
Master of Science in Computer Science
June 2011
Alf Inge Wang, IDI
Bian Wu, IDI

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Lecture Quiz 3.0
A Gaming Platform for Lectures

Kristian Døvik
John Andre Hestad

Problem Description

Lecture Quiz is a game similar to Screenlife’s Scene It? and Sony’s Buzz! games,
used in lecture halls for rehearsing theory and making learning more entertaining
for students. The system consists of a server with quizzes and statistics, a player
client running on any device (both mobile and stationary) with a graphical web
browser, and a presentation client running the game shown on a video projector.
The software should at least support Microsoft Windows and Mac OS X.

The goal of this master thesis is to create a fully functional lecture quiz game, with
flexible software architecture. The architecture should support easy extension of
game logic, and easy modification of visual and input interfaces. The quality
focus of the system is on usability, modifiability and availability; while making it
entertaining for the end-user.

The thesis should include a user test, where the game is tried out in a real lecture
environment. This is to evaluate the usefulness of the system, its user-friendliness
and if the system can be used to increase student learning.

Assignment given: 26. January 2011
Supervisor: Alf Inge Wang, IDI

Preface

This thesis is the result of the subject TDT4900 - Computer and Information
Science, Master Thesis at the Department of Computer and Information Science,
under Faculty of Information Technology, Mathematics and Electrical Engineering,
at the Norwegian University of Technology and Science.

We would like to thank our supervisor professor Alf Inge Wang for guidance, and
support throughout the implementation and writing of this thesis, giving us the
opportunity to work on the Lecture Quiz-project from fall 2010 to spring 2011,
and the freedom to explore our areas of interest. It has been an exciting year for
us.

We owe our deepest gratitude to Ole Goethe for creating the graphics of our
Presentation and Player clients.

We would also like to thank Kristin Robberstad Næss for thorough proofreading
and commenting on the thesis.

Trondheim, June 27th, 2011.

Kristian Døvik John André Hestad

i

Abstract

This thesis is the continuation of our specialization project, Lecture Quiz 2.5.
This platform is a game-like system where lecturers can hold quizzes in lectures to
increase student participation and interactivity. The current version is a finished
lecture quiz system that can be used in lecture environments. Lecture Quiz 3.0
has moved away from earlier implementations, by centralizing and minimizing the
effort to start and run quizzes. One focus was multi-platform and we developed
the system to support Microsoft Windows, Mac OS X and Linux.

This system can be used in lecture environments to promote more student par-
ticipation, and enable variation in teaching methods. To run quiz games, the lec-
turer can use a PC, connect it to the projector, and run the Presentation Client.
Students access the Player Client via a mobile device such as a smart phone or
notebook, the address to the Player Client web page is presented on the Presenta-
tion Client. Once connected, they choose a username, and answer multiple choice
questions, which are presented on the projector screen.

To keep things interesting for the students, we focused on the visual expression of
the Presentation Client and Player Client. This is to give the players the experience
of playing a game, rather than answering a questionnaire. We developed the system
with usability in mind. This is to ensure that the system feel easy to use, for both
students and lecturers. One of the main goals is to make lecturers see the system
as an alternative to a regular presentation, and not as extra work.

A lecturer might be interested in collecting statistics about the students’ overall
progress in the course. This way they might be able to give a larger focus to the
parts of the syllabus where the students lack performance. Another factor is that
creating quizzes is time consuming, and needs to be done in advance of a lecture.
We developed a separate quiz manager and statistics tool that can be used by
lecturers, named Quiz Server. It is a Web based application, utilizing Java EE to
enable multi-platform support.

We performed an experiment in a lecture to get feedback from students on how
they perceived the Lecture Quiz game. This experiment was performed by running
a quiz in the lecture hall and then the students were asked to fill in an evaluation
form. The students who participated thought that Lecture Quiz had a positive
effect on the lecture.

iii

Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Project Context . 4

1.3 Problem Definition . 4

1.4 Thesis Structure and Readers’ Guide 5

II Research Design 7

2 Research Questions 9

3 Research Method 11

3.1 Experiment Method . 13

3.1.1 System Usability Scale . 14

III Prestudy 17

4 Previous Work 19

4.1 Characteristics of Educational Games 19

4.2 Previous Research . 21

4.3 State of the Art . 23

4.3.1 Related Quiz/Response Systems 23

4.3.2 Feature Summary . 31

v

4.4 Lecture Quiz 1.0 . 31

4.5 Lecture Quiz 2.0 . 34

4.6 Lecture Quiz 2.5 . 35

5 Chosen Technologies 39

5.1 Java Programming Language . 39

5.2 Java Persistance API . 40

5.2.1 MySQL . 41

5.3 Java Server Faces . 41

5.4 Lightweight Java Game Library . 42

5.4.1 Open Graphics Library . 43

5.4.2 Open Audio Library . 44

5.5 TCP/IP Sockets . 44

5.6 GlassFish Server . 45

5.7 Embedded HTTP Server . 46

IV Own Contribution 49

6 Requirements 51

6.1 Functional Requirements . 51

6.2 Quality Requirements . 55

6.2.1 Modifiability . 56

6.2.2 Usability . 59

6.2.3 Availability . 60

7 Architecture 63

7.1 Physical View . 65

7.2 Development View . 67

7.3 Logic View . 70

7.3.1 Presentation Client . 70

7.3.2 Player Client . 77

7.3.3 Quiz Server . 80

7.3.4 Distributed Message Queue 81

7.4 Process View . 84

7.4.1 Distributed Message Queue 84

7.4.2 Player Client . 85

7.4.3 Quiz Server . 86

8 Design Choices 89

8.1 Infrastructure . 89

8.1.1 Enterprise Architecture . 89

8.1.2 Offline Support . 90

8.1.3 Communication Structure 90

8.1.4 Data Storage . 91

8.2 Visuals . 91

8.2.1 Presentation Client . 91

8.2.2 Player Client . 95

8.2.3 Quiz Server . 97

9 Implementation 103

9.1 Distributed Message Queue . 103

9.1.1 Network Packets . 103

9.1.2 Message Queue Abstraction 104

9.1.3 Connection Management . 104

9.1.4 Stable Connection . 105

9.2 Lecture Quiz Messaging . 105

9.3 Lecture Quiz Packaging . 106

9.4 Presentation Client . 107

9.4.1 Infrastructure . 108

9.4.2 Graphics . 109

9.4.3 Sound . 110

9.4.4 Input . 110

9.4.5 Graphical User Interface . 111

9.4.6 Logic . 112

9.5 Player Client . 114

9.5.1 Content Management . 114

9.5.2 Sessions . 115

9.5.3 Threading . 115

9.5.4 Player Information . 115

9.5.5 Templating . 116

9.6 Quiz Server . 116

9.6.1 Server Initialization . 116

9.6.2 Persistence . 117

9.6.3 Packaging . 118

9.6.4 Messaging . 120

9.6.5 Java Server Faces . 121

9.6.6 Caching . 122

9.6.7 Servlets . 122

9.7 Summary . 123

10 Lecture Experiment 125

10.1 Delimitation . 125

10.2 Experiment Context, Environment and Participants 126

10.3 Success Criteria . 126

10.4 Experiment Execution . 127

10.4.1 Network Infrastructure Problems 127

10.4.2 Running Lecture Quiz . 127

10.5 Follow-up Test . 128

V Evaluation 129

11 Experiment Summary 131

11.1 Results . 131

11.1.1 Questionnaire . 131

11.1.2 Observation . 138

11.1.3 Follow-up Test . 138

11.2 Evaluation . 138

11.3 Conclusion . 140

12 Project Evaluation 143

12.1 Project Evaluation . 143

12.1.1 Research . 143

12.1.2 Development . 144

12.1.3 Documentation . 144

12.2 Research Method . 145

12.3 Functional Requirements . 145

12.3.1 Presentation Client . 145

12.3.2 Player Client . 149

12.3.3 Quiz Server . 150

12.4 Quality Requirements . 151

12.4.1 Modifiability . 152

12.4.2 Usability . 155

12.4.3 Availability . 155

VI Conclusion 159

13 Conclusion 161

14 Further Work 165

14.1 Technical . 165

14.1.1 Completing the System . 165

14.1.2 Other Suggestions . 166

14.2 Research . 167

VII Appendices 175

A Acronyms 177

B Questionnaire 181

C Deployment Guide 185

C.1 Requirements . 185

C.2 Database Setup . 186

C.3 Quiz Server Deployment . 186

C.3.1 Step 1 . 186

C.3.2 Step 2 . 187

D Development Guide 189

D.1 Creating a Game Mode . 189

D.2 Creating a new Player Client . 191

E User Guide 195

E.1 Presentation Client . 195

E.1.1 Game Type Selection . 196

E.1.2 Exit the Presentation Client 197

E.1.3 Quiz Select Screen . 197

E.1.4 Game Mode Composition 198

E.1.5 Team Selection . 199

E.1.6 Running a Quiz . 201

E.1.7 Game Summary . 204

E.2 Player Client . 205

E.2.1 Login . 205

E.2.2 Waiting for Game . 206

E.2.3 Team Selection . 207

E.2.4 Waiting for Round . 208

E.2.5 Answering Questions . 209

E.2.6 Question Answered . 210

E.2.7 Not Participating . 211

E.2.8 Game Summary . 211

E.3 Quiz Server . 212

E.3.1 Login . 212

E.3.2 Navigation . 213

E.3.3 Quiz Management . 214

E.3.4 Question Management . 217

E.3.5 Resources . 219

List of Figures

4.1 Genre relevance for theoretical knowledge [50]. 20

4.2 Buzz!: The Schools Quiz cover and controllers [11]. 24

4.3 Typical ClassInHand quiz, shown on a Pocket PC [59]. 24

4.4 Students’ client showing a quiz, feedback and call-in [38]. 25

4.5 Overview of the WIL/MA system [38]. 26

4.6 Screenshot from Classroom Presenter 3 [5]. 26

4.7 TVRemote prototype running on a Siemens S65 mobile phone [5]. . 27

4.8 JustVote sensor and remote controls [46]. 28

4.9 JustVote question presentation from a quiz [46]. 28

4.10 i>clicker software. 30

4.11 i>clicker web>clicker [34]. 30

4.12 LQ 1.0 - Student Client [50]. 32

4.13 LQ 1.0 - Teacher Client question screen [50]. 32

4.14 LQ 1.0 - Teacher Client measure up mode [50]. 33

4.15 LQ 1.0 - Teacher Client elimination mode [50]. 33

4.16 LQ 2.0 - Student Client answer question user interface [12]. 34

4.17 LQ 2.0 - Student Client login user interface [12]. 35

4.18 LQ 2.0 - Teacher Client question screen [12]. 35

4.19 LQ 2.0 - Teacher Client question statistics screen [12]. 36

4.20 LQ 2.5 - Presentation Client answer question screen [25]. 37

4.21 LQ 2.5 - Player Client select game screen [25]. 38

5.1 Java 6 Platform and Class libraries diagram [22]. 40

xiii

5.2 EclipseLink architecture diagram [29]. 41

5.3 JSF life cycle [4]. 43

5.4 OpenGL graphics pipeline [47]. 44

5.5 Playing sound effects with OpenAL [3]. 45

5.6 TCP socket flow diagram. 46

6.1 Quality attribute scenario [8]. 56

7.1 The “4+1” view model [39]. 64

7.2 Physical deployment of the Lecture Quiz solution. 66

7.3 Communication between the Presentation Client and the Quiz Server
for requesting quizzes. 67

7.4 Lecture Quiz Messages package diagram. 68

7.5 Communication between the game mode logic and the web clients
through the Player Client library. 69

7.6 IManager interface class diagram. 70

7.7 Service locator class diagram. 71

7.8 IConfiguration interface class diagram. 71

7.9 IRenderer interface class diagram. 72

7.10 TextureLoader and Texture class diagram. 73

7.11 GUI component class diagram. 73

7.12 GUI render effects class diagram. 74

7.13 NavigableComponent class diagram with ISelectable interface. . . . 75

7.14 Input devices and device states class diagram. 76

7.15 InputDeviceContainer and IInputDeviceContainer interface class di-
agram. 76

7.16 GameModeQuestionChain class diagram. 77

7.17 GameModeBase class diagram. 78

7.18 PlayerClient class diagram with IPlayerClient interface. 79

7.19 SessionManager class diagram. 79

7.20 ResourceHandler class diagram. 80

7.21 FolderResourceHandler class diagram. 80

7.22 Quiz Server’s MVC communication diagram. 81

7.23 Entities class diagram. 82

7.24 Distributed Message Queue Factory class diagram. 82

7.25 Message Queue interface class diagram. 83

7.26 Distributed Message Queue worker thread activity diagram. 84

7.27 Distributed Message Queue socket reconnect activity diagram. . . . 85

7.28 Player Client state request activity diagram. 86

7.29 Player Client thread pool activity diagram. 86

7.30 Quiz Server cache activity diagram. 87

8.1 Presentation Client splash screen. 92

8.2 Presentation Client game type select screen. 93

8.3 Presentation Client team selection screen. 94

8.4 Presentation Client question screen before timer starts. 94

8.5 Presentation Client question screen. 95

8.6 Player Client login screen. 96

8.7 Player Client team select screen. 96

8.8 Player Client waiting for round screen. 97

8.9 Player Client answer question screen. 98

8.10 Quiz Server question list screen. 99

8.11 Quiz Server quiz list screen. 99

8.12 Quiz Server edit quiz screen. 100

8.13 Quiz Server image grid screen. 101

8.14 Quiz Server question hover menu. 101

11.1 Device brand pie chart. 133

11.2 Notebook OS distribution. 133

11.3 Smartphone OS distribution. 134

11.4 Notebook browsers pie chart. 134

11.5 Smartphone browsers pie chart . 135

11.6 Notebook work properly distribution pie chart. 136

11.7 Smartphone work properly distribution pie chart. 136

11.8 Overall work properly distribution pie chart. 137

E.1 Presentation Client splash screen. 196

E.2 Presentation Client game type select screen. 197

E.3 Presentation Client quiz select screen. 198

E.4 Presentation Client game mode setup screen. 199

E.5 Presentation Client team select screen. 200

E.6 Presentation Client join game screen. 201

E.7 Presentation Client game mode information screen. 202

E.8 Presentation Client question screen. 203

E.9 Presentation Client point bet screen. 204

E.10 Presentation Client summery screen. 205

E.11 Player Client login screen. 206

E.12 Player Client waiting for game to start screen. 207

E.13 Player Client team select screen. 208

E.14 Player Client waiting for next round screen. 209

E.15 Player Client answer question screen. 210

E.16 Player Client question answered screen. 210

E.17 Player Client not participating screen. 211

E.18 Player Client summery screen. 212

E.19 Quiz Server login screen. 213

E.20 Quiz Server quiz list screen. 213

E.21 Quiz Server create quiz screen. 214

E.22 Quiz Server edit quiz screen. 215

E.23 Quiz Server statistics screen. 216

E.24 Quiz Server upload package screen. 217

E.25 Quiz Server create question screen. 218

E.26 Quiz Server question list screen. 219

E.27 Quiz Server image list screen. 220

List of Tables

4.1 Feature comparison table. 31

6.1 Functional requirements for the Presentation Client. 53

6.2 Functional requirements for the Player Client. 54

6.3 Functional requirements for the Quiz Server. 55

6.4 M1 - Create a new game mode. 56

6.5 M2 - Multiple game modes. 57

6.6 M3 - Creating a new player client. 57

6.7 M4 - Change client skin. 57

6.8 M5 - Change the database back-end. 58

6.9 M6 - Change GUI composition. 58

6.10 M7 - Add support for a new input device. 58

6.11 M8 - Add support for Java SE compatible OS. 59

6.12 U1 - Support visual gaming interface. 59

6.13 U2 - A common input interface. 60

6.14 A1 - Reconnect to server. 60

6.15 A2 - Simple web client. 61

6.16 A3 - Run on different client types. 61

11.1 Lecture Quiz SUS scores. 132

11.2 Learning scale average distribution. 137

xvii

Part I

Introduction

1

Chapter 1

Introduction

Educational games have always been concerned with having a larger focus on
education than on gaming [44]. This is a balance that is quite hard to strike, and
games often end up being playable but not educational or just plain work/learning.
Lecture Quiz takes a shot at combining the fun of party games like Scene It? [62]
and Buzz! [27] with educational content.

Today, lectures at university level are generally traditional, and critics point out
that lecturing is mainly a one-way method of communication, that does not in-
volve significant audience participation. Usually the lecturer presents information
with the help of slides or presentations, and gets feedback from the students by
allowing them to raise their hands, and ask questions. Critics, such as Edward
Tufte, contend that this style of lecturing bombards the audience with unneces-
sary and possibly distracting or confusing graphics [67]. The aforementioned type
of feedback usually limits the number of involved students, as not everyone likes
to talk in front of a crowd. Using technology to overcome this obstacle is one
of the main purposes of this thesis, as smartphones and notebooks are common
equipment for students these days.

1.1 Motivation

Party games have become the new form of home entertainment for people of all
ages. Quiz games are popular today, where a leading example of a quiz video game
is Buzz!. In 2006, the second game in the Buzz series, Buzz!: The Big Quiz, won
the British Academy of Film and Television Arts (BAFTA) award for Best Casual
and Social game [53].

The goal is to create a system which will be frequently used by lecturers and
students. We want the system to help enhance participation and learning while
keeping it entertaining for students. In addition to this we want to give lecturers a

3

4 CHAPTER 1. INTRODUCTION

tool to present information in an alternative way, and the ability to track students
overall progression by storing quantitative data. The main focus and goal are to
be able to bring gaming into lectures, so that students’ interest in learning might
increase.

Our motivation is to create a solid playable solution that will be used and not
archived. We want to get experience with working on larger projects and exploring
technologies. Team work was an important factor in our specialization project, and
has motivated us to continue with the master thesis.

1.2 Project Context

Norwegian University of Science and Technology (NTNU), with Alf Inge Wang in
the lead, has carried out a project on involvement in lectures for several years. The
project is based on quizzing students in the syllabus of a subject, to give lecturers
an impression of the knowledge level of their students. The project started out
as a prototype, then it was created as a framework, and now as Lecture Quiz
3.0, a game with flexible architecture. The goal of this master thesis is to create
a finished system, a solution that involves students, focusing on lecture content
while making it diverse enough to keep them active.

Lecture Quiz is created with education and teaching in mind. It can therefore be
used in real lecture halls, where both lecturers and students can benefit. With
some creativity, we assume it can be used for many other purposes, such as in
specialist courses, general training, ceremonies, hospitals and more. In addition to
this, it can also be used in informal gatherings, such as parties, weddings, small
gatherings and more. Because of this, there are stakeholders connected to this
project beyond the authors and Alf Inge Wang. These include both the students
and teachers of NTNU and hopefully other teaching institutions in both Norway,
and around the world. However, if NTNU with Alf Inge Wang and the authors
of Lecture Quiz decides to go commercial; NTNU Technology Transfer AS (TTO)
will also be represented as a stakeholder.

1.3 Problem Definition

In the previous semester, during our specialization project, we were handed the
Lecture Quiz 2.0 framework. Our supervisor Alf Inge Wang, wanted us to look at
ways to improve it. He was concerned about the playability of the framework, and
wanted us to focus on creating a visual experience. We reused the Lecture Quiz 2.0
service orientated communication structure in Lecture Quiz 2.5, but created the
rest of the components from scratch. In the specialization project, we concluded
that using a web service for communication is not suitable for this type of solution.

1.4. THESIS STRUCTURE AND READERS’ GUIDE 5

Finding a better solution, that handles two-way communication is crucial for the
success of the project. The new solution should be easy to extend, to include
support for future components.

To create a user-friendly system, one focus should be to minimize the effort to
get it up and running. This includes limiting the number of servers needed to be
configured for running games.

It is important that games can be played on a large variation of client types, and
that the presentation can be run on different platforms. To solve this, we have to
consider the type of client and what language to use when creating the system.

As stated in the problem description, we want the game to be entertaining for
students. We have to look at what makes a game entertaining and how we can
apply it to Lecture Quiz. This should be verified by performing a user test. The
test should also measure the usability of our system, as this is one of our main
quality goals.

Lecturers are interested in collecting statistics from quiz games. We have to find
a stable, yet simple way to store and display game statistics.

Creating quizzes is time consuming, and should be possible to do in advance of
a lecture. It is important that this process feels uncomplicated for the lecturer
and will require focus on usability. We have to find a way to allow lecturers to
create, store and distribute quizzes. This should be done within a comfortable
environment, to make the process as easy as possible for lecturers.

These problem definitions require us to reevaluate the technologies that are cur-
rently used.

1.4 Thesis Structure and Readers’ Guide

The document is organized into seven parts, with fourteen chapters, and five ap-
pendices. Depending on your level of knowledge and your goal for reading the
report, you can approach it from different angles.

A reader seeking knowledge about how to use the Lecture Quiz system should
focus on the user guide, found in Appendix E. System administrators should also
look into the deployment guide, found in Appendix C.

Lecture Quiz developers unfamiliar with the system should focus on Part IV and
the development guide, found in Appendix D. The first and last chapter of Part IV
can be omitted if you are just extending Lecture Quiz with a client or game mode.

Researchers can be interested in Part II and Part III, which contain the research
design and prestudy of this project. They should read Chapter 11, which presents
our lecture experiment, and Part V, which evaluate both the experiment and the

6 CHAPTER 1. INTRODUCTION

overall project. Finally, we suggest reading our concluding remarks about the
development of Lecture Quiz, as seen in Part VI.

The thesis is divided in the following way:

• Part I serves as an introduction to this thesis. It describes our motivation,
the project context, the problem definition, and the structure of this thesis.

• Part II contains the definition of the research questions and the research
method we have used. It also denotes the experiment method we have used.

• Part III is the result of the prestudy performed during the project. The
first chapter outlines technological choices regarding Lecture Quiz 3.0. The
second chapter gives an introduction to related work in the field, such as
characteristics of educational games, research of games in lecture environ-
ments, state of the art, and the previous Lecture Quiz frameworks.

• Part IV focuses on our contribution, and describes the development phases
of Lecture Quiz. In the first chapter, we define a set of requirements to
define the functionality and the overall quality of the system. In the second
chapter, we present the software architecture, and how it achieves the quality
goals. The third chapter gives an overview of the most important design
choices regarding Lecture Quiz. The fourth chapter provides insight into
the implementation of Lecture Quiz. The last chapter contains information
regarding the lecture experiment and how it was executed.

• Part V contains discussion of the results we obtained in Part IV and provides
an evaluation of these results.

• Part VI includes information that brings the thesis to a close with concluding
remarks, recommendations, and directions for further work.

• Part VII contains our appendices, and includes the acronym list, the exper-
iment questionnaire, and the developer and users’ guides.

Part II

Research Design

7

Chapter 2

Research Questions

The purpose of this chapter is to introduce the reader to our research questions and
give a short description of them. Based on an analysis of our problem definition
in Section 1.3, we pursue the following research questions:

RQ1 Which systems related to Lecture Quiz exist today, and what differentiate
them from ours?
We will, in our prestudy, look at the previous work done in the field of
educational games in lecture environments. These systems should enable
increased student participation in lectures, and should preferably include a
quiz element.
We will discuss what differentiate these systems from ours, and how we can
use this information to improve the Lecture Quiz framework.

RQ2 How can we make Lecture Quiz easier for the end-user to install and use?
Our solution in the specialization project had many components, which
needed to be installed and configured separately. We want the system to
be available for a larger range of users, without having to install and config-
ure several servers. This will also apply to the end-users, as we will try to
make the client work without any custom software installed.

RQ3 How can using a quiz game in teaching environments affect the students?
We will perform a system test during a lecture held at NTNU, with at least 50
persons, to receive feedback. The data will be obtained through observation,
video analysis and an evaluation form. The main focus will be:

a) Their ability to learn.
b) Their interest in learning.
c) Whether they have fun playing.

9

10 CHAPTER 2. RESEARCH QUESTIONS

RQ4 How can we make Lecture Quiz 3.0 look, act and feel like a game?
One of our main goals is to make it feel like one is playing a game and
not just answering a questionnaire. There are certain elements that need
consideration when creating games. Which elements can we use to make
Lecture Quiz a fun and interesting experience for the end-user.

Chapter 3

Research Method

There is a fair amount of research being conducted in software engineering, i.e.
people are building technologies, methods, tools, etc. However, unlike in other
disciplines, there has been very little research in the development of models for the
various components in the discipline. Victor R. Basili has done much research in
this field and has produced a set of experimental methodologies, which categorize
research methods that can be used in software engineering [7]. He lists several
paradigms and how to choose the most suitable research method for a software
engineering project. We look at these paradigms from a software engineering
perspective, as shown below:

1. The scientific method: In this approach, the software process is inves-
tigated by using analysis, observation and evaluation. The procedure is as
follows; observe the world, propose a model or a theory of behavior, mea-
sure and analyze, validate hypotheses of the model or theory, and if possible
repeat [7].
This inductive paradigm might best be used when trying to understand the
software process, system, people or environment. It attempts to extract a
model from the world which tries to explain the underlying phenomena, and
evaluate whether the model is truly representative of the phenomenon being
observed. An example of this can be to understand the way software are
developed. If it is possible to abstract this process model, or if there can
be built a tool to automate the process. Basili lists two variations of this
inductive approach:

1.1. The engineering method: In this approach, the domain of the prob-
lem is examined to observe existing solutions, for then to propose better
solutions. The procedure is as follows; observe existing solutions, pro-
pose better solutions, build or develop, measure and analyze, and repeat
the process until no more improvements seem possible [7].
This version of the paradigm can be described as an evolutionary im-

11

12 CHAPTER 3. RESEARCH METHOD

provement oriented approach. It assumes that one already has models
to compare with, in order to improve the thing being studied. An exam-
ple is the study of improvements to methods being used in the software
development process. It can also be a demonstration to show that some
tool performs better than its predecessors, relative to certain character-
istics. A crucial part of this method is the need for careful analysis and
measurement.

1.2. The empirical method: This approach is based on a proposed model
of the problem domain, statistical/qualitative methods are developed.
The procedure is as follows; propose a model, develop statistical/qual-
itative methods, apply to case studies, measure and analyze, validate
the model and repeat the procedure [7].
This version of the paradigm can be described as a revolutionary im-
provement oriented approach. It begins by proposing a new model, not
necessarily based upon an existing model. Further it attempts to study
the effects of the process or system suggested by the new model. An
example could be the proposal of a new method or tool used to perform
software development in a new way. As with the engineering method,
measurement and analysis are crucial to the success of this method.
Just proposing a method or a tool is not enough, as there must be some
way of validating that this is an advance over current models or tools.
Experimentation must be guided and there must be a rational for col-
lecting data. Experiments must be designed to get information useful
for the building of a suitable model of the systems under study. Is-
sues related to these methods include; the types of experimental design
appropriate for different environments, whether the experiment is ex-
ploratory or confirmatory, the validation of the data, the cost of the
experiment, the problems of reproducibility, etc.

Basili also describes a more deductive approach, the mathematical method:

2. The mathematical method: In this approach a theory is proposed (a
set of axioms) and further developed. The procedure is as follows; propose a
formal theory or set of axioms, develop a theory, derive results and if possible
compare with empirical observations [7].
This paradigm is a deductive analytical model, which does not require an ex-
perimental design in the statistical sense. It provides an analytic framework
for developing models and understanding their boundaries based upon ma-
nipulation of the model itself. An example could be treatment of programs
as mathematical objects and their analysis of the mathematical object or its
relationship to the program. This would satisfy the paradigm.

In our specialization project, we chose the engineering method as our research
approach. The reasoning behind this was that we wanted to develop a flexible

3.1. EXPERIMENT METHOD 13

framework as the basis for our master thesis. We used most of our time developing
it, and did not have time to focus on testing a system that did not have the quality
it has now.

In this master thesis, we continue the development of the Lecture Quiz 2.5 frame-
work. We will examine and observe the current solution, purpose better solutions,
and then analyze and measure these new results. Based on the propositions, we
continue to follow the engineering method during this thesis.

This time, we choose to put aside time to test the system in an experiment. In
this experiment, we will try to get information on the usability of the system, and
if the system can be used to increase student learning. Based on this, in addition
to the engineering method, we will also follow the empirical method.

The chosen methods, are both categorized as scientific methods, which will be the
used paradigm when we develop Lecture Quiz 3.0. The empirical method can be
seen more as an approach than an experimental method. Because of this, we have
to choose an experimental method that suits our needs in developing Lecture Quiz
3.0. In the following section, we will describe our experimental method and how
we will acquire the necessary empirical data.

3.1 Experiment Method

Collecting data about the application of Lecture Quiz is considered necessary to
evaluate its usability, both technical and educational. We wanted to gather infor-
mation about:

• Technical challenges, like:

– How the Player Client works on different client device types.
– How the underlying network infrastructure handles Lecture Quiz’ net-

work traffic.

• How Lecture Quiz can affect student learning.

• How user-friendly students find Lecture Quiz.

Testing Lecture Quiz in a real lecture could give such information. The testing
itself would give information to us about potential technical drawbacks with the
system. A survey could also give information on such drawbacks, in addition to
the students’ evaluation of e.g. user-friendliness, and experienced learning effect.

The questionnaire used in the survey should therefore include questions regarding
what type of both wired and wireless network types works with our system, the
player’s device, operating system and web browser. This gives us some numbers on

14 CHAPTER 3. RESEARCH METHOD

how many device types that work with our solution. All this can help us improve
the overall compatibility of the system.

It is also important for us that students find Lecture Quiz educational. Without
the educational aspect of Lecture Quiz, it would just be a regular quiz game.
Learning can be the product of not only the quiz content, but also increased
student attention level. Videotaping the lecture could give some data on the likely
level of attention.

The typical survey contains closed-ended questions [6]. We do not have enough
time to do thorough, in depth interviews with the participants, and do a following
analysis, but could use some statements formulated by the students themselves.
Thus we should have some open-ended questions with a couple of lines for the
students to write what they want, and not only“what we ask them to”. Closed-
ended questions are statements that the students rank by their subjective value.

One of our main concerns is how user-friendly both students and lecturers find the
system. It is important for the continued use of Lecture Quiz, that the students
do not find it too cumbersome. This will decrease the participation and would
work against the purpose of Lecture Quiz.

The usability of a system, as defined by the standard International Organization
for Standardization (ISO) 9241 Part 11, can be measured only by taking into
account the context of use of the system [54]. This can further be explained as;
who is using the system, what are they using it for, and the environment in which
they are using it [54]. This standard measure usability through three key aspects,
namely:

• effectiveness (can users successfully achieve their objectives?)

• efficiency (how much effort and resource are spent in achieving those objec-
tives?)

• satisfaction (was the experience satisfactory?)

The System Usability Scale (SUS) endorses this model by providing a high-level
subjective view of usability. To measure the usability of our system, we decided
to use the System Usability Scale.

We arrange for testing Lecture Quiz during the summary lecture in the Software
Architecture course, which our supervisor Alf Inge Wang is holding. Number of
participants is of relevance, and at least 50 students should attend this lecture.

3.1.1 System Usability Scale

SUS is a scale used to measure the usability of software based on a questionnaire
of 10 questions [36]. The scale goes from 0 to 100, where 100 is the best score. All

3.1. EXPERIMENT METHOD 15

ten questions are publicly available, and SUS has proven to give similar results as
other more complex and time consuming usability tests.

Each question in a SUS test may be rated by the user from 1 to 5, where 1 is
“strongly disagree”, and 5 is “strongly agree”. To calculate the final SUS score,
every even question gets a score of 5 minus the average rating for that question.
While the odd questions score is calculated by subtracting 1 from the average
rating of that question. The overall SUS score will then be the sum of all the
scores of the individual questions multiplied by 2.5. The full equation can be seen
in Equation 3.1.

PSUS = 2.5×
N/2∑
i=1

(S2i−1 −1)+(5−S2i) (3.1)

In this equation, N means the number of questions, which in our case is 10. S
means the average score a question has gotten. The result and calculation of our
SUS score is presented in Section 11.1.

In research, an experiment, as a scientific term, can only be called an experiment
under certain conditions [66]. All in all, our experiment cannot be called a real
experiment as such, yet we choose to call it “experiment”. What we will actually
be doing, is mainly testing our system, and asking participants how they experi-
ence playing Lecture Quiz, and how user-friendly they find it. The experiment is
described in Chapter 10.

16 CHAPTER 3. RESEARCH METHOD

Part III

Prestudy

17

Chapter 4

Previous Work

In this chapter, we look at some of the previous work done in the field of educational
gaming, and gaming in lecture environments. In the state of the art section, we
introduce the reader to related quiz/response systems, and give a feature summary
of these. The last three sections give a short summary of the previous Lecture Quiz
versions 1.0 and 2.0, and our specialization project, Lecture Quiz 2.5.

4.1 Characteristics of Educational Games

In Lecture Quiz 1.0, eight important characteristics of a good educational game
are presented [50]. The following list of characteristics is meant as a reference for
people designing educational games. The architects of Lecture Quiz 1.0 argue that
excluding one of the characteristics may not mean that the game will be unpopular
or unsuccessful, but including them in the game concept may make it better.

• Variable instructional control - How the level of difficulty is adjustable,
or adjusts to the skills of the player.

• Presence of instructional support - The possibility to give the player
hints when he or she is incapable of solving a task.

• Necessary external support - The need for use of external support.

• Inviting screen design - The feeling of playing a game, and not operating
a program.

• Practice strategy - The possibility to practice the game without affecting
the user’s score or status.

• Sound instructional principles - How well the user is taught how to use
and play the game.

19

20 CHAPTER 4. PREVIOUS WORK

• Concept credibility - Abstracting the theory or skills to maintain integrity
of the instruction.

• Inspiring game concept - Making the game inspiring and fun.

The architects of Lecture Quiz 1.0 also present a taxonomy of educational games [50].
Using three criteria, listed below, they group educational games in a set of game
genres.

• Player interaction - Is it possible for several players to interact with the
system in some way?

• Fantasy and skills interaction - Is the fantasy of the game extrinsic1 or
intrinsic2?

• Game concept type - In what genre of computer games does the game
concept belong?

Based on this taxonomy they present a model, shown in Figure 4.1, that shows how
each game genre provides theoretical knowledge. We may classify the Lecture Quiz
game as a group/multiplayer quiz, and according to this model it is an effective
and simple genre. We will try to achieve as many of the presented characteristics as
possible during the design and implementation of our system, and thus hopefully
make a good system for educational purposes.

Figure 4.1: Genre relevance for theoretical knowledge [50].

1Extrinsic fantasies can be seen as independent of the application of skills in the game [50].
2Intrinsic fantasies are inherent and essential to the game concept [50].

4.2. PREVIOUS RESEARCH 21

4.2 Previous Research

In this section, we present and discuss research from the field of serious gaming,
focusing on video game-based learning. Lecture Quiz can be seen as an educa-
tional game and a learning tool which tries to engage students and increase their
participation and interaction. The field is still in its embryonic stages, but it is
upcoming, and we will present the research we find most relevant to the Lecture
Quiz game. Per spring 2011, we have found little or no research directly related
to Lecture Quiz.

Educational video games are a promising medium. Merrilea Mayo has argued
that the video game format has many advantages over the old-fashioned school
lecture [48]. She links five characteristics with better learning outcomes:

• Games can break down complex tasks, guiding players through a series of
small steps.

• Learning can control their navigation of the games.

• Games can give learners immediate and continuous feedback.

• Games can be adapted to the individual pace of the learner.

• Game-based tasks may require students to formulate hypotheses and exper-
iment.

These characteristics are based on single player games, but some of them are
applicable in multiplayer games.

Blakely et al. investigates the use of games to support classroom learning in the
health sciences, through a systematic review of educational gaming. [10]. The aim
of the review is to investigate the use of games to support classroom learning in
healthcare sciences. They address three questions:

• How effective is educational gaming as a teaching tool for health science
students in comparison to the traditional didactic style?

• Does educational gaming enhance long-term retention of knowledge or skills
by the student?

• Is the method of educational gaming a more enjoyable teaching strategy from
the student perspective?

These are relevant questions for our project as well. The first and third questions
are related to our research questions RQ3 and RQ4, respectively, as seen in Chap-
ter 2. Several of our success criteria in Section 10.3 and questionnaire statements
in Appendix B are also related to these questions.

22 CHAPTER 4. PREVIOUS WORK

Blakely et al. conducted a search based on several key words such as “educational
games” and “teaching strategies”. After using inclusion and exclusion, sixteen
papers reporting empirical studies or reviews that involved comparison of gaming
with didactic methods were included. [10]. They found that the limited research
available at that time indicated that, while both traditional didactic methods
and gaming have been successful in increasing student knowledge, neither of the
methods are clearly more helpful to students. The use of games generally enhances
student enjoyment and may improve long-term retention of information. Blakely
et al. conclude that, while the use of games can be viewed as a viable teaching
strategy, care should be exercised in the use of specific games that have not been
assessed objectively. They suggest that further research on the use of gaming is
needed to enable educators to make gaming techniques appropriate for the benefit
of students, and ultimately patients.

Akl et al. call an educational game an instructional method requiring the learner
to participate in a competitive activity with preset rules [2]. In their review,
they investigate the effect of educational games on medical students’ satisfaction,
knowledge, skills, attitude, and behavior. They find that the research available at
that time suggested but did not confirm a positive effect of the games on medical
students’ knowledge. They conclude that the available evidence to date neither
confirms nor refute the utility of educational games as an effective teaching strategy
for medical students. Akl et al. suggest that there is a need for additional and
better-designed studies to assess the effectiveness of the relevant games.

Schuh et al. tries to find evidence for generalizability of a game and team oriented
educational intervention in clinical neurophysiology in a neurology residency pro-
gram [61]. They study prospective educational intervention in a single neurology
residency program and compare with a historical control. The effectiveness of
a team-oriented educational intervention in clinical neurophysiology, with gaming
and oral quizzing, gives evidence for generalizability in improving subset Residency
In-service Training Exam (RITE) performance compared with faculty prepared di-
dactics. Their intervention consisted of weekly presentations, followed by a game
show-type oral quiz, which was team-based. Examination score is 63.6 ś 4.12 for
the intervention group and 49.4 ś 2.35 for the control (P = 0.002).

Thus, it seems like the field lacks a satisfactory amount of well-designed studies to
conclude the effectiveness of gaming to learn in lectures, while some well-designed
studies show generalizable evidence. On the other hand, gaming does not seem to
reduce learning in lectures.

Knowing that many students expect immediate results, prefer active learning as
opposed to passive learning [14], and in addition enjoy working both indepen-
dently or collaboratively in groups [52], we hope that some aspects of multiplayer
lecture gaming could at least increase enjoyment of, and thus initial engagement
in learning.

Our hope is that software for lecture gaming, such as Lecture Quiz, can increase

4.3. STATE OF THE ART 23

participation, cooperation, and eventually learning in students. Future research
can reveal evidence for generalizability of the effectiveness of Lecture Quiz.

4.3 State of the Art

In our specialization project, we did a thorough investigation of state of the art
regarding related solutions. In this section, we use this information and extend
it with the highlights from the last six months. We present existing solutions of
educational software that increase classroom interaction, with special emphasis on
quiz services. These solutions have been of great motivation to us when developing
both Lecture Quiz 2.5, and the final Lecture Quiz game.

4.3.1 Related Quiz/Response Systems

In this section, we present the reader to quiz/response systems related to the
Lecture Quiz game. These systems should be usable in lectures and have multi-
student support. Preferably, the systems should use standard student hardware,
like smartphones and notebooks, as well as the use of already existing network
infrastructure. In addition to this, we will look at systems that use 2D/3D graphics
and sound.

Buzz!: The Schools Quiz is an educational game based on the Buzz series for
Playstation 2, released in early 2008. It is a commitment by the Key Stage
23 teachers, founded by the United Kingdom Government, and developed by
Relentless Software [11]. The game is featuring over 5000 questions from the
National Curriculum, and supports up to 8 players. Its gameplay follows the
standard format of the Buzz series, but it is made easier with respect to the
younger players. Both the video game cover, and controllers can be seen in
Figure 4.2.

ClassInHand is software developed by the Research and Development team in
Information Systems at Wake Forest University [59]. It turns a Pocket PC
equipped with a wireless card into a Web server, a presentation controller,
and a quizzing and feedback device for a classroom instructor. The last
version, shown in Figure 4.3 was made in 2003, and is only compatible with
Pocket PC 2003 and Windows Mobile 5.
They claim the following software features:

• An instant-on, easy-to-manage, portable Web server, that is completely
under your control.

3Key Stage 2 is the legal term for the four years of schooling in the United Kingdom when
the pupils are between 7 and 11 of age.

24 CHAPTER 4. PREVIOUS WORK

Figure 4.2: Buzz!: The Schools Quiz cover and controllers [11].

Figure 4.3: Typical ClassInHand quiz, shown on a Pocket PC [59].

4.3. STATE OF THE ART 25

• Presentation capabilities, that enable you to use the Pocket PC as a re-
mote control to navigate to a PowerPoint presentation on your desktop
or laptop computer, start and manage the presentation, and see slide
text and speaker notes on your Pocket PC.

• A quizzing feature, that enables you to present a question with up to
four answers, and see the distribution of student responses immediately
on your Pocket PC. You can also choose to display the results to the
class.

• A text feedback mechanism, that enables your students or audience to
submit questions or comments that appear immediately on your Pocket
PC.

• A feedback meter, that enables students to submit numeric responses
(range: -10 to 10) according to your directions. These submissions
appear as a continuous curve on your Pocket PC, and are useful for
quick assessments.

Wireless Interactive Learning - Mannheim (WIL-MA) is software devel-
oped at the University of Mannheim, Germany. It enables bi-directional
synchronous communication between the students’ and the lecturer’s mo-
bile devices, via an access point [24]. The client, shown in Figure 4.4, is
implemented with Java Micro Edition (Java ME) version 1.1.3 (last update
was in 2004), and because of this, most mobile devices are supported. The
deployment view of their client-server architecture can be seen in Figure 4.5.

Figure 4.4: Students’ client showing a quiz, feedback and call-in [38].

The current available services are:

• Call-In: students can provide questions to the teacher or moderator at
any time.

• Quiz: short quizzes can be displayed on a presentation unit, and each
student can answer anonymously from their device.

• Feedback can be sent to the lecturer during a lecture.
• short Messages can be sent between individual users.

26 CHAPTER 4. PREVIOUS WORK

Figure 4.5: Overview of the WIL/MA system [38].

• aChat-room can be used by many users, e.g., to solve bigger problems.

Classroom Presenter is a Tablet PC based interaction system that supports
the sharing of digital ink on slides between instructors and students [23]. It
enables the lecturer and students to collaborate by writing and editing on
the same slide set, as shown in Figure 4.6. The slides can be created via an
internal program called DeckBuilder, or they can be loaded from a Microsoft
PowerPoint file directly. The source code is written in .Net, and is made
publicly available. This is the only project which has no quiz service, but it
has been continuously updated until 2008 and is well documented. The last
version, 3.1, was released in the fall of 2008.

Figure 4.6: Screenshot from Classroom Presenter 3 [5].

TVRemote Framework is a student interaction tool which supports a set of

4.3. STATE OF THE ART 27

user devices, shown in Figure 4.7, for feedback and interaction [5]. It was
developed at the Darmstadt University of Technology, Germany, and was
meant to make student-teacher interaction in lectures more easy, and as fast
as possible. The supported services is feedback, polling of student opinion,
and question submission. It is also possible for the teacher to broadcast notes,
links, and multiple choice questions. The network infrastructure supported
by the server is wireless local area network (WLAN), Ethernet, general packet
radio service (GPRS)/high-speed circuit-switched data (HSCSD), and Blue-
tooth. The project seems to have been externally discontinued since 2005,
and their official web site does no longer exist.

Figure 4.7: TVRemote prototype running on a Siemens S65 mobile phone [5].

JustVote (former EzClickPro) is a simple, cost effective, interactive, handheld
voting system [45]. It is a commercial application developed for teaching
in primary school, secondary school and higher education. Its developer
company is Avrio Ideas Ltd. It utilizes the 2.4 GHz, industrial, scientific and
medical (ISM) radio band, and supports 50 meter range for data transmission
to the custom handheld controls, as shown in Figure 4.8. The teacher uses
a personal computer (PC) to interact with the presentation client, as shown
in Figure 4.9, which is connected to a projector or similar devices. They
have an extensive feature list [46]. One of their drawbacks is multi-platform
support, as they only support the Microsoft Windows platform. An excerpt
of the features can be seen below:

• Supports up to 1000 connected handheld controls
• Add images, sounds and video
• Extensive range of statistical data

28 CHAPTER 4. PREVIOUS WORK

Figure 4.8: JustVote sensor and remote controls [46].

Figure 4.9: JustVote question presentation from a quiz [46].

4.3. STATE OF THE ART 29

• Multiple question layout templates

• Monitors the progression of the whole class, groups and individuals

• Reviews past sessions

• Easy loading of pre-prepared material

• Simple drag and drop between questions

• Ability to print and export data

• Over 1,500 questions provided, and over 15,000 more can be purchased

They support the following game modes [46]:

• Standard (questions and response)

• Fastest Response (fastest fingers first)

• Buzz-in (verbal response)

• Elimination (knock out)

• Verbal Prompt (leading to handset response)

• Pick Out (group or individual to verbally answer)

• Ask Question (pupil to intervene)

• PowerPoint mode

i>clicker is an audience response system which allows students to get instanta-
neous feedback, and answer questions posted by their instructors [35]. Stu-
dents can use a portable clicker, as shown in Figure 4.10, to vote by “clicking”
on the appropriate button for his/her choice. An instructor uses a receiver,
that collects votes sent by students’ clickers, which works over WLAN. The
receiver is connected via Universal Serial Bus (USB). Instructors can present
questions, enable polling and access statistics both ad hoc and later. The
instructor software has support for both Microsoft Windows and Mac OS X.
The instructor’s question screen can be seen in Figure 4.10.

The authors behind i>clicker, have also created web>clicker, a client for
smartphones and other web browser enabled devices. Web>clicker is a
browser-based voting tool that combine i>clicker’s simplicity, with the flex-
ibility of laptops and handheld devices [34]. It works on any standard web
browser, including Internet Explorer, Firefox, Chrome, and Safari, including
Safari for iPhone and iPod Touch. Web>clicker can be used alongside the
already mentioned i>clicker. An answer screen on a smartphone, is shown
in Figure 4.11.

30 CHAPTER 4. PREVIOUS WORK

Figure 4.10: i>clicker software.

Figure 4.11: i>clicker web>clicker [34].

4.4. LECTURE QUIZ 1.0 31

4.3.2 Feature Summary

In this section, we summarize the features of the related quiz/response systems
presented in Section 4.3.1. Table 4.1 summarizes these feature. The three most
relevant features are: quiz service, animated graphics, and no custom hardware
needs, as Lecture Quiz is built around these. We also list three features, which
are relevant for interactive lectures on a general level, but not very relevant to our
framework.

Feature Buzz ClassInHand WIL/MA Cl.Pres TVRemote JustVote i>clicker
Quiz service x x x x x x
Animated graphics x
No custom hardware x x
Student comments x x x
Info broadcast x x x x x
Public feedback x x (x) x x

Table 4.1: Feature comparison table.

Based on the findings in Table 4.1, we can summarize the following. Neither
TVRemote nor web>clicker, have custom hardware needs, and only Buzz has
animated graphics. JustVote and the i>clicker software support plain graphical
customization, but the user interface looks more like a plain presentation than a 2D
or 3D game. The most common feature is the quiz service, but it is mainly used by
the lecturer to monitor the knowledge of the students, and not for further learning
or competition. Buzz focuses on gameplay and the graphical, and we can learn
much about gaming experience from them. JustVote and i>clicker, have many
features, and JustVote also introduced the term game modes, which is related to
our game modes. We can learn from the web>clicker software and the TVRemote
framework, as they require no custom hardware needed. This feature should also
be a requirement for the Lecture Quiz framework.

4.4 Lecture Quiz 1.0

The first version of the Lecture Quiz (LQ) framework was created during the
master project of Ole Kristian Mørch-Storstein and Terje Øfsdahl in 2007 [50].
They focused on the impact of using games in lectures, with the main purpose
to develop a prototype quiz game, where the students can answer questions using
their laptops or mobile phones.

The developed prototype consists of a main server, a teacher client, and student
clients. The architects built a customized communication framework on top of
Transmission Control Protocol (TCP), and performance was not an issue for them.

Their student client was developed using Java 2 Platform, Micro Edition (J2ME)
(now Java Micro Edition (JME)), and was simple and user friendly. To begin

32 CHAPTER 4. PREVIOUS WORK

a session, each student has to download the software to their mobile phone us-
ing WLAN, Bluetooth or a mobile network service, such as (GPRS/Enhanced
Data rates for GSM Evolution (EDGE)/3rd generation mobile telecommunica-
tions (3G)). When the download completes, the software has to be installed before
the students are ready to participate. Their conclusion is that this is a cumber-
some process [50]. They suggested to improve it by using the World Wide Web
to communicate with the clients in their further work section. Two screenshots of
the Lecture Quiz 1.0 student client are shown in Figure 4.12.

Figure 4.12: LQ 1.0 - Student Client [50].

Their teacher client was implemented in Java, and uses the Java OpenGL (JOGL)
library to display graphics on a projector or similar device. Typical gameplay
screenshots are shown in Figure 4.13, Figure 4.14 and Figure 4.15.

Figure 4.13: LQ 1.0 - Teacher Client question screen [50].

Their prototype consists of two game modes:

1. plain game mode where all students answer all the questions in a quiz.
Each question has a unique time limit, and the students have to answer

4.4. LECTURE QUIZ 1.0 33

Figure 4.14: LQ 1.0 - Teacher Client measure up mode [50].

Figure 4.15: LQ 1.0 - Teacher Client elimination mode [50].

within that time to increase their score. After each question, a screen with
statistics is displayed, providing the answer distribution. At the end of a
quiz, their teacher client displays a list of the students having the most
correct answers.

2. The last man standing game mode is similar to the plain game mode,
but if a student answers incorrectly he or she is removed from the game. The
game continues until only one student remains, and is the winner.

One of the main drawbacks of their prototype is that it is more or less hardcoded
and lacks a good architecture. This makes it hard to extend, modify and maintain.
It also lacks good documentation on how to add new quizzes and questions, and
database entries have to be manually edited. The time spent on downloading and
installing the software on the student devices also makes it less interesting for
regular use in lectures [50].

34 CHAPTER 4. PREVIOUS WORK

4.5 Lecture Quiz 2.0

The second version of the Lecture Quiz (LQ) framework was created in the master
thesis of Erling A. Børresen and Knut A. Tidemann in 2010 [12]. While the first
version is more a proof of concept than a framework, the second version is more
of a framework than an actual game.

In our specialization project, we tried to deploy this system on a GlassFish appli-
cation server, but realized that the framework was incompatible with GlassFish.
The framework is intended to run on any Java Enterprise Edition (Java EE) ap-
plication server, but it was only tested on the Apache Tomcat application server.

The framework consists, like LQ 1.0, of a main server, a teacher client and stu-
dent clients. In contrast to LQ 1.0, the communication framework is based on
a web service (Web Services Description Language (WSDL) and SOAP), making
performance an issue [12].

Implementing a web service as the only communication framework, was the main
goal of the architects behind LQ 2.0 [12]. Using a web service for all the communi-
cation between the different components in the system leads to excessive one-way
communication and polling to keep all components updated. This can lead to
performance issues, but with a good implementation, it can work to some degree
for a slow paced game like Lecture Quiz. The framework implements game modes
on the server, which in part complicates the customization of appearance onto the
teacher client. Database transactions are handled by the server, but the database
has insufficient tables, and lacks optimal usage of foreign tables [25]. The server
controls overall access, but lacks decent handling of user authentication.

The student client was developed using Google Web Toolkit (GWT). Its graphical
user interface (GUI), as shown in Figure 4.16, is simple and feels not as user friendly
as LQ 1.0 [25]. It uses GWT to display fancy error messages and feels responsive
on an isolated level. Since it relies on a web service it can feel unresponsive
related to the teacher client. The authentication via the Student Client, shown in
Figure 4.17, requires a quiz code, which seems unnecessarily complicated.

Figure 4.16: LQ 2.0 - Student Client answer question user interface [12].

The teacher client is simple in design, not very user friendly and lacks the impres-
sion of a game [25]. It was implemented in Java, and uses the JOGL library to

4.6. LECTURE QUIZ 2.5 35

Figure 4.17: LQ 2.0 - Student Client login user interface [12].

display graphics on a projector or similar device. The graphics are basic, as shown
in Figure 4.18 and Figure 4.19. The creation of quizzes has been embedded into
the teacher client using Java Swing.

Figure 4.18: LQ 2.0 - Teacher Client question screen [12].

The authors behind Lecture Quiz 2.0 performed an experiment in a lecture to
get feedback from students on how they perceived the system. The experiment
was performed by running a quiz and the students participating answered a ques-
tionnaire afterwards. The students perceived the system as a good concept and
enjoyed an alternative, more fun way of learning [12]. Based on the SUS score,
they found it easier to use than LQ 1.0, and more than half would like to use this
system as a recurring element in lectures.

4.6 Lecture Quiz 2.5

The Lecture Quiz (LQ) 2.5 framework was created in our specialization project,
in the fall of 2010 [25]. The version 2.5 was chosen over 3.0 as the framework was
supposed to extend the Lecture Quiz 2.0 framework. During the architectural and

36 CHAPTER 4. PREVIOUS WORK

Figure 4.19: LQ 2.0 - Teacher Client question statistics screen [12].

implementation phase of Lecture Quiz 2.5, the original framework was gradually
excluded. The reason for this was that the Lecture Quiz 2.0 framework seemed
harder to extend than to create from scratch [25].

The prestudy phase of the specialization project was thorough, and several tech-
nologies, and related solutions were investigated. Based on these findings and
the overall evaluation of LQ 2.0, we concluded that there was room for improve-
ments [25]. New technologies and design choices were made, which led to the
creation of functional and non-functional requirements.

These requirements led to the creation of a new and improved architecture which
promoted usability and modifiability. The teacher client concept of LQ 2.0 was
separated into two new projects; Quiz Editor and Presentation Client [25]. This
choice was based on that the lecturer usually manage quizzes and view statistics
in the comfort of his own office. Because of this, the Presentation Client in LQ
2.5 was created from scratch without any elements from LQ 2.0. It was imple-
mented in Java, and used the JOGL library to display graphics on a projector or
similar device, as shown in Figure 4.20. The Quiz Editor now served as a separate
component which had the support of quiz and statistics management.

The game server of LQ 2.0 was reimplemented, with the exception of the Web
service and Java DataBase Connectivity (JDBC) logic, which was re-used and
extended [25]. It functions as a shared point of access, like in LQ 2.0. This server
offers services through the use of WSDL and SOAP. The game mode logic was
moved to the Presentation Client which was the only application depending on it.
This, and similar improvements, was done to make the clients less dependent on
the application server. The game server’s logic was reduced to make it serve as

4.6. LECTURE QUIZ 2.5 37

Figure 4.20: LQ 2.5 - Presentation Client answer question screen [25].

an intermediate for clients and the presentation, by running simple game sessions.
Using a Web service for this communication seemed like the right choice when the
development of LQ 2.5 was started [25]. During development and evaluation of LQ
2.5, it was concluded that it was not suitable to use request based communication
through an intermediate (game server), for this type of solution.

The earlier named student client was renamed to Player Client [25]. The use
of GWT for this client was disbanded and a new Player Client Web application
project was created from scratch. It was created using plain Java with JavaServer
Pages (JSP), Hypertext Markup Language (HTML) and JavaScript. The require-
ments of game codes to access a game was dropped and replaced with a game
list, as shown in Figure 4.21. Instead each game session had a unique Uniform
Resource Locator (URL), which routed the player clients’ requests directly to the
lecturer’s Presentation Client. This reduces a login step for the Player Client and
feels more user-friendly.

38 CHAPTER 4. PREVIOUS WORK

Figure 4.21: LQ 2.5 - Player Client select game screen [25].

Chapter 5

Chosen Technologies

In this chapter, we present the technologies we have chosen for developing Lecture
Quiz 3.0. In our specialization project, we researched different technologies suitable
for the Lecture Quiz game. Based on this research, the evaluation, and further
work of that report, we have selected technologies that best fit the system. Several
technologies used in the specialization project still applies in our thesis. We re-use
this information in this chapter where applicable. We have created new sections
for technologies that have been added in the master thesis, e.g., Sockets, Java
Persistance API (JPA) and Java Server Faces (JSF).

5.1 Java Programming Language

In our problem definition, we defined the need for multi-platform support, as
described in Section 1.3. In our specialization project, Java and C# .Net was
pointed out as the two best programming language alternatives for Lecture Quiz
2.5 [25]. In both Lecture Quiz 1.0 and 2.0, Java was selected as the one and only
programming language.

In the specialization project, we made a choice, together with our supervisor, that
Java would be both suitable and probably the best choice for keeping the system
platform-independent. The context of the project has not changed that much since
the specialization project, and we have decided to stick to Java.

Java is a programming language originally developed by James Gosling at Sun
Microsystems, released in 1995. Java application developers “write once, run any-
where” because of its Java Virtual Machine (JVM), which is built specifically for
the computer architecture [18]. Sun relicensed most of its Java technologies under
the GNU General Public License (GPL) in May 2007 [16]. The Java platform con-
sists of a bundle of components, as shown in Figure 5.1, that allows developing and
running applications written in the Java programming language. In the transition

39

40 CHAPTER 5. CHOSEN TECHNOLOGIES

2009-2010, Oracle Corporation acquired Sun Microsystems. Oracle has described
itself as “the steward of Java technology with a relentless commitment to fostering
a community of participation and transparency” [18].

Figure 5.1: Java 6 Platform and Class libraries diagram [22].

5.2 Java Persistance API

In this section, we present technology related to the storage of information. The
Quiz Server needs persistent storage to store information such as quizzes and statis-
tics. In the specialization project, we utilized JDBC directly as the bridge between
Java and a MySQL relational database. JDBC is an application programming in-
terface (API) for the Java programming language that defines how a client may
access a database [20]. The JDBC 3.0 API consists of two packages, “java.sql”
and “javax.sql”, which both are included in Java Standard Edition (Java SE) 6.

During the research phase of this project, we decided to use a more abstract way
of managing our data storage. With this in mind, we chose to use the Java Persis-
tance API (JPA) 2.0 framework. JPA is a Java programming language framework
managing relational data in applications using Java SE or Java EE [17]. Several
existing vendors support JPA 2.0. We chose to use EclipseLink (former Ora-
cle TopLink). One of the reasons for this is that Sun Microsystems selected the
EclipseLink project to be the reference implementation for JPA 2.0 [28]. The
EclipseLink JPA provides developers with a standard Object-Relational persis-
tence solution that has additional support for advanced features. EclipseLink
JPA provides advanced support for leading relational databases and Java contain-
ers [29]. The EclipseLink architecture diagram can be seen in Figure 5.2.

EclipseLink supports any relational database that is compliant with Structured
Query Language (SQL) and has a compliant JDBC driver [30]. EclipseLink has ex-
tended support for several database platforms. Among them are Oracle, MySQL,
PostgreSQL, Derby, Microsoft SQL Server and many more. We continue to develop
Lecture Quiz using MySQL, as we did in our specialization project.

5.3. Java Server Faces 41

Figure 5.2: EclipseLink architecture diagram [29].

5.2.1 MySQL

MySQL is an open source relational database management system (RDBMS) ini-
tially developed by MySQL1 AB2. It is the world’s most popular open source
database software, and has high speed, great reliability and is easy to use [65,
Oracle]. It is dual-licensed with an open GNU GPL or a commercial proprietary
end-user licensing agreement (EULA). The commercial license is required if you
only distribute your application in binary-form to end-users. MySQL has a client
API for many languages, including C, C++, Java and C# .Net. It runs as a
server, and both the server and client applications run on many systems, including
Windows, Linux and Mac OS X. We only use MySQL for development purposes,
as mentioned in the previous section.

5.3 Java Server Faces

In the specialization project, the Quiz Server web interface was based on JavaServer
Pages Standard Tag Library (JSTL). JSTL is a component of the Java EE Web
application development platform. It is an extension of the JSP specification
and adds a tag library for common functional tasks, such as Extensible Markup

1currently owned and developed by Oracle
2Aktiebolag (literally “share company” or “stock company”) is the Swedish term for “limited

company” or “corporation”

42 CHAPTER 5. CHOSEN TECHNOLOGIES

Language (XML) data processing, conditional execution, loops and international-
ization [15]. The latest version, JSTL 2.0, was released in May, 2006.

In version 3.0 of the Lecture Quiz game we wanted to use a more updated Web
application framework, which also has more direct support for the model-view-
controller (MVC) architectural pattern. We looked into frameworks like Struts,
Spring MVC, Play, GWT and more. We already tried the GWT framework in
our specialization project and concluded that it contains several flaws, and has too
much overhead [25]. The Play framework looks appealing, but it has not existed
for long and few have adopted it. Struts, was one of the first MVC frameworks for
the Web. It is becoming cumbersome compared to newer frameworks. Version 2.0
is not expected to be released, and our conclusion is that Struts becomes obsolete
in the near future. Spring MVC is an upcoming framework, but few professionals
use it, and it is not accepted as an official standard. This leaves us with JSF, which
is an official Java specialization standard. Many professionals use JSF, it is well
documented, and has continued releases. Based on this preliminary evaluation, we
chose the JSF framework.

JSF is a Java based Web application framework intended to simplify develop-
ment integration of web-based user interfaces [19]. It can be seen as a request-
driven MVCWeb framework, based on component-driven user interface (UI) design
model, using XML files called view templates or Facelets views. JSF is the combi-
nation of APIs for representing UI components and managing their state, handling
events and input validation, defining page navigation, and supporting internation-
alization and accessibility. Core features include Managed Beans; a template-based
component system; built-in asynchronous JavaScript and XML (AJAX), book-
marking, and page-load actions support; Expression Language (EL) integration;
a default set of HTML and web-application specific UI components; A server-
side event model; State management; and two XML-based tag libraries (core and
HTML). The life cycle of JSF is divided into six phases, as shown in Figure 5.3.

5.4 Lightweight Java Game Library

In the specialization project we used Java OpenGL (JOGL), which is a wrapper
library for Open Graphics Library (OpenGL). It is designed specially to be used
with the Java programming language. JOGL is not a multimedia library, which
means it does not come with support for audio. Lightweight Java Game Library
(LWJGL), on the other hand supports both OpenGL and Open Audio Library
(OpenAL). This allows us to play sounds via OpenAL and render graphics via
OpenGL. OpenGL is not platform independent, although it is supported on most
platforms. Running OpenGL on a different operating systems (OSs), requires
separate system libraries for each platform. This was handled poorly in JOGL,
compared to LWJGL. Based on the support for audio and OS compatibility, we
decided to change to LWJGL.

5.4. Lightweight Java Game Library 43

Figure 5.3: JSF life cycle [4].

LWJGL is a solution aimed directly at professional and amateur Java programmers
alike to enable commercial quality games to be written in Java [56]. It provides
developers access to high performance cross-platform libraries such as OpenGL
and OpenAL allowing for state of the art 3D games and 3D sound. Additionally,
LWJGL provides access to controllers such as gamepads, steering wheel and joy-
sticks; all in a simple and straight forward API [56]. We utilize the OpenGL and
OpenAL libraries via LWJGL, which are explained in the following two sections.

5.4.1 Open Graphics Library

OpenGL is a cross-platform API for developing applications that utilize 2D and 3D
computer graphics, developed by the OpenGL Working Group under the Khronos
Group consortium [47]. It is an open standard, and has support for many plat-
forms, such as Mac OS X, Microsoft Windows, Linux, Android and iOS. The
graphics pipeline process of OpenGL can be viewed in Figure 5.4. OpenGL was
originally developed for the C programming language, but has many standard
language bindings.

44 CHAPTER 5. CHOSEN TECHNOLOGIES

Figure 5.4: OpenGL graphics pipeline [47].

5.4.2 Open Audio Library

OpenAL is a cross-platform 3D audio API appropriate for use with gaming appli-
cations and many other types of audio applications [63]. It was originally created
by Loki Software, but was given to the community as free software after its demise.
LWJGL is endorsing the 1.0 version, which was released under the GNU Lesser
General Public License (GNU LGPL) license in June 2000. The current version of
OpenAL is 2.1, released February 2010, but is unfortunately proprietary. OpenAL
has been proprietary since version 1.1, when Creative Technology started to host
and develop it. Because of this, LWJGL has to endorse version 1.0, even though the
specification has become legacy. We use OpenAL to play sound effects according
to the pattern shown at the top of Figure 5.5.

5.5 TCP/IP Sockets

In our further work section in our specialization project, we suggested to change the
communication logic from using web services to sockets [25]. Web services, does
not match the communication flow of our framework. We chose to use sockets
because they offer us a way of creating an easy and fast two-way communication.

Calvert and Donahoo describe TCP/Internet Protocol (IP) sockets as “an abstrac-
tion through which an application may send and receive data” [13]. Since sockets
can be considered an abstraction of the protocols they utilize, their transfer speed
and latency reflect their implementation and the network topology. Internet sock-
ets are mechanisms for delivering incoming data packets to the appropriate appli-
cation process or thread, based on a combination of local and remote IP-addresses
and port numbers. One of the benefits using sockets is the interoperability be-

5.6. GLASSFISH SERVER 45

Figure 5.5: Playing sound effects with OpenAL [3].

tween platforms, which is crucial for mobile units with unique platforms. This
is possible because TCP/IP operates independently of frameworks and platforms.
E.g. applications using Java, .Net or Objective-C, can easily communicate with
each other via sockets.

Most socket implementations are based on Berkeley-sockets, first introduced in
1983. We do not use this API directly, but will create our own implementation.
The TCP socket flow of our implementation is based on the diagram shown in
Figure 5.6.

5.6 GlassFish Server

To deploy a Java EE Web application, an application server is required. Apache is
the most popular server (58%), as of November 2010, and Microsoft with Internet
Information Services (IIS) (23%) comes second [51]. There exist several Java EE
application servers, where the most popular ones are GlassFish, Apache Tomcat
(web container), JBoss and WebSphere CE. Our goal is to implement our solution
as independent as possible, with respect to application servers. We have the most
experience with GlassFish and Apache Tomcat, and we will use these as target
servers.

In the specialization project we used GlassFish 3.0 which is bundled with Net-
Beans. This worked well and we have chosen to continue using GlassFish.

GlassFish is an open source application server for the Java EE platform. It is
developed by Sun Microsystems, and is dual-licensed under the Common Devel-

46 CHAPTER 5. CHOSEN TECHNOLOGIES

Figure 5.6: TCP socket flow diagram.

opment and Distribution License (CDDL), and the GNU GPL. Being the Java
EE reference implementation, this was the first application server to completely
implement Java EE 6 Java Specification Request (JSR) 3163 [21]. GlassFish is
written in Java, and is cross-platform.

5.7 Embedded HTTP Server

In Lecture Quiz 2.5, the Player Client was deployed and run as a Web application.
The solution used JSP web pages with AJAX for communication. This was a
separate component in the framework and did not directly communicate with the
Presentation Client.

We want a shorter, more direct way of communicating with the Presentation Client.

3http://jcp.org/en/jsr/detail?id=316

5.7. EMBEDDED HTTP SERVER 47

This is possible with an embedded Hypertext Transport Protocol (HTTP) server
running on the top of the Presentation Client.

The Java httpserver package provides a simple high-level HTTP server API, which
can be used to build embedded HTTP servers [22]. We chose to use the Java
HttpServer class, as it is native to our chosen programming language.

48 CHAPTER 5. CHOSEN TECHNOLOGIES

Part IV

Own Contribution

49

Chapter 6

Requirements

In this chapter, we outline our functional and non-functional/quality requirements.
These requirements are the product of our overall evaluation of Lecture Quiz. We
have used these requirements in our development of Lecture Quiz. We have used
these requirements in our development of Lecture Quiz, and they have helped us
keep the focus on the main functionality and the overall quality of the system.

6.1 Functional Requirements

In this section, we describe our functional requirements, as shown in Table 6.1,
Table 6.2 and Table 6.3. These are based on how we intend to implement the
functionality of Lecture Quiz. This functionality includes: playing games as a
student; running games with game logic based on a quiz as a lecturer; and creating
quizzes and view statistics.

The functional requirements are presented as user stories. Leffingwell et al., de-
scribes a user story as brief statements of intent that describe something the sys-
tem needs to do for some user [42]. As commonly taught, the user story often
takes a standard user-voice form. All our requirements have been created with the
template: “As a <role>, I want <goal/desire>, so that <benefit>”.

The functional requirements are divided into three parts and are represented as
tables: Presentation Client, Player Client and Quiz Server. These are the three
main applications of our system and are related to users having goals/desires
and benefits. Each functional requirement row is divided into three columns: an
identifier (FR1, FR2, ...), the user story, and the priority. The priority is divided
into three discrete values: Low, Medium and High. The values are used to prioritize
the order in which we develop features.

51

52 CHAPTER 6. REQUIREMENTS

Presentation Client
ID Description Priority
FR1 As a lecturer,

I want to run quiz games,
so that I can test the knowledge level of my students.

High

FR2 As a lecturer,
I want to start team games,
so that I can divide the students into groups.

Medium

FR3 As a lecturer,
I want to start free for all games,
so that I can put each student up against each other.

Medium

FR4 As a lecturer,
I want to display my computer address,
so that I can tell students where they can access the
game.

Low

FR5 As a lecturer,
I want to choose a quiz,
so that I can decide what type of questions the stu-
dents have to answer.

High

FR6 As a lecturer,
I want to view a quiz,
so that I can get a description of what the quiz
contains.

Low

FR7 As a lecturer,
I want to select one or more game modes,
so that I can create variation in the game play.

Medium

FR8 As a lecturer,
I want to see how many students are on each team,
so that I can decide if the teams are even.

Low

FR9 As a lecturer,
I want to see how many students are connected,
so that I can check if everybody is playing.

Medium

FR10 As a lecturer,
I want to move a student from one team to another,
so that I can decide who plays on which team.

Low

FR11 As a lecturer,
I want to automatically even teams,
so that I don’t have to move a student from one team
to another.

Low

FR12 As a lecturer,
I want to let the students select teams,
so that I can tell students to pick their own team.

Medium

6.1. FUNCTIONAL REQUIREMENTS 53

FR13 As a lecturer,
I want to display information about the game mode,
so that I don’t have to tell the students how the game
works.

Medium

FR14 As a lecturer,
I want the game to display questions and alternatives,
so that I don’t have to tell students the question and
what they can answer.

High

FR15 As a lecturer,
I want to decide when the next question appears,
so that I can speak about the current question.

High

FR16 As a lecturer,
I want to export statistics after a quiz,
so that I can review them later.

High

FR17 As a lecturer,
I want the statistics to automatically be uploaded to
server when connected,
so that I don’t have to export.

Medium

FR18 As a lecturer,
I want to see student rankings,
so that I can reward the best team or student.

Medium

FR19 As a developer,
I want to add a new game mode,
so that I can change the game logic.

High

Table 6.1: Functional requirements for the Presentation Client.

Player Client
ID Description Priority
FR20 As a student,

I want to log in,
so that I can participate in a game.

High

FR21 As a student,
I want to specify a username when logging in,
so that I can identify my player.

Medium

FR22 As a student,
I want to pick an alternative,
so that I can answer questions.

High

FR23 As a student,
I want to see my score,
so that I can track my progress.

Low

54 CHAPTER 6. REQUIREMENTS

FR24 As a student,
I want to select a team,
so that I can join the team I want to play together
with.

Medium

FR25 As a student,
I want to pick a vote selection,
so that I can affect my team’s choices.

Medium

FR26 As a student,
I want to see my rank at the end of the game,
so that I can determine how good I did in the quiz.

Low

FR27 As a student,
I want to see what I answered on a question,
so that I can compare it to the results on the screen.

Medium

FR28 As a student,
I want to see my nickname associated with a team,
so that I know which team I am playing on.

Medium

Table 6.2: Functional requirements for the Player Client.

Quiz Server
ID Description Priority
FR29 As a lecturer,

I want to create quizzes,
so that I can use them in lectures.

High

FR30 As a lecturer,
I want to edit a quiz,
so that I can correct errors.

Medium

FR31 As a lecturer,
I want to delete quizzes,
so that I can remove unwanted quizzes.

Low

FR32 As a lecturer,
I want to log in,
so that I can have a private account.

High

FR33 As a lecturer,
I want to see statistics for a quiz,
so that I can evaluate student progression.

High

FR34 As a lecturer,
I want to assign an icon to a quiz,
so that I can create questions involving images.

Medium

6.2. QUALITY REQUIREMENTS 55

FR35 As a lecturer,
I want to download a quiz,
so that I can run the quiz without having a connection
to the server.

Medium

FR36 As a lecturer,
I want to upload a quiz,
so that I can get other people’s quizzes.

Low

FR37 As a lecturer,
I want to be able to upload statistics,
so that I don’t have to be connected to the server
when generating statistics.

High

Table 6.3: Functional requirements for the Quiz Server.

6.2 Quality Requirements

This section contains the quality requirements defined for Lecture Quiz. Quality
requirements are the non-functional requirements of a software system. We de-
scribe the quality requirements using quality attribute scenarios, as described by
Len Bass et al. Figure 6.1 shows a visual representation of a quality attribute
scenario. A quality attribute scenario is a quality-attribute-specific requirement
which consists of six parts [8]:

• Source of stimulus. This is some entity (a human, a computer system, or
any other actuator) that generated the stimulus.

• Stimulus. The stimulus is a condition that needs to be interpreted when it
arrives at a system.

• Environment. The stimulus occurs within certain conditions. The system
may be in an overload condition or may be running when the stimulus occurs,
or some other condition may be true.

• Artifact. Some artifact is stimulated. This may be the whole system or some
pieces of it.

• Response. The response is the activity undertaken after the arrival of the
stimulus.

• Response measure. When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

56 CHAPTER 6. REQUIREMENTS

Figure 6.1: Quality attribute scenario [8].

Quality attribute scenarios are divided into sub-genres. In our system, we have
focused on modifiability, usability and availability.

6.2.1 Modifiability

This section describes our scenarios regarding modifiability. Modifiability is the
ability of the system to undergo changes with a degree of ease [8]. These changes
could impact components, services, features, and interfaces when adding or chang-
ing the functionality, fixing errors, and meeting new business requirements.

We want the game to be extendable and modifiable, since it is a new system in
this context. The aim is to be able to use the system in a lecture environment,
and we have to be prepared for changes and requests during development. Since
lecturers are used to prepare their own program for lectures, we do not want the
application to feel limited when it comes to customization. We want the lecturer
to be able to set up how the game plays, through their quiz.

M1 - Create a new game mode
Source of stimulus Game mode developer
Stimulus The game mode developer wants to create a new game

mode
Environment Design Time
Artifact Presentation Client
Response A new game mode is created
Response measure The game mode should be finished within two hours

Table 6.4: M1 - Create a new game mode.

6.2. QUALITY REQUIREMENTS 57

M2 - Multiple game modes
Source of stimulus Lecturer
Stimulus The lecturer wants multiple game modes run in one

game
Environment Runtime
Artifact Presentation Client
Response Game runs with multiple game modes
Response measure The game is run with more than one game mode

Table 6.5: M2 - Multiple game modes.

M3 - Creating a new player client
Source of stimulus Client Developer
Stimulus The client developer wants to create a new client for

the Lecture Quiz game
Environment Design time
Artifact Framework
Response A new Player Client
Response measure The client should be finished withing two hours

Table 6.6: M3 - Creating a new player client.

M4 - Change client skin
Source of stimulus Graphic artist
Stimulus Modify the graphic resources of the player and pre-

sentation client
Environment Design time
Artifact Presentation and Player clients
Response Modified image resources
Response measure Should be able to modify resources within one hour

Table 6.7: M4 - Change client skin.

58 CHAPTER 6. REQUIREMENTS

M5 - Change the database back-end
Source of stimulus Developer
Stimulus The developer wants change to another database

back-end
Environment Design time
Artifact Quiz Server
Response Server running on another database back-end
Response measure Should be able to change to another database back-

end within one hour

Table 6.8: M5 - Change the database back-end.

M6 - Change GUI composition
Source of stimulus Developer
Stimulus The developer wants to change the arrangement of

GUI components
Environment Design time
Artifact Presentation Client
Response User interface is changed
Response measure The developer should be able to change the composi-

tion of GUI elements within an hour

Table 6.9: M6 - Change GUI composition.

M7 - Add support for a new input device
Source of stimulus Developer
Stimulus The developer wants to add support for a new input

device
Environment Design time
Artifact Presentation Client
Response User interface is navigable with the new device
Response measure The developer should be able to add support for the

new input device within an hour

Table 6.10: M7 - Add support for a new input device.

6.2. QUALITY REQUIREMENTS 59

M8 - Add support for Java SE compatible OS
Source of stimulus Developer
Stimulus The developer wants to add support for running the

Presentation Client on another Java SE compatible
OS

Environment Design time
Artifact Presentation Client
Response The Presentation Client running on the target OS
Response measure The developer should be able to add support for the

os within three hours

Table 6.11: M8 - Add support for Java SE compatible OS.

6.2.2 Usability

This section describes our scenarios for the usability attribute. Usability defines
how well the application meets the requirements of the user and consumer by
being intuitive; easy to localize and globalize; and resulting in a good overall
user experience [8]. Our usability scenarios are based on people’s experience with
computer interfaces. For example, the ability to recognize commonly used visual
elements and know how to interact with them.

U1 - Support visual gaming interface
Source of stimulus Developer
Stimulus The developer wants to create a recognizable gaming

interface
Environment Design time
Artifact Presentation Client
Response A recognizable gaming interface
Response measure At least 90 percent of the user base recognize the in-

terface as a common gaming interface

Table 6.12: U1 - Support visual gaming interface.

60 CHAPTER 6. REQUIREMENTS

U2 - A common input interface
Source of stimulus Student
Stimulus The student wants to use the Player Client
Environment Runtime
Artifact The client interface
Response Easy to use input interface
Response measure At least 90 percent of the students using the system

should understand the interface

Table 6.13: U2 - A common input interface.

6.2.3 Availability

This section describes our scenarios for the availability attribute. Availability
defines the proportion of time in which the system is functional and working [8].
It can be measured as a percentage of the total system downtime over a predefined
period. Availability will be affected by system errors, infrastructure problems,
malicious attacks, and system load.

When it comes to the quality of a game, availability is an important factor, spe-
cially for network games. Lecture Quiz uses communication between each player
and the Presentation Client, and between the Presentation Client and the Quiz
Server. Game statistics and Quizzes are transferred between the Presentation
Client to the Quiz Server. It is important that a player is able to communicate
to the Presentation Client during a game, or else they will lose interest. We want
the game to be available on a wide range of clients, so that students can use their
own devices to play the game during a lecture.

A1 - Reconnect to server
Source of stimulus Presentation Client
Stimulus The Presentation Client should reconnect to the Quiz

Server if connection is lost
Environment Runtime
Artifact Network connection
Response Reestablish connection to server
Response measure The Presentation Client should reconnect to the Quiz

Server within 30 seconds if connection is possible

Table 6.14: A1 - Reconnect to server.

6.2. QUALITY REQUIREMENTS 61

A2 - Simple web client
Source of stimulus Player Client
Stimulus The Player Client should not crash during gameplay
Environment Runtime
Artifact Player Client
Response Client not crashing during gameplay
Response measure The Player Client should not crash during a game

session with at least 20 clients

Table 6.15: A2 - Simple web client.

A3 - Run on different client types
Source of stimulus Player Client
Stimulus The Player Client should be available on different

client types
Environment Runtime
Artifact Player Client
Response The client is able to play the game
Response measure The Player Client should support at least 90 percent

of todays web browsers

Table 6.16: A3 - Run on different client types.

62 CHAPTER 6. REQUIREMENTS

Chapter 7

Architecture

In this chapter, we describe the main architectural structures of Lecture Quiz. The
previous chapter outlines several requirements, both functional and non-functional.
This chapter contains architectural choices used to fulfill the quality requirements
of Lecture Quiz.

Our architecture follows the “4+1” view model designed by Philippe Kruchten.
“4+1” presents a model for describing the architecture of software-intensive sys-
tems, based on the use of multiple, concurrent views [39]. This use of views allows
separation of the architecture to fit the concerns of the various stakeholders. Ex-
amples of stakeholders are end-users, developers, system engineers, project man-
agers, etc. It also allows for separate handling of functional and non-functional
requirements. The views are designed using an architecture-centered, scenario-
driven, iterative development process. The 4 main views are the physical view,
development view, logic view, and process view. The fifth view can be seen as
a composition of the first four views, represented as use cases or scenarios. The
“4+1” view model with stakeholders can be seen in Figure 7.1. In the following
sections, we describe the architecture based on each of the four main views.

The notation we have chosen to describe our architectural views is Unified Model-
ing Language (UML). UML is a standardized general-purpose modeling language
in the field of object-oriented software engineering [40]. The standard is managed,
and was created by, the Object Management Group. It includes a set of graphic
notation techniques to create visual models of object-oriented software-intensive
systems [40].

63

64 CHAPTER 7. ARCHITECTURE

Figure 7.1: The “4+1” view model [39].

7.1. PHYSICAL VIEW 65

7.1 Physical View

The physical view describes the mapping of the software onto the hardware and
reflects its distributed aspects [39]. It is meant to give an overview of the physical
component structure, and how components communicate. This view is intended
for system engineers and administrators.

The solution consists of two main software applications, the Presentation Client
and the Quiz Server. The Presentation Client contains the game logic and visuals
for displaying quiz games on a projector. In addition to this, the Presentation
Client uses the Player Client library to run a local web server for communication
with the clients. The Presentation Client is meant to be operated by the lecturer
while the students participate in games through the Player Client. For communi-
cation with the Quiz Server, the Presentation Client uses the Distributed Message
Queue library. This library uses sockets to connect to the server and abstracts the
communication logic into messages. Quizzes are created and stored on the Quiz
Server by the lecturer. Access to the Quiz Server is done through a web page
created with the JSF framework.

To give an overview of where each physical component is intended to be used, we
have separated the components into physical locations. These different locations
are the lecture hall, the office and the server room, as shown in Figure 7.2.

Quiz games are run on the Presentation Client in the lecture hall, during lectures.
The information is presented on a big-screen through a projector. Students can
participate by looking at questions at the big-screen and answering on their tablet,
mobile or laptop. Each question has multiple choices, and the alternatives are
shown on the big-screen, while the students answer on their individual devices.
Student’s participating only requires a connection to the same network as the
presentation computer, and a graphical web browser.

The Quiz Server is deployed on a GlassFish server and is created with Java EE.
It requires a database for storing information about users, statistics, quizzes and
questions. Both the Quiz Server and the database are meant to be run inside
a server room. This is because multiple Presentation Clients can use one Quiz
Server, and because installing a new Quiz Server for each game would be too
cumbersome.

We expect lecturers to prepare a quiz for a lecture in the same manner as they
would prepare a presentation. This is usually done in the lecturer’s office or
workspace, on a PC.

66 CHAPTER 7. ARCHITECTURE

Figure 7.2: Physical deployment of the Lecture Quiz solution.

7.2. DEVELOPMENT VIEW 67

7.2 Development View

The development view describes the static organization of the software in its devel-
opment environment [39]. It gives architectural insight to the software components
of our system and how they communicate. Lecture Quiz uses libraries to handle
communication, e.g. between the Presentation Client and the Quiz Server or be-
tween the Presentation Client and the players.

The communication between the Presentation Client and the Quiz Server is done
through the message queue, as shown in Figure 7.3. Both the Quiz Server and
the Presentation Client creates an instance of the Distributed Message Queue
at initialization. Messages are added to the queue through the IMessageQueue
interface. The receiver will get messages via the IMessageReceiver interface.

Figure 7.3: Communication between the Presentation Client and the Quiz Server
for requesting quizzes.

Messages sent on the Distributed Message Queue are serialized into binary data.
Serialization is done with Java object streams on objects implementing the Seri-
alizable interface. When reconstructing a message, the application needs to have

68 CHAPTER 7. ARCHITECTURE

the same class definition for the message as the sender [22]. This is where the Lec-
ture Quiz Messages library comes into play. This library contains shared message
classes that the Presentation Client and Quiz Server use for communication, as
shown in Figure 7.4.

Figure 7.4: Lecture Quiz Messages package diagram.

The game logic on the Presentation Client communicates with the connected play-
ers through the IPlayerClient interface, as shown in Figure 7.5. The Presentation
Client uses the Player Client library to be able to send data over HTTP.

7.2. DEVELOPMENT VIEW 69

Figure 7.5: Communication between the game mode logic and the web clients
through the Player Client library.

70 CHAPTER 7. ARCHITECTURE

7.3 Logic View

The logical view can be seen as the object model of the design (when an object-
oriented design method is used) [39]. The logical architecture primarily supports
the functional requirements; what the system should provide in terms of services
to its users.

7.3.1 Presentation Client

The Presentation Client is separated into six parts. Each part has its own man-
ager class to handle their respective components. The managers implement the
IManager interface, as shown in Figure 7.6. This interface allows for uniform ini-
tialization and disposing of the different managers. The managers follow the object
lifetime manager pattern [43]. The separation of logic helps keep the code clean
and structured.

Figure 7.6: IManager interface class diagram.

To allow interaction between the different parts of the application we use a service
locator, as shown in Figure 7.7. The service locator is a thread safe singleton that
can be referenced from anywhere in the application. The singleton pattern is a
design pattern used to implement the mathematical concept of a singleton [68,
p. 37]. It restricts the instantiation of a class to one object, and is useful when
exactly one object is needed to coordinate actions across the system [31]. The
initialization managers are responsible for registering the services that their part
of the application provides. These services will then be accessible via other parts
of the application through the service locator. An example of a service registered
with the service locator is the Distributed Message Queue. The message queue

7.3. LOGIC VIEW 71

is managed by the InfrastructureManager and registered with the service locator
through the IMessageQueue interface.

Figure 7.7: Service locator class diagram.

Some parts of the application use settings to control their behavior. For example,
the GraphicsDisplay needs to know the resolution it should run at. These settings
are read from the Configuration class through the IConfiguration interface, as
shown in Figure 7.8. The Configuration contains a set of properties that is the
combination of the information found in “configuration.xml” and the command-
line arguments. The “configuration.xml” file is XML formatted, using the Java
properties Document Type Definition (DTD) scheme [22]. The last version of this
XML schema was released January 19, 2005 [1]. At application startup an instance
of the Configuration class is created and registered as a service on the service
locator. This allows the rest of the application to read settings without defining
where the settings are located. In addition to this, it allows easy implementation
of other ways to read configurations, without having to reimplement large parts
of the application. An example of a future use would be to add a configuration
window to the application.

Figure 7.8: IConfiguration interface class diagram.

Rendering graphics are done with OpenGL in the Presentation Client. Since Java
does not have a direct implementation of OpenGL, the application relies on a
third-party library. This library handles the communication with OpenGL and the
system files, and is dependent on the host OS. There are several different libraries
available for accessing OpenGL from Java. The library we are currently using is

72 CHAPTER 7. ARCHITECTURE

named LWJGL. The rendering of the GUI is done by the GraphicsRenderer. The
GraphicsRenderer implements the IRenderer interface, as shown in Figure 7.9.
This allows the application to render graphics without the knowledge of how to
interact with OpenGL.

Figure 7.9: IRenderer interface class diagram.

The application uses graphics loaded from the file system to render the GUI.
To be able to render images, OpenGL needs to create a reference to the image
data. This allows it to use hardware acceleration if available, by sending the im-
age data to the graphics processing unit (GPU). Images loaded by OpenGL, are
referred to as textures. To allow for easy change of the graphics library, the ap-
plication uses an abstraction layer when loading graphics. The GraphicsManager
creates a TextureLoader instance at initialization. The TextureLoader is used to
load graphics into OpenGL, and is registered with the service locator through the
ITextureLoader interface. Loading a texture with the TextureLoader will return an
ITexture, as shown in Figure 7.10. This texture object is used when calling draw
methods on the IRenderer interface to represent the graphics you want drawn to
screen.

Usability is a quality goal for the Presentation Client. This affects the GUI,
which is made up of components and scenes. A component can be an image or a
textbox, while a scene is the composition of components that represent a screen in
the game. The component structure implements the composite pattern, as shown
in Figure 7.11. Implementing the composite pattern lets clients treat individual
objects and compositions uniformly [32]. The Scene class inherits from the Compo-
nent class. Classes extending Scene needs to implement the initializeComponents()
method. By changing the implementation of this method, a developer can change
the composition of the GUI. This supports modifiability quality requirement M6
“Change GUI composition”, as seen in Table 6.9. This method is used to create the
composition of GUI components for that scene. This enables treatment of scenes
in the same way as components, and will affect the whole screen. For example,
the fading transition between scenes is set as an effect on the scene, which affects
every component on that scene.

To make the visuals more appealing to the end-user, the GUI components use
render effects. A render effect is set on a component, and affects the default draw()

7.3. LOGIC VIEW 73

Figure 7.10: TextureLoader and Texture class diagram.

Figure 7.11: GUI component class diagram.

method. When the GraphicsRenderer calls the draw() method on the current
scene it passes itself as an IRenderer. If a component has a render effect set, it will
inject the IRenderer passed to the draw() method into the render effect, as shown
in Figure 7.12. The render effect is then used for drawing this component, and
its sub components. Since the RenderEffect implements the IRenderer interface
it is possible to chain multiple effects. This structure works like a pipe-and-filter
pattern, which allows for multiple render effects [8]. For example, chaining a
ShadowEffect with a PulseEffect will give a pulsing component with a shadow.
When changing scenes, we use the FadeInEffect and FadeOutEffect, to create a
transition. These effects are timed so that the SceneHandler will know when it is
finished and can change the scene.

GUI navigation is done by the SceneNavigator class. Components contain a navi-

74 CHAPTER 7. ARCHITECTURE

Figure 7.12: GUI render effects class diagram.

gation() method to allow them to run logic based on input device states, as shown
in Figure 7.11. Extending the NavigableComponent instead of the Component
class will give a component the default navigation methods, as shown in Fig-
ure 7.13. By using the template pattern, it is easy for a developer to add new
components to the GUI. The template method pattern is a behavioral design pat-
tern which defines a program skeleton of an algorithm [64]. The NavigableCom-
ponent implements the ISelectable interface. This interface allows the component
to maintain focus on the screen. Selections are controlled by the SceneNavigator
class, and it uses the ISelectable interface, as shown in Figure 7.13. By using an
interface to control selection, it will be available for any type of object.

The InputManager handles the implementation of input devices. At applica-
tion launch the InputManager will create instances of the LWJGLMouse and
LWJGLKeyboard, as shown in Figure 7.14. The LWJGLMouse class is an im-
plementation of the mouse functions of LWJGL, which can be utilized through
the IPointerDevice interface. The IPointerDevice interface allows the Presenta-
tion Client to use different implementations of pointer devices, without changing
the usage logic. The same logic applies for the LWJGLKeyboard, which is an im-
plementation of the keyboard functions of LWJGL. The LWJGLKeyboard class
uses the IInputDevice interface to allow the Presentation Client to access keyboard
states. In the Presentation Client, input device states are polled instead of being
event-driven. This means that the components that depend on input, needs to
retrieve the input device state from the individual device. This is done through
the IInputDevice interface’s getState() method, for input devices, and through
the IPointerDevice interface’s getState method, for pointers. An input device will
return an InputDeviceState object, which contains fields for: left, right, up, down,

7.3. LOGIC VIEW 75

Figure 7.13: NavigableComponent class diagram with ISelectable interface.

accept and cancel, as seen in Figure 7.14. This state is used in the Presentation
Client to move focus from one component to another and navigate back and forth
between scenes. A pointer device will return an InputPointerState that contains
values for the location of the pointer, which buttons have been pressed, and mouse
wheel change. This is used to point and control the GUI in the Presentation Client
and is created to keep things simple for common users. To add support for new
input devices in the Presentation Client; it will require the implementation to im-
plement either the IInputDevice interface, or the IPointerDevice interface. This
will allow the developer to implement a new device without changing the usage
logic. This fulfills the modifiability quality requirement M7, as seen in Table 6.10.

The InputDeviceContainer class, provides storage of input devices. This class
is created and populated with input devices when the application starts, by the
InputManager. The InputDeviceContainer implements the IInputDeviceContainer
interface, as seen in Figure 7.15. The created instance of the InputDeviceContainer
is registered on the service locator with the IInputDeviceContainer interface. This
gives components access to input devices and input logic. By changing the devices
in the InputDeviceContainer, one can control which devices that are currently
controlling the Presentation Client.

The Presentation Client uses a Game object to represent the current game. An in-

76 CHAPTER 7. ARCHITECTURE

Figure 7.14: Input devices and device states class diagram.

Figure 7.15: InputDeviceContainer and IInputDeviceContainer interface class di-
agram.

7.3. LOGIC VIEW 77

stance of the Game class is created each time a new game starts. The game object
will have a set of game modes assigned to it. It will also contain the selected quiz,
with the questions. When the Game’s start() method is called, the application
creates a GameModeQuestionChain, as shown in Figure 7.16. A GameModeQues-
tionChain object contains a game mode and questions to be run on that game
mode. The object also contains a reference to the next GameModeQuestionChain.
This way of chaining game modes with questions allows the game to run while
there are game modes left, and a game mode to run while it has questions left.
When there are no more game modes, the game will end. By enabling chaining
of game modes, the Presentation Client will be able to run multiple game modes
for one game. This fulfills the modifiability quality requirement M2, as seen in
Table 6.5.

Figure 7.16: GameModeQuestionChain class diagram.

Game modes implement the IGameMode interface. This allows developers to cre-
ate game modes to control game logic in Lecture Quiz. The current game modes
extend the GameModeBase class, as shown in Figure 7.17. The GameModeBase
class handles general logic to run a game mode. It takes care of creating rounds for
each question and changing to the correct scene. The GameModeBase class also
includes methods that can be overridden to change their behavior. E.g. overrid-
ing the changeTeamScore() method allows the game mode to control how points
are awarded. Having this template makes it easier for developers to create game
modes. The IGameMode interface is the foundation for creating new game modes.
With the GameModeBase class, this should satisfy the modifiability quality re-
quirement specified in M1, as seen in Table 6.4.

7.3.2 Player Client

The Player Client is a library used by the Presentation Client to allow communica-
tion with players. The communication is done through an embedded HTTP server
using the Java HttpServer class. The HttpServer class provides a simple high-level
HttpServer API, which can be used to build embedded HTTP servers [22]. For
each request to the web server, a HttpExchange object is created. This object
contains request information and methods for forming responses. Classes that im-

78 CHAPTER 7. ARCHITECTURE

Figure 7.17: GameModeBase class diagram.

plement the HttpHandler interface can be assigned to the HttpServer, to receive
these HttpExchange objects. The Player Client uses this architecture to handle
communication with the players’ client devices.

A PlayerClient is created with the static createPlayerClient() method, as shown
in Figure 7.18. This will start the embedded web server, and allow player access.
The PlayerClient implements the IPlayerClient interface, as seen in Figure 7.18.
This interface makes it easy for other applications to create test versions of the
Player Client. Being able to test user input has been an important factor in our
development. The PlayerClient object uses a PlayerManager object to keep track
of players. This logic is made as simple as possible, and it is up to the application
running the PlayerClient to apply the game logic. By using the IPlayerClient
interface, a developer can create a new player client. To make the Presentation
Client use the new client, the developer only needs to register it on the service
locator. This enables the modifiability quality requirement M3 to be fulfilled, as
seen in Table 6.6.

The Player Client uses sessions to keep track of which clients have authenticated
and to respond uniquely to each client. Since sessions and cookies are not directly
supported by the Java HttpServer, the Player Client uses the SessionManager to

7.3. LOGIC VIEW 79

Figure 7.18: PlayerClient class diagram with IPlayerClient interface.

handle these tasks. The SessionManager uses cookies to create a unique identifier
that associates the client with a session. At the beginning of each HTTP request,
the SessionManager creates the current session based on the HttpExchange object.
It uses the getSession() method to get the session, and if a session does not exist
it will create one, as shown in Figure 7.19. By using sessions in this way, the
application can store information about the client.

Figure 7.19: SessionManager class diagram.

80 CHAPTER 7. ARCHITECTURE

The Player Client is used to present the client interface to end-users. The GUI
needs to be loaded from somewhere, this is where the ResourceHandler comes
into play. The Player Client has an abstract ResourceHandler class, as shown in
Figure 7.20. Creating an instance of the PlayerClient class is done through the
static createPlayerClient() method, as shown in Figure 7.18. This method requires
a ResourceHandler object, which is the object that will allow access to client
resources. By using an abstract class, the Player Client does not need to know
from where the resources are loaded. To extend the ResourceHandler class, the
target needs to create an implementation of the getMimeType() and the getData()
methods, as these are abstract. The resource loading can just as easily be changed
to load resources from, e.g., the Quiz Server. The current implementation uses
a FolderResourceHandler to load resources, as shown in Figure 7.21. This class
requires a parameter, a path to a folder on the local file system, from where it will
load its resources. By using this class, the application can easily change the source
of the files, e.g. by defining unique folders to different client skins. This fulfills the
modifiability quality requirement M4, as seen in Table 6.7.

Figure 7.20: ResourceHandler class diagram.

Figure 7.21: FolderResourceHandler class diagram.

7.3.3 Quiz Server

The architectural design of the Quiz Server is based on the model-view-controller
(MVC) pattern. MVC is an architectural pattern which isolates “domain logic”
from the user interface, permitting independent development, testing and mainte-
nance of each separation of concerns [57]. This is implemented by using the Java
Server Faces (JSF) framework. JSF is a request-driven MVC web framework, and
was described in Chapter 5, Section 5.3. To achieve the MVC architecture; we

7.3. LOGIC VIEW 81

use Entities as models, ManagedBeans as controllers, and .xhtml facelets to repre-
sent the view. An example of our MVC implementation, is the quiz presentation
structure, as shown in Figure 7.22.

Figure 7.22: Quiz Server’s MVC communication diagram.

The Quiz Server does not use a direct implementation of a database back-end.
To manage information it uses Java Persistance API (JPA) with entities. Each
Entity represents information needed to be stored by the Quiz Server, as shown in
Figure 7.23. By using JPA and entities, the application does not need to handle
the database back-end directly. A developer can configure JPA to use a differ-
ent database without changing the implementation. This fulfils the modifiability
quality requirement M5, as seen in Table 6.8. After an Entity has been created,
it can be treated as a regular data model. When changing a value on an Entity,
JPA will make sure the database reflects this change [17].

7.3.4 Distributed Message Queue

The Distributed Message Queue can either be run in client or server mode. Clien-
t/server is often a generic umbrella term for any application architecture that di-
vides processing among two or more processes, often on two or more machines [58].
This means that the application using the Distributed Message queue has to choose
either modes. To create an instance of the Distributed Message Queue, the applica-
tion needs to use the DistributedMessageQueueFactory, as seen in Figure 7.24. The
DistributedMessageQueueFactory has two methods, one for each mode. By using
this factory, the Distributed Message Queue can isolate construction logic from
the creator. The DistributedMessageQueue object uses several threads and socket
injections, which needs to be disposed when the application closes. To dispose the
DistributedMessageQueue, the application should use the recycle() method on the
DistributedMessageQueueRecycler class, as seen in Figure 7.24. The Distribut-

82 CHAPTER 7. ARCHITECTURE

Figure 7.23: Entities class diagram.

edMessageQueueRecycler will inform of shutdown and close threads correctly. By
using patterns for construction and destruction, the Distributed Message Queue
can be used as a regular message queue through the IMessageQueue interface.

Figure 7.24: Distributed Message Queue Factory class diagram.

The Distributed Message Queue can be utilized through the IMessageQueue in-
terface. The IMessageQueue interface contains methods for adding, removing and
queuing messages, as shown in Figure 7.25. Classes used for receiving messages

7.3. LOGIC VIEW 83

needs to implement the IMessageReceiver interface, as seen in Figure 7.25. If a
class wants to receive a message, it has to register itself and the respective mes-
sage type with the message queue. This will make the message queue call the
incomingMessage() method on the receiver, if a message of that type is queued.
Objects that are registered on the message queue are stored in a Java WeakMap,
meaning that they will be garbage collected if they are not referenced somewhere
else. This will make sure that the message queue does not contain unused ob-
jects, by keeping them alive. Lecture Quiz uses the message queue pattern for
both local and distributed messages. The Lecture Quiz’ message queue is based
on the Java Message Service (JMS), and enables distributed communication that
is loosely coupled, reliable, and asynchronous [33]. This means both local logic
and distributed instances can be added or modified, with minimal change in the
rest of the implementation.

Figure 7.25: Message Queue interface class diagram.

84 CHAPTER 7. ARCHITECTURE

7.4 Process View

The process view captures the concurrency and synchronization aspects of the
design [39]. It shows how different parts of the system communicate and the
process lifeline for important functions. This view is meant for integrators and
developers.

7.4.1 Distributed Message Queue

A Distributed Message Queue can be seen as clients sending messages to a queue,
where it will be picked up some time in the future by a remote system, and acted
upon [9]. Instances of the Distributed Message Queue can be created with the
DistributedMessageQueueFactory class, as shown in Figure 7.24. When creating
the DistributedMessageQueue object, the factory will spawn a worker thread. This
thread is used to process messages that are sent to the message queue, as shown
in Figure 7.26. By using the worker thread, messages can be processed without
blocking the rest of the application.

Figure 7.26: Distributed Message Queue worker thread activity diagram.

The Distributed Message Queue uses sockets to connect clients to a server. Mes-
sage queues created in server mode will listen to a specified port for connections.
When a new client connects to the server, the message queue sends a NewConnec-
tionMessage to inform that a client has connected. The same is done for message
queues that are running in client mode. The NewConnectionMessage is sent af-
ter it has successfully connected to the server. If the connection to the server is
lost, the message queue will send a ConnectionLostMessage and try to reconnect,
as shown in Figure 7.27. If the client is able to re-establish a connection to the
server, the message queue will send another NewConnectionMessage. This makes

7.4. PROCESS VIEW 85

it simple to implement logic involving server connection. The feature supporting
automatic server reconnection, fulfills the availability quality requirement A1, as
seen in Table 6.14.

Figure 7.27: Distributed Message Queue socket reconnect activity diagram.

7.4.2 Player Client

The Player Client uses HTTP to communicate with players, which use a web
browser to see the client interface. A player is represented by the Player model
which has a state value. The state is used to specify what state of the game the
player is in. Thus each state represents a different type of screen, on the Player
Client. The client web page needs to notice changes in a player’s state, to update
the display. This is done by sending a request each second, to get the current
state of the player, as shown in Figure 7.28. This request is done by a simple
asynchronous JavaScript and XML (AJAX), and according to our experiment,
should work on most web browsers. The fact that the web client is both simple
and run on most standard web browsers, fulfills the availability quality requirement
A3, shown in Table 6.16.

The Player Client uses threads to process web requests from players. To make sure
the Player Client feels responsive to each player, the requests need to be processed
by different threads. This is handled in the Player Client, by using a thread pool,
as shown in Figure 7.29. The thread pool pattern is where a number of threads are

86 CHAPTER 7. ARCHITECTURE

Figure 7.28: Player Client state request activity diagram.

created to perform a number of tasks, which are usually organized in a queue [41].
When a client request a page, the thread pool will check if there are any free
threads. If available, it will use an existing thread, otherwise it spawns a new
thread to process the request. By using the thread pool pattern, the thread count
is decreased, compared to using one thread for each client. Threads that stay idle
for too long will be disposed.

Figure 7.29: Player Client thread pool activity diagram.

7.4.3 Quiz Server

The Quiz Server stores images for quizzes and questions. These are presented as
thumbnails on the Quiz Server web page, and is stored in a memory cache, as shown

7.4. PROCESS VIEW 87

in Figure 7.30. This is to improve response time to clients. When clients request
thumbnails, the Quiz Server looks up its memory cache. If the thumbnail exists in
cache, the Quiz Server is relieved of getting it from the database. Otherwise the
Quiz Server will create a thumbnail from the original image and store it to cache.

Figure 7.30: Quiz Server cache activity diagram.

88 CHAPTER 7. ARCHITECTURE

Chapter 8

Design Choices

In this chapter, we describe our main design choices. The first section describes
the choices made regarding the infrastructure of the Lecture Quiz solution. The
second section presents visual effects and design choices.

8.1 Infrastructure

The Lecture Quiz infrastructure has been changed from the previous version, with
focus on usability and modifiability. We want to make the system easy to use and
flexible when it comes to extensions. This section includes the main changes in
the Lecture Quiz infrastructure.

8.1.1 Enterprise Architecture

In the specialization project, we used a total of three application server deployables.
This meant that the end-user had to install and configure at least one application
server to be able to test the solution. In the quality requirements, we specify that
we want our application to be easy to use. This should also apply to the setup
and installation process of Lecture Quiz.

Our solution to this was to limit the number of applications that require an ap-
plication server. The Quiz Server is the only application that depends on an
application server in Lecture Quiz 3.0. The Presentation Client used the Game
Server and the Player Web Client deployables in Lecture Quiz 2.5. We removed
both for Lecture Quiz 3.0 and expanded the logic of the Presentation Client. This
means that teachers are able to run quiz games without depending on any server.

89

90 CHAPTER 8. DESIGN CHOICES

8.1.2 Offline Support

The Presentation Client connects to the Quiz Server to retrieve quiz information.
In Lecture Quiz 2.5, the quiz information was transferred over a web service. The
web service was run on a separate server, meant that the communication was
done in two steps. Lecture Quiz 3.0 supports direct communication between the
Presentation Client and the Quiz Server. Unlike in Lecture Quiz 2.5, the Quiz
Server will send quiz information as packages.

Lecture Quiz 3.0 uses two types of packages, quiz and statistics packages. A Quiz
package is a package containing all the data necessary to run a quiz game. Instead
of retrieving the quiz package at runtime, the lecturer can download quizzes as
quiz packages on the Quiz Server. These packages can be played directly by
the Presentation Client which makes the quiz available offline. One of the main
purposes of running a lecture quiz game, is to collect statistical data. At the end
of a game the lecturer can save statistics as a statistics package. This package can
be uploaded to the Quiz Server for later review.

8.1.3 Communication Structure

In Lecture Quiz 2.5, different parts of the framework communicated through the
Game Server. This was done as a service oriented architecture where the Game
Server provided services to the other components. The service-oriented archi-
tecture (SOA) model is a distributed technology with distinct characteristics in
support of realizing service-orientation and the strategic goals of service-oriented
computing [26]. By using this architecture the Game Server needed to implement
logic for each service. For the services used to communicate between two compo-
nents, the logic was quite simple, but it still had to be defined by the Game Server.
The communication to the Game Server was done as “one-way” request based com-
munication. This made the communication between the Presentation Client and
Player Web Client, and Presentation Client and Quiz Server cumbersome.

In Lecture Quiz 3.0 we changed the communication logic. The new communica-
tion logic utilizes a distributed message queue. We created the distributed message
queue as a standalone library to make it available for each component. The dis-
tributed message queue is implemented as a regular message queue, where messages
can be queued and received. One of the great advantages by using this logic is
that the sender of a message does not need to know who will process the message.
Compared to the Game Server in Lecture Quiz 2.5, we can add new components to
Lecture Quiz without adjusting the behavior of any of the other components. For
example, we can add a component that counts how many games have been played.
The logic for such a component would be to listen for game messages being sent on
the message queue. This would not require any change on the other components.

The most important feature that Lecture Quiz 3.0 gains from using the distributed

8.2. VISUALS 91

message queue is the two-way communication. In Lecture Quiz 2.5 the clients could
send requests to the Game Server, but the Game Server could not send information
back, unless it was requested by the client. By having two way communication, the
Presentation Client will now receive a message if a new quiz has been created on
the server. This allows the Presentation Client to stay updated and the end-users
can start using new quizzes instantly.

8.1.4 Data Storage

Lecture Quiz 2.5 utilize the JDBC API directly, to access a relation database. We
have re-implemented all data storage logic to utilize JPA, which is described in
Chapter 5. In addition to this we have changed the way we organize our resources,
such as images, icons and ultimately sound and video, in later releases. The
previous version managed this by storing resources to the file-system directly, but
in this version we use JPA to handle resources as well. This removes the need to
configure file-system access, and will make the setup process easier.

8.2 Visuals

One of our goals has been to make Lecture Quiz feel more like a game and not a
statistics collection framework. By using an OpenGL rendered GUI environment,
the presentation gets a more game like look and feel. A graphical artist helped us
improve the graphics for Lecture Quiz. The two following sections include visual
design choices, and how the graphics improved the usability of Lecture Quiz.

8.2.1 Presentation Client

The Presentation Client starts off with a splash screen, as shown in Figure 8.1.
The splash screen contains the Lecture Quiz logo, and information about the devel-
opers. It is common in games, to present short information about the developers
at startup.

The Presentation Client background includes some subtle texture elements. These
give the impression of depth in the background, making it more interesting to look
at. We added an ambient effect to the background to create movement and change
in the application. To create the ambient effect, a timed color tint change is run
on the background.

An important factor in making the Presentation Client look more game like, was
the removal of frames. The initial version used framing of GUI components to
create grouping of related elements. By removing the frames, the background and
ambient effects are more visible to the users.

92 CHAPTER 8. DESIGN CHOICES

Figure 8.1: Presentation Client splash screen.

Instead of using radio buttons to select the game type, we have added graphical
representations of what the user is selecting, as shown in Figure 8.2. This makes
the selection more intuitive and gives a more professional game look. To indicate
the selected game type, we have created an animated arrow pointing at the chosen
element.

Setting up a game with the Presentation Client is done in four steps. These steps
have been created to resemble an application wizard. To navigate between the
different configuration screens, the Presentation Client uses navigation buttons.
There are two buttons, one to take the user to the next step in the configuration,
and one to take the user back to the previous step. These are located in the lower
right part of each screen, and maintain the same position for easy access, as shown
in Figure 8.2. The Presentation Client can display the “Next button” as disabled,
which indicates that a configuration step is not complete.

Each screen in the Presentation Client has an underlying composition. This com-
position consists of a header, content and a footer. The header is at the upper
section of the screen, and contains information about the screen you are currently
viewing. The content section is at the center, and contains different elements de-
pending on the current screen. The footer is at the bottom of the screen, and
contains the navigation buttons and player login information. By using this com-
position, users can easily find the elements that are interesting.

8.2. VISUALS 93

Figure 8.2: Presentation Client game type select screen.

Before starting a Lecture Quiz game, the Presentation Client displays the team
selection screen. The screen contains a list of players, one for each team, as shown
in Figure 8.3. Each team has an associated mascot, that is presented over the
team’s list. Lecture Quiz uses these mascots to represent the team on both the
Presentation Client and the Player Client. Players can be allowed to select the
team they want to play with. They do this by selecting the associated mascot on
the Player Client, for more information see Section 8.2.2.

In the question screen, we have added component movement. At first, the question
is presented at the top of the screen, with the question alternatives listed vertically
below, as shown in Figure 8.4. When a question timer starts, the Presentation
Client moves the question alternatives down to their respective locations, as shown
in Figure 8.5. The reason why we chose to have the Presentation Client display the
alternatives in a vertical list, is that it matches the display shown on the players’
devices. Since there is no text on the Player Client buttons, we want players to
associate the buttons with the alternatives presented on the Presentation Client.
When the question timer runs out, the wrong alternatives turn grey and are scaled
down eight pixels. We have created a pulsing effect, that is used to highlight the
correct alternative.

An alarm clock will be displayed after the alternative buttons have been moved.
We added the alarm clock to put some pressure on the players. The alarm clock
is created by using combinations of six different images. One of the images is the

94 CHAPTER 8. DESIGN CHOICES

Figure 8.3: Presentation Client team selection screen.

Figure 8.4: Presentation Client question screen before timer starts.

8.2. VISUALS 95

Figure 8.5: Presentation Client question screen.

animated pie countdown, which is used for fill the inside of the clock, as shown in
Figure 8.5. When the question timer runs out, the clock will start to ring. This
shows by shaking the alarm clock, the bells, and changing the image of the hammer
(on top of the clock) to look like it is moving really fast. We have separated each
of the bells from the clock, to be able to move them independently from the rest
of the clock.

To create the feeling of depth in the GUI, the Presentation Client can apply a
shadow effect to components. The shadow effect is performed by rendering the
component without color, and shifting its location. Then the component is drawn
with color on its original location. For example, the question image shown in
Figure 8.5, uses the shadow effect.

8.2.2 Player Client

The Player Client is used by players when playing Lecture Quiz games. It uses
HTML web interface, suited for both point and click, and touch input. To join
a Lecture Quiz game, a player needs to specify a username. This is done in the
first screen, which is the login screen, shown in Figure 8.6. The login screen
contains the Lecture Quiz logo and developer info, similar to the splash screen in
the Presentation Client. This should be easily recognizable by the player to avoid
confusion.

96 CHAPTER 8. DESIGN CHOICES

Figure 8.6: Player Client login screen.

During team selection, the Player Client can present a team selection screen, as
shown in Figure 8.7. This screen shows four unique mascots, that are associated
with the different teams presented by the Presentation Client. Lecture Quiz uses
mascots to give players something to relate to their team. Developers have the
ability to change the appearance of the Player Client based on a player’s team/-
mascot.

Figure 8.7: Player Client team select screen.

8.2. VISUALS 97

The “waiting for round screen” is presented between answering questions, as shown
in Figure 8.8. If the player answered the previous question, the Player Client
displays the alternative the player chose. This is to allow the player to keep track
of responses during gameplay. Note that the answer will not be presented until
the question timer is finished. This prevents people from cheating.

Figure 8.8: Player Client waiting for round screen.

When a question is presented on the Presentation Client, the Player Client will
display the answer question screen, as shown in Figure 8.9. This screen contains
four buttons with different colors, and allows the player to select one of the buttons.
Each of the buttons represent one of the question alternatives presented by the
Presentation Client, as shown in Figure 8.4. The buttons contain no text on the
Player Client, which is to keep the players focused on the Presentation Client.
In Lecture Quiz, each question has four alternatives, and more than one of the
alternatives can be correct.

8.2.3 Quiz Server

The Quiz Server is created with JSF and is a Web application. It uses sim-
ple HTML structure combined with Cascading Style Sheets (CSS). This allows
easy modification of the interface composition, and separates the styling from the
HTML elements. For example, when listing items, each item use either the “odd-
Item” class or the “evenItem” class, depending on what number in the list the item
is. This allows CSS to handle odd or even items in the list separately. The Quiz
Server uses this to create a zebra like pattern in lists, as shown in Figure 8.10. This

98 CHAPTER 8. DESIGN CHOICES

Figure 8.9: Player Client answer question screen.

pattern gives a discrete separation of elements, to make the list more readable to
the end-user.

CSS supports more than one class for each HTML element. In addition to the
odd/even classes, each element in lists uses the listItem class. This applies the
same basic style for each list item, while keeping the zebra pattern. For example,
the quiz list and the question list both use the listItem class, but contain different
content for the items. This is shown in Figure 8.10 and Figure 8.11.

The Quiz Server uses web forms to edit information. To enhance the user expe-
rience, these pages utilize AJAX. This allows information to be updated without
reloading the web page. For example, when selecting an icon for a quiz, the preview
image will be updated, as shown in Figure 8.12.

When creating quizzes and questions, the user can add images. These images are
used to give additional information to a question, or as an icon for a quiz. The Quiz
Server allows users to upload their own image. To give an overview of available
images, the Quiz Server uses an image grid, as shown in Figure 8.13. Images can
vary in size, and may take some time to display. To make loading of images faster
for the end-user, the Quiz Server creates thumbnails of every uploaded image.

The Quiz Server can be navigated with the “Quiz”, “Question” and “Resources”
buttons. Each of the buttons displays a menu list when hovered, as shown in
Figure 8.14. This makes the web page more interactive and allows for grouping of
navigational elements.

8.2. VISUALS 99

Figure 8.10: Quiz Server question list screen.

Figure 8.11: Quiz Server quiz list screen.

100 CHAPTER 8. DESIGN CHOICES

Figure 8.12: Quiz Server edit quiz screen.

8.2. VISUALS 101

Figure 8.13: Quiz Server image grid screen.

Figure 8.14: Quiz Server question hover menu.

102 CHAPTER 8. DESIGN CHOICES

Chapter 9

Implementation

We created a set of quality requirements for our system. Based on these require-
ments, we designed our software architecture. By combining the architecture and
the functional requirements we developed the Lecture Quiz implementation.

In this chapter, we present our implementation of Lecture Quiz 3.0. All the li-
braries are presented in their own sections below.

9.1 Distributed Message Queue

Based on our previous experience from Lecture Quiz 2.5, we wanted a stable and
fast way of communicating between different parts of the framework. We early
decided to use sockets as they are both simple and fast; this was also mentioned
in the further work section of our Specialization Project. This meant that we had
to do some data interpretation, as sockets only handle binary streams.

9.1.1 Network Packets

We created a way to package data and a simple protocol for interpreting this. A
network packet contains an identifier, the length of the packet, a checksum and
the package data. The identifier makes sure that a valid header is being sent from
the client. To validate the content of the packet, we use the received checksum.
This checksum is compared to the checksum of the packet content. For checksum
calculation, we use 32 bits cyclic redundancy check (CRC-32), as this is a fast way
to create a checksum and sufficient for our use.

103

104 CHAPTER 9. IMPLEMENTATION

9.1.2 Message Queue Abstraction

The communication logic needed a more generic way of interpreting the content
of a packet. We decided to expand our use of the message queue pattern, shown
in Figure 7.25. To achieve this, every message to be sent over sockets needs to
be serializable. Our system already supported this extension, as every message
was implementing the IMessage interface. To obtain serialization, we created a
message Serializer class. This class uses Java object serialization to convert be-
tween messages and binary packet content. One of the problems encountered using
this kind of serialization, was that each communicating application, needs to have
a definition for each message class. To solve this, we created the Lecture Quiz
Messages library, which is a shared library containing the messages used by the
Lecture Quiz system. This is further described in Section 9.2.

Our goal with the Distributed Message Queue is to create an abstraction for the
network communication logic. Using the message queue makes the individual
component only care about sending and receiving messages, and not to whom or
where. For example, when statistics are collected after a game round, a statistical
message is queued to the message queue. This message will be sent to both the
server and the local class, since both are registered for statistical messages. The
Local class saves statistics to the file-system, while the Quiz Server persists it. In
this case, the sender of the statistics is not concerned about with whom or where
the statistics are saved.

9.1.3 Connection Management

To utilize the communication logic combined with the message queue pattern, the
Distributed Message Queue uses sockets. This means that to create a message
queue, the application needs to define if it is a server or a client, as shown in
Figure 7.24. When running the message queue as a client, the application needs
to know the server address and the application port. Running the message queue
in server mode requires the application to specify a listener port and a backlog
count. The backlog count is used to specify how many unprocessed connection
requests the server socket can queue, before starting to refuse connections. After a
message queue instance is obtained, new connections appear on the message queue
as regular messages. For example, when a client connects to the Quiz Server, the
server receives a NewConnectionMessage on the message queue. The NewConnec-
tionMessage contains a ClientConnection object. This object is the application’s
reference to the client and can be used to send messages. The ClientConnection
object implements IMessageReceiver, which allows the server to register it on the
message queue, as shown in Figure 7.25.

The ConnectionHandler component is used along with the message queue. When
creating a Distributed Message Queue instance, communication related messages

9.2. LECTURE QUIZ MESSAGING 105

are registered to the ConnectionHandler. This allows the ConnectionHandler to
manage messages like NewConnectionMessage, ConnectionLostMessage and Host-
NotFoundMessage. These are status messages used by the Distributed Message
Queue to indicate its state. If the user has specified a server connection, the
ConnectionHandler will take care of the authentication. The ConnectionHandler
makes sure that the Presentation Client is identified by the Quiz Server.

9.1.4 Stable Connection

To make sure the message queue have a stable execution, we have implemented a
layer between the message queue and the socket. This will change depending on
whether the queue is run as a server or as a client. If the message queue is running
as a client, it will create a SocketConnector. This object runs in its own thread and
is responsible for establishing contact with the server. In addition to establishing
contact, it makes sure the client stays connected, while it actively checks for errors.
For example, if the connection is lost, it will queue a ConnectionLostMessage to
the message queue. It will then try to reestablish a connection to the server, in
intervals. If it can establish a new connection, it sends a NewConnectionMessage
to the message queue to restore the ClientConnection. In practice this means that
classes using the ClientConnection will just update their reference to the client
and keep sending messages. A SocketListener will be created when creating the
message queue, for servers. This works in the same way as for clients, but since
it is a listening port, it does not deal with reconnection. If a client sends invalid
data to the server, the SocketListener will queue an InvalidPacketMessage to the
message queue and disconnect the client. This is to prevent spamming of random
data to the server.

To make the Distributed Message Queue run smoothly, it uses several threads.
This is to make sure the application does not block while communicating with
other applications. It also allows for the SocketListener and SocketConnector to
run in the background. As mentioned earlier, we use an abstract factory pattern
to create the message queue. Since the queue uses threads, we wanted the dispose
logic to be controlled in the same manner as it is created. We created a recycler,
which shuts down the queue and cleans all the thread usage.

9.2 Lecture Quiz Messaging

Lecture Quiz Messages is a shared library used by the Presentation Client and the
Quiz Server. It contains message definitions that are used when communicating
between the client and server. The reason for having a separate library is that
both instances needs to have the same message definitions.

The library contains messages for handling authentication and identification of

106 CHAPTER 9. IMPLEMENTATION

instances. Since we are using the Distributed Message Queue for client-server
communication, we need to establish a connection role. This is achieved when a
new connection is created. Upon receiving a NewConnectionMessage, the client is
to identify itself by sending an identification message. This message is either a Pre-
sentationClientIdentificationMessage or a QuizServerIdentificationMessage. For a
client to gain access to Quiz Server content, it requires user authentication. This
login process is equal to a user login directly on the web server. The Presentation
Client uses the UserLoginMessage to send user authentication to the Quiz Server.
Upon receiving a UserLoginMessage, the Quiz Server will send either a UserLogin-
FailedMessage or a UserLoginSuccessMessage. If the login is successful, the client
will be able to send messages to send and request content from the server.

The Presentation Client will be able to list quizzes from the Quiz Server by sending
a RequestQuizListMessage. The requested list will be sent from the Quiz Server as
a QuizListMessage. This message contains a list of unique identifications for the
quizzes stored on the server. This is to make the Presentation Client able to cache
quizzes by identification. A quiz’ identification is the Secure Hash Algorithm
1 (SHA-1) checksum of its content. To receive information about a quiz from
the server, the Presentation Client can send a RequestQuizInfoMessage with the
quiz’ identification. This will make the Quiz Server reply with a QuizInfoMessage
containing quiz information like name, author, question count and description.

Quiz content are contained inside quiz packages. To obtain a quiz package from the
Quiz Server, the Presentation Client sends a RequestQuizDownloadMessage. This
message needs a unique quiz identification for the quiz that is to be downloaded.
The Quiz Server will send a QuizDownloadMessage with the quiz identification
and a URL for download. The Presentation Client uses a package downloader
which downloads the package from the URL. The reason why we do not send
quiz packages over the message queue is the size of the packages. Sending several
megabytes over the message queue will result in the client not being able to receive
other messages while downloading. Another reason is that using HTTP transfer
from a web server will give more control to the client as the communication logic
is not hidden.

When running games, the Presentation Client will send statistics to the Quiz
Server. These statistics are sent in the form of one or more QuestionResultMessage.
A QuestionResultMessage contains the quiz identification of the quiz that the
question belongs to. It also contains the question identification within the quiz,
and the result of how players answered that question.

9.3 Lecture Quiz Packaging

Quizzes are sent from the Quiz Server to the Presentation Client as quiz packages.
This allows the server to send quizzes, including both questions and resources, as

9.4. PRESENTATION CLIENT 107

one package. The Quiz Server supports direct download of these packages. Once
a package is downloaded, it can be run offline without a connection to the server.
This is one of the main features we have added to make Lecture Quiz more flexible.

To create quiz packages, the Quiz Server uses the Lecture Quiz Packaging library.
This library allows for both creation and reading of quiz packages. A quiz package
is a ZIP file that contains a quiz.xml file and image files. The XML file contains
the quiz information as well as the quiz questions. Image references in the XML
file, refer to the images contained in the package ZIP. For example, a question
contains an image reference. The Presentation Client will use this reference to
read the image data from the package. The resulting image is presented alongside
the question during a game. The Lecture Quiz Packaging library utilizes Java’s
standard ZIP support to read the quiz packages.

To manage XML, we have created a serializer that converts between an XML doc-
ument and data models. A quiz’ unique identification is generated by the Lecture
Quiz Packaging library. At this stage, we had gotten all the quiz information
gathered in one string, which makes it easy to calculate a checksum. We created a
hash string generator, that uses SHA-1 to calculate a checksum and convert it to a
hexadecimal formatted string. A hexadecimal formatted string is a way to repre-
sent binary data using hexadecimal numbers. Each byte value in the binary data
is represented by a pair of hexadecimal characters. This is to make the checksum
human-readable and easy to compare to other checksums.

The Lecture Quiz Packaging library also handles statistical packages. These are
created in the same way as quiz packages, but contain no other resources than the
statistics XML. The Presentation Client uses these packages when run in offline
mode. This allows a lecturer to copy a quiz to his laptop, run a game on a local
network and still be able to bring back the results.

9.4 Presentation Client

The Presentation Client is a standalone Java SE application. Its main purpose is
to be used during lectures to run Lecture Quiz games.

We have separated the Presentation Client into six parts. Each part has its own
responsibilities and components. Communication between the different parts is
done either through the message queue or via the service locator. The different
parts are infrastructure, graphics, sound, input, GUI and logic. We have created
a manager class for each part. A manager handles the initialization and disposing
of its sub-components [43]. Managers are initialized at the start of the application
through the IManager interface, as shown in Figure 7.6. During initialization, each
manager registers the services they want to offer on other parts of the application,
on the service locator.

108 CHAPTER 9. IMPLEMENTATION

9.4.1 Infrastructure

The infrastructure part of the Presentation Client contains support components.
The components managed by the InfrastructureManager are Configuration, Con-
nectionHandler, ComponentUpdater, ThreadDisposer and MessageQueue. The
MessageQueue object is a client instance of the Distributed Message Queue, as
described in Section 9.2.

Configuration

The Configuration object is registered as a service through the IConfiguration
interface. This interface allows for easy reading of configuration properties, by
using generics and default values, as shown in Figure 7.8. At the start of the
application, the configuration settings are loaded from the configuration.xml file.
This is done through the built-in Java properties object. Examples of settings
that are read from the configuration are: DisplayFullscreen, DisplayWidth, Dis-
playHeight, ClientPort and ServerAddress. We wanted the application to support
command-line arguments, to quickly test settings. This is implemented by reading
the command-line arguments as key-value pairs. These values are written to the
configuration object, and overrides the settings that are read from file.

ConnectionHandler

The ConnectionHandler component distributes incoming messages to their respec-
tive handlers, for further description, see Section 9.1. The Presentation Client
identifies itself to the Quiz Server, by sending a PresentationClientIdentification-
Message. In the same manner, it makes sure that the machine it is connected
to, identifies itself as a Quiz Server. After identification, the ConnectionHan-
dler will try to authenticate to the Quiz Server. The authentication credentials
are read as properties from the configuration, as described earlier. If the user is
successfully authenticated, we want the message queue to send messages to the
server. The ConnectionHandler will register the message types that should be
sent to the server, over the message queue. Examples of messages that are sent
to the server, are RequestQuizListMessage, RequestQuizDownloadMessage and
QuestionResultMessage.

ThreadDisposer

The ThreadDisposer implements the IThreadDisposer interface. Threads are used
in several of the application’s components. We want to make sure that they are
correctly disposed when the application shuts down. This is the goal of the Thread-
Disposer. Other components can access the ThreadDisposer through the service

9.4. PRESENTATION CLIENT 109

locator, then register their threads. When the InfrastructureManager is called to
dispose its components, it will call dispose on the ThreadDisposer. This will make
the ThreadDisposer stop any registered threads that are still running.

ComponentUpdater

The last component in the infrastructure is the ComponentUpdater. The Compo-
nentUpdater is registered in the service locator through the IComponentUpdater
interface. This allows classes that implement the IUpdateable interface to regis-
ter for updates. The ComponentUpdater will call the update() function on each
registered component. This is done whenever the ComponentUpdater thread gets
processing time. The call to the update function includes a tick count. The tick
count is the number of milliseconds passed since the last call to the update function.
This is important in games, as both timers and animations need to be updated
continuously. By using the ComponentUpdater, we save ourselves the trouble of
having to deal with individual threads for timed tasks.

9.4.2 Graphics

The GraphicsManager is responsible for creating the application window. The
display resolution and fullscreen settings are read from the Configuration object.
The GraphicsManager creates an instance of the GraphicsDisplay class. This
object creates the application window.

GraphicsDisplay

The GraphicsDisplay object initializes an OpenGL window through LWJGL. Graph-
ics loaded with LWJGL needs to be loaded using the same thread as was used to
create the application window. To solve this, we let the GraphicsDisplay object
run its own thread. This thread initializes the OpenGL window, a TextureLoader
and a GraphicsRenderer.

TextureLoader

The TextureLoader is an abstraction used for loading graphics in the Presentation
Client. It implements the ITextureLoader interface and is registered on the service
locator. Textures loaded with the TextureLoader from other classes will only create
a model of the texture. This model implements the ITexture interface, as shown in
Figure 7.10 The first time the texture is being rendered by the GraphicsRenderer
it will be loaded by the correct thread.

110 CHAPTER 9. IMPLEMENTATION

GraphicsRenderer

The GraphicsRenderer implements the actual rendering logic. It is the Graphic-
sRenderer that uses LWJGL to render graphics. The rendering of graphics needs
to be isolated from the rest of the application. This is to avoid problems with
concurrency and the rendering thread. All graphics in the Presentation Client are
defined as GUI components. The collection of GUI elements are called scenes, and
will be covered later in the following Section 9.4.5. To allow the GraphicsRenderer
to render a scene, we make the GraphicsRenderer register for SceneChangedMes-
sages. These are messages sent to the message queue when a scene is changed.
This allows the GraphicsRenderer to get the current scene and render it.

9.4.3 Sound

The SoundManager is responsible for playing sound effects in the Presentation
Client. Playing sound effects is done through the LWJGL library. The LWJGL
library utilizes OpenAL to play sounds. Unlike the OpenGL implementation, the
OpenAL functionality can be called from any thread. Despite this, we decided to
isolate this functionality from the rest of the application. This was to be able to
change the implementation in the future, without worrying about restrictions.

Since we have a limited number of sound effects for our game, the SoundManager
uses the SoundEffect Enum to decide what sound to play. This Enum contains
Click, GameMode, Tick, Ring and Finalé; which are associated with the sound
effect files included with the game. The SoundManager will register itself to the
message queue, to listen for PlaySoundEffectMessage and StopSoundEffectMes-
sage. When receiving a PlaySoundEffectMessage, it will extract the SoundEffect
value from the message. It will use this value to decide which sound effect to play.
The same applies to the StopSoundEffectMessage, which does the reverse: it stops
the sound effect, if it is playing.

9.4.4 Input

The InputManager handles the initialization of components used for controlling
the application. In the current implementation, the InputManager will check for
mouse and keyboard support. The communication with these devices are done
through the LWJGL library.

We separate the devices into pointer devices and input devices. If a mouse is con-
nected the InputManager will create an instance of the LWJGLMouse class. This
class implements the IPointerDevice interface so one can easily change the imple-
mentation later. The same goes for the LWJGLKeyboard class which implements
the IInputDevice interface. IInputDevice is intended for application control and

9.4. PRESENTATION CLIENT 111

not text input, and may in the future be used for game-pads and joysticks. In
our implementation, the input devices are passive, which means that there are no
events linked to buttons being pressed. Instead, the application needs to ask for a
device state. A device state is different from a pointer device to an input device. An
IPointerDevice will return an InputPointerState. The InputPointerState includes
values like PositionX, PositionY, IsLeftButtonPressed and MouseWheelDelta. An
IInputDevice will return an InputDeviceState. The InputDeviceState includes
values like Left, Right, Accept and Cancel.

To give other parts of the application access to the input devices, the InputManager
uses an InputDeviceContainer. The InputDeviceContainer is a container class that
implements the IInputDeviceContainter interface. Both the keyboard and the
mouse objects are added to the InputDeviceContainer. The container is registered
as a service on the service locator to allow access by the rest of the application.

9.4.5 Graphical User Interface

The GuiManager is responsible for the applications graphical interface logic. It
contains two components, the SceneHandler and the SpriteFontCreator.

As the framework uses OpenGL for rendering graphics it has only access to func-
tions that render textures. To make the application able to render text, we created
the SpriteFontCreator. The SpriteFontCreator load font images from the resource
folder and associates them with our FontType Enum. Font images are loaded as
textures and passed to SpriteFont objects. We defined our own format for these
font images. Each image is divided into a 16x16 grid where each cell in the grid
is a character. This sums up to 256 different characters and are associated with
char values in strings. For example, the letter A has American Standard Code for
Information Interchange (ASCII) value 65, which will associate it with cell number
65 in the image.

When a SpriteFont object is first created, it will use an algorithm to calculate font
metrics. These metrics are measures of the individual sizes of each character in
the texture. These values are important when creating textures from a font.

We want the character spacing to be relative to each character’s size and not just
a fixed size. This makes the result proportional and more readable by the end-
users. Our SpriteFont class contains a method for generating text textures. The
method is called generateTexture() and takes two arguments. The first argument
is the text to be displayed in the texture. The second argument is an alignment
Enum, which allows for aligning the text left, right or center, inside the texture.
An advantage of using this system to generate text, is that it allows easy caching.
We can store textures for later use, instead of synthesizing the text output from a
font, each time the application renders the screen.

The other component of the GuiManager, is the SceneHandler. The SceneHan-

112 CHAPTER 9. IMPLEMENTATION

dler is responsible for managing scenes and transitions. It keeps track of which
scene is currently presented by the application. The SceneHandler listens for
QueueSceneChangeMessages. These messages are sent when changing scenes.
Upon receiving this message the SceneHandler will call the end transition effect of
the current scene. When the end transition has completed, it will change its cur-
rent scene to the scene supplied in the QueueSceneChangeMessage. This change
is done by sending a SceneChangeMessage to the message queue, and calling the
start transition of the new scene.

The SceneHandler contains a SceneNavigator. The SceneNavigator is responsible
for handling user input and navigation of the current scene. To be able to do live
updates of the interface, the SceneNavigator is registered on the ComponentUp-
dater, as described in previous section. During updates, the SceneNavigator will
get input states from the devices registered with the InputDeviceContainer. These
states are combined into a NavigationInputState object. This object is then passed
to the current scene. This gives GUI components within the scene the ability to
run logic based on the current input states. For example, to check if the mouse
pointer is hovering over a component, or if a button is pressed.

Scenes in the Presentation Client are responsible for handling high level logic.
The GameTypeSelectScene creates an instance of the Game class. The Game
object contains the settings to run a game. These settings are set by different
scenes, before the game starts. Examples of scenes used to configure the game, are
the QuizSelectScene, GameModeSetupScene and TeamSelectScene. The different
scenes are used to satisfy most of the Presentation Client’s functional requirements,
as shown in Table 6.1. By handling functional requirements on a high level, the
Presentation Client can easily be changed to meet new requirements.

9.4.6 Logic

The LogicManager is responsible for handling game related logic. It manages the
following three components; QuizProvider, GameModeProvider and PlayerClient.

The QuizProvider object consists of two sub components. Both are used to pro-
vide quizzes that can be run in a quiz game. These components are the Lo-
calQuizProvider and the RemoteQuizProvider.

LocalQuizProvider

The LocalQuizProvider will read quizzes from the local file system. To locate the
quizzes it will search the quizzes sub folder in the Presentation Client directory.
When creating an instance of the RemoteQuizProvider, we pass a reference to
the LocalQuizProvider. This is to allow the RemoteQuizProvider to use the Lo-
calQuizProvider for caching quizzes. For example, if the Quiz Server offers a quiz,

9.4. PRESENTATION CLIENT 113

the RemoteQuizProvider will ask the LocalQuizProvider if this quiz is cached. If
the LocalQuizProvider matches the quiz identification to one of the local quizzes,
the current cached version is used. This saves download time, as quizzes often are
of several megabytes in size, even tenfold if it includes large images.

RemoteQuizProvider

The RemoteQuizProvider will as the name suggests, provide quizzes that are not
represented on the local computer. To receive quiz information, the Remote-
QuizProvider needs access to a Quiz Server. This is handled by the Connection-
Handler in the infrastructure part, as described in Section 9.4.1. Communication
with the server is done through the message queue. The RemoteQuizProvider will
send a RequestQuizListMessage when the server is connected. The Quiz Server
will reply to this message with a QuizListMessage. The QuizListMessage contains
a list of quiz identifications. The RemoteQuizProvider will send one RequestQuiz-
InfoMessage for each message identification not located in the LocalQuizProvider.
These messages will be replied to by the Quiz Server with QuizInfoMessages. A
QuizInfoMessage contains general information about a quiz and not its content.

When the user selects a quiz to be used with a game, the application will send
a RequestQuizPackageMessage. This message will be received by both the Lo-
calQuizProvider and the RemoteQuizProvider. If the LocalQuizProvider already
has the quiz, it will respond with a QuizPackageMessage containing the quiz. As
the RemoteQuizProvider keeps track of the LocalQuizProvider it will know if the
request will be handled locally. If the requested quiz is not contained in the local
quiz provider, the RemoteQuizProvider sends a RequestQuizDownloadMessage to
the Quiz Server. The Quiz Server will respond with a QuizDownloadMessage. The
QuizDownloadMessage contains a valid URL, that the application use to down-
load the quiz. Quizzes are downloaded via HTTP as it saves traffic on the message
queue. When successfully downloaded, the RemoteQuizProvider will send a Quiz-
PackageMessage with the downloaded quiz. The RemoteQuizProvider will tell the
LocalQuizProvider to store the quiz for future use. Only the RemoteQuizProvider
component is managed by the LogicManager, as the LocalQuizProvider is con-
tained within the RemoteQuizProvider.

GameModeProvider

The GameModeProvider is as the name conveys, responsible for providing game
modes. A game mode contains the logic for running quiz questions. Games are
divided into several game types. The different types are Two Teams, Three Teams,
Four Teams and Free For All. Not every game mode can run as a game type and
this is decided by the GameModeProvider. When listing game modes from the
GameModeProvider a GameType Enum needs to be specified. The Enum contains

114 CHAPTER 9. IMPLEMENTATION

our different game types, and will make the GameModeProvider only list supported
game modes. The GameModeProvider is registered on the service locator via the
IGameModeProvider interface.

PlayerClient

Interaction with the Player Client library is managed by the LogicManager. To
create an instance of the PlayerClient class, a port number needs to be supplied.
This number decides which port the Player Client web server should listen on. The
LogicManager reads two port numbers from Configuration at initialization. The
values are ClientPort and AltClientPort. The reason why we chose two values for
this, is that some computers may already be using one of the ports. Thus, if the
creation of a PlayerClient instance fails for the first port it will try the second. If
both ports are unavailable it will alert the user that it has to specify a free port.

Input from players will be handled by Java’s internal ActionListener interface.
Callbacks are done by the same threads that handle the HTTP communication
with the clients. Since using these threads directly can easily lead to deadlocks,
we created the PlayerClientWrapper. The PlayerClientWrapper manages callbacks
from the PlayerClient. It will gather input into a thread safe queue. To process
this queue, the PlayerClientWrapper is registered with the ComponentUpdater.
This will make the callbacks run on the same thread as the rest of the game
logic. The PlayerClientWrapper is registered with the service locator through the
IPlayerClient interface.

9.5 Player Client

Players use a web interface to communicate with the Presentation Client. We
did not want the Presentation Client to have to deal with HTML directly, so we
created the Player Client library. The library enables the creation of a web server
from inside another Java application. Interaction with the players is done through
the IPlayerClient interface. This interface abstracts away the communication logic
between the Presentation Client and the players.

9.5.1 Content Management

To start the Player Client, the Presentation Client needs to specify the port in
which the HTTP server will be run. It also requires a resource handler, as shown
in Figure 7.20. The resource handler provides HTML content, scripts, stylesheets
and images to the end-user. At start-up, the Player Client spawns an instance of
the Java Sun HttpServer. This class implements a simple HTTP server [22].

9.5. PLAYER CLIENT 115

9.5.2 Sessions

The HTTP server does not include support for neither cookies nor sessions. We
wanted both these features to allow players to login to the server and be remem-
bered. In this version of Lecture Quiz, the Player Client contains a SessionManager
for handling player sessions. When a player first connects to the HTTP server,
the server checks to see if they offer a session cookie. Cookies are read using our
HttpUtils class from the binary input steam sent by the client. If the client does
not offer a session cookie, the SessionManager generates a session object for that
client. The session object is identified by a unique identification string generated
from the client’s host, current date and a random salt. After creating the session
object, the cookie information is written to the client response. The client will
store the session cookie, and it is sent as part of future HTTP requests. This
allows the Player Client to identify the client’s session, and use it to store user
specific information.

9.5.3 Threading

To allow multiple clients to use the HTTP server simultaneously it needs several
threads. The Java HttpServer object supports the use of executor services. An
executor service is a definition of whom executes the given tasks. In this context,
the executor will be given a task for each connection it receives from a client. The
Player Client is aimed toward multiple users with several small requests. With
this in mind, we decided to use a cached thread pool for the executor service. This
means that it will try to reuse existing threads if available. If no existing thread is
available, a new thread will be created and added to the pool. Threads that have
not been used for sixty seconds are terminated and removed from the cache.

9.5.4 Player Information

To store player information, the Player Client uses the PlayerManager. This man-
ager handles login requests from players. It validates whether the username is
unique, and whether it meets the username requirements. If the login is suc-
cessful, a Player object is created and associated with the client’s session. This
will make the Player Client call the playerJoined() ActionListeners, which allows
the Presentation Client to listen for joining players. The player Client supports
playerLeave() ActionListeners to listen for leaving players.

This Player object contains the player’s name, score, state, last answer and team.
The state field is used to specify the users current state in the game. This controls
what the player will see on his client. There is one state for each different client
screen. States include: “login”, “answer question”, “waiting for round”, and “game
summary”. To notice changes in players’ state, the web page received by the

116 CHAPTER 9. IMPLEMENTATION

client, uses JavaScript and AJAX requests. These are short requests that check
the current state of the player. If the state stored on the client side is not equal to
the received state the web page will be refreshed. This means that if you change
the state on a Player object, the client will change its visuals.

9.5.5 Templating

To be able to create more generic web pages for the client, we created a simple
template system. The system allows us to use Player variables in the client HTML.
For example, adding %playerName% will insert the “Player.Name” variable of the
client’s player. For fast execution, pages are cached at startup, where each page
is cached into its own ContentView. A ContentView represents a Player state
and has several ViewParts that builds the output HTML. These parts contain
either static HTML data or a reference to a variable. This allows the use of Java
StringBuilder, to quick create the output HTML without string search/replace.

9.6 Quiz Server

The Quiz Server runs as a Java EE web application, implemented with technologies
such as Java Server Faces (JSF) and Java Persistance API (JPA). It is deployed on
a GlassFish Server and functions as a quiz management, statistical tool, and as a
quiz database for Presentation Clients. Presentation Client access it over the net-
work with the help of network sockets; such that online Presentation Clients can
obtain live quizzes on the fly and commit statistics as the running quiz progresses.
This Quiz Server implementation section is divided into; server initialization, per-
sistence, packaging, messaging, http and caching. The structure is not necessarily
the same as in the code-base, but is presented in a more readable manner. The
following sections describe them respectively.

9.6.1 Server Initialization

Because the Quiz Server is a web application, no main class exists per say. When
the web application is deployed, IndexServlet is selected as the first servlet to
initialize. The IndexServlet also serves as the welcome file, for default access to
the web server. This class overrides the init() method from Servlet, which in turn
initialize the configuration, persistence and the message queue; and registers it with
the ServiceLocator. The ServiceLocator, as described in Section 7.3, centralizes
distributed service object lookups provides a centralized point of control, and may
act as a cache that eliminates redundant lookups [55].

The initializeConfiguration() method tries to locate the default configuration file,

9.6. QUIZ SERVER 117

or otherwise create it. The different settings for each part of web application are
loaded into the Configuration object at startup. If the configuration file is created
for the first time, the initializeDefaultConfigurationValues() is called. This method
creates the default settings and writes them to the configuration file. This file is
called configuration.xml and is stored in the same folder as the web application’s
Web application Archive (WAR) file. When this part has registered all necessary
settings, it is registered at the ServiceLocator for further access.

The initializePersistence() method registers all the persistence managers to the ser-
vice locator. The current managers are: IQuestionManager, IQuizManager, IIcon-
ResourceManager, IImageResourceManager and QuizResultManager and IUser-
Manager. These are further described in Section 9.6.2. If default persistence data
is needed in a fresh database, it should be initialized via this method.

The initializeMessageQueue() method contains logic for configuring, creating and
starting the Distributed Message Queue on the Quiz Server. It obtains the listener
port, and the listener backlog, via the configuration service. It creates a Connec-
tionHandler and a DistributedMessageQueueFactory object, which is required to
create an instance of the Distributed Message Queue, as explained in Section 9.1.
Further, it calls the createServer() method in the DistributedMessageQueueFac-
tory object with the listener port, listener backlog and connection handler as argu-
ments. This method creates and starts the server, unless the port is unavailable,
which yields a PortAlreadyInUseException. The initializeMessageQueue() method
initializes the connection handler, and registers all the components mentioned to
the service locator.

If all the aforementioned initialization processes are successful, the web application
will start. In all other cases, the system administrator will get meaningful responses
in the server log on what could have gone wrong. Deployment information, possible
errors and other runtime problems are described later in Appendix C.

9.6.2 Persistence

As described in Chapter 8, the Quiz Server manages a storage of quiz data and
statistics. This includes users, quizzes, questions, resources, statistics; which is rep-
resented as persistence entities. The Quiz Server’s “persistence.entities” package
contains all entities regarding the persistence. An Entity is a lightweight persis-
tence domain object [22]. Typically, an entity represents a table in a relational
database, and each entity instance corresponds to a row in that table [22]. These
entities are persisted back and forth from the database via managers, which all
extend the ManagerBase. Each entity type is managed by its respective manager.
Each manager implements a different interface for registering the manager as a ser-
vice with the service locator. All our entities extend the EntityBase class, which is
an abstract class containing shared methods and fields. The ResourceEntityBase
is a shared abstract class which all the resource entities extend. This class contains

118 CHAPTER 9. IMPLEMENTATION

the shared logic for the icon and image resource entities, and the future audio and
video entities.

The “persistence.managers” package contains all the managers and their inter-
faces. These managers persists entities to the persistence. We describe some of
these managers in this section. The IIconResourceManager and IImageResource-
Manager extend the IResourceManager. The IResourceManager interface uses a
generic template named ResourceEntityBase, as seen in Listing 9.1.
public interface IResourceManager <T extends

ResourceEntityBase>{
List<T> getResourceL i s t () ;
T getResourceByUID (St r ing resourceUID) ;
. . .

}
Listing 9.1: IResourceManager interface

The reason why we chose to implement it in this manner, is that it allows uniform
treatment of resource data between different resource types. The two current
supported resource types are icons and images, but could easily be expanded to
video and audio. We chose to make this logical grouping, because resources are
handled as binaries with shared meta data.

The ManagerBase, that all the managers extend, contains logic for persisting trans-
actions, both with and without results. Examples on these transactions are meth-
ods like persist(), refresh(), merge(), remove() and find(). Following, the Manager-
Base utilizes the PersistenceManager which again holds the reference to the main
persistence object; the EntityManagerFactory. All managers and the Persistence-
Manager are created just once at server initialization, and can be located using
the Service Locator.

The Lecture Quiz system contains more than six libraries and projects, and uses the
shared models in the Lecture Quiz Packaging library, as described in Section 9.3.
To convert between these models and the Quiz Server entities, we have created
four converters. The converters include two classes for exporting and importing
QuizEntity objects; and two for exporting and importing QuizResultEntity models.

9.6.3 Packaging

Packaging is used in the distribution of quizzes. It is also related to the process of
importing-exporting statistics.

As described in Section 7.2 and Section 9.1, most communication is done through
the Distributed Message Queue. One exception is the distribution of quiz pack-
ages, which would require unnecessary resources from the Distributed Message
Queue. To relieve the Distributed Message Queue of heavy traffic due to down-

9.6. QUIZ SERVER 119

loading quiz packages, the Quiz Server supports HTTP download of these. To gain
access to the Quiz Server via HTTP, we have introduced the QuizPackageLeaser.
This class enables non-authenticated access to quiz packages. To download a quiz
package, you will need the correct URL and a unique identifier which is received
via a QuizDownloadMessage. The unique identifier is generated by the QuizPack-
ageLeaser, and is sent via the message queue to an authorized Presentation Client
upon request. The identifier is linked to one unique quiz package, has a lifetime
of 10 minutes and will only work one time. The QuizDownloadMessage is located
in the Lecture Quiz Messages library, as described in Section 9.2.

The process of importing and exporting quizzes to and from the persistence is
handled by the PersistanceManager. Quizzes are stored in the persistence as a
hierarchy, as explained in Section 9.6.2. The main entity is the QuizEntity, and
its respected manager takes care of insertion and extraction of data from the
persistence. A QuizEntity is only represented in the Quiz Server and is unknown
to other parts of Lecture Quiz. We have created an importer to obtain a QuizEntity
from a QuizPackage; and an exporter to obtain a QuizPackage from a QuizEntity.
This is done in two steps. The first step is the conversion between quiz packages
and quiz models, and is described in Section 9.3. The second step is the conversion
between quiz models and quiz entities and was described in the previous section.

Statistics can be imported to the Quiz Server in two ways; where the first is via
Presentation clients over the Distributed Message Queue; and the second is to
import statistical packages via the web interface. The first way is described in
Section 9.2 and the second way is described in this section. It is possible to im-
port quiz packages via the web interface, the same way as statistical packages are
imported. Because of the similarities in the process of importing packages, we
will only describe the way statistics packages are imported. When a statistical
package is sent to the server, the MultiPart filter will preprocess the information
and wrap the request in a MultiPartRequestWrapper object. The reason we use a
MultiPart filter, is that JSF does not support the Multipurpose Internet Mail Ex-
tensions (MIME) multipart message form of posting web data. This is the filters’
only task, and it will pass the request to the next in the filter chain. The Mul-
tiPartRequestWrapper extends the HttpServletRequestWrapper, which is a Java
Servlet 3.0 class. HttpServletRequestWrapper provides a convenient implementa-
tion of the HttpServletRequest interface. This class can be extended by developers
wishing to adapt the request to a Servlet [22]. The HttpServletRequestWrapper
separates the different parts in the multipart form and stores them in a MultiPart
List. The MultiPart class is represented as a model which contains: a Part [22],
the file data stream and the filename. Parameters are stored in a HashMap so
that meta data can be cached, e.g. filename. After the filters have finished pro-
cessing the request, the StatisticsBean’s uploadStatisticsPackage() method called.
This method obtains the QuizResultManager object from the service locator. It
loops through a MultiPart list, which is obtained via our static FacesUtils’ get-
MultiParts() method. And it persists each MultiPart object to the database via a

120 CHAPTER 9. IMPLEMENTATION

QuizResultManager’s createQuizResultEntityFromMultiPart() method. The con-
version from MultiPart to statistics and quiz packages is handled by the Statistic-
sPackageUtils and QuizPackageUtils classes.

9.6.4 Messaging

The messaging package contains a number of message handlers and one connection
handler. The ConnectionHandler class is used to receive incoming connections, and
register outgoing messages to these. For more information about this class, see
Section 9.1. Both the ConnectionHandler and MessageQueue objects are initial-
ized and registered to the service locator on server start up. In this version of
the Quiz Server, we have created three message handlers: QuizRequestHandler,
ResourceRequestHandler, StatisticsRequestHandler and the UserRequestHandler.
All extend the RequestHandlerBase class which contains information about the
MessageQueue, ConnectionHandler and keeps an overview over connected Presen-
tation Clients. Each of these handlers is explained in the following sections. We
will elaborate on how they process message requests and respond where applicable.

The QuizRequestHandler handles quiz related messages and contains the four fol-
lowing messages. The RequestQuizListMessage is a request message without ad-
ditional data. It is used to request a list of which quiz packages that are available
on the server. The message is answered with a QuizListMessage. This response
message contains a list of unique quiz identifiers.

A RequestQuizInfoMessage is sent from a Presentation Client to obtain informa-
tion from a single Quiz. The message contains a unique identifier for the quiz,
and the response is of the type QuizInfoMessage. A QuizInfoMessage contains
the name, description, author, a unique identifier, the question count and an icon
resource. This request is used in connection to presenting quiz information to the
lecturer.

A RequestQuizDownloadMessage is a request message containing a unique quiz
identifier. The response to this message is a QuizDownloadMessage. Its purpose
is to send a one-time download URL where the Presentation Client can download a
quiz package. For more information about the packaging of these quizzes, see Sec-
tion 9.6.3. This operation is handled by the leaseNewPackageAndSendMessage()
method, which in turn utilizes functions described in Section 9.6.3.

The IsQuizPackageValidMessage is a request message which confirms whether a
quiz still exists at the Quiz Server. Presentation Clients caches quiz packages and
can find out whether a quiz package has been updated. To confirm this, it sends an
IsQuizPackageValidMessage. This message contains the quiz’ database reference
and the current unique identifier of the quiz package. If these unique identifiers
matches, there is no response. On the other hand, if the quiz has been updated,
it sends a QuizDownloadMessage.

9.6. QUIZ SERVER 121

The ResourceRequestHandler handles message requests related to HTML, CSS
and graphics storage. It processes messages of the RequestResourcesLocation-
Message type. This can relieve Presentation Clients of bandwidth, by providing
players with an alternative location for requesting resources. The response is of
the ResourcesLocationMessage type, and contains the URL to the resources. This
URL is created in the same manner as the QuizDownloadMessage.

The StatisticsMessageHandler is responsible for processing messages of the type
QuestionResultMessage. These messages supply the Quiz Server with quiz results.
The Quiz Server use the quiz results to create statistics. An alternative to this is
to upload the StatisticsPackage, generated by the Presentation Client, directly via
the web interface.

The UserRequestHandler is responsible for handling user authentication. It pro-
cesses login and logout requests from Presentation Clients. The Quiz Server will
only supply services to authorized users. A Presentation Client achieves this by
sending a UserLoginMessage with a username and password. The Quiz Server
responds with either a UserLoginSuccessMessage or a UserLoginFailedMessage.

9.6.5 Java Server Faces

The presentation of web pages is done with the help of the JSF framework. JSF
is a Java-based Web application framework intended to simplify development in-
tegration of web-based user interfaces.

The Quiz Server has been created according to the MVC architecture pattern. We
base each page on a template. This template contains a header, body and footer
HTML structure. The template allows each page to change content in each of
the structural elements. A default header with navigation bar is included in the
template, to achieve a consistent look on the web page.

JSF is based on the FacesServlet, which works as a regular Java Servlet. It is
controlled by the framework, which filters and redirects traffic to template or
facelets views. These views are represented by Extensible HyperText Markup
Language (XHTML) files. Facelets is a simple and effective view description lan-
guage, and is rather an extension of the JSTL than JSP [19]. This framework is
further described in Chapter 5.

Each web page has been created to represent a persistence entity. Because of this,
the entities represent models, and the respective web page represents the view.
These entities are described in Section 9.6.2.

122 CHAPTER 9. IMPLEMENTATION

Beans

The “faces.beans” package contains the controller classes for the Quiz Server
web pages. These classes function as the controllers in the model-view-controller
(MVC) pattern, with web pages as views. This is described in Section 7.3.3.
We have created five classes, where all extend the abstract BeanBase class. The
abstract class BeanBase, contains shared methods used by other beans. Beans
extend this class to apply construction logic and manage parameters. The five
bean classes are the QuestionBean, QuizBean, ResourceBean, StatisticsBean and
the UserBean. We describe the QuizBean as an example.

Quiz related views use the QuizBean to get access to quiz management. The
QuizBean class offers methods for saving, uploading, and removal, of quizzes.

Properties

The “faces.properties” package contains the files; “constants.properties”, “links.properties”,
and “messages.properties”. We have created these files to allow non-developers to
change the textual language of the Quiz Server. It also enables localization, which
is an important feature for multi lingual support.

9.6.6 Caching

The caching package contains the MemoryCache class and the IDataCache in-
terface. We have created the MemoryCache class to enable intermediate storage
of resources. It functions as an intermediate, when users request image/icon re-
sources as thumbnails, as shown in Figure 7.30, Section 7.4.3. While the Quiz
Server is running, the getData() method is called for every thumbnail request. A
resource identifier is passed as a parameter and the thumbnail is returned if it is
stored in the MemoryCache object. If the resource is not available, it is fetched
from persistence, and the thumbnail is stored in the MemoryCache object via the
setData() method. The next time this resource is requested, the getData() method
returns it directly.

9.6.7 Servlets

The servlet package contains sub-packages such as “servlet.servlets” and “servlet.filters”.
In addition to JSF, the Quiz Server use custom servlets, such as the Download-
ImageServlet and DownloadPackageServlet classes. These work beside JSF and is
handled by Java’s core servlet functionality.

The DownloadImageServlet handles icon/image requests on the Quiz Server web
page. When an image is requested, this servlet is responsible for providing the

9.7. SUMMARY 123

image data.

The DownloadPackageServlet is responsible for serving quiz packages over HTTP.
Both the Quiz Server and the Presentation Client utilize this.

Filters

The “servlet.filters” package contains the GeneralFilter and MultipartFilter classes.
Both uses the @WebFilter Java annotation, as described in the Java API.

The GeneralFilter class is set up to listen to all web page requests regarding “quiz”,
“question”, “statistics”, “users” and “resource”. This is the first filter in line, and
is used to redirect a user to the login page if the supplied session cookie is invalid.
In all other cases, it will call the chain.doFilter() method which send the request
to the next filter in the chain.

The MultipartFilter class listens to three specific web page requests; namely the
“uploadimage.xhtml”, “uploadicon.xhtml”, and “uploadpackage.xhtml”. As de-
scribed in Section 9.6.3, it handles file uploads, where it wraps the HttpRequests
inside the MultipartRequestWrapper class. This is a necessity, since JSF does not
come with logic for handling Multipart forms.

9.7 Summary

During the master thesis, we spent four months developing Lecture Quiz 3.0. This
resulted in seven different code projects and three usable applications. These
projects contain about 75000 lines of code, divided between 900 code files. We
focused on keeping the code-base as clean and free for duplications as possible.

124 CHAPTER 9. IMPLEMENTATION

Chapter 10

Lecture Experiment

In this chapter, we present our experiment where Lecture Quiz was tried out
in a lecture environment. For details about the experiment method used, see
Section 3.1.

In the first sections, we present the context, delimitation, participants and environ-
ment of the experiment. We made five success criteria, and these are presented as
SC1 to SC5. Finally, we describe the execution of the experiment. In Chapter 11,
we present the results, evaluation and our conclusion of the experiment.

10.1 Delimitation

The goal of this experiment was to test Lecture Quiz in a real lecture environment.
This way we could observe the system’s pros and cons. In addition we could
obtain written evaluations from the students participating via a questionnaire.
This questionnaire can be seen in Appendix B. Complex statistical analysis and
comprehensive psychological analysis, were out of the scope in this project, since it
is not only a research project, but also a development project. Because of this, the
results cannot be generalized. However, trying out the system, and asking potential
future users what they think, could reveal useful information and arguments that
we might use for continued work on finishing and commercializing Lecture Quiz.
The results also give indications for use in various lecture environments. We tested
usability, functionality and to some degree performance of the Lecture Quiz 3.0
system. In addition to this, we tried to measure whether the system had an
increased effect on students’ learning, during the lecture.

125

126 CHAPTER 10. LECTURE EXPERIMENT

10.2 Experiment Context, Environment and Par-
ticipants

The experiment took place on May 10th, 2011, at lecture hall KJ2 at NTNU,
Trondheim, Norway. The experiment was prepared by us, and led by our supervisor
and associate professor Alf Inge Wang. Wang had the role as the lecturer, and
held a summary lecture the hour preceding our experiment. Thus the students
were warmed up on the theme of the questions, which is a preferable situation
for executing a lecture quiz session. The lecture hall had one wireless access
point available to the devices of the students, as well as the lecturer. A modular
connector was also available for local area network (LAN) connection, but was not
used. A Projector and big-screen were a necessity, and also available in the lecture
hall.

In addition to this, the students were sitting together in a way that made it possible
to discuss, and communicate with the lecturer and ourselves. We believe that, e.g.
the font size on the big screen was suitable for the specific size of the group of
students, and thus size of the lecture hall.

All the participants were students taking the TDT4240 Software Architecture
course. 75 students attended the lecture, and 62 of these were equipped with
devices that managed to access our Player Client. They used their own mobile
equipment - mostly smart phones, tablets and notebooks - to participate through
a JavaScript enabled web browser.

Because the WLAN infrastructure did not withstand the amount of requests, we
had to ask the students to form groups with one to four students on each team.
This resulted in 18 mobile clients connected, instead of the first 62.

We assume that the participants had experience with a wide range of different
computer software, since most of them study computer science. None of them had
tried Lecture Quiz in advance of the experiment.

10.3 Success Criteria

In this section, we present a set of success criteria, describing the most important
goals of our experiment. Confirmation of the criteria was regarded as success.

SC1 - The client software should run on 90 percent of the clients.

SC2 - The system is considered user-friendly.

SC3 - The system is not considered having a distracting effect on the lecture.

10.4. EXPERIMENT EXECUTION 127

SC4 - The students think the system has a positive effect on the lecture and
learning.

SC5 - The students find the system inspiring and fun.

10.4 Experiment Execution

As mentioned, theory from the semester was summarized and discussed in the first
part of the lecture. The experiment took place in the second part of the lecture,
after a short break. The students were allowed to ask questions any time. The
experiment was videotaped, for documentation and analysis.

10.4.1 Network Infrastructure Problems

The lecturer started Lecture Quiz’ Presentation Client and connected it to the
projector. The URL of the Player Client is shown in the bottom left corner of the
Presentation Client, as shown in Appendix E. We also wrote this address down
on the blackboard. As this was in the break, we had not announced anything yet.
Students started to connect to the Player Client with their devices; they logged in
and students recognized their username on the projector screen. When all students
were back from the break, we announced how to connect to the Player Client. This
was basically unnecessary, as almost all the students were already connected and
waited for the next step.

Network issues occurred when the lecturer started the quiz. All the student equip-
ment and the laptop running the Presentation Client were connected to the same
WLAN. This caused an amount of requests and responses that the network equip-
ment did not support, and made the game very sluggish. In addition to this, the
lecturer’s Wi-Fi equipment was bombarded with requests, far more than it sup-
ports. This led to that both the lecturer’s Wi-Fi and the WLAN did not cope
with the traffic. We tried to start the game, but none of the students’ clients got
any responses, and we had to turn off the Presentation Client software. We asked
the students to team up on fewer devices, as described in Section 10.2. The result:
the previously 62 connected devices were now reduced to 18. This was not the
original intent, but merely a necessary adaptation as it would be too cumbersome
to move to a lecture hall with optimal wireless infrastructure.

10.4.2 Running Lecture Quiz

The lecturer picked the Software Architecture quiz, containing 22 questions. He
selected the “Free for all” game type, which means that the 18 players compete
with each other. Because we had to limit the number of clients, multiple students

128 CHAPTER 10. LECTURE EXPERIMENT

shared one device. Further, six game modes were added, mixing Point Building
and Last Man Standing. He gave a short introduction to what were to happen
next and started the quiz.

The students played through the software architecture questions. After the gaming
session, we handed out questionnaires to the students who participated in the
quiz game. The results from the questionnaires and observation are presented in
Chapter 11.

10.5 Follow-up Test

After analyzing our results, we improved Lecture Quiz with regards to the problems
found during the experiment. We ran a small test in lecture hall F1, to evaluate
these improvements. This lecture hall supports more than 500 participants and
has six WLAN access points.

The Presentation Client ran on our laptop and was connected to the network,
via a modular connector. We connected it to the lecture hall’s audio and video
equipment, and it was shown on a big-screen. Our supervisor lent us 18 devices
which we connected to the Presentation Client with the help of four colleagues.
Totally, we used 22 devices: 15 iPods, 3 iPhones, 4 HTC phones, and two laptops.

We ran all five available quizzes, with a total of 62 questions. The session lasted
more than one and a half hour, yet our colleagues did not want to stop playing.
This time, both the Presentation Client and the player devices ran smoothly,
and there were no network infrastructure issues. The results are presented in
Chapter 11.

Part V

Evaluation

129

Chapter 11

Experiment Summary

In Chapter 10, we presented our lecture experiment. In this chapter, we present
the results, evaluate, and conclude the experiment based on some success criteria.

11.1 Results

In this section, we present the results from the lecture experiment, as described in
Chapter 10. These results are divided into three sections: the questionnaire, the
video material, and the follow-up test.

11.1.1 Questionnaire

In this section, we present the results from the questionnaire. We have divided the
questionnaire into four sections: SUS score, technical, client and learning. This is
the same breakdown as in the evaluation form, as seen in Appendix B.

SUS Score

The second page of the questionnaire contains a System Usability Scale (SUS).
Some of the participants answering our questionnaire only answered the first page,
leaving the second page blank. We had to omit these from the result, giving us
30 valid questionnaires for the SUS calculation. To calculate Lecture Quiz’ SUS
score, we decided that unanswered questions will give the score 2, which represents
neutral. This is also recommended by the authors of the SUS system [36]. In
addition to this, even and odd questions are calculated differently, this is explained
in detail in Section 3.1.1.

The Lecture Quiz game received a SUS score of 81 out of 100, despite network

131

132 CHAPTER 11. EXPERIMENT SUMMARY

infrastructure issues. This score has been calculating by summing each of the ten
questions, as shown in Table 11.1. We have also added a column which represents
the average of the raw data.

Question Avg Score
1 I think that I would like to use this system frequently 3.57 6.42
2 I found the system unnecessarily complex 1.6 8.50
3 I thought the system was easy to use 4.3 8.25
4 I think that I would need support of a technical person to be able to

use this system
1.23 9.42

5 I found the various functions in this system were well integrated 3.47 6.17
6 I thought there was too much inconsistency in this system 1.87 7.83
7 I would imagine that most people would learn to use this system very

quickly
4.67 9.17

8 I found the system very cumbersome to use 1.67 8.33
9 I felt very confident using the system 4.03 7.58
10 I needed to learn a lot of things before I could get going with this

system
1.27 9.33

Total SUS Score 81.00

Table 11.1: Lecture Quiz SUS scores.

Technical

The technical part of the questionnaire contains questions regarding connection,
mobile brand, etc., as shown in Appendix B. In this section, we present the results
from this part of the questionnaire. The results are divided into four questions,
where each is numbered as in the questionnaire:

4. What connection did you use?
Before we held the experiment, we assumed most of the students would use a
Wireless LAN connection. The lecture hall has support for WLAN, but other
connections, such as 3G, is also a decent alternative. We divided the ques-
tion into four different connections: Wireless, Cable, 3G and GPRS/EDGE.
Based on 34 student answers, 32 used WLAN and one used 3G.

5. What brand is your mobile/computer?]
This question is rooted in the versatility of our software and is described in
Section 3.1. We assumed that most of the students would use notebooks or
some variant of smartphone, but we wanted to test our software on as many
mobile platforms as possible. The results showed that 17 of the students
used notebooks, where Linux, Mac OS X and Microsoft Windows were fairly
distributed. 10 of the students used HTC and 2 used iPhone. There were
four other brands used, with only one of each. The devices were: iPod, iPad,
Nexus and Samsung. One of the students chose not to answer this part

11.1. RESULTS 133

of the questionnaire. A composition of the different brands can be seen in
Figure 11.1.

Figure 11.1: Device brand pie chart.

6. What operating system did you use?
This question is meant as a follow up question. It is used to give addi-
tional information in cases where the user reports client trouble. This is to
increase the chance of reproducing eventual client bugs or errors. As seen
in the previous question, the notebook users were distributed between the
Linux, Microsoft Windows and Mac OS X OSs. The OS distribution of the
notebooks can be seen in Figure 11.2 and smartphones in Figure 11.3.

Figure 11.2: Notebook OS distribution.

7. What web browser (and version) did you use during the test?

134 CHAPTER 11. EXPERIMENT SUMMARY

Figure 11.3: Smartphone OS distribution.

This question is related to the usability of our system. We want to support
as many web browsers as possible. The question is tightly connected with
Question 16a, as the combination allows us to see which web browsers work
with Lecture Quiz. The web browser distribution of the notebooks can be
seen in Figure 11.4 and smartphones in Figure 11.5.

Figure 11.4: Notebook browsers pie chart.

Client

The Client part of the questionnaire contains questions regarding client issues.
It gives us an indication if the client software worked properly on the students’
devices. This part has one yes/no question and two qualitative questions. We will

11.1. RESULTS 135

Figure 11.5: Smartphone browsers pie chart

try to summarize the most important qualitative contributions.

16a. Did the client software work properly on your phone/computer?

Because of the network issues during the initializing of our experiment, many
students have answered that the client software did not work properly. The
students have commented that the software did not work properly because of
technical errors, such as delay and WLAN faults. There were no issues apart
from the network issues, and from this point we will only address network
related issues. To give more depth, we have separated the results where the
students said the software worked with network issues and without. The dis-
tribution of the notebook users can be seen in Figure 11.6, while Figure 11.7
represents the smartphone users. We created a combined distribution of both
notebooks and smartphones, as seen in Figure 11.8.

16.b If no; please describe the problem?

This is the first of two closed-ended questions in our questionnaire. We are
interested in finding out why the software might not work properly, and be-
ing able to reproduce/fix the problem? Of the 34 students, 16 answered this
question. 10 of these replies stated in few words, that the WLAN was over-
loaded. Two of the students complained that the client felt “a bit slow” and
“some delay”; both using notebooks. Two students had problems with auto-
refreshing of the page. One replied “bit buggy during refresh”, where one
stated that “one time I needed to refresh”. One student lost his connection
during the quiz, but no more information is given. One student answered
“No text on buttons?”, which was how the client was purposefully designed.

17. Are there anything else you would like to comment?

136 CHAPTER 11. EXPERIMENT SUMMARY

Figure 11.6: Notebook work properly distribution pie chart.

Figure 11.7: Smartphone work properly distribution pie chart.

This is the second and final closed-ended question from this questionnaire. 12
of the 34 students replied to this question. It encourages the students to give
their final marks about the system, in their own words. Many uses this for
suggesting further improvements, while others just state their feeling about
the system. Responses of this type were “Nice!”, “A very good idea. I like
it!” and “Great system”. Several mention that the green and yellow button
on the Presentation Client is almost indistinguishable. Another student goes
in depth of this problem and suggests to use some kind of number or letters
to represent the buttons. He adds that color blind players would otherwise
have a hard time distinguish the answers. One student mentions that sound
would be nice. Two students elaborate the network problems, and both
propose to use an external server to solve these problems. We only received

11.1. RESULTS 137

Figure 11.8: Overall work properly distribution pie chart.

one comment about learning, and it is so remarkable that we cite it: “Nice
way to make students aware that they know less than they think”.

Learning

The Learning part of the questionnaire contains eight questions, and addresses
Lecture Quiz’ effect on learning. These questions are numbered 8 to 15, as seen
in Appendix B. All questions are on the same notation as the System Usability
Scale (SUS), which is described in Section 11.1.1. Scores are ranked from 1 to
5, which is represented as “strongly disagree”, “disagree”, “neutral”, “agree”, and
“strongly agree”. We have summarized all the questions and calculated their unique
average scores, as shown in Table 11.2.

Question Average
8 I like to compete 4.15
9 I think I paid closer attention during the lecture because of the system 3.88
10 I found the system had a distracting effect on the lecture 1.94
11 I think I learn more during a traditional lecture 2.5
12 I found the system made me learn more 3.38
13 I found the system made the lecture more fun 4.41
14 I think regular use of the system will make me attend more lectures 3.62
15 I like the way I can interact in the lecture using the system 3.97

Table 11.2: Learning scale average distribution.

138 CHAPTER 11. EXPERIMENT SUMMARY

11.1.2 Observation

We watched the video to observe the reactions of the participants. In the video,
the students are looking toward the big-screen for long periods of time, and then
at each other after the questions are given by the lecturer. They are discussing
eagerly with one another, and laughing. They seem to be laughing in the “right”
places, i.e. not like if they find Lecture Quiz ridiculous, but like if they find it
enjoyable. For example, they laugh as the scores change in the big-screen, in front
of everyone. Thus it seems like they experience it as a competition, or game. In
general we get the impression that they are engaged and participate with pleasure.
They seem to take it seriously, as if it might have some academic value. We assume
that the lecturer represents a kind of authority, that the students “trusts” to give
them academic quality. The questions used in the specific quiz are possibly also a
“proof” to them that participation might be useful.

11.1.3 Follow-up Test

In our second test, we found out that the system supported all player clients used
during the test. 15 iPods, 4 HTC phones, 3 iPhones, and two notebooks were
represented. None of the clients had to relog in between the different quizzes. The
notebook running the Presentation Client ran stable during the whole test, and
no application restart was needed.

21 of the devices was connected though WLAN and one via 3G. During this test,
none of the participants noticed any WLAN or 3G issues.

Based on the observations we did during the test and in the aftermath, the par-
ticipants stated that they found the session both educational and fun. Two of our
colleagues even told us they would appreciate a new Lecture Quiz gaming session
the following week, but unfortunately we did not have time for this.

11.2 Evaluation

In this section, we evaluate the results from Section 11.1. In Section 10.3 we
presented five success criteria, SC1 to SC5. These will be evaluated based on the
results obtained from the questionnaire, as shown in Appendix B.

SC1 - The client software should run on 90 percent of the clients.
Based on the findings in Section 11.1.1, only two students stated that the
client software did not work properly. We excluded the 11 students who
answered no because the WLAN broke down. Based on this, only 2 out
of 34 participants could not get the client to work. This gives a coverage

11.2. EVALUATION 139

of 94.1 percent, which satisfy this success criterion. In the follow-up test,
all 22 clients worked properly, which give additional support to this success
criterion.

SC2 - The system is considered user-friendly.
This success criterion is related to the usability of the system, and we have
measured this utilizing a System Usability Scale (SUS) score. The Lec-
ture Quiz game received a SUS score of 81 out of 100, as described in
Section 11.1.1. The average of SUS score results have been thoroughly re-
searched the past two decades. This research shows that the average SUS
score lies between 52 and 68 [60]. A SUS score of 81 suggests that our
system can be considered user-friendly. We had WLAN trouble during the
initializing of our experiment, and this seems to have affected the test data.
We believe that the SUS score would be higher in an experiment without
network trouble.

SC3 - The system is not considered having a distracting effect on the lecture.
Statement 10 in Table 11.2 states that “I found the system had a distracting
effect on the lecture”. The average score is 1.94. All 34 participants answered
this statement, and the score represents that the students disagree. These
results can be seen as a clear indicator that the criterion has been satisfied.
In future releases, we would like to decrease this score even more.

SC4 - The students think the system has a positive effect on the lecture and
learning.
This success criterion is related to the learning part of the experiment re-
sults, as seen in Section 11.1.1. Five of the statements in Table 11.2 can be
considered relevant to this criterion.
As seen in the evaluation of H3 and statement 10, the students disagree
that the system had a distracting effect on the lecture. In addition to this,
statement 9, states “I think I paid closer attention during the lecture because
of the system”. This statement received an average score of 3.88, which means
the consensus is closer to agree than neutral.
Statement 12, states “I found the system made me learn more” and received
an average score of 3.38. This is directly related to learning, but the word
“more” is ambiguous and can have affected the score. Either how, the average
student is more positive than neutral, toward the statement. This statement
is closely related to statement 11, which states “I think I learn more during
a traditional lecture”. The average score of this statement is 2.5, which
indicates that the student consensus is between disagree and neutral. If
compared to statement 12, similarities indicate that the Lecture Quiz system
has a positive effect on learning.
We created statement 14 to find out whether students think regular use of the
system will make them attend more lectures. This statement got an average

140 CHAPTER 11. EXPERIMENT SUMMARY

score of 3.62, which means that the consensus is closer to agree than neutral.
This result indicates that slightly more students will attend lectures.
The average score of the learning statements of the questionnaire has positive
results, which indicates that the system has a positive effect on the lecture
and learning.

SC5 - The students find the system inspiring and fun.
Statement 13 in Table 11.2 gave an average score of 4.41 out of 5, where
“5” represent strongly agree. The statement “I found the system made the
lecture more fun” was answered by all 34 participants. This result can be
seen as a clear indicator that the Lecture Quiz game had a positive effect on
how fun the students found the lecture.
Statement 8 states “I like to compete” and this can be related to our goal
of making the system inspiring. All students answered this statement, and
the average score was 4.15. Statement 15 is also related to the inspiration
of students and states “I like the way I can interact in the lecture using
the system.”. This got an average score of 3.97. This places the consensus
between agree and strongly agree, which makes us reach our goal of making
the system inspiring.
In addition to this, during the follow-up test our colleagues said they enjoyed
the quiz session and requested a recurring event.

11.3 Conclusion

In the first phase of our experiment, we experienced technical problems with the
network infrastructure, and the result from the client part of the questionnaire
support this. As presented in Section 11.1.1, 12 of the 34 participants gave a
comment on why the client software didn’t work properly. All of them replied
in the lines of network infrastructure problems. Despite these problems, we have
received high scores from both the SUS and the learning part of our questionnaire.
However, in the follow-up test, all represented client devices worked properly,
and none of our colleagues had any technical issues. The next time we do a
large scale experiment of the Lecture Quiz game, we will ensure that the network
infrastructure will support the amount of participants. Given a suitable network
infrastructure, we feel confident that the Lecture Quiz would get an even higher
score.

The evaluation of the success criteria, indicated the following trends:

• The software works on at least 90 percent of the clients.

• The system supports running games in a medium sized lecture hall, with 30
to 80 students.

11.3. CONCLUSION 141

• Most students considered the system user-friendly, and easy to start.

• The system did not have a distracting effect on the lecture.

• Most students found the system had a positive effect on the lecture and
learning.

• The students found the system both inspiring and fun.

142 CHAPTER 11. EXPERIMENT SUMMARY

Chapter 12

Project Evaluation

In this chapter, we evaluate our research, development and documentation process.
We reflect on whether we have managed to follow the research method we chose
initially, the Scientific method. In addition we analyze the functional requirements
and quality requirements, and discuss how well these are met in our system.

12.1 Project Evaluation

In this section, we give an overall evaluation of our own contribution, described in
Part IV.

12.1.1 Research

We started this master thesis evaluating our specialization project, by analyzing
the conclusion and further work. We had several new ideas for improvements,
so we created the technology chapter by testing and comparing technologies and
frameworks. This proved out to be a good baseline, because we described our
research questions, research method and our lecture experiment.

In our specialization project, we looked at similar solutions that are used in edu-
cational environments. This information has been of good use to us in this master
thesis as well, although some of it had to be updated to cover the last six months.
By examining similar solutions’ structure and approach, we found that there are
no related solutions with the same game concept using our technical infrastructure
in lectures. This gave us motivation and belief that this system can be used, not
only in lecture environments, but also commercially when it is finished.

This master thesis is based on the work we did in our specialization project. How-
ever, our code-base is new and has no elements of code created by the previous
lecture quiz groups. We reused some parts that we wrote during the specialization

143

144 CHAPTER 12. PROJECT EVALUATION

project, but the overall architecture and implementation can be seen as completely
re-hauled.

12.1.2 Development

Concretizing the requirements, was an important step toward dividing function-
ality between the different components. Knowing which features each component
would support, we could divide the development between the two of us. This
improved the development pace as we could work independently where pair pro-
gramming did not give a bonus.

In comparison to the specialization project, we have learned each other coding
techniques better, leading to increased synchronization. This has led to a better
understanding of each other’s ideas and mindset. Because of this, we have managed
to do a lot of brainstorming, which has led to a flexible architecture and good
overall quality. Pair programming has been an important part of our development
process, and this has helped us overcome the more complex parts.

Motivation has been a key factor in the development of Lecture Quiz 3.0. Our
goal was to create a system that people would use and this had a positive effect on
our motivation and effort. The use of exciting technologies has also helped keep
us motivated during the development process.

12.1.3 Documentation

Documentation is an important factor of any master thesis, and this report is the
main input of evaluation. We decided to set a code freeze date to ensure we got
enough hours to work with this report. This gave us a good start in getting solid
documentation of our system.

Due to our extensive architecture, we have created several architectural diagrams.
These are represented in the documentation with different views. This helped cre-
ate an easy separation for different stakeholders when it comes to finding relevant
information.

We spent most of the project time developing the components for the game. This
means that we had to create documentation that reflects the hours of work we
put into the project. This resulted in a large own contribution part; Part IV. In
addition we developed a user guide, using screenshots to illustrate some of the
steps.

To increase the quality of the report, we interchanged the parts we have written
individually. By iterating this process we had a new pair of eyes with a potentially
different mindset on all parts of the documentation. Following discussions and
comments improved the thesis.

12.2. RESEARCH METHOD 145

12.2 Research Method

As described in Chapter 3, we chose to follow the scientific research approach. We
have followed the engineering method, but have also used the empirical method
as a part of the process. The engineering method has made it possible to experi-
ment with the combination of new ideas, and things that have been done earlier.
Our technology choices are based on the evaluation and testing of previous work,
platform compatibility and personal preferences. We have tested several imple-
mentation ideas, and evaluated which ideas we believe improve the framework the
most.

Using a lecture experiment, we received feedback on the usability of Lecture Quiz.
To measure the usability, we used the System Usability Scale. The SUS result
was presented in Section 11.1.1, and suggest that Lecture Quiz works on most
of the commonly used devices. The experiment revealed issues with the network
infrastructure, which has been an important factor in defining further work, as seen
in Section 14.1.1. After the experiment, we evaluated its results and observations,
and improved the Lecture Quiz code-base according to this. A few weeks later,
we performed a follow-up test where Lecture Quiz ran smoothly on all present
devices. In addition to this, there were no network infrastructure issues.

12.3 Functional Requirements

After the prestudy, we created functional requirements, as described in Section 6.1.
In this section, we give a short description on how each functional requirement
is made possible for the user. The requirements consist of the most important
functionality we want Lecture Quiz 3.0 to have. They are formatted as user stories,
and we present all the requirements as a whole.

During developing Lecture Quiz, these requirements have functioned as a red
thread, and are aimed at students, lecturers and developers. All of our func-
tional requirements have been satisfied, which is a 100% coverage. In addition to
covering the functional requirements, we have created a good basis for meeting
future requirements.

12.3.1 Presentation Client

The Presentation Client is responsible for running quiz games. This means that
most of the functional requirements for the Presentation Client involve setup and
execution of a quiz game. The Presentation Client is intended for the lecturer,
and the requirements are mostly based on the lecturer’s needs.

FR1 As a lecturer, I want to run quiz games, so that I can test the knowledge

146 CHAPTER 12. PROJECT EVALUATION

level of my students.
By using the Presentation Client, a lecturer can run games based on a quiz
and a composition of game modes. The Presentation Client offers game
statistics to the Quiz Server at the end of each game. These statistics can
be viewed on the Quiz Server client, to evaluate the knowledge level of the
students.

FR2 As a lecturer, I want to start team games, so that I can divide the students
into groups.
The Presentation Client offers the lecturer a choice of three different team
modes. The different modes are two teams, three teams and four teams.
Each mode allows the lecturer to divide students into teams.

FR3 As a lecturer, I want to start free for all games, so that I can put each
student up against each other.
When starting a quiz game with the Presentation Client, the lecturer can
select the “free for all” mode. This mode does not divide students into teams,
but instead let them play against each other.

FR4 As a lecturer, I want to display my computer address, so that I can tell
students where they can access the game.
The Presentation Client reads the computer’s address from the Player Client.
The address is presented in the lower left corner of the Presentation Client.
This address is displayed in every screen before the game starts, so that
students can join while the lecturer is setting up the game.

FR5 As a lecturer, I want to choose a quiz, so that I can decide what type of
questions the students have to answer.
The Presentation Client reads quizzes from the local file system and receives
quiz lists from the Quiz Server. When the lecturer creates a game, the
combined set of quizzes are available.

FR6 As a lecturer, I want to view a quiz, so that I can get a description of what
the quiz contains.
The lecturer selects a quiz which is used during a game, in the Presentation
Client. In this screen, the Presentation Client displays extended information
about each quiz. The information shown is description, author, question
count and more.

FR7 As a lecturer, I want to select one or more game modes, so that I can create
variation in the game play.
The Presentation Client allows the lecturer to select a combination of game
modes. This is done by adding game modes to a list, and sorting the list to
create game variation.

12.3. FUNCTIONAL REQUIREMENTS 147

FR8 As a lecturer, I want to see how many students are on each team, so that I
can decide if the teams are even.

When a lecturer is creating a team game in the Presentation Client, a team
setup screen is displayed. This screen shows a list of players for each team
and the number of players on each team.

FR9 As a lecturer, I want to see how many students are connected, so that I can
check if everybody is playing.

The team setup screen in the Presentation Client, contains information about
how many students are connected. The number of connected students is the
sum of the number of players on each team.

FR10 As a lecturer, I want to move a student from one team to another, so that
I can decide who plays on which team.

The lecturer can move players from one team to another in the Presentation
Client. This is done by selecting a player in one of the team lists, then
clicking the move left or move right button. By clicking one of the move
buttons, the player is moved to the team to the left or to the right of the
player’s current team.

FR11 As a lecturer, I want to automatically even teams, so that I don’t have to
move a student from one team to another.

The team setup screen in the Presentation Client contains a checkbox called
“Automatically even teams”. This checkbox makes sure that the teams are
even, as long as it is checked. If the teams are uneven, and the lecturer
checks the checkbox, players will automatically be uniformly distributed.

FR12 As a lecturer, I want to let the students select teams, so that I can tell
students to pick their own team.

The Presentation Client and the Player Client allows players to choose what
team they want to play with. This is done in the Presentation Client’s “team
select” screen, by checking the “Allow clients team select” checkbox. While
this checkbox is checked, the players are able to select team on their client
device. If players choose another team, they are moved to the correct team
list in the Presentation Client.

FR13 As a lecturer, I want to display information about the game mode, so that
I don’t have to tell the students how the game works.

When the Presentation Client runs a quiz game, it uses one or more game
modes. Each time a new game mode is started, the Presentation Client will
display information about that game mode. The information contains an
explanation on how the game mode works for the end-user.

148 CHAPTER 12. PROJECT EVALUATION

FR14 As a lecturer, I want the game to display questions and alternatives, so
that I don’t have to tell students the question and what they can answer.

During game play, the Presentation Client runs question rounds. At the start
of each round, the question is presented to the students. After 5 seconds,
the Presentation Client displays four buttons, which represents the different
alternatives. The students see the same buttons on their device, except that
they do not contain the alternative text. By clicking one of the buttons, the
student gives his one and final answer to that question.

FR15 As a lecturer, I want to decide when the next question appears, so that I
can speak about the current question.

The game is paused when a question has timed out. During this pause, it
displays the question, the alternatives, and if present, the question image.
This pause gives the lecturer time to lecture about the question or topic. To
resume gameplay, the lecturer can press enter, or click the left mouse button.

FR16 As a lecturer, I want to export statistics after a quiz, so that I can review
them later.

After a game is finished, and the Presentation Client is not connected to the
Quiz Server, it will offer the user to export statistics to file. This file can
later be uploaded to the Quiz Server, where it can be evaluated to test the
knowledge level of the students.

FR17 As a lecturer, I want statistics to automatically be uploaded to the server
when connected, so that I don’t have to export.

The Presentation Client sends game statistics to the Quiz Server after a
game has finished. This is done automatically, if the Presentation Client is
connected to the Quiz Server.

FR18 As a lecturer, I want to see student rankings, so that I can reward the best
team or student.

When a game is finished in the Presentation Client, it displays player names,
ranks and the score. The list is sorted by score, and allows both the students
and the lecturer to see the student rankings.

FR19 As a developer, I want to add a new game mode, so that I can change the
game logic.

This is supported by the Presentation Client, by extending the existing
GameModeBase class. The class contains general methods for deciding game
mode logic, which makes it easy for a developer to create new game modes.

12.3. FUNCTIONAL REQUIREMENTS 149

12.3.2 Player Client

The Player Client is the part of Lecture Quiz that involves the players. While being
run on the Presentation Client, it is presented on the students’ client devices. This
chapter involves the students’ functional requirements, to be able to play games.

FR20 As a student, I want to log in, so that I can participate in a game.
When a student opens the Player Client, a login screen is presented. This
screen allows students to login and join games.

FR21 As a student, I want to specify a username when logging in, so that I can
identify my player.
The Player Client login screen contains a username textbox. This textbox is
used to specify the student’s username. The specified name is presented by
the Presentation Client during gameplay. By looking for the username, the
students can identify themselves in-game.

FR22 As a student, I want to pick an alternative, so that I can answer questions.
The Player Client presents alternative buttons during question rounds. These
buttons look similar to the buttons on the Presentation Client, except that
they do not contain the alternative text. By clicking a button, the student
gives his one and final answer to the current question.

FR23 As a student, I want to see my score, so that I can track my progress.
Between and during question rounds, the Player Client displays the players’
current score. This allows students to keep track of their progress in the
game.

FR24 As a student, I want to select a team, so that I can join the team I want
to play together with.
Before starting a team game, the Presentation Client can allow players to
select team. This makes the Player Client display four team buttons, which
the students can use to change team.

FR25 As a student, I want to pick a vote selection, so that I can affect my team’s
choices.
Some game modes in Lecture Quiz, requires users to vote. This is to allow
each player to have a say in decisions made by the team. During votes,
the Player Client displays vote buttons. These buttons are similar to the
alternative buttons and allow the student to affect the team’s choice.

FR26 As a student, I want to see my rank at the end of the game, so that I can
determine how good I did in the quiz.

150 CHAPTER 12. PROJECT EVALUATION

When a game is finished, the Player Client displays a summary screen. This
screen contains information about the students’ score and rank. Students
can use this screen to determine how well they did on the quiz.

FR27 As a student, I want to see what I answered on a question, so that I can
compare it to the results on the screen.
After a question has been answered by all the students, or the timer for
the question has run out, the Player Client displays the students’ answers.
This allows the students to compare their choices to the alternatives being
presented by the Presentation Client.

FR28 As a student, I want to see my nickname associated with a team, so that
I know which team I am playing on.
The Player Client displays the player nickname on each screen after logging
in. During team gameplay, the Player Client displays the students’ team
name besides the player nickname. This allows the students’ to identify
which team they are playing on.

12.3.3 Quiz Server

The Quiz Server is an administrative tool, that allows lecturers to manage quizzes
and view statistics. The Presentation Client can be connected to the Quiz Server,
when running quiz games. The functional requirements are intended for lecturers,
as lecturers are the main users of the Quiz Server.

FR29 As a lecturer, I want to create quizzes, so that I can use them in lectures.
The Quiz Server client has a separate page for creating quizzes. Quizzes that
are created with the Quiz Server, is automatically available in the Presenta-
tion Client. This allows the lecturer to use them during lectures.

FR30 As a lecturer, I want to edit a quiz, so that I can correct errors.
After a quiz is created with the Quiz Server, it is available in the quiz list.
By selecting edit in the quiz list, the lecturer can make changes to a chosen
quiz. This allows the lecturer to correct errors.

FR31 As a lecturer, I want to delete quizzes, so that I can remove unwanted
quizzes.
The quiz list in the Quiz Server gives an overview of already existing quizzes.
To delete a quiz, the lecturer can click the delete button in the quiz list. This
allows the lecturer to remove unwanted quizzes.

FR32 As a lecturer, I want to log in, so that I can have a private account.

12.4. QUALITY REQUIREMENTS 151

To access the Quiz Server, the lecturer needs to have a user account. The
first page that appears in the Quiz Server client, is the login page. This
allows lecturers to login using their private user account information.

FR33 As a lecturer, I want to see statistics for a quiz, so that I can evaluate
student progression.
In the quiz list on the Quiz Server client, the lecturer can click the “Show
statistics” button. This allows the lecturer to view statistics associated with
the selected quiz, and evaluate student progression.

FR34 As a lecturer, I want to assign an icon to a quiz, so that I can create
questions involving images.
The Quiz Server supports uploading of icons and images. Images can be
assigned to quizzes, when they are created, or when editing a quiz. By
adding an icon to a quiz, the lecturer can create questions involving images.

FR35 As a lecturer, I want to download a quiz, so that I can run the quiz without
having a connection to the server.
The Quiz Server allows the lecturer to download quizzes. Downloaded quizzes
are stored as quiz packages, containing all the information needed to run the
quiz. Lecturers can use these packages to run quiz games, without being
connected to the Quiz Server.

FR36 As a lecturer, I want to upload a quiz, so that I can get other people’s
quizzes.
To add quizzes from other servers, the Quiz Server supports uploading of quiz
packages. By uploading quiz packages, the lecturer can use other people’s
quizzes.

FR37 As a lecturer, I want to be able to upload statistics, so that I don’t have
to be connected to the server when generating statistics.
Statistical packages are created when a lecturer has run an offline quiz game
on the Presentation Client. The lecturer can upload this package to the
Quiz Server client. The content of the statistical package will be added to
its respected quiz. This allows the lecturer to run offline games, and still
receive statistics saved on the Quiz Server.

12.4 Quality Requirements

In addition to functional requirements, we have created quality (non-functional)
requirements, which are described in Section 6.2. These quality requirements are
divided into three sections; modifiability, usability and availability. In this section,
we describe how each requirement is integrated into our solution, and a test to

152 CHAPTER 12. PROJECT EVALUATION

confirm that they are fulfilled by our system. We include the headline of each
quality attribute scenario.

In total, we have eight modifiability, two usability, and three availability require-
ments, where each has been confirmed by tests. Thus, all of our quality require-
ments have 100% coverage.

12.4.1 Modifiability

Lecture Quiz needs to be modifiable. This is because it is a new software in the
lecture context and its feature demands may change. The modifiability quality
requirements set for Lecture Quiz has been fulfilled. Testing has been done by us
the developers, and can be regarded a bit biased, when it comes to timing. We
still think that other developers will be able to extend Lecture Quiz within the
response measure.

M1 Create a new game mode.

Game modes in Lecture Quiz 3.0 are created in the Presentation Client
project. To make a game mode, the developer needs to create a class that
implements the IGameMode interface. The current game modes included
in the Presentation Client extend the GameModeBase class, as shown in
Figure 7.17. By extending this class, the developer can override the methods
he wants to modify the logic for. The GameModeBase class can be found
in the “lecturequiz.presentationclient.logic.gamemodes” package. The game
mode needs to be enabled in the game mode selection screen. This is done
by creating an instance of the game mode in the GameModeProvider class,
and then adding it to the game mode map. This is further explained in
Appendix D.

To test this quality requirement, we created a sample team game mode.
The game mode would run games, e.g., the “Point builder” game mode.
The difference in gameplay, is that the scoring for each team depend on its
players, to be able to answer fast and correct. For each correct player answer,
the game mode will add this score to the team score. This also applies for
wrong answers, but will result in decreasing the score. The creation of this
game mode was completed in 20 minutes, which satisfies this quality scenario
requirement.

M2 Multiple game modes.

This modifiability requirement is aimed at the lecturer. We have created
a game mode selection screen in the Presentation Client, that allows the
lecturer to select multiple game modes. The game modes are combined
in a GameModeQuestionChain, as shown in Figure 7.16. This allows the

12.4. QUALITY REQUIREMENTS 153

quiz game to run different game modes for the same quiz, by dividing the
questions between the game modes.
This quality requirement was met during the lecture experiment. The ex-
periment ran two different game modes with success.

M3 Creating a new player client.
The Presentation Client uses the IPlayerClient interface to communicate
with the Player Client. By implementing this interface to a new class, the
developer is able to change the player client logic. To make the Presentation
Client use the new Player Client, it has to be registered with the service
locator. This is done in the LogicManager, in the initialize() method, as
described in Appendix D.
To meet this quality requirement, we created a Player Client we could use
for testing purposes. Our client implements the IPlayerClient interface, and
runs in a separate thread. The new Player Client will add non-playable debug
players, and make these players answer questions at random. By creating
this class, we can test how many users the Presentation Client can handle
at once. The new player client was created in one hour, which satisfies the
response measure in the quality attribute scenario.

M4 Change client skin.
The Player Client used by Lecture Quiz 3.0 uses web pages and JavaScript
to create the interface. We want this to be changed by a graphical artist, as
there are a lot of design and graphics involved. To change the client skin, the
artist can replace the images included in the client folder, in the Presentation
Client project.
This quality requirement was met by replacing some of the new graphics with
older, outdated graphics. The change was not pretty in any way, and cannot
be compared to the time it takes to create real graphics. Pretty or not; it
proves that it is possible to change the skin of the Player Client, within the
requirement limits.

M5 Change the database back-end.
The Quiz Server use EclipseLink and JPA to manage the data storage.
EclipseLink supports all commonly used databases, which is supported by
JDBC. To change database back-end, the developer needs to edit the “persis-
tence.xml” file. The “persistence.xml” file contains the settings EclipseLink
use to communicate with the database. The Quiz Server project needs to
include a reference to the JDBC connection drivers for the chosen database.
We tested this quality requirement by installing PostgreSQL. To connect
EclipseLink with the database, we downloaded the PostgreSQL JDBC drivers.
After including the drivers in the Quiz Server project, we configured the “per-
sistence.xml” to point to the PostgreSQL driver and database. We chose to

154 CHAPTER 12. PROJECT EVALUATION

create a new database user for Lecture Quiz purposes, instead of using the
PostgreSQL root user. As with any application using a database, EclipseLink
requires these credentials to connect to the database. This took us 30 min-
utes to complete, and this quality attribute scenario is met.

M6 Change GUI composition.

The Presentation Client uses components and scenes to present the GUI.
The composition of components on a scene is structured using the composite
pattern. To change the GUI composition, a developer can add and remove
components to a scene, and its sub components.

Close to the end of the process, we received help from a graphics artist to
change the visual impression of Lecture Quiz. During the time, we worked
with the design, we changed GUI composition several times, without any
difficulties. This quality requirement is therefore met.

M7 Add support for a new input device.

The Presentation Client utilizes both keyboard and mouse input devices.
This is done through the LWJGL library, encapsulated with well defined in-
terfaces. By using the IInputDevice or IPointerDevice interfaces, a developer
should be able to create support for another input device.

We tested this requirement by creating support for joysticks. To add support
for a joystick device, we used LWJGL. The logic was included in a class that
implements the IInputDevice interface. This was done in 20 minutes, and
satisfies the quality requirement.

M8 Add support for Java SE compatible OS.

Lecture Quiz 3.0 was created with support for Microsoft Windows, Mac OS X
and Linux. To extend the support to another platform, the developer needs
to manage the graphics rendering part of the Presentation Client. This
can be done by adding system files compatible with LWJGL for the new
operating system, or changing the render implementation. The rendering
implementation for the Presentation Client, has been separated from the
rest of the logic, with interfaces. This makes it easy to create support for
another graphics library.

We tested this requirement as a part of the development process. Testing has
been done on Microsoft Windows and Mac OS X. To meet this requirement,
we added driver support for Linux. The Linux version did not start as it
could not find the drivers at first. This is because Java does not add the
current folder to the class path as in Microsoft Windows and Mac OS X. To
solve this, we added “.” to the class path and it was working with Linux.
This was done in 10 minutes and fulfills the quality requirement.

12.4. QUALITY REQUIREMENTS 155

12.4.2 Usability

Lecture Quiz needs to be user-friendly. This is because it is aimed to be used
in a context where there are already working solutions. To make people choose
Lecture Quiz over the traditional lecture it has to be easy to use. The usability
requirements have been tested by running a lecture experiment. Based on these
results, Lecture Quiz meets the usability quality requirements.

U1 Support visual gaming interface.
The Presentation Client is responsible for running games in Lecture Quiz.
We have created a visual interface that is intended for playing quiz games.
The interface consists of a fullscreen graphical display, with sprites represent-
ing the GUI elements. We have created animations, ambient light effects,
hovering effects, and transitions. These are common elements in gaming
environments. The graphics and design have been enhanced by a graphical
artist, to push the visuals even further toward a commercial gaming interface.
We tested the quality requirement during the user experiment. With respect
to the experiment results, students agreed that using Lecture Quiz made
the lecture more fun. Based on these results, we have satisfied the quality
requirement.

U2 A common input interface.
The Player Client is responsible for collecting player input, when playing
Lecture Quiz games. We have developed the Player Client interface to be as
user-friendly and self explanatory as possible. For example, when answering
questions, the Player Clients presents the alternative buttons as they would
be presented on commercial quiz games, like Scene it? and Buzz!.
According to the experiment results, the students did not need any help
using the client interface. The students agree with the statement “I felt very
confident using the system”. The experiment results show that the students
“did not need to learn a lot of things before they could use the client”. Based
on these results, the Player Client satisfies this quality requirement.

12.4.3 Availability

Lecture Quiz needs to be stable and available on a wide range of client devices. If
the application crashes during a lecture, it would waste both students and lecturers
time. To avoid custom hardware to play the game, the client should work on the
most common devices owned by students. The availability quality requirements
set for Lecture Quiz has been fulfilled. Testing the client was done in the lecture
experiment. Based on the results, the client worked on most devices and did not
crash during the experiment.

156 CHAPTER 12. PROJECT EVALUATION

A1 Reconnect to server.
The Presentation Client will establish a connection to the Quiz Server at
startup. This connection may be lost during gameplay, and the Presenation
Client needs a way to re-establish this connection. The Distributed Message
Queue runs in a separate thread, and this thread checks if the connection to
the server is lost. If the connection is lost, the Distributed Message Queue
tries reconnecting to the Quiz Server.
We have tested this by running the Presentation Client connected to the
Quiz Server. During gameplay, we stopped the server, and then restarted it,
to make sure the connection was lost. The Presentation Client was able to
reconnect to the Quiz Server and post the complete game statistics. This
availability quality requirement is with basis in this, met.

A2 Simple web client.
The Player Client runs as an embedded web server on the Presentation
Client. It is important that this web server does not crash, as this will
disable communication between players and the game. The Player Client
handles incoming connections with the use of a thread pool. This allows
client requests to be processed in parallel, and helps the stability of the
Player Client. The client returns a simple web page, that uses AJAX to
update the interface.
To test this requirement, we used Httperf to simulate 1000 users. Httperf is
a tool for measuring web server performance [49]. The Player Client spawned
a total of 18 threads to handle the requests. The user interface was slower,
but the Player Client did not crash. After we stopped the stress tool, the
Player Client cleaned up all the threads as intended. According to this test,
this quality requirement is met.
We also tested this requirement in a real lecture. The response measure for
this requirement is that “the Player Client should not crash during a game
session with at least 20 clients”. The first phase of the test was done with
about 70 users. Given the network equipment used for the test, this many
users made it error prone. In the second phase, we ran the test with about
20 clients and the game worked properly. This confirms that the client can
run with 20 clients, without crashing.

A3 Run on different client types.
Lecture Quiz is developed to run on devices commonly used by students.
This is to save the expense of having to buy custom hardware. To allow
students to participate in Lecture Quiz games, the client needs to support
a wide range of devices. We have developed the client with focus on multi-
browser support.
This requirement was tested during the user experiment. According to the
experiment results, 2 out of 34 students had problems running the client.

12.4. QUALITY REQUIREMENTS 157

The experiment was performed on a wide range of devices, and the two de-
vices with problems were iPod and iPhone. The related results are evaluated
in Section 11.2, under success criterion SC1. We performed a follow-up test
with both iPhones and iPods. This test shows that 16 out of 16 iPods,
and the 3 iPhones worked. Confirmed devices are Android phones, iPhones,
iPods, Windows notebooks, Mac notebooks and Linux notebooks. Con-
firmed browsers include Chrome, Firefox, Opera, Android and Safari. The
experiment result yields no test data about Internet Explorer, but we have
tested the client on IE 5, 6, 7, 8 and 9, and are quite confident that it has IE
support. Based on these results we conclude that this quality requirement is
fulfilled.

158 CHAPTER 12. PROJECT EVALUATION

Part VI

Conclusion

159

Chapter 13

Conclusion

At the start of this master thesis, we defined four research questions. This was fol-
lowed by searching for previous work, both regarding characteristics, research and
related educational software, which gave us a good basis for our implementation.
We did a thorough technology research, and chose technologies with this in mind.

We are satisfied with how our Lecture Quiz solution turned out, and have con-
cluded the following. The Quiz Server is now a stable environment for creating
quizzes and reviewing statistics. The Presentation Client can run fully playable
quiz games, with different game mode logic, and looks and feels like a game. The
Player Client runs on all intended devices, and is working great given the right net-
work infrastructure. The overall Lecture Quiz solution is solid and fully playable.

During our master thesis, we have made a flexible architecture for use with the
Lecture Quiz solution. We have created a new and better version, that is easy to
use, modifiable and is more visually appealing.

The research questions have functioned as a guideline during the development of
Lecture Quiz 3.0. In this chapter, we answer the four research questions, described
in Chapter 2:

RQ1 Which systems related to Lecture Quiz exist today, and what differentiate
them from ours?
In Section 4.3, we presented existing solutions that are related to Lecture
Quiz. We summarized the features and concluded that i>clicker, JustVote
and Buzz!: The Schools Quiz has elements that can enrich our framework.
The i>clicker software is the only other related system we looked at, that
requires no custom hardware. They have created the web>clicker client that
runs on the students’ devices. This is a feature that is critical to our frame-
work, and should continue to be a requirement. They have wide support
for network infrastructure, which is also a goal for this framework. The
drawback with web>clicker, is that it requires connection with the i>clicker

161

162 CHAPTER 13. CONCLUSION

hosting service, to run. Another drawback is the large infrastructure in-
volved to use the software. i>clicker is not intended as a game, and thus not
directly compete with the Lecture Quiz game.
JustVote is one of the solutions that is related to the Lecture Quiz frame-
work. Their presentation client has animated graphics, several game modes,
supports easy loading of prepared material, and handles up to 1000 users at
the same time. Their quiz editor focuses on drag and drop, multiple ques-
tion layout templates, and has extensive support for multimedia. Their game
server supports an extensive range of statistical data, monitors progression
on many levels, has the ability to review past sessions, and to print and
export data. These are the features of JustVote that we want to embrace.
They also have some drawbacks. Their animated graphics are plain, and look
like a presentation slide-show. Their handheld devices are simple controllers,
with no display, and few buttons for input. Custom hardware costs money,
which makes it less interesting for educational use.
Buzz!: The Schools Quiz has a bigger focus on playability and the audio-
visual. They have animated 2D and 3D graphics and voice-overs. In addition
to this, they use in-game avatars. We found these features interesting when it
comes to making Lecture Quiz feel like a game. They have a large integrated
question base, but it is not modifiable, and you have to buy a new game
to get additional content. Another drawback is that they have limited the
player base to 8. They also require a Playstation 2 and custom hardware to
play.

RQ2 How can we make Lecture Quiz easier for the end-user to install and use?
We have limited the number of enterprise applications needed to run Lecture
Quiz. Application servers require additional work to set up and configure.
Configuring applications to run on these servers, requires even more work.
Lecture Quiz 3.0 is not dependent on any application servers to run quiz
games.
We have created executable installation packages for Microsoft Windows and
Mac OS X. This allows users to easy install the software needed, to run quiz
games on their computers. The installation package will create launchers, so
that end-users do not have to worry about executing the application through
Java.
We have added support for mouse and keyboard devices, and they have been
integrated with the graphical user interface. They have been seamlessly
integrated into the application, with support for features like the mouse
wheel. The application flow is controlled by common GUI elements that
people encounter every day. This allows an easy understanding of how the
application works without having to read any user guide or the alike.
We have embedded the Player Client into the Presentation Client, so that
people do not have to start two different applications. This allows the Pre-

163

sentation Client to display the address of the Player Client, to the students,
while the lecturer configures the game. This saves time when it comes to
connecting players to the Lecture Quiz game, and makes the process more
fluent.
Once deployed, the Quiz Server allows lecturers to create quizzes in the
comfort of their own office. The quizzes will be automatically available to
the lecturer when running the Presentation Client connected to the Quiz
Server. It is also possible to download the quiz, and run it on locations
without connection to the Quiz Server. This makes it easier to prepare
quizzes and run them wherever needed.

RQ3 How can using a quiz game in teaching environments affect the students?
During our thesis, we ran a lecture experiment, where 34 students partici-
pated, and answered our questionnaire. This questionnaire can be seen in
Appendix B. The results from this lecture experiment were presented in Sec-
tion 11.1. This research question is related to the learning part of these
results, and was presented in Section 11.1.1.
According to the audience that participated in the experiment, the consensus
is that they like to compete. When people are competing, their senses are
sharpened, which leads to increased attention and brain activity [37]. This
is an important trait that the Lecture Quiz game brings to the lecture.
The average student agreed that they paid closer attention during the lecture,
because of the Lecture Quiz game. The students reported that using Lecture
Quiz was a fun alternative to the traditional lectures. More than half of
the students, reports that they would attend more lectures if the system is
regularly used.

RQ4 How can we make Lecture Quiz 3.0 look, act and feel like a game?
The Presentation Client is responsible for running quiz games. With the
help of a graphical artist, we have enhanced the visual impression of Lecture
Quiz games. We have aimed at a more commercial game look, when it comes
to the overall layout and design of the graphical user interface.
We have added an ambient background effect. This effect makes the game
feel more “alive”, as there will be constant subtle movement in the image.
The Presentation Client uses transitions, when changing from one screen
to another. The transition effect is a simple fade effect, and is commonly
found in games. We have added animations and icons to the Presentation
Client and the Player Client. This makes it look less like a regular desktop
application.
To give the players a gaming experience, we have added several game modes.
This is to create variation in the game play, and differentiate the application
from a regular questionnaire/presentation. Quiz games are won by scoring
the most points. Game modes like “Point stealing”, brings depth to the

164 CHAPTER 13. CONCLUSION

competition. To make the game play different from a questionnaire, each
question is timed. This puts pressure on the players and further increase
their competitive instincts.

Chapter 14

Further Work

In this chapter, we present our suggestions to finalize and further improve the
Lecture Quiz game. We have divided the suggestions into two sections: technical
and research aspects.

14.1 Technical

In this section, we try to summarize the technical changes which need to be done
regarding a completed system. In addition to this we present a bulletin list of
features that might improve Lecture Quiz even further.

14.1.1 Completing the System

During our testing of Lecture Quiz, we have encountered some network issues. A
main concern is the amount of clients sharing the same WLAN. We overloaded the
wireless local area network when running Lecture Quiz in a real lecture. This was
partly because of the network configuration in the lecture hall, and the fact that
the computer running the presentation used the same WLAN. This could have
been solved by running the presentation on cable and inserting additional wireless
access points. Further work with the system will include solving issues related to
the network infrastructure.

We have some suggestions that might reduce the need for extra network equipment.

• Make the Player Client load graphics from a Quiz Server instead of the
Presentation Client. This will reduce the initial load on the network com-
munication to the Presentation Client.

• Extend caching on the Player Client and pre-load graphics.

165

166 CHAPTER 14. FURTHER WORK

• Reduce graphics, script and HTML size.

• Use web sockets instead of AJAX state polling.

• Tweak the time between each AJAX state request and create logic to adjust
timing.

• Ad hoc wireless network branching, using notebooks that are connected with
cable to the presentation. Note that it is essential to use different WLAN
channels.

14.1.2 Other Suggestions

In this section, we list features that we think would improve Lecture Quiz. Some
of the suggested features might not directly improve the game, but add versatility
to the system.

• The use of Quick Response codes (QR codes), allowing clients to take a
picture of the Presentation Client, that directs them to the Player Client
web page.

• Allow the Player Client to be run on the Quiz Server to ease local WLAN
traffic.

• Add different skins to the Player Client, depending on the player’s team.

• Allow players to use avatars, possibly from camera images.

• Enable audio and video playback for questions.

• Create answer icons that link an alternative to a specific icon on the player’s
device.

• Visualized statistics for question results.

• The possibility to play quiz games, where players on separate physical loca-
tions compete with each other.

• Localization support on all the clients.

• Support for rating the difficulty of questions, based on statistics.

• Add achievements to the game summary screen.

• Add drag and drop support on the Presentation Client.

14.2. RESEARCH 167

14.2 Research

In this section, we present suggestions for further research regarding the educa-
tional benefit from using Lecture Quiz. This includes research questions, conduc-
tion of experiments and different testing contexts.

We list several possible research questions for further work.

• How involved and committed are students when playing Lecture Quiz?

• How does number of students affect the gaming experience, when it comes
to the social aspects, e.g. competition, communication, and cooperation?

• How does Lecture Quiz affect the student-teacher interaction?

• In which ways can Lecture Quiz affect the learning effectiveness?

• Which game modes and game types are most effective?

These questions can be answered by conducting several scientific experiments,
with control groups, etc., to find more certain evidence. An example of a scientific
experiment is:

Create two different conditions, where one group of students is exposed to Lecture
Quiz and one is not. Measure level of knowledge before and after, e.g. by handing
out a test and giving grades. The groups should have the same average grade, and
then after they have been exposed to Lecture Qiuz, measure them again. During
the period between the measurements, there should not be anything else than
Lecture Quiz affecting the learning of the groups as a whole. If the Lecture Quiz
group has a higher average grade, then one could say that “Yes, Lecture Quiz has
a positive effect on learning”.

To obtain generalizability, Lecture Quiz has to be tested in different contexts, i.e.
outside lecture environments. Examples of this can be: specialist courses, training,
hospitals, and business meetings.

168 CHAPTER 14. FURTHER WORK

Bibliography

[1] Sun Microsystems a Oracle Corporation subsidiary. Java document type def-
inition. "http://java.sun.com/dtd/", January 2005. Accessed 26. June,
2011.

[2] Elie A. Akl, Richard W. Pretorius, Kay Sackett, W. Scott Erdley, Paran-
thaman S. Bhoopathi, Ziad Alfarah, and Holger J. Schünemann. The effect
of educational games on medical students’ learning outcomes: A systematic
review: BEME Guide No 14. Medical Teacher, 32(1):16–27, January 2010.

[3] Alex. Streaming in openal. http://www.alexcurylo.com/blog/2010/05/
15/streaming-in-openal/, May 2010. Accessed 26. June, 2011.

[4] Anand. JavaServer Faces (JSF) Tutorial. http://www.developersbook.com/
jsf/jsf-tutorials/jsf-tutorials.php, January 2008. Accessed 26. June,
2011.

[5] Henning Bär, Erik Tews, and Guido Rößling. Improving feedback and class-
room interaction using mobile phones. Master’s thesis, Darmstadt University
of Technology, 2005.

[6] Paul Barribeau, Bonnie Butler, Jeff Corney, Megan Doney, Jennifer Gault,
Jane Gordon, Randy Fetzer, Allyson Klein, Cathy Ackerson Rogers, Irene F.
Stein, Carroll Steiner, Heather Urschel, Theresa Waggoner, and Mike
Palmquist. Survey research. writing@csu. colorado state university de-
partment of english. http://writing.colostate.edu/guides/research/
survey/com4a2a.cfm, 2005. Accessed 26. June, 2011.

[7] Victor R. Basili. The experimental paradigm in software engineering. In Pro-
ceedings of the International Workshop on Experimental Software Engineering
Issues: Critical Assessment and Future Directions, pages 3–12, London, UK,
1993. Springer-Verlag. Available from: http://portal.acm.org/citation.
cfm?id=647362.725507.

[8] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice
(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, April 2003.

169

"http://java.sun.com/dtd/"
http://www.alexcurylo.com/blog/2010/05/15/streaming-in-openal/
http://www.alexcurylo.com/blog/2010/05/15/streaming-in-openal/
http://www.developersbook.com/jsf/jsf-tutorials/jsf-tutorials.php
http://www.developersbook.com/jsf/jsf-tutorials/jsf-tutorials.php
http://writing.colostate.edu/guides/research/survey/com4a2a.cfm
http://writing.colostate.edu/guides/research/survey/com4a2a.cfm
http://portal.acm.org/citation.cfm?id=647362.725507
http://portal.acm.org/citation.cfm?id=647362.725507

170 BIBLIOGRAPHY

[9] Mark Bates. Distributed Programming with Ruby. Addison-Wesley Profes-
sional, 1st edition, 2009.

[10] Gillian Blakely, Heather Skirton, Simon Cooper, Peter Allum, and Pam
Nelmes. Educational gaming in the health sciences: systematic review. Jour-
nal of Advanced Nursing, 65:259–269, August 2008.

[11] Tom Bramwell. Buzz!: The schools quiz - interview. http://www.eurogamer.
net/articles/buzz-the-schools-quiz-interview, 2008. Accessed 26.
June, 2011.

[12] Erling A. Børresen and Knut A. Tidemann. Lecture quiz 2.0 - a service
oriented architecture for educational games. Master’s thesis, NTNU, June
2010.

[13] K.L. Calvert and M.J. Donahoo. TCP/IP sockets in Java: practical guide
for programmers. Morgan Kaufmann practical guides series. Elsevier/Mor-
gan Kaufmann, 2008. Available from: http://books.google.com/books?
id=lfHo7uMk7r4C.

[14] Scott Carlson. The Net Generation Goes to College. The Chronicle of Higher
Education, October 2005.

[15] Oracle Corporation. Jsr 52: A standard tag library for javaserver pages (main-
tenance draft review 3). http://jcp.org/en/jsr/detail?id=52, October
2006. Accessed 26. June, 2011.

[16] Oracle Corporation. Java se community - open-source jdk.
http://www.oracle.com/technetwork/java/javase/community/
opensourcejdk-jsp-136417.html, May 2007. Accessed 26. June, 2011.

[17] Oracle Corporation. Java persistence 2.0. http://jcp.org/aboutJava/
communityprocess/final/jsr317/index.html, December 2010. Accessed
26. June, 2011.

[18] Oracle Corporation. Java: The best environment for network-
based applications. http://www.oracle.com/us/technologies/java/
10045230-br-java-c17307-187867.pdf, 2010. Accessed 26. June, 2011.

[19] Oracle Corporation. Jsr-000314 javaserver faces 2.1 (maintenance release
2). http://jcp.org/aboutJava/communityprocess/mrel/jsr314/index2.
html, November 2010. Accessed 26. June, 2011.

[20] Oracle Corporation. Jdk 6 java database connectivity. http://download.
oracle.com/javase/6/docs/technotes/guides/jdbc/, 2011. Accessed 26.
June, 2011.

http://www.eurogamer.net/articles/buzz-the-schools-quiz-interview
http://www.eurogamer.net/articles/buzz-the-schools-quiz-interview
http://books.google.com/books?id=lfHo7uMk7r4C
http://books.google.com/books?id=lfHo7uMk7r4C
http://jcp.org/en/jsr/detail?id=52
http://www.oracle.com/technetwork/java/javase/community/opensourcejdk-jsp-136417.html
http://www.oracle.com/technetwork/java/javase/community/opensourcejdk-jsp-136417.html
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
http://www.oracle.com/us/technologies/java/10045230-br-java-c17307-187867.pdf
http://www.oracle.com/us/technologies/java/10045230-br-java-c17307-187867.pdf
http://jcp.org/aboutJava/communityprocess/mrel/jsr314/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr314/index2.html
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/

BIBLIOGRAPHY 171

[21] Oracle Corporation. Oracle glassfish server. http://www.oracle.com/us/
products/middleware/application-server/oracle-glassfish-server/
index.html, 2011. Accessed 26. June, 2011.

[22] Oracle Corporation. Overview (java platform se 6). http://download.
oracle.com/javase/6/docs/api/, 2011. Accessed 26. June, 2011.

[23] University of Washington Department of Computer Science & Engineering.
Uw classroom presenter. http://classroompresenter.cs.washington.
edu/, 2008. Accessed 26. June, 2011.

[24] University of Mannheim Department of Computer Science IV. Uce
project. http://pi4.informatik.uni-mannheim.de/pi4.data/content/
projects/wil-ma/. Accessed 26. June, 2011.

[25] Kristian Døvik and John Andre Hestad. Lecture quiz 2.5 - combining edu-
cation, usability and gaming experience. Master’s thesis, NTNU, December
2010.

[26] T. Erl, D. Chou, J. deVadoss, N. Gandhi, and H. Kommapalati. SOA with
.NET and Windows Azure: Realizing Service-Orientation with the Microsoft
Platform. Prentice Hall Service-Oriented Computing Series from Thomas
ERL. Prentice Hall, 2010. Available from: http://books.google.com/
books?id=gm3bPAAACAAJ.

[27] Sony Computer Entertainment Europe. What is buzz! http://www.
buzzthegame.com/en-gb/What-is-Buzz/, 2008. Accessed 26. June, 2011.

[28] The Eclipse Foundation. Eclipse announces eclipselink project to de-
liver jpa 2.0 reference implementation. http://www.eclipse.org/org/
press-release/20080317_Eclipselink.php, March 2008. Accessed 26.
June, 2011.

[29] The Eclipse Foundation. Eclipselink jpa. http://www.eclipse.org/
eclipselink/jpa.php, 2011. Accessed 26. June, 2011.

[30] The Eclipse Foundation. Eclipselink/faq/jpa. http://wiki.eclipse.org/
EclipseLink/FAQ/JPA, May 2011. Accessed 26. June, 2011.

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[32] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design
Patterns CD: Elements of Reusable Object-Oriented Software, (CD-ROM).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://classroompresenter.cs.washington.edu/
http://classroompresenter.cs.washington.edu/
http://pi4.informatik.uni-mannheim.de/pi4.data/content/projects/wil-ma/
http://pi4.informatik.uni-mannheim.de/pi4.data/content/projects/wil-ma/
http://books.google.com/books?id=gm3bPAAACAAJ
http://books.google.com/books?id=gm3bPAAACAAJ
http://www.buzzthegame.com/en-gb/What-is-Buzz/
http://www.buzzthegame.com/en-gb/What-is-Buzz/
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://www.eclipse.org/eclipselink/jpa.php
http://www.eclipse.org/eclipselink/jpa.php
http://wiki.eclipse.org/EclipseLink/FAQ/JPA
http://wiki.eclipse.org/EclipseLink/FAQ/JPA

172 BIBLIOGRAPHY

[33] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, Kate Stout, and
Inc. Sun Microsystem. Java message service. http://jcp.org/aboutJava/
communityprocess/final/jsr914/index.html, April 2002. Accessed 26.
June, 2011.

[34] i>clicker. web>clicker. http://www.iclicker.com/dnn/Products/
webclicker/tabid/156/Default.aspx, 2011. Accessed 26. June, 2011.

[35] i>clicker. What is a clicker? http://www.iclicker.com/dnn/
Abouticlicker/WhatisaClicker/tabid/143/Default.aspx, 2011. Ac-
cessed 26. June, 2011.

[36] Patrick W. Jordan, B. Thomas, Ian Lyall McCelland, and Bernard Weerd-
meester. Usability Evaluation in Industry. CRC Press, June 1996.

[37] Matias Kivikangas, Inger Ekman, Guillaume Chanel, Simo Järvelä, Ben
Cowley, Mikko Salminen, Pentti Henttonen, and Niklas Ravaja. Review
on psychophysiological methods in game research. In Lankoski Petri,
Thorhauge Anne Mette, Verhagen Harko, and Waern Annika, editors, Pro-
ceedings of DiGRA Nordic 2010: Experiencing Games: Games, Play, and
Players, Stockholm, January 2010. University of Stockholm. Available from:
http://www.digra.org/dl/display_html?chid=10343.06308.pdf.

[38] S. Kopf, N. Scheele, L. Winschel, and W. Effelsberg. Improving activity and
motivation of students with innovative teaching and learning technologies.
Dept. of Computer Science IV, University of Mannheim, Germany, 2005.

[39] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12:42–
50, November 1995. Available from: http://portal.acm.org/citation.
cfm?id=624610.625529, doi:10.1109/52.469759.

[40] Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition). Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[41] Doug Lea. Concurrent Programming in Java. Second Edition: Design Prin-
ciples and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1999.

[42] Dean Leffingwell. Agile Software Requirements: Lean Requirements Practices
for Teams, Programs, and the Enterprise. Addison-Wesley Professional, 1st
edition, 2011.

[43] David L. Levine, Christopher D. Gill, and Douglas C. Schmidt. Object life-
time manager a complementary pattern for controlling object creation and de-
struction, pages 495–534. Cambridge University Press, New York, NY, USA,
2001. Available from: http://portal.acm.org/citation.cfm?id=566110.
566135.

http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
http://www.iclicker.com/dnn/Products/webclicker/tabid/156/Default.aspx
http://www.iclicker.com/dnn/Products/webclicker/tabid/156/Default.aspx
http://www.iclicker.com/dnn/Abouticlicker/WhatisaClicker/tabid/143/Default.aspx
http://www.iclicker.com/dnn/Abouticlicker/WhatisaClicker/tabid/143/Default.aspx
http://www.digra.org/dl/display_html?chid=10343.06308.pdf
http://portal.acm.org/citation.cfm?id=624610.625529
http://portal.acm.org/citation.cfm?id=624610.625529
http://dx.doi.org/10.1109/52.469759
http://portal.acm.org/citation.cfm?id=566110.566135
http://portal.acm.org/citation.cfm?id=566110.566135

BIBLIOGRAPHY 173

[44] Leyland, B. How can computer games offer deep learning and still be fun?
In The conference Ascilite, December 2-4, 1996, 1996. Available from: http:
//www.ascilite.org.au/conferences/adelaide96/papers/14.html.

[45] Avrio Ideas Ltd. Justvote. http://www.just-vote.co.uk/, 2008. Accessed
26. June, 2011.

[46] Avrio Ideas Ltd. Justvote specification sheet. http://www.just-vote.co.
uk/downloads/JustVote-Education.pdf, 2008. Accessed 26. June, 2011.

[47] Silicon Graphics (managed by the non-profit technology consortium
Khronos Group). Opengl overview. http://www.opengl.org/about/
overview/, 2011. Accessed 26. June, 2011.

[48] Merrilea J Mayo. Video games: a route to large-scale stem education? Sci-
ence, 323:79–82, 2009.

[49] David Mosberger and Tai Jin. httperf - a tool for measuring web server
performance. In In First Workshop on Internet Server Performance, pages
59–67. ACM, 1998.

[50] Ole Kristian Mørch-Storstein and Terje Øfsdahl. Game enhanced lectures -
an implementation and analysis of a lecture game. Master’s thesis, NTNU,
June 2007.

[51] Netcraft. November 2010 web server survey. http://news.netcraft.com/
archives/2010/11/05/november-2010-web-server-survey.html, Novem-
ber 2010. Accessed 26. June, 2011.

[52] Diana Oblinger. Boomers, Gen-Xers, and Millennials: Understand-
ing the "New Students". EDUCASE Review, 38(4):37–47, July
2003. Available from: http://www.educause.edu/EDUCAUSE+Review/
EDUCAUSEReviewMagazineVolume38/BoomersGenXersandMillennialsUn/
157842.

[53] British Academy of Film and Television Arts. Games nominations
2006. http://www.bafta.org/awards/video-games/nominations/?year=
2006, 2006. Accessed 26. June, 2011.

[54] International Standardation Organisation, editor. ISO 9241-11: Ergonomic
requirements for office work with visual display terminals (VDTs), Part 11:
Guidance on usability. International Standardation Organisation, March 1998.

[55] Sun Microsystems (Now owned by Oracle Corporation). Design pat-
tern: Service locator. http://java.sun.com/blueprints/patterns/
ServiceLocator.html, 2002. Accessed 26. June, 2011.

[56] Lightweight Java Game Library Project. Lightweight java game library. http:
//www.lwjgl.org/index.php, February 2011. Accessed 26. June, 2011.

http://www.ascilite.org.au/conferences/adelaide96/papers/14.html
http://www.ascilite.org.au/conferences/adelaide96/papers/14.html
http://www.just-vote.co.uk/
http://www.just-vote.co.uk/downloads/JustVote-Education.pdf
http://www.just-vote.co.uk/downloads/JustVote-Education.pdf
http://www.opengl.org/about/overview/
http://www.opengl.org/about/overview/
http://news.netcraft.com/archives/2010/11/05/november-2010-web-server-survey.html
http://news.netcraft.com/archives/2010/11/05/november-2010-web-server-survey.html
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume38/BoomersGenXersandMillennialsUn/157842
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume38/BoomersGenXersandMillennialsUn/157842
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume38/BoomersGenXersandMillennialsUn/157842
http://www.bafta.org/awards/video-games/nominations/?year=2006
http://www.bafta.org/awards/video-games/nominations/?year=2006
http://java.sun.com/blueprints/patterns/ServiceLocator.html
http://java.sun.com/blueprints/patterns/ServiceLocator.html
http://www.lwjgl.org/index.php
http://www.lwjgl.org/index.php

174 BIBLIOGRAPHY

[57] T. Reenskaug. Models-views-controllers. Technical note, Xerox PARC, De-
cember, 1979. Available from: http://heim.ifi.uio.no/~trygver/1979/
mvc-2/1979-12-MVC.pdf.

[58] G. Reese. Database programming with JDBC and Java. Java series. O’Reilly,
2000. Available from: http://books.google.com/books?id=oPbGi0l0ZHEC.

[59] Research and Development team from Wake Forest University. Classinhand.
http://classinhand.wfu.edu/, June 2007. Accessed 26. June, 2011.

[60] Jeff Sauro and James R. Lewis. Correlations among prototypical usabil-
ity metrics: evidence for the construct of usability. In Proceedings of
the 27th international conference on Human factors in computing systems,
CHI ’09, pages 1609–1618, New York, NY, USA, 2009. ACM. Available
from: http://doi.acm.org/10.1145/1518701.1518947, doi:http://doi.
acm.org/10.1145/1518701.1518947.

[61] L. Schuh, D. E. Burdette, L. Schultz, and B. Silver. Learning clinical neu-
rophysiology: gaming is better than lectures. Journal of clinical neurophys-
iology : official publication of the American Electroencephalographic Society,
25(3):167–169, June 2008.

[62] Screenlife. Screenlife games overview. http://www.screenlifegames.
com/scene-it/scene-it-console/overview.htm, 2011. Accessed 26. June,
2011.

[63] Loki Software. Openal specification and reference. http://connect.
creativelabs.com/openal/Documentation/oalspecs-specs.pdf, June
2000. Accessed 26. June, 2011.

[64] Daniel E. Stevenson and Andrew T. Phillips. Implementing object equivalence
in java using the template method design pattern. In Technical Symposium
on Computer Science Education, volume 35, pages 278–282, 2003.

[65] MySQL AB (A subsidiary of Oracle). About mysql. http://www.mysql.com/
about/, 2010. Accessed 26. June, 2011.

[66] W.M.K. Trochim and J.P. Donnelly. Research methods knowledge base,
chapter Experimental Design. Cengage Learning, 2006. Available from:
http://www.socialresearchmethods.net/kb/desexper.php.

[67] E.R. Tufte. Beautiful evidence. Graphics Press, 2006. Available from: http:
//books.google.com/books?id=v302PAAACAAJ.

[68] A.N. Whitehead and B. Russell. Principia Mathematica to *56. Cambridge
Mathematical Library. Cambridge University Press, 1997. Available from:
http://books.google.com/books?id=rdMgDpNSdLsC.

http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://books.google.com/books?id=oPbGi0l0ZHEC
http://classinhand.wfu.edu/
http://doi.acm.org/10.1145/1518701.1518947
http://dx.doi.org/http://doi.acm.org/10.1145/1518701.1518947
http://dx.doi.org/http://doi.acm.org/10.1145/1518701.1518947
http://www.screenlifegames.com/scene-it/scene-it-console/overview.htm
http://www.screenlifegames.com/scene-it/scene-it-console/overview.htm
http://connect.creativelabs.com/openal/Documentation/oalspecs-specs.pdf
http://connect.creativelabs.com/openal/Documentation/oalspecs-specs.pdf
http://www.mysql.com/about/
http://www.mysql.com/about/
http://www.socialresearchmethods.net/kb/desexper.php
http://books.google.com/books?id=v302PAAACAAJ
http://books.google.com/books?id=v302PAAACAAJ
http://books.google.com/books?id=rdMgDpNSdLsC

Part VII

Appendices

175

Appendix A

Acronyms

3G 3rd generation mobile telecommunications

AJAX asynchronous JavaScript and XML

API application programming interface

ASCII American Standard Code for Information Interchange

BAFTA British Academy of Film and Television Arts

CDDL Common Development and Distribution License

CRC-32 32 bits cyclic redundancy check

CSS Cascading Style Sheets

DBMS Database Management System

DTD Document Type Definition

EDGE Enhanced Data rates for GSM Evolution

EL Expression Language

EULA end-user licensing agreement

GPL General Public License

GPRS general packet radio service

GPU graphics processing unit

GUI graphical user interface

GWT Google Web Toolkit

177

178 APPENDIX A. ACRONYMS

HSCSD high-speed circuit-switched data

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

IDE integrated development environment

IIS Internet Information Services

IP Internet Protocol

ISM industrial, scientific and medical

ISO International Organization for Standardization

J2ME Java 2 Platform, Micro Edition

JDBC Java DataBase Connectivity

JME Java Micro Edition

JMS Java Message Service

JOGL Java OpenGL

JPA Java Persistance API

JSF Java Server Faces

JSP JavaServer Pages

JSR Java Specification Request

JSTL JavaServer Pages Standard Tag Library

JVM Java Virtual Machine

Java EE Java Enterprise Edition

Java ME Java Micro Edition

Java SE Java Standard Edition

JMS Java Message Service

LAN local area network

GNU LGPL GNU Lesser General Public License

LWJGL Lightweight Java Game Library

MIME Multipurpose Internet Mail Extensions

179

MVC model-view-controller

NTNU Norwegian University of Science and Technology

OS operating system

OpenAL Open Audio Library

OpenGL Open Graphics Library

PC personal computer

QR code Quick Response code

RDBMS relational database management system

RITE Residency In-service Training Exam

SHA-1 Secure Hash Algorithm 1

SQL Structured Query Language

SUS System Usability Scale

SOA service-oriented architecture

TCP Transmission Control Protocol

TTO NTNU Technology Transfer AS

UI user interface

UML Unified Modeling Language

URL Uniform Resource Locator

USB Universal Serial Bus

WAR Web application Archive

WIL-MA Wireless Interactive Learning - Mannheim

WLAN wireless local area network

WSDL Web Services Description Language

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

180 APPENDIX A. ACRONYMS

Appendix B

Questionnaire

181

182 APPENDIX B. QUESTIONNAIRE

Lecture Quiz Questionnaire 1

Lecture Quiz Questionnaire
About you

1. Age:

2. Gender: 2 male 2 female

3. Program of study:

Technical

4. What connection did you use?

2 Wireless

2 Cable

2 3G

2 GPRS/EDGE

2 Other:

5. What brand is your mobile/computer?

6. What operating system did you use?

7. What web browser (and version) did
you use during the test?

Learning
8. I like to compete Strongly disagree 2—2—2—2—2 Strongly agree

9. I think I paid closer attention during the lec-
ture because of the system

Strongly disagree 2—2—2—2—2 Strongly agree

10. I found the system had a distracting effect on
the lecture

Strongly disagree 2—2—2—2—2 Strongly agree

11. I think I learn more during a traditional lec-
ture

Strongly disagree 2—2—2—2—2 Strongly agree

12. I found the system made me learn more Strongly disagree 2—2—2—2—2 Strongly agree

13. I found the system made the lecture more fun Strongly disagree 2—2—2—2—2 Strongly agree

14. I think regular use of the system will make
me attend more lectures

Strongly disagree 2—2—2—2—2 Strongly agree

15. I like the way I can interact in the lecture
using the system

Strongly disagree 2—2—2—2—2 Strongly agree

Client

16a. Did the client software work properly on your phone/computer? 2 Yes 2 No

16b. If no; please describe the problem:

17. Are there anything else you would like to comment?

183

Lecture Quiz Questionnaire 2

System Usability Scale

© Digital Equipment Corporation, 1986.

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

184 APPENDIX B. QUESTIONNAIRE

Appendix C

Deployment Guide

In this appendix, we go though the steps on how to configure and deploy the Quiz
Server; including a database back-end.

The Quiz Server works as a centralized data storage server, and needs to run
continuously on some server connected to the Internet. In this section we will
explain how the Quiz Server can be deployed with a database back-end in order
to get it up and running. We assume the user has previous knowledge about both
Database Management System (DBMS) and Web application servers. Knowledge
about MySQL and GlassFish would be preferred.

C.1 Requirements

The Quiz Server is written with Java EE which is multi-platform. Because of
this, several operating systems is supported, like standard Linux and Microsoft
Windows servers. The server is not required to be physical, thus a virtual machine
would suffice.

The deployment of the Quiz Server is done on a Java application server. We have
used GlassFish 3.0 and 3.1 through our development, but similar Java application
servers like Apache Tomcat is supported. This guide will only give guidance on
how to use the Quiz Server deployed on a GlassFish server. We have not tested
the Quiz Server on earlier GlassFish versions than 3.0 and because of this we
recommend version 3.0 and newer.

Java EE is required to deploy the Quiz Server. You should use the newest version
available, and versions older than Java EE 6 is not supported.

The Quiz Server is dependant on a data storage, most preferably a DBMS. With
the use of EclipseLink and JPA the database type is abstracted away. This means
that you can use any relational database that is compliant with SQL and has a

185

186 APPENDIX C. DEPLOYMENT GUIDE

compliant JDBC driver. In this guide we use MySQL as our reference implemen-
tation. We have used MySQL version 5 during development. Older versions are
supported, but MySQL version 5.0 or higher is recommended

C.2 Database Setup

The database server does not need to be on the same server as the GlassFish server.
The workload can be distributed among several physical servers, or logically on
two different virtual machines. Despite this, we recommend installing both on the
same server.

As described in section C.1, we have chosen MySQL as out back-end database
server. Other database servers can be used, but we will use MySQL as an example
in this guide. We suggest creating a separate user, that the web service will use
to connect to the database, but this is not required.

The creation of the database structure will be handled by the persistence itself
and because of this there is no need to import any SQL manually. The persistence
will also create an administrative user named “admin” with the password “12345”.
This can be changed later, after deploying the Quiz Server. In this step it is
important to remember the specific setting for the MySQL user, the port and the
location of the MySQL server. This will be needed for the next step - deployment.

C.3 Quiz Server Deployment

The deployment of the Quiz Server is done on a Java application server. During
the development of the Lecture Quiz game, we used GlassFish 3.0 and 3.1. Other
application servers should be usable, but we do not cover that in this guide.

The deployment consists of two steps, configuration and deployment of the WAR
file.

C.3.1 Step 1

Database settings alter from server to server, and because of this they have to be
altered before deploying the Quiz Server. Open the WAR file in a file archiver/-
compressor application, e.g. 7-Zip, to access the persistence.xml file. When you
have done this, open the WEB-INF/classes/META-INF archives and edit the
persistence.xml file. You have to change the driver property, if you want to use
another JDBC driver than MySQL. Supply the database server URL and port in
the URL property, e.g. “jdbc:mysql://localhost:3306/lecturequiz”. In the user and
password properties you have to supply the credentials belonging to the MySQL

C.3. QUIZ SERVER DEPLOYMENT 187

user you made, or the root credentials. The generation property is required to be
“create-tables” the first time Quiz Server is deployed. In consecutive deployments,
it can be turned off. The other properties are for advanced users and should be
left as they are.

C.3.2 Step 2

Now that your WAR file is configured correctly, it is time to deploy it on the
GlassFish server. We recommend using the auto-deploy functionality which is
supplied by GlassFish. Goto the GlassFish install directory; then goto Glass-
Fish/domain/your_domain/autodeploy directory. Copy the WAR file into this
directory. When this is done, Quiz Server should be running after a little while.
For more information about configuring and deploying WAR files on a GlassFish
server, see the GlassFish community web page1.

1http://glassfish.java.net/docs/project.html

188 APPENDIX C. DEPLOYMENT GUIDE

Appendix D

Development Guide

In this appendix we present our development guide. We explain how new devel-
opers can create game modes and player clients.

We have used NetBeans integrated development environment (IDE) 7.0 as our
development environment to develop Lecture Quiz 3.0. The latest version of Net-
Beans can be found at the NetBeans web page1. All libraries and dependencies
have been included with the source code. This means, to start developing for
Lecture Quiz, all you need is to open the projects in NetBeans.

D.1 Creating a Game Mode

Game Modes are located in the Presentation Client project, inside the lecture-
quiz.presentationclient.logic.gamemodes package. There are several game modes
in this package that can act as samples when creating a game mode. Every game
mode implements the IGameMode interface, as seen in Figure 7.17.

public interface IGameMode {

public St r ing getName () ;
public St r ing ge tDe s c r i p t i on () ;
public ITexture get I con () ;

public int getMinQuestions (GameType gameType) ;
public int getMaxQuestions (GameType gameType) ;

public void s t a r t (Game game ,
GameModeQuestionChain gameModeQuestionChain) ;
public void end (Game game ,

1www.netbeans.org

189

190 APPENDIX D. DEVELOPMENT GUIDE

GameModeQuestionChain gameModeQuestionChain) ;

public void abortGame () ;
}

Listing D.1: IGameMode interface

The interface contains methods that provide general information about a game
mode. These methods are getName(), getDescription(), getIcon(), getMinQues-
tions() and getMaxQuestions(). The getName() method can return a short text
containing the name of the game mode being created. We recommend a descriptive
text is returned by the getDescription() method, as this will be all the explanation
the users will get. The getIcon() method will allow the creator to add a small
graphic to the interface, representing the game mode. If no icon texture is re-
turned, the Presentation Client will use a generic image for the game mode. The
getMinQuestions() and getMaxQuestions() methods allow the creator to specify
how many questions the game mode is designed for based on the game type. For
example in the Three Strikes game mode, the users play until one team has three
strikes. This will require a maximum of 9 questions when playing four teams,
before one team has three strikes. If playing with only two teams, the maximum
will change to 5, as this is the maximum number of questions that it will be able
to run.

When a lecturer starts a game with the new game mode, the Presentation Client
will start by calling the start() method. This will give full control to the game
mode, and it will be responsible for starting question rounds, and let the next
game mode take over when its done. To get information about the current game,
the game mode can use the Game object. This object contains information about
the chosen quiz, the team setup, game statistics and game modes. If the game
mode wants to stop a game it can call the stop() method on the Game object, this
will make the Game object cleanup and return to the main screen. We recommend
that the abortGame() method, on the IGameMode interface, should include this
logic to allow the lecturer to stop games, but can of course run some other logic
first.

To retrieve questions the game mode can use the GameModeQuestionChain ob-
ject. This object contains the game modes assigned questions in a stack. The
number of questions have been divided according to the getMinQuestions() and
getMaxQuestions() methods in the IGameMode interface. If the GameModeQues-
tionChain does not contain any more questions, it will call the end() method on
the game mode. The end() method should contain code to cleanup object cre-
ated by the game mode during game play. The Game object will call start on the
next game mode in the GameModeQuestionChain after it has called end() on the
game mode. This will start the next game mode in the game or display the game
summary if there are no more game modes.

D.2. CREATING A NEW PLAYER CLIENT 191

We have constructed an abstract GameModeBase class. This class can be extended
by the new game mode to give easy access to common tasks.

public GameModeBase(S t r ing modeName ,
S t r ing modeDescription , S t r ing iconFi lename) {

this .modeName = modeName ;
this . modeDescr iption = modeDescr iption ;
this . i conFi lename = iconFi lename ;

}
Listing D.2: GameModeBase constructor

The GameModeBase constructor takes three arguments, as shown above. This
will require the game mode name, the game mode description and the filename
of the game mode icon. The GameModeBase will then handle the getName(),
getDescription() and getIcon() methods. This saves unnecessary repetition of code,
like loading of the icon texture. The GameModeBase contains code for showing
information about a game mode. The information will be presented on screen
based on the general information received from the IGameMode interface. To start
a question round, the game mode can call the startRound() method, as shown in
Figure 7.17. This will run a normal question round, with the next question in the
GameModeQuestionChain. To implement logic between rounds, the game mode
can override the roundEnd() method, shown in Figure 7.17. To specify player or
team score after each round, the game mode can override the changeTeamScore()
and changePlayerScore() methods. This will allow the game mode to change score,
based on player’s/team’s answer. Some game modes will restrict which players are
able to answer during a question round. This can be decided by overriding the
canPlayerAnswer() method.

Game modes are chosen from a game mode list when running the Presentation
Client. To make the new game mode appear in this list, the developer needs to
add an instance of the game mode class to the GameModeProvider. Game modes
are contained in a Java EnumMap inside the GameModeProvider. The game mode
has to be added for each game type it supports. When this is done, the new game
mode is ready for use.

D.2 Creating a new Player Client

The current implementation of the player client is based on the IPlayerClient
interface. This interface contains the methods used to communicate with the
players. When creating a new Player Client the developer will need to implement
this class.

public interface IP l aye rC l i en t {

192 APPENDIX D. DEVELOPMENT GUIDE

public List<Player> getP laye r s () ;
public void s e tS t a t e (int p laye rS ta t e) ;

public St r ing getAddress (boolean resolveName) ;

public void addPlayerAnswerActionListener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;
public void removePlayerAnswerActionListener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;

public void addPlayerJo inAct ionLi s tener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;
public void removePlayerJo inAct ionLis tener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;

public void addPlayerLeaveAct ionListener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;
public void removePlayerLeaveAct ionListener (
Act i onL i s t ene r a c t i o nL i s t e n e r) ;

}
Listing D.3: IPlayerClient interface

The Player Client needs to manage players and allow listing through the getPlay-
ers() method. The listed players need to be a list of Player models. A Player
model includes information like name, score, state and team name. Player states
are defined in the model, and represent the players’ current state in the game.

public stat ic f ina l int STATE_LOGIN = 0 ;
public stat ic f ina l int STATE_WAITING_FOR_GAME = 1 ;
public stat ic f ina l int STATE_WAITING_FOR_ROUND = 2 ;
public stat ic f ina l int STATE_SELECT_TEAM = 3 ;
public stat ic f ina l int STATE_ANSWER_QUESTION = 4 ;
public stat ic f ina l int STATE_QUESTION_ANWERED = 5 ;
public stat ic f ina l int STATE_VOTE_SCREEN = 6 ;
public stat ic f ina l int STATE_NOT_PARTICIPATING = 7 ;
public stat ic f ina l int STATE_GAME_SUMMARY = 8 ;

Listing D.4: Player state constants

New players will start with the login state. The Presentation Client will change
player states according to the game play. For example when a new question is
presented, the player states are changed to STATE_ANSWER_QUESTION to
allow players to answer. The setState() method on the IPlayerClient should be
used to change every players state.

D.2. CREATING A NEW PLAYER CLIENT 193

The players are not playing directly on the Presentation Client. This means that
the new player client class needs to specify an address with the getAddress()
method. The address for a game will be presented on the Presentation Client,
so that the players can access the game.

To inform the Presentation Client of player actions, we use Java’s ActionListeners.
These are registered to the player client, with add and remove methods. The
different ActionListener types are: player answer, player join and player leave.
Every call to an ActionListener’s performAction method(), should have the affected
Player model as source object. The Presentation Client will add and remove
listeners during game play, this means that it is important that both work correctly.

Creating a new Player Client will require some work, depending on the type of
client being created. To make the Presentation Client use the new client, the new
player client class needs to be created in the LogicManager. After creating an
instance of the player client, it has to be registered on the service locator through
the IPlayerClient interface. This will make the rest of the application use the
new player client. It is also preferable that the player client is unregistered in the
dispose() method of the LogicManager. This is to ensure that no new calls to the
client will be performed after the application has started its closing procedures.

194 APPENDIX D. DEVELOPMENT GUIDE

Appendix E

User Guide

In this appendix we present our user guides. This will give an thorough explanation
of how to use the Presentation Client, the Player Client, and the Quiz Server web
page.

E.1 Presentation Client

In this section we present the Presentation Client user guide. The Presentation
Client is the part of Lecture Quiz that is responsible for running quiz games.

At application start, it displays a splash screen, as shown in Figure E.1. If you see
the splash screen, it means that the Presentation Client has started successfully.

195

196 APPENDIX E. USER GUIDE

Figure E.1: Presentation Client splash screen.

E.1.1 Game Type Selection

The first screen you can interact with is the game type selection screen, as shown
in Figure E.2. This screen allows you to configure what kind of game you want
to play. The different types of games are two teams, three teams, four teams and
free for all. To allow players to compete as teams, you can select either one of the
team game types. If you want all the players to compete against each other, you
select the free for all type.

To select a game type, you click on the graphic representing the type of game you
want. The chosen type is indicated with an animated yellow arrow. At this stage,
you can announce that the participants can join the game. The network address
of the Player Client can be found in the lower left corner of the screen. To proceed
with the game setup, you can click the “Next” button at the lower right corner of
the screen.

E.1. PRESENTATION CLIENT 197

Figure E.2: Presentation Client game type select screen.

E.1.2 Exit the Presentation Client

If you want to exit the Presentation Client, you can click on the “Exit” button
at the lower right corner of the select game type screen, as show in Figure E.2.
This brings you to the exit screen, which contains two buttons; “Yes” and “No”.
By clicking the “Yes” button, you confirm that you want to close the application.
If you click the “No” button, the Presentation Client takes you back to the select
game type screen.

E.1.3 Quiz Select Screen

After selecting a game type, the Presentation Client takes you to the quiz select
screen, as shown in Figure E.3. This screen allows you to select a quiz from the
quiz list, located on the left side of the screen. By selecting a quiz in this list, you
can get more detailed information about the quiz. The information is displayed
on the right hand of the screen.

If you want to go back to change the game type, you can click the “Back” button.
When you have found the quiz you want to use for your game, click the “Next”
button to continue.

198 APPENDIX E. USER GUIDE

Figure E.3: Presentation Client quiz select screen.

E.1.4 Game Mode Composition

After selecting a quiz, the Presentation Client takes you to the game mode setup
screen, as shown in Figure E.4. This screen allows you to use one or more game
modes, which the game will be based on. The game modes are presented as a list,
on the left side of the screen. The available game modes depends on the type of
game specified in the select game type screen. The composition of game modes
are displayed on the right side of the screen.

To use a game mode, double click on it. This adds one instance of the game mode
to the mode setup list. To remove game modes from the mode setup list, double
click the game mode you want to remove. A number is displayed to the right
of each game mode in the mode setup list. This number represents the number
of questions that is run by that game mode. If you want to change the quiz or
game type, you can click the “Back” button. When you are satisfied with the
composition of game modes, you can click “Next” button to continue.

E.1. PRESENTATION CLIENT 199

Figure E.4: Presentation Client game mode setup screen.

E.1.5 Team Selection

After creating the mode setup, the Presentation Client takes you either to the team
select screen, or the join game screen. The choice depends on the type of game you
have selected earlier. If you have selected the “Free for all” game type, the join
game screen is displayed, as shown in Figure E.6. The join game screen allows you
to see which players have joined the game. If you selected a team game type, the
Presentation Client takes you to the team select screen, as shown in Figure E.5.
The team selection screen displays player lists for each team, the number of lists
depend on the number of teams you have selected in the game type select screen.

Above each list is an icon of the team mascot. This mascot is used to associate a
player with a team.

Below the lists to the right you can find a checkbox called “Allow client team
selection”. Checking this box will allow the players to choose what team they
want to play with.

Below the lists to the left of the screen you can find a checkbox named “Automat-
ically even teams”. If you check this checkbox, players are divided evenly on each
team. While this checkbox is checked, players are not allowed to change to a team
with more players than the team they are currently on.

200 APPENDIX E. USER GUIDE

There are two buttons below the team lists, one with an arrow pointing left and
one with an arrow pointing right. These are used to move players to other teams.
To manually move a player from one team to another, select the player in the
team list. Then click the button representing the direction of the team you want
to move the player to.

When you are ready to start the game, click the “Next” button. This starts the
game with the configuration you have chosen.

Figure E.5: Presentation Client team select screen.

E.1. PRESENTATION CLIENT 201

Figure E.6: Presentation Client join game screen.

E.1.6 Running a Quiz

During game play, the Presentation Client uses different game modes according
to your setup. When a new game mode is used, a game mode information screen
will be displayed, as shown in Figure E.7. This screen displays information about
the current game mode, allowing players to read the rules of the game mode. To
continue with the described game mode, you can click the start button.

202 APPENDIX E. USER GUIDE

Figure E.7: Presentation Client game mode information screen.

Quizzes contains questions, and the Presentation Client presents these with the
question screen, as shown in Figure E.8. The question text is presented at the top
of the screen. If the question has an assigned image, this image will be displayed
in the center of the screen.

Each question in Lecture Quiz has four alternatives. These are presented as but-
tons in the question screen. When a question starts, the players have a limited
time period to answer the question. To keep track of the time they have left, the
question screen contains a ticking clock. When the timer runs out, the players can
not answer any longer, and the correct answer will be revealed.

To reveal the correct answer, the question screen will highlight the correct alter-
native. When playing a team game type, the team scores will be presented at the
bottom of the screen. The same applies when playing free for all, but only the top
four players will be displayed. After a question has timed out, the teams/players
answer is displayed at the bottom of the screen. This is displayed as a little colored
rectangle to the right of teams/players score. This rectangle has the same color
as the given answer. After everyone has answered, or the time is up, continue by
clicking anywhere on the screen with your mouse pointer.

E.1. PRESENTATION CLIENT 203

Figure E.8: Presentation Client question screen.

Some game modes use special screens, like the point bet game mode, as shown
in Figure E.9. This game mode is only available in team games, and will allow
players to vote for their team’s decision. In this case, they are voting on how much
they want to bet on the question presented at the top of the screen. The players
make their bets before the alternatives are shown. When everyone has voted, or
the start button is pressed, the game will continue.

204 APPENDIX E. USER GUIDE

Figure E.9: Presentation Client point bet screen.

E.1.7 Game Summary

After all the questions have been answered, the Presentation Client will display
a game summary, as shown in Figure E.10. If the selected game type is a team
game, the summary screen will display team ranking on the left side of the screen.

Player scores are different from team scores, but is present in both free for all and
team games. This allows players to compete as part of the team and against each
other, at the same time.

Player rankings are displayed on the left side of the screen. Both ranking lists can
be used to see who won the game.

The right side of the screen is set aside to display achievements, like which player
was the fastest to answer. This feature is not complete yet, but will be available
in upcoming releases.

If the Presentation Client is connected to the Quiz Server, it will automatically
send user statistics to the server. The same statistics can also be exported to a
file, if you click the export button.

To end the game, you can click the end game button. This will return you to the
game type select screen, and allow you to setup another game or exit.

E.2. PLAYER CLIENT 205

Figure E.10: Presentation Client summery screen.

E.2 Player Client

In this section we present the Player Client user guide. The Player Client is the
part of Lecture Quiz that is responsible for receiving player responses.

E.2.1 Login

When the Presentation Client is running, players can go to the Player Client web
page. The first screen you see is the login screen, as shown in Figure E.11. This
screen allows you to specify the username you want in the Lecture Quiz game.
After typing in the username, you can click the login button to join the game.

206 APPENDIX E. USER GUIDE

Figure E.11: Player Client login screen.

E.2.2 Waiting for Game

After logging into the game, you will see the “Waiting for game screen”, as shown
in Figure E.12. This screen will be displayed until the game starts, or the lecturer
specifies that the clients are allowed to select a team. The wait for game screen
allows you to logout, you can do this if you want to change username. It is not
possible to change the username after the game starts.

E.2. PLAYER CLIENT 207

Figure E.12: Player Client waiting for game to start screen.

E.2.3 Team Selection

If the lecturer specifies that players are allowed to change teams, the “team select
screen” will be displayed, as shown in Figure E.13. In this screen, you can change
team by clicking on the mascot, which represents the team you want to play with.
The mascots is presented on the Presentation Client, above each team list, as seen
in Figure E.5.

208 APPENDIX E. USER GUIDE

Figure E.13: Player Client team select screen.

E.2.4 Waiting for Round

When the lecturer starts the game, you will see the “waiting for round screen”,
as shown in Figure E.14. This screen will also be shown between each question
round. The screen contains your team’s name, your username and your current
score. If you answered a question during the last question round, it will display a
button representing the alternative you chose.

E.2. PLAYER CLIENT 209

Figure E.14: Player Client waiting for next round screen.

E.2.5 Answering Questions

The Player Client will display the “answer question screen” during question rounds,
as shown in Figure E.15. This screen allows you to answer the presented ques-
tion, by pressing one of the alternative buttons. These buttons are of the same
color as the alternative buttons presented on the Presentation Client, as shown in
Figure E.8. The screen will display your team’s name, your username and your
current score. This allows you to keep track of your progress.

210 APPENDIX E. USER GUIDE

Figure E.15: Player Client answer question screen.

E.2.6 Question Answered

After answering a question, the Player Client displays the question answered
screen, as shown in Figure E.16. This screen informs that you have to wait for other
players, as the question round is not done yet. The screen will display information
about your team’s name, username and score.

Figure E.16: Player Client question answered screen.

E.2. PLAYER CLIENT 211

E.2.7 Not Participating

If the game mode logic prevents you from answering a question, the Presentation
Client displays the “not participating screen”, as shown in Figure E.17. This screen
is currently only available when running the “last man standing” game mode. I.e.,
the “last man standing” game mode removes a player’s opportunity to answer any
more questions if they answer one question wrong. This effect is reset when the
game enters the next game mode.

Figure E.17: Player Client not participating screen.

E.2.8 Game Summary

When a Lecture Quiz game is over, the Player Client displays the game summary
screen, as shown in Figure E.18. The game summary screen contains information
about how well you did in the quiz game. It will display your team’s name, your
username, your final score and your rank. Ranks let you know how high you
scored, compared to the rest of the class. This means that if you are at rank one,
you where the best player in the quiz.

212 APPENDIX E. USER GUIDE

Figure E.18: Player Client summery screen.

E.3 Quiz Server

In this section we present the Quiz Server web page user guide. The Quiz Server
is the part of Lecture Quiz where users can manage quizzes and statistics. It can
be accessed from a web browser, so that lecturers and other privileged users can
create and edit their quizzes.

To explain the design of the Quiz Server in a presentable way, we have chosen to
split this guide into logical parts where each part resemble an actual user operation.
We will guide you through the login process, creation of quizzes and questions, and
showing of statistics after a successful quiz run.

E.3.1 Login

When the Quiz Server is running, users can connect to it from a graphical web
browser. The first web page presented is the login screen, as shown in Figure E.19.
To login, you have to supply a valid username and password; which has already
been obtained from an administrator. Click login, and you will enter the main
screen of the Quiz Server web page.

E.3. QUIZ SERVER 213

Figure E.19: Quiz Server login screen.

E.3.2 Navigation

After logging into the Quiz Server, you will be able to navigate the Quiz Server web
page, as shown in Figure E.20. The top horizontal bar represents a navigational
menu which interacts with the user. This navigational menu is called a header and
will always be represented in the top of the web page. This is for easy access to all
the functions of the Quiz Server web page despite your current web page location.
The horizontal bar is divided into three categories; Quiz, Question, Resources;
and a log out button. These categories are explained in the following sections. If
you want to end the session or for some other reason quiz, please click the logout
button to the far right on the navigational bar. This will remove your current
session and you will be taken to the login web page.

Figure E.20: Quiz Server quiz list screen.

214 APPENDIX E. USER GUIDE

E.3.3 Quiz Management

The Quiz category contains a list of: “New Quiz”, “My Quizzes”, “Upload Quiz
Package”, and “Upload Statistics Package”.

To create a new quiz, click the “New Quiz” button. You will now be taken to the
create new quiz web page, as shown in Figure E.21. This web page lets you create
a new quiz, after you fill in the necessary data. You have to specify a quiz name
in the name field and for then to select an icon. If no icon is available, you have
to upload one first, which is described in Section E.3.5. The description field is
optional and is meant for additional textual information about the quiz. If you do
not the quiz to be active (reachable from the Presentation Client), please un-check
this checkbox.

Figure E.21: Quiz Server create quiz screen.

To view all your quizzes, click the “My Quizzes” button. You will now be taken to
the view quizzes web page, as shown in Figure E.20. This web page lets you view
and manage all your current quizzes. Under the action tab you have the possibility
to edit the quiz, add questions to the quiz, show statistics for the quiz, download
it as a quiz package and delete the quiz.

E.3. QUIZ SERVER 215

Actions

If you click the edit quiz action, you will be taken to the edit quiz web page, as
shown in Figure E.22. In this web page you have the possibility to edit all the quiz
settings, including which questions that is connected to it. To add a question,
select a question from the “Add question” drop-down menu, and then click the
“Add” button. To remove a question, select a question from the “Question list”
select list, and then click the “Remove” button. When you feel you have achieved
what you want, click the save button. If you want to revert the changed, click the
“Clear” button.

Figure E.22: Quiz Server edit quiz screen.

If you click the show statistics action, you will be taken to the statistics web page,
as shown in Figure E.23. In this web page you can view statistics related to a

216 APPENDIX E. USER GUIDE

specific quiz. The “Selected Round” drop-down menu, contains the different quiz
instances, sorted by the date and time the quiz was run.

Figure E.23: Quiz Server statistics screen.

The third choice under the Quiz category is the ťťUpload Quiz Package” button.
Click this to see the upload quiz package web page, as shown in Figure E.24.
Simply select the browse button to choose a quiz package on your file system, click
open, and then click “Upload Quiz Package”. The quiz will now be stored in the
Quiz Server database and connected to your account. To browse it, select the “My
Quizzes” tab.

E.3. QUIZ SERVER 217

Figure E.24: Quiz Server upload package screen.

The last choice under the Quiz category is the “Upload Statistics Package” button.
By clicking this, you will be taken to the upload statistics package web page. This
web page works the same way as the previously explained upload quiz package
web package, and needs no further explanation.

E.3.4 Question Management

The Question category contains: the “New Question” and “My Question” buttons.

To create a new question, click the “New Question” button. You will now be
taken to the create new question web page, as shown in Figure E.25. This web
page lets you create a new question, after you fill in the necessary data. You have
to specify a question and four alternatives. It is optional to check one or more
correct alternatives, commentary text, and commentary image.

218 APPENDIX E. USER GUIDE

Figure E.25: Quiz Server create question screen.

To view all your questions, click the “My Question” button. You will now be taken
to the view questions web page, as shown in Figure E.26. This web page lets you
view and manage all your current questions. Under the action tab you have the
possibility to edit the question, view question statistics and delete the question.

E.3. QUIZ SERVER 219

Figure E.26: Quiz Server question list screen.

E.3.5 Resources

The Resource category contains: the “Upload Image”, “Upload Icon”, and “My
Resources” buttons.

To upload a new image or icon, click their respective buttons. You will now be
taken to the upload resource web page. This web page has the same user interface
as the upload quiz package web page, as seen in Figure E.24. For information on
how to proceed from here, see the aforementioned section.

To view your resources, click the “My Resources” button. You will now be taken
to the view resources web page, as shown in Figure E.27. This web page displays

220 APPENDIX E. USER GUIDE

either the icons or images you have uploaded. You choose this view by either
clicking the icons or images tab. This view supports 25 images/icons at a time,
before you have to switch pages. To switch to the next web page use the four
buttons below the images If you click on an image/icon, it will be shown full-scale
in a new view.

Figure E.27: Quiz Server image list screen.

	Title Page
	I Introduction
	Introduction
	Motivation
	Project Context
	Problem Definition
	Thesis Structure and Readers' Guide

	II Research Design
	Research Questions
	Research Method
	Experiment Method
	System Usability Scale

	III Prestudy
	Previous Work
	Characteristics of Educational Games
	Previous Research
	State of the Art
	Related Quiz/Response Systems
	Feature Summary

	Lecture Quiz 1.0
	Lecture Quiz 2.0
	Lecture Quiz 2.5

	Chosen Technologies
	Java Programming Language
	Java Persistance API
	MySQL

	Java Server Faces
	Lightweight Java Game Library
	Open Graphics Library
	Open Audio Library

	TCP/IP Sockets
	GlassFish Server
	Embedded HTTP Server

	IV Own Contribution
	Requirements
	Functional Requirements
	Quality Requirements
	Modifiability
	Usability
	Availability

	Architecture
	Physical View
	Development View
	Logic View
	Presentation Client
	Player Client
	Quiz Server
	Distributed Message Queue

	Process View
	Distributed Message Queue
	Player Client
	Quiz Server

	Design Choices
	Infrastructure
	Enterprise Architecture
	Offline Support
	Communication Structure
	Data Storage

	Visuals
	Presentation Client
	Player Client
	Quiz Server

	Implementation
	Distributed Message Queue
	Network Packets
	Message Queue Abstraction
	Connection Management
	Stable Connection

	Lecture Quiz Messaging
	Lecture Quiz Packaging
	Presentation Client
	Infrastructure
	Graphics
	Sound
	Input
	Graphical User Interface
	Logic

	Player Client
	Content Management
	Sessions
	Threading
	Player Information
	Templating

	Quiz Server
	Server Initialization
	Persistence
	Packaging
	Messaging
	Java Server Faces
	Caching
	Servlets

	Summary

	Lecture Experiment
	Delimitation
	Experiment Context, Environment and Participants
	Success Criteria
	Experiment Execution
	Network Infrastructure Problems
	Running Lecture Quiz

	Follow-up Test

	V Evaluation
	Experiment Summary
	Results
	Questionnaire
	Observation
	Follow-up Test

	Evaluation
	Conclusion

	Project Evaluation
	Project Evaluation
	Research
	Development
	Documentation

	Research Method
	Functional Requirements
	Presentation Client
	Player Client
	Quiz Server

	Quality Requirements
	Modifiability
	Usability
	Availability

	VI Conclusion
	Conclusion
	Further Work
	Technical
	Completing the System
	Other Suggestions

	Research

	VII Appendices
	Acronyms
	Questionnaire
	Deployment Guide
	Requirements
	Database Setup
	Quiz Server Deployment
	Step 1
	Step 2

	Development Guide
	Creating a Game Mode
	Creating a new Player Client

	User Guide
	Presentation Client
	Game Type Selection
	Exit the Presentation Client
	Quiz Select Screen
	Game Mode Composition
	Team Selection
	Running a Quiz
	Game Summary

	Player Client
	Login
	Waiting for Game
	Team Selection
	Waiting for Round
	Answering Questions
	Question Answered
	Not Participating
	Game Summary

	Quiz Server
	Login
	Navigation
	Quiz Management
	Question Management
	Resources

