
Master of Science in Computer Science
June 2011
Pinar Öztürk, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Graph-Based Representations for
Textual Case-Based Reasoning

Kjetil Valle

Problem Description

This project will investigate different representations using complex networks for
Textual Case-Based Reasoning (TCBR). In TCBR case texts are compared in order to
retrieve previously encountered cases that are similar to the new situation. Com-
paring two cases in free text format is a challenging task because cases may use
different wording and also because natural language is ambiguous, e.g. words may
have more than one sense. Network structures provide an intuitive representation
to capture the relations and structure in text and provide efficient inference mecha-
nisms.

The student will first briefly review how complex networks have been used for
representing text. Different types of relations and their possible representations as
network edges, as well as various inference mechanisms, will then be studied. The
representation models and inference mechanisms will be tested empirically, using
various datasets.

Assignment given: 17. January 2011
Supervisor: Pinar Öztürk, IDI

Graph-Based Representations for
Textual Case-Based Reasoning

Kjetil Valle
IDI, NTNU

kjetilva@stud.ntnu.no

Abstract

This thesis presents a graph-based approach to the problem of text representation.
The work is motivated by the need for better representations for use in textual Case-
Based Reasoning (CBR). In CBR new problems are solved by reasoning based on
similar past problem cases. When the cases are represented in free text format, mea-
suring the similarity between a new problem and previously solved problems be-
come a challenging task. The case documents need to be re-represented before they
can be compared/matched. Textual CBR (TCBR) addresses this issue.

We investigate automatic re-representation of textual cases, in particular mea-
suring the salience of features (entities in the text) towards this end. We use the
classical vector space model in Information Retrieval (IR) but investigate whether
graph-representation and salience inference using graphs can improve on the Term
Frequency (TF) and Term Frequency-Inverse Document Frequency (TF-IDF) mea-
sures, bag of words approaches predominant in IR.

Our special focus is whether, and possibly how, the co-occurrence and the syn-
tactic dependency relations between terms have an impact on feature weighting. We
measure salience through the notion of graph centrality.

We experiment with two types of application tasks, classification and case re-
trieval. Although classification is not a typical TCBR task, it is easier to find datasets
for this application, and the centrality measures we have studied are not specific to
TCBR. The experiments on this task are therefore relevant to the second application
task which is our ultimate target.

We test various centrality metrics described in the literature, make a distinction
between local and global weighting measures and compare them for both applica-
tion tasks. In general, our graph-based salience inference methods perform better
than TF and TF-IDF.

i

ii

Preface

This thesis describes the work done during my last semester at the Norwegian Uni-
versity of Science and Technology (NTNU). It has been carried out at the Depart-
ment of Computer and Information Science during the period from January 2011 to
June 2011. Parts of the thesis have also been submitted as a paper to the India-Norway
Workshop on Web Concepts and Technologies 2011.

I would like to thank my supervisor during the period, associate professor Pinar
Öztürk, for invaluable guidance throughout the project. I always felt inspired and
confident after our meetings. Her feedback to my work was thorough and detailed,
and I never had to wait long for answers to my questions.

I would also like to direct my thanks to PhD candidate Gleb Sizov for our dis-
cussions on various topcis and ideas, and for lending me the computational power
needed for some of the heavier experiments.

Finally, my thanks go to fellow students Olav Bjørkøy, Øystein Carlsson and
Marvin Lillehaug. I have valued their companionship, both academically and so-
cially, through the project, and our discussions of everything from the best ways to
express ideas to technical LATEX-related questions have been helpful.

Kjetil Valle
Trondheim, June 2011

iii

iv

Contents

1 Introduction 1
1.1 Goals and Objectives . 2
1.2 Limitations . 3
1.3 Outline . 4

2 Textual Case-Based Reasoning 5
2.1 Case-Based Reasoning . 5
2.2 Textual CBR . 8
2.3 Summary . 11

3 Graph Theory 13
3.1 Graphs . 13
3.2 Networks . 14
3.3 Centrality Measures . 19
3.4 Text as Graph . 30
3.5 Summary . 32

4 Graph-based Text Representations 35
4.1 Related Work . 35
4.2 Our Representations . 38
4.3 Evaluation Methods . 41
4.4 Summary . 48

5 Co-occurrence Networks 49
5.1 Basic Representation . 49
5.2 Improvements . 52
5.3 TC-ICC Weighting . 61
5.4 Network Properties . 62
5.5 Summary . 64

6 Dependency Networks 65
6.1 Language Parsing . 65
6.2 Basic Representation . 75
6.3 Improvements . 79
6.4 TC-ICC Weighting . 84
6.5 Network Properties . 86
6.6 Summary . 88

v

7 Experiments 89
7.1 Study of Central Terms . 89
7.2 Comparison Experiments . 92
7.3 Results . 96
7.4 Summary . 97

8 Discussion and Conclusions 99
8.1 Discussion . 99
8.2 Conclusions . 103

9 Further Work 105
9.1 Other Aspects of TCBR . 105
9.2 Improvements of the Representations 106
9.3 Topic-Based Similarity . 107
9.4 Category Models for Classification . 109

References 111

A Detection of Power-Laws A–1

B Implementation B–1

vi

List of Figures

2.1 The CBR cycle . 6

3.1 Watts-Strogatz small-world networks 16
3.2 Clustering in a small example network 18
3.3 Star and wheel graphs illustrated . 20
3.4 Mind-map of node centrality types . 21
3.5 Differences between load and betweenness centralities 24
3.6 PageRank illustrated in a small graph 28
3.7 HITS illustrated in a small graph . 29

4.1 Representation process: basic steps . 39
4.2 Representation process: outline . 40
4.3 Illustration of the retrieval task . 43
4.4 Distribution document lengths in TASA900 and AIR 45
4.5 Distribution of document lengths in AIR cases 46
4.6 Distribution of sentence lengths in TASA900 and AIR 46
4.7 Distribution of AIR solution similarities 47
4.8 Implementation: document preprocessing 47
4.9 Implementation: graph construction and evaluation 48

5.1 Co-occurrence network construction example 51
5.2 Evaluation of context types . 54
5.3 Simple example of higher order co-occurrence 56

6.1 Hierarchy of Stanford Dependencies 71
6.2 Example of Stanford Dependency graph 73
6.3 Example parse tree by the Stanford Parser 74
6.4 Classification evaluation of the basic dependency networks 77
6.5 Retrieval evaluation of the basic dependency networks 77

7.1 Distribution of document lengths in the Reuters dataset 93
7.2 Distribution of sentence lengths in the Reuters dataset 94
7.3 Distribution of document lengths in MIR 95
7.4 Distribution of sentence lengths in MIR 95
7.5 Distribution of solution similarities in MIR 96
7.6 Results from the comparison experiment 98
7.7 Results from the preliminary evaluations 98

vii

A.1 Degree distributions with superimposed power-law estimates A–5

B.1 Overview of the architecture . B–2

viii

List of Tables

3.1 Summary of typical text network properties 31

5.1 Evaluation of large context sizes . 55
5.2 Results of higher order co-occurrence experiments 60
5.3 Performance of TC-ICC with co-occurrence networks 61
5.4 Some properties of the co-occurrence networks 63
5.5 Summary of the co-occurrence network representation 64

6.1 List of Stanford Dependency relations 72
6.2 Evaluation of stop-word removal for dependency networks 79
6.3 Lists of common dependency hubs . 80
6.4 Evaluation of edge direction for dependency networks 81
6.5 Evaluation of dependency types . 83
6.6 Evaluation of dependency type removal strategies 84
6.7 Performance of TC-ICC with dependency networks 85
6.8 Some properties of the dependency networks 86
6.9 Summary of the dependency network representation 87

7.1 Lists of central term from the case study report 91
7.2 Results from the comparison experiment 97
7.3 Results from the preliminary evaluations 97

A.1 Results from the power-law detection experiment A–4

ix

x

Chapter 1

Introduction

Case-Based Reasoning (CBR) is a problem solving technique well suited for many
types of problems. It is closely related to the way human beings solve problems,
namely by remembering old problems and reusing solutions. This way of learning
from experience is inspired by models from cognitive psychology about how hu-
mans reason, and has been proven to work very well in a wide range of domains
(Leake, 1996).

CBR works on the assumption that similar problems have similar solutions. Ex-
periences, i.e. previously solved problems, are stored as cases in a case base. For
each new problem, the most similar cases are retrieved from the case base. When
the best match is found, its solution is either used directly, or adapted to fit the new
problem. After the new problem is solved, it too can be added to the case base to be
used for problem solving in the future.

Despite CBR’s proven success in many areas, it has not been widely adopted
in the industry. The reason for this is, most likely, something at the very core of
CBR: the structured representation of cases. Cases in classical CBR are represented as
a collection of features organized as anything from attribute-value vectors to rich
structured representations. The features and their organization represent important
aspects of the case. They are used for reasoning processes such as computing the
similarity between new and old problems, adapting old solutions to new situations,
or explaining why a particular solution solves a given problem.

In the industry, most knowledge and experience is recorded as textual documents.
To use these as cases in CBR, features must be extracted from the text. In traditional
CBR, this has typically been done manually. This requires a knowledge engineer
to review all the information, consult domain experts, identify the aspects of im-
portance, and then build the case representation. In most situations this scales very
poorly, since the number of available documents grows faster than cases can be
hand-crafted. The process is, of course, also very costly. There is therefore clearly a
need for automated methods for feature extraction.

Systems that attempt to do this are called Textual CBR (TCBR) systems. TCBR
systems try to automatically extract from the text those parts that are central to the
problem. These parts must then be stored in suitable case representations. The two
central challenges in TCBR are to find ways to extract appropriate features from the
text, and representations that are suited for the reasoning processes required in CBR.

An often used approach, borrowed from the field of Information Retrieval (IR), is

1

2 INTRODUCTION

the so-called bag of words (BoW) model. In representations under this model, terms
represent possible features, and their frequencies in the text are used as weights
indicating their salience. In what is known as the Vector Space Model (VSM), the
term weights constitute the elements of vectors representing the documents, which
can be compared using a cosine measure. Although this method is frequently used
due to its simplicity, we do not believe it is satisfactory for TCBR for two reasons:

• The BoW model throws away all information about the structure of the text,
such as which words occur together and how they relate to each other.
• The frequency measure can often be a poor indicator of how central a term is

to the topic discussed in a document.

This thesis is motivated by the need for better models for text representation. We
propose a new approach to text representation, based on graph structures, to alle-
viate these problems. Graphs are ideal for representing relations between features,
and should thus be able to retain some information about the internal structure of
the documents. Graphs also enable new methods for identifying important aspects
of the text to be used, such as graph centrality measures.

1.1 Goals and Objectives

In this thesis, we intend to explore how text can be represented using graphs, and
how well such representations are suited as TCBR cases. Specifically, we will focus
on the first step of the CBR process, the retrieval phase. In this phase, previously
stored cases similar to the new problem are retrieved from the case base, for sub-
sequently to be used to solve the problem at hand. In order to get the best suited
solution, it is essential that the best possible candidate case is retrieved, and in order
to find this case a good method for measuring similarity of cases is required.

We summarize our research goal as follows:

We intend to investigate and evaluate various graph-based representa-
tions for use in TCBR, with specific focus on case similarity measurement.
The representations will capture the inherent structure of documents by
retaining relationships between terms, and use graph centrality measures
to weight terms as features. Our study will evaluate different text graph
representations and a wide range of centrality measures.

Our representations will also take the form of term-vectors, similar to BoW rep-
resentations, except that document structure is also taken into consideration. Thus,
our new representations are technically term weighting schemes for the VSM. Text
networks will be used as intermediate representations, and term weighting will be
based on the node centrality of the terms in these. The idea underlying this approach
can be formulated as our first hypothesis.

Hypothesis 1: Graph centrality forms a better basis than term frequencies for term
weighting.

In IR, a measure known as Term Frequency-Inverse Document Frequency (TF-
IDF) is often used as an improvement over simple Term Frequency (TF) for term

LIMITATIONS 3

weighting. TF-IDF incorporates information about the frequencies of the terms
among all the documents, in addition to their frequencies within the relevant doc-
ument. We will similarly develop a weighting measure using node centrality over
the entire corpus, in order to test our second hypothesis.

Hypothesis 2: Including information about overall term centrality in the corpus
will improve the term weighting.

We intend to explore two network models: co-occurrence networks and dependency
networks. Co-occurrence networks have predominated most of the research done
on text network representations for document similarity measurement. The reason
for this is likely that co-occurrence networks are rather simple, both to implement
and conceptually. Dependency networks have, however, to the extent of our knowl-
edge, not previously been used for the purpose of computing feature weights. The
Dependency networks are based on parsing of natural language using dependency
grammars, and is thus more restrictive in the relations captured by the networks.
Whereas co-occurrence networks consider all co-occurrences relevant, only those fit-
ting predefined structural relationships are included in dependency networks. This
is the basis for our third hypothesis.

Hypothesis 3: Since dependency networks are based on more structurally defined
relationships between terms than co-occurrence networks, they will be better
able to capture meaningful relations and thus better facilitate document simi-
larity measurement.

Although neither of the network models are novel as far as text representation
is concerned, we will evaluate both in more detail than have previously been done
with focus on document representation. We will also experiment with a wide range
of centrality measures, covering all the main groupings, in order to find those best
suited for term weighting.

In order to evaluate the performance of our representations in facilitating docu-
ment similarity measurement, we define and use two evaluation tasks. The first
is a classification task based on nearest-neighbour classification, and the second
is a retrieval task inspired by TCBR retrieval, albeit with a somewhat simplified
evaluation criteria. These tasks will be used both while developing the network
representations, and in the final experiments comparing them to each other and to
frequency-based BoW representations.

1.2 Limitations

While the previous section outlined the goals of the thesis, it is equally important to
specify clearly what we will not try to do.

First, although the work is motivated by TCBR, and aims to study better case
retrieval methods in particular, we will not develop a working CBR system. We
focus on methods for comparing documents, or more specifically comparing a new
case query with past case documents, using graph-based representations. It is a
long way from this to realizing the idea of automatically training CBR systems on

4 INTRODUCTION

collections of textual documents, and this work should only be seen as the first steps
towards such a goal.

Second, although we hope to develop good network representations for text, we
do not aim to apply natural language processing in order to actually understand the
contents of the documents. Such understanding, and the possibilities it would open
for the representations, would certainly be beneficial, but is beyond the scope of this
thesis.

Finally, it is important to note that even though we seek representations of text
suited for use in TCBR, only one aspect is evaluated in this study, namely how well
they facilitate similarity measurement. The study does not, and does not intend to,
say anything about the usefulness of graph-based cases in other aspects of TCBR.

1.3 Outline

The thesis starts with two chapters presenting background theory serving as both a
foundation and a motivation for the work described in the rest of the thesis. Chap-
ter 2 presents TCBR as a problem solving technique, and describes some of the issues
related to representation and document similarity assessment. Graph theory and
complex networks are subsequently the focus of Chapter 3, where several models
and concepts are described.

In Chapter 4 we move on to look at how graphs can be used to represent text.
After a review of related research on text networks, we present our approach to the
problem. This chapter also describes the evaluation methods and the experimen-
tal framework. The datasets used throughout Chapters 5 and 6 are also presented
here. Chapters 5 and 6 explore the co-occurrence network representations and de-
pendency network representations, respectively. Each of the chapters study various
aspects of the respective representation, using the evaluation methods introduced
in Chapter 4.

The representations are compared to each other and to BoW models in Chap-
ter 7. A case study of terms considered important by the representations opens the
chapter, before the comparative experiments are described. The evaluations done
here also employ the methods presented in Chapter 4, but are performed on new
datasets. Chapter 8 discuss the results of the experiments, and summarize the main
findings and conclusions. The final chapter presents ideas and possibilities for fur-
ther work.

There are two appendices. The first describes our implementation of the graph-
representations and experiments. In the second appendix, detection of power-law
distributions in graph data, and our search for these in our representations, is dis-
cussed.

Chapter 2

Textual Case-Based Reasoning

This chapter presents background theory about Case-Based Reasoning (CBR), and
focuses in particular on Textual CBR (TCBR). CBR as a problem solving technique,
and its process of solving problems, is first described. TCBR is then introduced, and
the role of text in CBR explained. We look at the motivations for using textual repre-
sentations, and discuss the relationship between TCBR and Information Retrieval.

There is of course much more to CBR and TCBR than can be covered in this rudi-
mentary description. The aim of the chapter is merely to provide an introduction
to TCBR as a problem solving method, and motivate the search for new and better
representations for cases in TCBR.

2.1 Case-Based Reasoning

Case-Based Reasoning (CBR) is an approach to problem solving motivated by reuse
of solutions to previously solved problems. When a new problem is encountered,
the set of previously solved problems is examined, and the most similar problems
are retrieved. If a sufficiently similar problem has been encountered before, that
solution might be reused directly. Otherwise, solutions from one or more of the
old problems might be adapted to the new situation in order to create an adequate
solution. Once solved, the new problem can be stored for use in solving of new
problems at a later time.

In CBR terminology, the set of previously solved problems are called the case base.
The case base consists of cases, which are problem instances consisting of a problem
description part and a solution part. The new problem to be solved is called the query
case, or simply the query. The query consist of only a problem description. The goal
of CBR can be stated as follows:

Presented with a query problem, derive based on the set of cases in the
case base a solution that solves the query.

CBR is in a narrow sense a reasoning technique, comparable to, for example,
deductive inference. In a broader sense it can also be seen as a methodology for
designing and implementing computer systems that realize the principles of this
reasoning technique.

5

6 TEXTUAL CASE-BASED REASONING

Figure 2.1: The CBR cycle. From Aamodt and Plaza (1994).

2.1.1 Assumptions in CBR

CBR, as a reasoning technique, makes certain assumptions about the nature of prob-
lem solving. According to Leake (1996), there are two tenets that form the basis of
CBR. These are

1. The world is regular: similar problems have similar solutions.
2. The types of problems that an agent encounters tend to recur.

The consequence of the first tenet is that solutions for similar problems are good
starting points for new problem-solving. A result of the second tenet is that future
problems are likely to be similar to current and past problems. Thus, when the
two tenets hold, it should be useful to remember and reuse reasoning, making case-
based reasoning an effective reasoning strategy.

2.1.2 The CBR Cycle

The process of CBR is best described using the CBR cycle, a process of four steps
introduced by Aamodt and Plaza (1994). The cycle is illustrated in Figure 2.1. The
steps, often referred to as the four REs:

CASE-BASED REASONING 7

Retrieve: The case or cases most similar to the query is retrieved from the case base.
What is meant by similarity among cases depends on the domain and how
cases are represented.

Reuse: Information and knowledge from the retrieved case(s) is used to solve the
problem. Solutions may in the simplest case be reused directly, and in more
complicated scenarios be adapted to meet criteria specific to the new problem.
Both actual solutions and the methods by which the case solutions were de-
rived, depending on what is stored in the cases, may serve as the basis for
reuse.

Revise: The proposed solution is tested against the problem, and revised if neces-
sary. Possible ways to test the solution is to apply it in the real world environ-
ment or to have an expert evaluate it. This step could be implemented as part
of a CBR system, or could be a process external to the system.

Retain: The query case with the newly created solution is stored with the rest of
the cases in the case base. This way new experiences are retained with the old
knowledge, and can contribute to future problem solving.

2.1.3 Motivation for CBR

CBR is obviously inspired by the way humans solve problems — not by arriving at
every conclusion by logical reasoning, but by remembering what happened in sim-
ilar circumstances in the past. That people do not solve every new problem from
scratch, but base decisions on previous experiences, have a sound basis in cognitive
science. According to Roger Schank, a cognitive scientist at Yale University, people
are most of the time too lazy to think. Instead we base our actions on memories
of what we have thought or done before. Based on this idea of reasoning by remem-
bering, with the goal of replacing reasoning with the recall and adaption of episodic
memories, Schank and his colleagues established the foundations of CBR during the
early 1980s.

CBR is an example of a lazy problem solving technique, which means that no
attempt is made to generalize or learn anything before an actual problem instance
needs to be solved. Reasoning is thus demand-driven and happens only when in-
formation about the specific problem is available. Eager learning, conversely, tries
to construct a general, input independent target function during training of the sys-
tem. While an eager learners must create global approximations to problems, lazy
learner can create local approximations that corresponds to actual queries.

2.1.4 Case Representations

A CBR system is heavily dependent on the way its cases are represented. The case
representation needs to enable the system to easily reason with concepts in the prob-
lem domain, and facilitate efficient execution of each of the four REs. Aamodt and
Plaza (1994, p.9) define the problem as follows.

The representation problem in CBR is primarily the problem of deciding
what to store in a case, finding an appropriate structure for describing
case contents, and deciding how the case memory should be organized
and indexed for effective retrieval and reuse.

8 TEXTUAL CASE-BASED REASONING

The case contents, and the way in in which to structure them, chiefly depend on
the type of problems to the system is intended to solve. For example, in a medical
diagnosis system typical case features would include symptoms of the patient and
results of various tests.

As for the memory models, there are many ways to organize the case base. Two
early influential memory systems are the Dynamic Memory model of Schank and
Kolodner and the exemplar-based model of Porter and Bareiss. The Dynamic Mem-
ory model (Kolodner, 1993) is based on the idea that specific cases which share simi-
lar properties are organized under a general structure: a generalized episode. A gener-
alized episode holds features common to its set of cases, and contain indices point-
ing to more specific generalized episodes or directly to cases. The exemplar-based
described by Porter et al. (1990) refer to cases as exemplars. In this model, the case
memory consist of a network structure of categories, semantic relations, cases, and
index pointers. Cases are associated with categories, and ordered by their degree of
prototypicality for the category. Indices link cases, features and categories together,
describing their relations and differences. Categories are interlinked by semantic
relations, which contain the general domain knowledge of the model.

Cases are usually divided into problem descriptions and solutions, either ex-
plicitly or indirectly as part of the same case structure. Representations vary from
relatively simple feature-value vectors, to complex data-structures specially tailored
to a particular domain.

2.2 Textual CBR

Traditional CBR, as described in the previous section, rests on the fundamental
idea of solving problems by collecting experiences from earlier problem solving
episodes. In real life, many of the most valuable experiences are stored as textual
documents, such as medical records, technical manuals and documentations, collec-
tions of frequently asked questions (FAQs), memos, reports, and informal notes. It
is thus only natural to consider how these resources can be used from a CBR per-
spective, which is done in the field of TCBR.

The idea of using textual documents as problem experiences is tempting because
they are so readily available. Traditionally, structured CBR cases have in many cases
been demanding to construct for various domains, and required a lot of effort from
knowledge engineers. This, perhaps most of all, has been the limiting factor in the
adoption of CBR systems in the industry.

TCBR is concerned with figuring out how textual information can be used in
CBR, either directly or by creating structured cases automatically from documents.
The field is young, and many questions still remains unsolved.

2.2.1 Assumptions Made in TCBR

Working with documents, there are some assumptions that are commonly made
in TCBR. The following four are identified by Mustafaraj (2007, p.47) as the most
common:

1. Each case has at least a problem description and a problem solution part.

TEXTUAL CBR 9

2. One document is equal to one case.
3. A document is a bag of unordered words.
4. One relevant document is sufficient if it answers a query.

These assumptions are by no means universal, but are often accepted because
they simplify both the development and evaluation of TCBR systems. Some re-
searchers, among them Mustafaraj herself, deliberately break with some or all of
them. Mustafaraj and Freisleben (2006) argue that an event-oriented perspective
is needed in modelling of cases. They argue that the prevailing object-oriented
perspective is caused by the influence of technical documents on current TCBR re-
search, and that objects are suited as features for retrieval but does not serve well
for reasoning.

We shall, in the representations presented in Chapter 4, break with the third
assumption by incorporating information about document structure.

2.2.2 Cases from Text

One of the key decisions in TCBR is what to do with the textually recorded experi-
ences, the collection of documents. These must in some way be made to represent
cases in a form the system is able to work with, and the way this is done has a huge
impact on the TCBR system.

In TCBR, the representation of the text source is key because it is used
as the basis for computing the similarity between cases, which ultimately
determines which cases are retrieved. (Cunningham et al., 2004, p.581):

As we see it, there are two main approaches to constructing the cases. The first,
and perhaps seemingly the simplest, is to store the documents directly in the case
base. Alternatively, features can be automatically extracted from the text sources,
and complex structured cases as traditionally used in CBR can be created.

The first approach have the advantage of not having to do complex feature ex-
traction from natural language, which is a difficult task. Consequently, it is imposed
restrictions in which kinds of reasoning it is possible to do with the problem cases.
These approaches really represents the extremes of a spectrum where most existing
systems fall somewhere in between the two as intermediate solutions.

2.2.3 Aspects of Written Text

There are many challenges related to using text as a basis for case representations.
One of these is that the vocabulary used in the documents depends on their do-
main. Because of this, it is often difficult to find available resources that structure
and define a vocabulary in an organized way. Thus, many resources, such as Word-
Net1, prove too general for practical use in TCBR. Another source of difference in
vocabulary used in documents is the different users participating in their creation.
Both level of knowledge and experience and writing style can influence the way
information is expressed in documents.

1http://wordnet.princeton.edu

http://wordnet.princeton.edu

10 TEXTUAL CASE-BASED REASONING

Another problem is that it can often be difficult to distinguish the parts of the text
that constitute the problem description from those representing the solution. This
is related the explicit structure of the documents, which may differ between dif-
ferent document types, and sometimes between documents in the same document
collection. If the relevant documents have a specified, or sufficiently consistently,
structure it may be possible to use this information when constructing cases. In
the FAQFINDER system, for example, Burke et al. (1997) use the inherit structure in
question-answer pairs as problem descriptions and solutions, respectively.

Also the grammatical quality of written text can vary greatly. Some types of
documents are usually well written in grammatically correct language, while others
may consist of keywords, incomplete sentences, or simply contain many misspelled
words and lack punctuation and capitalization. The degree of grammaticality influ-
ence the degree in which TCBR is able to utilize NLP techniques. Statistical NLP
typically use elements such as punctuation, capitalization, or part-of-speech, and in
the absence of these researchers are confined to the use of simpler representations
such as n-grams.

2.2.4 TCBR and Information Retrieval

Due to the concern with textual documents, TCBR is naturally closely related to
Information Retrieval (IR). Particularly, many methods used in IR also prove useful
in TCBR. The Vector Space Model (VSM) in particular, which we describe shortly,
has been used in much TCBR research.

The similarities are based on the shared focus on textually represented informa-
tion. Both require methods for representing and processing text. Especially essential
for IR is measurement of similarity between documents, and this is also important
for TCBR if text is used in the case representation.

There are, however, also fundamental differences between TCBR and IR. The
main difference lies in the domain specific focus of TCBR. A TCBR system is sup-
posed to solve problems within one domain, and is usually not required to be appli-
cable to problems in other domains. One of the central ideas in CBR is that domain
knowledge should be used to find good candidate cases and construct the best pos-
sible solution. IR techniques, conversely, is expected to be largely domain indepen-
dent.

Another difference between the two is that IR is, as the name implies, purely a
retrieval process. CBR, as discussed previously, include retrieval as one of several
steps. The goal of a CBR system is not merely to identify and return to the user
one or more documents relevant to an information need, but to find a solution to a
problem.

For good discussions and comparisons of TCBR and IR, consult Lenz et al. (1998)
and Lenz (1998).

The Vector Space Model

The VSM is an important representation technique widely used in IR. Under the
VSM, documents are represented using vectors in a n-dimensional feature space
with n equal to the size of the vocabulary. Each dimension thus corresponds to a

SUMMARY 11

unique term, and the document vectors are weighted according to the frequencies
of terms in the documents.

Different weighting schemes can be used to create the weights. The most com-
monly used are term frequency (TF) and term frequency-inverse document frequency (TF-
IDF). The TF is the frequency of a particular term in a specific document. It is mea-
sured as the number of occurrences of the term t in document d, the term count TCt,d,
divided by the total number of words in d,

TFt,d =
TCt,d

|d| (2.1)

The TF measure has a tendency to value highly some terms that are common in
many documents, and thus might describe the particular document d poorly. These
are typically small function words such as the, and, of, etc. The TD-IDF measure takes
this into account, and give higher weights to terms that are frequent in document
d but occur in few other documents. This is achieved by multiplying the TF value
by the inverse of term t’s document frequency (DF). DFt is defined as the fraction of
documents that contain term t. The inverse document frequency IDFt is obtained
by taking he logarithm of the inverse of DFt. The TF-IDF measure is thus found as

TF-IDFt,d = TFt,d × log
(

|D|
|{d ∈ D ∩ t ∈ d}|

)
(2.2)

where D is the collection of documents.
When documents are represented as vectors in this way, a multitude of vector

similarity metrics can be applied to calculate the distance between them, or equiv-
alently their similarity. The most commonly used is the cosine similarity measure,
which simply is the cosine of the angle between two document vectors.

simcos(d1, d2) =
~v(d1) ·~v(d2)

|~v(d1)| |~v(d2)|
(2.3)

Benefits of this similarity measure is that two identical documents will get a sim-
ilarity of 1.0, and two documents that share no common terms at all will have a
similarity of 0.0. The measure also ignores the norm of the vectors, which makes it
suited to compare documents of different lengths.

2.3 Summary

This chapter has presented CBR, a reasoning technique and problem solving method-
ology useful for many types of problems. CBR finds solutions to new problems
based on a body of previous experiences — the case base. The ability of a CBR
system is directly dependent on the number and quality of the experiences that con-
stitute this case base.

One of the major challenges with traditional CBR is the construction of the cases.
In classic CBR systems, cases have typically been structured consisting of features
from the problem domain. Such cases require much effort in the form of knowledge
engineering, which might be why the use of CBR is not more widespread.

12 TEXTUAL CASE-BASED REASONING

One of the best sources of problem solving experiences are textual documents.
People and organizations regularly make notes, records and reports about episodes
useful as problem cases. The use of such documents in CBR is the focus of the field
of Textual CBR (TCBR).

TCBR share many methods and representations with Information Retrieval (IR),
including the Vector Space Model and term frequency vectors, but is also funda-
mentally different. While IR focuses on retrieving specific nuggets of information as
a response to an users information need, TCBR is focused on solving specific prob-
lems. The goal in TCBR is not merely to retrieve information, but to reuse and adapt
the retrieved information into something that forms the solution to a given problem.

Chapter 3

Graph Theory

This chapter presents the theory of graphs and networks. The aim is to provide
an understanding of the theoretical foundations of networks and their uses, before
their application to text representation is discussed in the following chapter.

Section 3.1 starts the chapter by briefly explaining the basic concept of graphs.
Section 3.2 then builds upon this, introducing the field of network theory. What net-
works are, how they can be used, and some of their most important properties are
described here. In Section 3.3 a special focus on Graph Centrality is made, which
will prove a central component in the representation presented in Chapter 4. Sec-
tion 3.4 discuss how networks relate to and can represent natural language text in
different ways. A brief summary concludes the chapter.

3.1 Graphs

A graph is an abstract mathematical representation. It consist of a collection of ob-
jects, called nodes or vertices, and a collection of relations between these, the edges,
arcs or links. Formally a graph G is an ordered pair G = (V, E), where V is the set of
vertices and E the set of edges connecting these.

We will be using the terms node and vertex interchangeably. The term edge will
be preferred for the relations, and we say that a node links to another if there is an
edge from the former to the latter.

Although nodes may represent various entities (more on this in the following
section), they are treated as featureless and indivisible in the graph. The order N of
a graph is the number of nodes |V|. Edges represent abstract relations between the
nodes. They may be either directed or undirected, and may or may not be weighted.
The size of a graph is defined as its number of edges.

The number of edges connected to a node is known as its degree. If the edges
in the graph are directed, the in-degree and out-degree is defined as the number of
incoming and outgoing edges, respectively.

Two nodes are said to be connected if there is a path between them. A path is
a sequence of nodes where each node links to the next node in the sequence. A
connected graph is one in which every pair of nodes are connected.

The path between a pair of nodes with the least number of intermediate nodes
is called their geodesic path. In a graph with unweighted edges, this also constitute
the shortest path; with weighted edges, the shortest path is the path where the sum

13

14 GRAPH THEORY

of edge weights have the lowest value. The average geodesic path length between
node pairs in the graph is called the graph’s characteristic path length.

Two nodes are said to be adjacent if they are connected by a single edge. The
neighborhood of a node is the set of adjacent nodes. A graph where all nodes are
adjacent is called complete, or fully connected. Such a graph contains all the N(N −
1)/2 edges possible (in an undirected graph), where N is the order of the graph. In
a complete graph, all node pairs have geodesic paths of 1.

An adjacency matrix is often used to represent a graph. Each row and column in
the adjacency matrix represents a node. The value of element aij in the matrix is 1
if node i is connected to node j, and 0 otherwise. In a weighted graph, a non-zero
value of aij describes the weight of the edge.

Graphs are mathematical abstract representations, used to solve a wide range of
problems in graph theory, a field in discrete mathematics. The origin of the concept
is the well-known problem of the Seven Bridges of Konigsberg, where Leonhard
Euler, in 1735, used the properties of a graph representation of the city to prove that
it was impossible to traverse the seven bridges of the city without crossing any of
them twice.

Graphs are still used to represent a wide range of interconnected systems of
things or people. We call such systems, where physical entities are represented by
graph models in order to better understand them and their properties, networks.
This is the focus of the following section.

3.2 Networks

Network theory can be seen as a part, or rather an application, of graph theory. It
is concerned with the study of complex systems that is composed of entities and
relations. Anything that can be seen as a set of discrete interrelated objects can be
modelled using network theory.

Networks are highly useful, both in social sciences and for studying natural phe-
nomena. Examples of applications of network theory include semantic networks,
neural networks, computer networks, and social networks of many kinds, to name
but a few. The study of network theory is a very active and growing field. In the
words of Barabási (2003, p.222):

Network thinking is poised to invade all domains of human activity and
most fields of human inquiry. It is more than another helpful perspective
or tool. Networks are by their very nature the fabric of most complex
systems, and nodes and links deeply infuse all strategies aimed at ap-
proaching our interlocked universe.

Albert and Barabási (2002) explain the recent boom in network research with
certain technical and social developments. On the technical side there is the rapid
increase in available computational power. New technology enables both comput-
erized data acquisition leading to large databases of real networks, and the com-
putational power to explore such networks containing millions of nodes. The tech-
nical development has been aided by weakening boundaries between disciplines,
enabling researches to access and study a range of different networks, and a height-
ened focus on understanding systems as a whole.

NETWORKS 15

The understanding of whole systems, rather than trying to understand systems
by studying individual components, is also motivated by the sheer complexity of
many systems. Because most systems studied are very large, often with millions
of nodes or more, it becomes problematic to investigate the details of the network
separately. To deal with this, probabilistic models for representing large networks
have been devised.

The following sections describe the three most prominent such probabilistic mod-
els. Parts of these sections have previously been presented as part of our earlier re-
search (Valle, 2010). First described is Random Graphs, the model that initialized the
field of network theory and still influence our thinking about how to represent large
networks. It is based on networks emerging when nodes are randomly connected
with a given probability. The Small-World Networks model is then introduced. This
model solves some problems that cannot be represented by simple random graphs,
such as short characteristic path lengths and high clustering coefficients found in
many real systems. Finally the model of Scale-Free Networks is discussed. The power
of this model is that it is able to describe why many networks display degree distri-
butions that follow power-laws, leasing to the presence of hub nodes.

3.2.1 Random Graphs

The theory of random graphs was first described by Erdős and Rényi in the late
1950s. Until this time, graph theory concerned itself with smaller graphs with spe-
cific structures, and their properties. Many networks are too large for us to be able
to represent or describe them completely and explicitly. Random graphs introduced
probabilistic models into network theory, and enabled us to represent such networks
by means of local rules without considering a complete global structure of the net-
work.

Random graphs, as first described by Erdős and Rényi (1960), consists of N ver-
tices, each pair connected with a probability p. The result is a graph with approxi-
mately pN(N − 1)/2 edges randomly distributed in the graph. This simplest form
of the random graph model is named after its inventors, Erdős-Rényi random graphs.

The connectivity of a graph is described by its degree distribution. This is a
function P(k), defining the probability that a given node in the network have degree
k. In a random graph, this function follows a Poisson distribution. The average
degree of a node in a random graph is 〈k〉 = pN.

An interesting and well known property of random graphs is the emergence of
giant components. While the probability of edges p is low, the network consist of
small isolated graphs, typically trees. At a critical probability pc ' 1/N the aver-
age degree 〈k〉 approaches 1. This means that every node on average is connected
to at least one other. When this happens the network drastically changes its char-
acteristics. All the small previously disconnected graphs then starts connecting to
each other, forming a giant component within the network. It is also found that if
〈k〉 ≥ ln(N), almost every graph is connected (Albert and Barabási, 2002). This is
useful because it allows us to predict whether any two nodes will be connected in a
network by only estimating the average degree of the network.

Random graph models, while obviously simplifications of how real networks
behave, have guided the thinking about large networks, and serve as a good ap-

16 GRAPH THEORY

proximation to modelling some systems. While many real world networks are more
complex than the Erdős-Rényi random graphs, they serve well as a baseline to which
networks can be compared.

3.2.2 Small-World Networks

The small-world model was first presented by Watts and Strogatz (1998). They noted
that the structure of most real world networks lies somewhere in between the com-
pletely regular and completely random. Some such networks can be seen to have
both (1) a high clustering coefficient C, much larger than that of a comparable ran-
dom graph with the same number of nodes and edges, and (2) a short average length
of the shortest path between pairs of nodes, i.e. characteristic path length, compara-
ble to that of a corresponding random graph. They called these systems small-world
networks. Such systems display enhanced signal-propagation speed, computational
power and synchronizability.

Figure 3.1: The types of networks explained by the Watts-Strogatz model (Watts and Stro-
gatz, 1998).

The model proposed by Watts and Strogatz enables us to explain the clustering
observed in many real systems. Just like the Erdős-Rényi model, it is fundamentally
random. The difference is that instead of adding edges randomly to a set of nodes,
the network initially starts out as completely regular. Edges are then rewired with
a probability p, equivalent to that of adding new edges in the random graphs, thus
introducing randomness into the network. The discovery made by Watts and Stro-
gatz was that even a handful of such rewired edges drastically reduce the average
distance in the network, while they hardly affect the clustering at all.

The two properties defining such networks, small worlds and clustering, are de-
scribed subsequently. For a more detailed analysis of the properties of small-world
networks, see (Albert and Barabási, 2002, Section VI).

The Small-World Phenomenon The concept of the small-world phenomenon was
initiated by the observation that it is often a surprisingly short average minimum
distance between pairs of vertices in graphs. This was first noted by Stanley Mil-
gram (1967) in a study examining the average path length in social networks. The

NETWORKS 17

study concluded that there was a typical length of about six links between pairs
of people in the United States. This effect is popularly known as the six degrees of
separation. Such small-world effects have later been shown both in nature and in
man-made systems.

Even though the idea of six degrees of separation originated with Milgram’s
work, he never used the term. It was first used by Hungarian writer Frigyes Karinthy
and popularized in a play with the same name by John Guare (1990). The game of
six degrees of Kevin Bacon is based on the concept. The goal is here to find a link from
any actor to Bacon within six steps, where actors are considered connected if they
have starred in the same movie. Another version of the game is the Erdős number,
which is the number of coauthor relations needed to connect a researcher to Paul
Erdős.

The effect seems to be true for most kinds of complex networks, and is also evi-
dent in random graphs. Newman (2001, p.4) explains this intuitively:

In almost all networks, the number of kth nearest neighbors of a typi-
cal vertex increases exponentially with k, and hence the average distance
between pairs of vertices l scales logarithmically with N the number of
vertices.

Since this property is found to hold true, also in random graphs (Watts and Stro-
gatz, 1998; Newman, 2001), the small-world phenomenon cannot be an indication of
any particular organizing principle. Rather it is an important property for describ-
ing the behaviour of a network. It was hypothesized by Jeong et al. (2000) that the
small-world phenomenon make networks robust, and that this is the reason why
many biological networks show this property.

Clustering A common property of networks is the formation of clusters. One of
the most familiar examples of this is circles of friends and cliques in social networks.
These are groups of people within which almost everyone knows almost everyone
else. The tendency of a network to contain such clusters is described by its clustering
coefficient.

For a given node i in the network, there are ei edges connecting it to other nodes.
If these nearest neighbors constituted a complete subgraph in the network there
would be a total of ei(ei − 1) edges between them. The clustering coefficient of node
i is defined as the ratio of actual edges in this subgraph, Ei, to the total possible.
Thus, the clustering coefficient is defined as

Cdirected
i =

Ei

ei(ei − 1)
(3.1)

With undirected graphs, the number of possible edges in the subgraph is only half,
and the equation is adapted correspondingly:

Cundirected
i =

2Ei

ei(ei − 1)
(3.2)

For the network as a whole, the clustering coefficient is defined as the average of
that of each node.

C =
1
N

N

∑
i

ci (3.3)

18 GRAPH THEORY

where N is the number of nodes in the network.

0 35

4

1 2

(a)

35

4

1 2

(b)

Figure 3.2: Illustration of graph clustering. (a) shows a small example graph. (b) shows the
e0 = 5 neighbors of node 0, and their connectedness, with dotted lines indicating
missing connections. Node 0 have clustering coefficient C0 = 6/10 = 0.6. The
rest are C1 = 0.66, C2 = 0.83, C3 = 0.83, C4 = 1.0, C5 = 1.0.

Figure 3.2 exemplifies the calculation of clustering coefficients in a small undi-
rected graph. The number of possible edges between the nodes in 3.2(b) is 10, while
the number of actual edges Ei = 6. This gives node 0 in 3.2(a) a clustering coeffi-
cient of C0 = 0.6. By Equation (3.2), the rest of the nodes have clustering coefficients
C1 = 0.66, C2 = 0.83, C3 = 0.83, C4 = 1.0, C5 = 1.0, which gives the network an
average clustering coefficient of C = 8.2.

Since the probability of two neighbors of a node in a random graph being con-
nected is the same as the probability p that any random pair of nodes is connected,
the clustering coefficient in such networks is Crand = p. It is a typical property of
many real networks that they have a higher clustering coefficient than comparable
random networks.

3.2.3 Scale-Free Networks

While studying the topology of the World Wide Web, Jeong et al. (1999) discovered
a phenomenon that could not be explained by the prevalent network models at the
time. This phenomenon was that there existed a relatively small number of nodes,
with an extremely high number of connections to other nodes. Such nodes, called
hubs, are practically forbidden by the degree distributions in both the Erdős-Rényi
random graphs and Watts-Strogatz small-world networks. This led to further study
of the degree distribution, and the discovery of power-laws governing the degree
distribution of the Web.

Such hubs were also found in many other networks, and it was soon discovered
that a wide range of natural and artificial networks display such degree distribu-
tions.

For a degree distribution to follow a power-law means that P(k) ∼ k−γ for some
constant γ specific to the network. P(k) is here the probability that a random node

CENTRALITY MEASURES 19

in the network will have degree k. Power-laws are scale invariant, which means that
scaling the argument x of a power-law function f (x) = axk by a constant factor c
only causes a proportionate scaling of the function itself.

f (cx) = a(cx)k = ck f (x) ∝ f (x) (3.4)

This is why such networks are called scale-free. For a more detailed explanation of
power-laws, see Appendix A.

The long tail in the degree distribution of scale free networks are what makes
possible the occurrence of hubs in the network. Described by the power-law, almost
all the nodes in the network have a very low degree, at most connected to a few other
nodes. Hubs belong to a special group of nodes defying this trend and connecting
to a high number of other nodes. These connectors hold the network together and
are very important to the topology of scale-free networks.

It turns out that most hubs usually are connected to hubs with a lower degree,
and that these in turn are connected to even smaller hubs. This hierarchical hub-
structure gives scale-free networks one of their most important properties, a high
fault tolerance. Since there is a very low number of hubs compared to the number
of nodes, the removal of any random node is very unlikely to have almost any effect
on the overall connectedness of the network. This is also a weakness, unfortunately,
as the targeted removal of hubs will have a huge impact on the network.

In order to explain how scale-free networks emerge, Barabási and Albert (1999)
proposed a theory for such networks not unlike to that of the previous models. The
model is based upon the idea of developing, or growing, the networks from an
initially small set of nodes. What they realized was that the edges were not, in fact,
random, as supposed by all previous models. Instead, there was a trend that those
nodes with already a high number of connections would get even more edges; a
rich get richer phenomenon. The nodes showed a clear preferential attachment when
adding new edges.

These two ingredients, growth and preferential attachment, forms the basis of
what is known as the Barabási-Albert model. The model starts out with a small num-
ber of nodes, and then iteratively add new nodes with a few edges to those already
present. The nodes to which a new node connects are selected with a probability
dependent on the degree of the node, Π(ki), defined as

Π(ki) =
ki

∑N
j k j

where ki is the degree of node i.
For a further discussion of this topic, Albert and Barabási (2002, Section VII)

provides a detailed description of scale-free networks.

3.3 Centrality Measures

Node centrality is the measure of how important a node is within a network. Cen-
trality can be used for node ranking, where the goal is to capture the relative impor-
tance of the nodes. The rank of a node is the node’s position in a list of nodes ordered

20 GRAPH THEORY

0 31

2

4

(a) Star graph

0 31

2

4

(b) Wheel graph

Figure 3.3: Two small graphs illustrating the concept of node centrality. Node 0 is the hub
of both graphs, and clearly the most central node. This observation is the basis
of the arguments for node centrality measures presented by Freeman (1978).

by importance. What it means to be important is not generally agreed upon, and as
we shall see, there are many ways in which to measure a node’s centrality.

Freeman (1978) reviewed the intuitive bases of the then existing measures for
centrality. As he observed, the node forming the center of a star graph or the hub of
a wheel graph (see Figure 3.3) is obviously more central than the other nodes. He
showed that this node has the maximum possible degree in the network. It also falls
on the shortest path between the largest possible number of other nodes, and, since
it has the minimal possible distance to the other nodes, is maximally close to them
as well. Each of these three properties led to the definition of a measure of node
centrality. The three notions, degree centrality, betweenness centrality and closeness cen-
trality still form the basis of most centrality measures.

Degree centrality is a totally local measure, concerned only with the number of
neighbors a node has. Betweenness and closeness, conversely, take into account the
complete graph, and how central nodes are in light of their paths to other nodes. A
fourth measure that in some sense occupies the middle ground between the local
degree-based centrality and the global path-based centralities has later been pro-
posed by Bonacich (1972). He suggested that the eigenvector of the largest adja-
cency matrix could serve as a centrality measure. This is based on the idea that the
importance of nodes are recursively related to the centralities of the nodes to which
they connect.

One application of node centrality is by search engines on the Web to identify
how important web pages are. Two of the most popular ranking algorithms for this
are Google’s PageRank and Kleinberg’s HITS. These are variations on the eigenvec-
tor centrality, and are based on the idea of “recommendation” or “voting” among
nodes (Mihalcea and Tarau, 2005). An edge from one node to another is seen as
a vote for that node. The higher the number of votes, the higher the ranking will
be. Each vote is not equal — votes from other important nodes are seen as more
important than votes from unimportant nodes.

A weakness of the centrality measures presented by Freeman (1978) is that they
are designed for binary connections; neither of them takes into account the fact
that edges may be weighted. The degree centrality may easily be generalized to

CENTRALITY MEASURES 21

weighted graphs by summing the connection strengths instead of the number of
connections. Newman (2001) discusses the generalization of the betweenness and
closeness measures to weighted graphs in the context of scientific collaboration net-
works. Opsahl et al. (2010) suggest that these generalizations should not be com-
pletely focused on weights, and that a middle ground must be found. They suggest
a tuning parameter α by which the relative importance of number of connections
and the connection strengths may be determined.

The following sections describe various centrality measures in more detail. De-
gree based centralities are first described, followed by the path-based betweenness
and closeness centralities, and variations on these. Finally, eigenvector-based mea-
sures are presented, including PageRank and HITS. Figure 3.4 groups the various
centrality measures according to these distinctions.

Figure 3.4: Mind-map of various node centrality measures. Closeness and betweenness,
on the right, are path based measures. Degree, with its weighted and direction
sensitive variants are based on nodes’ direct neighbourhoods. The eigenvector-
based measures are also based on neighbors, but take the importance of each
neighbour into account. The measures are described in detail in Sections 3.3.1
through 3.3.9.

3.3.1 Degree Centrality

Degree centrality is the simplest and most intuitive centrality measure presented by
Freeman (1978) — all that matters is how well connected each node is. In its most
basic form, for binary connections, a node’s degree centrality is simply the number
of edges it has to others in the network, i.e. its degree. It is defined as

Cd(i) =
N

∑
j

ai,j (3.5)

where ai,j is 1 if node i and j are adjacent, and 0 if they are not. The measure is nat-
urally extended to weighted networks by letting ai,j represent the weight between
the nodes.

This measure is affected by the size of the network over which it is calculated.
To prevent this, it is possible to normalize by the maximum possible degree of the
network.

Cd(i) =
1

N − 1

N

∑
j

ai,j (3.6)

where N is the number of nodes in the network.
The rationale for this measure is that the nodes with most connections, or in the

weighted case, strongest ties to other nodes, have many channels for communica-
tion with the rest of the network, and are thus influential. As observed in the context

22 GRAPH THEORY

of scale-free networks in Section 3.2.3, those nodes with a very high number of con-
nections, the hubs, are responsible for holding the network together and ensuring
robustness. Conversely, if nodes with high degree are removed, the network soon
collapses.

Opsahl et al. (2010) argues that while the binary degree measure only values
number of connections, the weighted version only cares about the sum of connection
strengths. As a more balanced measure, they suggest

Cα
d(i) = k1−α

i × sα
i (3.7)

where ki is the degree of node i, si the total weight strength, and α a parameter deter-
mining the relative importance of the two. With α values of 0.0 and 1.0, the measure
behaves as the purely unweighted and weighted degree centralities, respectively.

3.3.2 Betweenness Centrality

The second of the measures presented by Freeman (1978), betweenness centrality, is
also based on ideas about communication networks. Nodes with high betweenness
centrality are those that fall on the shortest path between a large number of other
nodes. Because of their location, such nodes are in a position to control or influence
the communication between others in the network.

The betweenness centrality of a node i can be expressed as

Cb(i) = ∑
s 6=i

∑
t 6=i

σs,t(i)
σs,t

(3.8)

where s and t are nodes in the graph, σs,t is the number of geodesic paths linking the
two, and σs,t(i) is the fraction of these paths that go through node i.

This value is affected by the size of the graph. To remove this effect, the centrality
values can be normalized by (N − 1)(N − 2), where N is the number of nodes in
the graph. This number is the maximum possible pairs of nodes in the graph not
including i.

Cb(i) =
1

(N − 1)(N − 2) ∑
s 6=i

∑
t 6=i

σs,t(i)
σs,t

(3.9)

Since Freeman operates on binary networks, his shortest paths are in practice
geodesic paths between the node pairs. Newman (2001) suggests that Dijkstra’s
algorithm for shortest paths (Dijkstra, 1959) should be used instead. This way the
weights of the network’s edges can be taken into account, and the shortest path will
not necessarily be the one visiting the least number of nodes.

Unconnected graphs pose a possible problem to this formulation of between-
ness centrality, since some node pairs have no shortest path. This problem can be
circumvented by applying the measure to each component separately.

3.3.3 Current-Flow Betweenness

Betweenness centrality is a measure of the control a node has over the spread of
information through the network. From the description above, it is clear that this

CENTRALITY MEASURES 23

model assumes that all communication pass along the shortest paths. This is of
course a gross simplification in many situations.

Current-flow betweenness centrality is a measure that relaxes this assumption
(Newman, 2005). With this measure contributions from all paths between nodes,
not just the shortest, are counted. The shortest paths are still most influential, but all
paths contribute to the overall betweenness.

The name, current-flow, is derived from the model used for flow of information
through the network: that of current-flows in electrical networks. Newman (2005)
presents the electrical network model, defining the current-flow betweenness cen-
trality to be the current flowing through a node when one unit of current is injected
into and extracted from the network, averaged over all source-terminal pairs. He
proves that this is mathematically equivalent to the betweenness on random walks
between nodes. Because of this, current-flow betweenness is also known as random-
walk betweenness.

The betweenness centrality based on shortest paths, as described by Freeman,
and this measure can be seen as extremes in a spectrum of possibilities. The former
assumes that information flowing between nodes knows exactly where the optimal
path is, and that it chooses to follow it. In the latter it is assumed that information
have no way of knowing where optimal paths are, and instead flows around at
random.

Calculation of current-flow betweenness is described by Newman (2005, p.9) as
follows.

1. Construct the matrix D−A, where D is the diagonal matrix of vertex
degrees and A is the adjacency matrix.

2. Remove any single row, and the corresponding column. For exam-
ple, one could remove the last row and column.

3. Invert the resulting matrix and then add back a new row and col-
umn consisting of all zeros in the position from which the row and
column were previously removed (e.g. the last row and column).
Call the resulting matrix T, with elements Tij.

4. Calculate the betweenness using Equation (3.10).

The betweenness values are calculated as the average of the current flowing
through node i over all the source-target pairs s, t:

Cc f b(i) =
∑s<t Ist

i
1
2 N(N − 1)

(3.10)

where Ist
i is calculated as

Ist
i =

1
2 ∑

j
Aij|Tis − Tit − Tjs + Tjt|, for i 6= s, t (3.11)

Like in the case of the (shortest-path) betweenness centrality, this procedure
should be repeated separately for each component in unconnected graphs.

24 GRAPH THEORY

3.3.4 Load Centrality

Another centrality measure closely related to the betweenness centrality is load cen-
trality. Load centrality was first introduced by Goh et al. (2001), who described it
as equal to betweenness centrality. As Brandes (2008) points out, this is not strictly
correct. He discuss it in the context of different variants of betweenness centrality
and clarifies the differences between the two.

The difference lies in how multiple shortest paths are handled by the measure.
As discussed above, the betweenness centrality is defined as the fraction of shortest
paths between pairs of other nodes. This is also the case for load centrality, but the
two measures differ in the way they handle the situation of multiple shortest paths
between a pair of nodes.

With betweenness, the contribution to a node in the face of several shortest paths
is simply the fraction of these paths the node is part of. A slightly different approach
is taken in load centrality, which is defined from the view of a data packet sent
between nodes following the shortest path. For each branch where it is possible for
the packet to select among several shortest paths, the contribution is split evenly.
Figure 3.5 illustrates the point in an example network.

S

½

½

¼

¼

½

T

(a) Load centrality

S

⅔

⅓

⅓

⅓

⅓

T

(b) Betweenness centrality

Figure 3.5: Differences between load and betweenness centralities. Example network illus-
trates the difference in contribution from a single source-terminal pair with three
shortest-paths. For load centrality (a), the contribution is divided evenly for each
branch. The standard betweenness centrality (b) gives equal contribution to each
of the paths, with more contribution for early nodes part of several paths. The
example is adapted from Brandes (2008).

3.3.5 Closeness Centrality

Like betweenness, closeness centrality is path-based. It is concerned with the dis-
tance from node i to all other nodes in the network. A node with short distances
to most of the network, it is thought, is in a position with good access to informa-
tion. Nodes close to others are also in a good position to influence them. Messages
originating in such a position should spread throughout the network in minimum
time.

Newman (2001, p.4) formulates the motivation for closeness centrality, in the
context of scientific collaboration networks, as follows:

Like betweenness it is a measure, in some sense, of the centrality of a
vertex — authors with low values of this average will, it is assumed, be

CENTRALITY MEASURES 25

the first to learn new information, and information originating with them
will reach others quicker than information originating with other sources.

In its most straight forward incarnation, the closeness centrality can be defined
as

Cc(i) =
1

∑N
j=1 d(i, j)

(3.12)

where d(i, j) denotes the number of geodesic paths linking nodes i and j.
Like with the other measures, it is important to normalize the values, so that they

do not depend on the size of the graph. Normalizing by the number of nodes in the
network gives the following formula.

Cc(i) =
N − 1

∑N
j=1 d(i, j)

(3.13)

A problem with this formulation is, however, that it is only meaningful for con-
nected graphs. In an unconnected graph, every point has at least one other point
which cannot be reached from it, and thus

N

∑
j=1

d(i, j) = ∞ (3.14)

for all i. A way to handle this for unconnected graphs is to treat each component
separately. This require an adaption of the normalization, in order to reflect node
closeness in the overall graph from the locally calculated values.

Cc(i) =
M− 1
N − 1

1

∑M
j=1 d(i, j)

(3.15)

where M is the number of nodes in the connected part of the graph containing node
i, and N is the number of nodes in the entire graph.

A version of this measure can also be derived for graphs with weighed edges.
As suggested by Newman (2001), Dijkstra’s algorithm for shortest paths (Dijkstra,
1959) can be used to find d(i, j) instead of the geodesic paths assumed by Freeman
(1978).

3.3.6 Current Flow Closeness

Like current flow betweenness is a relaxation of the betweenness centrality to in-
clude not only shortest, but all paths between nodes, so is the current flow closeness
centrality a relaxation of the standard closeness centrality.

Brandes and Fleischer (2005) generalize the closeness measure in much the same
way as Newman (2001) generalized betweenness. Their derivation of current flow
betweenness is, just like the derivation of current flow betweenness by Newman,
based on a model of electrical networks. The electric network is defined as Net =
(G; c), where the graph G = (E, V) is the usual tuple of sets of vertices and edges,
and c is a list of positive edge weights. Edge weights in c indicate the strength, or
conductance, of edge e ∈ E. Each edge is also given an arbitrary direction ~e ∈ ~E

26 GRAPH THEORY

in order to later describe the direction of current flowing through it. The actual
orientation of~e is of no importance for the end result, however.

To denote the supply of external current to the network a vector b indicates
whether nodes are a source s or sink t of current.

bst(v) =

1 v = s
−1 v = t
0 otherwise

(3.16)

Given a supply bst, a current xst is created through the network from s to t. A
value of xst(~e) > 0 indicates that the current follows the orientation of~e, a negative
value means the current goes in the opposite direction. For each such current Ohm’s
law defines a potential difference, or voltage, given as p̂st(~e) = xst(~e)/c(e). The
absolute potentials for nodes v ∈ V is given by vector p if p̂ = p(v)− p(w) for all
(v, w) ∈ ~E. The absolute potential given st-supply bst is denoted by pst.

The current flow closeness is formally defined as

Cc f c =
N − 1

∑t 6=s pst(s)− pst(t)
(3.17)

where pst(i) denotes the potential difference, or voltage, of node i.
The term pst(s) − pst(t) corresponds to the effective electrical resistance of the

network when current is supplied at node s and drained from node t. This effective
resistance can be interpreted as a measure of the distance between the nodes. The
value of N − 1 in the numerator is a normalizing constant meant to remove the
sensitivity to graph size.

Like the regular closeness centrality, described in the previous section, current
flow closeness can be applied to both weighted and unweighted networks. To apply
the measure to unweighted networks, the edge weight vector c can simply be set to
1 for all edges.

3.3.7 Eigenvector Centrality

Eigenvector centrality, as first presented by Bonacich (1972), is based on the idea
that nodes are more central if they are connected to other nodes that are themselves
central. Eigenvector centrality, thus, relies not only on the number of connections
to other nodes, like degree centrality, but also on how well the neighbors are con-
nected.

Bonacich defined the eigenvector centrality VE(vi) of node vi as a multiple of the
sum of adjacent centralities.

λVE(vi) =
N

∑
j=1

aijCE(vj) (3.18)

Expressed in matrix notation this becomes

λ~x = A~x (3.19)

with A as the adjacency matrix, and ~x = (CE(v1), . . . , CE(vn)) a vector of centrality
values. Equation (3.19) can be recognized as the eigenvector equation, which states

CENTRALITY MEASURES 27

that x is an eigenvector of matrix A if there is a scalar λ such that the equation is
fulfilled. Such a scalar is called an eigenvalue, and corresponds to the eigenvector.
It is also required that the ~x is not the null-vector.

There are several algorithms for solving Equation (3.19) to find an eigenpair, an
eigenvalue λ and the corresponding eigenvector x, for a matrix. One of these is the
Power Iteration method. The λ found by this method is the one with the greatest
absolute value. The eigenvector corresponding to this largest eigenvalue is called
the principal eigenvector. Power Iteration is a simple method and has low storage
requirements, which makes it suited for use with very large sparse matrices. A
limitation of the method is, however, that it may converge slowly.

3.3.8 PageRank

PageRank is a version of the eigenvector centrality. It was first introduced by Brin
and Page (1998), and is described in more detail by Page et al. (1998). The method is
named after Larry Page, one of the founders of Google Inc. The algorithm has been
made famous by Google’s use of it to analyze the importance of pages on the World
Wide Web.

The idea behind PageRank is that links from one page to another can be seen as
votes among pages. A page links to another because it considers it a good page, in
some respect, and pages with many incoming links should be considered authorities
and be highly rated. The voting power of a link from a page is normalized by the
total number of outgoing links, so that all pages with the same PageRank contributes
with the same total amount of voting. Votes from pages that have higher PageRanks
are seen as more important, and weighted higher than those with lower rank.

The intuitive justification of the algorithm is the so-called random surfer model.
This model is described by Brin and Page (1998, p.110) as follows.

We assume there is a “random surfer” who is given a Web page at ran-
dom and keeps clicking on links, never hitting “back” but eventually gets
bored and starts on another random page. The probability that the ran-
dom surfer visits a page is its PageRank.

Viewed in this light, the PageRank is related to the random-walk model serving
as justification of current flow betweenness, presented in Section 3.3.3. Where the
random-walk model looks at the probability that a node will be encountered by
random walks between all pairs of two nodes in the network, the random surfer
model predicts probability that the node is visited by a random walks from random
nodes.

Mathematically, the PageRank is described as

PR(vi) =
(1− d)

N
+ d · ∑

vj∈In(vi)

PR(vj)

|Out(vj)|
(3.20)

where In(vi) is the set of nodes with edges pointing to node vi, and Out(vi) the
nodes pointed to from vi. The value of N is the number of nodes in the network,
and d is a dampening parameter between 0 and 1, usually set to 0.85 (Brin and Page,
1998). Under the random surfer model, the value of d represents the probability that

28 GRAPH THEORY

a user clicks on one of the links when visiting a page. Thus, with probability 1− d,
the random user gets bored and start with a random page. An illustrating example
on a small network is given in Figure 3.6.

0.118 0.1180.106

0.092

0.162

0.1930.211

0.039

0.039

0.039

0.053

0.053

0.031

0.031

0.031

0.118

0.096

0.0960.054

0.054
0.054

Figure 3.6: PageRank illustrated in a small graph. The values inside nodes indicate the cen-

trality of the node. Values on the edges corresponds to the PR(vj)

|Out(vj)| term of Equa-
tion (3.20). A value of 0.85 was used for d.

PageRank, as presented by Brin and Page (1998), was meant for use on the World
Wide Web. In this context it is unusual for pages to link partially or multiple times
to other pages, and thus the algorithm was designed for unweighted graphs. Mihal-
cea (2004) introduce the following formulation, extending the method to weighted
graphs.

PRW(vi) =
(1− d)

N
+ d · ∑

vj∈In(vi)

wij
PRW(vj)

∑vk∈In(vj)
wkj

(3.21)

wij represents the weight of the edge from i to j.
The PageRank scores are calculated by starting from arbitrary values for each

node in the graph, and iteratively compute new values using Equation (3.20) or
(3.21) until convergence. The initial values do not affect the final values, only the
number of iterations needed for convergence.

Page et al. (1998) also show that the PageRank can be calculated by finding the
principal eigenvector of a modified adjacency matrix. That is, the eigenvector R,
containing PageRank values, is the solution of

R = D + dA′R (3.22)

where D is a vector where each value is (1− d)/N, and A′ is the adjacency matrix
adjusted so that all columns are normalized and sum to 1.

A final remark is that while the PageRank algorithm is designed for directed
graphs, it can readily be applied to undirected graphs by replacing all edges be-
tween nodes by two edges: one in each direction.

3.3.9 Hyperlink-Induced Topic Search

Another iterative algorithm related to eigenvector centrality is the Hyperlink-Induced
Topic Search (HITS) algorithm presented by Kleinberg (1999). He focus on the need

CENTRALITY MEASURES 29

to identify the most “definitive” or “authoritative” pages on topics on the Web. He
also notices that the link structure can be used to identify these pages. Based on his
proposed link-based model, where some pages are authorities on topics and others
link to many related authorities, he propose the HITS algorithm intended to exploit
this structure.

For each node, the algorithm defines two scores, an authority score and a hub
score. Authorities are pages with large number of incoming links. The authority of
a page describes how much knowledge or information, it holds on a topic. Hubs
are pages with many outgoing links. The hubness of a page is an indicator of how
well it “knows” where to find information on a given topic. The best hubs point
to the best authorities, and the best authorities are those that are linked to from the
best hubs. Nodes can be both hubs and authorities at the same time. With In(vi)
denoting the set of nodes with links to vi, and Out(vi) the set of nodes vi links to,
the HITS scores are defined as

HITSA(vi) = ∑
vj∈In(vi)

HITSH(vj) (3.23)

HITSH(vi) = ∑
vj∈Out(vi)

HITSA(vj) (3.24)

An example of how HITS ranks nodes in a small graph is demonstrated in Fig-
ure 3.7. We see that the node in the upper left corner is the largest authority, and is
linked to by several considerable hubs. It also has a hub score of zero, as it does not
point to any other nodes. The leftmost of the two central nodes is the largest hub,
linking to among others the largest authority node.

0.160
0.254

0.160
0.040

0.185
0.114

0.043
0.234

0.160
0.188

0.087
0.169

0.203
0.000

Figure 3.7: HITS illustrated in a small graph. The blue and green values inside nodes indi-
cate their authority and hubness, respectively. Hubness and authority values are
normalized so that they each sum to 1.0.

Like PageRank, the HITS algorithm is intended for use on the World Wide Web
and does not take edge weights into account. A version for weighted graphs was
also here proposed by Mihalcea (2004):

30 GRAPH THEORY

HITSW
A (vi) = ∑

vj∈In(vi)

wjiHITSW
H (vj) (3.25)

HITSW
H (vi) = ∑

vj∈Out(vi)

wijHITSW
A (vj) (3.26)

Like PageRank, HITS is also designed for directed edges. It can, however, be
applied to undirected graphs by converting them into directed ones by replacing all
edges with directed versions pointing in both orientations.

Kleinberg (1999) describes how the authority scores and hub scores for the net-
work is related to the eigenvector centrality. He shows that, with A as the adjacency
matrix of the graph, the authority scores for the nodes can be found in the principal
eigenvector of AT A, and hub scores in the principal eigenvector of AAT.

The main difference between PageRank and the HITS algorithm is that PageRank
is based on a model in which authority is passed directly from authority to authority,
without interposing the notion of hub pages.

3.4 Text as Graph

Many systems have structures that allow them to be modelled as graphs and pos-
sess properties from complex networks as described above. This also applies to the
system of natural language. In this section, we will describe some of the research
that has been done on the network properties of written language.

There are several ways in which networks can be constructed based on text. Solé
et al. (2005) discuss and compare various ways in which to do this. They define
three types of text networks: co-occurrence networks, syntactic networks, and semantic
networks. Co-occurrence networks are networks in which words that appear close
to each other in text are linked together. In semantic networks, edges represent
semantic relationships between words, usually built from constituency structures
from the text. The last type, semantic networks, captures semantic relations between
concepts represented by words in the text.

Table 3.1 on the facing page, adapted from (Solé et al., 2005), lists some of the
properties commonly found in the network types. In the following sections, we
describe and give examples of research done on these network types. The network
types do indeed display the expected properties, such as small-world and scale-free
topologies.

3.4.1 Co-occurrence Networks

Ferrer i Cancho and Solé (2001) were the first to note that co-occurrence networks
built from human language are both small-world networks and display scale-free
degree distributions. They constructed a complex network from documents in the
British National Corpus1. The network used words as nodes, and linked words to-
gether if they occurred next to each other, or with a single word separating them.

1The BNC is a 100 million word collection designed to represent a wide cross-section of current
British English. It is available from http://www.natcorp.ox.ac.uk/.

http://www.natcorp.ox.ac.uk/

TEXT AS GRAPH 31

Table 3.1: Typical values for some properties found in different types of language networks.
Adapted from (Solé et al., 2005). All types display scale-free degree distributions,
thus the γ-values represent power-law exponents.

Co-occurrence Syntactic Semantic
networks networks networks

Order, N 103 − 106 103 − 104 104 − 105

Average degree, 〈k〉 4− 8 5− 10 2− 4
Characteristic path length, l 3− 4 ∼ 3.5 3− 7
Clustering, C/Crand ∼ 103 ∼ 103 ∼ 102

Degree distribution, γ 2.2− 2.4 ∼ 2.2 ∼ 3

They found that this kind of word co-occurrence network had a short character-
istic path length l = 2.63, and a high clustering coefficient C = 0.437. Since the
corresponding values in a random network would be lrand = 3.03 and Crand =
1.55× 10−4, this is clearly a small-world network. The degree distribution of the
network followed a two-regime power law, with degrees less than about 1000 de-
caying with an exponent γ = 1.5, while higher degrees had the higher γ ' 2.7.

Dorogovtsev and Mendes (2001) have looked more closely on the two-regime
power law found by Ferrer i Cancho and Solé, and propose a theory of the evolu-
tion of language. They treat language as a self-organizing network of interacting
words, and show that the two regimes in the distribution naturally emerge from the
dynamics of this network. The network grows by preferential attachment as in the
Barabási-Albert model, with the addition that at each increment of time new edges
also emerge between words already present in the network. Based on this theory,
they predict that the size of the kernel lexicon, the core part of language, does not
change as the language evolve.

This prediction is also supported by Choudhury and Chatterjee (2010) in a recent
study, where they expand upon the theory by Dorogovtsev and Mendes. Their con-
clusions are based on examinations of the two-regime power-laws for co-occurrence
networks in several languages from three different language families. An interest-
ing consequence of this is that it becomes only marginally harder for new speakers
to learn a language as words are added to it, since they only have to learn the kernel
lexicon.

3.4.2 Dependency Networks

Dependency networks are a type of syntactic text network in which edges represent
syntactic dependencies between words within the same sentence. The dependency
grammar formalism assumes that basic syntactic structure consist of lexical nodes,
e.g. words, and binary dependency relations linking these together. The formal-
ism thus defines a network structure where dependency relations connects pairs of
words. The links can be defined with direction from the head word to its modifier,
or vice versa. By considering the dependency network representing a sentence as
a subgraph of a larger network structure, dependency networks can be formed for
larger corpora.

32 GRAPH THEORY

Ferrer i Cancho et al. (2004) have studied dependency networks in several differ-
ent languages. They constructed three syntactic dependency networks from large
corpora in Czech, German and Romanian, and found that they display properties
not unlike those that had been reported for other linguistic network types. The net-
works were small worlds, with clustering coefficients C of 0.1, 0.02 and 0.09, for
Czech, German and Romanian, respectively. This is much higher than the corre-
sponding Crand of 4 × 10−4, 6 × 10−6 and 9.2 × 10−4 of a random network. The
characteristic path lengths l range from 3.4 to 3.8, which is roughly the same as their
equivalent lrand. They also found that the networks were scale-free, with γ ∼ 2.2,
when the edges were regarded as undirected.

In addition to these two properties, the found an interesting relationship be-
tween a word’s frequency and its degree in the network. By comparing the average
value of word frequency f against node degree k, they found an approximately lin-
ear relationship between the two. Taking into account Zipf’s law, this must mean
that function words (i.e., prepositions, articles, determiners, etc) must be the be the
most connected in the network, a prediction they confirmed by observation.

Another interesting observation that has been done on dependency networks
regards the spacial distribution of the semantic relations. The euclidean distance
between two words in a sentence is defined as the number of words separating the
two, plus one. 〈d〉 is defined as the average distance between pairs of words in a
sentence that are connected by a dependency relation. Ferrer i Cancho (2004) found
that 〈d〉 is small, and grows but very slowly with the sentence length. He estimate
that as much as 50− 67% of dependency links are formed between words at distance
1, i.e. by successive words, and 16− 25% are formed at distance 2. This means that
distances of 2 or less may contribute up to 92% of the syntactic relations.

3.4.3 Synonym Networks

A synonym network is an example of a semantic network. These are networks in
which words are linked together only if they constitute a pair of synonyms. This
kind of networks are also often called thesaurus networks.

Albert and Barabási (2002) report, among other things, an interesting study of
such a network based on the Merriam-Webster Dictionary. In this network a giant
component was detected, consisting of 22311 of the 23279 words that had synonyms.
The average shortest path length in the network was only l = 4.5, and the clustering
coefficient of C = 0.7 was very high compared to Crand = 6× 10−4 for a correspond-
ing random network. The synonym network was thus, like those described above, a
small-world network. Similarly, its degree distribution followed a power-law with
γ = 2.8.

3.5 Summary

We started this chapter by introducing graphs and basic related concepts, before
moving over to the more general field of networks. Networks are models of real
systems, made out of relations between many entities, based on graphs. A network
model typically contain a very large number of nodes, which makes it impractical

SUMMARY 33

or impossible to look at the whole graph in detail. Instead, network properties such
as clustering, degree distributions or the small world property are studied, and the
network can be assigned a network model based on its properties. We have de-
scribed random graphs, small world networks and scale-free networks as examples
of the most important such models.

The concept of graph centrality was subsequently discussed, and many mea-
sures for this defined. Graph centrality is used to define the relative importance of
nodes in networks.

Finally, we saw that natural language have many properties that enables us to
view it from the perspective of networks, and that small-world topologies and scale-
free degree distributions are common among textual networks.

34 GRAPH THEORY

Chapter 4

Graph-based Text Representations

In Section 3.4 we discussed the idea of representing text as networks. This chap-
ter focus on the practical aspects of graph-based text representations, and their use
in TCBR. Some related research is first presented in Section 4.1. Section 4.2 then
presents our approach, which is a continuation of some of our earlier work (Valle,
2010). Next the evaluation methods and datasets used to assess the representations
are presented in Section 4.3. A brief summary concludes the chapter.

4.1 Related Work

The major lines of our use of graphs to represent text do not represent a novel ap-
proach, but is based on and inspired by work done by many others. In particular, it
is influenced by the TextRank (Mihalcea and Tarau, 2004) and LexRank (Erkan and
Radev, 2004) systems, but also other systems and approaches have been influential.

TextRank and LexRank are described in the following section. Section 4.1.2 dis-
cusses some other related approaches, and in Section 4.1.3 the link with TCBR is
explored. Some additional related research is mentioned in Section 4.1.4

4.1.1 TextRank and LexRank

Both TextRank and LexRank are systems that apply graph techniques to perform
extractive text summarization, although the TextRank can be applied to other NLP
tasks as well.

The two systems follow the same main steps. First they represent the text as a
graph. Then, using graph centrality algorithms, they rank the different parts of the
text. The parts of the text highest ranked is finally extracted as the summary. The
TextRank process is described as follows by Mihalcea and Tarau (2004, page 406):

1. Identify text units that best define the task at hand, and add them as
vertices in the graph.

2. Identify relations that connect such text units, and use these rela-
tions to draw edges between vertices in the graph. Edges can be
directed or undirected, weighted or unweighted.

3. Iterate the graph-based ranking algorithm until convergence.

35

36 GRAPH-BASED TEXT REPRESENTATIONS

4. Sort vertices based on their final score. Use the values attached to
each vertex for ranking/selection decisions.

As we see, TextRank leaves the choices of text units and relations open to be
determined based on what best suites the task at hand. The task itself is also not
specified, and the system can thus be applied to different problems, such as docu-
ment summarization, keyword extraction or word-sense disambiguation (Mihalcea
et al., 2004).

LexRank is created specifically for the purpose of document summarization, and
defines the selection of text units and relations explicitly. Seen in this light, LexRank
can be seen as an embodiment of the TextRank approach directed at this particular
task. LexRank uses sentences as the basic text unit, and defines sentence similarity
based on cosine of TF-IDF vectors as relations in the network.

Mihalcea and Tarau (2005) presents summarization and keyword extraction as
example applications for TextRank. Sentences are used for summarization, while
tokens are used as text units for keyword extraction. Similarity between sentences
are defined in terms of content overlap, i.e. the number of tokens common to two
sentences. Co-occurrences within textual contexts are used as relations between
tokens.

As suggested by their names, both systems use PageRank as their ranking al-
gorithm. LexRank experiments with the use of degree centrality, and TextRank has
also been evaluated with HITS and the Positional Power Function (Mihalcea, 2004;
Mihalcea and Tarau, 2005). However, no extensive investigation into the choice of
graph centrality algorithms has been done.

Since TextRank is a general method, the specific graph representation must be
selected depending on the problem. There has been no attempts at describing which
graph representations are suited for what problems.

As pointed out by Mihalcea and Tarau (2005), the TextRank algorithm is lan-
guage independent. They illustrate this by doing document summarization in both
English and Portuguese. Similarly, Mengxiao et al. (2004) shows that keyword ex-
traction can be done for Chinese. They have independently come up with a method
similar to TextRank using co-occurrence networks.The main difference is that rather
than PageRank they use a measure of how absence of nodes affect the characteristic
path length of the network. This measure is in practice equivalent with the between-
ness centrality measure (described in Section 3.3.2). Mengxiao et al. also show that
networks created from Chinese documents, like English, have a small world struc-
ture, and discuss how this enable the keyword extraction process using the idea of
node centrality.

4.1.2 Other Text Network Representations

Liu et al. (2008) have also studied text networks. Their proposed text network repre-
sentation model basically does the same as the TextRank method, that is, use graph
centrality on graph representations of text. They too use PageRank, and their model
is applicable to different problem areas. They use words as the textual units in their
networks, and discuss different ways to identify edges using co-occurrences, word
dependencies and semantic relations.

RELATED WORK 37

Based on the PageRank scores of the words in the network, Liu et al. suggests
to create a text representation vector. This vector can be used in problems such as
document classifications, by defining document similarity as the cosine of represen-
tation vectors. Seen from the perspective of Information Retrieval, this is simply the
case of using PageRank as a weighting scheme for the Vector Space Model.

Wang et al. (2005) presented a very similar approach, which they call term graphs.
They also use graphs as an intermediate step, creating vectors of PageRank score
values for each document. Their graphs are co-occurrence networks. The networks
are built from the most frequently co-occurring terms, which are identified using
association rule mining. Different from the model presented by Liu et al. are the
similarity measures. Two similarity measures are presented: rank correlation and
term distances. The rank correlation is measured by sorting the term-vectors for
each document after relative rank, and then use a statistical correlation measure. To
measure term distance, a term distance matrix T, with Tij representing the smallest
number of hops between terms i and j in the term graph, is created for each textual
category. The similarity of a document D to each category is then calculated as

n
∑i,j∈D(Tij)α

where i and j represent pairs of terms in the document, and α is a parameter to
adjust the effect of distance to the similarity score. In their experiments, Wang et al.
use α = 2. n is the total number of term-pairs in the document.

Another use of graphs is presented by Tomita et al. (2004a). Their main concern
is the use of graph-based representations for knowledge discovery in Information
Retrieval. They initially propose their graph model as a way to help users clar-
ify their information need through interaction with query graphs (Tomita and Kikui,
2001). This idea is further developed to that of subject graphs (Tomita et al., 2004a,b),
a text representation model intended to simplify the steps needed in knowledge dis-
covery from large volumes of texts. The graphs are co-occurrence networks created
from the text. Nodes are used to represent terms in the text, and co-occurrence fre-
quencies of terms in context such as sentences, clauses or word windows are used
to calculate edge weights. The model do not use node centrality to rank the terms
in any way, but rather determine significance by term frequency (TF).

4.1.3 Graphs for TCBR

While the work described above mainly focuses on applications of graphs in IR,
Cunningham et al. (2004) have investigated the use of graphs in TCBR. Their work
expands upon a graph model presented by Schenker et al. (2003b,a). The model is
based upon structural relationships between terms in documents, and graph match-
ing algorithms are used to assess similarity between graphs. Edges in the graph
represents adjacent words in the text, and are labelled with the section they occur
in.

While Schenker et al. apply their model to tasks such as document clustering and
classification, Cunningham et al. experiment with an extension of the algorithm in
order to investigate its potential benefit to TCBR. The main difference in the ex-
tended graph model is that a set of domain-dependent terms, signifiers, influence
the graph construction.

38 GRAPH-BASED TEXT REPRESENTATIONS

After evaluating graph models against a domain expert in a retrieval task, they
conclude that graphs-based approaches to TCBR shows promise. One of the strengths
of graphs is that they are ideally suited to capture domain-specific relationships
that exist between features. Graph-based representations also promise possibilities
of automated case generation from text, which would greatly reduce the required
knowledge engineering effort.

They also point out a number of weaknesses and problems with their graph-
based models. First and foremost, the graph distance measures fail to take into
account the relative importance of features, which is key for good similarity mea-
sures in CBR. It is also a problem that the measures cannot address negations in the
text.

4.1.4 Other Related Research

The intersection of graph theory and natural language processing is interesting, and
a lot is being done in this area. The research presented above is only the part of the
relevant work that has influenced our work most directly. Most of the presented
approaches share the same basic premise: representing the text as a graph, and then
ranking the nodes using one of the possible ranking or centrality algorithms. There
are also many other ways to apply graphs to traditional text problems. For example,
Dhillon (2001) uses biparite word-document graphs to do simultaneous clustering
of words and documents. His method is based on spectral graph partitioning, which
is a heuristic method for graph partitioning.

Another problem that has received attention is unsupervised word sense disam-
biguation (WSD). This is usually done by creating networks where both words from
the text and their possible senses are represented by nodes. Edges are created us-
ing semantic relations between nodes found in a thesaurus. With such a network,
the most appropriate senses can be found by ranking the nodes. Navigli and Lap-
ata (2007) evaluate a wide range of graph connectivity measures for this purpose.
Measures such as spreading activation, PageRank, HITS and P-Rank are used by
Tsatsaronis et al. (2010) who also compare their results to other known techniques,
including those discussed by Navigli and Lapata (2007).

4.2 Our Representations

Our approach is closely related to that of the LexRank and TextRank systems de-
scribed in Section 4.1.1 above. We conceive the representation process of TextRank
to be comprised of two main steps, as illustrated by Figure 4.1 on the next page.
The first step is to represent the text as a network. In the second step, nodes of the
network are evaluated using graph centrality measures, and their values are used
to represent the document as a feature-vector.

Our approach is centered around the same two steps. Each step reflects one
of the main decisions that must be made, namely how to construct a good graph
representation from a textual document, and, given such a network, how to identify
the important terms from the text. Although these questions have been answered by
several of the systems described above, no thorough evaluation of different graph

OUR REPRESENTATIONS 39

1 2
A:2,B:2,C:1,D:5,

E:1,F:3,G:2

A B X D
B Z D E
Y D G F
X C F D

GF

BA

C ED

Figure 4.1: The basic steps of our representation process.

representations and centrality measures has been made. We seek to perform such
an evaluation with specific focus on the task of measuring document similarity.

In the first step of the representation process, we go from a textual document to
a text network representation. To do this, some preprocessing of the text is usually
required, before a graph is constructed from the processed text. We shall, like some
of the research presented previously in this chapter, use words as the unit of text
represented by our nodes. What is needed next is to define what constitutes rela-
tions between words — the information to be retained in the edges. The choices of
definitions for nodes and edges constitute the basis of a text network representation.
In the following chapters we investigate two alternatives for such representations:
co-occurrences networks and dependency networks.

In step two, a feature-value representation is constructed based on properties
of the text network crated in the first step. This is done by evaluating the central-
ity of term-nodes in the text network, and building a feature-value vector with the
vocabulary of terms as features and the corresponding term-centralities as values.
PageRank have traditionally been a common choice for this task. We will evaluate
PageRank, along with the other node centrality algorithms introduced in Section 3.3,
to see which performs best.

A more detailed picture of the process is illustrated in Figure 4.2 on the following
page.

Two tasks form the basis for the evaluations: classification and case retrieval. These
are presented, along with the datasets used, in Section 4.3.

4.2.1 Step 1: Building Text Networks

The first thing to do is to create network representations of the documents. This
corresponds to the first two steps in Figure 4.2 on the next page.

The networks require extraction of nodes and edges from the text. Many such
representations are possible, with different choices of textual units for nodes, and
relations between these as edges. We adopt individual terms as the basic unit of
text for our nodes, and will focus on how to define edges from term-term relations
in text. Some possibilities were described in Section 3.4. Three main types of text
networks were identified: co-occurrence networks, syntactic networks, and semantic net-
works.

By far, the most common network type among the research presented in Sec-
tion 4.1 above is the co-occurrence networks. These are networks in which edges are
created between terms that occur close to each other. It is argued that co-occurrence
networks retain a lot of information about the structure of the text. Co-occurrence

40 GRAPH-BASED TEXT REPRESENTATIONS

A B D B
D E D G
F C F D

A:2,B:2,C:1,D:5,
E:1,F:3,G:2

A B X D
B Z D E
Y D G F
X C F D

GF

BA

C ED

GF

BA

C ED

2A: node evaluation1A: preprocessing

1B: graph representation 2B: feature extraction

Figure 4.2: A more detailed outline of the representation process.

networks are also easy to implement and have given reasonably good results. We
discuss this type of networks in Chapter 5.

As an example of the second type, syntactic networks, we described dependency
networks in Section 3.4.2. In these networks edges are defined as special syntactic
dependencies between words in sentences. We study this representation type in
Chapter 6.

With each of the network representations, there are several aspects to investigate
in addition to the significance of nodes and edges, such as whether edges should be
directed or weighted, and how the text should be preprocessed. Through the follow-
ing two chapters we evaluate these empirically in search of the best configurations
for the representations. At the end of each chapter, we present the final version of
the network representation.

4.2.2 Step 2: Creating Word Centrality Vectors

The evaluation of the network representations is not done directly, but is based on
feature-value vectors constructed based on the networks. The conversion from net-
work to vector representations is done in the last two steps of Figure 4.2. The items
in these vectors capture the relative importance of each term in the documents.
Thus, these document representation vectors can be seen as roughly equivalent to TF
or TF-IDF vectors from the vector space model, presented in Section 2.2.4. The main
difference is that here the estimates of term importance is not derived as a function
of their frequency, but defined based on centrality as a nodes in the text networks.
Once documents are represented as vectors in this way, similarity is measured by
standard IR methods such as the cosine similarity measure.

An obvious way to decide the importance of a term in a given document is to
calculate its node centrality in the document network. There are many centrality
algorithms to choose from, and we presented the most important ones in Section 3.3.
The most famous of these is perhaps PageRank, which is used in several of the
systems we presented initially, including LexRank and TextRank. PageRank is based
upon an idea of recommendations between nodes, and is undoubtedly a successful
ranking algorithm for web pages. We have found no study, however, regarding
whether it is particularly suited for text networks. For this reason, we evaluated

EVALUATION METHODS 41

several centrality algorithms, including PageRank, as candidates for both network
representation. Parts of this evaluation, with focus on co-occurrence networks, has
been presented earlier (Valle, 2010). Here we build upon this work, and also present
similar evaluations for dependency networks.

We will refer to the centrality of a term, as measured by a node centrality algo-
rithm, as its term centrality (TC). This use of node centrality over a network created
from a single document can be regarded as a local measure, equivalent to TF, in that
it uses only information about the document itself.

Conversely, other measures take into consideration also information about the
term within the entire corpus. The obvious example of this is the IDF part of TF-
IDF. We will also examine such global measures, analogous to TF-IDF but based
on network centrality rather than frequencies. The rationale behind TF-IDF is that
terms that are frequent in one document, but which occur infrequently in the rest
of the corpus, are considered as important. Likewise, we reason that terms that
are much more central in one document than in the overall collection of documents
should be considered more salient for this document.

We call this measure term centrality-inverse corpus centrality (TC-ICC), and define
it as

TC-ICCt,d =
TCt,d

1 + CCt
(4.1)

where CCt is the corpus centrality of term t, i.e. the centrality of t in a text network
created from the entire corpus. Both TC and CC are normalized values in the range
[0,1]. Thus, the 1 in the denominator is needed to avoid dividing by zero. The
resulting TC-ICC values are also normalized to [0,1]. The highest scores are awarded
to those terms that are both maximally central in the document (T ∼ 1) and not at
all central elsewhere in the corpus (CC ∼ 0). All terms with low TC will get low TC-
ICC values, while those with high values for both TC and CC are assigned scores at
about 0.5.

4.3 Evaluation Methods

To test the various representation models, we need formal evaluation criteria able
to determine their usefulness empirically. We have opted to base our evaluation
on two separate tasks in order to get a broader assessment of the representations.
One is a classification task, and the other a document retrieval task. Hence, we will
be testing the suitability of the considered representations for measuring document
similarity in two different ways. Similarity measurement is of key importance in the
retrieval stage of CBR.

The measures are described throughout the following sections.

4.3.1 Classification Evaluation

Our first method of evaluation is document classification. Classification is the task of
assigning a document to one or more categories, based on its contents. A k-Nearest
Neighbours (k-NN) classifier will be used. The k-NN classifier is used because it
bases the classification decision on similarity between documents. Thus, if a rep-
resentation model represents similarly documents from the same category, it will

42 GRAPH-BASED TEXT REPRESENTATIONS

get a high classification performance. The similarity is measured using the cosine
similarity measure (Section 2.2.4).

The evaluation process is outlined in Algorithm 4.1. The subroutines should
be quite self explanatory: RETRIEVECASES retrieves the set of most similar cases
from the training set; MAJORITYLABEL returns the most common label among the
retrieved cases. This is the same evaluation method that was used in our previous
study (Valle, 2010), and a more detailed discussion can be found there.

Algorithm 4.1 Classification evaluation

Input: set of training cases, set of test cases
Output: classification accuracy

1: correct⇐ 0
2: for all query in test do
3: retrieved⇐ RETRIEVECASES(query, training)
4: label ⇐ MAJORITYLABEL(retrieved)
5: if correct label then
6: correct⇐ correct + 1
7: end if
8: end for
9: accuracy⇐ correct / SIZEOF(test)

10: return accuracy

Since this is a supervised evaluation method, it require that we have documents
labelled with their category. For this purpose, we will use the TASA dataset, which
is described in the next section.

The aim is, of course, to evaluate the quality of the measured case similarity. In
some sense, we can view the document contents as problem descriptions, and the
categories as their solutions. Given a query document from a particular category we
want other documents from the same category to be retrieved. The performance of
a representation model can be judged by the classification accuracy, i.e. the fraction
of cases in the test set that are correctly classified.

To achieve good classification accuracies the documents found most similar need
of course only be within the right category. With the TASA dataset, there is a 1 in
9 chance of getting the category correct by random selection. The evaluation also
does not speak as to whether the best or worst cases in the category is retrieved.
Thus, the classification evaluation ensures that the retrieved documents are within
the right ballpark, so to speak, but not that the very best documents are found. This
is where the second evaluation method, i.e. case retrieval, comes in. Case retrieval
evaluation is presented shortly in Section 4.3.3.

4.3.2 The TASA900 Dataset

The TASA dataset is a corpus of documents containing text sampled from curricu-
lum used in US high schools. It consist of 37 600 documents arranged into nine cat-
egories, totalling approximately 10 million tokens of text. The categories are: Busi-
ness, HomeEconomics, LanguageArts, Science, Unspecified, Health, IndustrialArts, Miscel-
laneous, and SocialStudies. TASA stands for Touchstone Applied Science Associates,

EVALUATION METHODS 43

whom we thank for providing us with the data. We use TASA for the classification
evaluation method in the following two chapters, when evaluating various aspects
of the representations.

TASA is a relatively diverse corpus with documents from a wide range of topics,
both within and across categories. This means that it is a challenging dataset to clas-
sify, which is the reason we chose it for our evaluation. The classification challenge
raises from the in-category variation. Within the category SocialStudies, for example,
there are documents about topics as diverse as Japanese samurai warriors and class
biases within public opinion polls. This, of course, makes it difficult to identify the
category of a single document based on its contents. We believe that a challenging
dataset is important in order to test the representations thoroughly.

Rather than using the complete corpus, we have created a subset to use in the
evaluation, the TASA900. For this, we have used the first 100 documents from each
category. The total number of words is 136227. Average length of the documents is
314, with a standard deviation of 32. The distribution of document lengths in the
dataset is shown in the histogram in Figure 4.4(a), and the sentence length distribu-
tion in Figure 4.6(a).

The dataset has been split into training and testing sets containing 60 and 40
percent of the documents, respectively. The split has been done randomly, but in
such a way that the categories are uniformly distributed in each set.

4.3.3 Case Retrieval Evaluation

This evaluation method is intended to be a finer evaluation of the retrieved doc-
ument cases than the classification task. The point is to evaluate the quality of a
retrieved case, regardless of its category.

Such an evaluation could be performed both in a supervised and an unsuper-
vised way. Since we do not have available any dataset with this kind of information,
and given the time and cost requirements connected with creating such a dataset,
we have opted for an unsupervised approach. Our approach is heavily influenced
by one of the tenets of CBR, namely that similar problems have similar solutions.

The case base consists of documents that have been split into two parts, problem
descriptions and solutions. When a query case is presented, the case retrieval is per-
formed solely on basis of the problem description part of the cases. The quality of
the retrieval is subsequently determined based on the similarity between the cases’
solutions. These two steps are illustrated in Figure 4.3.

problem

solution

problem

solution

query cases

1. retrieval

2. evaluation

Figure 4.3: Illustration of the retrieval evaluation task.

44 GRAPH-BASED TEXT REPRESENTATIONS

Algorithm 4.2 outlines the process more formally. The RETRIEVECASES subrou-
tine is the same as for the classification evaluation above, although this time only
the problem description part of the case is included in the similarity judgement.

COMPARESOLUTIONS performs the evaluation of the retrieved case by compar-
ing the solution part of the retrieved case to that of the query case. Evaluation of the
case retrieval needs naturally be comparable between the various representations.
For this reason, cosine similarity of TF-IDF vectors will be used. The TF-IDF vec-
tors are created from preprocessed versions of the solution texts. The preprocessing
consist of stop-word removal, case folding, stemming and removal of all terms with
less than 3 characters.

The retrieval and subsequent solution evaluation is done in a leave-one-out fash-
ion. That is, the case base consist of all the reports with problem descriptions and
solutions, but when each is used as query case, it is excluded from the retrieved re-
ports. The average match strength over all queries are used as the final performance
measure.

Algorithm 4.2 Retrieval evaluation

Input: set of training cases, set of test cases
Output: solution match strength

1: similarities⇐ {}
2: for all query in test do
3: retrieved⇐ RETRIEVECASES(query, training)
4: sim⇐ COMPARESOLUTIONS(retrieved, query)
5: similarities⇐ similarities ∪ {sim}
6: end for
7: strength⇐ AVERAGE(similarities)
8: return strength

In theory, the evaluation measure have a possible range of 0.0 to 1.0, where the
former would mean that no retrieved case solution has anything in common with
that of their query, and the latter that all queries retrieve perfectly matching solu-
tions. Only a limited part of this range is used much in practice, however. We see
this in Figure 4.7 on page 47, which is a histogram of the similarity match between
all pairs of solutions in the case base. This is because perfect scores are difficult to
obtain since it would require the use of the exact same terms, and with the same
frequencies, in the solutions. The wast majority of solutions are clearly very dissim-
ilar. The tail of the distribution extends beyond that shown, almost all the way up
to 1.0, but these are so infrequent as to be invisible in the figure. This means that the
performance will be very sensitive to which reports that are retrieved, and it will be
difficult for the representations to obtain high performance in this evaluation mea-
sure. Scores of∼ 0.20 are thus more realistic, and should be considered a reasonable
performance.

4.3.4 The AIR Dataset

Our second dataset is based upon a set of incident reports, written by the Trans-
portation Safety Board of Canada (TSB). The TSB is an independent agency created

EVALUATION METHODS 45

to advance transportation safety through the investigation of occurrences of inci-
dents or accidents related to the marine, pipeline, rail and air modes of transporta-
tion. The reports are made available from the TSB website1.

Our Aviation Incident Report (AIR) dataset consist of reports from the aviation
category. The dataset cover a total of 628 reports, spanning the years 1990 through
2008. We use this dataset for the retrieval evaluation, and therefore split the reports
into cases consisting of two parts: problem description and solution. This separation
is done according to the structure of the reports, with some sections constituting
each part.

We based the division into problem description and solution on the section titles
of the reports. There were 54 distinct titles among the reports. We identified solution
sections by their title, letting every section with a title containing the word analysis,
finding, causes, contributing factors, safety action, or conclusion be part of the solution.
Also subsections under a section with such a title were included in the solution. The
rest of the sections in the reports were then treated as problem descriptions.

The documents in the AIR dataset are much longer than those in TASA. The
TSB has in many cases studied the incident in depth, resulting in extensive reports.
Average document length for the dataset is 2991 words, with a standard deviation
of 1728. There are a total of 1878364 words in the dataset. Figure 4.4(b) show
a histogram of the document length distribution. Left out of the histogram are a
couple of outliers with lengths of 17159 and 17745.

Figure 4.5 on the following page shows the distribution of document lengths for
the problem descriptions and solutions. We observe that while the problem descrip-
tions and solutions have very similar length distributions, the latter are generally
shorter.

(a) TASA900 (b) AIR

Figure 4.4: Distribution document lengths in the TASA900 and AIR datasets.

Not only the length of documents, but also the length of the sentences they are
composed of, are important for the representations. Figure 4.6 plots the distributions
of sentence lengths in the two datasets. We have plotted the length of sentences in
the problem description part of the AIR dataset, since this is the part that is used for

1http://www.tsb.gc.ca

http://www.tsb.gc.ca

46 GRAPH-BASED TEXT REPRESENTATIONS

(a) Problem Descriptions (b) Solutions

Figure 4.5: Distribution of document lengths in the solution and problem description parts
of the AIR dataset.

(a) TASA900 (b) AIR problem descriptions

Figure 4.6: Distribution of sentence lengths in the TASA900 and AIR datasets.

graph-based representations in the evaluation. It is clear that the average length of
sentences is larger in AIR than in TASA900, but not significantly so.

4.3.5 The Implementation

The remaining sections of the chapter briefly outlines our implementation of the
representations and their evaluation experiments. Our experimental setup can be
divided into two main phases: document preprocessing and graph construction and eval-
uation. The purpose of the former is to make the documents ready to be processed
by the graph construction modules, and the latter creates the graph-based represen-
tations and evaluates these. Each phase is described separately in in the following
two sections. For a more detailed discussion of the experimental framework and its
implementation, see Appendix B.

EVALUATION METHODS 47

Figure 4.7: Distribution of solution similarities in the AIR dataset.

Document Preprocessing

The purpose of the first phase is to do as much preprocessing as possible of the doc-
uments in the dataset, before the construction of the networks. The preprocessing
steps are the same, regardless of the details of the networks being evaluated, and
this way it does not have to be done each time an experiment is run.

data

preprocess stanford_parserreport_data

raw
HTML/
text

processed
text

dependency
information

Figure 4.8: Document preprocessing.

The flow of data through the modules involved is illustrated in Figure 4.8. The
data module is responsible for reading datasets from disk, and create preprocessed
copies of them. To do this, it use several helper modules for various parts of the
processing effort. The report data module is used to read aviation incident reports
in HTML format. Most natural language processing steps, e.g. stemming or case
folding, are done by the preprocess module. To identify dependencies within sen-
tences, for use in the dependency networks, the stanford parser module is used.

The type of preprocessing needed differs for the network types, and thus differ-
ent versions of the dataset are created. For co-occurrence networks, preprocessed
text is stored. This is typically text where stop-words have been removed, and the
remaining words stemmed and filtered in various ways. For the dependency net-

48 GRAPH-BASED TEXT REPRESENTATIONS

works, dependency information about each document is extracted and written in a
serialized format to file for easy use later.

Graph Construction and Evaluation

Performance of the different representations are studied in the second phase. This
is visualized in Figure 4.9. Data is first loaded from preprocessed versions of the
dataset, and network representations are then created and evaluated

The data module is again used to read data from files. It utilizes the preprocess

module for any processing that could not be done in the preprocessing step above.
Documents are then passed on to the two representation modules, and turned into
different representations by the freq representation and graph representation

modules. The graph module is responsible for graph calculations such as the various
centrality methods, and is used by graph representation.

In the final stage, the various representations are passed on to the evaluation

module. They are here tested experimentally. The two evaluation methods, classifi-
cation and retrieval, are each implemented in a separate module.

data

freq_representation

graph_representation

preprocess

graph

evaluation

retrieval

classify

files

Figure 4.9: Graph construction and evaluation.

4.4 Summary

This chapter has presented the process of text representation based on text network
models. Briefly described, the process consists of two stages. First, a network struc-
ture is constructed based on the text. We use terms from the text as nodes, and
relations between these as edges. The following two chapters will explore differ-
ent approaches to the identification of these relationships. Next, a term weighting
measure is applied to the network to create a term-vector representation of the docu-
ment. For this, we defined two weighting schemes: TC and TC-ICC. Both are based
on the use of node centrality measures presented in the preceding chapter.

Our methods and framework for testing the graph-based representations were
presented next. Two evaluation methods are employed, one a classification task
and the other an unsupervised evaluation task based on document retrieval. These
tasks will be used both to explore various aspects of the graph-representations in the
following two chapters, as well as in the final evaluation experiments in Chapter 7.

Chapter 5

Co-occurrence Networks

This chapter explores various aspects of co-occurrence networks, based in part on
our earlier studies and partly on new experiments. We look at various issues such
as how the edges should be represented, how textual contexts should be defined,
and whether higher order co-occurrences should be employed. The networks are
evaluated using the measures introduced in Section 4.3. The goal of the chapter
is to arrive at a co-occurrence representation well suited as a basis for the task of
document similarity measurement and TCBR retrieval.

The chapter starts by presenting the basics and most important aspects of co-
occurrence networks in Section 5.1. It is this section that is based on our earlier
studies. Section 5.2 introduces new ideas, and evaluate whether they contribute to
the representation. In Section 5.3 the TC-ICC measure is evaluated with the repre-
sentation, in order to determine whether the use of information global to the corpus
is useful when determining term importance. The co-occurrence representation is
analyzed in Section 5.4. Graph properties such as connectedness, the small-world
property and the degree distribution is studied, and the terms identified as impor-
tant by the representation is examined. Finally, the main findings are summarized
at the end of the chapter.

5.1 Basic Representation

This section describes the basic aspects of co-occurrence networks. We discuss how
to construct the networks, and how to handle various aspects of the representation.
The discussion is based on results from experiments performed as part of earlier
work (Valle, 2010).

5.1.1 Construction

The co-occurrence network is one of the simplest and most intuitive ways to use
graphs to represent text and is, not surprisingly, widely used.

A co-occurrence network is a graph where the nodes represent lexical units from
the text, and are linked if the lexical units occur within a common context. We
will use terms as our basic lexical unit, and thus nodes in the network represents
unique terms from the documents. Contexts can be defined as the part of the text
surrounding terms, e.g. paragraphs or sentences.

49

50 CO-OCCURRENCE NETWORKS

Since terms that appear close together in the text are linked, co-occurrence net-
works are able to retain some structure from the text. This is information that is com-
pletely discarded by the bag-of-words model, which underlies common frequency-
based techniques such as TF and TF-IDF.

The algorithm to create a co-occurrence network using a sliding n-word window
is presented in Algorithm 5.1. The context window of each word consist of the n
subsequent words in the text (line 4). The UNIQUEWORDS subroutine called on
line 1 lists the set of distinct terms from the text. The subroutine called on line 6,
UPDATEEDGE, handles the update of the network for each co-occurrence.

The process is illustrated by an example in Figure 5.1. A small networks is con-
structed from the sentence “A B C A D B E F”, where each letter represents a term.
The graph starts out with a set of nodes, but with no edges. Then, for each term
in the sentence, a context window of the n = 2 following terms are identified, and
edges are created from the term to each of the terms in the context window. This
corresponds to the for-loop in lines 5–7 of Algorithm 5.1.

Algorithm 5.1 Create co-occurrence network from text

Input: text: list of words
Input: n: size of the context window
Output: graph: co-occurrence network

1: nodes⇐ UNIQUEWORDS(text)
2: edges⇐ ∅
3: for all wordi in text do
4: window⇐ text[i + 1, i + n]
5: for all wordj in window do
6: UPDATEEDGE(edges, wordi, wordj)
7: end for
8: end for
9: return graph⇐ 〈nodes, edges〉

5.1.2 Preprocessing

Before the co-occurrence networks can be created, the text needs to be preprocessed.
The level of preprocessing was determined through empirical experiments. The text
is first case-folded, i.e. all upper case characters are made lower case. Tokenization
is then done, turning the text string into a series of tokens. These tokens are fil-
tered, in order to remove some potentially bad nodes. This is done by removing
all stop-words, and all words containing numbers and less than three characters.
The tokens are finally stemmed using the Porter (1980) stemming algorithm. In the
case of sentences used as contexts, the sentence boundaries are determined prior to
tokenization.

5.1.3 Centrality Measure

Through experiments with different centrality measures on classification, we found
that the choice of graph centrality measure and the properties of the graph repre-

BASIC REPRESENTATION 51

C

A

E

F

B

D

Term: A; Context: {B,C}

C

A

E

F

B

D

Term: B; Context: {C,A}

C

A

E

F

B

D

Term: C; Context: {A,D}

C

A

E

F

B

D

Term: D; Context: {B,E}

C

A

E

F

B

D

Term: B; Context: {E,F}

C

A

E

F

B

D

Term: E; Context: {F}

C

A

E

F

B

D

Term: A; Context: {D,B}

C

A

E

F

B

D

Term: F; Context: { }

Figure 5.1: Example of co-occurrence network being constructed from the sentence “A B C
A D B E F”, using context window-size n = 2.

sentation such as edge weights and directedness, were highly interdependent.
We found both PageRank and the group of degree-based centrality measures

to perform consistently good, while the rest of the measures performed variably
and often poorly. The group of degree centrality measures consists of weighed and
unweighted versions of the degree centrality, including in-degree and out-degree in
the case of directed networks.

Based on these results, we will consider only PageRank and degree centrality
as candidates for the co-occurrence network representation. Because we have found
the choice of context to greatly influence the performance of the centrality measures,
the decision about which of the two to use in the final representation is delayed until
Section 5.2.1, where we will evaluate different types of textual contexts.

5.1.4 Edge Direction

When creating an edge between two terms as nodes in a co-occurrence network,
there are basically three choices regarding the edge direction. The forward direction
is to follow the flow of the text, i.e. wordi → wordj if wordi appears before wordj.

52 CO-OCCURRENCE NETWORKS

Conversely, backward directed edges go against the flow of the text. The third op-
tion is to leave the edge undirected.

For the best performance, it is important to select a directedness of the graph
edges that suits the centrality measure used. For degree-based centrality measures,
undirected edges are best. For betweenness-based centralities, it is better to use di-
rected than undirected edges. The direction of the edges, however, seems to matter
little. The results obtained for closeness-based centrality measures were not conclu-
sive, and no edge type was found to perform significantly better than the others.
Neither were the results for centrality measures based on eigenvector calculations
easy to interpret. Forward and backward directedness sometimes outperform undi-
rected undirected edges, but this seems to depend on factors such as context size,
centrality measure and dataset. Undirected edges constantly perform reasonably
well, and seem to be the best and safest choice for this group. Considering that we
will be using degree centrality or PageRank, it seems that undirected edges will be
the best choice.

The choice of undirected edges is also supported by Mihalcea and Tarau (2004),
who did similar work with co-occurrence networks in their TextRank model (more
on this in Section 4.1.1). They report the following from their experiments (Mihalcea
and Tarau, 2004, page 408).

Regardless of the direction chosen for the arcs, results obtained with di-
rected graphs are worse than results obtained with undirected graphs,
which suggests that despite a natural flow in running text, there is no
natural “direction” that can be established between co-occurring words.

Although this conclusion is not supported by all our experiments, our results
agree that undirected edges are best when PageRank is used, which, as its name
suggests, the TextRank model do.

5.1.5 Edge weights

We have also evaluated whether the use of edge weights, that is, information about
the frequency of co-occurrences, is useful to include in the representation. We found
that those centrality measures able to take into account weight information for edges
in most cases outperformed their unweighted equivalents. A notable exception from
this rule was the load centrality measure, which constantly performed best without
weights. For degree centrality the weighted version performed better than its un-
weighted counterpart only some of the time.

Given the use of PageRank, our representation will benefit from the use of edge
weights. It is not unreasonable to assume that this added information should be
beneficial, since it separates random and infrequent co-occurrences from those that
appear often.

5.2 Improvements

Throughout the preceding section we presented the basics of the co-occurrence net-
work representation. This section presents a couple of new ideas, and experiments

IMPROVEMENTS 53

to evaluate whether they prove useful in improving the basic networks. We will first
consider sentences as an alternative to n-word windows as textual contexts. Next,
in Section 5.2.2, we explore a potential new source of relations for the networks.
The idea is to use indirect, or higher-order, co-occurrences. That is, we investigate
whether it is beneficial to connect terms that do not occur together directly, but have
indirect relations through their common neighbors.

5.2.1 Textual Contexts

Two usual choices for contexts are sliding n-word windows and sentences. In our
previous experiments we used windows as contexts. We found that smaller context
windows generally performed better than large ones. Although depending highly
on the centrality measure used, we found that good values for n usually were found
in the range from 2 to 5. Based on this observation we expected the use of sen-
tences, which usually are significantly longer than this, might perform worse than
windows.

The use of larger contexts also increases the density of the network, as the num-
ber of edges needed to represent each sentence grows in the worst case exponen-
tially with the size of the context window. In some corpora, the average sentence
length can be quite high. The use of smaller sliding n-word context windows are
thus preferable also from a performance point of view.

To test our assumptions, we designed an experiment to test how the different
choices of contexts affect the performance of the networks in the evaluation tasks.
Co-occurrence networks were created using contexts as windows with n = 1 . . . 10,
and as sentences. PageRank and both weighted and unweighted degree centrality
measures were used.

The results are shown in Figure 5.2, and lead to several observations — some
quite unexpected:

1. Sentence contexts are best suited in the classification task and window con-
texts are best in retrieval. The best performance in retrieval is achieved with
window size n = 2.

2. Degree centrality performs better than PageRank in both tasks. PageRank per-
forms better than degree in classification when windows are used for contexts,
but is otherwise inferior to degree centrality. Unweighted degree is consis-
tently better than weighted degree.

3. While the trend seems to be decreased performance with higher values for n,
the opposite is the case for PageRank in the retrieval task. PageRank clearly
show increased performance with the larger sizes.

4. Although their performances differ, PageRank and degree centrality seems to
follow similar curves for context windows.

The most surprising observation is that sentence-based contexts perform far bet-
ter than window contexts in classification. As we reason above, larger contexts
introduce meaningless relations, which is clearly demonstrated by the larger win-
dow sizes in the plots. That sentences still perform better, must mean that many
of the meaningless relations must occur across sentence boundaries. The reduced
performance of the sentence contexts in retrieval might be caused by the fact that

54 CO-OCCURRENCE NETWORKS

1 2 3 4 5 6 7 8 9 10

0.530

0.540

0.550

0.560

0.570

Context size

Pe
rf

or
m

an
ce

Unweighted degree (window)
Weighted degree (window)
PageRank (window)
Unweighted degree (sentence)
Weighted degree (sentence)
PageRank (sentence)

(a) Classification

1 2 3 4 5 6 7 8 9 10

0.218

0.220

0.222

0.224

Context size

Pe
rf

or
m

an
ce

(b) Retrieval

Figure 5.2: Evaluation of context types.

IMPROVEMENTS 55

the sentences generally tend to be longer in the dataset used here (see Figure 4.6 on
page 46).

From the second observation, we conclude that unweighted degree centrality is
the better measure for co-occurrence networks, as long as the context type is chosen
accordingly.

Classification Retrieval
Context size, n 20 40 80 20 40 80

PageRank 0.539 0.539 0.536 0.221 0.222 0.221
Unweighted degree 0.528 0.531 0.531 0.223 0.223 0.222
Weighted degree 0.524 0.530 0.531 0.222 0.222 0.222

Table 5.1: Evaluation of large context sizes n.

The increase in performance with PageRank for larger n in retrieval is interesting.
In order to understand whether these trends continue for even larger contexts, we
tested sizes n = 20, 40, 80 for both degree centrality and PageRank. The results are
listed in Table 5.1. We see that the results vary very little, which means that the
performance has converged and changes in the context sizes beyond n = 10 have
little or no effect. This would seem to indicate that there is a limit to the penalty
for having too large contexts, and conversely, the benefit when using PageRank for
retrieval.

The last of our observations is perhaps the least surprising one. Although PageR-
ank and degree are different measures, they essentially try to measure the same
thing, the importance of each node in the network, and they do this by considering
the neighbors of the nodes. As described in Section 3.3.8, PageRank can in some
sense be seen as an expansion of the degree centrality which take into account the
importance of the neighbours, not only their number. Given this, it is to be expected
that they will have somewhat correlated results.

We conclude that unweighted degree centrality should be used with the co-
occurrence networks, and that the best choice of context type depends on the in-
tended task. When classification is performed, co-occurrence networks based on
sentence contexts perform better, while 2-word context windows are a better choice
for retrieval.

5.2.2 Higher Order Co-occurrences

The co-occurrence networks presented so far in this chapter can be denoted as first
order co-occurrence networks. By this, we mean that the relations captured repre-
sent first order co-occurrences, i.e. co-occurrences directly between words within
the same context. Chakraborti et al. (2007) describe an algorithm for mining higher
order co-occurrence relations between words. This section investigates whether this
approach can be used to enhance our co-occurrence network representation. The
approach is based on the theory that it is beneficial to use indirect, in addition to di-
rect, associations between words. By capturing higher order co-occurrences, certain
relations that would otherwise elude us can be identified.

56 CO-OCCURRENCE NETWORKS

This type of relations are illustrated by an example in Figure 5.3. Even though
A co-occurs only with B in the contexts on the left hand-side, we can extract higher
order relations to C and D, of orders 2 and 3, respectively. This is because B also
co-occurs with C, which in turn occur together with D.

Contexts Co-occurrence graph

B

A C D

1

1
1

2

2

3

A B B C C D

Figure 5.3: A simple example of a higher order co-occurrence graph. Edge weights indicate
the order of co-occurrence between the terms.

Consider, for example, synonyms. In many cases, two words with the same
meaning will not be used within the same documents. The words will, however,
be used in the same way and in similar local contexts within each document, i.e.
together with the same other terms. By identifying words that occur in similar con-
texts we can identify such words, and hopefully other similar term relations. Con-
crete examples of this, reported by Chakraborti et al. (2007), are near-synonyms such
as road and street, and internet and web.

The approach presented by Chakraborti et al., is intended for co-occurrences in
document collections, hence their contexts are entire documents. But, as they point
out (Chakraborti et al., 2007, p.64), “the context can be localized to arbitrary length win-
dows or sentences to restrict the number and scope of mined associations”, which is exactly
what we be doing.

Related Work

Several people have looked at higher order co-occurrences, both theoretically and
their practical use.

An example of the latter is χ-Sim, a co-similarity based clustering algorithm pre-
sented by Bisson and Hussain (2008), where word similarities are based on higher
order co-occurrences. χ-Sim is based on the idea of simultaneously generating
similarity matrices between rows and between columns, documents and terms, re-
spectively, iteratively basing one on the other. For each iteration, co-occurrences
of higher orders are found, with the nth iteration corresponding to detection of
co-occurrences of order n. Hussain and Bisson (2010) also use higher order co-
occurrences to incorporate class knowledge into the learned similarity matrices cre-
ated by χ-Sim. They do this by forcing second order co-occurrences between words
within the same class by adding dummy words.

Higher order co-occurrences have also been studied in the field of cognitive neu-
roscience. Livesay and Burgess (1998) looked at higher order relations in light of
Mediated Priming (MP). MP is the effect in which spreading of activation happens
in semantic memory networks by means of related concepts. To use the example
by Livesay and Burgess, in the prime-target pair lion-stripes, priming occurs because
lion is closely related to tiger, which of course is related to stripes. Thus, by being

IMPROVEMENTS 57

prompted by lion, the concept of stripes is primed in our memory. Their results in-
dicate that MP works by indirect relations between concepts, and compare this to
context vector representations.

Lemaire and Denhière (2006) have also looked at the mental activation of one
term when another is presented, the strength of which they define as semantic sim-
ilarity. Although it is proven that co-occurrences and semantic similarity are highly
correlated, their experiments indicate that frequencies of co-occurrences tend to
overestimate the semantic similarity. They also investigate the role of higher or-
der co-occurrences in relation to similarity. They found that such relations tend to
increase similarity.

Calculation of Higher Order Co-occurrences

A first order co-occurrence is said to exist between word A and word B if both occur
within the same context. These are the kind of co-occurrences on which we have
based our representation in the previous sections. If words B and C also co-occur
within a context, there is a second order co-occurrence between A and C. Further, a
third order co-occurrence exist between A and a new word D, if word D then co-
occurs with C.

We capture the higher order relations in term-term matrices. The calculation is
done as follows.

1. Create T0, matrix of first-order co-occurrences as before.
2. Create an updated first-order co-occurrence matrix T from T0 by

(a) converting all non-zero values to 1, and
(b) setting the diagonal values to 0.

3. Create the second-order co-occurrence matrix as T2 = T2.
4. Create initial third-order co-occurrence matrix as T3 = T3.
5. Calculate n as the vector of column sums of T.
6. Create discount matrix D as Di,j = ni + nj − 1 for all i 6= j.
7. Create revised third-order matrix as T′3 = T3 − D × T, where × is pointwise

multiplication.

Given a third order co-occurrence between terms A and D through intermediate
terms B and C, we must ensure that neither B nor C are the same as A or D. Step 2b
ensures that A is unlike B, and C unlike D. In addition, it must be ensured that C is
not the same as A, and B is not the same as D. This is what is being done through
steps 5–7. By subtracting D × T from T3, we enumerate and eliminate the invalid
paths of types A-B-A-D and A-D-C-D from the final representation.

Next, we present a simple example to illustrate the procedure.

Example

The following example illustrates the process of identifying higher-order co-
occurrences by calculate the described matrix operations.

We start by creating a (first order) co-occurrence matrix of |terms| × |terms| ele-
ments from the document, T0. Our example document in this case has four distinct

58 CO-OCCURRENCE NETWORKS

terms. This matrix is then converted into the first order matrix, T, according to step 2
above.

T0
Step 1
=

0 1 5 3
0 2 3 1
2 1 0 0
2 1 0 2

 Step 2a−−−−−−−→
non-zero to 1

0 1 1 1
0 1 1 1
1 1 0 0
1 1 0 1

 Step 2b−−−−−−−→
diagonal to 0

0 1 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 = T

Based on the first order matrix, the second order matrix is then calculated as T2 = T2.
T3, the initial third order matrix is similarly calculated as T3.

T2 = T2 Step 3
=

2 2 1 1
2 2 0 0
0 1 2 2
0 1 2 2

 and T3 = T3 Step 4
=

2 4 4 4
0 2 4 4
4 4 1 1
4 4 1 1

The columns of T are then summed in n, and the discount matrix D calculated as
Di,j = ni + nj − 1.

n
Step 5
=

(
2 3 2 2

)
and D

Step 6
=

0 4 3 3
4 0 4 4
3 4 0 3
3 4 3 0

Finally, the third order matrix, T3, is adjusted according to the discount matrix, re-
sulting in the revised third order matrix T′3.

T′3 = T3 − D× T
Step 7
=

2 0 1 1
0 2 0 0
1 0 1 1
1 0 1 1

The results of the process are the matrices T, T2, and T′3, which holds first, second
and third order co-occurrences between the different terms, respectively. Based on
one or more of these, higher order co-occurrence networks can be created.

Relation to Latent Semantic Indexing

It is natural to compare the higher order co-occurrence relations just described to
Latent Semantic Indexing (LSI) (Deerwester et al., 1990). LSI is a text-mining algo-
rithm using a mathematical technique called Singular Value Decomposition (SVD)
to create vector space representations of documents. The technique is claimed to
bring out latent semantic relations in document collections, similar to our higher
order co-occurrences.

LSI works by identifying patterns of relationships between the terms/concepts
contained in documents. It is based on the idea that words used in the same contexts
tend to have similar meanings. This is done by reducing the matrix of document-
term associations to a lower number of dimensions. In the resulting matrix, space
is arranged to reflect the major patterns in the data. As a result, terms may end up
close even though they were not in the original data.

IMPROVEMENTS 59

LSI is centered around the term-document matrix, just like higher order co-
occurrences as presented by Chakraborti et al. (2007). Like we have done with
co-occurrences, LSI may similalarly be adopted to use smaller contexts instead of
documents.

Kontostathis and Pottenger (2003) have shown that the values produced by SVD
correlate highly with second order term co-occurrence, and present a proof that in-
formation regarding higher order co-occurrences are used by the SVD algorithm.
Terra and Clarke (2003) studied the use of word similarity measures based on meth-
ods for estimating word co-occurrence frequencies. Their results showed improve-
ment over similar methods based on LSI.

One of the main differences is that a higher order co-occurrence explicitly cap-
tures the higher order associations, while LSI does so implicitly. It is possible to
assess the similarity between two terms using LSI by comparing their context vec-
tors. This gives us, however, little information about why they have a particular
level of relatedness. Higher order co-occurrences, on the other hand, provide more
information. Depending on how the co-occurrences are calculated, we can obtain
information about the level of their co-occurrence and their common contexts.

From Matrix to Graph

Given the matrices of higher order co-occurrences as calculated above, the next
question is how to use them in the network representation. The two problems that
need to be addressed are:

1. Which of the higher orders should be used?
2. How should different orders of relations be represented in the network?

The first of these questions will be answered in the following section, where the
different combinations of orders is evaluated empirically. By combination of orders,
we mean the set of higher orders that are represented in the network. As an example,
{1 + 3} indicate the combination of the first and third order relations. Thus, no
second order relations would be included in theis network.

For the second question, there are several aspects to be considered. First, whether
to use multigraphs or regular graphs. That is, should each order be represented by a
separate edge between nodes, or should the presence of co-occurrences on multiple
levels be recorded on a single edge between nodes. Second, the relative importance
of each of the orders must be decided. The importance can be reflected in the edge
weights, or by making sure the applied centrality algorithm treats different types of
edges differently.

We have decided to combine the different order relations into single edges be-
tween nodes (i.e., not to use multigraphs), and to represent the relative importance
of each order by their contribution to the overall edge weight. This representation
is chosen because it allows us to use the same centrality algorithms as before. This
is also the approach used by Chakraborti et al. (2007). The weight for each edge is
determined by a linear combination of occurrences of each of the first three orders:

wu,v = α ∗ first orderu,v + β ∗ second orderu,v + γ ∗ third orderu,v (5.1)

60 CO-OCCURRENCE NETWORKS

We will start by evaluating all possible combinations of orders, with each order
being equally important (α, β, γ = 1.0). Then we compare these results to the case
where α = 1.0, β = 1.53, and γ = 1.51. This is the average of the combinations found
to perform best by Chakraborti et al.. It would be interesting to study different
combinations of weights in more detail, but this is not done here, as such a study is
beyond the scope of this thesis.

Evaluation

Other than the use of higher order relations as just described, the representation is
exactly the same as in the previous sections: edges are undirected, and we use sen-
tences and 2-word windows as contexts for classification and retrieval, respectively.
The representations are tested in the usual manner, as described in Section 4.3.

The representations using α, β, γ = 1.0, are tested first. Table 5.2(a) lists the
performance of classification and retrieval using all combination of orders.

From these results the use of higher order co-occurrences does not seem to be
beneficial. Compared to the results for classification and retrieval achieved without
the higher order approach, none of the results obtained here indicates any improve-
ment. For both classification and retrieval, use of orders higher than the first result
in decreased performance in all cases. Combinations including the third-order rela-
tions have especially poor performance.

This outcome is both somewhat disappointing and surprising. Chakraborti et al.
(2007) reported that use of higher orders significantly improved their results, and
even outperformed LSI. It may be expected that the combinations excluding the first
order relations would show reduced performance, but not even the combination of
the first two orders outperformed standard co-occurrence. This might possibly be
explained by the fact that the weighted combination of strengths for the different
orders of co-occurrence may not have been the optimal one. We attempt to remedy
this by using weights based on those found by Chakraborti et al. (2007) in a new run
of the experiment.

Table 5.2: Results of higher order co-occurrence experiments.

(a) α, β, γ = 1.0

Orders Classification Retrieval

{1} 0.5750 0.2239
{2} 0.5500 0.2220
{3} 0.5389 0.2156
{1, 2} 0.5500 0.2220
{1, 3} 0.5417 0.2156
{2, 3} 0.5361 0.2156
{1, 2, 3} 0.5361 0.2156

(b) α = 1.0, β = 1.53, γ = 1.51

Orders Classification Retrieval

{1} 0.5750 0.2239
{2} 0.5500 0.2220
{3} 0.5389 0.2156
{1, 2} 0.5528 0.2217
{1, 3} 0.5444 0.2157
{2, 3} 0.5361 0.2164
{1, 2, 3} 0.5361 0.2162

Table 5.2(b) lists the results obtained using the weight combination α = 1.0, β =
1.53, and γ = 1.51. As we see, some of the results have improved, but the changes
are all minor and the higher order combinations still perform worse than the first.

TC-ICC WEIGHTING 61

It is possible that the weights used, although reportedly good in the experiments
by Chakraborti et al., are unsuited for our datasets. We have not done a thorough
evaluation of the possible weight combinations to test this, so it is possible that
other combinations might lead to better results. Based on what we have seen so far,
however, the prospects for higher-order co-occurrences do not look very good.

No combination of higher order relations performed better than the use of first
order relations only. We conclude, therefore, that higher order relations do not ben-
efit our representation, and will not be used as part of the co-occurrence network
representation.

5.3 TC-ICC Weighting

Up to this point the TC measure, introduced in Section 4.2.2, has been used when
converting the networks to centrality vectors for evaluation. TC is a simple measure,
using information only from the document network itself. The more elaborate mea-
sure presented in the same section, TC-ICC, includes information about the term’s
overall centrality in the rest of the corpus.

Table 5.3 lists results for the classification and retrieval evaluation tasks when TC
is replaced with TC-ICC. The network representation itself remains unchanged, only
the method for extracting term importance values from the networks is changed. Be-
cause TC-ICC is a different approach to capturing term importance, we evaluate the
results using all available centrality measures. This is done to determine whether
the same centrality measures perform well with TC-ICC as with TC. For compari-
son, the best performance using TC, obtained with degree centrality, was 0.5750 for
classification and 0.2239 for retrieval.

Values for current-flow betweenness were not obtained in the experiment. This is
because this centrality measure is far more complex than the others in terms of mem-
ory requirements. The experiments were run on a computer with 12 GiB memory,
which proved insufficient for current-flow betweenness on the corpus networks.
Based on the poor performance of this measure using TC, we decided not to pursue
the matter further.

Table 5.3: Performance of TC-ICC with co-occurrence networks.

Representation Classification Retrieval

Degree 0.5333 0.2559
Closeness 0.5167 0.1842
Current-flow Closeness 0.5111 0.1793
Betweenness 0.4333 0.1912
Current-flow Betweenness n/a n/a
Load 0.4222 0.1928
Eigenvector 0.5056 0.2068
PageRank 0.5333 0.2123
HITS-authorities 0.5083 0.2042
HITS-hubs 0.5083 0.2042

62 CO-OCCURRENCE NETWORKS

We see from the table that the measures that performed well with TC are also the
best ones when TC-ICC is used. The degree centrality performs best in both tasks.
PageRank performs equal to degree centrality in classification, and is the second
best measure in retrieval. Thus, although we based the choice of centrality measure
on evaluations done with TC, the results clearly apply to TC-ICC as well.

Compared to the performance of TC with degree centrality, TC-ICC performs
poorly on classification, but far better than TC on retrieval. This seems to indicate
that the use of global information in the representations does harm in the classifica-
tion task, but can be useful for retrieval.

5.4 Network Properties

This section lists some properties of the co-occurrence networks described and eval-
uated in the preceding sections. Unlike the co-occurrence networks described in
Section 3.4.1, we are not interested in the properties of networks representing the
whole corpus, but rather how the networks we create for individual documents be-
have. The goal is to determine whether they behave according to the same basic
rules as they do for larger networks.

Table 5.4 on the next page list some of the central network properties for net-
works created based on the TASA900 and AIR datasets. We report the average value
for each property, as well as their standard deviation. Note that the networks are cre-
ated differently for each dataset, as sentences are used contexts on TASA900, while
two-word windows serve as contexts for AIR.

To compare the values for l and C, we constructed Erdős-Rényi random graphs
with similar properties to those build from TASA900 and AIR. That is, the ran-
dom networks have the same number of nodes N and mean degree 〈k〉 as the co-
occurrence networks, but their edges are distributed randomly between pairs of
nodes. The values for these are also included in the table.

5.4.1 Connectedness

We observe some characteristic differences between the TASA900 and AIR networks.
While all individual networks based on the AIR dataset were connected, this applies
to only 59% of the TASA900 networks. The average number of connected compo-
nents found for TASA900 is 1.98, and varies greatly between the networks. This is
a natural consequence of the different context types used on the two datasets. The
networks based on AIR use sliding windows as contexts, which means that every
word is at least linked to the word following it in the document. Thus, a path can
be traced through the network corresponding to the sequence of words in the doc-
ument. No such path is guaranteed with the sentence contexts used on TASA900,
since each sentence is considered separately.

5.4.2 Small World Property

Since the networks span only single documents, they are small compared to those
described in Section 3.4.1, with only about 96 and 405 nodes on average for each

NETWORK PROPERTIES 63

Table 5.4: Some properties of the co-occurrence networks. The rightmost columns show
values for random networks generated with the same order and size as those
built from TASA900 and AIR.

TASA900 AIR Random
Mean St.dev. Mean St.dev. TASA900 AIR

N 96.054 20.420 405.610 156.305 96 405
〈k〉 24.342 8.637 15.197 2.260 23.937 15.219
l 2.259 0.296 3.149 0.198 2.071 3.175
C 0.866 0.052 0.457 0.020 0.236 0.037

dataset. The average characteristic path lengths l and clustering coefficients C are,
however, very similar to those reported for the larger networks. The very high aver-
age degree, compared to the number of nodes, in the TASA900 networks is caused
by the larger contexts used to create these networks.

The random network comparable to the TASA900 networks has clustering co-
efficients Crand = 0.236 and characteristic path length lrand = 2.072. For the ran-
dom network corresponding to the AIR networks, the values are Crand = 0.037 and
lrand = 3.175. As we see, C > Crand and l ∼ lrand in both cases. Although the differ-
ence between C and Crand is not as pronounced as for the larger networks, these are
still clearly small-world networks.

5.4.3 Degree Distribution

Contrary to the results from the research presented in Section 3.4.1, our networks
seems to not be scale-free. We created co-occurrence networks covering both of the
datasets, but the degree distributions of neither fitted power-law models — two-
regime or otherwise. For the document networks, the results were similar, but
varied considerably. Some of these networks seemed to be scale-free, while oth-
ers clearly had distributions that did not follow power-laws. Also, for some of the
document networks, the number of nodes were too small for us to determine with
confidence whether they were scale-free or not. We refer to Appendix A for the
details about the degree distributions, and our methods for testing for power-laws.

Although the networks turned out not to be scale-free, they share some of the
properties of such networks, like the presence of hubs. This fact, more than the
overall distribution governing the degrees, should be important for our represen-
tations. Any long-tailed degree distribution, power-law or not, implies that there
will be some nodes with a very high degree. These hubs will also, depending on the
used centrality algorithm, be very central in the network.

As to why our networks turned out not to be scale-free, we do not have an ade-
quate explanation. This is a question that demands further investigation. The reason
could either be that something about our representation or our datasets causes the
networks to lose this property, or that the scale-free property is not as universal as
previously assumed. Our implementation of the co-occurrence networks is identical
to those described as scale-free in Section 3.4.1. Since the scale-free property should,
in theory, not depend on the dataset used, and because we apply our method to two

64 CO-OCCURRENCE NETWORKS

different datasets, we feel confident that the results are not restricted to these data.
Ferrer i Cancho and Solé (2001), who originally identified the two-regime power-

laws in co-occurrence networks, did not explain explicitly the method by which they
tested the power-law model. They illustrated the fit on a log-log plot, but did not
provide any statistical goodness-of-fit measure testing how well the data actually fit
the model. Clauset et al. (2009) describe such a measure, and explain why linearity
in log-log plots are insufficient to detect power-laws, and that such conclusions often
are premature. We used the methods, and implementation, by Clauset et al. to test
for power-laws for our representations.

5.5 Summary

We have presented a method for constructing co-occurrence networks by creating
edges between words that appear close to each other in the same contexts within the
text. This is motivated by that words appearing close together might be related, and
that such networks retain information about the structure of the text, in contrast to
the bag-of-words model which completely discards term order.

Based on previous experiments, undirected edges were chosen. The represen-
tations was found to generally perform better with weighted edges, representing
the frequency of co-occurrences between pairs of terms, for the majority of central-
ity measures. The best centrality measure, unweighted degree, does, however, not
utilize these weights.

Further experiments evaluated combinations of different contexts and central-
ity measures. Degree centrality was chosen as the centrality method of choice for
both evaluations. Sentences were chosen as contexts for classification, and 2-word
windows for retrieval.

Experiments performed on networks using higher-order co-occurrences revealed
that the use of such relations did not increase the performance of the representa-
tions. Only direct, or first-order, co-occurrences are therefore employed by our co-
occurrence networks.

Table 5.5 summarizes the central aspects of the co-occurrence representation.

Table 5.5: Summary of the co-occurrence network representation.

Property Description

Nodes Terms used in the text
Edges Co-occurrences of terms within the same contexts
Contexts (classification) Sentences
Contexts (retrieval) 2-word windows
Edge weights Yes, number of co-occurrences
Edge directions Undirected
Centrality Unweighted degree centrality
Higher-orders No, only first-order co-occurrences used
Text preprocessing Stemming, token filtering, case folding
Stop-word removal Yes

Chapter 6

Dependency Networks

The relations captured in the co-occurrence networks presented in the preceding
chapter are simply words that appear together in the text. For any given pair of terms,
it is hard to say exactly what the relation between them is. We saw, from the exper-
iments described in Section 5.2.1, that co-occurrences crossing sentence boundaries
might be irrelevant or even harmful to the representation in some situations. It is
also easy to imagine that the importance of different term-relations within sentences
differ, and that while some represent important characteristics of the document oth-
ers are more or less arbitrary.

Motivated by this, this chapter presents the idea of dependency networks. These
networks are based on explicit relations between terms, as defined by a dependency
grammar. We use a dependency parser to identify the dependencies, which belong to
one of several dependency types. To our knowledge, this is the first time graph cen-
trality is applied to text networks built from word dependencies in order to measure
document similarity.

The parser enables us to identify the links between those terms that have mean-
ingful relationships, and say something about the character of this relation. De-
pendencies are identified between terms in the same sentence, which makes this
roughly equivalent to the use of sentence contexts in co-occurrence networks.

The chapter is organized as follows. The first section discusses parsing of lan-
guage, describes what dependency grammars are, and explain how dependency
parsing is used to identify dependencies in sentences. The Stanford Parser, which is
the parser used in this work, is described and illustrated with a practical example.

Dependency networks are investigated next. We start with a basic representation
in Section 6.2 and gradually build on this through Section 6.3. The network prop-
erties of dependency networks are investigated in Section 6.5, before a summary of
the dependency network representation concludes the chapter.

6.1 Language Parsing

Parsing is, in both computer science and linguistics, the process of syntactic analysis
of text. The process analyzes a text consisting of a sequence of tokens (e.g. words),
in order to determine its grammatical structure. This structure is defined by a gram-
mar, i.e. a description of the relevant language.

65

66 DEPENDENCY NETWORKS

Parsing works in much the same way for natural language as it does for com-
puter programming languages, but with a difference in the characteristics of the
grammar. Programming languages are artificial and easier to define formally than
natural languages. They tend to be specified in terms of context-free grammars, since
efficient parsers can be written for these.

A context-free grammar is a grammar that generates a formal language where
clauses can be nested inside other clauses. The nesting can be done arbitrarily
deep, but overlap between grammatical structures is not allowed. The grammars
are called context-free because they can be expressed in terms of rules, V → w,
where all rules have a non-terminal on the left-hand side. The symbol on the right-
hand side can always replace the non-terminal, regardless of the context in which it
occurs.

Natural language is harder to define formally, since context often has influence
on how a sentence should be parsed. The choice of syntax is affected by both lin-
guistic and computational concerns. A good grammar needs to be able to express
most or all of the possible sentences of a language, and must also support parsers
that can be run with reasonable computational resources.

There is a rich variety of both linguistic theories and parsers for natural lan-
guage. Some systems use lexical functional grammars (LFGs), but the parsing these
is in general known to be NP-complete. LFGs view language as being made from
several dimensions, each represented by a distinct structure defined by rules and
concepts. Examples of such structures are grammatical functions, syntactic con-
stituents, phonology, and morphological structures. The head-driven phrase structure
grammar is another example of a popular formalism, but this is complex, and thus
also computationally demanding. Simpler formalisms are often preferred for this
reason. These types of grammars are called phrase structure grammars, as they divide
sentences into phrases which are again divided into smaller components.

Another popular strategy is dependency grammar parsing, which is described fuller
in the following section. Dependency grammars are distinct from phrase structure
grammars by their lack of phrase nodes. They define structure simply as binary
relations between words.

In contrast to parsers for programming languages, modern parsers for natural
language are usually at least partially statistical. While formal grammars are based
on syntax and production rules rules, stochastic grammars are trained from corpora
of training data which has already been annotated. This allows the grammars to cal-
culate information about the frequencies of various constructs in specific contexts.
Such grammars typically use information about the tokens, such as their part-of-
speech (POS).

A probabilistic context-free grammar (PCFG) is a context-free grammar where each
production rule is augmented by a probability. The results of a parsing is the product
of probabilities of the production rules used in the derivation. PCFGs can be seen as
weighted context-free grammars, where the weights reflect the relative frequencies
of each rule. In a small example grammar, the rule

0.62 〈VP〉 → 〈V〉 〈NP〉
0.38 〈VP〉 → 〈V〉 〈NP〉 〈NP〉

would indicate that a verb phrase consist of a verb followed by a noun phrase 62

LANGUAGE PARSING 67

percent of the time, while the verb in the the remaining 38 percent is followed by
two noun phrases.

Statistical parsers search through the space of all candidate parses and parse the
probability of each candidate. When this is done, the most probable parse of the
sentence is chosen. A popular method for performing this search is the Expectation-
Maximization (EM) algorithm.

6.1.1 Dependency Parsing

There are a lot of variations between the different theories of dependency grammar.
We will not go into details about their differences here, only describe their basic com-
mon ground. This section concerns the theoretical background, while Section 6.1.2
describes a certain dependency model, the Stanford Dependencies, in more detail
and with practical examples.

Although the roots of dependency grammars can be traced back many hundred
years (Nivre, 2005), the starting point of modern theoretical dependency grammars
is usually contributed to work by Tesnière (1959, referenced by Nivre, 2005). The
dependency grammar is a class of grammars that share a certain basic assumption
about the syntactic structure. In particular the assumption that syntactic structure
consist of lexical elements linked by binary asymmetrical relations called dependen-
cies. Because of this, the dependency grammars lacks phrasal nodes, which sepa-
rates them from representations based on constituency. Dependency grammars also
do not require a specific word order, and are thus suited for languages with free
word order, such as Turkish.

Dependencies are defined as asymmetrical relations between two words, a head
and its dependent. Governor or regent are alternate terms for head, and modifier is
sometimes used instead of dependent.

Criteria for defining the relations, and for distinguishing the head from the de-
pendent, are central concepts in dependency grammar theory. Many such criteria
have been suggested and used. Some common criteria for identifying relations be-
tween head H and dependent D in a construction C are listed by Nivre (2005):

1. H determines the syntactic category of C and can often replace D.
2. H determines the semantic category of C; D gives semantic specifi-

cation.
3. H is obligatory; D may be optional.
4. H selects D and determines whether D is obligatory or optional.
5. The form of D dependes on H (agreement or government).
6. The linear position of D is specified with reference to H.

The dependencies can be divided into three types: morphological, syntactic and
semantic. Syntactic dependency can be distinguished in endocentric and exocentric
constructions. An endocentric construction is one where the head can replace the
whole without disrupting the syntactic structure. Exocentric constructions thus fail
criterion 1, but may satisfy the rest.

A distinction is also made between head-complement and head-modifier relations in
many dependency theories. Head-complement relations are exocentric, while head-
modifier are endocentric.

68 DEPENDENCY NETWORKS

While the head-complement and head-modifier structures usually have a fairly
straight-forward analysis, there are also a group of constructions that have an un-
clear status. This includes constructions that involve grammatical function words
such as articles or auxiliary verbs, and structures involving prepositional phrases.
There is no general consensus for whether these should be regarded as dependency
relations at all, and if so, what should be the head and what should be the depen-
dent.

Another unresolved question is whether the notion of dependency is assumed
to be not just necessary but also sufficient for analysis of the syntactic structure of
natural language. This assumption was not made by Tesnière (1959), who included
two complementary concepts in his model.

Although they are not mutually exclusive, two main types of strategies can be
found for dependency-based systems for syntactic parsing: the grammar-driven and
data-driven approaches.

Grammar-driven dependency parsing can, according to Nivre (2005), be further
divided into two main trends. The first is closely related to context-free grammars,
and can therefore use techniques from context-free parsing. This method is, how-
ever, limited in the types of dependency structures it can identify. The second is
a formalization of dependency grammar in terms of constraints. Parsing is here
viewed as a constraint satisfaction problem. There is also a third and simpler notion
of dependency parsing, which is based on deterministic parsing strategies. This no-
tion is motivated by the way humans do sentence processing and a desire to make
more efficient syntax parsing. Parsing comes in different versions, but a common
one is simple left-to-right parsing. It works by accepting words one and one from
the beginning of the sentence, and then trying to link each word as head or depen-
dent to every previous word.

Within the second approach, data-driven parsing, the earliest attempts were also
grammar-driven in that they relied on an underlying grammar, and used corpus
data only to train a probabilistic model for disambiguation. In essence, this was a
PCFG model, where the context-free grammar defined dependency relations. This
model performed poorly, and the approach became more successful once the need
on formal grammars were removed. Data-driven dependency parsers take a ma-
chine learning approach to the grammar construction problem, and learn how to
make good and bad parsing decisions solely from corpora of labelled data, without
any intervention of underlying grammars.

Dependency information is useful in many tasks. Padó and Lapata (2007) de-
scribe a framework for constructing semantic space models based on text annotated
with, among other things, dependency information. They show how this frame-
work can be used for various cognitive and NLP tasks such as semantic priming,
synonymy detection and word sense disambiguation.

As another example, Gao et al. (2004) describe the use of dependency relations in
Information Retrieval. They create a dependency structure, an acyclic planar graph
linking related terms, much like the dependency networks described later in this
chapter. They define a language model based on the dependency structure, which
defines the probability that a query q could be observed as a sample from a given
document d. The most probable document is retrieved for the query.

Nivre (2005) describes the theory of dependency grammar in a lot more details,

LANGUAGE PARSING 69

and outlines the current state of the art in dependency parsing.

6.1.2 The Stanford Dependency Parser

To extract dependencies for our dependency network representation, we have opted
to use the Stanford Lexical Parser1, a statistical language parser created by The Stan-
ford Natural Language Processing Group. We use version 1.6.5 of the parser in our
work.

The Stanford typed Dependencies (SD) representation is designed specifically to
be usable for people without linguistic background. It provides a simple description
of grammatical relationships that are easily understood, and facilitate easy extrac-
tion of textual relations for our graph representations. As stated by De Marneffe and
Manning (2008b, p.2),

All information is represented as binary relations. This maps straightfor-
wardly on to common representations of potential users, including [. . .]
graph representations (with labelled edges and nodes).

The representation defines a set of 52 different relations for English. There are
also versions of the parser for Chinese, Arabic and German, but these are not con-
sidered here. The relation types are listed with both full and abbreviated names in
Table 6.1 on page 72. More detailed descriptions of each dependency, with exam-
ples, are provided in the manual (De Marneffe and Manning, 2008a).

In order to make the parser suitable for non-linguists, SD adheres to the follow-
ing design principles for its relations (De Marneffe and Manning, 2008b, p.2):

1. Everything is represented uniformly as some binary relation between
two sentence words.

2. Relations should be semantically contentful and useful to applica-
tions.

3. Where possible, relations should use notions of traditional grammar
for easier comprehension by users.

4. Underspecified relations should be available to deal with the com-
plexities of real text.

5. Where possible, relations should be between content words, not in-
directly mediated via function words.

6. The representation should be spartan rather than overwhelming with
linguistic details.

The relations are defined as a hierarchy with dependent (dep), the most generic
grammatical relation, as the root. This relation is used when a more precise relation
in the hierarchy does not exist or cannot be found by the system. The hierarchy
is shown in Figure 6.1 on page 71, where the different groups of grammatical re-
lation types can be seen together. Nodes in bold font are not actual dependencies,
but rather represent categories of dependency types. The pcomp and prepc relations
are shown in italics, because they are not explicitly defined by De Marneffe and

1Available from http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

70 DEPENDENCY NETWORKS

Manning (2008a), but have been placed by us where they would seem to naturally
belong.

SD was initially influenced by the theory of lexical functional grammar, espe-
cially in the set of grammatical relations and the naming of these. This intellec-
tual debt is also reflected in the dependency hierarchy. Relations internal to noun
phrases (NP) are an inherent part of much corpus text, and very useful in real-world
applications. SD therefore define many such relations. Examples include appos (ap-
positive modifier), nn (noun compound), num (numeric modifier), number (element
of compound number) and abbrev (abbreviation). Such relations are good at captur-
ing meaningful relationships between objects, concepts and properties.

SD comes in five variants, or modes, determining which relations are used and
whether additional relations are inferred. The modes range from surface-oriented
to more semantically interpreted representations. The former constructs a basic tree
from tokens and dependencies, while the latter collapse preposition dependencies
and include relations that may lead to cyclic dependency graphs. We briefly list the
five variants below.

Basic: This is the simplest and most basic form of parsing which uses the depen-
dency relations in Table 6.1 on page 72 to form a tree structure. Loops are
not allowed, and all words in a given sentence, except one, is the dependent
of only one other word. The last word is the head of the sentence and forms
the root of the tree. Some of the dependencies are excluded in order to avoid
cycles.

Collapsed: In the collapsed representation, some dependencies are collapsed into
new ones. This is done for dependencies involving prepositions, conjuncts and
others that form part of indirect relations between content words. Such indi-
rect relations are discarded, and new relations directly linking content words
are introduced. There are also some multi-word phrases that function like
prepositions in English, and these are also collapsed.

An example of a collapsed dependency would be the creation of the new de-
pendency prep in(airports, Canada) from the old prep(airports, in) and
pobj(in, Canada).

This representation considers all the relation types, including those who may
break the tree structure turning the dependency structure into a directed graph.

Collapsed with propagation: This variant is an extension of the collapsed repre-
sentation, and thus use all dependency relations and collapses dependencies
as described above. In addition, it does propagation of conjunct dependencies.
This means that relations that exist on one part in a conjunct relation will be
propagated also onto the other part.

For an example of this, consider the sentence The pilot was certified and quali-
fied. A parsing of this sentence, with collapsed dependencies, would include
nsubjpass(certified, pilot) and conj and(certified, qualified).

By propagating the nsubjpass relation onto the second part of the conjunction,
we introduce the nsubjpass(qualified, pilot) dependency.

LANGUAGE PARSING 71

Collapsed tree: The collapsed trees collapse dependencies, but do not use any re-
lations that may break the tree structure. This also means that propagation of
conjuncts cannot be done.

Non-collapsed: In the non-collapsed representation every dependency relation is
used, but no collapsing or propagation is performed.

Of these five options, we have chosen the collapsed dependencies with propagation
of conjunct dependencies in our representation. This is because we believe the collapse
of indirect relations to be a removal of unimportant information, and a good way to
reduce noise. The propagation of dependencies is also good, since it includes new
and meaningful relations into the representation.

The Stanford Parser also produce part-of-speech (POS) tags and a parse tree in
addition to the dependency structure. This is demonstrated through the following
example.

Figure 6.1: Hierarchy of dependency relations defined by the Stanford typed dependency
representation.

72 DEPENDENCY NETWORKS

Table 6.1: Stanford Dependency relations, sorted alphabetically.

Short Full name

abbrev abbreviation modifier
acomp adjectival complement
advcl adverbial clause modi-

fier
advmod adverbial modifier
agent agent
amod adjectival modifier
appos appositional modifier
attr attributive
aux auxiliary
auxpass passive auxiliary
cc coordination
ccomp clausal complement with

internal subject
complm complementizer
conj conjunct
cop copula
csubj clausal subject
csubjpass passive clausal subject
dep dependent
det determiner
dobj direct object
expl expletive (expletive

“there”)
infmod infinitival modifier
iobj indirect object
mark marker (word introduc-

ing an advcl)
mwe multi-word expression

modifier
neg negation modifier

Short Full name

nn noun compound modi-
fier

npadvmod noun phrase adverbial
modifier

nsubj nominal subject
nsubjpass passive nominal subject
number element of compound

number
num numeric modifier
parataxis parataxis
partmod participial modifier
pcomp prepositional comple-

ment
pobj object of preposition
possessive possessive modifier (’s)
poss possession modifier
preconj preconjunct
predet predeterminer
prepc prepositional clausal

modifier
prep prepositional modifier
prt phrasal verb particle
punct punctuation
purpcl purpose clause modifier
quantmod quantifier modifier
rcmod relative clause modifier
ref referent
rel relative (word introduc-

ing a rcmod)
tmod temporal modifier
xcomp clausal complement with

external subject
xsubj controlling subject

A Practical Example

In order to demonstrate the parser, we illustrate the output of an example sentence
found in one of the reports of the AIR dataset:

Immediately after the second touchdown, the pilot decided to perform a
go-around.

When parsed, the raw output from the parser given the above sentence is the
following.

LANGUAGE PARSING 73

advmod(decided-9, Immediately-1), det(touchdown-5,

the-3), amod(touchdown-5, second-4), prep after(decided-9,

touchdown-5), det(pilot-8, the-7), nsubj(decided-9, pilot-8),

xsubj(perform-11, pilot-8), aux(perform-11, to-10),

xcomp(decided-9, perform-11), det(go-around-13, a-12),

dobj(perform-11, go-around-13)

The head word is listed first in each dependency, and the dependent last. The
number behind each term indicates its index in the parsed sentence, and is use-
ful in cases where two occurrences of the same token needs to be distinguished
from each other. Note that since we use the collapsed dependencies with propaga-
tion, the dependencies form a directed graph rather than a tree. This is evident
by the appearance of pilot-8 as dependent in both nsubj(decided-9, pilot-8)

and xsubj(perform-11, pilot-8), and is illustrated in Figure 6.2. In the graph rep-
resentation we ignore the term-index of the tokens, so that the the node represents
both the-3 and the-7 above.

Figure 6.2: Example of a dependency graph using Stanford Dependencies.

The parser also provides a parse tree of the sentence structure, and POS-tags for
each word. The parse tree is depicted in Figure 6.3 on the following page and, the
sentence tagged with POS-tags looks as follows:

Immediately/RB after/IN the/DT second/JJ touchdown/NN , the/DT
pilot/NN decided/VBD to/TO perform/VB a/DT go-around/JJ .

The example sentence consist of 12 words, which gives us 66 co-occurrences.
In contrast, only 11 dependencies are extracted — co-occurrences that carry mean-
ingful information. Some of the relations mainly hold information about the syn-
tactic structure, such as det(touchdown-5, the-3), linking touchdown to its deter-
miner. Other relations carry more semantic meaning. A good example of this is the
prep after(decided-9, touchdown-5) dependency, which represent the fact that
something was decided after a touchdown. Which touchdown is indicated by the

74 DEPENDENCY NETWORKS

ROOT

S

VP

S

VP

VP

NP

JJ

go-around

DT

a

VB

perform

TO

to

VBD

decided

NP

NN

pilot

DT

the

PP

NP

NN

touchdown

JJ

second

DT

the

IN

after

ADVP

RB

Immediately

Figure 6.3: Example parse tree created by the Stanford Parser.

adjectival modifier amod(touchdown-5, second-4), and details about the decision
is included in several other dependency relations.

Practical Applications

The Stanford Parser has been used for many different applications, probably due to
its user friendliness to people without any deep linguistic background. We present
here one such example that both nicely illustrates the usefulness of dependencies,
and relates to our intended use of the parser.

Ever since the completion of the Human Genome Project, there has been a rapid
increase in publications on genetics. Most of this information exists only as free
text, i.e. the publications, and is not contained in any structured databases. Fun-
del et al. (2007) have developed a system, RelEx, that extracts relations from free
text. They use this system to identify relations between genes in articles published
in the biomedical domain. Relations are extracted by applying a combination of
dependency parse trees and rules to the text. They identify dependency relations
containing terms recognized as names of genes, and apply the rules to determine
whether a dependency is actually a meaningful genetic interaction. The central role
of dependency parsing is to identify text passages starting and ending with gene
names that are good candidates for the rule based extraction.

While RelEx only extracts and stores sets of interactions, Ozgür et al. (2008) take
this one step further. By means of similar methods to those used by Fundel et al.
(2007), they also extract gene interactions. The major difference is that instead of
using rules, they apply the gene-dependency relations to a Support Vector Machine
(SVM) classifier to determine whether the dependency describes an interaction be-
tween the gene pair or not. From the extracted gene interaction sets, they build
interaction networks, with genes as nodes and their interactions represented by the

BASIC REPRESENTATION 75

edges.
The motivation for their work is to apply network analysis to predict gene-

disease interactions. In order to do this, they build disease specific gene-networks
by specifying sets of genes that are known to be related to the disease and use these
as training data for the SVM classifier. The gene interaction extraction method is
more extensively described by Erkan et al. (2007). Once the disease specific net-
work is created, they apply centrality metrics to the genes in the network. Their
hypothesis is that the more central genes should be likely to be related to the dis-
ease. They evaluate degree, eigenvector, betweenness and closeness centrality, all of
which show promising results.

This use of graph centrality in networks is similar to our approach to identify
important terms within documents, as described in Section 4.2. Similarly, the gene-
networks resemble the text-network representation which we will discuss shortly, in
Section 6.2, the primary difference being that while Ozgür et al. (2008) extract only
genes, we include the majority of the terms in the documents.

A Note on Parsing Long Sentences

The Stanford Parser uses considerable amounts of memory, and the use is roughly
quadratic in the length of the sentences. Because of this, parsing some of the longer
sentences in the documents cannot be done, because the Java Virtual Machine runs
out of memory, even with increased amounts of heap space available. This affects
sentences of more than around 120 words, depending on the specific sentence struc-
ture. Since such sentences are very infrequent, we simply skip these while parsing
the reports.

6.2 Basic Representation

Our first approach towards creating dependency networks uses a fairly straight-
forward representation based upon dependencies extracted by the Stanford Parser.
We use all the 52 dependency types as relations for the network. Unlike Ozgür et al.
(2008) described above, we do not filter out any particular terms, but include all
terms from the text as nodes. Initially, we ignore the order of head and dependent,
making the network undirected. The following sections describe the construction of
the networks, and an evaluation of this first approach.

6.2.1 Construction

The procedure for creating the basic dependency networks is fairly simple. Each
document is parsed by the Stanford Parser. A set of dependencies is then extracted
for each sentence in the document. For each dependency, two things are done.

First the terms, head and dependent, are added to the network as nodes if they
have not been already. Before the terms are added, some processing is done on the
terms. The processing includes case-folding and stemming, and is done in order to
make sure different forms and inflections of the same term in the text is treated as
a single node in the network. Secondly, the dependency is added to the network as
an undirected edge between the two terms.

76 DEPENDENCY NETWORKS

The procedure is described in Algorithm 6.1.

Algorithm 6.1 Create dependency network from text

Input: text: sequence of sentences
Output: graph: dependency network

1: nodes⇐ ∅
2: edges⇐ ∅
3: for all sentence in text do
4: dependencies⇐ STANFORDPARSER(sentence)
5: for all head, dependent in dependencies do
6: nodes← nodes ∪ {head}
7: nodes← nodes ∪ {dependent}
8: edges← edges ∪ {(head, dependent)}
9: end for

10: end for
11: return graph⇐ 〈nodes, edges〉

6.2.2 Evaluation

In order to determine how well the basic dependency networks perform, we have
performed some experiments. Since this is a new type of network, we do not make
any assumptions about which centrality measure will perform best. The networks
are therefore evaluated using all centrality measures. We also test whether the rep-
resentation gains from using the additional information of the frequency of each de-
pendency as edge weights. The evaluations are therefore repeated for both weighted
and unweighted dependency networks. Stop-word removal is not done in the con-
struction of these basic networks, thus all terms from the text are included as nodes.

6.2.3 Results

Figures 6.4 and 6.5 display the results for classification and retrieval, respectively, as
bar charts.

It seems the choice of centrality measure has a lot more to say for performance
than the use of edge weights does. There are considerable differences between
the classification performance when different centrality measures are employed.
Whether the use of edge weights is beneficial seems to depend on the centrality
measure used. For some measures, weighted networks are better, for others they
are not. The differences between weighted and unweighted are, however, for most
measures considerably less than the differences between measures.

An interesting observation is that all the eigenvector-based measures perform
best with unweighted edges. This trend is found for all the measures in this group in
both evaluation tasks, and the difference is most distinct for eigenvector centrality
and the HITS centralities. The preference for unweighted networks among these
measures seems to indicate that, using the metaphor of recommendations among
nodes, it does not matter how often a term recommend another, only that it does

BASIC REPRESENTATION 77

Degree

Closeness

Curre
nt-fl

ow closeness

Betweenness

Curre
nt-fl

ow betweenness
Load

Eigenvector

PageRank

HITS authoriti
es

HITS hubs

unweighted weighted

0.0

0.5

0.2

0.4

0.6

0.3

0.1

Figure 6.4: Classification results using weighted and unweighted networks with different
centrality measures.

Degree

Closeness

Curre
nt-fl

ow closeness

Betweenness

Curre
nt-fl

ow betweenness
Load

Eigenvector

PageRank

HITS authoriti
es

HITS hubs

unweighted weighted

0.0

0.2

0.15

0.1

0.05

Figure 6.5: Retrieval results using weighted and unweighted networks with different cen-
trality measures.

78 DEPENDENCY NETWORKS

so. Recommendation in the context of dependency networks means that a term
indicates another as important if they are connected by a dependency.

Some consistency between the performance of the various centrality measures
can be seen in the two evaluations. The most notable common trait is the remark-
ably low performance of current-flow betweenness in both evaluation tasks. It is
also interesting to see that closeness, both current-flow and regular, outperforms
the corresponding betweenness measures in both evaluations. This is the opposite
of what was the case for co-occurrence networks, where closeness generally consti-
tuted the weakest centrality measure group. This difference is interesting because
it reveals that there might be considerable differences in the characteristics of the
network types.

In order to find clues as to these differences, we look at the properties of the ba-
sic dependency networks network. Table 6.8 on page 86 lists some properties of the
dependency networks created from our two datasets. We compare these results to
the corresponding values for co-occurrence networks in Table 5.4 on page 63. The
most notable differences are found in the connectivity of the networks. These are
much as expected, considering how the networks are constructed. We see that the
dependency networks have about the same orders, i.e. number of nodes, as the co-
occurrence networks, but that they have a lot less edges. This has in turn led to a
much lower average degree for the nodes. The characteristic path length has also
increased, and the clustering coefficient is significantly lower. The dependency net-
works are most easily compared to the co-occurrence networks using sentences as
contexts, since sentences is the textual unit from which dependencies are extracted.
Whereas a co-occurrence network includes edges between all pairs of words oc-
curring within the sentence, the dependency network relate only those words for
which a formal dependency relation exists. Thus, the set of edges in a dependency
network will necessarily be a subset of the edges in a co-occurrence network for
the same document. This explains the reduction in edges within the dependency
networks.

It is hard to say exactly what has affected the performance of the closeness com-
pared to the betweenness centrality, but some hypotheses present themselves from
the differences just described. One possibility is that the reduction in edges, and the
resulting lengthening of paths, has made it easier to distinguish important terms
based on how well connected they are to the rest of the network. If dependencies
really are a subset of the most meaningful co-occurrences within sentences, then
closeness by these edges may be a better measure of term importance. Another fac-
tor that might have had an impact is the drastic reduction in clustering coefficient.
In a network, such as a co-occurrence network, with a high clustering coefficient,
there will be some terms that belong to two or more cliques. Such words will score
high in betweenness centrality. Since these words are less common and pronounced
in dependency networks, due to the lower degree of clustering, this might be part
of the reason for the low performance of betweenness.

6.2.4 Conclusion

The basic dependency network representations provide insights into the usefulness
of this kind of representation. We have, based on the initial experiments, looked

IMPROVEMENTS 79

at the performance of various centrality measures and compared weighted and un-
weighted edges. The next section will investigate various aspects of the representa-
tion in order to improve it.

The best centrality measures for the classification task are clearly closeness and
current-flow closeness, regardless of the use of weights. Given that closeness and
current-flow closeness performs about equally well, and that closeness is a far less
computationally expensive measure, we select closeness for use with the depen-
dency networks in classification. For retrieval, the HITS measures and eigenvector
are the best performers when used on unweighted networks. Of the three, eigen-
vector centrality is the simplest measure and will for this reason be used with the
representation for this task.

In classification the closeness centrality gain nothing from the addition of weights
to the edges, and the use of weights seem to actually harm performance in retrieval.
Hence, the final dependency network representation will be unweighted.

6.3 Improvements

Through the following sections, we will describe and evaluate a number of different
ways in which the basic dependency network representation might be improved.
We will adopt to the final network representation those features that improve its
performance.

6.3.1 Removing Stop-Words

In the evaluation of the basic dependency networks above, stop-word removal was
not done as a part of the network construction phase. Stop-words are common
function words, such as the, is, and at. Stop-word removal was done as part of the
preprocessing for the co-occurrence networks, where it lead to improvements in per-
formance. Removing these words improved quality of the resulting representation
because the words carried little meaning. We are interested in finding out whether
stop-word removal will have a similar effect for dependency networks. Stop-word
removal will in this case have an effect on the set of dependencies used in the net-
works, because some of the dependency types, such as determiner typically target
words from this group.

To determine the usefulness of stop-word removal, we evaluated the representa-
tion with and without removing stop-words. The results are listed in Table 6.2.

Table 6.2: Evaluation of stop-word removal for dependency networks.

Classification Retrieval

Including stop-words 0.5750 0.1985
Excluding removed 0.5667 0.1852

We see that for dependency networks, the removal of stop-words actually harms
the performance for both evaluation tasks. Our dependency network representa-
tion should therefore clearly not use stop-word removal as part of the construction
process.

80 DEPENDENCY NETWORKS

It is clear that stop-words are more valuable in dependency networks than in
co-occurrence networks, or even in frequency-based representations such as TF-IDF
vectors. The reason for this is not obvious, but a possible factor might be that stop-
words act as hubs in the network. While they do not hold much semantic informa-
tion, they link with a very high number of other words. That is, they act as a form
of function nodes, equivalent to their role as function words in the text.

For example, the the node in the example in Figure 6.2 on page 73 link pilot with
touchdown. This is just a single sentence, and the degree of such words in networks
for complete documents will naturally be much higher. Thus, we hypothesize that
by keeping the network better connected, the stop-words contribute to the overall
performance.

This hypothesis can easily be tested by looking at the common hub words. Ta-
ble 6.3 holds a lists of the 10 words most frequent among the top 10 hubs in both
datasets with and without stop-word removal.

Table 6.3: Lists of common hub words with and without stop-words included in the repre-
sentations.

With Without
stop-words stop-words

TASA900 AIR TASA900 AIR

all four becaus four
not all onli fatal
them fatal veri signific
onli voic one voic
then signific often factual
becaus veri good veri
they partial still partial
each further also profici
veri privat everi tail
should profici might follow

The lists on the right contain the most common hubs where stop-words have
been removed, while the lists on the left show hubs when the stop-words are re-
tained. We see that there are stop-words in both the lists on the left, although there
are many more in TASA900 than in the AIR dataset. This means that at least some of
the stop-words occupy the suspected highly interconnected position contemplated
above.

The findings are consistent with those of Ferrer i Cancho et al. (2004), discussed
in Section 3.4.2, who found a linear relationship between term-frequency and degree
in dependency networks. Since function words are among the most frequent terms,
this explains the strong presence of stop-words among the hubs.

For TASA900 the majority of the listed hubs are stop-words. The only exceptions
are onli, becaus and veri, which are stemmed forms of only, because and very. These
words should arguably also have been included in the list of stop-words.

Comparing the lists for AIR reveals only two stop-words: all and further. This
shows that stop-words hold positions as hubs also here, but to a far lesser extent.

IMPROVEMENTS 81

A likely reason for this is that while the TASA corpus deals with a wide range of
topics, the AIR dataset focus entirely on the aviation incident domain. Since TASA
is topically diverse, the stop-words, which themselves are topically neutral, have a
wider range of terms to interact with. Many terms do not generally interact across
topics, and thus stop-words may be needed to connect the different topics in the
network.

6.3.2 Edge Directions

Adding directionality to the edges is another possibility for enhancement of the de-
pendency networks. There are basically two alternatives to the undirected edges we
have been using so far: head-to-dependent and dependent-to-head.

The use of directed edges obviously hold additional information that might prove
useful in the representation. For example, given the nsubj(decided, pilot) rela-
tion in the above example, it is clear that it was the pilot that decided something,
and not the other way around. However, with directed edges we also lose some
information. With an edge directed from dependent to head, pilot→ decided, there
would be only an implicit relation from decided back to head. For our centrality mea-
sures such implicit relations are not taken into account, and the information is thus
lost in the final representation.

To test the practical usefulness of edge direction, we have evaluated the represen-
tation with both edge directions, and compare the results to the undirected version.
Table 6.4 holds the results of this evaluation.

Table 6.4: Evaluation of edge direction for dependency networks.

Classification Retrieval

Head-to-dependent 0.3638 0.1226
Dependent-to-head 0.3638 0.1512
Undirected 0.5750 0.1985

It is evident that the use of directed edges is harmful to the performance. For
classification we see an identical and substantial drop in accuracy for the two direc-
tions, and for retrieval there is also a considerable performance loss, especially for
the head-to-dependent direction. These results suggests that the direction informa-
tion cannot be utilized by the centrality measures, and should therefore not be used
in the final representation.

6.3.3 Dependency Types

The dependency networks explored so far utilize all available dependency types
from the Stanford Parser. This is a diverse set of 52 relations. Some, like determiner,
hold information related closely to the syntactic structure of a sentence. Others hold
information more concerned with relations or properties of semantic objects. An
example of this last type is the amod (adjectival modifier) dependency. It describes a
modification of the meaning of a noun phrase. Some examples from the AIR dataset

82 DEPENDENCY NETWORKS

are amod(rain, light), amod(factors, physiological) and amod(difficulties,

navigational).
We have, in order to determine the contribution of each of the dependency types,

performed a simple experiment. By evaluating the networks 52 times, each time
leaving out one type of dependencies, we measure how much performance is gained
or lost by excluding that type. The aim of the experiment is to find the best possible
set of dependency types to use in the network, enhancing the performance in the
process.

The results of the experiment are listed in Table 6.5. The dependency types are
listed in order of decreasing contribution to the evaluation performance. For each
dependency type, the performance achieved without the dependency included in
the networks is listed. The difference between this performance and that of the
the networks using the complete set of dependencies is listed as well. A negative
change means that the removal of that dependency harms overall performance, and
that the it contributes positively to the total representation. We see that for both
evaluation measures, there are some types which removal harm the performance.
Other measures either have no influence over the outcome, with differences of 0.0,
or benefit the performance by being removed.

It is tempting to simply remove all dependency types that do not show a direct
contribution towards a higher performance. There are, however, two problems with
this.

First, there is no clear distinction between the good and the bad dependency
types. For example, the most important type for classification, advmod, has a neg-
ative effect in retrieval. Many such examples exist, showing that the results of this
evaluation serve only to give an indication of what worked well under the current
conditions, i.e. our datasets and tasks. The differences between the two tasks may
be caused by the different natures in the evaluation methods, or be characteristic to
the two datasets used in the evaluation. Hopefully, the common ground between
the results will be sufficient to tell us something more general.

Second, it is important to note that this evaluation does not reveal anything about
the interplay between the different dependency types. The dependency networks
are complex structures, and it is reasonable to assume that the performance of the
whole is not simply the sum of their parts. We evaluated the contribution, or lack
thereof, from dependencies separately. From this, it is impossible to say with con-
fidence what will happen when several types are removed at once. It might, for
example, be that the removal of every dependency type showing a difference of 0.0
could harm the performance, even though none of the involved types cause harm
or benefit individually. This simply because removal of many edges from the repre-
sentation would make the network much more sparse.

In order to understand this better, and to determine the best set of dependency
types to use in the representation, another evaluation has been done. We evaluated
representations constructed with different subsets of dependency types. We test
four strategies defining which edges should be removed form the representation:

Defensive: The most cautious strategy calls for the removal of only those depen-
dency types that proved directly harmful in both the evaluations. This con-
cerns only a small set of the dependencies: agent, advcl and parataxis.

IMPROVEMENTS 83

Table 6.5: Evaluation of the contribution from each dependency type.

(a) Classification

Type Performance Diff

advmod 0.5306 -0.0444
prep 0.5361 -0.0389
ccomp 0.5389 -0.0361
nn 0.5417 -0.0333
det 0.5444 -0.0306
dobj 0.5444 -0.0306
cop 0.5500 -0.0250
amod 0.5500 -0.0250
nsubj 0.5528 -0.0222
xsubj 0.5556 -0.0194
complm 0.5583 -0.0167
prt 0.5611 -0.0139
conj 0.5611 -0.0139
dep 0.5639 -0.0111
preconj 0.5639 -0.0111
rcmod 0.5639 -0.0111
num 0.5639 -0.0111
appos 0.5639 -0.0111
iobj 0.5667 -0.0083
purpcl 0.5667 -0.0083
mwe 0.5667 -0.0083
tmod 0.5667 -0.0083
pcomp 0.5667 -0.0083
prepc 0.5667 -0.0083
auxpass 0.5694 -0.0056
nsubjpass 0.5694 -0.0056
expl 0.5694 -0.0056
infmod 0.5694 -0.0056
partmod 0.5694 -0.0056
quantmod 0.5694 -0.0056
acomp 0.5722 -0.0028
xcomp 0.5722 -0.0028
rel 0.5722 -0.0028
predet 0.5722 -0.0028
neg 0.5722 -0.0028
npadvmod 0.5722 -0.0028
poss 0.5722 -0.0028
number 0.5750 0.0000
attr 0.5750 0.0000
aux 0.5750 0.0000
possessive 0.5750 0.0000
abbrev 0.5750 0.0000
punct 0.5750 0.0000
ref 0.5750 0.0000
pobj 0.5750 0.0000
mark 0.5750 0.0000
csubj 0.5750 0.0000
csubjpass 0.5750 0.0000
agent 0.5778 0.0028
parataxis 0.5778 0.0028
cc 0.5778 0.0028
advcl 0.5861 0.0111

(b) Retrieval

Type Performance Diff

det 0.1902 -0.0083
conj 0.1941 -0.0044
prep 0.1948 -0.0037
amod 0.1961 -0.0024
num 0.1965 -0.0020
appos 0.1969 -0.0016
partmod 0.1969 -0.0016
nn 0.1970 -0.0015
auxpass 0.1972 -0.0013
cop 0.1975 -0.0010
xsubj 0.1977 -0.0008
infmod 0.1978 -0.0007
mark 0.1982 -0.0003
acomp 0.1983 -0.0002
complm 0.1983 -0.0002
rel 0.1984 -0.0001
quantmod 0.1984 -0.0001
iobj 0.1985 0.0000
attr 0.1985 0.0000
csubj 0.1985 0.0000
csubjpass 0.1985 0.0000
cc 0.1985 0.0000
mwe 0.1985 0.0000
npadvmod 0.1985 0.0000
number 0.1985 0.0000
possessive 0.1985 0.0000
prt 0.1985 0.0000
punct 0.1985 0.0000
ref 0.1985 0.0000
pcomp 0.1985 0.0000
expl 0.1985 0.0000
purpcl 0.1986 0.0001
parataxis 0.1986 0.0001
tmod 0.1986 0.0001
poss 0.1987 0.0002
rcmod 0.1988 0.0003
agent 0.1989 0.0004
pobj 0.1989 0.0004
abbrev 0.1989 0.0004
dep 0.1990 0.0005
predet 0.1990 0.0005
prepc 0.1992 0.0007
xcomp 0.1993 0.0008
preconj 0.1995 0.0010
advmod 0.1995 0.0010
aux 0.2002 0.0017
nsubjpass 0.2005 0.0020
dobj 0.2007 0.0022
advcl 0.2008 0.0023
neg 0.2008 0.0023
nsubj 0.2011 0.0026
ccomp 0.2012 0.0027

84 DEPENDENCY NETWORKS

Aggressive: This strategy takes a more dramatic approach by removing all depen-
dency types that are shown to be harmful in either of the evaluations. The
types removed include the three from the defensive strategy, and an addi-
tional 19 more: dep, aux, ccomp, xcomp, dobj, pobj, nsubj, nsubjpass, cc, abbrev,
purpcl, predet, preconj, advmod, neg, rcmod, tmod, poss, and prepc.

Compromise 1: The compromise between the above strategies calls for the removal
of a dependency type if it proved harmful in one of the evaluations, unless it
is seen to make a significant contribution in the other. As thresholds for sig-
nificant contribution, we use 0.01 for classification and 0.001 for retrieval. The
following dependencies are affected in addition to those from the defensive
strategy: aux, xcomp, pobj, nsubjpass, cc, abbrev, purpcl, predet, neg, tmod, poss,
and prepc.

Compromise 2: This strategy uses the same criterion as the first compromise, but
additionally removes any dependency with contribution of zero for both eval-
uation tasks. This calls for the removal of attr, csubj, csubjpass, number, posses-
sive, punct, and ref in addition to those mentioned for Compromise 1 above.

The performance of the different strategies is listed in Table 6.6. It is clear that
changes to the set of dependency types impact the performance of the representa-
tion. The defensive strategy is best in both evaluations, providing an improvement
over the baseline using all dependency types.

In retrieval, all removal strategies perform better than baseline. We see, however,
a drastic decline in performance for the more aggressive strategies for classification.
This suggests that TASA900 or the classification task depends on a wider selection
of dependency types than retrieval on the AIR dataset does. It is in any case clear
that some of the dependencies identified by the Stanford Parser is harmful to the
representation, namely those removed by the defensive strategy: agent, advcl and
parataxis. We consequently remove these from our final dependency network repre-
sentation.

Table 6.6: Evaluation of dependency type removal strategies.

Strategy Classification Retrieval

Defensive 0.5889 0.2020
Aggressive 0.5056 0.2000
Compromise 1 0.5639 0.2009
Compromise 2 0.5583 0.2004
No removal 0.5750 0.1985

6.4 TC-ICC Weighting

Section 4.2.2 introduced two measures of term importance, TC and TC-ICC. These
are used to build vector representations for documents, based on their text net-
works. In this chapter, TC has been used for the dependency network evaluations

TC-ICC WEIGHTING 85

up to this point. Here we evaluate the performance of TC-ICC with dependency
networks.

Table 6.7 lists the results for the evaluation tasks. For comparison, the best re-
sults obtained using TC with the same measures were 0.5889 for classification and
0.2020 for retrieval. Like for the co-occurrence networks described in Section 5.3, the
current-flow betweenness centrality measure proved too memory demanding also
here. Since this makes the measure impractical for use with TC-ICC, and because of
its extremely poor performance with TC (as seen in Figures 6.4 and 6.5 on page 77),
we decided not to pursue the issue.

Table 6.7: Performance of TC-ICC with dependency networks.

Representation Classification Retrieval

Degree 0.5028 0.1914
Closeness 0.5056 0.1732
Current-flow Closeness 0.5028 0.1753
Betweenness 0.3806 0.1480
Current-flow Betweenness n/a n/a
Load 0.3778 0.1479
Eigenvector 0.4667 0.2048
PageRank 0.4833 0.1772
HITS-authorities 0.4611 0.2025
HITS-hubs 0.4611 0.2025

It is clear that TC-ICC performs far worse than TC for the classification task.
The best measure here, closeness centrality, achieves classification accuracy of only
0.5056, which is far from the best performance reached using TC. The second best
measure is the degree centrality, which performs at almost on the same level as
closeness. All other measures perform considerably worse than this. We thus con-
clude that the introduction of information bout the overall corpus centrality is harm-
ful to the performance for classification.

The TC-ICC measure performs better on the retrieval task. The best measure
when using TC, the eigenvector centrality, is again best. Its score is 0.2048, which is
slightly higher than the corresponding value for TC. Also the HITS measures per-
form on the level with the best TC result. PageRank, however, which is measure in
many ways similar to these, performs rather poorly. It would seem that the use of
corpus level information does not decrease retrieval performance, but neither is the
performance greatly increased.

Not surprisingly, we see a high correlation between the performances using TC
and TC-ICC for the various measures. Those centrality measures that achieve high
scores with TC, also performs best when TC-ICC is used. This is the case in both clas-
sification and retrieval. This indicates that although our choice of centrality measure
was based on evaluations done with TC, the results apply to TC-ICC as well.

To summarize, we see the same main results here as with the use of TC-ICC on
co-occurrence networks presented in Section 5.3. TC-ICC seems to perform worse
than TC in classification, but on the same level or better for retrieval. Also, the
results indicate that the choice of centrality measure does not depend on whether

86 DEPENDENCY NETWORKS

TC or TC-ICC is used.

6.5 Network Properties

This section describes some properties of the dependency networks. The discussion
should be seen in light of Section 3.4.2, where previous research on this type of
networks was presented. Unlike the networks described there we do not create a
single network over the entire corpus. Rather, we investigate the properties of the
networks representing each document in our datasets.

Table 6.8 lists central network properties for networks created from TASA900
and AIR. For each value, we list the mean for all document networks in the datasett,
as well as the standard deviation.

We have also constructed random networks, according to the Erdős-Rényi model,
as a basis for comparison with the dependency networks. These networks have the
same number of nodes as the average over each of the two datasets, and approx-
imately the same number of edges. Details about the random networks are also
included in Table 6.8.

Table 6.8: Some properties of the dependency networks.

TASA900 AIR Random
Mean St.dev. Mean St.dev. TASA900 St.dev.

N 170.076 23.816 533.826 172.171 170 533
〈k〉 20.305 1.098 27.634 3.624 20.294 27.448
l 2.194 0.046 2.153 0.029 2.463 2.678
C 0.569 0.024 0.572 0.012 0.114 0.050

6.5.1 Comparison with Co-occurrence

It is reasonable to first compare the properties of the dependency networks to those
found for the co-occurrence networks in Section 5.4. We see that the dependency
networks are larger for both datasets. This is because stop-words are removed prior
to constructing the co-occurrence networks, while they are included in the depen-
dency networks. Further, the mean degree 〈k〉 of nodes are lower both for TASA900
and AIR. The same is true for the clustering coefficients, C. This probably indicate
that while the number of relations extracted with the dependency parser is lower
than that of full sentence contexts, it is higher than that of two-word context win-
dows. The increase in average degree 〈k〉 for AIR is likely because the stop-words,
as we saw in Section 6.3.1, are hub words and thus have a major contribution to the
connectedness of the networks.

6.5.2 Small World Property

By comparing the values of C and l to the corresponding values for the random
networks, Crand and lrand, we see a similar pattern to that found for the co-occurrence

NETWORK PROPERTIES 87

networks. The fact that C > Crand and l ∼ lrand shows that both datasets form small-
world networks.

We note that the value of Crand is much higher for TASA900 than for AIR. The
TASA900 networks have a much higher 〈k〉 relative to their number of nodes N.
This is caused by the fact that while the average number of nodes in AIR networks
is more than 3.1 times that of TASA900, the average 〈k〉 is only 1.35 times higher.
We believe this to be caused by the role of the hubs in the network, which typically
are stop-words that are part of both dataset. Since these words accounts for the
majority of connections in the network, the higher number of nodes in AIR does
not entail a proportionate increase in 〈k〉, which leads to the difference in expected
connectedness.

6.5.3 Scale-Free Property

Like the co-occurrence networks, the dependency networks are not scale-free. This
result is in stark contrast to results from previous research, as described in Sec-
tion 3.4.2. The degree distributions do share some properties consistent with power-
law distributions, such as the presence of hubs in the network, but do not otherwise
follow this model. The same remarks made regarding this in Section 5.4.3 applies
here as well.

Ferrer i Cancho et al. (2004) do not describe the exact method used to determine
their power-laws, but use the linear log-log plot of the distribution as supporting
evidence. Our methods used to rule out the power-law hypothesis, described by
Clauset et al. (2009), are more rigid. Linearity in the plot is a necessary but not suf-
ficient requirement to identify a distribution governed by a power-law. A statistical
goodness-of-fit measure is also needed to determine whether a power-laws fitted to
the data actually is a plausible model. It would be interesting to see results of the
methods described by Clauset et al. on the networks created by Ferrer i Cancho et al.
We refer to Appendix A for the details about power-laws and how we searched for
them in the network data.

Table 6.9: Summary of the dependency network representation.

Property Description

Nodes Terms used in the text
Edges Syntactic dependencies between terms
Contexts Sentences
Edge weights No
Edge directions Undirected
Centrality (classification) Closeness centrality
Centrality (retrieval) Eigenvector centrality
Text processing Stemming, token filtering, case folding
Stop-word removal No
Dependency types All except agent, advcl and parataxis

88 DEPENDENCY NETWORKS

6.6 Summary

As an initial approach to a dependency network representation, a basic dependency
network was described and evaluated. This representation uses undirected and un-
weighted edges, performs no stop-word removal, and includes all available depen-
dency types.

Building on this representation, both stop-word removal and edge directions
were tested. In both cases, it turned out that changing the basic dependency net-
work representation did harm rather than good, and both measures were dismissed.
Different subsets of dependency types were then evaluated, and as a result of this
some dependencies were removed. The main aspects of the final dependency net-
work representation is summarized in Table 6.9 on the preceding page.

Chapter 7

Experiments

In this chapter we compare the graph-based representations to each other and to the
baseline methods that use TF and TF-IDF based weigthing. The intention is to find
out whether the new representations are able to outperform the commonly used
BoW representations, and to determine which of them facilitate the best measure-
ment of text similarity.

We start the chapter by exploring the terms identified as most central or impor-
tant by the different representations. This is done in the first section, by means of a
case study of one of the aviation incident reports form the AIR dataset. Section 7.2
next describes the experiments conducted to evaluate the performance of the repre-
sentations. The evaluation tasks are the same as those used in the previous chapters,
although new datasets are introduced for each task. The results are subsequently de-
scribed and discussed in Section 7.3. Finally, Section 7.4 ends the chapter with brief
summary of the experiments.

7.1 Study of Central Terms

In order to better understand how the representations work, we are interested to
find out which terms in the document collection are determined to be important. To
do a thorough analysis of this would be a comprehensive task. Instead, we have
opted to do a tentative evaluation, based on a case study of one of the incident
reports from the AIR dataset. This will give us some ideas about the nature of the
central terms, but is naturally too limited for us to say anything conclusive. In the
absence of a domain expert, the evaluation of the terms extracted by the different
representations is done manually by us, based on our understanding of the report.

The report selected for the study has identification number A05A0059, and is
available online from the TSA1. We use the entire report in our study. Its summary
is presented below.

A de Havilland DHC-8-100 (Dash 8) aircraft (registration C-GZKH, se-
rial number 117) operated by Provincial Airlines Limited was a passen-
ger revenue flight from St. John’s to Deer Lake, Newfoundland and
Labrador, with 36 passengers and 3 crew on board. During the climb-out

1http://www.tsb.gc.ca/eng/rapports-reports/aviation/2005/a05a0059/a05a0059.asp

89

http://www.tsb.gc.ca/eng/rapports-reports/aviation/2005/a05a0059/a05a0059.asp

90 EXPERIMENTS

from St. John’s, the indicated airspeed gradually decreased to the point
that the aircraft entered an aerodynamic stall. The aircraft descended
rapidly, out of control, losing 4200 feet before recovery was effected ap-
proximately 40 seconds later. The incident occurred during daylight hours
in instrument meteorological conditions. There were no injuries and the
aircraft was not damaged.

The report describes the factual circumstances of the incident, such as weather,
events, aircraft, and crew. It also presents TSA’s analysis of the situation, and their
interpretations of the causes and contributing factors. Risks related to the occurrence
and safety actions taken as a consequence of the investigation is also described. The
report concludes that the cause of the loss of control was human error. The crew
failed to detect signals of the stall of the aircraft until it was too late, and failed
to activate the pneumatic de-icing equipment when they should have. This might
be attributed to a limited training in stall recognition and recovery. No technical
malfunctions were found that could lead to the occurrence.

By constructing text networks of the report, we identified the 20 highest weighted
terms using TC and TC-ICC. The most important terms according to TF and TF-IDF
were also found. Table 7.1 on the next page lists the central terms, in order of de-
creasing importance, for the various representations.

The local measures, term frequency (TF) and term centrality (TC) from the two
graph types, are listed first. The measures including global information, i.e. TC-ICC
and TF-IDF, are listed thereafter. The terms outlined in bold font for the TC and
TC-ICC representations are those that do not also appear in the corresponding lists
of terms for TF or TF-IDF, respectively.

Stemming was done as part of the text preprocessing in all representations. The
stemmer used, the PorterStemmer (Porter, 1980), is far from infallible. This explains
why some of the words look strange or incomplete.

Starting with the local measures, we see that there is a high degree of overlap
between terms selected in different representations. Looking at the relevance of the
terms with respect to the report, no representation is therefore remarkably better
than any of the others. The terms identified as relevant by TF are, perhaps not sur-
prisingly, mostly relevant. Terms exclusive to the graph-based representations vary
somewhat in relevance, but are also mainly relevant to the contents of the report. A
problem with many terms found by both TF and TC is that they although relevant
also tend to be general. Examples include aircraft or flight. Terms directly relevant to
the cause of the incident are, however, also identified, such as de-ice and airspeed.

Of the graph-based measures, TC on co-occurrence networks is the one most sim-
ilar to TF, introducing only 4 different terms. This is likely because degree-centrality,
which is used with this network representation, is similar to the frequency measure.
The difference is that while TF rates number of occurrences, unweighted degree
measures how many different terms a term occurs close to. Thus, frequent terms
with varied contexts score higher here.

TC on dependency networks also have many of the same terms as TF. We observe
two differences here: Firstly, as a result of not removing stop-words, the appears
as the most central term. Secondly, there are more verbs among the dependency
terms. This can be explained by the fact that verbs often are syntactically central

STUDY OF CENTRAL TERMS 91

Table 7.1: Central terms from the different representations. Terms highlighted in bold font
are those included by graph-based but not by the corresponding frequency-based
representation.

Representation Most central terms

TF aircraft, flight, ice, stall, control, crew, data,
mode, select, pilot, oper, airspe, train, de-ic,
climb, pneumat, captain, recoveri, safeti, use

Co-occurrence TC stall, ice, mode, aircraft, flight, select, crew, pilot,
oper, procedur, pneumat, control, boot, climb,
airspe, train, de-ic, error, data, system

Dependency TC the, select, stall, aircraft, flight, mode, control,
airspe, system, oper, climb, use, ice, crew, in-
form, monitor, activ, warn, sop, indic

TF-IDF edg, unev, dispel, signific, ice, abil, follow, cap-
tain, c-gzkh, accur, transduc, inlet, articl, rudder,
program, becam, larg, digit, risk, none

Co-occurrence TC-ICC stall, ice, mode, select, pneumat, airspe, de-
ic, error, climb, data, captain, recoveri, engag,
monitor, sop, boot, ia, afc, train, turbul

Dependency TC-ICC the, select, stall, aircraft, mode, flight, airspe,
control, system, climb, oper, use, ice, crew, in-
form, monitor, activ, warn, sop, detect

in sentences, and hence often form the root of the extracted dependency tree. An
example of this is seen in the sample sentence in Figure 6.2 on page 73.

Moving on to the global measures, the small overlap between TC-ICC and TF-
IDF is prominent. Only two terms from those listed by TF-IDF appear for TC-ICC
as well. TF-IDF very clearly shows a preference for terms with low frequencies
among the other reports. TC-ICC, on the other hand, actually includes more terms
in common with TF or TC, than with TF-IDF. Again we also see the as the most
central term, and the same bias towards identifying verbs as important terms for
the dependency representation. This seems to indicate that the ICC portion of the
TC-ICC measure is not given enough weight to really make a difference for the most
central terms. A contributing factor here might be that in TC-ICC a low value for
TC can in effect cancel out a high value for ICC, whereas in TF-IDF a high value for
IDF in some cases lead to the term being considered important despite not actually
having a high TF value. A good example is the term c-gzkh which is one of the
terms identified as important by TF-IDF. c-gzkh is actually the registration number
of the airplane and is only mentioned in this particular report, giving it the highest
possible IDF score. The term is mentioned only once in the report, as part of the
summary, which makes the TF value the lowest possible. TF-IDF still identifies it
as important, because it is so rare. The term is not scored highly by the TC-ICC
measures, however. This is because although the ICC score is high, the TC value (as
the numerator in Equation (4.1) on page 41) is almost zero. Conversely, a term with
a low overall ICC value, such as stall, might be considered important by TC-ICC

92 EXPERIMENTS

because it has a very high TC value.
To summarize the results of the case study, we find that the TC measures favours

many of the same terms as TF. TC-ICC differs from TF-IDF in that very rare or non-
central terms in the corpus are not rated highly unless they also have a high TC
value. Of the two graph-based representations, the co-occurrence networks are most
similar to term-frequency. The dependency network representations, for both TC
and TC-ICC, seem to favour verbs as the most central terms.

7.2 Comparison Experiments

In Section 4.3 we presented two evaluation methods based on document similarity,
which have been used throughout Chapters 5 and 6 to measure the performance of
our representations. The tasks, document classification and case retrieval, are reused as
experiments here.

We introduce new datasets for the experiments performed in this chapter. This
is done because TASA900 and AIR were used while developing the representations.
By using fresh datasets, we ensure that the representations do not perform better
because they are fitted especially towards a specific set of data, and we can thus
better make unbiased assessments of the representations.

7.2.1 Baselines

Two common representations based on word frequencies will be used as baseline
in the experiments. The two, term frequency (TF) and term frequency-inverse document
frequency (TF-IDF), were introduced in Section 2.2.4, and we refer to this description
for the details. The main difference between these measures and our graph-based
representations is that TF and TF-IDF are pure bag-of-words models. This means
that they completely disregards the order of words in the documents.

Although relatively simple measures, TF and TF-IDF generally perform reason-
ably well, and are widely used in both the field of IR and in TCBR. We use them
as baselines here for this reason, and because we want to discover how well our
representations perform compared to bag-of-word representations based solely on
frequency.

7.2.2 Experiment 1: Classification

The first experiment evaluates the representations based on document classification.
The k-NN classifier performs text classification using document similarity. Thus,
representations better able to facilitate document similarity measurement will per-
form better in the experiment. We refer to Section 4.3.1 for the full description of the
evaluation measure. New here, compared to the initial evaluations, is the use of the
Reuters dataset.

Reuters Dataset

Reuters-21578 is a collection of news articles that appeared on the Reuters newswire
in 1987. It is widely used for text classification tasks, and has been manually la-

COMPARISON EXPERIMENTS 93

belled by Reuters personnel. The set consists of 21578 documents, some of which
are unlabelled and some labelled with one or more of 672 different categories. The
categories are divided into five different classes: exchanges, orgs, people, places, and
topics.

The documents are separated into training and testing sets according to the
ModApté split, which is described in the README-file accompanying the distri-
bution of the dataset. ModApté uses categories from the topics class, consists of
documents from 90 different categories. These are the categories which include at
least 1 training document and 1 test document. There are a total of 9598 training
documents and 3744 testing documents in the collection.

The dataset is available online2 in its original form, as a set of files in the SGML
format. Our copy was downloaded from a version maintained3 by Alessandro Mos-
chitti at the University of Trento, who have done a great job of preprocessing the
data. His versions are provided in a format structured as a hierarchy of files and
directories, where each category corresponds to a separate directory. We chose to
use this versions of the datasets because this format is well adapted to our imple-
mentation, and therefore easier to use.

(a) Training (b) Test

Figure 7.1: Distribution of document lengths in the Reuters dataset.

Figure 7.1 shows the distributions of document lengths in the training and test-
ing portions of the dataset. Parts of the tails have been cut to make the histograms
more readable. The highest document lengths are 1409 and 1804 tokens for train-
ing and test, respectively, but such long documents are rare. In both cases, 98.5% of
documents have lengths shorter than 1000 tokens.

In Figure 7.2, similar distributions are shown for the sentence lengths. These
distributions also have a long tail, similar to the document lengths. For training,
only 45 out of 56893 sentences are longer than 150 tokens, with the longest being
260 tokens long. The test data consists of 21924 sentences, the longest of which 55 is
longer than 150 tokens, and the longest is 428.

Compared to TASA900 (presented in Section 4.3.2) the distribution of document
lengths is very different. TASA900 had a lower bound at about 250 words, and
most documents consisted of between this and approximately 400 words. Reuters,

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
3http://disi.unitn.it/moschitti/corpora.htm

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://disi.unitn.it/moschitti/corpora.htm

94 EXPERIMENTS

(a) Training (b) Test

Figure 7.2: Distribution of sentence lengths in the Reuters dataset.

in comparison, consist of many shorter documents, with the majority having less
than 200 words. This is a natural considering the nature of the Reuters collection,
namely brief news bulletins. A consequence of the shorter document lengths is that
the text networks necessarily are smaller as well. The sentence length distributions
are similar for TASA900 and Reuters, although the curve is shifted a bit towards
longer sentences for Reuters. The distributions are very similar for the training and
test parts of the dataset. Thus, text networks based on Reuters will tend to be smaller
and more connected than those based on TASA900.

7.2.3 Experiment 2: Retrieval

The retrieval task was introduced in Section 4.3.3, and used to evaluate aspects of
the representations throughout Chapters 5 and 6. This experiment is based on the
same task but use a new dataset — a collection of marine incident reports.

To reiterate its key aspects, the case retrieval evaluation is an unsupervised eval-
uation task based on the CBR retrieval phase. The documents are split into two-part
cases, one part a problem description and the other the solution. Retrieval is done
based solely on the problem description parts, and performance is determined based
on the similarity between the solutions of the query to the solutions of the retrieved
cases.

The Marine Incident Reports

The dataset used in the second experiment is similar to the AIR dataset presented
in Section 4.3.4. AIR is based on a set of incident reports written by the Transporta-
tion Safety Board of Canada (TSB) from the domain of aviation. The TSB have also
released a number of incident reports from the domain of marine transportation.
These Marine Incident Reports (MIR) constitute our dataset for the retrieval evalua-
tion in this chapter. Like the reports from the AIR dataset, the marine related reports
are also available online4.

4http://www.tsb.gc.ca/eng/rapports-reports/marine/

http://www.tsb.gc.ca/eng/rapports-reports/marine/

COMPARISON EXPERIMENTS 95

The MIR dataset is smaller than AIR, composed of only 337 documents. We
used the same process as described in Section 4.3.4 to divide the reports into cases
composed of problem description and solution parts.

Figure 7.3 presents the distributions of document lengths in the problem de-
scription and the solution parts of the dataset. Corresponding distributions for sen-
tence lengths are shown in Figure 7.4.

(a) Problem descriptions (b) Solutions

Figure 7.3: Distribution of document lengths in the MIR dataset.

(a) Problem descriptions (b) Solutions

Figure 7.4: Distribution of sentence lengths in the MIR dataset.

We observed that the distributions are very similar between the problem descrip-
tions and the solutions. In both cases, the majority of documents contain less than
5000 words, with some extreme exceptions constituting the long tails. The largest
problem description has 24782 words, and the corresponding solution 13099 words.
Similar long tails are seen in the sentence length distributions, although these have
been cut short in the figure in order to improve readability. Only 18 of 39706 prob-
lem description sentences are longer than 150 terms, of which the longest is 460. For
the solutions, 17 out of 25328 sentences are longer than 150 terms, and the longest is
264.

Compared to AIR, we see that the statistics for MIR are very similar. The main
difference is that the reports in the MIR dataset typically are a bit longer than those

96 EXPERIMENTS

in AIR, although the change is not very large. Consequently, we can expect text
networks based on the two datasets to be similar in size and connectivity.

Figure 7.5: Distribution of solution similarities in the MIR dataset.

Also the distribution of solution similarities is similar to that of AIR. Figure 7.5
displays the distribution of similarities between all pairs of case solutions in MIR.
These similarities are defined in terms of cosine between TF-IDF document vectors,
as described in Section 4.3.3. The corresponding distribution for AIR is found in
Figure 4.7 on page 47. By comparing the two figures, we see that the distributions
are almost identical. If anything, the MIR distribution is skewed marginally towards
lower similarity values. Based on this, we can expect retrieval results similar to those
performed on AIR.

Of the MIR solution pairs, 99% have a similarity value below 0.23. Thus, to get
a retrieval performance above this value, the retrieved cases must on average be
among the one percent best solutions.

7.3 Results

The results from the experiments are listed in Table 7.2 on the facing page, and illus-
trated as a bar chart in Figure 7.6. For comparison, Table 7.3 on the next page also
summarize the performance of various representations in their initial evaluations in
Chapters 5 and 6. These results are illustrated visually in Figure 7.7.

The first thing to note is that in both comparison experiments, as well as for the
preliminary evaluations, graph-based representations outperform the frequency-
based representations. For classification, there are in both cases a marked differ-
ence of a few percent. In the retrieval experiment, the difference in performance is
also notable. In the classification experiments, both for the comparison experiment
and for the preliminary evaluations, there is a clear tendency that local measures
perform better than the global. In every case, the local measures (TF and TC) per-
form better than the corresponding global ones (TF-IDF and TC-ICC, respectively).
The difference is most pronounced for the dependency network representation on

SUMMARY 97

Table 7.2: Results from the comparison experiments.

Classification Retrieval
Representation (Reuters) (MIR)

lo
ca

l TF 0.6693 0.2243
Co-occurrence (TC) 0.6880 0.2205
Dependency (TC) 0.6827 0.2094

gl
ob

al TF-IDF 0.6375 0.2392
Co-occurrence (TC-ICC) 0.6875 0.2472
Dependency (TC-ICC) 0.6763 0.2555

Table 7.3: Results from the preliminary evaluations throughout Chapters 5 and 6.

Classification Retrieval
Representation (TASA900) (AIR)

lo
ca

l TF 0.5678 0.2240
Co-occurrence (TC) 0.5750 0.2239
Dependency (TC) 0.5889 0.2020

gl
ob

al TF-IDF 0.5455 0.2459
Co-occurrence (TC-ICC) 0.5333 0.2559
Dependency (TC-ICC) 0.5056 0.2048

TASA900 and the frequency representation on Reuters. For the retrieval experi-
ments, the situation is reversed. Here the global measures perform better than their
counterparts among the local measures. This is seen clearly in the bar charts of Fig-
ures 7.6(b) and 7.7(b).

Although the graph-based representations are able to outperform TF and TF-
IDF, it is not clear which graph type forms the better representation. This is because
different experiments show both co-occurrence and dependency networks as the
top performer for each of the evaluation tasks.

In short, the graph-based representations perform better than the representa-
tions based on frequencies in both experiments. A difference between the evaluation
types is that local representations perform best in classification, and global measures
do better for retrieval. The results unfortunately give no indication as to which of
the graph-based representations is better.

7.4 Summary

We studied the different representations and compared them to each other through
a case study of central terms and two comparative experiments. The case study
found that TC rated many of the same terms as TF highly. It was also clear that the
dependency representation had a bias towards verbs. Among the global represen-
tations it was found that TC-ICC did not share the pronounced preference towards
rare terms possessed by TF-IDF. The comparison experiments supported most of

98 EXPERIMENTS

Frequency

Co-occurre
nce

Dependency

local global

0.0

0.7

0.6

(a) Classification (Reuters)

Frequency

Co-occurre
nce

Dependency

0.3

0.2

0.0

(b) Retrieval (MIR)

Figure 7.6: Bar chart visualizing the results from the final comparison experiments listed in
Table 7.2.

Frequency

Co-occurre
nce

Dependency

local global

0.5

0.6

0.0

(a) Classification (TASA900)

Frequency

Co-occurre
nce

Dependency

0.3

0.2

0.0

(b) Retrieval (AIR)

Figure 7.7: Bar chart visualizing the results from the preliminary evaluations listed in Ta-
ble 7.3.

the results from the initial evaluations. The graph-based representations performed
better than TF and TF-IDF in both evaluations.

Chapter 8

Discussion and Conclusions

In the preceding chapter we studied the graph-based representations, and saw that
they were able to outperform the frequency-based representations in our experi-
ments. We made several observations regarding the types of terms the different
representations considered important, and differences in performance between lo-
cal and global term weighting measures.

This chapter takes a deeper look at the representations in light of the experiment
results, and tries to explain some of the findings. We focus on what type of infor-
mation the networks are able to capture, and what this means for the final vector
representations. The chapter is ended by a summary of the main conclusions of the
thesis.

8.1 Discussion

In Chapter 1, we presented three hypotheses forming the basis of this thesis. We
now revisit them in light of the work done and experiments performed.

We first hypothesized that the use of graph centrality would form a better ba-
sis for term weighting than term frequency. The results presented in the preced-
ing chapter supports this hypothesis, as our graph-based weighting measures per-
formed markedly better in both the classification and retrieval experiments.

Our second hypothesis was that term weighting would be improved by incor-
porating centrality in networks spanning the entire corpus. The results are here di-
vided between the evaluation tasks. The results from the case retrieval experiments
support the hypothesis, but the classification experiment does not. In fact, the use
of global information seems to harm classification performance, an effect demon-
strated with both TF-IDF and the TC-ICC weighting measures. This is discussed
further in Section 8.1.3.

The third hypothesis stated that dependency networks should perform better
than co-occurrence networks. While dependency networks did perform better in
some of the experiments, co-occurrence networks worked better in others. The hy-
pothesis is thereby neither supported nor rejected by these results. More exper-
iments are needed in order to determine the significance of using grammatically
defined term dependencies as opposed to raw co-occurrences, and under which
conditions each of these is best suited.

99

100 DISCUSSION AND CONCLUSIONS

8.1.1 The Experiment Results

Although the results show improvements over the frequency-based weighting mea-
sures, they are based on only two experiments. How much can we generalize from
this and what confidence can we have in the performance of the representations?

The experiments involved two different evaluation methods performed on sepa-
rate datasets, and were done in addition to the initial evaluations performed as part
of the development of the representations throughout Chapters 5 and 6. The fact
that the results of the new experiments were consistent with those of the prelimi-
nary evaluations strengthens our confidence in the results.

We concede that our version of the retrieval task, as described in Section 4.3.3, is
not an established method of evaluation. It is based on the retrieval phase of TCBR,
but with a novel unsupervised performance measure due to the lack of explicit case
similarity data. We believe that the task able to capture the relevance of retrieved
cases, but there is clearly room for improvements. Standard VSM similarity is cur-
rently used, but better method for assessing the relevance of retrieved cases would
provide more confidence in the results.

The two evaluation tasks are complemented by each other. Classification tests
whether the representations are able to identify documents concerning the same
topics, i.e. documents from the same categories. It cannot tell, however, how good a
match is beyond being correct or not. This is what is measured by the retrieval eval-
uation. The retrieval task is unaware of category information, but tries to measure
the quality of retrieved case directly.

To conclude, although we cannot make strong generalized predictions based on
these results, they seem promising for graph-based term weighting approaches. Ex-
perimentation with additional datasets and evaluation measures are required to fur-
ther evaluate the representations and their usefulness. Ideally, retrieval evaluation
performed with manually determined solution similarities would form the most
proper evaluation.

8.1.2 Interpreting the Representations

What information is actually captured by the text networks, and how is this infor-
mation retained in the term vectors by the centrality-based weighting?

Local interactions between terms form the essence of what is captured by the
networks. Both co-occurrence and dependency networks capture relations between
terms in small textual contexts. In co-occurrence networks all local interactions are
included, while dependency networks include syntactically predefined relations.
Neither network type retain term order directly, however, since both are undirected.
Document structure, at the level of term proximity and dependency, is nonetheless
retained as term connectedness, and this is the main distinction between the graph-
based representations and the frequency-based BoW models.

While the structure is obviously not stored explicitly in the final term vectors, the
weight of each term is determined based on information about the structure through
the centrality algorithms. The information is used differently depending on which
centrality measures is used to calculate the weights.

The unweighted degree centrality, which is used with the co-occurrence net-
works on both evaluation tasks, is one of the simpler measures and arguably the one

DISCUSSION 101

that retains the least structural information in the term weights. All that is stored
here is the number of distinct context terms each term occurs together with.

The measures used with the dependency networks are more interesting, as they
retain more structural information. Eigenvector centrality is here used for the re-
trieval task, and closeness centrality for classification.

Although the eigenvector centrality, like the unweighted degree, is concerned
with the direct neighbors, the extracted information is very different. Eigenvec-
tor centrality does not care about the number of distinct neighbors of the weighted
terms, but rather the strength of the connections and the importance of the neigh-
bors. Thus, the connectivity of important terms influence the weighting in a way
not possible in a BoW model.

The closeness centrality is able to retain other aspects of the structure. The con-
nectivity is here adhered to so that terms with short network paths to others are
given priority. This way, the terms best able to connect others in the text are consid-
ered important.

While being the best performing measure for dependency networks, closeness
centrality measures performed worst for co-occurrence networks. A possible reason
for this is that co-occurrence networks include many relations of doubtful semantic
and syntactic validity. These “shortcuts” may interfere with the more meaningful
relationships. In dependency networks, on the other hand, where all edges are pre-
defined syntactic relations, short paths better corresponds to syntactic distances in
the text, thus enabling the closeness centrality to work properly.

We note that there is a correlation between the rigidity of the term relations cap-
tured in the networks, and the complexity of the centrality measures that seem to
perform best. Co-occurrence networks are based on very loosely defined relations,
and here the simplest of the centrality measures were found to perform best. For
the more strictly defined dependency networks, conversely, more complex central-
ity measures performed better.

Most of the centrality measures presented in Section 3.3 are based on notions of
spreading of information in social networks. Analogies of this can also be made for
the text networks. Edges in social networks represents relationships between social
agents, i.e. channels of information and influence between people. Nodes in our
text networks are terms — far simpler entities. The relations between terms can still
be seen as channels of communication, since the meaning of terms are influenced by
those surrounding it. Sentences constitute the smallest containers of information in
text, and convey a piece of information or fact through the interactions of its terms.

Undirected networks worked best for both network types, and the direction of
this “communication” is thus not considered important by either. This indicates
that the cooperation of the terms in our metaphor represents a mutual, rather than
a unidirectional, flow of information.

The captured term relations are, like social networks, to a large extent syntac-
tic rather than semantic in nature. While our networks might capture the relations,
possibly even the type of relations, they do not capture the semantics of the commu-
nication. The identification of semantic information in the text for use in the network
representations is thus one of the most obvious possibilities for improvements.

102 DISCUSSION AND CONCLUSIONS

8.1.3 Global versus Local Representations

One of the most interesting results from the experiments presented in the previ-
ous chapter is that, contrary to our hypothesis, the local measures (TC and TF) per-
formed better than the corresponding global ones (TC-ICC and TF-IDF, respectively)
for classification. While the differences between the local and global versions the
measures varied, the local version was better in every case.

The TF-IDF measure, originally used in IR, has been widely adopted in text clas-
sification research. IDF weights rare terms higher than common ones, which has
proved useful in information retrieval. It is not clear that this is the best approach
for the text classification task, however. In fact, several researchers have suggested
that the use of IDF is indeed inappropriate for text classification, and that super-
vised term weighting methods should be used instead (Batal and Hauskrecht, 2009;
Soucy and Mineau, 2005). Our results show that this preference for rare terms in
TF-IDF is indeed harmful to classification performance.

The same trend is to some extent also present for the TC-ICC measures. Analo-
gous to how IDF favors rare terms, ICC weights those terms higher that have low
overall centrality in the document collection. Although the difference in perfor-
mance for TC-ICC, compared to TC, differs between the experiments done on the
Reuters and the TASA900 datasets, we found that TC consistently performed better.
This leads us to conclude that the inclusion of global information is harmful also for
the graph-based measures.

We do not know exactly why the preference for local measures is much more dis-
tinct on TASA900 than on Reuters. One explanation might be that since TASA900
is a topically much more diverse corpus, there may be more rare terms for the rep-
resentations to identify, thus making the effect more pronounced. In Section 7.1 we
found that the weighting of terms in TC-ICC differed somewhat from that of TF-
IDF. While TF-IDF identify as important many extremely rare terms, TC-ICC will
not weight such terms highly unless they also are central in the relevant document.
This should intuitively lead TC-ICC to be less influenced by the rare terms than
TF-IDF is. As we see, this is the case for the Reuters dataset, but not for TASA900.

For the retrieval task, as previously mentioned, the global representations con-
sistently performed better. This is not too surprising, considering that this task is
much closer to standard information retrieval, for which TF-IDF was originally de-
signed. Another factor that must also be considered here is that the retrieval evalu-
ation might be intrinsically biased towards use of global information in weighting.
To compare the retrieved solutions, a measure of text similarity was needed. Lack-
ing any well-established similarity assessment for case retrieval, TF-IDF with cosine
similarity was used for this purpose. The evaluation might therefore be biased to-
wards representations resembling TF-IDF. TF-IDF was nevertheless outperformed
by the TC-ICC representations.

8.1.4 Remarks Regarding Computational Costs

It should come as no great surprise that the use of graphs is computationally far
more costly than the frequency-based measures. Both the construction of text net-
works and the subsequent calculation of their node centralities contribute to this

CONCLUSIONS 103

cost. Of the two stages, the node centrality calculation is by far the most expensive
one.

The most important factor in terms of computational costs is the choice of cen-
trality measure. While the degree centrality, which we found to perform best for the
co-occurrence networks, has complexity linear in the order of the network, others
are more costly. Generally, the group of eigenvector-based centralities is the most ex-
pensive to compute, as it requires matrix operations on the entire adjacency matrix
of the graph. There are also two measures even more expensive than the eigenvector
measures: the current-flow versions of closeness and betweenness. The cost of these
measures on large graphs tend to be high both in terms of processing and memory
requirements.

For co-occurrence networks, as noted in Section 5.2.1, the context type also af-
fect the computation needed. Smaller contexts lead to sparser graphs, which in turn
require less computation in order to find the centralities. This effect also applies
to dependency networks, which generally are more sparse than co-occurrence net-
works.

The really large computational cost comes first when information pertaining to
the entire corpus is required for the TC-ICC measure. The computation of centrality
on such large networks can become very heavy, again depending on the centrality
measure used. With the use of global information in the representations, the corpus
centrality should ideally be recomputed for each insertion or deletion of documents
in the document collection, and the document vectors recomputed at that time. De-
pending on the used centrality measure, this might be impractical for very large and
dynamic document collections.

It is important to note, however, that these are one-time costs, and the calcu-
lations do not need to be performed at the time of similarity assessment and re-
trieval. The computations need only be made once per document, so that the vector-
representation can be stored and used for all subsequent document comparisons.

8.2 Conclusions

We have presented an approach to text representation that serve as an alternative
to the way terms are weighted in commonly used frequency-based vector represen-
tations, such as TF and TF-IDF. The approach is based on the construction of text
networks, which in turn are converted into vector representations. Unlike the TF
and TF-IDF representations, our graph-based representations are able to incorpo-
rate information about the structure of the text such as term proximity and syntactic
relations between different terms.

Stated briefly, the representation process consists of two steps. First, textual doc-
uments are converted to networks using terms as nodes, and inter-term relations as
edges. Second, node centrality algorithms determine the importance value of each
term in the network, which subsequently form the basis of a term-vector represen-
tation of the document. Once such term-vectors are created, standard Vector Space
Models can be used to measure document similarity.

Two types of graph representations has been explored, based on different types
of relations among terms. The first represents co-occurrences of terms in the same

104 DISCUSSION AND CONCLUSIONS

contexts in form of edge weights. Contexts are defined as n-term windows or sen-
tences within the text. The second representation uses more formally defined term-
relations. Specifically, edges represent semantic relations within sentences as de-
fined by the Standford Dependency grammar.

The graphs are converted to vector representations using two different weight-
ing methods, one local and one global. The global measure, TC-ICC, incorporates
information both about the terms’ centrality in the document as well as their over-
all centrality in the rest of the corpus. The local measure, TC, is based solely on
centralities within the particular document.

We have tested the representations using two evaluation tasks. The first is a
standard text processing task: classification of documents. The second is a novel
evaluation method based on the retrieval process from CBR, where we assess the
quality of retrieved cases by the similarity of the solution of the retrieved case to
that of the query.

Although the results were inconclusive as to whether co-occurrence networks
or dependency networks form the better basis for term weighting, both were able
to outperform TF and TF-IDF in all experiments performed. We found that local
representations, including both TF and TC, performed better than their global coun-
terparts in the classification task. For retrieval, on the other hand, global represen-
tations seemed to perform better.

Although providing improvements over the frequency-based representations,
we do not believe that the case similarity measurement performance achieved by
the graph-based representations is good enough to be used for the purpose of case
retrieval alone. For that, the representations are still too shallow, and unable to take
into account the deeper meaning of the contents in the documents. The represen-
tations could, nonetheless, be used as a first step in such a retrieval process, as a
means to narrow the search to the most relevant cases.

We note that the improvements in performance come with a caveat; the process
of graph construction and centrality measurement is considerably more complex
than the basic frequency measures. This is, however, only a one-time cost required
when new documents are added to the document collection, and needs not be done
during the retrieval process.

Altogether, graph-based representations seem promising as a way to improve
text similarity measurement, and as the basis for case representation in TCBR. The
work presented in this thesis is only an initial exploration of this type of represen-
tations, and there are many possibilities left unexplored, both in terms of improve-
ments for the representations and in their application.

Chapter 9

Further Work

Throughout the project we have on many occasions had ideas and seen possibilities
that we for various reasons have not been able to pursue. Some of the ideas have not
been directly relevant to the current research goals, and some we have been forced
to give up because of time limitations. In this chapter, we present some of these
ideas as suggestions for further research.

The following section briefly discusses the use of graphs for other aspects of
TCBR than retrieval. Section 9.2 outlines several possible improvements to the
graph-based representations. Section 9.3 next presents the idea of using graphs
as a platform for extracting topics discussed in the documents, which, if incorpo-
rated into the document representations could allow for more fine-tuned similarity
matching. Finally, Section 9.4 describes an idea of graph-based category models for
text classification.

9.1 Other Aspects of TCBR

This thesis has focused on the assessment of document similarity, motivated by use
in the retrieval phase of the CBR process. The retrieval phase is by far the most
studied of the four REs in the CBR cycle (Section 2.1.2). We believe that the use of
graph-based representations could prove useful also for other aspects of CBR.

A working TCBR system needs to be able to create solutions to query problems
based on the retrieved cases. This requires a refinement of the case solution repre-
sentations, and better mappings between the problem descriptions and solutions.
An approach similar to that of TextRank (from Section 4.1.1) could be used to iden-
tify central parts of the solution texts. Networks built from entire cases could help
identify which parts of the problem descriptions tie with which parts of the solu-
tions. Network structures are also well suited to record various forms of domain
knowledge, and could form a convenient interface for interactions with users, like
the subject graphs discussed by Tomita and Kikui (2001).

Although we do not have an answer to how graphs could be utilized in all phases
of TCBR, we feel that they have potential either as the basis of representations and
reasoning, or as a support alongside other approaches.

105

106 FURTHER WORK

9.2 Improvements of the Representations

Several ideas for improvements of the representations are left unexplored. We here
briefly list three of them.

9.2.1 Use of Domain Knowledge

One of the main differences between TCBR and IR is that TCBR systems typically
rely on domain knowledge to solve problems. In this regard, the text network rep-
resentations studied in this thesis are more similar to representations from IR. We
see the use of domain knowledge, as well as general semantic information from
sources such as WordNet, as one of the most promising possibilities for improving
the representations.

The use of semantic knowledge can be done on two levels. First, it could be
incorporated as part of the term weighting measure. Terms that for various reasons
are known to be important features for cases in the domain should be given more
influence. Second, and more interestingly, this knowledge could be used as a part of
the network representations. This could introduce new domain dependent relations
between terms, and enable terms with similar meaning to be collapsed into the same
concept.

9.2.2 Improved TC-ICC Measure

TC-ICC term weighting measure, as presented in in Section 4.2.2, is a novel idea.
All previous research on this application of centrality in text networks, discussed
in Section 4.1, use the within-document centrality directly. The idea of combining
global with local centrality shows promise, at least in the retrieval experiments, and
we would like to see it explored further.

The measure, defined by Equation (4.1) on page 41, can undoubtedly be im-
proved. This formula was our attempt at combining the local and global aspects
of term relevance. The case study presented in Section 7.1 indicated that the local
component might be overly influential, and that the global aspects should be given
more weight. A reformulation of the measure might thus lead to improvements.

We also made a simplifying assumption when creating TC-ICC. It was assumed
that the same measures should be used as basis for both TC and ICC. It would
be interesting to see this assumption relaxed, as the case might be that different
mechanisms are important for assessing the two types of term importance.

9.2.3 Feature Selection

Except for the removal of stop-words, the representations described in this thesis
use all terms from the documents as features for the term-vectors. Many of these
terms might have little or no relevance to the task of similarity measurement and
retrieval, and should thus be removed. This could be done by performing feature
selection on the representation, which would lead to both better performance and
lower storage requirements.

TOPIC-BASED SIMILARITY 107

Das (2001) divides feature selection algorithms into two classes: wrapper methods
and filter methods. While wrapper methods employ the intended application, e.g.
a classification algorithm, as a measure to directly evaluate the features, the filter
methods do not rely on any information about what the representation will be used
for. Since it would be unwieldy to wrap the task of TCBR retrieval for this purpose,
we believe filter methods would be the better choice in this case. Yang and Pedersen
(1997) present a comparative study of filter methods for text categorization.

Feature selection for our graph-based text representations could conceivably be
done in several different ways. One method would be to apply a standard statistical
method like those described by Yang and Pedersen. Another possibility is to define
graph-based feature selection methods, either together with or instead of statistical
methods.

Graph-based feature selection methods may be applied both before or after cen-
trality calculation. Feature selection done prior to calculation of centralities will
affect the weights of the terms not removed, while feature selection done later only
changes which terms are included in the term-vectors. Possible filtering methods
include filtering of node terms based on part-of-speech information — an approach
that reportedly worked well for Mihalcea and Tarau (2004) — or removal based on
graph metrics such as low centrality, degree, or clustering.

9.3 Topic-Based Similarity

One of the ideas we explored, but did not have the time to fully implement and eval-
uate, was the possible use of the network representations for extracting and using
topic models from documents. We have here compared entire documents by repre-
senting them as term-vectors weighted based on node centrality. We believe that by
extracting topics from the documents, an alternative approach to the representation
and comparison process is possible.

The approach is inspired by the fact that each document, at least in reports such
as the ones in the AIR and MIR datasets, deals with a number of different topics.
Instead of comparing a document to another one directly, we could try to compare
each topic to its counterpart in the other document. An overall similarity between
documents could then be obtained by combining the similarities found between
topics.

We know that the document networks have high clustering coefficients, since
they were found to be small-world networks (Sections 5.4 and 6.5). This indicates
the presence of cliques in the network, and could be an indication that topically
related words tend to be connected.

Section 9.3.1 next describes how the topics could be extracted. How they could
be used to represent documents is then discussed in Section 9.3.2. A new definition
of document similarity, based on the topic-based representations, is described in
Section 9.3.3.

108 FURTHER WORK

9.3.1 Creating Topic Models

There has been done much research on how to model abstract topics that occur
in documents. Several well known methods exists, among which Latent Dirichlet
allocation (LDA) perhaps is the one most commonly used. What we consider here is
a far simpler model, serving as an extension to the approach described in Section 4.2.
The difference is that instead of representing the entire document, we would like to
extract only those parts concerning a particular topic. Like documents, topics could
be represented by a set — or bag — of weighted terms.

In order to determine which words should go into which “topic bag”, we can
define one or more seed words central to the topics which we wish to represent.
Based on these seed words, we retrieve related terms based on relations in the text
networks. This idea is based upon the assumptions that the text networks capture
the suited relatedness between terms in such a way that terms closely linked to each
other in the network are likely to be from the same topic.

The simplest way to extract topic related terms is to use terms directly linked to
the seed words in a network created from the entire document collection. Since the
number of terms connected to the seed words is likely to be very high, we need some
way to filter what terms to include. We want only those terms that are important
in the documents, and thus hopefully in the topics. To identify these, we suggest
to apply a centrality measure and simply select those terms with the highest value.
The result is a list of terms relevant to the topic.

Given enough seed words, we can create models for all topics known to be dis-
cussed in the documents. How to use these topic models to represent documents is
discussed next.

9.3.2 Document Representation

Once we have identified a set of keywords to represent each topic, we can use these
to represent documents. Instead of using terms as features in the document rep-
resentation, we use topics instead. Each topic is represented by a vector, and each
value in the topic vector is the centrality of that topic keyword in the network rep-
resentation of the document. The documents are thus represented, not as a single
feature-value vector as before, but as a set of vectors representing the various topics.

9.3.3 Document Similarity

Once documents are represented as sets of topic vectors a new method for measur-
ing document similarity is needed. Before, document similarity was defined simply
as the cosine of two document feature-vectors. The cosine measure is still applicable
to compare each individual topic, but the topic similarities needs to be integrated to
a total document measure. Thus, we define the new document similarity as

Sim(d1, d2) =
1

|topics| ∑
t∈topics

cosine(dt
1, dt

2) (9.1)

where dt
i is the vector representing topic t in document di. The normalization by the

number of topics is needed in order to keep the similarity value in [0,1].

CATEGORY MODELS FOR CLASSIFICATION 109

We believe this approach could improve the measure of document similarity by
using both domain knowledge in form of seed words, and the information that is
inherent to the text network representations. The extracted topic keywords might
also be useful for other purposes.

9.4 Category Models for Classification

We used a k-NN classifier trained on a portion of the documents for the classification
task presented in Section 4.3.1. This approach rests upon the assumption that the
trained documents are representative for their respective categories. If this is not
the case for some or all documents, classification accuracy might be reduced.

An alternate approach to this instance-based classification is to train explicit cate-
gory models. This could be done by constructing category-wide text networks from
all training documents pertaining to each category. TC or TC-ICC could then be
used to construct term centrality vectors for each category, which could be used to
compute document-category similarities. Classification would then simply be the
process of assigning a document to the most similar category.

A disadvantage with this type of eager learning, compared to the lazy instance
based k-NN approach is that it becomes more difficult to do continuous training.
With the introduction of new training documents the category models must be up-
dated, which could be a costly endeavour.

A benefit of having explicit category models is that the TC-ICC would be using
category information. As defined in Section 4.2.2, TC-ICC gives preference to terms
that are central in a document, but not in the rest of the corpus. With category net-
works, the preference is given instead to terms that are central for the given category
relative to the rest of the corpus, and thus weighting higher terms characteristic to
the category.

Since the focus of this thesis was not to optimize the classification process as
such, but rather to assess the performance of the different representations in the
measurement of document similarity, we have not needed explicit category models.
The idea is, however, interesting as a way to reduce the training noise for classifica-
tion, and we would like to see how such an approach would compare to other eager
learning methods for classification.

110 FURTHER WORK

References

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AI Communications, 7(1):39–
59.

Albert, R. and Barabási, A. (2002). Statistical mechanics of complex networks. Re-
views of modern physics, 74(1):47–97.

Barabási, A. and Albert, R. (1999). Emergence of scaling in random networks. Sci-
ence, pages 1–11.

Barabási, A. (2003). Linked: How Everything Is Connected to Everything Else and What
It Means for Business, Science, And Everyday Life. Plume New York.

Batal, I. and Hauskrecht, M. (2009). Boosting KNN Text Classification Accuracy
by using Supervised Term Weighting Schemes. In Proceedings of the 18th ACM
conference on Information and knowledge management - CIKM ’09, pages 2041–2044.
ACM Press.

Bisson, G. and Hussain, F. (2008). Chi-sim: A new similarity measure for the co-
clustering task. In 2008 Seventh International Conference on Machine Learning and
Applications, pages 211–217. IEEE.

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique
identification. The Journal of Mathematical Sociology, 2(1):113–120.

Brandes, U. (2008). On Variants of Shortest-Path Betweenness Centrality and their
Generic Computation. Social Networks, 30(2):136–145.

Brandes, U. and Fleischer, D. (2005). Centrality Measures Based on Current Flow.
STACS 2005, pages 533–544.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1-7):107–117.

Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., and Schoenberg, S.
(1997). Question Answering from Frequently-Asked Question Files: Experiences
with the FAQ Finder System. AI magazine, 18(2):57.

Chakraborti, S., Wiratunga, N., Lothian, R., and S (2007). Acquiring Word Similari-
ties with Higher Order Association Mining. Case-Based Reasoning, pages 61–76.

Choudhury, M. and Chatterjee, D. (2010). Global topology of word co-occurrence
networks: Beyond the two-regime power-law. 23rd International Conference on

111

Computational Linguistics, pages 162–170.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661.

Cunningham, C., Weber, R., Proctor, J., Fowler, C., and Murphy, M. (2004). Inves-
tigating graphs in textual case-based reasoning. Lecture notes in computer science,
3155:573–586.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection.
In Proceeding of the Eighteenth International Conferences on Machine Learning, pages
74–81.

De Marneffe, M. and Manning, C. (2008a). Stanford typed dependencies manual.

De Marneffe, M. and Manning, C. (2008b). The Stanford typed dependencies rep-
resentation. Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-
Domain Parser Evaluation - CrossParser ’08, (ii):1–8.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990). In-
dexing by latent semantic analysis. Journal of the American society for information
science, 41(6):391–407.

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph
partitioning. ACM Press.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271.

Dorogovtsev, S. N. and Mendes, J. F. (2001). Language as an evolving word web.
Proceedings. Biological sciences / The Royal Society, 268(1485):2603–6.

Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pages 17–60.

Erkan, G., Ozgür, A., and Radev, D. R. (2007). Semi-supervised classification for
extracting protein interaction sentences using dependency parsing.

Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based Centrality as Salience in
Text Summarization. Journal of Artificial Intelligence Research, 22.

Ferrer i Cancho, R. (2004). Euclidean distance between syntactically linked words.
Physical Review E, 70(5):1–5.

Ferrer i Cancho, R. and Solé, R. (2001). The small world of human language. Pro-
ceedings. Biological sciences / The Royal Society, 268(1482):2261–5.

Ferrer i Cancho, R., Solé, R., and Köhler, R. (2004). Patterns in syntactic dependency
networks. Physical Review E, 69(5):1–8.

Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social
Networks, 1(3):215–239.

Fundel, K., Küffner, R., and Zimmer, R. (2007). RelEx–relation extraction using de-

112

pendency parse trees. Bioinformatics (Oxford, England), 23(3):365–71.

Gao, J., Nie, J.-Y., Wu, G., and Cao, G. (2004). Dependence Language Model for
Information Retrieval. Proceedings of the 27th annual international conference on Re-
search and development in information retrieval - SIGIR ’04, pages 170–177.

Goh, K., Kahng, B., and Kim, D. (2001). Universal behavior of load distribution in
scale-free networks. Physical Review Letters, 87(27).

Guare, J. (1990). Six degrees of separation. Dramatists Play Service, Inc.

Hussain, S. and Bisson, G. (2010). Text Categorization Using Word Similarities Based
on Higher Order Co-occurrences. In SIAM International Conference on Data Mining
(SDM 10). Columbus, OH, pages 1–12.

Jeong, H., Albert, R., and Barabási, A. (1999). Diameter of the World Wide Web.
Nature, 401(September):398–399.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z., and Barabási, A. (2000). The large-scale
organization of metabolic networks. Nature, pages 651–654.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632.

Kolodner, J. (1993). Case-based Reasoning.

Kontostathis, A. and Pottenger, W. (2003). A framework for understanding LSI per-
formance. In Proceedings of ACM SIGIR Workshop on Mathematical/Formal Methods
in Information Retrieval, number 3, pages 249–268. Citeseer.

Leake, D. (1996). CBR in context: The present and future, chapter 1, pages 1–35. Num-
ber Schank 1982. AAAI Press/MIT Press.

Lemaire, B. and Denhière, G. (2006). Effects of High-Order Co-occurrences on
Word Semantic Similarity. Word Journal Of The International Linguistic Association,
1(18):1–12.

Lenz, M. (1998). Textual CBR and Information Retrieval – A Comparison. In Pro-
ceedings 6th German workshop on CBR, number c.

Lenz, M., Hübner, A., and Kunze, M. (1998). Case-Based Reasoning Technology, From
Foundations to Applications, chapter 5. Textual CBR, pages 115–137. Springer-
Verlag, London, UK.

Liu, J., Wang, J., and Wang, C. (2008). A Text Network Representation Model. 2008
Fifth International Conference on Fuzzy Systems and Knowledge Discovery, pages 150–
154.

Livesay, K. and Burgess, C. (1998). Mediated priming in high-dimensional seman-
tic space: No effect of direct semantic relationships or co-occurrence. Brain and
Cognition, pages 102–105.

Mengxiao, Z., Zhi, C., and Qingsheng, C. (2004). Automatic keywords extraction
of Chinese document using small world structure. In Proceedings of International

113

Conference on Natural Language Processing and Knowledge Engineering, 2003, number
70171052, pages 438–443. IEEE.

Mihalcea, R. (2004). Graph-based ranking algorithms for sentence extraction, ap-
plied to text summarization. In Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions, number 4, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Mihalcea, R. and Tarau, P. (2004). TextRank: Bringing order into texts. In Proceedings
of EMNLP, pages 404–411. Barcelona: ACL.

Mihalcea, R. and Tarau, P. (2005). A language independent algorithm for single and
multiple document summarization. Proceedings of IJCNLP2005, pages 19–24.

Mihalcea, R., Tarau, P., and Figa, E. (2004). PageRank on semantic networks, with
application to word sense disambiguation. In Proceedings of the 20th international
conference on Computational Linguistics - COLING ’04, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Milgram, S. (1967). The small world problem. Psychology Today, 1:60–67.

Mustafaraj, E. (2007). Knowledge Extraction and Summarization for Textual Case-
Based Reasoning. Philipps-Universitat Marburg.

Mustafaraj, E. and Freisleben, B. (2006). On an event-oriented perspective for textual
case-based reasoning. In Textual Case-Based Reasoning Workshop (TCBR) at the 8th
European Conference on Case-Based Reasoning (ECCBR’06), Fethiye, Turkey, pages 21–
32.

Navigli, R. and Lapata, M. (2007). Graph connectivity measures for unsupervised
word sense disambiguation. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 1683–1688.

Newman, M. (2005). A measure of betweenness centrality based on random walks.
Social networks, 27(1):39–54.

Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality. Physical Review E, 64(1):1–7.

Nivre, J. (2005). Dependency grammar and dependency parsing. MSI report,
5133(1959):1–32.

Opsahl, T., Agneessens, F., and Skvoretz, J. (2010). Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks, 32(3):245–251.

Ozgür, A., Vu, T., Erkan, G., and Radev, D. R. (2008). Identifying gene-disease asso-
ciations using centrality on a literature mined gene-interaction network. Bioinfor-
matics (Oxford, England), 24(13):i277–85.

Padó, S. and Lapata, M. (2007). Dependency-Based Construction of Semantic Space
Models. Computational Linguistics, 33(2):161–199.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation

114

ranking: Bringing order to the web. World Wide Web Internet And Web Information
Systems, pages 1–17.

Porter, B., Bareiss, R., and Holte, R. (1990). Concept learning and heuristic classifi-
cation in weak-theory domains. Artificial Intelligence, 45(1-2):229–263.

Porter, M. (1980). An algorithm for suffix stripping. Program: electronic library and
information systems, 14(3):130–137.

Schenker, A., Last, M., Bunke, H., and Kandel, A. (2003a). Classification of Web
documents using a graph model. Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings., (Icdar):240–244.

Schenker, A., Last, M., Bunke, H., and Kandel, A. (2003b). Clustering of web documents
using a graph model, pages 1–16.

Solé, R., Corominas-Murtra, B., Valverde, S., and Steels, L. (2005). Language net-
works: Their structure, function, and evolution. Trends in Cognitive Sciences.

Soucy, P. and Mineau, G. (2005). Beyond TFIDF Weighting for Text Categorization
in the Vector Space Model. In International Joint Conference on Artificial Intelligence,
volume 19, pages 1130–1135.

Terra, E. and Clarke, C. L. a. (2003). Frequency estimates for statistical word similar-
ity measures. Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology - NAACL
’03, (1997):165–172.

Tesnière, L. (1959). Eléments de syntaxe structurale. Kliencksieck, Paris.

Tomita, J. and Kikui, G. (2001). Interactive Web search by graphical query re-
finement. Poster Proceedings of the 10th international World Wide Web conference
(WWW10).

Tomita, J., Nakawatase, H., and Ishii, M. (2004a). Calculating similarity between
texts using graph-based text representation model. Proceedings of the Thirteenth
ACM conference on Information and knowledge management - CIKM ’04, pages 248–
249.

Tomita, J., Nakawatase, H., and Ishii, M. (2004b). Graph-based text database for
knowledge discovery. Poster Proceedings of the 13th International World Wide Web
Conference (WWW2004), pages 454–455.

Tsatsaronis, G., Varlamis, I., and Nørvåg, K. (2010). An Experimental Study on Un-
supervised Graph-based Word Sense Disambiguation. Computational Linguistics
and Intelligent Text Processing, pages 184–198.

Valle, K. (2010). A Study of Graph-Based Representations for Textual CBR. Unpub-
lished report, specialization project towards master thesis.

Wang, W., Do, D., and Lin, X. (2005). Term Graph Model for Text Classification.
Lecture notes in computer science, 3584:19.

115

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ net-
works. Nature, 393(6684):440–2.

Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 412–420. Morgan Kaufmann Publishers Inc.

116

Appendix A

Detection of Power-Laws

Section 3.2.3 introduced the notion of scale-free networks, and explained that these
are networks in which the degree distributions follow power-laws. We here discuss
the concept of power-laws in more detail.

In Sections 6.5 and 5.4 we investigated whether our text network representations,
the co-occurrence and dependency networks were scale free, i.e. whether they had
degree distributions that follow power-laws. This appendix explains how we did
this, and what we found out.

A.1 Powers-Laws

Many properties tend to cluster around a central value that is useful for describing
typical outcomes of measurements of that property. It is, for example, meaning-
ful to discuss typical heights of people, typical temperatures, or typical weights of
pineapples. The reason this makes sense is that although these quantities vary, they
do so with a negligible probability far from the typical value. The typical value
is thus representable for most observations. Many quantities follow such distribu-
tions. The perhaps best known, the normal distribution, is expressed by a mean and
a standard deviation. Some distributions, however, cannot be expressed in terms of
typical values, since they allow non-negligible probabilities for extreme variations.

One such distribution, the power-law, has been detected in a wide range of natural
and man-made phenomena. For a given quantity x it is described mathematically
as

p(x) ∝ x−α (A.1)

where α is a constant parameter for the specific power-law governing x. The α is
known as the distribution’s exponent or scaling parameter. Although there are excep-
tions, the value of the exponent typically lies in the range 2 < α < 3.

Few phenomena follow power-laws for all values of x. In most cases there exist
a xmin that is the minimal value for which the power-law distribution holds. If this
is the case, we say that the tail of the distribution follows a power-law.

A–1

A–2 DETECTION OF POWER-LAWS

A.2 Detection of Power-Laws

It is in many situations desirable to determine whether a set of empirical data fol-
lows a power-law. In practice, one can generally not be certain that observations are
drawn from a power-law distribution, only that the observations are consistent with
the hypothesis that x is drawn from a distribution of the form of Equation (A.1). It
is, however, often possible to rule out competing hypotheses, and to provide an
estimate of how well the empirical data fit the power-law hypothesis.

The simplest and perhaps most widely used method for probing for power-law
behaviour is to inspect the data visually. Taking the logarithm on both sides of
Equation (A.1), we find that

ln p(x) = α ln x + constant (A.2)

This equation implies that a histogram of the frequency distribution plotted with
both axes on logarithmic scales should follow a straight line. If the data indeed
follow a power-laws distribution, then the value of α can be read as the slope of
this line. Unfortunately, the straight-line behaviour is necessary, but by no means
sufficient to detect true power-laws behaviour. The histogram method can still, in
any case, be a helpful tool to rule out power-laws or to get an idea about possible
values for xmin and α.

Clauset et al. (2009) discuss the problem of detecting power-laws in detail, and
provide a method allowing the detection and estimation of power-laws from empir-
ical data. The procedure can be summarized as follows:

1. Estimate the parameters α and xmin of the power-law model.
2. Calculate the goodness-of-fit of the observed data for the power-law model

using the Kolmogorov-Smirnov (KS) statistic. Given a p-value grater than 0.1,
the power-law is a plausible hypothesis, otherwise it should be rejected.

3. If the power-law hypothesis is not rejected in step 2, compare it with alternate
hypotheses via a likelihood ratio test. For each alternate hypothesis, if the
likelihood ratio is significantly far from zero, it indicates whether the alternate
hypothesis is favoured over the power-law model or not.

The first of these steps, the fitting of a power-laws model to the empirical data,
can be done by the method of maximum likelihood. We will not go into details
about how this is done. Methods for estimating α and xmin are described far better
by Clauset et al. (2009, Section 3) than we could have done here.

The second step of the process is to determine how well the power-law model
estimated in the first step actually fits the data. As stated by Clauset et al. (2009,
p.14):

Regardless of the true distribution from which our data were drawn, we
can always fit a power-law. We need some way to tell whether the fit is a
good match of the data.

Even if our data were drawn from a power-law distribution, there would be
some deviations because of sampling. We need to distinguish these deviations from
those occurring given data drawn from non-power-law distributions. The basic ap-
proach to do this is to sample many datasets from a true power-law distribution and

OUR EXPERIMENTS A–3

measure their fluctuations from the power-law form. Then, these fluctuations can
be compared to those of the empirical data. The distance between distributions can
be measured using a goodness-of-fit measure such as the KS statistic. The measure
generate a p-value defined as the fraction of generated deviations that are larger
than the empirical deviation. A large p-value gives confidence in the power-law
hypothesis, while a value of p ≤ 0.1 should cause the power-law hypothesis to be
rejected.

If the power-law hypothesis survives step 2, we can be reasonably sure that the
estimated power-law is a good description of the data. There might also be other
equally or better suited models to describe the same observations. This is what is
tested by the likelihood ratio test in the third step of the method.

The idea behind the likelihood ratio test is to compute the likelihood of the ob-
served data under two competing distributions. The distribution with higher like-
lihood is the better fit. Alternately, the ratio of the likelihood may be used as an
indicator. A value for this ratio near zero indicate a tie, i.e. that the distributions fit
the data about equally well, while a positive or negative value favours one of the
distributions or the other.

A.3 Our Experiments

This section explains the process we went through in order to detect whether the
degree distributions of our networks followed power-laws, and whether these laws
really fitted the data good enough to be an appropriate model.

To do the actual evaluation, we have made us of software developed by Clauset
et al. (2009) which they have made available online1. We initially experimented with
the Python implementation, but experienced problems 2 , and ended up using the
MatLab implementation instead.

Since all the research reported in Section 3.4 focused on text-based networks
crated from large corpora, we started by investigating networks created from our
datasets in whole. This gave us four networks to look at: two datasets, each with
two network representations.

As a first approach, we investigated the frequency histograms for each network
as a log-log plots. These can be seen as the line of blue dots in Figure A.1. It is im-
mediately clear that we will not find power-laws to describe any of the distributions
completely, since neither is linear in the log-log plots.

However, as we described in Section 3.4, Ferrer i Cancho and Solé (2001) dis-
covered that this kind of networks often do not follow one single, but rather two
separate power-laws. In order to determine if this was the case also for our net-
works, we performed the following experiment using the software developed by
Clauset et al. (2009).

1. Estimate parameters α and xmin for the tail of each of the distributions. The
beginning of each tail-distribution is determined by the value of xmin.

1http://tuvalu.santafe.edu/~aaronc/powerlaws/
2 It is more than likely that the problems occurred as a result us not configuring the software

correctly, or perhaps by an incompatible version of other libraries such as NumPy. In any case, we
were unable to resolve the errors.

http://tuvalu.santafe.edu/~aaronc/powerlaws/

A–4 DETECTION OF POWER-LAWS

2. Estimate parameters for the rest of each distribution, i.e. for all samples with
value x < xmin as calculated in step 1.

3. Determine whether the fitted power-laws are plausible models, using the KS
goodness-of-fit measure.

For all networks, except the co-occurrence network from TASA900, the xmin val-
ues detected for the tail distributions were approximately centered on the bends
in the histograms. For the TASA900 co-occurrence network, the software tried to
fit a power-law to the entire distribution. We therefore had to force a value of
xmin = 1000 to estimate a reasonable α for the tail of the distribution. Values for
α and xmin were thus estimated for all the distributions. The superimposed lines in
Figure A.1 show the estimated power-laws.

Table A.1: Results from the power-law detection experiment.

Co-occurrence Dependency
TASA900 AIR TASA900 AIR

ta
il

α 3.34 4.12 3.58 3.68
xmin 1000 1806 596 962
p 0 0 0.912 0.562
n 325 158 76 176

ba
se

α 1.82 1.62 1.72 1.59
xmin 30 14 6 6
p 0 0 0 0
n 6315 7533 5893 6909

nrest 4251 4373 4920 5903

From the plots, it seems that the two-regime power-laws could possibly be rea-
sonable models for the distributions, but the results of the goodness-of-fit tests in
Table A.1 disagree. As we see, only the tail distributions for the dependency net-
works have p-values above zero. These values are on the other hand high enough
to mark the estimated power-laws as plausible. We note that the tail distributions
cover only a miniscule fraction of the total number of samples compared to the base
distributions. There are also a very high number of samples, nrest, that is unac-
counted for by any of the fitted power-laws. We are therefore forced to conclude
that the degree distributions of networks created by our text network representa-
tions over the entire corpora do not follow power-laws, two-regime or otherwise.
This is an unexpected result, as it is goes against results of previous research on
such networks.

We have also studied the individual document networks to see whether they be-
haved different from the larger corpus networks. After preliminary studies of the
frequency histograms, we found that they varied greatly between networks. Some
networks had distributions that when plotted looked almost like those for the cor-
pus networks, while some plots looked more linear in log-log. Some of the latter
actually turned out to fit power-law models reasonably well, but they were few and
far between.

OUR EXPERIMENTS A–5

(a) Co-occurrence, TASA900 (b) Co-occurrence, AIR

(c) Dependency, TASA900 (d) Dependency, AIR

Figure A.1: Frequency histograms of degree distributions from the four corpora networks
plotted with both axes logarithmic, with estimated two-regime power-laws su-
perimposed.

There were two main problems with determining whether the distributions gov-
erning the document networks followed power-laws: in addition to the variations
between networks, the number of samples was very limited in most cases. It was
therefore hard, even when a power-law model could be fitted, to determine with
high confidence whether it really was plausible. Over all document networks, we
found p-values ranging from 0 to 0.983, with an average of 0.192. For TASA900, the
number of networks with p-values higher than the rejection threshold of 0.1 was 254
for co-occurrence and 145 dependency networks. The corresponding numbers for
AIR were 131 and 201, respectively. Given this, and the low number of samples n
for many of the networks, we do not feel confident predicting anything about the
underlying distributions based on this.

We note that, despite not actually being power-laws, the distributions still dis-
play some of the same properties. Most notably, the distributions have long tails,
which implies the presence of hubs, i.e. that while the majority of nodes have a
relatively low degree, there exist a few nodes with very high degrees. Of the 10894
nodes in the co-occurrence network created from the entire TASA900 corpus, the
biggest hub is connected to 5906 other nodes, which is more than half of the net-

A–6 DETECTION OF POWER-LAWS

work. Just as in true scale-free networks, these hubs are very rare; in the entire
TASA900 network only 17 nodes have degrees higher than 3000. As many as 7775
(71.4%) of the nodes in fact have degrees lower than 100. The other networks also
share similar properties.

Appendix B

Implementation

This appendix is intended as a general description of how the representations and
experiments are implemented, as well as an introduction to the code should anyone
wish to extend upon or use it at a later time.

The appendix start with a bird’s-eye view of the code, depicting the architec-
ture and describing how the various modules interact with each other. We then
move on to a more detailed explanation of each of the modules, with descriptions
of what they do and their most important functions. In Section B.3, the experiments
contained in the various * experiments.py files are outlined. Section B.4 then de-
scribe the various libraries utilized by the code. The final section contain some fi-
nal thoughts about the implementation, and experiences made during the project.
These are included in the hope that they may guide anyone interested in using the
code, or attempting to implement something similar.

For a more detailed view of how everything is implemented, please see the
HTML documentation bundled with the code, or the code itself. The documen-
tation contains much of the information from this appendix, and additional details
about the functions and classes in the various modules. The code is available for
download from my GitHub account: http://github.com/kvalle.

B.1 Architecture

This section expands upon Section 4.3.5, explaining in more details what is done,
and how everything fits into the process described there. We refer to Chapter 4 for
a fuller conceptual description of the general process.

Figure B.1 presents the architecture, the modules and how they interact. This
figure is based largely on Figure 4.9 on page 48. Differences are that a few additional
modules are included, and that the directed arrows represent not the flow of data,
as in Figure 4.9, but the interconnections between modules, i.e. references between
modules.

The experiments module is not like the others. First, it is not a functional module,
but rather the glue that keeps everything together. This is the module that utilize the
other modules in order to perform the various experiments. Second, it is not really
one module, but rather a collection of * experiments.py files, containing experi-
ments concerning the various representations. Of the connections from experiments
to the other modules in Figure B.1, only the most important ones are shown to avoid

B–1

http://github.com/kvalle

B–2 IMPLEMENTATION

data

freq_representation

graph_representation

preprocess

graph

evaluation

retrieval

classify

report_data

plotter util

experiments

stanford_parser

Figure B.1: Overview of the architecture.

cluttering the diagram. The contents of this “module” are described in Section B.3
below.

The util module is used by many of the modules. Also here have we left out
the dependencies in order do avoid cluttering. The module contains miscellaneous
utility functions that does not naturally fit into any of the other modules.

The three leftmost modules, preprocess, data, and report data, are responsible for
reading and doing textual preprocessing of the cases. data handles all file I/O, and
utilize preprocess to make the necessary changes to the text. All preprocessing tasks
are done by preprocess itself, except dependency parsing which is handled by stan-
ford parser. The report data module is used by data to retrieve textual cases from
HTML-formatted documents in the AIR dataset.

The middle column of modules handles representation of documents as feature
vectors. freq representation represents documents as TF and TF-IDF vectors, while
graph representation build networks from the text and create vectors based on node
centrality. The actual graph data structures and functions are contained in graph.
The plotter module is used to visualize the networks.

The three modules on the right are used to evaluate the feature vectors created
by the above modules. The two evaluation methods described in Section 4.3 are
implemented in classify and retrieval, and evaluate provide an interface to these.

B.2 Modules

The modules are presented in more details below. Each module is given an overall
description, both about its purpose and how it is used. Only the most important
methods are mentioned. For more details, see the code itself or the accompanying
documentation.

MODULES B–3

B.2.1 data

Module for reading and writing case files. The read * methods provide reading
of cases in various formats from dataset. For converting dataset between formats,
use the appropriate create dataset * function. It is also possible to provide cus-
tom conversion functions to the create dataset() function. The module expects to
work with datasets structured so that each category is in a separate subfolder named
after the category.

The following formats are supported for dataset conversion:

HTML: Expected to be formatted similarly to reports from the AIR or MIR datasets
if conversion to cases is intended. Conversion to text/dependencies should
work regardless.

Text: Raw text. This is anything from within 〈p〉-tags if extracted from HTML.
Preprocessed text: Text preprocessed by the preprocess module. The default param-

eters from preprocess.preprocess text() can usually be applied.
Dependencies: Dependencies extracted from raw text by the Stanford Lexical Parser.

B.2.2 report data

Helper module for data, used to extract problem description and solution parts from
cases. Can parse reports formatted in HTML, structured as those in the AIR or
MIR datasets, and split them into problem description and solution parts of textual
CBR cases. Solutions are identified based on section titles in the reports. Titles
matching words such as finding or conclusion are considered as part of the solution.
The remaining report is by default the problem description.

This module is based largely upon code received from Gleb Sizov.

B.2.3 preprocess

Toolbox of functions for preprocessing text.
The module contains methods for a variety of preprocessing tasks, such as filter-

ing out words with special characters, stemming, stop-word removal, case folding
and more, as well as functions for splitting text into lists of tokens or sentences. Use
preprocess text() and preprocess token() for full preprocessing.

Extraction of within-sentence word dependnecies is also available through the
extract dependencies() function, which works as an interface to the stanford parser
module.

The Natural Language Toolkit (NLTK) is used for most of the heavy lifting.

B.2.4 stanford parser

Python interface to the stanford parser.
The module wrapps the edu.stanford.npl Stanford Parser, which is implemented

in Java, using the JPype library. The StanfordParser class wraps the actual parser,
and the parse() function can be used to parse sentences.

B–4 IMPLEMENTATION

B.2.5 freq representation

Functions for creating frequency-based feature vector from text.
The function of interest is text to vector(), which creates term frequency (TF)

or term frequency-inverse document frequency (TF-IDF) vectors from lists of docu-
ments. Results are output in form of a term-document matrix.

B.2.6 graph representation

Module contains functions from creating networks based on text documents, and
for converting the networks into feature-vectors. Feature vectors are created based
on node centrality in the text networks.

The following text representations are supported:

random: Will create a network with all distinct terms in the provided document as
nodes. Edges are created at random between the nodes, based on provided
probabilities.

co-occurrence: Distinct terms in the document are used as nodes. Edges are created
between any terms that occurs closely together in the text.

dependency: Words as nodes. Edges represent dependencies extracted from the
text using the Stanford dependency parser (see the stanford parser module).

B.2.7 graph

Toolbox module for working with networkx graphs. The module contains func-
tions for calculating graph centrality, visualizing graphs and finding various net-
work properties, in addition to various other useful functions.

Graph centralities are accessed using the centralities() function, which takes
as arguments a graph and the metric to use as a constant of the GraphMetrics class.

B.2.8 classify

Module responsible for classification of datapoints represented as feature-vectors
using K-Nearest Neighbors classifier.

The KNN class contains the classifier. It can classify() new datapoints as soon
as it is properly trained using the train() method. The test() method provides a
way to classify many vectors at once, and return the classifiers accuracy compared
to a gold standard.

B.2.9 retrieval

Evaluates lists of cases with evaluate retrieval(). For each problem description
the remaining descriptions are assessed, and the solution corresponding to the best
matching description is retrieved. Actual solution is compared to retrieved solution
using cosine of solution vectors. The overall evaluation score is the average solution-
solution similarity over the case base.

EXPERIMENTS B–5

B.2.10 evaluation

Module containing methods for evaluating representations.
This module acts as an interface to evaluation against the classify and retrieval

modules through the evaluate classification() and evaluate retrieval() func-
tions, respectively.

B.2.11 plotter

Utility functions facilitating easy plotting with matplotlib.
Functions of note:

plot: Plots a regular plot, given input x,y-coordinates.
bar graph: Plots a horizontal bar graph from x-coordinates and named groups of

lists of y-coordinates.
histogram: Plots a histogram from a set of samples and a given number of bins.
plot degree distribution: Plots the degree distribution for a graph given as in-

put.
tikz plot: Writes LATEX for crating a TikZ plot of the data series given as input.
tikz barchart: Writes LATEX for crating a TikZ bar chart of the data series given as

input.

B.2.12 util

Module containing miscellaneous utility functions without a proper home anywhere
else.

B.3 Experiments

The experiment modules use the rest of the framework to evaluate different ver-
sions and aspects of the text network representations. The various experiments are
implemented as functions.

There are four modules. co occurrence experiments for experiments with regu-
lar co-occurrence, and higher order experiments for higher order co-occurrence net-
works. The dependency network representation is tested in dependency experiments.
The general experiments module contain experiments concerned with several repre-
sentations, or functions not directly tied to any representation such as, for example,
the dataset stats function.

For descriptions of each individual experiment, please see the experiments page
in the documentation.

These modules are a mess and contain a lot of redundant code. This is because
they contains experiments constructed for specific purposes that were hard to pre-
dict ahead of time. When done, the experiment functions were left as is, to be avail-
able for re-runs later if needed. As a consequence of many of the experiments, the
representations and/or other parts of the code have been changed. Most of the ex-
periments should still, however, hopefully work as expected.

B–6 IMPLEMENTATION

B.4 Libraries Used

The implementation relies heavily on a few central third party libraries. These are
briefly described in this section.

NumPy and SciPy: SciPy is an open-source library for mathematics, science, and
engineering. SciPy depends on NumPy, a library which provides convenient
and fast N-dimensional array and matrix manipulation, as well as many tools
for numerical computation. The libraries are easy to use, but powerful for
manipulating numbers in many ways.

The most useful aspects in this project were the nd-arrays and matrices from
NumPy, and the sparse matrix representations from SciPy. A function from
the distance module, scipy.spatial.distance.cdist, also proved valuable
for efficient computation of vector similarities.

SciPy is available at http://scipy.org and NumPy can be downloaded from
http://numpy.scipy.org.

NetworkX: NetworkX is a Python package for the creation and manipulation of
graphs and complex networks. It enables study of structure and dynamics of
networks, and comes with many useful functions.

We have used NetworkX’s DiGraphs as our basic datastructure for the network
representations. Among the more useful features of the library are some of
the graph centrality algorithms, and functions for extracting global and local
properties from the graphs.

NetworkX is available from http://networkx.lanl.gov.

NLTK: Python’s Natural Language Toolkit (NLTK) is a powerful tool for working
with natural language processing, providing functionality for a wide variety
of tasks.

Only a small, but useful part of the library is used in this project. Of most use
were the stemmers, stop-word lists, tokenizers for tokens and sentences, and
probability distributions for calculating the frequency-based measures.

NLTK is available from http://nltk.org.

Matplotlib: Matplotlib is a 2D plotting library able to produce high quality graphics
of many types. We have utilized it to create plots, histograms and bar charts,
many of which are used in this report. The library has a relatively easy inter-
face, able to produce figures with a few lines of code.

Matplotlib is available at http://matplotlib.sourceforge.net.

JPype: JPype is a Java-to-Python integration library, allowing python programs full
access to java class libraries. This is not done through re-implementing python
on the Java Virtual Machine, as in the JPython project, but rather through in-
terfacing at the native level in both virtual machines.

Using JPype, we were able to use the Stanford dependency parser directly,
even though it was implemented in Java.

Available from http://jpype.sourceforge.net.

 http://scipy.org
http://numpy.scipy.org
http://networkx.lanl.gov
http://nltk.org
http://matplotlib.sourceforge.net
http://jpype.sourceforge.net

FINAL REMARKS B–7

The Stanford Parser: The Stanford parser is actually a set of probabilistic natural
language parsers. It is developed and released by the Natural Language Pro-
cessing Group at Stanford University. The parser is, among other things, able
to produce sentence structure hierarchies, POS tags and dependency relations
from sentences. Our interest in the parser was the dependency relations, which
proved intuitive and easy to work with.

It is available from http://nlp.stanford.edu/software/lex-parser.shtml

B.5 Final Remarks

We conclude the appendix with some final remarks about the implementation in
general.

As noted in the previous section, several libraries are used in the implementa-
tion, which proved very helpful. Using specialized libraries enabled us to avoid
reinventing the wheel, and quickly implement what would otherwise have taken
much time. Especially NetworkX proved very useful for working with large graphs,
both for its graph representations and several of its graph algorithms.

There are some aspects of the code we feel might have been improved. For one,
the implementation does not have a sufficiently good framework for visualizing
large graphs and networks. The trouble is that networks on the scale generated
from our corpora usually are too large to be drawn in a meaningful way.

The code also marked by the way in which it was implemented. The models and
representations changed throughout the project, as result of experiments and new
ideas. Parts of the code thus looks rather ad hoc since many design decisions were
based on or influenced by conditions that have since changed.

Despite this, the code works and does what it is intended to. It has been able
to answer our research questions, and provided insight in the usefulness of graph
centrality weighted feature vectors for text similarity. We hope that in case anyone
intends to look more at these topics, this implementation can provide some utility.

http://nlp.stanford.edu/software/lex-parser.shtml

	Title Page
	Introduction
	Goals and Objectives
	Limitations
	Outline

	Textual Case-Based Reasoning
	Case-Based Reasoning
	Assumptions in CBR
	The CBR Cycle
	Motivation for CBR
	Case Representations

	Textual CBR
	Assumptions Made in TCBR
	Cases from Text
	Aspects of Written Text
	TCBR and Information Retrieval

	Summary

	Graph Theory
	Graphs
	Networks
	Random Graphs
	Small-World Networks
	Scale-Free Networks

	Centrality Measures
	Degree Centrality
	Betweenness Centrality
	Current-Flow Betweenness
	Load Centrality
	Closeness Centrality
	Current Flow Closeness
	Eigenvector Centrality
	PageRank
	Hyperlink-Induced Topic Search

	Text as Graph
	Co-occurrence Networks
	Dependency Networks
	Synonym Networks

	Summary

	Graph-based Text Representations
	Related Work
	TextRank and LexRank
	Other Text Network Representations
	Graphs for TCBR
	Other Related Research

	Our Representations
	Step 1: Building Text Networks
	Step 2: Creating Word Centrality Vectors

	Evaluation Methods
	Classification Evaluation
	The TASA900 Dataset
	Case Retrieval Evaluation
	The AIR Dataset
	The Implementation

	Summary

	Co-occurrence Networks
	Basic Representation
	Construction
	Preprocessing
	Centrality Measure
	Edge Direction
	Edge weights

	Improvements
	Textual Contexts
	Higher Order Co-occurrences

	TC-ICC Weighting
	Network Properties
	Connectedness
	Small World Property
	Degree Distribution

	Summary

	Dependency Networks
	Language Parsing
	Dependency Parsing
	The Stanford Dependency Parser

	Basic Representation
	Construction
	Evaluation
	Results
	Conclusion

	Improvements
	Removing Stop-Words
	Edge Directions
	Dependency Types

	TC-ICC Weighting
	Network Properties
	Comparison with Co-occurrence
	Small World Property
	Scale-Free Property

	Summary

	Experiments
	Study of Central Terms
	Comparison Experiments
	Baselines
	Experiment 1: Classification
	Experiment 2: Retrieval

	Results
	Summary

	Discussion and Conclusions
	Discussion
	The Experiment Results
	Interpreting the Representations
	Global versus Local Representations
	Remarks Regarding Computational Costs

	Conclusions

	Further Work
	Other Aspects of TCBR
	Improvements of the Representations
	Use of Domain Knowledge
	Improved TC-ICC Measure
	Feature Selection

	Topic-Based Similarity
	Creating Topic Models
	Document Representation
	Document Similarity

	Category Models for Classification

	References
	Detection of Power-Laws
	Powers-Laws
	Detection of Power-Laws
	Our Experiments

	Implementation
	Architecture
	Modules
	data
	report_data
	preprocess
	stanford_parser
	freq_representation
	graph_representation
	graph
	classify
	retrieval
	evaluation
	plotter
	util

	Experiments
	Libraries Used
	Final Remarks

