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Abstract

This thesis has evaluated the use of the computationally expensive maximum-
likelihood (ML) method coupled with an evolutionary algorithm (EA) for
the problem of inferring evolutionary relationships among species (phylo-
genies) from molecular data. ML methods allow using all the information
from molecular data, such as DNA sequences, and have several beneficial
properties compared to other methods. Evolutionary algorithms is a class
of optimization algorithms that often perform well in complex fitness land-
scapes. EAs are also proclaimed to be easy to parallelize, an aspect that is
increasingly more important.

A parallel EA system has been implemented and tested on a cluster for
the task of phylogeny inference. The system shows promising results and
is able to utilize processors of a massively parallel system in a transparent
manner.
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Chapter 1

Introduction

Phylogenetics is the science of determining the evolutionary relationships
among organisms. Knowledge about these relationships is central to our un-
derstanding of how life has developed. The evolutionary history of a species
or a set of species is called a phylogeny and is usually visualized as a phylo-
genetic tree. These trees represent hypotheses for the evolutionary history
and can help us understand the history of mutations and aid in the under-
standing of biological processes [14]. Phylogenetic trees are classified based
on whether they are rooted or not and whether they are bifurcating (each an-
cestor spawns two lineages) or multi-furcating (an ancestor can spawn more
than two lineages). Fig. 1.1 shows the three possible rooted, bifurcating
trees describing the evolutionary relationship among three species. Phylo-
genetic trees are used to trace the evolution on the level of taxa, species or
individual genes.

Phylogenetic inference is the problem of reconstructing a phylogeny from
a set of data – usually molecular data such as DNA sequences. The problem
of reconstructing the optimal phylogeny from a data set is an NP-complete
problem [23]. Exact techniques for inferring the most likely tree exist, but

.

.Tiger .Lion .Wolf .Tiger .Lion .Wolf .Lion .Tiger .Wolf

Fig. 1.1: There are three possible rooted, bifurcating trees for a phylogeny of three
species. This follows intuitively from the fact that two of the species necessarily
must be more closely related to each other than to the third species.
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are computationally infeasible even for trees of 30–40 species [6] due to the
enormous number of possible trees. Heuristic search algorithms are therefore
often applied to find an approximation to the most likely phylogenetic tree
[6, 23, 25, 27].

Evolutionary algorithms (EAs) is a class of heuristic optimization algo-
rithms. These algorithms are computational systems inspired by biological
evolution in which candidate solutions are artificially “evolved” and features
from the best solutions have higher probability of “surviving” from one gen-
eration to the next. Earlier research has produced some encouraging – albeit
preliminary – results [23, 6].

Due to the way computations in an EA are localized and independent of
other parts of the system, EAs lend themselves easily to parallel computing.
This aspect has become increasingly more important as power consumption
and heat generation from processors has led to parallel computing becoming
the dominant computation paradigm in recent years [2]. Even consumer
computers today have multiple processor cores, and it is common to use
so-called clusters of interlinked computers to perform resource-demanding
calculations.

This thesis aims to evaluate the use of EAs for inferring phylogenies from
molecular data. To evaluate the likelihood of a tree a maximum likelihood
(ML) approach is used. Using ML to evaluate a tree’s likelihood is computa-
tionally very expensive compared to other methods, but has several beneficial
statistical properties that become even more important as the amount of data
grows. As the computational barriers to maximum likelihood estimation has
been removed by faster computers, most of the focus of statistical methods
for phylogeny inference has been shifted to concentrate on likelihood meth-
ods [10].

A high-level overview of the process of phylogeny inference with the EA
system is shown in Fig. 1.2 on the next page. DNA sequences from the
species we want to infer a phylogeny for is first aligned. Alignment is a
process where insertions and deletions – called frame shift mutations – in
sequences are accounted for so that homologous parts of the sequences “line
up”. These aligned sequences are then used as input to the EA system which
outputs one or more trees that are hypotheses for the true tree. To find good
trees, the EA uses an iterative process where different trees are generated
and evaluated (“EA cycle”). A parallel EA system has been implemented as
part of this thesis.

The goal of this thesis is to evaluate the use of EAs to infer
phylogenies. This will be viewed in light of the computational
resources needed and the results produced. Both the results and

2



Fig. 1.2: Overview of the process of phylogenetic inference using an EA. In the
first step, the DNA sequences are aligned. These aligned sequences are then used
as the data in the leaf nodes of a set of randomly generated trees. The likelihood
of these trees given the data are then calculated and these likelihoods are used as
the fitness values for trees in the iterative “EA cycle”. After a given number of
generations, the best tree found is then taken to be an approximation to the most
likely phylogenetic tree for the species being looked at.
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the computational resources used will be compared to conventional
software used in the field today. The issue of parallel computing
will be given extra weight and the EA system should be able to
utilize a parallel computer system.

This thesis is structured in the following manner:

• This introduction is meant to serve as a 10, 000-metre view of the prob-
lem area and hopefully make it easier for the reader to see the whole
picture as each part is more thoroughly explained in the following chap-
ters.

• The background chapter presents the background information on the
concepts and the biology and genetics knowledge needed to understand
the research area.

• The third chapter gives a detailed explanation of the calculation of
likelihood for a phylogenetic tree given molecular data. This likelihood
value is used as a tree’s fitness in the EA system.

• Chapter four and five then show the implementation and the results of
using this to infer trees for real-life data sets.

• The last chapter summarizes the results of testing the system and lists
further work that should be done within this area. The merits of using
EA for phylogenetic inference is discussed.

4



Chapter 2

Background

This chapter aims to provide the reader with the background knowledge
needed to understand how phylogenetic inference is done. A brief introduc-
tion to the biology of phylogenetics is given and evolutionary algorithms are
explained. A short explanation of the maximum-likelihood method used is
also included, along with a brief overview of file formats used in this field.
The chapter ends with a look at parallel software and related work done in
this field.

2.1 Phylogenetics
A phylogeny is a reconstructed evolutionary history for a collection of organ-
isms and is usually presented in the form of a tree. The study of evolutionary
relatedness among a set of entities is called phylogenetics. In biology this is
usually among different species or between groups of related species, but phy-
logenetic analysis is also used in other areas such as natural language studies
in which case the entities looked at will be human languages [4].

In molecular phylogenetics, molecular data – such as DNA or RNA se-
quences – is used to infer the evolutionary relationship between species.

2.1.1 Genetic Code
The genomes of all living organisms except for most viruses are coded with
DNA. DNA is made up of long chains of nucleotides – molecules consisting of
a nitrogenous base, a five-carbon sugar, and one to three phosphate groups.
Each nucleotide has one of four possible bases and it is the sequence of these
bases in the nucleotides along the DNA molecule that encodes the genetic
information. Each position along the DNA strands that holds a nucleotide

5



Fig. 2.1: Double stranded DNA. A bonds with T and C bonds with G. Here
eight sites are shown.

is referred to as a site.
The four bases found in the nucleotides in DNA are adenine (A), cytosine

(C), guanine (G) and thymine (T). These will simply be referred to by their
initial letters when there is no risk of confusion. These bases are divided
into two groups: Adenine and guanine are compounds called purines, while
cytosine and thymine are pyrimidines. The genetic code is thus a quaternary
(4-ary) code written in the “alphabet” 〈A,C,G, T 〉. This is also true for
viruses with RNA genomes except that in their genomes uracil (U) occur
instead of thymine.

DNA molecules consist of two chains joined by hydrogen bonds between
pairs of bases. A bonds with T and C bonds with G in a double helix, as
illustrated in Fig. 2.1. Since bases form pairs in this way, the two strands are
complementary – it is enough to know the sequence of one strand. We refer
to connected nucleotides as base pairs.

The DNA in cells are organized in physical structures called chromosomes
in the cell nucleus. The full DNA sequence of an organism (all DNA in all its
chromosomes) is called its genome. All animal cells (in fact all aerobic eu-
karyotic cells) also contain a mitochondrial1 genome. This is a much smaller
DNA genome that is inherited only through the maternal line [33].

As an example, the human genome is around 3 billion DNA base pairs
[32], while the human, mitochondrial genome consists of around 16,000 base
pairs [33].

“Reading” the DNA from a cell is called sequencing and the resulting data
is commonly referred to as sequence data. There has been rapid advances in
sequencing technology the last decades which has led to an explosion in the
amount of available sequence data [28].

1Plant cells have a chloroplast genome.
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Fig. 2.2: An insertion of an extra nucleotide leads to the loss of the one-to-one
correspondence between the sites of the two sequences. A deletion would have the
same consequence.

CTATCGC---TCATTGATCCAAAAATTT--GATCAAC
ACATCAC---TTATTGATCCAATAATTTTTGATCAAC
CTACCACATTTAATTGATCCAATGACTT--GACCAAC
CTACCACATTTAATTGATCCAATGACTT--GACCAAC

Fig. 2.3: Aligned DNA sequences with gaps at sites 8–10 and 29–30.

2.1.2 Alignment
Genetic variation is created by several processes. The ultimate source of
variation is mutation: changes to the genetic material that are heritable.
Another important process is recombination which happens when strings of
DNA are broken off and joined to another part of the genome. This happens
during the formation of sex cells in animals and plants2 [16]. An insertion or
deletion of a base in one of two identical sequences will shift all the following
bases one site to the right (insertion) or left (deletion). This small change
will thus destroy the 1 : 1 agreement between the bases at corresponding
sites. This concept is illustrated in Fig. 2.2 If one were to directly perform
phylogenetic inference on these sequences they would appear to have diverged
much more than is reality.

These problems are remedied by inserting gaps in the sequences in order
to find the most likely alignment of related sequences. This process is called
sequence alignment and aims to find the most likely alignment among two
or more sequences. Fig. 2.3 shows four sequences that have been aligned
by inserting gaps (shown as dashes). Sequence alignment is usually done by
software that use probabilistic methods to find the most likely alignment.

One widely used software package for alignment of multiple sequences is
2It also happens in other organisms. Recombination also sometimes happen during

mitosis – when a cell divides itself in half to make two identical copies.
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Clustal which is available both as a standalone program and as a free web
service at the European Bioinformatics Institute [5].

2.1.3 Phylogenetic Trees
A phylogenetic tree is a tree showing the evolutionary relationships between
different species or other entities based on similarities with respect to some
characteristics. In molecular phylogenetics these characteristics are often
DNA or RNA sequences.

Phylogenies are usually presented in the form of a tree because vertical
evolution (parents passing on their genetic material to their offspring) is the
primary mechanism of inheritance [29]. It is not the only mechanism, how-
ever: there is also horizontal transfer of genetic material by means such as
horizontal gene transfer between bacteria and some other taxa. A phyloge-
netic tree is thus only a pragmatic approximation to the real history [29].

Two closely related species – i.e. species that recently split off from
their most recent common ancestor (MRCA) – will have accumulated fewer
changes between them and their MRCA, and their genomes will have rela-
tively few differences. As the time between them and their MRCA increases,
these differences will increase as the two lineages are evolving independently.
This principle is used to identify the tree that has the highest likelihood. A
good phylogenetic tree needs to account for the amount of changes between
the species in the leaf nodes and their ancestors. Two DNA sequences that
are very similar will probably share a common ancestor that is relatively
close (in time).

It is easy to realize that all living species will be leaf nodes in any phy-
logenetic tree – they cannot be any species’ ancestors since they still exist.
We only ever observe the DNA of these leaf nodes of the “tree of life”, since
DNA degrades quickly in nature. Internal nodes in the tree are therefore
hypothetical ancestors of our “leaf node species”. Other lines of evidence (e.g.
fossils), when they exist, can be used to evaluate our hypotheses.

The theory of universal common ancestry posits that all living organisms
on Earth share a common ancestor. This theory is widely accepted [37] and
would mean that all organisms are part of one gigantic tree of life.

Rooted vs Unrooted Trees

A phylogenetic tree can be rooted or unrooted. In a rooted tree there is a
unique node corresponding to the most recent common ancestor of all the
species in the leaf nodes. In an unrooted tree no assumption is made about
ancestry and only the relatedness of the leaf nodes is found. Fig. 2.4 shows

8
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Fig. 2.4: An unrooted (a) and a rooted tree (b). The rooted tree is created from
(a) by placing the root along the branch connecting node 3 to the tree (highlighted
in red).

an example of an unrooted and one of the possible rooted trees that is found
by placing the root along a branch in the unrooted tree.

Most methods for inferring phylogenies infer unrooted trees. Two com-
monly used methods of rooting an unrooted tree are [10, 19]:

1. By using an out-group – a group that is known to be quite closely related
to the species under study, but not as closely as the other species are to
each other. This helps since we then know that the out-group branched
from the root before the other species branched from each other.

2. By using the molecular clock hypothesis. This hypothesis posits that
the average rate of evolution can be uniform throughout long periods
of evolutionary time [16]. This means that the root should be chosen to
make the amount of change down to all leaf nodes relatively uniform.

How Many Trees are There?

The number of possible bifurcating trees grows quickly as the number of
species considered increases. For n species there are (2n− 3)!/ (2n−2 (n− 2)!)
possible rooted tree topologies [16]. For 10 species the number of possible
rooted trees is 34, 459, 425, and for 20 species it is 8.2× 1021.

9



2.1.4 Phylogenetic Inference
Phylogenetic inference is the problem of finding the tree that best represents
the evolutionary history of a set of species, given data about the species.
Molecular phylogenetics has become increasingly feasible as advances in se-
quencing techniques has led to an accelerating growth of available genetic
data.

Exact techniques for doing phylogenetic inference exist, but are compu-
tationally infeasible even for trees of 30–40 organisms [6]. This is due to the
enormous number of possible trees.

There are numerous methods for constructing phylogenetic trees from
molecular data. They can be classified into parsimony methods, distance
methods, and likelihood methods [10]. Parsimony methods assume that base
changes are unlikely events and tries to find the trees that minimize changes.
Distance methods pre-process the data and make a distance matrix with
pairwise distances between sequences and then only use these distances to
come up with a tree. Finally, likelihood methods try to make use of the full
sequence data by formulating a probabilistic model of evolution and using
statistical methods such as maximum likelihood estimation.

Parsimony Methods

Parsimony methods seek to find the tree that minimize the required changes
between states (bases) per site – with the underlying assumption that the tree
with the fewest changes is the most likely. This method thus assumes that
such mutations are unlikely events. Given a tree we can count the changes
by looking at one site at the time and assign each possible base (A, C, G,
and T ) to the root node and see how many changes are required down the
tree given the observed data. In Fig. 2.5 on the next page this is done for
a simple tree of five species. If we assume that the root node has state C,
the 3 changes shown are required to explain the observed data. By doing
the same for A, G, and T , too, it is found that 3 is the minimum amount of
state changes.3

Parsimony methods are computationally efficient and work very well if
the amount of change over the time period considered is small. However, if
different lineages have sufficiently unequal amounts of change, it has been
shown that these methods can be inconsistent, converging to a wrong tree
as more sequences are considered [8]. One common problem with parsimony
methods is long branch attraction. This happens when two lineages end up
with the same state change for a site. The probability of this increases as

3Assuming A, G, or T for the root gives 4 changes in all three cases.
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.[G] .[C] .[A] .[T ] .[C]

Fig. 2.5: A tree for five species showing their state at one site. The minimum
amount of changes needed to explain this tree is three. The branches marked with
a horizontal bar show where these changes could have taken place when we have
observed the state C at the root.

branches get longer. Parsimony will erroneously consider these two changes
as one change in their most recent common ancestor [10].

Distance Methods

Distance methods start by reducing the data to a distance matrix, a two-
dimensional matrix of distances between each pair of species. The values Mij

thus represents the evolutionary distance between i and j [6]. These distances
can be thought of as the branch length separating each pair of species. Only
the data in this distance matrix is then used to infer a tree – with methods
such as least square minimization. This excludes all information from higher-
order combination of states. This principle seems as if it would not work very
well, but computer simulations have shown that the amount of information
that is lost by working only with pairwise distances is small [10]. It has been
shown, however, that clustering methods based on pairwise distances can
sometimes give inconsistent estimates if the rates of evolution are unequal in
different lineages [8].

Maximum Likelihood

A maximum likelihood (ML) approach to phylogenetic inference tries to use
all of the available sequence data. This is done by constructing a probabilistic
model of evolution and then use the statistical method of maximum likelihood
to assign a likelihood to a tree. This method requires more computation than

11
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Fig. 2.6: Along a branch of length 0.25 for four bases, the expected number of
changes is one. Along a branch of length 0.5, two of the four bases are expected
to have changed. (Changes in bases compared to the ancestor are in bold letters.)

parsimony and distance methods, but have several desirable properties. ML
maximization will converge to the correct parameter values and the smallest
possible variance around these values as the amount of data grows [10]. A
brief explanation of Maximum Likelihood is given in Section 2.3 on page 21.

2.1.5 Probabilistic Models of Evolution
In order to use a maximum likelihood approach, we need a model of DNA
evolution. Such a model is a statistical description of the process of substi-
tution in nucleotide sequences and can tell us the expected frequency of the
different bases at equilibrium and the probability of a specific base change
over a branch of length t:

P (j | i, t) , (2.1)

i.e. the probability of seeing base j at the end of a branch of length t given
that the start of the branch has base i.

Complex models do a better job of approximating the biological processes
but at the expense of more parameters that must be estimated and higher
computational requirements [29].

Instead of measuring branch lengths in (millions of) years, they are de-
fined to be the expected nucleotide substitutions per site. This means that if
we have a branch of length 0.5 between an ancestor and a descendant, we
expect half the sites to have undergone changes. An idealized example where
the expected number of changes is equal to the actual number of changes is
shown in Fig. 2.6 .

There are several models of nucleotide evolution in use, The Jukes-Cantor
model is very simple but still widely used, while the Kimura model takes into
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Fig. 2.7: Transitions (solid arrows) vs transversions (dotted arrows). The prob-
abilities of a state change in Kimura’s two-parameter model are α for transitions
and β for transversions.

account that not all changes are equally probable.

Jukes-Cantor

The Jukes-Cantor model uses a uniform probability of a base changing into
any other base. The likelihood of changing from one base to another is simply
u/3 where u is the overall rate of change [10]. This model is in most cases too
simple. There is usually a significant difference between transitions, which
are changes from one purine or pyrimidine to another of the same group (e.g.
A ↔ G), and transversions, which are changes from a purine to a pyrimidine
or vice versa (e.g. A ↔ C). The ratio of transitions to transversions can be
as high as 10 for some mitochondrial DNAs [10].

Kimura’s Two-Parameter Model

Kimura’s two-parameter model (often called Kimura80 or simply K80 after
the year it was published) is a slightly more advanced model that takes into
account that the rates of change may vary between transitions and transver-
sions. The rate of transitions is denoted α and the rate of transversions is
denoted β. This model is illustrated in Fig. 2.7 . (Note that the Jukes-Cantor
model is simply a special case of Kimura’s model where α = β.) From any
nucleotide there is one change that causes a transition (e.g. A → G) and
two changes that cause a transversion (e.g. A → C, A → T ). The ratio of
transitions to transversions, denoted R, is thus R = α/2β.

Since we have two possible transversions, each with probability β, and one
possible transition with probability α from any base (again, see Fig. 2.7 ), we
get α+2β = 1 since we have defined branch lengths in expected substitutions
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per site. This gives us the following rates for transitions and transversions:

α =
R

R + 1

β =
1

2
× 1

R + 1

since those values guarantee us that(
R

R + 1

)
︸ ︷︷ ︸

α

+ 2

(
1

2
× 1

R + 1

)
︸ ︷︷ ︸

β

= 1

which is required for the transition/transversion ration to be R and the total
rate of change to be 1.

For a branch of length t we then get the following probabilities that a
transition or a transversion, respectively, has occurred:

P (transition | t) =
1

4
− 1

2
exp

(
−2R + 1

R + 1

)
+

1

4
exp

(
− 2

R + 1
t

)
P (transversion | t) =

1

2
− 1

2
exp

(
− 2

R + 1
t

)
It is important to note that these equations represent the probability that
there is a “net” transition or transversion along a branch of length t – there
may in fact have been multiple changes between the start and end. The
sequence of changes A → G → T thus counts as one change, from A to T .
The probability of no change is

P (neither | t) = 1− P (transition | t)− P (transversion | t)

=
1

4
+

1

4
exp

(
− 2

R + 1
t

)
+

1

2
exp

(
−2R− 1

R + 1
t

)
.

2.2 Evolutionary Algorithms
Evolutionary algorithms (EAs) is a class of heuristic optimization algorithms,
i.e. methods that iteratively try to improve a set of candidate solutions ac-
cording to some given criteria. EAs are inspired by the principles of evo-
lution through natural selection and molecular genetics. As other heuristic
approaches, an EA does not guarantee that an optimal solution is ever found,
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but EAs are often used successfully to search large, unpredictable problem
spaces partly because they make very few assumptions about the problem
being optimized [11].

It should be noted that these artificial evolution methods are not intrin-
sically better for studying biological evolution than other heuristic optimiza-
tion methods – it is simply a good way to generate solutions to optimization
problems. In Joseph Felsenstein’s words [10]:

Genetic algorithms are not inherently more suited to analysis of
genetics and evolution than they are to design of bridges.

A criticism against artificial evolution is that it contains elements of ran-
domness and lacks formal proofs of convergence as other model-based, opti-
mization techniques does [11]. When presented with a good result, it can be
difficult to reason about how the result was achieved.

2.2.1 Artificial Evolution
Biological evolution is an open-ended process without a predefined goal. In
evolutionary algorithms, however, the evolution is guided by defining a func-
tion that assigns a “fitness value” to an “individual” (a solution) which rep-
resents its ability to solve the problem at hand. The selection in an EA is
thus artificial in contrast to the natural selection in Darwinian evolution.

Evolutionary Algorithms works by mimicking biological evolution and
“evolve” increasingly better solutions to optimization problems. This artifi-
cial evolution is based on the same pillars as natural evolution: (1) Mainte-
nance of a population, (2) creation of diversity among the individuals, (3) a
selection mechanism, and (4) genetic inheritance [11]. EAs thus “evolve” can-
didate solutions by using analogues to the biological processes of mutation,
recombination, and selection.

Each candidate solution is treated as an individual in an iterative “EA
cycle” where they are first evaluated by a fitness function before the best
individuals – as decided by a selection operator – are allowed to contribute
offspring to the next generation. The offspring are generated by a recombi-
nation operator which combines the genomes of two individuals to generate
offspring. The genomes of the children are then mutated by a mutation op-
erator with a probability given by a mutation rate which is usually fixed. An
illustration of the main steps in such a typical EA is shown in Fig. 2.8 on
the following page.

There are several types of EAs. The main difference is in their choice of
genetic representations and operators. In this thesis we are mainly concerned
with the most common type of EAs, genetic algorithms.
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Fig. 2.8: Overview of an evolutionary algorithm. The process is usually run either
until a predefined number of generations have been generated or until a solution
is found which fulfils a predefined criteria.
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2.2.2 Genetic Algorithms
Genetic algorithms (GAs) simulate genetic systems by evolving a population
of “genomes” whose fitness is evaluated for each generation. The individuals
with the highest fitness have a higher probability of being selected to create
offspring for a new generation. When producing the next generation, two and
two genomes are recombined to produce offspring until the population of the
next generation has become the same size as the current generation. The
recombination that is done in genetic algorithms means that good portions
of different solutions can be combined. This sets them apart from other
heuristic search algorithms [23].

The genotype is a string of symbols from a finite alphabet. To calculate
the fitness of an individual this data is translated into a phenotype which is
then evaluated by the fitness function. The genotype–phenotype mapping
can be as simple or complex as the designer of the EA system wants it to
be. An important feature of any EA is that properties of the parents should
– with a high likelihood – be conserved when producing offspring [26]. This
means that a great amount of consideration needs to go into the design of
the recombination operator.

Two important concepts for a genetic algorithm is locality and heritabil-
ity. A genotype–phenotype mapping exhibits locality if small changes in the
genotype lead to small changes in the phenotype. This is important for any
genetic algorithm to succeed. If a small change in the genotype leads to a
disproportionate change in the corresponding phenotype the GA will not be
able to find optima by small adjustments as these changes will tend to move
the phenotype too far away.

The mutation and recombination performed on the genome in a genetic
algorithm is done by genetic operators. These operators are applied with a
given probability for each generation.

The mutation operator is applied to individual genomes and usually
results in a small component being changed [7]. The mutation rate pm,
0 ≤ pm ≤ 1 is the probability of a mutation occurring. This probability can
be on the “gene” level, meaning that pm is the probability that each position
of the genome is changed, or at the genome level. If defined at the genome
level, pm represents the probability of some change occurring to the genome.
This change is then done by the mutation operator which will make a (ran-
dom) change to the genome. The mutation rate is usually quite low – often
as low as 0.001 when operating on the gene level of long genomes [26].

The recombination operator (or crossover operator) is applied to pairs of
genomes and results in one or more new genotypes that is a combination of
the two “parent” genotypes. The recombination probability is traditionally
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Parent 1 Offspring 1
Offspring 2Parent 2

Fig. 2.9: One way to do recombination in a genetic algorithm. A random “re-
combination point” is chosen where the parents’ genomes are cut. The resulting
offspring inherits parts of each parent’s genome.

denoted pc and is used to determine whether the offspring of two parent
genotypes should be produced by recombination or by directly copying the
genotypes to the next generation. Three common recombination schemes
are [7, 11]:

n-point crossover Finding n points along the length of the genomes where
they are cut. An offspring receives alternating parts of the parents’
genomes. Single-point (n = 1) crossover is illustrated in Fig. 2.9 .

Cut and splice The parent genomes are cut at a random location (not
necessarily the same location) and the parts are then combined to gen-
erate offspring. The resulting genomes will in most cases have different
lengths.

Uniform crossover The genetic content is exchanged at n randomly chosen
positions.

The selection operator is responsible for selecting an individual from the
population given their fitness values. A good individual should have a better
probability of being selected than a poor individual, but the magnitude of
this difference varies among different selection strategies. Selection strategies
can be global or local. With a global selection strategy each individual is
assigned a fitness and the individual competes with all other individuals,
while in local selection strategies subgroups of the population compete among
themselves [7]. Examples of global selection strategies are

• fitness-proportionate selection where an individual’s probability of be-
ing selected is directly proportionate to its fitness;

• rank selection, where an individual’s fitness among n individuals is n
for the best individual, n− 1 for the second best, and so on;

• and Boltzmann selection where fitness scores are scaled in such a way
that selection pressure increases for each generation, making it less
likely that a low-scoring individual is selected [7].
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Fig. 2.10: Encoding this example tree into prefix notation yields the sequence
A,B, 0, C, 1, 2, 3.

A related concept is elitism. When using elitism, the n best individuals are
directly copied to the next generation without having to compete with others.
This ensures that the maximum fitness cannot decrease during an EA run
and that good solutions are never lost.

2.2.3 Representing Trees
Two common ways of coding the topology of a tree is prefix notation and
Prüfer numbers.

A prefix representation of a tree lists the nodes in the sequence they are
visited by a preorder traversal of the tree. Fig. 2.10 shows an example tree
with four leaf nodes and three internal nodes. A preorder traversal of this
tree would first visit the root, then traverse the left subtree followed by the
right subtree. Applying this recursively to the example tree in the figure,
and noting when nodes are visited, results in the sequence A,B, 0, C, 1, 2, 3.

To build a tree from a sequence we need to know the arity of each of the
nodes (i.e. how many child nodes are connected to them). In a bifurcating
phylogenetic tree all nodes have an arity of two except for leaf nodes which
are terminal nodes and thus have an arity of zero. By keeping a stack of
“missing arity” the tree can be built by adding each node as a child to the
previous node that has an available slot. For the example tree we would
start with the node A which is an internal node and therefore starts with an
arity of −2 (two missing children). Adding B as its left child means that its
arity is −1. This is pushed to the stack and we shift our focus to B which
is missing two children. Node 0 will fill one slot and C the next, giving B
an arity of zero. Adding nodes 1 and 2 gives C a zero arity. We then pop
values of the “arity stack” until we find the first non-zero value, which will
be −1 belonging to A. Adding node 3 fills the last slot and concludes the
tree building.

The Prüfer sequence (also referred to as Prüfer numbers) is a compact

19



..A

.B

.0

.C

.1 .2 .3
(a) B

..A

.B

.

.C

.1 .2 .3
(b) B,C

..A

.B

.

.C

. .2 .3
(c) B,C,C

..A

.B

.

.C

.3
(d) B,C,C,A

Fig. 2.11: The four first steps of encoding an example tree with seven nodes into
its Prüfer sequence representation. The last step (not shown) is removing A and
appending B to the sequence. The final Prüfer sequence, uniquely representing
this tree, is thus B,C,C,A,B.

encoding for trees. It allows a tree of n nodes to be uniquely represented by
a string of n− 2 node labels.

To come up with the Prüfer sequence for a tree there first has to be an
ordering of the node labels, e.g. 0, 1, 2, . . . , A,B,C, . . .. The next label in
the sequence is then found by removing the “smallest” label and appending
the node it is connected to to the sequence. For the example tree shown in
Fig. 2.11 the first step would be to remove node 0 and add B to the sequence.
The next nodes would be node 1 and node 2, which are connected to node C,
yielding the sequence B,C,C after three steps. Node 3 is then removed and
A added to the sequence before, in the last step, node A is removed and B
is appended to the Prüfer sequence. The two last nodes are not necessary to
include in the sequence. The final result is thus B,C,C,A,B.

To go from a Prüfer sequence to a tree one first has to find the degree of
each node. This is simply done by counting the occurrences of its label in
the sequence and adding one, giving node 0 degree 0 + 1 = 1, while node A
has degree 1 + 1 = 2. One can then do the reverse of the encoding process:
For each node in the sequence, add an edge from that node to the first node
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with degree 1 and reduce both nodes’ recorded degree. This is done until
you have only two nodes left which should be connected.

Several people have voiced concerns about the use of Prüfer numbers as a
genotype in genetic algorithms due to poor locality and heritability in many
cases, e.g. [31] and [12]. Rothlauf’s conclusion in a 2000 study of GAs using
Prüfer sequence encoding was that their performance for trees were poor [31].
In a 2001 study together with Gottlieb, Julstrom, and Raidl [12] where they
evolved spanning trees, the conclusion is even bolder:

Our conclusion is definite: Prüfer numbers cause poor perfor-
mance in evolutionary algorithms and should be avoided.

However, other researchers have used Prüfer sequences with good results. In
[17] Hassan et al. created a multi-objective evolutionary algorithm shown
to perform well compared to two established systems4. Hassan et al. con-
cluded that their proposed Prüfer sequence based method showed promise
and should be investigated further. They did not, however, explain what –
if anything – they did to avoid the problems outlined in [12].

2.3 Maximum Likelihood

Maximum Likelihood is a Bayesian learning method. Like other Bayesian
methods it is based on Bayes’ theorem, which provides a way to calculate the
posterior probability P (h | D) from (1) the prior probability of a hypothesis,
P (h); (2) the prior probability that the data D will be observed, P (D); and
(3) the probability of observing D given that h is true [26]:

P (h | D) =
P (D | h)P (h)

P (D)
(2.2)

The most probable hypothesis h from a set of candidate hypotheses H
given observed data D is called a maximum a posteri (MAP) hypothesis. To
find this hypothesis we can use Bayes theorem (Equation (2.2)) to calculate
the probability of each hypothesis given the observations and pick the most
likely candidate:

4dnapars and dnaml from the phylip package
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hMAP ≡ argmax
h∈H

P (h | D)

= argmax
h∈H

P (D | h)P (h)

P (D)
(Bayes theorem)

= argmax
h∈H

P (D | h)P (h) (1/P (D) is constant) (2.3)

If we further assume that each hypothesis in H has the same probability
of being true we can simplify Equation (2.3) to only look at P (D | h), i.e. the
likelihood of observing D given hypothesis h. The hypothesis that maximizes
this quantity is called the Maximum likelihood (ML) hypothesis, hML:

hML = argmax
h∈H

P (D | h)

This means that we make no assumptions of prior probabilities over the space
of hypotheses, meaning that no subjective evaluation of hypothesis priors is
done while it still provides a good approximation to MAP learning when the
data set is large [34].

It has been shown that ML estimates have several good properties includ-
ing converging to the correct value and having the smallest possible variance
as the amount of data grows large [10].

2.4 File Formats
To work with phylogenetic inference we need to represent trees and the se-
quence data (DNA) that belongs to the leaf nodes of these trees. Most file
formats in the field of bioinformatics are text-based and it is usually easy to
convert between different formats. Some common formats relevant for this
thesis are presented here.

2.4.1 Phylogenetic Trees
The most common file format for representing a phylogenetic tree is the
Newick format [10]. The Newick format describes trees with nested expres-
sions using parentheses. There has never been a formal specification, but
a description of the file format is available from the phylip page at the
Felsenstein/Kuhner lab web page5. In the Newick format each internal node

5http://evolution.genetics.washington.edu/phylip/newicktree.html. Accessed: 2011-
02-12. (Archived by WebCite at http://www.webcitation.org/5ycvWdsxO)
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Fig. 2.12: A tree represented in the Newick format. There are two parentheses
pairs corresponding to the two internal nodes: the root node – coloured in green,
and the subtree with leaves C and D, coloured in red.

– including the root – is represented by a pair of parentheses enclosing the
subtrees that are immediately descended from that internal node. Leaf nodes
are named, and after both leaf nodes and internal branch points an optional
branch length can be specified (separated by a colon character). A tree with
a root and two children, A and B, with no branch lengths, would thus be
represented in the Newick format as (A,B); – the semicolon functions as an
end marker.

The example tree shown in Fig. 2.12 will be represented as

(A : 1, B : 2, (C : 4, D : 5) : 3);

in the Newick format. The node labels are A–D and all branch lengths are
specified. For example, the “C,D” subtree is connected by a branch of length
3.

While Newick has remained the de facto standard for many years, sev-
eral new XML-based file formats have appeared. One promising XML-based
format for phylogenetic trees is PhyloXML as described in [15].

2.4.2 Sequence Data
Representing DNA sequence data is easy: simply list the observed base at
each site, i.e. A, C, G, or T . However, there is often uncertainty in the
data from DNA sequencing and the file formats allow for uncertainty in the
sequences by using a wider range of symbols. These symbols allow a site to
be marked as containing a purine (A or G), a pyrimidine (C or T ), a base
that is “not A” and so on. Most file formats for sequence data are text-based
and it is usually easy to convert between them [14].

23



> Species1
ACGTGGA--CGGATTGCATCGTGATTGCFFTAACGTA
AATCTCATTCTATCACACATCATTTACTTTCATTTTT
> Species2
AGAGATTGCAAGAATGCATCGTACCCAATGCATCGTA
CATTCTATTATTATTATTATCACAGGAGGATTACTAG

Fig. 2.13: An example Fasta file with two sequences.

2 74
Species1 ACGTGGA--C GGATTGCATC GTGATTGCFF
Species2 AGAGATTGCA AGAATGCATC GTACCCAATG

TAACGTAAAT CTCATTCTAT CACACATCAT
CATCGTACAT TCTATTATTA TTATTATCAC

TTACTTTCAT TTTT
AGGAGGATTA CTAG

Fig. 2.14: An example interleaved phylip file with two sequences.

A simple format in common use is the Fasta format from a software
package of the same name. This is a text-based format for representing
either nucleotide sequences or amino acid sequences [14]. Bases (or amino
acids) are represented using single-letter codes. The sequences can be named.
A description of the Fasta format is available from the National Center
for Biotechnology Information at http://www.ncbi.nlm.nih.gov/BLAST/
fasta.shtml6. An example of a fasta is shown in Fig. 2.13 .

The Phylip format is another widely used format from a free package
of programs with the same name. The format is documented at http://
evolution.genetics.washington.edu/phylip/doc/sequence.html7. Phylip
files usually list sequences interleaved. This is illustrated in Fig. 2.14 which
shows two sequences split up in alternating lines. The first line specifies the
number of sequences and their length.

6Accessed: 2011-05-13. (Archived at http://www.webcitation.org/5ycwAOEt1)
7Accessed: 2011-05-13. (Archived at http://www.webcitation.org/5yySI0n5J)
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2.5 Parallel Execution
The terms parallel and concurrent are often synonymous, but in computer
programs they describe different concepts. The following definition of a par-
allel program is due to Simon Marlow [24]:

A parallel program is one that uses a multiplicity of computational
hardware (e.g. multiple processor cores) in order to perform com-
putation more quickly. Different parts of the computation are
delegated to different processors that execute at the same time
(in parallel ), so that results may be delivered earlier than if the
computation had been performed sequentially.

This is contrasted with concurrency, which is a technique of building pro-
grams to have multiple threads of control. Such a program can be executed
on several processors, meaning that the effects of the threads will be inter-
leaved; or on a single processor, where only one thread will be running at
any given time.

Evolutionary algorithms lend themselves easily to parallel computing [10].
In a typical genetic algorithm with a simple genome, mutation and recom-
bination are cheap operations while fitness evaluation requires much more
computation. Given that fitness evaluation of an individual is independent
of other individuals, these computations can be distributed among several
computers and computed in parallel [18]. Fig. 2.15 on the next page shows a
master/slave setup where a master node passes the genomes to several slave
nodes for fitness evaluation.

2.6 Related Work
Evolutionary algorithms have been used for phylogenetic inference at least
since 1996 when Hideo Matsuda [25] used a genetic algorithm for phylogenetic
inference based on amino acid sequences. He concluded that this approach
produced results comparable to the conventional tree construction methods
in use. The GAML program written in 1998 by Paul O. Lewis was inspired by
Matsuda. An overview of GAML is presented in the following section. Another
modern implementation of a genetic algorithm for phylogenetic inference
published by Cotta & Moscato in 2002 is also reviewed.

2.6.1 GAML (1998)
GAML (genetic algorithm for maximum likelihood phylogeny inference) [23]
is a program written by Paul O. Lewis in 1998. The program uses the
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Fig. 2.15: The EA master node can distribute the genomes to other machines for
evaluation. The slave nodes read a genome and return a fitness value.
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maximum likelihood criterion for evaluating trees and implements the HKY
substitution model – an extension of the Kimura model that allow different
prior probabilities for the four possible bases.

In GAML, both tree topologies, branch lengths, and the value for the tran-
sition/transversion ratio parameter for the HKY model are evolved. By
evolving branch lengths as a part of each tree, GAML does not need to opti-
mize branch lengths as part of the fitness evaluation. The author states that
considerable time is saved in this step over other methods.

Lewis ran GAML on a 55-taxon data set until no improvement was seen for
2000 generations. This was done three times and the trees were compared
with another heuristic search done by PAUP* 4.0 – a widely used program
for phylogenetic inference. One of the three runs produced the same tree as
found by PAUP*, the other two had only slightly worse likelihood. GAML used
between 11.3–16.3 hours while PAUP* used 783.2 hours. Further optimizing
branch lengths on the trees produced by GAML had little effect on the trees’
likelihoods.

Lewis concludes that using genetic algorithms for phylogeny inference
holds much promise. He also highlights the fact that GAs are easy to paral-
lelize as an advantage of this method:

Genetic algorithms (and especially parallel implementations of
GAs) offer the potential for inferring maximum-likelihood trees
for large data sets involving hundreds of sequences.

2.6.2 Cotta & Moscato (2002)
Cotta and Moscato [6] tested various EA methods for phylogeny inference.
They used a distance based approach where only a matrix with pairwise
distances is used, as explained in Section 2.1.4 on page 11.

To evaluate a tree they build an inferred distance matrix M̂ from their
tree and compare this to the observed distance matrix M that was built from
the genetic data. They measure the quality of a tree by constraining edge
weights to M̂ij ≥ Mij then compare the total weight of the tree with the sum
of distances in Mij. The best tree is thus the tree that minimizes this sum
of edge weights under this constraint.

One EA using the direct approach and two decoder-based EAs were im-
plemented and compared. They found that the direct encoding performed
better than decoder-based EAs for a small problem set (20 species) but that
it did not scale well with problem size. For a larger problem set (34 species)
an indirect approach had the best performance and needed less computa-
tion than other methods. The decoder they used was “greedy”: it assessed
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the quality of the tree it was building while nodes were added. The most
promising of the possible subtrees was always picked.

Their conclusion is that directly evolving phylogenetic trees gives better
results than indirect approaches except in the case of the “greedy” decoder
which produced optimal or near-optimal solutions with lower computational
cost than all other methods.
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Chapter 3

Methods

This chapter looks at the methods used to calculate a tree’s likelihood. A
discussion of sources of error is also included, and the last section looks at
GA operators that can be used in an EA to evolve phylogenetic trees.

3.1 Calculating the Likelihood of a Tree
A phylogenetic tree’s fitness – as seen from the evolutionary algorithm –
is its likelihood in light of the genetic data and a model of evolution. The
following explanation is based on the accounts in Joseph Felsenstein’s book
on inference of phylogenies [10] and the chapter on likelihood calculation in
molecular phylogenetics in Mathematics of evolution and phylogeny [3].

To calculate the likelihood of a given tree we use a model of DNA evo-
lution that allows us to compute the transition probability P (j | i, t) – the
probability that state j will exist at the end of a branch of length t if the state
at the start of the branch is i. The branch length t is measured in expected
substitutions per site rather than time, i.e. along a branch of length 0.5 we
expect to see changes happen to half of the sites. (Refer back to Fig. 2.6 on
page 12 to see an illustration of this concept.)

An example tree is shown in Fig. 3.1 on the following page. In this tree
the evolutionary relationship between four “species” is shown. The actual
species, which will always be leaf nodes in a tree, are called operational
taxonomical units (OTUs) while the interior nodes are called hypothetical
taxonomical units (HTUs). The latter are inferred ancestral species of which
we have no observed data. In this simple example tree we only look at
one site. We have observed the states A, C, C, and G for our OTUs. The
hypothetical states of the HTUs are x, y, and z.

When calculating the likelihood of a whole phylogenetic tree we assume
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Fig. 3.1: Our hypothetical phylogenetic tree. The values A, C, C, and G have
been observed for the leaf nodes.

the following:

1. Evolution in different sites is independent.

2. Evolution in different lineages is independent.

The first assumption lets us decompose the likelihood of a tree given the
data, P (D | T), into a product of n terms – one for each site:

L = P (D | T) =
n∏

i=1

P (Di | T)

where Di is the data at site i. The likelihood of a tree with observations of
one state is then the sum of the probabilities of all possible combinations of
states which might have existed at the m interior nodes n1 . . . nm:

P (Di | T) =
∑
n1

∑
n2

. . .
∑
nm

P (s1, s2, . . . , sn, n1, n2, . . . nm | T) (3.1)

= P (A,C,C,G, A,A,A | T)
+P (A,C,C,G, A,A,C | T)
+ . . .

+P (A,C,C,G, T, T, T | T)

where s1, s2, . . . , sn are the leaf nodes’ states at that one site (A, C, C, G
for our example tree). Each summation runs over the four possible states A,
C, G, and T.
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The second assumption we made – that different lineages evolve indepen-
dently – allows us to decompose the probability on the right side of Equa-
tion (3.1) into a product of terms. For the example tree we thus get:

P (A,C,C,G, x, y, z | T) = P (x)× P (y | x, t5)
×P (A | y, t1)× P (C | y, t2)
×P (z | x, t6)× P (C | z, t3)
×P (G | z, t4) (3.2)

The probabilities above are given by the transition probability of our model
of evolution. Assuming that evolution has gone on for a very long time –
with the state change probabilities given by our evolutionary model – it is
reasonable to use P (x) as the equilibrium probability of state x under that
model. The other probabilities in Equation (3.2) are derived from the chosen
model of DNA evolution.

It is too inefficient to use Equation (3.2) directly because the number of
terms we need to sum rises exponentially with the number of species.1 A
pruning method can be used to make the computation feasible: By moving
the summation signs as far to the right as possible we get

P (Di | T) =
∑
x

P (x)

×

(∑
y

P (y | x, t5)P (A | y, t1)P (C | y, t2)

)

×

(∑
z

P (z | x, t0)P (C | z, t3)P (G | z, t4)

)
. (3.3)

To compute this we work our way up the tree by calculating the conditional
likelihoods of subtrees: the probability of what is observed at a node k and
down given that k has the state s – denoted L

(i)
k (s). This computation is

done for each site i.

3.1.1 A Recursive Algorithm for Computing L
(i)
k (s)

We can use an algorithm that “pushes” information up the tree to compute
Equation (3.3). We make use of the subtree likelihoods L(i)

k (s). The term

P (C | z, t3)P (G|z, t4)
1For a tree with n species, there are n− 1 interior nodes each of which has one of four

states, meaning that we need to sum 4n−1 terms.
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Fig. 3.2: The right subtree of the example tree.

is such a quantity for the left subtree (shown in Fig. 3.2 ) of the example tree.
This can be read as “the probability of everything seen at and below a node
with state z”. There will be four such quantities – one for each possible value
z can take (A, C, G or T ). Once these four values have been computed they
need not be computed again if we find the same states in the nodes below
z for a different site. This dynamic programming approach greatly reduces
the number of calculations that needs to be done.

The algorithm is recursive and computes L
(i)
k (s) at each node from the

same values from the nodes immediately below it:

L
(i)
k (s) =

(∑
x

P (x | s, t`)L(i)
` (x)

)(∑
y

P (y | s, tm)L(i)
m (y)

)
(3.4)

where ` and m are the two nodes directly below k.2 This can be read as
“the probability of everything at or below a node – given that this node
k has state s – is the product of the probability of the events of both the
descendant lineages”.

At the leaf nodes we have an observation v of the actual state (A, C, G,
or T in the sequence data), so we get

L
(i)
leaf (s) =

{
1 if s = v

0 otherwise
.

These values will act as the base cases of the recursive algorithm. A pseudo-
code implementation of this algorithm is shown as Algorithm 3.1 on the
facing page.

The end result of the algorithm for a site i is the average of πsL
(i)
root (s) – the

values at the topmost node in the tree weighted by their prior probabilities:
2This is specific for a bifurcating tree but can easily be extended to an n-furcating tree

by adding more factors on the right side of equation 3.4.
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Algorithm 3.1 An algorithm for calculating the likelihood of a node, Lk (s),
as described in equation 3.4 on the facing page.

f un c t i on L( node ) :
# base case : we have a l r e ady found
# l i k e l i h o o d s f o r the node
i f node . l i k e l i h o o d s :

return node . l i k e l i h o o d s

for s in [ ’A ’ , ’C ’ , ’G ’ , ’T ’ ] :
xs = ys = 0 . 0
for x in [ ’A ’ , ’C ’ , ’G ’ , ’T ’ ] :

xs += P( s , x , t )*L( node . l_ch i l d ) [ x ]
ys += P( s , x , t )*L( node . r_ch i ld ) [ x ]

node . l i k e l i h o o d s [ s ] = xs * ys

return node . l i k e l i h o o d s

L(i) =
∑
s

(
πsL

(i)
root (s)

)
The probability of the entire tree is then the product of the probabilities

for each site:

P (tree) =
∏
i

L(i) (3.5)

In practice, the likelihoods will be very low, so Equation (3.5) is usually
implemented as summation of logarithms instead of multiplying the likeli-
hoods directly.

3.1.2 Evaluation of Computational Cost
For each site we have to calculate the result of Equation (3.3) n−1 times, once
for every internal node (HTU). Each computation requires four calculations
– one for each possible base, and each of these are the product of two terms
of four products (since we have four bases).

If we have a tree with n leaves and sequences of length p, the total calcu-
lation is proportional to p (n− 1) 42. This is an upper bound. As mentioned,
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we can use memoization to directly look up the likelihood if the same calcu-
lation has been done previously.

3.2 Unrootedness
As mentioned in Section 2.1.3 on page 8 most algorithms for phylogeny infer-
ence computes an unrooted tree which only shows the relatedness among the
leaf nodes. This is also the case for the ML method outlined in this chapter.
There is no information about the placement of the root of the tree [8]. The
trees are simply drawn in a way that is familiar to most people. Trees in the
Newick format which is the most common file format for phylogenetic trees
will always have a root, but it is important to keep in mind that any of the
internal nodes can be the true root [10].

3.3 Sources of Error
Inferring a phylogeny from sequence data is a probabilistic process and there
are many sources of errors. The most important are listed below.

• That evolution in different sites is independent, as assumed by the
maximum likelihood method outlined in Section 3.1 is quite unrealistic.
It is know that the substitution processes at different sites in a sequence
often are not independent [3, 20].

• There can be errors in the DNA sequence data used. Misdentification
during sequencing happens, but this is rapidly improving and the rate
is currently sometimes as low as 10−4 per base [35].

• The alignment process is a probabilistic process and the most probable
alignment need not reflect the true mutations that has happened.

• The models of evolution used in the maximum likelihood approach are
probabilistic models and will never be completely accurate.

There have also been some concern about using the (often illusory) maximum-
likelihood point as an optimality criterion. Steel, in [36], demonstrated that
a phylogenetic tree does not always have a unique maximum likelihood point.
However, a study by Rogers and Swofford [30] showed that this is not a gen-
eral phenomenon and showed, through simulations, that maximum-likelihood
is still a good optimality criterion. Rogers and Swofford conclude:
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Our results thus provide reassurance that the value of maximum
likelihood as a tree selection criterion is not compromised by the
presence of multiple local maxima—the best estimates of the true
tree are not likely to have them. This result holds true even when
an incorrect substitution model is used for tree selection.

3.4 GA Operators for Phylogenetic Trees
The field of genetic programming (GP) has produced mutation and recom-
bination operators suitable for evolving trees. Trees in GP usually represent
computer programs and not all of the operators suitable for these trees work
for phylogenetic trees due to the strict restrictions on their form [6]. A recom-
bination operator that works for phylogenetic trees is the Prune-Delete-Graft
(PDG) operator. PDG works by selecting a random node from one of the
parent trees as root in the subtree under it. The leaf nodes that appear in
this subtree is then pruned from the other parent. Last, a random branch
in the pruned tree is selected to which the random subtree from the other
parent is attached. This method is illustrated in Fig. 3.3 on the following
page. This method is quite simple will always produce a valid tree.

Several methods are used to implement a mutation operator. Cotta and
Moscato [6] lists the following mutation operators for tree topologies:

SWAP: two random leaf nodes swap positions

Nearest Neighbour Interchange: switch two branches that share a
neighbour branch

SCRAMBLE: a random subtree is chosen and its topology is rearranged at
random
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Fig. 3.3: Recombination of two parent trees, A and B with Prune-Graft-Delete
is done by finding a random subtree of A. In this example the subtree under the
w node (green circle) is chosen. The leaf nodes that appear in this subtree are
pruned from parent B (red circles), resulting in the tree shown in Fig. d. The
selected subtree (Fig. c) is then inserted at a random point – here between x and
SA. resulting in the tree shown in Fig e.
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Chapter 4

Implementation

4.1 Overview
An evolutionary algorithm (EA) system for evolving phylogenetic trees for
a given set of aligned DNA sequences using a maximum likelihood (ML)
approach has been implemented. The system is highly modular and it is easy
to change the operators (mutation and crossover) for the genetic algorithm
and the evolution model for the ML evaluation of trees.

The two main parts of the system and their sub systems are:

• An evolutionary algorithm program responsible for maintaining
a population of trees, passing these to a program for evaluating their
fitness and then creating the next generation by recombining the best
trees (see Fig. 2.8 on page 16). This program makes use of the following
components to achieve this:

. A selection operator using one of a set of selection strategies.

. A mutation operator for trees.

. A recombination operator for trees.

• An evaluation program which, given a tree, calculates the tree’s
fitness. This program uses the ML approach as outlined in Section 3.1
on page 29. This program has only one swappable component:

. An evolution model which is used to calculate the probabilities
of changes in the tree.

The code is written in C++ and modularity is achieved using object-oriented
design principles. By using templates, any genome representation can be used
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as long as GA operators for this format are implemented. This means that a
genome can be a text string, an array of integers or any other data structure,
as long as, e.g. the fitness function that is used knows how to interpret this
genome.

4.2 Implementation details
4.2.1 EA System
The EA system runs the “EA cycle” (see Fig. 2.8 on page 16). This system
is quite simple and is responsible for using the operators to create new gen-
erations until a supplied criterion (usually a specified number of generations
or convergence) is fulfilled.

4.2.2 Tree Evaluator
The tree evaluator reads in a tree genome and build the corresponding data
structure. The likelihood algorithm is then run on the root node which re-
cursively computes the likelihood. As mentioned in Section 3.1.1 on page 31
the values for equation (3.4) can be cached and need only be recalculated
every time the branch length they were computed for changes. This memo-
ization saves a lot of time since at most 16 values need be computed for each
node pair (A → A,A → C, . . . , T → T ). Testing this on a tree with seven
sequences of 1000 bases showed that the calculations took only 1/43 of the
time compared to not using memoization.1

4.2.3 Data Structures
A few data structures (C++ classes) constitute the core of the EA system.
They are described below.

• PhyloTreeNode
Represents a node in a phylogenetic tree. Both internal nodes and leaf
nodes (species) are of this class. A node has two children (leaves) –
one “left” and one “right” – or no children. It has one parent (except
for the root node). All nodes also contain a cache for likelihood values
together with the branch length the values were cached for so that the
cache can be invalidated when needed. The most important member
functions are:

1Without memoization: 2.737 s (σ = 0.06114). With memoization: 0.0634 s (σ =
0.003921).
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. vector<vector<double>> likelihood(EvolutionModel*)
Calculates likelihood values for each site for each possible base. If
there are n sites this will be an n× 4 matrix.

. string prefixRepresentation(PhyloTreeNode* node)
Returns a string representation of the tree in the prefix format
described in Section 2.2.3 on page 19.

• PhyloTree
A helper class for working with trees of PhyloTreeNode objects. A
PhyloTree contains a pointer to the PhyloTreeNode object that rep-
resents the tree’s root and an EvolutionModel object. The goal of this
class it to make it easy to work with PhyloTreeNodes that are linked
together to form a tree. The most essential functions are:

. double logLikelihood();
Calculates the tree’s total likelihood found by multiplying all site
likelihoods as explained at the end of Section 3.1.1 on page 31.
Since these probabilities will be very low, the sum of the logarithm
for each site is returned.

. string newick()
Returns a string representation of the tree in the Newick format.

. void buildRandomTree(vector<PhyloTreeNode*> leaves);
Builds a random tree with the given leaf nodes. This is done by
first building a tree of the internal nodes by recursively adding one
or two (with a 50% probability) orphan nodes as children. This is
done until all internal nodes are connected. The leaves are then
randomly sorted and added as children to the internal nodes that
have no children or only one child. This is done to create the first
generation of random trees.

. void setEvolutionModel(EvolutionModel* m)
Sets the evolution model (see Section 2.1.5 on page 12) to the given
object. The evolution model is used to calculate the transition
probabilities for the likelihood computation.

. static PhyloTree decodePrefixNotation(vector<PhyloTreeNode*>
nodes, string s, EvolutionModel* evModel);
This function builds a tree from a prefix representation. This is
the genotype→phenotype mapping done in order to evaluate a
genome’s fitness.
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• EvolutionModel

This is an abstract class representing a probabilistic model of evolu-
tion. The system includes two concrete subclasses: JukesCantor and
Kimura, representing those models. An EvolutionModel only has two
functions:

. double P(char i, char j, double t)
The probability of a change from i to j over a branch of length t
(see Equation (2.1) on page 12).

. double prior(char s)
Returns a base’s prior probability, i.e. its equilibrium probability.
(For both the Jukes-Cantor and the Kimura model this is simply
π{A,C,G,T} = 1/4.)

The EA operators are described by the four abstract classes described below.
These abstract classes act as interfaces that are implemented by concrete
subclasses. (These classes use C++ templates to make sure that they would
work for any genome, not only strings. A 'T' in the function signatures
below can thus be string or any other data type.)

• MutationOp

A MutationOp is responsible for mutating a set of genomes. It will in
most cases have the mutation probability as a member variable. Its
only member function takes a set of genomes to be mutated.

. void mutate(vector<T>& genomes)
Takes genomes to be mutated as a parameter and (with possibility
pm) mutates them.

• RecombOp

A recombination operator can return one or more children, the EA
system will be responsible to select and recombine parents until a new
generation has been produced. A recombination operator implementa-
tion will usually have pc as a member variable and simply return the
two parents in the cases where no recombination should be performed.

. vector<T> produceOffspring(T& p1, T& p2)
This function takes two parents and return one or more children.

• SelectionOp
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A selection operator is an implementation of a selection strategy (see
Section 2.2.2 on page 18). Two concrete subclasses of this abstract
class has been implemented: FitnessProportionateSelection and
RankSelection. The only member function performs this selection.

. T& select(vector<T>& pop, vector<double> fitness)
Takes a set of genotypes together with a set of their corresponding
fitness values and returns one individual.

• FitnessFunc
A fitness function is responsible for evaluating a genome’s fitness. This
usually includes translating the genotype to a phenotype and assessing
its fitness. Its only member function takes a set of genomes and returns
their fitness values.

. vector<double> fitness(vector<T>& genomes)
Takes a list of genomes and returns their fitness values.

4.2.4 Differential Reproduction
In GAML (see Section 2.6.1 on page 25), Lewis let the number of offspring
produced be proportional to the parents’ rank likelihood score. An analogue
to this is also present in this system: By enabling differential reproduction,
above-average parents are allowed to produce more offspring. This was done
by allowing all parent pairs to produce one offspring plus one extra offspring
per parent whose fitness is above average. Two above-average parents will
thus have 3 offspring passed on to the next generation.

4.2.5 GA Operators for Phylogenetic Trees
Selection is done by using rank selection. Since the likelihood of any tree is
very small it is convenient to use the log likelihoods directly in the selection
strategy. By using rank selection the magnitude of the fitness differences has
no effect, only the value’s ranking among all other fitness values.

4.2.6 Reading Sequence Data
Sequence data is read from fasta files (described in Section 2.4 on page 22).
The parser is only written to handle the DNA nucleic acid codes (A,C,G, T ).
The parsing function takes the file name of a fasta file as an argument and
returns a set of PhyloTreeNode objects (one per sequence) whose states are
the read sequences.
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4.2.7 Displaying Trees
The system supports exporting trees in the Newick format. This format
(see Section 2.4 on page 22) is the most common format for representing
phylogenetic trees. Programs such as nw_display from the software package
nw_utils [22] can be used for visualizing the trees or export them as vector
graphics files.

4.2.8 Testing
Invariants in the system are checked at build time with tests written in the
Google Test Framework2. These tests include:

• calculating the fitness for trees with known fitness values,

• testing that the transition probabilities for pairs of random nodes is
within [0, 1], and

• testing that max fitness never decreases from one generation to the
next when using elitism.

The memory debugger/profiler Valgrind3 has been used to make sure there
are no memory leaks in the program and to find performance bottlenecks.

4.3 Parallelization
It has been a design goal that the system should be easy to parallelize with
Simdist [18] – a tool for distributing the work in an evolutionary algorithm
between a master node and slave nodes (see Fig. 2.15 on page 26 for an illus-
tration of this concept). Simdist works by passing genomes and the resulting
fitness scores between programs through the standard input/output streams.
The system has therefore been split into two separate programs; one “mas-
ter” program which maintains the population and creates new generations
and a “slave” evaluator program which assigns a fitness to trees given to it.
There will usually be many instances of the evaluator program running – for
optimal performance there should be at least as many instances as available
processors.

2http://code.google.com/p/googletest/
3http://valgrind.org/
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4.4 Prune-Delete-Graft with Branch Lengths
Extra consideration has been put into the use of the PDG recombination
operator on a tree with branch lengths. Because of the way trees are “pruned”
and have another subtree “grafted” onto them, information about branch
lengths can be lost.

This scenario can be illustrated with an example shown in Fig. 4.1 on
the next page: The parent trees A (4.1a) and B (4.1b) are selected for
recombination and the highlighted subtree from parent A is to be grafted
onto parent B. The selected subtree contains the leaf nodes SC and SD,
so these nodes should be pruned from B. Removing these leaf nodes from
parent B will move SB up two levels to where y was, resulting in the tree
shown in 4.1d. But what should the branch length connecting SB to the tree
(tα) be? This length can be modified by further search, but choosing the
most probable value is important because it will reduce the search time.

Assuming that the parent tree has undergone selection and the branch
lengths are reasonably optimized, the distance from x to SB is optimized
and should be preserved, i.e. the length should be set to t8 + t9 + t11. How-
ever, due to a phenomenon called the lessened node density effect the branch
length that will be recovered in this subset of the parent tree will usually be
smaller. The node density effect was described by Venditti, Meade and Pagel
in [38] and its effect on evolutionary studies are further investigated in [21].
Because of this effect it is better to pick a shorter branch length, such as t11,
because this will quite likely be nearer to the length that subsequently will
be recovered by the search. This EA system does this: the branch length
from a node whose sibling is pruned is kept as the original distance to its
parent node.

The recombined “offspring”, shown in Fig. 4.1e on the following page is
also “missing” another branch length – the length of the new branch used
to graft the subtree from parent A to the pruned subtree from parent B. In
the new tree, the distance that was found from the root to w in Parent A
is no longer meaningful, so nothing can be known about this length. It is
therefore set to a random value between zero and one.

4.5 Tree Representation
The genome of each “individual” in the EA is a tree represented in prefix
notation. The lengths of branches are also specified before the node that is at
the endpoint of the branch. An example tree with its corresponding genome
is shown in Fig. 4.2 on page 45.

43



..
. u

. v

.
SA

.t3
.

SB

.t4

.t1

. w

.
SC

.t5
.

SD

.t6

.t2

(a) Parent A

..
. x

.
SA

.t7

. y

. z

.
SB

.t11
.

SC

.t12

.t9
.

SD

.t10

.t8

(b) Parent B

..
. w

.
SC

.t5
.

SD

.t6

(c) The selected subtree from A

..
. x

.
SA

.t7
.

SB

.?

(d) Parent B after pruning
..

. x

.
i

.
SA

.t7B

. w

.
SC

.t5
.

SD

.t6

.?

.t7A

.
SB

.?

(e) The resulting “offspring” tree.

Fig. 4.1: It is not obvious how to treat branch lengths that are affected during
Prune-Graft-Delete recombination. When B is pruned, t8, t9 and t11 are collapsed
to one branch, and when a subtree is “torn off” A, the length of the branch that
connected it to its parent is probably no longer meaningful for its new location in
a new tree.
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Fig. 4.2: Example tree of the three species X, Y and Z (a) and the corresponding
“genome” (b). The representation is a preorder traversal of the tree with “h”
representing internal nodes (HTUs) and prefixing branch lengths to the nodes.

4.6 Using Phyml to Evaluate Likelihoods
Phyml is a program that is primarily used for phylogenetic inference, but it
can also be used to find the likelihood of a given tree. A “wrapper” around
this program has also been implemented to allow it to be used as a fitness
function. This wrapper converts the tree representation explained in the
last section to Newick format (see 2.4.1) and passes this tree along with the
DNA sequences to Phyml. The output from Phyml is then parsed and the
log-likelihood is returned.

The newest developments in Phyml are described in [13]. It is a highly
optimized program and has a fast implementation of the maximum likelihood
algorithm.
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Chapter 5

Results

The system outlined in the previous chapter has been used on two data
sets with mitochondrial genomes downloaded from the National Center for
Biotechnology Information in the United States. The two data sets, both
consisting of 20 mitochondrial genomes, are:

• mamm20: 20 mammalian, mitochondrial genomes

• ray10mamm10: 10 mammalian + 10 ray-finned fish mitochondrial genomes

Details about the genomes in each data set are listed in Appendix A on
page 69.

Data sets with 20 genomes were chosen as this allowed testing on a per-
sonal workstation, while still representing a difficult optimization problem.
As mentioned in Section 2.1.3 on page 9 there are 8.2× 1021 possible rooted
phylogenetic trees for 20 species.

The wrapper program around Phyml (described in Section 4.6 on the
preceding page) was used as the fitness evaluator as this proved to be con-
siderably faster (up to a factor of five) than the less optimized maximum
likelihood function used in the testing phase.

Alignment was done using Clustal1 (as explained in Appendix E on page 83)
and gap sites were removed.

The tests were run on an cluster and used up to 7 nodes, each with 12
cores, making the total number of processor cores 84. The communication
between the processes were facilitated by Simdist, as mentioned in Section 4.3
on page 42.

Two series of runs were performed on the first data set, the first one with-
out differential reproduction (see Section 4.2.4 on page 41) and the second run
allowing above-average parents to produce more offspring. The Kimura 80

1Clustal version 2.1.
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Mirounga leonina
Panthera tigris amoyensis

Ailurus fulgens styani
Canis lupus
Ailuropoda melanoleuca

Manis tetradactyla
Macaca sylvanus
Pongo abelii

Homo sapiens neanderthalensis
Homo sapiens isolate YE02
Homo sapiens isolate YE15

Gorilla gorilla gorilla
Gorilla gorilla
Rattus rattus

Bos grunniens isolate DQ3
Tursiops truncatus

Crocidura russula haplotype H1
Sciurus vulgaris

Ornithorhynchus anatinus
Loxodonta africana0.1

Fig. 5.1: The best tree found for the mamm20 data set, with log likelihood of
−152154.
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model was used in the likelihood calculation and the transition/transversion
ratio was set to 4.0. This number was estimated by Phyml. The mutation
and recombination rates used in all runs were pc = 0.3† and pm = 0.7. These
values have not been systematically optimized, but were found to produce
good results in a preliminary test of the system. The Prune-Delete-Graft
operator was used for recombination. Mutation altered one random branch,
adding a random value between −0.1 and 0.1 to its length and clamping the
final value between 0 and 1.

Selection was done using rank-selection: each individual’s probability of
being selected to produce offspring was proportionate to its rank (0–20 in
these data sets). Elitism was used in all runs, with the four best individuals
getting copied to the next generation. Maximum likelihood will thus never
decrease.

The running times for these tests are measured in CPU time. This is
the sum of the time all processors spent running code, as opposed to waiting
(e.g. for input/output operations). The run times is thus for an idealized
scenario in which processors always work. In reality this was quite close to
the real time it took. Fitness evaluation for one tree usually takes less than
one second, so the system will never be waiting a long time for the likelihood
score of a tree to be completed.

The best tree found for each set of runs by the EA system is shown. The
branch lengths show the distance, measured in expected substitutions (see
Section 2.1.5 on page 12).

The trees inferred by Phyml for the same data sets are included in Ap-
pendix B.

5.1 Twenty Mammalian Mitochondrial Genomes
The mamm20 data set consists of the mitochondrial genomes of 20 mammals.
After alignment and the removal of gap sites, the DNA sequences were 14659
base pairs. A phylogenetic tree inferred from these sequences by Phyml3 is
shown in Fig. B.1 on page 74 for illustration.

Inferring the tree with Phyml took 8 minutes and 9 seconds on a system
with an AMD 2431 Istanbul processors running at 2400 MHz.

†This probability is for the whole genome, i.e. the probability of one random mutation
happening to the genome as a whole.

3Phyml version 20110304, command: phyml -b 0 -i mamm20.phy -t 4.0 -m K80
-f "0.25,0.25,0.25,0.25" -t 4.0
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5.1.1 Runs
The EA system was run 20 times with the mamm20 data set on the cluster
described. The average and maximum fitness, respectively, per generation
for each of the runs is shown in Fig. 5.2 on the following page. The runs were
cut off after 300 generations. The number of generations to run for was set
after it was observed that average fitness tended to level out a little before
this in early runs with more generations.

The runs are quite consistent and produce trees with similar fitness
(σavg. fitness = 1560.14, σmax fitness = 1498.39), but as can be seen from Fig. 5.2b
on the next page, the best tree found varies quite a bit between runs.

The log likelihood of the best tree found by the EA was −152154, while
the tree inferred by Phyml had a log likelihood of −147188. The best tree
found is shown in Fig. 5.1 on page 47. It has grouped the two Homo sapiens
together, and the two closely related gorilla species together. All primates
are correctly grouped together.

5.1.2 Dissecting a Run
To understand more about how the population evolves as a run progresses, a
run that produced a tree with an average fitness among the 20 runs (the tenth
best tree) was chosen and further studied. This run produced a tree with a
log likelihood of −157497 after 300 generations. The maximum, average and
minimum fitness per generation is shown in Section 5.1.1 . Some things are
appearant from this plot:

• The initial, random population improves rapidly during the first 50 or
so generations as “fitter” trees are selected.

• There are not any big fluctuations in the average fitness after the initial
generations.

• The minimum fitness can greatly vary from one generation to the next.

From the minimum fitness graph it is obvious that a recombination can have
a large effect. Since a mutation is only a slight alteration of a branch length,
the large fluctuations between the fitness of the lowest ranked individual in
each generation must be caused by a recombination.

By looking at how many different topologies that are present in the popu-
lation and the “success rate” of mutations and recombinations, we can under-
stand more of how the artificial selection happens. Fig. 5.4 on page 52 shows
the number of unique topologies as the run progressed. The average number
of topologies is 228.7, indicated by the dashed line. Grouping by topologies
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(b) Maximum fitness per generation.

Fig. 5.2: Average and maximum fitness plots for 300 generations for the mamm20
data set for 20 runs.
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Fig. 5.3: Fitness plot for one of the runs on the mamm20 data set.

was done by removing all labels and lengths from a tree’s representation in
the Newick format. This means that two trees that are in reality the same
tree, such as and will be classified as two different topologies. As the
plot shows, the number of different topologies seems to be relatively stable.
This indicates that the population does not converge towards a limited set
of local maxima due to the recombinations that happen.

The average success ratio of mutations and recombinations were also
logged for this run. A “successful” mutation is defined as a mutation that
makes the tree that is mutated have higher fitness after the mutations than
before. In a population of random trees 50% of mutations should be expected
to increase fitness, while in a population where the trees become more “fine-
tuned”, a random mutation should have a lower probability of being benefi-
cial. This is exactly what we see in 5.5a. The ratio of mutations that lead
to higher fitness starts at around 50% and drops as the run progresses. A
“successful recombination” was chosen to be even more strictly defined: A
recombination was chosen to be successful only if the offspring’s fitness was
better than both its parents. The number of such recombination is plotted in
5.5b. This number also drops rapidly as the population becomes more “fit”.
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Fig. 5.4: The number of unique topologies of the population of 300 trees for each
generation.

5.1.3 Differential Reproduction

Inspired by Lewis in [23] who let the number of offspring produced be relative
to parents’ fitness, another 20 runs were done on the mamm20 data set, this
time letting parents produce one extra offspring for each parent that was
above average. Two above-average parents will thus pass on 3 offspring to
the next generation. The average and maximum fitness for these 20 runs are
shown in Fig. 5.6 on page 54.

The results are very similar to the results obtained without using differen-
tial reproduction. If allowing above-average parents to have more offspring
had an effect, it was a small one. The number of unique topologies were
not affected either. The average number of unique toplogies was 200.6, a
little lower than in the first set of runs, but this does not appear to have a
significant effect on the best tree found.

The best tree found in these runs is shown in Fig. 5.8 on page 56 and has
a fitness of −152018.
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Fig. 5.5: “Success rates” for mutations (top) and recombinations (bottom) as the
run progresses.
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Fig. 5.6: Average and maximum fitness plots for 300 generations for the mamm20
data set for 20 runs with differential reproduction.
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Fig. 5.7: The number of unique topologies of the population of 300 trees for each
generation when using differential reproduction.

5.2 Ten Ray-Finned Fishes, Ten Mammals
The ray10mamm10 data set consists of the mitochondrial genomes of 10 mam-
mals and 10 ray-finned fishes. After alignment and the removal of gap sites,
the DNA sequences were 15006 base pairs. A phylogenetic tree inferred from
these sequences by Phyml4 is shown in Fig. B.2 on page 75 for illustration.
The tree inferred by Phyml has a log likelihood of −152252 and has correctly
grouped the fishes close together and separate from the mammals. Within
the mammals, the primates are grouped closely together.

Inferring the tree with Phyml took 16 minutes and 38 seconds on a
system with an AMD 2431 Istanbul processors running at 2400 MHz.

The EA system was run 20 times with the ray10mamm10 data set on
the cluster. The same differential reproduction scheme used in the second
mamm20 run was used. The average and maximum fitness, respectively, per
generation for each of the runs is shown in Fig. 5.10 on page 59. The runs
were again cut off after 300 generations.

The runs are also consistent for this data set and produce trees with
4Phyml version 20110304, command: phyml -b 0 -i ray10mamm10.phy -t 4.0 -m

K80 -f "0.25,0.25,0.25,0.25" -t 4.0
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Homo sapiens neanderthalensis
Gorilla gorilla
Gorilla gorilla gorilla

Homo sapiens isolate YE02
Homo sapiens isolate YE15
Pongo abelii

Rattus rattus
Loxodonta africana
Sciurus vulgaris

Ailurus fulgens styani
Canis lupus

Ailuropoda melanoleuca
Mirounga leonina

Panthera tigris amoyensis
Crocidura russula haplotype H1

Tursiops truncatus
Manis tetradactyla

Bos grunniens isolate DQ3
Ornithorhynchus anatinus

Macaca sylvanus0.1

Fig. 5.8: The best tree found for the mamm20 data set with differential reproduc-
tion, with a log likelihood of−152018.
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Pongo abelii
Ornithorhynchus anatinus

Luciosoma bleekeri
Salmostoma bacaila
Macrochirichthys macrochirus
Hemigrammocypris rasborella
Yaoshanicus arcus

Nannoperca australis
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Horadandia atukorali

Raiamas guttatus
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Homo sapiens isolate YE15
Homo sapiens neanderthalensis
Homo sapiens isolate YE02
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0.1

Fig. 5.9: The best tree found for the ray10mamm10 data set with differential
reproduction, with a log likelihood of−158556.
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similar fitness (σavg. fitness = 1587.65, σmax fitness = 1564.27).
The log likelihood of the best tree found by the EA was −158556. The

tree is shown in Fig. 5.9 on the previous page. The tree inferred by Phyml
had a log likelihood of −152252. The best tree found is shown in Fig. 5.1
on page 47. It has correctly partioned the tree into ray-finned fishes and
mammals.

5.3 Running Time
The average CPU time used run the EA for 300 generations on the mamm20
data set was 74 minutes and 27 seconds. Using differential reproduction did
not seem to affect this, and the 20 runs using this had an average CPU time
usage of 76 minutes 22 seconds. The average CPU time used per run on the
ray10mamm10 data set was 105 minutes and 35 seconds.

These running times are considerably higher than Phyml’s running time
on the same data sets, so the search needs to be greatly improved in order to
make an EA system an attractive alternative for data sets of this size. Some
suggestions for further work that can be done is given in the last section of
the conclusions chapter.
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Fig. 5.10: Average and maximum fitness plots for 300 generations for the
ray10mamm10 data set for 20 runs. The fitness values are the logarithm of the
individuals’ likelihood scores.
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Chapter 6

Conclusion and Further Work

The amount of available molecular data (e.g. in form of DNA sequences)
has grown rapidly the last couple of decades as sequencing technology has
improved. Part of the credit for this is due to the Human Genome Project
which in May 2006 completed the sequence of the last chromosome of the
Human genome, after having announced a “rough draft” genome in 2000.

As the amount of molecular data accrues, efficient computers and algo-
rithms become increasingly important to analyze this data. The problem of
inferring phylogenies directly from molecular data goes to the core of this
problem. Using a maximum-likelihood with models for nucleotide evolution
allows us to use all the sequence data. This is a computationally expensive
approach, but the rapid improvements in computer technology has made it
feasible.

The number of possible trees for a set of species grows so fast that it
is necessary to use heuristic search methods to find a good hypotheses for
the true tree. Evolutionary algorithms is a class of such search/optimization
algorithms that has been shown to perform well in other areas where the
search space is large and irregular. A firm conclusion about the suitability
of EAs for this area cannot be drawn at this point.

The main results of this thesis is that a relatively simple EA
system is able to come up with good hypotheses for phylogenies
by only using DNA sequence data, and that this system makes it
very easy to take advantage of a parallel computer system.

A Bigger Needle in a Bigger Haystack

Great care has been taken in making sure that the likelihood evaluation of
trees has a solid base in biology/genetics theory. There are still some sources
of error, but few that are unique to this system.
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There are many inherently difficult problems with phylogenetic inference,
and these problems are not necessarily improved with having more sequence
data. The substitutions occurring along a branch of a phylogenetic tree is
often referred to as the phylogenetic signal. In branches with many changes
the signal is proportionally strong. Noise that interferes with the genuine
phylogenetic signal is called non-phylogenetic signal and “competes” with
phylogenetic signal during phylogenetic inference. Even when using con-
siderable amounts of sequence data, geneticists still get highly incongruent
results when inferring phylogenies [29]. More sequence data is not enough
to solve these phylogenetic problems due to several factors. One factor is
speciation events1 that are close in time, leading to short internal branches
in the tree that are difficult to resolve. Another problem is that when we
have events of interest that are ancient, the branches down to leaf nodes are
often very long and have had multiple substitutions happen at the same site.
This is very difficult to detect.

EA Parameters

From the EA side, much can be done to further improve results. Finding
the best parameters, selection function, and mutation and recombination
operators can be a science of its own. It is probably possible to improve
performance by tuning parameter values and selection strategies. It could
even be the case that different data sets need different parameters. Both data
sets that were used for testing were of species that are quite closely related
when looking at the whole spectre of life forms. Data sets where the distance
between species are large may require different parameters and operators.

It is hard to decide which pathways to follow in such a wide field. Some
suggestions are offered in the following section on further work.

Parallelization

Parallelizing the system was easy once some initial synchronization problems
were solved. By using Simdist to distribute the computations, all available
processors – up to the population size of the EA – will be utilized. In an ideal
scenario where the number of available processors are equal to the population
size, fitness evaluation of each generation would only take a time equal to
the maximum time of evaluating one individual. For the data sets of 20
sequences used here, that number was around 0.5 seconds.

1Two or more lineages separating into what will become different species.
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6.1 Further Work
EA “Tuning”

During an EA run the main concern is making sure that the individuals are
freely exploring the search space. Mutations and recombinations create a
diverse population, and individuals in promising areas of the search space
have a higher probability to contribute offspring – with modifications – to
the next generations. These offspring have a relatively high probability of
inhering good properties from their parents and thus further explore around
these areas. As the run progresses, the population will tend to converge
around these local maxima. In this phase, recombinations and mutation
that only slightly “move” the individuals are desireable since we want to find
the “highest” point of the maxima.

A common way to accomplish this is to reduce the probability of recombi-
nations and mutations at the end of a run. This is often done by introducing
a “temperature” that starts high and decreases as the run progresses. This
temperature is used to control the probability of mutations and recombina-
tions. In the case of evolution of phylogenetic trees with mutations affecting
branch lenghts, it could perhaps also be good to reduce the magnitude of
mutations towards the end of a run.

Statistical Confidence

Because of the large number of possible tree topologies, it would be beneficial
to assess how much confidence one can have that a particular tree is a good es-
timation of a phylogeny. A widely used method of assessing confidence in the
nodes of a tree is the bootstrap test [9]. The basic idea behind the bootstrap
test is to repeatedly draw a subset of the original data, build a tree based on
this data, and then check how many of the subtrees that overlap. Another,
newer method is the approximate likelihood ratio test, or aLRT introduced in
2006 [1] which is much cheaper to compute in maximum likelihood systems
since it reuses the results of computations already performed during the ML
calculations. This method has been shown to estimate the probability of a
branch being correct better than the bootstrapping method [1, 14].

Having a number denoting the statistical confidence we can place in a tree
would be of help both during the “tuning” described above and when using
the system. We want to infer phylogenies from data where the true phylogeny
is unknown, so there is no answer we can compare it to. A statistics test could
indicate to which degree the “hypothesis trees” that are produced should be
trusted.
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(a) (b)

Fig. 6.1: The pulley principle says that the root can be placed anywhere along a
branch without affecting the tree’s likelihood if the model of evolution is reversible.
The tree in (a) will thus have the same likelihood as the tree in (b).

More Advanced Models of Nucleotide Evolution

The Kimura 80 model that was used as the model of nucleotide evolution in
the maximum-likelihood estimation is quite simple. Other models such as
the HKY and F84 models extend the Kimura two-parameter model to allow
different prior probabilities of the four different bases. Even more complex
models exist and it could also be interesting to allow the EA to modify the
model parameters too.

Optimizing Branch Lenghts as part of Fitness Evaluation

If the evolutionary model P (i | j, t) is reversible, i.e. P (i | j, t) = P (j | i, t),
it can be shown that the placement of the root does not affect a tree’s likeli-
hood. This is called the Pulley principle and is illustrated in Fig. 6.1 . Using
this principle makes it possible to optimize the branch lengths of a topology
by placing the root along branches, in turn, and then moving the root in
an iterative fashion, towards what results in the highest likelihood [8]. The
Expectation maximization algorithm can be used to carry out this iterative
search [10].

By optimizing the branch length of a tree topology, branch lenghts need
not be evolved and the search space will be that of all possible tree topologies.

Phyml supports optimizing branch lenghts and since the Kimura 80
model is reversible some initial tests were performed by modifying the EA
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system to evolve trees without branch lenghts by using Phyml to optimize
branches and return the maximum log likelihood for a tree topology. This
was done by changing the mutation operator to swap two random leaf nodes,
while the Prune-Graft-Delete recombination operator was kept. However,
evaluating a tree took 150–250 seconds, which would result in runs with a
large population of trees taking far too many resources.

This can perhaps work better if (1) it were possible to detect poor trees
early in the fitness evaluation and stop the meticulously calculation of an
exact likelihood for trees that are not promising, or (2) the optimization could
be made faster by only iterating over a branch a limited amount of times.
The latter option could even be modified throughout the run, spending more
time on finding the truly optimal branch lenghts late in the run, while only
approximating the “scores” for trees in the early generations.
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Appendix A

Data sets

A.1 mamm20
The mamm20 data set consists of 20 mammalian mitochondrial genomes, avail-
able from the National Center for Biotechnology Information in the US. They
are listed below in no particular order.

1. Pongo abelii (Sumatran orangutan)
Pongo abelii mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_002083

2. Gorilla gorilla gorilla (Western lowland gorilla)
Gorilla gorilla gorilla mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_011120.1

3. Gorilla gorilla (Western gorilla)
Gorilla gorilla mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_001645.1

4. Homo sapiens neanderthalensis (Neanderthal)
Homo sapiens neanderthalensis complete mitochondrial genome, isolate
Mezmaiskaya 1:
http://www.ncbi.nlm.nih.gov/nuccore/FM865411.1

5. Ornithorhynchus anatinus (Platypus)
Ornithorhynchus anatinus mitochondrion, complete genome
http://www.ncbi.nlm.nih.gov/nuccore/5836058
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6. Bos grunniens (Yak)
Bos grunniens isolate DQ3 mitochondrion, complete genome
http://www.ncbi.nlm.nih.gov/nuccore/GQ464314.1

7. Rattus rattus (Black rat)
Rattus rattus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/FJ355927.1

8. Homo sapiens [I] (Human)
Homo sapiens isolate YE02 mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/318039821

9. Homo sapiens [II] (Human)
Homo sapiens isolate YE15 mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/318039835

10. Macaca sylvanus (Barbary macaque)
Macaca sylvanus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_002764.1

11. Canis lupus (Grey wolf)
Canis lupus mitochondrial DNA, complete genome, haplotype: Jw258
http://www.ncbi.nlm.nih.gov/nuccore/AB499825.1

12. Panthera tigris amoyensis (South China tiger)
Panthera tigris amoyensis mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_014770.1

13. Ailuropoda melanoleuca (Giant panda)
Ailuropoda melanoleuca mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/EF196663.1

14. Ailurus fulgens styani (Styan’s Red panda)
Ailurus fulgens styani mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_009691.1
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15. Tursiops truncatus (Bottlenosed dolphin)
Tursiops truncatus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_012059.1

16. Sciurus vulgaris (Eurasian red squirrel)
Sciurus vulgaris mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_002369.1

17. Crocidura russula (White-toothed shrew)
Crocidura russula haplotype H1 mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/AY769263.1

18. Manis tetradactyla (Long-tailed pangolin)
Manis tetradactyla mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_004027.1

19. Loxodonta africana (African savannah elephant)
Loxodonta africana mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_000934.1

20. Mirounga leonina (Southern elephant seal)
Mirounga leonina mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/115494593

A.2 euteleostomi20
The euteleostomi20 data set contains the ten mammalian mitochondrial
genomes listed as number 1–10 in the mamm20 data set in addition to the
following list of ten mitochondrial genomes.

1. Macrochirichthys macrochirus (Sward minnow)
Macrochirichthys macrochirus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015551.1

2. Salmostoma bacaila (Large razorbelly minnow)
Salmostoma bacaila mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015549.1
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3. Hemigrammocypris rasborella∗

Hemigrammocypris rasborella mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015548.1

4. Raiamas guttatus (Burmese trout)
Raiamas guttatus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015547.1

5. Microdevario nana∗

Microdevario nana mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015546.1

6. Nannoperca obscura∗

Nannoperca obscura mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015545.1

7. Horadandia atukorali∗

Horadandia atukorali mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015544.1

8. Nannoperca australis∗

Nannoperca australis mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015542.1

9. Luciosoma bleekeri∗

Luciosoma bleekeri mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015541.1

10. Yaoshanicus arcus mitochondrion∗

Yaoshanicus arcus mitochondrion, complete genome:
http://www.ncbi.nlm.nih.gov/nuccore/NC_015540.1

∗No common English name is registered for this species.
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Appendix B

Phyml Inferred Trees

The following trees were inferred by Phyml for the mamm20 and ray10mamm10
data sets, respectively.
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Mirounga leonina
Ailurus fulgens styani
Ailuropoda melanoleuca

Canis lupus
Panthera tigris amoyensis

Tursiops truncatus
Bos grunniens isolate DQ3

Crocidura russula haplotype H1

Ornithorhynchus anatinus
Manis tetradactyla

Loxodonta africana

Rattus rattus
Sciurus vulgaris

Macaca sylvanus
Pongo abelii

Homo sapiens neanderthalensis
Homo sapiens isolate YE02
Homo sapiens isolate YE15

Gorilla gorilla
Gorilla gorilla gorilla

Fig. B.1: The phylogenetic tree inferred by Phyml for the mamm20 data set.
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Microdevario nana
Salmostoma bacaila
Luciosoma bleekeri
Raiamas guttatus

Horadandia atukorali

Macrochirichthys macrochirus
Yaoshanicus arcus
Hemigrammocypris rasborella

Ornithorhynchus anatinus
Rattus rattus
Bos grunniens isolate DQ3
Macaca sylvanus
Pongo abelii

Homo sapiens neanderthalensis
Homo sapiens isolate YE02
Homo sapiens isolate YE15

Gorilla gorilla gorilla
Gorilla gorilla

Nannoperca obscura
Nannoperca australis

Fig. B.2: The phylogenetic tree inferred by Phyml for the ray10mamm10 data
set. The group of ray-finned fishes has been coloured green, while mammals are
red.
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Appendix C

Fitness Values

The following pages list the average, maximum and minimum log10-likelihoods
for the last generation for the three sets of runs shown in Chapter 5:

1. EA version 1 on the mamm20 data set

2. EA version 2 on the mamm20 data set

3. EA version 3 on the ray10mamm10 data set
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Average Maximum Minimum
1 -161350 -156183 -174524
2 -162611 -156196 -213045
3 -166143 -159796 -182890
4 -162970 -157523 -176998
5 -162020 -157043 -177415
6 -162678 -157161 -174075
7 -161121 -155983 -173249
8 -162077 -156185 -186679
9 -162340 -156983 -181473

10 -161511 -155097 -192296
11 -161101 -156345 -172957
12 -161781 -155896 -178586
13 -163768 -156317 -186936
14 -160109 -154535 -185430
15 -161913 -156104 -189934
16 -161886 -156406 -176942
17 -161099 -154957 -174873
18 -165501 -159757 -185794
19 -160646 -154130 -184469
20 -160092 -154339 -173141

Table C.1: EA v1, mamm20
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Average Maximum Minimum
1 -161015 -155144 -182462
2 -157804 -152681 -211089
3 -160701 -156923 -171540
4 -158761 -153394 -182222
5 -162913 -158515 -176616
6 -160712 -155280 -173048
7 -158554 -152694 -183692
8 -159253 -153944 -179816
9 -158849 -153901 -174038
10 -158849 -153901 -174038
11 -159731 -154032 -188156
12 -162718 -157468 -175381
13 -157163 -152517 -171274
14 -159049 -153129 -172768
15 -159409 -154077 -178240
16 -161936 -158269 -171243
17 -160320 -154154 -187092
18 -159861 -155239 -172617
19 -160642 -156148 -174728
20 -159898 -154769 -173979

Table C.2: EA v2, mamm20
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Average Maximum Minimum
1 -166718 -159107 -191047
2 -170002 -161091 -193802
3 -169233 -161201 -196640
4 -167614 -158556 -191892
5 -169399 -161452 -206188
6 -169069 -160203 -195727
7 -166996 -159234 -186557
8 -167288 -160673 -196288
9 -168996 -162077 -190040

10 -166825 -158945 -196692
11 -171501 -164347 -192351
12 -167279 -159406 -186601
13 -169824 -159572 -196182
14 -166728 -158902 -189893
15 -168371 -159840 -193627
16 -172651 -163955 -200266
17 -169322 -160725 -199120
18 -168494 -161008 -193895
19 -167655 -160112 -193645
20 -169493 -162115 -197917

Table C.3: EA v2, ray10mamm10
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Appendix D

Distributed computations on a
cluster

I have used the Simdist software described in [18] to run simulations on a
cluster – a group of linked computers – in order to speed up evaluation of
artificial genomes in my evolutionary algorithm. The cluster runs the job
scheduling system OpenPBS1 that controls the access to computer resources
and programs. For communication among processes, Simdist uses the Mes-
sage Passing Interface2 (MPI).

D.1 Interactively running a job
To submit a job to the scheduling system’s queue, the command qsub (“queue
submit”) is used. This usually reads a shell script with the commands to
be run and additional commands to the scheduling system. This mode of
operation is described in section D.2 on the facing page, but it is also possible
to run a job interactively, which is good for testing purposes as the feedback
is immediate.

An interactive job is started by supplying the -I parameter to qsub and
specify a list of resources after a -l switch:

qsub -I -l nodes=1:ppn=4

This command asks for four processors (one node and four processors per
node). The command will wait until the requested resources are ready and
then spawn a new shell where the jobs can be run. To run a job using these
four nodes, the following command can then be used:

1http://www.mcs.anl.gov/research/projects/openpbs/
2http://www.mcs.anl.gov/research/projects/mpi/
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mpirun -np 4 -machinefile $PBS_NODEFILE simdist-mpi \
--master =''master_program --param1=value --param2=value''
\
--slave=''slave_program --param1=value --param2=value''

where master_program is the master EA program and slave is the program
evaluating the genotypes. Simdist will then use one node for the master
program and spread the slaves to the other nodes. For optimal performance,
there should be one slave per genome.

D.2 Queueing a job
To queue a job for execution a job script needs to be written and submitted
to the scheduler. This script sets up parameters for the scheduler and then
runs the command(s) that will do the work. An example script is shown in
Fig. D.1 on the next page.

This script file my_job.job can be added to the queue by passing the file
name as an argument to qsub:

qsub my_job.job

If requested, an email will be sent when the job is begun and finished. The
current status of the queue can be viewed by issuing the command qstat.

81



..

#!/bin/sh

# name of the job
#PBS -N phyloea

# max running time hours:minutes:seconds
#PBS -l walltime=03:00:00

# number of nodes:cores per node
#PBS -l nodes=7:ppn=12

# queue to submit job to
#PBS -q default

# send an email on job Abort , Begin , End
#PBS -m abe

# commands to be run
cd $PBS_O_WORKDIR
mpirun -np 84 -machinefile $PBS_NODEFILE \

simdist -mpi \
--master -program $PBS_O_WORKDIR/phyloea/master \
--master -arguments "80 4 300 0.1 0.7" \
--slave -program $PBS_O_WORKDIR/phyloea/fitness.py

Fig. D.1: A job file for running a job on 84 cores (7 nodes, 12 cores on each
node). The lines starting with #PBS are commands for the scheduling system. The
first line specifies which shell should run the job.
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Appendix E

Preparing the Sequence Data

The input data for the EA system is assumed to be aligned and without
gaps. When using Phyml to evaluate the likelihood of a tree, the input files
should be in the Phylip format, while the built-in fitness evaluator wants
its input in Fasta format. The commands below is a step-by-step recipe to
convert a set of Fasta files (a format that is usually available from sequence
databases) to one file of aligned sequences without gap sites (see 2.1.2).

1. Concatenate these into one file containing all sequences
cat *.fasta > all_sequences.fasta

2. Align these sequences using clustalw1:
clustalw all_sequences.fasta -ALIGN -OUTPUT=FASTA

3. Remove gap sites with the trimAl2 tool:
trimal -nogaps -in all_sequences.fasta > nogaps.fasta

clustalw can also be used to convert the data to Phylip format:

• clustalw nogaps.fasta -convert -OUTPUT=PHYLIP

This will write the file nogaps.phy.

1This can also be done online at The European Bioinformatics Institute
where one can submit Clustal alignment jobs and get the results by email:
http://www.ebi.ac.uk/Tools/msa/clustalw2/

2http://trimal.cgenomics.org/downloads
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