
Master of Science in Computer Science
June 2011
Keith Downing, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Combining offline and online learning in
developing an adaptive controller for a
simulated car racing environment

Snorre Christoffer Corneliussen
Magnus Westergaard

Problem Description

The goal is to implement an arti�cial intelligence car controller to be entered in an
annual simulated car racing competition. By combining o�ine and online learning
the controller should be able to adapt to new tracks in unknown environments.
The controller will be compared to previous entries that have performed well, both
in terms of the methodologies used and racing performance.

Assignment given: 17 January, 2011
Supervisor: Keith L. Downing, IDI

Abstract

This report presents the work done to develop an autonomous driver
for the Simulated Car Racing Championship (SCRC), a competition in
computational intelligence based on The Open Racing Car Simulator
(TORCS). Autonomous race driving based only on local sensory data
is a complex problem, and previous SCRC entries' work show a wide
variety of approaches taken to address it. We describe CRABCAR,
a controller that combines o�ine learning prior to the competition
with online learning during the competition to optimize its perfor-
mance in the SCRC context. The presented approach extends and
builds on track modelling and racing line optimization techniques in-
troduced previously, addressing known problems said techniques have
with noisy sensory input and non-perfect track information. CRAB-
CAR's performance is compared to previous entries from the SCRC,
with results showing CRABCAR at a performance level similar to the
others. We conclude that a system for online adaption is essential
when pre-learned strategies are applied to discretely segmented and
non-perfect track models in the SCRC context.

Acknowledgements

It is a pleasure to thank the many people who have made this thesis possible.
First and foremost we are grateful to our supervisor, Professor Keith L. Downing.
With his encouragement, knowledge and guiding advice we were able to complete
the task we set out to do. In addition, we thank him for the �nancial support to
attend GECCO 2011.

We also wish to thank the student colleagues closest to us, working alongside us in
the robotics lab at IDI, NTNU. You provided the fun and stimulating environment
we looked forward to be in and work in every day for the last year. Your feedback
and enthusiasm has lifted our spirits and kept us going. Thank you Jannik Berg,
Camilla Haukenes Karud, Erlend Hamberg, Petter Westby, Johannes Høydahl
Jensen, Tiril Anette Langfeldt Rødland, Pedro León and Even Bruvik Frøyen.

Lastly we wish to extend our gratitude to our parents for their continued love and
support.

Contents

1 Introduction 1

2 Background 5

2.1 The problem . 5

2.2 A brief history of autonomous driving 6

2.3 The Simulated Car Racing Championship 7

2.3.1 Origin and history . 7

2.3.2 Real vehicles vs. SCRC controllers 9

2.4 The software environment . 9

2.4.1 TORCS . 9

2.4.2 The competition software 10

2.5 Evolutionary computation . 12

2.5.1 Evolutionary algorithms . 12

2.5.2 Evolutionary programming 15

2.6 Behavior-Based Robotics . 16

2.7 Related work . 16

2.7.1 Notable previous SCRC submissions 17

2.7.2 Segment-based track modelling 20

2.7.3 Optimizing the racing line 22

i

ii CONTENTS

3 Methods and design 25

3.1 CRABCAR overview . 25

3.2 System architecture and module functionality 27

3.2.1 The architecture . 27

3.2.2 Warm-up module . 28

3.2.3 Drive module . 29

3.2.4 Stuck module . 30

3.2.5 Opponent module . 31

3.2.6 Shifting gears, clutching and braking 32

3.3 The database . 33

3.4 Building a track model . 34

3.4.1 What is being classi�ed . 34

3.4.2 Classifying a track . 35

3.5 Evolution of strategies . 38

3.5.1 TORCS and evolution . 38

3.5.2 Evolution of gear changes 38

3.5.3 Developing turn strategies prior to the competition 40

3.5.4 Optimizing strategies . 41

3.5.5 Using Evolutionary Programming to optimize the strategies 43

3.6 Adaptivity . 43

3.6.1 How the adaptivity works 44

3.6.2 Adaptivity to increase turn speed 45

3.6.3 Adaptivity to reduce turn speed and handle dangerous areas 45

3.6.4 Preparing for qualifying stage 47

4 Results and discussion 49

4.1 The consequense of noisy sensors 49

4.1.1 Example of classifying with and without noise 50

4.1.2 Test setup . 51

4.1.3 Results and discussion . 51

CONTENTS iii

4.2 Optimization of gear shifting scheme and turn strategies 53

4.2.1 Evolution of gear shifting scheme 53

4.2.2 Results and discussion . 54

4.2.3 Evolution of turn strategies 55

4.2.4 Strategy evolution discussion 56

4.2.5 The e�ect of double turn strategies 60

4.3 The e�ect of adaptivity . 60

4.3.1 Example of applying strategies 61

4.3.2 Testing the e�ect of adaptivity 62

4.3.3 Results and discussion . 62

4.4 CRABCAR vs. other controllers . 63

5 Conclusion and future work 67

A Competition rules and setup A1

A.1 Rules and Regulations . A1

A.2 E�ectors and sensors . A3

B Strategies evolved B7

B.1 Single turn strategies . B7

B.2 Double turn strategies . B8

iv CONTENTS

List of Figures

2.1 Screenshot from TORCS. 10

2.2 Competition software architecture 11

2.3 Cycle of operation for an evolutionary algorithm. 14

2.4 Crossover on real valued genotypes. 15

2.5 Tournament-selection as a selection strategy. 16

2.6 Behavior-based architecture. 17

2.7 Track edge sensors. 20

2.8 Racing line de�ned as a series of points P1 . . . Pn. 22

3.1 CRABCAR during the warm-up stage of the competition. 27

3.2 CRABCAR architecture. 28

3.3 Illutration of the car being front_stuck. 31

3.4 Evolutionary system using TORCS for �tness evaluation. 38

3.5 Acceleration as a function of RPM is unknown. 39

3.6 Example of a strategy in practice. 41

3.7 The potential advantage of double turn strategies. 42

3.8 Two of the tracks used for �tness evaluation. 44

3.9 An example of driving o� the track due to too high speed. 47

4.1 Illustration of the track Dirt5. 50

4.2 Gear shifting scheme evolution . 54

4.3 Evolution of a single turn strategy. 57

4.4 Evolutionary run of a double turn strategy. 59

v

vi LIST OF FIGURES

4.5 Example of the in�uence of strategies. 61

4.6 Comparison of runs done with and without the use of strategies. . . 62

4.7 Comparing the performance of CRABCAR to other controllers. . . 65

List of Tables

2.1 Sensors. 13

3.1 Distinct turn types. 36

4.1 Classi�cation of the track Dirt5 with and without noisy sensors. . . 51

4.2 Comparison of lap times with and without noisy sensors. 52

4.3 Calculating a �nal single turn strategy. 57

4.4 Comparison of single turn strategies and double turn strategies. . . 59

4.5 Two examples illustrating the di�erence between single and double
turn strategies. 60

4.6 Comparison of lap times with and without adaption. 64

A.1 E�ectors available to the SCRC participant controllers. A3

A.2 Sensory information available to the controllers (part I). A4

A.3 Sensory information available to the controllers (part II). A5

B.1 The �nal single turn strategies. B7

B.2 The �nal double turn strategies. B8

vii

viii LIST OF TABLES

Chapter 1

Introduction

International simulated racing car competitions have recently become a popular
testbed for computational intelligence researchers. They provide a platform where
methods and algorithms can be investigated and compared, and have the added
lure of competing and winning against others in the same �eld of research. In
particular, they invite researchers to use and combine arti�cial intelligence (AI)
techniques in novel ways and use them in a more complex testbed than those nor-
mally used to illustrate performance in scienti�c publications. The competitions
in many cases represent something more similar to a real-world problem.

The Simulated Car Racing Championship (SCRC) was �rst held in its current
form as part of IEEE Computational Intelligence and Games Symposium (CIG)
and IEEE World Conference on Computational Intelligence (WCCI) in 2008. The
simulator TORCS, modelling advanced physics and race car dynamics in a nice
3D graphics visual package, was the basis for the competition. Relying only on
local sensory data from a car, participants were tasked with designing a controller
that drove the race car around a unknown tracks with the possibility of multiple
opponents racing at the same time. The championship has had largely the same
format in recent years, with two important changes in added in the 2010 version.
An extra challenge presented itself with the introduction of noise on the sensors
used in distance measurements, and a warm-up stage was added. In this stage,
controllers were allowed to drive alone on the tracks - prior to the part of the
competition where they would be scored on performance - for a limited amount of
time, providing an opportunity to obtain knowledge about the track layouts. This
knowledge can be utilized in the later stages when the controllers are competing
against each other. The SCRC is made up of several individual competitions, each
of which happens at di�erent conferences and with di�erent racing tracks.

Although there is little time for online learning (i.e. during a competition) without

1

2 CHAPTER 1. INTRODUCTION

risk, there is no limit to the amount of time available for o�ine learning prior to
competitions. This can be exploited to learn general behavior applicable to any
racing track environment presented in the competitions. The warm-up stage of
the competitions can then possibly be used for adapting and optimizing behavior
specially for that particular track.

Beside providing a competitive testbed for researchers, the competitions have two
goals. Firstly, commercial computer racing games can bene�t from the research.
Most commercial games utilize controllers hand-coded by the developers and do-
main experts, which is a hard and time-consuming process. Such controllers do
most likely have access to more of the game state than controllers in the SCRC.

The other goal of these competitions is to encourage development of techniques
applicable for real world scenarios. The development of autonomous cars is an
important �eld of research. Predicted bene�ts of having fully autonomous cars are
improved safety and comfort and reduced fuel consumption and emissions. Over
the last few decades many di�erent approaches to this problem have been stud-
ied, and successful prototypes have been demonstrated (see Section 2.2). General
Motors expect semi-autonomous cars on the roads by 2015, i.e. cars that need a
driver to navigate complex junctions and busy city streets but are autonomous on
the highway. They envision fully autonomous cars being available by 2020 [1].

The motivation for doing the work described in this thesis is two-fold. Firstly,
we wish to get a good understanding of this particular �eld of research by seeking
out knowledge about the SCRC competition setting and how AI techniques can be
applied to solve the problem it poses. In particular, we wish to address the problem
of using an abstract model of a race track produced under noisy conditions, and the
potential in utilizing driving strategies learned o�ine prior to the race to improve
racing performance. Secondly, we are to implement a car controller system of
our own and participate in the SCRC hosted at the Genetic and Evolutionary
Computation Conference (GECCO) in Dublin, Ireland 2011. This system will in
this thesis be referred to as CRABCAR.

The SCRC introduces many interesting AI challenges. Being able to map local
sensor information to actions that make the car race fast is not a trivial task, and
many di�erent approaches have been studied, using techniques such as arti�cial
neural networks, evolutionary algorithms and fuzzy logic (see Section 2.7). Since
the race tracks used in the competitions are unknown, it is di�cult to plan ahead
without �rst learning the track. There have been attempts at building abstract
models, usually by abstracting the track as a set of segments with properties
concerning length, curvature and more.

Our primary research questions, which we will investigate in this thesis, are:

Whether or not it is possible to build and e�ectively use a track model in the noisy

3

environment, and how o�ine learning can can aid performance when there is very

limited time for online learning.

In this thesis we develop a car controller system that communicates with TORCS
using the SCRC framework. The controller combines online and o�ine learning
techniques to create a model of its environment and exploit this information in
attempt to optimize racing performance (i.e. driving as quickly as possible while
remaining on the track and avoiding collisions).

Evolutionary learning is utilized o�ine to optimize parameters related to general
driving (e.g. when to gear) and handling of di�erent turn types, such as preferable
speed and positioning on the track prior to the turn. Online, we apply a turn
classi�cation technique inspired by Quad�ieg et al. [2], but modi�ed to handle
noise, to create an internal model of the track to allow planning ahead. While the
model is created during the �rst lap of a race, the controller is able to adapt its
behaviour in subsequent laps to allow for adjustments to increase performance and
decrease error. The track model is updated with these adjustments if they prove
to produce a faster driver.

This thesis is structured as follows: Chapter 2 begins with a description of the
problem. After that, a brief history of the research �eld of making autonomous
vehicles, both in the context of real prototypes and simulations, is presented.
The di�erences between the two are brie�y discussed. This is followed by an
introduction to the related work from the recent past and what is currently being
done in the �eld.

Chapter 3 describes the methods and design behind the CRABCAR system of this
report. Chapter 4 presents the experiments that have been conducted and lists
and discusses the results of testing the system. Chapter 5 summarizes the work,
concludes the thesis and discusses implications for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we introduce the problem area of the work presented in this thesis.
The history of autonomous driving is brie�y explored, before going into details re-
garding the simulated car racing environment which our system will focus towards.
Some necessary concepts are described, and we take a look at other systems that
have been used to solve similar problems.

2.1 The problem

Designing a controller for a car robot that performs well with only limited local
information available is a complex task. The problem is producing a good mapping
between the noisy input sensory signals and the actions of the vehicle, such that the
car is able to drive as fast as possible while staying on the track, and at the same
time dealing with dynamic changes in the environment in the form of opponents.
This includes managing speed and position in arbitrary turns, handling S-shaped
chicanes at the end of high-speed straights, avoiding collisions and overtaking
opponents. It should be able to do so on any racing track without any a priori
knowledge of the layout, except from what is gathered through the sensors during
the time-limited warm-up stage (see Section 2.3) of a competition. This makes it
di�cult to produce an internal model of the track for planning purposes. Coupled
with the facts that there was no warm-up stage or noisy sensors prior to the 2010
championship, the majority of the work done regarding the racing car bot problem
has focused on reactive controllers with little or no internal state (see Section 2.7).

5

6 CHAPTER 2. BACKGROUND

2.2 A brief history of autonomous driving

The �rst major step in the �eld of automous vehicles can allegedly1 be dated
back to 1977, when Japanese researchers at the Tsukuba mechanical engineering
laboratory produced a driverless car which was able to follow a specially made
course. It used specialized hardware to follow white markers on the road, and
achieved speeds of up to 20 mph. Several major research projects that would
advance the �eld were undertaken in the 1980s.

Ernst Dickmanns and his team at the Bundeswehr University of Munich (UniBwM)
from Germany collaborated with Daimler Benz, and modi�ed a Mercedes-Benz van
so that it was possible to control throttle, brakes and steering via a computer [3].
It was �tted with a UniBwM image processing system and was in 1987 able to
achieve speeds of 96 km/h over a 20 km stretch on a blocked highway.

In the United States, the Defense Advansed Research Projects Agency (DARPA)
funded the Autonomous Land Vehicle (ALV) project [4]. The result was a 15,200
lb, eight-wheel vehicle �tted with a TV camera for computer vision and a laser
scanner for range detection. Limited by processing power, it used 2-3 seconds to
process an image and decide what to do next. Later iterations of the ALV was
able to navigate o�-road through terrain with obstacles.

In 1987, the Pan-European �PROgraMme for a European Tra�c of Highest E�-
ciency and Unprecedented Safety� (PROMETHEUS) started [5]. The EUREKA-
funded project was a collaboration between several universities and car manufac-
turers, and among them Dickmanns and his team from UniBwM. In 1994, their
re-engineered Mercedes 500 SELs VaMP and VITA-2 were used in the �nal pre-
sentation of PROMETHEUS. On a three-lane highway near Paris, France, they
drove more than 1,000 km in normal tra�c with a safety-driver onboard. They
were capable of overtaking others, an action requiring them not only to interpret
the world in front of them, but also behind them. This was the �rst of several long
distance experiments to follow.

In 1995, a 1758 km trip from Munich to Odense in Denmark was made by VaMP,
where a total of 95% of the distance covered was done autonomously [6]. The car's
controller was based on saccadic computer vision, and it achieved speeds exceeding
175 km/h on the German Autobahn.

The �No hands across America� project from the Carnegie Mellon University
(CMU) drove their vehicle NavLab5 from Pittsburgh, Pennsylvania to San Diego,
California the same year [7]. Using a combination of computer vision, gyroscope
and GPS, it achieved 98.2% autonomous driving (by distance).

1http://en.wikipedia.org/wiki/Driverless_car

2.3. THE SIMULATED CAR RACING CHAMPIONSHIP 7

In 1998, VisLab of the University of Parma's ARGO project completed a 2,000 km
journey throughout Italy [8]. The fact that the vehicle was only �tted with two
cheap black-and-white cameras to perform stereovision in order to navigate makes
this achievement particularly notable. The journey was done 94% autonomously.

DARPA launched their �rst Grand Challenge in 2004 as the �rst of its kind in
the world [9]. With the promise of a $1,000,000 �rst prize, all businesses and
organizations from anywhere in the world were welcome to enter the contest, given
that at least one US citizen was on the team roster. The �rst Grand Challenge
was set in the Mojave desert, where contestants were to complete a 240 km route.
None did. The next year, however, �ve vehicles successfully completed the Grand
Challenge and nearly all the �nalists surpassed the distance covered in the previous
year's challenge [10]. The top contestants were teams from CMU and Stanford
University, with Stanford as the winner. In 2007, the Grand Challenge was set in
an urban environment [11]. This time, CMU was victorious, with Stanford coming
in second place.

Two more recent accomplishments have earned attention from mainstream media.
In October 2010, Google revealed that they had been working on driverless cars for
several years, and that their �eet of test cars had travelled a total of 230,000 km
without any incidient [12]. The project is lead by Sebastian Thrun, director of the
Stanford Arti�cial Intelligence Laboratory, who was involved in the team that won
the 2005 DARPA Grand Challenge. With him are several key personnel previously
involved with successful DARPA Challenge teams. The goal of the Google project
is better highway safety and a lower impact on the environment.

The second recent event was the VisLab Intercontinental Autonomous Challenge
(VIAC) [13]. The 2010's World Expo in Shanghai, China had the theme "Better
City - Better Life". VIAC's goal was to demonstrate that autonomous, environ-
ment friendly vehicles could cross extreme distances under normal tra�c condi-
tions. Over a three month period, four vehicles divided into two leader-follower
pairs, journeyed fromMilan, Italy to Shanghai. The leader vehicles provided routes
for the follower vehicles to follow. Human interaction was only needed in special
cases in the leader vehicles - the followers were fully autonomous. The journey
totalled 20,000 km.

2.3 The Simulated Car Racing Championship

2.3.1 Origin and history

The �rst version of the simulated car racing competition was held in 2007, at the
IEEE Congress on Evolutionary Computation (CEC) and the IEEE Symposium on

8 CHAPTER 2. BACKGROUND

Computational Intelligence and Games (CIG) (changed name to IEEE Conference
on Computational Intelligence and Games in 2010). The competition used a simple
driving game based on a 2D physics model called simplerace. Two cars were
pitted against each other, and the goal was to pass through as many randomized
waypoints as possible within a certain time frame. Three waypoints existed at any
given time of the game, of which only two were observable by the cars, and the
cars had to pass through them in the correct order. Once one of the cars passed
through a waypoint it would disappear. This meant that if a car was able to
predict that its opponent would reach a waypoint �rst, it could plan accordingly
and head straight for the second waypoint which would �activate� on the car's way
there. The majority of the participants incorporated some form of decision module
in their systems, which purpose was to �gure out which of the two observable
waypoints was worth pursuing. There was a broad spectrum of AI techniques used
for navigation: recurrent multi-layer perceptron (RMLP) neural networks, genetic
programming, continuous-time recurrent neural networks (CTRNN), a collection
of fuzzy systems and force �elds [14].

Several aspects of the competition were changed for 2008. TORCS was introduced
as the replacement for the simple 2D driving game used in the competition's �rst
year. The motivation behind this change was to introduce more complexity for
the controllers to tackle, with the ability to have more than two cars on the same
track simultaneously. It would demonstrate that computational intelligence could
be used for more than academically conceived benchmarks, and hopefully attract
more attention with its advanced 3D graphics [15].

Several new rules were added to the competition, most importantly a set interval
between the issuing of sensory data from the simulation to the controller. This
meant that controllers would have to process the information and react to it quickly
if they were to rely on the most recent sensory data. The limit came as a result of
a lesson learned the year before: because they had relied on opponent-modelling,
the top-scoring controllers had been very computationally expensive, and would
take hours to run and evaluate [14].

In 2009, several simulated car racing competitions were organized into one big sim-
ulated car racing championship, the SCRC. There were three competitions, each
consisting of three races, at three di�erent conferences: IEEE CEC 2009, IEEE
CIG 2009 and the 2009 ACM Genetic and Evolutionary Computation Conference
(GECCO 2009) [16]. The rules of the championship were similar to those of the
previous year. Thirteen teams participated, several of which were updated versions
of controllers submitted to the 2008 competitions. The best controllers performed
signi�cantly better than the best controllers of 2008.

The 2010 SCRC was organized largely in the same fashion as the year before (see

2.4. THE SOFTWARE ENVIRONMENT 9

Appendix A.1). The directions of the distance sensors on the cars were made cus-
tomizable to the controllers, and noise was added to the distance sensors' signals.
A warm-up stage was added, allowing controllers to drive alone on the tracks for
a set amount of time without being scored on performance. This enabled them
to potentially learn about the track layout and properties before the competitive
qualifying and race stages. The new rules also introduced control of the clutch,
adding even more complexity to the gear shifting and use of the brake and accel-
erator.

The only change made for the 2011 version of the SCRS was a decrease in the noise
applied to sensors detecting opponents, and an increase in the noise applied to the
sensors detecting the track edges. For a complete description of the competition
setup, rules and regulations, see Appendix A.

2.3.2 Real vehicles vs. SCRC controllers

The projects mentioned in Section 2.2 concerning real cars have fundamentally dif-
ferent goals from the controllers developed for the SCRC. They focus on reliability,
driver comfort, adhering to tra�c laws and navigating di�cult terrain instead of
fast driving. All of them are based in part on computer vision techniques, which
are not applicable to the SCRC in its current format. The more recent projects
also include GPS as part of their navigation systems. The use of lasers and radars
to locate obstacles and measure distances are real-world relatives of the range �nd-
ing sensors of the simulator, but all in all, techniques used by these autonomous
vehicles in the real world do not seem directly transferable to the SCRC controller
context. The main focus of the literature study in this report has therefore been
on previous work done in simpler, simulated environments.

2.4 The software environment

2.4.1 TORCS

The simulator used throughout the work done, both for experiments and the �nal
competition, is The Open Racing Car Simulator (TORCS) [17]. Development �rst
started in 1997, and was done by Eric Espié and Christophe Guionneau. At �rst it
was a 2D simulator, which eventually evolved into simple 3D shapes. Engines,
textures and more sophisticated physics have since been added, and although
the original creators no longer oversee the project, an active community led by
Bernhard Wymann have continued development [18].

10 CHAPTER 2. BACKGROUND

Figure 2.1: Screenshot from TORCS.

TORCS is licensed under GNU GPL [19] and Free Art License [20], and is currently
available for all major platforms, including OS X, GNU/Linux and Microsoft Win-
dows. It is written in C++ and uses OpenGL to produce the 3D graphics shown in
Figure 2.1. Although it can function as a simple race car driving game, users are
encouraged to create their own AI controlled "bots" and have them race against
each other. The online community TORCS Racing Board [21] serves as a platform
for such competitions, where anyone can participate and let their bot compete
against those of other participants. Two other popular competitions are the Sim-
ulated Car Racing Championship and Demolition Derby. They both use modi�ed
versions of TORCS as platforms for the competitions.

2.4.2 The competition software

The Simulated Car Racing Championship committee provides a software pack-
age that, when installed, patches TORCS to the state used in the championship.
TORCS provides users with a way to create, test and use their own bots. However,
to control and limit the way user bots may interact with the simulator, the patch
wraps a server-like entity around the original bot interface. Participants of the
competition have to interact with TORCS through this server by implementing
clients that adhere to the communications protocol de�ned by the SCRC commit-
tee. During a competition, every bot running in the simulator is a server with a

2.4. THE SOFTWARE ENVIRONMENT 11

TORCS

Server

Bot

Game engine

Client

AI Controller

UDP

Figure 2.2: Competition software architecture. Communication between the race
controller and the SCRC software incorporated with the TORCS framework.

corresponding client.

All communications happen via UDP. The communication �ow between the con-
troller and TORCS is shown in Figure 2.2. The serverbot sends the current state
of sensors in the simulator to its client once every game tick, which corresponds to
20 ms of simulated time. The client then has 10 ms to respond to the server with
what actions the bot should take. If the server receives no response, the actions
of the previous game tick are repeated.

Decoupling the client from the simulator in this way means that as long as the
controller client adheres to the server communications protocol de�ned by the
committee, the client implementation can be done in a number of programming
languages. Example implementations of very simple clients are provided for Java
and C++.

The clearly de�ned interface and time limit, coupled with the freedom of language
agnostic controller support, result in little overhead in the development of a con-
troller. Good documentation of both the installation process of the TORCS patch
and the client-server interface allow participants to focus their time on developing

12 CHAPTER 2. BACKGROUND

the AI controller in the client. A short description of the sensors available to the
controllers is listed in Table 2.1. The full description of sensors and acutators can
be found in Appendix B.

The server also provides a few mechanisms for the user and client to control the
race settings, such as race stop conditions, number of races and data output from
the simulator. These mechanisms are designed to let the user run races in batch
mode under de�ned conditions, a necessity when training and testing controllers.
A text-only mode of the simulator makes it possible to run simulations at much
faster speeds than real-time. This mode makes AI methods that require a lot of
time, such as evolutionary computation methods, feasible.

2.5 Evolutionary computation

2.5.1 Evolutionary algorithms

Evolutionary algorithms (EAs) [23] seek to solve search problems by means of
mechanisms inspired by those found in natural evolution. An initial population
of randomly generated genotypes that encode candidate solutions (phenotypes) is
evolved through many iterations, similar to natural generations. A �tness function
developed from the criteria of the problem to be solved is used to evaluate pheno-
types. The �tness is a measure of how well adapted a phenotype is to solve the
problem, and the more �t individuals are given a bigger chance to reproduce and
have their properties survive to the following generations. During reproduction,
evolutionary operators such as mutation and crossover introduce diversity into the
population, potentially creating novel and better solutions. The cycle of �tness
evaluation and reproduction can continue as long as is needed, illustrated in Fig.
2.3.

The genetic representation, describing the elements of a genotype and how they are
mapped to the phenotype, is problem dependent. A good genetic representation
should produce meaningful phenotypes that are likely to produce better individuals
in the reproduction process, and all the possible genotypes should cover as much
of the solution space as possible. Genotypes are commonly encoded as bit strings,
but can also be real values or tree structures.

The initial size of the individual population is often problem-dependent. If the
�tness evaluation process is very time-consuming, for example with evolution of
robots, relatively few individuals are used to be able to iterate over many genera-
tions. If the �tness landscape is such that small mutations are likely not to improve
�tness, larger populations of hundreds or thousands of individuals are used.

2.5. EVOLUTIONARY COMPUTATION 13

Sensor name Range Description

angle [−π,+π] Angle between the car direction and the
direction of the track axis.

damage [0,+∞)
(point)

Current damage of the car.

distFromStart [0,+∞) (m) Distance of the car from the start line along the
track line.

distRaced [0,+∞) (m) Distance covered by the car from the beginning
of the race.

opponents [0, 200] (m) Vector of 36 opponent sensors: Each sensor
covers a span of π/18 (10°) within a range of 200
meters and returns the distance of the closest

opponent in the covered area.
rpm [2000, 10000]

(rpm)
Number of revolutions per minute of the car

engine.
speedX (−∞,+∞)

(km/h)
Speed of the car along the longitudinal axis of

the car.
track [0, 200] (m) Vector of 19 range �nder sensors: Each sensor

returns the distance between the track edge and
the car within a range of 200 meters.

trackPos (−∞,+∞) Distance between the car and the track axis.
The value is normalized w.r.t. the track width:
It is 0 when the car is on the track axis, −1
when the var is on the right edge of the track
and +1 when it is on the left edge of the track.
Values greater than 1 or smaller than−1 mean

that the var is outside of the track.

Table 2.1: Some of the sensors available to the controllers.

14 CHAPTER 2. BACKGROUND

Generate initial population

Fitness evaluation

Selection

Reproduction

Crossover and mutation

Figure 2.3: Cycle of operation for an evolutionary algorithm.

A selection strategy is used to determine which and how many individuals in
an evaluated population that are allowed to reproduce. The selection pressure
describes the percentage of the population that are allowed to produce o�spring.
High selection pressure means that few individuals produce the next generations
of individuals, and vice versa. There are many selection strategies with di�erent
properties, working di�erently to maintain diversity in the population while at the
same time maintaining the selection pressure.

The two evolutionary operators mutation and crossover ensure diversity and explo-
ration of novel solutions in the reproduction process. Crossover makes o�spring
inherit features from both parents. Fig. 2.4 illustrates how three variants of
crossover can be applied to real value-based genotypes. Mutation emulate the
sudden changes that can occur in natural genetic material due to radiation, er-
rors in transcription or other causes. In EAs it introduces random changes in
genotypes, normally with very low probability. For bit string genotypes, a bit or
more can be �ipped; for real valued genotypes a random number can be added or
subtracted.

When a new generation is generated, there are several ways of replacing the old
one. Complete generational replacement means no individuals survive to the next
generation, only their o�spring. Gradual replacement can be enforced by replacing
only a number of the least �t individuals with new o�spring. It is also possible to

2.5. EVOLUTIONARY COMPUTATION 15

0.4 0.5 0.1 0.5 1.2 0.2

0.2 0.3 0.3 0.7 1.4 0.0

0.4 0.5 0.3 0.7 1.4 0.0

0.2 0.3 0.1 0.5 1.2 0.2

(a)

0.4 0.5 0.1 0.5 1.2 0.2

0.2 0.3 0.3 0.7 1.4 0.0

0.4 0.5 0.3 0.7 1.2 0.0

0.2 0.3 0.1 0.5 1.4 0.2

(b)

0.4 0.5 0.1 0.5 1.2 0.2

0.2 0.3 0.3 0.7 1.4 0.0

0.3 0.4 0.2 0.6 1.3 0.1

(c)

Figure 2.4: Crossover on real valued genotypes. (a) one-point crossover, (b) uni-
form crossover, (c) arithmetic crossover.

enable elitism, meaning that the best individual(s) are guaranteed to survive to
the next generation.

2.5.2 Evolutionary programming

Evolutionary programming (EP) [22] is a variant of evolutionary algorithms. In-
stead of operating at the genotype level, it manipulates the parameters that de�ne
phenotypes directly. Mutations are based on adding random values from zero-
mean gaussian distributions, and tournament-based selection is often the selection
strategy used [23].

Tournament-based selection, illustrated in Fig. 2.5, works by drawing k random
individuals from the population. The most �t individual of a tournament is allowed
to reproduce, so the total number of tournaments equals the number of individuals
that are to be produced for the next generation. Selection pressure can be adjusted
by changing the tournament size. Bigger tournaments make it less likely that the
less �t individuals are allowed to reproduce.

16 CHAPTER 2. BACKGROUND

Figure 2.5: Tournament-selection as a selection strategy.

2.6 Behavior-Based Robotics

Behavior-based robotics (BBR) is a methodology to design and build robots to
operate in real world environments [24]. Situatedness and embodiment is of impor-
tance in this approach, meaning that the robot control system should experience
the world and make desicions based on its own sensory information in the actual
environment, as opposed to dealing with abstract descriptions and/or simulations
of the environment [23].

A behavior-based architecture consist of several independent modules of intelli-
gence/behavior. Based on sensory input, each module calculates the appropriate
behavior according to its goal, and the �nal action can depend on behaviors sug-
gested from the di�erent intelligence modules (see Figure 2.6). An example of this
kind of architecture is the subsumption architecture, introduced by Brooks in 1986
[25]. In this approach, behavior modules are organized in layers, each implement-
ing a goal of the agent, and the higher levels subsume the decision proposed by
the early layers.

2.7 Related work

The Simulated Car Racing Championship has been a very transparent competi-
tion from the beginning. Information about previous submissions are available in
several forms through the websites and proceedings associated with the various
conferences that host the competition. Many of the participants release the source
code of their projects, allowing previous and future competitors as well as anybody
else interested to explore their systems in detail. There has also been published
a number of papers on the subject, directly related to the major methods and
techniques used in the submissions for the competition. As a result there has been

2.7. RELATED WORK 17

BEHAVIOR 2

Action
selection

BEHAVIOR 1 BEHAVIOR 3

Figure 2.6: Behavior-based architecture. Di�erent behavior modules suggests ac-
tions to take based on their goals and sensory information, and a decision is done
based on these suggestions. Di�erent architectures use di�erent approaches in
making this decision, i.e. interpolating suggestions, choosing the one with highest
priority, etc.

noticeable �feature di�usion� [14], where participants have been inspired by each
other's work and emulated seemingly successful features.

The di�erent approaches investigated over the lifetime of the competition have
ranged from using AI methods to develop controllers entirely, to hand-coding rule-
sets for the controller (there is no rule that forbids this), and di�erent combinations
of the two. In Section 2.7.1 we brie�y describe many of the approaches taken and
their most notable results. Sections 2.7.2 and 2.7.3 contain more detailed descrip-
tions and results of the two approaches that have been the main inspiration for
the approach proposed in this thesis.

2.7.1 Notable previous SCRC submissions

Matt Simmerson and Luigi Cardamone produced controllers based on Arti�cial
Neural Networks (ANNs) developed using Neuro Evolving Augmented Topologies
(NEAT) [15, 26], a technique that evolves both the structure and the weights of
an ANN. It starts out small, and grows as nodes and links are added. Simmerson's
controller intitially used three random sensory inputs. By the end of the evolu-
tionary process, it used 9 of the available 36. The controller won the competition
at IEEE WCCI 2008.

Butz and Lönneker [27] would challenge the NEAT approach with their CO-
BOSTAR controller in 2009. Inspired by Braitenberg vehicles they devised strate-
gies for a sensor-action mapping for both on-road and o�-road racing, and op-

18 CHAPTER 2. BACKGROUND

timized the paramaters of these strategies using a covariance matrix adaption
evolution strategy. The optimized strategies were tested for their generality on
tracks not used in the evolutionary process, and the most general parameters were
used in the �nal controller which won the competition at IEEE CEC 2009.

Several controllers have utilized fuzzy logic [14]. Perez et al. [28] created a con-
troller based wholly on a fuzzy logic . Their approach was to take an already
competent controller that was able to navigate tracks in a simple way and use it
as a seed for an evolutionary process which optimized its fuzzy sets.

Learning by imitation has been used as an approach to impose human-like be-
havior on arti�cial intelligence. This approach can generally be divided into two
categories: Direct and indirect methods [29]. Direct methods try to extract be-
havior from training data sets describing the target behavior. Indirect methods
use the same data to guide the development towards the target behavior through
methods such as neuroevolution. Togelius et al. [29] attempted to model human
behavior in car controllers as part of their e�ort to auto-generate racing tracks
that a human would consider entertaining, as subjecting a real human player to
the thousands of tests needed to determine the quality of a track was unfeasible.
Early e�orts were based on data recorded when a human player drove a car. First,
a neural network controller was trained using backpropagation. Even though the
error rate of the network after training was very low, they achieved very little
success with this approach. Using the same training data, another controller used
a k-nearest neighbor classi�er to determine which output in the training data best
matched the current sensory input. This controller performed well, but was prone
to missing turns and crashing as time went on. Having no recovery mechanism, it
got stuck.

van Hoorn et al. [30] used TORCS to investigate the question of whether there
would be a trade-o� between driving like a human and driving as good as possible
in the game. To make controllers display human-like behavior, keyboard input
logs were recorded from a human player and used to train them. These were then
compared to controllers developed to perform as good as possible. They found it
hard to produce controllers that were as human-like as they desired, but had good
results with the controllers only focusing on being good at the game.

Cardamone et al. [31] extended the approach of using a direct method to train a
car controller and applied their approach to TORCS. By using high-level informa-
tion about a track and predicting high-level actions, they were able to produce a
controller that achieved performance 15% lower than the best TORCS bot avail-
able at the time. The high-level information was acquired through a specially
made sensor that detected the curvature of the track ahead, making the approach
impossible to use in the SCRC context. Controllers that used the traditional sensor

2.7. RELATED WORK 19

setup from the SCRC behaved much like the controllers of Togelius et al. [29].

The issue of perceptual aliasing has been presented as a cause for the poor per-
formance of controllers trained using direct methods [31]. This occurs when the
target behavior is inconsistent in its mapping of sensory input to actions. If a
TORCS controller with the sensors and actions available in the SCRC is to be
trained using a data set obtained from a human driver or another controller, an
example of inconsistent behaviour can occur on straight sections of the track prior
to a turn. The human player will in many cases be able to see the turn up ahead,
and position herself on the right for a left-hand turn and vice versa, allowing higher
speed turns. The sensors of a controller are not able to detect turns beyond their
range. If, on two di�erent straight sections that produce the same sensory input
to the controller, the human decides to position herself left on the �rst straight
and right on the second in preperation of turns outside of the controller sensors'
range, the same sensor values would map to two di�erent actions in the data set
being recorded. The SCRC rule changes from 2009 to 2010 included an increase
in the range of the track edge sensors from 100 m to 200 m. Such an increase in
range can reduce the problem of perceptual aliasing and improve performance of
controllers trained for imitation through direct methods [31].

No information about a racing track's layout is known by the car controllers in
SCRC before the competitions. With the inclusion of a warm-up stage in 2010,
learning the layout and building a track model to use for planning became a more
viable approach to producing a competitive controller.

Muñoz et al. [32] deviced a method to build a track model by analyzing the speed of
the rear wheels of the car. Assuming that the two wheels' trajectories were on the
radii of concentric when the car is moving circles and knowing the distance between
the two rear wheels, they calculated the di�erence in angle between consecutive
sampling points all along the track. All the edge detection sensors were pointed
perpendicularly to the car's axis out on both sides of the car. The average provided
an estimate for the distance to either side of the track from the car. Knowing the
angle between the car's axis and the track direction, they were able reconstructed
a track model. Comparing the reconstructed tracks with the originals revealed
som discrepancies, with 4 out of 5 track models being discontinuous. All the turns
of the original tracks had a corresponding turn in the track models, but the shapes
were, in general, less sharp and less detailed than the original. The end result was
a track model described by the angles between cross-sections of the track at 4m
intervals. The track was used in an attempt to produce a human-like controller,
employing several neural networks to predict the trajectory of humans. The pure
racing performance results were not impressive as a result. However, their entry
in the WCCI 2010 leg of SCRC (presumably tweaked since the publishing of their
results) won the competition.

20 CHAPTER 2. BACKGROUND

2

3

4

1 17

16

180

11

(a)

2

3

4

1 17

16

180

idxl

idxr

11

(b)

Figure 2.7: (a) Illustration of track edge sensors si, which return the distance to the
edge of the track at di�erent angles vi with respect to the car axis. −90° ≤ vi ≤ 90°.
(b) The red vectors illustrates the vectors li and ri, which de�ne the outline of
the track. Not all sensors and vectors are drawn in the illutrations for the sake of
readability.

2.7.2 Segment-based track modelling

Quad�ieg et al. [2] proposed a track segment classi�cation system capable of
modelling a race track by processing sensory data recorded over one lap on any
unknown track. The track modelling process is based around p, a property derived
from the sensory data to describe the curvature of the track in front of the car.
The method takes use of the 19 track edge sensors si, which return how far the
car is from the track edges at the di�erent angles vi (see Fig. 2.7a). First, the
track edge sensors are used to construct two-dimensional vectors si using a local
coordinate system with the car in the origin. The vectors are representations of
the sensor signals themselves, incorporating their directions as well as their length.
This is done using the formula shown in 2.7.1.

si =

(
− cos

(
vi · π

180

)
· si

sin
(
vi · π

180

)
· si

)
, i ∈ {0, . . . , 18} (2.7.1)

As seen in Fig. 2.7a, some sensors will return the distance to the left side of the
track and some to the right side of the track, while some may, due to limited sensory
range, return the maximum value of the sensor which is 200.0. The next step is
�nding idxl and idxr, where si, i ∈ {0, indxl} represents the sensors returning a

2.7. RELATED WORK 21

distance measure to the left side of the track ands18−i, i ∈ {0, idxr} to the right
side. As can be seen in the �gure, the vectors si, i ∈ {0, idxl} are increasing in
length as i increases, so idxl is found by �rst setting it to 0 and then iterating
through the original sensor values from left to right and setting idxl = i if si > sindl
and si < 200.0. The idxr is found in the same way, by being initialized to 18 and
iterating from right to left.

Based on the indices idxl and idxr two new sets of vectors are computed as shown
in equations 2.7.2 and 2.7.3.

li = si+1 − si, i ∈ 0, . . . , idxl − 1 (2.7.2)

ri = s17−i − s18−i, i ∈ 0, . . . , 17− idxr (2.7.3)

The vectors li and ri de�ne the outline of the left and right side of the track,
respectively (see Fig. 2.7b). Next, we seek to �nd p, which is the measure of the
curvature. This is done by summing together the angles between two consecutive
vectors in the left and right vector set:

pl =
idxl−2∑
i=0

[
arccos

(
l̂i · l̂i+1

)
· 180

◦

π

]
· sgn

(̂
li,x · l̂i+1,y − l̂i,y · l̂i+1,x

)
(2.7.4)

pr =
16−idxr∑
i=0

[
arccos (r̂i · r̂i+1) ·

180◦

π

]
· sgn (r̂i,x · r̂i+1,y − r̂i,y · r̂i+1,x) (2.7.5)

p = pl + pr (2.7.6)

The notation v̂ indicates that the vector is normalized, resulting in simpli�ed
expressions for equation 2.7.4 and 2.7.5. The sgn (. . .) term is introduced to give
a di�erentiation between left and right turns, resulting in p > 0 denoting a left
turn and p < 0 denoting a right turn.

Based on p, the track was divided into segments belonging to one of six possible
classes. Each class had a speed parameter associated with it, dictating how fast
the car should drive when going through a segment of that particular class. They
employed the model and strategies in a simple controller, and were able to outper-
form COBOSTAR on several of the standard TORCS tracks in their experiments.
However, they did not take into account the noisy sensors that were introduced in
the competition in 2010. This resulted in the classi�cation system breaking down,
and an overall poor performance in the 2010 SCRC [33].

22 CHAPTER 2. BACKGROUND

αi

Pi
Pi-1

Pi+1

Pi+2

δ

Figure 2.8: Racing line de�ned as a series of points P1 . . . Pn.

2.7.3 Optimizing the racing line

If a model of a track is available, it is possible to search for the optimal racing
line for a car. Braghin et al. [34] suggested optimizing a compromise between the
minimum curvature path (MCP) and the shortest path (SP). The car's dynamics
a�ect its ability to accelerate, brake and handle turns, and they proposed an
algorithm that, taking such dynamics into account, would identify the optimal
path and speed pro�le. Cardamone et al. [35] adapted and extended this method
to the TORCS environment. The method described relies on perfect knowledge
of the track layout, and their experiments and results were based on extracting
this information from the �les used by TORCS to store tracks. It allowed them to
accurately calculate both MCP and SP of any track in the simulator.

A racing line is de�ned as a series of points P1, . . . , Pn along the racing track, with
the last point Pn connecting to the point P1 to complete the circuit. Assuming
the points are equally spaced along the track by some distance δ (see Fig. 2.8),
the whole racing line can be described by the vector α = 〈α1, . . . , αn〉 where αi
describes the distance of the point Pi from the edge of the track. With both the
MCP and the SP described using such vectors, the goal of the experiments was to
optimize a combination of these that was better than both. The �rst experiment
assumed that the optimal racing line could be described as a linear combination of
the two (�rst proposed in [34]), as described in Equation 2.7.7, using the parameter
ε as a weight.

α = (1− ε) ·αMCP + ε ·αSP , 0 ≤ ε ≤ 1 (2.7.7)

A grid search where lap times were evaluated with ε ranging from 0 to 1 with step
size 0.01 on 11 tracks showed that the best ε was in all but two cases 0 or very

2.7. RELATED WORK 23

close to 0. This means that the optimal racing line was very close to αMCP , which
was consistent with the �ndings of Braghin et al.[34].

The method was then extended to use ε, a vector of weights. The track was
divided into segments wherever the MCP and the SP crossed, and one weight εi
was associated with each such segment. A genetic algorithm was used to optimize
ε so that the weighting of the MCP and the SP was locally optimal in every
segment of the track. The results showed an improvement in lap time on all 11
tracks over the MCP racing line, with all but one track having an improvement
of 0.5 − 1.3 seconds. Given that this controller used information not available in
the SCRC by accessing TORCS track �les directly, it is not directly comparable
to any SCRC submission.

24 CHAPTER 2. BACKGROUND

Chapter 3

Methods and design

This chapter describes the detailed design of the CRABCAR system. A general
overview of the system given, before going more in depth on the key components
and methods.

3.1 CRABCAR overview

The CRABCAR system is implemented in Java, and uses the networking frame-
work provided by the SCRC organizing committee. A slightly modi�ed1 version
of the Watchmaker framework [36] is used to perform evolutionary computation.
The database that is used for persistant storage of track models and strategies
uses SQLite.

CRABCAR is designed around a behavior-based architecture similar to motor
schemas [24], illustrated in Fig. 2.6. Several modules with di�erent functionality
all work together to produce the �nal behavior of the system. The modules all
receive all or some of the sensory information available from the simulator, and
have the ability to override the default behavior given that certain conditions are
met. This allows behaviors like crash recovery and opponent avoidance to be
separated from the core driving behavior of the system, only taking control when
necessary. A description of the architecture and the workings of the di�erent
modules, including crash recovery and opponent avoidance, is presented in Section
3.2.

1Functionality was added to extract more information concerning �tness statistics of pop-
ulations of individuals during evolution. The unmodi�ed version provides only maximum and
average �tness information for a population.

25

26 CHAPTER 3. METHODS AND DESIGN

With the SCRC introducing the warm-up stage of the competition in 2010, the
possibilites for learning the track layout, building an abstract track model and
using it to plan ahead greatly increased. CRABCAR tries to build such a track
model during the warm-up stage. After classifying the turns on the track, it can
bene�t from strategies learned o�ine prior to the competition. The method used
to build the track model is an extension of the approach proposed by Quad�ieg
et al. [2], described in detail in Section 3.4. The main caveat of their approach
is that it does not handle noisy sensors well. This became apparent in the 2010
SCRC when they had performance di�culties due to wrongly classifying turns [33].
CRABCAR introduces �lters that work both on the noisy sensory input and the
proposed classi�cations produced during the warm-up stage of the competition.

When discretely classifying turns and applying strategies concerning speed and
positioning, the main weakness is that the strategies have to be optimized on the
slowest and tightest turns of every class. If not, the car risks entering a turn
too fast, going o�-road and crashing. The car can only take a certain amount
of damage during the SCRC before it is disquali�ed. This means that in many
cases, depending on the granularity of the classi�cation, the car will drive much
slower through a turn than what is actually possible, losing important time in
the competition context. Quad�ieg et al. [2] optimized the speed at which the
car entered turns for their six classes. CRABCAR extends the strategies by also
optimizing the car's position on the track when entering a turn, a�ecting the racing
line. This is inspired by the approach used by Cardamone et al. [35] to describe an
optimal racing line, maximizing the speed at which the car can complete a track.
The optimization process of strategies is described in Section 3.5.

To address the problem of underperforming when using strategies optimized for
the slower and tighter turns of each turn class, an adaptation system with roots
in reinforcement learning is applied to further optimize the strategies. It starts
working as soon as a track has been classi�ed online, and does so on an individual
turn basis. This way, turns that are originally found to be of the same class can
end up using di�erent strategies that are more suited to their individual properties.
These new strategies are kept in the track model and used throughout the later
stages of the competition.

Fig. 3.1 illustrates the major steps in the process used by CRABCAR during the
warm-up stage. First building a track model, then employing strategies that have
been learned o�ine previously, beofre adapting the strategies on an individual
turn basis. After the warm-up stage, very little is done to the strategies and track
model. In the second and third stage of the competition, every second counts.
As the the car is potentially driving at the limit of its abilites after the warm-up
stage, further modi�cation of the strategies has a high likelihood of sending the
car o�-track and ruining its chances of qualifying for and winning the competition.

3.2. SYSTEM ARCHITECTURE AND MODULE FUNCTIONALITY 27

(a) (b) (c) (d)

Figure 3.1: CRABCAR during the warm-up stage of the competition. This is
the phase where classi�cation, the use of o�ine learning and most of the online
learning happens. (a) The �rst lap, where the car drives drives safely around on
the track, positioning itself in the middle of the road, and utilizes range sensors to
sample the curvature for every part of the track. (b) Directly after the �rst lap,
curvature samples are used to create discretized turns, which are are initialized
with prelearned strategies fetched from a database. (c, d) In the following laps,
adaptivity is used to optimize the turn strategies on individual basis.

3.2 System architecture and module functionality

3.2.1 The architecture

The situations a racing car has to deal with are many and varied. Designing a
controller capable of handling them all in a satisfactory manner is a complex task.
The BBR architecture (see Section 2.6) divides the functionality into logical units
that have di�erent responsibilities and a�ect actions only when it is called for. In
the racing car setting we have identi�ed four di�erent behaviors that are the reason
behind the architecture design. Fig. 3.2 shows an overview of the architecture.

The main module is the drive module, responsible for keeping the car on the track
and at the highest speed allowed at all times. The warm-up module is responsible
for controlling the car during the �rst lap of the warm-up stage of a competition,
keeping the car at low speeds and as centered in the track as possible to create the
best possible conditions for building the track model (see Section 3.4). The stuck
module takes control of the car any time it ends up o�-track, and the opponent
module decides the best course of action in scenarios where opponent cars are
nearby. By default, the drive module is controlling the car entirely. Based on
sensory input, one of the other modules may override some or all of the decisions
made by the drive module.

28 CHAPTER 3. METHODS AND DESIGN

TORCS

Stuck
module

Warm-up
module

Drive
module

Opponent
module

SENSORY DATA

Action
NEXT ACTION

Figure 3.2: CRABCAR architecture.

3.2.2 Warm-up module

The warm-up module is designed to be used in the �rst lap of the �rst stage in
a competition. This is the one lap where the track is completely unknown to the
controller (i.e. no model of the track exists yet). During this lap the classi�cation
of turns and track modelling happens, the driving forces behind this module's
behavior. The warm-up module is in complete control of the car for the duration
of the entire �rst lap.

The primary objective of the warm-up module is to facilitate turn classi�cation.
Due to the noise present in the sensors that are used for this, the results of the
classi�cation are best when the car drives as close to the center of the track as
possible, i.e. having equal distances to both sides of the track. The classi�cation
process also bene�ts from smooth movements, avoiding sudden changes in the car's
direction and velocity.

Making a controller that keeps the car in the center of the track for a lap is
trivial. The challenge comes from the time limit imposed on the warm-up stage
of the competition: the track model must be generated as accurately as possible
while still leaving as much time as possible for adaption of the car's behavior to
optimize performance on that particular track after the �rst lap. To compromise,
the warm-up module does rudimentary analysis of the sensor data and sets its
speed accordingly. This means that if the stretch of track ahead of it is straight, it
will accelerate to high speed. If it detects an approaching turn, it will slow down
and try to match its speed to the strength of the turn, all the while steering towards
the center of the track. The changes in speed �t well with the sampling of sensory
data for the turn classi�cation process, which is happening concurrently. Since
the sampling of sensory data is time-based, the slower speeds e�ectively provide
higher resolution in the sensor data collected in turns, and lower resolution when
driving fast on the straight sections that need no classi�cation.

The result of this compromise is a car that navigates the track relatively quickly,
but still defensively. To be on the safe side, it never takes any chances and rather

3.2. SYSTEM ARCHITECTURE AND MODULE FUNCTIONALITY 29

drives slower than it needs to to ensure that it makes it around any track without
going o�-track. Acceleration and braking are done gradually to avoid sudden
changes in the car's velocity.

3.2.3 Drive module

The drive module is the main controller of the car, being responsible for controlling
it at all times except when overridden under special circumstances by the other
modules. Given a track model its purpose is to drive the car as fast as possible,
keeping it on the road by adhering to the limitations imposed by the strategies
associated with turns on the track. This is the most complex controller.

The module is designed to rely on a track model which is provided when the warm-
up module is done and hands the control of the car back over to the drive module.
The track model describes where turns are on the track, and their associated
strategies. The drive module's task is to make sure the car lines up ahead of turns
and adjust its speed according to the information in the track model.

On straight sections of the track, i.e. sections that are not classi�ed as turns and
where the car is not close to an upcoming turn, the car accelerates as much as
possible while aligning with the track direction. If a turn is preceded by a straight
section of track, the module will accelerate until the point where it must start to
brake in order to reach the target speed for the coming turn.

Throughout the turn, the car is kept at constant speed, namely the speed dictated
by the strategy associated with the turn. Steering is done by heading in the
direction of the distance sensor reading the highest value, an example being sensor
11 in Fig. 2.7a. When approaching a turn, just before the car needs to brake, the
drive module aligns the car in the position dictated by the associated strategy of
the upcoming turn. In right-hand turns, the car will enter the turn somewhere
to the left of the center of the track, and vice versa. Combined with the trivial
steering scheme which directs the car towards the inside of the turn, this increases
the radius of the car's racing line through the turn, thus making the car able
to take complete it at higher speeds compared to hugging the inside of the turn
throughout.

Racing tracks often have more complex layouts than a straight section followed by
a turn, followed by a straight section, followed by a turn etc. Chicanes are sections
of the track where two or more turns are chained together directly after each other,
often designed to force cars to slow down after long straight sections. The turns
are often short and relatively sharp. In some instances, a turn is followed by a
sharper turn, in which case the car cannot drive through the �rst turn at the speed

30 CHAPTER 3. METHODS AND DESIGN

it would do if the turn was followed by a straight section. The track model allows
CRABCAR to look beyond the next turn and detect such cases.

3.2.4 Stuck module

Rather than adding the complexity of being able to handle crashes and incidents
where the car drives o� the track and gets stuck to the warm-up module and the
drive module, we opted to separate it into its own module whose sole responsibility
it is to get the car back on the track and facing in the correct direction as fast as
possible. Firstly, it has to detect when it should take control of the car. This is
done by continuously monitoring the sensory input concerning the car's position
relative to the center of the track, the angle it is facing compared to the direction
of the track, and its speed. We de�ne a stuck state for the car. By default it is
not_stuck, meaning that the sensory data shows no indication that the car is
hindered in any way, and the stuck module does not override the drive module.

The most common way of being stuck is where the car is facing close to perpen-
dicularly into a wall and the only option is to reverse. When this happens, the
car's stuck state is changed to front_stuck, meaning that the car is hindered by
something in front of it. Using the names of the sensors as de�ned in Table 2.1, the
conditions for being front_stuck are low speed, de�ned as speedX < 1 km/h
and one or both of the following:

� being nearly or completely o� the track, de�ned as ‖trackpos‖ ≥ 0.8 or

� high absolute value for the angle between the car's direction and the track
direction, de�ned as angle > π/8.

If such a situation persists for 50 game ticks, about 1 s of simulated time, the car is
considered front_stuck and the stuck module assumes total control of it. The
default behavior is then to reverse while turning until the car's direction lines up
with the track's direction. It then brakes, steers towards the track and accelerates.
Once the car is back on the track the control is given to either the drive module or
the warm-up module, depending on which was in control before the stuck module
took over. The routine of reversing and driving back on track is illustrated in Fig.
3.3.

Another situation can happen if the walls enclosing the track are close to the edge
of the track itself. If the car at some point is considered front_stuck and it is
reversing to get back on the track, the car may reverse into the wall on the other
side of the track, in which case further reversing will get it nowhere. The car is

3.2. SYSTEM ARCHITECTURE AND MODULE FUNCTIONALITY 31

Figure 3.3: Illutration of the car being front_stuck. After a second in state
(1), where the car has driven o� track and crashed into a wall, the stuck module
takes control of the car. It then reverses while turning to get aligned on the track
as shown in state (2). Control is handed over to the drive module, which resumes
normal driving, see state (3).

now back_stuck, which is detected in the same way as front_stuck, the
only di�erence being that the car can only become back_stuck if it is already
in the front_stuck state. To get back on track, the car will attempt to drive
forwards and turn in the direction of the track driving direction.

3.2.5 Opponent module

The opponent module is responsible for avoiding opponent cars. It utilizes the
opponent sensors, which return distances to opponents at di�erent angles with
regard to the car's axis. There are 36 such sensors in total, each covering a span of
10◦, and returning the distance to the car nearest in their respective sectors within
a range of 200m. Only 18 of these sensors are utilized by our opponent module,
namely the ones pointing forward and directly to the side (i.e. the sensors covering
the angles [−90◦, 90◦] with regard to the car axis). As such, CRABCAR does not
monitor the opponents behind the cars, but focuses on avoiding those in front and
to the sides of the it. The reason no particular attention is paid to cars not ahead
of us, is that the drive module is then utilized to drive as fast as possible, indirectly
leading to the car avoiding cars coming from behind using speed.

The 18 opponent sensors used are separated into two categories, nearbyLeft and
nearbyRight, containing sensors in the range [−90◦, 0] and [0, 90◦], respectively.
If an opponent is sensed to be only in nearbyLeft, the opponent module suggests
that our controller place itself to the right in the track, to avoid bumping into the
opponent as well as hopefully getting enough room to overtake the opponent. The

32 CHAPTER 3. METHODS AND DESIGN

same is done when opponents are only sensed in nearbyRight, but searching for
room on the left side. If opponents are found to be in both categories, it can mean
two things. Either multiple cars are registred by the sensors, or a car is directly
in front of us. In both cases, the following suggestion from the opponent module
is to steer towards the opposite site of where our controller is placed on the track.
This e�ectively scans for openings where no opponents are straight ahead of the
car, or only on one side.

It should be noted that opponent handling has not been a priority in this work,
which is re�ected in the simple opponent handling module. More advanced behav-
ior, such as blocking opponents coming from behind and planning for overtaking
on the inside, is saved for future work.

3.2.6 Shifting gears, clutching and braking

The car has a total of 7 gears, including reverse. An important component of
driving as fast as possible is to make timely gear changes. By gearing up too
quickly, acceleration is inhibited in two ways: the engine does not exploit the
higher end of the RPM (revolutions per minute) register where it is at its strongest,
as well as starting out in the lower RPM register on the higher gear, where it is
weak. Gearing up too slowly also inhibits acceleration. There is an upper limit
to the RPM an engine can do. If it does not shift gears, its speed will be limited
by this upper limit and the ratio of the gear it is currently in. For instance, it
is impossible for CRABCAR to drive faster than 278 km/h in �fth gear on a �at
track. To drive faster, it is necessary to shift gears up to sixth. This enables it to
exceed speeds of 300 km/h.

The gear shifting scheme for CRABAR is simple: for every forward gear, one
through �ve, there is a number. If the engine's RPM reaches this number, the car
shifts gear up to the next. Similarly, for gears two through six, there is a lower
bounding number. If the engine's RPM dips to this number, the car shifts gears
down. The reverse gear is only used in special circumstances by the stuck module
(see Section 3.2.4), and neutral is never used.

The lower bound for gears is derived from the built-in automatic gearbox in the
TORCS simulator that CRABCAR is running in. These numbers are not as crucial
as the upper bounds, as the car mainly shifts gear down when braking to slow down
before a corner, in which case it uses the clutch to brake with the brakes and not
the engine.

The set of numbers used when gearing up are optimized to provide the best ac-
celeration possible (see Section 3.5.2). Especially in the start of a race, where the

3.3. THE DATABASE 33

car starts from a standstill, these gear shifts are crucial to keep up with and get
ahead of opponents. Another thing that is very important at the start of the race
is the use of clutching.

If the clutch is not carefully used at the start of a race, the car will spin for several
seconds while moving slowly forwards before gaining enough traction to accelerate
properly. The power of the engine in �rst gear results in this suboptimal start
where precious seconds are wasted, allowing the opponents to take an easy lead.
It is therefore necessary to use clutching when starting from a standstill, allowing
the car to put as much power as possible to the wheels without them losing traction.
The clutching scheme used is inspired by Butz et al. [27], which applies alot of
clutch from the start of the race, and slowly decreases it as the car accelerates in
while still in �rst gear. As the car gains speed, the clutch is decreased faster until
no clutch is applied.

E�ective braking allows the car to remain at higher speeds for longer, resulting in
an increase in average speed. In the case of an upcoming turn, the car should not
brake until it is absolutely necessary to reach its target speed for that turn. The
naive approach of letting o� the gas and braking as hard as possible results in the
tires locking up and the car skidding for as long as it takes to bring it down to the
target speed.

The laws of physics dictate that the force needed to get an object moving from a
standstill position is greater than that which is required to keep the object moving.
This applies to the tires when braking as well. If a tire rotating fast enough to
keep up with the car's speed, so that each �patch� of tire is static in relation to
the ground surface it comes in contact with, the traction is much greater than if
a car tire is locked up and sliding across the ground surface. To exploit this using
brakes, one has to perform a pumping action where brakes are �rst applied, then
let o� to allow the tires to regain traction and rotate, then applying the brakes
again and repeating. The automation of this act exists as ABS (anti-lock braking
system) in modern cars. On most surfaces and for most drivers, ABS provides
superior braking distances and vehicle control while braking. CRABCAR uses a
simple ABS scheme, repeatedly letting o� the brakes as soon as the wheels lock up
under braking and waiting a small amount of time before applying them again.

3.3 The database

The three stages the competition is comprised of are three discrete events. If one
wants to carry information (learnt behavior, track information etc.) over from one
stage to another, or even use information acquired before the competition, persis-
tent storage is needed. CRABCAR is dependent on both the general strategies

34 CHAPTER 3. METHODS AND DESIGN

learned ahead of the competition, as well as the track information it gains during
the warm-up stage throughout the rest of the competition. CRABCAR uses a
database to store both its template strategies learned using evolution (see Section
3.5) and the track information with updated strategies that is used in the compe-
tition. When it classi�es turns in the warm-up stage, it uses the classi�cations to
build a track model by extracting matching template strategies from the database.
This track model is then saved to the database for further manipulation. In the
qualifying and racing stage of the competition, the track model is loaded in its en-
tirety from the database, carrying over all the information learned over the course
of the previous stages.

3.4 Building a track model

The championship CRABCAR will be entered in contains a warm-up stage which
takes place prior to the actual competition. In this ~30 minute time slot, the
controller can gather knowledge about the unknown racing track to be better
prepared before racing against the clock and eventually other opponents in the
subsequent stages. If the controller is able to use this time to create some internal
model of the track, it can later use this model to make decisions revolving around
general driving and planning ahead.

When nearing a turn, a completely reactive controller (i.e. a controller without
any internal model of its environment) will, due to only having access to limited,
local sensory information, have no basis of knowing the length or strength of the
turn, nor if it is directly followed by another turn. This makes it di�cult to know
what speed the controller should aim for, as well as how it should place itself in
the track, to be able to traverse the turn in an e�cient manner. If, on the other
hand, a model of the track containing this information is available, it can easily
be exploited in making such decisions. This serves as the driving force for wanting
to classify turns and storing them in a reusable track model.

3.4.1 What is being classi�ed

For each track, we want to classify the following:

type The terrain type of the track.

length The length of the track in meters.

turns A list of of the track's turns.

3.4. BUILDING A TRACK MODEL 35

As the goal of the controller is to navigate a track as fast as possible, we wish
to �nd and label those segments of the track where it can not drive at maximum
speed, which basically means �nding and classifying turns. An exception to this
is when a track has uneven terrain, which can make it di�cult to drive at high
speeds on relatively straight segments. Such special cases are not found directly
through classi�cation, but is entirely handled by adaptivity (see Section 3.6.1).

For each turn, the following is classi�ed:

start Where on the track the start of the turn is located, in meters from the
start line.

direction Whether it is a left or a right turn.

length The length of the turn in meters.

type The type of turn, indicating how fast it can be driven.

Based on the turn type and track type, parameters regarding how fast a
turn can be driven and where the car should be positioned on the track prior to
entering the turn are set based on evolved strategies. This is explained in Section
3.5.3.

3.4.2 Classifying a track

All classi�cation is done during and directly after the �rst lap of the warm-up stage,
when the warm-up module (see Section 3.2.2) is safely and reactively navigating
around the track.

Finding track length

While the length of the track is not something provided by the sensors (see Ta-
ble 2.1), the distFromStart sensor (giving distance to the start line in backwards
direction) is available. At the start of a race, the driver always starts a short dis-
tance behind the start line, so the distFromStart sensor gives a value close to the
track length. To get the exact length, this initial value is �rst temporally stored.
The sensor is then monitored as the race starts, and as soon as it returns 0 (i.e.
the driver has passed the starting line), the exact track length is calculated
by summing together the previously stored value with the latest distRaced sensor
(which returns the distance covered by the car so far in the race).

36 CHAPTER 3. METHODS AND DESIGN

turn type Requirement

Not classi�ed as a turn strength ≤ 15◦

high 15◦ < strength ≤ 20◦

medium 20◦ < strength ≤ 30◦

slow 30◦ < strength ≤ 45◦

hairpin strength > 45◦

Table 3.1: Distinct turn types. All turns are classi�ed into one of these categories.

Sampling and classifying turns

To classify turns we use method extending a technique introduced by Quad�ieg
et. al. [2] (described in detail in Section 2.7.2), which tries to determine an angle
based measure for the curvature of a turn. The curvature measure p is calculated
for each game tick throughout the �rst lap of the warm-up stage, and a sample
for each meter is stored in a list the size of the track length. Directly after the
�rst lap, this list is used as the basis for classifying turns into distinct types. List
segments with a consecutive p-values above 10◦ or below −10◦ are used to create
turn objects with direction left and right, respectively. Turn start and length
are derived from the list index of the �rst and last p-value in such a segment. A
temporary parameter strength is, for each turn, calculated as the absolute value
of the average p-value for that turn. This is used to classify the turn into one of
the distinct types denoted in table 3.1.

Determining track type

Classifying the track type is done directly after the �rst lap by doing a simple
braking test. The distance covered when braking maximally from 100 km/h to 0
km/h is measured, and if the distance is over 20 meters, the track is classi�ed as
dirt. Otherwise it is classi�ed as road. The track type has direct in�uence on
factors such as braking distance and the skidding threshold in turns, which is why
the strategies applied to turns after classi�cation are tuned against one type of
surface (see Section 3.5.3).

Noise handling

During the competition races, the track edge sensors used to classify turns will
be a�ected by a normal distributed noise with a standard deviation equal to 10%
of the sensor range. As the classi�cation method relies on fairly accurate sensor

3.4. BUILDING A TRACK MODEL 37

information, the noise will, if not dealt with, make it practially useless (illustrated
by the performance of the controller MrRacer in [33]). To handle the noise, we
introduce sensor smoothing, turn length �ltering and turn combination.

Instead of relying only on the latest sensor information when calculating the cur-
vature measure p, a linear smoothing �lter is applied to the sensor readings. The
data from the latest 100 track edge sensors are stored, and when calculating p,
the average of each sensor over these 100 game ticks are given as input. The idea
behind this is to avoid one very noisy sensor sample to have a very big impact
on the measure, and, as the noise is 0-mean normally distributed, hopefully �even
out� the noise to give a good approximation to the actual track edge distances. As
a game tick is 20 ms, it takes 2 s to �refresh� sensor samples, i.e. replace all the
old values with new values. This results in a small o�set with regard to where on
the track a turn is perceived as being located, but this o�set is taken into account
when CRABCAR the car's location on the track against the track model.

Although sensor smoothing tries to approximate correct sensor values, there is
still a possiblity for faulty turn classi�cation to occur. This can mean classifying
a segment faulty as a turn, or failing to correctly classify a turn, for example by
classifying it as two turns with a small straight segment between.

Turn combination is applied after classifying all the turns in a track, to see if
two consecutive turns should in fact have been classi�ed as one. This is done by
iterating through the list of classi�ed turns, and if two turns of the same direction
are divided by only a very short distance, they are replaced by a single new turn.
The new turn is eligible for further recombination.

If faulty sensor values lead to classifying a turn which does not exist, there is
intuitively a good chance that it is classi�ed with a very short length. If, for
example, a sensor sample indicates that there is a right turn ahead when there
is not, the subsequent samples will probably not agree. So, a turn length �lter

is applied to the list of classi�ed turns, which simply removes the turns with a
length less than a certain threshold. By running simple classi�cation experiments
without noise on di�erent tracks, it was found that real turns seldom or never are
classi�ed to be shorter than 20 m, making it the threshold for what is considered
a turn by the track model building process.

38 CHAPTER 3. METHODS AND DESIGN

Evolutionary
System CRABCAR TORCS

(1) (2)

(3)

(4)(5)

Figure 3.4: Evolutionary system using TORCS for �tness evaluation. (1) The
parameters representing an individual is applied where necessary in the CRAB-
CAR system, (2) CRABCAR connects to TORCS, (3) TORCS runs a simulation
for a given amount of time, (4) TORCS returns data from the simulation run to
CRABCAR, (5) CRABCAR returns the �tness value (calculated from the simu-
lation data) of the individual back to the evolutionary system.

3.5 Evolution of strategies

3.5.1 TORCS and evolution

By eliminating the visual user interface of TORCS, the simulation speed can be
up to 20 times faster than real-time. It is this speed-up that makes the use of any
evolutionary computation system a feasible approach to optimization problems
that require the simulation running. Such a system was designed to optimize the
gearing scheme and strategies used by CRABCAR. An overview of the system
setup is illustrated in Fig. 3.4.

3.5.2 Evolution of gear changes

The basic mechanic of changing gears is important to maximize the speed of a
car. Speci�cally, the timing of shifting gears up can have big consequences for
the outcome of a race. Acceleration can be limited by gear shifts that happen
both too early and too late. Both the power (horsepower) and torque of an engine
varies with its revolutions per minute (RPM). Normally it produces less power in
the lower RPM spectrum, achieving maximum power at several thousand RPM,
before dropping a little in power towards the very highest end of the spectrum.
With any gear shift (up), the engine's RPM will drop since the new gear ratio
requires fewer RPM to keep the driving wheels turning at the same speed. If a
gear shift happens too early, this RPM drop will cause the engine to run in its
lower and possibly weaker end of the RPM spectrum. This means that in addition

3.5. EVOLUTION OF STRATEGIES 39

Figure 3.5: Acceleration as a function of RPM is unknown.

to not exploiting the previous gear fully in the stronger part of the engine's RPM
spectrum, it will now have to struggle for longer in the new gear.

A gear shift can also happen too late. An engine is limited in the number of RPM
it can do. If it at any point remains in one gear for too long, i.e. maximizing
the engine's RPM and then not shifting up, the speed is limited by the ratio of
that gear and the engine's maximum number of RPM. Acceleration will e�ectively
stop.

All the bots in the competition use the same type of car, one which comes with
TORCS. Its engine is modelled realistically to some degree (see Section 2.4), but
the exact speci�cations of it are not available. The RPM-acceleration function,
illustrated in Fig. 3.5, is unknown for all gears, so the problem of optimizing gear
shifts is solved by treating the car and its engine as a black box system. A set
of input parameters dictate when the engine should shift gears, which results in
some length of track being covered in a given amount of time. The output result
from TORCS is this distance.

The input parameters for this black box system can then be optimized to produce
the longest possible distance covered in the given time, e�ectively optimizing the
car's acceleration through its gear shifting scheme. Although a number of search
algorithms can solve this problem, an evolutionary algorithm (EA) was used for
two reasons. Firstly, the problem is structured in a way where an EA can easily be
applied. Individuals can be de�ned as some permutation of the gear parameters,
and the �tness function of an individual has already presented itself as the distance
covered in a given time. Secondly, a EA system built to solve more complex
problems had already been implemented. This easier problem served as a test for
the EA system built around TORCS.

40 CHAPTER 3. METHODS AND DESIGN

3.5.3 Developing turn strategies prior to the competition

The structure of the competition is such that competitors only have ~30 minutes
on the unknown track in which they do not have to care about the speed or
e�ciency of their driving. When the �rst stage is over, the real competition is on
and mistakes are punished. This �rst stage is intended to let the cars analyze the
track and optimize their behavior for it, before they attempt to qualify for the real
race.

Considering the relatively short period of time the controller has available in this
�rst stage of the competition, it is not unreasonable to assume that having a good
and general starting point in behavior can bene�t the outcome of the competition.
This baseline behavior can then be improved on throughout the �rst stage of the
competition, making the best use of the limited time available. CRABCAR's turn
classi�cation and track modelling capabilities enables it to bene�t from knowledge
acquired before the competition. This knowledge, manifested as strategies on how
to handle speci�c types of turns, is used from the second lap and onwards in the
�rst stage of the competition. As soon as the �rst lap is done and the track
model is built, CRABCAR can drive much faster around the track because of
these strategies. However, they only serve as the starting point for CRABCAR's
behavior post classi�cation. Adaptivity, which a�ects behavior from the third lap
and onwards, further iterates on the strategy of every individual turn in the track
to optimize the car's performance more.

The inspiration for including not only speed, but also positioning in the strategies
stems from the work descibed in Section 2.7.3. The idea is to optimize the the
racing line locally within turns as well as the speed at which the car drives through
the turns.

The idea is that when the car is �rst presented with an unknown track in the warm-
up stage of the competition, it uses one lap to classify the track's turns and build
a track model (see Section 3.4). When a turn has been classi�ed to be of a certain
type (e.g. medium) a strategy stored previous to the competition for turns of that
particular type are loaded from a database. The car is able to drive quickly and
safely by using strategy which is based on extensive experience acquired before
the competition. The strategies do, however, only serve as a starting point for
further performance optimization. After driving the second lap of the track using
the strategies from the database, the car analyzes its behavior in each individual
turn and adapts the strategy associated with that particular turn accordingly (see
Section 3.6).

3.5. EVOLUTION OF STRATEGIES 41

ai

bi

Pi

Figure 3.6: Example of a strategy in practice. In a newly built track model with
many turns, turn i is de�ned by the starting point ai and the end point bi, and
classi�ed as medium. The strategy for a medium turn is applied, dictating the
position Pi and a speed Si that the car should have when reaching the starting
point ai. Pi is de�ned as a distance from the middle of the track, and the direction
of the turn de�nes which side of the middle. When applied, the strategy enables
the car to traverse the turn quickly and with no risk of driving o� the track.

3.5.4 Optimizing strategies

We de�ne a turn strategy as a tuple of real numbers, 〈p, v〉, denoting the entry
position and entry speed, respectively. They are limited as follows:

� 0.0 ≤ p ≤ 1.0

� 0.0 ≤ v ≤ 300.0

p de�nes the position on the track the car should be in when entering a turn using
the strategy, with the center of the track is p = 0.0 and the edge of the track is
p = 1.0. The sign of p is determined by the direction of the turn the strategy is
applied to, making it negative in right turns. v de�nes the speed in km/h at
which the car should enter the turn when using the strategy.

The turn types that CRABCAR's classi�cation use do not take into account turn
length, track width or track slope. Because of this, the strategies stored prior to
the competition that are used in the race have to be general for the type of turn
they are optimized for. One medium turn can be a little sharper than another
medium turn, and the strategy has to work for both of them. The result is that
the limiting factor of the strategies are the longest, sharpest (i.e. slowest) turns of
every turn type. Both these factors limit the speed by reducing the radius of the
racing line possible through the turn.

42 CHAPTER 3. METHODS AND DESIGN

ai

bi

ai+1

bi+1

Figure 3.7: The potential advantage of double turn strategies. Two turns i and
i + 1, de�ned by the points 〈ai, bi〉 and 〈ai+1, bi+1〉, respectively, are very close to
each other. Using a single turn strategy on both (illustrated by the blue dotted
line) potentially results in the car aligning for the second turn when there is no
reason to. The double turn strategy (illustrated by the orange line) bypasses this
problem and imitates a straighter and likely closer to optimal racing line, which
in turn enables the car to drive faster.

In an attempt to further extend the use of strategies, we propose the use of double
turn strategies. These are strategies that are optimized for two turns with little
or no distance inbetween them. In a tight chicane, it is sometimes possible to cut
both corners and drive in an almost straight line through (see Fig. 3.7). With
the use of double turn strategies, the hope is to optimize the racing line especially
for cases like chicanes. By providing a better racing line than two single turn
strategies would, the speed can be increased and time won. Double turn strategies
are de�ned as a tuple of a tuple of parameters, 〈〈p1, v1〉 , 〈p2, v2〉〉, corresponding
to the parameters in two basic single turn strategies.

Basic single turn strategies involve all combinations of turn types and track surface
types, for a total of eight strategies. The two parameters have to be optimized
for them all individually, since the speed at which the car can manage e.g. a
medium turn is higher on a track with the surface type road than it is for a track
with the surface type dirt. Double strategies are evolved for all combinations of
turns where the second turn is as slow as or slower than the �rst, and where the
direction of the turns are di�erent (e.g. a left-right combination or vice versa).
This makes for a total of 20 double turn strategies. The optimization of the basic
and double turn strategies is described in Section 3.5.4

3.6. ADAPTIVITY 43

3.5.5 Using Evolutionary Programming to optimize the strate-

gies

TORCS' physics engine allows it to simulate the complex dynamics of a car on
a track, taking into account the weight of the car, the friction between tires and
the track, and all the forces involved in the car taking high speed turns. Detailed
knowledge of this physics engine could be used in a bottom-up approach to optimize
the turn strategies used by CRABCAR. Instead, similar to the the approach used
to optimize gear changes, a top-down approach using an evolutionary computation
system was chosen. The approach is simple in that it allows us to treat the car as
a black box, and thereby distancing us from the complex systems underlying the
physical behavior of the car. By measuring performance using the distance the car
travels in a given interval of time using a strategy, it is easy to compare di�erent
strategies of the same type to each other.

A set of tracks were custom built to facilitate the optimization procss. To make
sure that every turn and track type combination was covered, one track for each
comination was made by hand. This made it possible to optimize the strategies
using only one track per strategy. The tracks are designed so that they contain
turns of di�erent length and curvature, all the while making sure that most of
the turns classify as the turn type the track was made to optimize for. Two
examples of tracks are shown in Fig. 3.8. The layouts of the tracks used to
optimize dirt strategies have the same layout as the corresponding road tracks,
producing comparable results in the �nal strategies evolved. As an example, the
track used to optimize the parameter set for the turn type medium on a dirt
surface consists of a series of turns, each of which classi�es as medium, in di�erent
combinations and with di�erent lengths, all on a surface with traction qualifying
as dirt.

3.6 Adaptivity

While CRABCAR acquires a lot of knowledge during the �rst lap of the warm-
up stage through track modelling (see Section 3.4) and prior to the competition
through evolution of strategies (see Section 3.5), there is still optimization that
can be done with regard to the handling of speci�c turns and other problematic
parts of a track. This is where adaptivity comes into play. The idea is that when
turns are divided into distinct classes during classi�cation, they are only given
(evolved) strategies based on good general handling of that type of turn. But two
turns classi�ed as the same type can be somewhat di�erent (see Section 3.5.4), and

44 CHAPTER 3. METHODS AND DESIGN

(a) (b)

Figure 3.8: Two of the track layouts used for �tness evaluation. (a) used to opti-
mize single turn strategies for medium type turns, (b) used to optimize double turn
strategies for the combination slow-slow. The direction of driving is denoted
using the red line.

what we want from the adaptivity is to improve these strategies into good speci�c

handling for each particular turn.

Adaptation can also o�er some robustness to CRABCAR. Due to noisy sensors,
there is a possibility that the classi�cation will not classify all turns correctly,
or even classify them at all (although this is attempted dealt with through noise
handling, see Section 3.4.2). Also, a relatively straight part of the track, which
should not be classi�ed as a turn, can be di�cult to maneuver in maximum speed
due to rough, uneven terrain (which is the case on some tracks). Both of these
cases could for example lead to CRABCAR always driving out at the same part
of a track. To avoid this from happening, we want the controller to learn from
its mistakes. This is done by employing reinforcement learning, where a track
segment receieves a punishment in form of a speed decrease if it crashes or drives
o� the track.

3.6.1 How the adaptivity works

An adaptivity manager monitors and, if necessary, makes adjustments to CRAB-
CAR's behavior. Its functionality can roughly be divided into two cases: (1)
Adaptivity to increase turn speed and (2) Adaptivity to reduce turn speed and
handle dangerous areas. The idea behind (1) is that we want to evaluate how
well CRABCAR traverse a turn and, if the evaluation suggests that the turn could
have been driven faster, tune the turn strategy's speed parameter to give it a slight
speed increase. In case (2), we search to prevent from making the same mistakes
twice, by having the controller store its mistake locations, i.e. where it drove o� the

3.6. ADAPTIVITY 45

track, and take precautionary action the next time it approaches such a location.

3.6.2 Adaptivity to increase turn speed

Using the track model obtained through classi�cation as a basis, CRABCAR uti-
lizes adaptivity to try to optimize the parameters of each speci�c turn. To do this,
the car's track position (i.e. positioning on the track) is sampled for each game
tick throughtout each turn, and directly after the turn these samples are evaluated
in search of possibilities for a speed increase.

To evaluate a turn traversal, the system iterates through the list of track positions
to �nd when the car drifts furthest to the opposite side of the turn direction. In a
right turn, this means �nding the track position of the car when it is furthest to
the left during the turn. If the track position found is at a distance more than ¼

of the track size from the track edge, the evaluation concludes that the turn could
potentially have been driven faster, and the maximum speed for the turn is given a
slight increase. If this is not the case, i.e. the car drifts near the edge of the track,
the maximum speed for the turn stays the same. The reason for evaluating how
well a turn is traversed by seeing how far to the side of the track the car drifts, is
that if the car has too high speed in a turn, the result will most likely be that it
drives o� the track on the side opposite to the turn direction. If the evaluation is
not a success, if it for example leads to a speed increase which makes the car crash,
the method explained in the following section will reduce the speed and lock it so
will not get increased again.

3.6.3 Adaptivity to reduce turn speed and handle dangerous

areas

While CRABCAR is driving on a track, the adaption manager is at all times
(except during the classi�cation part of the warm-up stage) keeping a history of
the state of the controller for the last 1000 game ticks. The state consist of di�erent
sensor values, which are distance from start line, speed, lateral speed, angle to track
axis, and track position (i.e. alignment on the track). If a crash occurs, this history
information can then be exploited to make necessary adjustments for preventing
it from happening again in the future. The size of the history gives a hindsight
of 20 seconds, which intuitively should always be enough to �nd when (and thus
where) problems started to occur.

When we write �crash�, it is not only meant in its literal sense, but more as
a collective term for certain events that we wish to avoid. These events are as
follows:

46 CHAPTER 3. METHODS AND DESIGN

� The lateral speed of the car is very high, which means the car has likely
partially or completely lost its traction: ‖speedY ‖ > 30 (km/h).

� The car is not pointing in the direction of the track axis: ‖angle‖ > π
2
.

� The car is (partially) located outside the track: ‖trackPos‖ > 0.9.

A regular crash in its literal sense (i.e. banging into a wall or similiar) is always
covered by the mentioned events, as this would mean that at least parts of the car
would be located outside the track.

If a crash occurs, i.e. one of the three requirements for a crash is full�lled, the
adaption manager uses the history to try to determine the cause for the crash
and prevent it from happening again. It �rst marks the location where the crash
occured as a crash point. Then it starts iterating backwards through the history
of states (starting with the most recent state and moving back in time) to �nd a
safe point - a point recognized by the car having very low lateral speed, and angle
to track axis close to zero (i.e. the car is pointing in the same direction as the
track axis). The idea behind �nding such a safe point, is that the mistake done by
the controller (which eventually lead to a crash) almost certainly occured between
this point and the crash point. An example of a crash caused by driving too fast
in a turn is depicted in Fig. 3.9.

What the adaption manager does next depends on whether or not there are any
turns between these two points:

1. If there is a turn, or multiple turns, between the safe point and the crash
point, the adaption manager assumes that it was the handling of these which
lead to the crash, and reduce the maximum turn speed for the involved turns
slightly. These turns are also labeled with a crash speed, which is set to be the
maximum speed for the turn prior to the reduction. This parameter is used
by the adaption manager to prevent it from later increasing the maximum
turn speed back up to a unsafe threshold. The reason for potentially giving
multiple turns a speed reduction, instead of only the last occuring turn, is
that interconnected turns should to some degree be considered, and treated
as, a single turn. This because crashing in such turn could be due to having
too high speed in the preceeding turn, so only adjusting the speed of the last
turn would not resolve the problem.

2. Not all crashes can be linked back to already classi�ed turns. This can occur
because not all turns always get classi�ed perfectly, largely due to noise,
and because there can be other responsible factors such as uneven or rough
terrain. If there is not any turns found between the safe point and the crash

3.6. ADAPTIVITY 47

Figure 3.9: An example of driving o� the track due to too high speed in a turn
starting at ai and ending at bi. The crash point is stored, and the controller iterates
back in through its history to �nd a safe point. Any turns between the safe point
and the crash point, in this case only the turn 〈ai, bi〉, gets a reduction in speed
to try to avoid such a crash from happening again.

point, the adaption manager marks this area as a dangerous area. This is
done by creating something similar to a turn, but without any direction or
entry position. The maximum speed for this �dummy turn� is set to 10%
below the car speed that lead to the crash, and can be further optimized by
adaption in subsequent laps.

3.6.4 Preparing for qualifying stage

After the warm-up stage, we are interested in using the track model information,
modi�ed through adaption, that lead to the highest performance, i.e. fastest
driving. This is not necessarily always the track model used at the very end of the
warm-up. As adaptivity tries to optimize the speed of how turns are traversed,
it can �nd itself balancing on the edge of chaos. If a turn has a current speed
nearing the maximal of how it can be driven, a speed increase can lead to a crash.
If such occurs, the following decrease in how fast it should be driven might be lower
than what it was before the increase. So, during the entire warm-up stage, the
current track model information is sampled for each lap. The best con�guration,

48 CHAPTER 3. METHODS AND DESIGN

i.e. the one leading the the lowest lap time, is saved as a new track model, and is
to be used in the following stages of the competition.

Chapter 4

Results and discussion

In the previous chapter we developed the CRABCAR system. In this chapter
we put our implementation to the test, and explore how the di�erent parts of
the system perform, as well as the system as a whole. Four di�erent experiment
scenarios are investigated.

In the �rst scenario, we take a look at how the sensor noise a�ects our system in
terms of performance. Scenario two focuses on how adapting prelearned strategies
online can improve the overall performance of the controller. In the third scenario
the use of evolution in o�ine learning is investigated, before we see how CRABCAR
performs compared to other systems in scenario four.

4.1 The consequense of noisy sensors

The range sensors, which return the distance to the edge of the track at di�erent
angles, are a�ected by a normal distributed noise with a standard deviation equal
to 10% of the sensor range. The classi�cation method used to obtain a track model
is dependent on fairly accurate sensor readings, which means that the noise has to
be �ltered in some way for the method to have any practical value. CRABCAR
utilizes a linear smoothing �lter technique, which averages each sensor value over
the past 100 game ticks (2 seconds), before calculating the curvature of the track.
After classifying the turns in a track, turn combination and length �ltering is
employed to try to reduce the occurence of incorrectly classi�ed turns.

It is di�cult to give good quantitative measure of how well the classi�cation works
in itself, as small variations might not have any e�ect on the performance of the
driver utilizing the track model. Say for example that a turn gets classi�ed as a
medium turn when it should in fact have been a slow turn. This could potentially

49

50 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.1: Illustration of the track Dirt5. Turns are added based on visual im-
pression. The green and red lines denotes the start and end of a turn, respectively.

lead to the driver driving o� the road in this turn, but this is then handled by
adaptivity to keep it from happening again. So what we want from the track model
is a good basis for further learning, and a �good� classi�cation is therefore a model
that eventually leads to the controller being able to drive fast and reliable.

4.1.1 Example of classifying with and without noise

An example of how classi�cation can vary with and without noise enabled is shown
in Table 4.1, and is based on the track Dirt5 (see Fig. 4.1). It is worth noting
that many of the turns classi�ed when noise is enabled has a start value 20-30 m
higher than those classi�ed without noise. This is related to the slight o�set which
is the result of smoothing each sensor value over a period of time, and CRABCAR
compensates for this by taking precautions before turns earlier than it otherwise
would. As can be seen in Table 4.1, turn 2 and 3 are classi�ed somewhat di�erently
in this example. In the case without noise, it has been classi�ed as a single long
turn, while it in the other case has been classi�ed as two smaller turns. Such cases
can occur, as well as other variations of misclassi�cation, due to the noise handling
not completely eliminating the e�ect of noise. This might have an impact on the
peformance of the driver, which is tested by letting the controller drive the track
with a classi�ed track model as a basis.

4.1. THE CONSEQUENSE OF NOISY SENSORS 51

Without noise With noise
Start Length Dir. Type Turn Start Length Dir. Type Turn

38 101 R MED. 1 62 90 R MED. 1

159 166 R slow 2,3
171 91 R HAIR. 2

283 58 R slow 3

357 92 L slow 4 365 91 L slow 4

454 47 R MED. 5 474 48 R slow 5

530 69 L MED. 6 561 41 L slow 6

603 282 R slow 7,8 626 283 R slow 7,8

916 35 R high 9 935 33 R MED. 9

Table 4.1: Classi�cation of the track Dirt5 with and without noisy sensors. Start
and length values are in meters. The Dir. columt refers to direction, which can
be either right or left, and the Turn column refers to which turn depicted in Fig.
4.1 the classi�ed turn corresponds to.

4.1.2 Test setup

To test how noisy sensors a�ects the performance of our controller, and thus the
performance of the classi�cation, we compare how fast CRABCAR is able to drive
using track models generated with and without noise activated. The warm-up
stage of the SCRC comptition is simulated, which means the the controller has
100.000 game ticks (approximately 30 minutes) to classify and learn a track. Such
runs are performed 20 times per track on 10 di�erent tracks for each of the two
cases, and the average of the best lap time from each run is used as a measure of
performance.

4.1.3 Results and discussion

Table 4.2 shows the results of testing on di�erent tracks. On eight out of the ten
tracks, the average of the best lap time over 20 runs is slightly better in the case
where sensors are not noisy, while two of the tracks (Forza and Ruudskogen) show
a very slight advantage when noise is enabled. On four of the tracks, the runs
with noise enabled have a lap time increase of over 1%, with 3.2% on Dirt5 being
the highest. In average, noisy sensors gives approximately 1% increase in best lap
time on our test tracks.

Interestingly, the results from these experiments show no direct correlation between
length of the track and the di�erence between the two cases. The two longest tracks
tested, Olethros and Alpine1, show a 0.6% and 1.9% increase in time when noise

52 CHAPTER 4. RESULTS AND DISCUSSION

Track Length
Without
noise

With
noise

Di�erence
seconds percent

Wheel1 4257.6 m 89.0 s 89.2 s +0.2 s +0.2%
Forza 5784.1 m 101.5 s 101.1 s −0.4 s −0.4%
Olethros 6282.8 m 125,.1 s 125.9 s +0.8 s +0.6%
E-track2 3147.5 m 94.9 s 96.5 s +1.6 s +1.7%
Alpine1 6355.7 m 153.5 s 156.4 s +2.9 s +1.9%
Alpine2 3773.6 m 111.7 s 112.2 s +0.5 s +0.4%
Dirt4 3260.4 m 103.1 s 103.5 s +0.4 s +0.4%
Dirt5 1072.9 m 41.2 s 42.5 s +1.3 s +3.2%
Ruudskogen 3274.2 m 70.5 s 70.4 s −0.1 s −0.1%
Aalborg 2587.5 m 105.3 s 106.4 s +1.1 s +1.0%

Table 4.2: Average of best lap time over 20 runs with and without noisy sensors.

is applied, as well as the third longest track Forza which comes out better in the
case of noise. As longer tracks correspond to more turns to be classi�ed (this is
at least the case with the tracks tested), one might intuitively think that noisiness
would pose a bigger threat to such tracks. This does, according to these test
results, not seem to be the case. A possible explanation for this could be that the
longer tracks seem to have more turns in both directions, in form of chicanes and
interconnected turns. A shorter track, such as Dirt5, has often most turns in one
direction (imagine a small track circuit with only right turns), which gives fewer
�sharp� edges for the classi�cation to detect. When classifying the length of a right
turn, for example, it is easier to �nd the exact end of a turn when sensor values
suddenly get input of a left turn up ahead. When a turn is followed by a straight
segment, or a turn in the same direction, the transition of sensor inputs is more
gradual.

In the case of Forza and Ruudskogen, where the results improve when noise is
enabled, the improvement is so small that it is most likely incidental. It is an
indication of the classi�cation, on this particular track, being equally as good as
it is without noise. There is no reason to believe that classi�cation with noisy
sensors should ever be able to outperform classi�cation without noise, as the noise
�ltering is only trying to approximate what the sensor value would be without
noise. It is, however, a good sign with regard to the noise �ltering that we in these
cases seem to be able to classify as good with noise as without.

The results observed are impressive, and very encouraging. While the original
classi�er described by Quad�ieg et al. [2] breaks down completely when noise is
presented, introducing relatively simple noise �ltering makes it able to produce

4.2. OPTIMIZATIONOF GEAR SHIFTING SCHEMEAND TURN STRATEGIES53

good track models which can be used as a basis for further learning.

4.2 Optimization of gear shifting scheme and turn

strategies

Evolutionary programming is used to optimize both the gear shifting scheme and
the turn strategies. Although mutation is usually the driving force in search by
evolutionary programming, single-point crossover is also used as an additional
evolutionary operator to provide diversity in reproduction. The selection strategy
used is tournament selection.

4.2.1 Evolution of gear shifting scheme

The gear shifting scheme has to be optimized to maximize the car's acceleration
capabilities (see section 3.5.2). In practice, this means optimizing the parameters
that dictate at which RPM the engine has to be at before the gear change can
happen. There is one parameter R per gear change, making each individual a
vector of six parameters R1, . . . , R6 which are all integer values. Mutation of an
individual involves adding a random value M to one or more of the parameters
in an individual, where M ∼ N(0, 302), with probability pmr = 0.03. Single-point
crossover can switch 1-5 parameters between two parent individuals with proba-
bility pc = 0.6, producing two new individuals. In addition, two parameters may
be swapped within an individual with a probability pms = 0.05. The parameters
are constrained such that

� Ri ∈ [0, 10000] for all i

since the car engine's maximum RPM values are a little lower than 10000, depend-
ing on the gear it is in.

The initial population is randomly generated. Fitness evaluation is done by letting
a car drive with its accelerator maxed on a straight track. The �tness value is the
distance covered in 2000 game ticks, around 40 seconds of simulated time, with
the parameters of the individual applied in the car's gear shifting routine.

Tournament selection is the selection strategy, and there are 2 elites in each pop-
ulation. The population of 50 is evolved over 100 generations.

54 CHAPTER 4. RESULTS AND DISCUSSION

(a) Average �tness (b) Best �tness

Figure 4.2: Gear shifting scheme evolution

4.2.2 Results and discussion

Figures 4.2a and 4.2b show the average and best �tness, respectively, of the ten
evolutionary runs conducted to optimize the gear shifting scheme. The �tness of
the best individuals converge in all ten runs after 50-75 generations, and they all
converge to a value around 2751. Inspecting the best individuals from all the runs
reveal that they have also converged on a parameter basis. di�ering only by a
maximum of 30 RPM. This, in addition to the rapid convergence in �tness in all
runs, lead us to believe that this is in fact the optimal gear shifting scheme to
achieve as high acceleration as possible.

The plot showing the average �tness of the ten runs is also interesting. It reveals
common occurences of sudden drops in the average �tness in all the ten runs. This
can be explained by the parameters' upper RPM constraint being slightly higher
than what is possible for the engine to produce. If, for example, the parameter
concerning shifting gears from second to third gear is too high (i.e. outside the
engine's natural RPM limits), the result is that the car is never able to get in
higher than second gear. This severely limits the speed of the car, resulting in
less distance covered during the �tness evaluation. The worst case scenario is not
being able to shift into �rst gear, leaving the car stationary at the starting line of
the race track and resulting in a distance of 0 m covered in the �tness evaluation.
These cases explain the sudden drops in the average �tness of populations.

The results also reveal something about the nature of the RPM-power function
(see Section 3.5.2) of the engine in the car. There seems to be a very small, if
at all existant, distance between the optimal solution and the total failure that
lies beyond it in terms of RPM. When approaching the optimum in the �tness

4.2. OPTIMIZATIONOF GEAR SHIFTING SCHEMEAND TURN STRATEGIES55

landscape from the lower RPM side, it is a steady climb. On the other side,
however, there seems to be a sheer cli�. This tells us that it is, in fact, best to
use the whole RPM spectrum of every gear, that the acceleration does not bene�t
from the engine shifting gears before it is at its RPM limit.

The experiments conducted were time-consuming with every evolutionary run tak-
ing around six hours to complete. They did, however, provide good results to be
used in the competition.

4.2.3 Evolution of turn strategies

In the case of single turn strategies, individuals are represented by a tuple of real
values 〈p, v〉, the former representing the entry position of the strategy and the
latter representing the entry speed of the strategy. A population of 25 individuals
evolves over 200 generations. The initial population is random. The �tness of
an individual is the distance the car races over the duration of 3000 game ticks
(around 1 minute of simulated time) when the values of the individual are applied
as the strategy in relevant turns.

Speci�c tracks are used in the �tness evaluation. Each is designed with the purpose
of providing a set of turns which represent an assortment, both in length and
radius, of the type of turn the strategy is being optimized for. The same layout
is used to optimize both dirt and road strategies, with only the surface being
di�erent. Because the track length varies with the di�erent layouts, the �tness of
di�erent turn type strategies are not comparable.

Individuals are mutated by adding random values from gaussian distributions to
either or both of the �oating point values. In the case of the entry position,
the random value is T ∼ N(0, 0.032). For the entry speed the random value is
U ∼ N(0, 10.02).

Both entry position p and entry speed v are constrained when randomly generated
or mutated so that

� 0.0 ≤ p < 0.85

� 0.0 < v ≤ 285.0

p ≥ 0.85 is de�ned as the car being o�-track. The di�erence in traction on and o�-
track is great, and having even one wheel o� the track a�ects steering and/or speed
control. While it may not punish the lap time in some cases, the risk is too big to
let the car o�-track willingly. If a best strategy were to evolve where p ≥ 0.85, it

56 CHAPTER 4. RESULTS AND DISCUSSION

would likely be very speci�c to the track used in the strategy optimization process,
and dangerous elsewhere.

The car can, on very, very long straight sections of track, achieve greater speeds
than 285 km/h. This is not the case on the tracks that are used to optimize turn
strategies. v is therefore limited to a value closer to the actual maximum speed
attainable on the optimization tracks. If two strategies evolved where the �rst had
v = 289.3 and the second had v = 293.2, they would both have the same �tness
seeing as the car would never be able to accelerate to the speed v dictated by the
strategies. If allowed, the strategies would be unreliable if the car ever encountered
a track with a long straight before a turn where those strategies would be used.
Entering the turn at a much higher speed than ever attempted before, it would
risk crashing, losing precious time and potentially causing enough damage to be
disquali�ed from the race.

The process of evolving double turn strategies is much the same as with single
turn strategies. Parameters p1, v1 and p2, v2 are evolved, representing the entry
positions and speeds of the two turn types encompassed by the strategy. Dif-
ferent tracks are used in the �tness evaluation process, designed to contain turn
combinations corresponding to the strategy.

4.2.4 Strategy evolution discussion

Optimizing the strategies for single turns was unproblematic. For all turn types,
the �tness converged after 30-100 generations. The relatively small search space,
being only two-deimensional, produced similar optimal parameters in all cases.
They were averaged to make the parameters of the �nal strategies used (see Table
4.3), ensuring that a highly specialized strategy would not bring unnecessary risks
with it into the competition. Fig. 4.3 shows the three evolutionary runs used to
�nd the optimal high single turn strategy for road type tracks. The average and
best �tness of each run being so close to each other indicate that the populations
became homogenous after a 30-80 generations. The driving force of the evolution
was likely mutation. The plots of the average �tnesses have the same sudden
drops in them as the ones in the gearing scheme optimization (see Figure 4.2a).
The reason is the same: when all the individuals are producing strategies that
push the car to its limits, one small mutation can cause the car to crash and the
individual ending up a total failure.

Looking at best �tness plots, there are small variations in the �tness even after
convergence. However, these are variations only in �tness, and not in strategy
parameters. The elitism ensures that the best individual always survives to the
next generation, normally resulting in a plateau in the �tness plot if that individual

4.2. OPTIMIZATIONOF GEAR SHIFTING SCHEMEAND TURN STRATEGIES57

Figure 4.3: Evolution of the single turn strategy concerning the turn type high
on road track type.

p v (km/h)
Best run 1 0.21 275
Best run 2 0.23 275
Best run 3 0.29 276

Final strategy 0.24 275

Table 4.3: Calculating a �nal single turn strategy.

58 CHAPTER 4. RESULTS AND DISCUSSION

were to be the best of the following generations. The cause of the discrepancies
must be the �tness evaluation, which is done within the TORCS environment.
If an action is performed a few milliseconds earlier or later than it was during a
previous �tness evaluation, the result might di�er. This is especially true for the
optimization of driving quickly through turns. The optimal driving is pushing the
car to its limits in terms of traction and the use of track width, meaning that small
di�erences in behavior can have big consequences in the form of the car driving o�-
track or crashing. Either TORCS itself is non-deterministic or the communication
that occurs between TORCS and CRABCAR is. Either way, the problem is not
addressable without modifying the environment that is set up for the SCRC, which
under the actual competition is out of the participants' control. This means that
the use of extremely optimized strategies in the competition comes with great
risks.

During the evolution of double turn strategies, the average �tness was consistently
lower than the best �tness, indicating a heterogenous population (see Fig. 4.4).
The much larger search space with the heterogenous population meant crossover
could play a bigger part in maintaining diversity. To produce the �nal double turn
strategy, parameters were taken from the best individual of the three produced
from the three evolutionary runs. To avoid using extremely specialized double
turn strategies, the speed parameters were tuned down by 1km/h.

The di�erence in the corresponding road and dirt strategies is apparent. As
expected, the speed at which the car is able to drive through a turn, particularly
of the classes hairpin and slow, is lower on dirt than on road. This is clearly
visible when inspecting the double turn strategies as well. The entry position p1
used in the �rst turn of the double turn strategies is overall closer to the edge
of the track for dirt than for road. The dirt tracks seem to force the car to
drive slower and take less sharp turns than on road tracks. The fact that there is
such a large di�erence in the evolved strategies for two track types indicates that
there is indeed a need for di�erent behavior depending on the properties of the
track surface, and that the optimizations of twice the amount of strategies was
worthwhile.

The running time for the experiments were relatively comparable to those con-
ducted when optimizing the gearing scheme. Using double the number of gener-
ations, the runtime of each evolutionary run became around six hours long. This
limited the number of evolutionary runs possible to complete within reasonable
time. The complete collection of strategies evolved is listed in Appendix B.

4.2. OPTIMIZATIONOF GEAR SHIFTING SCHEMEAND TURN STRATEGIES59

Figure 4.4: One evolutionary run of the double turn strategy for slow-hairpin
on track type road.

Track Length Single turn
strategies

Double turn
strategies

Di�erence

Wheel1 4257.6 m 97.9 s 89.2 s −8.9%
Forza 5784.1 m 102.0 s 101.1 s −0.9%

Olethros 6282.8 m 132.2 s 125.9 s −4, 8%
E-track2 3147.5 m 99.9 s 96.5 s −3, 4%
Alpine1 6355.7 m 164.0 s 156.4 s −4.6%
Alpine2 3773.6 m 115.9 s 112.2 s −3.2%
Dirt4 3260.4 m 116.4 s 103.5 s −11.1%
Dirt5 1072.9 m 44.4 s 42.5 s −4.3%

Ruudskogen 3274.2 m 72.8 s 70.4 s −3.3%
Aalborg 2587.5 m 108.0 s 106.4 s −1.3%

Table 4.4: Average of best lap time over 20 runs using single turn strategies and
double turn strategies. Adaptivity was enabled in both cases.

60 CHAPTER 4. RESULTS AND DISCUSSION

Turn type combination slow-slow high-hairpin

Double turn strategy 〈0.06, 150〉 , 〈0.0, 107〉 〈0.25, 260〉 , 〈0.18, 66〉
Single turn strategy equivelant 〈0.8, 124〉 , 〈0.8, 124〉 〈0.24, 275〉 , 〈0.6, 65〉

Table 4.5: Two examples illustrating the di�erence between single and double turn
strategies.

4.2.5 The e�ect of double turn strategies

Table 4.4 shows the results of CRABCAR's performance on 10 tracks using single
turn strategies only and both single and double turn strategies. The performance is
better in the noisy competition environment when using the double turn strategies
in 10 out of 10 tracks. The improvement is signi�cant, averaging at 4.6%. The
performance increase is the greatest on the short and curvy tracks Wheel1 and
Dirt4, whose track layouts stand out from the rest of the tracks in the experiment.
They both feature many combinations of short and uneven turns where the double
turn strategies are applicable. This is a testament to potential of the double turn
strategies and the di�erence the speed and racing line optimizations can make in
cases with consecutive turns.

Looking at the evolved double turn strategies, the parameters in the second turn
strategies have a tendency of directing the car more towards the center of the track
than their single turn strategy equivelants. This di�erence is particularly visible
where the second turn strategy concerns one of the slower turn types. The single
turn strategies for the higher speed turn types have this property already. This,
combined with the fact that the higher speed turns are normally relatively long,
making the speed and position at the entry of the turn less important, results in
less of a di�erence in the double turn strategies concerned with the higher speed
turns. Both scenarios are illustrated in Table 4.5. The results are consistent with
the belief that it is possible to cut corners and use a straighter racing line through
short, consecutive turns (as illustrated in Fig. 3.7). The speed parameters are
also di�erent in the double turn strategies compared to the equivelant single turn
strategies, displaying a more cautios approach to turns when there are slower turns
following.

4.3 The e�ect of adaptivity

The track model created through classi�cation uses evolved strategies when de-
termining how fast a turn can be traversed, depending on the classi�ed turn type
and track type. These strategies are bound to be somewhat general, as turns with

4.3. THE EFFECT OF ADAPTIVITY 61

(a) (b)

Figure 4.5: Example of the in�uence of strategies on adaptivity, on the track
Street1. Both plots start at lap 2 when the adaptivity begins to a�ect perfor-
mance. (a) Without using strategies. Here, all turns are initially initiated to have
a preferred speed of 100 km/h and preferred position of 0.0 (middle of road) when
entering turn. (b) Using strategies.

slight di�erences are classi�ed as the same type. Through adaptivity, we wish to
improve these strategies for each speci�c turn, as well as learn from mistakes due
to misclassi�cation or uneven terrain.

4.3.1 Example of applying strategies

The evolved strategies applied to the track model after classi�cation serve to give
the controller some prelearned knowledge of how the di�erent turns should be
traversed. The idea is that instead of trying to optimize each preferred turn
parameter from scratch, we apply a start value evolved o�ine to give a good
indication of how each turn type should be handled. An example of how this
can a�ect the adaption is shown in Fig. 4.5, where the controller is able to drive
fast right o� the bat after classi�cation with the use of strategies, while needing
more time to adapt to the track without them. The di�erence between the two
approaches wears o� over the following laps, as the controller adapts to the track.
This is seen in Fig. 4.6, where the di�erence with and without strategies decreases
after some period of time. On long tracks, where the controllers do not have the
possibility to drive as many laps (corresponding to adaptation iterations), having
strategies can increase the chance of learning the track better during the limited
warm-up stage.

62 CHAPTER 4. RESULTS AND DISCUSSION

(a) (b) .

Figure 4.6: Comparison of runs done with and without the use of strategies. (a)
Average lap time of 10 runs with and without the use of strategies. (b) The
di�erence of the average lap times.

4.3.2 Testing the e�ect of adaptivity

To test how adaptivity can increase the performance of the controller after classi-
�cation, several tracks bundled with TORCS are classi�ed by letting CRABCAR
drive one classi�cation lap on each to create a track model with evolved strategies
applied to each turn. Sensor noise is not enabled during classi�ction to get con-
sistency between the track models. Using such a track model as a basis, several
runs are done on each track with adaption enabled and without adaption. Simu-
lating the warm-up stage in the real compeition, CRABCAR gets 100.000 game
ticks (approximately 30 minutes of driving time) on each track. When adaption
is disabled, the driver does not adjust its behaviour in any way during the race,
which means that it has to rely completely on the knowledge gained through clas-
si�cation and the use of static strategies. For each track, we let CRABCAR drive
20 runs with and without adaption.

4.3.3 Results and discussion

The results of the runs are shown in Table 4.6. On every track, the controller is
able to make some improvement in performance by adjusting its behaviour through
adaption. The performance increase from adaptivity varies alot on the di�erent
tracks tested. While only improving the lap time on Wheel1 with an average of
0.6 s, corresponding to a decrease of 0.7%, the lap time on E-track2 is reduced by

4.4. CRABCAR VS. OTHER CONTROLLERS 63

as much as 27.3 s, giving a reduction of 22.1% from the 123.6 s obtained without
adaption. On average, the average best lap time is reduced by approximately
10.7% over the ten tracks, which shows that there is still optimization that can
be done after applying prelearned strategies to classi�ed turns. This does not,
however, imply that using evolved strategies as a starting point serves no purpose.
As a time limit is imposed on the warm-up stage in the competition, it is intuitively
better only having to tweak slightly on turn strategoes through adaptivity, rather
than having to develop them from scratch. This because adaption takes time, and
an entire lap is required to see if a change in a strategy actually lead the car to
driving a turn faster, or rather caused it to crash.

There does not seem to be any direct correlation between the length of a track
and how much adaption is able to improve the strategies judging from the results.
The longest track in the test, Olethros, receives an average lap time decrease of
only 2.9% through adaption. The biggest improvement is observed on tracks of
medium and short lengths, namely E-track2, Alpine2 and Dirt5, while the medium
sized track Wheel1 shows only a slight performance increase. On a short track,
adaptivity can adjust the behaviour of the car over more laps than on a long track.
On a long track, on the other hand, there are usually more turns that can be tuned,
which might lead to a larger number of small improvements. This could mean that
there is a correleation between the impact of adaptivity and track length for both
long and short tracks, but since it bene�ts both, it evens out and makes it hard
to draw any conclusions.

The most important thing do draw from these results is that applying strategies
developed through o�ine learning should not be used as an replacement for online
adaption, but rather as a starting point for further adjustment. As adaption is
able to reduce the lap time on every track tested, sometimes to a major extent,
it shows that it is able to play a central role in learning to drive unknown tracks
properly.

4.4 CRABCAR vs. other controllers

In this section we take a look at how CRABCAR performs compared to controllers
that have proved to perform well in previous years' competitions. The controller
Jorge, developed by Jorge Munõz [32], won the championship leg at WCCI-2010.
COBOSTAR, developed by Butz and Lönneker [27], is the continued work of
the controller that won CIG-2009 championship leg, and came in second place
after Jorge at WCCI-2010. The methods used by these controllers are brie�y
described in Section 2.7.1. We also compare it to MrRacer, a controller developed
by Quad�ieg et al. for the SCRC 2010, which �nished third at the leg hosted

64 CHAPTER 4. RESULTS AND DISCUSSION

Track Length
Without
adaption

With
adaption

Di�erence
seconds percent

Wheel1 4257.6 m 90.5 s 89.9 s −0.6 s −0.7%
Forza 5784.1 m 114.0 s 101.9 s −12.1 s −10.6%
Olethros 6282.8 m 131.6 s 127.8 s −3.8 s −2.9%
E-track2 3147.5 m 123.6 s 96.3 s −27.3 s −22.1%
Alpine1 6355.7 m 175.0 s 158.3 s −16.7 s −9.5%
Alpine2 3773.6 m 132.4 s 112.3 s −20.1 s −15.2%
Dirt4 3260.4 m 134.1 s 117.1 s −17.0 s −12.7%
Dirt5 1072.9 m 46.2 s 38.7 s −7.5 s −16.2%
Ruudskogen 3274.2 m 80.1 s 70.4 s −9.7 s −12.1%
Aalborg 2587.5 m 108.0 s 102.6 s −5.4 s −5.0%

Table 4.6: Average of best lap time over 20 runs with and without adaption.

at GECCO. It uses a classi�cation technique similar to ours, as our method is
inspired by Quad�ieg et al. [2]. Since their classi�cation did not take noise into
account, a workaround where they classi�ed the entire track as a straight was used
for the SCRC 2010 [33].

The setup of the experiment is that each controller get 100.000 game ticks to learn
and drive a track, which is the same as the length of the warm-up stage at the
competions. The controllers get 20 such warm-up runs on each track, and the best
lap time from each run is averaged to get an estimation of how fast the controller
is able to navigate the tracks. To get an impression of how the noisy sensors a�ect
the controller, all runs are done twice. Once with noise disabled and once with
noise enabled.

Fig. 4.7a and Fig. 4.7b shows the results from the runs where noise is disabled
and from when it is enabled, respectively.

Without noise enabled, CRABCAR achieves the lowest lap time on two out of ten
tracks, namely Olethros and Ruudskogen. It does, however, also produce the worst
lap time on two of the tracks (Aalborg and Dirt-4). MrRacer and Cobostar are
fastest on one and two tracks, respectively, while Jorge is unmatched by producing
the fastest time on �ve of the tracks tested.

We are mostly interested in how our controller performs when sensors are in-
�uenced by noise, as this will be the case under the competitions. Also here,
CRABCAR is able to drive fastest on the tracks Olethros and Ruudskogen, and
Jorge again shows it has an edge by outperforming the other controllers in �ve of
the tracks. Quad�ieg et al.'s MrRacer demonstrates that it does not handle noise
very well, by being the slowest controller in �ve of the tracks, compared to three

4.4. CRABCAR VS. OTHER CONTROLLERS 65

(a)

(b)

Figure 4.7: Comparing the performance of CRABCAR to other controllers. Aver-
age of best lap time over 20 runs are plotted for each track. Fig. (a) shows the
results when sensor noise is disabled and Fig. (b) when noise is enabled.

66 CHAPTER 4. RESULTS AND DISCUSSION

when noise was disabled. It still manages to produce the fastest time on Dirt-5,
however.

The fact that all of the controllers manage to produce the fastest driving on one
or multiple tracks, while also being slowest on other tracks (with the exception
of Jorge), gives an impression of how complex the simulated racing environment
is. Di�erent controllers seem to excel in di�erent environments, showing that
aiming to be best at everything may perhaps be an unachievable goal. Among the
controllers tested, Jorge comes out best overall. CRABCAR is, however, in many
cases not far behind, and even beats Jorge on three of the tracks tested. This
suggests that even though there is a way to go compared to the best controller(s),
CRABCAR's performance is indeed very competitive in the SCRC setting.

Chapter 5

Conclusion and future work

In this thesis we have given a brief introduction to the history of autonomous driv-
ing and mentioned how simulated car competitions can serve as an encouragement
for developing techniques applicable for real world scenarios. The Simulated Car
Racing Championship (SCRC) is a competion held annually, and our system is
the implementation of a car controller which is to eventually participate in the
championship hosted at the Genetic and Evolutionary Computation Conference
the summer of 2011.

We conclude that it is indeed possible to build and use a non-perfect track model
acquired in a noisy environment. By extending a technique described by Quad�ieg
et al. [2] to �lter noise it was possible to construct an abstract track model
which proved good enough to serve as a basis for further applications of learning
techniques. When testing to what degree the noise a�ected the total performance
of CRABCAR, an average increase of only 1% to the lap time was observed. This
is a very encouraging result, when it is taken into consideration that the original
technique broke down completely when presented with noisy sensory data. A
good part of the performance is thanks to the online behavior adaption system
that optimized the behaviour of the car to �t speci�c racing tracks. The noise
�ltering introduced, together with the adaption system, made it possible to take
advantage of a non-perfect track model.

We also sought out to investigate how o�ine learning could aid performance when
there is very limited time for online learning during the competition. In our work
we use evolutionary computation o�ine to generate strategies related to general
handling of di�erent turn types. After classifying a track and its turns online,
such strategies are applied to give the controller some general knowledge of how
the di�erent types of turns should be handled. Using the strategies as a starting
point, the controller utilizes online adaption in an attempt to optimize strategies

67

68 CHAPTER 5. CONCLUSION AND FUTURE WORK

on an individual turn basis.

Using knowledge acquired through o�ine learning can indeed produce a better
result when the track model is non-perfect and the time available for online learn-
ing is limited. This is especially true for longer tracks. The extended strategies
proposed in this thesis show promising results. Optimizing the racing line used in
turns together with speed proved successful, especially when taking into account
the special cases of consecutive turns by using double turn strategies.

O�ine learning by means of evolutionary computation has shown itself as quite a
time-consuming process. Working with a simulator, which experimental runs are
practically di�cult to parallelize, limits the potential of employing such techniques
in the search for good behavior.

Comparing CRABCAR's performance in the SCRC context with other notable
entries from the last two years showed that the system as a whole performed as
good as, and in a some cases better than, the other controllers. This is promising
with regards to the championship where CRABCAR will compete. Even though
pure performance was not the goal of developing the system, it is inspiring to see
that it is performing on the same level as the better controllers from the previous
championships.

A common theme throughout the work done in this thesis has been the fragility
that has been evident in highly optimized car racing behavior. Driving on the
very limits of what the car is capable of in all situations makes for a very �ne line
between the ultimate success and total failure. A small di�erence in the dynamics
between the car and the track, the position of the car or the speed of the car will
likely lead to the car losing control and crashing.

It is clear that having some form of online reinforcement learning plays an impor-
tant role when working with a discretized track model. The problem lies with the
evaluation used to guide the search for better performance of the car online. A
time based approach can focus on the only thing that matters in a competition
setting, which is the time it takes the car to circuit the track. The total lap time
is not precise enough though, as many changes may occur during a lap around the
track. Determining which changes a�ected the lap time in a positive way should
be the goal of the evaluation. It needs to work on a local scale, down to evaluating
performance in single turns. It also needs to take into account combinations of
turns, as a change in the strategy for one turn can negatively a�ect the perfor-
mance in subsequent turns. By developing a better heuristic than trial and error
(i.e. not requiring a crash before deciding to reduce driving speed), the search
could be sped up. With the limited time available, the speed of the search is
paramount.

The process of building the track model has signi�cant room for improvement.

69

The noise �ltering in particular can be handled more elegantly than what is done
in this thesis. Kalman �lters could for example be employed to model the noise
and more accurately calculate sensor signals closer to the truth. Based on more
accurate sensor signals, a more granular turn type system could re�ne the car's
behavior and ease the need for online adaptivity to optimize strategies to speci�c
racing tracks. A more accurate track model could also be used to model an optimal
racing line in its entirety, using the approach proposed by Cardamone et al. [35]
which was based on perfect track layout knowledge. Knowing both the optimal
racing line and the layout of the track ahead of the car could make it possible
to incorporate advanced opponent handling, minimizing the departure from the
optimal racing when passing other cars and exploiting the shape of turns e�ciently.

The encouraging results from using the more advanced strategies when navigating
turns inspire further work in the area. Having turn strategies that take turn length
and track width into account when calculating speed and position is a possibility.
Given that both turn length and track width are both in theory unlimited, they
could either be intergrated into a track model building process where they are
de�ned by discrete classes, or they could serve as input for matehmatical functions
that compute the speed and position in a more granular way. Adding length and
width classes to the already existing curvature and surface classes would increase
the total number of combinations dramatically, potentially making the process
of optimizing parameters for every one of them an unfeasible task. Either way, it
would be interesting to incorporate the factors of speed and racing line even better
into the strategies.

It has become clear to us throughout working with a simulated car racing envi-
ronment that it truly poses some complex problems, which again are riddled with
smaller problems. The results from comparing CRABCAR to other controller sys-
tems reveals that it is possible to outperform other controllers on some tracks,
while underperforming on others. It might be theoretically possible create a con-
troller that is consistently best in every environment, but a more realistic goal
is probably to aim for a good all-rounder which hopefully is able to excel when
averaged across a number of tracks.

The methods and results presented in this report has mainly focused on behaviour
and performance when driving alone on a track. The opponent module in its
current state is trivial, and is only concerned with trying to avoid other cars in close
vicinity. Expanding the functionality of the module is a natural continuation of the
work done in this thesis. Using the track model, it is possible to exploit the layout
of the track ahead in situations where opponent cars are involved. Overtaking on
the inside of turns, blocking opponents that are approaching from behind in sharp
turns and safely navigating the densely populated �eld of cars existing right after
a race has started are a few behaviors that could improve CRABCAR.

70 CHAPTER 5. CONCLUSION AND FUTURE WORK

Bibliography

[1] Wall Street Journal. http://online.wsj.com/article/

SB119948828539568677.html?mod=hpp_us_whats_news. Date accessed:
13.06.2011.

[2] Jan Quad�ieg, Mike Preuss, Oliver Kramer, and Günter Rudolph. Learning
the Track and Planning Ahead in a Car Racing Controller, 2010.

[3] E.D. Dickmanns. Dynamic vision for perception and control of motion.
Springer Verlag, 2007.

[4] Popular Science. Bonnier Coorporation, oct. 1985.

[5] M. Williams. PROMETHEUS-The European research programme for opti-
mising the Road Transport System in Europe. In Driver Information, IEE

Colloquium on, page 1. IET, 2002.

[6] M. Maurer, R. Behringer, S. Furst, F. Thomanek, and ED Dickmanns. A
compact vision system for road vehicle guidance. In Pattern Recognition,

1996., Proceedings of the 13th International Conference on, volume 3, pages
313�317. IEEE, 2002.

[7] No hands across america. http://www.cs.cmu.edu/afs/cs/usr/tjochem/

www/nhaa/nhaa_home_page.html. Date accessed: 13.06.2011.

[8] VisLab ARGO. http://www.argo.ce.unipr.it/ARGO/english/index.

html. Date accessed: 13.06.2011.

[9] DARPA 04. http://archive.darpa.mil/grandchallenge04/. Date ac-
cessed: 13.06.2011.

[10] DARPA 05. http://archive.darpa.mil/grandchallenge05/. Date ac-
cessed: 13.06.2011.

71

http://online.wsj.com/article/SB119948828539568677.html?mod=hpp_us_whats_news
http://online.wsj.com/article/SB119948828539568677.html?mod=hpp_us_whats_news
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.argo.ce.unipr.it/ARGO/english/index.html
http://www.argo.ce.unipr.it/ARGO/english/index.html
http://archive.darpa.mil/grandchallenge04/
http://archive.darpa.mil/grandchallenge05/

72 BIBLIOGRAPHY

[11] DARPA 07. http://archive.darpa.mil/grandchallenge/index.asp.
Date accessed: 13.06.2011.

[12] The Google Blog. http://googleblog.blogspot.com/2010/10/

what-were-driving-at.html. Date accessed: 13.06.2011.

[13] VIAC. http://vislab.it/Projects/view/32/VisLab's_adventure_on_

the_Silk_road. Date accessed: 13.06.2011.

[14] J Togelius and S Lucas. The 2007 IEEE CEC simulated car racing competi-
tion. Genetic Programming . . . , 2008.

[15] D. Loiacono, J. Togelius, P.L. Lanzi, L. Kinnaird-Heether, S.M. Lucas,
M. Simmerson, D. Perez, R.G. Reynolds, and Y. Saez. The wcci 2008 simu-
lated car racing competition. In Computational Intelligence and Games, 2008.

CIG'08. IEEE Symposium On, pages 119�126. IEEE, 2009.

[16] D Loiacono and PL Lanzi. The 2009 Simulated Car Racing Championship.
. . . Intelligence and AI . . . , 2010.

[17] TORCS web page. http://torcs.sourceforge.net/. Date accessed:
13.06.2011.

[18] TORCS project history. http://torcs.cvs.sourceforge.net/torcs/

torcs/torcs/doc/history/history.txt. Date: Date accessed: 13.06.2011.

[19] GNU General Public Licence. http://www.gnu.org/licenses/gpl.html.
Date accessed: 13.06.2011.

[20] Free Art Licence 1.3. http://artlibre.org/licence/lal/en. Date ac-
cessed: 13.06.2011.

[21] The TORCS Racing Board. http://www.berniw.org/trb/. Data accessed:
13.06.2011.

[22] LJ Fogel. Arti�cial intelligence through simulated evolution. 1966.

[23] D. Floreano and C. Mattiussi. Bio-inspired arti�cial intelligence: theories,

methods, and technologies. 2008.

[24] RC Arkin. Behavior-based robotics. 1998.

[25] R. Brooks. A robust layered control system for a mobile robot. IEEE journal

of robotics and automation, 2(1):14�23, 1986.

http://archive.darpa.mil/grandchallenge/index.asp
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://vislab.it/Projects/view/32/VisLab's_adventure_on_the_Silk_road
http://vislab.it/Projects/view/32/VisLab's_adventure_on_the_Silk_road
http://torcs.sourceforge.net/
http://torcs.cvs.sourceforge.net/torcs/torcs/torcs/doc/history/history.txt
http://torcs.cvs.sourceforge.net/torcs/torcs/torcs/doc/history/history.txt
http://www.gnu.org/licenses/gpl.html
http://artlibre.org/licence/lal/en
http://www.berniw.org/trb/

BIBLIOGRAPHY 73

[26] L. Cardamone, D. Loiacono, and P.L. Lanzi. Evolving competitive car con-
trollers for racing games with neuroevolution. In Proceedings of the 11th An-

nual conference on Genetic and evolutionary computation, pages 1179�1186.
ACM, 2009.

[27] M.V. Butz and T.D. Lönneker. Optimized sensory-motor couplings plus strat-
egy extensions for the torcs car racing challenge. . . . and Games, 2009. CIG

2009. IEEE . . . , 2009.

[28] D Perez and G Recio. Evolving a fuzzy controller for a car racing competition.
. . . Intelligence and Games, . . . , 2009.

[29] J. Togelius, R. De Nardi, and S.M. Lucas. Making racing fun through player
modeling and track evolution. Optimizing Player Satisfaction in Computer

and Physical Games, page 61, 2006.

[30] N. Van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber. Robust player
imitation using multiobjective evolution. In Evolutionary Computation, 2009.

CEC'09. IEEE Congress on, pages 652�659. IEEE, 2009.

[31] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Learning Drivers
for TORCS through Imitation Using Supervised Methods, 2009.

[32] J Munoz. A human-like TORCS controller for the Simulated Car Racing
Championship. 2010.

[33] SCRC @ CIG-2010. http://www.slideshare.net/dloiacono/

2010-simulated-car-racing-championship-cig2010?from=ss_embed.
Date accessed: 13.06.2011.

[34] F Braghin and F Cheli. Race driver model. Computers & Structures, 2008.

[35] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessandro Pietro
Bardelli. Searching for the Optimal Racing Line Using Genetic Algorithms,
2010.

[36] Watchmaker framework. http://watchmaker.uncommons.org/. Date ac-
cessed: 13.06.2011.

http://www.slideshare.net/dloiacono/2010-simulated-car-racing-championship-cig2010?from=ss_embed
http://www.slideshare.net/dloiacono/2010-simulated-car-racing-championship-cig2010?from=ss_embed
http://watchmaker.uncommons.org/

74 BIBLIOGRAPHY

Appendix A

Competition rules and setup

Following is a direct copy of the rules and regulations of what will be the 2011
Simulated Car Racing Championship 1. In addition, tables A.1, A.2,A.3, describe
the interface that the controllers have to work with, consisting of the e�ectors
available for manipulation and the sensory data received from the simulation.2.

A.1 Rules and Regulations

The championship consists of several races on di�erent tracks divided into legs.
Teams will be allowed to submit a di�erent driver to each leg.

Each Grand Prix consists of three stages:

� the warm-up

� the qualifying

� the race

During warm-up, each driver races alone. Drivers can collect useful information
about the tracks and can tune their behaviors for the next stages. Accordingly,
the performance of drivers in this stage is not taken into account for their scores.

During the qualifying stage each driver races alone on each track of the leg. The
eight controllers that bridge the longest distances qualify for the actual Grand Prix
races.

1SCRC rules and regulations: http://cig.ws.dei.polimi.it/?page_id=175
2Competition software manual:
https://sourceforge.net/projects/cig/�les/Championship%202010%20Manual/1.0/manual.pdf/download

A1

A2 APPENDIX A. COMPETITION RULES AND SETUP

During the �nal races, these best eight drivers race together. The races consist of
eight runs on each of the three tracks. At the end of each race, the drivers are
scored using the F1 system: 10 points to the �rst controller that completes the
race, 8 points to the second one, 6 to the third one, 5 to the fourth, 4 to the �fth
one, 3 to the sixth, 2 to the seventh, and 1 to the eighth. The driver performing
the fastest lap in the race will get two additional points. The driver completing
the race with the smallest amount of damage will also get two extra points. The
starting grid of the �rst race will be based on the performance obtained in the
qualifying stage. Each subsequent race, the starting grid will be shifted by one so
that each driver starts from every position of the starting grid exactly once.

A.2. EFFECTORS AND SENSORS A3

A.2 E�ectors and sensors

Name Range Description

accel [0, 1] Virtual gas pedal (0 means no gas, 1 means full
gas).

brake [0, 1] Virtual brake pedal (0 means no brake, 1 means
full brake).

clutch [0, 1] Virtual clutch pedal (0 means no clutch, 1 means
full clutch).

gear {−1, 0, 1, ..., 7} Gear value.
steering [−1, 1] Steering value: -1 and +1 means full right and

full left turn, respectively, corresponding to and
angle of π/4 rad.

focus [−90, 90] Focus direction (see focus sensors in Table A.2)
in degrees.

meta {0, 1} This is the meta command. 0 does nothing, 1
asks the competition to restart the race.

Table A.1: E�ectors available to the SCRC participant controllers.

A4 APPENDIX A. COMPETITION RULES AND SETUP

Name Range (unit) Description

angle [−π,+π] Angle between the car direction and the
direction of the track axis.

curLapTime [0,+∞) (s) Time elapsed during current lap.
damage [0,+∞) (point) Current damage of the car (the higher the value

is, the higher the damage).
distFromStart [0,+∞) (m) Distance of the car from the start line along the

track line.
distRaced [0,+∞) (m) Distance covered by the car from the beginning

of the race.
focus [0, 200] (m) Vector of 5 range �nder sensors: each sensor

returns the distance between the track edge and
the car within a range of 200 meters. When
noisy option is enabled sensors are a�ected by
i.i.d. normal noise with a standard deviation
equal to 1% of the sensors' range. The sensors
sample, with a resolution of 1°, a 5° space along
a speci�c direction provided by the client (the

direction is de�ned with the focus command and
must be in the range [−π/2,+π/2] w.r.t. the car
axis). Focus sensors are not always available:
They can be used only once per second of

simulated time. When the car is outside of the
track (i.e., pos is less than −1 or greater than 1),
the focus direction is outside the allowed range
([−π/2,+π/2]) or the sensor already has been
used once in the last second, the returned values

are not reliable (typically −1 is returned).
fuel [0,+∞) (l) Current fuel level.
gear {−1, 0, 1, ..., 7} Current gear: −1 is reverse, 0 is netural, and

1− 7 is gear 1− 7.
lastLapTime [0,+∞) (s) Time spent completing the previous lap.
opponents [0, 200] (m) Vector of 36 opponent sensors: Each sensor

covers a span of π/18 (10°) within a range of 200
meters and returns the distance of the closest
opponent in the covered area. When noisy

option is enabled, sensors are a�ected by i.i.d.
normal noise with a standard deviation equal to
2% of the sensor's range. The 36 sensors cover
all the space around the car, spanning clockwise
from +π up to −π with respect to the car axis.

Table A.2: Sensory information available to the controllers (part I).

A.2. EFFECTORS AND SENSORS A5

Name Range (unit) Description

racePos {1, 2, ..., N} Position in the race with respect to other cars.
rpm [2000, 10000] (rpm) Number of revolutions per minute of the car

engine.
speedX (−∞,+∞) (km/h) Speed of the car along the longitudinal axis of

the car.
speedY (−∞,+∞) (km/h) Speed of the car along the transverse axis of the

car.
speedZ (−∞,+∞) (km/h) Speed of the car along the Z axis of the car.
track [0, 200] (m) Vector of 19 range �nder sensors: Each sensor

returns the distance between the track edge and
the car within a range of 200 meters. When

noisy option is enabled, sensors are a�ected by
i.i.d. normal noise with a standard deviation
equal to 10% of the sensors' range. By default,
the sensors sample the space in front of the car
every 10°, spanning clockwise from +π/2 up to
−π/2 with respect to the car axis. The
con�guration of these sensors can be set

manually by the controller before each race.
When the car is outside of the track (i.e., pos is
less than−1 or greater than 1), the returned

values are not reliable.
trackPos (−∞,+∞) Distance between the car and the track axis.

The value is normalized w.r.t. the track width:
It is 0 when the car is on the track axis, −1
when the var is on the right edge of the track
and +1 when it is on the left edge of the track.
Values greater than 1 or smaller than−1 mean

that the var is outside of the track.
wheelSpinVel [0,+∞] (rad/s) Vector of 4 sensors representing the rotation

speed of the wheels.
z (−∞,+∞) (m) Distance of the car mass center from the surface

of the track along the Z axis.

Table A.3: Sensory information available to the controllers (part II).

A6 APPENDIX A. COMPETITION RULES AND SETUP

Appendix B

Strategies evolved

B.1 Single turn strategies

This table contains the strategies evolved for use in single turns.

Turn type Surface type Strategy 〈p, v〉
HAIRPIN ROAD 〈0.6, 65〉
SLOW ROAD 〈0.8, 124〉

MEDIUM ROAD 〈0.4, 233〉
HIGH ROAD 〈0.24, 275〉

HAIRPIN DIRT 〈0.24, 52〉
SLOW DIRT 〈0.6, 83〉

MEDIUM DIRT 〈0.61, 162〉
HIGH DIRT 〈0.84, 273〉

Table B.1: The �nal single turn strategies.

B7

B8 APPENDIX B. STRATEGIES EVOLVED

B.2 Double turn strategies

This table contains the strategies evolved for use in double turns.

Turn types Surface First strategy 〈p1, v1〉 Second strategy 〈p2, v2〉
HAIRPIN-HAIRPIN ROAD 〈0.51, 90〉 〈0.34, 62〉
SLOW-HAIRPIN ROAD 〈0.17, 148〉 〈0.26, 68〉
SLOW-SLOW ROAD 〈0.06, 150〉 〈0.0, 107〉

MEDIUM-HAIRPIN ROAD 〈0.3, 170〉 〈0.23, 68〉
MEDIUM-SLOW ROAD 〈0.28, 194〉 〈0.03, 106〉

MEDIUM-MEDIUM ROAD 〈0.42, 238〉 〈0.28, 202〉
HIGH-HAIRPIN ROAD 〈0.25, 260〉 〈0.18, 66〉
HIGH-SLOW ROAD 〈0.11, 264〉 〈0.27, 117〉

HIGH-MEDIUM ROAD 〈0.06, 276〉 〈0.47, 208〉
HIGH-HIGH ROAD 〈0.02, 285〉 〈0.04, 285〉

HAIRPIN-HAIRPIN DIRT 〈0.6, 76〉 〈0.31, 47〉
SLOW-HAIRPIN DIRT 〈0.34, 89〉 〈0.22, 46〉
SLOW-SLOW DIRT 〈0.12, 88〉 〈0.09, 71〉

MEDIUM-HAIRPIN DIRT 〈0.33, 145〉 〈0.42, 50〉
MEDIUM-SLOW DIRT 〈0.34, 158〉 〈0.1, 106〉

MEDIUM-MEDIUM DIRT 〈0.12, 167〉 〈0.23, 130〉
HIGH-HAIRPIN DIRT 〈0.22, 248〉 〈0.34, 53〉
HIGH-SLOW DIRT 〈0.28, 252〉 〈0.18, 82〉

HIGH-MEDIUM DIRT 〈0.18, 253〉 〈0.23, 150〉
HIGH-HIGH DIRT 〈0.1, 268〉 〈0.07, 272〉

Table B.2: The �nal double turn strategies.

	Title Page
	Introduction
	Background
	The problem
	A brief history of autonomous driving
	The Simulated Car Racing Championship
	Origin and history
	Real vehicles vs. SCRC controllers

	The software environment
	TORCS
	The competition software

	Evolutionary computation
	Evolutionary algorithms
	Evolutionary programming

	Behavior-Based Robotics
	Related work
	Notable previous SCRC submissions
	Segment-based track modelling
	Optimizing the racing line

	Methods and design
	CRABCAR overview
	System architecture and module functionality
	The architecture
	Warm-up module
	Drive module
	Stuck module
	Opponent module
	Shifting gears, clutching and braking

	The database
	Building a track model
	What is being classified
	Classifying a track

	Evolution of strategies
	TORCS and evolution
	Evolution of gear changes
	Developing turn strategies prior to the competition
	Optimizing strategies
	Using Evolutionary Programming to optimize the strategies

	Adaptivity
	How the adaptivity works
	Adaptivity to increase turn speed
	Adaptivity to reduce turn speed and handle dangerous areas
	Preparing for qualifying stage

	Results and discussion
	The consequense of noisy sensors
	Example of classifying with and without noise
	Test setup
	Results and discussion

	Optimization of gear shifting scheme and turn strategies
	Evolution of gear shifting scheme
	Results and discussion
	Evolution of turn strategies
	Strategy evolution discussion
	The effect of double turn strategies

	The effect of adaptivity
	Example of applying strategies
	Testing the effect of adaptivity
	Results and discussion

	CRABCAR vs. other controllers

	Conclusion and future work
	Competition rules and setup
	Rules and Regulations
	Effectors and sensors

	Strategies evolved
	Single turn strategies
	Double turn strategies

