
Master of Science in Computer Science
June 2011
Kjetil Nørvåg, IDI
João B. Rocha-Junior, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Keyword Search on Spatial Network
Databases
Road network indexing for efficient query processing

Øystein Egeland Carlsson

Problem Description

With the popularization of geo-tagged data, there is an increasing interest for spatial
queries such as nearest neighbor and range. The nearest neighbor query returns the
nearest spatial objects from a given query location, while the range query returns the
set of spatial objects in a given area. A combination of spatial queries with keyword
queries has attracted the interest of the research community recently. In such queries,
the user is interested in spatial objects whose description is relevant for a set of query
keywords. For example, giving a spatial location and the set of query keywords “ital-
ian food”, a nearest neighbor keyword query returns the nearest spatial objects rele-
vant for the keywords “italian food”. In order to support these queries efficiently, spa-
tial indices such as R-tree and information retrieval indices such as inverted files are
employed. In this project, we are interested in a new kind of spatial keyword query
that takes in account the road networks. In these queries, the distance between the
query location and the spatial objects is constrained by a road network. Each spatial
keyword query has a counterpart in the context of road networks. Current solutions
that rely on spatial indexes cannot be employed to support these queries because they
are restricted to Euclidean distance. Therefore, we plan to investigate how to develop
a framework to process spatial keyword queries on road networks efficiently.

Assignment given: 17 January 2011
Supervisor: Kjetil Nørvåg, IDI
Co-supervisor: João B. Rocha-Junior

Keyword Search on Spatial Network Databases
Road network indexing for efficient query processing

Øystein Egeland Carlsson
IDI, NTNU

oysteica@stud.ntnu.no

Abstract

Given a spatial location and a set of keywords, a spatial keyword query locates spatio-
textual objects based on both the location of the objects, and the textual relevance of
the query keywords to the description of the objects. Spatial keyword queries can be
used to answer challenging questions such as finding the nearest spatio-textual object
relevant for the query keywords “restaurant sushi”.

Our focus in this project is on a new type of spatial keyword query that takes a road net-
work into account during query processing. These queries are based on the fact that the
distance between two objects in the real-world is constrained by the pre-defined paths
that comprise the road network. Different from traditional spatial keyword queries
that employ the Euclidean distance, the spatial keyword query on road networks as-
sumes the shortest path between the query location and the objects. Unfortunately, no
approach currently exists that supports processing of spatial keyword queries on road
networks.

In this thesis we address the challenging problem of locating spatio-textual objects
in a road network given a spatial location and a set of keywords. We first propose
a baseline framework that combines existing state-of-the-art approaches to support
processing of keyword-based spatial queries such as range and k-nearest neighbour on
road networks. Then, we present a novel framework termed Road Network Indexing
(RNI) that permits efficient processing of such queries by indexing the spatio-textual
objects in each road segment using inverted files.

Moreover, we present algorithms to evaluate keyword k-nearest neighbour and key-
word range queries on both the baseline and the RNI framework. Finally, we show
through an experimental evaluation using real-world datasets, that our RNI frame-
work performs nearest neighbour queries on road networks in around one order of
magnitude faster than the baseline approach in terms of response time and I/O.

Keywords: spatial keyword queries, spatial databases, road networks, query process-
ing, nearest neighbour queries, and range queries.

i

ii

Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Spatial databases . 5
2.2 Spatial network databases . 10
2.3 Information retrieval . 13

3 Preliminaries 17
3.1 Road network properties . 17
3.2 Processing spatial keyword queries on road networks 18
3.3 Frameworks for spatial query processing 20

4 Baseline Approach 27
4.1 Basic keyword-based road network architecture 27
4.2 Query processing . 29

5 Road Network Indexing 35
5.1 Advanced keyword-based road network architecture 37
5.2 Query processing . 38

6 OpenStreetMap 45
6.1 Data available from OpenStreetMap . 45
6.2 Extracting data . 48

7 Experimental Evaluation 53
7.1 Datasets . 54
7.2 Experimental setup and parameters . 55
7.3 First set of experiments: varying number of results 56
7.4 Second set of experiments: varying number of keywords 59

8 Conclusions 63

References 65

iii

iv

List of Figures

1.1 Example of a spatial keyword query on a road network. 2

2.1 The structure of an R-tree for two-dimensional data points. 7
2.2 The structure of an inverted index. 14

3.1 An illustration of what the spatial keyword queries retrieve. 19
3.2 The road network architecture of Papadias et al. 21
3.3 The structure of an IR-tree. 24
3.4 A modified version of Figure 3.1. 25

4.1 Basic architecture for spatial keyword queries on road networks. 28
4.2 Illustration of the basic keyword-based kNN and range algorithms. . . . 31

5.1 Performance related issues with the baseline approach. 36
5.2 Advanced architecture for spatial keyword queries on road networks. . 37
5.3 An example network to illustrate the road network indexing approach. . 41

6.1 An OpenStreetMap view of Campus Gløshaugen. 47

7.1 Varying number of results, Trondheim dataset. 56
7.2 Varying number of results, London dataset. 58
7.3 Varying number of results, Netherlands dataset. 58
7.4 Varying number of keywords, Trondheim dataset. 59
7.5 Varying number of keywords, London dataset. 60
7.6 Varying number of keywords, Netherlands dataset. 61

v

vi

List of Algorithms

4.1 Find spatio-textual objects . 29
4.2 Basic keyword-based k-nearest neighbour 30
4.3 Basic keyword-based range . 32
5.1 Advanced keyword-based k-nearest neighbour 39
5.2 Advanced keyword-based range . 42
6.1 Extract ways from OpenStreetMap . 48
6.2 Extract spatio-textual objects from OpenStreetMap 49

vii

viii

Chapter 1

Introduction

The past decade has seen a growth of location-based services (LBSs) on the Web due to
the proliferation of mobile devices that come with precise geo-positioning technology,
as well as rapid deployment of high-speed wireless communication. In these type of
services, location-related information is often retrieved by the use of spatial queries. A
spatial query finds spatial objects given a location, e.g. objects with a set of latitude and
longitude coordinates. Although spatial queries now are gaining popularity due to
the increase in geo-tagged data, they have been a part of the database community for a
long time. In Geographical Information Systems (GIS), for example, spatial queries can
be used to retrieve parts of a map, and in medical imaging applications spatial queries
can be used to extract a specific section of an image.

A different query is the spatial keyword query, which is a combination of a keyword
query and a spatial query. Keyword queries are intuitive, and familiar for most people
through search engines and social networks on the web. On a search engine a user
specifies a set of query keywords, and the search engine returns the most relevant
results according to the given keywords. A spatial keyword query thus finds spatial
objects based on both location and the textual relevance of the query keywords to the
description of the object. Spatial keyword queries can be used to answer questions
such as finding the nearest spatial object relevant to the query keywords “restaurant
sushi”, and are useful in many applications, including map services and online yellow
pages. We call spatial objects annotated with a set of keywords, e.g. a menu of a
restaurant, for spatio-textual objects, or just objects for short.

In this thesis we focus on a new type of spatial keyword query that takes into account
the road network where the spatio-textual objects reside. These queries are based on
the fact that the distance between two objects in real-life applications is constrained
by the network of roads and pathways that connect the objects. This is different from
traditional spatial keyword queries that employ the Euclidean distance between the
objects as the spatial constraint.

For example, Figure 1.1 shows a road network containing spatio-textual objects p an-
notated with their respective textual descriptions. Consider a tourist visiting Trond-
heim who wants to find the nearest café from her current location q. The tourist opens
a search application on her GPS-enabled mobile phone and poses a spatial keyword

1

2 INTRODUCTION

query with cafe as the query keyword. The query location q is automatically sent by
the mobile phone. In a traditional spatial keyword query, spatio-textual object p3 is
the nearest matching object to q, since its textual description is relevant to the query
keyword, and the Euclidean distance from q is the least of all the objects. On the other
hand, when we take the road network into consideration, the nearest matching spatio-
textual object is p2. The textual description of object p2 is relevant to the query key-
word, and its network distance to q is the least of all the objects.

q
p3

cafe, bar

restaurant,
chinese

food, cafe

bar, sport
p2p1

p4

cafe

Figure 1.1: Example of a spatial keyword query on a road network.

As presented in the example, spatial keyword queries that utilize the network distance
between a query location and the spatial objects returns the best objects according to
the constraints of the underlying road network. This is an improvement of the tradi-
tional spatial keyword queries where the Euclidean distance is only an approximation
of the distance between a query location and the spatial objects.

To the best of our knowledge, no approach currently exists that supports processing of
spatial keyword queries on road networks. A solution to this problem is complex, and
requires efficient index structures for the spatial and textual part of the spatio-textual
objects, as well as an efficient representation of the road network that supports exact
computation of the network distance. The current state-of-the-art approach for pro-
cessing spatial keyword queries is proposed by Cong et al. (2009). The indexing frame-
work they propose supports processing of keyword queries on spatial data by integrat-
ing inverted files (Zobel and Moffat, 2006) for text retrieval with an R-tree (Guttman,
1984) for spatial proximity querying, yielding a hybrid index they call the Inverted file R-
tree, or IR-tree. The IR-tree is an R-tree where each node is augmented with an inverted
file for the objects in the children of the node. This means that each node contains a
summary of both the textual content and spatial information of the objects in the chil-
dren of the node, enabling a query to prune the search space using both textual and
spatial constraints during tree traversal. The framework of Cong et al. supports spatial
keyword queries, and allows indexing of a vast amount of spatio-textual objects, but it
does not support spatial keyword queries on road networks.

As for the road network representation, Papadias et al. (2003) proposed a flexible road
network framework that supports processing of common spatial queries such as range
and k-nearest neighbours (kNN), as well as exact computation of the network distance
from a query location to the spatial objects. The framework is based on the network
expansion principle, which is similar to how Dijkstra’s algorithm operates (Dijkstra,

3

1959): the edges of a network are gradually expanded from a query point, reporting
spatial objects as they are encountered during the expansion. Because of the flexible
nature of the framework we consider the approach of Papadias et al. as the state-of-
the-art for spatial query processing on road networks. Unfortunately, the framework
does not support spatial keyword queries.

So, the primary research question in this thesis is to study the problem of how to process
spatial keyword queries on road networks, and to construct a framework able to do just that.

In order to address the problem stated in the research question, we first aim to con-
struct a baseline framework that combines the state-of-the-art approaches of Cong et al.
(2009) and Papadias et al. (2003), yielding an approach able to evaluate spatial key-
word queries on spatial network databases (SNDB) such as common road networks.
The road network architecture of Papadias et al. provides support for operations on
spatial network databases, while the hybrid index structure of Cong et al., the IR-tree,
provides support for processing keyword queries on spatial data.

As a second goal we will address some of the performance issues with the IR-tree of
Cong et al. Evaluation of spatial keyword queries on the IR-tree incurs a non-negligible
cost since the inverted file of each node has to be accessed during query processing to
verify the existence of a keyword in the subtree of a node. In addition, the IR-tree
is prone to retrieve false positives. To alleviate these issues, we propose a novel ap-
proach for efficient processing of spatial keyword queries on road networks that solely
uses inverted files for indexing the spatio-textual objects, yielding a framework we call
Road Network Indexing (RNI). RNI replaces the IR-tree as the structure for indexing the
spatio-textual objects with a set of inverted files, one for each network segment, where
each inverted file indexes only the spatio-textual objects that lie on the corresponding
network segment. This design allows for fast query processing since we only have to
verify the existence of a query keyword in an inverted file to confirm that there exists
a matching object on the network segment.

Furthermore, for both the baseline and the RNI framework, we will develop algorithms
for processing keyword-based range and k-nearest neighbour queries on the frame-
works. Our keyword-based range query retrieves all the spatio-textual objects within
range r of a query location q whose textual description matches any of the keywords
specified in the query; the keyword-based k-nearest neighbour query retrieves the k
closest spatio-textual objects to q that matches any of the specified query keywords.

As part of an experimental evaluation we intend to provide initial performance results
of both frameworks, as well as compare the query processing performance of both
frameworks, using an implementation of our keyword-based k-nearest neighbour al-
gorithm. The experimental evaluation will use real-world datasets of different size
extracted from the OpenStreetMap (OSM) web service. As an additional contribution,
we provide procedures and algorithms for extracting these datasets from OSM.

In summary, the main contributions of this thesis are:

• We propose a baseline framework that combines existing state-of-the-art approaches
to process spatial keyword queries on road networks.

• We present RNI, a novel framework that permits efficient processing of spatial

4 INTRODUCTION

keyword queries on road networks, by using inverted files to index the spatio-
textual objects on a road segment.

• We propose efficient algorithms for both frameworks for processing keyword-
based range and k-nearest neighbour queries.

• Finally, we show through an experimental evaluation that employs real-world
data extracted from OpenStreetMap, the efficiency of our RNI framework to pro-
cess spatial keyword queries on road networks.

The remaining of this thesis is organized as follows. Chapter two, background and re-
lated work, establishes a context to the material presented later in the thesis, and pro-
vides an insight into already published work on the topic. The third chapter, prelimi-
naries, defines and explains theory and concepts that will be helpful in understanding
the problem and our solution. Next, the baseline framework and the RNI framework
is presented in detail in chapter four and five, respectively, whereas chapter six intro-
duces OpenStreetMap and the data available from the web service. In chapter seven,
initial results on query performance for both frameworks is detailed in an experimental
evaluation. Finally, the thesis is concluded in chapter eight, together with a discussion
of future work.

Chapter 2

Background and Related Work

In order to establish a context to the material presented later in this thesis, this chapter
provides an insight into relevant background information on spatial databases (Sec-
tion 2.1), road networks (Section 2.2), and information retrieval (Section 2.3). We cover
some of the already published literature on these subjects, as well as present a more
detailed review on popular index structures such as R-trees and inverted files.

2.1 Spatial databases

When modelling any type of data and subsequently storing the data in a type of
database, it is useful to discuss the notion of a data model and a data structure. In
the database community a data model can be seen as the generic, highly abstract set of
concepts, with which a database administrator can describe the data and their relation-
ship, whereas a data structure is a generic or specific set of methods or programs used
to access data stored in a specific way (Frank, 1992).

The spatial data model thus consists of a set of abstract concepts that can be used
to describe any object that has a spatial extent in one or more dimensions. Spatial
data, in turn, consist of spatial objects comprised of points, lines, regions, rectangles,
surfaces, volumes, and more abstract dimensions such as time (Samet, 1995). Examples
of such objects include roads, rivers, cities, forests, mountains, or other geographical
landmarks and areas. Each of these objects may have different spatial properties such
as length, a defined boundary, latitude and longitude coordinates etc. In addition, it is
often interesting to store non-spatial attributes as well, such as the name of a city or a
textual description of the object.

In a regular relational database, objects are stored as a collection of tuples, where each
tuple consists of several fields belonging to different data types. A spatial object can be
stored in such a database by naively creating a field for each of the spatial dimensions
of the object, or any of the other spatial properties it is desirable to store. This approach
is sufficient for retrieving the data in an uncritical fashion such as a select all query in
SQL: SELECT ∗ FROM table. The problem arises when a user wants to retrieve a portion
of the data based on some given criteria, for example, all the roads that intersect a

5

6 BACKGROUND AND RELATED WORK

specified boundary. In a relational database there are no operations for retrieving data
based on the spatial properties of the stored objects, which means that a user manually
has to specify all the roads that intersects with other roads or regions.

Spatial databases (SDBs) and multidimensional data structures were introduced to ac-
commodate the need for operations that could support queries using spatial properties.
A spatial database is able to efficiently store and query multidimensional data objects
such as points, lines, regions, and other objects with a spatial extent, using data struc-
tures and indexing methods that takes care of the different spatial properties that each
object has.

2.1.1 Spatial indexes

In order to support search operations and efficiently retrieve the data stored in a spatial
database we employ a spatial index structure. There exist many different multidimen-
sional access methods and data structures that have been used for indexing spatial
data, and an extensive overview has been written by Gaede and Günther (1998).

Among the more popular multidimensional data structures is the k-d-tree proposed by
Bentley (1975). The k-d-tree is a binary search tree where each intermediary node can
be seen as generating a (d − 1)-dimensional hyperplane that splits the space in two
parts, alternating the splitting direction among the d possibilities. A related structure
is the Quadtree with its many variants (Finkel and Bentley, 1974; Samet, 1984). Similar
to the k-d-tree, the Quadtree also splits the space into alternating hyperplanes, but an
important difference is that the internal nodes of the tree each has 2d children in a space
of d dimensions. Other popular structures are the Grid file (Nievergelt et al., 1984) and
the M-tree (Ciaccia et al., 1997).

The most popular index structure for spatial data is the R-tree by Guttman (1984) and
its variants, the R+-tree (Sellis et al., 1987) and the R*-tree (Beckmann et al., 1990).
Since the R-tree is widely used among the approaches we discuss in this thesis, we
here provide a thorough review of the structure.

R-tree

The R-tree, originally proposed by Guttman (1984), is a dynamic index structure for
multidimensional data that supports spatial operations such as intersection, range and
nearest search. It is a balanced tree with a structure similar to that of a B-tree, and it
is created in a hierarchical fashion by splitting the multidimensional space into nested,
and possibly overlapping, bounding boxes or minimum bounding rectangles (MBRs).
Moreover, it is completely dynamic, meaning that insertions and deletions can be in-
termixed with queries, and no periodic reorganizing or re-balancing of the tree is re-
quired.

A leaf node in an R-tree contains the index records as tuples of the form (p.id, p.rectangle),
where p.id is a reference to the data object, and p.rectangle is the n-dimensional rectan-
gle enclosing the spatial object. Although the object reference is usually a pointer to a

SPATIAL DATABASES 7

record in a database, the data object itself may be stored in a leaf node entry without
affecting the structure of the tree.

Intermediary nodes, on the other hand, contain entries of the form (node.id, node.rectangle),
where node.id is a pointer to a child node in the R-tree, and node.rectangle is the min-
imum bounding rectangle that encloses all the rectangles of the entries in that child
node.

Each node in an R-tree usually corresponds to a disk page, which limits the number of
entries in a node to the size of a disk page. Let M be the maximum number of entries
that will fit in one node, and let m ≤ M/2 be a parameter specifying the minimum
number of entries in a node. An R-tree satisfies the following properties (Guttman,
1984):

• Every leaf node contains between m and M entries unless it is the root.

• Every intermediary node has between m and M children unless it is the root.

• The root has at least two children unless it is a leaf.

• All leaves appear on the same level.

Figure 2.1b presents an R-tree that is created based on the points in Figure 2.1a. The
figure shows how the hierarchy of bounding boxes is represented as a tree structure, as
well as how the pointers to the child nodes and data tuples are organized. Since we are
only using points without any spatial extent for this example the MBRs of the data ob-
jects are not shown, and the points are all of equals size, e.g. coordinates representing
objects of interest on a map.

R1

R2

R3 R4

R5

R6

R7

a

b
c

d
e

f

g

h
i

j

k

Root

(a) The data points and the rectangles en-
closing them.

R1 R2

R3 R4 R5 R6 R7

a b c d e f g h i j k

Pointers to the data tuples

(b) The structure of the R-tree based on the points in (a).

Figure 2.1: An example of an R-tree for two-dimensional data points.

Searching. Searching in an R-tree uses the MBRs of the intermediary nodes to de-
cide whether an object may be located within a node subtree. A popular query is the
intersection query, or window query: given a query rectangle Qr, retrieve all spatial
objects whose MBR intersects with Qr. The search algorithm for such a query starts
at the root and traverses the nodes in the R-tree recursively, visiting only those nodes

8 BACKGROUND AND RELATED WORK

whose MBR intersects with the query rectangle; when a leaf node is encountered, the
algorithm returns the entries that intersects with Qr.

Insertion. To insert a new data object in the R-tree, the process is basically to find
the best fitting leaf node and insert the new object, splitting a node if it overflows, and
propagate this split upwards in the tree if necessary. To select a leaf node for insertion,
the algorithm starts at the root and recursively selects the intermediary node whose
MBR requires the least expansion to fit the new object, until it reaches a leaf node and
subsequently insert the new data object in the node.

Improvements of the original design. There has also been done much work and re-
search on improving the performance and space utilization of the original R-tree as it
was proposed by Guttman (1984). One of the variants is the R*-tree of Beckmann et al.
(1990), which improves the heuristic optimization of the MBR of each inner node by
incorporating a combined optimization of area, margin, and overlap, rather than just
minimizing the area as the original R-tree does. This optimization improves the query
performance and space utilization by becoming more robust against extreme data dis-
tributions and by avoiding node splits, albeit at a slightly higher implementation cost.
Another variant is the Priority R-tree (PR-tree) of Arge et al. (2004), which is asymp-
totically optimal for the worst-case, and at the same time as efficient as the best known
R-tree variants.

2.1.2 Spatial queries

In the field of geographic information systems and spatial databases the problem of
processing common spatial queries such as range and k-nearest neighbours has re-
trieved wide attention the last few decades. In order to process such queries efficiently
most methods utilize index structures built on the spatial data to aid the search algo-
rithms in retrieval of the data objects. A review of the most important index structure
for spatial data, the R-tree by Guttman (1984), can be found in the previous section.

For processing kNN queries on R-trees the first approach, and in retrospect perhaps
the most influential, is the branch-and-bound R-tree traversal algorithm proposed by
Roussopoulos et al. (1995). The branch-and-bound algorithm traverses the R-tree while
keeping a priority queue of the k potential nearest neighbours, as well as applying
distance metrics to guide the search and prune unnecessary subtrees. Hjaltason and
Samet (1999) improve the kNN query of Roussopoulos et al. with an approach based on
an R*-tree (Beckmann et al., 1990) that can retrieve the nearest neighbours to a query
point incrementally. This means that while having already retrieved k results, one
can retrieve the k + 1 nearest neighbour without having to compute the k + 1 nearest
neighbours from scratch, thus avoiding redundant computations. However, neither
of these approaches account for keyword-based spatial queries, nor do they support
spatial queries on road networks, and are thus not applicable to our problem.

SPATIAL DATABASES 9

2.1.3 Spatial keyword queries

Research on keyword-based spatial queries followed from the increasing popularity
of location-based services on the web, giving way to new problems such as finding
web pages whose content is related to a particular place or region, and how to rep-
resent the spatial part of the web content so as to efficiently process spatial keyword
queries on the search engines. As some of the initial contributors to the subject, Zhou
et al. (2005) propose three approaches using a hybrid index structure that combines
inverted files (Zobel and Moffat, 2006) with R*-trees (Beckmann et al., 1990). The three
approaches are: 1) indexing the web pages in both the inverted files and the R*-trees,
2) building an R*-tree for each distinct keyword, and 3) build an R*-tree with the key-
words in the leaf nodes of the tree. Through experiments, they found that the second
and third approaches performed best, with a slight advantage to the second approach.
Similar to Zhou et al., Chen et al. (2006) also focused on improving the performance
of spatial keyword queries in search engines. Both approaches have an information
retrieval perspective in that they find relevant documents based on pre-defined spatial
regions, but they do not support exact location of objects, nor is their work related to
query processing on SNDB.

Different from the information retrieval perspective of the work mentioned above are
spatial keyword queries that retrieve objects with a specific location. An approach
that in some sense builds on the third approach of Zhou et al. (2005) is the KR*-tree
proposed by Hariharan et al. (2007). In the KR*-tree, the nodes are augmented with a
set of keywords that appear in the objects of the subtrees rooted at the node, with the
intention that branches in the tree can be pruned during query processing based on
both spatial and textual constraints. Their approach supports retrieval of objects within
a region by using a conjunctive keyword query, but it is not applicable to retrieving
objects in SNDB.

Top-k spatial keyword queries are queries that, given a location and a set of keywords,
returns a ranked set of the k best objects according to a combination of their distance
to the query location and the relevance of their textual description to the query key-
words. Felipe et al. (2008) address the problem of efficiently processing such queries
by integrating R-trees and signature files (Faloutsos and Christodoulakis, 1984) in a
hybrid index structure they call the IR2-tree. Each node in the IR2-tree contains a su-
perimposed bit signature derived from the keywords of the objects in the subtree, and
the idea is that entire subtrees can be pruned during query processing if a node cannot
match the query keywords. The limitations with this approach is that it only sup-
ports Boolean queries, and due to the bit signatures it is limited to a small amount of
keywords per object. The approach is also subject to false positives, since several key-
words can be represented by the same signatures. Differently from the work of Felipe
et al. (2008), Zhang et al. (2009) address the problem of retrieving the spatially closest
objects matching m user-specified keywords. To solve this problem they propose a spa-
tial keyword query they call the m-closest keywords (mCK) query: given m keywords
provided by the user, the mCK query finds the closest tuples in space that match these
keywords. To index the keywords and the spatial objects, Zhang et al. employ an ex-
tended R*-tree they call the bR*-tree. The bR*-tree is in fact very similar to the IR2-tree
of Felipe et al., and is thus subject to the same limitations. Additionally, the mCK query

10 BACKGROUND AND RELATED WORK

does not consider objects with a specific location.

To the best of our knowledge, the top approaches for processing top-k spatial keyword
queries were developed concurrently by Cong et al. (2009) and Li et al. (2010). Both ap-
proaches are very similar in that they both propose to augment each node of an R-tree
with a document summary such that each node records a summary of both the textual
content and the spatial information of the objects in the subtree of the node. During
query processing the document summary enable both approaches to prune parts of
the search space based on both textual and spatial constraints, enabling efficient re-
trieval of the top-k spatio-textual objects, ranked by a function of textual relevance
to the query keywords and spatial proximity to the query location. Additionally to
the approach described above, Cong et al. extends the R-tree further by incorporat-
ing document similarity when constructing the tree, resulting in a structure they call
the DIR-tree. In the same work Cong et al. also propose to cluster the nodes of the
DIR-tree to further improve query performance, yielding the CIDR-tree. We thus con-
sider the approach of Cong et al. to be the state-of-the-art, and will therefore employ
their approach in our baseline framework for spatial keyword processing on spatial
network databases. An extended review of the approach of Cong et al. can be found
in Section 3.3.2 in the Preliminaries chapter.

A very recent work by Rocha-Junior et al. (2011) proposes a new indexing structure to
improve the performance of top-k spatial keyword queries. The approaches of Cong
et al. (2009) and Li et al. (2010) incurs a non-negligible cost since the inverted file of each
node has to be accessed during query processing to verify the existence of a keyword
in the subtree. Rocha-Junior et al. propose to map each keyword in a vocabulary to
a distinct aggregated R-tree (aR-tree) (Papadias et al., 2001), effectively replacing the
postings lists of an inverted file with an aR-tree that indexes the spatial objects. By
running experiments Rocha-Junior et al. found that the query processing performance
of their approach outperforms the approach of Cong et al.

2.2 Spatial network databases

Query processing on spatial network databases differs from query processing on spa-
tial databases, since the objects on a road network are restricted to move on the pre-
defined paths of the underlying network. This has the important consequence that the
path between two objects depends on the actual connectivity of the transport network,
rather than the relative distance between the objects. Consequently, the algorithms for
processing the SNDB counterparts of the common spatial queries such as range and
k-nearest neighbours have to account for the connectivity of the network in order to
provide a correct answer to the queries. Processing spatial queries on SNDB has been
the source of much research in the recent years (Papadias et al., 2003; Jensen et al., 2003;
Kolahdouzan and Shahabi, 2004; Hu et al., 2006b; Shaw et al., 2007; Lee et al., 2009).

One of the fundamental problems of SNDB is how to model the spatial network in or-
der to provide an efficient structure for query processing. Perhaps the most intuitive
approach, and certainly the most common, is to represent the road network as a graph
where the vertices of the graph correspond to the road junctions, and the edges of the

SPATIAL NETWORK DATABASES 11

graph corresponds to the road segments. An early approach that focuses on how to
store and access the graph on disk, in order to minimize I/O during query processing,
is the connectivity-clustered access method (CCAM) of Shekhar and Liu (1997). CCAM
applies a topological sorting of the nodes of a network and heuristically clusters them
in disk pages based on their connectivity; the goal is to allocate them to a common disk
page to reduce I/O when later accessing the nodes. The limitation with the CCAM ap-
proach, and similar approaches, is that it only preserves the connectivity of the graph,
not the spatial location information.

A common paradigm where networks are represented as graphs is the network ex-
pansion paradigm. During network expansion, the edges of a network are gradually
expanded from a given query location, reporting any matching object discovered dur-
ing the traversal. The network expansion process is based on the single-source shortest
path algorithm of Dijkstra (1959). Dijkstra’s algorithm starts at a single node in the net-
work and keeps a priority queue of the visited nodes whose adjacent nodes are not yet
visited; the queue is sorted on the distance from the source to the nodes. Related to the
proposal of Dijkstra is the A* algorithm (Kung et al., 1986) that employs heuristics to
decide which node to expand, also solving the shortest path problem.

Papadias et al. (2003) propose a framework for spatial query processing on SNDB that
supports the most common spatial queries such as range, kNN, closest-pair, and spatial
join. Their approach consists of a three-component network storage scheme that is flex-
ible and separated from the feature sets, i.e. sets containing spatial objects belonging
to a certain category such as restaurants or hotels. Unfortunately, the approach does
not support spatial keyword queries. A detailed description of the network expansion
framework of Papadias et al. can be found in Section 3.3.1 in the Preliminaries chap-
ter. In the same work, Papadias et al. also propose a framework based on Euclidean
restriction. Euclidean restriction exploits the Euclidean lower bound property, which
says that the network distance between two points is always greater than or equal
to the Euclidean distance between the points. They found, by experiments, that the
network expansion framework outperforms Euclidean restriction for range and kNN
queries.

A related approach that solves the problem of answering active, ordered kNN queries
for moving objects in a road network is the work of Jensen et al. (2003). In their work,
Jensen et al. propose a generic framework and data model, and define the abstract
functionality necessary to answer nearest neighbour queries on SNDB. In addition,
they present detailed algorithms for nearest neighbour search and show initial results
from a prototype implementing the algorithms. The road network model is similar to
the approach of Papadias et al., in that it takes a road network and constructs a graph
representation of the network. Moreover, the limitations are the same as for Papadias
et al., i.e. the approach does not support keyword-based spatial queries.

Kolahdouzan and Shahabi (2004) present an approach based on pre-computation of
query results that aims to solve the problem of finding the k nearest neighbours to a
query point in SNDB, employing first order network Voronoi diagrams (NVD). Their
approach, called the Voronoi Based Network Nearest Neighbour (VN3), is based on
reducing the problem of distance computation in a very large network into a problem
of computing distances in several smaller regions, together with some additional table

12 BACKGROUND AND RELATED WORK

lookups. VN3 first partitions a large network into smaller and more manageable re-
gions by generating a first order NVD over the points deemed as interesting. Each cell,
or network Voronoi polygon (NVP), of the Voronoi diagram is centered by one object,
the generator of the polygon, and contains the nodes that are closest in network dis-
tance to that object. The second task is to pre-compute the intra and inter distances for
each NVP, i.e. pre-computing the distances between all edges, or border points, of the
cell to its centre, as well as from the border points to the neighbouring cells. During
query processing, the kNN query they propose first finds the nearest neighbour of a
query point q by locating the NVP that contains q. This can be achieved by searching
an R-tree built on the Voronoi cells. Second, they use the intra-cell pre-computed dis-
tances to find the distance from q to the border of the Voronoi cell of each candidate.
Finally, the inter-cell pre-computed distances are used to compute the actual network
distance from q to each candidate, finding the rest of the k − 1 neighbours. The VN3

approach is generally fast, however, as commented by de Almeida and Güting (2006),
for increasing values of k it gets computationally more expensive, because many paths
can be traversed between the Voronoi cells. Voronoi diagrams are also more complex
to handle than, for example, a network expansion algorithm (Papadias et al., 2003),
and the size of the datasets will also affect the complexity of the computation.

Later, Shaw et al. (2007) present an approach for processing spatial network queries on
SNDB that is based on the use of M-trees (Ciaccia et al., 1997) for indexing the spatial
objects. The M-tree organizes data according to any arbitrary metric, and in the case of
road networks the metric is the network distance between the objects in the network.
As a solution for computing the network distance they propose to use a Road Network
Embedding (RNE) technique, transforming the coordinates of the network objects into
a higher dimensional space (Shahabi et al., 2002). In this higher dimensional space,
they use the Chessboard distance metric that is similar to the Euclidean distance. In
RNE, this distance is easy to compute, and gives an approximation of the network dis-
tance between objects. The embedding technique in RNE requires a substantial amount
of pre-computation of all the network distances between all the objects in the network.
To reduce the amount of pre-computation, and thus the amount of storage space re-
quired, they use the notion of truncated RNE, where the shortest path is computed to
only a small percentage of the objects in the network. The reason for this is that only
a subset of the dimensions of the embedded space are necessary for the calculation of
the network distance.

Although the approach of Shaw et al. proves to be fast, in general faster than the VN3

approach of Kolahdouzan and Shahabi, it has significant drawbacks. The use of the
Chessboard metric in the truncated RNE means that the network distance cannot be
guaranteed to be correct, it is only an approximation. They show that the solution
will actually underestimate the distance to the objects, and range queries will thus not
leave out any results because of the inaccurate distance measure, but the result of a
kNN query may prove to be wrong. Range queries will, however, have to go through
a refinement step where the objects that are farther away than the set range will have
to be removed from the result.

An approach that reduces the road network to a set of interconnected trees is proposed
by Hu et al. (2006b). On each interconnected tree, called a SPIE, an nd index is built

INFORMATION RETRIEVAL 13

which is a pre-computed nearest neighbour result, used to improve performance of
a nearest neighbour search. A study with focus on improving the distance compu-
tation in SNDB is the Distance Index of Hu et al. (2006a). They propose to construct
a distance signature, which on each node stores distance information to all objects in
the network, with coarser information for objects far away, and more precise informa-
tion for nearby objects. The distance signatures subsequently guide range and kNN
search during the query process. ROAD is a framework by Lee et al. (2009) to evaluate
Location-Dependent Spatial Queries (LDSQ), i.e. a general query defined by a distance
condition, and an attribute predicate (e.g. object type = ‘restaurant’). ROAD partitions
the road network into regional sub-networks (Rnets), and exploits the fact that there
are large parts of a road network that do not contain any objects of interest, and can
thus be pruned from the search space during query processing. The Rnets consists
of a set of border nodes, and the edges between these nodes can be used as a short-
cut to avoid traversing the whole network contained within the Rnet. The common
limitation for the three aforementioned approaches is that they do not support spatial
keyword queries on SNDB, and are thus not applicable to solve our problem.

Although not directly related to our problem, an interesting work done by Yiu and
Mamoulis (2004) study the problem of clustering objects that lie on the edges of a large
spatial network. They propose a novel transformation of a road network that could po-
tentially be used in an approach for processing spatial queries such as range and kNN.
The idea is to transform the weighted graph representation G of the road network, to
a new graph G′, where each node n in G′ is an object p from the original network G.
Furthermore, there is an edge between two nodes n and n′ in G′ if one can move from
one object to another in the original network, not passing via any other object. Such a
network transformation can likely be applied to the network expansion approaches of
Papadias et al. (2003) and Jensen et al. (2003), where all the objects of a feature set is re-
ported as an answer when encountered in the network, making each network node in
the transformed graph an answer. In our approach, on the other hand, a spatio-textual
object is reported only if it contains any of the keywords specified in the query. Thus,
by running a spatial keyword query on the transformed graph, the process runs the
risk of expanding a very large part of the network before discovering any matching
object.

2.3 Information retrieval

According to Manning et al. (2008):

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

Data and information are two terms which in many contexts may be perceived as the
same concept, but it is important to separate the field of data retrieval and information
retrieval. In general, we can say that the goal of data retrieval is to return an exact
answer containing all the documents or objects that matched a specific set of query

14 BACKGROUND AND RELATED WORK

terms, given a clearly defined data retrieval language with a specific syntax and se-
mantics. An example is the traditional relational database. The data stored in such
a database have a clear structure defined in the database schema, and the language
used to retrieve the data, e.g. SQL, has a well defined syntax. If an object that does
not match the SQL query is returned, then something has gone wrong and the result is
considered incorrect.

The goal of information retrieval, on the other hand, is to present the user with in-
formation about a subject or topic that is most relevant to the provided keywords or
query phrases, while not returning information that is considered irrelevant. A tradi-
tional web search is the prime example here. A user enters a set of query terms, and the
search engine returns a set of hits considered most relevant according to the specified
terms. Some of the hits may be exactly what the user wanted, and others may be com-
pletely irrelevant for the information need of the user. The problem with information
retrieval is to actually decide what should be marked as relevant; how can relevancy
be quantified.

2.3.1 Inverted files

Brewery

Coffee

Cake

2 3 7

2 3 8 9 13

1 2 24 33

...

Dictionary Postings

Figure 2.2: The structure of an inverted index.

In order to efficiently retrieve documents and objects that contain the keywords spec-
ified in a query we use an index. The inverted file, or inverted index, is likely one of the
most popular and efficient index structures for textual data (Zobel and Moffat, 2006).
A basic inverted file1 is just a data structure mapping terms to the documents they ap-
pear in. The name inverted index is actually redundant, since an index always maps
back from terms to the documents they appear in Manning et al. (2008).

Figure 2.2 depicts the structure of an inverted file. On the left hand side of the figure
we have the dictionary, also called the vocabulary, which is the set of terms in the
document collection being indexed. Each term in the dictionary points to a postings
list, as seen on the right hand side of the figure. A postings list is a sorted array of
postings, where each posting contains the document ID in which the corresponding
term can be found. This separation enable us to store the dictionary and the postings
lists in different locations, connecting them with a pointer as shown in the figure. Since
the dictionary often is much smaller in size than the postings lists, it is often kept in

1In this thesis, inverted files and inverted indexes are used interchangeably

INFORMATION RETRIEVAL 15

memory, while the pointer of a term points to the disk page where the corresponding
postings list can be found.

There are several ways to represent a postings list, one way being a sorted array, an-
other as a linked list. In Figure 2.2 the postings lists are represented as a linked list,
allowing dynamic updates and additions of documents. In addition to storing just the
document ID in a posting, it can be useful to store the position of each occurrence of
each term within a document. This of course demands more storage, but it enables
us to jump directly to the term instead of searching through the whole document. An
effective implementation of the dictionary can be achieved by using a hash table or a
search tree.

2.3.2 Retrieval models

In information retrieval, and text databases in general, there are two main models of
query, Boolean and ranked.

Boolean query model. The Boolean query model consists of the class of queries that can
be constructed by the conjunction, disjunction or negation of a set of query terms. That
is, a query can be posed as a Boolean expression where each term is combined with
either of the operators AND (∧), OR (∨), or NOT (¬). A conjunction of terms means
that every term must be present in the result, whereas a disjunction means that one
or more of the terms may be present. For example, in a collection of documents, the
document d is the answer to a conjunctive query t1 ∧ t2 ∧ · · · ∧ tm if it contains every
ti for 1 ≤ i ≤ m; similarly, d is the answer to a disjunctive query t1 ∨ t2 ∨ · · · ∨ tn if
it contains any ti for 1 ≤ i ≤ n (Zobel et al., 1998). In the Boolean query model each
document is viewed just as a set of words (Manning et al., 2008).

Ranked query model. In the ranked query model the query may consist of a single
keyword, a sentence, or a full text. For all purposes the query is viewed as simply a
set of words, without any connecting logical operators. A scoring mechanism for this
approach can be to calculate a similarity score between the query and each document
in the document collection. Similarity is defined by a mathematical function that ap-
proximates the likelihood that the document is an answer, and may consist of a large
number of parameters. After the similarity score has been calculated for each docu-
ment against the query, they are ranked according to a given criteria and presented to
the user as an answer (Zobel et al., 1998). The simplest approach to achieve a ranking
of documents is the term frequency weighting scheme, denoted t ft,d. In this approach
we want to compute a score between a query term t and a document d, based on the
weight of t in d. This can be achieved by setting the weight to be equal to the number
of occurrences of term t in document d. Thus, the documents can be ranked based on
the set of weights determined by the calculated tf weights (Manning et al., 2008).

An additional type of query is the proximity query in which answers must contain the
specified terms within a specified distance of each other. Such a query may be useful

16 BACKGROUND AND RELATED WORK

in phrase searches, and the special case where the proximity is 1 is known as adjacency.

In the frameworks we propose later in this thesis we employ a version of the ranked
query model. A more detailed description of this can be found in Section 3.2 in the
Preliminaries chapter.

Chapter 3

Preliminaries

In this chapter we will define concepts and explain theory that will be helpful in under-
standing the problem we address in this thesis, as well as provide a better understand-
ing of the two frameworks we present in the following two chapters. In the subsequent
section we define road networks and present related notation used throughout this the-
sis. Section 3.2 formally defines the keyword k-nearest neighbour and keyword range
queries, and provides an example showing their operation on a road network. Finally,
Section 3.3 provides a detailed review of the road network architecture of Papadias
et al. (2003) and the hybrid index for spatial keyword queries of Cong et al. (2009).

3.1 Road network properties

Throughout this thesis we assume a digitization process that takes as input a spatial
network and generates a modelling graph that represents the spatial network. The
graph is subject to certain properties that are introduced, and formally defined, in this
section.

A road network is modelled as a weighted graph N = (N, E), where N is the set
of nodes in the graph, and E is the set of edges. A node n ∈ N corresponds to a
road intersection or an end-point in the road network, whereas an edge (n, n′) ∈ E
corresponds to the road segment1 connecting nodes n and n′. Each edge is assigned a
positive real number as the weight, denoted as |n, n′|. |n, n′| may represent the actual
travel distance, the time used to travel the road segment, or a constraint such as the
speed limit. A path P(u, v) in the modelling graph is the set of edges connecting nodes
u and v, with the path distance as |P(u, v)| = ∑(n,n′)∈P(u,v) |n, n′|. Furthermore, the
shortest path Pmin(u, v) is defined as the path of shortest distance among all the possible
paths connecting the two nodes u and v. Subsequently, |Pmin(u, v)| is defined as the
distance of the shortest path, i.e. the network distance between nodes u and v, denoted
by ||u, v||.

S denotes the set of spatio-textual objects present in the road network. A spatio-textual

1In this thesis, the terms edge, network segment, and road segment are used interchangeably.

17

18 PRELIMINARIES

object p ∈ S is an object with a spatial location, e.g. a set of latitude and longitude
coordinates, and a textual description p.doc. We assume that each spatio-textual object
p belongs to one edge (n, n′) ∈ E, and that any object p located outside an edge belongs
to the nearest edge.

We let O(n, n′) represent the set of objects that are present on edge (n, n′), and the
network distance from an object p ∈ O(n, n′) to the nodes n and n′ is represented by
δ(p, n) and δ(p, n′), respectively. Given two arbitrary objects p and q, where p lies on
edge (na, nb) and q lies on edge (nc, nd), the network distance ∆(p, q) is the distance of the
shortest path from p to q. ∆(p, q) is defined by minx∈{a,b},y∈{c,d}(δ(p, nx) + ||nx, ny||+
δ(ny, q)).

3.2 Processing spatial keyword queries on road networks

In this thesis we address the challenging problem of searching for spatio-textual ob-
jects in a road network given a spatial location and a set of descriptive keywords. We
employ a version of the ranked retrieval model, which in this context means that the
textual description of each spatio-textual object is seen as a bag of words. Under this
model, the describing document of each spatio-textual object is represented as a vec-
tor, with each vector component corresponding to a unique term in the total collection
of describing documents, i.e. the document collection. Each component is assigned a
weight based on whether a term is present in the corresponding textual description.
For terms that are not present in the description, the weight is zero. By also repre-
senting the set of keywords in a query as a vector, the two vectors can be compared to
determine whether the spatio-textual object is a match for the query. That is, if the de-
scription of a spatio-textual object contains any of the keywords in a query, the object
will get a rank > 0, indicating that it is a match.

Following is a formal definition of two spatial keyword queries, namely the keyword
k-nearest neighbours query (KkNN) and keyword range query (KR).

3.2.1 Keyword k-nearest neighbours

QKkNN = 〈q, W, k〉 = 〈q, w1 . . . wn, k〉, given a query point q, a set of query keywords W,
and a value k. In the set of spatio-textual objects S, the keyword k-nearest neighbours
query retrieves the k ≥ 1 objects closest to q according to the network distance, and
whose rank > 0, based on the set of keywords W. Observe that the ranking among the
spatio-textual objects with rank > 0 is defined according to the spatial proximity of the
objects with q.

For example, Figure 3.1 shows a road network containing spatio-textual objects an-
notated with their respective textual descriptions, and can be used as an illustration
of what a KkNN query retrieves. Assume the keyword k-nearest neighbours query
QKkNN = 〈q, W, k〉, where W = {asian, restaurant} and k = 1. In this case, the query
point q is the location from where the query starts. When running this query on the

PROCESSING SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 19

road network in Figure 3.1, object a is returned. The network distance to a from q is 6,
and it is the closest object with a description that contains any of the keywords asian or
restaurant.

3.2.2 Keyword range search

QKR = 〈q, W, r〉 = 〈q, w1 . . . wn, r〉, given a query point q, a set of query keywords W,
and a range r. In the set of spatio-textual objects S, the keyword range search query
retrieves the objects p that are within network distance r of q, and whose rank > 0,
based on the set of keywords W. Hence, p ∈ S is part of the result set of QKR if and
only if ∆(p, q) ≤ r and {∃w ∈W|w ∈ p.doc}.

To illustrate the KR query, let QKR = 〈q, W, r〉, where W = {asian, restaurant} and
r = 10. Here q is the point of origin for the query, and r is the range. Using the network
and objects in Figure 3.1, the objects that match the query are a and c. The distances
from the query point to the objects are 6 and 10, respectively. Even though there is
another object within the specified range of 10, object b, this object was not returned as
a result of the query since its description does not contain any of the keywords given
in W.

Sports goods
store

Asian restaurant serving
fast-food noodles Restaurant serving chinese

and other asian food

Asian fast-food
restaurant

Gourmet asian cooking,
newly opened restaurant

7

2 5

8
7

3

5

5

a

q

c

b

e

d
f

6

13

g

n1

n5

n4
n2

n3

1

1

Figure 3.1: An example road network to illustrate what the KkNN and KR queries retrieve. The
query point q is located in the middle of the figure as the black point, the spatio-
textual objects are spread around the network as the grey points, and the network
nodes are the black squares. Each object has a textual description and an identify-
ing label. The labels of the objects, a to g, are in ascending order of the network
distance each object has from q; the same for the network nodes, labeled n1 to n5.
The network distance of some of the segments which do not lead to an object has
been omitted for clarity.

20 PRELIMINARIES

3.3 Frameworks for spatial query processing

Currently, there exist frameworks that supports processing of spatial keyword queries
on spatial databases, and there exist frameworks that supports processing of spatial
queries on road networks. Unfortunately, none of the existing approaches supports
processing of spatial keyword queries on road networks. In this section we present
two of the current state-of-the-art approaches for spatial query processing. We first
introduce the road network framework of Papadias et al. (2003), Section 3.3.1, whereas
the hybrid index of Cong et al. (2009) is presented in Section 3.3.2.

3.3.1 Road network architecture

To the best of our knowledge, the state-of-the-art framework for representing road net-
works were proposed by Papadias et al. (2003). The framework of Papadias et al. is
flexible and supports spatial queries such as range and kNN on road networks. In this
architecture the spatial entities are separated from the network to obtain a dynamic
framework where feature sets, i.e. categories of objects such as restaurants or book-
shops, can be added and updated. In addition, the disk-based network representation
preserves connectivity and location information of the underlying road network, and
supports exact computation of the network distance between two arbitrary points in
the network.

The three components of the network architecture are: (1) an adjacency component
that captures the network connectivity, (2) a polyline component that stores the poly-
line representation of each segment in the network, and (3) a network component that
indexes the MBRs of the polylines. In addition, the framework has a fourth component,
the feature component, for indexing the feature sets. Figure 3.2 presents the contents
of the components and how they are connected.

Adjacency component. The main task of the adjacency component in Figure 3.2a is,
as mentioned, to keep track of the network connectivity. To achieve this, each node
ni in the network keeps an adjacency list list(ni) where the entries have the form
〈NBptr(nj), distij, MBR(ninj), PLptr(ninj)〉: NBptr(nj) is a pointer to the disk page
where the adjacency list of nj can be found, the neighbour to ni; distij is the network
distance between nodes ni and nj; MBR(ninj) is the minimum bounding rectangle
enclosing network segment ninj; PLptr(ninj) is a pointer to the disk page where the
polyline representation of the network segment is stored. To improve performance,
adjacency lists of nodes that are spatially close to each other are stored on the same
disk page in order to benefit from access locality, hence reducing I/O, when fetching
data from disk.

Polyline component. The polyline component is depicted in Figure 3.2c. Its main
task is to store the polyline representation of each segment in the network. A polyline

FRAMEWORKS FOR SPATIAL QUERY PROCESSING 21

... list(ni) ...

NBptr(nj) distij MBR(ninj) PLptr(ninj)

PmP1 Pn... ...

adjacency list of ni

to disk page storing
adjacency list

to disk page
storing polyline

(a) Adjacency component.

...
Feature 1 Feature n

O1 O2 ...

(b) Feature component.

polyline
of ninj

NBptr(ni)P3

polyline
of ninl

P4

to disk page storing
adjacency list

NBptr(nj) ...
polyline
of nink

NBptr(ni) NBptr(nl) ...
polyline
of ninm

(c) Polyline component.

to disk page
storing polyline

MBR(ninj) PLptr(ninj) ...

(d) Network component.

Figure 3.2: The road network architecture of Papadias et al. (2003) for query processing on
spatial network databases.

can be represented as a sequence of points, each with its own coordinates in the Eu-
clidean space, so that a curve consists of the line segments connecting each consecutive
point. How accurate this representation of the actual curve is all depends on the num-
ber of smaller line segments the polyline is comprised of. Many line segments means
higher accuracy, but demands more storage, whereas fewer line segments may give an
inaccurate curve representation, but at a lower storage cost. Each entry in this compo-
nent consists of a detailed polyline representation, as well as pointers to the disk pages
in the adjacency component where the adjacency lists of the two end-nodes are stored.

Network component. As for the third component in the architecture, the network
component of Figure 3.2d, its task is to index the MBRs of the segments in the net-
work. For this purpose the authors use an R-tree which supports queries exploring
the spatial properties of the network. Each leaf node in the R-tree contains the MBR of
the indexed network segment, as well as a pointer to the disk page where the corre-
sponding polyline representation of the segment is stored. These pointers to the disk
pages enable fast access to the polylines after a segment is located during the course of
a spatial query.

Feature component. Separated from the network architecture described above there
is the feature component in Figure 3.2b, where each feature set such as hotels, restau-
rants, and shops are indexed in an R-tree. Such a separation of spatial entities and
the network architecture comes with several advantages: (1) conventional Euclidean
queries which do not require the network can be processed efficiently using the R-trees,
(2) queries combining the network and Euclidean aspects are supported, (3) updates
in each feature set can be handled independently, (4) new feature sets can be added to

22 PRELIMINARIES

the system easily, and (5) specific optimizations can be applied to the network and the
feature R-trees individually.

Following is a set of primitive operations that the architecture described above sup-
ports:

(1) CHECKENTITY(seg, p) is a Boolean operation that returns true if point p, i.e. a spatial
entity, lies on segment seg; seg is also said to cover p. This is done by first using the MBR
of seg as a filtering step to see if the coordinates of p actually fits within the bounding
rectangle. After the filtering step the detailed polyline representation of the segment
has to be used to verify that p actually lies on the segment. There is also the possi-
bility of errors here. The polyline representation may not be accurate enough, or the
coordinates of the point may be off by some small fraction, resulting in the point p not
being tied to segment seg, even if that is actually so. To account for such inaccuracies
the authors suggest to use a distance threshold dT, such that if p is within distance dT
from seg it is assumed to lie on it.

(2) FINDSEGMENT(p) returns the segment seg that covers point p. This is done by run-
ning a query on the network R-tree using p as an input argument and returning the
MBR of seg if it is located. Should p be present in several segments in, for example,
a road junction, the first segment that is located is returned. There is also the prob-
lem that p may not lie on any segment, due to incomplete information in the network.
Should this happen, then p could be placed on the nearest segment, or discarded, de-
pending on the application.

(3) FINDENTITIES(seg): this operation returns all the entities that lies on segment seg.
The MBR of seg is used in a query on the feature R-tree, which retrieves all the spatial
entities that are located within the MBR of seg. This yields a number of possible false
hits, so the polyline of seg has to be used in order to check every entity and verify that
it does indeed lie on seg.

(4) COMPUTEND(p1, p2) has the task of computing the actual network distance be-
tween two arbitrary points p1 and p2 in the network. Papadias et al. have adapted Di-
jkstra’s algorithm (Dijkstra, 1959) for this purpose. It is simple, efficient, and exhibits
access locality, reducing the number of page faults during the retrieval of adjacency
lists. The problem with this algorithm is that it assumes that the source and the tar-
get both are vertices in the network, nodes between two segments, but in this setting
an entity, or a point, can be found on an arbitrary location on a segment. Thus, the
algorithm has to be adapted to consider this.

A kNN query processing example. Here, we present an example to illustrate how a
kNN query is processed in this framework using the network and the objects of Fig-
ure 3.1. Assume that all the objects in the figure belong to one feature set, i.e. any object
encountered during query processing is considered an answer to the query. Given a
kNN query where k = 3 and q is the query location, the first step is to retrieve the
network segment where q is located, edge (n1, n2), from the network R-tree in Fig-
ure 3.2d. This is done by executing the FINDSEGMENT operation with q as input. Next,
we run the FINDENTITIES operation to find O(n1, n2), i.e. the objects on edge (n1, n2),

FRAMEWORKS FOR SPATIAL QUERY PROCESSING 23

by searching the feature R-tree in Figure 3.2b for objects within the bounding rectan-
gle of (n1, n2). As part of this operation we discover object a, and after a refinement
step where the polyline representation of segment (n1, n2) is used in the CHECKEN-
TITY operation to verify that a lies on the edge, we add the object to a tentative result
set Res = {a}. Onwards, the nearest end-node to q, node n1, is expanded, and we run
successive queries on the feature R-tree to search for objects on edge (n1, n4) and edge
(n1, n5). No objects are found on these two segments, and we continue with the expan-
sion of node n2. After three more queries on the feature R-tree to search for objects on
the neighbouring segments to n2, we have discovered three additional objects, namely,
b, c, and d. The tentative result set now consists of four objects, Res = {a, c, d, b}. We
sort the objects on network distance, get Res = {a, b, c, d}, and discard object d since the
query only specified the three nearest objects, and return Res = {a, b, c} as an answer
to the kNN query.

Although this framework provides a flexible road network architecture and is able to
compute the exact network distance between two arbitrary points, it does, unfortu-
nately, not support keyword-based queries. The framework is thus not directly appli-
cable to our problem.

3.3.2 IR-tree

To the best of our knowledge, the state-of-the-art approach for processing keyword
queries on spatial databases were proposed by Cong et al. (2009). The indexing frame-
work they propose supports processing of keyword queries on spatial data by inte-
grating the inverted file for text retrieval and the R-tree for spatial proximity querying
in a hybrid structure they call the Inverted file R-tree, or IR-tree. The IR-tree is an R-
tree where each node has a reference to an inverted file for the objects present in the
children of the node. This means that each node in the IR-tree records a summary of
both the textual content and the spatial information of the objects in the subtree rooted
at any given node, enabling a query to prune the search space using both textual and
spatial data during tree traversal.

Each leaf node in the IR-tree contains a number of entries of the form
(O.id, O.rectangle, O.doc), where O.id is a pointer to the disk page where the data ob-
ject is stored, O.rectangle is the minimum bounding rectangle that spatially encloses the
object, and O.docid is a reference to the document containing the textual description of
object. In addition, each leaf node also contains a pointer to an inverted file for the
documents of the objects. This inverted file keeps a vocabulary of distinct terms de-
rived from the document collection, with a pointer from each term to a postings list of
tuples; each tuple contains an object id and the frequency of the term in the document
describing the object.

The intermediary nodes contain a number of entries of the form (Node.id, Node.rectangle,
Node.pseudodocid), where Node.id is a pointer to the child node of the entry, Node.rectangle
is the MBR that spatially encloses the MBRs of all the entries in the child node, and
Node.pseudodocid is a reference to a pseudo-document that is an aggregated represen-
tation of all the documents of the entries in the child node. As the leaf nodes, the

24 PRELIMINARIES

intermediary nodes contain a pointer to an inverted file. The content of this inverted
file is slightly different in that it only keeps an index of whether a given term can be
found in the subtree.

R1 R2

R3 R4 R5 R6

O1 O2 O3 O4 O5 O6 O7 O8 O9

InvFile 2 InvFile 3

InvFile 4 InvFile 5 InvFile 6 InvFile 7

R0

R1 R2

R3 R4 R5 R6

InvFile 1

Figure 3.3: An example of how an IR-tree can be structured.

Figure 3.3 shows how an IR-tree can be structured, using an arbitrary set of data ob-
jects. Each node in the IR-tree contains a summary of the location information and the
textual information of all the objects in the subtree rooted at the node. Thus, InvFile 4
contains an index of the textual information stored in object O1, O2 and O3, while In-
vFile 5 indexes the information stored in object O4 and O5. In the intermediary node
R1, on the other hand, InvFile 2 contains an index of the aggregated textual information
of the objects in both nodes R3 and R4. The same idea applies to InvFile 1 and InvFile 3,
and so on.

With the IR-tree it is possible to filter out objects, and prune whole subtrees, at an
early stage in the query processing. If the set of query keywords is not present in the
inverted file at any given node in the IR-tree, we know that none of the spatio-textual
objects located in the subtree rooted at that node can be an answer to the query, and
can thus prune the subtree from the rest of the search space. This is an improvement
compared to the naive approach of keeping two separate indexing structures — one
for textual information and one for spatial locality — where the objects that match
the spatial part of the query are found first, and subsequently filtered based on their
textual information and the textual part of the query.

A range query processing example. Assume a range query specifying a range of r =
5 from a query point q, and a set of query keywords W = {restaurant}. In Figure 3.4 we
have taken the spatio-textual objects from Figure 3.1 and indexed them in an IR-tree,
defined by the hierarchy of MBRs shown in the figure. We have also added a range
overlay that extends from q to illustrate which objects are located within the specified
range r, and that will be examined as part of the query. The IR-tree constructed based
on the spatio-textual objects in the figure consists of a root node, the three leaf nodes
R1, R2, and R3, and an inverted file for each of the nodes.

The range query starts at the root node and recursively visits the entries that may con-
tain spatio-textual objects matching the query. First, the query consults the inverted file
of the root node to determine which of its children contains objects whose description
matches the query keywords. All the entries of the root node, i.e. the rectangles R1,

FRAMEWORKS FOR SPATIAL QUERY PROCESSING 25

R2, and R3, encloses at least one object whose description contains the query keyword
restaurant. Second, the step is to determine which of the rectangles that intersect with
the query area. As can be seen from the figure, both rectangles R1 and R2 intersect
the query area, and are subsequently visited. Rectangle R3 is outside the query range,
and is thus pruned from the rest of the search space. We examine the inverted file of R1
and discover that spatio-textual object c matches the query keyword. Next, we traverse
the entries of R1 to locate object c, and we subsequently compare its location with the
query area, finding that it is outside the specified query range. The query repeats the
process for rectangle R2; we consult the inverted file and discover that both objects a
and g contains the term restaurant. After comparing their location with the query range
we find that a is outside the range, and g is located within. Concluding the range query,
spatio-textual object g is returned as an answer, since it is within a range r = 5 of q, and
its description contains the keyword restaurant.

Sports goods
store

Restaurant serving chinese
and other asian food

Asian fast-food
restaurant

Gourmet asian cooking,
newly opened restaurant

q

c

e

d
f

g

R1

R2

R3

Asian restaurant serving
fast-food noodles

a

b

r = 5

Root

Figure 3.4: A modified version of Figure 3.1 where the network has been removed and the
spatio-textual objects have been kept. We have indexed the spatio-textual objects
in an IR-tree where the MBRs in the figure indicates how the objects are placed
together in the hierarchy. The IR-tree thus consists of a root node and three leaf
nodes. A range overlay has also been added to illustrate what a range query with
range r = 5 retrieves when performed on the IR-tree.

The DIR-tree. Cong et al. have also proposed an extension of the IR-tree that incor-
porates document similarity when creating the tree, giving an index structure they call
the Document similarity enhanced Inverted file R-tree, or DIR-tree. Where the IR-tree, like
the R-tree, aims to minimize the area of the minimum bounding rectangles of the in-
termediary nodes when constructing the tree, the DIR-tree takes both the spatial and
the textual information into account during tree construction. By minimizing the ar-
eas of the bounding rectangles of the intermediary nodes, and by maximizing the text
similarity between the documents of the intermediary nodes, the DIR-tree aims to be
an index structure that is optimized for both the textual as well as the spatial part of
a query (Cong et al., 2009). Subsequently, the DIR-tree can be reduced to an IR-tree if
the document similarity factor is set to zero during tree construction, thus optimizing
only the area of the enclosing rectangles of the intermediary nodes.

26 PRELIMINARIES

In the rest of this thesis the terms IR-tree and DIR-tree are used interchangeably, though
it may be assumed that the DIR-tree is the structure used during later implementation
and experiments.

The IR-tree of Cong et al. is a good framework for processing keyword queries on
spatial databases, but unfortunately it does not support spatial keyword processing on
road networks. Hence, the IR-tree is not applicable to our problem in its original form.

Chapter 4

Baseline Approach

In this chapter we present our baseline solution to the challenging problem of pro-
cessing keyword-based queries on spatial network databases such as common road
networks. By combining two state-of-the-art architectures proposed by Papadias et al.
(2003) and Cong et al. (2009), respectively, the baseline framework in this solution sup-
ports retrieval of spatio-textual objects using keyword-based k-nearest neighbour and
range queries. The road network architecture of Papadias et al. provides support for
operations on spatial network databases, while the hybrid index structure of Cong
et al., the IR-tree, provides support for processing keyword queries on spatial data.

The next section, Section 4.1, will go further into the architecture and the operations
of the framework, whereas Section 4.2 will describe the algorithms used to process the
keyword-based k-nearest neighbour and range queries.

4.1 Basic keyword-based road network architecture

In this section we present a basic approach for evaluating keyword queries on spatial
networks. We combine the architecture of Papadias et al. (2003) and the IR-tree of Cong
et al. (2009) to obtain our baseline architecture for processing keyword-based queries
on spatial network databases.

Figure 4.1 presents the different components in the architecture and how they are com-
bined. The three components of Papadias et al., (a), (c) and (d), constitutes the parts
necessary for operations on the road network, and the IR-tree of Cong et al. in (b)
indexes the spatio-textual objects and supports spatial operations. As described pre-
viously in the Preliminaries chapter, the adjacency component in (a) captures the net-
work connectivity, the polyline component in (c) stores the polyline representation of
each network segment, and the network component in (d) indexes the MBRs of the
polylines.

The primitive operation FINDENTITIES(seg) proposed by Papadias et al. (2003) does
not support the operation of retrieving spatio-textual objects. Therefore, we developed
a new function, namely the FINDSPATIOTEXTUALOBJECTS(node,seg,W) operation (Al-

27

28 BASELINE APPROACH

... list(ni) ...

NBptr(nj) distij MBR(ninj) PLptr(ninj)

PmP1 Pn... ...

adjacency list of ni

to disk page storing
adjacency list

to disk page
storing polyline

(a) Adjacency component.

O1 O2 O3 O5O4

InvFile 1

InvFile 2 InvFile 3

InvFile 4 InvFile 5

R1

R3R2

R4 R5...

(b) Spatio-textual component.

polyline
of ninj

NBptr(ni)P3

polyline
of ninl

P4

to disk page storing
adjacency list

NBptr(nj) ...
polyline
of nink

NBptr(ni) NBptr(nl) ...
polyline
of ninm

(c) Polyline component.

to disk page
storing polyline

MBR(ninj) PLptr(ninj) ...

(d) Network component.

Figure 4.1: Basic architecture for processing spatial keyword queries on road networks.

gorithm 4.1), which takes text into account when retrieving the objects that a segment
covers.

FINDSPATIOTEXTUALOBJECTS(node,seg,W) takes the root of the IR-tree, a segment seg
and a set of keywords W as input, and returns all the spatio-textual objects covered by
the segment that matches any of the keywords in W. The MBR of seg and the keywords
in W is used in a query on the IR-tree in the spatio-textual component in Figure 4.1b.
Thus, the objects located within the MBR of seg, and whose description matches any of
the keywords in W, are returned as a result of the query. This yields a number of false
positives, and all the spatio-textual objects have to go through a refinement step where
the polyline representation of seg is used to find the objects that are actually covered
by seg, and not just present in the MBR.

Algorithm 4.1 presents the pseudocode of the operation. The root node of the IR-
tree is the entry point of the algorithm, and it is sent as input together with seg and
the set of keywords W. The algorithm starts by initializing the result set of spatio-
textual objects as empty (line 3). Subsequently, it checks, for each intermediary node
in the tree (lines 5-10), whether the MBR of seg overlaps the MBR of the entries in the
node, simultaneously checking if any of the query keywords is present in the pseudo-
document of the node (line 7). If both is the case, it means that there may exist a spatio-
textual object in the subtree that matches the query, and the result set is updated with
the results from a recursive call to the algorithm, sending the current intermediary
node as input (line 8). When encountering a leaf node in the tree (lines 12-18), the
algorithm checks, for each spatio-textual object in the leaf node, whether the MBR of
the object is overlapping with the MBR of the road segment seg, as well as checking
if any query keyword in W is present in the description of the spatio-textual object
(line 13). If this is the case, it must be verified that the spatio-textual object indeed
is present on the road segment. This is done by the CHECKENTITY(seg, p) operation

QUERY PROCESSING 29

on line 14, subsequently returning the spatio-textual object as a result if it lies on seg
(line 15). Finally, the set of spatio-textual objects that lies on the road segment seg,
matching any keyword in W, is returned as a result, and the algorithm terminates
(line 20).

In short, the basic architecture described in this section comprise the road network
representation of our baseline framework for processing spatial keyword queries on
road networks. In the next section we will discuss the algorithms supporting the KkNN
and KR queries.

Algorithm 4.1 FINDSPATIOTEXTUALOBJECTS(node, seg, W)

1: Input: the root node of the IR-tree, a road segment, a set of keywords
2: Output: the set of spatio-textual objects covered by seg, matching any keyword in W
3: result← ∅
4: if node is an intermediary node then
5: for each entry Ei in node do
6: Ni ← node pointed to by Ei
7: if (seg.MBR ∩ Ni.MBR) 6= ∅ and W ∈ Ni.pseudodoc then
8: result← result ∪ FINDSPATIOTEXTUALOBJECTS(Ni, seg, W)
9: end if

10: end for
11: else //node is a leaf node
12: for each object Oi in node do
13: if (seg.MBR ∩ Oi.MBR) 6= ∅ and W ∈ Oi.doc then
14: if CHECKENTITY(seg, Oi) then
15: return Oi
16: end if
17: end if
18: end for
19: end if
20: return result

4.2 Query processing

To process the KkNN and KR queries on the baseline framework, we adopted two al-
gorithms proposed by Papadias et al. (2003), namely the Incremental Network Expansion
(INE*) and Range Network Expansion (RNE*) algorithms, both based on the network
expansion framework. Network expansion performs query processing directly on the
network, starting from one location and examines the nodes in the network as they are
encountered.

In the following, Section 4.2.1 presents the INE* algorithm for processing keyword-
based k-nearest neighbour queries, while Section 4.2.2 presents the RNE* algorithm for
processing keyword-based range queries.

30 BASELINE APPROACH

4.2.1 Basic keyword-based nearest neighbour algorithm

INE* (Algorithm 4.2) operates by expanding the network node by node, starting from
the query point q, and examining the spatio-textual objects in the order they are en-
countered until the k nearest neighbours are found.

First, the segment that covers q is located using the primitive operation FINDSEG-
MENT(p) (line 4), and the nodes terminating the segment are added to a priority queue
sorted on their network distance to q. Second, the spatio-textual objects that the seg-
ment covers are found using FINDSPATIOTEXTUALOBJECTS(node,seg,W) (line 5). Third,
the first node in the priority queue is expanded (line 9), its neighbours are added to the
priority queue (line 15), and the segment is examined for spatio-textual objects match-
ing the query (line 12). This process continues until a node is expanded that has a larger
network distance to q than the current max distance, dNmax, the network distance from
q to the k-th spatio-textual object, or until the nodes in the network are exhausted.

Algorithm 4.2 shows the pseudocode of Incremental Network Expansion. As input the
algorithm takes the query point q, the number of nearest neighbours k, and the set of
keywords W specified in the query.

Algorithm 4.2 INE*(q, k, W)
1: Input: the query point, the number of nearest neighbours, a set of keywords
2: Ooutput: the k nearest spatio-textual objects matching any keyword in W
3: Nroot ← root node of the IR-tree
4: (ni, nj)← FINDSEGMENT(q)
5: Scover ← FINDSPATIOTEXTUALOBJECTS(Nroot, (ni, nj), W) //Scover is the set

of spatio-textual objects covered by (ni, nj) whose description matches any keyword in the
query

6: {p1, . . . , pk} ← the k nearest spatio-textual objects in Scover sorted in ascending order of
their network distance //pm, pm+1, . . . , pk may be ∅ if Scover contains < k points

7: dNmax ← dN(q, pk) //if pk = ∅, dNmax ← ∞
8: Q← <(ni, dN(q, ni)), (nj, dN(q, nj))> //sorted on dN
9: de-queue the node n in Q with the smallest dN(q, n)

10: while dN(q, n) < dNmax do
11: for each non-visited adjacent node nx of n do
12: Scover ← FINDSPATIOTEXTUALOBJECTS(Nroot, (nx, n), W)
13: update {p1, . . . , pk} from {p1, . . . , pk} ∪ Scover
14: dNmax ← dN(q, pk)
15: en-queue (nx, dN(q, nx))
16: end for
17: de-queue the next node n in Q
18: end while

Figure 4.2a shows a modelling graph of a road network that can be used in an example
to illustrate the INE* algorithm. The grey points represent the spatio-textual objects,
their description listed in Figure 4.2b, the black squares as the nodes in the modelling
graph, and the black point as the query point q.

Assume the keyword k-nearest neighbours query QKkNN = 〈q, W, k〉 = 〈q, bakery, 1〉,
i.e. find the nearest spatio-textual object to the query point q that has the keyword bak-

QUERY PROCESSING 31

ery in its description. The INE* algorithm first retrieves the segment (n1, n2) that cov-
ers q, using the location of q as input to a query on the network R-tree in Figure 4.1d.
A query is subsequently run on the IR-tree with the MBR of (n1, n2) as input, but
since there are no spatio-textual objects present on this segment, nothing is returned
from the IR-tree. Next, the closest node to q, node n1, is expanded and the other end-
point, node n2, is added to a priority queue Q = {(n2, 4)}. Additional queries are
run on the IR-tree for segments (n1, n3) and (n1, n4), but no matching spatio-textual
objects are found, and node n3 and n4 are subsequently added to the priority queue,
Q = {(n2, 4), (n3, 7), (n4, 8)}. The algorithm expands node n2, runs a query on the IR-
tree using segment (n2, n5), and discovers the matching object p3 that has a network
distance to q of dN(q, p3) = 11. The two non-visited neighbouring nodes of n2, node
n5 and n6, are added to the queue, after which Q = {(n3, 7), (n4, 8), (n5, 12), (n6, 13)}.
Spatio-textual object p3 is now a candidate for an answer to the QKkNN query, and its
network distance to q provides a bound to limit the search space, dNmax = dN(q, p3) =
11.

In the subsequent steps n3 and n4 are expanded, but after successive queries on the IR-
tree using segments (n3, n7) and (n4, n6), no spatio-textual objects matching the query
are found, and we get Q = {(n5, 12), (n6, 13), (n7, 14), (n6, 26)}. Since the next node
in the queue has a larger network distance to q than the current dNmax the algorithm
terminates, and spatio-textual object p3 is returned as an answer to the keyword k-
nearest neighbour query.

n1n3

n7

n5

n2

n6

n4

q

p1

p2
p3

p4

p6

p5

2

4

23

3

1

4
7

6 5

13

2

7

3

4

(a) The example network.

p6 pub, football

p5 restaurant, sushi

restaurant, mexicanp4

p3 bakery, bread, cake

p2 post office

shop, grocery, flowersp1

DescriptionObject

(b) The spatio-textual objects
and their descriptions.

Figure 4.2: An example illustrating the INE* and RNE* algorithms. The grey points represent
the spatio-textual objects, the black point is the query point q, the black squares
indicate the network nodes, and the values on the edges is an arbitrary network
distance between the nodes and the objects.

4.2.2 Basic keyword-based range algorithm

The RNE* algorithm (Algorithm 4.3) returns all the spatio-textual objects within a
given network distance r from the query point q, that has any of the query keywords in
their description. RNE* starts by collecting the qualifying road segments, i.e. the seg-
ments that are within network distance r of q, and may contain spatio-textual objects
that matches our query. The segments are found using the same network expansion

32 BASELINE APPROACH

technique as in INE*, with the difference that this part of the algorithm terminates
when we have found all the segments that are within the given distance of the query
point, and we are not retrieving the spatio-textual objects during the expansion.

When the qualifying segments have been found, QS is used in a query on the IR-tree
in the spatio-textual component. The spatio-textual objects that falls on any of the
segments in QS, and whose description matches any of the keywords in W, are sub-
sequently added to the result set (line 9) and returned when the query finishes. Al-
gorithm 4.3 presents the pseudocode for Range Network Expansion. The initial argu-
ments to the algorithm is the root of the IR-tree, the set of qualifying segments QS, and
the set of keywords W.

Algorithm 4.3 RNE*(node, QS, W)
1: Input: the root node of the IR-tree, a set of segments that lies within network distance r of

the query point q, a set of keywords
2: Output: the spatio-textual objects within network distance r, matching any keyword in W
3: result← ∅
4: if node is an intermediary node then
5: compute QSi for each entry Ei in node
6: for each entry Ei in node do
7: Ni ← node pointed to by Ei
8: if QSi 6= ∅ and W ∈ Ni.pseudodoc then
9: result← result ∪ RNE(Ni, QSi, W)

10: end if
11: end for
12: else //node is a leaf node
13: resultnode ← PLANESWEEP(node.entries, QSi)
14: sort resultnode to remove duplicates
15: return resultnode
16: end if
17: return result

Using Figure 4.2 as an example to illustrate the RNE* algorithm, we let a keyword
range search query be QKR = 〈q, W, r〉 = 〈q, shop, 7〉, i.e. find all spatio-textual objects
within a network distance of 7 from the query point q that has the keyword shop in
their description.

The RNE* algorithm starts by collecting the set of qualifying segments QS, i.e. all the
network segments that are within a network distance of 7 from q, in the same way
as the INE* algorithm expands the network. First, the network segment that covers q
is found, its endpoints added to a priority queue Q = {(n1, 2), (n2, 4)}, and the seg-
ment itself added to the set of qualifying segments QS = {n1n2}. Node n1 is then
expanded and the two neighbouring nodes are added to the priority queue, making
it Q = {(n2, 4), (n3, 7), (n4, 8)}, and the two network segments connecting the neigh-
bouring nodes are added to QS = {n1n2, n1n3, n1n4}. Node n2 is subsequently ex-
panded, adding n5 and n6 to the priority queue, Q = {(n3, 7), (n4, 8), (n5, 12), (n6, 13)},
and segments n2n5 and n2n6 to QS = {n1n2, n1n3, n1n4, n2n5, n2n6}. The process of
generating QS now terminates since any spatio-textual object located on any undis-
covered network segment is bound to be outside the given range r = 7, because the

QUERY PROCESSING 33

network distance to node n3 is dN(q, n3) = 7 ≤ r = 7.

The next step, after the qualifying segments have been found, is to use QS in a query
on the IR-tree, matching the MBR of each segment in QS with the spatio-textual objects
indexed in the tree to find all the objects that are located within the specified network
distance, and that matches any of the keywords specified in the query. Spatio-textual
object p1 on segment n1n3 is the only object within a network distance of 7 that has a
textual description that contains the keyword shop, and is thus returned as an answer
to the keyword range search query.

34 BASELINE APPROACH

Chapter 5

Road Network Indexing

For a framework to support efficient retrieval of objects from a spatial network database
the underlying structures and algorithms must provide methods to process the net-
work and locate the objects in an efficient manner, yielding low processing costs, and
thus low response times for the spatial keyword queries. Unfortunately, the architec-
ture of the baseline approach suffers from different issues which has an impact on the
performance of the framework, making query processing inefficient and causing high
response times for the keyword-based nearest neighbour and range search queries.

The main issues are: (1) extensive computation to detect and prune false positives
when querying the IR-tree searching for spatio-textual objects, and (2) retrieval of an
excessive amount of spatio-textual objects during a KkNN query as well as the neces-
sity to sort the objects on network distance. Following is a more detailed description
and examples of the issues:

Issue 1. Since the IR-tree is based on indexing the data objects by constructing a hier-
archy of possibly overlapping MBRs, the MBR of a road segment may intersect
with several intermediary bounding rectangles, which in turn may contain ob-
jects that matches the query, but are not present on the road segment in question,
i.e. false positives. The IR-tree provides a filtering step to prune non-qualifying
objects, where the output of the filtering step has to pass through a refinement
step that compares the actual object representation with the exact geometry of
the road segment to determine whether a spatio-textual object is actually present
on the segment. Such a refinement step incurs an additional computation cost
that increases with the density of the spatio-textual objects in the network.

Figure 5.1a illustrates the issue with false positives. For example, assume that
we want to retrieve the objects (grey points) on segment (ni, nj) in Figure 5.1a.
We run a range query on the IR-tree, defined by the MBR that encloses (ni, nj),
to filter out any point not on the network segment. In this process, the black
points will also pass the filtering step as false positives since they intersect with
the query MBR, and will thus have to be pruned as part of the refinement step.

Issue 2. A query on the IR-tree retrieves matching spatio-textual objects on a per-
segment basis, which means that it has to retrieve all the matching objects present

35

36 ROAD NETWORK INDEXING

on a network segment, even though fewer objects are often desired. Furthermore,
the objects have to be sorted on network distance since the output from the IR-
tree is not ordered, and the excess objects are subsequently discarded to provide
a desired answer to the query. For example, if a query specifies k results, and
there are n matching objects, k << n, then excessive computation is used to sort
all the objects on network distance, just to discard the n− k remaining objects.

Figure 5.1b illustrates the excessive retrieval of objects; each grey point represents
one spatio-textual object. For example, assume a KkNN query where k = 1 and
q is the query point, then point a will be the nearest match to q, ignoring the
textual descriptions for simplicity. In order to find a, the INE* algorithm requires
searching the IR-tree for the objects in segments (n1, n2), (n1, n3), (n1, n4), and
(n1, n5), filter the objects, and sort them according to network distance. From the
sorted list of objects we can extract object a as the answer to the KkNN query,
whereas the remaining objects will be discarded.

ni

nj
MBR(ninj)

(a) The MBR that encloses the
road segment (ni, nj) and
the objects located within
it.

n1
n4

n3

n2
q

a

n5

(b) A simple road network along
with spatio-textual objects
spread out on the road seg-
ments.

Figure 5.1: Examples of the performance related issues with the architecture of the baseline
approach.

Due to the issues described above, the baseline approach is costly in terms of both I/Os
and execution time. To this end, we propose a novel approach for efficient processing
of keyword queries on spatial network databases that solely uses inverted files for
indexing the spatio-textual objects, yielding a framework we call Road Network Indexing
(RNI).

RNI replaces the IR-tree with a set of inverted files, one for each network segment,
where each file indexes only the spatio-textual objects covered by the corresponding
segment. This design allows for fast query processing since we only have to verify the
existence of a query keyword in an inverted file to confirm that there exists a matching
object on the network segment. Furthermore, the network distance to an object can be
stored in the postings of the inverted file, together with the object reference and term
frequency, and can be retrieved efficiently during query processing.

In the rest of the chapter the RNI framework will be explained in more detail, start-
ing with the architecture in Section 5.1, continuing with the query processing and the
algorithms in Section 5.2.

ADVANCED KEYWORD-BASED ROAD NETWORK ARCHITECTURE 37

5.1 Advanced keyword-based road network architecture

In this section we present the architecture of our proposed RNI framework for effi-
cient evaluation of keyword queries on SNDB. The RNI framework is an improvement
of the baseline framework that is modified to support keyword-based spatial queries
more efficiently. In RNI we employ a slightly modified version of the baseline network
storage scheme, combined with a set of inverted files for indexing the spatio-textual
objects, consequently replacing the IR-tree of the baseline framework.

Figure 5.2 presents the components of the RNI architecture, with the changes from the
baseline approach marked in bold. The inverted file component in (b) replaces the
spatio-textual component as the component used to index the spatio-textual objects.
In the adjacency component in (a) we have modified the contents of the entries in the
adjacency lists of the network nodes. The MBR of the network segment connecting
two neighbouring nodes has been replaced with a pointer to the disk page storing the
inverted file that indexes the spatio-textual objects covered by the network segment.
Such a pointer allows for fast access to the inverted file so we can retrieve the matching
objects, compute their network distance to a query location, and subsequently add
them to the answer of a spatial keyword query.

... list(ni) ...
PmP1 Pn... ...

adjacency list of ni

to disk page storing
adjacency list

to disk page
storing polyline

NBptr(nj) distij IFptr(ninj) PLptr(ninj)

to disk page
storing inverted file

(a) Adjacency component.

InvFile 1...

InvFile m...

InvFile n

...

<p1(d,f)>

List: < pi(d,f) >
<p1(d,f), ... , pn(d,f)>
<p1(d,f), p2(d,f)>

 t1
 t2

Terms

 t3

inverted file of segment ninjPk

Pl to beginning and end
of postings list

(b) Inverted file component.

polyline
of ninj

NBptr(ni)Pq

polyline
of ninl

NBptr(ni)Pr

to disk page storing
adjacency list

...

NBptr(nl)

NBptr(nj)
polyline
of nink

...
polyline
of ninm

(c) Polyline component.

to disk page
storing polyline

MBR(ninj) PLptr(ninj) ...

(d) Network component.

Figure 5.2: Advanced architecture for processing spatial keyword queries on road networks.

Inverted file component. The inverted file component in Figure 5.2b is responsible
for indexing the spatio-textual objects in the network. To accomplish this, we create
one inverted file for each segment in the network, where all the objects that are cov-
ered by one segment are indexed in the corresponding inverted file. Should an object
be covered by several network segments, e.g. in a road intersection, then the object
will be indexed in the inverted file of the network segment discovered first during the
construction of the component.

38 ROAD NETWORK INDEXING

In each inverted file, the vocabulary is comprised of the set of terms extracted from the
document collection describing the spatio-textual objects on the corresponding net-
work segment. Each term t in the vocabulary points to a postings list of tuples of the
form p(d, f), where p is a reference to a spatio-textual object whose textual description
contains t, d = δ(p, ni) is the network distance from p to node ni in the segment (ni, nj),
and f is the frequency of the term t in the document describing p. Furthermore, the tu-
ples in the postings list are sorted on the network distance to node ni in the segment
(ni, nj).

As indicated by the two arrows in each entry in the vocabulary, we are storing two
pointers from t to the postings list, one to the beginning of the list and one to the end.
These pointers allow us to traverse the postings list both ways, starting from either end,
and thus having immediate access to the nearest and farthest object per term. This is
useful during network traversal when we encounter a network segment where nj is
the first node, i.e. in the segment (nj, ni). In this case the last object in a postings lists
will be the nearest, and by following the end pointer we can access it directly, without
having to traverse the whole postings list first. The network distance to the objects
starting from node nj in segment (ni, nj) is easily computed by subtracting the stored
distance d from the total distance of the network segment.

5.2 Query processing

In the Preliminaries chapter we outlined two keyword-based spatial queries, namely
the KkNN and KR queries, for nearest neighbour and range querying on spatial net-
work databases. In order to process the two keyword-based spatial queries on the
RNI framework we have developed two algorithms that exploits the network storage
scheme and the inverted files in an efficient manner to quickly locate the spatio-textual
objects and in the process lower the amount of I/Os and computation necessary to
retrieve the objects.

In this section we present the Incremental Inverted Index k-Nearest Neighbours algorithm
(I3kNN) and the Incremental Inverted Index Range Search algorithm (I3RS). Both algo-
rithms are based on incremental expansion of the network, similarly to Dijkstra’s short-
est path algorithm (Dijkstra, 1959).

The I3kNN algorithm is explained in more detail in the following section, Section 5.2.1,
along with an example to show how it operates, whereas the I3RS algorithm with an
example is presented in Section 5.2.2.

5.2.1 Advanced keyword-based nearest neighbour algorithm

The I3kNN algorithm (Algorithm 5.1) supports the KkNN query described in Sec-
tion 3.2.1 in the Preliminaries chapter, hence, the output of the algorithm is the k nearest
spatio-textual objects to a query point q whose textual description contains any of the
keywords we specify in the query.

QUERY PROCESSING 39

I3kNN operates by expanding the network, segment by segment, while examining the
inverted files of the segments as they are encountered to look for matching spatio-
textual objects; a process that continues until the desired number of objects have been
found, or the network is exhausted. The first step of the expansion process is to retrieve
the network segment covering q from the R-tree in the network component. Then, the
algorithm follows the pointer to the inverted file of the segment to check whether there
exists any matching spatio-textual objects.

In the inverted file we traverse the vocabulary to find the terms that match any of the
query keywords. If there are no matching terms we know that there are no matching
spatio-textual objects, and we can discard the inverted file and continue the expansion
process. If there are matching terms, the algorithm follows a pointer from each match-
ing term to its postings lists to find the nearest matching spatio-textual object p. After
having retrieved the nearest end-node n from the adjacency component, we compare
the distance from q to p with the distance from q to n.

If the distance is shorter to n there might be spatio-textual objects farther in the network
that is closer to q than p, and we put the inverted file on hold by adding to a priority
queue a tuple (p, ∆(q, p), ∗IF(n, n′)) consisting of p, the distance from q to p, and a
pointer to the next nearest object in the inverted file. On the other hand, if p is closer
to q than n, we add p to a result set together with its network distance to the query
location.

Algorithm 5.1 I3kNN(q, k, W)

1: Input: Query point (q), Number of results (k), Set of keywords (W)
2: Output: Result set (Res) of spatio-textual objects matching any keyword in W
3: Priority queue (H,Q)
4: H,Q, Res← ∅
5: (ni, nj)← FINDSEGMENT(q)
6: H ← 〈〈〈(ni, ∆(q, ni)), (nj, ∆(q, nj))〉〉〉
7: p← GETCANDIDATE(IF(ni, nj), W) //Get first object matching any keyword in W
8: Q ← 〈〈〈(p, ∆(q, p), ∗IF(ni, nj))〉〉〉 //∗IF points to next matching object in IF(ni, nj)
9: whileH 6= ∅ and |Res| < k do

10: nDist← peek(H) //Get distance to nearest node
11: pDist← peek(Q) //Get distance to nearest object
12: if nDist < pDist then
13: (n, ∆(q, n))← dequeue(H)
14: for each non-visited adjacent node n′ of n do
15: enqueue(H, (n′, ∆(q, n′)))
16: enqueue(Q, (p, ∆(q, p), ∗IF(n, n′)))
17: end for
18: else
19: Res← Res ∪ p
20: update(Q, (p, ∆(q, p), ∗IF(n, n′))) //Update tuple with next object from ∗IF, discard

if empty
21: end if
22: end while
23: return Res

40 ROAD NETWORK INDEXING

I3kNN then expands the nearest network node n and visits each adjacent network seg-
ment to consult the corresponding inverted files, subsequently adding tuples to the
priority queue. The network distance to the spatio-textual objects can easily be com-
puted by adding the distance from q to n to the distance that is stored together with the
object reference in each posting. The process is repeated, except that we now compare
the distance to the nearest network node with the distance to the object of the first en-
try in the priority queue, i.e. the currently nearest spatio-textual object, either adding
the next nearest object to the result set, or expanding the network further. This process
goes on until we find k spatio-textual objects, or until the network is exhausted.

Algorithm 5.1 presents the pseudocode of I3kNN. The input to the algorithm is the
query point q, the number of results k, and a set of query keywords W. I3kNN proceeds
as follows. After a local initialization of the result set and the two priority queues H
and Q — H is keeping track of the network nodes, while Q is keeping track of the
spatio-textual objects — we search the network R-tree looking for edge (ni, nj), the
road segment where q is located (line 5). Next, we calculate the distance from q to each
of the end-nodes of segment (ni, nj), and enqueue a tuple to H consisting of a pointer
to the node, and the distance from q, e.g. (ni, ∆(q, ni)) (line 6).

In line 7 and 8 we construct a tuple (p, ∆(q, p), ∗IF(ni, nj)) and add it to Q: p is the
nearest matching spatio-textual object on the segment; ∆(q, p) is the distance from the
query point q to p; ∗IF(ni, nj) is a pointer to the next matching object in the inverted
file. The inverted file is accessed by following the pointer stored in the adjacency list
of ni. Furthermore, the tuples in Q are ordered on the network distance from q to the
spatio-textual object present in each tuple, independent of the road segment each tuple
comes from.

The network expansion process and the incremental discovery of spatio-textual objects
goes on in line 9 to 22; it loops until the network is exhausted, or until we have found
the desired number of results.

In each round we first get the distance from q to the currently nearest network node
n in H, and from q to the nearest spatio-textual object p in Q (line 10 and 11). If the
distance to n is shortest we know that we might find a closer object if we expand the
network further, and if it is shortest to p then p is a result candidate. In the latter case we
remove p fromQ and add it to the result set Res, subsequently updating the tuple with
the object pointed to by ∗IF(n, n′), as well as incrementing the pointer and re-ordering
the queue (line 19 and 20), alternatively discarding the tuple if there are no more objects
in IF(n, n′). In the former case we traverse the adjacency list of the network node n,
add its adjacent nodes to H, and construct one object-distance-pointer tuple for each
adjacent network segment and add the tuples to Q (lines 14-17).

The I3kNN algorithm terminates in line 23 by returning the result set Res which con-
tains the k nearest spatio-textual objects that matches any of the keywords W in the
query.

Note that since we always expand the network further if there is a network node with
shorter distance to q than the current nearest object pointed to in Q, we are guaran-
teed that the result set contains the k nearest matching objects. Consequently, it is not
necessary to sort the result set before returning it as an answer to the query.

QUERY PROCESSING 41

kNN query processing example

Figure 5.3a presents a road network containing spatio-textual objects p as the grey
points, with their description listed in the expanded view of inverted file IF1 in Fig-
ure 5.3b, the query point q as the black point, and the distance between the objects
annotated on the edges. Assume the keyword k-nearest neighbour query QKkNN =
〈q, W, k〉 = 〈q, restaurant, 1〉. For simplicity, assume that the objects without a label are
without a textual description, and consequently do not match the query. The I3kNN
algorithm first retrieves segment (n1, n4) using q as input to a query on the network R-
tree in Figure 5.2d. Next, the distance from q to both of the end-nodes is computed. The
algorithm consults IF3, traverses the vocabulary of the inverted file only to find that
the query keyword restaurant does not exist here, and then discards the inverted file
since the network segment does not contain any matching objects. Node n1 is closest to
q, and is subsequently expanded. The same process is performed on segment (n1, n3),
the vocabulary of inverted file IF2 is searched, but the query keyword is not present
here, and we conclude that there do not exist any objects on that segment. Next, the
algorithm expands segment (n1, n2). In inverted file IF1 the query keyword restaurant
is found as a term in the vocabulary, and we subsequently retrieve the postings list of
the term. By following the pointer from the term to the beginning of the postings list,
we find object p1. Since p1 is the first object in the postings list, it is thus the nearest
object to q, and we add it to the result set, subsequently terminating the query since we
found the nearest neighbour to q.

n1

n2

n3

n4

IF1IF2

IF3

p1
p2

p3

p1

italian restaurant and bar
p2
p3

Description

football pub

Object
chinese restaurant

2 4 3

q
4

(a) A graph model of a road network along with
spatio-textual objects p spread around the road
segments. IFi indicates the inverted files used to
index the objects on each segment (ni, nj).

p3(9,1)

List: <p(d, fd,t)>

p2(6,1)

p1(2,1), p3(9,1)

p2 (6,1)

p3(9,1)

p1(2,1)

pub

restaurant
chinese

Terms

bar

football

italian

IF1

(b) An expanded view of inverted file IF1,
displaying the indexed content of the
spatio-textual objects present on seg-
ment (n1, n2).

Figure 5.3: An example network to illustrate the road network indexing approach.

5.2.2 Advanced keyword-based range algorithm

To enable keyword-based range queries on the RNI framework we have developed
the I3RS algorithm (Algorithm 5.2). I3RS supports the KR query we presented in Sec-
tion 3.2.2 the Preliminaries chapter, and followingly outputs the spatio-textual objects
that are within range r of the specified query point q, and whose textual description
contains any of the given query keywords.

42 ROAD NETWORK INDEXING

In the same fashion as the I3kNN algorithm, the expansion process successively ex-
pands the nearest network node to the query point q, consults the inverted files of the
encountered adjacent segments, and adds to the query answer all the spatio-textual
objects that are within range r of q, and whose description contains any of the query
keywords. The process continues until we have expanded all of the network within
the specified query range.

The I3RS algorithm starts from the query location and adds the two end-nodes of the
road segment, together with their network distance to q, to a priority queue, but dif-
ferently from the I3kNN algorithm we do not keep a priority queue for the inverted
files and the spatio-textual objects. The reason for this is that we are interested in all
objects within range r, and when we consult the inverted file of a road segment during
the expansion process, we get all objects from the postings lists of the matching terms,
not just the nearest one.

To limit the search to the defined range r we keep a variable minDist that holds the
distance to the nearest non-visited network node After we have visited all the adja-
cent road segments of a given node, and subsequently added the adjacent node to the
priority queue, we update minDist with the distance to the first element of the queue.
Consequently, when we assign a value to minDist that is larger than r, we know that
no other object can be within the query range, and the algorithm can return the query
answer and terminate.

Algorithm 5.2 I3RS(q, r, W)

1: Input: Query point (q), Range (r), Set of keywords (W)
2: Output: Result set (Res) of spatio-textual objects within range r matching any keyword in

W
3: Priority queue (H)
4: H, Res = ∅
5: (ni, nj)← FINDSEGMENT(q)
6: H ← 〈〈〈(ni, ∆(q, ni)), (nj, ∆(q, nj))〉〉〉
7: minDist← min(∆(q, ni), ∆(q, nj))
8: Res← GETCANDIDATES(IF(ni, nj), r, W) //Get objects matching W within range r
9: whileH 6= ∅ and minDist < r do

10: (n, ∆(q, n))← dequeue(H)
11: for each non-visited adjacent node n′ of n do
12: if ∆(q, n′) < r then
13: enqueue(H, (n′, ∆(q, n′)))
14: end if
15: Res← Res ∪ GETCANDIDATES(IF(ni, nj), r, W) //Get objects matching W within

range r
16: end for
17: minDist← peek(H) //Update with distance to head of queue
18: end while
19: return Res

The pseudocode of the I3RS algorithm is presented in Algorithm 5.2, and as input the
algorithm takes the query point q, the search range r, and the set of query keywords W.
Like the I3kNN algorithm we start by initializing a result set Res, and a priority queue

QUERY PROCESSING 43

H for the network nodes. Next, the network segment where q is located, edge (ni, nj),
is found by searching the network R-tree using q as input (line 5). We calculate the
network distance from q to each of the end-nodes ni and nj, and add a tuple to H for
each node that consists of a reference to the node together with the distance (line 6),
e.g. (ni, ∆(q, ni)). The minimum of the end-node distances is assigned to a variable
minDist, and is used as a search boundary to stop the network expansion when the
nearest network node is farther away than the query range r (line 7).

Before expanding beyond the first segment we retrieve all spatio-textual objects from
the corresponding inverted file, IF(ni, nj), whose description contains any of the key-
words specified in W and that is within range r to q (line 8). We follow the inverted file
pointer stored in the adjacency list entry of ni to access the inverted file of the segment.
In the inverted file we traverse the vocabulary to find the terms matching the key-
words in W, and subsequently retrieve the corresponding postings lists. We traverse
the lists, comparing the distance to the objects in the postings with the query range r,
and adding to the result set the objects within the range.

The main network expansion loop happens in line 9 to 18. Inside the loop we start by
dequeuingH to retrieve the non-visited node n that has the currently shortest distance
to q (line 10). Next, we retrieve the adjacency list of n from the adjacency component,
and for each entry in the adjacency list, we enqueue the adjacent node n′ toH (line 13).
We also access the inverted file of the segment, IF(n, n′), subsequently adding to the
result set Res the matching spatio-textual objects on the segment (line 15). At the end
of the loop in line 17, we update minDist with the distance to the nearest non-visited
network node at the head of the queueH.

Finally, in line 19 the I3RS algorithm terminates by returning the result set Res that
contains the set of spatio-textual objects within range r that matches any of the query
keywords in W.

Range query processing example

To present an example of the I3RS algorithm we employ the road network and the
spatio-textual objects of Figure 5.3. Assume the keyword range query QKR = 〈q, W, r〉 =
〈q, restaurant, 13〉. Like in the preceding kNN query processing example, we assume
that the non-labeled objects in the figure are not a match for the query, for simplicity.
The I3RS algorithm starts by retrieving the edge where q lies by running a query on the
network R-tree in Figure 5.2d, using q as input. As the next step, the algorithm con-
sults the inverted file IF3 of the retrieved edge, edge (n1, n4), to find any spatio-textual
object in the file that has a network distance to q less or equal to the specified range
r. None are found, and the distance to both end-nodes from q are computed. Contin-
uing, the nearest network node to q is expanded and the adjacent road segments are
to be examined for matching spatio-textual objects. In edge (n1, n3) there are no terms
matching the query keywords in the vocabulary of inverted file IF2, and the algorithm
continues to examine edge (n1, n2). On this edge, as we consult the inverted file IF1, we
find the query keyword restaurant among the terms in the vocabulary. Consequently,
we retrieve the postings list of the term, and traverse the list adding objects that are

44 ROAD NETWORK INDEXING

within the specified range of r = 13 to the result set. The distance to the objects are
computed by adding the distance from q to node n1 with the distance stored in the
respective posting, i.e. ∆(q, pi) = ∆(q, n1) + ∆(n1, pi). After having traversed the post-
ings list of term restaurant in IF1 the result set consists of the objects 〈p1, p3〉. They
are the objects within the specified range r, and their description contains the query
keyword restaurant.

In conclusion, this chapter presented the RNI framework for efficient processing of
spatial keyword queries on road networks. We have described the improved keyword-
based road network architecture, and we have presented algorithms for processing
keyword-based k-nearest neighbour and keyword-based range queries.

Chapter 6

OpenStreetMap

The purpose of the two frameworks we propose in this thesis is to be used as the bot-
tom index layer in an application that can provide to a user services such as searching
for spatio-textual objects in a spatial network database. In order to test and compare
the baseline and RNI frameworks properly we employ real-world cartographic data
from the web service OpenStreetMap1 (OSM). OpenStreetMap is a project whose goal
is to create a free editable map of the whole world. It is a collaborative project where
the contributors are a community of people from all over the world with an interest in
mapping. The focus of this chapter will thus be to describe the OSM web service, the
data that is available, and some of the processes we have gone through in order to ex-
tract and convert the data for use in the different components of our two frameworks.

This chapter first presents, in Section 6.1, the data that is available from OpenStreetMap,
explaining different terms and giving examples. Subsequently, Section 6.2 discusses
how data can be extracted from OpenStreetMap and presents algorithms for this task.

6.1 Data available from OpenStreetMap

The OpenStreetMap web service allows a user to export a custom map to several differ-
ent formats, such as the Mapnik2 image shown in Figure 6.1, as embeddable HTML, or
as OpenStreetMap XML Data. For the purpose of creating a spatial network database
coupled with spatio-textual objects, we have chosen to export the map to the OSM
XML format. XML provides an organized and structured way of storing the data,
which makes it easier to retrieve and convert into a useful format for use as the data
source in the implementation of our proposed baseline and RNI frameworks. In this
map we have data that describes the following:

• The actual roads, their coordinates and other useful information such as driving
direction and speed-limit.

1http://www.openstreetmap.org
2http://mapnik.org

45

http://www.openstreetmap.org
http://mapnik.org

46 OPENSTREETMAP

• The nodes that connect two roads, i.e. the vertices in the graph model of the road
network, or what is considered the road intersections.

• Other objects of interest such as shops, cafés, restaurants, and ATMs, with a tex-
tual description of what the objects are, as well as the coordinates for their spatial
location, i.e. the spatio-textual objects.

Figure 6.1 shows a view over Campus Gløshaugen at NTNU, exported from the Open-
StreetMap web service. The map shows, for example, where there exist roads and
footpaths, e.g. the dotted lines, some of the parking spots in the area, indicated by the
P’s, as well as some of the street names. There is a limitation with the Mapnik image
format in that it does not show all the objects of interest in the map. When exporting
this map to the OSM XML format everything from the roads to staircases, as well as
cafés and lecture halls will be available.

A node in the OSM scheme is a basic element or building block in a map, and consists
of an id, the latitude (lat) and longitude (lon) coordinates, and an optional set of tags
used to describe or classify the node. The set of tags are key-value pairs with no key oc-
curring twice in a node, and may for example be used to denote that a node represents
a restaurant or a historic attraction (OpenStreetMap contributors, 2011).

As an example, Listing 6.1 is a description of a node, and its information, in the Open-
StreetMap XML format. The code is extracted from the XML file generated based on
the information present in the map in Figure 6.1. Here, a tag with the key amenity has
the value cafe, and another has the key name with the value Cafe-sito Stripa. With this
information we see that the node is used to represent a café with the name “Cafe-sito
Stripa”, and that it is located at (lat=63.4169296, lon=10.4042830), indicated by the dot-
ted point in the lower middle of Figure 6.1. There are also other attributes in the node
header such as the timestamp of the last edit and the user who performed it, as well as
a version number and the changeset which the last update belongs to.

1 <node id=" 431038572 " lat=" 63 .4169296 " lon=" 10 .4042830 " user=" Espenso " \
2 uid=" 176415 " v i s i b l e =" t rue " vers ion=" 4 " changeset=" 2852590 " \
3 timestamp=" 2009−10−15 T10:01 :32Z ">
4 <tag k=" amenity " v=" c a f e "/>
5 <tag k=" c u i s i n e " v=" coffee_shop "/>
6 <tag k=" l e v e l " v=" 1 "/>
7 <tag k="name" v=" Cafe−s i t o S t r i p a "/>
8 <tag k=" operator " v=" Studentsamskipnaden i Trondheim "/>
9 </node>

Listing 6.1: A section from the OSM XML describing a node, c© OpenStreetMap contributors,
CC-BY-SA.

The OSM scheme describes a way as an ordered interconnection of two or more nodes
representing a linear feature such as a street, footpath, river, or a bridge (OpenStreetMap
contributors, 2011). Listing 6.2 describes a way in the OSM XML format. Similarly to
the node in Listing 6.1, the way in Listing 6.2 has attributes for an id, the user who
last modified the object, a version number and a timestamp for the last edit. A way is

http://www.openstreetmap.org
http://creativecommons.org/licenses/by-sa/2.0/

DATA AVAILABLE FROM OPENSTREETMAP 47

Figure 6.1: An OpenStreetMap view of Campus Gløshaugen, NTNU in Trondheim, Norway,
c© OpenStreetMap contributors, CC-BY-SA.

composed of the nodes in the list of nd attributes, which are ordered according to their
latitude and longitude coordinates.

For example, in Listing 6.2 the way consists of three nodes with the ids 436127539,
436153454, and 436127538. When plotting the way composed by these three points,
the result is the dashed line presented in the lower middle of Figure 6.1, with the black
points indicating the nodes. A way may also contain a set of tags, similarly to a node,
used for describing the properties of the feature. In the case of Listing 6.2 the set of tags
contain the key-value pairs foot-yes and highway-cycleway, giving us the information
that this way can be walked and bicycled. Other tags may for example describe the
direction of a road, the name of a highway, whether a speed limit is enforced, and
what the actual speed limit is.

1 <way id=" 37363527 " user=" dperkis " uid=" 133533 " v i s i b l e =" t rue " vers ion=" 2 "
changeset=" 1760108 " timestamp=" 2009−07−07 T08:56 :11Z ">

2 <nd r e f =" 436127539 "/>
3 <nd r e f =" 436153454 "/>
4 <nd r e f =" 436127538 "/>
5 <tag k=" f o o t " v=" yes "/>
6 <tag k=" highway " v=" cycleway "/>
7 </way>

Listing 6.2: A section from the OSM XML describing a way, c© OpenStreetMap contributors,
CC-BY-SA.

http://www.openstreetmap.org
http://creativecommons.org/licenses/by-sa/2.0/
http://www.openstreetmap.org
http://creativecommons.org/licenses/by-sa/2.0/

48 OPENSTREETMAP

There exists also the notion of a relation, which is a group of zero or more data primi-
tives, used for specifying relationships between objects (OpenStreetMap contributors,
2011). By employing the relation data primitive it is possible to combine several ways
into one longer path, or specifying a network of roads that has a special relationship.
It is also possible to specify an area, such as a lake, by creating a closed way that starts
and ends in the same node, subsequently tagging it with a key that is handled as an
area.

6.2 Extracting data from the XML file

In order to extract data from the XML file to build a road network, we scan the file
two times, using the data from the first scan as a lookup facility in the second scan.
More specifically, in the first scan of the file we search for nodes and insert them into a
HashMap as they are encountered, using the node id as the key and the spatial coordi-
nates as the value. When the HashMap is filled we have a quick way of looking up the
coordinates of a node given the id.

Algorithm 6.1 EXTRACTWAYS(f ile)
1: INPUT: the OSM XML file
2: OUTPUT: a set consisting of the ways from the XML file
3: nodeSet← ∅
4: waySet← ∅
5: for each entry in f ile do //first iteration, extracting nodes
6: if entry is a node then
7: nodeSet← nodeSet ∪ node
8: end if
9: end for

10: for each entry in f ile do //second iteration, extracting ways
11: if entry is a way then
12: nodeList← ∅
13: for each nodeId in way.nodeIdList do
14: nodeList← nodeList ∪ nodeSet.get(nodeId)
15: if nodeId is a member of another way then
16: split the way in two
17: add a neighbour relationship between the first node of nodeList and nodeId
18: add a neighbour relationship between nodeId and the last node of nodeList
19: end if
20: end for
21: add a neighbour relationship between the first and last node in nodeList
22: waySet← waySet ∪ way
23: end if
24: end for
25: return waySet

During the second scan the goal is to create roads as polylines for later insertion into
the polyline component in Figure 5.2c. When a way is encountered in the XML file we

EXTRACTING DATA 49

know that it consists of the nodes that compose the way, given by a list of node ids.
Thus, for each way we iterate through the corresponding node list, using the HashMap
to look up the coordinates for each node, and storing each way as a polyline formed by
the series of straight line segments between the nodes. As part of the same process we
also construct the adjacency relationship between the nodes. If the intermediate nodes
of a polyline is only a member of that one polyline, we create a neighbour relationship
between the first and last node of the polyline. On the other hand, if an intermediate
node is a member of one or more other ways, we can split the way into two or more
shorter polylines, subsequently creating adjacency relationships between the first and
last nodes of each of the shorter polylines. Algorithm 6.1 presents the pseudocode for
the extraction of nodes and ways from the XML file, and takes as input the file itself.

For extracting the spatio-textual objects from the XML file we have created the EX-
TRACTSPATIOTEXTUALOBJECTS(file,T) algorithm presented in Algorithm 6.2. The spatio-
textual objects, or nodes in the file, are characterized by having a set of tags as key-
value pairs, describing the node in one way or another. By selecting which tag keys
shall be considered as a textual description, we can filter the nodes that have these keys
and classify them as spatio-textual objects. The set of these tag keys, T, is sent as input
to the algorithm, together with the XML file itself. Although it is possible to perform
this operation as a part of the first iteration of EXTRACTWAYS(file) in Algorithm 6.1, we
have separated the two algorithms for clarity.

After the information about the nodes and the ways has been gathered, we can use this
to create data for the adjacency component and the polyline component, Figure 5.2a
and 5.2c respectively. At this point, there still is some processing left to determine
which nodes are adjacent to one another, and computing the distance and MBRs of
each way. In addition to this, all the nodes that were classified as spatio-textual objects
during the execution of the EXTRACTSPATIOTEXTUALOBJECTS(file,T) algorithm have
been written out to a new file for later insertion into either the IR-tree in the spatio-
textual component, Figure 4.1b, or the inverted files in the inverted file component,
Figure 5.2b. An excerpt of this file can be seen in Listing 6.3, where each line represents
one spatio-textual object. The values are the id of a node, its latitude and longitude
coordinates, and the key-value pairs from the set of tags, in this case used as the de-
scription of the object.

Algorithm 6.2 EXTRACTSPATIOTEXTUALOBJECTS(f ile, T)
1: Input: the OSM XML file, the set of keys used to describe a spatio-textual object
2: Output: a set consisting of the spatio-textual objects from the XML file
3: spatiotextualSet← ∅
4: for each entry in f ile do
5: if entry is a node then
6: if ∃node.tag.key ∈ T then //node is a spatio-textual object
7: spatiotextualSet← spatiotextualSet ∪ node
8: end if
9: add the tags to the node’s description field

10: end if
11: end for
12: return spatiotextualSet

50 OPENSTREETMAP

1 153142045 63 .4313285 10 .3928913 amenity pub microbrewery yes name Trondhjem
Mikrobryggeri

2 956343641 63 .4326826 10 .3975758 amenity f a s t _ f o o d c u i s i n e sandwich name Big
B i t e

3 383903540 63 .4306835 10 .3983484 name Mercursenteret shop mall
4 385719944 63 .4302163 10 .3899054 amenity r e s t a u r a n t c u i s i n e as ian name Mien

Trung Cafe
5 956343651 63 .4318762 10 .3935699 amenity nightc lub name Familien
6 380355308 63 .4306906 10 .3906721 amenity r e s t a u r a n t c u i s i n e i t a l i a n name

Napoli

Listing 6.3: Spatio-textual objects, as extracted from an OSM XML file and written to a new file.

As mentioned, when creating a node or a way in OpenStreetMap it is possible to use a
set of tags to describe the entity being created. There are no restrictions to which tags
can be assigned to an entity, but the OpenStreetMap wiki3 contains a core set of fea-
tures and corresponding tags that is recommended to use. At the top level the features
are divided into the categories physical, non-physical, naming, annotation, and editor
keys, where each of these are further divided into more and more specific categories.
Within the physical category there are subcategories such as highway, railway, leisure,
amenity, shop, tourism, and natural, whereas the non-physical contain subcategories
such as route, boundary, sport, and various restrictions. In general, the categories men-
tioned here are used as keys in the tags, and the values coupled with the key may again
be further subcategorized into, for example, restaurant, pub, bakery, and so on.

Physical Highway, Barrier, Cycleway, Tracktype, Water-
way, Railway, Aeroway, Aerialway, Power, Man
Made, Leisure, Amenity, Office, Shop, Craft, Emer-
gency, Tourism, Historic, Landuse, Military, Natu-
ral, Geological

Non-physical Route, Boundary, Sport, Abutters, Accessories,
Properties, Restrictions

Naming Name, References, Places, Addresses

Annotation note, fixme, description

Editor keys created_by, history

Table 6.1: The most common categories of keys used for tagging in OpenStreetMap.

To extract entities from the map to best represent our notion of spatio-textual ob-
jects, we have employed the following subcategories of the physical category: leisure,
amenity, shop, craft, emergency, tourism, and historic. From the non-physical category
we have included the sport subcategory. These eight categories, which all are used as
keys in a tag, represent entities that are likely to be used as keywords for an application
based on keyword search in spatial network databases. Although there may be some

3http://wiki.openstreetmap.org/wiki/Map_Features

http://wiki.openstreetmap.org/wiki/Map_Features

EXTRACTING DATA 51

overlap between the different categories as to which can be considered a description
of a spatio-textual object, the selected eight provides a good coverage of such objects
when used for testing and evaluation purposes in a project like this. When evaluating
the spatio-textual objects that are filtered out as part of Algorithm 6.2, this proves to be
a good assumption.

Table 6.1 presents the main categories of keys that can be used to tag nodes and ways,
with the more commonly used listed first in each category. The eight categories that
are used to classify spatio-textual objects are presented in bold font. Each of these
categories may again contain more detailed keys, with the exception of the entries in
the Annotation and Editor keys lists which are actual keys, not just categories.

52 OPENSTREETMAP

Chapter 7

Experimental Evaluation

In this thesis we have presented two frameworks that solves the problem of processing
spatial keyword queries on road networks. In order to test these frameworks properly
we have run a series of experiments on real-world datasets of different size to detail
how the frameworks perform under various conditions. We chose to implement the
keyword-based k-nearest neighbour algorithm for both frameworks, i.e. the INE* and
I3kNN for the baseline framework and RNI framework, respectively. Thus, all the
experiments are based on running nearest neighbour queries on the frameworks while
varying different parameters such as the number of query results k, and the number
of query keywords. The output from the experiments is the average response time a
query uses to return the answer, and the average number of I/Os the query uses during
the whole process.

In this chapter we will present and discuss the results from these experiments. Since
the RNI framework is intended to alleviate some of the performance issues with the
baseline approach, we will especially focus on comparing the query performance of
the two frameworks, explaining the reasons for differing query performance.

Both of the frameworks, and the two algorithms, were implemented using the Java
programming language. All of the experiments were executed on a PC running the
Ubuntu 10.04 operating system, with dual Intel Xeon E5520 CPUs and 18GB of RAM.

In the following section we present the datasets used throughout the experiments,
along with their characteristics such as size, number of ways, and number of spatio-
textual objects. Section 7.2 presents the main parameters and values of the experi-
ments, as well as other details about the experimental setup. In Sections 7.3 and 7.4 we
introduce the two different sets of experiments; in the first set we run nearest neigh-
bour queries on the frameworks varying number of results k, whereas the number of
keywords are varied in the second set. Results and a discussion follows the introduc-
tion of each of the set of experiments.

53

54 EXPERIMENTAL EVALUATION

7.1 Datasets

In this section we describe the different datasets used throughout the experimental
evaluation. We employ three different datasets based on real-world data extracted
from the OpenStreetMap web service. The advantage of OpenStreetMap is that it gives
us actual road networks with latitude and longitude coordinates that can be used to
accurately calculate the real-world network distance between two points. OSM also
contains spatio-textual objects, which together with the road networks make a good
testing platform for the two frameworks we present in this thesis. More details on
OpenStreetMap, the data that are available, and a walkthrough of the processes used
to extract the data can be found in the previous chapter, Chapter 6.

Trondheim London Netherlands

Size in MB 38 293 3 188
Tot. no. of ways 27 267 238 080 2 037 817
Tot. no. of objects 1 063 31 860 26 437
Tot. no. of words 7 338 216 001 216 466
Tot. no. of unique words 1 151 11 582 15 838
Avg. no. of unique words per object 6.23 6.34 7.26
Avg. no. of objects per km2 3.54 20.61 2.01
Area in km2 299.7 1 546.1 13 210.6
Bounding box (bottom, left) (63.325, 10.27) (51.342, -0.449) (51.77, 4.13)
Bounding box (top, right) (63.466, 10.654) (51.649, 0.206) (52.86, 5.75)

Table 7.1: Characteristics of the datasets.

Table 7.1 presents characteristics such as the size, the number of ways, and the number
of spatio-textual objects of each dataset used in the experiments. The first two datasets
are extracted from the cities of Trondheim in Norway and London in England. The
third dataset is a subset of the Netherlands containing cities such as Amsterdam, Rot-
terdam, Den Haag and Utrecht. From the table, we see that the three datasets vary
about two orders of magnitude in size on disk as well as number of ways, from the
smallest to the largest. The different sizes should provide good insight into how the
two frameworks perform on small, medium, and large sized datasets. The Trondheim
dataset is clearly the smallest of the three in terms of size on disk, number of ways,
and number of spatio-textual objects. London is the next step, with a significant in-
crease in both number of ways and number of spatio-textual objects from the Trond-
heim dataset. When comparing London and the Netherlands datasets, we see from the
table that London has a higher amount of spatio-textual objects than the Netherlands,
even though the latter has been extracted from a much larger area. This is reflected
in the density of the spatio-textual objects, Avg. no of objects per km2, and the Nether-
lands has the lowest average among the three datasets, with only 2.01 objects per km2.
The difference in object density will give an indication of the effect a low-density road
network has on the query performance.

The coordinates of the bounding boxes used when extracting the datasets from Open-
StreetMap can be found in Table 7.1. The numbers are given as latitude and longitude

EXPERIMENTAL SETUP AND PARAMETERS 55

coordinates (lat, lon), and indicate the bottom left and top right of the bounding box of
each dataset, respectively.

As part of building the indexes, the datasets go through a pre-processing step where
each spatio-textual object is moved to the nearest polyline to ensure that objects lying
away from the road network are discovered during network traversal. In the same
process we also remove closed circuits from the datasets, i.e. areas of the road network
that starts and ends on the same network node, and are thus disconnected from the
rest of the road network.

7.2 Experimental setup and parameters

Parameter Values

Number of results (k) 1, 5, 10, 15, 20
Number of keywords 1, 2, 3, 4, 5
Datasets trondheim, london, netherlands

Table 7.2: Settings used in the experiments. The default values are presented in bold.

Table 7.2 presents the main parameters and values used throughout the experiments.
The default values are presented in bold. In the first set of experiments the number of
results k were varied from 1 to 20 in increments of 5, while the number of keywords
were kept at the default of 3. Fixing the number of keywords to 3 is a reasonable
number since the average number of terms per spatio-textual object is between 6 and
8, as shown in Table 7.1. It is also likely that 3 provides a good measure of the number
of keywords a user would try when performing such a query in an actual application.
In the second set of experiments the number of keywords were varied from 1 to 5,
while the number of results k were fixed at 10 throughout the experiment.

In each of the experiments, before the query process starts, an initialization process is
executed. The goal of the initialization process is to select the latitude and longitude
coordinates of the query point, and to select the query keywords that are used as input
to the algorithm. The query point is chosen by obtaining a set of coordinates from a
polyline, randomly retrieved from the R-tree in the network component, Figure 5.2d.
This is done in order to ensure that the query point is located on an actual segment
in the road network. As for the query keywords, these are selected from the term
vocabulary based on a probability function that is more likely to pick a commonly
used keyword, than a rare one.

During all of the experiments, none of the index structures (IR-tree, network R-tree,
inverted files) had any form of caching activated. This means that whenever the in-
dex structures are consulted as part of the nearest neighbour algorithm they have to
be fetched from disk, and not just from a cache in memory. The results from the ex-
periments should thus give a good indication of the I/O each framework requires to
process the queries.

56 EXPERIMENTAL EVALUATION

The two sets of experiments are run on all three datasets for successive rounds in order
to provide a confident result. The aggregated data from these rounds are then used to
calculate the average response time and the average I/O of the query in each experi-
ment, as shown later in the results. All the results are plotted using a logarithmic scale
on the y-axis.

7.3 First set of experiments: varying number of results

The first set of experiments is designed to see how the two frameworks perform when
processing nearest neighbour queries on different datasets, for different values of k.
The number of query keywords is fixed at the default value of 3 throughout all the
experiments.

As output from the experiments we record the average response time of each query,
and compute the average number of I/Os each query requires, for each of the values
of k.

Before executing each query, an initialization process is conducted to select the query
location and the query keywords, as explained previously.

Results and discussion

 0.01

 0.1

 1

 10

 100

1K

 1 5 10 15 20

T
im

e
 (

s
)

Number of results (k)

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 5 10 15 20

I/
O

Number of results (k)

Baseline RNI

(b) I/O.

Figure 7.1: Trondheim dataset. Response time and I/O varying the number of results (k).

Figure 7.1 plots the results of running a set of nearest neighbour queries on the base-
line and RNI frameworks, using the Trondheim dataset while we vary the number of
results k. The RNI framework clearly outperforms the baseline framework with a re-
sponse time of at least one order of magnitude lower, as seen in Figure 7.1a. Although
the response time increases for both frameworks as the number of results increases,
the improvement in performance is consistently in favour of RNI for all values of k.
The increasing response time is expected though, since we have to expand further in
the network for each increasing value of k to find enough matching objects. The main

FIRST SET OF EXPERIMENTS: VARYING NUMBER OF RESULTS 57

reason that RNI has a lower response time is that the query has to access fewer disk
blocks than baseline during query processing to find the same amount of results. This
is reflected in Figure 7.1b which shows the I/Os for both frameworks, also here with
one order of magnitude improvement for the RNI framework.

The lower I/O for the RNI framework can be explained by the following. Each time
the query in the baseline framework encounters a road segment, we search the IR-tree
to find the matching spatio-textual objects on the segment. The query on the IR-tree
is defined by the MBR of the road segment and the query keywords. As we traverse
nodes in the IR-tree, I/Os occur when we retrieve a node, as well as when we retrieve
the inverted file of a node to check which child nodes may contain any matching ob-
jects. After the IR-tree has been traversed and the candidate objects have been found,
we have to check for false positives, i.e. we have to compare the location of the objects
with the exact geometry of the road segment to verify that the objects are present on
the road segment. Thus, we retrieve the polyline of the road segment from the polyline
component, resulting in more disk accesses. At this step we also compute the distance
to each of the spatio-textual objects, and subsequently sort them on network distance
to the query, an operation that contributes to an increased response time.

With the RNI framework, on the other hand, we only have to access one inverted file
for each encountered road segment, not several nodes and several inverted files as
during traversal of the IR-tree, resulting in fewer I/Os. Additionally, we can avoid
accessing an inverted file if it does not contain any objects. The reason that the last
statement is possible is that we know already during building of the indexes if an
inverted file contains any objects, and can thus avoid accessing the file during query
processing if it is empty. This can be achieved by, for example, setting the inverted
file pointer in the adjacency component to −1, or some other defined value indicating
an empty file. I/Os are further avoided since we do not need to retrieve the polyline
to check for false positives in the RNI approach, because we know that an object in
an inverted file is guaranteed to lie on the corresponding segment. Furthermore, the
distance from a spatio-textual object to an end-node of the segment is pre-computed
and stored in the posting, and the polyline is not needed to perform this task, as it is in
the baseline approach.

When running the same set of nearest neighbour queries on the two frameworks using
the London dataset we get the results presented in Figure 7.2. Again, the performance
of the RNI framework is consistently better than the baseline. In response time, Fig-
ure 7.2a, the improvement is one to two orders of magnitude, whereas in I/Os the
improvement is about one order of magnitude.

The reasons for the improvement in both response time and I/Os are the same as for
the Trondheim dataset. Query processing on the RNI framework requires less I/Os
than the baseline to retrieve the same amount of query results.

Although the London dataset is much larger than the Trondheim dataset in number
of ways, that does not seem to have a big impact on the query performance of the
frameworks, but this may be attributed to the much higher density in spatio-textual
objects. A denser network means that the query is more likely to find matching spatio-
textual objects near the query point, avoiding extensive expansion of the network.

58 EXPERIMENTAL EVALUATION

 0.01

 0.1

 1

 10

 100

1K

 1 5 10 15 20

T
im

e
 (

s
)

Number of results (k)

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 5 10 15 20

I/
O

Number of results (k)

Baseline RNI

(b) I/O.

Figure 7.2: London dataset. Response time and I/O varying the number of results (k).

Looking at the results of running the queries on the Netherlands dataset, Figure 7.3,
we see the effect a large network, sparsely populated with spatio-textual objects, has
on the query performance. The RNI framework still performs about one order of mag-
nitude better than the baseline approach, but the average response time and I/Os has
increased significantly for both frameworks. This overall increase in response time and
I/O is clearly the result of a large part of the network being expanded before finding
enough results to satisfy the query.

Another thing to note about the Netherlands dataset is that the distribution of spatio-
textual objects are likely to be concentrated around the large cities of the extracted
area. Since we have extracted about half a country, there are large areas with few or no
spatio-textual objects at all, such as large rural areas. If the query point is selected from
a road in such an area during the initialization phase, the query is required to expand
a very large part of the network before finding the required amount of results.

 0.01

 0.1

 1

 10

 100

1K

 1 5 10 15 20

T
im

e
 (

s
)

Number of results (k)

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 5 10 15 20

I/
O

Number of results (k)

Baseline RNI

(b) I/O.

Figure 7.3: Netherlands dataset. Response time and I/O varying the number of results (k).

SECOND SET OF EXPERIMENTS: VARYING NUMBER OF KEYWORDS 59

7.4 Second set of experiments: varying number of key-
words

In the second set of experiments we want to see how the two frameworks perform
when processing nearest neighbour queries on different datasets while varying the
number of query keywords. The number of results k is in these experiments fixed at
the default value of 10.

Like in the first set of experiments we first conduct an initialization process to select
the query keywords and the query location. The output is the average response time
for each query, and the average number of I/Os each query requries, reported as the
number of keywords vary.

Results and discussion

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of query keywords

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 2 3 4 5

I/
O

Number of query keywords

Baseline RNI

(b) I/O.

Figure 7.4: Trondheim dataset. Response time and I/O varying the number of keywords.

The results of varying the number of keywords when running a set of nearest neigh-
bour queries on the baseline and RNI frameworks is depicted in Figure 7.4; the Trond-
heim dataset has been used as the source. We see that the trend from the previous set
of experiments can also be found in the results here. The RNI outperforms the base-
line with about one order of magnitude for both response time and I/O, Figure 7.4a
and 7.4b. The reason for the performance improvement is the same as described be-
fore. The amount of I/Os are greatly reduced during query processing on the RNI
framework since we only retrieve one inverted file for each segment if there are ob-
jects present, and subsequently avoid additional costly queries on the IR-tree to find
the spatio-textual objects. Also, the polyline component is only visited during the ini-
tialization phase to retrieve the first road segment, and not for each encountered road
segment as in the baseline approach.

From the results we also see that the response time is highest when we have one query
keyword, and subsequently decreases as the number of keywords increases. This is

60 EXPERIMENTAL EVALUATION

because we only require that the description of a spatio-textual object contains one of
the keywords for it to be reported as a match. Consequently, when we specify just one
keyword the query has to expand the network farther to find the desired amount of
matching objects, whereas when we specify several keywords it is more likely that we
will encounter objects that contain any of the keywords within a shorter distance to the
query point.

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of query keywords

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 2 3 4 5

I/
O

Number of query keywords

Baseline RNI

(b) I/O.

Figure 7.5: London dataset. Response time and I/O varying the number of keywords.

For the larger and more densely populated dataset of London, the results of running
the nearest neighbour queries are presented in Figure 7.5. The trend is clearly showing
an advantage to the RNI framework for both response time and I/O, like we have seen
in the previous results. As before, the improvement in performance is attributed to the
number of disk accesses the frameworks require during query processing. The IR-tree
of the baseline has to run costly searches for each road segment to retrieve the spatio-
textual objects, while the inverted file component of the RNI only have to retrieve a
single inverted file if there exists any objects on a road segment.

When comparing the results in Figure 7.5 with the results of the Trondheim dataset in
Figure 7.4, it shows that the advantage to RNI has increased slightly. This improvement
indicates that the query performance of the RNI framework improves even further
when the network is densely populated. It is more likely that the IR-tree will retrieve
false positives when there are more objects in the network, and the time spent in the
refinement step to discover and discard the false positives will increase.

In Figure 7.6 we present the results of running the second set of experiments on the
Netherlands dataset. The results shown here are interesting since the overall response
time and I/Os has increased significantly for both frameworks when compared to the
London dataset, especially when we only use one query keyword. Same as for the first
set of experiments, the increase in response time and I/O for the Netherlands dataset
is due to the low density of spatio-textual objects, combined with a very large road
network.

The reduced performance when we have few query keywords indicates that there is
a need for additional improvements of the RNI framework to account for such cases.
One such case is when the query keyword is rare, meaning that few spatio-textual

SECOND SET OF EXPERIMENTS: VARYING NUMBER OF KEYWORDS 61

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of query keywords

Baseline RNI

(a) Response time.

1K

10K

100k

1M

10M

 1 2 3 4 5

I/
O

Number of query keywords

Baseline RNI

(b) I/O.

Figure 7.6: Netherlands dataset. Response time and I/O varying the number of keywords.

objects has the term in their description. In this case, if the number of matching spatio-
textual objects are fewer than the required number of query results, we run the risk of
expanding the whole network on the search for objects. A solution to this problem is to
keep a vocabulary of terms together with the total number of objects that is described
by the term. Before starting the query process, the vocabulary is consulted to see how
many objects contain the term. If the number of query results k is larger than the total
number of objects, we can set the latter number as a boundary and terminate the search
when all objects have been found. Another approach is to include a range boundary in
the nearest neighbour query, that stops the search when the boundary is exceeded.

62 EXPERIMENTAL EVALUATION

Chapter 8

Conclusions

We have in this thesis presented a twofold solution to the new and complex prob-
lem of answering spatial keyword queries where the distance between the spatio-
textual objects are constrained by road networks. Our solution consists of 1) a baseline
framework that combines existing state-of-the-art approaches to support processing
of keyword-based spatial queries such as range and k-nearest neighbour on road net-
works, and 2) a novel framework termed Road Network Indexing (RNI) that permits
efficient processing of such queries by indexing the spatio-textual objects in each road
segment using inverted files.

We have also developed algorithms to process keyword k-nearest neighbour and key-
word range queries on both the baseline and the RNI framework. The keyword k-
nearest neighbour query retrieves the k closest spatio-textual objects to a query loca-
tion q that matches any of the keywords specified in the query, whereas the keyword
range query retrieves all spatio-textual objects within range r of q that matches any of
the query keywords.

Through an experimental evaluation we have presented results from running near-
est neighbour queries on the frameworks, using differently sized real-world road net-
works extracted from the OpenStreetMap web service. From the experiments we show
how the average response time and average I/O are affected as the number of results
k, and number of query keywords, are varied. The results show that the RNI frame-
work outperforms the baseline framework with around one order of magnitude for
all experiments. Furthermore, the results also show that the performance increases in
favour of the RNI framework as the density of the spatio-textual objects increases in
the road network, indicating potential for scalability with further development of the
RNI framework.

The work of this thesis is only the first step towards providing more beneficial spa-
tial keyword queries that employ road networks to find the best objects matching the
query. Current and future applications that may benefit from our solution include nav-
igation and trip planning software, tourist portals on the Web, and the many search
engines out there in need of a spatial extension to their application.

63

64 CONCLUSIONS

Future work

There are still much left to cover on the topic of keyword-based spatial queries on road
networks. What would be interesting to do as part of a future study is to implement
more algorithms to run on the frameworks, such as the keyword-based range algo-
rithm proposed in this thesis. It would also be interesting to do a further extensive
performance comparison using synthetic datasets to better control object density, de-
tailing the scalability of the frameworks and the proposed algorithms.

There is also room for improvements of the performance of the RNI framework, espe-
cially with regard to sparsely populated datasets. In this context it could be interesting
to look at an improvement of the road network representation. In sparsely populated
datasets there are large areas without any objects of interest. A way to alleviate this
issue could be to truncate the empty areas, creating shortcuts from the start of the area
to the end, so that the network expansion did not have to expand all the empty road
segments within such an area.

References

Arge, L., de Berg, M., Haverkort, H. J., and Yi, K. (2004). The Priority R-tree: a practically
efficient and worst-case optimal R-tree. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 347–358.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: an efficient and
robust access method for points and rectangles. ACM SIGMOD Record, 19(2):322–331.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517.

Chen, Y.-Y., Suel, T., and Markowetz, A. (2006). Efficient query processing in geographic web
search engines. In Proceedings of the International Conference on Management of Data (SIGMOD),
pages 277–288.

Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: an efficient access method for similarity
search in metric spaces. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 426–435.

Cong, G., Jensen, C. S., and Wu, D. (2009). Efficient retrieval of the top-k most relevant spatial
web objects. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 337–348.

de Almeida, V. T. and Güting, R. H. (2006). Using Dijkstra’s algorithm to incrementally find
the k-nearest neighbors in spatial network databases. In Proceedings of the ACM Symposium
on Applied Computing (SAC), pages 58–62.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271.

Faloutsos, C. and Christodoulakis, S. (1984). Signature files: an access method for documents
and its analytical performance evaluation. ACM Transactions on Information Systems, 2(4):267–
288.

Felipe, I. D., Hristidis, V., and Rishe, N. (2008). Keyword search on spatial databases. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 656–665.

Finkel, R. A. and Bentley, J. L. (1974). Quad trees: a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9.

Frank, A. U. (1992). Spatial concepts, geometric data models, and geometric data structures.
Computers & Geosciences, 18(4):409–417.

Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Computing Surveys,
30(2):170–231.

65

66 REFERENCES

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. In Proceedings of
the International Conference on Management of Data (SIGMOD), pages 47–57.

Hariharan, R., Hore, B., Li, C., and Mehrotra, S. (2007). Processing spatial-keyword (SK) queries
in geographic information retrieval (GIR) systems. In Proceedings of the International Confer-
ence on Scientific and Statistical Database Management (SSDBM), pages 1–10.

Hjaltason, G. R. and Samet, H. (1999). Distance browsing in spatial databases. ACM Transactions
on Database Systems (TODS), 24(2):265–318.

Hu, H., Lee, D. L., and Lee, V. C. S. (2006a). Distance indexing on road networks. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 894–905.

Hu, H., Lee, D. L., and Xu, J. (2006b). Fast nearest neighbor search on road networks. In
Proceedings of the International Conference on Extending Database Technology (EDBT), pages 186–
203.

Jensen, C. S., Kolářvr, J., Pedersen, T. B., and Timko, I. (2003). Nearest neighbor queries in
road networks. In Proceedings of the ACM International Symposium on Advances in Geographic
Information Systems (ACM GIS), pages 1–8.

Kolahdouzan, M. and Shahabi, C. (2004). Voronoi-based k nearest neighbor search for spa-
tial network databases. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 840–851.

Kung, R.-M., Hanson, E., Ioannidis, Y., Sellis, T., Shapiro, L., and Stonebraker, M. (1986).
Heuristic search in data base systems. In Proceedings of the International Workshop on Expert
Database Systems, pages 537–548.

Lee, K. C. K., Lee, W.-C., and Zheng, B. (2009). Fast object search on road networks. In Pro-
ceedings of the International Conference on Extending Database Technology: Advances in Database
Technology (EDBT), pages 1018–1029.

Li, Z., Lee, K. C. K., Zheng, B., Lee, W.-C., Lee, D., and Wang, X. (2010). IR-tree: an efficient
index for geographic document search. IEEE Transactions on Knowledge and Data Engineering,
1:1–13.

Manning, C. D., Prabhakar, R., and Hinrich, S. (2008). Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984). The grid file: an adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems, 9(1):38–71.

OpenStreetMap contributors (2011). Data primitives - OpenStreetMap wiki. Available at http:
//wiki.openstreetmap.org/wiki/Data_Primitives. Accessed 1 June 2011.

Papadias, D., Kalnis, P., Zhang, J., and Tao, Y. (2001). Efficient OLAP operations in spatial data
warehouses. In Proceedings of the International Symposium on Advances in Spatial and Temporal
Databases (SSTD), pages 443–459.

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y. (2003). Query processing in spatial network
databases. In Proceedings of the International Conference of Very Large Data Bases (VLDB), pages
802–813.

Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., and Nørvåg, K. (2011). Efficient processing of
top-k spatial keyword queries. In Proceedings of the International Symposium on Spatial and
Temporal Databases (SSTD) (to appear).

http://wiki.openstreetmap.org/wiki/Data_Primitives
http://wiki.openstreetmap.org/wiki/Data_Primitives

REFERENCES 67

Roussopoulos, N., Kelley, S., and Vincent, F. (1995). Nearest neighbor queries. Proceedings of the
International Conference on Management of Data (SIGMOD), pages 71–79.

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing Sur-
veys, 16(2):187–260.

Samet, H. (1995). Spatial data structures, pages 361–385. ACM Press/Addison-Wesley.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-tree: a dynamic index for multi-
dimensional objects. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 507–518.

Shahabi, C., Kolahdouzan, M. R., and Sharifzadeh, M. (2002). A road network embedding
technique for k-nearest neighbor search in moving object databases. In Proceedings of the
ACM International Symposium on Advances in Geographic Information Systems (ACM GIS), pages
94–100.

Shaw, K., Ioup, E., Sample, J., Abdelguerfi, M., and Tabone, O. (2007). Efficient approximation
of spatial network queries using the M-tree with road network embedding. In Proceedings
of the International Conference on Scientific and Statistical Database Management (SSDBM), pages
11–11.

Shekhar, S. and Liu, D.-R. (1997). CCAM: a connectivity-clustered access method for networks
and network computations. IEEE Transactions on Knowledge and Data Engineering, 9(1):102–
119.

Yiu, M. L. and Mamoulis, N. (2004). Clustering objects on a spatial network. In Proceedings of
the International Conference on Management of Data (SIGMOD), pages 443–454.

Zhang, D., Chee, Y. M., Mondal, A., Tung, A. K. H., and Kitsuregawa, M. (2009). Keyword
search in spatial databases: towards searching by document. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 688–699.

Zhou, Y., Xie, X., Wang, C., Gong, Y., and Ma, W.-Y. (2005). Hybrid index structures for location-
based web search. In Proceedings of the ACM International Conference on Information and Knowl-
edge Management (CIKM), pages 155–162.

Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys,
38(2).

Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for
text indexing. ACM Transactions on Database Systems, 23(4):453–490.

68 REFERENCES

	Title Page
	Introduction
	Background and Related Work
	Spatial databases
	Spatial network databases
	Information retrieval

	Preliminaries
	Road network properties
	Processing spatial keyword queries on road networks
	Frameworks for spatial query processing

	Baseline Approach
	Basic keyword-based road network architecture
	Query processing

	Road Network Indexing
	Advanced keyword-based road network architecture
	Query processing

	OpenStreetMap
	Data available from OpenStreetMap
	Extracting data

	Experimental Evaluation
	Datasets
	Experimental setup and parameters
	First set of experiments: varying number of results
	Second set of experiments: varying number of keywords

	Conclusions
	References

