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Problem Description

SSL/TLS is the most common and widely used secure protocol in Internet. It is a
package of more than 30 cryptographic primitives and protocols. For students studying
information security it is of a crucial importance to have a good understanding of how
the different parts are working. The aim of the project will be to develop an educational
implementation of SSL/TLS that could be used when teaching information security. The
basic idea is to create a simple protocol that encrypts communication between two hosts,
implemented in Java. The protocol should include implementations of DH, RSA, AES
and SHA-1 accompanied by a graphical interface that will monitor what is happening
in every moment of the work of the algorithm (protocol). The graphical user interface
should also include statistics on how time consuming each operation has been.

Assignment given: 15. January, 2011
Supervisor: Professor Danilo Gligoroski, ITEM
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Abstract

The Transport Layer Security (TLS) protocol provides secure communication over an
untrusted network, such as the Internet. TLS was published as an Internet standard
in 1999, closely related to the Secure Socket Layer (SSL) version 3. Today, it is the
de facto standard for secure end-to-end communication. By combining various crypto-
graphic primitives, TLS provides authentication, confidentiality, integrity, and message
forgery detection. The goal when designing the protocol was to create a standard solution
for secure communication that was flexible, robust, fast, and easy to implement. TLS has
been widely analyzed, resulting in continuous improvement of the protocol and the doc-
umentation. This report gives a detailed description of the TLS protocol, and explains
why and how it is claimed to be secure. In addition, the report presents the background
theory required to understand TLS, such as cryptographic primitives.

In this thesis, we propose a tool, called EduTLS, which can be used when studying
information security. The tool is an application developed in Java, and has its own
implementation of protocol similar to TLS. The implementation is not compatible with
TLS, but has the same structure and architecture. The most complex part of TLS is the
Handshake protocol, hence the application has extra focus on this part. The intention with
EduTLS is to offer a practical approach when studying the protocol. EduTLS includes
implementation of several cryptographic primitives, thus it might also be useful when
gaining experience in cryptanalysis.
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Definitions

Authentication Assurance that an entity is who he/she claims to be.

Algorithm A set of rules that specifies how to solve a certain problem.

API An interface with rules and specification, which makes it possible for software com-
ponents to communicate with each other.

Cipher An algorithm performing either encryption or decryption.

Confidentiality Protection of information against passive attacks, such as eavesdrop-
ping.

Cryptographic primitive A cryptographic algorithm, such as a hash function or an
encryption cipher.

Digital certificate An electronic document that combines an identity with a public key.

Eavesdropping The act of listening to a private conversation between two parties with-
out their knowledge and consent.

Git Version control management system of source code in a development project.

Github A web-based hosting service for software development projects that use the Git
revision control system.

Host A computer connected to a network.

IEFT An open community that develop Internet standards.

Integrity Protection of information against active attacks, such as tampering.

JVM The Java Virtual Machine is a software program used to run Java applications.

Message forgery A message sent to deceive the recipient as to whom the real sender is.

Modulus The rest from an integer division between two numbers.

Node An electronic device attached to the network, such as a router.

Nonce A random number that is never reused (number used once).

OSI model A standard segmentation of the network protocol into layers.

Peer One of the hosts in a point-to-point network link.

Protocol A standard, defining a set of rules that determines how data is represented
when transmitted over a network connection.

Public Key Infrastructure The technical and organizational infrastructure in charge
of issuing, distributing, and revoking digital certificates.

Salt A random number, or bit sequence, used as input to a hash function in addition to
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the message, to avoid dictionary attacks etc.

Socket A ”communication road” between two processes on different hosts.

Swing A Java graphical user interface toolkit.

W3C Word Wide Web Consortium: An international community that develop Web stan-
dards.

XOR A operation that takes two bit patterns and performs a logical XOR operation
(1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0)

X.509 A public key infrastructure standard

Note that these definitions are defined according to their role in this report. A more general
definition may be more appropriate in other situations.
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Chapter1
Introduction

Internet was not designed to be secure; the focus was robustness and scalability. In
general, all information sent over a network connection, such as the Internet, can be
eavesdropped, tampered, or forged. Netscape Communications was one of the companies
that responded to the need for secure network communication, and developed the first
version of the Secure Socket Layer (SSL) protocol in 1994. After the success of SSL, it
was adopted as an Internet standard by the IETF in 1999 and called Transport Layer
Security (TLS). Today, SSL and TLS are the predominant protocols for secure network
communication. [1]

Secure Socket Layer (SSL) is a protocol providing end-to-end secure communication.
When designing SSL, the goal was a flexible solution where any application could benefit
its service. With that in mind, SSL was not incorporated into the Netscape browser, but
located at the layer between the browser and the transport layer. From the developer’s
view, the only modification needed when utilizing SSL was to communicate to the SSL
protocol instead of the TCP protocol. This was the thought; to give the developer a uni-
fied and simple solution to implement into their applications. The protocol, as the name
implies, operates at the socket layer and transports application data from the higher layer
protocols, without reflecting about the content. It is intended to use in a client-server
model. SSL by itself is useless, but protocols at the application layer, for instance HTTP
for web browsing, can benefit the facilities of SSL. [1]

SSL/TLS is the far most popular cryptographic system. Cryptographic systems use cryp-
tographic primitives as building blocks, creating a package that exploits the advantages
of each primitive and combines them to cooperate. When studying information security,
the focus is often to learn how the cryptographic primitives work, its advantages and
disadvantages. This is undoubtedly important, but the primitives by themselves are not
secure. For instance, encryption does not ensure integrity. When looking at a crypto-
graphic system, one might get a better overview of how the algorithms can be combined
to create the best security possible for a particular situation. [2, 35, 34]
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1.1. MOTIVATION

This report and the proposed application are mainly directed towards information security
students, who already have good understanding of how computers operate and commu-
nicate. To reach out to a broader specter, the theory chapter should provide enough
background knowledge that non-security persons can benefit from the project as well.
Parts of the theory chapter are cited from the EduSSL[3] report, but most of it has been
revised and expanded. Both projects are called ”An educational implementation of SS-
L/TLS”, but the application from the specialization project is called EduSSL, while the
application presented here is called EduTLS. The reason is simple; EduSSL was based on
the SSLv3 specification, and EduTLS is based on the TLSv1.2 specification. Through the
rest of this report, the specialization project is referred to as EduSSL, and this project as
EduTLS.

The project source code has almost 8000 lines of code, which would result in approximately
200 pages of text, hence it is not included as an appendix. The complete source code is
available as an attachment or at the Github page https://github.com/evinje/EduTLS.
Appendix B.1 lists the commands required to compile and execute the application.

The rest of this report will refer to TLS instead of SSL, but the majority of the protocols
are identical.

1.1 Motivation

The thesis is a continuation on my specializing project, which was conducted the fall
semester of 2010. I wanted to continue the EduSSL project[3] because I felt there was
great potential in the idea, and I found the specialization project very interesting. I am
fascinated in the SSL/TLS protocol, because it was designed almost two decades ago,
and even though the computing power has increased exponential, and used by mobile
devices with a fraction of the performance, it is still the dominant end-to-end security
standard. There is, however, not too much literature, and especially not with a practical
approach, on the subject. Most of the documentation is on how to use existing TLS
libraries, without focus on details within the protocol.

The work on my specialization project is similar to the thesis; both propose a tool that
can be used when studying information security. In the specialization project, the main
focus was to learn and understand the theory, but in addition it proposed the EduSSL
application. The EduTLS application presented in this thesis is a complete redesign of
EduSSL. The focus has been a more similar architecture to TLS and to make a better
presentation of what is happening in the protocol.

1.2 Limitations

The scope of this report is not to discuss how security should be considered during a
development project, but to emphasize the importance of using the technology as it is
intended to be used. Correct use is often related to understanding, and the goal of this
report is to give a good understanding of TLS. It is not intended to explain how a native

2

https://github.com/evinje/EduTLS


1.3. OUTLINE

TLS implementation is accomplished, this can be found in several other projects, see
Section 5.4.

Even though some weaknesses in the TLS protocol are mentioned, this report does not
include a thorough analysis of its security, and does not explain the weaknesses in detail.

In the EduTLS application, security is not an important issue. The application cannot
be used to communicate with other TLS enabled applications, and may contain several
vulnerabilities. It should be used for research and educational purposes only.

1.3 Outline

The remainder of this report is organized as follows:

Chapter 2 - Background gives an overview of the history of Internet and TLS, and
presents the theoretical background required to understand TLS. The theory in-
cludes the most important cryptographic primitives, with an example of the most
popular algorithm of each primitive.

Chapter 3 - Transport Layer Security explains the TLS protocol in detail.

Chapter 4 - The Implementation starts with the requirements for the application
and an explanation of the overall approach, followed by a visual representation
of the graphical user interface, an explanation of the classes and packages, the
architecture, and finally the automated tests in the project.

Chapter 5 - Discussion provides a discussion of the result, challenges, related work,
and proposal for future improvements.

Chapter 6 - Conclusion presents the conclusion of the thesis.
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Chapter2
Background

”Those who do not learn from history are doomed to repeat it”
- George Santayana

This chapter gives a brief introduction to history and theory relevant to the TLS protocol.

2.1 History

This section begins with the history of Internet, and aims to give an understanding of
how it has evolved and why it is not secure. This is succeeded by the history of SSL, and
the creation of an Internet draft document, which resulted in the standardization of the
protocol TLS.

During the Cold War in the 1960s, the US Department of Defense (DoD) created a research
project called ARPANET. The goal of the project was to create a reliable and decentralized
network to share information between the DoD, the US military, and universities that ran
research for them. ARPANET was designed to continue to operate even if one or more
of the nodes failed or disconnected, making no single node in control of the network. The
ARPANET users comprised a small group of people who generally knew and trusted each
other, and of that reason, the concerns were openness and flexibility, not security. In
the following decade, other universities and research organizations were connected to the
network. Before 1972, fifteen sites were connected into ARPANET, see Appendix A.1
for a complete list. By the end of 1970s, more than two hundred sites were connected,
and it had formed a global worldwide network that we today call the Internet. In the
1980s, ARPANET was no longer a defense product, and the commercial Internet Service
Providers offered access to the network. Many different projects attempted to create ways
to organize the distributed data, for example electronic mail in the 1970s and World Wide
Web in the 1990s. Common to them was that security was not considered. [4, 5, 6, 2]

In that time period, Netscape Communications was dominant in the web browser and
web server market. They were one of the companies that responded to the need for
secure network communication, and developed the Secure Socket Layer (SSL) protocol in
1994. Originally, SSL secured the communication between Netscape’s web browser and
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2.1. HISTORY CHAPTER 2. BACKGROUND

server, but the specification stated that the protocol could be used with other applications.
Version 1 of SSL was never publicly released, but gained a lot of attention. The year after,
Netscape released version 2 of the protocol. The protocol was thoroughly analyzed and
many weaknesses were detected. Version 3 aimed to fix the weaknesses and drawbacks,
which resulted in a heavily modified protocol, released the year after. [18, 14, 13]

At the same time, there were other companies trying to create their own security solutions.
Instead of having several solutions to the same problem, Microsoft and Netscape requested
the Internet Engineering Task Force (IETF) to define a standard protocol. The IETF is
an open community that develops standards, mostly concerning the technical evolution
of the Internet. IETF cooperates with the W3C organization, and together they, among
other things, create Internet standards and recommendations. The IETF community is
mostly known for its Request For Comments (RFC) documents. An RFC is the official
publication channel of a standardization proposal, where a number of rounds of peer
reviews are carried through, and may result in an Internet Standard (STD). In 1999, IETF
published the first proposal for a new standard; RFC22461. IETF based this standard
mainly on the Secure Socket Layer protocol version 3, but in addition, they considered
input from several other vendors. The result was the Transport Layer Security (TLS)
protocol version 1.0. The RFC states that

the differences between this protocol and SSL 3.0 are not dramatic, but they
are significant enough that TLS 1.0 and SSL 3.0 do not interoperate.

The most important differences are the pseudorandom function, the MAC schemes, alert
codes, supported and mandatory cipher suites, and the calculation of master secret. [10,
14, 13]

After seven years, RFC4346 was released, with the definition of TLS version 1.1. The
difference between version 1.0 and 1.1 are not significant, but protection against the
discovered attacks was added, and support for new cryptographic algorithms was defined.
The fact that TLS version 1.0 was not upgraded for seven years, confirmed how well
the protocol was designed, considering the explosion of its popularity. In 2008, TLS
version 1.2 was defined. This version is currently the latest release. The most important
improvements are discussed later in this chapter.[1, 4, 5, 11, 12, 10]

1Each RFC is assigned a unique number, for TLS version 1.0, it is 2246
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2.2 Cryptography

”Most security failures in its area of interest are due to failures in implementation, not
failure in algorithms or protocols”

- The National Security Agency

To understand how TLS works, it is important with basic knowledge of cryptography.
Cryptography is a subfield within cryptology2. According to William Stallings[7],

cryptology is the study of techniques for ensuring the secrecy and/or authen-
ticity of information.

Cryptanalysis is another subfield within cryptology. Cryptography is the study of how to
design functions, whereas cryptanalysis tries to find vulnerabilities in the design. Crypt-
analysis is not discussed in this report.

The topics in cryptography relevant to this project are encryption algorithms, hash func-
tions, secure random generator, digital signatures, and digital certificates. Encryption
algorithms are divided into two categories; conventional encryption and public-key cryp-
tography. Encryption is the process of converting readable information into something
that is not understandable without knowing a secret piece of information, usually referred
to as the key.

2.2.1 Conventional Encryption

”Anyone, from the most clueless amateur to the best cryptographer, can create an
algorithm that he himself can’t break”

- Bruce Schneier

In conventional encryption, the same key is used for both encryption and decryption.
The concept has existed for more than 2000 years. One of the first, and maybe the most
known, is the Caesar cipher. In the Caesar cipher, each letter in the message is replaced
with the letter located three positions later in the alphabet. This means that A becomes
D, D becomes G and Z becomes C. The key in this cipher is the knowledge of swapping
the letters three positions in the alphabet. [7, 2]

2Cryptology derives from the Greek kryptós lógos, meaning hidden word[15]
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Figure 2.1: Conventional encryption

Assume two parties, Alice and Bob, are going to exchange a message secretly.
Alice encrypts the message with an encryption algorithm and a secret key,
and transmits the message to Bob over an untrusted communication channel.
Bob receives the message, and decrypts the message with the corresponding
decryption algorithm and the same key.

Conventional encryption is also called symmetric key encryption, private key encryption,
or secret key encryption. All three latter names are derived from the fact that both
parties, the sender and the receiver, must share a secret key that is known only to them.
The encryption and decryption is performed by using an algorithm, called a cipher. The
encryption and decryption cipher may be identical, but that is not always the case3. In
addition to sharing a secret key, both parties must know which cipher they will be using.
The cipher does not need to be kept secret; it is the key that protects the message.
When encryption is performed, the cipher takes a message, called the plaintext, and the
key, and transforms it to an encrypted message. The encrypted message is referred to
as the ciphertext. To recover the plaintext, the decryption cipher is used. By giving
the decryption cipher the same key and the ciphertext, it transforms back the original
plaintext. [7, 2]

To summarize, the following terminology is used:

Plaintext is the original message to be sent

Cipher is the algorithm used for the transformation. Can be divided into encryption
cipher and decryption cipher

Key is the private key used by the cipher to transform the plaintext

Ciphertext is the scrambled/encrypted message, the output from the cipher
3In the Rijndael cipher, the encryption and decryption cipher is different, but in the DES cipher, they

are identical
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Most of today’s conventional encryption ciphers use a combination of substitution and
permutation. In substitution, each unit is replaced with another unit. The substitution
can be a lookup from a predefined table or according to an algorithm. It is important
though, that the process can be reversed, and that no replacement is ambiguous. Per-
mutation is a method where the units are reordered. All the units will remain, but the
position has changed. The conventional cipher used in TLS is either a stream cipher or a
block cipher4.

A block cipher divides the plaintext into fixed-size blocks, and encrypts one block at a
time into a block of ciphertext with the same size. Block ciphers may have several modes
of operation. The mode of operation solves the problem that a block cipher is designed
to encrypt only one single data block, while in practice the message is of variable-length
and usually larger than the block size. The Electronic Code Book mode (ECB) is the
simplest, where each block is encrypted separately with the same key. The disadvantage
is that identical plaintext blocks results in identical ciphertext blocks, thus it does not
hide patterns. The Cipherblock Chaining mode (CBC) solves the problem with ECB
by XORing the plaintext block with the previous ciphertext block. The first plaintext
block is XORed with an initialization vector (IV), that must be kept as secret. NIST has
specified a total of nine modes of operation, listed in Appendix A.3. [16]

Stream cipher combines the plaintext with a key stream and typically XOR these, one
unit at a time. The challenge is to create a potentially infinite key stream, which is
usually solved by a feedback shift register (FSR). The FSR has a register, a feedback
function, and an internal clock. By using the clock, the encryption transformation varies
with time. EduTLS only support block ciphers, thus the stream cipher is not explained
in more detail.[2, 15]

Conventional encryption has the benefit of being very fast, but has the major disadvantage
of key distribution; the parties must have exchanged the secret key in advance of the
communication.

2.2.1.1 AES

The Advanced Encryption Standard (AES) algorithm is originally named Rijndael. Be-
tween 1997 and 2000, NIST arranged an open competition of becoming the next conven-
tional encryption standard, a successor for the current encryption standard DES. Rijndael
won this competition in October 2000, and has since commonly been referred to as AES5.
The Rijndael algorithm was designed by Vincent Rijmen and Joan Daemen.[15]

This chapter gives a brief overview on how the AES algorithm operates. AES is a block
cipher, where the block size is 128 bits, and the key size is 128, 192 or 256 bits. Depending
on the key size, the algorithm performs a number of repetitions, or rounds6, that converts
the plaintext into ciphertext. AES operates on a two-dimensional matrix of bytes, called
the state. One state contains one block, and the matrix is 4xN, where N is the block size
divided by 32. Since the current AES specification only adopted one block size, the state

4Several other types exist, such as monoalphabetic, polyalphabetic, and steganographic
5AES is not precisely Rijndael, because Rijndael supports a larger range of block sizes and key lengths
610, 12 or 14 rounds for 128, 192 or 256 bit keys, respectively
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matrix is always 4x4 bytes7. [15]

AES performs most of its calculations within the finite field. A finite field is a set of
elements, where the number of elements can be represented by a natural number. All
operation on those elements will result in a new element contained in the same field, and
each operation has its inverse operation. [2, 15]

The AES encryption algorithm[15];

KeyExpansion()
s←− input
s←− AddRoundKey()
loopfrom R←− 1 to (NumberOfRounds− 1)
s←− SubBytes()
s←− ShiftRows()
s←−MixColumns()
s←− AddRoundKey()
end loop
s←− SubBytes()
s←− ShiftRows()
s←− AddRoundKey()
output←− s

The first step in the cipher is the key expansion function, where the Rijndael key schedule
creates one key for each of the rounds, derived from the main key. Before the rounds start,
the input bytes are copied into the state, denoted as s, followed by an initial AddRoundKey
transformation. As shown in the algorithm, all the rounds are identical, except for the
last one. [15]

A short description of the encryption steps;

AddRoundKey performs a bitwise XOR between the state and the round key.

SubBytes performs substitution according to a table, called the S-box.8

ShiftRows cyclically shift the bytes in every row to left, where the number of places to
shift differs for each row.

MixColumns multiplies each column of the state with a fixed polynomial

The decryption is accomplished by doing the same steps, but with the corresponding
reverse function. For example, SubBytes in decryption becomes InvSubBytes, where the
S-box is the inverted substitution box.

74x4 is 16 bytes, which is 128 bits.
8The Substitution box in AES is a 16x16 matrix with predefined values

9
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2.2.2 Hash Function

”There are, in fact, no known instances of functions which are provably one-way with no
assumptions.”

— Alfred J. Menezes

A hash function, one-way function, or message digest function, is a procedure, which
takes a variable length input and compresses it to a fixed size output. This means a
single character will produce an equal size output as a large document. The output
is referred to as the hash value, digest, checksum or fingerprint. The same input will
always result in the same hash value, and the process is not reversible. Hash functions
are commonly used to compare values. It can, for instance, ensure that a message has
not been tampered with, by comparing the original hash value with the current hash
value.[15, 2, 17]

Figure 2.2: Hash function structure

The figure above illustrates the typical structure of a hash function. F denotes a com-
pression function, which takes a fixed-size input and turns it into a shorter, fixed-size
output. The compression function is repeated a number of times until the entire message
have been processed. The initial value is specific for each algorithm. This structure is
called the Merkle-Damg̊ard construction, after its inventors Ralph C. Merkle and Ivan B.
Damg̊ard. [15, 2, 17]

A cryptographic hash function is a hash function that satisfy the following properties:[7,
15, 17]

Easy to compute For any given input x it is easy to compute the hash value h

Preimage resistance For any given hash value h it is impossible9 to find a corresponding
input x

Second preimage resistance For any given message x it is impossible9 to find another
message y such as H(x)=H(y) and x 6= y

Collision resistance It is impossible9 to find two different messages x and y such as
H(x)=H(y) and x 6= y

9Impossible in this context means computational infeasible
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The hash function is noted as H, input message x and the resulting hash value h; H(x)=h.

The National Institute of Standards and Technology has approved five cryptographic hash
functions; SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512. [39]

2.2.2.1 SHA-256

The Secure Hash Algorithm (SHA) is a set of cryptographic hash functions, published by
NIST. SHA-0 was published in 1993, but due to some early discovered weaknesses[36],
the algorithm was corrected and released two years after by the name SHA-1. In 2001,
NIST published the second generation of SHA, SHA-2, which is a family of four different
hash functions. The SHA-2 family consists of SHA-224, SHA-256, SHA-384 and SHA-512,
where the number after SHA is the digest length in bits. There are only minor differences
in the algorithms; the initializing variables and number of rounds are most important.[37]

In 2007, NIST announced an open competition to the next standard in the SHA family.
In 2012, the winner is chosen and the winning algorithm will be named SHA-3.

SHA-256 takes a message input of arbitrary length, max 264 − 1 bits, and outputs a 256
bits message digest. The algorithm uses 64 round constants and 8 working variables. The
round constants are initiated from the first 64 primes10, and the working variables are
initiated from the first 8 primes11. After the initiation, it performs 64 rounds of operations
on each 512 bits chunk. Each chunk it split into sixteen 32 bit words and each round
consist of a series of bit operations, additions, and shift operations on those words. The
operations can be summarized as bitwise AND, OR, XOR and complement operations,
left-shift and right-shift, and addition in modulo 264. After the final round on the last
chunk, the eight working variables are concatenated, resulting in the 256 bit hash value.
See Appendix B.2 for a complete pseudo-code of SHA-256. [37]

10The first 32 bits of the fractional parts of the cube roots of the first 64 primes
11The first 32 bits of the fractional parts of the square roots of the first 8 primes
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2.2.3 Public-Key Cryptography

”The obvious mathematical breakthrough would be development of an easy way to factor
large prime numbers”

- Bill Gates

The public-key cryptography scheme was first introduced in 1976 by Whitfield Diffie
and Martin Hellman in the paper New Directions in Cryptography. Diffie and Hellman’s
public-key concept was the most spectacular development in the history of cryptography,
which dates back almost 4000 years when the Egyptians used the hieroglyphs12.[2, 8]

Public-key cryptography, or asymmetric key algorithms, is the common denomination for
an encryption system where the entities do not share a secret key. Instead of one key,
there is a key-pair, where one key is private and the other key is public. The key-pair has
properties such as when using one of the keys to encrypt a message, only the other key
of that key-pair is able to decrypt the message. This revolutionized how cryptographic
systems could be designed. [15]

Figure 2.3: Public-key encryption

Assume two parties, Alice and Bob, are going to exchange a secret over an
unsecured network link. Alice has her own key-pair, and sends the public
key to Bob. With Alice’s public key, Bob encrypts the secret message, and
transmits the encrypted message to Alice. With her private key, Alice decrypts
the message.

12The hieroglyphs is the earliest known cryptography, made by the Egyptians around 1900 BC
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Not all public-key schemes offer encryption. Public-key schemes can be categorized as
follows:

Encryption; the key-pair is used for encryption and decryption of a message, as demon-
strated in Figure 2.2.3.

Key distribution; a new key is exchanged with the use of public-key cryptography, and
this key is used in a conventional encryption algorithm. This topic is described more
in Section 2.3

Digital signature; a cryptographic hash function is used to create fingerprint of a mes-
sage, and the private key is used to encrypt the fingerprint to create a signature.
This topic is described more in Section 2.2.5

In public-key cryptography, the algorithms for encryption and decryption are mathemat-
ical functions. These functions often include a combination of exponential and modulus
computation. The keys are large numbers, and generated with the use of an algorithm.
When having one of the keys, it is impossible13 to discover the paired key.

Public-key encryption is, however, not the solution to every problem. Compared to con-
ventional encryption, this scheme involves very time-consuming computation, making it
unpractical when encrypting large amounts of information. A 128-bit key in conventional
encryption has equal computational security as a 3072-bit key in public-key encryption.
According to several resources[28, 29, 30], conventional encryption is about 1000 times
faster than public-key encryption. Hence, the public-key encryption is most often used to
distribute keys for symmetrical encryption or to create digital signatures. [7, 22, 27]

2.2.3.1 RSA

The first public-key algorithm was published in 1977 by Ron Rivest, Adi Shamir and
Leonard Adleman; the RSA algorithm. The RSA algorithm can be used for both encryp-
tion, key exchange and signature. This chapter demonstrates how the RSA algorithm
operates by showing a practical example of the computations.

A RSA system uses the following terminology

The private key is the couple (n, d)

The public key is the couple (n, e)

where

n is the modulus: the product of two large primes p and q

d is the private exponent

e is the public exponent

13Impossible in this context means computational infeasible
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Key Generation

Before the RSA system can be employed, the key-pair must be generated. The first step
is to randomly generate two prime numbers with approximately the same size. Compute
the modulus n by multiplying the primes p and q;

p = 23
q = 29
n = p*q = 23*29 = 667
φ(n)14 = (p− 1) ∗ (q − 1) = 22 ∗ 28 = 616

The next step in the generation process is to randomly select an integer e with a size
between 3 and φ(n), and e is a coprime15 of φ(n);

e = 17

There are many techniques to generate e, a Java example of how to find coprimes of a
number is given in Appendix B.5.

The last step in the generation is to determine the private exponent d, which must satisfy
the following equation

d ∗ e = 1 mod φ(n)
d = e−1 mod φ(n)
d = 17−1 mod 616
d = 145

A Java example of how to solve the equation above is given in Appendix B.5.

The public key consists of n and e (667, 17), and the private key is n and d (667,145).
The key-pair owner must share the public key (667, 17) with the communicating party

Encryption and Decryption

To encrypt a message m, the message must be represented as a number, and must not
be larger than n. To encrypt the message m = 71 with the public key, compute the
ciphertext;

c = me mod n
c = 7117mod 667
c = 225

To decrypt the message, the private key is used

m = cd mod n
m = 225145 mod 667
m = 71

This process can be performed in the opposite direction; the message is encrypted with
the private key, and decrypted with the public key.

14φ is the Eulers totient function, and φ(n) is the number of coprimes of n between 1 and n-1
15Coprimes are two integers that have no common divisor other than 1
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2.2.4 Secure Random Number Generation

”Anyone who attempts to generate random numbers by deterministic means is, of
course, living in a state of sin.”

– John von Neumann

Random numbers are often a vital part of a cryptography system. In cryptography, it is
commonly referred to as a pseudo-random number generator (PRNG) or a pseudo-random
bit generator (PRBG), where the latter generate a potentially infinite bit sequence. The
first definition of a PRNG was created by Manuel Blum and Silvio Micali in the early
1980s[15], where they stated that the random generator is cryptographically secure if one
cannot guess the next number in a sequence, with knowledge of prior numbers, better
than guessing at random. In cryptography, random numbers are used for, among other
areas, key generation, one-time pads, nonce, and salt. Examples are the p and q primes
in RSA, and the secret key in AES.

A true random number generator can only come from a naturally occurring source. Cre-
ating hardware or software to exploit randomness from a physical means is unpractical
because it tend to be either too costly or too slow. In addition, the generator source must
not be able to observe or manipulate by an adversary. [2]

2.2.4.1 Blum-Blum-Shub PRBG

The Blum-Blum-Shub pseudo-random bit generator is a cryptographically secure bit gen-
erator under the assumption that integer factorization is intractable. The algorithm
demonstrated below generates a sequence of pseudo-random bits of length l. [2]

Generate two large primes p and q, where both are congruent to 3 modulo 4. These must
be kept secret.
Compute n = p*q
Select a random seed s, where s is between 1 and n-1 and s and n are coprimes
Compute x = s2 mod n
For i = 1 to l
xi = x2

i−1 mod n
zi = the rightmost bit of xi (the least significant bit)

The bit sequence z1, z2, z3, ..., zl is the output of l pseudo-random bits
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2.2.5 Digital Signature

”When it comes to privacy and accountability, people always demand the former for
themselves and the latter for everyone else.”

— David Brin

A digital signature is a counterpart to a handwritten signature, and attached to a docu-
ment as a proof of authorship, or as an agreement with the content. [2, 42]

The National Institute of Standards and Technology (NIST) defines a digital signature
as[40]

the result of a cryptographic transformation of data that, when properly im-
plemented, provides a mechanism for verifying origin authentication, data
integrity and signatory non-repudiation.

A signature must meet the following criteria[2, 42]:

Authentic; a signature must be a proof that the signer intentionally signed the document

Unforgeable; a signature is a proof that it was the signer, and no one else, that signed
the document

Not reusable; a signature is a part of the document and can not be used on any other
document

Unalterable; a signature must proof that the document has not been altered after the
signature was created

Repudiated; a signer cannot deny he signed the document

16
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Figure 2.4: Digital signature

Assume two parties, Alice and Bob, are going to exchange a message over an
unsecured network link. The content of the message is not sensitive, but it is
important that it is not altered during transfer. Alice has her own key-pair,
and sends the public key to Bob. Before Alice sends the message, she calcu-
lates the message’s fingerprint with a secure hash algorithm. She then creates
a signature by encrypting this fingerprint with a public-key algorithm and
her private key. This signature is attached to the message before sending it.
When Bob receives the message with the signature, he detaches the signature,
decrypts it with Alice’s public key to obtain Alice’s fingerprint. Bob then
calculates the fingerprint of the message with the same secure hash algorithm,
and compares this value with the decrypted value that Alice sent. If these are
equal, the message has not been altered and Bob knows it is the same message
that Alice sent.

According to the Digital Signature Standard (DSS), a digital signature is a combination
of a secure hash function and public-key cryptography. NIST has specified three approved
standards for digital signature; the Digital Signature Algorithm (DSA), the Elliptic Curve
Digital Signature Algorithm (ECDSA) and Rivest Shamir Adleman (RSA) algorithm. All
three algorithms are used in conjunction with an approved hash function that is listed
under Section 2.2.2.[40]

2.2.5.1 DSA

The Digital Secure Algorithm (DSA) consists of a key-pair, a per-message secret number,
an approved hash function, and the message to be signed. The DSA specification empha-
sizes that the key-pair shall only be used for a fixed period of time before generating a
new key-pair. The public key however, must be kept in order to verify old messages. [40]
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The DSA algorithm consist of three phases; key generation, signing, and verification. The
steps in the phases are according to the NIST specification[40, 41].

Key Generation

In the key generation process, an approved hash algorithm must first be chosen. The next
step is to decide key length L and N, where NIST recommends[40] key pairs of (1024,160),
(2048,224), (2048,256), and (3072,256) bits. It is important that N is equal to, or less
than, the size of the hash digest.

Calculation of the key-pair:
Generate prime q of N bits
Generate prime p, such that p - 1 is a multiple of q, and p is L bits
Calculate g, such that g = h(p–1)/q mod p and h is a random number less than p-1.
Generate a random x that is positive and less than q
Calculate y = gx mod p

The public key is the parameter (p, q, g, y) and the private key is (x).

Signing

To sign a message, a random per-message value k is generated. The k parameter must be
less than q.
To create the signature, calculate
r = (gk mod p) mod q
s = (k−1 (hash(message) + x ∗ r)) mod q
The signature of message is (r,s). The + sign denotes concatenation.

Verification

The signature verification process may be done by the recipient or a third-party. To
perform the verification, one must have the public key (p, q, g, y) of the signer.

To verify the message, calculate
w = s−1 mod q
u1 = (hash(message) ∗ w) mod q
u2 = (r ∗ w) mod q
v = ((gu1 ∗ yu2) mod p) mod q

The signature is valid if v = r.

The Digital Signature Standard is not a part of TLS, but the signing principle is a crucial
part of any cryptographic system. TLS has its own signing method, described in Section
3.2.
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2.2.6 Digital Certificate

”Security is always excessive until it’s not enough.”
— Robbie Sinclair

A digital certificate, or public-key certificate, is an electronic document that binds an
identity to a public key. In other words, a digital certificate is an authentication document;
it attests the ownership of a public key. To have trust in the certificate, it is signed by a
trusted third party, called a certificate authority16 (CA). The most common standard for
digital certificates is the X.509 format.

Figure 2.5: X.509 version 3 certificate structure

A X.509 certificate includes the following elements:[7, 19, 23, 24]

Version The X.509 version which the certificate conforms.

Certificate Serial Number A unique certificate identifier within the issuing Certificate
Authority.

Certificate Algorithm Identifier The algorithm used to sign the certificate.

Issuer The name of the Certificate Authority who issued the certificate.

Validity period The period of time where the certificate is valid. It contains both a
start date and an expiration date.

16This is a part of a public key infrastructure, explained in the next section

19



2.2. CRYPTOGRAPHY CHAPTER 2. BACKGROUND

Subject The name of the entity the certificate belongs to.

Subject Public-Key Information The public key belonging to the entity of the Sub-
ject and the algorithm associated with the public key.

Issuer Unique Identifier Information that can be used to uniquely identify the issuer
of the digital certificate.

Subject Unique Identifier Information that can be used to uniquely identify the owner
of the digital certificate.

Extensions Additional information that is related to the use and handling of the certifi-
cate.

Certificate Authority Digital Signature Consists of a hash value of the certificate
encrypted with the Certificate Authority’s private key.

There are currently three versions of the X.509 certificate. The Issuer Unique Identifier
and Subject Unique Identifier were added in version 2, and Extensions added in version
3.
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2.3 Public Key Infrastructure

”In theory, one can build provably secure systems. In theory, theory can be applied to
practice but in practice, it can’t.”
— M. Dacier, Eurecom Institute

”A public key infrastructure (PKI) binds public keys to entities, enables other
entities to verify public key bindings, and provides the services needed for
ongoing management of keys in a distributed system”[43]

This includes, but is not limited to, an architecture to issue, distribute, validate, and re-
voke digital certificates. It is important to understand that PKI is not a technology, but
a description of how organize a public-key cryptography infrastructure. The Telecommu-
nication Standardization Sector of the International Telecommunication Union (ITU-T)
has created a standard, X.509, which is the recommended PKI standard for public key
certificates. [7, 25, 43]

A PKI consists of several entities/elements:[2, 7, 43]

End user The entity that consumes the PKI service or an entity that can be identified
in a digital certificate

Certification authority A trusted third party (an organization) which creates and sign
certificates. It is usually formed in a hierarchy, and the digital certificate may have
a chain of several Certificate Authorities in the signature. The CA is the basic
building block in a PKI.

Registration authority An optional entity, which can be delegated a number of ad-
ministrative tasks by the Certificate Authority

Revocation authority An optional entity, which can be delegated to publish Certificate
Revocation Lists by the Certificate Authority

There is no predefined list of certificate authorities; this is up to each system to provide.
When an entity requests a signature from a CA, the CA must verify the entity’s identity.
In some cases this is an email or a phone call, but in a more strict policy the person must
meet up himself/herself with an identification.
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2.4 Software Development

This section explains briefly what Java and Automated Testing is.

2.4.1 Java

Java is an object-oriented programming language, released in 1995 by Sun Microsystems.
The syntax is inspired by the popular programming languages C and C++, but has a
simpler object model. It is widely used and taught at many universities, including NTNU.
There are many advantages when choosing Java as the programming language. For this
project, the vital ones are its cross-platform capability17, the diversity of discussion fo-
rums and on-line documentation, and the single most important one; when creating an
application that is going to be used when teaching, the selected programming language
must be known by the students. The fact that Java is a high-level language is another
good argument for choosing it as the programming language in this project. When one
uses the SSL/TLS capabilities in Java, the usage is almost identical to regular socket
communication. For the developer, this can often result in a situation where he know how
to use it, but do not understand how it works. Security is more than just using strong
keys and well-tested cryptographic algorithms, it is an aspect that must be considered
during the whole process, and the implementation must be done with care. [9]

There are two terms in object-oriented programming that is required to know when reading
this report; class and interface. A class is a prototype/blueprint of an object. The most
important content of a class is variables and methods. When an instance of a class is
created, it called an object. An interface defines an abstract class, where methods with
no content are defined. A class can ”implement” the interface and create all the methods
defined in the interface. The interface can be seen as a type definition, where every
class implementing that interface solves the same issue. The advantage with the interface
concept is the loose coupling between the classes, making it easier to change certain parts
of an application.

2.4.2 Automated Testing

Automated testing is the concept of writing software tests that is used to confirm cor-
rectness or detect bugs in a development project. Creating the tests is mostly a manual
process, but when a test is created, it can be run as many times as desired. It is the
most popular testing method today, but is not sufficient by itself, but a complementary
to other testing methods. [44]

Automatic tests are categorized as following: [46]

Unit tests isolate a specific component and test only this component without dependen-
cies to other parts of the system. If it relies on other components it is common to
create mock objects that simulate expected behavior of the other component. Unit

17It can be used in all the major operating systems, like Windows, Linux and Mac
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tests are efficient because it does not rely on the environment or other functionality
that may introduce bugs to the specific component.

Integration tests confirm that a component, or a set of components, interact with rest
of the system as expected. The integration tests run after unit tests to avoid that
component bugs cause the tests to fail; it is the interaction that shall be verified.

Functional tests , or system tests, is black-box testing where implementation details
like source code or design logic are unknown. The system is seen from a user point
of view, without considering platform, programming language, or any other technical
details. Functional tests shall verify the behavior of the system as a whole.

The automated tests only confirm correct behavior for the scenarios the tests asserts, thus
the quality of the tests depend largely on how efficient the tests are. [44, 46]
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Chapter3
Transport Layer Security

The Transport Layer Security (TLS) protocol offers secure communication over an un-
trusted network connection; it provides authentication, confidentiality, integrity and mes-
sage forgery detection. Confidentiality is the concept of ensuring that information is
accessible only to those authorized to have access. In network communication, this is the
process of preventing eavesdropping. The communication can still be eavesdropped, but
TLS ensures that only the authorized parts are able to understand the content, by using
encryption. [10]

While confidentiality ensures that an unauthorized party cannot read the content, pre-
serving integrity is the process of ensuring that the information is not changed by anyone
not authorized to do so. Integrity is preserved by including a message authentication code
(MAC). When a message is received, its secure hash value is generated by using a secret
key, known only to the authorized parties, and the content of the message. If this value
is equal to the one attached to the message, it has not been modified since the creation
of the message. Message forgery detection is the process of ensuring that a message is
sent from whom it is claimed to be sent from. A common message forgery scenario is that
a message has been eavesdropped and resent later. To prevent this, TLS uses sequence
numbers on the messages. The sequence number is not a part of the message, but is
included when calculating the secure hash value, thus a message cannot be sent more
than once. TLS offers authentication by using digital certificates. [31, 14, 13, 10]

Figure 3.1: The SSL stack

In the OSI model, TLS is above the transport layer and below the application layer.
Wikipedia defines a layer as
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a collection of conceptually similar functions that provide services to the layer
above it and receives services from the layer below it. [26].

TLS relies on the TCP protocol at the transport layer, which offers a reliable end-to-end
service. TLS is not just one single protocol, but four protocols, organized in layers; the
Handshake protocol layer and the Record protocol layer. The Record protocol is at the
Record protocol layer, and the Handshake protocol layer consists of the Handshake pro-
tocol, the Alert protocol, and the Change Cipher Spec protocol. Each of these protocols
is explained later in this section. [11, 1, 7]

At the lowest layer of TLS, the Record protocol provides security to the higher-layer
protocols. The Handshake protocol, the Alert protocol, and the Change Cipher Spec
protocol are management protocols. If an application transmits a package to a destination
that is not associated with a valid session, the Handshake protocol is used to create a
session. A session contains a session identifier, the peer certificate, compression method,
cipher suite, master secret, and a flag indicating whether the session can be resumed.
A cipher suite is a specified combination of a key exchange algorithm, a conventional
encryption algorithm, and a MAC algorithm. [11]

TLS is a hybrid system, combining a public-key scheme and a conventional encryption
scheme. The public-key algorithm is used to exchange key, and the conventional encryp-
tion algorithm is used to encapsulate the data traffic with a secret key calculated from
the key exchange. This approach exploits the best from both schemes, the convenience of
public-key and the efficiency of conventional encryption.

When a TLS connection is established, five general phases are executed [1]:

Phase 1 Create a TCP connection by performing a three-way-handshake

Phase 2 Perform a TLS handshake, either a full or a session resume

Phase 3 Transfer the application data, encrypted with the keys exchanged during the
handshake

Phase 4 Close the TLS connection

Phase 5 Close the TCP connection

3.1 Goals

The goals of the TLS protocol, cited from the RFC5246[10], in their order of priority:

1. Cryptographic security: TLS should be used to establish a secure connection be-
tween two parties.

2. Interoperability: Independent programmers should be able to develop applications
utilizing TLS that can successfully exchange cryptographic parameters without
knowledge of one another’s code.
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3. Extensibility: TLS seeks to provide a framework into which new public key and bulk
encryption methods can be incorporated as necessary. This will also accomplish two
sub-goals: preventing the need to create a new protocol (and risking the introduction
of possible new weaknesses) and avoiding the need to implement an entire new
security library.

4. Relative efficiency: Cryptographic operations tend to be highly CPU intensive, par-
ticularly public key operations. For this reason, the TLS protocol has incorporated
an optional session caching scheme to reduce the number of connections that need
to be established from scratch. Additionally, care has been taken to reduce network
activity.

3.2 The Record Protocol

The Record protocol receives data from higher layers, such as the HTTP application
protocol, and transmits it to the TCP layer after the processing is finished. The process
involves fragmenting the data, compressing, adding MAC and perform encryption, and
append header information. When a host receives incoming TLS packets, the TCP layer
transmit the packet to the Record protocol, where the same procedures are performed in
reverse order, and finally delivered to the appropriate protocol at the layer above. The
role of the Record protocol is to offer integrity and confidentiality to the upper layer
protocols. [1, 10]

The first step, fragmentation, consists of splitting the received data into TLSPlaintext
record blocks/chunks that are 214 bytes or less. The TLSPlaintext blocks will be com-
pressed with the compression algorithm defined in the session state. Initially, this com-
pression algorithm is CompressionMethod.null, but the handshake may change this if both
parties support a mutual, lossless compression algorithm. After the compression, the TL-
SPlaintext is transformed to a new structure referred to as TLSCompressed. The block
is called TLSCompressed even if the compression algorithm is empty and no compression
is performed. [10]

To ensure message integrity, a message authentication code (MAC) is attached to the
TLSCompressed block. The MAC is generated by using the HMAC hash function, where
hash is the MAC algorithm specified in the chosen cipher suite of the current session. The
HMAC hash function takes a secret and a seed as input, and produces a fixed-size output.
The secret used is either client write MAC secret or server write MAC secret, depending
who the sender is. The seed is a concatenation of the sequence number, content type,
protocol version, the length of TLSCompressed, and the content of TLSCompressed. The
HMAC hash function is defined in Section 3.6.

The next step is to transform the TLSCompressed, and its attached MAC, into a TLSCi-
phertext structure. If the current session state has no cipher algorithm specified1, the
block will remain unchanged. The secret used in this operation is either client write key
or server write key, depending on who the sender is. [10]

1i.e. BulkCipherAlgorithm.null
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Finally, before transmitting the result to the underlying protocol, the Record protocol
header is appended. The header consists of content type, protocol version and length of
the TLSCiphertext block. Content type specifies the higher-level protocol that delivered
the data to the Record protocol, protocol version specifies the SSL/TLS version being
employed, length is the size of the data fragment, and data is the content of the application
data fragment. [11]

The procedures described above are summarized in the figure below.

Figure 3.2: The Record Protocol
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3.3 The Cipher Change Spec Protocol

This protocol consists of a single message of one byte, with the value ’1’, and is sent to
inform the other party that all succeeding messages will be encrypted using the negotiated
cipher suite and the calculated secret key. Both the client and the server must send the
message before the session can be agreed as established. [7, 10]

3.4 The Alert Protocol

If there, at any point in the communication, a warning or an error occurs, an Alert protocol
message is sent with the appropriate degree of seriousness and error code. The severity
may be either fatal or warning. In case of fatal, the session is immediately terminated.
The error codes are predefined and can be found in Appendix A.2. [7, 10]

3.5 The Handshake Protocol

The Handshake protocol is the most complex part of TLS, and is responsible for nego-
tiating the secure attributes of a session. The messages sent during the handshake have
a strict order they must follow, otherwise it will result in a fatal error. The table below
provides a summary of the messages sent during a full handshake.

Table 3.1: TLS Handshake messages
1. Client Hello client ⇒ server session id, nonce, supported cipher suites, supported

compression methods
2. Server Hello server ⇒ client session id, nonce, chosen cipher suite, chosen compres-

sion method
3. Certificate* server ⇒ client certificate
4. Key Exchange* server ⇒ client params, hash(params)
5. Certificate Request* server ⇒ client certificate type, distinguished name
6. Hello Done server ⇒ client (empty)
7. Certificate* client ⇒ server certificate
8. Key Exchange client ⇒ server encrypt(premaster secret)
9. Certificate Verify* client ⇒ server hash(message 1-8)
10. Change Cipher Spec** client ⇒ server (empty)
11. Finished client ⇒ server prf(master secret, ”client finished”, message 1-9)
12. Change Cipher Spec** server ⇒ client (empty)
13. Finished server ⇒ client prf(master secret, ”server finished”, message 1-9)

* This messages is optional
** This is not an actual handshake messages, but Change Cipher Spec protocol message.
It is included because it has an important role in the handshake.

The handshake messages are according to the RFC5246[10], TLS Protocol version 1.2.
The version has several improvements from previous versions, but the handshake steps
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are identical. The most important improvements are added extensions ability, cipher suite
independent pseudo-random function, hash signature algorithm is specified, and changes
in the available and mandatory cipher suites. [10]

1. Client Hello
When a client connects to a server, the first message sent is the ClientHello. The client
may also send this message at any time during a session if it wishes to exchange new
security attributes.

The content of this message is as follows:

Protocol version The SSL/TLS protocol which the client wants to communicate by

Random Generated by the client with a secure random generator.

Session ID Used when the client wants to resume an old session. Empty if this is a new
session or new security attributes should be generated.

Cipher suite A list of the supported cipher suites, sorted by the client’s preference.

Compression method A list of the supported compression methods, sorted by the
clients preference.

2. Server Hello
The server responds with a ServerHello message that contains the chosen parameters by
the server. If no acceptable set of algorithms were found, the server will respond with a
fatal error alert and the session will be terminated. In addition to the chosen protocol
version, cipher suite and compression method, it contains the server random generated
with a secure random generator. The ClientHello.random and ServerHello.random is
completely independent of each other and will be used when generating the master secret.
This message also contains the session identifier. If the ClientHello.session id was not
empty, the server will respond with the same session ID if it found a valid session with
this ID. In this case, the handshake will proceed directly to the finished messages.

3. Server Certificate (Optional)
The server sends its digital certificate, generally a X.509v3 certificate. The certificate must
have a key that matches the key exchange algorithm in the cipher suite. This message may
contain more than one certificate; in that case the certificate must be listed as a certificate
chain. If it is a chain, the first certificate must be the server’s, and each succeeding must
certify the preceding certificate. The chain is mostly used to authenticate the server by
having a root certificate as the last in the chain. See more in Section 2.2.6. This message
is optional, and sent only if the agreed key exchange method is not anonymous.

4. Server Key Exchange (Optional)
This message is sent only if the certificate does not contain enough information for the
client to exchange the premaster secret. The server key exchange message must be sent
when the key exchange methods is; DHE DSS, DHE RSA, or DH anon.

5. Certificate Request (Optional)
The server can optionally request a certificate from the client. If sent, this message
contains the certificate type and the distinguished name of the certificate authorities the
server accepts.
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6. Server Hello Done
The ServerHelloDone message indicates that the server is finished with its hello messages.
At this point, the client should verify the server certificate, and whether it accepts the
parameters from the server hello messages.

7. Client Certificate (Optional)
If the server sent the CertificateRequest message, the client must send this message
in return. If the client does not have a valid certificate, it sends an empty Certifi-
cateRequest message; otherwise, it sends the certificate at the same format as described
in the ServerCertificate message.

8. Client Key Exchange
Depending on the key exchange algorithm, and whether the client certificate message
has been sent, this message contains either the premaster secret encrypted with RSA, or
the client’s Diffie-Hellman public-key parameters used to compute premaster secret, or
empty if the client certificate message is sent and an appropriate key exchange method is
used. In the first scenario, where the key exchange method is RSA, the client generates
a premaster secret, which it encrypts with the public key from the server’s certificate.
In addition to the premaster secret or the public-key, this message contains the protocol
version specified in the client hello message to detect roll-back attacks. The server must
check that these two versions are identical before proceeding.

9. Certificate Verify (Optional)
If the client sent a certificate to the server, and the certificate has signing capability, this
message contains a signature and is sent to verify the client certificate. The signature is a
hash of the concatenation of all previous handshake messages, which are signed with the
client’s private key.

It is not necessary for the server to verify its certificate like this. If the server does not
have the private key that belongs to the certificate, it cannot decrypt the premaster secret
and will therefore be unable to generate the master key.

The master secret can now be computed with the PRF, explained in Section 3.6

10. Client Change Cipher Spec
The client sends this message to indicate that any succeeding message from the client will
be encrypted with the decided cipher suite and the computed key. This is actually not
a handshake message, but a Change Cipher Spec protocol message, consisting of a single
byte ’1’.

11. Client Finished
The finished message is sent by the client and used to verify that the key exchange and
authentication process were successful, and that no previous message has been tampered
with. This is the first message from the client that is encrypted with the negotiated
parameters, and contains a PRF hash that the receiving part must verify. The secret
sent to PRF is the master secret, the label is ”client finished” and the seed is the SHA-
256 value of a concatenation of all the previously exchanged handshake messages. The
hash function, SHA-256, is the default hash function, but is cipher suite dependent. This
means that the cipher suite may specify another, but stronger, hash function.

30



3.6. PRF COMPUTATION CHAPTER 3. TLS

12. Server Change Cipher Spec
The server sends this message to indicate that any succeeding message from the server
will be encrypted with the decided cipher suite and the computed key. This is actually
not a handshake message, but a Change Cipher Spec protocol message, consisting of a
single byte ’1’.

13. Server Finished
The finished message is sent by the server and used to verify the key exchange and
authentication process were successful, and that no previous message has been tampered
with. This is the first message from the server that is encrypted with the negotiated
parameters, and contains a PRF hash, explained in Section 3.6, that the receiving part
must verify. The secret sent to PRF is the master secret, label is ”server finished” and the
seed is the SHA-256 value of a concatenation of all the previously exchanged handshake
messages.

Application Data
At this point, the handshake is finished and application data can be sent securely between
the parties.

3.6 PRF Computation

TLS uses a pseudorandom function (PRF) to calculate keys and to verify the handshake
messages. The PRF takes a seed, a label, and a secret, and produces an output of arbitrary
length. In TLS version 1.2, the PRF is cipher suite dependent. There is, however, only
one PRF function specified, and it is stated that every new cipher suite MUST specify a
PRF where the hash function is SHA-256 or stronger. The general form is:

PRF(secret, label, seed) = P hash(secret, label + seed)

The hash is SHA-256 or stronger, and P hash is defined as:

P hash(secret, seed) = HMAC hash(secret, A(1) + seed) +
HMAC hash(secret, A(2) + seed) + ...

Where A(0) = seed, and A(i) = HMAC hash(secret, A(i-1))

The function iterates as many times as necessary to produce the required length of output.

The key calculation is described below:

master secret = PRF(premaster secret, ”master secret”, ClientHello.random
+ ServerHello.random)
key block = PRF(master secret, ”key expansion”, ClientHello.random +
ServerHello.random)

The key block is partitioned into the following keys, according to their specified length;

client write MAC secret
server write MAC secret
client write key

31



3.6. PRF COMPUTATION CHAPTER 3. TLS

server write key
client write IV
server write IV
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Chapter4
The Implementation

”The value of an idea lies in the using of it.”
- Thomas Alva Edison

The application is named EduTLS, and is a chat application where two hosts, hereafter
called peers, can send text messages to each other. Before the peers can exchange mes-
sages, one of them must connect to the other. The application acts both as a server
and a client; when the user initiates an outgoing connection to another peer, it has the
role as a client. At the remote peer, that application has the role as the server. These
roles, however, are just during the connection setup; when it has been established, the
roles have no practical meaning anymore. The application is developed in Java. A brief
description of Java can be found in Section 2.4.1. The complete source code can be found
at https://github.com/evinje/EduTLS.

When using the EduTLS application to study the protocol, it is not required to know
the Java programming language. However, the benefits are much greater when looking
at the source code in addition to the graphical user interface. The intention is to study
both the source code and the application. By doing that, one can follow the flow between
components, do modifications, add functionality and so on. Another feature is the ability
to add more cryptographic primitives and cipher suites. These could be self-designed or
other implementations of the same primitives, and test its effectiveness with the built-in
performance testing tool, or used to perform cryptanalysis.

Unless otherwise specified, when referring to the TLS protocol in this chapter, it refers to
the simplified TLS protocol, which is designed and implemented in this project.
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4.1 Requirements

This section states the requirements for the application, in prioritized order.

Table 4.1: Requirements
1. Simplify the application shall make it easier to understand TLS
2. Java the application shall be implemented in Java
3. Architecture the architecture shall be similar to TLS
4. Handshake the handshake shall have the same steps as TLS
5. Record the record protocol shall have the same responsibility as in TLS
6. Resume it shall be possible to resume an old session
7. Time measure the GUI shall show how time consuming the operations are
8. Automated tests the project shall include automated tests
9. X.509v3 there shall be X509v3 similar certificate

10. CA there shall be a CA that can sign and verify certificates
11. Miller-Rabin there shall be the Miller-Rabin primality test to generate primes
12. Rijndael the Rijndael algorithm shall be implemented
13. RSA the RSA public-key encryption shall be implemented
14. DH the DH key exchange shall be implemented
15. DES the DES algorithm shall be implemented
16. SHA-1 the SHA-1 hash function shall be implemented
17. SHA-256 the SHA-256 hash function shall be implemented
18. PRNG there shall be at least one random number generator
19. Compression there shall be at least one compression method
20. Performance test there shall be a performance test tool

These requirements were made before starting on the implementation, and are more like
goals than strict requirements. The goals have been taken into consideration when de-
signing the system, when decisions and priorities had to be made, and is discussed in the
evaluation conducted in Chapter 5.
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4.2 Overall Approach

Figure 4.1: Flow chart

Figure 4.1 shows an overview of the flow between core components. At application startup,
the listener service, logging service, and the graphical user interface is created. When the
listener service receives an incoming request, the type of request is determined. This may
be CONNECTION TYPE TEST or CONNECTION TYPE TLS. In case of the former,
the listener service responds with a successful test message1, and in case of the latter, the
request is forwarded to the TLS Engine. The TLS Engine creates a log event for every
operation it performs, and these log events are sent to the logging service. Whenever the
logging service receives a log event, it notifies the graphical user interface. By having this
separation, the graphical user interface has no direct coupling to the protocol and can
easily be replaced with another user interface.

TLS Engine and the graphical user interface have two-way communication; when the user
connects, or sends a message, to the remote peer, the graphical user interface module
transmit the request to TLS Engine. At the remote peer, TLS Engine receives the re-

1It simply replies with a CONNECTION TYPE TEST message
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quest from the listener service, and after processing the message, it is transmitted to the
graphical user interface.

TLS Engine has two other dependencies in addition to the logging service and the graph-
ical user interface. These are the peer communication system and the record layer. The
record layer is used whenever an object is to be transmitted or an object is received. The
record layer interpret the content type of the object, which can be Alert, Handshake or
Application Data. Depending on the content type, the TLS Engine determines the further
process of the object. The peer communication system is responsible for the transport of
objects between two peers. This involves both sending objects and receiving objects over
a network connection.

All of these components are explained in more detail throughout the rest of this chapter.

4.3 The Graphical User Interface

4.3.1 Conceptual View

Figure 4.2: The GUI - Conceptual view

Figure 4.2 demonstrates a conceptual view of the graphical user interface. The conceptual
view contains every component in the graphical user interface, with both its type and
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name. The type refers to the Java Swing component name, and the self-determined name
is given in parentheses. This information only has importance when studying the source
code.

The graphical user interface is separated into four panels. The upper left panel, pnlCon-
nections, contains information about the connections. The top of the panel gives the
user the opportunity to add new connections. Adding a connection is accomplished by
entering the hostname or IP address to the remote host into the txtAddConnection text
field, and click the btnAddConnection button. Below is information on connections, both
passive and active, listed in the lstExistingConnections JList. It is only possible to have
one active connection at the time, and the active connection is the one that is selected
in the list. At the bottom of the panel is information about the active cipher suite for
the current connection, and countdown timer of when the active session expires. More
information about sessions can be found in Section 4.4.5.

The upper right panel, pnlLog, contains log information. The JTree lstLogTree keeps
the log organized hierarchically, and when clicking on one of the nodes in the tree, a
detailed description of the log event is displayed in the text area txtLogInfo in addition to
expanding the node if it has children. More information about the log is found in Section
4.4.3.1.

The bottom left panel, pnlSettings, lists all available cipher suites with a check box in front
of the cipher suite name. The check box indicates whether the cipher suite is supported
or not. When connecting to, or receiving connection from, a remote peer, the active
cipher suite is the best available from both the peers. The active cipher suite is chosen
during the handshake, explained in Section 3.5. Below the cipher suites are the available
compression methods, which also is negotiated during the handshake. The settings panel
also have a button, btnPerformance, which tests the performance of all the cryptographic
primitives available. More information about the performance test is found below Figure
4.7.

The last panel, pnlChat, located at bottom right, contains a log history of the chat, a text
field and a button. The log history text field, lstChatLog, lists all messages that is sent
and received. When the user wants to send a message, the message is written in the text
field txtChatSendMsg, followed by clicking the btnSend button.
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4.3.2 Startup

Figure 4.3: The GUI - Startup

Figure 4.3 shows the graphical user interface that is presented to the user when running
the application. A log event, ”Application startup” is created, giving the user information
that the application waits for incoming connections at port 12345. All available cipher
suites and compression methods are loaded and enabled, and displayed in the settings
panel. Under existing sessions, localhost is added as a ”dummy-connection”. If no other
host is known, localhost can be connected to as an ordinary connection. The localhost
connection is the same computer as the EduTLS application runs at. This means, if
the user connects to localhost, the application is both the client and the server at the
same time. The log event viewer clearly shows this, because all transmitted packages are
displayed twice, one as sent and one as received.
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Figure 4.4: The GUI - Add new connection

When a new connection is added, the application creates a test connection to the remote
peer, and if the test was successful, the host is added. More information about the test
connection is given in Section 4.4.2.1.
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4.3.3 Connect

Figure 4.5: The GUI - Connect

When the user selects a host in the list of existing sessions, the system creates a connection
to that host. The graphical user interface calls the TLSEngine.connect() method, which
initializes a handshake with the remote peer.

Following are several listings, demonstrating a real-life handshake from the client. Below
every listing there is given an explanation of the content.

1 Cl i en t Random :
2 2 4 2 : 2 0 9 : 2 0 3 : 4 : 5 6 : 1 0 4 : 1 7 6 : 1 3 6 : 2 1 5 : 3 : 2 2 2 : 6 0 : 6 9 : 1 3 8 : 3 8 : 1 6 2 : 1 3 1 :
3 6 0 : 3 7 : 4 2 : 2 2 7 : 3 0 : 1 1 7 : 1 0 6 : 9 5 : 2 4 4 : 1 5 : 1 0 8
4 Ses s i on ID : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0
5 Compression method :
6 None
7 ZLib
8 Cipher S u i t e s :
9 DH AES SHA256

10 RSA AES SHA256
11 RSA AES SHA1
12 RSA DES SHA1

Listing 4.1: Sending ClientHello
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The client hello consists of a client random, session id, compression method and cipher
suites. The client random is generated with the randBytes method of the BlumBlumShub
class, explained in Section 4.4.4.5. In this example, the session id is empty, indicating
that the client have no previous connections to the server. EduTLS supports None and
ZLib as compression algorithm. There are currently four cipher suites supported by
EduTLS; DH AES SHA256, RSA AES SHA256, RSA AES SHA1, and RSA DES SHA1.
These are listed in prioritized order.

1 Server Random :
2 1 2 7 : 1 8 5 : 9 9 : 1 0 0 : 3 : 1 2 3 : 1 4 4 : 1 8 7 : 1 3 0 : 2 4 2 : 2 3 7 : 7 4 : 2 3 0 : 4 4 : 1 1 5 : 1 0 9 :
3 1 2 4 : 3 0 : 4 4 : 1 3 1 : 1 9 4 : 2 2 5 : 1 9 9 : 1 0 4 : 2 2 7 : 1 0 0 : 1 6 2 : 1
4 Ses s i on ID :
5 1 6 6 : 2 1 0 : 1 3 : 6 9 : 5 3 : 1 5 8 : 1 9 8 : 7 4 : 2 4 4 : 2 0 9 : 1 8 6 : 1 8 7 : 1 3 4 : 1 8 9 : 2 1 8 : 1 8 4
6 Compression method : ZLib
7 Chosen Cipher Su i t e : DH AES SHA256

Listing 4.2: Receive ServerHello

The server responds with server hello, which is very similar to the client hello. The server
random is generated by the same method as the client random. The client provided no
session id, making the server generate a new session id, and includes this value in the
response. The chosen cipher suite is the best cipher suite that both the client and the
server supports, DH AES SHA256 in this example, with the ZLib compression method.
The compression method is not a part of the cipher suite, as specified in Chapter 3.

1 C e r t i f i c a t e :
2 Data :
3 Vers ion : 1
4 S e r i a l Number : 8
5 I s s u e r :CN=EduTLSv2 , O=NTNU, L=Trondheim , S=SorTrondelag , C=NO
6 Va l id i t y :
7 Not Before : Tue May 10 13 : 49 : 18 CEST 2011
8 Not After : Fr i June 10 13 : 49 : 1 8 CEST 2011
9 Subject :CN=192.168 .10 .104

10 Publ ic Key Algorithm : Di f f i eHe l lman
11 Publ ic Key (512 b i t ) :
12 Modulus (512 b i t ) :
13 4477066444358886824996182243292832392576561041078195943699
14 6448858174255239427327088968657675251861383795425020948685
15 63888710889384553052583359671673422045
16 Exponent :
17 5518017083379152706295541263891508922392749642612364203441
18 0904635620248247636724628733551027989566345594693332358409
19 52067460445515939414608593030170255155
20 Signature Algorithm : sha1WithRSAEncryption
21 2159792672883725132826907615785290481363466027071917693468
22 2687129386266105487930261869498027903379798522543735642124
23 3296187946410994226426415914293444204126745693923367260964
24 5745014167786644894609561022442750849400816792591830707744
25 8503325652618778449215804712187720115931174620710337044136
26 2984319610943361440745728664892664511388939020862382900057
27 8278903476134368093879715126779556215933158893194177438276
28 0708623176802566527212619598283953040325000302821144743995
29 9770048003656844657106585120640854274647477562478623037846
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30 1707611145610208633052530511970174816609393776929415388526
31 217438083693944864636099141123957067

Listing 4.3: Receive Certificate

The server certificate is closely related to the X509 certificate[19], described in Section
2.2.6. The certificate is generated at every startup of the application. In a functional
environment however, the certificate is generated only once, saved on a permanent storage
location, and loaded at startup of the application. The validity period is one month,
which should be plenty for testing purposes. As the certificate in this demonstration
states, the public key algorithm is Diffie-Hellman, while the signature algorithm is
SHA-1 with RSA encryption. The public key algorithm must correspond to the one
in the cipher suite negotiated in the hello messages. Like in the X.509v3 certificate,
these algorithm does not need to be the same, since the signature comes from the
certificate authority. Note that the common name (CN) is the IP address for the remote
peer, which is not sufficient from a security perspective, since these can easily be tampered.

1 5 5 : 4 8 : 4 9 : 5 1 : 5 6 : 5 7 : 5 0 : 5 4 : 5 6 : 4 8 : 5 7 : 5 6 : 5 6 : 5 2 : 5 7 : 5 6 : 5 0 : 5 5 : 5 7 :
2 4 9 : 5 6 : 5 6 : 5 3 : 5 3 : 5 2 : 4 8 : 5 0 : 5 1 : 5 2 : 5 2 : 5 7 : 5 4 : 5 3 : 5 5 : 4 9 : 5 5 : 4 8 : 5 2 :
3 5 3 : 4 9 : 4 8 : 4 9 : 4 9 : 4 8 : 4 9 : 5 7 : 5 3 : 5 5 : 4 9 : 5 6 : 5 0 : 5 0 : 5 6 : 5 2 : 5 1 : 5 3 : 5 0 :
4 5 3 : 5 1 : 5 6 : 5 6 : 4 9 : 5 7 : 5 5 : 5 3 : 5 3 : 5 3 : 5 5 : 5 7 : 5 4 : 5 3 : 5 6 : 5 4 : 5 6 : 5 1 : 5 2 :
5 5 6 : 5 7 : 5 2 : 5 3 : 4 8 : 5 7 : 5 3 : 5 1 : 5 0 : 5 1 : 4 9 : 5 2 : 4 9 : 5 5 : 5 5 : 5 0 : 5 2 : 5 7 : 5 1 :
6 5 5 : 5 4 : 5 4 : 5 4 : 4 8 : 4 8 : 5 6 : 5 2 : 4 8 : 5 4 : 5 0 : 5 2 : 5 4 : 5 1 : 5 4 : 5 5 : 5 4 : 5 3 : 5 3 :
7 5 2 : 5 2 : 5 4 : 5 7 : 4 9 : 5 1 : 5 6 : 5 5 : 4 9 : 4 9 : 5 7 : 5 4 : 5 2 : 4 9 : 5 6 : 4 8 : 5 3 : 4 9 : 5 2 :
8 5 1 : 5 6 : 5 2 : 5 5 : 4 9 : 5 5 : 5 5 : 5 5 : 5 5 : 5 0 : 4 8 : 4 8 : 5 7 : 5 2 : 5 5 : 5 0 : 5 4 : 5 5 : 5 2 :
9 49 :55

Listing 4.4: Receive ServerKeyExchange

Since the current cipher suite of this example uses the Diffie-Hellman key exchange
algorithm, the server must send the server key exchange message in addition to the
certificate. This message contains the Diffie-Hellman base generator.

1 <empty message>

Listing 4.5: Receive ServerHelloDone

After the server key exchange message, the server sends server hello done, indicating that
the server has finished its messages and waits for response from the client. The server
hello done message is an empty message.

1 Algorithm : Di f f i eHe l lman
2 Publ ic Key :
3 293733955856077857585564084599456778386920642681900699811
4 096629601611241108040511595380652574233865851198573184456
5 038601554199757268101377134870453938215
6 Modulus :
7 746860007846642611479646382412552641220310661260979029246
8 610680495729417786677616749910301110223620181254952763394
9 0659531011732848077078911342294621247679

Listing 4.6: Send ClientKeyExchange
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The second message the client sends is the client key exchange message. This message
contains the public key and modulus of the clients Diffie-Hellman key pair. When the
server receives the client key exchange message, both parties have enough information to
generate the master secret. If the public-key algorithm in the certificate was RSA, this
message would be the premaster secret, encrypted with the public-key from the certificate.

1 Total s i z e o f key block : 128
2 The seed ( s e r v e r random and c l i e n t random concatenat ion ) :
3 1 2 7 : 1 8 5 : 9 9 : 1 0 0 : 3 : 1 2 3 : 1 4 4 : 1 8 7 : 1 3 0 : 2 4 2 : 2 3 7 : 7 4 : 2 3 0 : 4 4 : 1 1 5 : 1 0 9 :
4 1 2 4 : 3 0 : 4 4 : 1 3 1 : 1 9 4 : 2 2 5 : 1 9 9 : 1 0 4 : 2 2 7 : 1 0 0 : 1 6 2 : 1 : 2 4 2 : 2 0 9 : 2 0 3 : 4 :
5 5 6 : 1 0 4 : 1 7 6 : 1 3 6 : 2 1 5 : 3 : 2 2 2 : 6 0 : 6 9 : 1 3 8 : 3 8 : 1 6 2 : 1 3 1 : 6 0 : 3 7 : 4 2 : 2 2 7 :
6 3 0 : 1 1 7 : 1 0 6 : 9 5 : 2 4 4 : 1 5 : 1 0 8
7 Pre−master s e c r e t (64 bytes ) :
8 5 : 1 5 5 : 1 8 9 : 2 2 2 : 0 : 7 : 1 2 1 : 2 9 : 5 1 : 2 2 2 : 1 6 : 1 7 8 : 1 8 4 : 7 1 : 1 1 0 : 1 3 1 : 1 3 1 :
9 1 5 2 : 1 7 2 : 9 5 : 1 4 9 : 1 0 3 : 1 2 3 : 6 1 : 6 : 5 5 : 1 4 : 2 1 0 : 9 1 : 1 3 7 : 1 3 6 : 2 5 5 : 6 1 : 8 9 :

10 1 1 4 : 5 4 : 2 1 3 : 5 9 : 2 5 1 : 1 5 8 : 5 0 : 2 2 8 : 1 5 8 : 2 2 6 : 1 5 2 : 8 6 : 1 6 9 : 3 3 : 1 8 7 : 1 7 6 :
11 6 7 : 7 : 1 0 2 : 1 : 1 2 8 : 1 5 7 : 2 1 6 : 4 4 : 2 0 3 : 2 5 4 : 1 6 8 : 1 9 7 : 2 3 2 : 3 9
12 Master s e c r e t (48 bytes ) :
13 1 9 1 : 2 1 2 : 1 2 5 : 3 4 : 1 0 8 : 1 8 8 : 9 5 : 1 2 8 : 1 1 9 : 2 0 7 : 1 6 2 : 1 0 0 : 1 5 7 : 1 0 2 : 1 5 7 :
14 1 6 : 4 0 : 1 8 9 : 8 : 5 : 1 : 9 : 0 : 7 : 0 : 0 : 2 : 2 1 : 0 : 4 : 1 6 7 : 0 : 1 1 6 : 2 5 2 : 4 : 2 0 1 : 2 1 :
15 6 6 : 1 5 4 : 2 2 6 : 6 5 : 1 2 4 : 1 0 7 : 2 6 : 2 3 0 : 2 4 8 : 1 4 5 : 2
16 Cl i en t wr i t e mac key (32 bytes ) :
17 4 6 : 2 5 2 : 2 4 6 : 1 0 9 : 1 1 4 : 1 4 7 : 2 3 : 2 : 1 3 4 : 2 3 1 : 1 2 5 : 1 0 3 : 1 5 : 1 3 3 : 2 3 7 : 7 1 :
18 1 2 1 : 1 0 7 : 9 5 : 1 7 4 : 0 : 9 : 5 1 : 1 2 4 : 1 : 2 0 0 : 6 7 : 1 2 3 : 2 4 1 : 1 1 : 1 9 4 : 5 4
19 Server wr i t e mac key (32 bytes ) :
20 1 8 7 : 2 4 6 : 2 5 5 : 1 3 8 : 2 1 0 : 1 2 2 : 2 8 : 2 0 : 1 8 0 : 5 4 : 1 8 0 : 1 3 1 : 2 3 5 : 1 8 7 : 5 0 : 2 2 4 :
21 1 5 9 : 1 5 2 : 1 7 4 : 3 1 : 2 5 5 : 1 2 6 : 1 6 6 : 1 4 : 1 5 : 1 7 4 : 1 6 7 : 5 4 : 1 5 1 : 9 6 : 2 1 1 : 1
22 Cl i en t wr i t e encrypt ion key (16 bytes ) :
23 1 6 8 : 3 5 : 1 3 4 : 2 0 4 : 1 0 5 : 2 0 1 : 1 2 8 : 8 2 : 1 0 1 : 1 3 4 : 1 1 0 : 1 8 2 : 2 2 8 : 8 4 : 1 1 1 : 1 8 0
24 Server wr i t e encrypt ion key (16 bytes ) :
25 1 1 2 : 2 0 3 : 3 8 : 2 5 : 1 1 8 : 2 1 5 : 2 1 5 : 1 9 3 : 1 4 : 1 1 4 : 1 3 2 : 1 1 7 : 2 5 3 : 1 8 9 : 1 9 7 : 9
26 C l i e j n t wr i t e IV (16 bytes ) :
27 1 2 8 : 1 6 5 : 1 6 1 : 1 4 9 : 2 4 6 : 7 8 : 2 1 3 : 2 2 2 : 4 7 : 1 : 1 2 0 : 1 9 4 : 8 3 : 1 5 : 1 6 2 : 1 5 9
28 Server wr i t e IV (16 bytes ) :
29 1 7 : 9 9 : 2 4 0 : 2 1 2 : 1 4 5 : 4 3 : 1 7 5 : 9 : 4 4 : 2 1 : 2 3 0 : 1 4 0 : 1 0 9 : 2 1 3 : 1 5 7 : 7 1

Listing 4.7: Generating Key Block

The key block generation is not a part of the exchanged messages, but is included to
demonstrate at what point the session keys are generated. When using the DH AES
SHA256 cipher suite, the size of the key block is 128 bytes. After generation, the key
block is partitioned into 2 x 32 bytes for client and server write mac keys, 2 x 16 bytes
for client and server write encryption keys, and 2 x 16 bytes for client and server write
IV. The IV is generated because of the mode of operation, see Section 2.2.1.

1 1

Listing 4.8: Send ChangeCipherSpec

The client follows the client key exchange message with the change cipher spec message.
This is not a handshake message, but is a vital part of the handshake because it indicates
that every succeeding message is encrypted with the current state algorithms and keys.
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1 PRF( maste r s e c r e t , ” c l i e n t f i n i s h e d ” , Hash ( handshake messages ) )
2

3 Where m a s t e r s e c r e t =
4 1 9 1 : 2 1 2 : 1 2 5 : 3 4 : 1 0 8 : 1 8 8 : 9 5 : 1 2 8 : 1 1 9 : 2 0 7 : 1 6 2 : 1 0 0 : 1 5 7 : 1 0 2 : 1 5 7 :
5 1 6 : 4 0 : 1 8 9 : 8 : 5 : 1 : 9 : 0 : 7 : 0 : 0 : 2 : 2 1 : 0 : 4 : 1 6 7 : 0 : 1 1 6 : 2 5 2 : 4 : 2 0 1 : 2 1 :
6 6 6 : 1 5 4 : 2 2 6 : 6 5 : 1 2 4 : 1 0 7 : 2 6 : 2 3 0 : 2 4 8 : 1 4 5 : 2
7 and handshake messages =
8 C l i e n t H e l l o
9 Serve rHe l l o

10 S e r v e r C e r t i f i c a t e
11 ServerKeyExchange
12 ServerHel loDone
13 ClientKeyExchange

Listing 4.9: Send Finished

The last message from the client in the handshake is the finished message. The finished
message is calculated from every previous handshake message, and reveals if any of
the handshake messages have been tampered with. The finished message is generated
with the PRF method, described in Section 3.6. The seed to the PRF method is a
concatenation of every handshake message, except any hello request message. It is
important to note that the change cipher spec message is not a handshake message;
hence it is not included in the seed.

1 1

Listing 4.10: Receive ChangeCipherSpec

1 PRF( maste r s e c r e t , ” s e r v e r f i n i s h e d ” , Hash ( handshake messages ) )
2

3 Where m a s t e r s e c r e t =
4 1 9 1 : 2 1 2 : 1 2 5 : 3 4 : 1 0 8 : 1 8 8 : 9 5 : 1 2 8 : 1 1 9 : 2 0 7 : 1 6 2 : 1 0 0 : 1 5 7 : 1 0 2 : 1 5 7 :
5 1 6 : 4 0 : 1 8 9 : 8 : 5 : 1 : 9 : 0 : 7 : 0 : 0 : 2 : 2 1 : 0 : 4 : 1 6 7 : 0 : 1 1 6 : 2 5 2 : 4 : 2 0 1 : 2 1 :
6 6 6 : 1 5 4 : 2 2 6 : 6 5 : 1 2 4 : 1 0 7 : 2 6 : 2 3 0 : 2 4 8 : 1 4 5 : 2
7 and handshake messages =
8 C l i e n t H e l l o
9 Serve rHe l l o

10 S e r v e r C e r t i f i c a t e
11 ServerKeyExchange
12 ServerHel loDone
13 ClientKeyExchange

Listing 4.11: Finished

After the final message from the client, the server responds with the change cipher spec
message, and the finished message. The only difference between the finished messages
is the label, where the client provides ”client finished”, and the server provides ”server
finished” to the PRF method.

At this point, the handshake is finished and the peers are connected.
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4.3.4 Send Message

Figure 4.6: The GUI - Send message

After the connection has been established, the user may enter a message and click the
send button. In the log, both the plaintext and ciphertext of the message is presented.
Note the active cipher suite is displayed, and a countdown timeout to the session is closed.
When the timeout has reached 0, a new handshake, with session resume, must be initiated
before the peers can exchange more messages. The ciphertext in the figure is actually
the TLSRecord object that is sent. The first four bytes, 23:33:0:68, is the Record header,
where 23 specified application data, 33 is the version number, and 0:68 is the total size in
bytes. The next four bytes are the TLSCiphertext header, where the two first are identical
to the record header in this example. The next two, 0:26, specifies that the ciphertext is 26
bytes. The remainder is padding to obtain correct block size of the encryption algorithm.
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4.3.5 Performance Test

Figure 4.7: The GUI - Performance test

The performance test goes through every cryptographic primitive, and tests their perfor-
mance. The log provided from a performance test is demonstrated in the listing below.

1 Key exchange algor i thms , 500 t e s t s
2 Generated 512 b i t s Di f f i eHe l lman keys in : 3 ms
3 Algorithm : Di f f i eHe l lman in 582 ms
4 Generated 512 b i t s RSA keys in : 528 ms
5 Algorithm : RSA in 56 ms
6

7 Hash funct i ons , 5000 t e s t s
8 Algorithm : SHA−1 (16 bytes ) in : 33 ms
9 Algorithm : SHA−1 (512 bytes ) in : 48 ms

10 Algorithm : SHA−1 (16384 bytes ) in : 1230 ms
11 Algorithm : SHA−256 (16 bytes ) in : 62 ms
12 Algorithm : SHA−256 (512 bytes ) in : 81 ms
13 Algorithm : SHA−256 (16384 bytes ) in : 1363 ms
14

15 Performing 1000 compress ion t e s t s ( compress and decompress )
16 Algorithm : ZLib (16 bytes , 31.25% compress ion r a t i o ) in : 258 ms
17 Algorithm : ZLib (512 bytes , 97.3% compress ion r a t i o ) in : 276 ms
18 Algorithm : ZLib (16384 bytes , 99.8% compress ion r a t i o ) in : 746 ms
19

20 Conventional encrypt ion , 500 t e s t s ( both encrypt ion and decrypt ion )
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21 Algorithm : Ri jndae l (256 bytes ) in : 122 ms
22 Algorithm : Ri jndae l (2048 bytes ) in : 61 ms
23 Algorithm : Ri jndae l2 (256 bytes ) in : 83 ms
24 Algorithm : Ri jndae l2 (2048 bytes ) in : 85 ms
25 Algorithm : DES (256 bytes ) in : 913 ms
26 Algorithm : DES (2048 bytes ) in : 5553 ms

Listing 4.12: Performance Test

The first step in the test is the key exchange algorithms. There are currently two al-
gorithms specified; DiffieHellman and RSA. The key exchange algorithms are tested by
doing 500 encryptions and one key pair generation. The Diffie-Hellman key generation is
performed in 3 milliseconds, but this is with pre-generated P and G values. Appendix
B.4 demonstrates how the P and G values have been generated. The RSA key generation
takes 528 ms, but this involves every step in the key-pair generation, including prime gen-
eration with the miller rabin test. Appendix B.5 demonstrates both miller-rabin primality
test and the RSA key generation.

The next test is the hash functions, where 5000 tests are performed on three different sizes.
Since the number of tests is quite large, there will be a little overhead because every hash
input is different. From the test in the demonstration, the SHA-1 algorithm has much
higher performance than SHA-256 when processing short texts, but at larger texts, they
have more similar execution time. The crypto++ benchmarks[45] shows similar results,
where the SHA-1 has about 37% higher performance than SHA-256.

The only compression method available is ZLib. The TLSv1.2 specification states no
compression method2, but it has been decided to implement a compression method in
EduTLS. The compression method test runs for 1000 cycles, and compresses three different
text sizes. The performance test shows the compression ratio in addition to the time spent.
Since the texts are not randomly generated, the compression ratio is extremely high. The
intention of the performance test is not test the efficiency of the compression ratio, but
it could certainly be an improvement goal, and is mentioned in Section 5.3.

The final step is to test the conventional encryption algorithms. There are three conven-
tional encryption algorithms; Rijndael, Rijndael2 and DES. The first two classes are the
Rijndael/AES algorithm, but different implementations of it, and have been included to
examine the difference in execution time between implementations. The first Rijndael
algorithm is a part of the bouncy castle project[20], whereas the second (Rijandel2) is
taken from the GNU crypto project. The DES algorithm is developed by Dr. Herong
Yang, and according to the test demonstrated, it has very bad performance.

2Besides CompressionMethod.null
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4.4 Classes and Packages

Figure 4.8: Packages and classes

The large squares in Figure 4.4 are packages, while the smaller and rectangular are classes
and interfaces. The names in italic are interfaces. As the figure demonstrates, the TLS
engine communicates with the interfaces located in the crypto package, and is completely
unaware the actual algorithm it uses.
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Table 4.2: Source code size summary
Package name Number of classes Size
(none) 1 32 lines (20 without comments)
common 3 335 lines (193 without comments)
crypto 6 71 lines (49 without comments)
crypto.cipher 4 1848 lines (1445 without comments)
crypto.compression 2 113 lines (88 without comments)
crypto.hash 3 423 lines (283 without comments)
crypto.keyexchange 3 339 lines (231 without comments)
random 1 181 lines (138 without comments)
gui 1 671 lines (546 without comments)
server 3 429 lines (332 without comments)
tls 10 1456 lines (1063 without comments)
tls.handshake 9 1145 lines (925 without comments)
tls.record 3 513 lines (392 without comments)
Total 49 7000 lines (5261 without comments)

The table above lists all packages and their corresponding size in means of classes and
number of lines of code. The next sections explains all these packages and their classes,
with a table at the end of each section with the size of the source code. These tables
are included to demonstrate the complexity of each class in the package. The size of a
class is not necessarily a measure of its complexity, but in this project it reflects where
the operations are located.

4.4.1 The GUI Package

The GUI package consist of only one class; ChatGui. This is the source code for the
graphical user interface of the application. A description of the graphical user interface is
given in Section 4.3. It is worth mentioning that it has been made compatible with GUI
design tools, for instance WindowBuilder3. Using GUI tools is a good option for those
who are not familiar with the Java Swing toolkit, but want to improve or experiment
with the graphical user interface. GUI design tools are WYSIWYG4 editors, letting the
user drag-and-drop components and visualize the result live, instead of writing code that
generates the graphical user interface.

Table 4.3: The GUI package source code
Class name Size
ChatGui 671 lines of codes (546 without comments)

3http://code.google.com/javadevtools/wbpro/index.html
4What You See Is What You Get
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4.4.2 The Server Package

The server package contains functionality that deals with the incoming connections service
and communication.

4.4.2.1 Listener

The Listener class creates a server socket which waits for incoming connections. When
another peer connects, the listener service examines the type of request. If the re-
quest is CONNECTION TYPE TEST, the listener service responds with a CONNEC-
TION TYPE TEST message, meaning the test was successful. In the other type of
request, CONNECTION TYPE TLS, the listener service creates a TLSRecord of the re-
quest, and forwards the record object to the TLSEngine.

4.4.2.2 IPeerCommunicator

IPeerCommunicator is an interface for the communication that EduTLS requires.
1 pub l i c i n t e r f a c e IPeerCommunicator {
2 pub l i c S t r ing getPeer Id ( ) ;
3 pub l i c TLSRecord read ( State s t a t e ) ;
4 pub l i c void wr i t e ( TLSRecord record ) ;
5 pub l i c void c l o s e ( ) ;
6 pub l i c boolean reconnect ( ) ;
7 pub l i c boolean i s C l i e n t ( ) ;
8 pub l i c boolean isConnected ( ) ;
9 }

Listing 4.13: IPeerCommunicator Interface

The listing above is the IPeerCommunicator interface. It defines sending and receiving of
TLSRecord objects, and other basic communication features, for instance reconnect and
close. This means that one can create several different communication methods for the
application. The EduTLS only have implemented the standard network communication
method, called socket communication, but could be implemented otherwise for testing
purposes. It is also possible to make the communication go through a proxy to examine
the communication. The automated tests has its own implementation of the IPeerCom-
municator, making the tests more efficient and isolated, this is explained more in Section
4.6.

4.4.2.3 PeerSocket

The PeerSocket class is a implementation of the IPeerCommunicator interface, defining
the methods with socket5 communication. In addition to the methods defined in the
IPeerCommunicator interface, there is a testConnection() method that tries to connect to
the specified host, and returns the result, success or failure, of the test.

5A socket is a communication model that uses IP to transfer data between two processes.
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PeerSocket contains three configuration parameters for the socket. These are
SOCKET TIMEOUT, SOCKET OPEN TIMEOUT and SOCKET WRITE SLEEP.
SOCKET TIMEOUT defines the time a socket is kept open before close, meaning that
if the socket has no activity for that particular amount of time, the connection will tear
down. The default parameter is 30 seconds. Any activity after the socket has closed
will result in a reconnect, which is performed seamless to rest of the application. The
SOCKET OPEN TIMEOUT parameter states the timeout when opening a socket to a
remote host, default is 2 seconds. The timeout only applies to the stage where the socket
is trying to open a connection. If the remote host does not respond within that time, the
connection is interrupted. For instance, when communicating over a slow connections, the
parameter could be configured higher. The last parameter, SOCKET WRITE SLEEP,
states how long the socket shall wait after each write operation. The default value is
200 milliseconds. The SOCKET WRITE SLEEP parameter is included because of an
implementation issue, and is discussed in Section 5.2.

In TLS, the socket is closed after the application data has been transmitted. When
new application data is to be sent, a new socket is connected and a session resume is
conducted. In EduTLS, a variant has been designed, where the socket stays open for
SOCKET TIMEOUT seconds before closing. If more application data is sent before
timeout, the timeout gets reset to its initial value. If the timeout expires, and more
application data is to be sent, the socket must reconnect and a session resume must be
conducted.

Table 4.4: The server package source code
Class name Size
IPeerCommunicator 23 lines of codes (12 without comments)
Listener 186 lines of codes (146 without comments)
PeerSocket 220 lines of codes (164 without comments)

4.4.3 The Common Package

The common package contains functionality that is used by every part of the system.

4.4.3.1 Log

Log and LogEvent provides the logging service, where the whole system may contribute.
LogEvent describes one single log event, with a title and description. The Log class is a
collection holder of log events. The graphical user interface is a log subscriber, making it
receive every log event that is created.

Log events are organized hierarchical to make it easier to browse. For example, when a
handshake occurs, a handshake log event is created, and every message sent during that
handshake is created as a log event child of the handshake log event.
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4.4.3.2 Tools

The Tools class is also a part of the common package. This class contains various methods
for text and byte manipulation and conversion. An example of a method in the Tools
class is compareByteArray. This method takes two arguments, both of type byte array,
and compares every byte in each array to examine if they are equal. The method is
demonstrated in the listing below.

1 pub l i c s t a t i c boolean compareByteArray ( byte [ ] one , byte [ ] two ) {
2 /∗ Not equal length , hence they cannot be equal ∗/
3 i f ( one . l ength != two . l ength )
4 re turn f a l s e ;
5 f o r ( i n t i = 0 ; i < one . l ength ; i++) {
6 /∗ loop through every byte and compare ∗/
7 i f ( one [ i ] != two [ i ] )
8 re turn f a l s e ;
9 }

10 /∗ they are equal ∗/
11 re turn true ;
12 }

Listing 4.14: The compareByteArray() Method

Table 4.5: The common package source code
Class name Size
Log 32 lines of codes (19 without comments)
LogEvent 92 lines of codes (52 without comments)
Tools 211 lines of codes (122 without comments)

4.4.4 The Crypto Package

The crypto package consists of the PRF class and five interfaces; ICipher, ICompression,
IHash, IKeyExchange, and IRandomGen. The PRF class is a pseudo random function, used
by TLS to produce the master secret and the key block. According to the specifications of
TLSv1.2, the PRF function is cipher suite dependent[10]. In this implementation, how-
ever, all cipher suites uses the same PRF function, identical to the TLSv1.1 specification
[12].

The five interfaces describe the requirements for each of the succeeding chapters.
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4.4.4.1 The Crypto.Cipher Package

The classes in the crypto.cipher package must implement the interface ICipher. The fol-
lowing methods are defined in ICipher:

1 pub l i c i n t e r f a c e ICipher {
2 pub l i c i n t ge tB lockS i ze ( ) ;
3 pub l i c i n t getKeySize ( ) ;
4 pub l i c void c iphe r ( byte [ ] input , i n t inOff , byte [ ] output , i n t outOff ) ;
5 pub l i c S t r ing getName ( ) ;
6 pub l i c void i n i t ( boolean forEncrypt ion , byte [ ] key ) ;
7 }

Listing 4.15: The ICipher Interface

There are four classes in the cipher package. These are None, Rijndael, Rijndael2 and
DES. None is a empty cipher, used in the session state before an actual cipher suite is
negotiated.

The Rijndael implementation in the Rijndael class is taken from the Bouncy Castle
project[20], and the Rijndael2 class is taken from the GNU Crypto project[21]. There have
been done slightly modification of the classes to make them satisfy the ICipher interface.
Two different implementation of the same algorithm was included to demonstrate perfor-
mance variances, see Figure 4.7 for more information. The last cipher algorithm is DES,
where the implementation is taken from Dr. Herong Yang’s cryptography tutorials[38].

4.4.4.2 The Crypto.Compression Package

Compression is the process of reducing the size of a bit-sequence, by exploiting statistical
redundancy to represent equal parts of the bit sequence with a short reference.

1 pub l i c i n t e r f a c e ICompression {
2 pub l i c byte [ ] compress ( byte [ ] input ) ;
3 pub l i c byte [ ] decompress ( byte [ ] input ) ;
4 pub l i c byte getCompress ionId ( ) ;
5 pub l i c boolean isEnabled ( ) ;
6 pub l i c void setEnabled ( boolean enabled ) ;
7 pub l i c S t r ing getName ( ) ;
8 }

Listing 4.16: The ICompression Interface

There is one compression algorithm implemented in addition to CompressionMethod.null,
which is the ZLib algorithm. ZLib is a part of the Java native library, located in the
Deflater and Inflater classes. EduTLS uses these native libraries, the complete source code
of the compression algorithm is thus not included.

The compression interface has specified the methods isEnabled, setEnabled, and getCom-
pressionId. The reason is that the compression method is not a part of the cipher suite,
and these methods make it possible to turn on and off the support for a certain compres-
sion method, and for two communicating peers to agree on the same algorithm it is better
to use an identifier than the algorithm name.
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4.4.4.3 The Crypto.Hash Package

The Hash package contains all the cryptographic hash algorithms, used both to calculate
hash values, message authentication codes, and in the PRF generation.

1 pub l i c i n t e r f a c e IHash {
2 pub l i c byte [ ] getHash ( byte [ ] input ) ;
3 pub l i c i n t g e t S i z e ( ) ;
4 pub l i c S t r ing getName ( ) ;
5 }

Listing 4.17: The IHash Interface

There are two hash functions implemented, the SHA-1 and SHA-256. The interface only
has defined three functions, as specified in the listing above. In addition to the hash
calculation, the hash functions are used to create the HMAC digest. The HMAC is
calculated with the procedures described in Section 3.6.

4.4.4.4 The Crypto.KeyExchange Package

1 pub l i c i n t e r f a c e IKeyExchange {
2 pub l i c B ig Intege r getPublicKey ( ) ;
3 pub l i c B ig Intege r getPublicModulus ( ) ;
4 pub l i c B ig Intege r getSecretKey ( ) ;
5 pub l i c boolean requireServerKeyExchange ( ) ;
6 pub l i c B ig Intege r getServerKeyExchangeMessage ( ) ;
7 pub l i c S t r ing getName ( ) ;
8 pub l i c void in i tKeys ( i n t s i z e ) ;
9 pub l i c void setYb ( Big Intege r yb ) ;

10 }

Listing 4.18: The IKeyExchange Interface

Two classes implement the IKeyExchange interface; DH and RSA. The former is an im-
plementation of the Diffie-Hellman key exchange algorithm, whereas the latter is the
Rivest-Shamir-Adleman algorithm.

Note that the methods defined in the IKeyExchange interface only deals with key exchange.
The RSA algorithm is also suitable for encryption and signature, but this is not part of
the key exchange and not specified in the interface.

The setYb method is used by the Diffie-Hellman algorithm to calculate the secret key
from the public key of the remote peer. The method is not used by the RSA algorithm.

The requireServerKeyExchange returns whether the algorithms requires a message in ad-
dition to the server certificate. This is true for the Diffie-Hellman algorithm, because the
base generator must be exchanged in addition to the public key and modulus. For the
RSA algorithm, the server key exchange is not required. The handshake protocol calls the
requireServerKeyExchange of the negotiated key exchange algorithm, and if it responds
true, the handshake sends the server key exchange message, with the content from the
getServerKeyExchangeMessage of the algorithm.
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The getSecretKey method returns the calculated secret key in the Diffie-Hellman algo-
rithm, and the private exponent in the RSA algorithm.

4.4.4.5 The Crypto.Random Package

The Random package contains the pseudorandom bytes generators. These are used to
generate random byte streams of a specified size, used in the handshake.

1 pub l i c i n t e r f a c e IRandomGen {
2 pub l i c byte [ ] randBytes ( i n t nbytes ) ;
3 pub l i c S t r ing getName ( ) ;
4 }

Listing 4.19: The IRandomGen Interface

The only class in the Random package is BlumBlumShub, which is a complete implemen-
tation of the blum-blum-shub algorithm. The blum-blum-shub algorithm is explained in
Section 2.2.4.1.

Table 4.6: The crypto package source code
Class name Size
Log 32 lines of codes (19 without comments)
ICipher 19 lines of codes (10 without comments)
ICompression 19 lines of codes (11 without comments)
IHash 10 lines of codes (8 without comments)
IKeyExchange 17 lines of codes (15 without comments)
IRandomGen 6 lines of codes (5 without comments)
PRF 77 lines of codes (57 without comments)
cipher.DES 278 lines of codes (258 without comments)
cipher.None 32 lines of codes (23 without comments)
cipher.Rijndael 716 lines of codes (556 without comments)
cipher.Rijndael2 822 lines of codes (608 without comments)
compression.None 38 lines of codes (28 without comments)
compression.ZLib 75 lines of codes (60 without comments)
hash.None 20 lines of codes (15 without comments)
hash.SHA1 239 lines of codes (156 without comments)
hash.SHA256 164 lines of codes (112 without comments)
keyexchange.DH 80 lines of codes (58 without comments)
keyexchange.None 79 lines of codes (64 without comments)
keyexchange.RSA 180 lines of codes (109 without comments)
random.BlumBlumShub 181 lines of codes (138 without comments)

55



4.4. CLASSES AND PACKAGES CHAPTER 4. THE IMPLEMENTATION

4.4.5 The TLS Package

The TLS package contains the ”core” of the TLS protocol. This includes the engine, the
handshake protocol, the record layer, the alert protocol with its alert exception class, con-
nection state definitions, certificate authority, cipher suite definition, and the IApplication
interface.

The TLSEngine is the communication link between the application and the TLS protocol.
This involves session management, remote peer connectivity, and sending and receiving
of messages. The TLSEngine has the same responsibility as javax.net.ssl.SSLSocketFactory,
which is the native implementation of the SSL/TLS protocol in Java. Instead of using a
SSLSocket, EduTLS communicates through a regular and insecure socket connection, and
uses the TLSEngine to ensure communication privacy. The TLSEngine has no important
functions by itself, it is just a coordinator that relies on functionality from the other
components.

The CertificateAuthority class demonstrates a simple PKI in EduTLS. It provides func-
tionality to sign and verify certificates. CertificateAuthority has a built-in an RSA key-pair
used in the signing and verification process. In a real PKI infrastructure, the certificate
authority would have an independent role, not included as a part of the implementation
like in EduTLS. It has been included to offer the signing and verification features.

The AlertException class is a subclass of java.lang.Exception, meaning it can generate an
error if a certain condition is not satisfied. The error has a code and a description, and
the application can capture and treat the error in a reasonable way, instead of resulting
in a program crash. An AlertException error is generated in EduTLS when a failure in the
communication occurs. The majority of points where these failures can occur are during
a handshake, for instance if no mutual cipher suite is supported. If an error occurs, the
session is destroyed. A list of the error codes is given in Appendix A.2.

The CipherSuite class defines a cipher suite. This includes an encryption algorithm, key
exchange algorithm, hash function, and the name and code for the cipher suite, and a
flag indicating if the cipher suite is enabled or not. The TLSEngine contains a list of all
supported cipher suites. It is not possible for the user to add new cipher suites at runtime,
only enable or disable the predefined ones. It is, however, easy to create new cipher suites
in the source code, and it is supported by the application automatically.

The State class holds session information for one connection, called the connection state.
The parameters in a connection state is listed in Table 4.7.
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Table 4.7: Connection State
Parameter Description
changeCipherSpecClient A true or false condition whether the client has sent the change

cipher spec message
changeCipherSpecServer A true or false condition whether the server has sent the change

cipher spec message
cipherSuite The current active cipher suite for this connection
client write encryption key The cipher algorithm encryption key for the client
client write IV The cipher algorithm IV for the client
client write MAC key The hash function key of the MAC for the client
clientRandom The client random
compressionMethod The compression method in use for this connection
isResumableSession A true or false condition whether this session is resumable or not
masterSecret The master secret
peer The peer belonging to this connection. Only used for determining

the connection end and host address
preMasterSecret The pre-master secret
server write encryption key The cipher algorithm encryption key for the server
server write IV The cipher algorithm IV for the server
server write MAC key The hash function key of the MAC for the server
serverRandom The server random
sessionId The session identifier for this connection

TLSEngine has a list of all connection states, and the current active state. When a
new connection is established, the engine examines for previous connection states to that
particular host. If it is found, the handshake performs a session resume, otherwise a new
connection state is established. Note that the isResumableSession parameter is always
true in EduTLS, hence a session is always resumed if an old connection state exists.

4.4.5.1 The TLS.Handshake Package

The handshake package contains all messages sent during a full handshake. In addi-
tion to the handshake messages, there is the IHandshakeMessage interface, defining the
requirements for a handshake message.

1 pub l i c i n t e r f a c e IHandshakeMessage {
2 pub l i c byte [ ] getByte ( ) ;
3 pub l i c byte getType ( ) ;
4 pub l i c S t r ing getSt r ingValue ( ) ;
5 pub l i c S t r ing toS t r i ng ( ) ;
6 }

Listing 4.20: The IHandshakeMessage Interface

The getByte method returns the byte value of the handshake message, which is sent to
the remote peer. The getStringValue returns the human readable representation of the
byte value, used by the log service. The getType returns the handshake message type,
and toString returns the human readable representation of the type.
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4.4.5.2 The TLS.Record Package

The record package contains the objects significant to the Record protocol. This includes
the TLSCiphertext, TLSCompressed and TLSPlaintext. When a TLSRecord object is cre-
ated, it transform the text to TLSPlaintext, which is just a fragmentation of the text to
chunks of 214 bytes or less. Each of the TLSPlaintext objects is then converted to TLSCom-
pressed by using the compression method specified in the connection state. This is followed
by adding the message authentication code with the hash algorithm of the active cipher
suite, also specified in the connection state. Each of the TLSCompressed objects is then
converted to TLSCiphertext by encrypting the object with the cipher algorithm and the
calculated key, both specified in the connection state. In each of these transformations, a
new header is added with the appropriate parameters. The most important parameter is
the length, since the size of the object often varies between each transformation6.

When a TLSRecord object is received from the remote peer, the same procedures are
performed, but in reverse order.

Table 4.8: The TLS package source code
Class name Size
AlertException 90 lines of codes (55 without comments)
CertificateAuthority 45 lines of codes (36 without comments)
CipherSuite 66 lines of codes (45 without comments)
ConnectionStates 34 lines of codes (25 without comments)
IApplication 7 lines of codes (6 without comments)
State 262 lines of codes (202 without comments)
TLSAlert 36 lines of codes (28 without comments)
TLSEngine 283 lines of codes (172 without comments)
TLSHandshake 345 lines of codes (275 without comments)
TLSRecord 288 lines of codes (219 without comments)
handshake.ChangeCipherSpec 27 lines of codes (20 without comments)
handshake.ClientHello 157 lines of codes (140 without comments)
handshake.ClientKeyExchange 93 lines of codes (73 without comments)
handshake.Finished 44 lines of codes (31 without comments)
handshake.IHandshakeMessage 10 lines of codes (8 without comments)
handshake.ServerCertificate 178 lines of codes (149 without comments)
handshake.ServerHello 152 lines of codes (126 without comments)
handshake.ServerHelloDone 27 lines of codes (20 without comments)
handshake.ServerKeyExchange 40 lines of codes (30 without comments)
record.TLSCiphertext 122 lines of codes (105 without comments)
record.TLSCompressed 54 lines of codes (43 without comments)
record.TLSPlaintext 49 lines of codes (28 without comments)

6TLSPlaintext to TLSCompressed may compress and decrease the size, and TLSCompressed to
TLSCiphertext may increase the size because of padding
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4.5 The Architecture

4.5.1 Applied Patterns

This section describes how the architecture of the system is designed. The implementation
uses both architectural patterns and design patterns to achieve the requirements specified
in Section 4.1. A pattern is a well-proven and tested, general solution to a commonly
occurring problem. [33]

4.5.1.1 Model-View-Controller

An important and popular pattern is the Model-View-Controller (MVC) pattern. The
MVC pattern isolates the application logic from the user interface to achieve separation
of concerns, making the source code easier to maintain and familiarize with. Another
feature of MVC is the ability to use multiple views at the same model, which also makes
it easier to create automated tests for the application. MVC consists of three separate
parts; [33]

Model encapsulates the core data for the application

View the visual representation of that data to the user

Controller receives input, usually from the view, translates it to service requests, and
send it to the model or the view

Figure 4.9: Model-View-Controller pattern

Figure 4.5.1.1 shows how the MVC pattern has been implemented in EduTLS. By using
this separation, it is be easy to implement a new user interface by replacing the view. This
abstraction is similar to TLS, where any application can use TLS in the communication.

Note that EduTLS implements the interface IApplication. TLSEngine is an independent
class, but if this project was a complete implementation of SSL/TLS, the controller com-
ponent would subclass the SSLSocketFactory class. TLSRecord is a self-defined object,
containing all relevant information.
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4.5.1.2 Client-Server

Just like in TLS, the application is built on a client-server model. EduTLS acts both like
a server and a client, where the user interaction decides the role of the system. The client
makes the initial contact by sending a request to an external server. The server responds,
and if the communication channel was successfully established, the two peers can send
messages to each other. At this point, they are equals. [33]

4.5.1.3 Observer

In this pattern there are two roles, subject and observer, where an observer subscribes to
be notified when a subject’s state changes. The great advantage here is that the observers
will be notified automatically instead of having to ask the subject at regular intervals
whether there are any changes. Another advantage is that the observers can decide who
they want to subscribe to, and at what time they want to subscribe. [33]

The Log act as a subject and ChatGui is the observer. Any part of the application can
add log events to the Log component, which distributes the messages forward to all of its
observers. In combination with the MVC model, this creates a better separation of the
logic and the user interface.

4.5.1.4 Singleton

The Singleton pattern is used to restrict the instantiation of a class to one object. This is
useful when the application only needs one instance of the object and it is shared among
the other components of the system. The Log class is implemented as a Singleton class,
because there should be only one instance of the class, and that instance is needed across
the system. [33]
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4.6 Automated Tests

One of the goals with this application has been to make it manageable for others to
extend or modify it. Of that reason, it was decided to create a set of automatic tests.
Introduction to automated testing is given in Section 2.4.2.

The tests in EduTLS are made with JUnit7 version 4. EduTLS only contains unit tests
and integration tests. The functional tests have been performed manually, due to the
complexity of a functional test framework compared to the basic user interface in this
application.

Figure 4.10: Test coverage

Figure 4.6 visualizes what classes the different tests cover. The solid lines show which
classes the test validates, while the dotted lines show component dependencies. Recall
Section 2.4.2, that when creating unit tests one component should be isolated from rest
of the system when tested.

7http://www.junit.org -the most popular test framework for Java
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In a commercial application, the tests should cover the entire application. That is not the
case for EduTLS, classes in gray are not tested. These classes have been manually tested,
because they are not vital parts of the protocol.

4.6.0.5 AppImpl

AppImpl is a moch implementation of the IApplication interface. A description of IAppli-
cation is given in Section 4.4.5. The TLSEngine class requires a class implementing the
IApplication interface, therefore all test classes that utilize the TLSEngine creates an in-
stance of the AppImpl. The only practical function of AppImpl is to keep track of the last
message it receives.

4.6.0.6 CryptoTest

CryptoTest has seven methods; testSha1(), testSha256(), testRijndael(), testRijndael2(),
testDes(), testDH() and testRSA().

The first two methods test the SHA1 class and SHA256 class by calculating the digest
value of three different text values and compare it with predefined values. The predefined
values were calculated with a known-correct implementation of the hash function. See
Appendix B.3 for a details of the calculation of predefined values.

The methods testRijndael and testRijndael2 tests the two Rijndael cipher implementa-
tions. This is accomplished by the same principle as with the digest test; it compares
calculations with predefined values that are known to be correct. The testDes verifies the
DES implementation with the same procedures as in the Rijndael algorithm testing.

The testDH() method creates two instances of the DH class, exchange the public keys
between them, and asserts that the secret key which is calculated by the two instances
are equal. This is a simulation of a key exchange scenario.

The last method, testRSA() creates a key pair, and with that key pair it encrypts and
decrypts a secret message. The encrypted and decrypted values are compared to be sure
the encryption has been successful, and finally it asserts that the decrypted value is equal
to the original message.

4.6.0.7 HandshakeTest

HandshakeTest tests different part of the handshake. The method testClientHello() creates
a ClientHello and asserts its correctness. The testServerHello() and testCertificate() have
the same purpose with the ServerHello class and ServerCertificate, respectively. The test-
ClientHandshake() and testServerHandshake() tests the TLSHandshake class. The testCer-
tificate creates a certificate, and with the byte value of that certificate, it creates a new
certificate, and compares these two certificates. The testCertificateAuthority creates a
certificate which it signs, and verifies the signature of that certificate.
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4.6.0.8 IntegrationTest

IntegrationTest is responsible for testing the TLSEngine class. This is performed by ini-
tiating a connection and sending a message. The connection is established with a mock
instance of PeerTestImpl, and the sending is validated with a mock instance of the AppImpl
class. If the sending is success, and gets received, the test assumes that the components
cooperates as they are suppose to.

4.6.0.9 PeerTestImpl

PeerTestImpl is a moch implementation of the IPeerSocket interface, used only by the tests
described in this section. The write method puts the TLSRecord object in a queue. When
the read method is called, the first object in the queue is returned.

4.6.0.10 RecordTest

RecordTest has two methods; testErrorCodes() and testCipher(). The former verifies that
the record layer has sufficient error handling by feeding it with various illegal composed
messages. The latter is more an integration test than a unit test. It creates a cipher
suite, and uses the TLSRecord object to create the ciphertext of a large text sample. This
ciphertext is then sent to a new TLSRecord object, provided with the same cipher suite,
used to bring back the original text.

4.6.0.11 SocketTest

The final test, SocketTest, tests the Listener class. After starting the listener service, it
performs two tests. The first is a stress test with 100 connections to verify it can handle
many simultaneous requests. The second test opens a connection and feed both legal and
illegal values to verify that the listener service treat the requests like it is suppose to.
There are three possible outcome from a request; a test request should respond with a
successful test message, a TLS request should be forwarded to the TLSEngine for further
processing, and any other request should result in a alert message.
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Chapter5
Discussion

”Tell me, I’ll forget. Show me, I’ll remember. Involve me, I’ll understand.”
- Chinese proverb

This chapter reflects the work that has been conducted in this thesis. The requirements
specified in Table 4.1 gets special attention in the discussion, since they were the goals for
the project. The next section presents the author’s thoughts about the security of TLS,
followed by a section of the challenges faced during implementation, before concluding
the chapter with ideas for future improvements.

The source code has approximately 8000 lines of code when including the unit tests,
and almost 6000 when stripping away all comments and empty lines. At first sight, it
may seem like the project has become too complex for a student to easily familiarize with.
However, the cryptographic primitives constitute about 44% of the source code, and these
are not essential to go deeper into. The unit tests consists of approximately 800 lines of
code, but neither of these methods are important to study when looking at the system.

Table 4.1 states 20 requirements. All the requirements are measurable, with exception
of the first requirement; ”simplify - the application shall make it easier to understand
TLS”. The only way to conclude if the application makes it easier to understand TLS,
is to conduct a survey or user tests. It would certainly give valuable feedback, but there
has been no capacity or time to carry out such tests. The implementation was finish only
a few weeks before deadline, and to conclude the success or failure of the goal, it must
have been done at the end of the project.

The application is developed in Java, satisfying the second requirement. The third re-
quirement states that the architecture shall be similar to TLS. The architecture has been
thoroughly planned while studying the TLS specifications, and explained in Figure 4.1,
Figure 4.4 and Section 4.5. The requirement must be concluded as fulfilled.

The handshake steps are identical to the TLS specification, and with the same content in
each message. The handshake also supports session resume, where only two of the hand-
shake steps are carried through at each peer. The handshake is explained in Section 4.3.3
and 4.4.5.1. The record protocol, discussed in Section 4.4.5.2, has the same responsibility
as in TLS. That is, every object sent to the remote peer must be of type TLSRecord,
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which means that the record protocol encapsulates its header information and processes
the package before transmitting it. This satisfies requirement 4, 5 and 6.

The graphical user interface has a hierarchical log tree, where every log event has a
time-stamp. The time-stamp gives the user information about how time consuming the
operation has been, by comparing it to the previous log event. The GUI also has a
performance testing tool, explained at Figure 4.7. The graphical user interface fulfills
requirement 7 and 20.

In the crypto package, explained in Section 4.4.4, there are implementations of Diffie-
Hellman, Rijndael, DES, SHA-1, SHA2-56, RSA with Miller-Rabin primality test, and
the Blum-Blum-Shub random number generator. In addition, the crypto package has the
ZLib compression method, but this is not an complete implementation, it uses the native
Java library. These implementations meet requirements 11-18, but partly requirement 19
since it is not a complete implementation. The requirement 11, 12, 13 and 16 were actually
fulfilled before starting the implementation, because they were already implemented in
the EduSSL[3] project, and copied with only minor changes.

Requirement 8, automated tests, are partly satisfied. The application has several unit
tests, and integration tests, but it would be of great advantage to have more tests, es-
pecially if someone else wants to modify or continue the project. The tests covers the
cryptographic primitives, the record protocol, and most of the handshake. The hand-
shake part should have more tests, since it is the most complex part of TLS.

5.1 Security Analysis

The Secure Socket Layer protocol has been publicly available for more than 17 years.
When it was released, it became very popular in a short period of time. Like most techno-
logical inventions which receive much attention, it has been widely analyzed. Discovered
weaknesses has resulted in new versions and continuous improvements of the protocol.
Performing yet another security analysis of the protocol, as a part of a larger project with
other goals, would unlikely result in any new findings. Hence, this chapter’s focus is not
a thorough security analysis, but rather a few thoughts from the author.

There are several ways of doing a security analysis. Most analyses of cryptographic
protocol focuses on an abstract study of the protocol, but it is also important to analyze
implementations. TLS is proven to be highly secure with the assumption that the chosen
cipher suite is secure[47]. With the strong mandatory cipher suites specified in TLS
version 1.2, it is undoubtedly a difficult protocol to break. The majority of flaws when
using the TLS protocol is due to either implementation errors or user decisions. The
implementation errors comes from how the developer has implemented the protocol, or
how the protocol is used. When a developer uses a security protocol, a good understanding
of the protocol is very important. Without this understanding, the developer might use
the protocol in a situation it is not intended for, or under wrong assumptions. [47, 32]

The user decision errors reflect balance between a strict implementation or user involve-
ment, regarding the certificate validation process. The TLS specification states that the
certificate must be X.509v3, unless explicitly negotiated otherwise. It does, however,
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not specify how the protocol should verify the certificate, and how to react if it fails.
There are many areas where the verification might fail; unknown certificate authority, the
validity period, signature failure, unsupported algorithm, conflicting common name, to
mention the most common. In practice, this issue is often solved by involving the user.
The majority of users have little, or no, knowledge on the consequences of the decision.
[49, 50, 51]

The public key infrastructure solves the authentication process in TLS. During the hand-
shake, both parties optionally exchange their certificate. The authentication of a certifi-
cate is a trusted third party, which verifies the owner and signs the certificate. These
trusted third parties are organizations, called a certificate authority (CA), and is orga-
nized hierarchically. An important issue is how to deal with a CA that is compromised.
The CA has possible issued thousands, or millions, of signatures, and if the trust in this
particular CA is completely removed, it might result in serious consequences. This chal-
lenge is not a part of the TLS protocol, but it certainly an issue to consider in future
version of TLS and its public key infrastructure. The Tor Project1 concludes that in
practice, the certificate revocation does not work, and particularly the situation if a CA
gets compromised. [52]

Finally, it is worth mentioning that even after years of analyses and research, new weak-
nesses are discovered. In 2009, Marsh Ray published a new vulnerability, allowing an
attacker to inject chosen plaintext into an encrypted data stream. The vulnerability is in
the renegotiation process, and affects all application running on top of TLS. This attack
reminded the community that new sophisticated approaches may arise, even after so many
years. [53]

5.2 Implementation Challenges

This chapter presents the problems faced before and during the implementation of
EduTLS, and how they were solved.

The majority of the implementation problems were due to unpredictable behavior in a
couple of the native Java classes. During the handshake, several TLSRecord objects are
sent consecutively. At the remote peer, it occasionally received more than one TLSRecord
object in one read. To deal with the issue, it resulted in a lot of testing and error
handling, making the communication system hard to familiarize with. Instead, a decision
was made to have a more relaxed communication model, where the communication pauses
for 200 milliseconds after each time it sends a TLSRecord object to the remote peer. This
resulted in a performance penalty, but simplicity has higher priority than performance in
this project.

The application was developed on a machine with the Windows operating system. Java is
system independent, and runs on all operating systems that have the JVM installed. When
testing communication between a Windows system and a Linux system, the handshake

1Tor is free software and an open network that helps you defend against a form of network surveillance
that threatens personal freedom and privacy, confidential business activities and relationships, and state
security known as traffic analysis
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failed when the server sent its certificate. The reason turned out to be because the
certificate is ascii encoded and contained a line separation character2 that is specific to
the operating system. When replacing this with a system independent character3 the
problem was solved. This is one reason why automated testing by itself is not sufficient.

The handshake was designed and planned well before implementation. Besides the prob-
lem with more than one TLSRecord object in one read, it turned out to be very well
organized. The record protocol however, was not prioritized highly enough in the design
process. The overall approach was planned, with every step in the process according to
the TLS version 1.2 RFC, but at the last stage of the implementation, a few problems
were encountered. The problem was mainly due to lack of automated tests in the transfor-
mation between TLSPlaintext and TLSCiphertext objects. This made the debugging hard,
and even though the problems were solved, more unit tests should have been created.
This is discussed more in the next section.

5.3 Further Improvements

This section discusses improvement areas for the application.

When looking back at the project, there has been both wise and not-so-wise decisions.
The most affecting design decision was probably that the graphical user interface was not
planned well enough in the initial design phase. The performance test could have been
better if it was taken into account when creating the cryptographic primitives, but the
performance test was the lowest prioritized requirement and therefore it did not get much
attention in the beginning. Performance is a very important topic in cryptography, and
the tests could beneficially give more detailed measures, give the user ability to choose
between the primitives to test, and calculate the ratio for compression algorithms. The
pseudorandom generators could have been included in the performance test. The GUI
could also give the user opportunity to browse sessions and look at the information about
the session; chosen cipher suite, last connection, duration, when it expires and so on.

One goal for future work is to make the protocol compatible with the TLS protocol. The
EduTLS application has been designed to minimize the effort required to accomplish this
goal. To make the protocol comply the TLS specification is a tremendous amount of
work, but it could certainly make it compatible for testing purposes, without satisfying
all requirements of the specification.

The security of the EduTLS protocol has room for several improvements. For example,
there is no message forgery detection implemented. To implement this security goal, one
would need to add sequence numbers to the connection state, and include the sequence
number when calculating the message authentication mode for each message.

The graphical user interface shows how time consuming every operation is, but could
additionally include a summary of which operation was most costly, and perhaps a more
fine grained time measure inside each operation.

2System.getProperty(”line.separator”)
3”\n”
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The certificate authority and certificate can be solved more smoothly. The CA serves the
purpose of signing and verifying certificates, but to demonstrate a more realistic public
key infrastructure, there could have been a hierarchical structure of several certificate
authorities, and let the user choose which one to trust and to sign its certificate. This
would, however, complicate and expand the application significantly, but could be an idea
for future improvements. Another task could be to utilize X.509 certificates instead of
the built-in certificate and certificate authority. This topic was under consideration in the
design process, but was discarded due to increased complexity of the system. However,
the experience from such an implementation would certainly be valuable.

5.4 Related Work

To the author known, there is no other project with an academic security protocol im-
plemented. Several SSL and TLS implementations exist, but these are complete imple-
mentations of the protocol. One of the most complex is Jessie[54], which is a complete
implementation of a provider4, The source code of Jessie consists of over 40.000 lines of
code, which does not satisfy the first requirement The application shall make it easier to
understand TLS. Another project is the Bouncy Castle[20], which is a Java implemen-
tation of SSLv3 and TLSv1, but this project also fails to satisfy the first requirement of
simplicity.

4A provider is a system that implements some or all parts of the Java Security (cryptographic services)
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Conclusion

”Knowledge is a treasure that will follow its owner everywhere.”
- Chinese proverb

Internet is a result of a research project called ARPANET, created by the US military
and the US Department of Defense during the Cold War. When designed, the goal was
to create a decentralized network with no single node in charge. This property made the
network continue to operate even after attacks on several nodes; a great advantage in a
war. Since the users knew and trusted each other, security amongst them was not an
issue. In the beginning of the 1980s, the number of nodes that were connected increased
exponential, and the need for secure communication appeared. One of the responses was
from Netscape Communications, which released the Secure Socket Layer (SSL) protocol in
1994. Because of its design, the protocol gained a lot of attention, and was adopted as an
Internet standard in 1999, and called Transport Layer Security (TLS). Even after a decade,
TLS is still the predominant protocol for secure network communication. From being a
protocol intended for the government and the military, it is now a part of most people’s
everyday lives. The result is an explosion in the demand for people with knowledge in
information security.

The purpose of this thesis has been create a security application which can be used when
studying information security. The main concern is the SSL/TLS protocol, a crypto-
graphic system consisting of more than 30 cryptographic primitives and protocols. The
application contains an implementation of protocol similar to, but less complex than,
TLS, and a graphical user interface. The simplified TLS protocol contains most of the
operations and parts of the TLS protocol, and several cryptographic primitives. The
architecture, the record layer, and the handshake protocol is the most complex parts of
TLS, hence there has been most attention on these in the project. The graphical user in-
terface presents every operation of the protocol, with detailed information and how time
consuming it has been. The result involves both the source code and the application,
where the idea is to study one part, or preferably both, to get a practical aspect of a
cryptographic system.

The application is designed for modification to minimize the effort required to expand
the system. This involves, but is not limited to, adding new cryptographic primitives and
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cipher suites, enhance the graphical user interface, broaden the logging service, or add
more security to the protocol.

The challenges I have encountered during the implementation is mention in Section 5.2.
The biggest challenge, however, has been to find good literature on how to accomplish its
own TLS implementation. This is probably because it is not intended to do so, but rather
use existing and well tested implementation, that every programming language should
have in its native library. Experiencing this has given me even more motivation in this
project, believing that my work could help other in the same situation.

The main objective in this project is to emphasize the importance of using the technology
as it is intended to be used. Correct use is related to understanding, and this project
offers a practical approach to learn and understand the most important cryptographic
system; TLS.
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AppendixA
Tables and Lists

A.1 The First Fifteen ARPANET Sites

* Bolt Baranek and Newman (BBN)

Carnegie Mellon University

** Case Western Reserve University

* Harvard University

* Lincoln Laboratories

* Massachusetts Institute of Technology (MIT)

* NASA at AMES

* RAND Corporation

* Stanford Research Institute (SRI)

* Stanford University

* System Development Corporation

* University of California at Los Angeles (UCLA)

* University of California of Santa Barbara

* University of Illinois at Urbana

* University of UTAH
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A.2 TLS Alert Codes

Table A.1: TLS version 1.2 Alert Codes
Code Description
0 Close Notify
10 Unexpected Message
20 Bad Record Mac
21 Decryption Failed
22 Record Overflow
30 Decompression Failure
40 Handshake Failure
41 No Certificate
42 Bad Certificate
43 Unsupported Certificate
44 Certificate Revoked
45 Certificate Expired
46 Certificate Unknown
47 Illegal Parameter
48 Unknown CA
49 Access Denied
50 Decode Error
51 Decrypt Error
60 Export Restriction
70 Protocol Version
71 Insufficient Security
80 Internal Error
90 User Canceled
100 No Renegotiation
110 Unsupported Extension

A.3 Modes of Operation

ECB Electronic Codebook

CBC Cipher Block Chaining

OFB Output Feedback

CFB Cipher Feedback

CTR Counter

XTS-AES XEX Tweaked CodeBook for Advanced Encryption Standard

CMAC Cipher-based Message Authentication Code

CCM Counter with CBC-MAC
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GCM Galois/Counter Mode
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AppendixB
Source Code

B.1 Compile and Run the Application

To compile and run the application, start a command prompt, navigate to the source code
folder, and execute the following commands:

1 // compile the source code in to Java bytecode
2 javac Main . java
3 // execute s the a p p l i c a t i o n
4 java Main

Listing B.1: Compile and Run EduTLS

Note that compiling the source code required write access to the directory, and can there-
fore not be done directly on the CD.

B.2 SHA-256 Pseudocode

Operations and Symbols
All addition (+) in the algorithm is performed with modulo 232 of the result, which means
that x+y is calculated as (x+y)mod 232.

The ⊕ sign is the bitwise logical XOR operation, the ∨ sign refers to OR and ∧ refers to
the logical AND operation.

a b a XOR b a OR b a AND b
0 0 0 0 0
0 1 1 1 0
1 0 1 1 0
1 1 0 1 1

Figure 1 - Truth table for XOR, OR and AND

<< is bitwise right shift operation, often referred to as ROTRn(x), where n bits from
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the right side are discarded and n ’0’ bits are appended to the left side. >> performs
the opposite, a left shift operation referred to as SHR, where n bits from the left side are
discarded, and n ’0’ bits are appended to the right side.

a a << 2 a << 4 a >> 2 a >> 4
110101100001101 001101011000011 000011010110000 010110000110100 011000011010000

Figure 2 - Example of ROTR and SHR

Preprocessing
The first step is to initialize the 64 round constants, K1 to K63, with the first 32 bits of
the fractional parts of the cube roots of the first 64 primes. As an example, prime number
64 is 311, and 3

√
311 = 6.7751689522, separate the fractional part gives 0.7751689522, and

convert it to hex; K64 = 0xc67178f2.
Before the hash computation starts, three preprocessing steps of the message are per-
formed. The first, message padding, is to ensure the length of each chunk is 512 bits.
Begin with appending a binary ’1’ to the message, and then append as many ’0’ bits as
necessary to make the total message length equal to 448 (mod 512)1. The last 64 bits2 is
the initial length of the message expressed binary. The second preprocessing operation is
to break the message into N 512 bit chunks. The last step before the hash computation
is to initialize eight variables, H0 to H7, with the first 32 bits of the fractional parts of the
square root of the first eight primes. For instance, H0 will calculated by

√
2 = 1.41421356,

separate the fractional part gives 0.41421356, and convert to hex result in 0x6a09e667.

Hash Computation
Each of the N chunks are processed with the following steps. Create 64 variables, W1 to
W63, referred to as words. First, break the 512 bit message into sixteen 32 bit chunks and
assign the values to W1 to W15. For W16 to W63, compute the values with the formula
Wt = σ1 +Wt−7 + σ0 +Wt−16
where σ0 = ((Wt−15 >> 7) ∨ (Wt−15 << 25)) ⊕(Wt−15 >> 18) ∨ (Wt−15 <<
14) ⊕(Wt−15 >> 3)
and σ1 = ((Wt−2 >> 17) ∨ (Wt−2 << 15) ⊕(Wt−2 >> 19) ∨ (Wt−2 << 13) ⊕(Wt−2 >>
10))

After these steps, all the W words has been assigned values. Next is to initialize the
eight working variables, a,b,c,d,e,f,g and h with the (i− 1)st hash value; a = H i−1

0
b = H i−1

1
c = H i−1

2
d = H i−1

3
e = H i−1

4
f = H i−1

5
g = H i−1

6
h = H i−1

7

The next operation is to perform a 64 step iteration to manipulate the variables a-h. In
this iteration, two temporary variables, T1 and T2, are used.

Calculate
1 Modulus, the rest from an integer division between two numbers.
2 512 - 448 = 64
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T1 = h+ Σ1 + ((e ∧ f) ⊕(¬e ∧ g)) +Kt +Wt

and
T2 = Σ0 + ((a ∧ b) ⊕(a ∧ c) ⊕(b ∧ c))
where
Σ1 = (e >> 6) ∨ (e << 26) ⊕(e >> 11) ∨ (e << 21) ⊕(e >> 25) ∨ (e << 7)
and
Σ0 = (a >> 2) ∨ (a << 30) ⊕(a >> 13) ∨ (a << 19) ⊕(a >> 22) ∨ (a << 10)

The rest of the variables goes as followed:
h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1 + T2

When this 64 step iteration is finished, the last step is to compute the new hash values
for H(i) with H

(i)
0 = a + H

(i−1)
0 , H(i)

1 = b + H
(i−1)
1 and so on. As mentioned, all these

operations are performed on every N 512 bit chunks. The final operation is to concatenate
the H0 to H7 values, each of 32 bits, which results in a 256 bit message digest.

B.3 Calculate SHA-1 and SHA256 Digest

This appendix provides the source code used to calculate the predefined digest values that
is used in the unit test that verifies the hash functions.

1 pub l i c void c a l c u l a t e P r e d e f i n e d D i g e s t ( ) {
2 St r ing t e s t 1 = ”” ;
3 St r ing t e s t 2 = ” abc ” ;
4 St r ing t e s t 3 = ” abcdefghi jklmnopqrstuvwxyz ” ;
5

6 St r ing t e s t 1 s h a 1 d i g e s t = SHA1( t e s t 1 ) ;
7 System . out . p r i n t l n ( t e s t 1 s h a 1 d i g e s t ) ;
8 // DA39A3EE5E6B4B0D3255BFEF95601890AFD80709
9 St r ing t e s t 2 s h a 1 d i g e s t = SHA1( t e s t 2 ) ;

10 System . out . p r i n t l n ( t e s t 2 s h a 1 d i g e s t ) ;
11 // A9993E364706816ABA3E25717850C26C9CD0D89D
12 St r ing t e s t 3 s h a 1 d i g e s t = SHA1( t e s t 3 ) ;
13 System . out . p r i n t l n ( t e s t 3 s h a 1 d i g e s t ) ;
14 // 32D10C7B8CF96570CA04CE37F2A19D84240D3A89
15

16 St r ing t e s t 1 s h a 2 5 6 d i g e s t = SHA256( t e s t 1 ) ;
17 System . out . p r i n t l n ( t e s t 1 s h a 2 5 6 d i g e s t ) ;
18 // E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855
19 St r ing t e s t 2 s h a 2 5 6 d i g e s t = SHA256( t e s t 2 ) ;
20 System . out . p r i n t l n ( t e s t 2 s h a 2 5 6 d i g e s t ) ;
21 // BA7816BF8F01CFEA414140DE5DAE2223B00361A396177A9CB410FF61F20015AD
22 St r ing t e s t 3 s h a 2 5 6 d i g e s t = SHA256( t e s t 3 ) ;
23 System . out . p r i n t l n ( t e s t 3 s h a 2 5 6 d i g e s t ) ;
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24 // 71C480DF93D6AE2F1EFAD1447C66C9525E316218CF51FC8D9ED832F2DAF18B73
25 }
26

27 pub l i c S t r ing SHA1( St r ing input )
28 throws NoSuchAlgorithmException , UnsupportedEncodingException {
29 MessageDigest md = MessageDigest . g e t In s tance ( ”SHA−1” ) ;
30 byte [ ] sha1d ig e s t = new byte [ 4 0 ] ;
31 md. update ( input . getBytes ( ”UTF−8” ) , 0 , input . l ength ( ) ) ;
32 sha1d ig e s t = md. d i g e s t ( ) ;
33 re turn toHexStr ing ( sha1d ig e s t ) ;
34 }
35

36 pub l i c S t r ing SHA256( St r ing input )
37 throws NoSuchAlgorithmException , UnsupportedEncodingException {
38 MessageDigest md = MessageDigest . g e t In s tance ( ”SHA−256” ) ;
39 byte [ ] sha256d ige s t = new byte [ 6 4 ] ;
40 md. update ( input . getBytes ( ”UTF−8” ) , 0 , input . l ength ( ) ) ;
41 sha1d ig e s t = md. d i g e s t ( ) ;
42 re turn toHexStr ing ( sha256d ige s t ) ;
43 }
44

45 pub l i c s t a t i c S t r ing toHexStr ing ( byte [ ] array ) {
46 S t r i n g B u f f e r b u f f e r = new S t r i n g B u f f e r ( array . l ength ∗2) ;
47 f o r ( i n t i =0; i<array . l ength ; i++)
48 b u f f e r . append ( s hexUpper [ array [ i ] & 0xFF ] ) ;
49 re turn b u f f e r . t oS t r i ng ( ) ;
50 }

Listing B.2: SHA Digest Calculation

B.4 Generating Diffie-Hellman P and G

The listing below demonstrates how the P and G values are generated.
1 // Throws NoSuchAlgorithmException
2 AlgorithmParameterGenerator paramGen = AlgorithmParameterGenerator .

g e t In s tance ( ”DH” ) ;
3 // I n i t i a l i z e s a 512 b i t s parameter genera tor
4 paramGen . i n i t (512) ;
5 // Generates the parameters .
6 AlgorithmParameters params = paramGen . generateParameters ( ) ;
7 // Gets a ( t ransparent ) s p e c i f i c a t i o n o f the parameter ob j e c t
8 DHParameterSpec dhSkipParamSpec = ( DHParameterSpec ) params . getParameterSpec (

DHParameterSpec . c l a s s ) ;
9 // Throws NoSuchAlgorithmException

10 KeyPairGenerator a l iceKpairGen = KeyPairGenerator . g e t In s tance ( ”DH” ) ;
11 al iceKpairGen . i n i t i a l i z e ( dhSkipParamSpec ) ;
12 KeyPair a l i c e K p a i r = al iceKpairGen . generateKeyPair ( ) ;
13 KeyAgreement al iceKeyAgree = KeyAgreement . g e t In s tance ( ”DH” ) ;
14 al iceKeyAgree . i n i t ( a l i c e K p a i r . g e tPr iva t e ( ) ) ;
15 System . out . p r i n t l n ( dhSkipParamSpec . getG ( ) . t oS t r i ng ( ) ) ;
16 // 70138926809884982791885540234496571704510110195718228435
17 // 25388197555796586834894509532314177249376660084062463676
18 // 554469138711964180514384717777200947267417
19 System . out . p r i n t l n ( dhSkipParamSpec . getP ( ) . t oS t r i ng ( ) ) ;
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20 // 74686000784664261147964638241255264122031066126097902924
21 // 66106804957294177866776167499103011102236201812549527633
22 // 940659531011732848077078911342294621247679

Listing B.3: Generating Diffie-Hellman P and G

B.5 RSA Key Generation

1 /∗∗
2 ∗ This method p r i n t s out
3 ∗ a l l coprimes to a the g iven number
4 ∗/
5 pub l i c void findCoprimesTo ( i n t number ) {
6 f o r ( i n t i = 3 ; i < number ; i++) {
7 i f (GCD( i , number ) == 1)
8 System . out . p r i n t l n ( i + ” i s coprime to ” + number ) ;
9 }

10 }
11

12 /∗∗
13 ∗ The GCD func t i on f i n d the g r e a t e s t
14 ∗ common d i v i s o r between two numbers .
15 ∗ I f GCD i s 1 , the numbers are
16 ∗ coprimes
17 ∗/
18 pub l i c i n t GCD( i n t a , i n t b) {
19 i f (b==0) re turn a ;
20 re turn GCD(b , a%b ) ;
21 }

Listing B.4: Coprime Finder

1 /∗∗
2 ∗ Finds the modular m u l t i p l i c a t i v e i n v e r s e
3 ∗ o f e mod modulus
4 ∗/
5 pub l i c i n t findMMI ( i n t e , i n t modulus ) {
6 whi le ( t rue ) {
7 f o r ( i n t d = 3 ; d < modulus ; d++) {
8 i n t product = d∗e ;
9 i f ( ( product % modulus ) == 1) {

10 re turn d ;
11 }
12 }
13 modulus = modulus ∗2 ;
14 }
15 }

Listing B.5: Modular Multiplicative Inverse Finder

1 pub l i c s t a t i c boolean m i l l e r r a b i n ( B ig Intege r number ) {
2 // i f t e s t B i t i s zero , i t ’ s an even number , hence not a prime
3 i f ( ! number . t e s t B i t (0 ) )
4 re turn f a l s e ;
5 Big Intege r a ;
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6 // the t e s t i s run f o r 20 t imes to obta in high con f idence that i t ’ s a
prime

7 f o r ( i n t i = 0 ; i < Globals .NUM OF PRIME TESTS; i++) {
8 // we don ’ t want a to be zero , but between 1 and n
9 // java . u t i l . Random rnd

10 do {
11 a = new Big Intege r ( number . bitLength ( ) , rnd ) ;
12 } whi le ( a . equa l s ( B ig Intege r .ZERO) ) ;
13 i f ( ! m i l l e r r a b i n p a s s ( a , number ) ) {
14 re turn f a l s e ;
15 }
16 }
17 re turn true ;
18 }
19

20 p r i v a t e s t a t i c boolean m i l l e r r a b i n p a s s ( B ig Intege r a , B ig Intege r n) {
21 Big Intege r n minus one = n . subt rac t ( B ig Intege r .ONE) ;
22 Big Intege r d = n minus one ;
23 i n t s = d . getLowestSetBit ( ) ;
24 d = d . s h i f t R i g h t ( s ) ;
25 Big Intege r a to power = a .modPow(d , n) ;
26 i f ( a to power . equa l s ( B ig Intege r .ONE) )
27 re turn true ;
28 f o r ( i n t i = 0 ; i < s−1; i++) {
29 i f ( a to power . equa l s ( n minus one ) )
30 re turn true ;
31 a to power = a to power . mul t ip ly ( a to power ) . mod(n) ;
32 }
33 i f ( a to power . equa l s ( n minus one ) )
34 re turn true ;
35 re turn f a l s e ;
36 }

Listing B.6: The Miller-Rabin Primality Test

1 p r i v a t e void generateKeys ( i n t s i z e ) {
2 // p and q are two random primes
3 Big Intege r p , q ;
4 // n i s used as the modulus o f the pub l i c and p r i v a t e key
5 // e i s the pub l i c key , whi l e d i s the p r i v a t e
6 Big Intege r n , m, e , d ;
7 Random rnd = new Random( ) ;
8 do {
9 p = new Big Intege r ( s i z e , rnd ) ;

10 } whi le ( ! m i l l e r r a b i n (p) ) ;
11

12 do {
13 q = new Big Intege r ( s i z e , rnd ) ;
14 } whi le ( ! m i l l e r r a b i n ( q ) ) ;
15

16 // n = p∗q , the modulus o f the c e r t i f i c a t e
17 n = p . mult ip ly ( q ) ;
18 // Find how many coprimes the re e x i s t s o f n by us ing the Euler ’ s

t o t i e n t func t i on : m = (p−1)∗(q−1)
19 m = (p . subt rac t ( B ig Intege r .ONE) ) . mul t ip ly ( q . subt rac t ( B ig Intege r .ONE) )

;
20 // Sets e i n i t i a l l y to 65537 , which i s a common value to ensure

e f f i c i e n t encrypt ion and s u f f i c i e n t s t r ength
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21 e = new Big Intege r ( ” 65537 ” ) ;
22 // Must c a l c u l a t e e such as the g r e a t e s t common d i v i s o r o f e and m i s

1
23 whi le (m. gcd ( e ) . intValue ( ) > 1)
24 e = e . add (new Big Intege r ( ”2” ) ) ;
25 // Ca l cu l a t e s d to s a t i s f y d∗e=1 (mod m)
26 d = e . modInverse (m) ;
27 // the RSA keys are now f i n i s h e d
28 }

Listing B.7: Generating RSA Key-Pair
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