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Abstract

This dissertation investigates the classification capabilities of artificial neural
networks (ANNs). The goal is to generalize over the features of a writing system,
and thus classify the writing system of a previously unseen glyph. The complexity
of the problem necessitates a large network, which hampers the tuning of the
weights.

ANNs were created using three different hybrids of back-propagation (BP)
learning and evolution, and a pure BP algorithm for comparison. The purpose
was to find the method best suited for this kind of generalization and classification
networks.

The results suggest that ANNs are able to generalize enough to solve the clas-
sification task, but it is depending on the weight tuning algorithm. A pure BP
algorithm is preferable to any of the hybrid algorithms, due to the size of the ANN.
This algorithm had both the best classification results and the fastest runtime, in
addition to the least complex implementation.
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CHAPTER 1

Introduction

This chapter will hopefully describe the motivation behind the dissertation
topic, as well as the ultimate goal and research questions. In the end of the chapter,
the outline for the dissertation is presented.

1.1 Background and Motivation
This dissertation discusses glyph classification, i.e. classification of the writing

system of a previously unseen glyph. A glyph is an image used to visually represent
a sound in a language (FOLDOC, 1998a), while a writing system can be seen as
the set of glyphs used to represent the writing of one or more human languages
(FOLDOC, 1998b).

1.1.1 Writing Systems
33 000 years have passed since the first Homo sapiens discovered that they could

draw recognizable pictures on the wall of the Chauvet cave in France (Dehaene,
2009). Since then, writing has evolved from pictures of animals and nonfigurative
shapes, to easy-to-write shapes that represent ideas or sounds. The original pic-
tures have evolved to different shapes in different cultures, but one can still see the
original meaning in some of the new characters, e.g. A and α, which are simplifi-
cations of an ox (aleph in Greek). The horns and head are visible in both glyphs;
however, A is upside down, and α is rotated right.

Similarly, ⽜ is the Chinese character for ox, or cow. So even though both A and
⽜ have developed from the image of an ox, the resulting glyphs are very different.
⽜ has more in common with 本 than A, even though 本 means book, which is
not at all related to bulls. However, some writing systems that are closely related

1



CHAPTER 1. INTRODUCTION 2

have similar glyphs. For example, A can be found in the European alphabets of
Latin, Cyrillic, and Greek; as a capital a, a and α, respectively. This is the case
for writing systems all over the world. Some are far apart and look nothing alike,
while others are more closely related, with similar glyphs. (Ager, 2011)

Nevertheless, there are numerous visual features that all writing systems have
in common, e.g. contrasted contours and an average of three strokes per character.
They also have a reduced set of shapes that frequently occur in the glyphs; these
shapes characterize the writing system. Some have a set mainly consisting of
straight lines (Runic), while some have mostly circles (Shan). Several shapes are
common in multiple writing systems, e.g. lines and curves, but the frequency and
composition of the shapes tend to differ between the writing systems. (Dehaene,
2009; Ager, 2011)

Humans are usually able to separate between different writing systems, and
recognize the writing system of an unseen glyph if one already is familiar with
other glyphs from said writing system. This trait is probably due to the neural
network in our brain, which generalizes over the set of seen glyphs, and extracts
the common shapes and features (Dehaene, 2009). As a natural neural network is
able to do this, an artificial neural network (ANN) ought to be able to as well.

1.1.2 Glyph Classification
ANNs are able to recognize glyphs. Character recognition is a much researched

area, and an important part of general pattern recognition (Bishop, 1996). Char-
acter recognition is the task of recognizing a character the system already has been
in contact with; in worst case the character has additional noise (Bishop, 1996).
The noise recognition capabilities are used to e.g. read handwritten characters or
characters written with different fonts.

One could solve the glyph classification problem by running all glyphs through
the network, and have the network recognize all glyphs and remember their writ-
ing system. However, this solution is not that exciting, precisely because ANNs
are good at character recognition (Bishop, 1996). It would also be a suboptimal
solution; not because it is a difficult task, but because the network would have to
train on huge amounts of glyphs. It should train on every glyph of every writing
system, as it would fail completely each time an unseen glyph appeared.

To both avoid the large training sets and find a challenging task, the ANNs
must learn to generalize. That is, they must learn to look at the writing system as
a whole, and generalize over the common shapes and features. It is thus important
to completely separate between the training set and the test set, such that no glyph
in the test set can have been seen before, and thus recognized.

It is this generalization that makes glyph classification more difficult than nor-
mal character recognition, as different versions of the same character are more
similar than different characters from the same writing system. As can be seen
in Appendix A, the glyphs within a writing system can look quite different. Even
though the shapes and features are common, they must look sufficiently different
from each other for it to be possible to differentiate between them while reading.
Consequently, the characters within a writing system have their black and white
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pixels in different patterns, and trigger thus different neurons. Variations of the
same character will have most of their pixels in the same place, and triggering
mostly the same neurons.

1.2 Problem Definition

The main goal of this dissertation is not to find a solution that can classify the
writing system of a glyph. As the writing system tend to be known by context, this
is not a very useful task. The main goal is to investigate how well ANNs are able to
generalize. The focus will thus not be on creating a system as good as possible, but
to make the generalization as good as possible, even if that results in a suboptimal
solution.

To investigate the generalization capabilities of ANNs, one should create differ-
ent ANNs using different methods, as one method might solve the problem better
than another. The main focus is on learning and evolution, as those are common
methods for training ANNs (Floreano and Mattiussi, 2008; De Jong, 2006).

The prestudy for this dissertation (Rødland, 2010) compared the use of pure
learning and pure evolution on this generalization task. It was concluded that a
genetic algorithm (GA) in itself is unable to solve the glyph classification problem,
as it was too memory consuming and time demanding to achieve acceptable re-
sults. The back-propagation (BP) algorithm, on the other hand, solved the glyph
classification problem satisfactorily.

This dissertation is based on the hypothesis that evolution might work better
if it is combined with another method. Hopefully, this would help solve the time
and memory problems. To investigate this hypothesis, three hybrid algorithms
combining evolution and BP learning are compared. They are also compared to
the pure BP algorithm, to investigate whether BP with evolution is preferable to
pure BP.

GA is not in this comparison due to the unsatisfactory results achieved in
Rødland (2010); however, the results from Rødland (2010) are available in Sec-
tion B.4. The hybrids can thus not be directly compared to the pure GA. This is
not seen as a problem; if their results are as bad as those of GA, they are — for all
intents and purposes — incapable of solving the glyph classification problem. As
there is at least one algorithm that does solve the problem (BP), the internal rank
order of those that do not solve it, is not that important.

The three hybrid algorithms are weight evolution (WE), back-propagation/genetic
algorithm (BP/GA), and genetic algorithm/back-propagation (GA/BP). WE is a
batch back-propagation algorithm that has one generation of evolution within ev-
ery iteration of learning. This is to escape from local minima and improve low
performance nodes. The other two use both online BP and a GA. BP/GA uses BP
to reduce the search space, and finds the final solution using a GA. GA/BP does
the opposite; it reduces the search space using a GA, and then it applies the BP.
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1.2.1 Research Questions
As the main focus of this dissertation is the generalization capabilities of ANNs,

this will consistute the first and most important research question, RQ1. Whether
generalization is possible or not, some algorithms are probably better suited than
others. The secondary research question is thus which method is the best suited
for this problem, be it learning, evolution, or a hybrid of the two.

There are thus two main research questions that this dissertation will try to
answer:

RQ1 Are ANNs able to generalize over glyphs of many different writing systems,
and correctly classify the writing system of an unseen glyphs?

RQ2 Which training method would best solve RQ1; learning, evolution, or a hy-
brid of learning and evolution?

1.3 Outline
This dissertation is structured as follows.

Chapter 1 introduces the problem and the research goals.

Chapter 2 gives an introduction to writing systems in general. It also presents
previous research on algorithms for training ANNs, focusing on hybrid algo-
rithms.

Chapter 3 introduces the chosen writing systems. In addition, the design of the
ANN is described, as well as the algorithms used in the system.

Chapter 4 presents the results, along with a discussion of both the algorithms
and the writing systems. It also discusses some potential bias problems.

Chapter 5 concludes the dissertation, along with a discussion of future work.

Appendix A includes the Unicode charts from the writing systems used. This is
to get a feeling of how the glyphs look, to easier compare the glyphs within
the writing system, as well as compare different writing systems. This will
hopefully help the reader see why some writing systems are easier to classify
than others.

Appendix B includes all the result graphs, sorted by both algorithm and phase.
In addition, the results from the GA from Rødland (2010) are included, for
comparison purposes.



CHAPTER 2

Background

This chapter consists of two parts; Section 2.1 describes the different type of
writing systems, and Section 2.2 presents different hybrid algorithms for training
of artificial neural networks (ANNs). Focus is on the algorithms this dissertation
is based on, but also other hybrids are discussed.

2.1 Writing Systems
There are different kinds of writing systems, depending on the type of sound

each glyph represents. Below is the classification used by The Unicode Consortium
(2011, Ch. 6).

Alphabet Alphabets are writing systems that consist of letters, which can be
either a consonant or a vowel. Both have the same status as letters, giving a
homogeneous collection of glyphs.

Alphabets are quite common in the Western world. The most well-known is
probably the Latin alphabet, but also Greek, Cyrillic, Coptic, and Runic are al-
phabets. The name comes from the first two letters of the Greek alphabet; alpha
(α) and beta (β).

There is often varying correspondence between letters and sounds in alphabets.
The Latin alphabet is a good example, as it is used to write a huge variety of
languages. Some of these languages, e.g. Italian and Finnish, have a high correla-
tion between letters and sound, meaning that the pronunciation of any unknown
word is clear based on the spelling of the word, and vice versa. Other languages,
e.g. English, have evolved and incorporated words from many other languages.
This results in a spelling and pronunciation that is highly complex and difficult to

5
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determine. However, there are also phonetic alphabets, with International Pho-
netic Alphabet (IPA) as the best known. These alphabets are designed to have a
one-to-one correspondence between sound and letter.

Abjad In abjads, all the glyphs are consonants. The vowels are either completely
missing from writing, or only indicated by specific marks on the consonants. For
example, Arabic and Hebrew are seldom written with vowels. When they are
written, they are indicated by points, or harakat. These are diacritic dots and
other marks, placed either above or below the consonants.

Semitic languages are often abjads, as these languages have a word structure
that is best suited for consonantal writing. These include Arabic, Hebrew, and
Syriac. All abjads — with the exception of Ugaritic — are written from right to
left (Ager, 2011).

The name abjad is from the first four letters of Arabic: alef, beh, jeem, dal.

Syllabary The glyphs in a syllabary consist of minimum one consonant and one
vowel. Syllabaries are named as such because each glyph is called a syllabary
instead of a letter.

The Japanese kana systems — Hiragana and Katakana — are both syllabaries.
The glyphs there describe syllables like e.g. ka (か), ki (き), ku (く), ke (け), ko
(こ), ra (ら), and ri (り). Here, each glyph is unique in shape, such that か and き
look nothing alike, even though they both start with the sound k. This feature can
be found in other syllabaries as well, e.g. Cherokee and Yi.

Other syllabaries, like the Canadian Aboriginal Syllabics, do have similar ka
and ki. There, the shape of the glyph decides the consonant, while the rotation
decides the vowel.

Abugida Abugidas mix the features of alphabets and syllabaries. That is, each
consonant has its own inherent vowel, usually an a. If another vowel follows a
consonant, the inherent vowel is overridden. For example, an i that follows a ka,
results in ki, not kai. Some vowel glyphs (matras) are subordinate to the consonant
letters — overriding their inherent vowel — while other vowels can be used as
independent vowels, e.g. at the beginning of words. Abugidas typically have a
special glyph, the halant, that removes the inherent vowel. A halant following a
consonant will thus give a bare consonant sound.

The Devanagari script — used to write e.g. Hindi and Sanskrit — is an abugida.
So is Thai, which also can be used to write Sanskrit. The Ethiopic script is also
an abugida, and it is the first four letters of this script that have given abugidas
their name: alf, bet, gaml, and dant. The vowels (ä, u, i, a) are in the traditional
order in the Ethiopic script charts.

Interestingly, the Ethiopic script is not a true abugida. It is classified as such
because the basic character for each series of consonants has an inherent vowel.
However, other features — like matras and halant — are missing. The Ethiopic
script is derived from early Semitic scripts, and was originally an abjad. However,
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today it is treated mainly as a syllabary, due to its traditional presentation and
encoding.

Logosyllabary Logosyllabaries do not represent only the sound of a language, but
the meaning behind the words.

The Han script — which is used to write Chinese — is a logosyllabary. These
glyphs are borrowed by other East Asian languages, e.g. Japanese and Korean.
As a consequence, it is possible to understand written Chinese when you know
Japanese, even though the spoken languages are nothing alike. A Han glyph is
called hànzi in Chinese, kanji in Japanese, and hanja in Korean. In all three
languages it is written as 漢字.

Japanese is special, in that it uses four different writing systems in the same
composite system (Banno et al., 1999). That is, kanji (logosyllabary) for things
and meanings, Hiragana (syllabary) for e.g. grammatical postfixes and particles,
Katakana (syllabary) for e.g. foreign words, and Latin (alphabet) for rōmaji.
Rōmaji is a transliteration of the sound, for use when the other systems will not
be understood, e.g. when working with computers and foreigners.

Because of this separation, the kanji is used only for meaning, not sound. Each
kanji can have many different sounds connected to it. As a result, the same sequence
of kanji can be translated to different strings of Hiragana, depending on the context.
⽇曜⽇, meaning Sunday, is pronounced nichiyoubi, にちようび. Note that the
first and the second ⽇ have different sounds. This is because they have different
meanings; the first ⽇ means Sun, while the second means day. (曜 means weekday.)
The basic meaning is the same, however, as the day can be seen as a function of the
Sun. Similarly, ⽉ means both Moon and month. When it comes to logosyllabaries,
context is everything. A Hiragana て, on the other hand, will always be a te.

Egyptian Hieroglyphs can double as both kanji and kana. While the majority
of the Hieroglyphs are logograms, there is also a subset of these that behaves like
an alphabet. Other glyphs represent sequences of consonants. There are also some
glyphs that function as a determinative, i.e. an unspoken character that is placed
at the end. Their purpose is to give the reader some context, a general idea of
the meaning. In other words, Hieroglyphs are complicated. For simplicity they
are classified as a logosyllabary by The Unicode Consortium (2011), while there
actually are many differences. This is an overall problem with writing systems, as
they were not designed to fit a specific type.

One can take the glyphj (pr) as an example (Collier and Manley, 2003). This
looks like the floor plan of a simple one-room house, and is thus the symbol used
for house.

j| means an actual house, as | is a sign used to indicate that this
indeed is a logogram. When used in

jrL (pr), on the other hand,j has nothing
to do with houses. Similarly, r (r) does no longer mean mouth. j is now used
for the sound pr, which means to go out, leave. The r is there to clarify the
reading of j, not to add an extra r. The walking legs at the end, L, are used as
a determinative, to show the basic idea of movement.
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2.2 Training Artificial Neural Networks
The performance of an ANN depends on the weight values. These can be

manually configured in very small networks. However, this task is too complex for
larger networks, necessitating a training algorithm.

This section describes algorithms used for ANN training. These algorithms
include evolution, learning, and many evolution-learning hybrids. The first five al-
gorithms are used in the glyph classification problem, while other hybrid algorithms
are introduced in Section 2.2.6.

2.2.1 Genetic Algorithm
Evolutionary computation (EC) is a search method deeply inspired by the con-

cept of evolution (Darwin, 1859). A genetic algorithm (GA) is an evolutionary
method, designed for bit vector individuals (Downing, 2009). A bit vector geno-
type gives the most freedom when translating the genotype to a phenotype; a bit
vector can represent almost anything, and is thus a good choice when evolving an
ANN (Whitley et al., 1990). That points to the use of a GA, and thus also the use
of both mutation and crossover, full generational replacement as adult selection,
a uniform parent selection, and a fitness proportionate mate selection (Downing,
2009).

There are different approaches to evolving ANNs; one can e.g. use a predefined
topology and only evolve the weights, or one can evolve the topology as well (Jones,
2009; Dewri, 2003).

Since this ANN shall be used by multiple algorithms, the topology ought to
be predefined. That would make the implementation less complicated and more
modular. However, it is still possible to slightly adapt the network. Shi and Wu
(2008) designed evolving efficient connections (EEC), a method to evolve both
connection weights and a switch to turn the weight on or off. Otherwise, one must
wait for all the bits to become 0 for the connection to be removed; with EEC just
one bit needs to be turned off.

A GA has already been used on the glyph classification problem (Rødland,
2010). The results (Section B.4) suggested that the ANN necessary to solve the
problem was too large for evolution to handle; the runtime was extensive and so
was the required memory. Only four runs were completed, and the results achieved
were not impressive. As can be seen in the test graph (Figure B.14b on page B-
17), there seemed to be no detectable difference between the writing systems. It
was concluded that evolution was too demanding with respect to both time and
resources to be an acceptable solution for such a large ANN.

2.2.1.1 Algorithm

According to De Jong (2006), a GA is as follows:

Step 0: Initialization Randomly generate a population of m parents.
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Step 1: Fitness Compute and save the fitness u(i) for each individual i in the
current parent population.

Step 2: Selection Define selection probabilities p(i) for each parent i so that p(i)
is proportional to u(i).

Step 3: Reproduction Generate m offspring by probabilistically selecting par-
ents to produce offspring.

Step 4: Surviving Let only the offspring survive to the next generation.

Step 5: Continue Go to Step 1, until the fitness of the best individual is high
enough.

2.2.2 Back-Propagation
Using supervised learning, the weights of the ANN are learned by exploiting

the difference between the output of the network and the known solution.
For each pattern µ of the M training patterns, there is a pair of input vectors

~xµ and desired output vectors ~tµ. The goal is to find the set of synaptic weights
such that the actual output ~yµ of a two-layered network is as close as possible to
the desired output ~tµ, for all of the M patterns.

The weights of the network should change gradually, until it is performing
acceptably. The performance can be described using an error function, e.g. the
mean quadratic error between the desired and the actual output (Equation (2.1)).
Just as the output ~yµ, the error is depending on the synaptic weights. The error
can thus be reduced by changing the weights accordingly.

EW =
1

2

∑
µ

∑
i

(tµ
i − yµ

i )
2
=

1

2

∑
µ

∑
i

tµ
i −

∑
j

wijxµ
j

2

(2.1)

The weight change is given by a learning rule. Differentiating Equation (2.1)
with respect to the weights gives the learning rule in Equation (2.2), where η is
the learning rate (Wagstaff, 2008; Floreano and Mattiussi, 2008). This equation is
known both as the Widrow-Hoff rule — after its authors Widrow and Hoff (1960)
— and as the delta rule, because of the difference δ = t − y. It is often written as
simply ∆wij = ηδixj .

∆wij = η (ti − yi)xj (2.2)

This ∆wij is then added to the weight wij , either online, i.e. after each and
every pattern, or in batch mode, i.e. adding the accumulated weight change after
all the M training patterns have been run through the net.

While the delta rule works fine for training patterns that are linearly separable,
it does not work for more complex patterns, e.g. exclusive or (XOR). The XOR
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function needs hidden layers, necessitating a more complex version of the delta
rule. The solution — the generalized delta rule — was presented by Rumelhart
et al. (1986). This algorithm, best known as back-propagation of error, propagates
the error back through the network, from the outer layer back through all the
hidden layers, and to the input layer. It can thus handle an ANN with an arbitrary
number of nodes and layers.

.

.x1.Input #1

.x2.Input #2

.. . ..Input #3 → #K − 1

.xK.Input #K

.h1

.h2

.h3

.. . .

.hJ

.y1 .Output #1

.. . . .Output #2 → #I − 1

.yI .Output #I

. Hidden
layer hj

. Input
layer xk

.Output
layer yi

.
. Inner
link vjk

. Outer
link wij

Figure 2.1: An ANN with the back-propagation syntax. xk is the input layer, with
K nodes. Similarly, hj and yi are the hidden layer with J nodes and the output
layer with I nodes, respectively. vjk is the link between the input layer and the
hidden layer. Each node in the input layer is connected to every node in the hidden
layer, so the link consists of k × j connections. Similarly, wij is the link between
the hidden layer and the output layer.

A back-propagation (BP) algorithm has also been tested on the glyph classifica-
tion problem before (Rødland, 2010). Good results were achieved within reasonable
time, suggesting that BP — unlike the GA — is capable of solving the glyph clas-
sification problem.

2.2.2.1 Algorithm

The BP algorithm given by Floreano and Mattiussi (2008) for online weight
updating — using the syntax from Figure 2.1 — is as follows:

Step 0: Initialization Initialize all weights, vjk and wij , to random values close
to 0. Set the values of the input nodes to the current training pattern s:

xµ
k = sµ

k (2.3)
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Step 1: Feed-forward Compute the values of the hidden nodes, based on the
input nodes and the link from the input to the hidden layer:

hµ
j = Φ

(∑
k

vjkxµ
k

)
(2.4)

Compute the values of the output nodes, based on the hidden nodes and the
link from the hidden to the output layer:

yµ
i = Φ

∑
j

wijhµ
j

 (2.5)

The function Φ(·) is the sigmoid function:

Φ(ai) =
1

1 + e−cai
(2.6)

Step 2a: Compute the error in the outer layer Compute the delta error for
each output node, based on the hidden nodes and the link from the hidden
to the output layer, as well as the difference between the expected and the
actual output:

δµ
i = Φ

′

∑
j

wijhµ
j

 (tµ
i − yµ

i ) (2.7)

It can be noted that the derivative of the sigmoid function can be expressed
in terms of the output of the sigmoid function (Wagstaff, 2008):

Φ
′

∑
j

wijhµ
j

 = yµ
i (1 − yµ

i ) (2.8)

As a result, the delta error can be written solely depending on the actual and
the expected output:

δµ
i = yµ

i (1 − yµ
i ) (t

µ
i − yµ

i ) (2.9)

Step 2b: Compute the error in the inner layer Compute the delta error for
each hidden node, based on the input nodes, both links, and the delta error
for the output nodes:

δµ
j = Φ

′

(∑
k

vjkxµ
k

)∑
i

wijδµ
i (2.10)

Thanks to the derivative of the sigmoid function, the error can be written
independently of the input:

δµ
j = hµ

j

(
1 − hµ

j

)∑
i

wijδµ
i (2.11)
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Step 3: Compute the weight changes Compute the changes in synaptic weights,
based on the delta errors and the output values of the first two layers:

∆wµ
ij = δµ

i hµ
j (2.12a)

∆vµ
jk = δµ

j xµ
k (2.12b)

Step 4: Update the weights Update the weights by adding the changes to each
weight, multiplied with the learning rate η:

wt
ij = wt−1

ij + η∆wµ
ij (2.13a)

vt
jk = vt−1

jk + η∆vµ
jk (2.13b)

Step 5: Continue Go to Step 1, until the total sum squared error (TSS) is suf-
ficiently small. This error (Equation (2.14)) is computed over all the output
nodes i, for all the training patterns µ.

TSS =
1

M

M∑
µ

(
1

N

N∑
i

(tµ
i − yµ

i )
2

)
(2.14)

2.2.3 Weight Evolution
Ng and Leung (2000) proposed a weight evolution (WE) algorithm that evolves

weights within the BP algorithm. There are two reasons for doing this; (1) to
achieve faster convergence, and (2) to escape from local minima.

2.2.3.1 Overview

The algorithm is based on BP. Each epoch of BP will probably reveal some
output nodes with an error significantly above average. The WE algorithm will
select and change certain weights connected to these nodes. For each of the nodes,
the incoming weights will be duplicated and mutated, producing several offspring.
These weights will be updated, and the error recalculated. The original set of
weights will then be replaced by the fittest weight set available; either one of the
offspring, or the original. A new epoch of BP will start, with the new weights.

In case a local minimum is reached, the weight evolution between the input
and the hidden layer is initiated. When caught in a local minimum, some input
patterns will perform significantly worse than others. For these problematic input
pattern, the weights between a particular hidden node and its input nodes will be
evolved. This will continue for as long as the network is caught in local minima.

2.2.3.2 Details

According to the syntax of Ng and Leung (2000), x is the input pattern, h and
y are the output of the hidden layer and the output layer respectively, and t is the
target output. A three-layered network has K input nodes, J hidden nodes, and I
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output nodes (Figure 2.1 on page 10). The weights between the input and hidden
layer — the inner link — is represented using v, while the outer link — between
the hidden and output layer — is written as w.

Using this syntax, the output of the jth node in the hidden layer — assuming
input pattern p — is given by Equation (2.15), and the ith node in the output
layer is given by Equation (2.16). In both of these, Φ(·) is the sigmoid function
(Equation (2.17)).

hpj = Φ

(
K∑

k=1

vjkxpk

)
(2.15)

ypi = Φ

 J∑
j=1

wijhpj

 (2.16)

Φ(n) =
1

1 + e−n
(2.17)

The sum of squared error for the system is defined as Equation (2.18).

E =
1

2

P∑
p=1

I∑
i=1

(tpi − ypi)
2 (2.18)

Weight evolution in the outer link The weight evolution in the outer link is
used for output neurons with especially high error. For example, i∗ (1 ≤ i∗ ≤ I)
is an output neuron for which the output error is higher than average squared
error (Equation (2.19)). As the current weights are suboptimal, the weights wi∗j

connected to this node ought to be evolved. By changing these weights and keeping
the others, the error of i∗ will be reduced while the error of the other output nodes
will be preserved. The total error will thus be reduced, speeding up the convergence.

P∑
p=1

(tpi∗ − ypi∗)
2 ≥ 2E/I (2.19)

The new evolved weights are given as w̃i∗j = wi∗j + ∆wi∗j , for each hidden
node j ∈ [1, J ]. This results in the new output ỹpi∗ (Equation (2.20)), for the pth
input pattern.

ỹpi∗ = Φ

 J∑
j=1

(wi∗j +∆wi∗j)hpj

 (2.20)

J∑
j=1

∆wi∗jhpj = Φ−1 (ỹpi∗) − Φ−1 (ypi∗) (2.21)

Equation (2.20) can be written as Equation (2.21). This can be simplified by
setting εpi∗ = Φ−1 (ỹpi∗) − Φ−1 (ypi∗). ỹpi∗ is supposed to be closer to the target



CHAPTER 2. BACKGROUND 14

tpi∗ than ypi∗ was, and can thus be defined as ỹpi∗ = ypi∗ + (tpi∗ − ypi∗) · α, where
α ∈ (0, 1). This, together with Equation (2.17), results in Equation (2.22), and
thus Equation (2.23).

h11 h12 . . . h1J

h21 h22 . . . h2J

...
... . . . ...

hP1 hP2 . . . hP J



∆wi∗1

∆wi∗2

...
∆wi∗J

 =


εi∗

ε2i∗

...
εP i∗

 (2.22)


∆wi∗1

∆wi∗2

...
∆wi∗J

 =


h11 h12 . . . h1J

h21 h22 . . . h2J

...
... . . . ...

hP1 hP2 . . . hP J


−1 

ε1i∗

ε2i∗

...
εP i∗

 (2.23)

In order to find {∆wi∗j}, the matrix {hpj} must be inverted (Equation (2.23)).
The complexity of this operation can be reduced by instead approximate the
pseudo-inverse, using the least square error criteria as specified by Ben-Israel and
Greville (1980). Then, the weight change can be described as in Equation (2.24).

∆wi∗j =

∑P
p=1 εpi∗ · hpj∑P

p=1 h−2
pj

(2.24)

Equation (2.24) can be used to calculate the matrix {∆wi∗j} for each hidden
neuron j connected to the output node in question, i∗. Thus we can update the
weights, and calculate the error. The error would be the least of the system errors
E

(j)
new that are generated from all the perturbations (Equation (2.25)).

E(j)
new = min

{
E(j)

new

}
for j ∈ [1, J ]

=
1

2

P∑
p=1

(
tpi∗ − ỹ

(j)
pi∗

)2
(2.25)

In Equation (2.25), ỹ
(j)
new is the output of the network given the weight change

∆wi∗j . The hidden node j that minimizes E
(j)
new is chosen, and the weights between

j and i∗ will replace the existing weights. This will thus improve the network, giving
better results.

Weight evolution in the inner link While the weight evolution in the outer link
is to improve the network, the weight evolution in the inner link is to help the
network escape from a local minimum. That is, when the error does not change
(∆E = 0) even though the current error function is above zero (E > 0).

Assume an input pattern p∗ ∈ [1, P ], such that Equation (2.26) is valid.

Ep∗ =
I∑

i=1

(tp∗i − yp∗i)
2 ≥ 2E/P (2.26)
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When in a local minima, the weights vjk are evolved such that h̃pj = hpj for
p = p∗. The error difference can thus be written as in Equation (2.27), where ỹp∗i

is as in Equation (2.28).

E − Enew =
1

2

P∑
p=1

I∑
i=1

[
(tpi − ypi)

2 − (tpi − ỹpi)
2
]

=
1

2

I∑
i=1

[
(tp∗i − yp∗i)

2 − (tp∗i − ỹp∗i)
2
]

≥ E/P − 1

2

I∑
i=1

(tp∗i − ỹp∗i)
2 (2.27)

ỹp∗i = Φ

Φ−1 (yp∗i) +
J∑

j=1

wij∆hp∗j

 (2.28)

If the network is to improve, the new system error must be smaller than the
last, i.e. E − Enew > 0. A reduction factor λ ∈ (0, 1) is introduced, as given in
Equation (2.29).

1

2

I∑
i=1

(tp∗i − ỹp∗i)
2 ≤ λE/P (2.29)

For each output node i, the error is set to be bounded by the average (Equa-
tion (2.30)). Here, tp∗i = {0, 1}, while yp∗i ∈ (0, 1). To achieve convergence,
|tp∗i − ỹp∗i| ought to be below 0.5. Thus, λ ought to be in the range (0, 1

4 ).

|tp∗i − ỹp∗i| ≤
√

2λE/PI (2.30)

Only one of the hidden nodes is changed, to not make things too complex.
The node to change, j∗, is a hidden node such that hp∗j∗ is near one of the two
tails of sigmoidal output (Equation (2.31) and Equation (2.32)). Combined with
Equation (2.28), this results in Equation (2.33).

min (hp∗j∗ , 1 − hp∗j∗) ≤ min (hp∗j , 1 − hp∗j) for ∀j (2.31)

∆hp∗j =

{
∆hp∗j∗ j = j∗

0 otherwise
(2.32)

ỹp∗i = Φ
(
Φ−1 (yp∗i) + wi∗j∆hp∗j∗

)
(2.33)
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Ng and Leung (2000) then calculates the change in the output of the hidden
layer to be as in Equation (2.34). This reveals Equation (2.36), which can be
simplified by substituting Φ−1

(
h̃p∗j

)
−Φ−1 (hp∗j) with ε̄p∗j . That gives the matrix

in Equation (2.37), where ε̄p∗j = 0 for p 6= p∗.

∆hp∗j∗ =
1

wij∗

(
Φ−1 (ỹp∗i) − Φ−1 (yp∗i)

)
(2.34)

h̃p∗j∗ = hp∗j∗ +∆hp∗j∗

= Φ

(
K∑

k=1

(vj∗k +∆vj∗k)xp∗k

)

= Φ

(
Φ−1 (hp∗j∗) +

K∑
k=1

∆vj∗k · xp∗k

)
(2.35)

K∑
k=1

∆vj∗k = Φ−1
(

h̃p∗j∗

)
− Φ−1 (hp∗j∗) (2.36)


x̄11 x̄12 . . . x̄1K

x̄21 x̄22 . . . x̄2K

...
... . . . ...

x̄P1 x̄P2 . . . x̄P K



∆vj∗1

∆vj∗2

...
∆vj∗K

 =


ε̄1j∗

ε̄2j∗

...
ε̄P j∗

 (2.37)

To solve {∆vj∗k}, the input matrix must be reversed, similar to Equation (2.23).
Also this matrix can be approximated using the pseudo-inverse with the least square
error criteria (Ben-Israel and Greville, 1980), revealing the weight change in Equa-
tion (2.38).

∆vj∗k =
ε̄p∗j∗ · xp∗k∑P

p=1 x2
pk

for k = 1, . . . , K (2.38)

This weight evolution is to be used when trapped in a local minimum. If this
happens, it is possible that the matrix in Equation (2.37) is singular. In that case,
it must be made non-singular by perturbing the weights connected to a particular
hidden node j∗, in order to escape the minimum. After evolving the weights of j∗

in the inner link, the weights going out of j∗ can be adapted by evolving the outer
link as well.

2.2.3.3 Algorithm

The weight evolution algorithm can be summarized as follows:

Step 0: Initialization Initialize the network weights with random values be-
tween -0.3 and 0.3.
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Step 1: Forward pass Calculate the system error E(n) for epoch n using Equa-
tion (2.18).

Step 2: Tolerance test If E(n) < tolerance, the solution is good enough, and
the learning can stop.

Step 3: Error Compute the error gradient ∆E = [E(n) − E(n − τ)] /τ , where
τ is the window size of the error. That is, the error is considered as a whole
throughout the window, such that low error spikes are not sufficient to break
learning. The window makes sure that the error is both low and stable.

Step 4: Inner weight evolution If the error is still too high and it is decreasing
too slowly — |∆E| < gradient threshold and E(n) > error threshold —
start weight evolution on the inner link, using Equation (2.38).

Step 5: Outer weight evolution For any output node i∗ whose error is greater
than the average error, start weight evolution on the outer link, using Equa-
tion (2.24). Compute the system error of each offspring j using Equa-
tion (2.25). Choose the best j∗, i.e. the j∗ with the minimum error E

(j)
new,

such that E
(j∗)
new ≤ E

(j)
new for j = 1, . . . , J .

Step 6: Backward pass Do backward pass of back-propagation.

Step 7: Continue Go to step 1, unless the error is small enough.

The algorithm includes four parameters that need to be adjusted properly. Ng
and Leung (2000) recommend a window size of τ = 10, gradient threshold =
0.0001, error threshold = 10 · tolerance, and tolerance = 0.001.

2.2.4 Back-Propagation/Genetic Algorithm
Lu and Shi (2000) introduced a hybrid between the BP and GA, called back-

propagation/genetic algorithm (BP/GA). First, BP is used to train the network
until a relatively low error is reached. Then, the weights are converted to a bit
vector, and a GA is used to evolve the optimal solution.

The hybridization is supposed to give the system a great advantage compared
to the pure methods. Lu and Shi (2000) claim that BP/GA is better at converging
than both BP and GA, because BP/GA profits from the advantages from both,
while each method somewhat removes many of the disadvantages of the other
method. More specifically, BP is used to reduce the convergence time of the GA,
while the GA saves the network from the local minimum the BP might have caused.

2.2.4.1 Algorithm

A more detailed algorithm can be found in Lu and Shi (2000), but it can be
summarized as follows:

Step 0: Initialization Initialize the network weights with random values be-
tween -0.3 and 0.3.
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Step 1: Back-propagation Use BP to train the network, until the sum squared
error E = 1

2 |T − Y |2 (SSE) either reaches a relatively small value E0, or is
caught in a local minimum Eloc min.

Step 2: Zoom Zoom all the weights by b = 2u/w, where w is the largest of the
weights, and u ∈ I. That is, Wb = bWBP . Then, reduce the gain factor β to
β/b, to stabilize the sigmoid function.

Step 3: Create GA individuals Encode Wb to a binary string G1 with preci-
sion 2−v, v ∈ I, such that each weight is represented as a signed binary code
with u+ v +1 bits. G1 forms the initial population of the GA, together with
randomly generated genes.

Step 4: Genetic algorithm Run the GA until the globally optimal string G is
found.

2.2.5 Genetic Algorithm/Back-Propagation
The opposite of BP/GA has also been tried; Huang et al. (2008) created a ge-

netic algorithm/back-propagation (GA/BP) algorithm to predict highway freight.
The difference between BP/GA and GA/BP is mainly the order in which the sub-
algorithms are called; GA/BP starts with the GA. That is, it uses GA to decrease
the search space, and then uses BP to perfect the weights.

2.2.5.1 Algorithm

The algorithm has the following main steps:

Step 0: Initialization Create child population.

Step 1: Genetic algorithm Run the GA, with fitness assessment, selection and
reproduction, until the error is small enough.

Step 2: Back-propagation Use BP to train the network further, until the SSE
either reaches a small enough value E0, or is caught in a local minimum
Eloc min.

The details on the sub-algorithms can be found in Section 2.2.1 and Sec-
tion 2.2.2.

2.2.6 Other Hybrids
There are several other hybrid algorithms for neural networks, used for various

domains. This section describes a few of them, both hybrids of BP and GA, and
of other algorithms.
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2.2.6.1 Hybrid of Differential Evolution and Conjugate Gradients

Bandurski and Kwedlo (2010) introduced two hybrid algorithms, combining
differential evolution (DE) and conjugate gradients (CG).

DE is a heuristic algorithm for global optimization over continuous spaces (Storn
and Price, 1997). It is an evolutionary algorithm, using vector differences to alter
the vector population. According to Ilonen et al. (2003), this method is likely to
find the global minimum. However, it would take an intolerable long time.

CG (Charalambous, 1992; Fletcher and Reeves, 1964) is a gradient-based local
search technique. It can be used to train ANNs, as a replacement for the steepest
gradient descent algorithm.

Lamarckian hybrid of DE and CG: approach 1 (LH1-DECG) uses mainly DE,
but uses CG to fine-tune the offspring before they are to compete with their parents.
Lamarckian hybrid of DE and CG: approach 2 (LH2-DECG) tries to solve some
of the disadvantages with LH1-DECG, by improving both the offspring and the
parents with CG.

2.2.6.2 Hybrid of Genetic Algorithm and Simulated Annealing

Abraham and Nath (2000) introduced a hybrid between a GA and simulated
annealing (SA) to design an ANN.

SA is a global optimization algorithm that exploits the analogy between the
annealing process in metal, and the search for a minimum in a general system. SA
has an impressing ability to avoid becoming trapped in local minima. However, it
does not usually converge to the global optimum, only a near optimum.

Genetic annealing algorithm (GAA) combines the convergence properties of SA
with the parallelization capability of GA. It works as a GA, where each genotype
has assigned an energy threshold. This threshold is what determines the fitness;
if the threshold of an offspring is less than or equal to the threshold of its parent,
the offspring replaces the parent. When every member has been mutated, the
population is reheated by changing the threshold.

Abraham and Nath (2000) have designed three hybrid algorithms based on
GAA. However, none of these were implemented at the time the paper was written,
and the current status is unknown.

The first algorithm is the hybrid algorithm for global search of connection
weights. It uses GAA until a minimal required error is achieved, and then BP
is used for fine-tuning. This is less sensitive to the initial weight settings than
gradient based techniques usually are.

The second algorithm is the hybrid algorithm for global search of optimal ar-
chitecture. It uses indirect encoding to improve on scalability.

The third algorithm is the hybrid algorithm for global search of learning rules.
Here, learning rules are developed. The learning rules are depending on coefficients
that will be determined during the global search.
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2.2.6.3 Knowledge-Based Hybrid Back-Propagation-Grammatical Evolution
Neural Network Algorithm

Turner et al. (2010) introduced the analysis tool for heritable and environmental
network associations (ATHENA) as a tool for modeling gene-gene interactions that
influence human traits. After adding several changes to ATHENA, they analysed
the results.

Their findings indicated that adding a tree-based crossover modification will
increase ATHENA’s sensitivity for discovering gene-gene interactions.

They also incorporated domain knowledge on gene-gene interactions, which led
to a large performance increase. This was specifically advantageous when work-
ing with a search space larger than the search coverage. The use of BP to find
the network weights would also give a highly statistically significant performance
increase.

2.2.6.4 BP/GA Hybrid Method

Yin et al. (2011) introduced a hybrid between a BP algorithm and a GA. The
purpose of this algorithm is to optimize the process parameters during plastic in-
jection molding (PIM). The network shall obtain the mathematical relationship
between the process parameters and the optimization goals. The process param-
eters include the mold temperature, melt temperature, packing pressure, packing
time, and cooling time. The optimization goals is warpage and clamp force. Their
network has two hidden layers, both with 9 nodes. The process parameters gives 5
input nodes, while there are two output nodes; one for warpage and one for clamp
force.

Similar work have been done by e.g. Kurtaran et al. (2005, 2006); Shen et al.
(2007); Deng et al. (2008, 2010); Zhang et al. (2009); Gao and Wang (2008, 2009);
Altan (2010). In contrast to these, Yin et al. (2011) have also taken other factors
into consideration, e.g. energy consumption and the production cycle.

The paper presents a multi-objective mathematical optimization model, and a
BP/GA hybrid optimization method of PIM process parameters. This is based on
the finite element analysis software Moldflow, the Orthogonal experiment method,
BP, and a GA. The algorithm gave good results, solving their problem satisfactorily.

2.2.6.5 Hybrid GA Wavelet-BP Algorithm

Su et al. (2009) described a hybrid GA/BP algorithm specialized to handle the
highly nonlinear problem of solar radiation prediction. They introduced a wavelet,
i.e. a fast-decaying oscillation, to decompose the radiation signal into high and low
frequency hefts. The hefts are input to the BP, and better prediction precision is
obtained due to the BP’s fault-tolerance and nonlinear mapping ability. The GA
is there to optimize the weights and threshold values of the BP network. The flow
chart of the algorithm can be seen in Figure 2.2 on the next page.
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Figure 2.2: Flow chart of the GA wavelet-BP algorithm.
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2.2.6.6 Hybrid BP-ANN/GA

Cao and Jin (2007) introduced a hybrid BP-ANN/GA algorithm for classifica-
tion of urban terrain surfaces. That is, given an image of an area, the algorithm
shall classify the different areas as either water, grass, building, road, or flat field.
They apply the GA to optimize the initial weights of the BP-ANN, and then per-
fect the weights using BP. The ANN they use has three layers, with 3 nodes in the
input layer, 12 nodes in the hidden layer, and 5 in the output layer — one for each
type of terrain.

They compare three algorithms, varying both the learning algorithm and the
preprocessing. That is, (1) BP-ANN training with infrared (IR) data, (2) BP-
ANN/GA training with IR data, and (3) BP-ANN/GA training with the fusion of
IR and synthetic aperture radar (SAR) images.

In the first algorithm, the ANN weights are found using BP only. This would
thus correspond to the BP algorithm from Section 2.2.2. In this case, the classifi-
cation accuracy ranges from 60% (buildings) to 85% (water).

In the second algorithm, the weights are found by first running 200 genera-
tions of a GA, and then train the winning set of weights using a BP. This would
correspond to the GA/BP algorithm from Section 2.2.5, only with several more
generations. In this case, the success rate range from 87% (roads) to 94% (grass).
This is considerably better than in the first algorithm. The use of GA acceler-
ated the training speed of the ANN, reducing the number of iterations from 10610
for BP-ANN to only 3424 for BP-ANN/GA. In addition, the computing time is
reduced. The BP-ANN use 542 seconds to get below an error threshold of 0.25,
while BP-ANN/GA only needed 445 seconds, of which 431 were used by the BP
training.

The third algorithm, using the IR/SAR fusion, gave even better results; the
accuracy ranged from 92% (flat field) to 95% (building). However, as IR and SAR
is special to that domain, the important difference is between algorithm 1 and 2;
the comparison of BP-ANN and BP-ANN/GA, given the same preprocessing.

To conclude, Cao and Jin (2007) indicated that BP-ANN/GA is far better than
the simpler BP-ANN, as the GA will both optimize the weights, and overcome the
slow convergence of the BP-ANN, in addition to help avoid local minima. At least
for this domain, and such small networks, a hybrid algorithm of GA and BP is
superior to a pure BP algorithm.

2.2.6.7 GA with BP Operator

Osman et al. (2010) introduced the GA/BP hybrid neural network enzyme
classification (NNEC). NNEC is a classification algorithm that classifies the class
or family of an unknown protein sequence. The protein sequence is represented
by a list of numbers, where each amino acid in the protein has its own number,
according to the hydrophobicity scale of Kyte and Doolittle (1982). In that scale,
each amino acid receives a number ranging from -4.0 to +4.5, depending on the
hydrophobicity of the acid. This list is the input given to the network.

The NNEC algorithm is merging GA and BP, with BP being used as an operator
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within the GA. That is, it follows the standard genetic algorithm (Section 2.2.1)
for the most part. However, after mutation the offspring are improved by running
them through 10 or so iterations of BP. This algorithm would thus be the opposite
of WE (Section 2.2.3), which is BP with evolution incorporated into each iteration;
this is evolution with BP incorporated into each generation.

The algorithm is tested on two network topology profiles; one with between
7 and 10 hidden nodes, and one with between 1 and 5 hidden nodes. In both
topologies there are 40 input nodes and 6 output nodes. The profile with most
hidden nodes achieved better results than the smaller topology, i.e. 73% accuracy
versus 69%. Unfortunately, they have yet to compare it to other classification
algorithms. It is thus difficult to predict how it performs compared to a standard
GA, both with respect to success rate and computing time.

2.2.7 Tricks and Details to Improve Algorithms
Bullinaria (2009) proposed the use of cross-entropy error function and the soft-

max activation function for multi-class classification problems. According to Dunne
and Campbell (1997), there is a natural pairing between these two functions, and
they should be used together.

BPs can be divided into two main types: batch BP and online BP. The al-
gorithm in Section 2.2.2 describes the online BP, where the weights are updated
continuously. Batch BP updates the weights only after all the patterns have passed
through the network.

2.2.7.1 Softmax

The softmax activation function is only for use in the output layer (Wikibooks,
2010). It is specifically designed for the output nodes, where each node is repre-
senting one class. Softmax is giving each of these classes (or nodes) a value, which
is the probability that the input pattern belongs to this class (Bishop, 1996). It
thus ensures that all the output values are in the range [0, 1], and that all the
output nodes sum up to 1.

pi =
eqi∑n

j=1 eqj
(2.39)

The softmax function is represented by Equation (2.39), where pi is the value
of output node i, qi is the net input to the output node i, and n is the number of
output nodes (Bishop, 1996).

2.2.7.2 Cross-Entropy Error Function

The cross-entropy error function (Equation (2.40)) is the output error function.
It is used to specify if the error if low enough to stop learning (Bullinaria, 2009;
Bishop, 1996), and is used together with the delta function in Equation (2.41),
instead of the more common delta function in Equation (2.9) (Bullinaria, 2009).
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Error = − (tµ
i log(yµ

i ) + (1 − tµ
i ) log (1 − yµ

i )) (2.40)

δµ
i = tµ

i − yµ
i (2.41)

2.2.7.3 Batch Back-Propagation

As the BP step in the WE algorithm (Section 2.2.3.3) is done after all the
patterns have gone through the forward pass, it is clearly done in batch mode. The
difference between batch mode and online mode is when the BP occurs; in online
mode, the BP is done just after the forward pass, such that each pattern goes
through both a forward and a backward pass. This results in continuous change in
the network. In batch mode, however, the weight changes are accumulated after
each forward pass, and not performed until all the training patterns have been run
through the network (Floreano and Mattiussi, 2008; Duda et al., 2000).

An algorithm for batch BP was described by Duda et al. (2000) (Algorithm
2.1).

Algorithm 2.1 Batch back-propagation
Initialize network topology.
repeat

Increment epoch.
Initialize weight-change matrices ∆wij and ∆vjk.
for all training patterns do

Push pattern to network.
Feed-forward.
Update the weight-change matrices: ∆wij = ∆wij + ηδijxi, ∆vjk = ∆vjk +
ηδjkyj

end for
Add the weight change to the weights: wij = wij +∆wij , vjk = vjk +∆vjk

until Error(w, v) < 0
return w, v

In each epoch, all the training patterns are iterated over, and the weight changes
needed for that specific pattern are computed. However, the weight changes are not
added to the network straight away; they are accumulated in the change matrices
∆wij and ∆wjk, and are added to the network when all the patterns are finished.



CHAPTER 3

Methodology

The chapter opens with a presentation of the chosen writing systems. Sec-
tion 3.2 describes the general architecture of the artificial neural network (ANN),
while the algorithms investigated in the dissertation are presented in Section 3.3.

3.1 Glyphs and Writing Systems
The writing systems to be classified are chosen based on the classification in

Section 2.1. There are two systems from each type, as seen in Table 3.1 on the
following page.

The writing systems are compared on a per-pixel basis (Figure 3.1 on page 27).
Each writing system is compared to every other writing system, by which each
glyph is compared to every other glyph. Two glyphs are compared by iterating
over their pixels, summing the difference between the two pixels at the current
coordinate. This is summed further, giving each writing system couple a number
representing their similarity. This is translated to a grey-scale, where lighter colours
represent higher similarity than darker colours. The results (Figure 3.1 on page 27)
suggest that the writing systems are not significantly more similar to themselves
than to the others. Runic, Hebrew, Thai and Devanagari are among those with
the highest self-similarity, while Ugaritic, Hiragana and Han display no significant
difference. This complicates the classification process, as the pixels in themselves
are insufficient for classification.

25
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Table 3.1: The writing systems to be classified, and their respective type and
Unicode values (The Unicode Consortium, 2011). Example glyphs are taken from
Ager (2011). The example images are the images used by the ANN.

Type Script Code point
range

Number
of
glyphs

Examples Example
image

Alphabet Runic U16A0-
U16FF 81

Ugaritic U10380-
U1039F 30

Abjad Hebrew U0590-
U05FF 30

Arabic U0600-
U06FF 158

Syllabary

Canadian
Aboriginal
Syllabics

U1400-
U167F 363

Hiragana U3040-
U309F 93

Abugida Thai U0E00-
U0E7F 87

Devanagari U0900-
U097F 89

Logosyllabary Han U4E00-
U9FCF 20940

Egyptian
Hieroglyphs

U13000-
U1342F 1071
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Figure 3.1: All the glyphs in all the writing systems are compared by pixel value.
The difference for each pixel is summarized, and the sum is converted to a number
between 0 and 1, which is represented as a grey-scale. Lighter colours thus represent
higher similarity than darker colours.

3.1.1 Runic
The Runic alphabet was in use throughout Northern Europe: in Scandinavia,

the British Isles, and all the way from Germany to the Balkans. The earliest
inscriptions found date from the 1st century AD, but most date from the 11th
century BC.

The Runic alphabet is also known as futhark, after its first six letters. Each
glyph is called a rune, which in Old Norse means letter or character.

Their place of origin is still unknown. Theories range from it having been
modelled on the Latin alphabet, to it being an independent creation, unrelated
to other scripts. One thing that is sure, is that the original evolved into other
alphabets. There are many different dialects, and they were used in different times
and different locations. For example, Norway, Sweden and Denmark developed
their own, slightly differing alphabets. The original was probably Elder Futhark,
which is thought to be the oldest.

The varying direction of writing and the lack of consistent word division, com-
plicate the reading of runes. However, one eventually settled on writing from left
to right, and sometimes dots were used to separate the words. (Ager, 2011)

3.1.2 Ugaritic
Ugaritic cuneiform arose during the 14th century BC in the city of Ugarit,

in northern Syria. It was used to write the Ugaritic language, which was closely
related to Phoenician. The city of Ugarit flourished from 1400 BC and forth, until
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it was destroyed around 1180 or 1170 BC. It was not rediscovered until 1928, when
a peasant found an ancient tomb near Ras Shamrah in Syria. The excavation began
in 1929, by a group of French archaeologists led by Claude F. A. Schaeffer. (Ager,
2011)

The writing system consists of wedges, making it easy to write in clay. It was
usually written from left to right, but not exclusively. The words were divided
using a small wedge, but there were no other forms of punctuation. (Ager, 2011;
The Unicode Consortium, 2009, Ch. 14)

According to The Unicode Consortium (2011), Ugaritic is an alphabet, while
Ager (2011) classifies it as an abjad. As with many of the writing systems, it is
difficult to find a good classification because of features from different types. In
case of disagreement, this dissertation will use the classification of The Unicode
Consortium (2011).

3.1.3 Hebrew
Hebrew is another script originally derived from Phoenician. It was in use as

early as the 11th century BC, and is still in use today. It is — together with Arabic
— the official language in Israel, with 5 million speakers. Another 2 or 3 million
users can be found all over the world.

However, Hebrew was well on its way to extinction; already in 586 BC Aramaic
was beginning to take its place, and in 70 AD Hebrew was used mainly for literary
and religious function, not as a daily language. This continued until the mid-19th
century. Then, Eliezer Ben Yehuda (1858-1922) started to encourage the use of
Hebrew, e.g. in his home and at school. Looking at the use of Hebrew today, his
approach seems to have worked.

The Hebrew writing system is not used solely for the Hebrew language; it is
also used to write Judeo-Arabic, Ladino, Yiddish, and other Jewish languages.

Hebrew is an abjad, written from right to left. It consists of consonants, long
vowels, final letters, and diacritics to mark the vowels. The short vowels are nor-
mally not marked; the exception is in poetry and in the Bible, as well as material
for new learners, like children and foreigners. (Ager, 2011)

3.1.4 Arabic
The Arabic script evolved from the Nabatean Aramaic script, probably around

the 4th century AD. The earliest document found dates from 512 AD.
There are two main types of the Arabic script: Classical Arabic and Modern

Standard Arabic. Classical Arabic is the language of the Qur’an and other classical
literature. Its style and vocabulary differ some from the Modern Standard Arabic,
which is the type in use today, in most of written material and formal TV shows. In
addition, each region or country has their own dialect, for use in speaking, poetry,
cartoons, plays, and personal letters. Arabic is mostly used in the Middle East
and the northern parts of Africa. It is used to write e.g. Arabic, Kurdish, Persian,
Punjabi, Sindhi, Turkish, and Urdu.



29 3.1. GLYPHS AND WRITING SYSTEMS

Arabic is written from right to left; however, the numerals are written left to
right. Arabic always joins all letters that can be joined, both in hand-writing and
in printing. The only exceptions are in crosswords and signs with vertical writing.
Due to this joining, the Arabic glyphs look different depending on where in the
word they are situated; the stand-alone glyphs are changed so they can be joined
to neighbouring glyphs.

As Arabic is an abjad, most glyphs are consonants. There are three long vowels,
and the short vowels are marked using diacritics. However, short vowels are only
marked in the Qur’an, and sometimes in other religious texts, in classical poetry,
and in books for children and foreigners. Sometimes they are also used to decorate
the scripts, e.g. in book titles, letterheads, and nameplates. (Ager, 2011)

3.1.5 Canadian Aboriginal Syllabics
Canadian Aboriginal Syllabics is the Unicode unification of Canadian syllabaries,

e.g. Blackfoot, Cree, Naskapi, Inukitut, Carrier, Ojibwe, and Slavey. The syllabics
were created in the 1830s by the linguist James Evans, to write the Algonquian
languages. The script was adopted by other Canadian aboriginal groups as well,
giving a base set of common glyphs, and multiple language-specific glyphs.

Being a syllabary, each glyph consists of one consonant and one vowel. The
shape of the glyph determines the consonant, while the vowel is depending on the
rotation of said shape. Typically, es are turned down, is are turned up, os are
turned left, and as are turned right. (Ager, 2011; The Unicode Consortium, 2009,
Ch. 13)

3.1.6 Hiragana
Hiragana is a syllabary used to write phonetic Japanese. Originally, the Japanese

used the Chinese characters from Han for writing, the kanji. However, there are
many kanji, and they are all quite complicated. Writing was thus rather difficult
for the uneducated. The Japanese then created Hiragana as a simpler writing sys-
tem, to be used by women. Originally it was called onnade, or women’s hand.
Hiragana is a direct simplification of kanji: each Hiragana glyph is a simplification
of either a whole kanji or part thereof. For example, や is a simplification of 也,
お is a simplification of 於, and ふ of 不. It seems that the men also appreciated a
simplification of kanji, because by the 10th century Hiragana was used by almost
everybody.

Today, Hiragana is mainly used for particles, grammatical endings, and to indi-
cate the pronunciation. Everything else can be written with kanji, but as there are
far too many kanji for any normal person to learn, Hiragana is often used to spell
out complicated words. The ratio between Hiragana and kanji is depending on the
audience; in children’s books there are mainly Hiragana, while academic papers
contain mostly kanji. Foreign words — that do not have a kanji — are written in
Katakana, another simplification with a one-to-one correlation with Hiragana.

As opposed to Canadian Aboriginal Syllabics, two Hiragana glyphs sharing
either a consonant or a vowel have no obvious similarity. As each Hiragana is a
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simplification of a Han glyph with the same pronunciation, there is no correlation
between looks and sound. (Ager, 2011; The Unicode Consortium, 2009, Ch. 12)

3.1.7 Thai
Tradition has it that Thai was created in 1283 by King Ramkhamhaeng, prob-

ably under influence of the Old Khmer alphabet. It is used to write the language
of Thailand, Thai. However, it can also be used to write other languages, e.g.
Sanskrit and Pali.

Thai is an abugida consisting of 44 basic consonants. Each consonant has an
inherent vowel; o if it is in the middle of a word, and a if it is at the end. In
addition, there are five different tones in the language. These are determined by
the class of the consonant, whether the syllable is open or closed, the tone marker,
and the length of the vowel. Also, there are no word separators in Thai; only space
between sentences. (Ager, 2011; The Unicode Consortium, 2009, Ch. 11)

3.1.8 Devanagari
The Devanagari script is an abugida that descended from the Brahmi script

around the 11th century AD. It was created to write Sanskrit, but was later adapted
to write multiple other languages as well, e.g. Hindi and Nepali.

Each consonant has an inherent vowel, which can be overridden by diacritics
or matras. Vowels can either be written as independent letters, or above, below,
before, or after the consonant it belongs to.

The name Devanagari comes from Sanskrit. The word deva means god, or
celestial, while nagari means city. It in uncertain precisely what this means, and
why it is named such. (Ager, 2011; The Unicode Consortium, 2009, Ch. 9)

3.1.9 Han
The Han script seems to have originated in China, probably sometime during

the second half of the 2nd millennium BC. The earliest recognizable glyphs were
inscribed on ox bones and turtle shells, and date from the Shang dynasty, 1500
to 950 BC. The script on these bones is known as 甲⾻⽂ (jiăgŭwén, or shell bone
writing), and the bones were used for divination. They were heated, and the result-
ing cracks were inspected to determine the answers to questions, usually regarding
hunting, warfare, weather, and the like. This is not the earliest of Chinese writ-
ing; Neolithic pottery from 4800 BC have been found, with inscriptions that could
be some form of writing. However, these symbols do not resemble the characters
found on the shell bones, and are probably not related.

The characters were originally pictures of people, animals and things, not too
far from the original cave paintings. However, they have been stylised over the
centuries, and are no longer recognizable. The full evolution from the oracle bones
to today’s script can be seen in Figure 3.2 on the next page. Some of these scripts
are still in use today. The Large and Small Seal scripts are used mainly for personal
names and company names. The Grass script is a cursive script, used mainly used
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Figure 3.2: The evolution of the Han writing system, from the early oracle bones
to Simplified Chinese. Image is from Ager (2011).



CHAPTER 3. METHODOLOGY 32

for calligraphy. The Simplified script came in the early 1950s, when it was decided
to simplify the language to reduce the illiteracy. Today, Simplified Chinese is in
use in Singapore and mainland China, while Traditional Chinese is used in Hong
Kong, Macao, Taiwan, and in Chinese communities all over the world.

Chinese writing was not only in use in China; both Korea and Japan have
developed their writing systems from Chinese. Korea started already during the
Chinese occupation from 108 BC to 313 AD. They wrote Classical Chinese by
the 5th century AD, and three different writing systems were developed based on
Chinese; Hyangchal, Gukyeol, and Idu. Hyangchal used the Chinese characters to
represent the sounds of Korean, and was mainly used for poetry. Idu combined
Chinese characters with special symbols, that indicate grammatical endings and
the like, and was used for documents. In 1444, the Korean alphabet, Hangul, was
invented. However, most Koreans continued to write either in Classical Chinese
or in Korean using either Gukyeol or Idu. Hangul was associated with low status
people, i.e. women, children, and uneducated people. During the 19th and 20th
century, a new writing system arose, combining Chinese characters (hanja) and
Hangul. Since 1945, however, the use of hanja has decreased.

Japan joined in during the Standard script phase, in the 4th century AD. Then
they began to import and adapt aspects of Chinese culture, e.g. the script. Orig-
inally, the Japanese wrote in either Classical Chinese or in a Japanese-Chinese
hybrid style. Then, they started to use the Chinese characters to write Japanese,
using the phonetic values of the characters. Eventually, Chinese characters were
used to write both words directly borrowed from Chinese, and Japanese words with
similar meaning, creating kanji. At the same time, Chinese characters were used
for their phonetic values to write grammatical elements. These characters were
simplified, and over time they became the syllabaries Hiragana and Katakana.

Many of the characters have been combined to create new ones. An example
is the Chinese word for computer, which literally means electric brain, 電腦. Each
of these characters are also combinations of other characters. It all starts with
天, sky. This develops to ⾬, rain, by adding the smaller rain strokes. Rain over
a field tend to mean thunder (雷). Add a power cord to the thunder, as on an
electrical appliance, and there is electricity (電). It is also an appropriate character
regarding another matter; rain, thunder, and lightning are all forces of nature, and
so is electricity. The next main character is brain, 腦. This consists of the characters
meat, flow, and smart. In other words, a brain is smart meat that thinks. The flow
is there to express the flow of thought, which perhaps represents the feed-forward
through the natural neural network. The result is the electric brain, 電腦.

These smaller glyphs within one character are called radicals. About 90% of
Chinese characters contain a radical that hints about the meaning, and a phonetic
component that hints about the pronunciation.

3.1.10 Egyptian Hieroglyphs
Egyptian Hieroglyphs were used to write Egyptian, the Afro-Asiatic language

spoken in Egypt until the 10th century AD. It is still in use as a liturgical language
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of the Christians in Egypt, the Copts. However, it is now written using Coptic,
not Hieroglyphs.

Egyptian Hieroglyphs are very detailed drawings, and were thus not suitable for
everyday writing. Consequently, the Hieratic script evolved as a simplification of
Hieroglyphs. Egyptian Hieroglyphs in all their detail were used mainly for formal
inscriptions, e.g. on tombs and temples.

The direction of writing concerning Egyptian Hieroglyphs varied; it was written
from right to left, left to right, and top to bottom. Since Hieroglyphs were used
on monuments and walls, they were mainly decorations, and were thus written
to increase the aesthetics of the decorations. For simplicity, the Hieroglyphs turn
according to the direction; they always look towards the beginning of the line.
(Ager, 2011; Collier and Manley, 2003)

According to the ancient Egyptians, the Hieroglyphs were invented by the god
Thoth. The Hieroglyphs were thus called mdwt ntr, God’s words. The word hiero-
glyph was first used by Clement of Alexandria (150-215 BC), and is derived from
the Greek words hieros (sacred) and glypho (inscriptions) (Ager, 2011; Osborn,
2005).

It is possible that the Hieroglyphs predates the Sumerian Cuneiform writing.
If this is the case, it is the oldest known writing system. It is also possible that
the two systems developed simultaneously. Either way, the Egyptian Hieroglyphs
comprise a very old writing system; the earliest Hieroglyphs are dated as far back
as 3400 BC.

It was the Emperor Theodsius I that late in the 4th century AD ordered the
closure of all pagan temples throughout the Roman empire. Consequently, the
latest dated inscription was carved on the gate post of a temple at Philae in 396
AD. Soon, all knowledge of the Hieroglyphs were lost. That is, until Jean-François
Champollion (1790-1832) finally managed to decipher the script, thanks to the
Rosetta stone. (Ager, 2011)

3.2 Artificial Neural Network Design
The ANNs used have the same three-layered architecture. There are 400 input

nodes plus one bias node, 50 hidden nodes plus one bias, and up to ten output
nodes.

3.2.1 Nodes
The number of input nodes is the number of pixels in the glyph images. This

must be balanced between enough pixels to separate the glyphs and few enough to
have an acceptably low execution time, so the trick is to as low as possible without
compromising the image quality too much. By creating glyphs of different resolu-
tions, those around 20 times 20 were found to be a good compromise (Rødland,
2010).

The number of hidden nodes was chosen a bit more randomly. 50 was chosen
because it gave an acceptable result in acceptably short time. 100 hidden nodes
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added more to the execution time than to the quality of the results.
The number of output nodes, on the other hand, is undoubtedly correct; there is

one output node for each writing system to be classified. Each output node has thus
its own writing system, and the value of the node describes the probability that the
glyph in question is of that specific writing system. This output design is to help
analyse the relationship between the writing systems. By using the probability for
each of the writing systems, it is easier to pick up on common misclassifications
and other patterns, e.g. if it really is harder to separate between Han and Hiragana
than, say, Han and Thai.

The two bias nodes were chosen to add a threshold to the nodes (Jones, 2009;
Floreano and Mattiussi, 2008; Callan, 1999). The bias was originally 1, but experi-
mentation on the values 0, 0.5 and 1 indicated that 0.5 was the best value for both
bias nodes.

3.2.2 Architecture

The final architecture, as well as the whole path from Unicode point to output
values, can be seen in Figure 3.3 on the facing page.

The starting point is the Unicode value, e.g. #13001. This is converted to a
glyph image, which then is resized to a 20 × 20 image. This results in a list of 400
pixels, each with an integer value between 0 and 255, inclusive. Each of these pixels
are run through a sigmoid function (Equation (3.1)), such that the final value is
a floating point between 0 and 1, inclusive. In addition to reducing the numbers
to a more ANN friendly value, the sigmoid function widens the gap between the
light and the dark pixels, creating more of a binary situation. The 400 floating
points are then given to one input node each, and the values propagate through
the network.

Φ(n) =
1

1 + e−0.1(n−127)
(3.1)

The final output is a normalized list of the values of the output nodes. That is,
they sum to 1.0, or 100%. Each of these values is the probability that the glyph in
question is of the writing system coupled with that specific output node. A perfect
classification of #13001 would thus be (0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000), as the glyph1 is an Egyptian Hieroglyph, which is
coupled to the last output node. The writing systems are coupled with nodes in
the order given in Table 3.1 on page 26.

1The glyph used in Figure 3.3 on the next page isI. This is a determinative, or meaning-sign,
used to illustrate that the word it follows has something to do with the mouth, either literally or
metaphorically. That is, it follows words for what can be taken in or expelled through the mouth.
As it is a determinative, the glyph has no sound of its own; it is simply a written construct to
give the reader more information and context. (Collier and Manley, 2003)
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Figure 3.3: The path from glyph to output values is long and complex. The
starting point is the Unicode value, i.e. #13001, which is converted to a glyph
image. This is resized to a 20 × 20 image. Each of the 400 pixels are given to an
input node in the ANN, after going through a sigmoid function (Equation (3.1)).
The output of the ANN is a list of normalized numbers, one for each output node,
i.e. one for each writing system. The value is the probability that the glyph in
question is of that specific writing system.
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Table 3.2: Parameters used by the algorithms.

Parameter BP WE BP/GA GA/BP
Learning
Learning rate 0.01 0.01 0.01 0.01

Evolution
Crossover rate – – 0.01 0.01
Mutation rate – – 0.001 0.001
Culling – – 0.3 0.3
Elitists – – 5 5
Max number of children – – 100 100
Number of generations – – 200 10
Gene length – – 20 20
Number of genes – – 24461 24461
Population size – 100 100 100

Local minima and stopping condition
Tolerance – 0.01 0.001 0.001
Error threshold – 0.1 0.01 0.01
Gradient threshold – 10−4 10−10 10−10

Window size – 5 10 10

3.3 Algorithms

Four algorithms are used and compared. There are three algorithms that com-
bine learning and evolution in different ways, and a pure back-propagation (BP)
algorithm used for comparison.

The basis of all the algorithms is the standard BP algorithm (Floreano and
Mattiussi, 2008), but with certain tricks. According to Bullinaria (2009); Dunne
and Campbell (1997); Bishop (1996), the softmax activation function and the cross-
entropy error function are a good pair for multi-class classification problems. These
functions are thus used instead of the standard functions recommended by Floreano
and Mattiussi (2008).

The parameters used in the algorithms can be found in Table 3.2. The local
minima parameters are lower in the GA algorithms than in WE. After all, WE
should be more sensitive to local minima than the other algorithms, as they trigger
evolution and thus should be reached multiple times. In the GA algorithms, a local
minimum is a reason to stop the algorithm, so it should not catch insignificant local
minima. The mutation and crossover parameters are unusually low; these are found
by trial and error.
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3.3.1 Genetic Algorithm
Genetic algorithms (GAs) (Algorithm 3.1) use a bit vector genotype, both mu-

tation and crossover, full generational replacement, uniform parent selection, and
fitness proportionate mate selection. The flowchart in Figure 3.4 displays the main
process of the algorithm.

Algorithm 3.1 GA algorithm
Create child population.
repeat

Fitness assessment.
Selection.
Reproduction.

until error ≤ tolerated or 200 generations

.. start

.generation
= 1

. create
child

population

.generation
< 200

.generation
+= 1

. fitness
assessment

. selection

.reproduction
. error

≤ 10×
tolerated?

. stop

.yes

.no

.yes

.no

Figure 3.4: Flowchart for GA. The evolution is performed for 200 generations or
until the error is less than ten times the tolerated. During the fitness assessment,
the ANNs are tested with the training set of glyphs. The best ANNs are selected,
and they reproduce, using mutation and/or crossover.

Development As this is a GA, the genotype is a bit vector. Each chromosome
consists of one gene for each weight, where each gene consists of 8 bits, configured
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Table 3.3: The gene consists of 8 bits, and specifies whether there is a connection
(bit 0), the sign of the weight (bit 1) and the weight value (bit 2-7).

0 1 2 3 4 5 6 7
Connection Sign 100 10−1 10−2 10−3 10−4 10−5

as in Table 3.3. The first bit is the connection bit, inspired by EEC (Shi and Wu,
2008). If it is 0, there is no connection; i.e. the weight is automatically set to 0. If
1, the weight is as specified by the later bits. The second bit is the sign. If it is 0,
the weight is positive; if 1, the weight is negative. The rest of the bits specify the
weight value. The first of these bits specifies the ones, then follows the tenths, the
hundreds and so on. This results in a weight range from −1.96875 (11111111) to
1.96875 (10111111).

Fitness Testing The fitness of the individual is depending on the classification
results. The weights created during development are pushed on an ANN, and then
the ANN is used to classify the glyphs in the training set. The error is calculated
as the average error for all the glyphs.

TSS =
1

M

M∑
µ

(
1

N

N∑
i

(tµ
i − yµ

i )
2

)
(3.2)

The error function used is not the same as during learning, but the total sum
squared error (TSS) (Equation (3.2)).

The fitness of an individual is calculated based on the actual error and the
maximal error. As the error function is (3.2) and the possible values for each node
is between 0 and 1, the error must necessarily be between 0 and 1. The fitness
function is thus:

fitness(error) = 1 − error (3.3)

Adult Selection As specified by the algorithm (Section 2.2.1), GAs shall have a
full generational replacement, where all of the children — and only the children —
survive into adulthood. As a result, there is virtually no selection pressure. This
gives all the individuals the possibility to stay and maybe develop into a very good
individual in some generations. However, this is a slow process and success is in
no way guaranteed.

To speed up the process, culling was introduced (Baum et al., 2001; McQuesten
and Miikkulainen, 1997). Real-life culling is the process of removing animals from
a group based on specific criteria, either to reinforce good characteristics or to
remove undesired characteristics (Merriam-Webster, 2010). The same process is
implemented here; the individuals are sorted based on fitness, and a certain per-
centage of the best children are kept, while the rest are killed off. The adult
population is thus much smaller than the child population.
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Parent Selection There is a uniform parent selection, as specified by the algo-
rithm (Section 2.2.1). It is not, however, as uniform as it was meant to be, as the
suboptimal individuals were killed off in the adult selection. Instead of a uniform
selection between all the individuals, it is thus a uniform selection between the best
individuals.

Reproduction The reproduction follows the algorithmic guidelines given in Sec-
tion 2.2.1. The parents are chosen from the adult pool with a probability pro-
portional to their fitness. There is a certain chance the parents are mating using
crossover, otherwise they are just directly copied into the next generation. In case
of crossover, their chromosomes are split on the border between two genes, to pre-
vent the destruction of two potentially good genes. Then, for each gene in each
of the new chromosomes, there is a small chance of a mutation, i.e. a bit flip of a
random bit.

The newborn children are not the only ones competing for a place in the next
generation. There are also two elitists; the very best from the last generation. In
addition to having a high probability of giving their genes to the next generation
through mating, they are allowed to join in themselves. This is to prevent good
individuals from dying off without contributing to even better children; if the next
generation is not superior to the last, at least the best individual is not any worse.

Stopping Criteria The evolution was meant to continue until one of the individ-
uals reached the error threshold. However, the evolution was a slow process, with
a very slowly decreasing error. The available memory, on the other hand, tended
to disappear very quickly. Consequently, the whole process always died of memory
fault, long before this error was reached. (Rødland, 2010)

To solve this problem, the evolution continues only until the error has reached
0.1, but for no more than 200 generations. Then, a neural network is created based
on the best individual, and that ANN is used for testing.

3.3.2 Back-Propagation
BP (Algorithm 3.2) is the online-learning back-propagation algorithm that is the

basis of the others. The learning algorithm is based on the standard BP algorithm
on page 9 — as displayed in Figure 3.5 on the next page — but using the tricks in
Section 2.2.7. This includes the softmax activation function and the cross-entropy
error function.

Weight Initialization All the weights are initialized according to Equation (3.4),
where K is the number of nodes in the link’s input layer. This gives a number
between -0.3 and 0.4, before it is divided on the number of input nodes K. The
weights are divided on K to make sure that the input values for the nodes in
the next layer will be at an acceptably low level, even given the large number of
incoming weights.
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Algorithm 3.2 BP algorithm
Initialize weights.
repeat

for all glyphs do
Feed-forward.
Back-propagation of error.

end for
until error ≤ the tolerated

.. start
. for each

glyph

. feed-
forward

. back-
propagation

of error

. more
glyphs?

. error ≤
tolerated?

. stop

.yes
.no

.yes
.no

Figure 3.5: Flowchart for BP. For each glyph, the image pattern is input to the
network, and is fed forward. Then the weights are changed when back-propagating
the error. This continues until the error is low enough.

w =
random(70) − 30

100K
(3.4)

One might think that using 35 instead of 30 — thus initialize to a number
between -0.35 and 0.35, with an average of 0 — would be a better solution. How-
ever, experimentation showed that this led to a slowly increasing error, instead of a
faster decreasing error. Initialization between -0.4 and 0.3 led to a faster increasing
error. A number between -0.3 and 0.4 seemed thus like best option.

From Glyph to Input Node For each of the training patterns, the pixels are
mapped onto the input nodes. However, the pixel values are not directly copied.
They are sent through the sigmoid function in Equation (3.5), giving input values
in the range [0, 1].

Φ(n) =
1

1 + e−0.1(n−127)
(3.5)

From Input Node to Output Node The values go from the input layer to the
hidden layer through Equation (3.6a), and further to the output layer by using
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Equation (3.6b).

hµ
j = Φ

(∑
k

vjkxµ
k

)
(3.6a)

yµ
i = Φ

∑
j

wijhµ
j

 (3.6b)

The softmax activation function (3.7) is used as the sigmoid function for the output
layer. As this function is specifically designed for multi-class classification problems
(which the glyph classification problem is), it is the natural choice. However, as it
is only for use in the output layer, Equation (3.8) was used for the hidden layer.
(3.8) is a specialized version of Equation (2.6), with c = 1.

pi =
eqi∑n

j=1 eqj
(3.7)

Φ(ai) =
1

1 + e−ai
(3.8)

Error and Weight Change The errors for the output layer and the hidden layer are
calculated using Equation (3.9a) and Equation (3.9b), respectively. Equation (2.41)
is used because of the softmax function and the cross-entropy error function.

δµ
i = tµ

i − yµ
i (3.9a)

δµ
j = hµ

j

(
1 − hµ

j

)∑
i

wijδµ
i (3.9b)

The weight change (Equation (3.10)) is based on Equation (2.12).

∆wµt

ij = δµ
i hµ

j (3.10a)

∆vµt

jk = δµ
j xµ

k (3.10b)

The final weight is then updated as in Equation (3.11), by increasing the weight
by the product of the weight changes and the learning rate η = 0.01.

wt
ij = wt−1

ij + η∆wµ
ij (3.11a)

wt
jk = wt−1

jk + η∆wµ
jk (3.11b)

Error and Stopping Criteria The final error is the cross-entropy error function in
Equation (2.40), as proposed by Bullinaria (2009). The learning continues until the
error is less than 0.01 (Equation (3.12)). When the error is this low, the accuracy
is acceptably high, and it does not take too long to run.

Error = |− (tµ
i log(yµ

i ) + (1 − tµ
i ) log (1 − yµ

i ))| < 0.01 (3.12)
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3.3.3 Weight Evolution
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Figure 3.6: Flowchart for WE. First, all the glyphs are going through feed-forward,
and the error is accumulated. If the network is stuck in a local minimum, the inner
evolution is started. Then, the outer evolution is run, for output nodes with an
error above average. Then, the error change is adding in a batch back-propagation,
and the circle continues.

Weight evolution (WE) is a merging of learning and evolution (Algorithm 3.3
on the facing page and Figure 3.6). It is inspired by Ng and Leung (2000); however,
it is not a reimplementation. Only the main idea from Ng and Leung (2000) is used,
i.e. the concept of evolving the outer and inner weights to improve the performance
and emerge from local minima.

It is important to note that this is not an evolutionary algorithm that evolves
the weights of a neural network; it is a back-propagation algorithm that includes
some aspects of evolution.

This is the only back-propagation algorithm of the four that uses batch learning
(Algorithm 2.1 on page 24). After the feed-forward stage, the weights connected
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to the output nodes with especially high error are evolved. That is, the weights
are copied and each weight is perturbed. The set of weights that reduces the error
the most is inserted instead of the original set. If the algorithm is stuck in a local
minimum, the same evolution is performed on the weights going into the hidden
node with the worst performance. This is only tested with the most problematic
patterns. After another feed-forward, batch back-propagation is performed.

The error is recalculated during the evolutionary phases, to assure that the
evolutionary change is based on the current network. It also adds more complexity
and runtime to the algorithm.

After all types of weight perturbation, the weight change is reverted in case the
network as a whole performs worse than it did before the weight change. This little
trick makes sure that the network is improved for each iteration, but it also causes
a large amount of computation without having any change in the network.

Algorithm 3.3 WE algorithm
Initialize weights.
repeat

for all glyphs do
Feed-forward.

end for
if stuck in a local minimum then

for particularly problematic glyphs do
Create multiple copies of the weights between the input nodes and one of
the hidden nodes, then mutate each weight.
Choose the set of weights that lowers the error the most.

end for
if the total error is larger than before then

Revert to the original weights.
end if

end if
for the output nodes with most error do

Create multiple copies of the weights connected to each node, and mutate
each weight.
Choose the set of weights that lowers the error the most.

end for
if the total error is larger than before then

Revert to the original weights.
end if
Feed-forward.
Compute error change.
Back-propagation of error.
if the total error is larger than before then

Revert to the original weights.
end if

until error ≤ the tolerated or 300 epochs
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3.3.4 Back-Propagation/Genetic Algorithm

Back-propagation/genetic algorithm (BP/GA) (Algorithm 3.4 on the facing
page and Figure 3.7) starts with the standard BP algorithm to reduce the search
space, and then it uses a GA to find the best solution. It is based on the work of
Lu and Shi (2000). That is, their algorithm is not reimplemented in all its detail,
but the main idea is used as a basis.

In BP/GA, BP is used to reduce the search space, while GA finds the optimal
solution in that space. The back-propagation algorithm is first run until it is either
stuck in a local minimum, or the error is below two times the tolerated error. Then,
the GA is used to find the best solution. The GA continues until the error is low
enough but for no more than 200 generations.
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Figure 3.7: Flowchart for BP/GA. First, the BP is run until the error is low enough,
or a local minimum encountered. The current network is translated to a bit vector
using Table 3.3 on page 38, and an initial population is created based on this original
bit vector. This population goes then through the standard evolutionary circle,
until either the error is small enough, or until there have been 200 generations.
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Algorithm 3.4 BP/GA algorithm
Initialize weights.
repeat

for all glyphs do
Feed-forward.
Back-propagation of error.

end for
until error ≤ 2 times the tolerated or local minimum
Translate ANN to bit vector.
Create child population based on bit vector.
repeat

Fitness assessment.
Selection.
Reproduction.

until error ≤ the tolerated or 200 generations

3.3.5 Genetic Algorithm/Back-Propagation
Genetic algorithm/back-propagation (GA/BP) (Algorithm 3.5 and Figure 3.8

on the following page) is based on BP/GA. The sub-algorithms are the same;
they are simply reversed, such that GA decreases the search space and BP locates
the optimal solution. This is not a new idea; Huang et al. (2008) used the same
approach to forecast highway freight.

GA/BP runs the GA until the error is ten times the tolerated value but for a
maximum of ten generations. Then, BP is used to find the optimal solution, and
it keeps going until the error is below the threshold.

Algorithm 3.5 GA/BP algorithm
Create child population.
repeat

Fitness assessment.
Selection.
Reproduction.

until error ≤ 10 times the tolerated or 10 generations
repeat

for all glyphs do
Feed-forward.
Back-propagation of error.

end for
until error ≤ the tolerated
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Figure 3.8: Flowchart for GA/BP. A random bit vector is created, and the initial
population is created based on this. Evolution is started, and continues for ten
generations, or until the error is less then ten times the tolerated. Then, the best
individual is improved using back-propagation. BP continues until the error is
within the toleration limit.
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Results and Discussion

The entire set of result graphs can be found in Appendix B. Section B.1 contains
a short introduction to the different kinds of graphs, describing how to read them.
The main results are found in Section B.2, sorted by both algorithm and phase.
Section B.3 includes graphs based on (1) a maximum of 25 runs, and (2) a maxi-
mum of 3 runs. This is to check if the good test results of back-propagation (BP)
and genetic algorithm/back-propagation (GA/BP) are due to the vast number of
available runs for these two algorithms, in contrast to the few runs of weight evolu-
tion (WE) and back-propagation/genetic algorithm (BP/GA). Finally, Section B.4
contains the graphs from a pure evolutionary algorithm, the genetic algorithm (GA)
from Rødland (2010).

The most important results are discussed in this chapter. Section 4.1 compares
the four algorithms with each other, based on the main results. Section 4.2 com-
pares the writing systems with each other, discussing which features are important
to the classification. Finally, the result graphs from Section B.3 are discussed in
Section 4.3.

4.1 Algorithm Comparison
In this section, the algorithms are compared to each other based on the graphs

found in Section B.2.2.

4.1.1 Training
All the algorithms except the WE algorithm have statistically significant results.

There are 120 runs of BP and GA/BP, 25 of BP/GA and 3 runs of WE. These are
the results gained after almost four weeks of runs. Even if not all of these results are

47
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very convincing with regard to the decreasing error, they clearly show the difference
in runtime. As experienced by Rødland (2010), BP learning is significantly faster
than GA evolution. Both BP and GA/BP are — relatively speaking — fast. 10
runs take roughly one day to execute. BP/GA is considerably slower, with only one
run per day, even though the GA part is run for a maximum of 200 generations. If
it had continued until the error was small enough, as BP and GA/BP do, it would
have been even slower. In that case, the algorithm would probably display better
results, as the error would have been smaller when the testing started. Due to the
runtime, however, it would still be inferior to both BP and GA/BP.
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Figure 4.1: The training phases with all available data.

Even though BP/GA is slow, WE is far worse; one run takes roughly 1.5 weeks.
WE does not scale well, mainly because of the repeated error calculation and
weight evolution. This is, however, not the only reason why WE is slower than the
rest. Evolution is generally slow, but the GA phases in BP/GA and GA/BP are
threaded. Since the simulations were run on a computer with up to 20 available
cores, both BP/GA and GA/BP were run in parallel. As the evolution in WE is
smaller and more tightly bound to the rest of the algorithm, no such threading was
implemented.
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The slowness of WE is not only regarding how long one iteration takes to run,
but also regarding the decrease in error during one iteration. While BP and both
the BP parts of BP/GA and GA/BP use somewhere between 50 and 140 iterations
to achieve an error below 0.02, WE uses 300 iterations and barely achieved an error
below 0.077 (Figure 4.1 on the preceding page). By that time, the decrease in error
has begun to stagnate.

It is noteworthy, however, that in the two-phase algorithms BP/GA and GA/BP,
the latter algorithm is reducing the error faster than it would have without the help
of the former. For example, the error in the BP part of GA/BP (Figure 4.1d) de-
creases faster than in both BP (Figure 4.1a) and the BP part of BP/GA (Figure
4.1c).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Runic

U
garitic

H
ebrew

A
rabic

Syllabics

H
iragana

T
hai

D
evanagari

H
an

H
ieroglyphs

C
la

ss
ifi

ed
as

Writing system

Back-Propagation

Runic
Ugaritic
Hebrew
Arabic

Syllabics

Hiragana
Thai

Devanagari
Han

Hieroglyphs

(a) BP

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
unic

U
garitic

H
ebrew

A
rabic

Syllabics

H
iragana

T
hai

D
evanagari

H
an

H
ieroglyphs

C
la

ss
ifi

ed
as

Writing system

Weight Evolution

Runic
Ugaritic
Hebrew
Arabic

Syllabics

Hiragana
Thai

Devanagari
Han

Hieroglyphs

(b) WE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
unic

U
garitic

H
ebrew

A
rabic

Syllabics

H
iragana

T
hai

D
evanagari

H
an

H
ieroglyphs

C
la

ss
ifi

ed
as

Writing system

Back-Propagation/Genetic Algorithm

Runic
Ugaritic
Hebrew
Arabic

Syllabics

Hiragana
Thai

Devanagari
Han

Hieroglyphs

(c) BP/GA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
unic

U
garitic

H
ebrew

A
rabic

Syllabics

H
iragana

T
hai

D
evanagari

H
an

H
ieroglyphs

C
la

ss
ifi

ed
as

Writing system

Genetic Algorithm/Back-Propagation

Runic
Ugaritic
Hebrew
Arabic

Syllabics

Hiragana
Thai

Devanagari
Han

Hieroglyphs

(d) GA/BP

Figure 4.2: The testing phases with all available data.
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4.1.2 Testing
With regard to the errors when the learning stops, the test results are of no

surprise (Figure 4.2 on the preceding page and Figure 4.3). As WE only got below
an error of 0.077, it did not manage to separate between the writing systems in the
test phase. In certain cases, e.g. with Runic, Ugaritic, Hebrew, Thai, Devanagari,
and Han, the majority of glyphs are falsely classified. However, they are more often
classified as the correct writing system than as any specific other writing system.
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Figure 4.3: The testing phases with all available data.

The results are improved using BP/GA. Ugaritic and Devanagari have also
here a high success rate, and Hebrew and Han have improved significantly. Arabic,
Canadian Aboriginal Syllabics, Hiragana, and Thai are misclassified more than 50%
of the time, but they are more often classified as themselves than as a specific other.
The only real problem with BP/GA is the classification of Runic and Hieroglyphs.
These two writing systems have similar classification patterns, where both are more
often classified as Runic than as Hieroglyphs. To make it even worse, both are more
often classified as Devanagari or Thai than as Runic or Hieroglyphs.

GA/BP and BP have similar results, both far better than BP/GA and especially
WE. Hebrew has over 90% correct classification, with Ugaritic and Devanagari
above 80% correct. Han — which had such good results in BP/GA — has a
decreased success rate, pushing it out of the top four. Arabic, Syllabics, Hiragana,
and Thai are significantly improved, all being correctly classified more than 50% of
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the time. Runic and Hieroglyphs are also here problematic; they are classified as
either Runic or Hieroglyphs, with the correct scoring barely better than the other.
These two writing systems tend to be problematic, as both their glyphs are drawn
with lighter colours than the rest of the writing systems (Rødland, 2010).

The results are plainly visible in Figure 4.3 on the preceding page: both BP
and GA/BP have a clear, white diagonal (Figure 4.3a and Figure 4.3d). BP/GA
also has a distinct diagonal, but it is greyer than the two other. There is also more
general noise (Figure 4.3c). WE has only a slightly visible diagonal, and consists
of mostly noise (Figure 4.3b).

4.2 Writing System Comparison

Table 4.1: This table summarizes the success rates of the different writing systems
for each of the algorithms, ranging from 0 to 1. The right-hand average is the
ratio of correctly classified glyphs for each of the writing systems. This ratio says
something about how well the writing system is classified, independent of algorithm.
The bottom average is the ratio of correctly classified glyphs for each of the writing
systems. This is a measure of how well the algorithms do the classification. The
double average in the bottom right corner is the overall ratio of correctly classified
glyphs, also this ranging from 0 to 1.

Writing system BP WE BP/GA GA/BP Average
Runic 0.470743 0.185628 0.118436 0.468775 0.310895
Ugaritic 0.814603 0.188554 0.653775 0.834615 0.622886
Hebrew 0.904731 0.134322 0.697757 0.915753 0.663140
Arabic 0.680462 0.111346 0.424183 0.692565 0.477139
Syllabics 0.583577 0.122519 0.407675 0.602064 0.428958
Hiragana 0.668136 0.106433 0.364232 0.699212 0.459503
Thai 0.747521 0.142731 0.479718 0.737147 0.526779
Devanagari 0.874799 0.173601 0.685202 0.846093 0.644923
Han 0.740228 0.153396 0.763770 0.701455 0.589712
Hieroglyphs 0.503152 0.182896 0.068356 0.492199 0.311650
Average 0.698795 0.150142 0.466310 0.698987 0.503559

The ratios of correctly classified glyphs can be found in Table 4.1. This table
supports the otherwise obvious fact that BP and GA/BP are better at classifying
than BP/GA is, and that BP/GA still is far better than WE. More surprisingly, Ta-
ble 4.1 reveals that GA/BP — with 69.90% correctly classified glyphs — actually
is a notch better than BP, with an average of 69.88%. This is not a statistically
significant difference, especially since BP is better than GA/BP in 4 of the ten
writing systems. There are in general many similarities between BP and GA/BP,
probably because the few generations of GA at the beginning of GA/BP do not af-
fect the final result that much. They have roughly the same percentage of correctly
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classified glyphs and share many of the same misclassifications.
One misclassification shared by all four algorithms is the confusion around Runic

and Hieroglyphs. This is due to the program used to create the glyph images; while
the other writing systems are drawn using black on white, Runic and Hieroglyphs
are drawn using a grey-scale. Consequently, the glyphs are deemed more similar
than they actually are (Rødland, 2010), which also can be seen in Figure 3.1 on
page 27. Because of this similarity, Runic and Hieroglyphs are at the bottom of
the list with respect to correct classification (Table 4.1 on the preceding page).
However, Runic and Hieroglyphs are among the best classified systems using WE.
As these two are confused with each other, they stand out from the rest, making
it easier to not misclassify them.

There seems to be no similarity between Hiragana and Han (Figure 4.3 on
page 50). These two writing systems have a special relationship, as Hiragana is a
simplification of Han (Section 3.1.6). It is thus interesting to note that the system
has no problem separating the two. This suggests that the system is more interested
in the ratio of dark and light nodes — as there are more black pixels in Han glyphs
than in Hiragana glyphs (Appendix A) — than in shapes and curves.

4.2.1 Comparing Classification Results with Glyph Appearance
There seems to be a relation between the shape of the glyphs and the classifi-

cation results. Hebrew, Devanagari, and Ugaritic are the writing systems with the
best classification results (Table 4.1 on the preceding page). These are also among
the most recognizable systems. Almost all Devanagari glyphs have the same hor-
izontal line (Figure A.8 on page A-9), such that the only input nodes needed to
classify Devanagari are the nodes representing those pixels. There is not a 100%
correct classification, however, as also other glyphs have a horizontal line in this
area. Also Hebrew glyphs follow mainly the same stroke pattern (Figure A.3 on
page A-4), and should thus be relatively easy to classify. The same goes for Ugaritic
(Figure A.2 on page A-3), as the glyphs consist of the same wedges, going in mostly
the same directions.

Han and Thai are not doing as well, but has still more than 50% correct clas-
sification in average, WE included (Table 4.1 on the preceding page). The Thai
glyphs share many of the same curves and shapes (Figure A.7 on page A-8). Hu-
mans can recognize them due to the little circles, but that is probably too much to
ask of the artificial neural network (ANN). However, most glyphs have a rounded
line from top left and down the right edge. This could be used to recognize the
glyphs. The Han glyphs are also recognizable, as many of them have a high stroke
count, and thus a high black/white ratio (Figure A.9 on page A-10). The Egyptian
Hieroglyphs (Figure A.10 on page A-11) are also rather complex; however, it is
easy to separate between Han and Hieroglyphs, as the Hieroglyphs are drawn in a
grey-scale and thus have different pixel values.

The worst classified writing systems — ignoring Runic and Hieroglyphs due
to their grey-scale problem — are Canadian Aboriginal Syllabics, Hiragana, and
Arabic. The Syllabic glyphs consist mainly of the same shapes, only rotated (Fig-
ure A.5 on page A-6). One would think these would be easy to classify, but as
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the rotation shifts the black and white pixels, the network is unable to recognize
the shapes. Syllabics could probably profit from a shape-recognizing preprocessing
layer, as the current network seems to be unable to correctly recognize shapes.

One would think Hiragana did well, as many of its glyphs — or kana — are
more or less identical. That is, many of the kana have diacritics (Figure A.6 on
page A-7), converting e.g. は (ha) to ば (ba) or even ぱ (pa). Some of the kana
are also available in smaller versions, to replace the vocal sound in other kana.
E.g., や (ya) is written ゃwhen it follows e.g. に (ni), creating にゃ(nya) (Banno
et al., 1999). As a result, most of the kana have at least one other version, either
with diacritics or resized. However, this does not help much. After all, the small
versions do not match the pixels of the larger versions, thus making them useless
without a well-functioning shape-recognizing network. The kana with diacritics,
however, should trigger almost precisely the same pixels. Unfortunately, it seems
two similar glyphs of the 30 used is not enough to give great results. In addition,
if all versions of the glyph are in the same set (training or test set), the similarity
will not help the classification at all. Another point is that — since Hiragana are
simplifications of different kanji — the different Hiragana do not look very alike.
They are similar in that they have the same stroke appearance, looking like they
are drawn by a paintbrush. However, this does not directly affect the pixels, and
are thus not discovered by the network.

4.3 Potential Bias Problems
As seen in Figure 4.2 on page 49, BP and GA/BP have achieved significantly

better results than BP/GA, which again is doing far better than WE. These results
are averaged over all the test runs, of which there are 120 runs of BP and GA/BP,
25 of BP/GA, and 3 of WE. In other words, there are significantly more runs of BP
and GA/BP than of BP/GA, and again far more runs of BP/GA than of WE. This
could be some of the reason why BP and GA/BP achieve so much better results
than the algorithms with longer runtime.

To test the hypothesis, result graphs were generated using (1) the first 25 runs,
and (2) the first 3 runs. These can be found in Section B.3.

The point of the first test is to use enough runs to make it statistically signif-
icant, but no more. Consequently, only the first 25 runs were used to generate
the graphs. However, as there only are 3 available runs of WE, WE would still
be in the minority. To solve this, another test was performed using only the first
3 runs. This would not be statistically significant, but at least it would give all
the algorithms the same base of insignificance. As a result, the test with 25 runs
will be used to investigate whether BP/GA still is significantly worse than BP and
BP/GA, while the test with only 3 runs investigates WE.

4.3.1 Test with 25 Runs
As the error functions in all the runs in BP, BP/GA and GA/BP were close

(Figure 4.1 on page 48), there is no important difference between these training
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Figure 4.4: The testing phases with maximum 25 runs.

graphs (Figure B.8 on page B-10) and the full graphs (Figure 4.1 on page 48).
They all follow the same main path.

The testing graphs (Figure 4.4) are also very similar to the full graphs (Fig-
ure 4.2 on page 49). Some minor differences can be seen, e.g. on Runic classification
using BP (Figure 4.4a and Figure 4.2a). This difference is far from significant, and
it suggests that the number of runs have had little impact on the test results. This
is supported by the matrix graphs (Figure B.10 on page B-12 and Figure 4.3 on
page 50). Even with only 25 runs, BP and GA/BP are still far better than both
BP/GA and WE.
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Figure 4.5: The testing phases with maximum 3 runs.

4.3.2 Test with 3 Runs

The error functions in the first 3 runs (Figure B.11 on page B-13) are not
significantly difference from those in the other runs (Figure 4.1 on page 48). The
test graphs, however, are interesting. The difference between the first 3 runs (Figure
4.5) and all the runs (Figure 4.2 on page 49) is clearly visible; however, the test
graphs from BP (Figure 4.5a), BP/GA (Figure 4.5c), and GA/BP (Figure 4.5d)
using only the first 3 runs are far better than the WE graph (Figure 4.5b). They are
not as good as the original; Hieroglyphs are too often misclassified as Runes in BP,
Runes are too often misclassified as Hieroglyphs in GA/BP, and the success rates
are generally too low in BP/GA. However, in certain cases the results are better
than the original, e.g. the classification of Hebrew in GA/BP, the classification of
Arabic, Thai, and Devanagari in BP, and Hebrew and Han in BP/GA.
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This can also be seen in Figure B.13 on page B-15, where all algorithms but
WE display the white diagonal, signifying correct classification. The results of BP,
BP/GA and GA/BP are thus clearly better than those of WE, even with only 3
runs.

4.3.3 Conclusion
There seems to be no correlation between the number of runs used as data, and

the test results. The hypothesis was that all the small errors from each of the runs
were averaged out in BP and GA/BP, but stuck in BP/GA and WE. This does
not seem to be the case, as BP and GA/BP achieved good results even when using
only 3 runs as basis for the graphs.

If runtime is connected to the classification capabilities of the algorithms, it is
because the slower algorithms do not run long enough to achieve an acceptably low
error, not because of the smaller number of runs. BP and GA/BP are thus better
than BP/GA, and BP/GA is better than WE, independent of how many times the
algorithms are run.



CHAPTER 5

Conclusion

This chapter will conclude the dissertation. The research questions are exam-
ined, and hopefully answered satisfactorily. In addition, the future of both the
glyph classification problem and generalizing artificial neural networks (ANNs) are
discussed.

5.1 Concluding the Research Questions
This dissertation tries to answer two research questions (Section 1.2.1):

RQ1 Are ANNs able to generalize over glyphs of many different writing systems,
and correctly classify the writing system of an unseen glyphs?

RQ2 Which training method would best solve RQ1; learning, evolution, or a hy-
brid of learning and evolution?

These will be discussed and concluded here; RQ1 in Section 5.1.1 and RQ2 in
Section 5.1.2.

5.1.1 RQ1: Generalization
The main question behind this dissertation was if ANNs are able to generalize

in such an extent that they can recognize the writing system of an unseen glyph,
based only on training on other glyphs from said writing system. It seems that they
are in fact capable of this. The results are not perfect, but some of the ANNs are
able to connect most of the unseen glyphs to the correct writing system (Figure 4.2
on page 49).

57
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It is unknown why this generalization actually works. As discussed in Sec-
tion 4.2.1, the ANNs do not appear to recognize shapes. There is no preprocess-
ing layer that recognizes the shapes or curves, and it does not appear to be any
emerging shape recognition. That is, the recurring shapes in Canadian Aboriginal
Syllabics and Hiragana do not seem to be recognized. As the writing systems with
the worst classification results are those with the most prominent shapes, it appears
that the ANNs do not do their classification based on said shapes.

Instead, the ANNs appear to use the pixel values directly. The best classified
writing systems — i.e. Hebrew, Devanagari and Ugaritic — are those with the
most recognizable shapes. Most Hebrew glyphs follow the same stroke pattern
(Figure A.3 on page A-4), almost all Devanagari glyphs have the same horizontal
line (Figure A.8 on page A-9), and the Ugaritic glyphs are all composed of the
same wedges (Figure A.2 on page A-3). In other words, they tend to have the
same black pixels, and are thus firing the same input nodes.

The good classification of Han, whose glyphs generally have a high stroke count
and thus fire many input neurons, suggests that also the amount of fired neurons
are important to the generalization.

This suggests that the ANNs are basing their classification directly on the pixel
values, without any emerging generalization per se. The important features are
not shapes and curves, but the exact pixels that are coloured, and how many
of the pixels that are coloured. The approximate colour of the coloured pixels is
apparently also important, as the ANNs struggle to separate between the grey-scale
Hieroglyphs and Runic (Section 4.2).

The topic of this dissertation was chosen with the hope that ANNs were able to
generalize over glyphs and recognize the shapes and curves common for the writing
systems (Section 1.1.2). It appears that this is not possible, at least not without a
preprocessing layer. However, the ANNs do seem to generalize nevertheless. This
might suggest that the pixels alone are enough to classify writing systems.

Is this form of generalization enough to conclude that ANNs can generalize?
Even though they do not recognize the shapes of the glyphs, they are able to
generalize enough over some of the glyphs to recognize the rest of the glyphs.
It can thus be concluded that ANNs are able to generalize sufficiently for the
glyph classification problem, but that three-layered ANNs are not able to recognize
shapes.

5.1.2 RQ2: Method
The results — found in e.g. Figure 4.2 on page 49 and Table 4.1 on page 51 —

clearly reveal that back-propagation (BP) and genetic algorithm/back-propagation
(GA/BP) are the superior methods. As GA/BP is BP preceded by only 10 iter-
ations of a genetic algorithm (GA), both these methods are mainly BP. One way
to look at this is that BP solves the problem, and that GA/BP either does not
contain enough GA to ruin the network, or that the BP part of GA/BP manages
to salvage the network after the GA is done with it.

There are no particular differences between GA/BP and BP in neither classi-
fication results nor runtime. The learning part of GA/BP is faster than that of
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BP, but in return the GA part takes up precious time. The only real difference
is concerning implementation; BP is a simple back-propagation algorithm, while
GA/BP is BP and a GA. In other words, GA/BP necessitates roughly twice as
much implementation and tuning, but without gaining any advantages. BP seems
thus to be the best and simplest solution.

The glyph classification problem is a complex problem, requiring a large net-
work. This large network is probably the reason why evolution is a suboptimal
solution for this problem. In most papers advocating evolution of ANNs, the net-
works evolved are small, with 20 to 50 nodes (Yin et al., 2011; Cao and Jin, 2007;
Osman et al., 2010; Su et al., 2009). It is a large difference between a network
of maximum 50 nodes and a network with 460 nodes, especially when comparing
the number of weights needed. Assuming a full topology with 30 input nodes, 20
hidden nodes and 10 output nodes, there are 800 weights to evolve. The glyph
classification network has — with its 401 input nodes, 51 hidden nodes and 10
output nodes — 20961 weights. This is a considerable difference, that will greatly
affect the runtime.

When the number of weights in an evolutionary network is increased, one of
two things must happen; (1) the size of the genome must increase due to additional
genes, or (2) the allocated number of bits per gene must decrease. If the genome
size is increased, the total runtime will increase. If one instead decreases the gene
size, the precision of the weight value will decrease, making it difficult to fine-tune
the weights. In that case, the perfect weight value might be outside of what the
gene is able to represent. There exists an ANN that is able to solve the glyph
classification problem, as found by BP. However, the low precision of GA weights
might make it impossible to find this ANN using a GA. So either way, evolution
suffers when the ANN grows. The runtime of BP is also increased when the ANN
grows; however, BP scales better than evolution, mainly because it only works with
one ANN at a time.

None of these algorithms are as fine-tuned as they ought to be. The parameters
in Table 3.2 on page 36 are found by trial and error, but not intensive trial and
error. The main problem with parameter tuning is the runtime of the algorithms.
For example, weight evolution (WE) has a runtime of 1.5 weeks, making it difficult
to test that many parameter value combinations. This is also a problem with back-
propagation/genetic algorithm (BP/GA) and GA/BP; even though their runtime
is shorter, they have considerably more parameters to tune due to the GA. These
parameters are thus far from perfect, but the best tuning would allow given the
time frame. There might exist a set of weights that would make the GA solve the
problem faster and/or better. However, it would take a lot of time and tweaking
to find this set of parameters, and it is not even certain that it exists. This is
another huge advantage with BP compared to any evolutionary algorithm; there is
only one parameter to tweak, i.e. the learning rate η. As the runtime of the BP is
rather fast, it is simple to find the perfect parameter value. This value is the only
thing that is needed; having that, one can release the algorithm and it will find
the solution without additional frills. As a result, BP is both faster to implement,
faster to prepare, and faster to run than any of the other three algorithms. In
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addition, it achieves the best results.
When working with such large networks, it is important to keep things simple.

While GA is unsuccessful due to the size of the ANN, BP manages to solve the
problem within reasonable time. Their hybrids are suboptimal compared to the
pure BP. A standard BP is thus the optimal solution; simple, fast, and effective.

Why are none of the hybrids as suitable for this task as the BP? Probably
because the hybrids contain evolution. Evolution is already shown to be too time-
consuming due to the size of the network (Rødland, 2010), and it suffers from
parameters that are difficult and time-consuming to perfect. However, even though
the GA does not improve on the BP, the hybrids do solve the memory problems
of the pure GA (Rødland, 2010). Consequently, the BP is improving the GA. This
is probably because BP reduces the amount of GA needed, such that the system
never reaches the critical state.

5.2 Future Work
There is still much work that can be done on the glyph classification problem,

both concerning generalization and the actual classification.

5.2.1 Improving the Generalizing ANN
To improve the generalization, one could investigate other algorithms to fine-

tune ANNs. At the moment, only BP learning and evolution are examined; there
might be other algorithms that will do an even better job than BP did.

Evolutionary algorithms will probably not work, due to the size of the net-
work. However, other algorithms might improve the results, e.g. gradient descent,
simulated annealing (SA), or expectation-maximization (EM). One could also try
unsupervised or reinforcement learning, but this would probably not work as well
as supervised learning, as this is a classification task.

5.2.2 Improving the Glyph Classification
If the point is to make a system that can recognize the writing system of an un-

seen glyph — without proving anything with respect to generalization capabilities
— there are many things that can be tested.

The current network does not seem to have shape recognition capabilities. This
could be improved by e.g. adding a preprocessing layer that uses image processing
techniques to extract the shapes, lines and curves. If the input to the network
would be information about the shapes and lines instead of all the 400 pixels, the
number of input nodes would be greatly decreased. This would again reduce the
number of weights, and thus reduce the runtime. This network could probably be
small enough for evolution to work.

The number of hidden nodes can be optimized by changing the network topol-
ogy, e.g. by adding or removing hidden nodes (Castillo-Valdivieso et al., 2002;
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MacLeod and Maxwell, 2001; Islam et al., 2009; Abraham and Nath, 2000). How-
ever, evolution should not be attempted as long as there are 400 input nodes in the
network, so this should be tried in addition to something that requires a different
kind of input.

The ANN could also be fortified with another hidden layer. This might improve
the shape recognition capabilities of the ANN, as the extra layer could be used to
represent different shapes. This should not be used in combination with evolution,
however, due to the runtime issues.

A simpler improvement might be to continue tweaking the current BP algo-
rithm. There are limitations to the usefulness of this, but some improvements
might be achieved.

One could also revisit BP/GA and GA/BP, and find a smoother transition
between the BP and GA phases. This will probably not do wonders, but could
improve at least BP/GA a bit. That is, if one manages to reduce the data loss in
the transition from BP to GA, the GA might get a head start.

One could also try to build one sub-network for each writing system, and merge
them afterwards. This would decrease the size of the network, and might thus work
with evolution. Most important, it would create sub-networks specified for each
writing system, hopefully improving the classification capabilities.

5.2.2.1 The Future of Glyph Classification

There is a huge difference in performance depending on the number of writ-
ing systems used in the classification, as shown by Rødland (2010). When taking
the huge amount of existing writing systems into account — there are about 1000
writing systems featured in (Ager, 2011) — it is obvious that the glyph classifica-
tion problem is a lot harder in reality than assumed here. For this to be anything
but an excuse to test generalization, one should allow for glyphs from any writing
system. This will entail huge training and test sets, which will drastically increase
the runtime. It would also necessitate one output node for each writing system,
i.e. almost 1000 output nodes. This will lead to a gigantic ANN, which also will
drastically increase the runtime. To top it off, it will probably achieve very subop-
timal results, based on the experiences from Rødland (2010). It would also suffer
from similar-looking writing systems, which further complicates the classification.

An educated guess thus suggests that a fully functional glyph classification
system never will see the light of day. For it to work, one would need at least
(1) very impressing hardware, to make up for the increase in runtime; (2) another
way to match the output nodes to the correct writing system, to reduce the number
of output nodes; and (3) a way to preprocess the glyphs, improving the shape
recognition, to reduce the number of input nodes and improve the classification.

That is not to say that glyph classification is completely useless. It could be
used in e.g. Japan and Korea, where multiple writing systems are in use. In that
case, one could send text through writing system classification before sending it
through a character recognition program, specialized on the classified writing sys-
tem. That way, one could use existing software for character recognition to machine
translate the text, even though the text consists of multiple writing systems. But if
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these possible writing systems are not known in advance, this would be an almost
impossible task, necessitating the omniscient glyph classification system described
above.

Glyph classification will never be perfect; however, the classification capabilities
ought to be acceptable given a sufficiently reduced set of potential writing systems.



References

Ajith Abraham and Baikunth Nath. Optimal Design of Neural Nets using Hybrid
Algorithms. PRICAI 2000 Topics in Artificial Intelligence, pages 510–520, 2000.
URL http://www.springerlink.com/index/d426j54323764285.pdf.

Simon Ager. Omniglot - writing systems and languages of the world, 2011. URL
http://www.omniglot.com.

M. Altan. Reducing Shrinkage in Injection Moldings via the Taguchi, ANOVA and
Neural Network Methods. Materials & Design, 31:599–604, 2010.

Krzysztof Bandurski and Wojciech Kwedlo. A Lamarckian Hybrid of Dif-
ferential Evolution and Conjugate Gradients for Neural Network Training.
Neural Processing Letters, 32(1):31–44, June 2010. ISSN 1370-4621. doi:
10.1007/s11063-010-9141-1. URL http://www.springerlink.com/index/10.
1007/s11063-010-9141-1.

Eri Banno, Yutaka Ohno, Yoko Sakane, and Chikako Shinagawa. Genki 1: An
Integrated Course in Elementary Japanese. 1999. ISBN 4789009637.

E.B. Baum, D. Boneh, and C. Garrett. Where Genetic Algorithms Excel. Evo-
lutionary Computation, 9(1):93–124, 2001. ISSN 1063-6560. URL http://www.
mitpressjournals.org/doi/abs/10.1162/10636560151075130.

Adi Ben-Israel and Thomas N.E. Greville. Generalized Inverses: Theory and Ap-
plications. Robert E. Krieger Publishing Co., New York City, NY, USA, 1980.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, Oxford, England, 1996. ISBN 0198538642.

John A. Bullinaria. John Bullinaria’s Step by Step Guide to Implementing a Neural
Network in C, 2009. URL http://www.cs.bham.ac.uk/~jxb/INC/nn.html.

Robert Callan. The Essence of Neural Networks. Prentice Hall Europe, Harlow,
Essex, England, 1999. ISBN 0-13-908732-X.

63

http://www.springerlink.com/index/d426j54323764285.pdf
http://www.omniglot.com
http://www.springerlink.com/index/10.1007/s11063-010-9141-1
http://www.springerlink.com/index/10.1007/s11063-010-9141-1
http://www.mitpressjournals.org/doi/abs/10.1162/10636560151075130
http://www.mitpressjournals.org/doi/abs/10.1162/10636560151075130
http://www.cs.bham.ac.uk/~jxb/INC/nn.html


REFERENCES 64

Guangzhen Cao and Ya Qiu Jin. A Hybrid Algorithm of the BP-ANN/GA for
Classification of Urban Terrain Surfaces with Fused Data of Landsat ETM and
ERS-2 SAR. International Journal of Remote Sensing, 28(2):293–305, 2007.
URL http://dx.doi.org/10.1080/01431160500221675.

Pedro A. Castillo-Valdivieso, Juan J. Merelo, Alberto Prieto, Ignacio Rojas, and
Gustavo Romero. Statistical Analysis of the Parameters of a Neuro-Genetic
Algorithm. Evaluation, 13(6):1374–1394, 2002.

C. Charalambous. Conjugate gradient algorithm for efficient training of artificial
neural networks. Circuits, Devices and Systems, IEEE Proceedings G, 139(3):
301–310, 1992.

Mark Collier and Bill Manley. How to read Egyptian hieroglyphs: a step-by-step
guide to teach yourself. University of California Press, Los Angeles, 2003. ISBN
0520239490. URL http://books.google.com/books?id=aroQ0Zrl8J4C&pgis=
1.

Charles Darwin. On the Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life. Murray, London,
England, 1859. URL http://www.literature.org/authors/darwin-charles/
the-origin-of-species/.

Kenneth A. De Jong. Evolutionary Computation : A Unified Approach. The MIT
Press, Cambridge, MA, USA, 2006. ISBN 0-262-04194-4.

Stanislas Dehaene. Reading in the Brain : The Science and Evolution of a Human
Invention. Penguin Group, London, England, 2009. ISBN 978-0-670-02110-9.

W.J. Deng, C.T. Chen, C.H. Sun, W.C. Chen, and C.P. Chen. An Effective Ap-
proach for Process Parameter Optimization in Injection Molding of Plastic Hous-
ing Components. Polymer-Plastics Technology and Engineering, 47:910–919,
2008.

Y.M. Deng, Y. Zhang, and Y.C. Lam. A Hybrid of Mode-Pursuing Sampling
Method and Genetic Algorithm for Minimization of Injection Molding Warpage.
Materials & Design, 31:2118–2123, 2010.

Rinku Dewri. Evolutionary Neural Networks: Design Methodolo-
gies - AI Depot, 2003. URL http://ai-depot.com/articles/
evolutionary-neural-networks-design-methodologies/.

Keith L. Downing. Introduction to evolutionary algorithms. 2009. URL http:
//www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. 2
edition, 2000.

http://dx.doi.org/10.1080/01431160500221675
http://books.google.com/books?id=aroQ0Zrl8J4C&pgis=1
http://books.google.com/books?id=aroQ0Zrl8J4C&pgis=1
http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://ai-depot.com/articles/evolutionary-neural-networks-design-methodologies/
http://ai-depot.com/articles/evolutionary-neural-networks-design-methodologies/
http://www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf
http://www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf


65 REFERENCES

R.A. Dunne and N.A. Campbell. On the Pairing of the Softmax Activation and
Cross-Entropy Penalty Functions and the Derivation of the Softmax Activation
Function. In 8th Australian Conference on Neural Networks, pages 181–185,
Melbourne, Australia, 1997.

R. Fletcher and C.M. Reeves. Fletcher R, Reeves CM (1964) Function minimiza-
tion by conjugate gradients. Comput J 7:149 – 154. The Computer Journal, 7:
149–154, 1964.

Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence : Theo-
ries, Methods, and Technologies. The MIT Press, Cambridge, MA, USA, 2008.
ISBN 978-0-262-06271-8.

FOLDOC. Glyph, 1998a. URL http://foldoc.org/glyphs.

FOLDOC. Writing System, 1998b. URL http://foldoc.org/writing+system.

Y.H. Gao and X.C. Wang. An Effective Warpage Optimization Method in Injec-
tion Molding Based on the Kriging Model. International Journal of Advanced
Manufacturing Technology, 37:953–960, 2008.

Y.H. Gao and X.C. Wang. Surrogate-Based Process Optimization for Reducing
Warpage in Injection Molding. Journal of Materials Processing Technology, 209:
1302–1309, 2009.

Yuansheng Huang, Yufang Lin, and Zilong Qiu. Freight Prediction Model Based
on GABP Neural Network. In 2008 International Symposium on Computational
Intelligence and Design, pages 229–232, 2008. URL http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=4725597.

J. Ilonen, J.K. Kamarainen, and J. Lambinen. Differential evolution training al-
gorithm for feed-forward neural networks. Neural Processing Letters, 17:93–105,
2003.

Monirul Islam, Abdus Sattar, Faijul Amin, Xin Yao, and Kazuyuki Murase. A New
Constructive Algorithm for Architectural and Functional Adaptation of Artificial
Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, 39(6):
1590–1605, 2009.

M. Tim Jones. Artificial Intelligence : A Systems Approach. Jones and Bartlett
Publishers, Sudbury, MA, USA, 2009. ISBN 978-0-7637-7337-3.

H. Kurtaran, B. Ozcelik, and T. Erzurumlu. Warpage Optimization of a Bus
Ceiling Lamp Base using Neural Network Model and Genetic Algorithm. Journal
of Materials Processing Technology, 169:314–319, 2005.

H. Kurtaran, B. Ozcelik, and T. Erzurumlu. Efficient Warpage Optimization of
Thin Shell Plastic Parts using Response Surface Methodology and Genetic Al-
gorithm. Journal of Materials Processing Technology, 27:468–472, 2006.

http://foldoc.org/glyphs
http://foldoc.org/writing+system
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4725597
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4725597


REFERENCES 66

Jack Kyte and Russell F. Doolittle. A Simple Method for Displaying the Hydro-
pathic Character of a Protein. Journal of Molecular Biology, 157(1):105–132,
1982.

Chun Lu and Bingxue Shi. Hybrid Back-Propagation/Genetic Algorithm for Multi-
layer Feedforward Neural Networks. In Proceedings of ICSP2000, pages 571–574,
2000.

C. MacLeod and G.M. Maxwell. Incremental evolution in ANNs: Neural nets
which grow. Artificial Intelligence Review, pages 1–32, 2001. URL http://www.
springerlink.com/index/R7T5683401W7368J.pdf.

Paul McQuesten and Risto Miikkulainen. Culling and teaching in neuro-evolution.
In Proceedings of the 7th International Conference on Genetic Algorithms, pages
1–8, 1997. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.49.8014&rep=rep1&type=pdf.

Merriam-Webster. Cull, 2010. URL http://www.merriam-webster.com/
dictionary/culling.

Sin-Chun Ng and Shu-Hung Leung. A Weight Evolution Algorithm for find-
ing the Global Minimum of Error Function in Neural Networks. In Pro-
ceedings of the 2000 Congress on Evolutionary Computation, pages 153–157.
IEEE, 2000. ISBN 0-7803-6375-2. doi: 10.1109/CEC.2000.870289. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870289.

Eric Francis Osborn. Clement of Alexandria. Cambridge University Press, 2005.

Mohd Haniff Osman, Choong-Yeun Liong, and Ishak Hashim. Hybrid Learn-
ing Algorithm in Neural Network System for Enzyme Classification. Inter-
national Journal of Advances in Soft Computation and Its Applications, 2(2):
209–220, 2010. URL http://www.i-csrs.org/Volumes/ijasca/vol.2/vol.
2.2.4.July.10.pdf.

Tiril Anette Langfeldt Rødland. Classifying Glyphs: Comparing Evolution and
Learning. Master project, NTNU, 2010. URL http://www.pvv.ntnu.no/
~tirilane/glycla_project.pdf.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Representations by
Back-Propagation of Errors. Nature, 1986.

C.Y. Shen, L.X. Wang, and Q. Li. Optimization of Injection Molding Process Pa-
rameters using Combination of Artificial Neural Network and Genetic Algorithm
Method. Journal of Materials Processing Technology, 183:412–418, 2007.

Min Shi and Haifeng Wu. Evolving Efficient Connection for the Design of Ar-
tificial Neural Networks. In Proceedings of the 18th International Conference
on Artificial Neural Networks, pages 909–918, Trondheim, Norway, 2008. URL
http://www.springerlink.com/content/au45qn6753k42360/fulltext.pdf.

http://www.springerlink.com/index/R7T5683401W7368J.pdf
http://www.springerlink.com/index/R7T5683401W7368J.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.8014&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.8014&rep=rep1&type=pdf
http://www.merriam-webster.com/dictionary/culling
http://www.merriam-webster.com/dictionary/culling
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870289
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=870289
http://www.i-csrs.org/Volumes/ijasca/vol.2/vol.2.2.4.July.10.pdf
http://www.i-csrs.org/Volumes/ijasca/vol.2/vol.2.2.4.July.10.pdf
http://www.pvv.ntnu.no/~tirilane/glycla_project.pdf
http://www.pvv.ntnu.no/~tirilane/glycla_project.pdf
http://www.springerlink.com/content/au45qn6753k42360/fulltext.pdf


67 REFERENCES

R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11:
341–359, 1997.

Jianmin Su, Bifeng Song, and Baofeng Li. A Hybrid Algorithm of GA Wavelet-BP
Neural Networks to Predict Near Space Solar Radiation, chapter A Hybrid A,
pages 442–450. Springer, Berlin, 2009. URL http://www.springerlink.com/
content/d2k18mr24l18v248/fulltext.pdf.

The Unicode Consortium. The Unicode Standard, Version 5.2.0. The Unicode
Consortium, Mountain View, CA, USA, 2009. ISBN 978-1-936213-00-9. URL
http://www.unicode.org/versions/Unicode5.2.0/.

The Unicode Consortium. The Unicode Standard, Version 6.0.0. The Unicode
Consortium, Mountain View, CA, USA, 2011. ISBN 978-1-936213-01-6. URL
http://www.unicode.org/versions/Unicode6.0.0/.

Stephen D. Turner, Scott M. Dudek, and Marylyn D. Ritchie. ATHENA:
A knowledge-based hybrid backpropagation-grammatical evolution neural net-
work algorithm for discovering epistasis among quantitative trait Loci. Bio-
Data mining, 3(1):5, January 2010. ISSN 1756-0381. doi: 10.1186/
1756-0381-3-5. URL http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2955681&tool=pmcentrez&rendertype=abstract.

Kiri Wagstaff. ANN Backpropagation : Weight updates for hidden nodes.
pages 1–3, 2008. URL http://www.wkiri.com/cs461-w08/Lectures/Lec4/
ANN-deriv.pdf.

D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural net-
works: optimizing connections and connectivity. Parallel Computing, 14(3):
347–361, August 1990. ISSN 01678191. doi: 10.1016/0167-8191(90)90086-O.
URL http://linkinghub.elsevier.com/retrieve/pii/016781919090086O.

B. Widrow and M.E. Hoff. Adaptive Switching Circuits. In Proceedings of the 1960
IRE WESCON Convention, pages 96–104, New York City, NY, USA, 1960. IRE.

Wikibooks. Artificial Neural Networks/Activation Functions - Wik-
ibooks, collection of open-content textbooks, 2010. URL http:
//en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/
Activation_Functions&oldid=1942655.

Fei Yin, Huajie Mao, and Lin Hua. A Hybrid of Back Propagation Neural Net-
work and Genetic Algorithm for Optimization of Injection Molding Process Pa-
rameters. Materials & Design, pages 1–8, February 2011. ISSN 02613069.
doi: 10.1016/j.matdes.2011.01.058. URL http://linkinghub.elsevier.com/
retrieve/pii/S0261306911000781.

Y. Zhang, Y.M. Deng, and B.S. Sun. Injection Molding Warpage Based on a Mode-
Pursuing Sampling Method. Polymer-Plastics Technology and Engineering, 48:
767–774, 2009.

http://www.springerlink.com/content/d2k18mr24l18v248/fulltext.pdf
http://www.springerlink.com/content/d2k18mr24l18v248/fulltext.pdf
http://www.unicode.org/versions/Unicode5.2.0/
http://www.unicode.org/versions/Unicode6.0.0/
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2955681&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2955681&tool=pmcentrez&rendertype=abstract
http://www.wkiri.com/cs461-w08/Lectures/Lec4/ANN-deriv.pdf
http://www.wkiri.com/cs461-w08/Lectures/Lec4/ANN-deriv.pdf
http://linkinghub.elsevier.com/retrieve/pii/016781919090086O
http://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Activation_Functions&oldid=1942655
http://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Activation_Functions&oldid=1942655
http://en.wikibooks.org/w/index.php?title=Artificial_Neural_Networks/Activation_Functions&oldid=1942655
http://linkinghub.elsevier.com/retrieve/pii/S0261306911000781
http://linkinghub.elsevier.com/retrieve/pii/S0261306911000781


REFERENCES 68



Software Library

alexandria. Alexandria. http://www.cliki.net/Alexandria.
http://common-lisp.net/~loliveira/tarballs/inofficial/
alexandria-2008-07-29.tar.gz, version 2008-07-29.

atdoc. atdoc : Common Lisp documentation generation. http://
www.lichteblau.com/atdoc. http://www.lichteblau.com/atdoc/download/
atdoc.tar.gz, version 2008.11.30. David Lichteblau.

babel. Babel. http://www.cliki.net/Babel. http://common-lisp.net/
project/babel/releases/babel_latest.tar.gz, version 0.3.0.

ch-image. ch-image. http://www.cliki.net/ch-image. http://cyrusharmon.
org/static/releases/ch-image_0.4.1.tar.gz.

ch-util. ch-util. http://cyrusharmon.org/static/releases/ch-util_0.3.10.
tar.gz.

cl-jpeg. cl-jpeg. http://www.cliki.net/cl-jpeg. http://www.common-lisp.
net/project/mcclim/cl-jpeg.tar.gz.

cl-ppcre. CL-PPCRE : Portable perl-compatible regular expressions for Common
Lisp. http://www.weitz.de/cl-ppcre. Ubuntu package cl-ppcre, http://
weitz.de/files/cl-ppcre.tar.gz, version 2.0.1-2. Edi Weitz.

cl-unicode. CL-UNICODE : A portable unicode library for Common Lisp. http://
www.weitz.de/cl-unicode. http://weitz.de/files/cl-ppcre.tar.gz, ver-
sion 0.1.1. Edi Weitz.

cl-yacc. CL-Yacc. http://www.cliki.net/CL-Yacc. http://www.pps.jussieu.
fr/~jch/software/files/cl-yacc-0.3.tar.gz, version 0.3.

clem. clem. http://cyrusharmon.org/static/releases/clem_0.4.1.tar.gz.

closer-mop. Closer to mop. http://www.cliki.net/closer-mop. http://www.
common-lisp.net/project/closer/ftp/closer-mop_latest.tar.gz, version
0.61.

69

http://www.cliki.net/Alexandria
http://common-lisp.net/~loliveira/tarballs/inofficial/alexandria-2008-07-29.tar.gz
http://common-lisp.net/~loliveira/tarballs/inofficial/alexandria-2008-07-29.tar.gz
http://www.lichteblau.com/atdoc
http://www.lichteblau.com/atdoc
http://www.lichteblau.com/atdoc/download/atdoc.tar.gz
http://www.lichteblau.com/atdoc/download/atdoc.tar.gz
http://www.cliki.net/Babel
http://common-lisp.net/project/babel/releases/babel_latest.tar.gz
http://common-lisp.net/project/babel/releases/babel_latest.tar.gz
http://www.cliki.net/ch-image
http://cyrusharmon.org/static/releases/ch-image_0.4.1.tar.gz
http://cyrusharmon.org/static/releases/ch-image_0.4.1.tar.gz
http://cyrusharmon.org/static/releases/ch-util_0.3.10.tar.gz
http://cyrusharmon.org/static/releases/ch-util_0.3.10.tar.gz
http://www.cliki.net/cl-jpeg
http://www.common-lisp.net/project/mcclim/cl-jpeg.tar.gz
http://www.common-lisp.net/project/mcclim/cl-jpeg.tar.gz
http://www.weitz.de/cl-ppcre
http://weitz.de/files/cl-ppcre.tar.gz
http://weitz.de/files/cl-ppcre.tar.gz
http://www.weitz.de/cl-unicode
http://www.weitz.de/cl-unicode
http://weitz.de/files/cl-ppcre.tar.gz
http://www.cliki.net/CL-Yacc
http://www.pps.jussieu.fr/~jch/software/files/cl-yacc-0.3.tar.gz
http://www.pps.jussieu.fr/~jch/software/files/cl-yacc-0.3.tar.gz
http://cyrusharmon.org/static/releases/clem_0.4.1.tar.gz
http://www.cliki.net/closer-mop
http://www.common-lisp.net/project/closer/ftp/closer-mop_latest.tar.gz
http://www.common-lisp.net/project/closer/ftp/closer-mop_latest.tar.gz
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closure-common. closure-common. http://www.cliki.net/closure-common.
http://www.common-lisp.net/project/cxml/download/closure-common.
tar.gz, version 2008-11-30.

closure-html. closure-html. http://www.cliki.net/closure-html. http://
www.common-lisp.net/project/closure/download/closure-html.tar.gz,
version 2008-11-30.

cxml. CXML. http://www.cliki.net/CXML. http://www.common-lisp.net/
project/cxml/download/cxml.tar.gz, version 2008-11-30.

cxml-stp. cxml-stp. http://www.cliki.net/cxml-stp. http://www.
lichteblau.com/cxml-stp/download/cxml-stp.tar.gz, version 2008-11-30.

flexi-streams. flexi-streams. http://www.cliki.net/Flexi-streams. http://
weitz.de/files/flexi-streams.tar.gz, version 1.0.7.

pango. Pango. http://www.pango.org. Ubuntu packages gir1.0-pango1.0,
libpango1.0-0, libpango1.0-0-dbg, libpango1.0-common,
libpango1.0-dev, libpango1.0-doc, libsdl-pango-dev, libsdl-pango1,
version 1.28.0.

parse-number. Parse-number. http://www.cliki.net/PARSE-NUMBER. http:
//www.common-lisp.net/project/asdf-packaging/parse-number-latest.
tar.gz, version 1.0.

plexippus-xpath. plexippus-xpath. http://www.cliki.net/plexippus-xpath.
http://www.common-lisp.net/project/plexippus-xpath/download/
plexippus-xpath.tar.gz, version 2008-12-07.

puri. Puri (Portable Universal Resource Identifier). http://www.cliki.net/Puri.
http://files.b9.com/puri/puri-latest.tar.gz, version 1.5.5.

Salza2. Salza2. http://www.cliki.net/Salza2.

sbcl. SBCL (Steel Bank Common Lisp). http://www.sbcl.org. Ubuntu package
sbcl, version 1.0.29.11.debian.

split-sequence. Split-sequence. http://www.cliki.net/SPLIT-SEQUENCE. http:
//ftp.linux.org.uk/pub/lisp/experimental/cclan/split-sequence.tar.
gz.

trivial-features. trivial-features. http://www.cliki.net/trivial-features.
http://common-lisp.net/~loliveira/tarballs/trivial-features/
trivial-features_latest.tar.gz, version 0.5.

trivial-gray-streams. trivial-gray-streams. http://www.cliki.net/
trivial-gray-streams. http://common-lisp.net/project/cl-plus-ssl/
download/trivial-gray-streams.tar.gz, version 2008-11-02.

http://www.cliki.net/closure-common
http://www.common-lisp.net/project/cxml/download/closure-common.tar.gz
http://www.common-lisp.net/project/cxml/download/closure-common.tar.gz
http://www.cliki.net/closure-html
http://www.common-lisp.net/project/closure/download/closure-html.tar.gz
http://www.common-lisp.net/project/closure/download/closure-html.tar.gz
http://www.cliki.net/CXML
http://www.common-lisp.net/project/cxml/download/cxml.tar.gz
http://www.common-lisp.net/project/cxml/download/cxml.tar.gz
http://www.cliki.net/cxml-stp
http://www.lichteblau.com/cxml-stp/download/cxml-stp.tar.gz
http://www.lichteblau.com/cxml-stp/download/cxml-stp.tar.gz
http://www.cliki.net/Flexi-streams
http://weitz.de/files/flexi-streams.tar.gz
http://weitz.de/files/flexi-streams.tar.gz
http://www.pango.org
http://www.cliki.net/PARSE-NUMBER
http://www.common-lisp.net/project/asdf-packaging/parse-number-latest.tar.gz
http://www.common-lisp.net/project/asdf-packaging/parse-number-latest.tar.gz
http://www.common-lisp.net/project/asdf-packaging/parse-number-latest.tar.gz
http://www.cliki.net/plexippus-xpath
http://www.common-lisp.net/project/plexippus-xpath/download/plexippus-xpath.tar.gz
http://www.common-lisp.net/project/plexippus-xpath/download/plexippus-xpath.tar.gz
http://www.cliki.net/Puri
http://files.b9.com/puri/puri-latest.tar.gz
http://www.cliki.net/Salza2
http://www.sbcl.org
http://www.cliki.net/SPLIT-SEQUENCE
http://ftp.linux.org.uk/pub/lisp/experimental/cclan/split-sequence.tar.gz
http://ftp.linux.org.uk/pub/lisp/experimental/cclan/split-sequence.tar.gz
http://ftp.linux.org.uk/pub/lisp/experimental/cclan/split-sequence.tar.gz
http://www.cliki.net/trivial-features
http://common-lisp.net/~loliveira/tarballs/trivial-features/trivial-features_latest.tar.gz
http://common-lisp.net/~loliveira/tarballs/trivial-features/trivial-features_latest.tar.gz
http://www.cliki.net/trivial-gray-streams
http://www.cliki.net/trivial-gray-streams
http://common-lisp.net/project/cl-plus-ssl/download/trivial-gray-streams.tar.gz
http://common-lisp.net/project/cl-plus-ssl/download/trivial-gray-streams.tar.gz


71 SOFTWARE LIBRARY

xuriella. Xuriella. http://www.cliki.net/xuriella. http://www.common-lisp.
net/project/xuriella/download/xuriella.tar.gz, version 2009-04-04.

ZPNG. Zpng. http://www.cliki.net/ZPNG. http://www.xach.com/lisp/zpng.
tgz.

http://www.cliki.net/xuriella
http://www.common-lisp.net/project/xuriella/download/xuriella.tar.gz
http://www.common-lisp.net/project/xuriella/download/xuriella.tar.gz
http://www.cliki.net/ZPNG
http://www.xach.com/lisp/zpng.tgz
http://www.xach.com/lisp/zpng.tgz
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APPENDIX A

Unicode Charts

Below are examples of glyphs1 from the ten writing systems used. All the
glyphs are not present, as there are over 600 pages in total. This should, however,
be enough to get the characteristics of each writing system.

1Copyright c©1991-2011 Unicode, Inc. All rights reserved. Reproduced with permission of
Unicode, Inc.
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Figure A.1: Runic. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.
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Figure A.2: Ugaritic. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.
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Figure A.3: Hebrew. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.
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Figure A.4: Arabic. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.



APPENDIX A. UNICODE CHARTS A-6

Figure A.5: Canadian Aboriginal Syllabics. Copyright c©1991-2011 Unicode, Inc.
All rights reserved. Reproduced with permission of Unicode, Inc.
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Figure A.6: Hiragana. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.
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Figure A.7: Thai. Copyright c©1991-2011 Unicode, Inc. All rights reserved. Re-
produced with permission of Unicode, Inc.
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Figure A.8: Devanagari. Copyright c©1991-2011 Unicode, Inc. All rights reserved.
Reproduced with permission of Unicode, Inc.
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Figure A.9: Han. Copyright c©1991-2011 Unicode, Inc. All rights reserved. Re-
produced with permission of Unicode, Inc.
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Figure A.10: Egyptian Hieroglyphs. Copyright c©1991-2011 Unicode, Inc. All
rights reserved. Reproduced with permission of Unicode, Inc.
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APPENDIX B

Result Graphs

This appendix contains all the result graphs, as well as a description on how to
read the graphs.

B.1 How to Read the Graphs
This section gives a quick description on how to read the different types of

graphs.

B.1.1 Training Graphs
In the training graphs (Figure B.5 on page B-7, Figure B.8 on page B-10, and

Figure B.11 on page B-13), the different runs are drawn on top of each other. This
helps to point out the similarity of each run within the same algorithm.

B.1.1.1 BP Graphs

The back-propagation (BP) graphs, e.g. Figure B.5 on page B-7, display the
error during the learning phase and is used by all four algorithms. Here, the error
(y-axis) is a function of the iteration (x-axis).

B.1.1.2 GA Graphs

The genetic algorithm (GA) graphs (Figure B.3b on page B-5 and Figure B.4a
on page B-6) are more complex. The GA graphs are used in the evolution phase of
back-propagation/genetic algorithm (BP/GA) and genetic algorithm/back-propagation
(GA/BP), and display the minimal, maximal and average fitness, as well as the
standard deviation. These are given as functions of the generation (x-axis). All

B-1
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forms of fitness, both minimal, maximal and average, follow the scale on the left
y-axis, while the standard deviation is on the right y-axis.

B.1.2 Testing Graphs
There are two types of representation of the test results: bar view and matrix

view. The data are the same, but as the views represent the data in different ways,
hopefully most aspects of the results are clear.

B.1.2.1 Bar View

The bar view testing graphs (Figures B.6, B.9, and B.12) display the test results
as bars.

As seen in Figure 3.3 on page 35, the output of all the algorithms is a list of
numbers — one for each output node (and thus writing system) — which sum to
1. Each of these numbers is the probability that the glyph in question is of the
writing system connected to the node of which that number is the output. For
each run, the output lists for each glyph are summed up, with regard to the actual
writing system. This is then averaged over all the runs. For each of the writing
systems along the x-axis, there are ten rectangles indicating each writing system.
The height of this rectangle indicates how many of the glyphs from the writing
system on the x-axis that were classified as the writing system represented by that
rectangle. The maximum height is 1, representing 100%. A perfect classification
has thus only ten rectangles, where the rectangle representing the writing system
on the x-axis is at 1.0, while the rest are invisible at 0.0.

B.1.2.2 Matrix View

The matrix view testing graphs (Figures B.7, B.10, and B.13) display the test
results as a matrix. Each row consists of the test results from the given writing
system. The colour of each column in that row indicates which writing systems the
glyphs from said writing system were classified as. The brighter the cell, the more
glyphs were classified as that writing system. A perfect classification would thus
be completely black, except with a white diagonal from top left to bottom right.

B.2 Main Results
These are the main results achieved by the system, sorted both by the algorithm

(Section B.2.1) and by the training/testing phase (Section B.2.2). All available data
are used.

B.2.1 Results Sorted by Algorithm
This section contains all the main results, where the graphs are collected based

on the algorithm to which they belong.
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B.2.1.1 Back-Propagation

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r

Iteration

Back-Propagation

Error

(a) Training

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Runic

U
garitic

H
ebrew

A
rabic

Syllabics

H
iragana

T
hai

D
evanagari

H
an

H
ieroglyphs

C
la

ss
ifi

ed
as

Writing system

Back-Propagation

Runic
Ugaritic
Hebrew
Arabic

Syllabics

Hiragana
Thai

Devanagari
Han

Hieroglyphs

(b) Testing: bar view

BP Ru
ni

c
U

ga
rit

ic
H

eb
re

w
A

ra
m

ai
c

Sy
lla

bi
cs

H
ira

ga
na

T
ha

i
D

ev
an

ag
ar

i
H

an
H

ie
ro

gl
yp

hs

Runic
Ugaritic
Hebrew
Arabic

Syllabics
Hiragana

Thai
Devanagari

Han
Hieroglyphs

(c) Testing: matrix view

Figure B.1: Training and testing results for BP.
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B.2.1.2 Weight Evolution
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Figure B.2: Training and testing results for WE.
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B.2.1.3 Back-Propagation/Genetic Algorithm
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Figure B.3: Training and testing results for BP/GA.
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B.2.1.4 Genetic Algorithm/Back-Propagation
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Figure B.4: Training and testing results for GA/BP.
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B.2.2 Results Sorted by Phase
This section contains the same graphs as can be found in Section B.2.1, but

they are sorted on type instead of algorithm. This is to ease the comparison of the
algorithms based on e.g. training and testing results. The training results from
the evolutionary phases of BP/GA and GA/BP are not in this collection, but they
can be found in Figure B.3b on page B-5 and Figure B.4a on page B-6.
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Figure B.5: The training phases with all available data.
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B.2.2.2 Testing
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Figure B.6: The testing phases with all available data.
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Figure B.7: The testing phases with all available data.

B.3 Different Number of Runs

There are significant differences in the number of runs achieved by the different
algorithms, due to the varying runtime. There are 120 runs of BP and GA/BP, 25
of BP/GA, and only 3 of WE. Because of this difference, the graphs were redone
using a maximum of n runs. It was tested with both n = 25 and n = 3. In the
former, all algorithms but WE used only the 25 first runs, while WE used the 3
available. In the latter, all algorithms used nothing but the first 3 runs.

This was done to see if the good results of BP and GA/BP were due to the vast
number of runs available; since the test results are averaged, minor errors might
sort themselves out. By giving all algorithms the same number of runs, this bias
would disappear. If BP and GA/BP still are better than WE and BP/GA, it is
not because of the larger amount of data available.

B.3.1 Maximum 25 Runs

These graphs are created using the first 25 runs of BP, BP/GA and GA/BP,
and the 3 available runs of WE.
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Figure B.8: The training phases with maximum 25 runs.
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Figure B.9: The testing phases with maximum 25 runs.
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Figure B.10: The testing phases with maximum 25 runs.
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B.3.2 Maximum 3 Runs
These results are created using the first 3 runs of all the algorithms.
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Figure B.11: The training phases with maximum 3 runs.
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Figure B.12: The testing phases with maximum 3 runs.
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Figure B.13: The testing phases with maximum 3 runs.

B.4 Genetic Algorithm

In this section, the results from the GA by Rødland (2010) are given. This was
a pure genetic algorithm, with no learning of any kind.

The GA used also ten writing systems, but not the same as used for the other
algorithms; Coptic and Hangul were used instead of Ugaritic and Devanagari. As
in the new algorithms, 30 glyphs were used from each writing system, of which
80% were used for training.

Due to the long runtime of the algorithm, only data from four runs were avail-
able. Figure B.14a on page B-16 contains the fitness for the four runs, smoothed
using a Bezier function. This graph contains both the maximal, minimal and aver-
age fitness, as well as the average standard deviation. Figure B.14b on page B-17
contains the test results; the accumulated probability that each of the glyphs is
a member of each of the writing systems. Here, the data are averaged over the
four runs. Note that the y-axis in Figure B.14b on page B-17 ranges from 0 to 6,
representing each of the six glyphs in the test set.
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Table B.1: Parameters used by the GA.

Parameter Value
Crossover rate 0.3
Mutation rate 0.05
Culling 0.2
Elitists 2
Max number of children 60
Number of generations 200
Error threshold 0.1
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Figure B.14: Training results for the genetic algorithm.
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Figure B.14: (cont.) Testing results for the genetic algorithm.
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