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Abstract

Texas Hold’em Poker provides an interesting test-bed for AI research with character-
istics such as uncertainty and imperfect information, which can also be found in domains
like medical decision making. Poker introduces these characteristics through its stochastic
nature and limited information about other players strategy and hidden cards. This the-
sis presents the development of a Bayesian Case-based Reasoner for Poker (BayCaRP).
BayCaRP uses a Bayesian network to model opponent behaviour and infer information
about their most likely cards. The case-based reasoner uses this information to make an
informed betting decision. Our results suggests that the two reasoning methodologies
combined achieve a better performance than either could on its own.
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CHAPTER 1

Introduction

1.1 Background &Motivation
The field of knowledge based systems has over the years become a mature field with
increasing focus on integrating various types of knowledge and reasoning methods [7][8].
The increasing focus on integration partly stems from the wish to better model human
problem solving and learning, which involves representation and utilization of several
types of knowledge and reasoning methods. Model Based Reasoning (MBR) and Case
Based Reasoning (CBR) are two well established types of reasoning methods in the AI
community.

MBR is an approach in which general knowledge is represented by formalizing the
relationships present in a problem domain. These models typically capture causal rela-
tionships to diagnose problems or predict situation outcomes. A well known model of
this kind is a probabilistic belief network, also referred to as Bayesian Networks (BN).
Bayesian Networks have a strong statistical basis and maintains a symbolic representation
in terms of a dependency network, where relations in the network may be given meaning-
ful semantic interpretations, such as causality [9].

Case-based Reasoning is the most recent contribution in the history of knowledge
based systems. CBR distinguishes itself from other AI approaches, by utilizing specific
knowledge of previously experienced situations (cases) instead of relying solely on gen-
eral knowledge of a problem domain, or making associations along generalized relation-
ships between problem descriptors and solutions [2]. A new problem is solved by finding
a similar past case, and reusing it in the new problem situation.

One of the strengths of CBR is that it uses situation specific knowledge to reason with,
and relaxes the knowledge engineering phase of the user. Due to this reason many CBR
researchers see the idea of reasoning with general knowledge as counterintuitive to the
very idea of CBR. Still, problem solving and learning by combining general and case
specific knowledge seems to be what people do [8]. Knowledge intensive CBR shifts the
burden of the usual knowledge engineering phase to providing knowledge for indexing,
relating and reusing cases [10].

There exist several possibilities for combining CBR with other reasoning modalities.
This thesis will focus on the integration of Bayesian Networks for maintaining the general
domain knowledge needed by the CBR system. The motivation for this thesis stems from
both the ongoing TLCPC project [4], where members from the Department of Computer
and Information Science (IDI) are working with medical professionals from the St. Olavs
Hospital in Trondheim to create a computer based tool for assisting treatment in pallia-
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tive care, and a more AI methodical motivation to combine CBR with another reasoning
method to maintain its general domain knowledge. These motivational factors will be
described further in the next section.

Decision making in the medical domain is to a large degree characterized by uncertain
and incomplete information. Patients may reveal various symptoms for a underlying dis-
ease, and information acquired may be unreliable and uncertain. Treatment may progress
over several stages, where new information is revealed at each stage, such as the results
of applying a drug for relieving the pain of a patient in palliative care. There are also risks
involved when applying various treatments.

Since medical professionals are busy people, and medical data is not easily shared,
this thesis will focus on a domain which encompasses similar features as the ones detailed
above and is of relevance to the clinical domain. One such domain is the game of poker,
or more specifically the game of Texas Hold’em Poker. The opponent’s cards are hidden,
and may be predicted trough the opponents action at each stage of the game. This makes
the domain suffer from incomplete or in other words imperfect information. The games
stochastic nature combined with the possibility of the opponent deceiving you with their
actions, makes the information available uncertain and unreliable. There are multiple
stages in the game of Texas Hold’em, where each stage reveals new information trough
actions and new cards available. Each betting action or strategy has its consequences or
risks.

The rest of this chapter will detail the motivational factors in section 1.1.1 and 1.1.2,
describe the goal and the method of investigation in section 1.2, and conclude with giving
a structural overview of this report in section 1.3.

1.1.1 The TLCPC project
The TLCPC-project, Translational Research in Lung Cancer and Palliative Care , is one
of the motivational factor for this research. The project is nationally funded and tightly
linked to the larger EU project; European Palliative Care Research Collaborative (EPCRC)[11].
These projects share similar goals and the main objective is to improve the methods for
management of cancer in the palliative care. The World Health Organization (WHO)
defines palliative care as follows:

the active, total care of patients whose disease is not responsive to curative
treatment. Control of pain, of other symptoms, and of psychological, social
and spiritual problems is paramount. The goal of palliative care is achieve-
ment of the best quality of life for patients and their families. Many aspects
of palliative care are also applicable earlier in the course of the illness in
conjunction with anti-cancer treatment. [12]

The TLCPC-project will achieve better palliative care through four collaborative re-
search areas illustrated in figure 1.1. The genotyping track will involve identifying genes
that may be associated with the development of lung cancer, and gene expressions as
prognostic markers of disease devolvement, symptoms and treatment response. Devel-
oping genetic methods for predicting individuals’ opioid responses is also a focus in the
EPCRC project. The gene expression track will follow a similar approach but focus on
genetic markers in peripheral blood cells (PBL) , which may result in the development of
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a test for early prediction of cancer through blood-based gene-expression tests. The com-
puter oriented part of the project will involve developing a decision support tool to guide
the clinician in the assessment, classification, treatment of cancer related symptoms, such
as pain, cachexia, dyspnoea, physical function, depression and fatigue. The two projects
will together cover all of these symptoms. The results of these research areas will form
the basis for an intelligent decision support system for clinical practice. This system
will combine both general knowledge, such as clinical guidelines, with situation-specific
knowledge from past experiences. This will be achieved by combining case-based reason-
ing and Bayesian networks, two well known artificial intelligence methods. The clinical
objective for the system is to support the clinician in the management of pain and other
effects of chronic cancer.

A group of researchers at NTNU is currently working on the intelligent decision sup-
port system. The first prototype they developed was a purely rule-based system based on
clinical guidelines for the domain. The second prototype is currently under development
and involves both Case-based reasoning and a Bayesian network to support the classifica-
tion and treatment of pain. The Bayesian network will calculate probabilities based on its
underlying model, while the Case-based reasoning component will retrieve similar past
cases to support this decision making.

The combination of reasoning methods for clinical decision support, constituting track
D of the TLCPC project, is a motivation factor for this thesis. The next section will detail
the combination of CBR and BN further, but will move away from the medical domain
and into the test-bed chosen for this thesis.

Figure 1.1: Model of the collaboration of the tracks in the TLCPC project [1]

1.1.2 Integrated Reasoning
The motivation for combining CBR and BN is that they both contribute to improved de-
cision making under uncertainty and incomepleteness [4]. One of the main strengths of
CBR is that it relies on situation specific knowledge to reason about newly presented
events. This reduces one of the major concerns for knowledge based systems, the knowl-
edge engineering phase, where the developer attempts to explicitly model the domain-
dependent knowledge as computer software structures [13].

Although CBR relies on previously experienced situations to reason with, it does not
mean that it is knowledge poor. Instead of having to explicitly model the whole domain,
CBR relies on domain knowledge in different parts of its problem solving process[14]. By
providing domain knowledge for indexing cases, the CBR system can better retrieve the
cases relevant to its new problem situation. Domain knowledge in some form is required
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if the retrieved case needs to be adapted to better fit the new situation, and can also be
provided in the stage of comparing the similarity of cases.

Maintaining the domain knowledge needed by the CBR system in the form of a
Bayesian network in the presence of uncertainty, plays on one of its major advantages,
namely by representing the strengths of causal relationships in the domain with probabil-
ities. Poker introduces uncertainty trough incomplete information about opponents cards,
behavior and through randomization by the shuffling of cards. Some of the most impor-
tant factors in poker decision making is experience and statistics[15], which makes the
combination of CBR and BN a perfect candidate.

Experienced poker players will have participated in more scenarios than an amateur,
and will have a better chance of having experienced a similar situation and its outcome of
applying various strategies, when presented with a new situation, than players with less
experience. This reasoning process is one of the fundamentals of case-based reasoning
and motivates the desire to apply CBR to model this process. When presented with a
new situation, there are various features that affect the poker players reasoning process.
One of the more complex features used, is the opponents behavior and what cards he is
most likely holding. Modeling this uncertainty motivates the use of Bayesian Networks.
The BN can capture knowledge about relations in the domain, such as observed opponent
behavior and the publicly available cards, to infer probabilities over the opponent’s likely
holdings.

1.2 Goal &Method of Investigation
The overall goal of this thesis is:

• to investigate the combination of CBR and BN in a non-deterministic imperfect
information game through development of an experimental system in the domain
of Texas Hold’em Poker.

Our approach to fulfilling the goal of this thesis is as follows. The research begins with
an analytical approach to related research on the subject of combining the two reasoning
methods, general AI applications in the domain and available software needed at a later
stage. This background analysis will result in a proposed architecture, which will be
implemented and evaluated using the selected tools. A more detailed view of our approach
is given below, where the four first items constitute the analytical part of this research, and
those following are of a more experimental nature.

• Combining CBR and BN: As one of the important factors in this project, the com-
bination of CBR and BN in previous research will be studied and analyzed in the
light of research performed at the Norwegian University of Science and Technology
(NTNU).

• AI in Texas Hold’em Poker: Earlier attempts on applying AI methods in the domain
of Texas Hold’em Poker will by studied, with the focus on attempts of applying
CBR and BN.

• Related software: A short study of available software tools will be performed, in
which some will be selected and investigated further. Only the selected tools will
be described in this thesis.
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• Choosing environment: Texas Hold’em Poker has a variety of different variants,
game modes and sub-domains where AI could be applied. A suitable environment
will be chosen from these.

• Proposing an architecture: Based on the analysis of the background study an archi-
tecture will be proposed and specialized in the chosen environment.

• Implementing the architecture: The proposed architecture will be implemented with
the selected tools.

• Testing the system: The implemented system will be tested by playing against ear-
lier attempts of applying AI in poker. The test will be performed by first using only
one of the reasoning methods, and thereafter using the combination of both. If time
allows it, the system will also be tested against human players.

• Evaluating the system: The system will be evaluated by the results obtained in the
testing phase, based on known criteria for evaluating poker players performance.
The architecture will also be evaluated in respect to the chosen way of combining
CBR and BN.

1.3 Overview of Report
This thesis is divided into two main parts, the first concerning background information
and related research, while the second describes the results achieved in this thesis.

Chapter 2 introduces the two main reasoning methodologies and the domain used
in this research. Chapter 3 describe the tools necessary for the implementation of this
system. Chapter 4 begins by describing the TLCPC framework, and uses this framework
to categorize research related to the combination of the two reasoning methodologies. The
second part of this chapter describes research related to applying these methods separately
in the domain.

The part describing the results of this thesis begins by describing the design of the
system in chapter 5 and the implementation of the system in chapter 6. Chapter 7 de-
scribes the results obtained when testing the system, and chapter 8 discusses these results.
Finally, chapter 9 concludes this report and provides ideas for further work on improving
the system.
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CHAPTER 2

Methods & Domain

This chapter presents important background knowledge for this research. The chapter
begins by presenting the two AI methodologies used, namely Case-based Reasoning and
Bayesian Networks, and ends with an introduction to Texas Hold’em Poker. The essence
of this chapter is to introduce and describe concepts that will be used throughout this
thesis.

2.1 Case-Based Reasoning
Case-Based Reasoning (CBR) is an approach to problem solving and machine learning
that uses the specific knowledge of previous encountered problem situations to solve new
problems. A case is a set of features describing both the context of the problem situation,
the solution applied to the given problem and the outcome of applying the solution. The
most common way to describe the CBR problem solving process is by the four-step cycle
illustrated in figure 2.1. How these steps are implemented may vary greatly between
systems, and any given system may or may not incorporate the whole CBR cycle.

When a new case is presented to the system it retrieves one or more cases from the
case-base. This selection process involves a similarity value which is used to describe
the cases best fit to solve the new problem. The similarity calculations may vary between
systems, but a common way to implement it is to use some kind of local similarity func-
tions to compare different features in the cases and then use a global similarity measure
to compute the overall similarity of the cases. This may be done by giving each fea-
ture a weight describing its importance in the matching process, and then calculating the
weighted average of the relevant features to compute the global similarity. The retrieval
step typically consists of several subtasks which involve identifying the relevant features,
retrieving several matching cases and then selecting the most promising case.

The reuse step involves suggesting a solution to the input problem based on the output
from the retrieval step. This is done by considering the differences among the past case
and the current case and deciding what part can be transferred to the new case. This
process may be divided into two subtasks: copy and adapt. The copy subtask is the most
trivial form of reuse where the differences are abstracted away and the solution of the
retrieved task is used as the solution of the new case. The adaption subtask is one of the
more problematic areas in CBR and it involves choosing what parts of the case to reuse
based on the differences amongst the cases. This may be done by either adapting the
solution of the past case or by adapting the method that constructed the solution.
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Figure 2.1: The CBR cycle [2]

The solution suggested by the reuse step is then evaluated by applying the solution
in the real environment (asking a teacher or performing the task in the real world). If
unsuccessful the solution should be repaired or revised using domain-specific knowledge
or user input. In some domains, such as the medical domain the success or failure of a
treatment may take some time to appear. In that case the case may still be learned but
should be marked as non-evaluated.

Finally, the new knowledge acquired by the new problem-solving episode is retained
into the case-base, which means learning from the success or failure of the proposed
solution. This involves deciding the relevant parts of the case to retain, how to retain it,
in what form, how to index the case for later retrieval from similar problems and how to
integrate the new case into the case-base.

2.2 Bayesian Networks
Bayesian networks (BN), also referred to as belief networks or probabilistic causal net-
works, are directed acyclic graphs that represent conditional dependencies among a set
of stochastic variables. The random variables are represented as nodes with connect-
ing arcs to represent probabilistic dependence among them, which together constitute the
topology of the network. Bayesian networks avoid specifying the complete probability
distribution over a set of random variables by its built in independence assumption, repre-
sented by the arcs, where a node is conditionally independent of its non-descendants given
its parents[16]. A node is considered a parent of another node if it has a direct link to that
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node. Figure 2.2 illustrates a simple Bayesian Network, where the nodes MarryCalls and
JohnCalls are conditional independent og Burglary and Earthquake given Alarm.

Each node contains a conditional probability table (CPT) containing a probability for
each of its own values given a combination of the values in the parent nodes, as seen
in figure 2.2. P(A) in the figure gives the posterior probability given a combination of
the states(in this case boolean values) of its parent nodes Burglary (B) and Earthquake
(E). The product of these local probability distributions can then be used to calculate the
full probability distribution of the domain, and is one of the advantages with Bayesian
Networks. If we assume that all the variables are boolean, the BN reduces the numbers
required for calculating the full probability distribution by 2n to n2k, where n is the number
of variables in the network and k is the number of parents of each node in the network.

Figure 2.2: An example of a Bayesian network, showing both the topology and the CPT
[3]

The full probability distribution can be used to answer any query about the domain,
and as the BN is a representation of the full probability distribution, it too can be used to
answer any query. This process of calculating a posterior probability for a query given
some evidence is referred to as probabilistic inference. Probabilistic inference in Bayesian
Networks is performed by inserting some observed evidence into it, which will result into
the posterior probability being calculated over the rest of the nodes. There exists several
algorithms for performing probabilistic inference in a Bayesian network, but they are all
based on Bayes’ theorem in some form.

Bayesian Networks also provide a way of integrating knowledge from different input
sources. There exists a variety of algorithms for learning both the structure and the pa-
rameters in the network from observed data. The structure and parameters may also be
elicited from an expert, or by using a combination of expert knowledge and data.
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2.3 Texas Hold’em Poker

2.3.1 General
Poker is a non-deterministic imperfect information betting game that exists in numerous
variations. The most famous of these is the game of Texas Hold’em, which is widely
considered as the most strategically complex variant. Texas Hold’em is played with a
standard 52-card deck with 2–10 players. Each round has a maximum of 4 stages, where
the goal is to either out-bet the other players or possessing the strongest hand at the end
of the round. The round ends when there is only one player left, or when the 4 stages of
betting are complete and the players left reach showdown where their cards are revealed.

2.3.2 Stage 1: Preflop
The round begins with what is referred to as the preflop stage, where each player is dealt
two private cards, called hole cards, which are only visible to the player himself. This is
illustrated in figure 2.3, where we can observe the preflop stage from the perspective of a
player called Hero. In this particular case, Hero’s hole cards are ace of clubs and ten of
clubs. These cards have the same suit, meaning that they are both clubs, and have a rank
of 10 and 14 respectively. Hole cards of same suit are normally just referred to as suited,
while the opposite is referred to as offsuit. Each player at the table started with 200$, and
the snapshot illustrated the figure is eight rounds after the game began.

The two players to the left of the dealer, the small-blind and the big-blind, have to
make a forced bet, which means that they have to place a predetermined amount of money
in the pot before seeing their cards, ensuring that there is something to play for every
round. The big-blind always doubles the amount of the small-blind.

The dealer is the one currently holding the dealer chip, illustrated by the D-chip in the
right corner of the image, followed by the big-blind and the small-blind positioned to the
left of the dealer. The dealer chip rotates for every round to ensure that each player will be
able to play from every possible position at the table. The first player to act in theround is
the person to the left of the big-blind, illustrated as the player with the visible cards. The
betting then continues in a clockwise fashion until each player has acted, ending with the
two blinds.

Since the small-blind is half the big-blind, this player is at least required to double his
previously forced bet to continue playing, while the big-blind has the ability to check (see
below), if no previous bet has been made.

There are three possible actions in poker; fold, call and bet:

• Fold: The player doesn’t match the bet by a previous player and forfeits any
chances of winning the pot. He will no longer participate in the upcoming stages of
the round.

• Call/Check: The player puts money in the pot equal to the highest bet made by a
previous player. If no bet has been made by a previous player, then the call action
goes under the name of check.

• Bet/Raise: The player willingly puts new money into the pot even though it is not
required. When a bet has been made, the other players have to match this bet to
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Figure 2.3: The preflop stage

continue playing. If a previous player has already bet when a new player performs
the bet action, this is referred to as a raise.

Although these are the most basic actions required to play poker, they may be referred
to by a variety of names when used in combination and in various situations, which will
be detailed further in section 2.3.7.

2.3.3 Stage 2: Flop
After the first round of betting is complete, the game continues to the flop stage where 3
cards are revealed face up on the board, as illustrated in figure 2.4. In this case Hero has
a pair of tens and a decent chance of making it into a better hand type, if one of the next
cards reveal a queen. If the queen comes, then Hero would have a straight, meaning five
cards whose rank form a sequence.

The cards at the table can be used by all the players when attempting to make the
best possible 5 card combination, and are referred to as community cards. After each new
stage a new sequence of betting occurs, and while there are 2 players still left in the game,
the round moves to the next stage. The two last stages in the game are referred to as the
turn and the river, where 1 new card is revealed at the table in each of these stages.

2.3.4 Stage 3: Turn
The third stage in the game is referred to as the turn, where one new card is revealed at the
table before the betting begins with the person to the left of the dealer. This is the same
for all other rounds than the preflop, where the person to the left of the big-blind begins.
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Figure 2.4: The flop stage

Revisiting the previous example, figure 2.5 shows that the turn card revealed another ten,
making Hero’s hand type into three of a kind.

Figure 2.5: The turn stage
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2.3.5 Stage 4: River
After the last card is revealed at the river, the final sequence of betting commences, and
if there are still players left in the game, they face each other in what is referred to as the
showdown.

At showdown, seen in figure 2.6, the player with the strongest 5 card combination out
of the 5 community cards combined with the players hole cards wins the pot. In this case,
the ecstatic winner is Hero, with three of a kind in tens. For a ranked list of the possible 5
card combinations see the Appendix C.

Figure 2.6: The river stage (showdown)

In Texas Hold’em players can tie at showdown because there doesn’t exist any suit
rankings, which means that a Ace of Spades is equal to a Ace of hearts, which will result
in the tied players splitting the pot evenly.

2.3.6 Betting restrictions
There are various ways to restrict the betting amounts in poker, which can lead to different
styles of play. One option is the No-Limit variant where players bets are only limited by
the money they currently possess. Other variants include Pot-Limit and Spread-Limit
where the former sets a minimum and maximum amount to raise or bet depending on
what is currently in the pot, while the latter provides a fixed minimum and maximum
range for the allowed bets.

The focus of this thesis will be the Fixed-Limit format, referred to as Limit Texas
Hold’em, where the allowed betting increments are of a predetermined size. For exam-
ple a $1/2 limit game denotes that the betting increment for the preflop and flop are 1
dollar, while being 2 dollars for the turn and river. Fixed-limit also has a restriction on
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a maximum number of allowed raises at a given stage of the game, meaning that if this
maximum is exceeded the players aren’t allowed to raise the pot any further.

2.3.7 Actions
The game of poker only allows for the actions described in Section 2.3.2, but when used
in various situations they may reveal different things about an opponent. The poker com-
munity has therefore adopted a set of names for referring to the actions being used in
different scenarios or combinations, which are illustrated below.

• Three-Bet: is the second raise or the third bet at a specific stage. At the preflop
stage the big-blind constitutes one bet, which means that if a player raises after a
previous raise, this would count as a three-bet.

• Cap: is the raise that ends or caps the allowed number of raises. This term is only
used in the limit variants.

• Continuation-Bet: is a bet made from the previous rounds’s aggressor at the flop
stage. The term aggressor refers to the player which performs the last raise in the
previous round. This action is often used to continue showing strength, even though
the community cards may not have made the players hand any stronger.

• Donk-Bet: is a bet from a player that acts before the last stage’s aggressor.

• Check-Raise: is an attempt to lure the opponent to bet by showing weakness with
a check, and then raising his bet, which is usually a sign og strength.
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CHAPTER 3

Tools

This chapter introduces the various software tools and technologies used for this re-
search. Section 3.1 describes the CBR development tool, jColibri[17], which will be used
to implement the CBR part of the architecture proposed in chapter 5. Among the reasons
for choosing this particular CBR software is that it incorporates the whole CBR cycle,
compared to myCBR[18] which only supports the retrieval step. jColibri is simple to use
and provides a lot of information about its variety of functionality, and is easy to integrate
with various third party software, such as myCBR. This way the user can take advan-
tage of e.g. both myCBR’s and jColibri’s advantages when developing a CBR system.
This makes jColibri the tempting choice over another well known object-oriented CBR
framework such as CBR*Tools[19], and the less known exit*CBR[20] which is primarily
intended for classification in the medical domain.

Section 3.2 describes the BN tool, GeNIe[21], used for implementing the BN part of
the architecture proposed in chapter 5. GeNIe is one of several similar software tools
for creating Bayesian Networks applicable for this thesis. The main difference between
GeNIe and other software such as Hugin[22] and Netica is that it’s full version is available
to the public free of charge. Another difference between GeNIe and Netica, is that Netica
doesn’t support learning the structure of the BN from data. GeNIe also distinguishes itself
from these two by providing multiple inference algorithms.

The chapter ends with some software tools related to the domain of Texas Hold’em
Poker. Section 3.3 introduces Poker Academy Pro, which will later be used as a test
platform for the implemented system, and the Meerkat API with some of its functionality.
Open Hold’em in section 3.4 is used for interfacing with various online casinos, and is
intended to be used for testing the system versus human competition.

3.1 jColibri
jCOLIBRI is an object-oriented framework in Java for developing CBR systems, with a
major focus on reusing existing CBR knowledge [17]. The framework currently has two
major releases; jColibri version 1 and 2. The First version includes a Graphical User In-
terface (GUI) that guides the user in the design of a CBR system, and was mainly intended
for non-developers that want to create a CBR system without programming any code. The
second version separates the architecture into two layers, one oriented to developers and
the other to designers. Figure 3.1 illustrates the two layer architecture of jColbri2. The
bottom layer contains the basic components of the framework with well defined and clear
interfaces, and does not contain any GUI guide the user. The top layer is currently under
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development and is meant to provide the user with semantic descriptions of the compo-
nents and several tools for aiding the user in a user friendly GUI. The newest version of
jColibri contains a lot more functionality and extensions, such as Hibernate for database
interaction, new ontology-based similarity measures and advanced textual CBR function-
ality. For the rest of this project the term jColibri will be used for the second version. The
following paragraphs will explain the jColibri components in more detail.

Figure 3.1: The jColibri two layered architecture

jColibri makes a clear distinction between the knowledge needed for the problem
solving process, and the knowledge needed for the specific domains. To achieve this
jColibri is built around a task/method ontology, which guides the design process. The
task/method ontology is described using terms from a CBR ontology to provide a domain
independent framework for CBR system development.

The CBR ontology[23] is an extensive ontology for defining and organizing the ter-
minology used in the CBR process, resulting in a common language for defining CBR
systems independent of the domain the system is intended for. The CBR ontology is
built into the jColibri framework trough abstract classes and inheritance. This provides
an abstract and flexible interface for developing a CBR system. The user can define his
own components by inheriting the features of the abstract classes. CBROnto also includes
knowledge about the tasks and methods, such as which tasks they are able to solve and
other criteria related to a specific component.

These Problem solving methods (PSMs) are application and domain independent,
reusable reasoning components. A PSM contains the problem solving behavior needed
to achieve a specific task’s goal. A PSM is decomposed into a number of subtasks. jCol-
ibri supports this behavior by providing methods to either decompose the task or solve
the task directly. At the highest level of generality, they describe the CBR cycle in the
four tasks described earlier, which again contains several subtasks. When a task is de-
composed jColibri provides new PSMs to solve or decompose the task further[17]. There
may be several ways to reach a task’s goal, and jColibri provides an extensive library of
well known PSMs to solve a variety of tasks.

jColibri splits its case base management into a persistency mechanism and in-memory
organizations[24]. Persistence is built around the connectors, which represents the first
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layer on top of the physical layer of the case-base. Connectors are objects that know
how to access and retrieve cases from storage in a uniform way. jColibri provides the
user with three different types of connectors to access cases represented as XML, in a
database or in ontologies. The connectors are configured trough XML schema, such as
specifying the database connector with the location and information needed to access
the database. It is also possible for the developer to create his own connector by using
the connector interface. The in-memory organization is used for organizing the cases
once read into memory, such as using a simple linear list or a more advanced organization
structure. jColbri currently defines only tree simple organizational structures, but provides
the developer with the ability to create his own. In the same way as the connectors, the
case-base also implements a common interface for the CBR methods to access the cases.
This way the implementation of the methods are independent of what ways the developer
chooses to organize and index the case-base.

jColbri represents a case in a very general way, a case is just an individual that can
have any number of relationships with other individuals. The framework represents the
cases using Java Beans, which is any case that uses get() and set() methods for their
public attributes. The cases are divided into components with a restriction that they need
to define an id that identifies them in the database. jColibri divides the features of a case
into four case components: a case description, solution of the case, result of applying the
solution and a justification for choosing the solution. This flexible way of representing
the cases gives the developer the choice of which components to use in his application.

3.2 GeNIe & SMILE
GeNIe (Graphical Network Interface) is a software package for developing decision the-
oretic models, such as Bayesian Networks. GeNIe can be viewed as an outer shell for
SMILE (Structural Modeling, Inference, and Learning Engine), providing a development
environment for Bayesian Networks, while SMILE is the core reasoning component in
the system. SMILE[21] is a fully portable library of C classes for implementing Bayesian
networks, with wrappers provided for both Java and .NET. Dividing the software package
in these to components, gives the user the ability to first create a model graphically with
the GeNIe interface, and then implement and reason with it in the developers own system
using the SMILE library. To facilitate sharing of research, both GeNIe and SMILE can
also read and write a variety of different popular Bayesian network formats, such as e.g.
the Hugin and Netica formats.

GeNIe and SMILE1 provides a variety of inference algorithms, and the ability to learn
both network structure and parameters from data. Data for this purpose can be inputted
to the system trough a simple text file or a database. There exist several functions for
cleaning the data, such as replacing missing values or discretization of numeric intervals,
or viewing different statistic properties about the data.

If learning the structure of a network from data is required, the user is provided with
different algorithms for doing so, including the ability to manually set important back-
ground knowledge for the network, such as existing or not existing relationships between
variables.

If learning the parameters of a network is required, GeNIe provides the well known

1From this point on GeNIe will denote both GeNIe and SMILE
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expectation-maximization algorithm (EM) for this task. The user is also provided with
the ability to set a degree of confidence of the newly inputted data, which will affect how
much the new data will influence the existing parameters.

GeNIe, in contrast to many other Bayesian Network software tools, includes a variety
of probabilistic inference algorithms. These are divided into two categories, exact infer-
ence algorithms and approximation algorithms detailed further in GeNIe’s user manual2.

Figure 3.2: Screenshot of GeNIe

GeNIe also supports multiple node types, which can be used to extend the standard
Bayesian Network capabilities into decision networks. The nodes include utility nodes,
decision nodes, deterministic nodes and usual chance nodes among others. Figure 3.2
illustrates a Bayesian Network created with the GeNIe graphical interface. The nodes are
viewed as bar charts, which provides a simple way of observing the effect of observed
evidence on the states of the network.

3.3 Poker Academy Pro &Meerkat API
Poker Academy Pro (PAP) is a commercially available program aiming to provide a learn-
ing platform for its users. It provides a variety of features for analyzing different aspects
of the game. The part of this software that makes it so attractive to AI researchers is that
it includes a set of poker bots developed by the University of Alberta. These poker bots
have been well explained in published research papers, which make them well suited for
the purpose of testing the users own poker AI.

Meerkat is a java based API that provides users with the ability to plug in their own
bots into Poker Academy Pro, by a uniform interface for performing poker actions and
receiving information about the current state of the game. Another feature used by a lot
of poker AI researcher is the hand evaluator provided in Meerkat. It takes a set of hole
cards and community cards as input and calculates a numeric measure of how strong the
current hand is compared to others, and a numeric measure for how likely the hand is to
improve, the hands potential.

The hand strength evaluator calculates a numeric value in the range 0-1, based on the
number of hole card combination that our current hand can beat, plus half the number of

2http://genie.sis.pitt.edu/wiki/Main_Page
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draws, divided by the total. This can be seen as a measure of how likely it is that we beat
an opponent with random cards, given the current board cards. If there is more than one
opponent in the hand, the hand strength is reduced by a factor n, describing the number
of players still left.

The potential of a hand can be either negative or positive, depending on if its probable
that you are currently holding the best or the worse hand. If the former is the case, then
the negative potential gives a numeric value of the probability of the hand not being the
best after the new cards are dealt, while the latter measures the probability of improving
to a winning hand.

3.4 Open Holdem
Open Holdem is an open source framework with a programmable logic engine for Texas
Hold’em Poker. This framework is not used in the current implementation of the sys-
tem, but is included for the sake of completeness, in that it provides an example of an
alternative interfacing mechanism. Open Holdem provides the ability to test a poker bot
against real human competition, by providing a way of interfacing with the poker clients
from various online casinos where the game is played. It determines the game state at any
given time by interpreting pixels presented on the screen by the poker client. This process
of interpreting visual data from a source is often referred to as screen scraping.

To be able to successfully interpret the pixels at an online casino, Open Holdem needs
to be provided with what is refered to as a table map. A table map is a text file with all the
information required to interpret the current game state, such as the player’s hole cards,
actions performed by other players etc. This will be in the form of where on the screen
the different components can be found.

Open Holdem also provides a way for implementing the actions chosen by the users
logic, by clicking the buttons at the positions provided by the table map. Open Holdem
can therefore be viewed as providing a poker bot with the eyes and arms required to play
at a online poker casino.
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CHAPTER 4

Related Research & The TLCPC framework

This chapter gives an overview of related research and describes the TLCPC frame-
work, which has guided our approach to CBR-BN integration. The chapter begins by
introducing the TLCPC framework, which is a framework for reasoning under uncer-
tainty by combining CBR and BN. The framework is aimed at the medical domain, but
will be used here to interpret and categorize related research combining CBR and BN in
several domains. Section 4.2 will then describe related research in combining CBR and
BN, and use this research as examples for the four architectures proposed by Bruland in
the TLCPC framework[4] in section 4.2.1 through 4.2.4.

The next part of this chapter, section 4.3, begins by introducing some central AI re-
search in the domain of Texas Hold’em Poker, before it proceeds with a more detailed de-
scription of research related to applying the two reasoning methodologies in the domain.
Section 4.3.1 summarizes some relevant application of Bayesian Networks in poker, while
section 4.3.2 introduces Case-based reasoning research in poker.

Each of the sections describing research related to the combination of CBR and BN,
BN in poker and CBR in poker, will end with a comparison to our proposed architecture.
These sections will describe how the proposed architecture relates to research concerning
the combination of CBR and BN, and the application of each of them separately in the
given domain. There does currently not exist any attempts to combine these two reasoning
methods in the domain of poker.

4.1 The TLCPC framework
Bruland et al.[4] proposes four architectures that combine Bayesian networks and case-
based reasoning for the medical domain, illustrated figure 4.1. These architectures com-
bine CBR and BN in a sequential manner, in contrast to the parallel way of combining the
two, where both methods use all the input variables and produce a classification indepen-
dently. The parallel integrations rely on some kind of algorithm for selecting the better of
the two classifications.

In the sequential combination of the two, one of the methods computes something
that the other needs. These integrations can again be classified as either tightly or loosely
coupled, where the latter describes architectures where the information used by one of the
methods is hidden from the other. The variable types proposed by Bruland et al. in this
problem domain is as follows:

• Ii is the input variable used by the systems. The CBR and BN parts of the system
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take different inputs, but may also share some common inputs.

• A j is a mediating variable representing concepts in the domain model, which can be
set as evidence by a domain expert if one is used during the classification process,
or be infered by the system.

• D is a variable that is derived by inference from domain knowledge, either as an
output by the BN in the BN-CBR sequence or as a intermediate case solution in the
CBR-BN sequence.

• C is the final classification variable acquired by the final system in the sequential
combination of the two.

BN-CBR-1 illustrated in figure 4.1 is a loosely coupled architecture where the BN is
used as a preprocessing step in the retrieve stage of the CBR-cycle. The BN includes
cases in the network as binary variables with the values on/off, which decides if a case is
active or not. The output from the BN results in a set of activated cases to be used by the
CBR retrieval stage. Hence, the BN works as a filtering mechanism in this architecture.

Figure 4.1: The four architectures outlined by Bruland et al. [4]

The BN-CBR-2 architecture is tightly coupled, where the resulting calculations per-
formed by the BN are directly used as input in the case description. Viewed in a general
way, the BN computes something that the CBR system needs in one of its reasoning
processes.

The CBR-BN-1 architecture can be interpreted in two ways. The CBR module can
work as a preprocessing stage, and use its retrieved case solutions to update part of the BN
model that is unknown, or it can be used in the reuse phase of the CBR cycle. If the latter
is the case, then the BN is used to adapt the solution of the most similar cases retrieved
by the CBR system.

Similar to the first architecture, the CBR-BN-2 is loosely coupled and can be viewed
as a indexing mechanism into a set of BNs. The CBR system uses its inputs to retrieve
a case containing the most suitable Bayesian Network, which then calculates the final
classification variable. The different BN models have common evidence and classification
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nodes, but other nodes, causal links and the conditional probability tables can be different
for each model.

These four architectures provide a way of analyzing the sequential combination of
CBR and BN in the manners described above. Aamodt[8] proposes two general categories
for interpreting the way general knowledge can be combined with case-based reasoning,
through horizontal or vertical integration.

The term horizontal integration refers to cases where general knowledge, e.g. rep-
resented in a Baysian network is combined with CBR as an alternate problem solving
method. This PSM can either be used concurrently with the CBR system on the same
task to make the system more robust, or it can be used to perform some sub-task that will
be used by the CBR system.

In the case of vertical integration, the general knowledge will be used within the CBR
method itself. In a vertically integrated system, with a BN for representing the general
knowledge, the BN would in some form be used to modify or enhance the traditional steps
in the CBR-cycle to perform some interrelated task[25].

The four architectures described above mainly focuses on horizontal integration of
the two reasoning methods, where the first system in the sequence performs some sub-
task that the second system relies upon. Still, the two tightly coupled architectures, BN-
CBR-2 and CBR-BN-1, can illustrate both hortizontaly and vertically integrated systems,
depending on how they are used. If the BN is used within one of the CBR steps, such as
e.g. providing a probabilistic similarity measure in the BN-CBR-2 architecture, or used
within the reuse step in the CBR-BN-1 architecture, it can be referred to as vertically
intregrated.

Section 4.2.1 through section 4.2.4 will exemplify the four architectures illustrated in
figure 4.1 with other related research.

4.2 CBR & BN
This section is divided into the four architectures proposed by Bruland in the TLCPC
framework, and exemplifies these architectures through related research. This will end in
a comparison of how our proposed architectures relates to the framework.

4.2.1 The BN-CBR-1 architecture
Aha and Chang[10] propose an architecture combining CBR and BN for solving multia-
gent planning tasks. They use robotic soccer as a test-bed for the architecture, where the
BN is used to choose an action and the CBR module is used to implement the action. The
Bayesian network can therefore be viewed as a preprocessing step for the CBR system,
where the cases implementing the desired action are activated. Each possible action type
has its own Bayesian network with sensor and action nodes, where the action with the
highest probability given the current state is selected.

The cases are represented with a problem description, referred to as conditions in
the Aha and Chang paper, containing information derived from its sensors. Each case
also contains a solution in the form of an action sequence, and expected outcome from
executing the action sequence. The Bayesian network activates the cases that contain the
chosen action as its solution, and the retrieval phase of the CBR system then computes
similarities between its current conditions and the activated cases conditions. The solution
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of the most similar case is selected, but if the solution contains a non-primitive action it
results in a new case retrieval for this action in a hierarchical fashion.

If the execution of the action sequence of the retrieved case fails, it signals the need
for some kind of revision. This is performed by updating the Bayesian network with new
feature nodes describing why the action sequence failed, which results in a new set of
conditions as features and indices in the case-base. E.g. if an opponent intercepts the ball
if a pass is being made, the Bayesian network will be updated with a node describing this
threat, the CBR system will use this as a index to distinguish between different passing
situations, and a new case is retained from this experience. The resulting state from
executing a plan is also reported back to the Bayesian network to update its probabilities.

4.2.2 The BN-CBR-2 architecture
Aamodt and Langseth[9] propose an approach for integrating Bayesian Networks with
knowledge intensive CBR. The Bayesian Network is combined with a semantic network,
which assists the CBR system in both retrieval and reuse[4]. The combined network con-
sists of a static part, the semantic network, which contains relationships that are assumed
not to change over time and a dynamic part in the form of a Bayesian Network, which
contains dependencies of a stochastic nature. The strength of the dependencies in the BN
will continuously be updates as new data is observed.

Cases are represented as nodes in the network, linked into the rest of the network with
its case features. Each case in the network is represented as binary variables with the
values on/off, as illustrated in the BN-CBR-1 architecture. The bayesian case retrieval is
then performed by entering the evidence observed in a new case into the network, and then
calculating the conditional probability of a case beeing on, given the observed evidence.
This works as the similarity metric in the system, and results in the retrieval of every case
exceeding some threshold value.

The combined network is intended to be used in several steps in the CBR reasoning
process, such as guiding case adaption in the reuse step, by calculating causal relations
in the network[4]. It can also be used in several of the sub-tasks in the retrieve step, e.g.
the steps from the explanation engine proposed by Aamodt[8], which would represent a
vertical integration of the two reasoning methods.

Vadera et al. [26] proposed a probabilistic exemplar-based model for Case-based
reasoning. The model utilizes two Bayesian networks, one for indexing and one for iden-
tifying exemplars within categories. The case-base is structured in a hierarchical fashion,
where top level constitutes what is referred to as categories, which again is represented
as a set of exemplars. These exemplars represent a set of similar cases indexed by their
features. The cases themselves are not stored in this model, but instead contained through
a summary representation in the exemplars.

The first Bayesian network in this model is used as an indexing structure to categories.
The probability of the category a new case belongs to is calculated based on the features
the new case and the categories have in common. The second BN defines the relation-
ship between the features and the exemplars. The frequency a feature has been observed
amongst the cases the exemplar has previously been used to classify is used to calculate
the probability of the various exemplars based on the features of the new case. The cases
themselves are not stored in this architecture, instead an exemplar encompasses a sum-
mary representation of the cases, containing the features and how many times the features
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has been observed among the classified cases.
Learning in the model is incrementally conducted each time a new case is classified.

This process involves adding the new case as an exemplar, or replacing the exemplar
that was used to classify the case with the classified case. In order to decide if the new
case is a better exemplar than the old one, the model uses the concept of prototypicality.
A prototypical exemplar will be one that best represents its similar cases and has least
similarity with the cases represented by other exemplars. As before, the similarity is
calculated based upon the features the two have in common. The model described here
illustrates a vertical integration of CBR and BN. One of the models prominent restrictions
is that it requires that all features are binary.

4.2.3 The CBR-BN-1 architecture
Tran and Schönwalder[27] present a distributed Case-based reasoning system applied in
the communication system fault domain. Inspired by the reasoning of experts in the med-
ical domain, they propose extending the Case-based system with a Bayesian reasoning
component to facilitate both case retrieval and reuse. Each case contains a set of symp-
toms and a fault hypothesis. Earlier research focusing on applying probabilistic reasoning
to this part of the CBR system can broadly be placed into two categories; The ones that
create a probabilistic model based on the entire case-base[26], and the ones that rely on a
chosen part of the case-base to perform the probabilistic reasoning on.

This system uses the cases selected in the retrieve phase to build the probabilistic
model, and therefore falls in the latter category. The first step focuses on selecting a
ranked list of cases obtained by using the k-Nearest-Neighbor algorithm with a similarity
measure considering the symptoms the two cases have in common, and the significance
of the symptoms in each of the cases. This set of cases is then used to build a Bayesian
network by calculating probabilities of observing a hypothesis given a set of symptoms
in the retrived cases. This BN is then used for proposing the most probable hypothesis in
the reuse phase of the CBR cycle, by calculating a posterior probability over the available
hypothesis given the symptoms observed in the problem description.

4.2.4 The CBR-BN-2 architecture
Pavon et al.[28] propose a case-base reasoning system that uses a Bayesian framework for
algorithm parameter tuning. Each case consits of a problem description and a solution,
where the description is a collection of features describing the problem domain and the
solution is an induced Bayesian Network. The BN solution consists of the possible algo-
rithm parameters as well as a set of performance parameters, and is used to estimate the
best parameter configuration for the particular problem instance at hand. The probabili-
ties in the BN is collected from multiple runs with different parameters of the algorithm
in the given problem domain.

The retrieval phase works in a straight forward manner, and can be viewed as an
indexing mechanism for finding the most suitable Bayesian Networks for solving the task
at hand. If several suitable cases are retrieved, a reliability measure based on number of
runs of the case is used to select the best one.

In the reuse step the BN is used to calculate the best parameter configuration by enter-
ing the variables for measuring the performance of the algorithm as evidence, and calcu-
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lating the posterior probability over the different parameter states. If the BN selected from
the case retrieval phase has a low reliability, then the BN can be used to suggest multiple
parameter configurations. This is done because a low reliability measure means that the
BN is based on little data and may be very unreliable.

The review step is just the results of executing the algorithm with the parameter con-
figurations proposed in the reuse stage, which is stored in a database in the system. When
a sufficient number of runs is available in the database a Bayesian Network is induced and
retained together with its problem description as a case in the case-base.

4.2.5 Comparison
The different ways of integrating CBR and BN outlined in this section was used as a
starting point when designing the architecture proposed in chapter 5. The most focus was
given the two tightly coupled architectures, CBR-BN-2 and BN-CBR-1, because they
were believed to better combine the strengths of both reasoning methodologies in the
domain. Through an analytical approach to related research in the domain we got the
idea of splitting the reasoning process into two tasks that we believed would play on the
strengths of both reasoning methodologies. The focus of the first task was modeling an
opponent’s playing behavior to predict what kind of cards the player is holding, while
the second task would use this information combined with other important features in the
domain to make the best possible betting decision from the information available at the
time. This reasoning process also mimics good poker players, where the more complex
task of reasoning about the opponents likely cards is a major factor when making a betting
decision.

The representation of the features that was considered important when making the fi-
nal betting decision was another factor influencing the design of the architecture. Most of
the features that were considered important for making a betting decision were numeric.
This is not optimal when considering the BN to be the final decision maker in the se-
quential execution of the two tasks, because most of the work in the domain of Bayesian
Networks rely upon discrete variables, and discretizising these variables was considered
less than optimal.

Since modeling and predicting opponents cards and behavior involves alot of uncer-
tainty, this task was considered to play on the strengths of Bayesian networks, which are
excellent for reasoning under uncertainty through casual relationships and probabilistic
inference.

Based on the reasons outlined here, the architecture proposed in chapter 5 is a spe-
cialization of the general architectural design referred to as BN-CBR-2. The reasoning
process is divided into two tasks, where the BN is used to infer important information
from the opponent modeling task, while the CBR is used to combine this information
with other important features in the domain to make the final betting decision. The CBR
component takes the solution from the sub-task solved by the BN as input into the case
description when retrieving similar cases. This architecture was also believed to represent
ways in which poker player reason, by using a set of important features together with a
prediction of the opponent’s likely cards when consulting past experiences to find a good
betting decision. The proposed architecture is a horizontal integration of the CBR and
BN, where the two components are tightly coupled and used in a sequential order.
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4.3 Poker & AI
There have been various attempts to apply a broad range of AI methodologies to the
domain of poker. Figure 4.2 summarizes several reasons why poker may be viewed as a
more attractive testbed for AI than deterministic perfect information games such as chess
and checkers. Poker is non-deterministic, actions can never guarantee the same outcome,
and suffers from imperfect information in the form of other players hidden cards.

Figure 4.2: Characterization of the poker domain for AI research [5]

Over the years there have been several attempts to applying AI in simplified versions
of poker, sub-sets of the game, and the full variant. In the recent years the University
of Alberta has evolved as the leading force in AI poker research with their Poki system,
which will be given a brief overview in this section.

Poki uses a combination of rules, statistics and simulations to play the game of poker.
At the core of the system lies the simulation-based betting strategy, which can be viewed
as an analogy to selective game-tree searching, where certain nodes are expanded with a
higher probability, rather than expanding all nodes with an equal probability. How this is
performed effectively will be explained further after Poki’s main components have been
outlined.

The first betting round where Poki has little information available other than its own
holdings, it uses a rule-based approach to decide what cards to play and in what manner
to play them. To do this it contains a ranked list of the different hand’s expected income
rate. This income rate is acquired by an offline simulation of a large number of hands,
where the specific hole cards are simulated against virtual minimum betting opponent’s
with randomized cards.

In the later stages of the game, Poki constructs an opponent model of each of the
players currently in the game. This model contains a weighted table of each possible
hole cards the opponent can hold and a probability triplet for each of these entries. The
table is weighted based on the opponents actions, and the probability triplet containing
probabilities for folding, betting and raising is calculated based on a set of rules that Poki
itself uses to decide what actions to take. Among the important factors that Poki uses to
construct this triplet is a numeric measure for hand strength and the positive potential of
the hand. The probability triplet for Poki’s current situation, and the probability triplets
for the opponents most likely holdings are then used to run a number of simulations for
the rest of the game to estimate an expected value for the different actions Poki can make.

There are two versions of the Poki system included in Poker Academy Pro. The two
versions differ in the strategy used for making the final betting decision. One of the
versions uses a formula-based approach and the other uses a simulation-based approach
for its betting strategy. The formula-based approach uses rules defined by an expert to
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make the final betting decisions while the simulation-based approach uses the simulation
strategy described above. The former was nicknamed Pokibot, while the latter goes under
the name of Simbot.

4.3.1 Bayesian Poker
There have been several attempts to apply Bayesian Reasoning to various aspects of the
poker domain. Baker and Cowling use a simplified version of poker to investigate the
effect of bayesian opponent modeling[29], while Terry and Mihok[30] use a Bayesian
network to predict opponents hole cards. Korb et al.[31] developed a Bayesian Network
for playing 5-card stud poker and later continued their BN work in heads-up (two-player)
limit Texas Hold’em[32]. Other attempts of applying BN for this particular poker variant
include [33] and [34]. A common factor that all of the mentioned articles share, is that
they all include opponent modeling in the Bayesian Network.

The subsequent sections describe the two attempts of applying BN in poker that are
most relevant, and concludes with comparison to the BN component in the architecture
proposed in this thesis.

Bayesian Network for playing poker

Korb et al.[31] developed a Bayesian Poker Program (BPP) which uses a Bayesian Net-
work to model the program’s poker hand, the opponent’s hand and playing behaviour to
determine its probability of winning. BPP started out by playing five-card stud poker,
but was later improved and adapted to the domain of limit heads-up Texas Hold’em [32].
One of these improvements was extending the BN with Decision Network capabilities, to
make it able to explicitly represent decisions and utilities of these decisions. The initial
version of BPP used a separate network for each betting round. Another important change
was adding the ability to not only predict when the opponent has a flush, but also when he
possesses a flush draw. This is a important factor in Texas Hold’em compared to five-card
stud, because of the increased probability of flushes appearing.

BPP attempts to model the opponents behavior by mapping a situation in the game to
a probability distribution over a set of actions represented by the OPP_Action node. This
action node has eight possible values; fold, call, check, raise, bet, paysmallblind, paybig-
blind and pass, which represent a finer granularity than the earlier three categories. The
opponent action node is influenced by the observed board, round, pot, BPP’s action and
the opponent’s own cards. The round node is used to combine the previously four sep-
arate networks used for each betting round into one, which provides continuity between
the various phases of the hand.

The probability distribution of the opponent’s actions is then used to calculate proba-
bilities for the opponent’s possible hands, and is together with the observable node for rep-
resenting BPP’s current hand used to predict both the opponent’s and BPP’s final hands.
These final hand predictions are used to calculate a probability of winning, which is com-
bined with a utility node to represent the expected utility of the possible next actions for
BPP.

Since being predictable makes for a lousy poker player, BPP uses betting curves to
add some randomization to the choice of actions. The betting curves gives a probability
to two actions based on their expected utility, which means that if two actions have equal
expected utility, they are both selected with a probability of 50%.
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To reduce the complexity of the BN the large number of different possible hand com-
binations are bucketed into 25 different categories. This introduces some inaccuracy into
the model, and Korb et. al[32] illustrated this by playing it against a combinatorial model,
which makes its decision by considering 100.000 random decks of cards from any given
position in the game. This resulted in a slight loss for the BN, which can be directly
credited to hand abstraction, as this is the only difference between the two.

Another obstacle with this BN is the large amount of entries in the conditional prob-
ability table of the node used for modeling the opponents behaviour. This makes it very
hard to acquire significant information throughtout a single game to update it to better
represent a specific opponent. Korb et al.korbBnHoldem suggest using either a static op-
ponent model which models a typical opponent and does not change throughout a game,
or a dynamic opponent model. To effectively be able to perform dynamic opponent mod-
eling, the previously mentioned CPT had to be reduced in size. This was accomplished
by segmenting the CPT into groups where the opponent may behave equally.

Bayesian Network for predicting opponents cards

Terry and Mihok[30] combined expert knowledge and machine learning of a large col-
lection of previously played hands to create a Bayesian network for predicting opponent
hole cards. The nodes and links in the network were defined through expert knowledge,
while the parameters in the network were learned statistically from a large collection of
parsed hand histories. The network relies upon hand histories of rounds that went all the
way to showdown, because the opponent’s cards are only visible at showdown. Terry and
Mihok point out that a critical aspect of the Bayesian network’s ability to predict oppo-
nent’s hole cards is the way the game state is represented in the network. To fully utilize
the information from the hand histories, the state of the game may require a more specific
representation than the ones used in the hand history. An example of this is when using
only the regular poker actions to represent the opponent’s actions the network misses a lot
of crucial information. E.g. if a raise is beeing made in a early position at the table with a
lot of players acting after that player, this should be considered an action of more strength
than a raise beeing made in a late position where almost everyone else has folded.

The final BN proposed by Terry and Mihok uses pot odds, position, number of players
and the opponent’s action to influence nodes representing the opponent’s probable hand
strength and hand potential, which again is used to infer the opponent’s most likely hole
cards. Most of the nodes in the network are discretizised numeric intervals, excluding the
node for representing the opponents hole cards, which has a state for each of the possible
hole cards combinations.

Due to time limitations, some of the proposed ideas where not implemented in the
final BN design. The final BN uses only one action, in contrast to using a full sequence
of actions to predict the opponent’s hole cards, and lacks the specialization of the action
node into more specific action types.

BN Comparison

The Bayesian network proposed in this thesis is inspired by the research described in this
section, although there are many differences the basic ideas behind the research are still
similar. All of the attempts of applying BN to poker described here include some form of
predicting the opponents cards, which is the main task of the BN proposed in this thesis.
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The proposed BN share some common nodes with the Bayesian poker player, such
as a node for representing the opponents action, a node for describing the board, and the
separation of the opponents hand in a current and a final hand type. Although the work
done by Korb et al. is in a similar domain, their focus was on using the BN to play
Texas Hold’em in a two player environment, which describes a lot of the differences to
our proposed network. An example of this is the states in the opponents hand type nodes,
which are focused on a two player environment rather than the states used in our BN to
achieve better performance in an environment with more players. Korb et. al’s BN also
lack a node for describing position, which is more important in an environment with more
players.

Terry and Mihok highlighted the need of further specializing the regular poker actions
into states that describe what kind of situations the actions where used. The BN proposed
in this thesis takes this idea further, and implements a broader range of possible actions
than the regular poker actions, based on the actions described in section 2.3.7.

In contrast to the research proposed here, our proposed BN has more focus on using a
sequence of actions and other information at the different stages of the game to predict the
opponent’s cards. Korb et. al uses a node for representing what stage the game is currently
in, to provide some continuity between the rounds. The BN described in section 5.3 is
modeled with greater focus on the change of the game environment at the different stages
of the game, both in the sequence of actions from an opponent as well as the change of the
community cards. Observing the opponent’s betting behavior in relation to the changes
in the community cards is believed to be a good way of inferring information about the
opponent’s cards.

4.3.2 Case-Based Poker
There have been relatively few attempts to apply CBR to the game of poker. CASEY [35]
and CASPER [36] are Case-Based systems for making betting decisions at table with mul-
tiple players, while SARTRE[37] is intended for heads-up play. Salim and Rohwer[38]
applied CBR solely to the purpose of modeling opponents betting behavior to attempt to
determine their hand strength. Compared to the Bayesian based poker research most of
the CBR research in this field doesn’t include any form of opponent modeling.

The following sections will describe the attempts of applying CBR in poker that are
relevant for this research.

CASEY

CASEY1 [35] is a Case-based learner applied in the domain of multiplayer limit Texas
Hold’em. CASEY divides its case-base into a preflop and a postflop base, and each case
contains an indexed contextual part, a solution and an outcome of applying the solution.
The contextual part of the case contains features such as hand strength, relative position,
bets to call and potential of the hand, where the latter is only used for postflop play. The
postflop cases also contain a stage feature for describing in which stage of the round the
case was recorded. The solution offered by a case is a strategy, which consists of an
initial action and a follow up response if applicable. One such strategy could be to check

1CASEY seems to be a beloved name in the CBR community. This CASEY should not be confused
with Koton’s and Aha’s CASEY.
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and then raise if the opponent bets, referred to as a check-raise in poker and is usually a
sign of strength. The outcome of a case consists of features describing the risk/reward on
each separate stage of the round, and a net result for the whole round. These features are
numeric measures of how much was won in the given case.

CASEY’s retrieval phase consists of first retrieving the most similar cases, and then
selecting up to a maximum of 100 of the retrieved cases above a specific similarity tresh-
old. The selected cases are then used to create a combined summary, which consists of a
sum of the outcomes of applying a strategy in a given situation. CASEY then reuses the
strategy with the most successful outcome.

Sandven and Tessem tested CASEY by playing against instances of RuleBot, which
is a rule-based poker bot included in the commercially available Poker Academy Pro
software. CASEY begins with an empty case-base and plays every hand with a random
selected action until it has acquired an adequate number of cases. Sandven and Tessem
report that after the initial case aquisition is complete, CASEY plays on par with RuleBot.

CASPER

The CASPER system by Watson et. al[36], is an attempt to improve on the results of
Sandven and Tessem’s[35] application of CBR for making betting decisions in limit Texas
Hold’em. When it is CASPER’s turn to act, it creates a target case with similar features
as the CASEY system, and uses k-nearest neighbor algorithm to search the case-base for
relevant cases. In contrast to CASEY, the CASPER system separates its case-base into
four different case-bases, one for each stage of the round. CASPER does not store any
outcome of applying a specific solution, and instead of using more complex strategies
as case solutions, it relies only on the atomic actions allowed in poker. For example if
CASPER gets re-raised after the first CBR cycle made it bet, it will perform a new cycle
for deciding the next action to take.

When CASPER is required to make a betting decision, its retrieval phase computes
the similarity of the cases in the case-base, and selects to top 20 cases with a similar-
ity over a threshold of 97%. It then computes a probability triplet by summing up the
betting decisions suggested by these cases, and dividing them by all the selected cases.
This probability triplet is then used to generate a betting decision. The similarity is com-
puted by a weighted linear combination of the local similarity where features like hand
strength and hand potential are given higher weights. Watson et. al experimented with
both handpicked weights and weights derived by an evolutionary algorithm.

CASPER was like CASEY implemented with the Meerkat API to interface with Poker
Academy Pro. Instances of Pokibot and Simbot where used to generate CASPER’s train-
ing data by playing up to 13.000 rounds where CASPER retained every context and bet-
ting decision made into its case-base. CASPER was tested against the adaptive bots, in
the form of Pokibot and Simbot, where it retained its case-base, and was shown to play
evenly against these. Watson et. al also tested CASPER’s performance against the non
adaptive bots included in Poker Academy Pro, and by playing real people for play money.
CASPER was shown profitably in both these settings.

SARTRE

The SARTRE system by Rubin and Watson[37] uses case-based reasoning for playing
two-player limit Texas Hold’em. The SARTRE system represents a move from quan-
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titative to more qualitative features for representing a case, compared to their previous
research on CASPER. SARTRE uses three indexed features to determine the solution of
a case. These features represent; the previous betting for the current round, the strength
of SARTRE’s current hand and information about the state of the community cards.

The previous betting in the round feature represents a sequence of actions made up to
the given point of time. E.g. if SARTRE raises (r), the opponent re-raises and SARTRE
chooses to call (c), this would be represented as rrc. SARTRE is designed for two-player
poker, which means that the size of these betting patterns will be drastically reduced
compared to a table with ten players. These betting patterns are represented by what they
refer to as a betting tree, which is a tree structure representing each action in a hierarchical
fashion. The similarity for this feature is calculated by comparing the betting path in the
tree. If two betting paths are equal they will receive a similarity of 1.0.

The feature SARTRE uses to represent the strength of his own hand is a categorical
feature, which at the preflop stage maps SARTRE’s hole cards into a category, while
using the best five card combination of the hole cards and the community cards at the flop
stage. A simple rule-based reasoner is used to map the cards into the correct category.
The categories represent the standard poker hand types, such as one pair, two pair, three
of a kind, but also hands with alot of potential to improve, such as straight and flush draws
(explained in section 5.3.3).

The final indexed feature, describing the community cards, is also represented through
categories. These categories attempt to mimic the information a human player would
extract from the current community cards. For example would the category Is-Straight-
Possible and Is-Straight-Highly-Possible be used to represents community cards where
there are three and four consecutive card values showing. Both of the categorical features
were compared with a similarity measure assigning 1.0 to exact matches and 0.0 other-
wise. SARTRE’s case-base was generated by analyzing the game logs of previous AAAI
Computer Poker Competitions, and uses approximately 250,000 cases for each stage of
the game.

SARTRE presents the solution of a case as an action triplet, representing a probability
distribution over the betting decisions the system should select in the given situation. The
outcome of a case is presented in the same manner, with a triplet describing the aver-
age quantitative loss or profit that has been observed in the past given the three betting
decisions. Rubin and Watson also experimented with different re-use policies, but con-
cluded that the most profitable one was the majority-voting re-use policy, which selects
the solution that is present amongst the majority of the retrieved cases.

CBR Comparison

Both CASPER and CASEY rely on similiar indexed features for descibing the state of
the game at a particular time. These features are recognized as important for making
betting decisions by poker experts, and also made more available for AI research through
the Meerkat library developed by the UoA. The CBR part of the architecture proposed in
this thesis will also base its reasoning on most of these features. The SARTRE system is
intended for two-player Texas Hold’em and is therefore the most different to our proposed
architecture. Although SARTRE shares few commonalities with the CBR component
proposed in this thesis, some of its ideas are similar to the information represented in our
proposed BN.
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The case-based reasoner in this thesis incorporates ideas from all of the research de-
scribed in this section. Both CASPER and CASEY relie on similiar indexed features for
descibing the state of the game at a particular time. These features are recognized as im-
portant for making betting decisions by poker experts, and also made more available for
AI research through the Meerkat library developed by the UoA. The CBR system pro-
posed in chapter 5 has alot of similarities in the features used for representing the cases in
the system. The retrieval phase, including local similarity measures and weighting of the
various features in the case are heavily inspired by the research done with the CASPER
system.

The proposed case-based reasoner can be viewed as a integration of of what is believed
to be the strengths of each of the CASEY and CASPER systems. It shares the idea of
separating between cases at the different stages of the game, and storing them into separate
case-bases, although CASEY uses two, while CASPER uses four case-bases, one for each
stage. CASPER’s reuse policy is probabilistic, with a higher percentage of selecting the
action represented in most of the retrieved similar cases, while CASEY attempts to use
the outcome of a solution to choose the best solution. Both CASEY and SARTRE report
problems with using outcome to select an action, because of the luck element involved in
poker.

Our CBR part of this system attempts to overcome the problems introduced through
the luck element when using outcome to choose actions, because choosing the most prof-
itable action is the way good poker players decide on what actions to take. Our CBR
component attempts to overcome this problem by introducing domain knowledge in the
revise step of the CBR cycle, to prohibit cases representing bad solutions getting retained
with a positive outcome due to luck, or the other way around. This is discussed further in
section 5.4.5.

The architecture proposed in this thesis also distinguishes itself from related research
of applying CBR to poker by including some form of opponent modeling. This is intro-
duced by the Bayesian network in this architecture, which involves some new features
in the case representation, and a better estimator of features involving representing the
strength and potential improvment of a set of cards.
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CHAPTER 5

Design

This chapter describes the design of our proposed architecture. The three sections
describing the comparison of how this architecture relates to other research in; combining
CBR and BN, BN in poker and CBR in poker describes the foundation on which this
architecture was built.

Section 5.1 describes the domain and the general structure and interaction in the ar-
chitecture. The subsequent three sections describe each of the three components in the
architecture.

5.1 System overview
This section gives an overview of our proposed architecture illustrated in figure 5.1. The
purpose of this section is to illustrate the interaction between the various components in
the architecture without going into to much detail. The following sections (5.2 through
5.4) will then give a detailed description on how each of these components contribute to
the overall architecture outlined here. The system developed through this research was
nicknamed BayCaRP (Bayesian Case-based Reasoner for Poker).

The domain chosen for this project is Texas Hold’em Poker with fixed-limit betting.
Fixed-limit betting is easier for an automated poker bot than no-limit because there is a
fixed betting amount, which means that the bot doesn’t have to focus on the right amount
of money to bet at a certain situation. Fixed-limit is also easier because all-in bets are not
allowed, which prevents the bot from losing all its money in one single action. Fixed-limit
also makes bluffing harder because it isn’t possible to throw a large amount of money into
the pot to scare opponents into folding. These reasons make the fixed-limit betting more
attractive as a test domain for this project than no-limit, because the restriction on betting
size simplifies some parts of the architecture. The architecture can be extended for no-
limit play, but that would require more work on extending the architecture for handling
various sized bets.

The architecture consists of two well known reasoning methods, namely Case-based
reasoning (CBR) and Bayesian Networks (BN), and an interface component for extract-
ing information from the game environment. In addition, the architecture also contains a
component containing rules for transforming information extracted by the interface into
states used by the BN and functions used to calculate various features for the CBR com-
ponent. This component will for the rest of this research be referred to as the Rule-based
reasoner (RBR).
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The domain knowledge required by the system is achieved through the BN and the
transformation rules and functions in the RBR component. Figure 5.1 illustrates the in-
teraction between these components. The variables used to describe the architecture are
based on the framework proposed by Bruland[4] and have the following meaning in our
architecture:

• Ii is an input variable used by the system. The inputs are extracted from the poker
client through the interface component as illustrated in figure 5.1.

• A j is the result of applying some transformation to an input variable in a way that is
required by the recieving component. This architecture performs the transformation
by applying RBR to determine what the given input corresponds to in the two other
components.

• D is a variable derived by the Bayesian network. In this architecture it represents
the solution to a sub-task inferred by the Bayesian network, which is required by
the case-based reasoner. The variable marked D* in figure 5.1 refers to situations
where the variable derived from the BN is used for some kind of calculations before
its used as input to the CBR component.

• C is the final output variable acquired by the execution of the CBR system. In this
architecture the CBR system is the master, which uses the inputs from the two other
components in the process of achieving the most suitable final output of the system.

NEW CASE

I1 I2
I3

POKER CLIENT

RBR

INTERFACE I4

A2A1

I3
I4
D*
D

BN

CBR

Figure 5.1: Overall system architecture

The interface component has a sole purpose of acting as a middle layer between the
poker client, where the game is being played, and the rest of the system. Playing poker
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at different locations requires different software, poker clients, and therefore also differ-
ent interfacing mechanisms. The interfacing mechanism used in this research, described
in section 3.3, will be further detailed in the implementation chapter 6. The interface
component extracts information required by our system from the poker software, and ex-
ecutes the actions proposed by our system when acting as a fully automated poker playing
software.

The rule-based reasoner acts as a middle layer between the interface and the rest of
the system, but also between the BN and the CBR system itself. It takes some input from
one component and applies rules to it, to determine the correct output that should be given
to the receiving component. When used between the interface and the BN, it is mainly
used to simplify the information extracted from the game environment into categories
used by the Bayesian network. As illustrated in figure 5.1 the RBR component also takes
a variable derived from the BN and processes it in a way that is required by the CBR
system.

The Bayesian network in this architecture is mainly concerned with a sub-task of the
reasoning process required by a good poker player. The focus of this sub-task is to infer
information about the opponent’s based on the observable state of the game, such as the
opponents actions and the community cards. More specifically, the BN can be used to
predict the current cards the opponent is holding and future actions the opponent is likely
to take. This prediction, constituting the D or D* variable described above, is then used
either directly as a input by the CBR system, or indirectly through the RBR component.

The case-based reasoner is the main component in this system. It uses the input from
all the other components to make an informed betting decision, the final output variable
C. The case-based reasoner may also use the RBR and BN component in other parts of
its reasoning process. Due to the fact that poker involves an element of luck, a person can
make bad poker decisions and still win short-term. To prohibit the case-base of filling up
with cases representing bad poker decisions that still would represent as a positive case in
the case-base, some form of domain knowledge should be applied in the revise and retain
step of the CBR cycle. Rounds that have gone to showdown can be analyzed through
domain knowledge from a hindsight perspective, to determine if the success or failure
of the applied solutions was due to luck or skill. The hindsight perspective of when a
hand has continued to showdown involves knowledge about the opponents hand at any
state of the game, and can therefore be used in some degree to determine the skill or
luck involved. In this architecture we suggest an approach that overcomes the limitation
of perfect knowledge obtained when the players go to showdown to assess the realistic
outcome of an action. The roles of the two main reasoning methodologies are summarized
below.

The BN

1. The Bayesian network uses information observed by the opponent’s playing behav-
ior relating to the state of the game to predict the opponent’s cards. This involves
predicting the opponent’s hand group and hand type which is explained further in
section 5.3.

The CBR
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1. The case-based reasoner uses the prediction from the BN combined with other fea-
tures describing the state of the game to make the final betting decision which is
applied to the game environment. The case-based reasoner is described in further
detail in section 5.4.

5.2 Rules & Functions
The rule-based reasoner contains its domain knowledge through a set of defined rules
and functions, which are used to calculate or transform the input it receives into useful
information that the other components need. The rule-based reasoner is also used to
analyze the outcome of an applied solution in the revise step of the CBR component.
Figure 5.2 illustrates the former function, where the RBR component is used between the
other components.

A) B)

Figure 5.2: RBR interacting with: (a) The BN (b) Between the BN and CBR

Figure 5.2(a) shows an example of how rule-based reasoning is used to turn some
input from the interface into the correct state used by the Bayesian network. The Bayesian
network uses the RBR component to a large extent, since none of the states in the network
can be directly inputted from the interface. The RBR is among other things used to
classify a sequence of actions, or a action under a specific circumstance as one of the
actions described in section 2.3.7. Figure 5.2(a) illustrates how the RBR component is
used to simplify or categorize the community cards into the correct state of the board
node.

Figure 5.2(b) shows how the RBR takes part of the information derived from the BN
and computes something that the CBR system needs. This example takes the opponents
predicted hand groups, a grouping of possible hole cards the opponent may hold together
with the community cards as input to the RBR component. The RBR then applies a

42



function to compute a numeric measure representing the players relative hand strength
(described further in section 5.4.1) relative to the opponents predicted hand groups.

5.3 The Bayesian Network

5.3.1 General
The Bayesian network is the second source of general domain knowledge in the system. It
models the variables and relationships between these variables with the goal of inferring
the opponents hand type through observable information such as the opponent’s actions.
The nodes and states in the BN are used to represent information that is considered im-
portant for inferring an opponent’s hand type. The choice of what variables the network
should represent was modeled through expert knowledge to mimic the knowledge that
poker players use to infer information about an opponent’s most likely cards.

The topology of the network was also defined through expert knowledge, although
there exist several ways to learn the structure of the network automatically from data, so
this would also have been an option. Still, after the variables of interest were defined,
the dependencies between these were pretty straight forward. The dependencies in the
network represent how one variable affects our belief of another. For example observing
an action from an opponent changes our belief of what cards he might have. The node
representing the opponent’s action will therefore be a parent node for the one that is used
to represent the opponent’s cards.

The parameters of the network were learned automatically from data, by observing
the bots in Poker Academy Pro and extracting the variables of interest. The data used to
train the network consists exclusively of poker rounds that go all the way to showdown.
The process of collecting this data is explained in further detail in section 6.1.1. The next
section describes the structure and nodes of the BN.

5.3.2 Network structure & nodes
For simplicity, the BN can be viewed as consisting of four parts, each part representing the
state of the game at a current stage. This is done to achieve some continuity between the
four stages of the game, and to use as much information as possible to predict the oppo-
nent’s hand. When modeled in this way the whole available action sequence an opponent
has performed will influence the hand type prediction. Representing the opponent’s hand
at any stage of the game is also for easy integration with the CBR system.

The preflop stage is modeled through what is called the PFR, VP, Position, Action
and HandGroup nodes, which are explained in more detail below. As shown in figure
5.3 each of the four nodes influence the HandGroup node, which represent well known
information for inferring something about an opponent’s likely holdings in the preflop
stage.

PFR is an acronym for preflop raises and is a numeric measure for describing how
many percent of the times a player performs a raise in the preflop stage. VPIP is equally
an acronym for voluntarily put money in pot and is used to describe the percentage of
times the player performs a call or raise. Both of these measures are used to get some
idea of how many cards the opponent plays, and how he plays them. For example if a
player has a PFR ratio of 10%, we can expect him to have one of the 10% best possible
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Figure 5.3: The preflop part of the BN

hole cards when he performs a raise. The states of these nodes in the network represent
a discretization of these intervals, which means that the state a5_10 in the PFR node
represents a player that raises 5–10% preflop.

The Position node describes where on the table the acting player sits in relation to
the dealer. Position is an important factor for deciding how to play a certain set of cards,
because in a favorable position you get to observe what many players do before you. E.g.
if you’re in a late position and everyone folds you can play a broader range of cards than
you would in an early position, because in the early position there is a greater chance that
someone raises the pot after you have acted. For these reasons position is an important
factor for predicting an opponent’s hole cards. Poker terminology has different terms
for referring to each position at the table, while the Bayesian network illustrated here
categorizes these positions into four states. Each of these four states represent positions
where players are most likely to play their cards in a similar fashion.

The action a player performs in a specific situation is one of the most important factors
for predicting an opponent’s cards. This is because when a player performs an action, he
chooses the action that he thinks is ideal in relation to the information he has available.
Looked at in this way, we can view an opponent’s action as a window into what he believes
about his current cards. For this reason the action nodes in the BN represent actions on
a more specific level than the regular poker actions. These actions, which constitute the
states in the action nodes, where described in section 2.3.7 and represent actions being
used in specific situations. Revisiting the earlier thought about an action being a window
into the opponent’s belief, we can infer more information from this action when the action
states are more specific. E.g when the player caps the betting preflop, we can expect him
to hold one of the very high ranking hole cards. If we would simply represent this as
a raise in the BN, we could not make this assumption. Another example would be the
variations of the simple bet action. When a player performs a donkbet, he might have a
decent hand at the current stage, but believes it is likely to be beat at a later stage. So
in fear of allowing the other players to check, and observe a new card for free, he bets
and forces them to pay to continue playing. If this was represented as a bet in the BN,
we could not distinguish this kind of behavior from another type of bet. The BN uses the
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most aggressive action performed by the player in the particular round. This means that
if a player performs a threebet, and then calls the cap action of another player, this would
be represented as a ThreeBet.

The HandGroup node is an extension of the eight hand groupings proposed by Sklan-
sky and Malmuth’s[39]. The idea behind these groups of hands, is that each set of cards in
one of these groups are normally played similarly. Assuming this is correct, we can infer
which group of hands the opponent is most likely holding by observing his style of play.
This is modeled through the previously described nodes that influence the HandGroup
node. The extension to Sklansky and Malmuth’s hand groupings is an additonal group of
hands, based on personal experience. The state referring to the tenth hand group is just a
collection of all the other hands not represented by the other hand groups.

The stages after the preflop, referred to as postflop, are modeled through an action
node, a hand type node and a node for representing the community cards(the board).
The postflop part of the BN is illustrated in figure 5.6. The four action nodes in the
network represent the four stages of the game, where each action node is dependent on
the previous action taken. The preflop action node distinguishes itself from the others
with fewer possible states, because some of the states are only possible in the postflop
stages.

Figure 5.4: The postflop part of the BN

The three HandType nodes represent the opponent’s hand type at a specific stage of
the game, such as two pair or three of a kind. In contrast to the HandGroup node, they
represent types of hands, which means the two hole cards combined with the community
cards, whereas the states in the HandGroup node represent groupings of possible hole
cards. The HandType node at a given stage is conditionally independent of the nodes in
the previous stage, given the previous hand node(may be HandGroup or HandType), the
action at the current stage, and the node representing the cards on the board.
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Table 5.1 shows some of the less intuitive states of the hand type nodes together with
examples of hole cards and community cards that would be represented as this state.
Remember that the hole cards combined with the community cards form the hand type,
which means that for the sake of the hand type classification, it is irrelevant if the cards
that form the hand type are among the community cards or the hole cards. The term
kicker, used in the description of the first two states in the table, refers to the leftover
cards that were not directly used in the hand type. This means that if the player has a pair
of aces, he has three leftover cards considering that Texas hold’em uses the best five cards
to declare a winner. These three cards are then referred to as the player’s kickers. If one
of these cards has a rank of ten or above, this would count as a strong kicker, while the
opposite would be a weak kicker. If two opposing players have the same hand type, then
the kickers (if there are any) would determine the winner. E.g. a hand type that consists of
five cards such as flush or straights do not have any kickers. The reason for only including
the kicker on the two highest pairs, kings (K) and aces (A), is that these are the ones that
are most frequently settled based on the value of the kicker. Kickers could also have been
included on pairs of jacks (J) and queens (Q), but this was omitted to reduce the number
of states in the hand type nodes and was considered of less importance.

Hand type Hole cards Community cards Description

AcePairStrong ArK♣ A♠ 8♣ 9r Pair of aces with a strong kicker

KingPairWeak K♠ 5♠ Kr 8r 6♣ Pair of kings with a weak kicker

QueenPair Q♠Qr 10r 2♠ 6♣ Pair of queens

JackPair J♠ 10♠ JrK♣ 7♠ Pair of jacks

MidPair 9♠ 9♣ A♠Qr 8r Pair in the range of 88-TT(Tens)

LowPair 6♠ 6♣ A♠Qr 8r Pair in the range of 22-77

Table 5.1: Example states of the Hand type node(s)

There are three nodes for representing the community cards for each of the three
stages after the preflop. The node named Board in figure 5.6 describes the community
cards dealt at the flop stage. The states in this node represent an abstraction of some of
the important features of the community cards, such as the state ALow refers to a board
where an ace is present, but the rest of the cards are considered to be of low rank. The
two other nodes, named BoardChange, describe how the community cards change when
the turn and river cads appear. An example of this would be if the turn card is an ace,
and the community cards previously didn’t contain an ace, this would be labeled as the
state FirstA, which refers to the scenario where the new card introduced the first ace to the
board. If the ace on the turn is the second ace on the board, then the board change would
be HighPair, representing a pair with high rank on the board. This way of representing
the change of the community cards combined with observing a sequence of actions (one
for each stage), is a good predictor for an opponent’s hand type. E.g. in a case where the
probability is high that an opponent is holding cards from a hand group with high ranking
cards, such as aces, and starts betting aggressively when the first ace appears, there is a
high likelihood that he is holding a pair of aces.
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Table 5.1 continues with some of the community cards used as examples in table 5.2,
and shows how these would be classified in the board node. The table also shows how the
node for representing the change in the community cards at the turn stage would classify
the new card based on the cards that were present at the flop stage. The structure of the
full implemented BN can be found in Appendix D.

Flop cards Board Turn card Board change Turn

A♠ 8♣ 9r ALow K♠ FirstK

Kr 8r 6♣ KLow K♠ HighPair

10r 2♠ 6♣ Low Q♣ FirstQ

JrK♣ 7♠ KHigh 7♣ LowPair

Table 5.2: Example states in the board & board change node

Section 5.3.3 describes how the BN could be extended to account for the opponent’s
ability of having a partial hand. The term partial hands will be used to describe hands
that are currently incomplete and need further cards to evolve into a real hand type. For
example if the players hole cards combined with the community cards currently constitute
four cards of spades, then he only needs one more spade to evolve into a flush. Another
example would be if the player’s hole cards combined with the community cards form a
sequence of length four, then he only needs one more card in the sequence to evolve into
a straight. Partial hands, or drawing hands, represent incomplete hands with potential of
becoming very strong hand types if they are completed, which is an important aspect of
Texas Hold’em Poker.

5.3.3 BN extension for partial hand prediction
Figure 5.5 illustrates the extended part of the BN with the goal of inferring information
about the opponent’s possible partial hands. This part of the BN was designed in the same
manner as the original BN, with a focus on representing how the game state changes from
one stage to another.

The first thing to note is that similar to the original network’s way of representing the
community cards, and change in these, the extension models the same, only in respect to
how the community card relates to a possible straight or flush. The reason for modeling
this in a separate set of nodes, is that a set of community cards can contain both a flush
draw, a straight draw, and one of the states in the Board node in figure 5.6 simultaneously.
And as states in the BN are mutually exclusive, we needed a separate set of nodes for
modelling this aspect of the game.

The FlushBoardFlop, FlushChangeTurn and FlushChangeRiver nodes, represent how
the community cards relate to a possible flush. The simplest of these, the FlushBoardFlop
node contains three possible states; None, Draw and Possible as illustrated in the figure.
To explain these states, remember the term suit described in section 2.3.2. Each of these
states represent how many cards of the same suit is currently displayed among the com-
munity cards. The None state, representing no draw, refers to a set of community cards
where there is no more than one card of each suite. The draw states means that the oppo-
nent can have a partial or drawing flush hand with these community cards, which would
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Figure 5.5: The extension to the BN

be the case if there exist two cards of the same suite among the community cards. The
state Possible is true, if there are three cards of the same suit among the cards on the board.
This means that the opponent’s hand can possibly have evolved from a partial flush to a
completed flush with these board cards.

The two other nodes represent the change of the board in relation to the case that was
true at the previous stage. E.g. if the board was at the None state at the flop, and the
turn card revealed a card with an equal suit as one of the cards at the flop, then the state
None_Draw would be true for the FlushChangeTurn node, meaning that a flush draw is
now possible given the new card. These two nodes also have an additional state, the Likely
state, representing four cards of the same suit. The FlushChangeRiver node additionally
contains a state called Flush, meaning that a full flush is presented by the community
cards. This state is only possible at the river stage, because a flush is five cards of the
same suit, and the 5th card is displayed at the river stage. Similar to the Likely state,
which requires four community cards, and is therefore not possible at the flop stage.

The straight nodes work in the exact same manner, only that they use the rank of the
cards to determine the straight potential of the board. Meaning that a board with a jack,
queen and king would represent the Possible state in the StraightBoardFlop node, because
it contains three cards in a sequence. The difference between flush and straight draws is
that straight draws are a bit harder to determine, because a player may have an straight
even if there is two holes in the sequence. To exemplify this consider a board with a ten,
queen and ace. A player could still have a straight here, because he could have a jack and
a king as his hole cards. Therefore, the data used to train this network, consisted only of
straight draws in its simplest form, meaning a sequence without holes.

The last two nodes in figure 5.5, PartialHandFlop and PartialHandTurn, represents
the opponent’s partial hands. These are as the hand type nodes inferred from the observed
evidence. If the opponent has a flush draw, four cards of the same suit, this would be
represented as the FlushDraw in the partial hand nodes, while an opponent with both a
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straight- and a flush-draw would be represented through the FlushD_StraightD state. The
reason for not including a node for representing a partial hand at the river state, is that if
the partial hand is not completed at that time, the hand will not further improve, and just
be represented as a busted hand in the HandTypeFinal node.

This network is integrated with the original BN through the partial hand nodes. The
partial hand node depends on the action at the particular state, in the same manner as the
hand type nodes. The partial node also influences the hand type node at the next stage,
meaning that if there is a high probability that the opponent is holding a flush draw, then
its more likely that he would have a complete flush at the next stage.

This part of the BN was not implemented due to reasons discussed in section 8.1.2.

5.3.4 The BN-CBR interaction
The BN component’s main task, is as mentioned previously, inferring opponent’s hand
types. This is done by inserting evidence into the network, applying an algorithm for
probabilistic inference and observing the posterior probabilities for the target nodes. The
three hand type nodes together with the hand group node are the target nodes in this
network. Each of the hand type nodes are used at different stages of the game with the
information observed up to that point of time. Figure 5.6 shows how the hand type prob-
abilities are used in the acquisition of a new case in the CBR system. As illustrated in the
figure, the CBR system takes the three states of the hand type node with highes probabil-
ities and adds them to its case description. If there are several opponents still active in the
game, the process of updating the Bayesian network is performed ones for each opponent,
and the top three states of the combined runs of the BN are used as inputs in the case.

Figure 5.6: Top three opponent hand types prediction to case description

The second task of the BN is to infer a probable range of cards the opponent or op-
ponents may currently possess. This is achieved through the HandGroup node, in the
same manner as the HandType nodes. In contrast to the HandType nodes, the states in the
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HandGroup node represent groupings of possible hole cards instead of hand types. The
four most probable hand groups are used to calculate a numeric measure for representing
the strength of the players cards in relation to the most probable opponent cards, referred
to as relative hand strength in section 5.4.1 and described in more detail in section 6.2.1.
Another possibility would be to use a threshold value to decide the number of hand groups
to use for further calculation. This will be discussed further in section 8.1.1.

5.4 The Case-based reasoner
The case-based reasoner is the main component responsible for the decision making in
the system. It generates a new case composed of features extracted directly through the
interface and features inferred by the Bayesian network to retrieve cases similar to the
target case, which is a description of the current problem that needs solving. The target
case, or problem the system is currently facing, is a set of features describing the poker
game at a time where the system is required to make a betting decision. Each case in the
case-base has a solution, which is the betting decision made in that specific situation, and
an outcome, which describes the outcome of applying the solution to the given situation.
Each of the three components of a case, the problem description, solution and outcome
are detailed further in section 5.4.1.

The CBR component incorporates all of the four sub-tasks outlined by Aamodt[2]; re-
trieve, reuse, revise and retain. How the proposed design applies these tasks is explained
in section 5.4.3 through 5.4.6. Since the cases require an observed outcome before they
are retained into the case-base, they are retained into a temporary storage until the out-
come is available. The outcome for a sequence of cases (betting decisions) will first
become available when the player folds, or when the round goes to showdown.

5.4.1 Case representation
The cases represent the situation of the game at the time the system is required to make
a betting decision. In contrast, the cases could have represented a sequence of situations,
or a more general representation of a whole stage, or even a whole round. The reason for
choosing a case as a representation of the required information for making a single betting
decision, compared to a case representing information required to lay out a strategy for
a sequence of actions is the stochastic element poker introduces by its community cards.
This makes it hard to plan to far ahead, because a decent hand at one stage may not be so
good at a later stage, depending on what cards the board reveals.

The cases are stored into four separate case-bases, one for each stage of the game. This
is possible based on the fact that a case represents information needed to make a single
betting decision, and that cases retained from the various stages shouldn’t be treated as
similar.

Figure 5.7 illustrates a case, with its three components, a problem description, solution
and outcome. The first component of the case, the problem description, contains a set
of features that are considered important when making a betting decision. The features
marked with colors are affected by, or directly inputted from the BN. The red features
illustrate the former, where the BN output is used to perform calculations, which are then
used as input in the problem description, while the blue features are directly inputted from
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Figure 5.7: The case representation of: (a) Preflop cases (b) Postflop cases

the BN. The two other components of a case are the solution of the case and the outcome
of applying the solution to the new case. These features are described further here:

• Number of players: is a numeric measure describing the number of players that
are still playing at the beginning of each stage. This affects the betting decision in
a way that you would play a lesser number of cards, than you would against fewer
opponents, because the higher number of players the more likely that someone has
better cards than you.

• Players in hand: is a numeric measure describing how many players have com-
mitted the minimum amount of money to still be active in the round. If many of
the already acted players have committed money to the pot, this would mean that
there are several players still believing that they can win the pot, in contrast to if
one player bet and the rest folded.

• Players to act: is a numeric measure describing how many players are left to act
after you have acted. The more players that act after you, the higher the likelihood
is that someone raises your bet.

• Relative position: is a numeric measure describing in what order the player acts
compared to the other players. Position is an important feature when making a
betting decision, since you get to observe what other players do. If you have a good
position to a player, which means you act after that player, you will also act after
that player in future stages, which is obviously profitable.

• Bets committed: is a numeric measure describing the number of bets the player has
committed to the pot at the current stage. This feature will provide some continuity
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between cases, because if the player already has committed a lot of money to the
pot, he should be less likely to fold to an opponent bet. If this feature was not
present in the case, the player would treat every situation as a situation where he
has committed no money to the pot, and would be more likely to fold.

• Bets to call: is a numeric measure describing the number of bets the player has to
commit to the pot to still be able to participate in the round.

• Pot odds: is a numeric measure describing the odds you get at the time of the
betting decision. If the bet required to continue playing is 1$ and the total pot is 5$
you get a 5-to-1 pot odds. This is a major factor when faced with a betting decision,
because if you believe that you have a greater chance than 20% to win, you will
have a positive expected value in the long run.

• Bets total: is a numeric measure describing the total number of bets the player
has committed up to the time of the betting decision. As with the bets committed
feature, this feature provides some continuity between cases from different stages
of the game.

• Hand rank/Relative hand strength: is a numeric measure describing how strong
the hand is. The hand rank feature is only used for the preflop cases, and ranks
the 169 possible hole cards based on their strength. The relative hand strength is
used for the postflop stages, and bases its calculations on the hole cards combined
with the community cards and compares them to a set of other possible cards. The
set of cards that are used to compare with is a set of handgroups inputted from the
Bayesian network, which constitute hands the opponent has a high probability of
holding. This provides a much more realistic hand strength measure than computing
it in relation to all possible cards, because a lot of the cards are probably already
folded.

• Opponent hand type: is a hand type describing the opponent’s most likely hand
type at the current stage. A case contains three of these features, which represent
the top three predictions by the Bayesian network.

• Positive/Negative potential: is a numeric measure describing the potential the
hand has for improving. The positive potential represents the probability of cur-
rently having a worse hand which improves to a winning hand after new commu-
nity cards are dealt, while the negative potential represents the opposite scenario.
These measures are also affected by the input from the BN, since they compute the
measure in relation to a set of cards, namely the possible cards in the hand groups
inputted form the BN.

• Solution: The solution of a case is a single betting action. The solution space is
farily limited, since there are only five allowed actions in poker; fold, check, call,
raise and bet.

• Outcome: The outcome of a case represents the money lost or earned by applying
the solution to the problem. In other words, the cost of the action applied in the
given situation.
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There exist a few minor differences between the cases from the different stages of
the poker game as illustrated in figure 5.7. The biggest of these is that the preflop cases
do not use any of the features inputted from the BN. The reason for this is that there is
little information available in the preflop stage compared to the other stages. The cases in
the CBR system already encompass the important features for making a preflop betting
decision. The preflop cases do not contain the hand potential feature, since there are no
available community cards, and the hand rank feature is used to represent the strength of
the hand. Since there has been no previous round at this stage, the total bets feature is not
required either. The only difference between the postflop cases, is that the cases from the
river stage does not contain any positive or negative potential, because there are no future
community cards. Section 6.3 shows an example of an instantiated case.

5.4.2 Case-base
The initial case-base was acquired by observing instances of Pokibot’s and Simbot’s play-
ing amongst themselves. This was possible through the Poker Academy Pro software, and
the process of this data acquisition is described further in section 6.1.2. Approximately
10.000 rounds of play was observed and used to generate the initial case-base. Each action
performed by one of the bots, in a certain context and with a certain outcome, was used
as a case in the case-base. The stage the action was performed in was used to decide what
case-base it should be stored in. Table 5.3 shows the number of cases that was retained
into the case-base used for a given stage of the game. The preflop case-base was initialy
larger, but was reduced in size to reduce the time needed in the retrieval step. Since the
preflop cases are the simplest of the four case-types, this could be done without affecting
the system performance.

Stage Total cases

Preflop 34.350

Flop 30.297

Turn 19.305

River 14.816

Table 5.3: Size of the Case-base(s)

Both Pokibot and Simbot have been proven to be profitable against human competition
for play money[6], and are easily accessible through the Poker Academy Pro software.
The quality of the knowledge acquired by observing these play, is believed to be of greater
quality than e.g. observing humans play for play money. Also human players may vary
greatly in skill level which could potentially reduce the quality of the case-base. These
reasons lead us to using Pokibot’s and Simbot’s for the case-base generation, which was
easily accessible and guaranteed good quality for the cases in the case-base.

5.4.3 Retrieve
The case retrieval is performed when the system is faced with a betting decision. This
is done by acquiring all the required information illustrated in the problem description in
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figure 5.7 and creating a new case which is used for the retrieval process. Once the new
case is constructed, the retrieval of similar cases begins by computing the similarity for
all the cases in the case-base with the k-nearest neighbor algorithm. The local similarity
metrics are described in section 5.4.3, while the global similarity measure is a weighted
sum over all of the local similarities. The features considered the most important when
making a betting decision are weighted higher than he ones that are less important. The
weights used for this research is described in section 5.4.3.

After the initial similarity measure has been calculated for the whole case-base, the
cases which have a similarity above a specified threshold are selected for further process-
ing in the reuse step of the cycle.

Weights

When developing the CASPER system, Rubin[40] researched how different weights af-
fected the system performance, and attempted to find an optimal set of weights. The
weights in this research are based on the weights with the best performance in the CASPER
system for the features that are common to our system. Figure 5.8 illustrates the weights
for the cases used in each stage of the game. The default weight value is 5, and the fea-
tures that are believed to be more important at the particular stage of the game are given
a higher weight value. The weights may differ from stage to stage, which represents the
belief that the given feature is of greater importance in the stage where it is given a higher
value.

Figure 5.8: Feature weights for each case type

If the given feature is not present for the case-type, this is marked as a - in the figure.
The opponent hand type features inputted from the BN were given a default weight value
of 5, since they encompass three features in a case. Further work should be done on this
area, which is discussed in section 9.1.
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Similarity Metrics

This section describes the similarity metrics used to compare cases in the case-base. As
the majority of the features in the cases are numeric, this section will mainly focus on
variations of numeric similarity measures.

Euclidian distance similarity This similarity measure computes the similarity of two
features based on their distance inside an interval. This similarity acts as a linearly de-
creasing function as shown in figure 5.9, where the similarity value (y-axis) decreases as
the distance between the two values (x-axis) increases. The mathematical representation
of this similarity measure is:

S i j = 1 −
|x1 − x2|

MAX_DIFF

Figure 5.9: The Euclidian distance similarity metric

x1 represents the feature in the new case, while x2 is the feature of a given case in the
case-base. MAX_DIFF is the length of the interval, meaning the maximum difference the
two values can have. This similarity metric was used for the following attributes:

• Number of players

• Players in hand

• Players yet to act

• Relative position

• Bets total

• Pot odds
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Expontential decay similarity The exponential decay similarity metric was provided
for features where small differences in values should provide less similarities than they
would have received by using the Euclidian distance similarity metric. This was used for
features where small differences in values have a big effect on how similar two situations
are. The hand rank feature of the preflop cases is one such example, where small differ-
ences in the rank may affect the way this type of cards should be played. The mathematical
representation of this similarity measure is as follows:

S i j = e−k( |x1−x2 |
MAX_DIFF )

Figure 5.10: The exponential decay similarity metric

k is a constant which affects the rate of decay in the similarity. The greater the value
k the faster the similarity will decay. Figure 5.10 shows the exponential decay similarity
metric with different k-values. To better illustrate the need for the exponential decay
metric, consider Sklansky and Malmuth’s hand groups described in the design of the BN.
These hand groups represent hole cards that are often played in a similar fashion. Take for
example AA from hand group 1, which has a rand rank of 1, and compare that to JTs from
hand group 3 with a hand rank of 18. The hand rank feature has a maximum difference of
168, which would lead these two to have a distance of approximately 0.1 in this interval.
By observing figure 5.9 this would have a similarity of approximately 0.9, while with an
exponential decay constant of k=4, the resulting similarity would be 0.67. As highlighted
by this example the exponential decay similarity metric is required to drastically reduce
the similarity between hole cards that should not be considered too similar. This metric
was also used for other features with the same characteristics:

• Relative hand strength with k=3

• Positive potential with k=2

• Negative potential with k=2
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• Bets to call with k=2

• Bets committed with k=4

Bayesian table similarity The Bayesian table similarity is a local similarity measure
used for the three opponend hand type features. The similarity between the top three
hand types is based on the difference in the probability outputted from the BN for each
hand type. The hand types which are not among the three hand types in a given situation
will be given a similarity of 0. The mathematical representation of this similarity measure
is:

S i j = 1 − |Prob(x) − Prob(y)|

This similarity measure results in a decreasing similarity when the probability for a
certain hand type is high compared to the others, while an increase in similarity when the
difference in probability for two hand types is low. Table 5.4 shows an example of how
this similarity measure would look like if the BN inferred the top three opponent hand
types to be : FullHouse (39%), ThreeOfAKind (27%) and TwoPair (24%) for a new case
(query).

Case-base hand type

Query hand type FullHouse ThreeOfAKind TwoPair

FullHouse 1.00 0.88 0.85

ThreeOfAKind 0.88 1.00 0.97

TwoPair 0.85 0.97 1.00

Table 5.4: Example of the Bayesian similarity measure

This similarity measure is used for each of the three features used to represent the top
three opponent hand types in a case. This example would give a similarity of 1.00 for
each case in the case-base that have FullHouse as its most likely hand group (represented
in the opponent hand type 1 feature), while cases that have ThreeOfAKind or TwoPair in
the same position would be given a similarity of 0.88 and 0.85 respectively. If, in contrast,
a given case in the case-base has ThreeOfAKind as its most likely and FullHouse as its
second most likely, this would result in a similarity of 0.88 for both features.

5.4.4 Reuse
The reuse task uses the cases selected in the retrieve task to calculate the sum of outcomes
of each of the case solutions present amongst the selected cases, as illustrated in figure
5.11. The solution that has the most profitable outcome from the selected cases will be
reused as a solution for the new case, which is marked with the color blue in the figure.
The idea behind applying the solution with the best outcome to the new case is to mimic
the general idea in poker of maximizing the profit over the long run. The selected cases
represent previous similar experiences where different solutions have been applied. The
action which has maximized the winnings in the past should be a good predictor of what
action maximizes the profit in the future.
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The outcome measure could be the cost of an action, being positive when the ac-
tion lead to a win and negative otherwise, or it could be more complex like the concept
described in the revise step.

Figure 5.11: The reuse step

5.4.5 Revise
The revise step consists of two sub-tasks; evaluating the case solution generated by reuse
and repairing the solution if it was unsuccessful. When using the system as a fully auto-
mated poker bot, testing of the solution is performed when the bot applies the action to
the game environment. Since the outcome of applying the solution first becomes available
when the bot folds, or when the round goes to showdown, the evaluation of the solution
has to wait until the outcome becomes observable. One round of poker contains several
actions, which leads to several runs of the CBR cycle before the outcome becomes avail-
able. This results on several applied case solutions being dependent on the same outcome.
The evaluation part of the revise step therefore evaluates a sequence of case solutions that
lead to the observed outcome.

The game of poker involves a big element of luck, which results in bad players being
able to win short-term. This makes the evaluation of case solutions more difficult, because
the outcome of the solution, the win or loss of money, may be the result of luck. By only
evaluating the success of the solution based on a positive outcome, may result in the
case-base getting filled up with cases that do not represent good solutions, but are rather
an element of luck. If a good action results in a bad outcome, this would also count as
a negative case. For this reason we have to extend the evaluation of the solutions with
other criteria to evaluate. Billings and Kan proposes one approach for this purpose, by
analyzing actions through perfect knowledge achieved by hindsight analysis when the
players go to showdown[41]. A limitation of this approach is that it requires perfect
knowledge achieved only when the players go to showdown. To overcome this limitation
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we suggest the approach explained below, which also has the advantage of using the
domain knowledge introduced by the BN to provide a good evaluation for the outcome of
a case.

For assesing the outcome of an action in our architecture we propose using a con-
cept introduced by Galfond[42]. Galfond introduced the term Galdons dollars (G-bucks),
which is a tool for calculating the expected value of an action. To do this, we first have
to obtain the equity we have against a specific hand, which means the percentage of times
our hand beats the other after all community cards are dealt. The equity is usually cal-
culated through simulation, by simulating a large number of scenarios and recoding how
many percent of the times a specific hand wins against another at showdown.

The second thing required to calculate G-bucks, is a likely range of opponent hands,
which in our architecture is provided through the BN’s hand group prediction. To obtain
the G-bucks of a specific action, we then calculate the combined equity our cards have
against all of the opponent’s most likely cards. This, results in the percentage of times
we are expected to win in the given situation. To obtain the money we are expected to
win long run, we then multiply the win percentage with the current pot size. The result
of this calculation is the amount of money we are expected to win long run in the given
situation. By comparing this amount with the money the given action cost us, we obtain
the G-bucks of the action, which tells us if the given action would result in a negative or
positive income over the long run.

This way of evaluating the outcome of a solution removes the issues concerning the
luck element of poker, has the advantage of involving the BN’s hand group prediction
to achieve a better assessment of outcomes, and does not require the perfect knowledge
obtained at showdown. Although the concept is intended against one player and for the
no-limit variant of Texas Hold’em, a modification of this concept should also provide
useful for this domain.

5.4.6 Retain
The retain step integrates the newly solved case into the case-base. If domain knowledge
is used to evaluate the outcome of the case in the revise step, then the revised case is
retained into the case-base.

When there is no outcome available the retain step will store the case with an outcome
of zero or in temporary storage. This means that with the reuse strategy proposed in this
architecture, the case will not have any effect on future case retrievals before it is provided
with an outcome.
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CHAPTER 6

Implementation

This chapter describes the process of implementing the architecture proposed in chap-
ter 5. The chapter is structured in a way that describes the implementation required for
each of the components in the system, starting with the data collection and the inter-
face (section 6.1). This is followed by section 6.2 describing the implementation of the
overall system, where section 6.2.1 describes the CBR implementation and section 6.2.2
describes the BN implementation. Finally section 6.3 describes how to run the system,
and provides the reader with a run time example.

6.1 The interface & Data collection
The interface was implemented by using the Meerkat API(section 3.3), which contains a
set of methods for observing and extracting information from the game environment, as
well as inputting betting decisions to it. The Meerkat API divides this into two interfaces,
the GameObserver and the Player interface. The GameObserver interface is used to listen
to general events at the table, such as actions performed by other players or rounds that
went to showdown. Each type of events results in the firing of a method for listening to
that event. The GameObserver interface was mainly used to collect data to the reasoning
methods, while the Player interface was used to alert the reasoning methods when its
time to perform an action, and then implement the chosen action. The next two sections,
section 6.1.1 and 6.1.2, describe the acquisition of data required by the CBR and BN.

6.1.1 BN data collection
The Bayesian network was trained by observing the bots in Poker Academy pro play.
This was done by creating a bot with the necessary event listeners, with the sole purpose
of observing the other bots play. The BN does only learn from rounds that have gone all
the way to showdown, because it then gets to observe the players cards together with the
states that lead there. Each time a player performs an action it collects the relevant set of
primitive data from the interface, and calls the RBR to classify it appropriately, e.g. a raise
would be classified as a ThreeBet or Cap based on the number of observed raises before
that action. This data is then stored in temporary storage, and will be used depending on
the round going to showdown or not.

If the round goes to showdown, the data for the players currently in showdown is
retrieved from temporary storage and combined with the newly observed information,
such as the revealed hands. This data is then written to a text file, which is used to train
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Figure 6.1: The data used to train the BN. Top(preflop-flop) & bottom(turn-river)

the BN through GeNie’s learn parameter function. Figure 6.1 shows an excerpt of the
text file when loaded into GeNie. Each row in this text file represents the information
extracted from the perspective of one player when he reaches showdown.

6.1.2 CBR data collection
The CBR component acquired its inital case-base much in the same way as the BN was
trained, by observing the bots in Poker Academy Pro play amongst themselves. In contrast
to the BN, the CBR was required to learn from each of the actions performed by observing
the bots, and not only the ones that went to showdown. As the CBR system also needs
to know when to fold it has to observe situations where the bots fold. A problem with
the approach of using the interface to retain cases through live play, was that the Meerkat
API only allows for observing the bots hole cards when and if they reach showdown. This
gave us two options for gathering the initial case-base, either through parsing the game
logs generated by Poker Academy Pro, or by using a combination of the interface and the
game logs.

The first option, parsing the game logs, was evaluated to be an extensive and cumber-
some task, because we needed to extract data required for the reasoning of both CBR and
the BN, which would result in the parsing of a lot of different data. Since the Meerkat
API already contained methods for extracting these features by observing live play of the
bots, the full parsing of the game logs was considered unnecessary and redundant.

These reasons lead to an approach combining the extraction of most of the features
through the Meerkat API by observing live play, and then parsing the game logs to acquire
the player’s hole cards. This was possible by using the Meerkat gameID feature, which
provides a unique id for every round of play. Combining this id with the name of the
player the case was extracted from, the appropriate hole cards could be extracted from the
text file containing the game log.

The first part of this data collection was performed in the same way as the BN, by
creating an observer bot and plugging it into Poker Academy Pro. It then observes and
collects the required features that it is able to extract through the interface and stores the
cases in a database1. After the bot has observed and retained an appropriate number of
cases, the parser is used to extract the various hole cards from the game log, and calculates
and inserts the case features depending on these hole cards into the correct cases in the
database.

1The database was implemented with Apache Derby network database server
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6.2 The system
The first attempt at extending the data collector described in section 6.1 with reason-
ing capabilities proved more difficult than expected. The reason for this was the lack of
information on how to successfully use third party software packages inside the Poker
Academy Pro environment. This was a serious problem for the implementation of the
proposed architecture, because it is heavily dependent on using a set of third party soft-
ware packages for implementing the reasoning capabilities in the system, such as jColibri
and SMILE.

The thing that made this problem particularly difficult was that the system executed
normally when tested outside Poker Academy Pro, but did not execute correctly when
plugged into it. To overcome this problem we attempted to use a program called Fat-Jar,
which creates an executable jar file from an eclipse project by extracting and adding all
referenced third party libraries to one single jar file. This process fixed some of the issues
caused by the intital problem, but still had problems with e.g. the driver for connecting to
the database used to store the cases for the case-based reasoner.

Figure 6.2: Interaction between the server (brain) and the client (arms and eyes)

As this had already been a time consuming process and the system did still not run
properly, we were forced to think of another way to implement the system. This resulted
in the system illustrated in figure 6.2, where the components in the system were separated
into two programs. The component concerned with interacting with the poker client, the
interface, was divided into a separate jar file, whereas the rest of the components required
for the reasoning of the system were included in another jar file. This can be viewed as the
interface being the arms and eyes of the system, while the jar file containing the reasoning
methods constitutes the brain. The communication between these two is done through
java transmission control protocol (TCP) sockets, where the jar file with the reasoning
components work as a chat server, while the interface works as the chat client. The arms
and eyes send the required arguments to the brain, which performs the reasoning in the
system resulting in an action being sent back for the arms to execute. As seen in the figure,
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the outcome of applying the solution is also reported back to the brain (server) when it
becomes available.

By dividing the system as described here, no external third party software had to be
included in the part that is plugged into Poker Academy Pro, which solved the problems
with the third party software integration. This way of implementing the system also has
the advantage of making the reasoning part easier to integrate with interfaces required by
other poker clients, such as Open Holdem, because only the interface part of the program
has to be changed.

The next sections describe the process of implementing the reasoning methodologies.

6.2.1 The CBR component
The case-based reasoner in this architecture was implemented with the jColibri frame-
work. jColibri divides a CBR application into four parts; configure, precycle, cycle and
postcycle. The process of implementing the CBR application involved specifying these
methods with the required code. Section 6.2.1 through 6.2.1 described this process. The
implementation of the cycle method is divded into the 4R’s of the CBR cycle. The precy-
cle and postcycle methods were not needed for this implementation.

Case representation

A case in this architecture is represented by three case components, a problem descrip-
tion, solution and outcome of applying the solution. Each of these case components are
represented as java objects, including fields for representing the features of that partic-
ular component combined with a set of set and get methods for each of the fields. To
map these components to the correct database tables and columns a hibernate mapping
file was created, which provides information on how hibernate should map a object to the
database.

The cases also include a set of unindexed features that are not used in the retrieval of
cases. These features are used for other tasks, such as the initial acquisition of the case-
base and to identify the cases uniquely in the database. The unindexed features of a case
are :

• Case id

• Game id

• Player name

• Board cards

• Hole cards

The most of the case features presented in section 5.4.1 are easily extractable through
the interface by predefined methods or straightforward calculations, or inputted directly
from the BN. The rest of this section will detail the features that encompass more complex
calculations, such as the strength and potential of a hand.
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Hand Strength The process of calculating the hand strength feature is illustrated in fig-
ure 6.3. The right side of this figure illustrates the work done inside the RBR component,
which was illustrated superficially in figure 5.2. The four most likely hand groups inferred
by the BN is inputted to the RBR component. These hand groups are then used to extract
the hole cards contained in each group through a table containing all of the hand groups
and what cards they represent. The figure illustrates only the relevant hand groups, and
some of the cards contained in these. For a full list of what cards are represented in each
hand group see Appendix B.

Since the look-up table contains hole cards on a more general level, e.g. in the form
of AA and AKs, a method for transforming these into real hole cards is applied (the trans-
form method in the figure). The s in this situation refers to hole cards that are suited,
while offsuited hole cards are not marked by any letter. The term AA represents having
a pair of aces as hole cards. There exists four different suits in poker (hearts (h), dia-
monds (d), spades (s) and clubs (c)), which means that the term AA encompasses six
unique combinations of aces in different suits, namely; A♠Ar , A♠A♣ , A♠Aq , ArA♣ ,
ArAq and AqA♣ . The transform method in the figure performs this process for each of
the cards represented in the hand groups. Another example of this process would be the
AKs, which represents the notion of having a king and an ace with the same suit as hole
cards. Considering the four possible suits, this example would have four unique combina-
tions. The transform method also removes the cards that the opponent can’t have, because
they are already observed among the community cards or the players own hole cards. The
transformed cards are then used as input in the function for computing the hand strength,
which is described below.

Figure 6.3: The process of calculating the hand strength

The algorithm for calculating the hand strength feature is given in figure 6.3. The
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algorithm is performed in the same way as proposed by Billings et. al[6], but instead
of calculating this measure based on all possible card combinations, the BN is used to
provide the most likely cards the opponent is holding. This provides a much more accurate
strength measure of the hand if used correctly.

Line number 4 and 8 in the algorithm uses a method refered to as Rank to calculate
the rank of the players hand and a given opponent hand. This method is provided through
the Meerkat API and calculates an integer value representing how strong the hand is. The
higher the integer value the stronger the hand, which means that a hand with a given
integer value beats all hands with smaller values at the current stage of the game.

Line number 5 and 6 in the algorithms is where the input from the BN is used to
provide a set of the opponent’s likely cards. This step uses the list of the opponent’s
most likely cards resulting from the process illustrated in the figure, rather than iterating
over all possible card combinations. Line 9 through 11 compares the rank of each set of
opponent cards with the rank of the players hole cards, and increments ahead, tied and
behind depending on the result of the comparison.

The final return statement returns a numeric measure in the range of [0,1] representing
the percentile chance that the players cards is better than the opponent’s cards at the
current stage of the game. This is calculated by taking the number of cards the player
beats plus half of the draws divided by the total. If there are more than one opponent
still left in the game this process is executed for each opponent. The hand strength from
each of these executions are then multiplied to represent the probability of beating all of
the opponent’s cards, which results in a decrease in hand strength compared to a situation
where there is only one opponent.

Hand potential Figure 6.4 illustrates the general algorithm for computing the potential
of a hand. The potential of a hand is a measure for describing how the player’s current
hand strength changes when future community cards appear. The implemented system
uses both positive (PPot) and negative (NPot) potential as separate features in a case.
Positive potential is the chance that a hand which is currently worse than another hand
ends up beating that hand at showdown, while negative potential is the chance that a
leading hand looses at showdown.

The algorithm illustrated in the figure calculates this for all of the opponent’s possible
hole cards. The first part of the algorithm is similar to the hand strength algorithm, which
calculates whet ever we are currently ahead, behind or tied with the given opponent hole
cards. The next part of the algorithm iterates over all possible future community cards,
and checks if the new cards had any effect on how the two hole cards relate to each
other. E.g. if the players hand was worse than a particular opponent hand, but improved
to beat the opponent hand after the new community cards, the counter for this scenario
(HP[behind][ahead]) would be incremented. The final positive and negative potential is
calculated as shown in figure 6.4.

The algorithm shown in the figure calculates the potential of a hand in relation to all
possible opponent cards. The function for calculating the hand potential implemented
in this system uses the most likely opponent cards inferred by the BN, as was shown in
the figure which illustrated the calculation of the hand strength feature (figure 6.3). This
means that the hand potential function also takes the opponent’s most likely hole cards as
input, and uses these as the basis for the rest of the steps in the algorithm. Apart from this
the hand potential is calculated in the same manner as in the figure.
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Figure 6.4: The process of calculating the potential of a hand. Image from Billings et. al
[6]
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Configure

The configure method initializes and configures the application. It creates a set of database
connectors provided by jColibri and initializes them by loading a set of XML files. The
connector relies on Hibernate to manage the persistence of the cases by accessing and
retrieving them in a uniform way by the use of mapping files. The XML files that initialize
the connectors contain information about the location of where the required mapping files
can be found. These include a hibernate mapping file, containing the database specific
details such as what driver to use and the database connection URL, and mapping files for
each of the case components represented as java objects.

Since our architecture uses four separate case-bases, the configure method initializes
a connector for each of these. Each case-base is mapped to its own database table through
its own mapping files. The configure method is run when the server is executed, and will
keep the case-base in memory until the server is stopped.

Retrieve

Implementation of the retrieval step involved specifying the global similarity function and
a set of local similarity functions for the all of the features of the case. Both the global
similarity and the local similarity function referred to as Euclidian distance similarity in
section 5.4.3 were already included in the jColibri framework. Using these only required
specifying what attributes they should be used on, and providing the required arguments,
such as the length of the interval. The Bayesian and the exponential decay similarity
functions needed to be implemented separately. The exponential decay similarity function
was implemented to take the decay constant and the length of the interval as arguments,
while the Bayesian similarity function is initialized with the top three hand types from the
BN combined with their probabilities.

The last part of the retrieval step was the implementation of the method that selected
all the cases with a similarity above a certain threshold value. In order to account for
a decreasing case-base size for the four stages and a more complex case structure, the
threshold value was set differently for the four case-bases. The threshold was set to 95%,
93%, 91% and 90% for the preflop, flop, turn and river case-bases. This was not directly
supported in jColibri, but since jColibri supported functionality for selecting the top k
most similar cases, this was easily extendable to using a threshold rather than a specified
number of cases.

Reuse

The strategy for deciding what solution to reuse from the cases selected in the retrieve
step, was not included in the jColibri framework. The reuse step was implemented by
first extracting the solution and outcome from the selected cases. Each of the solutions
present in the selected cases are candidates for being used as the solution to the new case.
The decision between these solutions is made by taking the sum of the outcomes for each
action, and selecting the solution with the best outcome. The selected solution is then
copied as a solution to the new case. The chat server then takes the selected solution and
sends it to the client for execution.

The approach we proposed for effectively evaluating the outcome of a solution, to
reduce the affect of luck, described in section 5.4.5, was not implemented in this system
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due to time limitations. For this reason, we chose to implement a second strategy for
deciding which solution to reuse from the most similar cases. This was implemented to
measure the affect the outcome based reuse strategy had, when not applied with domain
knowledge to effectively assess the outcome of a solution. This alternative reuse strategy
is referred to as majority voting in the case-base community, and involves selecting the
solution which is present amongst the majority of the selected similar cases. This resulted
in two different versions of the BayCaRP system, which only differ in the reuse step of
the CBR-cycle:

• BayCaRP1: which reuses the solution with the best outcome, described in section
5.4.4, without the application of domain knowledge in the revise step to evaluate
the outcome of a solution.

• BayCaRP2: which uses majority voting to decide what solution to reuse.

Revise

The revise step encompasses applying the solution selected in the reuse step, which is
performed when the client receives the action and applies it to the poker environment
through its interfacing mechanism. As explained in section 5.4.5 the result of applying
the solution is not available before the player folds, or all the other players fold, or a
showdown occurs. The implemented revise step therefore sets the cost of applying the
solution as a temporary outcome for the new case. E.g. if the solution selected is the call
action, and the cost of this action is 2$, then this is set as the temporary outcome for the
new case.

The second task in the revise step is activated either when the selected solution rep-
resents a fold action, or when the client reports that the player has lost or won. When
activated this task takes the cases retained in temporary storage (explained below) and re-
vises the outcome of these cases to represent the real result of applying the solution. For
example, if the player folds or loses, all the cases leading up to this event will be revised
to a negative outcome, because each of the outcomes of these solutions represent money
lost. In contrast, if the player wins, the outcomes are kept positive.

Retain

The retain step retains the new case into storage. If the revise step has not yet revised the
cases to represent the real outcome of applying the solution, then the new case is stored
into temporary storage which is separated from the case-base. When the revise step is
finished with revising the outcome of the cases in temporary storage, the revised cases in
temporary storage are retained into the correct case-base, depending on what stage of the
game the case was created.

6.2.2 The BN component
The BN described in section 5.3 was modeled with the GeNie software, and trained with
the data extracted from the data collection phase (section 6.1.1 through GeNie’s func-
tionality for learning the parameters of a network. This network was then implemented
with SMILE’s java wrapper, which provided the functionality for using the network for
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inference in a code-based environment. Like the CBR-component, the BN was also im-
plemented with a configure method, which initializes the code-based network by reading
the network that was created graphically with GeNie.

The inference functionality of the BN was implemented by creating a method, which
takes the currently available information (evidence) as input and returns a list of BNobjects
sorted based on the probability of each state. The BNobjects were created as java objects,
with the purpose of containing both the name of the state and its probability.

The list of BNobjects contains the states and posterior probabilities of the nodes con-
sidered target nodes after the evidence is inserted. The method decides what nodes to use
as target nodes, depending on what stage the game is currently in. Since the top four hand
groups are used for the relative hand strength feature of a new case in every stage of the
game, this node is considered a target node every time the method is executed. The correct
hand type node is then selected as a target node depending on the stage of the game.

The top four hand groups are then used as input to the function for calculating the
hand strength, where the result of this calculation is used as input to the new case. The
top three hand types are used directly as input to the new case. The probabilities for these
states, contained in the BNobjects, are used to initialize the Bayesian similarity function
which is applied in the retrieval of cases that are similar to the new case.

6.3 System example run
Since most of the work done by the system is hidden from the user, this example is in-
cluded to give an illustration of the reasoning performed behind the scenes when the
system makes a betting decision. The example is taken from a specific round from Bay-
CaRP’s testing run and the images illustrate important aspects of BayCaRP’s reasoning
in relation to the current game state.

Figure 6.5: The game state at the flop stage

Figure 6.5 shows this scenario at the flop stage, but before going into more details a
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description of the preflop betting has to be given. Jake, a Pokbibot, began by raising from
an early position, which resulted in a threebet from BayCaRP and finally a call from Jake
which ended the preflop betting. BayCaRP has over the previous rounds collected Jake’s
VPIP and PFR, which at the time of this event is in the categories 20_30% and 5_10%
respectively. The area marked with yellow in the figure represents the probability each
player has to win in the current setting. This is calculated by Poker Academy Pro through
simulation based on knowledge of both players’ cards.

Jake was the first to act at the flop stage and started with checking to BayCaRP. Bay-
CaRP answered this with a bet which resulted in a call from Jake. Figure 6.6 shows the
state of the BN at the time BayCaRP decides to bet. Based on the evidence observed
at the preflop stage, the BN infers the opponent’s four most likely hand groups to be as
illustrated in the figure. Jakes is holding AK offsuit from hand group 2, which is the BN’s
most likely hand group with a probability of 31%. The community cards are classified as
JLow and Jake performed a check. Combined, this evidence results in the state of the BN
observed in figure 6.6.

Figure 6.6: The BN at the flop stage

The top three hand types are inserted in the new case, and the probabilities are used to
generate the Bayesian similarity measure. The case generated in this situation is shown in
figure 6.7. In this case, the opponent’s most likely hand types are Busted (64%), JackPair
(7%) and AcePairStrong (5%). This high difference in probability results in a low simi-
larity for the cases where Busted is not the number one most likely hand type. Jake’s hole
cards do not form any hand type when combined when the board, referred to as a Busted
hand type, which is accurately predicted by the BN with a probability of 64%.

The opponent’s most likely hand groups are used to calculate the three features marked
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Figure 6.7: The new flop case

with red through the process explained earlier. The CBR component uses this case to
retrieve similar cases, and selects the cases above the specified threshold. The selected
cases are then used to calculate the most profitable action in the reuse step based on the
outcome observed by applying these solutions in the past. The bet action is shown to
be the most profitable action, and is copied to the new case and applied in the game
environment.

Figure 6.8: The game state at the turn stage

The turn stage unfolds very similar as the flop stage. Figure 6.8 shows the game
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state at the turn stage, and as illustrated here, BayCaRP still holds the best hand with
a 84,1% probability of winning, and Jake performs a check. Figure 6.9 shows how the
new game state affects the BN. The new community card at the turn stage is classified as
Low in the BoardChangeTurn node and Jake was again observed checking to BayCaRP.
Additionally, the last most aggressive action performed by Jake in the flop stage was a
call, which means that this is added as evidence in the BN. As seen in the figure the BN
still predicts Jake’s most likely hand type to be Busted with a high probability. This is
used in a new CBR cycle, which results in BayCaRP performing a new bet.

Figure 6.9: The BN at the turn stage

As the final community card appears at the river stage, Jake’s busted hand evolves into
a straight. Since there are no further community cards to come Jake has the winning hand,
which is illustrated in figure 6.10. Jake chooses to bet before its BayCaRP’s turn to act,
which is classified as a DonkBet by the RBR and used as evidence in the BN. The bet is
classified as a DonkBet since Jake chose to bet before BayCaRP, which was the previous
round’s aggressor, as explained in section 2.3.7. Additionaly, the river card is a queen and
is classified as FirstQ in the BN, and the last most aggressive action from Jake at the turn
stage was a call. Figure 6.11 shows the BN with the new information added as evidence.
As observable from the figure, the BN now infers Jake’s hand types to be Straight (31%),
QueenPair (15%) and TwoPair(14%).

Figure 6.12 shows the new case generated for the river stage. The river case does
not contain any hand potential features, because all community cards are already on the
board. The reader should also observe that the relative hand strength feature has decreased
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Figure 6.10: The game state at the river stage

Figure 6.11: The BN at the river stage
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significantly as a result of the queen appearing on the river stage. This decrease in hand
strength reflects that with a queen on the table most of Jake’s most likely hole cards,
inferred through the hand group prediction, now beats BayCaRP’s hand.

Figure 6.12: The new river case

The newly constructed case is used in the CBR cycle which leads BayCaRP to fold, as
this is the most profitable solution present in the selected cases. This leads the revise step
to assign negative outcomes to all the cases leading up to the given point in time. Finally
the cases previously in temporary storage are now retained to the case-base.

This example gives the reader an example of BayCaRP’s reasoning process and will
also be used for discussion in section 8.2. This example shows the strength of the two
reasoning methods combined. The BN correctly predicts the opponent’s cards at each
stage of the game, which results in the retrieval and selection of good cases in the CBR
component. Combined the two reasoning methods make BayCaRP play this round bril-
liantly. BayCaRP attempts to maximize its profit when it possesses the best hand, and
folds to minimize its losses when the opponent has a better hand.
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CHAPTER 7

Testing & Results

This chapter describes the results obtained by testing the system. The chapter begins
be describing the testing environment, followed by the results obtained by testing the BN
separately from the system, and ends by describing the results of testing the whole system.
The results described in this chapter will form the basis of the discussion in chapter 8.

7.1 Testing environment
The system was tested at two important steps of our proposed architecture. The first
tests were designed to measure the accuracy of the sub-task solution derived from the
BN, namely predicting an opponent’s cards. This test is important because the overall
performance of the system depends on good results from the BN in order to produce good
results itself. The second tests where aimed at testing the final output from the system,
the betting decision, produced by the CBR system.

The BN was tested by a separate data set consisting of approximately 1.000 rounds
of play, collected by observing three types of bots included in PAP, playing amongst
themselves. The real hand group and hand types were extracted from this session, and
compared with the hand groups and hand types inferred by the BN, to produce the results
described in section 7.2. The tests were designed to measure the accuracy of the BN
predictions, but also to detect patterns when the BN predictions are wrong. This will be
used as a starting point for further discussion in chapter 8.

The combined system was tested through live play in the Poker Academy Pro software
by creating a poker table consisting of 8 players. These 8 players were 5 instances of
Pokibot’s, 2 instances of Simbot’s and the BayCaRP system. Each testing session was
run over approximately 4.500 rounds. Both versions of the BayCaRP system described
earlier were tested under equal circumstances with the same initial case-base.

7.2 Testing the BN
The results described below are measured at the end of each stage of the game after all the
information at that stage is observed. The hand group prediction accuracy is measured at
the end of the preflop stage, since all the information required to making this prediction is
observed at that time, while the hand type prediction is tested at the end of the flop, turn
and river stage respectively.
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7.2.1 Hand group prediction
Table 7.1 shows the result of testing the hand group prediction accuracy at the end of
the preflop stage. This test was performed with 2069 testing instances, representing the
number of times a player is still active in the round after the preflop, in the data set used
for testing. The displayed result is a measurement of how many percent of the times the
BN correctly predicts the opponent’s hand group inside the five categories shown in the
table. Our system currently uses the top four hand group predictions for further reasoning,
which constitutes a prediction accuracy of 77%. The last category in the table (Top5-10)
constitutes a faulty hand group prediction in our system, which will negatively affect
further reasoning in the system. As shown in table 7.1, the BN incorrectly predicts the
opponents hand group 23% percent of the time, which will be further analyzed below.

Hand group Top 1 Top 2 Top 3 Top 4 Top5-10

Accuracy (%) 32% 50% 65% 77% 23%

Table 7.1: Hand group prediction accuracy

To detect any patterns when the BN fails to predict the correct hand group among its
top 4 predictions, the 23% of the instances it failed to predict was used for further analysis.
Figure 7.1 shows the percentage of the times the position node is at a given state, when
the BN fails to predict the hand group. The figure shows that 44% of the times it fails, is
when the opponent’s position is either the small-blind or the big-blind, shown as Blinds
in the figure. Another thing to note from this figure, is that the number of times the BN
fails has a positive correlation with position of the opponent (excluding the blinds) . The
later the position of the opponent, the more times the BN fails to predict the hand group.

Figure 7.1: Fault (%) distributed over the states of the Position node

The same process was also used for the action of the opponent, to detect if there is a
trend on which actions the BN fails the most. The result from this test, as shown in figure
7.2, indicates that the Call action is a major influencing factor of the faulty BN predictions,
with 67% of the faults happening when the opponent performs the call action. The Raise
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action constitutes 24% of the faults, while the two most aggressive actions, ThreeBet and
Cap, have a very low fault rate.

Figure 7.2: Fault (%) distributed over the states of the Action node

Table 7.2 shows at what combinations of states of the action and position node, where
the highest percentage of errors occurs. The ThreeBet and Cap actions are omitted from
the table because they have a very low error rate irrelevant of what position the action
is performed. The Check action can only be performed by the big-blind, and has a error
rate of approximately 6%. Table 7.2 shows the error rate of the Call and Raise action
at different positions. The table shows that 32% of the errors occur when the opponent
is positioned at one of the blinds and performs a call action. This table also shows the
positive correlation effect between the BN’s fault rate and the position, as was described
earlier.

Position

Action Blinds Early Middle Late

Call 32% 6% 12% 16%

Raise 4% 5% 6% 8%

Table 7.2: Fault (%) at different state combinations of the Action & Position nodes

The results described in this section will be used for discussion in section 8.1.1. The
next section is dedicated to the purpose of measuring the accuracy of the inference of an
opponent’s hand type.

7.2.2 Hand type prediction
Table 7.3 shows the percentage of times the BN classified the opponent’s hand type as
one of its top 1, top 2, top 3 or top 4-17 most probable opponent hand types. The last
category would represent a misclassification in our system, since the rest of the reasoning
in the system relies on the top 3 most probable opponent hand types. These percentages
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are calculated from the testing data set based on the players still active in the round at the
end of each stage, resulting in 1453, 1115, 943 instances of data used for testing the flop,
turn and river hand type prediction accuracy. Based on this data, the BN falsely predicts
the opponents hand type 22% at the flop stage and 28% of the times at the turn and river
stage. Another thing to note is that the BN correctly predicts the opponent’s hand type
as the most likely hand type 50% of the times at the flop stage. As with the hand group
testing, the data that resulted in a faulty prediction was used for further analysis.

HandType

Stage Top 1 Top 2 Top 3 Top 4-17

Flop (%) 50% 67% 78% 22%

Turn (%) 44% 61% 72% 28%

River (%) 42% 59% 72% 28%

Table 7.3: Hand type prediction accuracy

The most prominent trend witnessed while running a series of tests designed to extract
information relating to the faulty prediction, was that 40% of the times that the BN failed
to predict the opponent’s hand type among its top 3, the most likely opponent hand type
inferred from the BN was the Busted hand type. A player is holding a busted hand when
the player’s hole cards combined with the community cards do not form another hand
type. A busted hand is the weakest possible hand in poker, and is beaten by any pair.

To further analyze this error we observed how the probability distribution over the
hand type node for the flop stage changed when only inserting a single action as evidence.
The two most important probabilities related to this test, is the probability of the opponent
having a busted hand given a bet or a raise action as evidence:

• P(Handtype=Busted|ActionFlop=Bet) = 18%

• P(Handtype=Busted|ActionFlop=Raise) = 13%

This means that when only observing the action at the flop stage, the BN would infer
the busted hand type as the most likely opponent’s hand type given a bet action, and as
its top 3 most likely hand types when observing a raise. This effect is also observed to
a lesser degree at the turn stage. These results will form the basis of the discussion in
section 8.1.2.

7.3 Testing BayCaRP
The results described below tests the system from a poker perspective. Each of the two
main sections are dedicated to testing the two different versions of the system. The first is
BayCaRP1 with a outcome based reuse strategy, and the second is BayCaRP2 with major-
ity voting based reuse strategy. The term big-blinds per hand (bb/h) was used to measure
how profitable BayCaRP was during its approximately 4.500 rounds of play. Big-blinds
per hand refers to how many big-blinds the player wins or loses for each round played.
The reason for using big-blinds or small-blinds per hand as a measure of profitability
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compared to money won per hand is that it provides a measure that can be used for com-
parison between games with different limits. Consider e.g. a player winning 1$ per round
at the limits 1$/2$ and a player winning the same amount at a 10$/20$ limit. These two
players would win the same amount in money, but would have a bb/h win rate of 1.0 and
0.1 respectively, which provides a more accurate measure on how profitable each of the
players are at each of their limits.

All of the following tests were played as a 1$/2$ limit game, which means that 1 bb/h
equals 1$ per hand.

7.3.1 BayCaRP1 outcome reuse
Figure 7.3 illustrates a plot of BayCaRP1’s winrate (bb/h), while figure 7.4 shows some
additional statistics for each player based on the whole session.

Figure 7.3: BayCaRP’s bb/h with outcome based reuse

The highs and lows in the plot can be attributed to the variance in the domain, resulting
from poker’s statistic nature. Still, by disregarding the variance in the plot, we can see
that the graph is decreasing slightly. As seen in figure 7.4 BayCaRP1 loses an average
of -0.026 bb/h, which in this case represents 0.026$ per hand. For comparison, the most
profitable player at the table won an average of 0.111 bb/h, and the least profitable player
lost an average of -0.158 bb/h. The most profitable player at the table was an instance of
the PokbiBot (Karma), while the least profitable was an instance of SimBot (Absinthe).

Figure 7.4: BayCaRP outcome based reuse: session statistics
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Another thing to note from figure 7.4 is that two instances of Pokibot, Karma and
Erasmus perform very differently. Some of this can be attributed to the variance in the
domain, while some should be attributed to the way the different instances are configured.
The various Pokibot instances are configured to play slightly different, such as Karma’s
configuration makes it more inclinded to raise after the flop than e.g. Erasmus1.

Although more rounds should be played to reduce the variance to a minimum, the
results indicates that BayCaRP1 loses slightly over time at the given table. Still, this loss
is quite small, which means that BayCaRP almost plays evenly with the Pokibot’s and
Simbot’s.

Figure 7.4 also shows us that BayCaRP plays 26 % of its hand, which is close to the
average play percentage of 25% at the table. BayCaRP1’s percentage of uncontested win
is 10%, which is above the average of 8%. The high percentage of uncontested wins
indicate that BayCaRP1 has an aggressive playing style, which makes the other players
fold. Another important thing to note from the figure is that BayCaRP1 wins 63% of the
times when it goes to showdown, which is the highest at the table. Although a high win
percentage at showdown is good, BayCaRP only chooses to go to showdown 6% of the
times he plays a hand. This low showdown percentage may indicate that BayCaRP1 has
learned to fold too many of the hands it chooses to play from preflop.

The subsequent section attempts to discover what parts of BayCaRP1’s playing style
are less than optimal by comparing BayCaRP to the most profitable player at the table.

BayCaRP1 vs Karma comparison

Figure 7.5 shows the action frequency at each stage of the game for Karma and Bay-
CaRP1. As shown here BayCaRP1 plays his cards more aggressively than Karma, ob-
served by the high percentage of the bet action at each stage. The reader should also note
the large difference in the fold and call frequency between the two players. This becomes
especially clear at the turn stage, where BayCaRP1 folds 19 % of his hand compared to
Karma’s 7%, and calls 9% compared to Karma’s 33%.

(A) KARMA

(B) BAYCARP

Figure 7.5: Action at each stage for: (a) Karma (b) BayCaRP1

These results may indicate that BayCaRP1 folds to often in cases where its hand may
have had a decent chance of winning. The results described here were used as a basis for

1The configuration of the various instances can be observed in the .pd file in the /logs/players folder
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analyzing which hand types BayCaRP1 loses the most money on at each stage compared
to Karma. The difference of how much money the two players win or lose with each hand
type was largest at the flop stage. Figure 7.6 and 7.7 illustrates this graphically for each
player. The y-axis shows the amount of big-blinds won or lost per hand type (x-axis).

Figure 7.6: Karma’s winrate(bb) per hand type

Figure 7.6 shows Karma’s winrate with various hand types at the flop stage. The
hand type referred to as High Card is essentially the same as what has been referred to
as a Busted hand type in this thesis. The cards that typically fall into this category when
played by the University of Alberta bots, is either having atleast one hole card that is of
greater rank than the community cards, or a drawing hand, such as straight or flush draw.
This hand type is the only one that Karma has a negative winrate with at the flop stage.
The reader should also note the high winrate Karma has with any Pair at the flop stage.

When comparing this to BayCaRP1’s winrate with the different hand types ( figure
7.7) the first striking difference is the winrate with the High Card and pair hand types.
Although both players have a negative winrate for the high card hand type, BayCaRP1
loses over 6 times as much as Karma. When holding a pair, BayCaRP1 loses approxi-
mately -35 big-blinds over the session, while Karma gains 380. Also notable is the fact
that Karma has a higher winrate with strong hands at the flop stage, especially prominent
with the three of a kind hand type.

The combined results described in this section provides us with some pointers where
BayCaRP1’s playing style may be flawed when using the outcome based reuse policy.
These results will be used for discussion in section 8.2.1.

7.3.2 BayCaRP2 majority reuse
BayCaRP2’s performance with the majority vote reuse policy is shown in figure 7.8. This
version of BayCaRP2 has a winrate of 0.056 bb/h, which is a vast improvement over the
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Figure 7.7: BayCaRP1’s winrate(bb) per hand type

previous version. BayCaRP2’s results indicate that it is indeed a winning player at a table
with Pokibot’s and Simbot’s, in fact it is the third most profitable player at the table.

Figure 7.8: BayCaRP2’s bb/h with majority vote reuse

Figure 7.9 shows some general statistics for BayCaRP2’s testing session. By com-
paring this to the previous version, we see that BayCaRP2 has a lower percentage of
uncontested wins indicating that he plays less aggressively. The second thing to note is
that he wins less showdowns, but reaches showdown more frequently.

By observing the action frequency of BayCaRP2 in figure 7.10, we see a smaller fold
percentage, especially at the turn and river stage, and a higher call percentage. This action
distribution has a close resemblance to the Pokibot in figure 7.5.

Figure 7.11 shows BayCaRP2’s winrate with the various hand types. Although this
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Figure 7.9: BayCaRP2 majority vote reuse: session statistics

Figure 7.10: BayCaRP2’s action frequency at each stage

version actually loses almost double the amount of the previous version when holding the
hand type High Card, it also wins more with strong flop hand types such as two pair and
three of a kind. The most notable difference is the winrate when holding a pair at the flop.
This has become one of BayCaRP’s big earners, in contrast to the previous version, where
pair had a negative winrate.

Figure 7.11: BayCaRP2’s winrate(bb) per hand type

The results described here will be used for discussion in section 8.2.2.
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CHAPTER 8

Discussion

This chapter presents an evaluation of the results obtained in the previous chapter,
and discusses weaknesses, strengths and potential improvements. The chapter begins by
discussing the strength of the BN, section 8.1, before it moves on to discussing the overall
system in section 8.2. Section 8.3 discusses how the proposed architecture can be utilized
in the TLCPC project.

8.1 The strength of the BN
The topology of the BN was modeled with expert knowledge acquired by a mixture of
prior experience and textbook knowledge. This section will discuss the strengths and
limitations of the implemented Bayesian network. The section begins by discussing the
results obtained by testing the network in section 7.2 from the perspective of predicting
the opponent’s hand group (section 7.2.1) and hand type (section 7.2.2). Section 8.1.3
discusses the abstraction the BN introduces by discretizising game states and opponent’s
cards.

8.1.1 Hand group prediction
The testing of the Bayesian network’s hand group prediction accuracy showed that the BN
correctly predicted the opponent’s hand group among the ones that are used for further
reasoning 77% of the time. This is not bad considering the uncertainty introduces in poker
in the form of players intentionally underplaying or overplaying their cards, referred to as
bluffing. This means that a player with a very strong preflop hand can decide to play the
hand more passively than expected, or a player with a weak hand can play a bad hand more
aggressively than expected. Still, by analyzing the times the BN failed, we discovered
areas where the BN could be improved to provide a higher prediction accuracy.

The most notable error relating to the players position that appeared in the testing
phase, was that 44% of the faulty predictions were made when the player’s position was
one of the blinds. This high error percentage at the blinds made sense when relating this
to the action with the most errors, the call action. Together, these results highlighted the
need for differentiating the call action more than was done in the currently implemented
BN. To fully grasp this thought consider the player at the small-blind performing the
call action. If no player has previously raised the pot, then he only needs to double the
amount he currently has committed to the pot to continue playing in the round, because he
already has paid the small-blind, which constitutes half of the big-blind. Compare this to
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a player in another position performing the same action, which would cost him the double
of what the player in the small-blind voluntarily put in the pot, or if the pot has previously
been raised, then the player calling this would have to commit even more to the pot. When
training and using the BN all of these actions would be considered equally as a call action.
As described in the design of the BN, the BN uses the most aggressive action of player,
but as discussed here this does currently not work optimal for the call action. The reason
for this is that when the player only performs a call action, the difference between the
amounts of how much the various call actions costs a player is abstracted away in the BN.

The other effect observed while testing the BN was the positive correlation between
the number of times the BN fails to predict the opponents hand group and the position of
the opponent. This effect is as expected in the eyes of a poker player, because at an earlier
position a player will play a smaller range of cards than he would in a late position, thus
making the prediction easier when the player performs an action from an early position. A
player at the late position has the luxury of observing what the majority of the players do
before he acts. This means that if most of them fold, he could decide to e.g. raise a hand
he would not normally play to attempt to scare the rest of the players into folding, thus
successfully stealing the money that was forced onto the table in the form of the blinds.

The results also show us that the more aggressive an action is, the less faulty predic-
tions are produced by the BN. This effect is also as expected because the more aggressive
the action, the more money you put in the pot, the better cards you need to have to win in
the long run. This means that an aggressive action narrows the possible range of cards for
the opponent making it easier to predict.

A possible solution to the high fault percentage related to the call action, is to further
specialize the action into several categories, such as the raise action was specialized into
Raise, ThreeBet and Cap. The call action would then be represented as different states in
the action node, depending on the situation it was performed in, such as a state for; calling
an amount equal to the small-blind, calling the regular amount, or calling a raise.

An alternative to this solution would be introducing a node for representing the pot
odds the player receives at the time of the action. Since pot odds is a numeric measure
that takes into account how much money the player needs to put into the pot to continue
playing, it would help in the process of differentiating various call actions, based on the
cost required to perform them.

The effect regarding the higher error rate when inferring an opponent’s hand group
from passive actions and at late positions, may lead us to the belief that the number of
hand groups used as output from the BN should be based on a threshold probability value
rather than a static number than is currently used. Optimally this would result in using
only one or two hand groups for further reasoning, when the BN predicts the opponent’s
hand group with a high enough probability, e.g. in the case of a aggressive enough action,
while using a higher amount of hand groups when the probability is lower. This could
e.g. be done by setting a specific threshold probability, and use the number of hand groups
whose combined probability sum exceeds this threshold. For example if the probability of
the most likely hand group given the evidence exceeds the threshold alone, then we only
use this hand group for further reasoning. If, in contrast, the top 5 most likely hand groups
are needed to exceed the threshold value, then we use all five. Using a threshold value
would better represent the uncertainty in the Bayesian network’s hand group prediction
by allowing for an increase in number of hand groups if the prediction is unreliable, and
a decrease when the prediction seems reliable.
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8.1.2 Hand type prediction
The results of the Bayesian network’s hand type prediction test showed good results, con-
sidering that the implemented BN omitted an important aspect of Texas Hold’em Poker,
namely opponent’s possibility of having partial hands. A possible extension to the imple-
mented BN for representing this aspect of poker was described and illustrated in section
5.3.3. There were three major reasons for not implementing this extension to the BN.
The first reason was that this project has been time consuming, and there simply wasnt
enough time to take this extension to the level that it should be in the time frame that was
available for this project. The second reason was that the data used to train the network
was not optimal for partial hand type prediction. The reason for this was that we used
rounds that went to showdown to train the network, and since partial hands that do not
evolve into complete hands in that time often get folded before showdown, the resulting
BN was biased towards partial hands evolving into complete hands more times than it
realistically would. Since a majority of the partial hands get folded before showdown,
the resulting BN would also be trained to infer a lesser likelihood for partial hands than
it should. The third and final reason was that the additional complexity introduced more
time spent when using the BN for inference in the implemented system, and since the
results of this extension was less than optimal, the implementation of this part was not
given a priority.

Although this extension had its limitation, it was still included in the design of this
system as a suggestion of how Bayesian Networks could be used to predict partial hands.
We believe that with some more work, this design could successfully be used to predict
opponent’s partial hands. The most apparent area for future work on this particular prob-
lem, is to supplement the BN with additional training data, so that the network’s partial
hand probabilties better reflect reality at a specifig stage of the game. Why and how the
lack of representing the partial hand aspect of the game affects the implemented BN will
be discussed in the next paragraphs.

The testing in section 7.2.2 highlighted how the lack of partial hand prediction de-
graded the prediction accuracy of our implemented BN. The results showed that 40% of
its erroneous predictions at the flop stage appeared when the busted hand type was in-
ferred as the most likely from the BN, and the same effect was observed at the turn stage.
To further analyze this trend we observed the probabilities of the busted hand type, given
an aggressive action from the opponent as evidence, which showed a probability of 18%
for the bet action and 13 % for a raise.

These results confirmed our initial assumptions, that these errors were related to the
lack of partial hand prediction. The high probability for the busted hand type even when
aggressive actions are observed, tells us that the training data contained a lot of these
cases. Bluffing can account for some of these cases, but as bluffing is less used in fixed-
limit Texas Hold’em, because of the restriction on how much money you can bet, there
has to exist another reason for this trend.

The main reason for this trend, is that since the currently implemented BN has no way
of modeling partial hands, it will attribute e.g. a bet or a raise to a busted hand type, when
in reality the opponent is possessing a strong partial hand. From the perspective of the
BN, this will lead to a higher probability for a busted hand than it should be, since the BN
was trained with data that did not contain information about partial hands.

This section highlighted the need for including partial hand prediction in the BN, to
further improve its accuracy. This can be achieved by supplementing the BN with training
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data from another source, to achieve more realistic probabilities of an opponent holding a
partial hand at a particular stage of the game.

8.1.3 Abstraction in the BN
A limitation of Bayesian network’s in poker discussed in both Korb et. al’s and Terry
and Mihok’s research, is the decrease in accuracy of the model introduced by abstracting
the game state into various categories. This abstraction of the game state is performed to
reduce the complexity of the network, which is important because poker betting decisions
often have a relatively short time restriction.

Although this issue is also present in the proposed network, the combination of the
components in this architecture reduces this problem to some degree. First of all, since
the Bayesian network is not concered with the betting decision itself, a lot of the features
that would typically need to be abstracted into categories is now present as features in the
cases of the CBR component. Still, the BN abstracts the state of the community cards, the
opponent’s hole cards and hand types, which will result in the loss of some information.

Consider the abstraction of the opponent’s hole cards into the hand groups described
earlier. By using the RBR component as an intermediary between the BN and the CBR
component, no loss in information occurs, because the hand groups are transformed into
the hole cards they represent before being used for further reasoning. The hand types
could be used in a similar manner, e.g. by using the BN’s hand type predictions to refine
the inital hand group prediction.

For simplicity, consider a scenario where the BN inferred the opponent’s most likely
hand group to be hand group 2, which would result in the hole cards; TT, AQs, AJs, KQs
and AK being used for the calculation of the relative strength feature of a case. If the
BN then inferred that the opponent’s most likely hand type was TwoPair, and the current
community cards where AJK, we could remove the hole cards that do not form this hand
type from the hand strength calculation, which in this case would be TT, AQs and KQs.

The current system uses the most likely hand types directly as input to the CBR com-
ponent, which results in the loss of some information, since TwoPair could represent a
variety of combinations that would form two pairs. Future work should encompass more
testing on how this type of abstraction affects the overall system performance, and how to
reduce this to a minimum.

8.2 The strength of the system
This section describes the results obtained by testing the whole system. Section 8.2.1
discusses the results with the outcome based reuse policy, while section 8.2.2 dicusses the
majority voting results. Finally, section 8.2.3 discusses the overall results obtained in the
testing phase.

8.2.1 BayCaRP1 outcome reuse
The results obtained by testing BayCaRP1 with the outcome based reuse policy described
in the design chapter showed that BayCaRP1 loses -0.026 bb/h in the given testing session.
Although this makes BayCaRP a losing play, it is not that far from playing evenly against
the Pokibot’s and Simbot’s.
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To further analyse this results consider the CASPER system described in the chapter
concerning related research (section 4.3.2). CASPER was tested with different weighted
features of a case, and with two different sized case-bases. CASPER with the most prof-
itable weights will be used for further comparison. The CBR-component in the BayCaRP
system shares a lot of similarities with the CASPER system, which makes it a good candi-
date for comparison. BayCaRP uses the weights obtained through the CASPER research,
and has a similar case representation and retrieval step.

CASPER1, with a slightly smaller case-base than BayCaRP, obtained a result of -
0,009 bb/h, while CASPER2, with a larger case-base, won 0,004 bb/h1. Comparing this
to the results obtained by testing BayCaRP1 with the outcome based reuse policy we
see that BayCaRP1 performs worse than both versions of CASPER. At first sight this
results may seem confusing, since BayCaRP1 incorporates opponent modeling through
the Bayesian network, while CASPER does not. But, as shown by the results in section
8.2.2, BayCaRP’s performance increases a lot when provided with a different reuse policy.
The decrease in performance can therefore be attributed to the outcome based reuse policy.
Why this is the case will be described below.

Consider the run time example from section 6.3. In this example BayCaRP1 played
perfectly, by betting as much as possible when it had the best hand, and minimizing its
losses by folding, when the river card against the odds turned the hand into a losing hand.
With the outcome based reuse policy described earlier this would count as a negative
case in the case-base, because the fold at the river would result in all of the previously
used cases being revised to a negative outcome. This example illustrates how this reuse
strategy affects the performance in a negative way, by potentially labeling good cases with
a negative outcome, due to an unlucky end result. This could also happen the other way
around, by bad cases receiving positive outcomes due to luck.

The results obtained by comparing BayCaRP1 to the most profitable Pokibot attempts
to highlight how this reuse strategy affects BayCaRP’s playing behavior. The results
showed that BayCaRP wins 63% of the showdown it takes part in, which is a good at-
tribute for a poker player. Still, the fact that BayCaRP loses over the long run combined
with the knowledge that it only goes to showdown 6% of the times it chooses to play a
hand, indicates that BayCaRP folds too many hands that may potentially evolve into a
winning hand. The comparison to the most profitable Pokibot (Karma) made this clearer.
As observed here BayCaRP1 folds a lot more hands than Karma at the postflop stages of
the game. When comparing the two players winrate with various hand types, we also see
a major difference in the winrate for the high card and pair hand types. Combined with
the high win percentage at showdown, and the low percentage of seen showdowns, this
tells us that BayCaRP folds a lot of his hands when his hole cards do not form a good
hand type when combined with the community cards at the flop, but also that BayCaRP1
folds to many of its hands when it has a pair at the flop. In other words, this means that
BayCaRP1 folds to many hands with potential of improving into a winning hand, such
as two hole cards of greater rank than the community cards, or straight and flush draws.
BayCaRP also folds to much when he has a pair that is not the highest possible ranking
pair. This could e.g. be when BayCaRP1 is holding a pair of nines on a board where a
jack is present among the community cards.

Although this reuse policy makes BayCaRP1 into the strongest player at the table
when it comes to winning at showdown, it also degrades the performance by making

1bb/h is referred to as small-bets per hand(sb/h in the CASPER research
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BayCaRP1 fold to many hands at the postflop stages. Since BayCaRP1 has already in-
vested money at the preflop stages, the fact that it folds frequently when it does not evolve
into a strong hand type at the flop stage, makes him a losing player over the long run.
These results make it clear that judging the outcome of a solution purely on the money
earned or lost by that action in the poker environment is not optimal. Still, the author
believes that the idea of reusing the most profitable action is the ideal strategy for this
domain. But to achieve this optimally domain knowledge is required to provide better
evaluation criterion for how good a given solution is.

8.2.2 BayCaRP2 majority reuse
The results obtained by testing BayCaRP2 with a majority voting reuse strategy showed
BayCaRP2 to be a profitable player in the testing environment, with a winrate of 0,056
bb/h. For comparison’s sake, consider again the results achieved by the CASPER system
in a similar environment. The CASPER system is similar to the CBR-component in our
system, but it employs no form of opponent modeling, and relies on a probabilistic reuse
policy. This reuse policy assigns a probability to each solution based on the solutions
present amongst the cases selected in the retrieval step, which is not that different from
the majority voting reuse policy. BayCaRP2 achieves a 14 times better winrate than the
best CASPER version. Although the CASPER system was tested more extensively by
playing almost 4 times more rounds than the BayCaRP system, the results indicate that
BayCaRP achieves better performance with its combination of two reasoning methods,
than any of the two could achieve on its own. The results obtained by the BayCaRP2
system shows the strength of the BN and CBR combined, when not using a reuse policy
that degrades system performance.

When comparing the action frequency of BayCaRP2 with the previous version and
Karma, we see that BayCaRP2’s playing style resembles Karma’s, while BayCaRP1
seems to have learned its own playing style. The reason for this is that when using a
majority voting reuse policy, the reused solution will resemble the solutions used by the
bots that were used to acquire the case-base, which in this case was Pokibot’s and Sim-
bot’s. In contrast, the idea of the outcome based reuse policy was to surpass its teachers
by detecting what solutions have the best outcome in a given situation. Although the ma-
jority voting reuse policy is profitable at the table with Pokibot’s and Simbot’s, it is still
somewhat limited by how good the solutions of its teachers are.

8.2.3 BayCaRP overall
Although the system performance depends on the reuse policy chosen, the results indi-
cate that the integration of Bayesian Network’s and Case-based reasoning provide a good
combination for decision making in poker. The results obtained by BayCaRP2 seems to
outperform the CASPER system, which is solely based on Case-based reasoning. Since
there to the authors knowledge do not exists any purely Bayesian network based attempts
in a Poker Academy Pro multiplayer environment, it is hard to compare BayCaRP to such
an attempt. Still, the limitations discussed in research related to applying Bayesian Net-
work’s to poker, such as the abstraction limitation discussed in section 8.1.3, makes the
author believe that a combined reasoner will outperform such a system.

The run time example described in section 6.3 provides a good indication of the
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strength of the combined system. The Bayesian network provides the case-based reasoner
with a more extensive contextual information than it would manage on its own, making
the system play this round close to perfection. With the information inferred by the BN,
BayCaRP bets when it has the best hand, and folds when it realizes that the opponent has
a better hand, thus attempting to maximize its profit when it has the best hand, and finally
minimizing its loss when the hand is beat by the opponent’s hand.

Despite the fact that BayCaRP achieves a good performance, there are still areas that
should be improved. Firstly, BayCaRP plays his cards very truthfully, meaning that he
bets with strong hands and folds with weak ones. Since being to predictable in poker is not
a very good trait, BayCaRP should be extended to incorporate more deceptive plays. The
check-raise action is one such deceptive play that is more heavily used by the Pokibot’s
compared to BayCaRP. The current implementations of BayCaRP has really no way of
learning how to perform a check-raise profitably, which results in a negative winrate the
few times it is used, compared to a positive winrate when used by the Pokibot’s. By
incorporating knowledge about deceptive plays such as check-raises somewhere in the
system, may increase BayCaRP’s winrate even more in situations where it has a really
strong hand.

Secondly the time it takes for BayCaRP to make a decision is rather high compared to
e.g. the Pokibot’s. The time it takes to make a decision also increases when the complexity
of the Bayesian network increases, and especially when the case-base increases. One
approach for reducing the time spent on retrieval and similarity computation of previous
cases, is to provide the retrieval step with some form og inital matching process. This
process should quickly remove cases that would result in a low similarity score with the
new case. This could be done by e.g. analyzing the case features with high weights,
and removing the cases that have a large distance compared to the these features in the
new case. Another such approach would be structure the case-base hierarchically with
generalized cases. These generalized cases should contain a form of a summary of cases
in the case-base with a high enough similarity. The generalized cases could e.g. contain
information on how many times each solution is present among the cases it represents and
the combined outcome for each such solution.

8.3 TLCPC and our design
TLCPC aims to develop a decision support system for classification and treatment of pain.
Decision making in the medical domain is to a large degree characterized by uncertain
and incomplete information. These characteristics are also shared by the domain selected
for this thesis. Texas Hold’em encompasses both aleatory uncertainty, by the stochastic
nature of poker and epistemic uncertainty and incomplete information by the unknown
values of hidden cards. Both of these types of uncertainty are also a focus area in Bruland
et. al’s research.

The design in this thesis uses the Bayesian network to provide the case-based reaoner
with additional contextual information, relating to the opponent’s most likely cards. A
similar approach may also prove to be efficient in the medical domain, where e.g. the
Bayesian network infers information about the patient’s pain classification, which is used
by the case-based reasoner to retrieve more relevant past experiences containing suggested
treatments. Although our system is fully automated, it might as well work as a decision
support system, by providing information to the user, rather than making the decision
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itself.
Our system has succesfully shown a way to integrate Bayesian Networks and Case-

based reasoning in a domain with similar characteristics. The good results obtained by
this integrated reasoner support the idea that our design can bring the TLCPC system
added value.
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CHAPTER 9

Conclusion

The field of knowledge based system has experienced an increasing trend towards in-
tegrating various knowledge and reasoning methodologies to achieve better performance
than either could achieve on its own. The belief that integrated reasoning can achieve
higher performance combined with the ongoing TLCPC project constitute the motiva-
tional factors for this research. In this thesis we presented an integrated reasoner for
imperfect information games. The presented system uses the combination of Bayesian
Networks and Case-based reasoning to make informed betting decisions in the game of
Texas Hold’em Poker. There exists some attempts to applying the two reasoning method-
ologies separately in the domain of Texas Hold’em poker, where the research performed
by Rubin and Watson[36] on the CASPER system was the most prominent inspirational
factor for our designed system. Our research attempts to show the combined strength of
integrated reasoning through Bayesian Networks and Case-based reasoning in a domain
such as Texas Hold’em poker, and is to the authors knowledge the first system combining
these two effectively for decision making in poker.

The result of this research was a system nicknamed BayCaRP, which employs Bayesian
Networks and Case-based reasoning to play poker at a table with multiple players. The
Bayesian network is concerned with the opponent modeling aspect of poker, more specif-
ically predicting the opponent’s most likely cards at each stage of the game. The result of
the inference performed by the BN is used to provide additional contextual information
to the case-based reasoner, which is responsible for the final betting decision.

BayCaRP’s initial case-base is acquired by observing bots developed at the University
of Alberta play amongst themselves. When BayCaRP is required to make a betting de-
cision it acquires information about the state of the game, including information relating
to its opponent’s, such as their actions. The game state information required by the BN
is abstracted into different categories through a rule-based component. This information
is used as evidence in the network to infer an opponent’s most likely cards, which is used
as input to the CBR system. The CBR-component uses a part of this information directly
from the BN, while the other part is used to calculate the strength and future potential of
BayCaRP’s hand in relation to what the BN predicts the opponent’s most likely cards to
be.

Our research suggests that solutions of similar cases are reused based on previous
outcomes of applying a given betting decision, but experiments with different strategies
for reusing solutions from the most similar retrieved cases. This part of the research
highlighted the need for domain knowledge to better evaluate the outcome of a solution.
Without this, the outcome based reuse policy degrades system performance.
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The results represted in this thesis show the effectiveness of combining Bayesian net-
works and case-based reasoning for a domain with characteristics such as uncertainty and
imperfect information. The results obtained by BayCaRP indicates that it plays profitably
against University of Alberta’s Pokibot’s and Simbot’s, and achieves better performance
than the CASPER system, which is a purely case-based reasoning approach.

9.1 Future work
Although the overall system achieved great performance, there are still areas of the sys-
tem that could be improved with further work. Since some of these issues have already
been discussed earlier, this section will provide a summary of these including some new
improvements that can be made to further enhance the system performance. We first pro-
vide a description of improvements that can be made related to the Bayesian network,
followed by improvements to the case-based reasoner before we describe further work for
the overall system.

The Bayesian network

• Recall that the majority of the faulty hand group predictions from the BN was when
the opponent performed a call action. The reason for this was that the BN did not
differentiate the call action enough, which means that it represents a 0,5$ and 2$
call action as the same state in the network. This resulted in a higher percentage of
faulty predictions related to this action. Future work should be done to resolve this
issue, by e.g. differentiating the call action more or adding nodes for representing
the size of the pot. This issue could also be present at other states in the network
leading to decreased prediction accuracy. More work should also be done to further
test and resolve this potential issue at other states in the network.

• The extension to the BN for predicting opponent’s partial hands should be imple-
mented and tested. This requires another source of data for training this part of the
network, since the showdown data is not applicable for this task. The reason for
this is that partial hands are mostly folded before showdown if they do not evolve
into a real hand type. This results in the BN infering wrong probabilities relating to
partial hands.

• Although the BN achieves a decent prediction rate for different types of bots from
the University of Alberta, more work should be done to achieve better performance
for different types of opponent’s, which would be especially relevant when playing
against human competition. This could be done by e.g. extending the network with
more features such as VPIP and PFR relating to the other stages of the game, such
as a numeric measure describing the opponent’s aggression factor for each stage of
the game. A different strategy could be to use these kinds of features to classify
an opponent’s playing style into a set of groups. The idea should be that players
inside such a group would have similar playing behaviors. Each of these player
groups could then have its own BN specialized to fit that type of players. Another
possibility would be to have a network for each new player, starting with data to fit
an average player, and then using the evidence observed by that player to heavily
influence the current parameters in the network.
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The case-based reasoner

• Future work for the case-based reasoner should encompass work on reducing the
time spent on retrieving similar cases without decreasing performance. This could
be achieved by organizing the case-based hierarchically with generalized cases rep-
resenting a set of cases which are sufficiently similar. In this architecture the gener-
alized cases should contain information about the frequency of each of the actions
represented by the similar cases, and the combined outcome of applying these ac-
tions. A different method would be to provide the retrieval step with the necessary
logic to remove cases that would result in a low similarity with the new case. This
could be done by e.g. removing cases which have a big distance in the heavily
weighted features compared to the new case. If done efficiently this would reduce
decision making time, by only calculating the full similarity measures for a subset
of the case-base.

• As discussed in this thesis, the reuse policy chosen and the way outcome is rep-
resented greatly affects system performance. Further work should be done on this
area, especially on providing the system with domain knowledge to efficiently judge
the outcome of a solution. The approach described in the section 5.4.5 should be
implemented and tested to provide cases with a better outcome measure.

The overall system

• Further work on the overall system should experiment and test different ways of BN
and CBR interaction. The current design uses hand group prediction to calculate
relative hand strength, and the hand type prediction as separate features in a case.
Another way of doing this would be to use hand type predictions to further refine the
opponent’s most likely hole cards. For example if the opponent’s most likely hand
type is two pair, the hole cards resulting from the hand group prediction that do not
form this hand type when combined with the community cards could be removed
to further enhance the relative hand strength feature. Which of these approaches
provide the best performance should be further tested.

• The system should be tested more extensively against different types of opponent’s,
including human players. The Open Holdem software provides the required inter-
facing mechanism for doing so. The results acquired by these tests should be used
as a basis for further improvements of the system.

• The current implementation of the system plays its cards very truthfully, which
may make it easier exploitable by opponent’s. Work should be performed to make
BayCaRP more deceptive in its playing behavior, e.g. by including actions such as
the check-raise. This could be done by representing combined actions as a solution
of a case, rather than only atomic actions.

97



98



References

[1] NTNU, “Translational research in lung cancer and palliative care - from genomics
to symptom control (tlcpc),” tech. rep., 2008.

[2] A. Aamodt and E. Plaza, “Case-based reasoning; foundational issues, methodolog-
ical variations, and system approaches,” AI COMMUNICATIONS, vol. 7, no. 1,
pp. 39–59, 1994.

[3] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[4] T. Bruland, A. Aamodt, and H. Langseth, “Architectures integrating case-based rea-
soning and bayesian networks for clinical decision support,” in Intelligent Informa-
tion Processing V (Z. Shi, S. Vadera, A. Aamodt, and D. Leake, eds.), vol. 340 of
IFIP Advances in Information and Communication Technology, pp. 82–91, Springer
Boston, 2010.

[5] D. Billings, J. Schaeffer, and D. Szafron, “Poker as a testbed for machine intelligence
research,” in Advances in Artificial Intelligence, pp. 1–15, Springer-Verlag, 1998.

[6] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The challenge of poker,”
Artificial Intelligence, vol. 134, p. 2002, 2001.

[7] C. Marling, M. Sqalli, E. Rissland, H. Muñoz-Avila, and D. Aha, “Case-based rea-
soning integrations,” AI Magazine, vol. 23, no. 1, 2002.

[8] A. Aamodt, “Explanation-driven case-based reasoning,” in Topics in Case-Based
Reasoning (S. Wess, K.-D. Althoff, and M. Richter, eds.), vol. 837 of Lecture Notes
in Computer Science, pp. 274–288, Springer Berlin / Heidelberg, 1994.

[9] A. A. Helge and H. Langseth, “Integrating bayesian networks into knowledge-
intensive cbr,” in In American Association for Artificial Intelligence, Case-based
reasoning integrations; Papers from the AAAI workshop. Technical Report WS-98-
15. AAAI Press, pp. 1–6, 1998.

[10] D. Aha and L. W. Chang, “Cooperative bayesian and case-based reasoning for solv-
ing multiagent planning tasks,” tech. rep., Navy Center for Applied Research in AI,
1996.

[11] S. Kaasa, J. H. Loge, P. Fayers, A. Caraceni, F. Strasser, M. J. Hjermstad, I. Hig-
ginson, L. Radbruch, and D. F. Haugen, “Symptom assessment in palliative care: A
need for international collaboration,” Journal of Clinical Oncology, vol. 26, no. 23,
pp. 3867–3873, 2008.

99



[12] S. Kaasa and F. D. Conno, “Palliative care research,” European Journal of Cancer,
vol. 37, no. Supplement 8, pp. 153 – 159, 2001.

[13] A. Aamodt, “A case-based answer to some problems of knowledge-based systems,”
in in Proceedings of SCAI, 1993) , Fourth Scandinavian Conference on Artificial
Intelligence, pp. 168–182, IOS Press, 1993.

[14] M. M. Richter, “Knowledge containers,” tech. rep., TU Kaiserslautern, 2003.

[15] A.-C. Olsson, N. di Zazzo, and J. Tjäderborn, “Social de-
cision making strategies in internet poker playing.” url:
http://csjarchive.cogsci.rpi.edu/proceedings/2007/docs/p1831.pdf, mar 2011.

[16] E. Charniak, “Bayesian networks without tears: making bayesian networks more
accessible to the probabilistically unsophisticated,” AI Magazine, vol. 12, pp. 50–
63, November 1991.

[17] J. J. Bello-Tomás, P. A. González-Calero, and B. Díaz-Agudo, “Jcolibri: An object-
oriented framework for building cbr systems,” in Advances in Case-Based Reason-
ing (P. Funk and P. A. González Calero, eds.), vol. 3155 of Lecture Notes in Com-
puter Science, pp. 29–39, Springer Berlin / Heidelberg, 2004.

[18] A. Stahl and T. Roth-Berghofer, “Rapid prototyping of cbr applications with the
open source tool mycbr,” in Advances in Case-Based Reasoning (K.-D. Althoff,
R. Bergmann, M. Minor, and A. Hanft, eds.), vol. 5239 of Lecture Notes in Computer
Science, pp. 615–629, Springer Berlin / Heidelberg, 2008.

[19] M. Jaczynski and B. Trousse, “An object-oriented framework for the design and the
implementation of case-based reasoners,” 1998.

[20] B. López, C. Pous, P. Gay, A. Pla, J. Sanz, and J. Brunet, “exit*cbr: A framework
for case-based medical diagnosis development and experimentation,” Artificial In-
telligence in Medicine, vol. 51, no. 2, pp. 81 – 91, 2011. Advances in Case-Based
Reasoning in the Health Sciences.

[21] M. J. Druzdzel, “Smile: Structural modeling, inference, and learning engine and ge-
nie: A development environment for graphical decision-theoretic models,” in In Pro-
ceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI–99),
pp. 902–903, 1999.

[22] A. Madsen, M. Lang, U. Kjærulff, and F. Jensen, “The hugin tool for learning
bayesian networks,” in Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (T. Nielsen and N. Zhang, eds.), vol. 2711 of Lecture Notes in Com-
puter Science, pp. 594–605, Springer Berlin / Heidelberg, 2003.

[23] J. A. Recio-garcía, B. Díaz-agudo, P. González-calero, A. S. ruiz granados, and D. S.
Informáticos, “Ontology based cbr with jcolibri,” in Applications and Innovations
in Intelligent Systems XIV, pp. 149–162, Springer-Verlag London, 2006.

[24] B. Díaz-Agudo, P. A. González-Calero, J. A. Recio-García, and A. A. Sánchez-Ruiz-
Granados, “Building cbr systems with jcolibri,” Sci. Comput. Program., vol. 69,
pp. 68–75, December 2007.

100



[25] Y. Reich and A. Kapeliuk, “Case-based reasoning with subjective influence knowl-
edge,” Applied Artificial Intelligence, vol. 18, no. 8, pp. 735–760, 2004.

[26] A. F. Rodriguez, S. Vadera, and L. E. Sucar, “A probabilistic exemplar-based model
for case-based reasoning,” Springer-Verlag, pp. 40–51, 2000.

[27] H. Tran and J. Schönwälder, “Fault resolution in case-based reasoning,” in PRICAI
2008: Trends in Artificial Intelligence (T.-B. Ho and Z.-H. Zhou, eds.), vol. 5351
of Lecture Notes in Computer Science, pp. 417–429, Springer Berlin / Heidelberg,
2008.

[28] R. Pavón, F. Díaz, R. Laza, and V. Luzón, “Automatic parameter tuning with a
bayesian case-based reasoning system. a case of study,” Expert Systems with Ap-
plications, vol. 36, no. 2, Part 2, pp. 3407–3420, 2009.

[29] R. Baker and P. Cowling, “Bayesian opponent modeling in a simple poker environ-
ment,” in Computational Intelligence and Games, 2007. CIG 2007. IEEE Sympo-
sium on, pp. 125–131, april 2007.

[30] M. A. Terry and B. E. Mihok, “A bayesian net inference tool for hidden state
in texas hold’em poker.” url: http://ocw.mak.ac.ug/NR/rdonlyres/Aeronautics-
and-Astronautics/16-412JSpring-2005/26C3A790-77CA-460A-B97B-
CE26E3BFCCF4/0/mihokterry.pdf, mar 2011.

[31] K. B. Korb, A. E. Nicholson, and N. Jitnah, “Bayesian poker,” UAI99–Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 343–350,
1999.

[32] K. B. Korb, A. E. Nicholson, and D. Boulton, “Using bayesian decision networks to
play texas hold’em poker,” ICGA Journal, 2006.

[33] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and
C. Rayner, “Bayes’ bluff: Opponent modelling in poker,” in In Proceedings of the
21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 550–558,
2005.

[34] K. Tretyako and L. Kamm, “Modeling texas hold’em poker strategies with bayesian
networks.” url: http://ats.cs.ut.ee/u/kt/hw/bayesnets-poker/bayesnets-poker.pdf, mar
2011.

[35] A. S and B. Tessem, “A case-based learner for poker. the,” in Ninth Scandinavian
Conference on Artificial Intelligence (SCAI 2006), 2006.

[36] I. Watson and J. Rubin, “Casper: A case-based poker-bot,” in AI 2008: Advances in
Artificial Intelligence, vol. 5360, pp. 594–600, Springer Berlin / Heidelberg, 2008.

[37] J. Rubin and I. Watson, “Similarity-based retrieval and solution re-use policies in
the game of texas hold’em,” in Case-Based Reasoning. Research and Development
(I. Bichindaritz and S. Montani, eds.), vol. 6176 of Lecture Notes in Computer Sci-
ence, pp. 465–479, Springer Berlin / Heidelberg, 2010.

[38] M. Salim and P. Rohwer, “Poker opponent modeling,” 2005.

101



[39] D. Sklansky and M. Malmuth, Hold ’em Poker for Advanced Players. Two Plus Two
Publications, 1999.

[40] J. Rubin, “Casper: Design and development of a case-based poker player,” Master’s
thesis, University of Auckland, 2007.

[41] D. Billings and M. Kan, “A tool for the direct assessment of poker decisions,” tech.
rep., International Computer Games Association Journal, 2006.

[42] P. Galfond, “’g bucks’ conceptualizing money matters,” Bluff Magazine, 2007.

[43] H. Tirri, P. Kontkanen, and P. Myllymäki, “A bayesian framework for case-based
reasoning,” Springer-Verlag, pp. 413–427, 1996.

[44] K. B. Korb, A. E. Nicholson, and N. Jitnah, “Bayesian poker,” in In Uncertainty in
Artificial Intelligence, pp. 343–350, Morgan Kaufman, 1999.

[45] K. Tretyakov and L. Kamm, “Modeling texas hold’em poker strategies with
bayesian networks,” tech. rep., 2009.

102



APPENDIX A

Running the system

When deploying BayCaRP we experienced an increase in the time needed by Bay-
CaRP to make its betting decisions. This increase in decision making time was not very
user friendly, so we decided to attach a version of BayCaRP with a smaller case-base.
This reduced the time issue into a more acceptable range, but was still slower than the un-
deployed version. Still, we hope the reader can enjoy this version of BayCaRP although
it is a little bit slower than it should.

The execution of the system involves performing the following steps:

1. Extract the .zip file. It is important that jsmile.dll, BNnyeste32PFRVPPos.xdsl and
BayCaRP_Server.exe are in the same folder.

2. Execute the BayCaRP_Server.exe. When the text BayCaRP is configured and ready
to use! appears the server is ready to handle requests.

3. Copy BayCaRP_Client.jar and BayCaRP_Client.pd to the data/bots path in your
Poker Academy Pro folder.

4. Run Poker Academy Pro. Open Window->Opponent Manager in your Poker Academy
Pro application, and select import an opponent.

5. Find and select the BayCaRP_Client.pd file and press ok.

6. Finally go to Ring Games and either create your own limit Texas Hold’em table, or
import the attached table (BayCaRP-test.tbl) through the import table button on the
left side.

If you do not want to participate in the game yourself, and just observe BayCaRP play
do the following steps:

1. Click on the player with your name.

2. Select Set Bankroll and set this to zero and click OK.

Additionaly, if you do not want to observe BayCaRP play a series of bad cards, you
can select Dealer -> Dealer Options in the menu, and make BayCaRP only receive hole
cards amongst e.g. the top 10% starting hands. And if you desire to see all of the players
cards, then go to Options and click Play All Face-Up.
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APPENDIX B

Hand groups

Figure B.1 shows the hole cards in each hand group. Suited cards are shown on the
top side of the diagonal line, while offsuit cards are shown below the diagonal line. The
diagonal line is represented as the pairs, pair of aces through pair of two’s. The cells
that are not marked with a number constitute hand group 10 in the Bayesian network.
Handgroup 1-8 are the orginial Sklansky and Malmuth hand groups, while hand group 9
is the extension to this concept.

Figure B.1: The hand groups
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APPENDIX C

Rank of hands in Texas Hold’em

Figure C.1 shows the ranking of the different hand types in Texas Hold’em poker, with
the best hand beeing Royal Flush and the worst High Card. The High Card hand type also
goes under the name Busted, which is used as a state in our BN.

Figure C.1: Texas Hold’em hand ranks
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APPENDIX D

The implemented BN

Figure D.1: The implemented BN
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