example, if the specified time frame is 60 minutes, someone must look
at the screen at least once per hour all around the clock to avoid missing
incidents.

The solution is to allow investigation of former states. The ’history’ task
can be satisfied if the user is given a brief overview of the system state over
time, and is allowed to investigate these former states. Watching a former
state replaces the real-time map with the state of the system at the specified
moment. Once the state has been investigated, the user can go back to ’live
mode’ for an animated overview of the current status.

To represent the threat history, a simple chart is sufficient. A histogram or a
line graph can both be used. The time frame should be significantly longer
than the time span of the incident wheels, and should give a reasonable time
for user observations. A good example is 72 hours, which allows an incident
to occur on Friday afternoon, and still be discovered by Monday morning.

4.4.4 Gauge

Finally, the simplest component used in this solution is the gauge. A gauge
is a simple measure of activity in the system, and it works by adding up and
displaying the number of incidents in the incident wheel time frame. If the
map gets cluttered, the gauge can be used to see a quantitative representation
of activity in the system.

The main advantage of the gauge is the simple pattern seeking advantage.
Users will quickly learn what a normal number is, and will be alerted if the
current value deviates from the norm.

4.5. User Interface 57

4.5 User Interface

The previous section described the visual transformation, this section pro-
ceeds by walking through the possible view transformations. LogWheels uses
Shneiderman’s information seeking mantra, and creates three panels, one for
each phase: overview, zoom-and-filter, and details on demand.

4.5.1 Overview

The overview screen contains the three custom visualization components: (1)
the world map with incident wheels, (2) the threat history, and (3) the gauge.
A recommended setup is provided in figure 4.6.

In this view, the user should be able to get an overview of the entire collection,
limited by the pre-determined time frame [69]. It also provides basic filter-
and-zoom capabilities, by allowing the user to change the time frame to
study or using zoom-and-pan to determine the incident wheel granularity
(i.e. change which parts of the current incident set which should be in focus).

The following interactivity should be supported by the overview panel:

• It should be possible to zoom and pan the map, using industry standard
mouse motions. The scroll wheel should zoom, while dragging the map
around should pan. When the viewport is modified, incident wheels
must update, and include only the events occurring in their new area.
Thus, zooming in on an incident wheel may cause it to split in to several
wheels, each spanning a smaller geographical area.

• Clicking on the threat history should cause the map to change into a
historical view, showing the status at the moment the user selected.
Clicking in the rightmost area of the history graph should force the
application back in live mode, where wheels are displayed in real time.

The overview provides a starting point, in addition to provide simple filtering
in the spacial and temporal domain.

58 4. LogWheels

12

Overview

Overview

Relate

History

Zoom
Filter

Zoom
Filter

Figure 4.6: Overview panel with tasks

4.5.2 Filter View

The filter view corresponds to Shneiderman’s zoom-and-filter, and allows
detailed filtering to be performed [69].

By default, the view should display the largest amount of incidents which is
reasonable to keep in memory. A simple list displays the key parameters of
the incidents, and allows basic operations such as sorting and scrolling.

In addition to the list, a search panel allows the user to enter parametrical
constraints, and filter the list. Table 4.6 provides a minimum set of parame-
ters to be supported.

It should be possible to combine some or all filter constraints. By default,
the value of each component should not affect the list, so that the list is only
filtered by the constraints directly entered by the user.

No interactivity is required, besides the opportunity to input search terms
and perform a search action.

4.5. User Interface 59

Filter, Extract

Search

Overview

Figure 4.7: Filter panel with tasks

The purpose of the filter view is to allow a more detailed investigation of
incidents than the overview panel can. Using the list component allows more
data to be presented at once at the cost of a less attractive visualization and
the disappearance of pattern seeking opportunities.

The filter view is illustrated in figure 4.7.

Name Example
IP prefix "192.168."
Time between Two dates and times
Minimum severity "Warning"
Facility "sshd"
Message contains "root"

Table 4.6: Filter constraints

60 4. LogWheels

History

Details-on-demand

Relate History

Figure 4.8: Detail panel with tasks

4.5.3 Detail View

The detail view corresponds to Shneiderman’s details-on-demand [69]. When
a single security incident is chosen, a report is generated, containing all raw
data about the event, in addition to any relevant information from third
parties, incidents suspected to be related, and potentially links to sources of
further information.

Using browser like navigation, the detail view allows the user to “surf”
through the incident history, investigating a thread of incidents without leav-
ing the detail view.

In addition to details about the incident being on display, the report takes
advantage of the principles of temporal and spatial locality by providing
hyperlinks to other incidents which are close in time or caused by the same
agent. This gives the end user a quick overview of incidents which are likely
to be relevant.

4.5. User Interface 61

12
Search

Extract

Extract

Details-on-demand

Figure 4.9: Interpanel navigation

4.5.4 Interpanel Navigation

The natural navigational flow is to start in the overview panel, select an
incident wheel to get information about its events, select an incident of par-
ticular importance, and then move around in the detail view. The following
operations are possible:

• Clicking an incident wheel should open the filter view, with only the
events from that wheel displayed.

• Clicking on the gauge should have a similar effect, but for all incidents
occurring in the time frame given.

• Double clicking an event in the filter view should cause a report to be
generated and presented.

In addition to these actions, it should be possible to move between panels
freely, for instance using tabs.

Chapter 5

Proof-of-Concept

A prototype of LogWheels was developed in order to
demonstrate the ideas put forth, and provide a basis for
empirical tests in the future. This chapter presents the pro-
totype, and some use cases demonstrating how it can be used.

Section 5.1 presents the prototype, and the scenario
used in this chapter.

Section 5.2 briefly explains how a server can be config-
ured to serve the client.

Section 5.3 describes how LogWheels can be setup to
extend the infrastructure.

Section 5.4 provides screenshots of the prototype in ac-
tion, while walking through some common use cases for the
application.

64 5. Proof-of-Concept

5.1 Overview

In order to demonstrate LogWheels, a proof-of-concept client and a mock
server was developed in Java. The purpose of this prototype is to illustrate
the ideas put forth in this thesis, and serve as a basis for future empirical
tests. The software is not developed for production systems.

Two modules are attached to this report:

LogWheels Client
An almost full implementation of the specification. Not stable, and
lacking in some functionality, but should be complete enough to get an
impression of how the final product should “look and feel”.

Mock Server
Emulates a server, by producing simulated incidents. This allows simple
testing of the client in a controlled environment, without requiring any
configuration or honeypot activity. Through a graphical user interface,
the server allows its user to modify frequency of incidents, or generation
of special purpose events. Only HTTP traffic is supported.

A detailed instruction on how to execute the prototype can be found in
appendix A. Technical information about the software, and how the source
code can be modified, can be found in appendix B.

In this chapter, the client was used in combination with a virtual server to
simulate execution the entire log management infrastructure.

Scenario

By simulating the setup of a small startup company, the purpose of this
chapter is to demonstrate how a complete log management infrastructure can
be set up, where in the infrastructure LogWheels fit, and finally to provide
some specific use cases, illustrating how LogWheels can be used in everyday
situations.

5.2. Infrastructure 65

5.2 Infrastructure

Before using LogWheels, it’s necessary to implement a log management in-
frastructure. The details for this configuration is outside the scope of this
thesis, but a basic walkthrough is presented in order to demonstrate how an
organization would approach the problem.

5.2.1 Server Setup

A web server was set up using the LAMP paradigm – Linux (operating sys-
tem), Apache (web server), MySQL (relational database management sys-
tem), and PHP (dynamic web pages) – a standard open source software
stack for web servers. Using a popular distribution such as Ubuntu, these
services can all be installed during the OS installation routine [76].

Apache was configured to accept SSL traffic on port 443, with a self signed
certificate generated using OpenSSL [24]. A root folder for secure traffic was
created and protected using Basic Access Authentication [25]. Appendix C
details how the web server should be configured, and contains a simplified
version of the PHP script used to serve incidents to the client.

The log management infrastructure was set up on the same server using rsys-
log (see section 3.1). While this solution is not ideal, a server with low traffic
should be able to handle the load. Rsyslog is installed by default on Ubuntu,
the Linux distribution of choice. Ordering rsyslog to send incidents directly
to a MySQL database is done by installing the MySQL plugin module, avail-
able in the aptitude package manager as ’rsyslog-mysql’. The following lines
were added to /etc/rsyslog.conf [30]:

$ModLoad ommysql

. :ommysql :127.0.0.1 , Syslog ,rsyslog ,<chosen password >

After restarting the rsyslog service, incidents should be stored in the Syste-
mEvents table in the Syslog database, as seen in figure 5.1.

66 5. Proof-of-Concept

Figure 5.1: Excerpt from rsyslog’s MySQL database

5.2.2 Log Producers

Once the server is configured with all necessary software, the next step is
to secure it. In the context of LogWheels, the interesting question is which
hardware and software entities which should be chosen to produce logs.

Available log producers include intrusion detection systems, intrusion pre-
vention systems, authentication servers, routers, and firewalls [46].

Any organization running network connected hardware must analyze their
system for vulnerabilities, and take the necessary precautions to discover
malicious incidents. The result of these incidents should include log records
being produced.

Most log producers should output syslog data by default. This data must be
filtered, sent to the database, then retrieved by the client.

Example

A simple example is the use of secure shells. The Secure Shell Protocol (SSH)
allows remote connections to a server through a secure channel [80], and is a
common way to perform work on a server which is located remotely or not

5.2. Infrastructure 67

connected to the necessary input and output devices. When allowing remote
clients to login to a server, it’s vital to monitor the tool for attempted attacks.

By default, the sshd daemon will output syslog data using the facility AUTH
and the log level INFO [4]. The daemon outputs routine information, but
also important information about failed login attempts. By using the fil-
tering techniques mentioned in the next section, it’s possible to isolate the
interesting properties of sshd, such as:

Failed login
Failed password for <user > from <ipaddress > port <port > ssh2
Successful login
Accepted password for <username > from <ipaddress > port <port > ssh2

Aggregation techniques can be used to avoid overflow during a brute force
attack, in which a series of usernames and passwords are tried in sequence
in search for a valid combination [33].

In LogWheels, it would be beneficial to know when someone is trying to
login to your ssh server, but perhaps even more important to know when
it succeeds. If only one or two administrators are supposed to have access
to the server, any successful login not hailing from the organization’s home
town warrants immediate attention. False positives would be easy to discard.
By applying the proper filters, the system administrators will know within
seconds if someone attempts to login to their server, and if they succeed, a
more severe warning will be made, potentially resulting in an SMS alert.

Due to the remote monitoring paradigm, even a successful attacker must be
able to clean the logs before they are sent to the client, or to break all the
machines hosting clients as well. The attacker can obviously kill or replace the
LogWheels server, but will have to race time to complete this task before an
alert is sent to the system administrator. Alerts should not depend on client
requests, but be handled in real-time by the log management infrastructure.

While monitoring the sshd daemon is a good idea, it’s far from sufficient
by itself. A proper analysis should be made, ensuring that the most critical
systems are being monitored, and that necessary incidents are being reported
to the LogWheels interface. External penetration testing is recommended.

68 5. Proof-of-Concept

5.2.3 Filter Configuration

Using the default configuration, everything received by rsyslog is logged. This
is not desirable for a monitoring system, as loads of uninteresting routine
messages will be stored. The client can filter on severity, but it’s a waste of
server resources to maintain a database of uninteresting details.

A simple filter can be added to the log management infrastructure, as de-
scribed by section 2.2.4. Filtering parameters can be facility, severity, content
of text message or similar attributes. The user of LogWheels can perform
their own filtering in the GUI, this filtering permanently discards information
we have determined to be irrelevant.

Two main approaches exist for filtering [67]:

Blacklist Block entities based on signatures or heuristics

Whitelist Accept only pre-approved entities

The whitelist approach is unlikely to be a satisfactory solution for most
LogWheels scenarios. While they remove all noise, the operator is at risk
of missing critical events the filter is unaware of. A blacklist approach will
cause much unnecessary noise at first, but after some tuning it should be
possible to remove everything but the interesting incidents.

A desirable expansion to the client is the opportunity to affect the filter
directly from the client, by marking a message as trivial, preventing it from
showing up again. This was not included in the prototypical specification,
but could be considered during the empirical phase of the project.

External or home made tools can be used for high quality filtering, but
it’s also possible to implement basic filter functionality directly in rsyslog,
through /etc/rsyslog.conf. An example is given below [29]:

:msg , regex , "Failed␣password␣.*␣ssh2"

5.3. LogWheels Setup 69

Using expression based filtering, it’s even possible to include conditional logic
and string operations on the log events [29]:

if $syslogfacility -text == ’AUTH’ and $msg startswith ’Failed ’ and
not ($msg contains ’127.0.0.1 ’) then <logsource >

In addition to filtering, it’s possible to add other techniques from section
2.2.4, such as normalization or aggregation, through configuration or tools.
This remains outside the scope of this report, and readers are directed to the
rsyslog documentation for more information on implementation.

The end result of this process should be a MySQL database continuously
being filled with the security incidents which are determined to be threats to
the system, and which should be fed to LogWheels for investigation.

5.3 LogWheels Setup

Installing and setting up LogWheels is a simple task once the log management
infrastructure is running correctly. A server wrapper must be developed to
fit the infrastructure, and once it’s in place, the client can be executed on
any device supporting Internet communication.

A simple server implementation can be found in appendix C. A more com-
prehensive server should be implemented as a part of the toolkit development
process described in section 7.2.

It’s recommended to set up different nodes, and configure these to have
different profiles. For instance, a client running on a mobile phone could
be limited to emergencies, while an office computer could be responsible for
handling all threats. The client is available in prototype form. It currently
only support Java enabled devices with a resolution of more than 1024x768,
which excludes mobile phones, but implementing other clients adhering to
the standard could be part of the toolkit development process described in
section 7.2.

70 5. Proof-of-Concept

5.4 Use Cases

This section will walk through the daily routine of the organization, and
include screenshots of the proof-of-concept.

5.4.1 Daily Routine

For a small organization, it’s common to assume that the office is populated
between 8:00 and 17:00, but not around the clock. Inside the office, a spare
monitor can be used to display LogWheels all day, with full coverage of all
incidents. Employees can glance at the screen whenever they walk by, looking
for unexpected behaviour.

Alternatively, the person in charge of server security can have a similar setup
on his own computer. At least once per hour, he is required to look at the
application, and go through suspicious incidents.

In addition, the system administrator can install LogWheels at home, and
configure the application only to display critical incidents. That way the
chance of discovering incidents increase, without bothering people at home
regularly.

It’s also recommended to have a system for SMS or e-mail alerts on emer-
gencies, but this functionality would be part of the log management infras-
tructure, not LogWheels.

Every morning, the system administrator should walk through the past 24
hours using the history graph. On Monday mornings, the entire weekend
should be examined. If no alerts have arrived, it’s unlikely that the system
has been broken, but it’s still worthwhile looking through the history, trying
to find patterns or suspicious behaviour.

Technically inclined members of the organization should be encouraged to
play with LogWheels, learning about the system and the threats it’s exposed
to. By setting up a LogWheels node in an open area, non-technical employees
can also inspect the screen when available, warning the system administrator
if something is wrong.

5.4. Use Cases 71

5.4.2 Screenshots

Figure 5.2: Overview screen

72 5. Proof-of-Concept

Figure 5.3: Closeup on Europe

Figure 5.4: Closeup on history and gauge

5.4. Use Cases 73

Figure 5.5: Filter screen

Figure 5.6: Report screen

Chapter 6

Discussion

This chapter contains reflections on how the prototype met
the project goals, which known weaknesses the proposal
contains, and which aspects it succeeds to respond to.

Section 6.1 describes how the project goals from sec-
tion 1.2 were met.

Section 6.2 proceeds by describing some of the limita-
tions of the system, and how these can be solved.

76 6. Discussion

6.1 Goal Achievement

The goals of this thesis were to investigate log usability, propose a new mech-
anism to improve the usability of security incident logs, and develop a proof-
of-concept of the ideas proposed.

PG1 – Examine the state of the art in security log usability

The theoretical study (chapter 2) covers the fundamentals of security logs,
the technical aspects of establishing a log management infrastructure, the
challenges relating to situational awareness and security usability, and fi-
nally a walk-through of usability improving techniques, including the field of
visualization and human-computer interaction.

The practical study (chapter 3) addresses log management infrastructure
implementations, with a particular focus on visualization components and
solutions. A deliberate decision was made to avoid investigating specific
implementations of ideas that would not be used in the development of Log-
Wheels, such as data normalization or report generation.

PG2 – Propose a mechanism to improve the usability of security
logs

Two mechanisms were proposed (chapter 4): a remote monitoring solution
named LogWheels, and a new visualization component named the incident
wheel. The incident wheel is the core component of LogWheels, resulting in
a novel contribution to the field of security visualization.

Several conceptual drivers were listed in section 4.1. These were firmly rooted
in the theoretical study from chapter 2 and 3, assuring that the ideas pro-
posed were based on a fundament of high quality research.

The incident wheel presents three key dimensions of security incidents: ’what’,
’when’, and ’where’, which was proposed by Livnat et al. as sufficient to
improve situational awareness [50]. When combined with Shneiderman’s in-

6.1. Goal Achievement 77

formation seeking mantra – “overview first, zoom and filter, then details-on-
demand” [69] – the result is a solution offering both high level situational
awareness and low level knowledge of specific incidents.

After being exposed to the empirical exploration and feasibility study rec-
ommended in section 7.2, and adjusted according to the results found, Log-
Wheels should have potential to be a useful addition to the security toolchain
of small organizations.

PG3 – Develop a proof-of-concept, illustrating the ideas proposed

A proof-of-concept client and a mock server was developed (chapter 5), using
a total of 3116 lines of Java code.

The client is an almost complete implementation of the LogWheels client.
It lacks some functionality, particularly in the report details, but is com-
prehensive enough to illustrate all the ideas proposed and give a feeling of
how the application will work. As no graphical designer was involved in the
process, the user interface is still somewhat rough, but the basic design and
interaction interface adhere to the ideas proposed.

As LogWheels still requires considerable configuration of the infrastructure
to be usable, in addition to the requirement of security incidents occurring
on the server under observation, it was decided to implement a mock server,
which simulates security incidents. The mock server uses simple statistics to
generate these events. The model is not rooted in any empirical studies, but
by configuring the main parameters it should be possible to simulate both
low and high traffic servers.

Despite the lack of a proper LogWheels server implementation, the client
should be able to communicate with such a server without any changes.
This is in part demonstrated by chapter 5, where a virtual server was setup
and rsyslog messages were transmitted directly to an external LogWheels
client. This experiment can be replicated by interested parties, but was not
feasible to include as an attachment to the report.

78 6. Discussion

6.2 Limitations

Methodological Limitations

Due to the time constraints described in section 1.3, it was infeasible to
bring this project beyond the idea and mockup phase. The ideas proposed
are based on a foundation of theoretical work by leading academics in the
field, but this is not a replacement for an empirical exploration.

The prototype must be subjected to a feasibility study, determining the prac-
ticality of implementing the solution in a real-world scenario, in addition to
an empirical study searching for measurable effects of using the visualiza-
tion scheme. As Shneiderman and Plaisant writes, “information visualiza-
tion must be more than ’cool’; they have to provide measurable benefits
for realistic tasks” [69]. The prototype is constructed using well-documented
principles, but it’s still necessary to empirically test the solution before going
any further.

A roadmap for this process is outlined in section 7.2.

Dependency on IP Addresses

The visualization scheme relies on geographically distributed incidents, which
again relies on the availability of an IP address causing each security incident.
Unfortunately, many log producers do not include an IP address at all, while
others present the IP address as part of the textual description.

Extracting the IP address from a textual message causes an overlap of func-
tionality with the log management infrastructure (consolidation), and should
be considered when selecting a log management infrastructure to be used in
a complete software solution. Compensating for the lack of IP addresses is
a bigger problem. In the prototype, unknown events are drawn internally
– that is, in the location of the server – but if too many incidents occur in
the same place, the visualization scheme provides less value, as the pattern-
seeking abilities are poorly utilized.

6.2. Limitations 79

In addition, attackers using zombies or proxies will not be discovered by the
system. This is not a serious problem for the visualization solution, but a
more general problem in the field of incident investigations.

Scalability Limitations

The proposal was designed to be appropriate for small organizations, but
will not be applicable for larger systems. Too many incidents will cause the
visualization to clutter up, and the benefits described will no longer apply.
This is a weakness to the proposal as a universal solution, but is inherent in
the system by design.

This problem is common in visualization solutions, as there is a practical
limit of how much information it’s possible to represent in the space limited
by a computer screen. While more aggressive compression or normalization
techniques can be applied, this is likely to make the visualization less intuitive
and less usable.

The Challenge of Configuration

While LogWheels may increase the usability of consolidated security logs, it
can not determine which incidents are actually important. Most log produc-
ers come with their own set of standards, but even if a toolkit was created,
integrating LogWheels with an existing log management infrastructure, they
would only be able to provide a decent default setting.

Different organizations have different needs, and should prioritize incidents
differently. This contradicts the purpose of LogWheels, which is to provide a
“black box” approach to security log monitoring. Simplifying the monitoring
process too much may in fact be detrimental to the security, as it may cause
a false sense of security even if the tool misses important incidents.

In a final product, it’s important to guide the user towards a fitting configu-
ration, while acknowledging that some properties can not be determined for
every organization. Users should therefore be encouraged to include various
log sources.

Chapter 7

Conclusion

The final chapter concludes the project, and provides a
roadmap for further work.

Section 7.1 consists of the statements of inference made
during the report, and summarizes the contributions made
to the field of security usability and security visualization.

Section 7.2 contains a roadmap for further work on the
prototype, and suggests a few project ideas ranging from
undergraduate level to larger graduate projects.

82 7. Conclusion

7.1 Conclusion

The motivational driver for this thesis was the desire to help smaller or-
ganizations with the log monitoring process, leading them towards higher
situational awareness and thus a more secure system. The core idea was
to present the content of security logs holistically within the context of a
well-designed presentation interface, encouraging frequent use.

Security logs contains much of the information needed to protect a system,
but mundane plain text presentations and seemingly arbitrary inspection rou-
tines does not provide satisfactory situational awareness. In order to achieve
the necessary system comprehension, principles from the fields of security us-
ability, visualization, and human-computer interaction were combined, and
a set of conceptual drivers for a visualization solution were identified.

Using these principles, and inspiration from state of the art solutions, two
new concepts were proposed:

LogWheels is a security log visualizer, supporting remote monitoring
of security incident logs through visualization and user interaction. A
suggested architecture and a communication protocol were designed,
and the overall visualization scheme presented.

The Incident Wheel is a new security visualization component. The
component presents three key dimensions of security incidents, laying
the foundation for high situational awareness through an intuitive graph-
ical display.

By developing a proof-of-concept, the ideas can be demonstrated using real
or simulated security data. By exposing the proof-of-concept to an empirical
exploration, it is the hope of the author that the idea eventually results in
a usable toolkit, guiding smaller organizations towards higher system com-
prehension, and inspiring them to delve deeper into the world of information
security.

7.2. Further Work 83

7.2 Further Work

While the solution is based on several published theoretical sources, it has
yet to be subjected to real world applications. In order to transfer the ideas
presented in this thesis into a usable security solution, three main steps
remain, as described in the sections below.

Empirical Testing

An idea has been proposed, but as Shneiderman and Plaisant makes painfully
clear, it’s not enough for a visualization to be “cool”, its positive impact must
be documented through measurable parameters [69].

For this solution, the question to ask is whether using the system will make
the organization’s computing systems more secure. A good first step is to in-
vestigate whether users intuitively understand the visualization abstractions,
whether they are able to pick up pattern deviations as theory suggests, and
whether they actually pay attention to the tool in a real world setting.

Performing paper prototyping or laboratory tests of the interface can be
formulated as an undergraduate school assignment. Creating a framework
for observation in the wild, and following up with a real world example, is
suggested for a more comprehensive graduate project.

In particular, it would be interesting to expose LogWheels to the Situational
Awareness Global Assessment Technique (SAGAT), which examines the sys-
tem from the operator’s point of view [21]. Jean Scholtz has presented several
metrics for evaluating information visualizations empirically, and his works
are recommended for the designers of an empirical test [65].

Parts of the empirical study should be an incremental improvement of the
ideas presented. The proof-of-concept is open source, and future researchers
are encouraged to modify the configuration parameters and presentation com-
ponents, adapting the application to its users, not the other way around.

84 7. Conclusion

Feasibility Study

Another potential show stopper is the question of whether the solution is fea-
sible for real world applications. The architecture should be able to handle
large loads, as demonstrated by the Internet every day, but the visualization
has a window of event frequency which is likely to be surpassed by organiza-
tions once they hit a critical amount of security log data.

Collecting data from various startup companies can assist a student in the
task of measuring whether the visualization holds for average organizations.
The underlying log management infrastructure can be used to add or remove
data is most cases, but if the visualization is unable to provide any bene-
fit for the most important incidents, it’s unlikely to be of any use to the
organization.

A recommended task for a student is to measure for which frequency window
the visualization provides any benefit, and compare this value to the average
activity on the servers of startup companies on university campus or in a
startup incubator.

Toolkit Integration

The solution is set to extend an existing log management infrastructure. At
the same time, it should at the same time not be neutral of the underlying
infrastructure, as this would cause a reimplementation of infrastructure tasks.

However, a system designed to be simple to install and use can not require
the user to setup a complete log management infrastructure and modify the
source code of the solution in order to adapt to the chosen tool chain.

Once the architecture and visualization scheme has been empirically verified,
the final step should be to integrate it with an existing tool chain and aim
for a single installation tool, covering all the needs of a small organization.

Which log management infrastructure is suitable and how to properly inte-
grate the solution, is a recommended task for further examination.

Bibliography

[1] Syslog Wiki. http://www.syslog.org/wiki/Main/Tools. Retrieved February 2011.

[2] syslog-win32. http://syslog-win32.sourceforge.net/. Retrieved March 2011.

[3] syslogd(8) - Linux man page. http://linux.die.net/man/8/syslogd. Retrieved
March 2011.

[4] OpenSSH SSH daemon config file – Linux man page, September 1999.
Retrieved from http://linux.die.net/man/5/sshd_config on May 2011.

[5] Mohammed AlZomai, Bander AlFayyadh, Audun Jøsang, and Adrian
McCullagh. An Experimental Investigation of the Usability of Trans-
action Authorization in Online Bank Security Systems. In Ljiljana
Brankovic and Mirka Miller, editors, Sixth Australasian Information
Security Conference (AISC 2008), volume 81 of CRPIT, pages 65–73,
Wollongong, NSW, Australia, 2008. ACS.

[6] George Apostolopoulos, Vinod Peris, Prashant Pradhan, and Deban-
jan Saha. Securing electronic commerce: reducing the SSL overhead.
Network, IEEE, 14:8–16, August 2000.

[7] Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An
Approach to UNIX Security Logging. In Proc. 21st NIST-NCSC Na-
tional Information Systems Security Conference, pages 62–75, 1998.

[8] M. Pauline Baker and Donald Hearn. Computer Graphics with OpenGL.
Pearson Prentice Hall, Upper Saddle River, NJ 07458, 3 edition, 2004.
International Edition.

http://www.syslog.org/wiki/Main/Tools
http://syslog-win32.sourceforge.net/
http://linux.die.net/man/8/syslogd
http://linux.die.net/man/5/sshd_config

86 BIBLIOGRAPHY

[9] Tim Belcher and Elad Yoran. Riptech Internet Security Threat
Report: Attack Trends for Q1 and Q2 2002. II, July
2002. Retrieved from http://eval.symantec.com/mktginfo/enterprise/white_papers/

ent-whitepaper_symantec_internet_security_threat_report_ii.pdf May 2011.

[10] Tim Berners-Lee, Roy T. Fielding, James Gettys, Jeffrey C. Mogul,
Henrik Frystyk Nielsen, Larry Masinter, and Paul J. Leach. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard). Technical
report, Internet Engineering Task Force, June 1999.

[11] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform Re-
source Locators (URL). RFC 1738 (Proposed Standard). Technical re-
port, Internet Engineering Task Force, December 1994.

[12] Engin Bozdag, Ali Mesbah, and Arie van Deursen. A Comparison of
Push and Pull Techniques for AJAX. In Proceedings of the 2007 9th
IEEE International Workshop on Web Site Evolution, pages 15–22, June
2007.

[13] Matt Cooper, Yuriy Dzambasow, Peter Hesse, Susan Joseph, and
Richard Nicholas. Internet X.509 Public Key Infrastructure: Certi-
fication Path Building. RFC 4158 (Informational). Technical report,
Internet Engineering Task Force, September 2005.

[14] Douglas Crockford. The application/json Media Type for JavaScript
Object Notation (JSON). RFC 4627 (Informational). Technical report,
Internet Engineering Task Force, July 2006.

[15] Cyberoam. Cyberoam iView - Open Source SIEM. http://sourceforge.net/

projects/cyberoam-iview/. Retrieved March 2011.

[16] Christopher Davis, Paul Vixie, Tim Goodwin, and Ian Dickinson. A
Means for Expressing Location Information in the Domain Name Sys-
tem. RFC 1876 (Experimental). Technical report, Internet Engineering
Task Force, 1996.

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_symantec_internet_security_threat_report_ii.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_symantec_internet_security_threat_report_ii.pdf
http://sourceforge.net/projects/cyberoam-iview/
http://sourceforge.net/projects/cyberoam-iview/

BIBLIOGRAPHY 87

[17] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version
6 (IPv6). RFC 2460 (Draft Standard). Technical report, Internet Engi-
neering Task Force, December 1998.

[18] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS)
Protocol. RFC 5246 (Proposed Standard). Technical report, Internet
Engineering Task Force, August 2008.

[19] Curtis E. Dyreson and Richard T. Snodgrass. Timestamp semantics and
representation. Information Systems, 18(3):143–166, February 1993.

[20] Mica R. Endsley. Situation Awareness Analysis and Measurement, chap-
ter 1, pages 3–28. CRC Press, 10 Industrial Avenue, Mahwah NJ 07430,
2000.

[21] Mica R. Endsley. Designing for Situation Awareness in Complex System.
In Second intenational workshop on symbiosis of humans, artifacts and
environment, Kyoto, Japan, 2001.

[22] Eric Fitzgerald, Anton Chuvakin, Bill Heinbockel, Dominique Karg, and
Raffael Marty. Common Event Expression (CEE) Overview. Technical
report, The CEE Editorial Board, November 2010. Retrieved from http:

//cee.mitre.org/docs/Common_Event_Expression_Overview.pdf in January 2011.

[23] Python Software Foundation. 35.15. syslog — Unix syslog library rou-
tines – Python v2.7.1 documentation. http://docs.python.org/library/syslog.

html. Retrieved March 2011.

[24] The Apache Software Foundation. Apache SSL/TLS Encryption -
Apache HTTP Server. http://httpd.apache.org/docs/2.2/ssl/. Retrieved May
2011.

[25] The Apache Software Foundation. Authentication, Authorization and
Access Control - Apache HTTP Server. http://httpd.apache.org/docs/current/

howto/auth.html. Retrieved April 2011.

[26] John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott D.
Lawrence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart.

http://cee.mitre.org/docs/Common_Event_Expression_Overview.pdf
http://cee.mitre.org/docs/Common_Event_Expression_Overview.pdf
http://docs.python.org/library/syslog.html
http://docs.python.org/library/syslog.html
http://httpd.apache.org/docs/2.2/ssl/
http://httpd.apache.org/docs/current/howto/auth.html
http://httpd.apache.org/docs/current/howto/auth.html

88 BIBLIOGRAPHY

HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard). Technical report, Internet Engineering Task
Force, June 1999.

[27] Vegard Fremstad. Effektiv logganalyse i et heterogent driftsmiljø. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2009.

[28] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and Don’ts
of Client Authentication on the Web. In Proceedings of the 10th confer-
ence on USENIX Security Symposium, volume 10 of SSYM’01. USENIX
Association, August 2001.

[29] Rainer Gerhards. Filter Conditions - rsyslog.conf rsyslog. Adiscon, 2008.
Retrieved from http://www.rsyslog.com/doc/rsyslog_conf_filter.html in May 2011.

[30] Rainer Gerhards. Writing syslog messages to MySQL. Adiscon, Febru-
ary 2008. Retrieved from http://www.rsyslog.com/doc/rsyslog_mysql.html in April
2011.

[31] Rainer Gerhards. The Syslog Protocol. RFC 5424 (Proposed Standard).
Technical report, Internet Engineering Task Force, March 2009.

[32] Rainer Gerhards. An Introduction to Syslog. http://www.monitorware.com/

common/en/seminarsonline/intro-syslog.php, March 2011. Retrieved March 2011.

[33] Dieter Gollmann. Computer Security. John Wiley & Sons, LTD, 111
River Street, Hoboken, NJ 07030, 2 edition, 2006.

[34] Google. google-gson - A Java library to convert JSON to Java objects
and vice-versa - Google Project Hosting. http://code.google.com/p/google-gson/.
Retrieved April 2011.

[35] Andreas Hegna (Watchcom Security Group). Personal interview, Jan-
uary 2011.

[36] Marc Grégoire and Luc Beaudoin. Visualisation for Network Situa-
tional Awareness in Computer Network Defence. In Visualisation and
the Common Operational Picture, 2005.

http://www.rsyslog.com/doc/rsyslog_conf_filter.html
http://www.rsyslog.com/doc/rsyslog_mysql.html
http://www.monitorware.com/common/en/seminarsonline/intro-syslog.php
http://www.monitorware.com/common/en/seminarsonline/intro-syslog.php
http://code.google.com/p/google-gson/

BIBLIOGRAPHY 89

[37] Bamba Gueye, Steve Uhlig, and Serge Fdida. Investigating the impre-
cision of IP block-based geolocation. In Proceedings of the 8th interna-
tional conference on Passive and active network measurement, PAM’07,
2007.

[38] Andreas Hegna. Visualizing Spatial and Temporal Dynamics of a Class
of IRC-Based Botnets. Master’s thesis, Norwegian University of Science
and Technology, 2010.

[39] Hewlett-Packard. News release: HP to Acquire ArcSight. http://www.hp.

com/hpinfo/newsroom/press/2010/100913xa.html, September 2010. Retrieved March
2011.

[40] Ian Hickson. HTML5 - A vocabulary and associated APIs for HTML and
XHTML (W3C Working Draft). http://www.w3.org/TR/html5/the-canvas-element.

html#the-canvas-element, May 2011. Retrieved May 2011.

[41] James A. Hoagland. Audit Log Analysis Using the Visual Audit Browser
Toolkit. http://seclab.cs.ucdavis.edu/projects/awb/Visual.Audit.Browser.html, July
1995. University of California, Davis.

[42] Debra G. Jones and Mica R. Endsley. Sources of situation awareness
errors in aviation. In Aviation, Space, and Environmental Medicine,
volume 67, pages 507–512, 1996.

[43] The jQuery Project. jQuery: The Write Less, Do More, JavaScript
Library. http://www.jquery.com/. Retrieved April 2011.

[44] Audun Jøsang, Bander AlFayyadh, Tyrone Grandison, Mohammed Al-
zomai, and Judith McNamara. Security usability principles for vulner-
ability analysis and risk assessment. In The Proceedings of the Annual
Computer Security Applications Conference (ACSAC 07), pages 269–
278, Miami Beach, FL, December 2007.

[45] Audun Jøsang, Mohammed AlZomai, and Suriadi Suriadi. Usability and
Privacy in Identity Management Architectures. In Proceedings of the
fifth Australasian symposium on ACSW frontiers - Volume 68, ACSW
’07, pages 143–152, Ballarat, Australia, 2007.

http://www.hp.com/hpinfo/newsroom/press/2010/100913xa.html
http://www.hp.com/hpinfo/newsroom/press/2010/100913xa.html
http://www.w3.org/TR/html5/the-canvas-element.html#the-canvas-element
http://www.w3.org/TR/html5/the-canvas-element.html#the-canvas-element
http://seclab.cs.ucdavis.edu/projects/awb/Visual.Audit.Browser.html
http://www.jquery.com/

90 BIBLIOGRAPHY

[46] Karen Kent and Murugiah Souppaya. Guide to Computer Security Log
Management. Special Publication 800-92, National Institute of Stan-
dards and Technology, Gaithersburg, MD, September 2006.

[47] KIWI. Kiwi Log Viewer | Log Analyzer | Kiwi Syslog. http://www.kiwisyslog.
com/kiwi-log-viewer-overview/. Retrieved March 2011.

[48] Kiran Lakkaraju, William Yurick, and Adam J. Lee. NVisionIP: Net-
Flow Visualization of System State for Security Situational Awareness.
In Proceedings of the 2004 ACM workshop on Visualization and Data
Mining for Computer Security, VizSEC/DMSEC, pages 65–72. ACM,
2004.

[49] Yarden Livnat, Jim Agutter, Shaun Moon, Robert F. Erbacher, and
Stefano Foresti. A Visual Paradigm for Network Intrusion Detection. In
In Proceedings of the 2005 IEEE Workshop on Information Assurance
And Security, pages 92–95. IEEE Computer Society, 2005.

[50] Yarden Livnat, Jim Agutter, Shaun Moon, and Stefano Foresti. Vi-
sual Correlation for Situational Awareness. In Proceedings of the 2005
IEEE Symposium on Information Visualization, pages 95–102, Wash-
ington DC, November 2005. IEEE Computer Society.

[51] Chris Lonvick. The BSD syslog Protocol. RFC 3164 (Informational).
Technical report, Internet Engineering Task Force, August 2001.

[52] Carsten Maartmann-Moe. Forensic Key Discovery and Identification.
Master’s thesis, Norwegian University of Science and Technology, 2008.

[53] CRN Magazine. SIEM: A Market Snapshot. http://www.crn.com/news/security/

197002909/siem-a-market-snapshot.htm, February 2007. Retrieved March 2011.

[54] Phillip Q. Maier. Audit and Trace Log Management: Consolidation and
Analysis. Taylor & Francis Ltd, 6000 Broken Sound Parkway NW, Suite
300, Boca Raton, FL 33487, 2006.

[55] Raffael Marty. SecViz - Security Visualization. http://secviz.org/category/

image-galleries/graph-exchange. Retrieved February 2011.

http://www.kiwisyslog.com/kiwi-log-viewer-overview/
http://www.kiwisyslog.com/kiwi-log-viewer-overview/
http://www.crn.com/news/security/197002909/siem-a-market-snapshot.htm
http://www.crn.com/news/security/197002909/siem-a-market-snapshot.htm
http://secviz.org/category/image-galleries/graph-exchange
http://secviz.org/category/image-galleries/graph-exchange

BIBLIOGRAPHY 91

[56] Raffael Marty. Applied Security Visualization. Pearson Education, Inc,
501 Boylston Street, Suite 900, Boston, MA, 2008.

[57] Fuyou Miao, Yuzhi Ma, and Joseph Salowey. Transport Layer Security
(TLS) Transport Mapping for Syslog. RFC 5425 (Proposed Standard).
Technical report, Internet Engineering Task Force, March 2009.

[58] Geir Mork (Norman). Personal interview, March 2011.

[59] OSSIM. The Open Source SIEM. http://sourceforge.net/projects/os-sim/. Re-
trieved March 2011.

[60] Donald Pitts. Log Consolidation with syslog. Technical report, SANS
Institute, December 2000. Retrieved from http://www.syslog.org/wiki/uploads/

Main/log_consolidation_with_syslog.pdf in March 2011.

[61] Jon Postel. Internet Protocol. RFC 791 (Standard). Technical report,
Internet Engineering Task Force, September 1981.

[62] Eric Rescorla. HTTP Over TLS. RFC 2818 (Informational). Technical
report, Internet Engineering Task Force, May 2000.

[63] RSA. enVision. http://www.rsa.com/node.aspx?id=3170. Retrieved March 2011.

[64] rsyslog. The enhanced syslogd for Linux and Unix rsyslog. http://www.

rsyslog.com/. Retrieved March 2011.

[65] Jean Scholtz. Beyond Usability: Evaluation Aspects of Visual Analytic
Environments. In 2006 IEEE Symposium On Visual Analytics Science
And Technology, pages 145–150, 2006.

[66] BalaBit IT Security. syslog-ng - Multiplatform Syslog Server and Log-
ging Daemon. http://www.balabit.com/network-security/syslog-ng/. Retrieved
March 2011.

[67] Dave Shackleford. Application Whitelisting: Enhancing Host Secu-
rity. white paper on http://www.sans.org/reading_room/analysts_program/McAfee_09_

App_Whitelisting.pdf, October 2009. Sponsored by McAfee.

http://sourceforge.net/projects/os-sim/
http://www.syslog.org/wiki/uploads/Main/log_consolidation_with_syslog.pdf
http://www.syslog.org/wiki/uploads/Main/log_consolidation_with_syslog.pdf
http://www.rsa.com/node.aspx?id=3170
http://www.rsyslog.com/
http://www.rsyslog.com/
http://www.balabit.com/network-security/syslog-ng/
http://www.sans.org/reading_room/analysts_program/McAfee_09_App_Whitelisting.pdf
http://www.sans.org/reading_room/analysts_program/McAfee_09_App_Whitelisting.pdf

92 BIBLIOGRAPHY

[68] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxon-
omy for Information Visualizations. In Proceedings of the 1996 IEEE
Symposium on Visual Languages, Washington, DC, USA, 1996. IEEE
Computer Society.

[69] Ben Shneiderman and Catherine Plaisant. Designing the User Interface:
Strategies for Effective Human-Computer Interaction. Pearson Educa-
tion, Inc, 4 edition, 2005. International Edition.

[70] John Parr Snyder. Flattening the earth: two thousand years of map
projections. The University of Chicago Press, Chicago 60637, 1997.

[71] Syslog4j. Syslog4j: Complete Syslog Implementation for Java. http:

//www.syslog4j.org/. Retrieved March 2011.

[72] Cisco Systems. Cisco Security Monitoring, Analysis and Response Sys-
tem (MARS). http://www.cisco.com/en/US/products/ps6241/. Retrieved March
2011.

[73] Tetsuji Takada and Hideki Koike. Tudumi: Information Visualization
System for Monitoring and Auditing Computer Logs. International Con-
ference on Information Visualization, page 570, 2002.

[74] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphic Press LLC, Cheshire, Connecticut, 2 edition, 2001.

[75] Princeton University. WordNet: A Lexical Database for English. http:

//wordnetweb.princeton.edu/perl/webwn?s=log. Retrieved February 2011.

[76] Ubuntu wiki. ApacheMySQLPHP - Community Ubuntu Documenta-
tion. https://help.ubuntu.com/community/ApacheMySQLPHP. Retrieved May 2011.

[77] Yang Xie, Kyeong S. Jeong, Wei Pan, Arkady Khodursky, and
Bradley P. Carlin. A Case Study on Choosing Normalization Meth-
ods and Test Statistics for Two-Channel Microarray Data. Comparative
and Functional Genomics, 5, July 2004.

[78] Ka-Ping Yee. Aligning Security and Usability. IEEE Security and Pri-
vacy, 2:48–55, September 2004.

http://www.syslog4j.org/
http://www.syslog4j.org/
http://www.cisco.com/en/US/products/ps6241/
http://wordnetweb.princeton.edu/perl/webwn?s=log
http://wordnetweb.princeton.edu/perl/webwn?s=log
https://help.ubuntu.com/community/ApacheMySQLPHP

BIBLIOGRAPHY 93

[79] Xiaoxin Yin, William Yurick, and Michael Treaster. VisFlowConnect:
NetFlow Visualization of Link Relationships for Security Situational
Awareness. In Proceedings of the 2004 ACM Workshop on Visualiza-
tion and Data Mining for Computer Security, VizSEC/DMSEC. ACM,
2004.

[80] Tatu Ylonen. The Secure Shell (SSH) Protocol Architecture. RFC
4251 (Proposed Standard). Technical report, Internet Engineering Task
Force, January 2006.

[81] Mary Ellen Zurko and Richard T. Simon. User-Centered Security. In
Proceedings of the 1996 workshop on New security paradigms, NSPW
’96, pages 27–33, New York, NY, 1996. ACM.

Appendix A

User Guide

A mock server and a proof-of-concept client was developed in Java, and
should be runnable on any system with Java support and a resolution larger
than 1024x768. Tests have been performed in Windows 7, Mac OS X, and
Ubuntu 11.04, using 32- and 64-bit Java 1.6.0_17.

A.1 Installation

Both the client and the server are attached to this thesis. The zip file contains
source code, executable class files, all required static resources, and JavaDoc
in a web browsable format. To install the application, simply unzip the file
in any folder on the local file system.

A.2 Execution

In order to test the client, a compatible server must be available. It’s recom-
mended to use the mock server attached to this thesis, as the server maintains
full compatibility with the protocol while requiring zero configuration and no
need for malicious traffic.

1. Navigate to the LogWheels folder.

2. Execute the shell script mock-server.sh (on Mac OS or Linux) or win-
mock-server.bat (on Windows). This should launch a GUI.

96 A. User Guide

3. Start a server on your preferred port. Port 80 or 443 is recommended
if they are free on your system, otherwise 8080 is a commonly used
HTTP alternative.

4. If you want real time data updates, start a data generator or insert
your own incidents to the server database.

Once the server is running, the proof-of-concept client can be tested.

1. Navigate to the LogWheels folder.

2. Execute the shell script client.sh (on Mac OS or Linux) or win-client.bat
(on Windows). This should launch a GUI.

3. Enter the URL of the server, with port number. If you run the server
locally on port 8080, use http://localhost:8080/

4. Ignore the warning about the unencrypted connection. There is no
need to protect randomly generated data.

5. The client prompts for a username and a password. These are "admin"
and "test" respectively.

6. A new GUI window should open, with an overview screen displayed.
Navigate freely to inspect the implementation.

New incidents can be generated while the client is running. The default
polling interval is 10 seconds, meaning that your event should be visible in
the client within few seconds.

Run in Browser

For a simple test of the interoperability, any web browser can be used to
access the incident data.

1. Launch a web browser.

A.3. Troubleshooting 97

2. Enter the URL of the server. If you run the server locally on port 8080,
use http://localhost:8080/?action=version

3. The browser prompts for a username and a password. These are "ad-
min" and "test" respectively in this prototype.

4. This should display "LogWheels Prototype".

5. Enter another action to see the corresponding result.

A.3 Troubleshooting

Due to scope constraint, the application has not been subjected to any com-
prehensive tests. It’s not designed to handle unexpected input values, and
remains untested on most system configurations.

If the shell scripts are unable to launch the application, try to execute them
from the command line, rather than a graphical tool. The applications should
be launched by their respective bin/ directories, and a full Java command
can be found in the .sh or .bat file.

If any runtime error occurs, try to restart the application. If a specific Java
error occurs, modify the source code and recompile the project.

The application has been confirmed to work in Windows 7, Mac OS X, and
Ubuntu 11.04, using 32- and 64-bit versions of Java 1.6.0_17, on a stationary
Mac Pro and a Dell Inspiron 9400 laptop.

Appendix B

Implementation Details

The prototype was written in Java, and consist of 3116 lines of Java code,
distributed between two projects: the proof-of-concept client (2446 LOC)
and a mock server (670 LOC). This appendix contains an overview of the
source code, primarily for the client.

B.1 Folder Structure

The attached zip file contains two directories, one for each of the applica-
tions (client and server). Each of the directories consists of the following
subdirectories:

Name Function
bin/ Executable files (.class)
doc/ Browseable JavaDoc (.html)
img/ Images used in the GUI (.png, .jpg)
lib/ Java libraries (.jar)
src/ Java source code (.java)

Table B.1: Prototype directories

In addition, the client has a separate folder for the GeoIP database, used for
IP geolocation.

100 B. Implementation Details

B.2 Package Structure

The projects are placed in the packages ’no.ntnu.vegare.visualizer.client’ and
’no.ntnu.vegare.visualizer.server’ respectively. The class hierarchy for each
project is listed below:

Client package Description
auth View and controller for the authentication frames
config A single class for prototype configuration
connection Model and controller for HTTP(S) connection handling
db Model and controller for SQLite database interaction
main Model, view, and controller for the main GUI frame
.details Detail panel
.filter Filter panel
.overview Overview panel
.gauge Gauge component
.history History graph component
.map Map and incident wheel components

prototype Utility classes that are only relevant in the prototype
utils Utility classes for resources, time handling and ip geolocation

Table B.2: Client package structure

Server package Description
background Threads running in the background (server and generator)
db SQLite database implementation
gui User interface and user interaction
.panels The three main panels in the main frame

utils Utility classes for resource handling and data generation

Table B.3: Server package structure

B.3. Architecture 101

B.3 Architecture

The server was developed for simplicity, with the view and controller merged
in single classes, and a simple thread pool handling all background threads.
The architecture will not be examined any further, but should be simple to
grasp for anyone glancing through the main classes.

The client is based on the model-view-controller architectural pattern. In
this pattern, data is stored in model classes, the user interacts with the
application through view classes, and interaction is handled by controller
classes. The interaction follows the lines shown in figure B.1.

View Controller

Model

Figure B.1: Model-view-controller architectural pattern

Concurrency

In addition to the threads generated by the Java Virtual Machine, there are
four main threads running in the application at any given time:

1. The ServerPollDaemon polls the server for new updates at a specified
interval, and updates the database.

2. The MainController handles the main execution path of the process,
including the main GUI.

102 B. Implementation Details

3. A separate thread is used to animate the main canvas at a specified
number of frames per second.

4. Java Swing uses a separate thread to handle user interaction, and may
spawn separate threads behind the scene.

In addition, a separate thread is used for the authentication procedure in
the beginning of the application lifetime, but this is only executed once, and
never concurrently with other threads.

Main Code Path

The execution of the client is performed in four steps:
public static void main(String [] args) {

HttpsConnection conn = new HttpsConnection ();
AbstractLogDatabase db = new SQLiteDatabase ();

DataGenerator.createBacklog(db);

AuthController auth = new AuthController(conn);
auth.establishConnection ();

Thread th = new Thread(new ServerPollDaemon(conn , db));
th.setDaemon(true);
th.start ();

MainController main = new MainController(db);
main.launchGui ();

}

In the prototype, the very first step is to generate a history of generated log
data.

Second, an authenticated connection is made to the server. This is a blocking
method call, only returning when a connection is successfully established.

Third, the server poll daemon is constructed. This thread runs in the back-
ground, polling the server at an interval given by the configuration class, and
entering new log records in the database.

B.4. Libraries 103

Finally, the client GUI is launched. This module uses a model-view-controller
based architecture, presenting data from the database in real time, while
allowing user navigation between the different panels.

B.4 Libraries

The following external libraries were used during the development of the
prototype:

Name Function URL
SqliteJDBC In-memory database http://www.zentus.com/sqlitejdbc/

MaxMind GeoIP IP geolocalization http://www.maxmind.com/app/java

Commons Codec Base 64 coder http://commons.apache.org/codec/

google-gson JSON library http://code.google.com/p/google-gson/

JAX-WS HTTP server http://jax-ws.java.net/

Table B.4: External libraries used in prototype

The graphics used in the prototype were provided by the Tango Desktop
Project and the Mozilla Foundation, both public domain sources.

Java code lines were generated using David A. Wheeler’s ’SLOCCount’

http://www.zentus.com/sqlitejdbc/
http://www.maxmind.com/app/java
http://commons.apache.org/codec/
http://code.google.com/p/google-gson/
http://jax-ws.java.net/

Appendix C

Off-the-Shelf Implementation

As a side effect of choosing the HTTPS protocol, any compatible off-the-
shelf software can be used to implement the service. This appendix contains
a summary of how these tools can be used.

C.1 Server

Any scriptable, HTTPS compatible web server can be used. Apache (http:
//httpd.apache.org/), Lighttpd (http://www.lighttpd.net/), and Microsoft IIS (http:
//www.iis.net/) are popular choices.

The script should be placed in a secure folder. How to configure the web
server to use HTTPS is included in the documentation. In order to password
protect access to the server, Basic HTTP authentication is used. For apache,
this is done by creating a .htpasswd file with an encrypted user-password
combination:

htpasswd -c /usr/local/apache/passwd/passwords username

and the following command in the .htaccess file:

AuthType Basic
AuthName "Restricted␣Files"
AuthUserFile /path/to/.htpasswd
Require valid -user

http://httpd.apache.org/
http://httpd.apache.org/
http://www.lighttpd.net/
http://www.iis.net/
http://www.iis.net/

106 C. Off-the-Shelf Implementation

A script must be used to transfer a request into a set of JSON log entries.
A popular and easy-to-install example is PHP scripts, which are widely sup-
ported. It interacts natively with most popular database management sys-
tems, and does not require any configuration besides the installation.

Assuming a correctly setup rsyslog installation, the following PHP script is
in fact a fully usable server for the prototype client:

<?php

if (! isset($_GET[’timeFrom ’]) || !is_numeric($_GET[’timeFrom ’])
|| !isset($_GET[’timeTo ’]) || !is_numeric($_GET[’timeTo ’]))
{

die("Invalid␣parameters");
}

$link = mysql_connect("<host >", "<username >", "<password >");

if (! link) {
die("Could␣not␣connect:␣" . mysql_error ());

}

$selected = mysql_select_db("log", $link);

if (! $selected) {
die("Could␣not␣use␣database␣’log ’:␣" . mysql_error ());

}

$action = mysql_real_escape_string($_GET[’action ’], $link);
$minTime = (int)$_GET[’timeFrom ’];
$maxTime = (int)$_GET[’timeTo ’];
$minSev = (int)$_GET[’minSev ’];

if ($action == "update")
{

$json = "";

$query = sprintf("SELECT␣*," .
"UNIX_TIMESTAMP(DeviceReportedTime)␣as␣Time␣" .
"FROM␣␣␣SystemEvents␣" .
"WHERE␣␣UNIX_TIMESTAMP(DeviceReportedTime)␣>␣%d␣" .
"AND␣␣␣␣UNIX_TIMESTAMP(DeviceReportedTime)␣<=␣%d␣" .
"AND␣␣␣␣Priority␣<␣%d",

$minTime , $maxTime , $minSev);

$result = mysql_query($query);

while ($row = mysql_fetch_assoc ($result))

C.2. Client 107

{
$json .= "{";
$json .= "’id ’:␣" . $row[’ID’] . ’,␣’;
$json .= "’timestamp ’:␣" . $row[’Time’] . ’,␣’;
$json .= "’facility ’:␣" . $row[’Facility ’] . ’,␣’;
$json .= "’severity ’:␣" . $row[’Priority ’] . ’,␣’;
$json .= "’message ’:␣’" . $row[’Message ’] . "’";
$json .= "}\r\n";

echo $json;
}

}
else
{

echo "LogWheels␣Prototype";
}

mysql_close($link);

?>

Note that rsyslog does not guarantee a source IP address for every event, thus
the IP is excluded from this demonstration. The lack of an IP significantly
reduces the value of the visualization scheme. As a consequence of this, if the
log management infrastructure lacks IP addresses, the server should attempt
to extract them from the log messages or other sources.

The above PHP server would under no circumstance fulfill the requirements
of an actual organization, but it shows the minimum amount of work required
to setup a server which communicates effortlessly with the client, adhering
to the standard.

C.2 Client

All web browsers can be used to access any server supporting the full proto-
col. Because the protocol specified that JSON should be output rather than
HTML, the URL can not be accessed directly. JSON is, however, perfectly
adapted for the use of AJAX (asynchronous JavaScript and XML).

JavaScript can be used to asynchronously access the file, parse the JSON
and convert it to a modification on a HTML page. Using the open source

108 C. Off-the-Shelf Implementation

library JQuery (http://www.jquery.com/), the following lines of code fetches the
last log entries:

$.ajax({
url: ’<url >’,
username: ’<username >’,
password: ’<password >’,
success: function(result) {

// Load JSON incidents and display
},
error: function(result , status , errThrown) {

// Output error message
}

});

Displaying data according to the rules for the visual transformation is harder
in HTML than using the Java canvas. The new HTML5 standard supports
Canvas, but the technology is still immature, and only browsers released the
past few years supports the new standard.

Java applets can be used through a browser, but the technology is practically
obsolete by today’s web standards. A more popular approach is Flash.

http://www.jquery.com/

Appendix D

Syslog Details

Using the rsyslog ommysql module results in the following table:

CREATE DATABASE Syslog;
USE Syslog;
CREATE TABLE SystemEvents
(

ID int unsigned not null auto_increment primary key ,
CustomerID bigint ,
ReceivedAt datetime NULL ,
DeviceReportedTime datetime NULL ,
Facility smallint NULL ,
Priority smallint NULL ,
FromHost varchar (60) NULL ,
Message text ,
NTSeverity int NULL ,
Importance int NULL ,
EventSource varchar (60),
EventUser varchar (60) NULL ,
EventCategory int NULL ,
EventID int NULL ,
EventBinaryData text NULL ,
MaxAvailable int NULL ,
CurrUsage int NULL ,
MinUsage int NULL ,
MaxUsage int NULL ,
InfoUnitID int NULL ,
SysLogTag varchar (60),
EventLogType varchar (60),
GenericFileName VarChar (60),
SystemID int NULL

);

110 D. Syslog Details

Facility Description
0 kernel messages
1 user-level messages
2 mail system
3 system daemons
4 security/authorization messages
5 messages generated internally by syslogd
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 security/authorization messages
11 FTP daemon
12 NTP subsystem
13 log audit
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

Table D.1: Syslog facilities

111

Severity Description
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

Table D.2: Syslog severity levels

	Title Page
	List of Figures
	List of Tables
	Introduction
	Motivation
	Project Goals
	Project Scope
	Research Method
	Report Outline

	Background
	Security Logs
	Terminology
	Technical Infrastructure

	Log Usability
	Challenge
	Situational Awareness
	Security Usability
	Specific Techniques

	Visualization
	Foundations
	Visual Transformation
	View Transformation

	State of the Art
	Log Infrastructure
	Syslog
	SIEM Tools

	Visualization
	Standard Components
	Custom Components
	Solutions

	LogWheels
	Conceptual Drivers
	System Description
	Architecture
	Overview
	Modules
	Communication
	Data Structures
	Protocol
	Security

	Visualization
	World Map
	The Incident Wheel
	Threat History
	Gauge

	User Interface
	Overview
	Filter View
	Detail View
	Interpanel Navigation

	Proof-of-Concept
	Overview
	Infrastructure
	Server Setup
	Log Producers
	Filter Configuration

	LogWheels Setup
	Use Cases
	Daily Routine
	Screenshots

	Discussion
	Goal Achievement
	Limitations

	Conclusion
	Conclusion
	Further Work

	Bibliography
	User Guide
	Installation
	Execution
	Troubleshooting

	Implementation Details
	Folder Structure
	Package Structure
	Architecture
	Libraries

	Off-the-Shelf Implementation
	Server
	Client

	Syslog Details

